FLLE COPY

DEPARTMENT OF COMMERCE AND LABOR
6. \& G. SURVEY L. \& A.

OCT 29 1:20 Acc. No.

COAST AND GEODETIC SURVEY

SHowing
THE PROGRESS OF THE WORK

FROM

July i, 1909, TO June 30, 1910

National Oceanic and Atmospheric Administration Annual Report of the Superintendent of the Coast Survey

ERRATA NOTICE

One or more conditions of the original document may affect the quality of the image, such as:

Discolored pages
Faded or light ink
Binding intrudes into the text

This has been a co-operative project between the NOAA Central Library, the Office of Coast Survey and the National Geodetic Survey. To view the original document please contact the NOAA Central Library in Silver Spring, MD at (301) 713-2607 x124 or www.reference@nodc.noaa.gov.

LASON

Imaging Contractor
12200 Kiln Court
Beltsville, MD 20704-1387
March 22, 2005

LETTER OF TRANSMITTAL.

Department of Commerce and Labor, Office of the Secretary, Washington, September 30, 1910.

SIR: In compliance with the requirements of section 4690 , Revised Statutes, I have the honor to transmit herewith, for the information of Congress, a report submitted to this Department by Mr. O. H. Tittmann, Superintendent of the Coast and Geodetic Survey, showing the progress made in that work during the fiscal year ended June 30, 1910. It is accompanied by maps illustrating the general advance in the operations of the Survey up to that date.

Respectfully,
Benj. S. Cable, Actinq Secretary.
The Speaker of the House of Representatives.

LETTER OF SUBMITTAL.

> Department of Commerce and Labor, Coast and Geodetic Survey, Washington, September 29, igro.

Sir: In conformity with law and with the regulations of the Department of Commerce and Labor, I have the honor to submit herewith, for transmission to Congress, the annual report of progress in the Coast and Geodetic Survey for the fiscal year ended June 30 , igio. It is accompanied by maps illustrating the general advance in the field work of the Survey up to that date.

Respectfully,

[^0]O. H. Tittmann, Superintendent.

CONTENTS.

REPORT OF THE SUPERINTENDENT.

Page.
Report of the Superintendent 7
I. Office of Assistant in Charge 12
II. Office of Inspector of Hydrography and Topography 12
III. Office of Inspector of Geodetic Work 15
IV. Office of Inspector of Magnetic Work. 16
V. Office of Disbursing Agent 18
VI. Office of Editor of Publications. 19
Appendix I. Details of field operations 21
2. Details of office operations 63
3. Results of magnetic observations made by the Coast and Geodetic Survey between July 1,1909 , and June 30, 1910. 73
4. The primary base lines at Stanton, Tex., and Deming, N. Mex 143 •
5. Triangulation in California, Part II. 173
6. The measurement of the flexure of pendulum supports with the interferometer $43 I$
ILLUSTRATIONS.
r. Distribution of the principal estronomic stations occupied to June 30 , rgro. In pocket
. Positions and connections of telegraphic longitude stations to June 30,1910 In pocket
3. Routes of geodetic spirit leveling and positions of gravity and tide stations to June 30 ,1910
In pocket
4. Positions of magnetic stations occupied to June 30 , 1910 In pocket
A. Sketch of general progress, Eastern sheet In pocket
B. Sketch of gencral progress, Western sheet In pocket
C. Sketch of generai progress, Alaska In pocket
D. Sketch of general progress, Hawaii and Porto Rico In pocket
E. Sketch of general progress, Philippine Islands In pocket

REPORT OF THE SUPERINTENDENT.

WORK OF THE YEAR.

FIELD WORK.
The usual progress was made in the collection and preparation for publication in the form of Charts, Coast Pilots, Tide Tables, and Notices to Mariners of all information useful to navigators and relating to the coasts of the United States and under the jurisdiction of the United States.

Very satisfactory progress was made in the Philippine Islands, where surveys were made for charting purposes along the unsurveyed portions of the coast, covering io per cent of the whole extent of the estimated general coast line of the archipelago.

Good progress was made also in charting the unsurveyed coasts of Alaska, the work being confined to the regions where the demand for charts is most urgent.

Important improvements were made in the construction and use of the long wire drag, and its length was increased to 8400 feet when used in open water. The long drags greatly increase the area possible to be covered in any given time, and consequently decrease the cost of examining harbors and channels of large extent. The improvements were described in a publication issued for the information of hydrographers.

Details in regard to the work assigned to the Survey and to the Superintendent as Commissioner representing the United States in recovering and marking the international boundary between the United States and Canada and in the demarcation of the Alaska boundary are given in Appendixes 1 and 2, and form the basis of the following general statements. The establishment of reference monuments in the United States along the water boundary between the United States and Canada between Point Roberts and the Pacific Ocean was completed. All these monuments were connected with the coast triangulation. The same boundary was surveyed and monumented from the summit of the Rocky Mountains eastward to the North Fork of Milk River, a distance of 50 miles, and considerable work was done to the east of this point. West of Lake Superior, the boundary was surveyed along Pigeon River to South Fowl Lake, a distance of 30 miles. On the eastern borders of Maine the survey of the boundary was completed from a point 2 miles below Van Buren, Me., to a point in the vicinity of Fort Kent, Me. On the St. Croix River the triangulation along the boundary from the mouth of the river to Butler Islands was completed. The work of all the parties east of the Rocky Mountains was in progress on June 30.

In the demarcation of the Alaska boundary a survey was made and marks were established in the vicinity of the Unuk and Blue rivers in southeastern Alaska, and on

June 30 a party was at work in the valley of Salmon River and another party was at work in the region north of the head of Portland Canal.

On the one hundred and forty-first meridian the survey of the boundary was completed between the Yukon River and the Natazhat Mountains 200 miles to the southward, and good progress was made in surveying the line to the northward of the river. This work was in progress on June 30.

In this connection I wish to emphasize the importance of providing means for a triangulation down the great valley of the Yukon River from the international boundary to the mouth of the river to form the basis for the economic surveys in progress or in contemplation as a much more desirable plan than the coordination and adjustment of such surveys after they are made. Attention has been called to this work in my annual reports for 1908 and 1909, and an appropriation to begin this triangulation should not be delayed any longer.

Work at the latitude observatories at Gaithersburg, Md., and Ukiah, Cal., maintained by the International Geodetic Association under my direction, was continued during the year.

One officer continued on duty as a member of the Mississippi River Commission, and another was continuously employed in cooperation with the Maryland State Board of Shell Fish Commissioners in making a survey of the natural oyster bars and rocks in the State of Maryland. The work in Calvert County was completed and a report covering the work was prepared and published. This officer was also authorized to supervise the survey of certain portions of the oyster beds in the State of Delaware, as requested by the governor, without expense to the National Government.

Buoys were placed on the boundary between the States of Louisiana and Mississippi in Lake Borgne and Mississippi Sound and referred to the marks previously established on shore, as requested by the state authorities, to aid in the enforcement of the state laws relating to oyster culture.

The officer in charge of the Survey exhibit at the Alaska-Yukon-Pacific Exposition remained on that duty until the close of the exposition, on October 16.

In accordance with a request made by the War Department, an officer was detailed to serve as the representative of the United States on a commission of engineers created to make a survey of a portion of the Military road leading from the Aqueduct Bridge (across the Potomac River) to Fort Myer, Va. The location of a portion of the boundary of this road being in controversy between the United States and the owners of the adjoining property and the case being before the United States court for the eastern district of Virginia for settlement, a special master commissioner in chancery was named to take testimony, and he appointed the commission of engineers mentioned above. The survey was made and a final report was placed on file.

In accordance with instructions issued to Civil Engineer R. E. Peary, U. S. Navy, as stated in the previous Annual Report, tide observations were made in the Arctic regions at Cape Sheridan, Cape Columbia, Cape Bryant, Fort Conger, and Cape Morris Jessup, and the records of the work have been placed on file. Valuable information in regard to the tides was obtained, and a discussion of "Arctic Tides" is being made for publication which will embody all the available information on this subject.

Astronomic observations to determine latitude, longitude, or azimuth were made in Texas and in Alaska.

Observations to determine the relative force of gravity were made with a half-second pendulum at 27 stations distributed as follows: Four in Arizona, one in California, one in the District of Columbia, one in Maine, two in Michigan, two in Minnesota, two in New Mexico, three in New York, one in Nevada, one in North Dakota, one in South Dakota, two in Tennessee, five in Texas, and one in Vermont. The use of an interferometer, suitably modified, to determine the flexure of the pendulum support was continued. A description of the instrument and the method of using it is given in Appendix 6.

The Standard levels were extended in Arizona, New Mexico, Oklahoma, and Texas.
Topographic surveys were made in Alaska, California, Hawaii, Maryland, New Hampshire, North Carolina; Philippine Islands, Virginia, and Washington.

Triangulation was done in Alaska, California, Delaware, Florida, Hawaii, Maine, Maryland, Massachusetts, Montana, New Mexico, North Carolina, Philippine Islands, Texas, Virginia, and Washington. The recovery of old triangulation stations was continued on the coasts of Connecticut, Florida, Maryland, Massachusetts, and North Carolina. This work was completed on the west coast of Florida.

Hydrographic work was done in Alaska, California, Delaware, Florida, Hawaii, Maine, Maryland, Massachusetts, New Hampshire, North Carolina, Philippine Islands, South Carolina, Virginia, and Washington.

The examination of the navigable waters on the coast of Maine with the long wire drag was continued and a similar examination of Mayaguez Harbor and approaches in Porto Rico was made.

A new edition of the Coast Pilot volume covering the coast from New York to Chesapeake Bay Entrance was prepared and published.

The magnetic survey of the country was continued by making observations at 238 stations distributed over 39 States and Territories, including Porto Rico and the Philippine Islands, and numerous observations were made at sea on board the surveying vessels on their cruises to and from their fields of work in various portions of the country. A continuous record of the relative value of the magnetic elements was obtained at the magnetic observatories maintained by the Survey at Cheltenham, Md., Sitka, Alaska, Honolulu, Hawaii, and Vieques, P. R. Observations were made at Baldwin, Kans., for a portion of the year, and the instruments were then transferred to Tucson, Ariz., where observations are now in progress.

Self-registering tide gauges were maintained at the following stations: Fort Hamilton, N. Y.; Philadelphia, Pa.; Baltimore, Md.; Colonial Beach, Va.; Wilmington, N. C.; Fernandina, Fla.; Weeks, La.; Galveston, Tex.; San Diego, Cal.; Presidio of San Francisco, Cal., and Seattle, Wash. A similar gauge was installed at Portland, Me.

The tide indicators at Fort Hamilton, N. Y.; Reedy Island, Delaware Bay, Delaware; and at Alcatraz Island, San Francisco, Cal., have been continued, and the electric tide indicator in the rooms of the Maritime Association, at New York, continued to give satisfaction. A similar indicator was installed in the building of the American Seamen's Friend Society's Institute, in New York City.

ALASKA.
Surveys were made in Portland Canal, Tongass Narrows, Cordova Bay, Controller Bay, Prince William Sound, Cook Inlet, Nushagak Bay (in Bristol Bay), and in the vicinity of Kodiak.

The survey of Controller Bay was completed and an examination of the waters offshore between Kayak and Montague Island inside of Middleton Island was made, the dangers to navigation within this area being located and their positions determined. A number of supposed dangers do not exist and have been removed from the charts.

On the coast of Prince of Wales Island the areas west of Mexico Point to Dewey Rocks, south to the Barrier Islands, and through Eureka Pass were carefully developed by sounding, and the hydrographic survey was extended over the area north of the Barrier Islands, including Tah and Hunter bays to the eastward and to Long Island on the west. In Cordova Bay, westward of the Barrier Islands, lines of soundings were made from a point opposite Shipwreck Point to the international boundary line to the eastward of Cape Muzon.

Hydrographic and topographic' surveys were made in Tongass Narrows between Ketchikan and Rosa Reef Spindle.

In Prince William Sound surveys were made along the shores of Knight and Hinchinbrook islands. The survey of Nushagak Bay, in Bristol Bay, was completed.

A revised edition of the Coast Pilot Notes from Yakutat Bay to Cook Inlet was prepared and published.

PHILIPPINE ISLANDS.
Excellent progress was made in charting the unsurveyed coasts of the islands, so per cent of the estimated mileage of the general coast line of the islands being covered during the year. The results of the fieldwork were promptly made available at the suboffice at Manila, in the form of drawings for charts, which were forwarded to Washington for review and publication. The statistics for the year show that the triangulation covered 23988 square miles and the hydrographic work 9385 square miles. The topographic survèy covered 1708 square miles and extended along 1637 miles of coast line. The Coast and Geodetic Survey steamer Pathfinder and the insular government steamers Fathomer, Marinduque, Research, and Romblon were engaged in the work, and also parties living on shore. The expenses of the work were divided between the General Government and the insular government in accordance with the agreement under which the previous work has been done. Surveys were made on the west coast of Samar, north and south coasts of Leyte, north and south coasts of Mindanao, south coast of Masbate, west and east coast of Mindoro, in Surigao and Tañon straits, and around the Tablas Islands.

Tide observations were made in connection with the hydrographic work, and a continuous record of tidal changes was obtained with self-registering gauges at Manila and Iloilo.

The organization of the work in the Philippine Islands remains unchanged. All the work necessary for chart construction is performed at the suboffice. New editions of the sailing directions for the islands are prepared and published as often as necessary and notices to mariners are also published.

Details in regard to the work are given in Appendix 1.

OFFICE WORK.

Progress was made in the various branches of the office work, including computation, plotting, and discussion of the results of the work in the field and the preparation of data for publication by chart or otherwise.

A Supplementary Discussion of the Figure of the Earth and Isostasy was prepared, utilizing additional data to 1909 .

Tables of predicted tides for numerous ports on the coasts of the United States and in foreign countries for the year igII were prepared and published.

Three volumes containing the results of observations at the magnetic observatories in past years were also published, and the Annual Report for 1909 was prepared for transmission to Congress.

On account of the territorial expansion of the United States and the consequent extension of the sphere of the Survey's operations, there have been urgent and continually increasing demands on this Bureau for surveys and new charts. Each year adds to the number of charts published, and all of these exact time and energy to keep them up to date. The Navy Department has urgently requested that the charts of this Bureau be constructed on the mercator projection. In view of these conditions, I appointed a board to fully consider the whole subject of chart construction and publication, consisting of a chairman, Mr. G. R. Putnam, Chief of the Drawing and Engraving Division, who had given years of study to the problem, and two members, Assistants D. B. Wainwright (who succeeds Mr. Putnam as chief of division) and P. A. Welker, both experienced hydrographers, navigators, and commanders of ships. The first charting of the Atlantic, Gulf, and Pacific coasts of the United States having been practically completed and splendid progress having been made in the work in our distant territories, it was possible to consider the subject in its broadest aspect.

The later charts of the Survey are examples of the best modern usage in chart construction, and they will only need in some cases a rearrangement of limits and the further simplification of some details to perfect them from an economical standpoint. With respect to the charts of earlier date, the changes will have to be more radical. On these charts a great amount of detail was represented which under modern conditions is not considered necessary, and its rendering was also much more minute and elaborate than accords with present practice. Their correction involves an adherence to the same timeconsuming method of representation. For twenty years all new charts have been oriented with the meridian, but there still remain a number of the earlier charts which were oriented diagonally with a view to include greater sea area. But for this feature they are as useful and accurate as any others.

Formerly on many charts a double unit for depths was employed, fathoms for deep water and feet on dotted surfaces for the shoal areas. During the last decade the practice has been to employ a single depth unit for a chart, either feet or fathoms, depending on which unit will best suit the area represented.

The difference between the mercator and polyconic projections is imperceptible on the large-scale charts, but on the small-scale charts it is very apparent, especially in northern latitudes.

The board submitted a report fully covering all these points, with recommendations which I have approved, wherein a definite program is outlined for eliminating the
old-style charts and for replacing them with a smaller number on the mercator projection, simpler in character, and on which the latest information can be more readily shown.

The demand for charts was greater than any previous year except the preceding fiscal year, when the issue was abnormally large.

A notable event of the year was the completion of a tide-predicting machine in the instrument shop of the Survey. It embraces many new features and provision has been made for 37 constituents of tidal fluctuations instead of the 19 provided for in the machine previously used. The construction of this machine has been incidental to the regular repair work of the Survey, and consequently it has been many years in progress. It was completed in February and has been tested in predicting the most complicated known tides, and the quantities obtained have been compared with the results of computation and found to be satisfactory from every point of view.

The amount appropriated for the Coast and Geodetic Survey for the fiscal year ended June 30, 1910, and accounted for by the bureau disbursing agent was $\$ 997349.14$ (exclusive of the appropriation for printing), of which $\$ 245000$ was for manning and equipping the vessels of the Survey, $\$ 40$ ooo for repairs and maintenance of vessels, and $\$ 50000$ for Office expenses. The remainder of the appropriation was divided between the expenses of parties in the field ($\$ 326400$) and salaries of field and office forces (\$335 890). In addition to the above sums, the appropriations to the State Department for marking the United States and Canada boundary (except a portion of the water boundary) and for locating and marking the Alaska boundary are disbursed under my direction as Commissioner through the bureau disbursing agent, as special disbursing agent of the Department of State.

OFFICE OF ASSISTANT IN CHARGE.

Andrew Braid, Assistant in Charge.
The Assistant in Charge has direct supervision of the work of the divisions of the Office, as follows: Computing Division; Division of Terrestrial Magnetism; Tidal Division; Drawing and Engraving Division; Chart Division; Instrument Division; Library and Archives Division. He also has charge of the purchase of supplies and of all other expenditures for Office expenses, the care of the public property at the Office, the distribution of the publications of the Survey issued free, and of the sale of the charts, Coast Pilots, and Tide Tables published by the Survey.

Details of the Office operations are given in Appendix 2.
OFFICE OF INSPECTOR OF HYDROGRAPHY AND TOPOGRAPHY.

J. J. Gilbert, Inspector.

The Inspector supervised the field work done by the parties on the surveying vessels and all the other hydrographic and topographic work and the coast-pilot work in the field and Office. He prepared plans for the field work and the necessary instructions for the chiefs of parties, and recommended the approval of estimates for expenses and all changes in the personnel on the vessels when such changes became necessary. He made monthly reports of the progress of the work and monthly statements covering all temporary employees not under civil-service rules. Numerous short trips were made by him in supervising the maintenance of the surveying vessels.

The routine work in connection with the enlistment of crews for the vessels and the administrative examination of accounts of the vessels was kept up to date.

COAST PILOT.

The following publications were prepared and the proof was read: United States Coast Pilot, Atlantic Coast, Part V, fourth edition; Supplements to United States Coast Pilot, Atlantic Coast, Parts I-II, III, VI, VII, and VIII; Alaska, Coast Pilot Notes from Yakutat Bay to Cook Inlet and Shelikoff Strait, second edition.

The preparation of material for new editions of Parts I-II and III of the United States Coast Pilot on the Atlantic Coast was begun.

VESSELS AND THEIR WORK.

STEAMER BACHE.
Two pairs of Welin quadrant davits were installed on the Bache at Baltimore, July 1-8, and the vessel sailed for the New England coast July io. En route magnetic observations were made in Chesapeake Bay and at Vineyard Haven, Mass., and soundings were made in Nantucket Sound and in Pollock Rip Slue to examine certain selected areas. The vessel reached Boston on July 22 and preparations were made for repairs. Hydrographic work was done off Plymouth, Mass., July 28-3I and on August 11, and off Boothbay and Portland, Me., August 19-29. During the interval between these dates details in regard to repairs were attended to, the delay in approving the contract for repairs necessitating several trips to Boston.

A hydrographic resurvey of Shank Painter Bar off Provincetown, Mass., was made September 2-4, and then the vessel went to Boston for repairs, as the condenser was in such a condition that the vessel could not be used with safety. The repairs were completed on October 7, and the vessel returned to Portland, Me. The work in this vicinity and off Portsmouh, N. H., was completed on November 6, and hydrographic work was then done in the vicinity of The Graves Light-house and at Salem, Marblehead, and Plymouth. Some minor repairs were made at Boston November 23 to December 3, and a hydrographic resurvey was then made of Pollock Rip Slue and of the shoals east of Monomoy Island. The vessel sailed for Norfolk, Va., on December 14 and was engaged on the resurvey of the approach to Hampton Roads December 17 to February 26. On March in the Bache sailed for Fernandina, Fla., and made off shore soundings on the coast of Florida until May 12. Hydrographic work was done off Charleston, S. C., May 15 to June 13, when the vessel returned to Boston for repairs. This work was in progress on June 30.

STEAMER ENDEAVOR.
On July i the Endeavor was at work in Albemarle Sound. N. C. This work was completed on September 27, when the vessel proceeded to Norfolk, Va., for repairs. The repairs were completed on October 20 , and then chart revision work, including supplementary surveys, was done in Elizabeth and James rivers until March 12, when the work was suspended and a special survey of the Delaware Breakwater speed trial course was made as requested by the Navy Department. This survey was completed on April 14 and the vessel went to Wilmington, Del., for repairs, but the charges were considered
excessive, and the repairs were made at Jersey City, May $1-25$, the work being delayed by a fire which started in the engine room. On May 27 the vessel went to Buzzards Bay, Mass., and continued supplemental surveys in that bay during the remainder of the fiscal year.

SCHOONER MATCHLESS.
Repairs were made to this vessel July $1-16$, and then supplemental work for chart revision was begun in Rappahannock River and completed to the head of navigation above Fredericksburg on March 25. The vessel then proceeded to Annapolis, Md., and a supplementary survey was made in Severn River, March 27 to June 15. A search was. made for a reported shoal in the vicinity of York Spit, Chesapeake Bay, June 20-23, and the vessel then went to Newport News (June 25) for repairs to the launch. This work was in progress on June 30.

STEAMER HYDROGRAPHER.
This vessel was out of commission and laid up July i to April 4, when she was taken to Baltimore for repairs. The repairs were completed, and on June 20 the vessel sailed for coast-pilot work on the coast of New England via Jersey City for supplies. Some hydrographic work was done at Fishing Point, Va., en route, and the vessel was at Jersey City on June 30.

STEAMER EXPLORER.

On July i this vessel was at work on the survey of Nushagak Bay, in Bristol Bay, Alaska, and work was continued until September 21, when the vessel sailed for San Francisco, Cal., via Unalaska, Alaska, and Seattle, Wash. The Explorer reached Seattle on October 8 and San Francisco on October 17. From November to March 15 the vessel was engaged in making supplemental surveys along the California coast. Repairs were made to the ship at San Francisco, and on April 23 she sailed for Bristol Bay via Seattle. The vessel reached Port Moller, Alaska, on May 19 and was delayed there by ice until June 3. During this interval a general survey was made of the port. On June 4 the vessel reached Nushagak Bay and resumed the survey of the bay. The work was in progress on June 30.

STEAMER GEDNEY.
The steamer Gedney was at work on the survey` of Cordova Bay, Alaska; on July i and the work was continued until September ${ }_{17}$, when the vessel proceeded to Ketchikan for work in Tongass Narrows to locate a reported reef. The steamer Cosmos, the tender of the Gedney, continued work in Cordova Bay until September 25 and then joined the vessel. The work in Tongass Narrows was suspended on October 20 and the vessel proceeded to Seattle, Wash., reaching there on the 28 th. Chart revision work was begun in Puget Sound with a reduced crew on December 1 and continued until March 5, when the vesssel returned to Seattle for repairs. The repairs were completed on April 10, and on April 20 the vessel sailed for Ketchikan, Alaska.

Repairs were made to the Cosmos April 28 to May 20, and the Gedney then resumed work in Tongass Narrows and the Cosmos proceeded to Portland Canal to make a topographic and hydrographic survey of the head of the canal in the vicinity of Bear River. The work of both vessels was in progress on June 30.

THE M'ARTHUR.

The survey of Cook Inlet was in progress on July r and was continued until September 26. The McArthur sailed for Seattle on October 3, and reached there on the i3th. Repairs were made and the vessel sailed for Grays Harbor, Wash., on October 3r. The survey of Grays Harbor began on November 5 and was continued until March 6, when the vessel returned to Seattle for repairs and to prepare for work in Alaska. The repairs were completed on April 11, and the vessel sailed for Cook Inlet on the 19th. Work began north of the Forelands on May 12 and was in progress on June 30.

STEAMER PATTERSON.
The survey of Controller Bay, Alaska, was in progress on July i and was continued until October 1, when the Patterson went to Cordova and sailed for Seattle on the 15th. The vessel reached Seattle on October 27 and most of the officers were detached and the crew reduced. Repairs were made to the vessel in January and February, and on April 18 she sailed for Cook Inlet via Cordova to get her tender, the launch Alpha. The ship reached Port Graham, Cook Inlet, on May 5, and the survey of the inlet south of the Forelands was begun on May 9. The work was in progress on June 30.

STEAMER TAKU.
The survey of Prince William Sound, Alaska, in the vicinity of Knight Island, was in progress on July I and was continued until September 23, when the vessel was taken to Cordova and laid up for the winter. Repairs were made to the Taku April 28 to May 22, and work on the survey of the sound was resumed on May 31 and continued during the remainder of the fiscal year.

STEAMER YUKON.
The survey of the east coast of Afognak Island, Alaska, was in progress on July i, and was continued until September 25, when the vessel was hauled out of the water and laid up for the winter. Repairs were made to the Yukon April 19 to May 10 at Kodiak, Alaska, and the vessel sailed on May 12 for Cook Inlet. Hydrographic and topographic work along the east side of Cook Inlet south from the Forelands began on May 17 and was in progress on June 30.

OFFICE OF INSPECTOR OF GEODETIC WORK,

J. F. Hayford, Inspector, July i to November 23: William Bowie,* Inspector, December io to June 30.

The duties of the Inspector were performed at the Office in Washington, where the records of the field parties were examined as they were received and an effective supervision of the work was maintained in this way.

The Survey made an important contribution to the science of geodesy by the issue of two publications entitled "The Figure of the Earth and Isostasy from Measurements made in the United States" and "Supplementary Investigation in 1909 of the Figure of the Earth and Isostasy." These two publications are important, because they furnish a determination of the figure and size of the earth of a high grade of accuracy, because

[^1]the methods of computing and investigating are somewhat novel, and because this investigation has established the fact that in and around the United States the condition called "isostasy" exists. The publication giving the results of the first investigation was available for distribution in August, r909, and copies were immediately mailed to the members of the International Geodetic Association in anticipation of the meeting of the General Conference of the association in September last.

The supplemental investigation, for which a large amount of additional data had become available, confirmed and strengthened the conclusions deduced in the original discussion. It should be borne in mind that practically all of the field work upon which these investigations are based was done to furnish correct geographic positions along the coast and throughout the interior of the country for controlling surveys and engineering works undertaken by the General Government, States, cities, private corporations, and individuals.

Another noteworthy event of the year in connection with the geodetic work was the issue of a preliminary publication giving the results of an investigation of the effect of topography and isostatic compensation upon the intensity of gravity. Additional observations have been made and the investigation is in progress.

The Texas-California triangulation was continued and 480 kilometers (300 miles) of progress was made.

The precise level net of the United States was extended by the addition of 1260 kilometers (788 miles) and the relative intensity of gravity was determined in 26 selected localities.

OFFICE OF INSPECTOR OF MAGNETIC WORK.

R. L. Faris, Inspector.

The instructions for magnetic work and the information required by parties in the field were prepared by the Inspector. Supervision of the work was maintained by an examination of the records of the parties in the field as they were transmitted to the Office from time to time as the work progressed.

The activity of the Survey in magnetic work may be summarized as follows:

OBSERVATORY WORK.

The magnetic observatories at Cheltenham, Md.; Honolulu, Hawaii; Sitka, Alaska; and Vieques, P. R., were kept in continuous operation. The observations at the observatory formerly at Baldwin, Kans., were discontinued on October 22, 1909, and the instruments were transferred to the building recently completed at Tucson, Ariz. Observations at the Tucson Observatory began on November 16 and were continued during the remainder of the fiscal year. At Cheltenham the usual number of magnetic storns were recorded. The one on September 25 was exceptionally severe and caused the greatest variations in the magnetic elements ever recorded at this observatory. Special observations were made in connection with similar work abroad from May is to 20 , the period during which the earth passed through the tail of Halley's comet, but no definite result was obtained which can be ascribed to the comet's proximity to the earth.

MAGNETIC WORK ON LAND.
The values of the magnetic elements declination, dip, and intensity were determined at 238 stations, distributed over 39 States and Territories, including Porto Rico and the Philippine Islands, as shown in the following table:

State.	Locelitics.	Stations.	Md localitics renccupied	Declination tesults.	Dip results.	Intensity results.
Alabama.	4		4	5	5	5
Alaska.	16	16	3	21	10	II
Arizona...	3	3	3	4	4	4
California. .	5	6	5	6	6	6
Connecticut.	2	2	2	2	2	2
Florida.	I	1	1	1	I	I
Georgia.	1	1	1	1	1	1
Hawaii.	1	1	1	1	1	1
Illinois.	10	10	1	10	10	10
Indiana.	21	22	2	24	24	24
lowa. ...	29	30	3	30	30	30
Kansas....	7	7	5	7	8	7
Kentucky.	5	5	1	5	5	5
Louisiana.	3	3	3	3	3	3
Maine...	8	8	3 2	8	8	8
Maryland.	2	2	2	4	8	8
Massachusetts .	6	6	4	7		5
Michigan.	2	2	4	7 2	2	5
Minnesota.	25	25	1	25	25	25
Mississippi.	2	2	2	2	25 2	2 2
Missouri . .	2	2	${ }^{2}$	2	2	2
Nebraska.	20	20	\bigcirc	${ }^{2}$	20	20
New Hampshire.	4		\bigcirc	20	20	20
New Jersey. .	2	4	2	4	4	4
New Mexico.	2	2	1	2	2	Ω_{2}
New York. .	4	2	2	2	2	2
North Dakota.	$\stackrel{4}{1}$	4	3	4	4	4
Ohio.	I	1	1	1	I	I
Pennsylvania	1	1	1	1	1	1
Philippine Islands	3	3	2	3	3	3
Porto Rico.	7	7	\bigcirc	7	-	0
Rhode Island	1	1	I	1	1	1
South Carolina.	2	2	2	2	2	2
South Dakota. .	10	1	1	1	1	1
Tennessee. ...	10	10	2	10	10	10
Texas.....	5	6	2	6	6	6
Vermont. .	5	6	4	6	6	6
Virginia.	1	1	\bigcirc	1	1	1
Washington.	3	4	3	4	4	4
Foreign countries.	3	3 1	\bigcirc	3 3	\bigcirc	-
Total	232	238	74	251	234	228

$634^{8} I^{\circ}-\mathrm{II}-2$

The magnetic work done on board the vessels of the Survey is shown in the following table:

Vessel.	General region.	Results from surveys.			Course observations.		
		Declination.	Dip.	Intensity.	Declination.	Dip.	Intensity.
Bache.	Atlantic Ocean. . .	7	7	7	- 0	0	0
Explorer	North Pacific Ocean. . .	19	23	23	r \quad I	0	0
Gedney.	. . . do.	13	\bigcirc	0	0	0	0
Patterson.	. . . do.	2	3	3	0	0	0
Romblon. .	Philippine Islands.	1	0	\bigcirc	0	0	0
Marinduque. do.	3	0	\bigcirc	0	0	0
Fathomer do.	8	0	\bigcirc	0	0	0
Total.		53	33	33	11	0	0

As usual, the magnetic work at sea was incidental to the regular surveying work of the vessels, and the observations were made when the vessels were en route to and from the different fields of work or when there was a suitable opportunity during the working season.

OFFICE OF THE DISBURSING AGENT.

Scotr Nesbit, Disbursing Agent.

The Disbursing Office of the Coast and Geodetic Survey has charge of all of the appropriations made for that service and, in addition, the appropriations made to the State Department for the survey and marking of the United States and Canada boundary and of the boundary between Alaska and Canada. The extremely wide field of work covered by these appropriations compels payments to be made in all parts of the United States, including Alaska, Porto Rico, Hawaii, and the Philippine Islands. The services of more than 70 bonded chiefs of parties are required to make these payments at the remote points occupied by the working parties of this Survey, both on land and sea. All of the public funds used by these officers are advanced from the central Disbursing Office of the Coast and Geodetic Survey, and the resulting bookkeeping and auditing are done in that office. Necessarily a very extensive line of correspondence results, as, in addition to all pay and salaries, the manning, equipping, outfitting, and repairing of the vessels of the Survey, the purchase and sale of clothing and small stores, the system of allotments made by seamen and other employees, and the entire expense of the field work of the Service, which is both extensive and varied, and the survey and marking of the two boundary lines mentioned, are financed entirely from the central Disbursing Office. The above-mentioned chiefs of parties are bonded in the sums of from $\$ 2,000$ to $\$_{10,000}$ each, and, while acting as chiefs of parties, these officers receive from time to time such advances of public funds from the Disbursing Agent as are approved by the Superintendent and are required to meet the necessary current expenses of the work in hand. A ledger account is kept in the office of the Disbursing Agent with each chief of party receiving an advance of public funds, each one being charged with all advances made
to him and, on the other hand, receiving credit for all proper expenditures made by him, when presented on regularly supported vouchers, after such accounts have been audited in the office of the Disbursing Agent, found to be correct, and approved by the Superintendent of the Survey. All of these accounts, after they have received the administrative examination required by law in the office of the Superintendent of the Coast and Geodetic Survey, are, with their supporting vouchers, sent through the Department of Commerce and Labor to the Auditor for the State and other Departments for examination and audit by him. This system has met the needs of this Survey and results, in the main, in economy and good order in its expenditures. A very large proportion of the appropriations named is now being expended in the survey of the most remote waters of Alaska and the Philippine Islands, and in the survey and marking of the boundary between Alaska and Canada, far in the interior of that territory.

OFFICE OF EDITOR OF PUBLICATIONS.

The Annual Report of the Superintendent (pp. 1-184), covering the progress of the work of the Survey during the fiscal year igo9, was completed and sent to the Public Printer, through the Secretary of Commerce and Labor, on September 21, 1909, and the last proof was read and returned to the printer on January 4 , 1910.

The publications of the Coast and Geodetic Survey during the fiscal year are given in the following list:

Report of the Superintendent of the Coast and Geodetic Survey, showing the progress of the work from July 1, 1908, to June 30, 1909. I84 pages, with the following appendices, also published separately:
No. 3. Results of Magnetic Observations made by the Coast and Geodetic Survey between July 1,1908 , and June 30 , 1909. Reprint. 76 pp .
No. 4. Distribution of the Magnetic Variation in Alaska and adjacent regions for 1910. Reprint, 30 pp .
The Figure of the Earth and Isostasy from Measurements in the United States. 178 pp.
Supplementary Investigation in 1909 of the Figure of the Earth and Isostasy. 80 pp .
Catalogue of Charts, Coast Pilots, and Tide Tables, 1909.228 pp.
Survey of Oyster Bars, Calvert County, Md. 94 pp.
Geodetic Operations in the United States, 1906-1909. 12 pp .
Results of Observations made at the Coast and Geodetic Survey Magnetic Observatory at Cheltenham, Md., 1905 and 1906 . I 10 pp .
Results of Observations made at the Coast and Geodetic Survey Magnetic Observatory near Honolulu, Hawaii, 1905 and 1906. 116 pp .
Results of Observations made at the Coast and Geodetic Survey Magnetic Observatory at Sitka, Alaska, 1905-1906. 116 pp .
Description of Long Wire Drag. 22 pp.
Tide Tables for the year-1git. 530 pp .
Tide Tables for the Atlantic Coast of the United States, including Canada and the West Indies. Reprint from the Tide Tables for rair. i80 pp.
Tide Tables for the Pacific Coast of the United States, together with a number of foreign ports in the Pacific Ocean. Reprint from the Tide Tables for 1911. 167 pp .
United States Coast Pilot, Atlantic Coast. Part IV: From Point Judith to New York. Fifth edition. 212 pp .
United States Coast Pilot, Atlantic Coast. Part V: From New York to Chesapeake Bay Entrance. Fourth edition. 166 pp .
Alaska Coast Pilot notes from Yakutat Bay to Cook Inlet and Shelikof Strait. Second edition. 82 pp .

United States Coast Pilot, Atlantic Coast. Parts I-II: From St. Croix River to Cape Ann. Supplement to second edition. 19 pp .
United States Coast Pilot, Atlantic Coast. Part III: From Cape Ann to Point Judith. Supplement to second edition. 16 pp .
United States Coast Pilot, Atlantic Coast. Part VI: Chesapeake Bay and Tributaries. Supplement to third edition. Io pp.
United States Coast Pilot, Atlantic Coast. Part VII: From Chesapeake Bay Entrance to Key West. Supplement to third edition. 23 pp .
United States Coast Pilot, Atlantic Coast. Part VIII: Gulf of Mexico from Key West to the Rio Grande. Supplement to third edition. 12 pp .
Philippine Island Sailing Directions. Section II: Southwest and South Coasts of Luzon and Adjacent Islands from Manila to San Bernardino Strait. Fourth edition. 102 pp .
Philippine Island Sailing Directions. Section V: Coast of Mindanao and Adjacent Islands. Third edition. 136 pp .
Catalogue of Charts, Sailing Directions, and Tide Tables of the Philippine Islands, 19 ro. 54 pp.
Philippine Islands. Notices to Mariners. Nos. 5, 6, 7, and 8 of 1909 and Nos. 1, 2, 3, and 4 of igro.

APPENDIX 1

DETAILS OF FIELD OPERATIONS

CONTENTS.

Page.United States 23
Alaska. 42
Outlying Territory. 48
Special Duty 56

DETAILS OF FIELD OPERATIONS.

UNITED STATES.
IOWA, NEW JERSEY, NEW YORK, AND PENNSYLVANIA.
> [J. R. Benton.]

Stations occupied.-Iowa: Audubon, Bedford,* Chariton, Clarinda,* Corning, Denison, Glenwood, Greenfield, Guthric Center, Harlan, Indianola, Jefferson, Leon, Mount Ayr, Nevada, Red Oak, Sidney, Webster City, and Winterset. New Jersey: Boonton and Trenton. New York: Carmel. Pennsylvania: Easton and Norristown.

The extension of the magnetic survey of the country was resumed in Iowa on July 15 and the work was continued until September 13. During this period the stations in Iowa named above were occupied and observations were made to determine the value of the three elements of terrestrial magnetism. Work was resumed June 1_{3} in Pennsylvania and observations were made at the stations in New Jersey, New York, and Pennsylvania named above. The work was in progress on June 30.

NORTH CAROLINA AND VIRGINIA.
[J. B. Boutelle. Commanding Steamer Endeavor.]
Summary of results.-Hydrography: 235 miles of lines sounded, 15003 soundings made, 4 tide stations occupied. Topography: 2 square miles of area covered, 140 miles of shore line surveyed, 5 miles of road surveyed, I topographic sheet completed. Triangulation: 544 square miles of area covered, 58 stations occupied, 70 geographic positions determined.

On July I the party on the steamer Endeavor was engaged in revising and supplementing the survey of Albemarle Sound, North Carolina. This work was continued until September 27, and during this period a new triangulation was extended over the sound from Durant Island to the head of the sound and continued up Chowan River to a point a short distance above Montrose. The shore line on both sides of the sound is receding, and none of the triangulation stations used in the previous work were recovered between Durant Island and Edenton. Five old triangulation stations along Chowan River were recovered and used in the new work. A long railroad bridge is being constructed across the sound at Skinners Point, and the geographic positions of the range towers at the ends of the bridge were determined.

On September 29 the vessel left Edenton, N. C., for Norfolk, Va., for repairs.
The revision of the survey of Nansemond River from its mouth to Suffolk was begun on October 20 and completed on December 10.

[^2]Three old triangulation stations at the mouth of the river were recovered and a few additional stations were established. From these stations a plane-table triangulation was extended up the river to Suffolk, the survey of the shore line was revised, and soundings were made in the channel of the river.

After December 10 the party was engaged in revising the survey of James River until March 17, when the work was suspended, as the vessel was needed for other duty.

During this period a number of the old triangulation stations were recovered and supplementary work was done to complete the triangulation of the river up to the mouth of the Chickahominy River. A resurvey was made of the shore line and supplementary hydrographic work was done in order to determine the existing conditions in the channel.

The information necessary for a revised edition of the charts covering the locality was secured.

Supplemental surveys were begun by the party on the Endeavor on May 3I in Buzzards Bay, Mass., and the work was in progress on June 30. Seven old triangulation stations were recovered and 8 new stations were established for use in the hydrographic work.

Serious delay was caused by the rainy and foggy weather which prevailed in June.
MARYLAND.
[J. E. Burbank.]
The work at the magnetic observatory at Cheltenham, Md., was continued without interruption during the year. A practically continuous record of the relative force of the three elements of terrestrial magnetism was obtained and observations to determine absolute values for the three elements were made at regular intervals.

There was an exceedingly severe magnetic storm on September 25, with a greater disturbance of the magnets than has occurred since the observatory was established, in 1901. The variations in the earth's magnetic intensity were so violent and so sudden that it was impossible to keep the vertical intensity magnets in position for any considerable length of time, and the Eschenhagen intensity magnet was repeatedly unbalanced.

The Eschenhagen declination magnet and the Adie horizontal intensity (Bifilar) and declination magnets all remained in operation during the storm, but the ranges were beyond the limits of the paper on the recording apparatus and a considerable loss of record occurred.

The seismograph afforded good results, and 40 earthquakes were recorded, nearly all of which were at distant points and the resulting motion was very slight at this station.

ARIZONA, CALIFORNIA, DISTRICT OF COLUMBIA, MAINE, MICHIGAN, NEW MEXICO, NEW YORK, NEVADA, NORTH DAKOTA, SOUTH DAKOTA, TENNESSEE, TEXAS, AND VERMONT.

[W. H. Burger.]

Summary of results.-Gravity: 26 stations occupied. Magnetic observations: 12 stations occupied.

On July 1 gravity and magnetic observations were in progress and the work continued without interruption until November 12, when field work was suspended. Work was resumed on January io and continued until May 5 , when the observations at Denison, Tex., were completed and the instruments were sent to Washington for observations
at the base station. These observations were completed in the latter part of May. Gravity observations were made at the following stations: Arizona: Two stations were occupied at the Grand Canyon of the Colorado, one on top of the plateau at an elevation of 2179 meters above sea level and the other 1330 meters almost vertically below it; Nogales and Yuma. California: Compton. District of Columbia: Observations were made at the base station in November and again in May. Maine: Fort Kent. Michigan: Alpena* and Iron River.* Minnesota: Ely.* New Mexico: Gallup and Las Vegas. New York: Lake Placid,* Potsdam,* and Wilson.* Nevada: Goldfield. North Dakota: Pembina.* South Dakota: Mitchell.* Tennessee: Cloudland* and Hughes. Texas: Denison, El Paso, Kerrville,* Shamrock, and Sweetwater.* Vermont: North Hero.*

At each station the flexure of the pendulum support was measured in terms of the wave length of light by the use of an interferometer.

WASHINGTON.

[R. B. Derickson, Commanding Steamer Gedney.] .

Supplementary surveys and the collection of information for the revision of the charts covering Puget Sound and adjacent waters were begun on December i and continued until March 9 . The localities named below were visited and sheets were prepared to show all changes necessary to bring the charts up to date: Olympia (survey of water front, including improvements in Budd Inlet), Boston Harbor, Shelton, Pickering Pass and Hammersley Inlet, head of Cases Inlet, Vaughn Bay, lower portion of Cases Inlet, Hope Island and mainland adjoining Puget Sound, Puget, Tituse Bay, Von Gelderns and Mayo coves in Carrs Inlet, head of Carrs Inlet, along the shores of Colvos Passage, McNeil and Fox islands, and the mainland adjoining Puget Sound, Dupont powder works, and Anderson Island. The work was suspended on March 9 in order to make repairs to the vessel and to prepare for work in Alaska.

CALIFORNIA.

[W. C. Dibrell, Commanding Steamer Explorer.]

Summary of results.-Hydrography: 358 square miles of area covered, 790 miles of lines sounded, 2695 soundings made, 2 tide stations occupied, 7 hydrographic sheets completed, 185 miles of lines run with submarine sentry set covering 5 square miles of area, 18 miles of lines run with wire drag set covering I square mile of area. Triangulation: 8 square miles of area covered, 9 stations occupied, 4 geographic positions determined.

The party on the steamer Explorer was engaged November 3 to March 13 in searching for reported dangers to navigation along the coast of California and in doing supplemental work for chart correction.

A search was made for a reported sunken rock off Fort Ross. The locality was covered by a survey and no evidence of this danger was found.

A hydrographic survey was made of an area of small cxtent off Montara Point to develop Colorado Reef. An examination was made off Point Surin in the vicinity of the charted position of the so-called "Alert Bank," and it was shown that this "bank" does not exist. The soundings were extended out to the 100 -fathom curve. A pinnacle

[^3]rock in the approach to Port San Luis was located and its geographic position determined. Soundings were made over the area in its immediate vicinity. A search was made off Point Arguello for a bank, reported by the U.S.S.St. Louis, but no indications of it were found and the soundings show that no bank exists in the position reported. Soundings were made out to a depth of roo fathoms.

A line of soundings was run parallel to the coast, between Point Piedras Blancas and Point Buchon, outside of the soundings shown on the chart, the soundings being made at intervals of 4 or 5 miles, while en route from San Francisco to Port San Luis.

Supplemental triangulation was done to determine the position of hydrographic signals in the vicinity of Fort Ross and Montara Point, and the geographic position of the light-house at Port San Luis was determined.

From November 26 to January 2 Assistant Paul C. Whitney was in command of the vessel, and during this period chart-revision work in San Francisco Bay was done.

Field work closed on March 14 in order to prepare the ship for work in Alaska.
VIRGINIA.

[W. B. Fairfield.]

March 6-1 8 the geographic position of the light-house on Ragged Point (Potomac River), Virginia, was determined by triangulation. Three old triangulation stations in the vicinity were recovered and observations were made from these stations to determine the position of the light-house.

MARYLAND AND VIRGINIA.
[O. W. Ferguson, Commanding Schooner Matchless.]
SUMMARY OF RESULTS.-Hydrography: 179 square miles of area covered, 733 miles of lines sofinded, 30657 soundings made, ro tide stations occupied, 3 hydrographic sheets completed. Topography: 4^{2} square miles of area covered, 100 miles of shore line surveyed, 171 miles of shore line of creeks surveyed, 7 miles shore line of ponds surveyed, 65 miles of roads surveyed, I_{3} topographic sheets completed. Triangulation: 9 square miles of area covered, in stations occupied, 8 geographic positions determined.

July 23 and 24 the Matchless made a supplemental topographic survey at Point Lookout, Chesapeake Bay, Maryland, covering 3 miles of the shore line of the point, and then proceeded to the Rappahannock River, Virginia, to revise the survey of the river from the mouth to the head of tide water, a point $21 / 2$ miles above Fredericksburg, to secure the data necessary to bring the charts of the river up to date. The work included plane-table triangulation, topography, and hydrography, and it was completed during the period July 26 to December 22.

The chart-revision work was then extended to the creeks tributary to the Rappahannock River, and this portion of the work was completed on March 25. An examination was made in 19 creeks and the work extended from one-half to 9 miles above the mouths. Serious delay resulted from ice in the river.

On March 26 the vessel sailed for Annapolis, Md., to do supplementary work for chart revision in Annapolis Harbor and the entrance to the Severn River. This work began on April I and was completed June 17. Several of the old triangulation stations were recovered and supplemental triangulation was extended from these stations to cover
the harbor and to determine the geographic positions of all prominent objects in Annapolis.

The tidal bench mark at Greenbury Point Light-house was recovered and a tide staff was erected at that place. Another staff was placed near the southeast corner of the Naval Academy grounds and the reference plane for sounding previously established at Greenbury Point Light-house was transferred to the new position by simultaneous observations at intervals of fifteen minutes for a period of twenty-four hours. All the tidal bench marks in Annapolis were searched for, but only three could be recovered. These were connected by leveling with the Naval Academy Standard bench mark, with a bench mark on the court-house established by the United States Geological Survey and with two new bench marks which were established.

A resurvey was made of the shore line with a plane table and a hydrographic resurvey of the harbor with current observations in the entrance to Severn River. On June 17 the vessel sailed for Newport News, Va., and stopped en route at Mobjack Bay to make an examination of the shoal $41 / 2$ miles southeast of York Spit Light-house. The work was completed on June 23, the vessel reached her destination on the 25 th, and on the 3oth was making preparations to begin chart-revision work in James River.

NEW YORK.

[E. G. Fischer.]
In September a tide indicator was installed in the building of the American Seamen's Friend Society's Institute at 507 West street, New York City. An electrical transmitter was placed in position on Pier 5 I and connected by wire with the indicator. A steel float tube was used, with the float resting on 6 feet of kerosene to prevent the water from freezing in the tube in cold weather.

An inspection of the tide gauge at Fort Hamilton was made and the tide staff was referred to adjacent bench marks by leveling.

In the following April a mechanician was sent to New York to make some necessary repairs to the indicator and transmitter and the apparatus was again left in good order.

The tide indicator in the rooms of the Maritime Association was inspected and some repairs were made to the transmitter on Pier "A."

An inspection of the tide gauge at Fort Hamilton was again made, and some instruction was given to the observer who was temporarily in charge of the gauge.

MARYLAND AND VIRGINIA.
[S. Forney.]
Summary of resulis.-Hydrography: 13 square miles of area covered, 136 miles of lines sounded, 3744 soundings made, 3 tide stations occupied, 2 hydrographic sheets completed. Topography: 44 square miles of area covered, 42 miles of shore line surveyed, 60 miles of shore line of creeks surveyed, 134 miles of roads surveyed, 4 topographic sheets completed. Triangulation: 42 stations occupied and 48 geographic positions determined.

On July i the topographic resurvey of the western shore of Chesapeake Bay and its tributaries was in progress between Dividing Creek and Smith Point. The work was continued during the summer and completed on August 3i.

A hydrographic resurvey of Great Wicomico River and CockrillsCreek was then made, the work extending to the head of steamboat navigation on Great Wicomico River and to Reedville, Va., on Cockrills Creek.

On October 5 the party proceeded to Chestertown, Md., to make a topographic resurvey of the river. A number of old triangulation stations were recovered and, based on these, a supplemental triangulation was extended along the river to Crumpton. The topographic resurvey was completed on February 23.

On December 25 and 26 a severe blizzard prevailed, with 16 inches of snow, and in January and February there was serious delay on account of ice in the river, which was closed to navigation on many days.

On February 27 the party went to Wachapreague, Va., to recover old triangulation stations and do supplementary work from Cedar Island toward Cape Charles, along the eastern coast of Virginia, and to revise the survey of the shore line from Assawaman Inlet toward Cape Charles. A search was made for old stations between Wachapreague Inlet and the southern end of Cobbs Island, but they have all been destroyed. New stations were selected and marked and an attempt was made to secure observations, but unfavorable weather prevailed, with rain, fog, and haze, and a complete set of observations were made at only one station.

At the end of May work on the triangulation was suspended and the party began the revision of the shore line along the coast south of Assawaman Inlet. This work was in progress at the end of June in the vicinity of Paramore Life Saving Station. Notable changes have occurred at several points.

HAWAII AND MASSACHUSETTS.
[O. B. French.]
Summary of results.-Hydrography: 28 miles of lines sounded, 1824 soundings made, itide station occupied. Reconnaissance: IO5 square miles of area covered, 41 stations selected. Topography: i square mile of area covered, 2 miles of coast line surveyed, 2 miles of roads and railroads surveyed. Triangulation: 58 square miles of area covered, 29 stations occupied, 114 geographic positions determined.

Chart revision work on Cape Cod Bay, Massachusetts, was in progress on July i in the vicinity of Wellfeet. The work was continued until September 16, when work assigned was completed. The revision covered the area shown on one of the coast charts. The observer reports as follows:

It was quite surprising to me to find such accuracy in these old [topographic] sheets. Although some of them were made more than sixty years ago, the details were still true except where there was no doubt about there having been an actual change in the topography since the original sheet was constructed.

Six triangulation stations were occupied and the geographic positions of a number of prominent objects were determined. A search was made for 107 old triangulation stations; 35 of these were recovered and 69 have been destroyed. A search was also made for 20 tidal bench marks, 13 of which were recovered and 5 have been destroyed.

On December in preparations began for a revision of the charts of the Hawaiian Islands. The records of the Hawaiian government survey, made before the annexation of the islands, were examined and some supplementary triangulation was done in the
vicinity of Honolulu. The original records of the trigonometric work on Oahu were sent to Washington and abstracts of similar records on the other islands were made where the books contained records of local work and were frequently needed in Honolulu. In February a survey was made of Nahukona Harbor, island of Hawaii, in accordance with an urgent request for the work.

Mr. R. R. Elgin, manager of the Hawaiian Railway Company, transported the party between the triangulation stations in his automobile and showed the party many other courtesies. The railway company also furnished other transportation and such assistance as was required.

In March preparations were made for a trigonometric connection between the islands of Oahu and Kauai, but there was no suitable weather before the end of the fiscal year in which observations could be made over the long lines involved in this connection.

Observers were ready on both of these islands after March 14, and while waiting for suitable weather the observer on Kauai made a reconnaissance around the island and later extended a triangulation along the shore about halfway around the island, covering the east end. During the progress of this work the positions of numerous points were determined for use in the hydrographic survey which will be made later.

The computations connected with the survey of Mahukona Harbor were completed and a drawing in the form of a chart was made. Copies of this drawing were furnished to the Hawaiian Railway Company as authorized.

The abstracts of the observations in the old triangulation on the islands of Molokai, Maui, and Lanai, and more than half of the work on Hawaii, were completed. A reconnaissance was also made to extend a triangulation around the island of Oahu.

VIRGINIA.

[H. C. Graves, Commanding Steamer Hydrographer.]

On June 20 the Hydrographer sailed from Baltimore for the coast of New England to secure information in the field for the revision of the United States Coast Pilot volumes covering the coast from the St. Croix River, Maine, to Point Judith, Rhode Island.

En route the vessel stopped at Assateague Anchorage, Virginia, to observe the changes in the conditions at Fishing Point, and a hydrographic reconnaissance was made off the point. On June 30 the vessel was at Jersey City completing preparations for coast-pilot work on the New England coast.

MAINE, MASSACHUSETTS, AND NEW YORK.
[N. H. Heck.]
Summary of results.-Hydrography: 77 square miles of area covered with wire drag, 490 miles of lines covered with wire drag, 141 soundings made, 5 tide stations occupied, 7 current stations occupied, 7 hydrographic sheets completed.

On July i a party was organized to examine certain waters on the coast of Maine with a wire drag. The area examined included the southern end of West Penobscot Bay, Hurricane Sound, portions of Muscle Ridge and Two Bush channels, part of East

Penobscot Bay, the channel south of Vinalhaven Island, and a special examination in Eggemoggin Reach.

Several changes in the drag and the method of using it greatly facilitated the work and increased the area possible to be covered in any given time. A drag 8400 feet long was used, but it was found that motor power was necessary to turn the reels in taking up a drag longer than 6 ooo feet, and consequently the shorter length was regularly used in open water. By using buoys with a hoisting apparatus attached, changes of depth to allow for the state of the tide were made without stopping the drag. In order to prevent their destruction, it was necessary to have many thousands of lobster pots removed from the areas to be examined. These areas were marked by spar buoys in advance and notice was given to the lobster fishermen to remove their pots. The buoys were removed as soon as the examination was completed. The increased length of the drag and other improvements in its construction and the method of using it greatly reduced the cost of the work.

On October 30 the work on the coast of Maine was discontinued and the party was divided into two sections, one of which was sent to Buzzards Bay, Massachusetts, and the other to Gardiners Bay, Long Island, New York. Examinations with the drag in Buzzards Bay were made November $5-16$, and the work was then discontinued for the winter on account of unfavorable weather conditions. At Gardiners Bay an examination was made of the northeastern approach and numerous bowlders were found in the channel with less water on them than the charted depths indicated. This work was also discontinued on November 16, on account of unfavorable weather, and resumed on May 16, when the examination was extended over Plum Gut and a portion of Gardiners Bay, as well as in the channel mentioned above.

On June 9 the party proceeded to Rockland, Me., and the work was in progress in that locality on June 30.

CALIFORNIA, NEW MEXICO, AND TEXAS.

[J. S. Hill.]

Summary of results.-Astronomical observations: 5 azimuths determined. Base measurement: I base line measured. Triangulation: 20000 square miles of area covered, 29 stations occupied, 40 geographic positions determined.

The extension of the triangulation in Texas westward toward California was resumed on September .i in the vicinity of Pecos River, and the work continued until January 27, when it was suspended for the winter at a point in central New Mexico. Three hundred miles of progress was made, measured along the axis of the triangulation. The average length of lines observed was 56 kilometers and the longest line had a length of 163 kilometers.

Two bench marks, one at El Paso, Tex., and the other at Deming, N. Mex., and 8 triangulation stations, established by the United States Geological Survey, were connected with the work, as was also several of the international boundary stations, as follows: El Paso court-house, Federal Building, Juarez Cathedral, and boundary monuments Nos. 2, 3, 31, 32, 39, and 40. The observations were all made by the chief of the party. Field work was resumed on June 22 and was in progress on June 30 at a station in California.

WASHINGTON.

[J. S. Hill and G. H. Rekate.]

SUMMARY OF ResUlTs.-Reconnaissance: 2600 square miles of area covered, 13 triangulation stations selected. Triangulation: 130 square miles of area covered, 6 stations occupied, 22 geographic positions determined.

On July i the extension of the triangulation along the coast of Washington was in progress and the work was continued until August 31 . During this period a reconnaissance was also made from Grays Harbor toward Puget Sound to connect with previous work, and up the coast from Grays Harbor to Destruction Island for the extension of the triangulation to the points mentioned.

The triangulation was done by Mr. Rekate under Mr. Hill's direction, and he also prepared 6 stations for the observing party by opening lines through the timber and by building observing tripods and scaffolds where necessary.

On September I the charge of the work was transferred to Mr. Rekate and he continued to prepare stations for the observing party until November 12, when the work was suspended for the winter. Lines were opened and other preparations were made, such as opening trails, etc., at 6 stations. At some of them there was a dense growth of timber and the work of opening the lines of sight was very laborious.

ALABAMA, ARIZONA, CALIFORNIA, INDIANA, KENTUCKY, LOUISIANA, MISSISSIPPI, NEW MEXICO, NORTH CAROLINA, TENNESSEE, TEXAS, AND VIRGINIA.
[W. M. Hill.]

Abstract

Stations occupied.-Alabama: Florence,* Huntsville, Scottsboro, and Tuscaloosa. Arizona: Benson, Tueson, and Yuma. California: Barstow, Indio, Red Bluff, and San Bernardino.* Indiana: Boonville,* Brazil,* Corydon, Covington, Decatur, Delphi,* English, Evansville, Fowler, Huntington, Petersburg, Portland, Rockport,* and Rockville. Kentucky: Bowling Green,* Brownsville, Franklin,* and Munfordville.* Louisiana: Ruston, Shreveport, and Tallulah. Mississippi: Jackson and Meridian. New Mexico: Deming and Lordsburg. North Carolina: Fayetteville. Tennessee: Athens, Franklin, Gallatin, Knoxville, Lawrenceburg, and Springfield. Texas: El Paso, Mineola, and Odessa.* Virginia: Bristol, Charlottesville, and Lynchburg.

Magnetic work was done in the field July 1 to September 30, and April 18 to June 30. Observations were made to determine the value of the three elements of terrestrial magnetism at the stations named above and meridian lines were established at io of the stations. Several of the stations had been previously occupied and the observations were repeated to determine the annual change in declination.

FLORIDA, MAINE, MASSACHUSETTS, NEW HAMPSHIRE, SOUTH CAROLINA, AND VIRGINIA.

[W. C. Hodgkins, Commanding Steamer Bache.]

Summary of results.-Hydrography: 70 square miles of area covered, 2906 miles of lines sounded, ${ }^{5}$ I 553 soundings made, 16 tide stations occupied, 34 current stations occupied, 16 hydrographic sheets completed. Magnetic observations: 5 stations on land and 3 stations at sea occupied. Triangulation: 34 stations occupied, 25 geographic positions determined.

The steamer Bache was engaged in supplementary hydrographic work at various places along the Atlantic coast of the United States during the year except at such

[^4]times as were required to make repairs to the ship and to sail between the different localities where work was required. The following is a brief summary of the work completed, stated in chronological order:

On July to the Bache sailed from Baltimore for the coast of New England. Magnetic observations were made at sea off the mouth of the Patuxent River in Chesapeake Bay, and at a point about 9 miles WSW. from Vineyard Sound Light-vessel and also on shore at Vineyard Haven.

July 17 to 19 was spent in searching for a shoal spot reported to the southeastward of Bishop and Clerk Light-house, and soundings were also made on the east and west sides of Monomoy Island, Massachusetts. On July 22 magnetic observations were made on shore on Castle Island, Boston Harbor, and hydrographic work was done in the approaches to the harbors of Plymouth and Duxbury until August 14, and on that date magnetic observations were made at a station on shore at Long Beach. On August 19 the Bache proceeded to Boothbay Harbor, Maine, and five days were spent searching for a reported ledge in Fisherman Island Passage. The vessel reached Portland, Me., on August 24 and prepared for hydrographic work in the harbor. A tide gauge was established on Little Diamond Island and supplementary triangulation was done to determine the positions of hydrographic signals.

On the 29th the Bache returned to Boston for repairs, but the contract for the work had not been approved and soundings were made on Shank Pointer Bar near Provincetown until September 4, when the work was completed and the Bache went to Boston for repairs. On October 8 the vessel returned to Portland, Me., and completed the work in the harbor the following day. Soundings were made in the approaches, from the northward and eastward, to the harbor of Portsmouth, N. H., between October 10 and November 6, and after that date the examination of a shoal spot reported in the approach to Salem Harbor was continued at intervals when the weather permitted until November 23, when the work was suspended and minor repairs were made to the ship. On December 5 the vessel sailed from Boston for Pollock Rip Slue. En route a few additional soundings were made off Plymouth. The examination of Pollock Rip Slue was completed on December in and the vessel started to Norfolk, Va. On December 7 the three-masted schooner Nat Meader was found at anchor near Pollock Rip Shoals Light-vessel, in distress as the result of a collision, and the schooner was towed to Hyannisport.

On December 21 supplemental hydrographic work began in the approaches to Hampton Roads and was continuèd until March in, when it was completed and the vessel sailed for Fernandina, Fla., for offshore hydrographic work in the latitude of St. Marys Entrance. This work was continued until May 13, when the ship proceeded to Charleston, S. C., and was at work in the approaches to the harbor until June 13, when the vessel proceeded to Boston, Mass., for repairs.

IDAHO AND MONTANA.

[H. D. King, May 14 to June ir; C. Y. Harger, June 12-30.]

The closing of the circuit Ogden, Utah-Butte, Mont.-Crawford, Nebr.-Cheyenne, Wyo.-Ogden, Utah, in the standard levels showed an error in the leveling, and a revision of the work was begun at Pocatello, Idaho, on May 14 and was in progress on June 30.

During this period the revision was completed over 37 I kilometers of the circuit starting at Pocatello, Idaho, and proceeding northward and eastward via Butte, Mont., toward Crawford, Nebr.

MICHIGAN AND MINNESOTA.
[H. D. King.]
Observations with a pendulum to determine the reative force of gravity were made in June at Iron River, Mich., and at Minneapolis, Minn. The work began on the 18 th and was in progress at Minneapolis on the 30 th.

TEXAS.
[H. D. King, April 1-20; C. M. Cade, April 2 I to June 30.]
Summary of results.-Leveling: $2 \dot{6} 0$ kilometers of line completed, 94 bench marks established.
The standard levels were extended in Texas, April 1 to June 30, along the Texas and Pacific Railway from Fort Worth toward El Paso, and the line was completed to Abilene. The elevation of the track in front of 28 railroad stations along the line was determined and also the elevation of one of the triangulation stations in this region. The work was in progress on June 30.

OKLAHOMA AND TEXAS.
[Ford Kurtz.]
Summary of results.-Leveling: 328 kilometers of line completed, 8 x bench marks established.
The standard levels were extended in Oklahoma and Texas in July, August, and September, forming a portion of the line between El Reno, Okla., and Goffs, Cal. The work began at El Reno on July i and was suspended at Jericho, Tex., on September 14 in consequence of the serious illness of the observer. The route follows the Chicago, Rock Island and Pacific Railway from EI Reno to the state line and thence along the Chicago, Rock Island and Gulf Railway to Jericho. The thanks of the Survey are due the officials of these railway companies for granting the privilege of using velocipede cars on the tracks of their roads as the means of transporting the party to and from work, and also for the privilege of camping on the company's ground at railway stations and of using water from the company's tanks.

The country passed over is comparatively level and no unusual difficulties were encountered. The party used tents for quarters and secured meals at hotels and boarding houses. This plan was satisfactory over the route followed and was adopted on account of the large charge for moving the outfit cars which had been in use on other lines.

MASSACHUSETTS AND NEW YORK.

[E. B. Latham.]
Summary of resulits.-Topography: 29 square miles of area covered, 1 topographic sheet completed. Triangulation: 45 square miles of area covered, 8 stations occupied, 20 geographic positions determined.

The collection of data for chart revision was in progress on the south shore of Long Island, New York, on July I, and the work was continued until September 7. The supplementary triangulation was extended to a point near Long Beach and the geographic

$$
63481^{\circ}-11-3
$$

positions of all prominent objects visible from the stations were determined. In connection with this work a search was made for 23 old triangulation stations, and 8 of them were recovered.

A resurvey was made of the shore line from a point near Fire Island Light-house to a point near Long Beach to a junction with work of the same character recently completed. The resurvey of the shore line was extended into the inlets where changes had occurred, and the location of the shore line of the bays and creeks was verified and found practically unchanged.

A connection was made with a survey of the marsh lands belonging to the town of Hempstead which was in progress and also with a survey of Great South Bay made by the Corps of Engineers in 1905.

- On April 16 chart-revision work in the vicinity of Gloucester, Mass., was begun and continued to the end of the fiscal year. During this period a revision was made of the work on two topographic sheets, 90 per cent of one and 50 per cent of the other being completed. This work was in progress on June 30.

ARIZONA AND NEW MEXICO.

[H. W. Maynard.]
Summary of resulis.--Leveling: 670 kilometers of line completed, 179 bench marks established.
The extension of the standard levels between Goffs, Cal., and El Reno, Okla., was in progress on July I in the vicinity of Gleed, Ariz. The leveling was continued along the Atchison, Topeka and Santa Fe Railway until December 3, when the line was completed to Albuquerque, N.. Mex., and the work was then suspended for the winter.

Outfit cars were used for quarters, and the use of velocipede cars as the means of transporting the party to and from the working ground was permitted by the railway officials. The Survey is under obligations to the company for granting this valuable privilege.

Water was furnished to the party by the company and the outfit cars were moved promptly as requested.

The country traversed varies between the extremes of an arid desert and land covered with forests, and the elevation varies between 500 and 7000 feet above sea level. The observer reports unusual conditions of refraction, which retarded the work and added to the usual difficulties of the leveling work.

```
CONNECTICUT, ILLINOIS, MAINE, MASSACHUSETTS, MINNESOTA, NEBRASKA, NEW HAMPSHIRE, RHODE ISLAND, AND SOUTH DAKOTA.
```

[H. Е. МсСомв.]

Stations occupied.-Connecticut: New Haven and New London. Illinois: Eureka, Rock Island, and Watseka. Maine: Auburn, Bethel, Capens, Greenville, Kinco, and Oakland. Massachusetts: Dedham and Lawrence. Minnesota: Owatonna, Pipestone, Rochester, Slayton, and Waseca. Nebraska: Central City, Columbus, Dakota, Fremont, Greeley, Ord, Pierce, Stanton, and Waync. New Hampshire: Concord, Gorham, Plymouth, and Woodsville. Rhode Island: Kingston and Providence. South Dakota: Armour, Flandreau, Madison, Plankinton, Tyndall, Vermilion, Wessington Springs, and Woonsocket.

Qbservations were made by this observer July io to September 30 and May 18 to June 30. During the periods covered by these dates the value of the three elements of
terrestrial magnetism were determined at the stations named above. All the stations were marked by stone posts or by drill holes at the intersection of cross lines cut in solid rock or in large bowlders. Meridian lines were established at a number of the stations. The work was in progress on June 30.

INDIANA, ILLINOIS, IOWA, AND MINNESOTA.

[F. A. Moligy.]

Stations occupied.-Indiana: Laporte and Valparaiso. Illinois: Dixon, Galena, Joilet, Morrison, and Yorkville. Lowa: Algona, Cresco, Elkader, Mason City, Sibley, Spencer, and Spirit Lake. Minnesota: Ada, Aitkin, Bagley, Breckenridge, Carlton, Center City, Montevideo, Morris, New Ulm, Park Rapids, Pine City, Redwood Falls, St. James, Stillwater, Wabasha, Windom, Winona, and Worthington.

Magnetic work was in progress in the field on July 1 and was continued until September 20. During this period observations were made to determine the value of the three elements of terrestrial magnetism at the stations named above.

CALIFORNIA.

[Fremont Morse.]
Summary of results.-Triangulation: 107 square miles of area covered, 5 stations occupied, 24 geographic positions determined.

Observations were made December 20 to January 6 to determine the geographic position of the new light-house on Alcatraz Island, in San Francisco Bay, and incidentally the position of a number of prominent objects in the vicinity of San Francisco were also determined. Two old stations were recovered and used as base stations, and from this base the positions of two other old stations, supposed to be affected by the earthquake of 1906, and one new station were determined.

ARIZONA, MAINE, AND TEXAS.
[E. Mueller.]
The construction of a magnetic observatory near Tucson, Ariz., was in progress on July I , as stated in the previous annual report. The officer in charge was fatally injured in line of duty on July 3 by falling into the well (for water) which was being dug under his direction, and Assistant Mueller was instructed to complete the work. He took charge on July 12 and completed the work on October 29.

The buildings are located on a tract of 160 acres of the public land reserved for an observatory site by Executive Order No. 1082, dated June 3, 1909, on the Aguas Calientes, or Rincon road, about 8 miles east of Tucson. Two observatory buildings were constructed, one for the relative measure of the magnetic variations with a self-registering magnetograph, and the other for making observations to determine the absolute value of the three magnetic elements. An office building, including living accommodations for the observers, was erected, a well was dug, and a stable was built.

En route to Washington an inspection of the tide station at Galveston, Tex., was made November 3-6, and necessary repairs were made, including a new float well; a new self-registering gauge was placed in position.

January 7 and 8 a location for a self-registering tide gauge was selected at Portland, Me., and preliminary arrangements were made for the construction of the gauge house.

MAINE AND PENNSYLVANIA.
[C. G. Quillian.]
During the period February 24 , to March 7 a self-registering tide gauge was established at Portland, Me., on a wharf belonging to the Grand Trunk Railway in accordance with the permission granted by the officials of the company. A long steel pipe was used as a float well, and it was partially filled with kerosene oil in order to prevent freezing in winter. A tide staff was erected and connected by leveling with several permanent bench marks.

En route to Washington an inspection of the tidal station at Philadelphia, Pa., was made, and the tide staff was referred to permanent bench marks by leveling.

FLORIDA.
[G. H. Rekate.]
Summary of results.-Triangulation: 284 square miles of area covered, 89 stations occupied, and 95 geographic positions determined.

The work of recovering old triangulation stations on the west coast of Florida was begun on January 6 in Pensacola Bay. A search was made for 18 old stations, 7 of which were recovered. Three new stations were established and their positions and the positions of 7 aids to navigation in Pensacola Bay and in East Bay were determined. A search was then made for the old stations (49) on Santa Rosa Sound and Choctawhatchee Bay, and 2 stations were recovered in each case.

New stations were established and the triangulation was extended along Santa Rosa Sound from Pensacola Bay to Choctawhatchee Bay and to cover the latter bay. The party then proceeded to Cedar Keys and searched for the old stations (61) in the vicinity and south to Clearwater Harbor, and 32 of these were recovered. The positions of 4 aids to navigation in the vicinity of Cedar Keys and of Withlacoochee Light-house were determined. The triangulation was then extended from Clearwater Harbor to the upper end of Anclote islands by establishing new stations to supplement the triangulation in places where no old stations were recovered. This work covers Clearwater Harbor, St. Joseph Sound, and Anclote Anchorage.

The field work closed on May I at Cedar Keys.
WASHINGTON.

[H. W. Rhodes, Commanding Steamer McArthur.]

The survey of Grays Harbor was begun on November 6 and continued until March 6. A base line was measured in the vicinity of the south jetty on Point Chehalis, and from this triangulation was extended up the harbor to Hoquiam. Fourteen stations were selected and marked and observations of angles were made at 8 . Stormy weather prevented the extension of the work to the outer shore.

The topographic survey of the shore line was begun in the vicinity of the entrance and was completed on the north shore to a point near Hoquiam except for the portion around the head of North Bay and for a shorter portion in the vicinity of Brackenridge

Bluff. Fifty-one miles of shore line; 23 miles of roads, 9 miles of railroads, and 7 miles of the shore line of creeks were surveyed. Tide observations were made at the North Jetty wharf, and 2 lines of soundings were made in the dredged channel between the lower bay and Aberdeen, with observation on a tide staff at the city wharf at Hoquiam.

Stormy and unfavorable weather prevailed, with excessive rain, and the heavy smoke from the numerous mills near the head of the bay generally obscured the shore line during favorable weather.

CONNECTICUT AND NEW YORK.

[H. P. Ritter.]
The collection of data for the revision of the charts along the coasts of Connecticut and New York was in progress on July 1 , and this work was continued at intervals, when other duties of the observer permitted, during the whole year.

All the principal topographic changes since the previous survey of this region was made were noted on the north shore of Long Island Sound between Georges Island and Sheffield, including Saugatuck and Norwalk rivers, and drawings were prepared showing the corrections necessary to bring chart No. 267 to date. Similar work on the adjoining chart No. 268 (extending from Sheffield Island to Westcott Cove), begun during the previous fiscal year, was completed.

A topographic resurvey was made of the shore line in front of New Haven, Conn., from Oyster River Point to Five Mile Point, and the revision of topographic details for chart correction was extended from Five Mile Point to East Haven River. A topographic resurvey was also made along the south shore of Long Island between Edgemere and Rockaway Beach, and similar work between Long Beach and Edgemere was completed.

In connection with the work mentioned above 115 old triangulation stations, in the localities covered by the topographic revision, were recovered and remarked in cases where it was considered necessary to do so.

NORTH CAROLINA.

[G. T. Rude.]

Under the authority of a special act of Congress and in response to a request from the governor of North Carolina an officer of the Survey placed marks to indicate the boundaries of certain areas in the waters of the State "in which the use of any or all fishing appliances are prohibited by law." Certain areas in Pamlico, Croatan, and Albemarle sounds and in Chowan River were selected, and the limits proscribed by law were laid down on charts prepared for the purpose. This includes the proscribed areas at Hatteras, New, and Oregon inlets. The marks were then established at the proper places in the waters mentioned above to indicate the boundaries defined by law. Sixtysix marks were established at the points selected, and the positions are defined by magnetic bearings to known positions of aids to navigation and of objects on shore, and to adjacent boundary marks.

The work began on December 14 and was completed on February 19. The launch used in the work was furnished by the North Carolina Fish Commission.

DELAWARE, FLORIDA, MARYLAND, AND VIRGINIA.
[Edwin Smith.]
Summary of results.-Triangulation: 412 square miles of area covered, 32 stations occupied, ${ }_{21} \dot{8}$ geographic positions determined.

Supplementary triangulation was in progress along the coast south of Delaware Bay on July 1, and this work was continued until November 12. The triangulation was extended from Delaware Bay, Del., to Ocean City, Md., and from Chincoteague Bay to Wachapreague, Va. Very few of the old triangulation stations were recovered on the first section of the work, and consequently new stations were 'established all along the coast in the localities mentioned. The geographic positions of several life-saving stations and numerous prominent objects along the coast were determined. . On the second section more old stations were recovered, but a new station was established wherever an old station could not be found to make the triangulation continuous.

Supplementary triangulation, including the determination of the geographic positions of aids to navigation and the recovery of all old triangulation stations was begun on the west coast of Florida in Apalachicola Bay on January i4. In the West Pass to the bay the positions of 5 aids to navigation were determined, and connection was made with the work of the Engineer Corps, U. S. Army, in this vicinity. The positions of 2 aids to navigation in the vicinity of Apalachicola and of 4 in the vicinity of Carrabelle were also determined. Work was then begun in Apalachee Bay, and a search was made for 32 of the triangulation points previously established. Nineteen of these were recovered, and additional marks were placed in position wherever they were needed to secure future recovery of the stations.

This work was completed on March 14, and the party then proceeded to St. Andrews Bay. A search was made for the old triangulation stations in this vicinity and 4 of them were recovered. From these a new triangulation was extended to cover St. Andrews Bay, including West and North bays and St. Andrews Sound to St. Andrew Point, and this work was completed on May i.

The work in St. Joseph Bay was then taken up and was completed on June 15, when the party was disbanded. A few old triangulation stations were recovered and used as a base from which a triangulation was extended to cover the bay. The observer then returned to Apalachicola to secure some additional observations in that vicinity, and the work for the season closed on June 22.

```
CALIFORNIA, FLORIDA, LOUISIANA, MAINE, NEW YORK, NORTH CAROLINA, PENNSYLVANIA, TEXAS, VIRGINIA, AND WASHINGTON.
```

Self-registering tide gauges were kept in operation during the year at the following places: Presidio and San Diego, Cal.; Fernandina, Fla.; Weeks, La.; Fort Hamilton, N. Y.; Wilmington, N. C.; Philadelphia, Pa.; Galveston, Tex.; Colonial Beach, Va.; and Seattle, Wash. On March 8 the installation of a self-registering tide gauge at Portland, Me., was completed, and after that date a record of the tidal changes was obtained for the remainder of the fiscal year.

KANSAS.
[S. G. Townshend, Jr.]
The work at the magnetic observatory at Baldwin, Kans., was continued from July 1 to October 22. A record of the relative force of the three elements of terrestrial magnetism was obtained with self-registering instruments, and observations were made at least once every week to determine the absolute value of these elements. Several magnetic storms occurred, the greatest being recorded on September 25, and this storm was so severe that telephone and telegraph service was affected.

On October 22 observations ceased and the work of the observatory was concluded, as the instruments were needed at the observatory recently completed in Arizona, near Tucson.

NEW HAMPSHIRE. '
[D. B. Wainwright.]
Summary of results.-Topography: 21 square miles of area covered, 37 miles of shore line of rivers surveyed, 16 miles of shore line of creeks surveyed, 69 miles of roads surveyed, 3 topographic sheets completed.

On July i the topographic survey of Great Bay and its tributaries, New Hampshire, was in progress, and the work was continued until November i, when the survey was completed. The work for this season began at a point on the west side of the bay a short distance above Adams, and was extended to cover the valley of Oyster River to Durham, the Bellamy and Cocheo rivers to Dover (including Dover Neck), and the Salmon Falls River to South Berwick. From the mouth of Salmon Falls River the survey was continued down the Piscataqua River to Greenacre, to a junction with the work already completed.

HAWAII.
[W. F. Wallis, July x to August ig; O. H. Gaarden, June 30 to August 20.]
A continuous record of the variations in the earth's magnetic condition was obtained at the magnetic observatory near Honolulu, Hawaii, during the year with self-registering instruments. Observations were made once each week to determine the absolute value of the three elements of terrestrial magnetism, and once each month to determine the scale values. The seismograph was kept in operation and a practically continuous record was obtained. Ninety-four earthquakes were registered during the year at this station.

Daily meteorological observations were made and monthly reports were sent to the United States Weather Bureau observer at Honolulu.

ARIZONA.
[W. F. Wallis.]
The buildings for the magnetic observatory located near Tucson, Ariz., were completed in October and the instruments in use at the Baldwin Observatory, in Kansas, were transferred to the Tucson Observatory. They were placed in position and the final adjustments were completed on November 16. On the same date the observations began and a continuous record of the relative force of the three elements of terrestrial magnetism was obtained during the remainder of the fiscal year.

Observations to determine the absolute value of the magnetic elements were made once each week, and after January r an additional determination of the vertical intensity was made every week. Meteorological observations were made every day. A room for the installation of a seismograph was completed. The magnetograms show the effects of earthquake shocks as follows: Twice in January, once in February, once in April, three tinies in May, and once in June.

DELAWARE.

[P. A. Welker, Commanding Steamer Endeavor.]
SUMMARy of resulis.-Hydrography: 6 square miles of area covered, 14 r miles of lines sounded, I 960 soundings made, I hydrographic sheet completed.

In accordance with a request made by the Navy Department, a special hydrographic survey was made over the speed trial course off Delaware Breakwater in order to afford data desired in determining the effect of the depth of water upon the speed and power developed in certain cases.

The depth of water on this course is 25 fathoms and more, and the strength of the current varies from I to 3 knots per hour. Under these conditions a lead weighing 40 pounds was used with a trolley system which made it possible to drop the lead near the bow and to read the lead line near the stern of the ship. Soundings were made at intervals of two minutes and the position of each sounding was determined by observations made with sextants. The work began on March 22 and was completed on April 2.

After completing the survey of the speed trial course a survey was made at Cape Henlopen to show the present condition of the shoal off the cape and the position of the shore line. The limit of the hydrography was within the lines of breakers under ordinary conditions, and where there are strong tide rips, so that the soundings were necessarily made when the sea was smooth and near the time of slack water. The work was completed on April 14.

CALIFORNIA.

[Ferdinand Westdahl.]

The suboffice at San Francisco was continued and the officer in charge acted as the representative of the Superintendent in attending to numerous duties, many of them being matters of routine, in connection with the survey of the Philippine Islands and the transfer of officers assigned to that work. In addition to these duties the field work described below was done under the, direction of this officer by others who reported to him for this purpose.

In July the position of the tide staff at the Presidio tidal station was verified by leveling to the bench marks in the vicinity.

The revision of the topographic survey along the coast of Mendocino County between Laguna and Greenwood landings began on August in and was completed on November 16. In connection with this work a search was made for a sunken rock which was supposed to exist in Albion Cove, and it was shown that no such rock exists.

In October repairs were made at the Presidio tidal stations and to the tide indicator on Alcatraz Island in San Francisco Bay.

An inspection of the tidal station at San Diego, Cal., was made November 19 to 24, and the tide staff was connected by leveling with the bench marks at the quarantine station.

A revision of the topographic survey along the shore of certain portions of Monterey Bay was made January ix to May 23. Several old triangulation stations were recovered and some supplementary triangulation was done to determine the geographic positions of prominent landmarks and to furnish additional bases for use in the topographic work. All changes due to natural causes and the artificial features which had been added were located.

LOUISIANA.
[Isanc Winston.]
Advantage was taken of the presence of an officer of the Survey in Louisiana on special duty and an inspection of the tidal station at Weeks, La., was made on May 4. Some necessary repairs were completed, the relation of the tide staff to the bench marks near the gauge house was determined, and the tide observer was given additional instructions in regard to the performance of his duties.

ILLINOIS, INDIANA, IOWA, KANSAS, MISSOURI, NEBRASKA, OHIO, AND PENNSYLVANIA.

[C. F. Woodyard.]

Statrons occupied.-Illinois: Carlyle and Quincy. Indiana: Franklin, Lebanon, Meadville, and Spencer. Iowa: Des Moines and Rockwell City. Kansas: Council Grove, Iola, Leavenworth, Lincoln, Oskaloosa, and Salina. Missouri: Lebanon and Rolla. Nebraska: Alma, Auburn, Bloomington, Falls City, Hebron, Nebraska City, Nelson, Pawnee City, Plattsmouth, Red Cloud, and Wilber. Ohio: Dayton. Pennsylvania: Meadville.

The extension of the magnetic survey of the country was in progress in Indiana on July x, and this work was continued until September 10 , when the observations were discontinued. The work was resumed on June in and was in progress on the 3oth. Observations to determine the value of the three elements of terrestrial magnetism were made at the stations named above.

MARYLAND.

[C. C. Yates.]

Summary of results.-Triangulation: 250 square miles of area covered, 340 stations occupied, 352 geographic positions determined.

Under authority conferred by law, the Survey continued to cooperate with the Maryland Shell-Fish Commission in surveying and marking the natural oyster beds, bars, and rocks in the State of Maryland. The field work undertaken by the Survey was finished during the year in Kent and Talbot counties, which completes the work in all the producing counties in the State except Dorchester, and on June 30 the party was ready to begin work in that county. Field work was done during the periods July 6 to December 24 and March 14 to June 30.

The descriptions of the boundaries and landmarks in Calvert County were prepared for publication.

The work at the Sitka Magnetic Observatory was continued during the year and a record of the variation in the relative value of the three elements of terrestrial magnetism was obtained with self-registering instruments. Observations to determine the absolute value of the magnetic elements were made at regular intervals and meteorological observations were also made. Severe magnetic storms occurred in September, October, November, and March. The magnetic storm of September 25 was very severe and was accompanied by a very fine auroral display.

A seismograph was kept in operation and 47 earthquake shocks were recorded.
-
[H. L. BEck, Commanding Steamer McArthur.]
The steamer McArthur sailed from Seattle for Cook Inlet, Alaska, on April 19, via the inside passage. No pilot was taken and the vessel anchored at night. Good weather prevailed, and nothing unusual occurred except that the vessel grounded for a few minutes on an uncharted shoal in Wrangell Narrows. The vessel reached Seldovia on May 4 and the launch Delta, which had been hauled out for the winter at this place was prepared for the season's work. A self-registering tide gauge was installed on the wharf at Seldovia and kept in operation. North Spit Buoy No. i, off Port Graham, was replaced in position in accordance with the request of the inspector of the Thirteenth light-house district.

The preceding winter was unusually cold and the snow still extended from the hill and mountain tops down to the water's edge, but the field work began on May 12, when a party was placed in camp on shore, with the Delta and a dory as their means of transportation, to do inshore hydrographic work and to make a survey of the shore line. Hydrographic signals were erected by the ship and offshore sounding began on the 23 d .

On account of the strong tidal currents it was found to be impossible to run sounding lines normal to the shore in satisfactory manner, and lines parallel to the shore were substituted.

Details in regard to the work and statistics of the work accomplished will be given in the next report. The work was in progress on June 30, 1910.
[H. C. Denson, Commanding Steamer Patterson.]
Summary of results.-Hydrography: 4883 square miles of area covered, 3643 miles of lines sounded, 4487 I soundings made, i tide station occupied, 6 hydrographic sheets completed. Magnetic observations: 3 stations occupied. Topography: 48 square miles of area covered, 96 miles of shore line surveyed, 53 miles of shore line sketched, 2 topographic sheets completed. Triangulation: 72 square miles of area covered, 8 stations occupied, 25 geographic positions determined.

- The survey of Controller Bay was in progress on July 1 and was continued until October 3, when the vessel sailed for Cordova, and thence via Orca to Seattle, Wash., where she arrived on October 27 . The statistics given above cover the work of the whole season (Mav 20 to October 3), and the extent of the work may be stated as follows:

The hydrography covers the area bounded by Montague and Hinchinbrook islands on the west, Copper River Sand Reefs on the north, Kanak, Wingham, and Kyak islands on the east, and Middleton Island on the south. A detailed survey was made of Controller Bay and approaches, and also of the area eastward of Kyak Island to Cape Suckling, and out to the 100 -fathom depth to the southward of Cape St. Elias. The position of a number of dangers to navigation in this region were accurately located and many others, marked on the charts as possible dangers, have been removed, as the investigation proved that these reported dangers do not exist. The charts of this region have been corrected, and information in regard to the more important changes has been furnished to the public in notices to mariners.

In connection with the hydrographic work tide observations were made on a staff located off the north end of Kyak Island during four months.

A survey was made of the shore of Controller Bay and of Wingham and Kyak islands, and along Okalee Spit as far as Cape Suckling. A running survey of the east shore of Montague Island was made from the ship by observations with sextants to determine the position of the heads of bays and of prominent headlands. The existing triangulation was supplemented and additional points were located for use in making the survey.

Assistant Quillian's party and outfit was transported from Seattle to Kodiak, and the steamer Yukon was prepared for work by the crew of the Patterson. A party of 3 officers and 17 men was placed in camp on shore and much of the inshore work was done by this party.

On October 10, while the Patterson was tied to the dock at Orca with the boilers blown down, a violent wind storm arose and cast the ship adrift. Salt water was pumped into the boilers in order to get up steam and control the ship. Fortunately the vessel was only slightly damaged.

On October 26, while en route to Seattle, the vessel touched on a reef $1 \leq 3 / 4$ miles east of Alert Bay, Johnstone Straits, but no apparent damage resulted.

Assistant Denson reports that the spring months offer the best conditions for the work of the Survey in this locality and states that after the middle of June and until the beginning of August the ship was run night and day while sounding, as the mountain peaks were distinct enough at midnight to be reflected by the sextant mirrors.

[R. B. Derickson, Commanding Steamer Gedney.]

Summary of results.-Hydrography: 136 square miles of area covered, 1482 miles of lines sounded, ir 029 soundings made, 5 tide stations occupied, 7 hydrographic sheets completed. Magnetic observations: 3 stations on land occupied, 13 stations at sea occupied. Topography: 82 square miles of area covered, 248 miles of general coast line surveyed, 19 miles of the shore line of creeks surveyed, 5 miles of roads surveyed, 5 topographic sheets completed. Triangulation: 88 square miles of area covered, 42 stations occupied, 72 geographic positions determined.

The survey of the coast of Prince of Wales Island, Alaska, was in progress on July i. The topographic and hydrographic work was extended from Point Nunez, at the southern extremity of the island, west and north. A topographic survey was made along the south coast of Prince of Wales Island, including Bronsons Bay, Point Marsh, the coast line and many of the islands to the north, Hessa Inlet, and the Barrier Islands. A topographic survey was also made along the coast from the north entrance to Eureka

Pass to Shipwreck Point, including Tah Bay, and Hunter bays, the islands and entrance to Klakass Inlet, and Ship Islands, and from Kassa Inlet along the west coast of Prince of Wales Island to Nutqua Inlet, including the entrance to Kassa Inlet, Point Webster, and Hassiah Inlet. The survey of the shore line was completed from Point Nunez to Lime Point in Cordova Bay except in Nutqua and Hassa inlets, and extends into Nutqua Inlet to a point 1 mile above the entrance.

The hydrographic work was done while the topographic work was in progress. A survey was made of the waters from Point Marsh south to the international boundary line and westward to Cape Muzon, and lines were sounded in the passage back of Point Marsh and in Minnic Bay.

The areas west of Mexico Point to Dewey Rocks, south to the Barrier islands, and through Eureka Pass were carefully developed by sounding, and the hydrographic survey was extended over the area north of the Barrier Islands, including Tah and Hunter bays to the eastward and to Long Island on the west. In Cordova Bay, westward of the Barrier Islands lines of soundings were made from a point opposite Shipwreck Point to the international boundary line to the eastward of Cape Muzon. The Gedney suspended work on September 17 and proceeded to Tongass Narrows. The tender Cosmos continued at work until September 27, when she went to Ketchikan to join the Gedney. Work was done in Tongass Narrows September 17 to October 20.

The rock on which the steamship Ohio struck, in June, was found and its geographic position was determined and a hydrographic survey was made in its vicinity.

Hydrographic and topographic surveys were also made in Tongass Narrows from Ketchikan to Rosa Reef Spindle. The vessel sailed for Seattle on October 21 and reached that port on the 28 th.

On April ig the Gedney sailed from Seattle for Ketchikan, Alaska, to resume work in Tongass Narrows. Repairs were made to the tender Cosmos May 2 to 19 and on May 24 the Cosmos sailed for the head of Portland Canal to make a survey of the head of the canal in the vicinity of the point where the international boundary leaves Portland Canal. This work was in progress on June 30.

The party on the Gedney continued the survey of Tongass Narrows.
The topographic work was completed at the north end of the Narrows to Point Higgins and the hydrographic work was almost completed from Bar Point to Guard Island, including Wards Cove. The survey was in progress on June 30.

[W. C. Dibrell, Commanding Steamer Explorer.]

Summary of results.-Hydrography: 389 square miles of lines sounded, igor miles of lines sounded, 2452 soundings made, 5 tide stations occupied, 8 current stations occupied, 6 hydrographic sheets completed. Magnetic observations: 8 stations on land occupied, 29 stations at sea occupied. Topography: 26 square miles of area covered, 70 miles of general shore line surveyed, 4 miles of creeks surveyed, 6 topographic sheets completed. Triangulation: 131 square miles of area covered, 6 stations occupied, 14 geographic positions determined.

On July i the survey of Nushagak Bay, in Bristol Bay, was in progress and the work was continued until September 21. During this period the work completed may be stated as follows:

Preliminary astronomical observations to determine a latitude and an azimuth were made at Clark Point. A base line was measured in the upper part of the bay and triangulation was extended from it to cover the bay from Williams Island to Points Etolin
and Protection. A preliminary topographic survey of the shore line was made from the entrance of the bay to the mouth of Wood River.

A hydrographic survey was made of the whole of the bay except in Igushik River and the approach. Mud flats bare or partly bare at low water were not included. The main channel was surveyed up to a point just below the mouth of Wood River. Tide observations were made at Clark Point and current observations were made at a number of places in the bay where the vessel anchored.

Everything possible was done by the officers and employees of the Alaska Packers' Association to advance the progress of the work and many courtesies were shown the members of the party. Mess supplies and ship stores were brought from San Francisco free of charge.

The vessel sailed for Seattle, Wash., on September 21 and reached that port on October 8. On April 23 the Explorer sailed from San Francisco for Bristol Bay via Seattle and reached Port Moller, Bering Sea, on May 18. Ice was encountered near this place and it was impracticable to enter Bristol Bay at this time. The vessel was detained at Port Moller until June 3 and work was done in the vicinity while waiting for the opening of navigation in Bristol Bay.

The survey of Nushagak Bay was resumed on June 4 and was in progress on the 30 th.

[W. E. Parker, Commanding Steamer Paiterson.]

Summary of results.--Hydrography: 125 square miles of area covered, 542 miles of lines sounded, 3549 soundings made, 2 tide stations occupied, I current station occupied. Magnetic observations: 3 stations occupied. Topography: 36 miles of general shore line surveyed. Triangulation: 500 square miles of area covered, 12 stations occupied, and 17 geographic positions determined.

The steamer Patterson sailed from Seattle, Wash., on April 18 for Cook Inlet, Alaska, via Orca, Alaska. Magnetic observations were made at sea off Union Bay, British Columbia, after coaling the ship, and at two points between Capes St. James and St. Elias. The Patterson reached Orca on April 29 and a portion of the party for the steamer Yukon was landed at Cordova. The vessel sailed on May 2 with the launch Alpha in tow and reached Port Graham, Cook Inlet, on May 5. A self-registering tide gauge was established on the Alaska Commercial Company's wharf at Port Graham and magnetic observations were made on shore at a station across the bay.

The survey of the eastern shore of Cook Inlet and the main channel was begun to extend the work previously completed from its southern limit along this shore to Port Graham and into Kachemac Bay as far as Homer. At the close of the fiscal year the work was in progress, and the statistics given above show what had been accomplished.

> [C. G. Quillian, Commanding Steamer Yukon.]

SUMMARY OF I.ESULTS.-Hydrography: 299 square miles of area covered, 690 miles of line sounded, 8892 soundings made, 2 tidal stations occupied, 3 hydrographic sheets completed. Topography: 66 square miles of area covered, 85 miles of general coast line surveyed; ro miles of shore line of rivers surveyed, 42 miles of shore line sketched, 5 topographic sheets completed. Triangulation: 822 square miles of area covered, 21 stations occupied, 45 geographic positions determined.

The survey of the coasts of Alaska was in progress in the vicinity of Kodiak on July 1 and the work was continued until October 17, when the field season closed and the party reached Seattle, Wash., on October 26. During this period the triangulation was
extended northward along the east coast of Afognak Island from Spruce and Whale islands until it joined the work previously completed at Cape Tonki and the north end of Marmot Island.

A topographic survey was made northward along the east coast of Afognak Island from the work previously completed to Cape Izhut and along the north and east shores of Cape Tonki. The shore line of the west side of Marmot Island was also surveyed and a topographic reconnaissance was made along the shores of Izhut Bay. Hydrographic work was done in the south approach to Kodiak Harbor and the survey previously completed off Afognak Bay was extended north and east to Cape Izhut and to include Marmot Bay and the northern approaches to Kodiak Island. Tide observations were made at Kodiak and at Danger Bay.

Work was resumed in Cook Inlet in the vicinity of Kenai on May 17 and continued during the remainder of the fiscal year. The triangulation and topographic survey was extended to a point 5 miles above the mouth of Kenai River. Topographic and hydrographic work was also done along the south shore of the inlet at the mouth of Kenai River and in the vicinity of Cape Kasilof and of Kasilof River.

The thanks of the Survey are due the officers of the Alaska Packers' Association and the Northwestern Fisheries Company for courtesies shown the party.

The work was in progress on June 30.
[H. W. Rhodes, Commanding Steamer McArthur.]
Summary of results.-Hydrography: 184 miles of lines sounded, 842 soundings made, 4 tide stations occupied, io current stations occupied. Topography: 6 square miles of area covered, 155 miles of general coast line surveyed, 14 miles of shore line of creeks surveyed. Triangulation: x 8 stations occupied, x 8 geographic positions determined.

On July 1 the party on the steamer McArthur was at work in the upper portion of Cook Inlet north of the Forelands. Parties were established in camp on shore, one on each side of the inlet extending the triangulation and the topographic survey of the shore line. The work during the whole season may be summarized as follows:

The principal work was the triangulation, and it was extended from East and West Foreland to the head of the inlet, with stations at the entrances to Turnagain and Knik Arms. Twenty-eight new stations were established and carefully marked, 20 of which were occupied for the measurement of horizontal and vertical angles, and observations were made at 5 old stations. The shore of the upper portion of Cook Inlet is, in general, a bluff line heavily wooded, and heavy cutting was necessary on many of the lines, and high signals were erected at a number of stations. Directions to Mount McKinley were obtained at 3 triangulation stations and observations to determine the magnetic declination were made at 6 stations.

A topographic survey was made of the east shore of the inlet from a point about 5 miles above Kenai to a point about 12 miles inside Knik Arm, including Fire Island and the south shore of Turnagain Arm, to a point about 4 miles above the entrance. On the west shore of the inlet the survey extends from a point about 5 miles west of West Forelands to a point about 8 miles inside of Knik Arm, except that three gaps covering a total distance of 21 miles were left in this work.

Tide observations were made at Seldovia, at a point about 2 miles above East Foreland, on the west side of Fire Island, and on the east shore of Knik Arm about 5
miles above Point Woronzof. Reconnaissance sounding lines were run by the vessel whenever practicable between the Forelands and the head of the inlet and current observations were made at 17 different places where the vessel anchored.

[G. T. Rude, Commanding Steamer Taku.]

Summary of results.-Hydrography: 156 square miles of area covered, 533 miles of lines sounded, 3296 soundings made, 2 tide stations occupied, 4 hydrographic sheets completed. Topography: 85 square miles of area covered, 144 miles of general coast line surveyed, 4 topographic sheets completed.

Hydrographic and topographic surveys along the shores of Knight Island, Prince William Sound, were resumed on July 6 and continued until September 23, when the field work closed for the winter. The work was completed along the portions of the coast described below: From the north point at the entrance to Hogan Bay to a point I mile north of the entrance to Discovery Bay and including Snug Harbor; the north end of Knight Island and the islands offshore between Knight and Naked islands; the south coast of Knight Island from Mummy Bay to Lower Herring Bay.

Hydrographic work was done inshore along the east and north coasts of Knight Island to complete the work previously done along these shores, and it was extended to cover Discovery Bay, Snug Harbor, Lower Passage, Upper Passage, Foul Passage, Louis Bay, and Northwest Bay. On the south coast of Knight Island, hydrographic work was done in Mummy Bay, Long Passage, and Knight Island Passage from Mummy Bay to Lower Herring Bay, and extended to the entrances of Prince of Wales and Bainbridge passes. In the same region a survey was made of the shore line in Mummy and Copper bays around Squire Island and through Long Passage to Drier Bay, completing the unfinished work in this locality.

The survey of Prince William Sound was resumed on May 23 on the shores of Hinchinbrook Island, vicinity of Point Johnstone. The work at this point was completed on June 14 and the vessel proceeded. to Knight Island, and on June 30 the survey was in progress between Johnson Bay and Lower Passage.

OUTLYING TERRITORY.

Philifpine islands.

[E. F. Dickins, Director.]

The survey of the coast of the Philippine Islands was continued under the immediate supervision of a Director, who represented the Superintendent in all matters requiring immediate action.

He made plans for field operations and issued instructions for field work at the suboffice in Manila. The observations made in the field were computed, and drawings for charts of the regions surveyed were prepared for transmission to Washington for review and publication. Sailing Directions and Notices to Mariners were prepared and published. He was aided in this work by such advice and instructions issued from Washington as became necessary.

The work was done under the same general plan of the division of expenses in force during the previous year. The National Government paid the salaries and subsistence of its technical corps detailed for duty in the Philippines, including several experts in the suboffice, furnished the instrumental equipment, paid the expenses of i large surveying steamer and for the supplies for 2 other surveying steamers, paid the expense of chart publication, the traveling expenses of officers to and from the Philippine Islands, and the hire of launches. The Philippine government paid the operating expenses of 2 surveying steamers, paid for the crew and repairs of 2 other surveying steamers (not including pay of officers), the party expenses of several surveying parties on shore, the salaries of the office force, and for office supplies obtained in Manila, and furnished office accommodations and printing.

There was a free exchange of information and good offices between the Survey and the various military and civil bureaus having common aims, and a gratifying interest was shown in responding to requests for information.

FIELD WORK.
Steamer Pathfinder.-This vessel was at Manila July $1-13$ having repairs made. She sailed for Surigao Strait on July 14 to continue the survey of the strait and adjacent waters to the southward. The work began on the 19 th and was in progress until January 15, when it was suspended and the vessel sailed for Manila. She arrived on January 23 and remained in port until March 26. During this period the field records were completed and repairs were made to the ship. She sailed for Surigao, via Cebu, to deliver the mail for the postal authorities, on March 26 and arrived March 29. The survey in this vicinity was resumed immediatley and was in progress on June 30.

Steamer Romblon.-This vessel closed work on the south coast of Leyte Island on July 2 and sailed for Manila. She remained in port from July 9 to November II and
during this time extensive repairs were made. She sailed for Lion Bay on the south coast of Leyte Island on the 12 th and resumed work in that vicinity on the 16 th. The survey of Sogod Bay was continued until January 4, when it was completed. The vessel then proceeded to the north coast of Mindanao Island and the survey of that coast and adjacent waters was begun on January 8 and was in progress on June 30.

Steamer Marinduque. -The survey of Illana Bay on the southern coast of Mindanao Island was in progress on July i. This work was completed and special surveys were made at Malabang and Parang as requested by the military authorities.

On August 12 the vessel sailed for Manila for repairs. The repairs were made August 19 to September 12, and the vessel sailed the following day for Iligan Bay, north coast of Mindanao. The survey of the north coast of Mindanao Island was continued until June 30 , when the work was still in progress.

Steamer Research.-The survey of Tanon Strait was continued from July I to November 26 when the survey of the unfinished portion of this strait was completed. Minor repairs were made to the vessel at Iloilo November 27 to December 9, and on the following day she sailed for the southern coast of Masbate Island. The work on this coast began on December in and on June 30 the survey of the entire southern coast had been completed.

Steamer Fathomer.-Surveys were made along the coasts of Mindoro and Tablas islands July I to December 22, when the vessel went to Manila for repairs and remained there until February 23, when she sailed for the west coast of Mindoro Island. A special survey was made of the entrance to Bugsanga River as requested by the secretary of interior of the Philippine Islands and then the survey along the shores of Mindoro was continued during the remainder of the fiscal year.

In addition to the work of the parties on the ships mentioned above, surveys were made by parties living on land in San Juanico Strait and Janabatas Channel and on the west coast of Samar Island.

PROGRESS OF THE FIELD WORK.
At the close of the fiscal year ended June $30,1910,46.6$ per cent (exclusive of Spanish and British surveys) of the general coast line of the archipelago had been surveyed for charting purposes, the progress for the fiscal year being 10.3 per cent of the whole.

Expressed in distance, the total amount of general coast line now surveyed is 5368 statute miles (8639 kilometers) out of a total of in 511 statute miles (18525 kilometers). During the year ing statute miles of general coast line was surveyed, an increase of 56.6 per cent as compared with the mileage surveyed in the preceding year.

OFFICE WORK.
The suboffice at Manila is organized to do all the work included in chart construction. The records of observations were received as the work progressed. The necessary computations were made and the results were compiled in the form of drawings for charts. Eight drawings for new charts and 13 drawings for new editions of charts were prepared during the year and sent to Washington for publication.

The Director is the disbursing agent for the Philippine work, and all expenditures, except those on account of the steamer Pathfinder, are made by him, and under his direction. He renders his accounts to the General Disbursing Agent, at Washington,

$$
6348 x^{\circ}-1 I-4
$$

for all expenses paid on the part of the General Government. This work involves a great deal of clerical labor and is increased by the accounts kept to show the disbursements of the funds furnished by the insular government, for which vouchers are rendered to the proper accounting officers of that government.

The following publications were prepared and printed: Philippine Islands Sailing Directions, Section II, fourth edition, and Section V, third edition; Notices to Mariners Nos. 5 to 8 of 1909 and Nos. 1 to 4 of 1910; and a Catalogue of Charts, Sailing Directions, and Tide Tables.
[Arthur Crowell.]
Summary of results.-Hydrography: 97 square miles of area covered, 308 miles of lines sounded. I4 984 soundings made. Topography: 10 square miles of area covered, 58 miles of general shore line surveyed, 14 miles of roads surveyed, 2 topographic shects completed. Triangulation: 263 square miles of area covered, 5 stations occupied, 19 geographic positions determined.

The survey of the west coast of Samar and the north coast of Ieyte was continued from February 1 to March 10 . The triangulation was extended to cover Carigara Bay and completed to a junction with the work previously completed in Biliran Strait. The triangulation was also extended a short distance northward on the coast of Samar, in the vicinity of Catbalogan, and a reconnaissance for triangulation was then made along the coast to a point north of Jibatan River. Hydrographic work in Zumarraga Channel and on the west side of Daram Island (inshore work) was completed.

The work in Büri Island Harbor was completed and some soundings were made in Carigara Bay. Tide staffs were established in the north end of Daram Island and in Carigara Bay and referred by simultaneous observations to the tide gauge at Catbalogan. A topographic survey was made of a small area on the coast of Samar Island north of Catbalogan and of the north half of Daram Island.

> [H. C. Denson, Commanding Steamer Romblon.]

SUMMARY of RESULTS.-Hydrography: 356 square miles of area covered, 404 miles of lines sounded, 10 680 soundings made, 2 hydrographic sheets completed. Topography: 67 square miles of area covered, 70 miles of general coast line surveyed, 3 topographic sheets completed. Triangulation: 820 square miles of area covered, 8 stations occupied, 17 geographic positions determined.

The survey of the north coast of Mindanao Island was continued from May 4 to June 30, and the work previously completed was extended between Agusan River and Bagacay Point. The survey of Gingoog Bay was completed, and a trigonometric connection was made between Mindanao and Camiguin Island. A survey of Nasipit Harbor was also completed and soundings were made along the coast to the Agusan River.

> [C. V. Hodgson, Commanding Steamer Research.]

Summary of results.-Hydrography: 656 square miles of area covered, 3379 miles of lines sounded, 89576 soundings made, 3 tide stations occupicd, 4 hydrographic sheets completed. Topography: 159 square miles of area covered, 84 miles of general shore line surveyed, 27 miles of shore line of rivers surveyed, 2 miles of roads surveyed, 5 topographic sheets completed. Triangulation: 240 square miles of area covered, 10 stations occupied, 22 geographic positions determined.

The survey of the south coast of Masbate Island was continued from February 8 to June 30 . The main triangulation was completed by occupying the one remaining station, and then supplementary work was done to furnish points for use in the topographic and hydrographic work. The topographic survey was extended from the
completed work in the vicinity of Guion River westward around the shores of Asid Gulf to the southwestern point of the island, and the hydrographic survey was completed over the gulf and the approaches and was extended some distance beyond Jintololo Light-house.

> [c. V. Hodgson.]

Summary of results.-Hydrography: 176 square miles of area covered, 13×4 miles of lines sounded, 86921 soundings made, 8 tide stations occupied, 3 current stations occupied, 4 hydrographic sheets completed. Topography: 155 square miles of area covered, 288 miles of general coast line surveyed, 36 miles of shore line of rivers surveyed, 7 miles of roads surveyed, 5 topographic sheets completed. Triangulation: 296 square miles of area covered, 14 stations occupied, 42 geographic positions determined.

The survey of the north coast of Leyte and the west coast of Samar was in progress on July 1 and the work was continued until January 31. Triangulation was extended from the north coast of Samar to a point at the north entrance to Maqueda Bay, and it includes points on Daram Island and the other islands within the area stated.

A topographic survey was made along the north coast of Leyte at the entrance to Janabatas Channel and along the south shore of the channel and thence northward along the coast of Samar to and around Maqueda Bay to the point at the north entrance to the bay. The topographic survey includes nearly all of the southern half of Daram Island and the islands between Daram and Samar islands.

The hydrographic work covers Maqueda Bay, the waters south of Buad Island and inside of Daram Island, and the entrance and wide portion of Janabatos Channel.

After January i the survey was extended along the west coast of Samar Island from the vicinity of Catbalogan as far north as Majacob, including the offlying islands, and also around the shore of Carigara Bay to a junction with work already completed in Biliran Strait.

> [D. R. Jewell, Commanding Steamer Marinduque.]

Summary of results.-Hydrography: 2541 square miles of area covered, 1884 miles of lines sounded, 35651 soundings made, 5 tide stations occupied, 15 hydrographic sheets completed. Magnetic observations: 3 stations at sea occupied. Topography: 36 r square miles of arca covered, 289 miles of general coast line surveyed, 36 miles of shore line of rivers surveyed, 53 miles of roads surveyed, 15 topographic sheets completed. Triangulation: 6 ± 50 square miles of area covered, 66 stations occupied, 70 geographic positions determined.

On July it the party on the steamer Marinduque was engaged in making a survey of Illana Bay, including hydrography in the approaches, and on August 13 the work was finished. This completed the survey of the unfinished portion of the coast of Mindanao in this locality. Special surveys were made at Malabang and Parang, as requested by the military authorities, to furnish information to aid in the establishment of docks and a sewerage system at these places. On September 17 work began in Iligan Bay, and the survey of this bay and of Dapitan Bay were completed by the end of January, and the work was then extended westward to Point Blanco, in the vicinity of Disacan.

The triangulation was extended to include points on Negros, Siquijor, Cebu, Panglao, Bohol, and Camiguin islands, to a junction with work previously completed. Many of the lines of sight were unusually long, and it was necessary to use heliotropes at the stations.

[J. B. Miller, Commanding Steamer Fathomer.]

Summary or results.-Hydrography: i 967 square miles of area covered, 4944 miles of lines sounded, 69675 soundings made, 14 tide stations occupied, ir hydrographic sheets completed. Magnetic observations: 8 stations on land occupied, 12 stations at sea cocupied. Topography: 299 square miles of area covered, 29 miles of general coast line surveyed, 122 miles of shore line of rivers surveyed, Ir topographic sheets completed. Triangulation: 686_{3} square miles of area covered, 72 stations occupied, 178 geographic positions (including 9 aids to navigation) determined.

On July i the survey of the east coast of Mindoro Island was in progress and the work was continued until December 31, when the Fathomer went to Manila for repairs. During this period the triangulation was extended to cover the east coast of Mindoro from Buyallao Point (latitude $12^{\circ} 17^{\prime}$) to Dumali Point (latitude $13^{\circ} 13^{\prime}$) and to include points on Maestro de Campo, Dos Hermanas, Banton, Simara, Cobrador, Romblon, and Tablas islands.

The topographic survey covers the coast of Mindoro within the limits of the triangulation and the shore line and interior of the small islands mentioned and about half of the area of Tablas Island. The hydrographic work covers waters along the coast of Mindoro, within the limits mentioned above, and was extended offshore to Tablas Island, covering the northwestern and northern shores of that island and the waters around Samara and Banton islands. A hydrographic survey was made around Dos Hermanas Islands.

Triangulation stations were selected to extend the work southward to a connection with Panay and the islands offshore. All the work mentioned is an extension southwarp of a survey previously completed.

On February 23 the Fathomer went to the west coast of Mindoro and made a special survey of the entrance to Bugsanga River as requested by the secretary of interior of the Philippine Islands. The survey of the cast coast of Mindoro was then taken up and extended southward from the point reached in December. The triangulation was extended around the south end of the island to Bugsanga River and lines were observed to connect with stations on Panay, Caluya, and Panagatan islands. Positions were determined on a number of islands along the coast.

The topographic work was extended from Buyallo Point on the east coast to Lumintao River on the west coast, and covers the shore line of 5 large bays and 9 small islands, and also Ilin and Ambolon islands.

The hydrographic survey covers the inshore work within the limits of the topography except for a distance of 3 miles where the work was not completed. The offshore work was completed to a line ro miles distant from the mouth of Lumintao River. It also extends to a line 3 miles off Ambolon Island and thence to Panagatan Island, covering the passage between Ilin, Panagatan, Cemerara islands and Dominga Shoal.

A self-registering tide gauge was maintained in Looc Bay, Tablas Island, and observations were also made at 8 other stations, and all the stations were connected by simultaneous observations.

[E. H. Pagenhart, Commanding Steamer Romblon.]

SUMMARY OF RESULTs.-Hydrography: 1042 square miles of area covered, ing miles of lines sounded, 14168 soundings made, 5 tide stations occupied, 6 hydrographic sheets completed. Topography: 15I square miles of area covered, 141 miles of general coast line surveyed, 34 miles of shore line of rivers surveyed, 5 miles of roads surveyed, 7 topographic sheets completed. Triangulation: $5 \mathbf{5 0}$ square miles of area covered, 18 stations occupied, 25 geographic positions determined.

The steamer Romblon sailed from Manila on November 12 to complete the survey of Sogod Bay in the south end of Leyte Island. The triangulation of the bay was almost
finished before the close of the previous season, and only four stations remained to be occupied. The survey of the bay was resumed on November 16 and completed on January 4.

A topographic survey was made along the shores of the bay joining similar work previously completed on both the west and east sides of the bay near the entrance. The topographic survey was extended to cover entire west shore of Panaon Island. The hydrographic survey of the bay was also completed.

The work covers the whole bay and extends along the west coast of Panaon Island for a short distance offshore to a junction with work previously completed. Tide observations were made at Tabogon during the progress of the hydrographic work.

The survey of the north coast of Mindanao Island was begun on January 8 and continued until May 4. During this period the survey of Butuan Bay was completed and the survey was extended along the eastern shore of Surigao Sea to the north point of Mindanao Island. The triangulation and topographic work along the coast was completed and the hydrographic work was extended about 2 miles offshore. The shore line is practically straight and there are no shoals. • Heliotropes were used at the stations of the main scheme of triangulation in order to make the observations over the longest lines with as little delay as possible.

In connection with the hydrographic work, tide observations were made on a tide staff established at Bilan Bilan, near Surigao, and later a self-registering tide gauge was installed in Nasipit Harbor. These three stations were connected by simultaneous observations made on ten days.

[J. F. Pratt, Commanding Steamer Pathfinder.]

Summary or resclits.-Hydrography: 959 square miles of area covered, 4038 miles of lines sounded, 60217 soundings made, 4 tide stations occupied, 12 hydrographic sheets completed. Topagraphy: 290 square miles of area covered, 460 miles of general coast line surveyed, 9 miles of shore line of rivers surveyed, 40 miles of shore line of creeks surveyed, 31 miles of road surveyed, ir topographic sheets completed. Triangulation: 3840 square miles of area covered, 35 stations occupied, 230 geographic positions determined, 93 elevations (in the interior) determined trigonometrically.

The work of the party on the steamer Pathfinder was done during two periods, the first lasting from July 19 to January 15 and the second from March 29 to June 30 . During the year a trigonometric connection was made between Samar, Homonhon, Leyte, Dinagat, Panaon, Limasaua, and Mindanao islands and the triangulation was extended to cover Surigao Passage and Strait. A topographic survey was completed along the eastern coast of Ireyte from latitude $10^{\circ} 40^{\prime}$ to Panaon Strait and thence along the entire eastern coast of Panaon Island, and along the western coast of Dinagat Island and the northern coast of Mindanao Island. The topographic survey covered many of the small islands in Surigao Passage and adjacent waters and also a considerable portion of the south end of Dinagat Island.

The hydrographic survey covers Surigao Strait and Passage, including a considerable area north of the strait and offshore to the eastward of the north end of Dinagat Island and also along the north coast of Mindanao Island.

In connection with the triangulation the geographic positions and elevations of numerous peaks in the mountains were determined. An excellent anchorage for safety in typhoons was found in Tagbabui Bay, which lies about 5 miles to the eastward of

Sibanag Island. This anchorage can be entered in any weather, has good holding ground, and is well sheltered.

On Novernber 6 the ship's steam launch (No. 35) became a total wreck in a typhoon and during the same storm the whaleboat was lost.

On March 27 while en route to Cebu a signal of distress was seen flying at Tanguingui Light-house and the keepers were found to be out of provisions. They were supplied with sufficient food to last until the weather changed and they could go for supplies.

Acknowledgment is made of assistance rendered and of courtesies shown the party by the navy officers in charge of the United States Naval Station at Cavite.
[S. Schattschneider, Commanding Steamer Research.]
Summary of results.-Hydrography: 651 square miles of area covered, 2003 miles of lines sounded, 26891 soundings made, 5 tide stations occupied, 8 hydrographic sheets completed. Topography: 872 square miles of area covered, 192 miles of general coast line surveyed, 77 miles of shore line of rivers surveyed, 140 miles of road surveyed, 13 topographic sheets completed. Triangulation: 4693 square miles of area covered, 40 stations occupied, 139 geográphic positions determined.

The survey of Tañon Strait was in progress on July i and the work was completed on November 27. The triangulation and topographic work were extended along the coasts of Negros and Cebu islands to complete unfinished portions of the survey in this locality, and the hydrographic survey covered the strait within the same limits. The vessel then proceeded to the southern coast of Masbate Island via Iloilo for minor repairs, and work began in that locality on December in and was continued until January 27, when the vessel returned to Iloilo. During this time a triangulation was extended to cover the entire southern coast of Masbate and to connect with Jintotolo, Gigantes, and Tanguingui islands and many of the small islands near the coast, and the topographic survey was completed along the coast from the southeast point of the island to a point a short distance north of Guion River.

PORTO RICO.

[George Hartnell.]

The work at the magnetic observatory at Vieques, P. R., was continued during the year and a practically continuous record of the relative value of the three elements of terrestrial magnetism was obtained with self-registering instruments. Observations were made twice each week to determine the absolute value of the magnetic elements. A remarkable magnetic storm was recorded on September 25 and 26 , when the variations reached a wide range.

The seismograph was kept in continuous operation and a record of earthquakes was obtained on July 7 and 30, August 16, October 3, November 18, January 1, May in and 31 , and June 14 and 15 .
[N. H. Heck.]
Summary or results.-Hydrography: 14 square miles of area covered with wire drag, 222 miles run while dragging, ros soundings made, I tide station occupied, I hydrographic sheet completed.

During the period January 6 to April 28 an examination of the harbor of Mayaguez, P. R., and approaches was made with the wire drag. The outfit for the party did not arrive until February 7 , and the work during the first month was done with an
improvised drag and accessories and the work accomplished was relatively small. As this was the first work of the kind done in this locality, the delay in organizing the party was unusually great.

An examination was made of Mayaguez Bay, of the northern approach inside of Outer Manchos, of the main entrance, of the southwest channel between Rodriguez Bank and Machos Grandes, and of Guanijibo Channel. Within the area covered as stated above all dangers to navigation have been found and their positions have been determined with the least depth of water on each.

The weather was usually favorable for the work before noon each day, but in the afternoon the wind was generally strong enough to make the sea too rough for work with the drag.

The geographic positions of a hill and a mountain peak, marking the range for entering Mayaguez Harbor, were determined by triangulation during intervals when the weather conditions did not permit the use of the drag.

SPECIAL DUTY.

LOUISIAN゙A ANU MISSISSIPPI.
[E. Mueller.]
November 7-23 an inspection was made to determine the condition of the beacons erected in the spring along the boundary between Loiusiana and Mississippi, the shores of Lake Borgne, and Mississippi Sound as range marks, to detremine the damage done by the September storm.

It was expected by the state authorities that buoys could be placed in position to mark the line, but the buoys were not available and no further work could be done.

ALASKA-YUKON-PACIFIC EXPOSITION.
[W. E. Parker.]
As required by law the exhibit representing the work of the Coast and Geodetic Survey was continued, with an officer in charge, from July 1 to October 16 , the date on which the exposition closed.

TIDE OBSERVATIONS IN ARCTIC REGIONS.
[R. E. Peary, Civil Engineer, U. S. Navy.]
In accordance with the instructions issued to Civil Engineer Peary, U. S. Navy, as stated in the previous annual report, tide observations were made in the Arctic regions at Cape Sheridan, Cape Columbia, Cape Bryant, Fort Conger, and at Cape Morris Jesup. The observations were made day and night at hourly intervals covering periods varying from 23r days at Cape Sheridan to 10 days at Cape Morris Jesup, and valuable information in regard to the tides was obtained. Meteorological observations were also made in connection with the tide observations, and soundings were made on the meridian of Cape Columbia, 9 in all, extending from Cape Columbia to latitude $89^{\circ} 55^{\prime}$.

MISSISSIPPI RIVER COMMISSION.
[H. P. Ritter.]
As authorized by law, an officer of the Survey remained on duty as a member of the Mississippi River Commission and performed all the duties required by his office. He attended meetings of the Commission in October, February, April, and June, and in April also attended a meeting of the Board on Examination and Survey of the Mississippi River, of which he is a member.

INTERNATIONAL BOUNDARIES.

[O. H. Tittmann.]

UNITED STATES AND CANADA BOUNDARY.
The work of re-marking this boundary, as prescribed in the treaty signed at Washington April 11, 1908, was in progress at several points along the line during the year, under the direction of an international commission, in which Mr. O. H. Tittmann represents the United States and Mr. W. F. King represents Great Britain.

On July i Mr. Fremont Morse was at work establishing reference monuments along the United States shore of the water boundary between Point Roberts and the Pacific Ocean, and the work was continued until October 14 , when the work was completed.

Monuments built of concrete were placed at Pillar Point, Tongue Point, Angeles Point, Iceberg Point, Pile Point, and at Turn Point and on San Juan Island opposite Kelp Reef Beacon. Dungeness Light-house and Patos Island Light-house were used as reference monuments.

All these reference monuments and the boundary monument at Point Roberts were connected with the Coast and Geodetic Survey triangulation, and a large scale topographic map was made of the region in the immediate vicinity of each monument.

The recovery and survey of the United States and Canada boundary was in progress on the eastern slope of the Rocky Mountains under the direction of Mr. C. H. Sinclair, representing the United States Commissioner in the field, on July 1 , and the work was continued until October 21, when it was suspended. The season's work began on May 7, and the statistics given below refer to the whole season.

The boundary was surveyed and monumented from the summit of the Rocky Mountains eastward to the North Fork of Milk River, a distance of 50 miles. Thirty boundary monuments (bronze) were placed in position along this section.

The triangulation was extended over the whole section and a topographic survey was made under the direction of E. C. Barnard, chief topographer, along the boundary on both sides. This survey was extended to cover a strip 2 miles wide on each side for a distance of 27 miles, and the width was then reduced to 1 mile on each side over the remaining portion of the work. A vista 20 feet wide was opened along the boundary wherever any cutting was necessary. All of the old monuments on this section were recovered.

Mr. M. F. Cochrane, of Canada, was with the party during the whole season as the representative of the British Commissioner.

The survey of the boundary was resumed by Mr. Sinclair on May ig, and the work was in progress on June 30. During this period the reconnaissance for the triangulation, the erection of signals, and the placing of boundary monuments were completed from the North Fork of Milk River to a point 20 miles west of Sweet Grass.

On July 1 a Canadian party, accompanied by Mr. F. D. Granger, as the representative of the United States Commissioner, was at work between Coutts, Alberta, and the West Fork of Milk River placing monuments on this section which had been previously surveyed. This work was completed, and the survey along the boundary was then extended eastward to Frenchmans Creek, a distance of 205 miles from Coutts. One hundred and forty-four monuments were placed in position, and all of these were con-
nected with the triangulation before the season closed on November 6. The work was resumed on May 1 and was in progress on June 30.

In July the survey of the boundary westward from the mouth of Pigeon River, at the west end of Lake Superior, was resumed by Mr. W. B. Fairfield. The survey was extended along the river from the base, 2 miles west of its mouth, furnished by the triangulation of the previous ycar. The river above the Great Falls is a very crooked, narrow stream with numerous rapids, cascades, and falls, and the banks are densely wooded over almost the whole length, which made it impracticable to extend a triangulation along this portion of the boundary and a survey by the stadia method was made. It extends from the base line mentioned above to the eastern end of South Fowl Lake, a distance of 30 miles. Eighty-seven stadia stations were marked by brass plates set in the natural rock along the river and numbered, even numbers being used in the United States territory and odd numbers on the Canadian side of the boundary. Sixty-seven additional stations were marked, drill holes and cross lines cut in the rock, and 148 temporary stations were marked by wooden stubs.

A topographic survey was made along the river, using a mountain plane table, and the position of the shore line of the river and of the island and some other topographic details were secured. The river is used to float logs to Lake Superior, and many of the signals were carried away by rafts of logs day after day. Fortunately, the Pigeon River Lumber Company was at work in the region and its officers permitted the use of its transportation facilities, thus greatly furthering the work and lessening the time and expense.

Late in November the work was suspended for the season and the party was disbanded on the 28th. In June a party was organized to resume the work and on June 30 was at the mouth of Pigeon River waiting for transportation to South Fowl Lake.

The survey of the United States and Canada boundary was in progress along the St. Croix River on July i by two cooperating parties, under charge of Messrs. J. E. McGrath and A. J. Brabazon, representing the United States and British Commissioners, respectively. Stations were selected and observations were made to extend the triangulation up the river from its mouth to the railroad bridge above Baring, Me. The stations in this work were generally established near the banks of the river by a subsidiary triangulation which was controlled by connecting it, in several places, with the large and well-conditioned triangulation which covers the whole river valley in this locality. The United States and Canadian parties made observations at the stations in the territory of their respective countries in accordance with a plan adopted in advance to secure the greatest amount of progress consistent with the object of the work. Work was suspended on November 28 on account of unfavorable weather conditions.

Most agreeable relations existed between the parties and the cooperation was entirely successful. The survey of the boundary was resumed on June 20 under the conditions named above, and was in progress on the 30th, on which date the triangulation had been completed from the mouth of the St. Croix River to Butler Islands.

The work of recovering and re-marking the boundary between the United States and Canada along the St. Jolin River was in progress under the charge of Messrs. J. B. Baylor and G. C. Rainboth. representatives in the field of the United States and British

Commissioners, respectively, on July 1 , and this work was continued until November i, when it was suspended for the winter on account of unfavorable weather.

The triangulation was extended as the joint work of the two parties, each occupying the stations in their respective countries, from a point 2 miles below Van Buren, Me., to a point about 3 miles above Edmundston, New Brunswick, a distance of 35 miles. Boundary reference monuments built of reenforced concrete were placed in position on the river bank and referred to the boundary by being connected with the triangulation. In connection with this work two base lines were measured with steel tapes to verify the triangulation, and a connection was made with an astronomic station established by Canada at Edmunston, New Brunswick.

A topographic survey was made along the boundary covering the territory adjacent to the river and extending to a distance of $11 / 4$ to $1 / 2$ miles from the river bank. Five topographic sheets were completed on which the relative elevations are shown by contours at vertical intervals of 20 feet, and the artificial features are all indicated.

The survey of the boundary was resumed on May 5 by a joint party under the direction of the representatives of the Commissioners named above, and the work was in progress on June 30 . Good progress was made and it was practically completed to Fort Kent, Me.

ALASKA BOUNDARY

The demarcation of the boundary between Alaska and Canada along the one hundred and forty-first meridian was continued, as provided in the convention between the United States and Great Britain (signed April 21, 1906), by Mr. O. H. Tittmann, the Commissioner representing the United States, and Mr. W. F. King, the Commissioner representing Great Britain.

The demarcation of the Alaska boundary was in progress May 28 to June 30 in the vicinity of the head of Portland Canal by a Canadian party with Mr. Fremont Morse as the representative of the United States Commissioner.

On July it the demarcation of the boundary in southeastern Alaska was in progress under the direction of Mr. O. M. Leland, the representative of the United States Commissioner in the field. The season began on May 8, 1909, and the work was continued until November 7. During this period the survey and marking of the boundary was extended as stated below.

On the east side of the Unuk River the boundary was located and marked to Boundary Peak 7780 . Peak 5800 was located and some timber was cut along the line on each side of it, and it was marked by a monument. Two points on the line between peaks 5800 and 6450 were marked, one by a monument and the other by a copper bolt.

Peaks 6450 and 6750 were marked by copper bolts and a "drilled" rock, and the line between 6750 and 7780 was marked in four places by two monuments and two bolts, as well as by cutting timber. Photographs with a photo-topographic camera were made to furnish information for the correction of the topographic maps.

On the west side of the Unuk River the boundary was located and marked to a point beyond the east fork of Blue River. Two monuments and a copper bolt were placed in position on this section of the line.

On the west fork of Blue River the boundary crossing was marked by opening a vista along the line to points one-quarter of a mile from the river on both sides and by
placing a monument on the west side. All of the peaks between 6500 and 7780 were located by triangulation and all of them except these two were occupied with a theodolite and with a photo-topographic camera.

A self-registering tide gauge was maintained at Skagway.
The survey of the boundary in southeastern Alaska was resumed on June 17 and the work was in progress on the 3oth in the vicinity of the point where the boundary crosses the Salmon River.

The demarcation of the boundary between Alaska and Canada was in progress along the one hundred and forty-first meridian north of the Yukon River on July 1 under the direction of Mr. G. C. Baldwin, representing the United States Commissioner in the field. Mr. J. D. Craig accompanied the party as the representative of the British Commissioner.

The work began on June 20 and was continued until September 17. During this period the boundary line was located by extending the line norchward from the monument on the south bank of the Yukon River for a distance of 40 miles. The triangulation along the boundary was extended from the work previously completed south of the Yukon for a distance of 43 miles, and 12 monuments were placed in position to mark this portion of the boundary.

A vista 20 feet wide on the sky line was cut through the timber along the line.
The triangulation and topographic survey of the boundary between Alaska and Canada along the one hundred and forty-first meridian was in progress on July 1 at a point about 100 miles south of the Yukon River by a party under the direction of Mr. Thomas Riggs, jr., the representative of the United States Commissioner in the field. The party was divided into six sections, each in a separate camp and completely equipped for the work assigned to it.

In addition to its own work each section of the party supplemented the work of the other sections in its vicinity from time to time and all aided each other to the extent of their ability in attaining the completion of the work before winter weather ended the season. The triangulation was extended 85 miles and the topographic survey inr miles, both reaching the end of the line projection work at the Natazhat Range of Mountains, 225 miles south of the Yukon River. The triangulation was also extended along White River for a distance of 33 miles, and the topographic survey covered a strip $21 / 2$ miles wide on both sides of the boundary.

A strenuous effort was made to climb the Natazhat Range and establish the boundary crossing on the summit, but a heavy fall of snow made it necessary to give up the attempt.

The many obstacles of transportation were overcome and the work was completed in spite of the adverse weather conditions. The movement out of the country for the winter began on August 25, and each section started as soon as its work was finished.

The positions of 12 monuments placed on the line by the Canadian party were verified.

Work was resumed on the location and survey of the line north of the Yukon River on May 24, and it was in progress at the close of the fiscal year.

[O. H. Tittmann and J. F. Hayford.]

The duty of representing the United States as delegates to the Sixteenth General Conference of the International Geodetic Association at I,ondon and Cambridge, England, was performed by Messrs. O. H. Tittmann, Superintendent, and J. F. Hayford, Inspector of Geodetic Work, Coast and Geodetic Survey. The conference was in session from September 21 to 30, 1909.

The delegates of the United States presented a report covering the progress of geodetic-operations and investigations in the United States from 1906 to 1909 . The recent work in this country received the formal recognition of the conference when a famous geodesist arose and stated that he felt sure that he voiced the sentiment of the conference by saying that the Americans were to be congratulated on having introduced a new epoch in geodesy.

When it is remembered that the geodetic work in the United States is the incidental result of observations made primarily for other purposes, this recognition of the work by the world's leading geodesists forms a tribute to the Bureau in charge of these operations which should gratify every citizen of the Republic. The occasion of this tribute was the recent publication of a discussion by Mr. J. F. Hayford, an officer of the Survey, of the figure of the earth, under the title "The Figure of the Earth and Isostasy from Measurements in the United States."

Many courtesies were extended to the delegates, both in London and Cambridge, officially and privately, and notable among the former was an entertainment at Windsor Castle by the gracious invitation of His Majesty the King.

FORT MYER MILITARY ROAD.

[P. A. Welker.]

In accordance with a request made by the War Department, an officer was detailed to serve as the representative of the United States on a commission of engineers created to make a survey of a portion of the military road leading from the Aqueduct Bridge (across the Potomac River) to Fort Myer, Va.

The location of a portion of the boundary of this road being in controversy between the United States and the owners of the adjoining property and being before the United States court for the eastern district of Virginia for settlement, a special master commissioner in chancery was named to take testimony, and he appointed the commission of engineers mentioned above.

This officer reported to the Quartermaster-General, U.'S. Army, on September 22, and was engaged on this duty until December 10 at such times as were necessary, and after that date was directed to respond to all calls for information on this subject and to give testimony when required before the master in chancery referred to above.

The survey was made and a final report was filed under date of December 2, 1909.

LOUISIANA AND MISSISSIPPI WATER BOUNDARY.

[Isaac Winston.]
In accordance with the request made by the chief state engineer, an officer was detailed to complete the marking of this boundary, as described in the previous annual report, by placing buoys along the line in Lake Borgne and Mississippi Sound at the intersection of the range lines previously established and at intermediate points approximately x mile apart. The work began on April 5 and was completed on May 2.

The men, material, and outfit, consisting of a tugboat and large barge, were furnished by the chief state engineer, and he had also obtained authority from the LightHouse Board for the placing of the buoys. Six nun buoys and 22 spar buoys were placed in position.

During April strong winds prevailed and caused serious delay in the work, as the tug was not able to handle the barge with safety in rough water.

The work was inspected on May 6 by the chief state engineer, accompanied by a representative of the Louisiana Oyster Commission and the Light-House Inspector for the Eighth district.

Copies of a chart showing the positions of the buoys and data fixing their positions were furnished to the chief state engineer.

DELAWARE OYSTER BEDS.
[C. C. Yates.]
In response to a request made by the governor of Delaware and under the authority of the Secretary of Commerce and Labor, an officer of the Survey was directed to communicate with the governor and arrange to supervise the survey of certain oyster beds in the State, the work to be done for the Delaware Oyster Survey Commission at such times as his other duties permit and entirely at the expense of the State of Delaware.

APPENDIX 2

BEPORT 1010

DETAILS OF OFFICE OPERATIONS

CONTENTS.

Office of Assistant in Charge.
Page.
65Computing Division
65
Division of Terrestrial Magnetism 65
Tidal Division. 66
Drawing and Engraving Division. 66
Chart Division. 69
Instrument Division 69
Library and Archives Division 70
Miscellancous Section 75

DETAILS OF OFFICE OPERATIONS.

OFFICE OF THE ASSISTANT IN CHARGE.

Andrew Braid; Assistant in Charge.
The Assistant in Charge of the Office has direct supervision of the work of the different divisions of the Office. The Miscellaneous Section is a part of the immediate office of the Assistant in Charge.

COMPUTING DIVISION.
The usual progress was made in the reduction of field observations and in the preparation of results for publication. It is the policy of the Survey to furnish the available information contained in its records and archives in response to all requests, and the most economical plan of doing this is to publish all data useful to geographers and engineers as rapidly as possible so that it may be distributed in printed form.

A Supplemental Investigation in 1909 of the Figure of the Earth and Isostasy was finished and prepared for publication. This completes the discussion of all data obtained in the United States prior to 1909 available for the determination of the problem, and it is gratifying to state that the results of this second investigation have confirmed and greatly strengthened those deduced in the original discussion.

The results of triangulation in northern California, including 1600 geographic positions and descriptions of stations, were also prepared for publication, and progress was made in preparation of similar information in several other States and Territories.

The geographic positions of the subsidiary stations along the ninety-eighth meridian were computed. The transfer of all geographic positions in Florida determined previous to igio to the United States Standard Datum was completed.

A reduction of the base lines measured at Stanton, Tex., and Deming, N. Mex., was made and the results are published in Appendix 4.

DIVISION OF TERRESTRIAL MAGNETISM

A steady demand for magnetic information continued during the year and the replies to such requests were prepared in this Division.

The preparation of the results of the observations on land and sea during the fiscal year 1909 for publication in the Annual Report for that year was completed.

A chart showing the lines of equal magnetic declination and of equal annual change for Alaska in 1910 and the data on which it is based was also prepared for publication in the same report.

Five volumes containing the results of the observations at the five magnetic observatories for the years 1905 and 1906 were prepared for publication and progress was made in the preparation for publication of the results at these observatories for the years 1907 and 1908.

Tabulations of the data pertaining to the earthquakes recorded at the Cheltenham, Sitka, Porto Rico, and Honolulu observatories during the calendar year 1909 were prepared and the office revision of the field computations was kept up to date.

TIDAL DIVISION.
Harmonic analyses were completed for 21 stations with a combined length of 5 years and 9 months. Nonharmonic reductions were made for 195 stations with a combined length of 31 years and 6 months. Mean sea level was computed for 33 stations with a combined length of 99 years and 6 months. High and low waters and hourly heights of the sea were tabulated for 322 stations with a combined length of 74 years and 7 months.

There were received, examined, and registered in this Division records from 28 self-registering tide-gauge stations with a combined length of $151 / 2$ years and records from 93 staff-gauge stations with a combined length of $41 / 2$ years.

The total of all tide observations made by the Survey and received during the year is 20 years at 121 stations and from other sources $71 / 2$ years at 8 stations, making a grand total of $271 / 2$ years at 129 stations.

The following is a list of the sources from which tide observations were received from outside parties during the year:

1. United States Army Engineers, tides in United States, I station, I year; Canal Zone, 2 stations, 2 years.
2. Hydrographic Office, U. S. Navy, Panama, 2 stations, 1 year and 5 months.
3. Insular Government, Philippine Islands, 2 stations, 2 years and 3 months.
4. Alaska Boundary Survey, Alaska, I station, I year.

Tables containing the predicted tides for 1911 at Sandy Hook, N. Y., Baltimore, Md., Charleston, S. C., and San Francisco, Cal., were furnished to the Imperial Hydrographic Office at Wilhelmshaven, Germany, in advance of publication.

Similar information for Wellington and Aukland, New Zealand, for igni was sent to the marine department of New Zealand.

The tide tables for igil were completed and the proof was read. The preparation of the tide tables for 1912 was nearly completed.

A discussion of the tidal observations recently made in the Arctic Ocean by Civil Engineer R. E. Peary, U. S. Navy, was completed by Mr. Rollin A. Harris, and progress was made by him in the preparation of a monograph on the subject of "Arctic Tides."

DRAWING ANI ENGRAVING DIVISION.
The Division is divided into five sections-the Drawing, the Engraving, the Printing, the Photographing, and the Electrotyping sections. Each section does the work indicated by its title, and the combined results are shown on the charts published and issued by the Survey. Cooperation with the Light-House Board in compiling information for the

Notices to Mariners was continued during the year, and a weekly Notice to Mariners was issued as a joint publication of the Light-House Board and the Coast and Geodetic Survey.

Drawing Section.
During the year the following drawings for new charts were completed:
Chart
No.
262. Bradford Coaling Station.
283. Hudson River.
284. Hudson River.
508. St. Johns River.
509. St. Johns River.
539. Patuxent River.
6151. Columbia River.
6152. Columbia River.

Chart
No.
6I 53. Columbia River.
6154. Columbia River.
6440. Sinclair Inlet.
8247. Hood Bay and Kootznahoo Inlet.
8250. Chatham Strait.
8306. Glacier Bay.
8570. Kupreanof Strait to Kodiak.
8589. Port Graham and Seldovia Bay.

A new drawing was also completed for a new edition of chart No. 2 IS (Port Yabucoa). Extensive corrections were made to the drawings for 139 charts in preparing them for the issue of new editions. Nine drawings for new charts in the Philippine Islands were received from Manila and prepared for publication. Eight maps for the Maryland Shell-Fish Commission and a number of miscellaneous drawings were completed.

Engraving Section.

The following original engraved plates were completed:

Chart	Chart
No.	No.
559. Potomac River.	4243. Manila and Cavite Anchorage.
560. Potomac River.	5530. San Francisco Bay.

The following original etched plates were completed:
Chart
No.
495. York River.
4109. Honolulu Harbor.
4246. San Fernando Harbor.
4349. Malampaya Sound.
4447. Cebu Harbor.
Chart
No.
4543. Isabela Channel.
4647. Agusan River Entrance.
4649. Malalog Bay.
5145. San Pedro Harbor.
8996. St. Paul and St. George islands.

No.
4543. Isabela Channel.
4649. Malalog Bay.
5145. San Pedro Harbor.
8996. St. Paul and St. George islands.

All of these plates represent charts already published by photolithography. The following new bassos for new editions were completed:
Chart
No.
128. Isle of Wight to Chincoteague Inlet.
137. Cape Henry to Currituck Beach.
184. St. Josephs and St. Andrews bays.
194. Mississippi River.
369. New York Bay and Harbor.
369^{4}. Hudson and East rivers.
369^{5}. Hell Gate and East River.
380. Philadelphia Water Front.
420. Beaufort Harbor.

Chart
No.
No.
453. Fernandina Entrance.
520. Galveston Entrance.
950. Colon Harbor.
5143. Wilmington and San Pedro harbors.
6185. Willapa Bay.
6300. Gulf of Gcorgio and Strait of Juan de Fuca.
6444. Port Orchard.
6446. Lake Washington.
6451. Commencement Bay and City of Tacoma.
'The following new bassos for reissues were completed:

Chart	Chart
No.	
No.	Mobile Bay to Atchafalaya Bay.
19.	424. Cape Fear River.
51. Nantucket Shoals to Montauk Point.	5106. San Diego Bay.
ir4. Newport to Plum Island.	6140. Columbia River.
ir6. Stratford Shoal to New York.	6303. Port Angeles.
348. Woods Hole.	

SUMMARY.
Plates for former lithograph charts finished . 44
Bassos completed. 27
Bassos completed.
Extensive corrections were made on 162 plates and minor corrections on 862.
Printing Section.
New charts printed by photolithography:
Chart
No.
262. Bradford Coaling Station.
283. Hudson River.
284. Hudson River.
508. St. Johns River.
509. St. Johns River.
539. Patuxent River.
951. Panama Harbor.
4224. Sogod Bay to Calagua Harbor.
4225. Lamon Bay and vicinity.
4413. Sigat Point to Manigonigo Island.
4419. Northern part of Cebu.
4427. East Coast of Cebu.
4606. Port Sibulan to Polloc Harbor.

Chart
No.
4617. Sibuguey Bay.
4623. Southern part of Davao Gulf.
4624. Northern part of Davao Gulf.
4655. Delta to head of Mindanao River.
6440. Sinclair Inlet.
6448. Approaches to Everett.
8247. Hood Bay and Kootznahoo Inlet.
8250. Chatham Strait.
8306. Glacier Bay.
8550. Prince William Sound.
8570. Kupreanof Strait to Kodiak.
8589. Port Graham and Seldovia Bay.

New editions of different charts printed from copper plates.............. 3^{8}
New editions of different charts printed from stones. 12
New editions of different charts printed by photolithography............... 30
Number of different charts printed from stones. 83
Number of different charts printed from plates. 933
Charts printed from stones (impressions, 118 576) . 47237
Charts printed from plates (impressions, 90883)............................. 82 815
Photographing Section.
. The following etched plates were made:
Chart
No.
262. Bradford Coaling Station.
539. Patuxent River.
4272. Unisan to Malaṇey.
$\left\{\begin{array}{l}\text { Chart } \\ \text { No. } \\ \text { 4463. Escalante Harbor. } \\ 6440 . \\ 858 \text { Sinclair Inlet. } \\ 858 . \text { Port Graham and Seldovia Bay. }\end{array}\right.$

Negatives of 98 charts were made for use in reproducing them by photolithography, and a large amount of miscellaneous work was done.

Electrotyping Section.

Altos completed	6
Bassos completed.	52
Copper deposited (kilograms)	1798

CHART DIVISION.

All the charts published by the Survey are issued through this Division, and hand corrections are made to show changes in aids to navigation of which notice is received prior to the date of issue and the buoys on the charts given their proper color. Charts are issued free to those entitled to receive them and sold to all other persons at the office in Washington and by 163 agents in different parts of the country.

All the work in connection with the sale of Charts, Coast Pilots, and Tide Tables is done in this Division. Charts were received as follows from the Drawing and Engraving sections:

$$
\begin{aligned}
& \text { Prints from plates . } 8285515 \\
& \text { Prints from stone. } 47237
\end{aligned}
$$

In addition to the above, 4294 copies of special charts Nos. 16, 17, 18, 19, 20, and 26, prepared for the Maryland Shell-Fish Commission and printed by contract, wére received for distribution, and $3 \mathbf{8 2 2}$ copies of this series (Nos. I to 26) were issued.

Charts were issued as follows:

Sales agents. 45296	Suboffice, Manila, P. I. 7426
Sales at the office. 2417	Executive departments. $600_{3} 8$
Congressional account. 4823	Foreign governments. 741
Hydrographic Office, U. S. Navy......... 3^{2} In	Miscellaneous . 1242
Light-House Board. 3651	Total. 1 Io 375
Coast and Geodetic Survey Office......... . 6630	Total............................. 110 , 375

Charts were issued at the suboffice in Manila, P. I., as follows:

Sales agents.t. 951	Executive departments, Philippine Islands 1235
Sales at the suboffice. 1183	Miscellaneous . 119
United States Army.................. 913	
Hydrographic Office, U. S. Navy............ 79	

INSTRUMENT DIVISION.
In this Division an account was kept of all instruments and general property owned by the Survey or purchased during the year, except articles carried on the inventory of the Office at Washington. All necessary repairs were made to instruments used by the Survey. Minor repairs were made to the Office buildings and furniture.

The tide-predicting machine was completed. The construction of this machine has been incidental to the regular repair work of the Survey, and consequently it has been many years in progress. It embraces many new features, and provision has been made for 37 constituents of tidal fluctuations, instead of the 19 provided for in the machine previously used. This is at least 10 more than the number used in any other machine
in foreign countries. It was completed in February and has been tested in predicting the most complicated known tides, and the quantities obtained have been compared with the results of computation and found to be satisfactory from every point of view. Dr. Rollin A. Harris, of the Tidal Division of this Survey, furnished the theoretical data for solving mechanically, by using 5 long-period and 32 short-period constituents, an integrating formula which yields the heights and times of any tide without resetting, and the design and working drawings were prepared by the Chief of this Division. The machine not only gives the times and heights of the tides, but also simultaneously traces the corresponding tidal curve. Attached to the machine is an electric device which automatically stops it at the instant when the zero of the time chain is in contact with the pointer which indicates the quantities to be read by the operator. The details of construction will be given when a description of the machine is prepared for publication

An electric tide indicator similar to those already in use and previously described was prepared and installed at the American Seamen's Friend Society's Institute, New York City.

The patterns for certain monuments to be used on the United States and Canada boundary were inspected at St. Paul, Minn., and later an inspection was made of the monuments after completion.

A duplicate of the leveling instrument, devised and adopted by the Coast and Geodetic Survey, made for the Tunisian Government by private parties subject to inspection and approval by the Superintendent, was carefully examined and recommended for approval.

An improved form of tape stretcher for use in measuring base lines was constructed substantially as suggested by an observer in the field engaged on that work. This is shown in one of the illustrations to Appendix 4.

IIBRARY AND ARCHIVES.
The current routine work was kept up to date. The records of observations made in the field were indexed as they were received. The revision of the subject catalogue was continued, and three-fourths of the work was completed.

Accessions.

	Purchased.	Donated.	Exchanged.	Total.
Books and pamphlets.	158	104	604	866
Maps and charts.	7	0	1 183	1 190

Issued for temporary use.

The following is a list of the original records received:

	Volumes.	Cahiers	Sheets or rolls.
Astronomy	\therefore. 1	- 3	5
Geodesy:	379	333	S. \because \%
Gravity.	14	47.	34
Hydrography.	261	2	184
Hypsometry.	150	13	
Log books. .	60		
Magnetism .	1	486	
Miscellaneous surveys.	1	1	
Tides.	152	II	279
Topography			156
Total.	1019	896	658

Photographic prints.
I 215
Photographic negatives. 975
MISCELLANEOUS SECTION.
All purchases under the appropriation for Office expenses were made through this section, and this work involved a great deal of correspondence in addition to the work of preparing vouchers. Numerous purchases were also made to fill orders for supplies from field parties. An account was kept of all publications, except charts, received and issued by the Survey, and all requisitions for printing were prepared.

Stationery for the Office and for all field parties was kept in stock and issued as required. Supervision over the furniture in the Office was maintained by examination of the inventories of the various divisions.

The following publications were received from the Public Printer:

* Received from suboffice at Manila, P. I.

The following publications were issued by the Office:

	Numb		Number
Annual Reports, 1851-1909...............	2700	General Proportion of Equations of Steady	
Appendixes to Annual Repo	3525		
Bulletins Nos. 1 to 4 r , inclusive	216	Geodetic Operations in United States:	
Title-pages for Bulletins, Vols. I		1900-1903	
Catalogue of Charts	006	1903-1906	
Catalogue of Charts, Philippine Islan	6	1906-190	
Atlantic Coast Pilots, parts I to 8 (latest editions).		Historical Sketch, 1884 Irrigation, San Joaquin, Tulare, and Sacra-	
Pacific Coast Pilots, Alaska, part i, first edition		mento valleys. Laws and Regulations, 18	
Pacific Coast Pilots, Alaska, part r, fifth edition.		List and Catalogue, 1908 Supplement to List and Catalogue, August,	${ }^{262}$
Pacific Coast Pilots, California, Oregon, and		1908.................................	
Washington, secon	553	List of Publications Available for Distribu-	
oast Pilot,	27	tion, 1908..............................	
upplements to Coast Pilots	3200	Report on Nicaragua Ro	
Pan-American Exposition I.eaflets, Spanish edition, Nos. 1-12.		Precise Leveling in United States, 19031907.	
Sailing Directions for Philippine Islands, sections $1,6,7$	148	Principal Facts of the Earth's Magnetism. Results of Magnetic Observations:	158
Supplement to Sailing Directions for Philippine Islands		Baldwin, 1gor-1904. Cheltenham, 1901-1904	
Special Publication No		1905-1	488
Special Publication		nolulu, 1902	
Special Publication	82	1905-1906	413
Special Publication No	75	Sitka, 1902-190	
Special Publication	20	1905-1906	476
Tide Tables, compl	062	Vieques, 1903-1904	
Tide Tables, Atlantic Coast	1435	Rules Governing Routine and Discipline	
ide Tables, Paci	10	Aboard Ship.........................	
Administration and Work of Coast and Geodetic Survey		Standard Mean Places of C. and T. Stars, 1866.	
Coast and Geodetic Survey in Alaska	16	Survey of Oyster Bars:	
coast Pilot Notes on Bering Sea and Aretic		Anne Arundel County	207
Ocean	00	Calvert County, Md	362
Coast Pilot Notes on Warren	2	Somerset County, Md	308
coast Pilot Notes, Yakutat Bay to Cook Inlet	44	Wicomico County, Md	93
Coast Pilot Notes, Yakutat. Bay to Cook		Worcester County, Md.	240
Inlet, second edition	266	Table of Coefficients.	
Construction and Distribution of Weights and Measures.	308	Table of Factors: In feet.	18
Conversion Tabl	17	In meters	
escription of Long Wire Drag	32	Table of Heights (in me	
Field Catalogue of 983 Transit Stars	2	Tidal Researches	
Figure of the Earth and Isostasy.	1 734	Tides and Tidal Action in Harbors	
Supplemental Investigation, 1909, Figure of Earth and Isostasy	327	Treatise on Projections United States Magnetic Tables and Charts,	3^{2}
General Instructions for Coast Survey, Philippine Islands, 1906. .	5	ork of the Coast and Geodetic Survey,	329
eneral Instructions for Field Work, Coast and Geodetic Survey.	142	second edition. Notice to Mariners, Philippine Islands.	106

APPENDIX
 3

REPORT 1910

RESULTS OF MAGNETIC OBSERVATIONS MADE BY THE COAST AND GEODETIC SURVEY BETWEEN JULY 1, 1909, AND JUNE 30; 1910

By
R. L. FARIS

Inspector of Magnetic Work: Assistant, Coast and Geodetic Survey

CONTENTS.

Introduction
Page.
Observations on land and their distribution 75 75
Secular change of the magnetic declination
Observations at sea and their distribution 78
Mcthods of observing 79
Accuracy of results. 80
Instrumental corrections 80
Reduction of observations 81
Arrangement of tables. 81
Magnetic observations on land, July 1, 1909, to June 30, 1910 83
Magnetic observations at sea:
Atlantic and Pacific Coasts of North America. 93
Philippine Islands. 95
Descriptions of stations:
Alabama 96
Alaska. 97
Arizona 99
California 99
Connecticut 101
Florida IoI
Georgia. 101
Hawaii. 101
Illinois. roI
Indiana. 104
Iowa. 108
Kansas 114
Kentucky 115
Louisiana 117
Maine 117
Maryland 119
Massachusetts 119
Michigan. 120
Minnesota 121
Mississippi 125
Missouri 126
Nebraska. 126
New Hampshire 130
New Jersey 131
New Mexico 132
New York 132
North Dakota. 133
Ohio 133
Pennsylvania 134
Porto Rico. 134
Rhode Island 134
South Carolina 135
South Dakota. 135
Tennessce 137
Texas 138
Vermont 140
Virginia. 140
Washington I4I
Foreign countries. 141

RESULTS OF MAGNETIC OBSERVATIONS MADE BY THE COAST AND GEODETIC SURVEY BETWEEN JULY r, 1909, AND JUNE 30, 19 ro.

By R. L. Faris,
Inspector of Magnetic Work; Assistant, Coast and Geodetic Survey.

INTRODUCTION.
The present publication contains the results of magnetic observations made on land and at sea by officers of the Coast and Geodetic Survey in the prosecution of the magnetic survey of the United States and outlying territories during the fiscal year ended June 30, 1910. There are also included some results obtained in preceding years not heretofore published.

Four magnetic observatories have been in continuous operation throughout the year-at Cheltenham, Md.; Sitka, Alaska; near Honolulu, Hawaii, and on Vieques Island, P. R. The observatory at Baldwin, Kans., was discontinued in October, 1909, and the instruments were transferred to Tucson, Ariz. The operation of the observatory at that place began in November, 1909. There will be found in the tables the values of the magnetic elements for each of the observatories based on the observations in December and January, except in the case of Baldwin, where the values are for October, 1909.

OBSERVATIONS ON LAND AND THEIR DISTRIBUTION.
The distribution of the stations on land is shown in the following table, from which it will be seen that observations were made during the year in 39 States and Territories. The greater part of the year's work was in the middle of the country-Illinois, Indiana, Iowa, Kansas, Minnesota, Nebraska, and South Dakota-where it would be important to have the records of the Baldwin observatory to correct the results for diurnal variation. Numerous old stations were reoccupied in order to determine the secular change of the magnetic elements. In April, r9ro, an observer was sent out especially to occupy repeat stations, going through the southern tier of States from Alabama to California, up the Pacific coast, and back through the center of the country. He had reached central California at the close of the fiscal year.

Summary of results on land.

State	Localities	Stations	Old localities reoccupied	Declination results	Dip results	Intensity results
Alabama	4	5	4	5	5	5
Alaska	17	17	4	22	II	12
Arizona	3	3	3	4	4	4
California	5	6	5	6	6	6
Connecticut	2	2	2	2	2	2
Florida	1	1	1	1	1	\pm
Georgia	1	1	0	1	1	1
Hawaii	1	1	1	1	1.	1
Illinois	10	10	1	10	10	10
Indiana	21	22	2	24	24	24
Iowa	29	30	3	30	30	30
Kansas	7	7	5	7	8	7
Kentucky	5	5	1	5	5	5
Louisiana	3	3	3	3	3	3
Maine	8	8	2	8	8	8
Maryland	2	2	2	4	8	3
Massachusetts	6	6	4	7	6	5
Michigan	2	2	1	2	2	2
Minnesota	25	25.	1	25	25	25
Mississippi	2	2	2	2	2	2
Missouri	2	2	\bigcirc	2	2	2
Nebraska	20	20	-	20	20	20
New Hampshire	4	4	2	4	4	4
New Jersey	2	2	1	2	2	2
New Mexico	2	2	2	2	2	2
New York	4	4	3	4	4	4
North Dakota	1	1	1	1	1	1
Ohio	1	1	1	1	1	1
Pennsylvania	3	3	2	3	3	3
Philippine Islands	9	9	0	9	2	2
Porto Rico	1	1	1	1	\pm	
Rhode Island	2	2	2	2	2	2
South Carolina	1	1	1	1	1	1
South Dakota	10	10	2	10	10	10
Tennessee	6	6	2	6	6	6
Texas	5	6	4	6	6	6
Vermont	1	1	\bigcirc	1	1	1
Virginia	3	4	3 i	4	4	4
Washington	3	3	0 -	3	\bigcirc	\bigcirc
Foreign countries	1	1	1	4	4	4
Total	235	241	75	255	238	232

SECULAR CHANGE OF THE MAGNETIC DECLINATION.
A comparison of the declination results at "repeat" stations occupied during the year with the results of earlier observations in the same localities is presented in the following table. The letters after the names of stations indicate (a) that the old station was reoccupied exactly, (b) that the new station was very near the old one, and (c) that the new station was some distance (quarter of a mile or more) from the old one. A tabular value of annual change refers approximately to the middle of the period from which it is deduced. A plus sign indicates increasing east declination or decreasing west declination, and a minus sign the reverse.

The resulting values of annual change show that, as compared with 1905 , west declination is increasing more rapidly in New England and the Middle States and east
declination is increasing more rapidly in the western part of the country. The position of the line of no change is apparently about the same as in 1905.

Comparison of declination results at repeat stations.

State and station	Former observation		I.ast observation		Avcrage annual change
	Date	Declination	Date	Declination	
Maine:		- 1		-	,
Kittery Point (c)	1898 No	1312.3 W	1009 Oc	14 24. I W	-6. 6
Greenville Junction (c)	1887 Se	1648.15	1910 Je	1805.3 W	-3.4
New Hampshire:					
Plymouth (a)	1905 Se	1332.0 W	roro Je	14 00.9 W	-6. 1
Massachusetts:					
Vineyard Haven (a)	1906 No	12 22.6 W	1909 Jy	1238.0 W	-5.8
Boston (a)	1906 No	13 04. 0 W	1909 Jy	13 18. 5 W	-5.4
Salem (a)	1906 No	1428.4 W	1909 No	1442.4 W	-4.7
Lawrence (a)	1905 Oc	1235.3 W	1910 Je	1303.4 W	-6. 0
Rhode Island:					
Kingston (a)	1904 Au	1180.0 W	1910 My	12 16.2 W	-6. 3
- Providence (a)	1904 Au	1206.5 W	1910 My	1241.7 W	-6. 1
Connecticut:					
New Haven (a)	1904 Jy	1005.9 W	1910 My	1040.4 W	-6.0
New London (a)	1904 Au	10 56.0 W	1910 My	II 28.8 W	-5.7
Lake Placid (b)	1907 Au	1 I 06.2 W	1909 Au	11. 17.5 W	-5.6
Carmel (c)	1904 Se	1035.9 W	1910 Je	I 1 08. I W	-5.6
Pennsylvania:					
Meadville (a)	1908 Jy	424.6 W	1910 Je	435.4 W	-5.6
Easton (b)	1902 Se	711.0 W	19ro Je	7 49.2 W	-4.9
Maryland:					
Cheltenham (a) Virginia:	1906 Je	5 21.3 W	rgio Je	54 r .3 W	-5.0
Charlottesville (b)	1906 An	350.0 W	1910 Ap	403.3 W	-3.6
Lynchburg (a)	Igor Se	2 24. 8 W	1910 Ap	253.1 W	-3.3
Bristol (a)	1906 Au1	- 33.0 W	1910 Ap	- 42.4 W	-2.6
South Carolina: ${ }^{\text {a }}$ (b) ${ }^{\text {a }}$					
Charleston (b) Florida:	1902 My	- 32.9 W	1910 My	100.8 W	-3.5
Fernandina (a)	1908 Ap	I 12.2F	Ig10 Ap	1 ob. 2 E	-3.0
Tennessec:					
Knoxville (a)	1907 Mh	-12.8 W	1910 Ap	-21.2 W	-2.7
Athens (a)	1903 No	- 43.3E	r910 My	- 30.0E	-2.0
Alabama:					
Scottsboro (a)	1903 De	321.8 E	1910 My	318.25	-0. 6
Huntsville (a)	1906 De	357.3 E	1910 My	358.6 E	+o. 4
Mississippi: ${ }^{\text {a }}$ (a)					
Meridian (a)	1901 Ap	444.6 E	I910 My	454.8 E	+1. 1
Jackson (a)	1908 Ap	606.2 E	igio My	609.2 E	+1. 4
Louisiana:					
Tallulah (a)	1904 Fe	600.7 E	1910 My	615.0 E	+2. 3
Ruston (a)	1904 Fe	645.0 E	1910 My	656.6 E	+1.9
Shreveport (a)	1904 Ja	6 59. I E	rgio My	7 12.0E	+2.0
Kentucky:					
Dayton (a)	1905 Oc	-02.9 W	rgo Je	-15.3W	-2. 7
Indiana:-					
Evansville (a)	1900 De	349.6 E	1909 Au	343.4 E	0. 7
Logansport (a)	1907 Jy	I 48. 5 E	r909 Se	I 42.4 E	-2. 8

Comparison of declination results at repeat stations-Continued.

State and station	Former observation		Last observation		Average annual change
	Date	Declination	Date	Declination	
Illinois:		- ,		-	,
Joliet (a)	1905 Jy	252.3 E	1909 Jy	245.6 E	-I. 7
Michigan:					
Alpena (a)	1907 Au	304.5 W	1909 Se	3 12.2 W	-3.7
Minnesota: ${ }_{\text {Breckenridge (} b \text {) }}$	1900 Se	12 O1. 7 E	1909 Au	12 16.4E	+1.7
Iowa:					
Red Oak (b)	1900 Oc	843.4 E	1909 Au	855.2 E	+1. 3
Des Moines (c)	1907 Jy	753.7 E	1910 Je	757.1 E	+1.2
Pembina (a) South Dakota:	1905 Au	1 I 28.8 E	1909 Oc	1127.8 E	-0. 2
Yankton (a)	1905 Jy	1117.2 E	1909 Au	II 23.4 E	+1. 5
Mitchell (b)	1896 My	II 40.3 E	1909 Oc	1204.4 F	+1. 8
Kansas:					
Oskaloosa (c)	1902 Au	830.8 E	1909 Au	838.3 E	+I. 1
Council Grove (c)	1904 Je	918.0 E	1909 Jy	928.7 F	+2. 1
Salina (a)	1906 Oc	1110.6 E	1909 Jy	II 13.9 E	+1. 2
Lincoln (c)	1904 Au	1007.4 F	1909 Jy	1014.4 E	+1. 4
Baldwin (a)	1907 Oc	8 32.0 E	Igos Oc	834.8 E	+1. 4
Texas:					
Mineola (b)	1902 Au	745.6 E	1910 My	8 or. 9 E	+2. 1
Kerrville (b)	1901 Je	828.8 E	1910 Ja	900.7 E	+3. 7
Odessa (a)	1905 Ja	1054.6 E	1910 My	1115.0 E	+3.8
El Paso (a)	1905 Ja	1203.2 E	1910 My	12 28.0 E	+4.7
New Mexico:					
Deming (a) Lordsburg (a)	1905 Fe 1003 My	$\begin{array}{ll}12 & 09.05 \\ 12 & 40.7 \mathrm{E}\end{array}$	1910 Je 1910 Je	$\begin{array}{ll}12 & 33.3 \\ 13 & \text { E } \\ \text { E }\end{array}$	+4.7 +4.
Arizona:					
Benson (a)	1903 Mh	1248.9 E	1910 Je		+4.4
Tucson (c)	1903 Mh	1308.1 E	1910 Je	13 26.5 F	+2. 5
Yuma (b)	1905 Fe	1407.2 E	1910 Je	14 41.0 E	+6. 2
California:					
Indio (a)	1905 Mh	I4 45.0 F	1910 Je	1510.4 E	$+4.8$
San Bernardino (a)	1905 Mh	1503.6 F	1910 Je	1523.3 E	$+3.7$
Barstow (a)	1906 Jy	15 30.I E	1010 Je	15 56.0 E	+6.5
Stockton (a)	1906 Jy	1735.4	moro Je	1750.8 E	+3.8
Goat Island (a)	1904 My	1736.5 IF	1910 Ap	1802.0 E	+4.3

OBSERVATIONS AT SEA AND THEIR DISTRIBUTION.
Magnētic observations at sea were secured on the Bache in connection with the hydrographic work along the Atlantic Coast, and on the Explorer, Gedney, and Patterson returning from Alaska in the fall of 1909 and going to Alaska in the spring of igro. There are also included in this publication the results of observations in Philippine waters from 1906 to 1909 on the Fathomer, Marinduque, and Romblon.

Summary of results at sea.

Vessel	General region	Results from swings			Results from course observations		
		$\begin{gathered} \text { Declina- } \\ \text { tion } \end{gathered}$	Dip	Intensity	Declination	Dip	Intensity
\therefore Bache	Atlantic coast	7	7	7	\bigcirc	-	-
Explorer	North Pacific Ocean	19	23	23	11	\bigcirc	\bigcirc
Gedney	North Pacific Ocean	13	\bigcirc	\bigcirc	-	\bigcirc	0
Patterson	North Pacific Ocean	2	4	4	1	\bigcirc	\bigcirc
Fathomer, 1908-9	Philippine Islands	14	-	-	\bigcirc	-	\bigcirc
Marinduque, 1906-8	Philippine Islands	11	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Romblon, 1907-9	Philippine Islands	16	\bigcirc	\bigcirc	\bigcirc	\bigcirc	o
Total		82	34	34	12	\bigcirc	0

METHODS OF OBSFRVING.
Land Work.
The methods of observing have been the same as those followed in previous ycars. Observers engaged exclusively in magnetic work are supplied with a complete outfit consisting of theodolite magnetometer, dip circle, half-second pocket chronometer, observing tent, tape, etc. In addition to the regular magnetic observations they usually make an approximate determination of latitude and longitude at each station. Those who are expected to get magnetic results incidental to other branches of survey work are supplied with more or less complete outfits, according to circumstances. Where only declination results can be secured under the conditions involved, a compass declinometer is supplied, but to those who can attempt more, a dip circle with compass attachment is furnished, with which compact outfit, knowing the azimuth of some reference mark from triangulation or other source, the declination, dip, and total intensity (by Lloyd's method) can be obtained with a fair degree of accuracy.

Sea Work.

The Bache, Explorer, and Patterson are each provided with a Lloyd-Creak dip circle and accompanying gimbal stand, by means of which the dip and total intensity can be determined on board ship. The Explorer and Patterson are also provided with a magnetometer, so that the "intensity constant" of the dip circle may be determined at each place where shore observations are made. Observations for declination are made with the usual standard liquid compass and an azimuth circle of Ritchic or Negus pattern. A value of declination, dip, or intensity usually depends upon the mean of observation made on 8 or i 6 equidistant headings while steaming in a circle, once with port and once with starboard helm. In some cases, however, observations are made on three headings and the results are corrected for the effect of the ship's magnetism by comparison with the observations made while swinging ship.

ACCURACY OF RESULTS.

The endeavor in general is to secure, on land, declination and dip results of which the absolute error (including everything involved-errors of observation and reduction) does not exceed 2^{\prime}, and to determine the horizontal intensity within I part in 1000 . As stated in previous reports, the experience of the Coast and Geodetic Survey has been that, under the conditions involved in a campaign of field work covering a large area, including the standardization of instruments and the determination of reduction corrections, this accuracy can not be much increased. In observatory work with special instruments, or when special investigations are made under the best conditions by special observers, there is no difficulty in reducing these limits of error, but in a large organization, where results must be secured under all conditions, and at times under physical difficulties, the degree of accuracy stated must be regarded as satisfactory and sufficient. It happens, of course, that these limits are occasionally exceeded, for one reason or another, and there may be a few rare cases in which the errors are two or three times the amounts given.

INSTRUMENTAL CORRECTIONS.

The instrumental comparisons made at Cheltenham during the year indicate that the instrumental corrections used the previous year require only small changes, except in the case of magnetometer No. Io, which had been overhauled and provided with a new magnet house. The following are the corrections which have been applied to reduce the field results to the Cheltenham observatory standard instruments:

Corrections to magnetometers.

Magnetometer	Correction to cast declination	Correction to H in parts of H
IIII	,	
8	0.0	0.0000
10	0.0	.0000
11	0.0	+.0009
17	0.0	.0000
18	0.0	.0000
19	0.0	+.016
20	0.0	-.010
22	0.0	+.0021
29	0.9	+.0016
30	0.0	.0000
31	0.0	+.0000
36	-0.7	+.0013
37	0.0	+.0022

Corrections to dip circles.

REDUCTION OF OBSERVATIONS.

A first computation is made by the observer in the field, his instructions requiring him, before he leaves a station, to carry his computation far enough to assure himself that the desired degree of accuracy has been attained. This computation is revised in the Office, in the Division of Terrestrial Magnetism, and the necessary corrections are applied to reduce the results to the standard instruments, as indicated in the foregoing section.

Each value of the magnetic declination is then corrected to reduce it to the mean of the month in which the observation was made, with the aid of the continuous observations at the nearest observatory, allowance being made for the change in diurnal range with change in magnetic latitude. No attempt has been made to correct the dip and horizontal intensity results for diurnal variation.

ARRANGEMENT OF TABLES.

Land Observations.
The values of declination, dip, and horizontal intensity presented in Table I are arranged by States alphabetically, the results for each State being given in the order of increasing latitudes. The latitudes and longitudes are in most cases the result of solar observations made with the small theodolite which forms a part of the magnetometer. In default of observations or a chart, the geographical coordinates were scaled from the best available map, either a topographic sheet of the United States Geological Survey, a post-route map, or some other state map. In such cases only the nearest whole minute of latitude and longitude is given. The horizontal intensity is expressed in terms of the one hundred thousandth part of a C.G.S. unit of intensity of magnetic force, termed a gamma and designated by the Greek letter r.

$$
6348 \mathrm{I}^{\circ}-\mathrm{xI}-6
$$

In order to include the desired amount of information in the available space the following abbreviations have been adopted. Only the month and day of the date are given, since the observations were all made between July I, 1909, and June 30, 1910, except when a statement is made to the contrary in a footnote. The names of the months have been abbreviated as follows:

January	Ja	May	My	September	Se
February	Fe	June	Je	October	Oc
March	Mh	July	Jy	November	No
April	Ap	August	Au	December	De

The observer is indicated by the initials of his name. The names of the observers are as follows:

F. L. Adams	D. R. Jewell	S. H. Schapiro
J. R. Benton	E. C. Kinnear	E. E. Smith
J. E. Burbank	R. F. Luce	A. M. Sobieralski
W. H. Burger	R. R. Lukens	S. W. Tay
R. B. Derickson	H. E. McComb	S. G. Townshend, jr.
O. W. Ferguson F. A. Molby	W. F. Wallis	
O. H. Gaarden	E. E. Mumaw	P. C. Whitney
G. Hartnell	E. H. Pagenhart	S. S. Winslow
W. M. Hill	S. D. Sarason	C. F. Woodyard

Sea Observations.
The results obtained on board ship are presented in Tables II and III. The general arrangement is indicated by the headings. Unless otherwise stated, the ship was swung both with port and starboard helms. In the column headed "Sea," sm means smooth; sw, swell; 1t, light; mod, moderate. The commanding officers of the different ships were as follows:

Bache	W. C. Hodgkins
Explorer	W. C. Dibrell
Gedney	R. B. Derickson
Patterson	H. C. Denson, W. E. Parker
Fathomer	H. D. King. J. B. Miller
Marinduque	H. C. Denson, D. R. Jewell
Romblon	H. D. King, E. H. Pagenhart

Intensity results are expressed in C.G.S. units. The horizontal intensity has been computed from the observed dip and total intensity.

Table III contains the results of declination observations on board ship in Philippine waters from 1906 to 1909 . None of the vessels there are equipped with Lloyd-Creak dip circles. Their cruises to and from the working ground are generally short and through the passages between the islands, and little would be added to our knowledge of the distribution of dip and intensity by observations on board ship under those conditions.

Table I.-Magnetic observations on land, July 1, 1909, to June 30, 1910.
ALABAMA.

Station	Latitude	Longitude	Date		$\begin{aligned} & \text { Declina- } \\ & \text { tion } \end{aligned}$	Dip	$\begin{gathered} \text { Hori- } \\ \text { zontal } \\ \text { inten- } \\ \text { sity } \end{gathered}$	Instr	ments	Observer	
					M			DC			
	- 1	\bigcirc -				East,	\bigcirc				
Tuscaloosa	3312.7	8732.6	My	10, II	426.9	64 31. 8	24697	19	23. 34	W.M.H.	
Scottsboro	3441.9	86 ог. 6 :	My	5	3 18. 2	6630.6	23134	19	23.34	W.M.H.	
Huntsville	3444.2	8634.8	My	7	3588	66 20. 3	23244	19	23.34	W.M.H.	
Florence (old)	3447.7	87 42. 2		8	3 37.7	65 57.0	23641	19	23.34	W.M.H.	
Florence (new)	3449.6	8744.8	Jy	9, 10	354.9	66 12. 5	${ }^{23409}$	19	23.34	W.M.H.	

ALASKA.

	\bigcirc			East,	\bigcirc				
Dutch Harbor	5353.5	166 32. I	Se 23	1736.9	66 48. 4	20982	IIII	34. 56	S.W.T.
Do.	53 53. 5	166 32. I	My 16, 17	17 29. 2	66 45.7	20961	18	34. 56	R.R.L.
Cordova Bay: Anchor			Jy 24				15		
Rhea	54 51.0	13220.9	Au 14	29 23.2			15		R.B.D.
Turn	54 52. 1	13223.7	$\mathrm{Au}^{\text {I4 }}$	$2724{ }^{1}$			15		R.B.D.
Port Moller	55 56. 2	16032.8	My, Je	1913.0	69 II. 2	19251	18	34. 56	R.R.L.
Sitka Observatory	57 03.0	135 20. 1 .	De-Ja	3015.0	74 35.0	15579	37 !	2 EI	F.L.A.
Kodiak	5747.5	$15223.8{ }^{\text {i }}$	My II, 12 *	24.03 .7	7 I 56.2	17392	8	32. 12	P.C.W.
Protection Point	5829.6	15840.2	Je ${ }^{\text {J3* }}$	2133.3	7124.5	17702	18	34. 56	R.R.L.
Clark Point	58 50. 4	1583 I . 8'	Je 12*	2137.9	7140.7	17423	IIII	34. 56	S.W.T.
Do.	58 50.4	15831.81	$\mathrm{Se} \quad 13$	2 I 39.8	7140.3	17427	IIII	34. 56	S.W.T.
Do.	58 50. 4	$\pm 583 \mathrm{I}$ ¢ 8	Je 6	2139.5	7141.2	$1744{ }^{\prime}$	18	34. 56	R.R.L.
Port Graham	59 2I. 5	15149	My 6,7	72 54.0'	16402	C	32. 12	S.H.S.
Controller Bay	59 59.4	14419.7	Jy 30	29 or. 8		15021	8		P.C.W.
Do.	59 59. 4	144 19.7	Oc I	2906.4	74 49.5	15092	8	32. 12	P.C.W.
Cook Inlet: Boulder	6086.1	151159	Jy 8	27 03. 2			737		A.M.S.
Do.	6046.1	151159	My 14	27 08. 5			737		E.E.S.
Birch Hill	6054.8	15045.9	$\begin{array}{ll}\text { Au } & 7\end{array}$	26 35. 1			737		A.M.S.
Moose Point	6057.3	1504 r . 1	Au 20-23	26 33.8			737		A.M.S.
Race Point	6109.9	15013.8	Se 2,4	27 08. 2			737		A.M.S.
Beluga	61 12. 5	15053.9 !	Se 15, 6	26 49.3			737		A.M.S.
Little	6115.9	15018.0	Se 20, 21	26 58.8			737		A.M.S.

ARIZONA.

	0	- ,		East,	,				
Benson	3158.2	11017.9	Je II	1320.8	$58 \quad 58.8$	27472	19	23. 34	W.M.H.
Tucson	3214.8	11050.1	De-Ja	${ }^{1} 323.8$	5917.3	27419	30	15. 56	W.F.W.
Do.	3214.8	11050.1	Je 13, 14	I3 26. 5	59 17.0	27382	19	23. 34	W.M.H.
Yuma	$\begin{array}{lll}32 & 43\end{array}$	11437.4	Je 16, 17	14 41. 0	58 50.91	27363	19	23.34	W.M.H.

* Results of observations in 1909 not heretofore published.

Table I.-Magnetic observations on land, July r, 1909, to June 3o, rgro-Continued.
CALIFORNIA.

CONNECTICUT.

FLORIDA.

GEORGIA.

HAWAII.

Honolulu Magnetic Observatory	$\begin{array}{cc}0 & 1 \\ 21 & 19.2\end{array}$	$\begin{array}{ccc}0 & \\ 158 & 03.8\end{array}$	De-Ja	East 0 9828.6	\% 39	$\underset{29153}{ }$	22	22 EI	O.H.G.

Table I.—Magnetic observations on land, July r, 1909, to June 30, igio-Continued.
ILLINOIS.

Station	Latitude	Longitude	Date		$\begin{aligned} & \text { Declina- } \\ & \text { tion } \end{aligned}$	Dip	Horizontal inter. sity	Instruments		Observer	
								DC			
						East					
	\bigcirc	\bigcirc -			-	$\bigcirc 1$					
Carlyle	$3^{8} 37$	89 22. 2	Jy	10	4 II. 9	69 46. I	20828	36	76. 12	C.F.W.	
Quincy	39 54. 2	9125.3	Je	24	615.0	7026.0	20352	36	76. 12	C.F.W.	
Eurcka	4043.7	89.16 .3	Jy	16	4 OI. 4	71 31. 1	19457	20	78. 12	H.E.M.	
Watseka	40 44. 2	8739.7	Jy	13,14	258.2	7134.3	19330	20	78. 12	H.E.M.	
Joliet	4128.7	88 II. 2	Jy	12	245.6	72 19.9	18718	1 I	31. 34	F.A.M.	
Moline	41 31. 5	9028.9	Jy	19	5 11. 7	7×54.9	19087	20	78. 12	H.E.M.	
Yorkville	4138.9	$88 \quad 26.3$	Jy	15	302.6	$72 \begin{array}{llll} \\ 72 & 5\end{array}$	18605	11	31. 34	F.A.M.	
Morrison	41147.9	8957.4	Jy	19	509.0	72 19.0	18779	11	31.34	F.A.M.	
Dixon	4151.1	8927.9	Jy	17	$4{ }_{4} 21.9$	72 19.0	18828	11	31. 34	F.A.M.	
Galena	4223.6	9022.9	Jy		636.2	73×1.4	17918	11	31. 34	F.A.M.	

INDIANA.

					East,	- ,				
Rockport	37 53.9	8702.6	Au	24, 25	310.8	6906.5	21525	19	23. 34	W.M.H.
Evansville	3759	8728	Au	21	343.4	6912.6	21337	19	23.34	W.M.H.
Boonville	3^{8} 03. 1	87 19.6	Au	26, 27	3 33. 1	69 16. I	21210	19	23. 34	W.M.H.
Corydon	38 12.2	86 og. I	Au	14, 15	407.8	69 55. 0	20860	19	23. 34	W.M.H.
English	38 19.7	86 28.7	Au	18, 19	243.8	69 48. 5	20647	19	23. 34	W.M.H.
Petersburg	38 30. 4	87 17.6	Au	30, 31	$25^{56.7}$	69 53. 5 !	20718	19	23. 34	W.M.H.
Spencer	39 17.2	8645.8	Jy	8	221.5	70 22.8	20379	36	76. 12	C.F.W.
Franklin	39 28.8	8603.8	Jy	2	121.3	7039.9	20027	36	76. 12	C.F.W.
Brazil	3931.8	8705.9	Se	4,6	3 0. 4	7037.8	20069	19	23.34	W.M.H.
Rockville	3945.8	8714.7	Se	8	256.8	7049.8	19876	- 19	23. 34	W.M.H.
Noblesville	$40 \quad 02.9$	8600.4	Je	18	14 x .2	70 59. 5	19760'	36	76. 12	C.F.W.
Lebanon	4002.9	8627.5	Je	20	150.2	7107.0	19675	36	76. 12	C.F.W.
Covington	$40 \quad 09.6$	87 24. I	Se	Io, 11	233.4	70 56. 1	19922	19	23.34	W.M.H.
Portland	4027	8457.6	Se	27, 28	${ }^{\circ} \mathrm{O} 01.8$	7136.6	19120	19	23.34	W.M.H.
Delphi	4036.4	8642.0	Se	17,18	142.4	$71 \begin{array}{ll} \\ 715\end{array}$	19250	19	23. 34	W.M.H.
Fowler	4037.1	8719.3	Se	14, I5	2 18.4	7 r 42.1	19117	19	23.34	W.M.H.
Logansport	4045.8	8619.0	Se	20	142.4	7139.6	19107:	19	23.34	W.M.H.
Decatur	40 50. 2	84 54. 0	Se	24, 25	- 01.7	7214.6	19173	19	23. 34	W.M.H.
Huntington	40 53.2	85 31.0	Se	22,23	117.8	7140.4	19164	19	23.34	W.M.H.
Valparaiso A	4127.2	87 04. 4	Jy	6-10	I 56.9	72 18. I	18683		31. 34	F.A.M.
Do.	4127.2	8704.4	Jy	7-10	I 56.6	$72 \begin{array}{ll}76.1\end{array}$	18703	20	78. 12	H.E.M.
Valparaiso B	4127.2	8704.4	Jy	7 -10	157.2	72 18. 2	18704	11	31. 34	F.A.M.
Do.	4127.2	8704.4	Jy	8-10	I 57.2	$72 \begin{array}{lll}72 & 15\end{array}$	${ }^{18685}$	20	78. 12	H.E.M.
I,aporte	4135.2	86 45.	Jy	1, 2	155.8	$72 \begin{array}{lll}72 & 1\end{array}$	18830		31. 34	F.A.M.

Table I.-Magnetic observations on land, July 1, 1909, to June 30, 1910-Continued.
IOWA.

Station	Latitude	Longitude	Date		$\begin{aligned} & \text { Declina- } \\ & \text { tion } \end{aligned}$	Dip	Horizontal inten sity	Instruments		Observer	
								DC			
	- ,	$\bigcirc \quad 1$				$\underset{0}{\text { East, }}$	$\bigcirc 1$				
Bedford	40 40. I	9443.6	Jy	27,28	939.8	7032.1	20351	18	36. 12	J.R.B.	
Mount Ayr	40 43. 1	94 08. 1	Jy	24	825.4	7047.8	20050	18	36. 12	J.R.B.	
Leon	4044.3	9345.6	Jy	22	8 10.0	7035.0	20396	18	36. 12	J.R.B.	
Clarinda	4044.7	9502.0	Jy	30, 31	923.6	70 29.4	20292	18	36. 12	J.R.B.	
Sidney	4044.7	95.39 .6	Au	2, 3	930.0	7018.6	20384	18	36. 12	J.R.B.	
Chariton	40 59. 2	9318.4	Jy	19,20	743.7	7059.2	20027	18	36. 12	J.R.B.	
Corning	4059.9	9446.7	$\mathrm{Au}^{\text {a }}$	9	933.2	$70 \quad 55.9$	19979	18	36. 12	J.R.B.	
Red Oak	4100.9	9513.5	$\mathrm{Au}^{\text {u }}$	9	8 55.2	7032.2	20274	18	36. 12	J.R.B.	
Glenwood	4103.6	9545.2	$A u$	5	938.8	7055.8	19978	18	36. 12	J.R.B.	
Greenfield	4118.3	9429.4	$A u$	1 I	9 Or. 6	7135.5	19472	18	36. 12	J.R.B.	
Winterset	4119.5	9402.4	Au	12, 13	716.6	7146.8	18973	18	36. 12	J.R.B.	
Indianola	4121.9	9336.1	$A u$	17, 18	7 54.7	7118.4	19473	18	36. 12	J.R.B.	
Des Moines	4135.3	93 33.7	Je	28	7 57. I	7134.9	19337	36	76. 12	C.F.W.	
Guthrie Center	4158	9432.6		20	900.4	7140.0	19395	18	36. 12	J.R.B.	
Harlan	4139.1	9519.1	Au	25	918.6	7112.9	19585	18	36. 12	J.R.B.	
Audubon	4143.6	9456.6	$\mathrm{Al}^{\text {u }}$	21, 23	927.6	7115.6	19569	18	36. 12	J.R.B.	
Jefferson	42 Or. 2	94 20.0	$\mathrm{Au}^{\text {u }}$	30, 31	908.7	$7{ }^{2} 004.7$	I8929	18	36. 12	J.R.B.	
Denison	42 or. 3	9517.3	${ }^{\text {Au }}$	28	8 48. 2	7133.0	19465	18	36. 12	J.R.B.	
Nevada	42 O1. 5	9326.6		1	8 35. r	7205.3	18848	18	36. 12	J.R.B.	
Rockwell City	42 24.0	9436.2		30	940.5	72 II. 7	18928	36	76. 12	C.F.W.	
Webster City	4226.9	93 48. 1		6,7	7 41. 7	7207.9	18949	18	36. 12	J.R.B.	
Elkader	4250.8	9123.2	Jy	23	605.2	73 04. 9	17914	II	31. 34	F.A.M.	
Algona	43 -3. 4	9413.1		3 I	753.0	73 10. 5	17878	11	3 I .34	F.A.M.	
Mason City	43 08. r	9312.3		29	6 \%9.0	7313.6	18032	11	31. 34	F.A.M.	
Spencer	43 \%9.0	9508.5		2	8 02. 6	72 02. 2	18188	1 I	31. 34	F.A.M.	
Osage	4316.5	9247.2		22	7 co. 8	73 05. 1	18011	20	78. 12	H.E.M.	
Cresco	43 23.4	9206.7		6^{27}	653.2	73149	18015	11	3 I .34	F.A.M.	
Sibley (old)	4323.5	9544.4		6,7	934.2	72.55 .0	18182	11	31.34	F.A.M.	
Sibley (new)	4323.8	9544.0	A^{\prime}	-6	930.7	72 55.8	18214	11	31. 34	F.A.M.	
Spirit Lake	43 27.2	95 06. 7	Au		805.8	7234.5	1862 I	1 I	3r. 34	F.A.M.	

KANSAS.

	$\bigcirc \quad 1$	-			East,	,				
Yola	3755.4	9524.6	Jy	20	9 24. I	67 54. 6	22327	36	76. 12	C.F.W.
Council Grove	3840.1	9629.6	Jy	22	928.7	68 20.9	22143	36	76. 12	C.F.W.
Baldwin	$3^{8} 47.0$	95 10.0	Oc	1-2 I	834.8	68 52.8	21622	30	55. 12	S.G.T.
Salina	$3^{88} 49.0$	9737.2	Jy	27	1113.9	68 17.9	22140	36	76. 12	C,F.W.
Lincoln	3902.3	98 го. о	Jy	29	1014.4	68 08. I	22177	36	76. 12	C.F.W.
Oskaloosa	3913.5	95 18. 5	Au	9	$83^{8 .} 3$	68 57. 1	21623	36	15.12	C.F.W.
Leavenworth	39 20.9	9455.5	Au_{u}	6	8 28. 1	6925.8	21362	36	76. 12	C.F.W.
Do.	39 20.9	9455.5	Au.	6		69 24.0			15.12	C.F.W.

Table I.-Magnetic observations on land, July 1, 1909, to June 30, 1910-Continued.
KENTUCKY.

Station	Latitude	Longitude	Date		$\begin{gathered} \text { Declina- } \\ \text { tion } \end{gathered}$	Dip	Horizontal intensity	Instruments		Observer	
					M			DC			
	\bigcirc,	- 1				East,	- ,				
Franklin	$36 \quad 43.5$	86 35. 3	Jy	27, 28	410.1	6740.7	22362	19	23. 34	W.M.H.	
Bowling Green	3659.7	86. 26.2	Jy	31	5 \% 0.9	68 Ir. 8	22249	19	23.34	W.M.H.	
Brownsville	3711.0	86 17.2	$\mathrm{Al}^{\text {a }}$	4, 5	358.6	6838.6	21795	19	23.34	W.M.H.	
Munfordville	3717.1	$85 \quad 55.3$	$\mathrm{Au}^{\text {u }}$	9,10	33 03.8	69 22.0	20919	19	23.34	W.M.H.	
Elizabethtown	37 41.61	85 52.0	$\mathrm{Al}^{\text {u }}$	12, 13	139.2	$68 \quad 38.5$	21673	19	23.34	W.M.H.	

LOUISIANA.

	\bigcirc	- ,			East	\bigcirc				
Tallulah	$32 \begin{array}{ll}35\end{array}$	9112.0	My	17,18	615.0	6254.4	25768	19	23. 34	W.M.H.
Shreveport	3231.0	9345.9	My	23	712.0	62 49.3	25980	19	23.34	W.M.H.
Ruston	3232.6	9237.4	My	20,21	656.6	6250.6	25734	19	23.34	W.M.H.

MAINE.

	- ,	\bigcirc,			West,	- ,				
Kittery Point	4303.9	7041.3	Oc	27	14 24. I	74 15.5	16282	C	35. 12	S.S.W.
Auburn	4405.4	7014.8	Je	18, 19	1623.4	74 34.4	15891	20	78. 12	H.E.M.
Bethel	- 4424.5	7047.4	Je	14, 15	1553.2	7437.6	${ }^{1} 5858$	20	78. 12	H.E.M.
Oakland	44 32.8	6944.2	Je	21, 22	1645.2	74 38.0	15784	20	78. 12	H.E.M.
Greenville Junction	45	6937.2	Je	24	18 05. 3	7508.6	${ }_{15412}$	20	78. 12	H.E.M.
Capens	4535.8	6938.6	Je	27	1814.6	75 17.5	15292	20	78. 12	H.E.M.
Kineo	4541.8	6944.3	Je	29,30	1820.6	7525.0	15158	20	78. 12	H.E.M.
Fort Kent	4715.0	68 34.9	Jy	22, 23	2100.1	$76 \quad 26.3$	14298	29	30. 12	W.H.B.

MARYLAND.

	\bigcirc	,		West	$\bigcirc 1$				
Cheltenham	38 44. 0	7650.5	De-Ja	539.0	7034.5	19848		26EI	J.E.B.
Do.	3844.0	76 50. 5	Oc 12		7034.9			23.34	J.E.B.
Do.	38 44.0	76 50. 5	Oc 13,14		7035.8			31. 34	J.E.B.
Do.	$3^{8} 44.0$	76 50. 5	No 2		7036.1			36. 12	J.E.B.
Do.	3844.0	76 50. 5	No 3		7036.1			78. 12	J.E.B.
Do.	3844.0	76 50. 5	No 3	. .	7035.3			15.56	J.E.B.
Do.	38 44.0	76 50. 5	No 4		7036.5			15.12	J.E.B.
Do.	38 44. 0	76 50. 5	Ja $\quad 15$	- ${ }^{\text {c }}$	7034.1			36. 12	J.E.B.
Do.	38 44.0	76 50. 5	My 25, 26	541.6		19805	10		J.E.B.
Greenbury Point	38 44. 0	76 50. 5	Je 4,6			19853	29		J.E.B.
Greenbury Point	$3^{8} 58.5$	7629.3	Je II	6 21.3			153		O.W.F.

TABLE I.-Magnetic observations on land, July i, r909, to June 30, r9Io-Continued.
MASSACHUSETTS.

Station	Latitude	1,ongitude		Date	$\begin{gathered} \text { Declina- } \\ \text { tion } \end{gathered}$	Dip	Hori- zontal inten- sity	Instruments M DC	Observer.
	- '	- '			${ }_{0}^{W}$ West,	- ,			
Vineyard Haven	4127.0	7036.0	Jy	15	12.38 .0	72 19.2	18004	${ }^{\text {C }}$ 35.12	S.S.W.
Plymouth	4158.5	7038.9	$\mathrm{Au}^{\text {a }}$	14	12 48.0	73 2r. 3		$\mathrm{C}_{1} 35.12$	S.S.W.
Dedham	42 14.2	7109.6	My	27, 28	1349.6	7314.2	17260,	$20 \quad 78.12$	H.E.M.
Boston	42 20. 2	7100.7	Jy	22	1317.6			C_{1} 28.12	R.F.L.
Do.	42 20. 2	7100.7		22	1319.4	73 05. I	17339	C! 35.12	R.F.L.
Salem	4231.6	7052.0		15	14.42. 4	73 47. 4	${ }_{7} 7118$	Ci 35.12	S.S.W.
Lawrence	.$^{42} 42.5$	7 I 12.1	Je		1303.4	73 28.9	16968	$20^{\prime} 78.12$	H.E.M.

MICHIGAN.

MINNESOTA.

	- ,	01			East,	- 1				
Worthington		9535.8	Au	9	9 11.	72 59. 2	18111	II	31. 34	F.A.M.
Austin	4340	9259.7	Jy	28	607.7	73 38.3	17662	II	3 I .34	F.A.M.
Windom	43 51.9 ${ }^{1}$	9507.4	Au	10	9 11. 0	73 29.0	17669	11	31. 34	F.A.M.
St. James	4357.6	9436.8	Au	12	904.8	73 26.8	17740		3I. 34	F.A.M.
Rochester	4400	$92 \begin{array}{ll}98 & 1\end{array}$	Jy	23, 24	63 I. 9	73 50.6	17296	20	78. 12	H.E.M.
Slayton	44 00. 4	9547.1	Au	3	943.0	73 22.7	17701		78. 12	H.E.M.
Pipestone	44 OI. 9	96 18.6	Au	5	10 16.4	73 18. 31	r 788 r		78. 12	H.E.M.
Winona	4402	91.39 .9	Se	8	6 og. of	73 59.8 ${ }^{7}$	17198		31. 34	F.A.M.
Waseca	4405	93 29.9	Jy	29,30	9 I5. I	73 48. 2	$1746{ }^{\circ}$	20	78. 12	H.E.M.
Owatonna	44 05. 2	9313.7	Jy	27	740.3	73 54. 4	I 7559^{\prime}	20	78. 12	H.E.M.
New Ulm	44 Ig. r	94 28. I	Au	14	924.2	73 47.4	$1741{ }^{1}$	I I	35. 34	F.A.M.
Wabasha	$44{ }^{23} 5 \cdot$	92 03. 6	Se	-7	6 58.o	74 17.4	16954	1 I	31. 34	F.A.M.
Redwood Falls	44 32.9	9505.4	Au	16, 17	906.2	73 49.4	I7495		31. 34	F.A.M.
Montevideo	44 57. 0	9543.0	Au	18	10 OI. 3	74 46. 2	10506	11	3 I. 34	F.A.M.
Stillwater	45 O1. 0	9247.5	Se	4, 6	7 00.0	74 37.7	16764		3 I. 34	F.A.M.
Center City	$45 \quad 24$	9249.6	Se	2,3	1026.3	75 06. 3	16320	11	3 I. 34	I'A.M.
Morris .	45 35.2	9554.0	Au	20	958.8	75 00. 4	16264	11	31.34	F.A.M.
Pine City	45 49.4	9258.6	Se	I	IO 27.6	$75 \quad 32.6$	15747	II	3 I. 34	I.A.M.
Breckenridge	46 I5. 5	9635.5	Au	21	1216.4	$75 \quad 38.5$	15622	1 I	31. 34	F.A.M.
Aitkin	46 31. 5	9343.2	Au	28	7 29.3	7534.8	I 5735		3I. 34	I.A.M.
Carlton	46 39. 3	$92 \begin{aligned} & 9 \\ & 2\end{aligned}$	Au	30, 31	645.4	76	14885		3 I. 34	F.A.M.
Park Rapids	4654.9	95 OI. 0	Au	26	923.8	7605.8	15144		3 I. 34 !	F.A.M.
Ada	47 17.6	06 30. 3	Au	23	II 28.0	76	15157		31.34	F.A.M.
Bagley	47 3 1. 7	$95 \quad 23.2$	Au	25	1036.4	764 I. 2	14596	1 I	31. 34	F.A.M.
Ely	4748.6	92 Of	Se	29	II 18.8	7807.2	12912		30. 12	W.H.B.

Table I.-Magnetic observations on land, July i, igo9, to June 3o, igro-Continued.
MISSISSIPPI.

MISSOURI.

NEBRASKA.

	$\bigcirc 1$			East,					
Falls City	4003.4	95 36. 2 Au	14	900.7	69 50. 5	20768	36	15. 12	C.F.W.
Bloomington	4005.6	9903.3 Au	31	1135.4	69 or. 3	21409	36	15.12	C.F.W.
Red Cloud	40 06. I	9832.7 Au	28	1214.3 3!	69 24. 2	21301	36	15.12	C.F.W.
Alma	4006.4	99 22.9 Se	2	$1155^{8 .} 4$	69 00. 4	21428	36	15.12	C.F.W.
Pawnee City	40 06. 6	$9609.2{ }^{1}$ All	12	$93^{8 .} 2$	7007.0	20460	36	15.12	C.F.W,
Hebron	40 10. 5	97.34 .6 Au	23	11902.4	69 31. I	21209	36	15.12	C.F.W.
Nelson	40 II. 7	98 04. 5 Au	26	12 O1. 3	6935.6	21153	36	15.12	C.F.W.
Auburn	$40 \quad 23.6$	95 51. 4 Au	17	955.2	7003.2	20464 .	36	15.12	C.F.W.
Wilber	40 28.8	9658.7 Au	20	10 48. I	70 II. 8	20437	36	15.12	C.F.W.
Nebraska City	404 T .3	95 52. 5 Au	18	922.9	7013.7	20409	36	15.12	C.F.W.
Plattsmouth	4100.9	95 54.41 Au	19	946.2	7050.6	19967	36	15.12	C.F.W.
Central City	41508.7	9759.6 Se	23, 24	1038.4	7049.7	19918	20	78. 12	H.E.M.
Columbus	4126.2	97 20.5. Sc	21, 22	1116.8	7131.6	19121	20	78. 12	H.E.M.
Fremont	4126.5	9630.8	18	1020.3	7100.6	19807	20.	78. 12	H.E.M.
Greeley	4133.0	98 31. I Se	27	1059.	7107.6	19713	20	78. 12	H.E.M.
Ord	4137.1	9856.15 Se	28	II 55.8	7051.3	19998	20	78. 12	H.E.M.
Stanton	4158.0	97 11.7 7 Se	16	1059.8	7 I 21.1	19513	20	78. 12	H.F.M.
Pierce	4212.7	9730.8 Se	13	1055.7	7123.5	19573	20	78. 12	H.E.M.
Wayne	42×5.0	9659.7 Se	9				20	78. 12	H.E.M.
Dakota City	4226	9623.9 Se	3,4	942.4	7139.0	19365	20	78. 12	H.E.M.

NEW HAMPSHIRE.

	- '	01		${ }_{0}^{\text {West, }}$	- ,				
Concord	4313.4	$7 \mathrm{l} 3^{\text {r. }} 5$ J Je	3	1337.0	7349.5	${ }^{16637}$		78. 12	H.E.M.
Plymouth	43 45.7	7142.3 Je	4	1400.9	74 12.9	1633 I	20	78. 12	H.E.M.
Woodsville	44 Og. 4	7202.0 Jc	7, 8	1352.2	74 23. I	16276	20	78. 12	H.E.M.
Gorham	44 22.0	7 I 09.4 J Je	13	1549.8	7427.0	16062		78. 12	H.E.M.

Table I.-Magnetic observations on land, July i; rgog, to June 30, sgio-Continued.
NEW JERSEY.

NEW MEXICO.

Deming Lordsburg	$\begin{array}{cc}\circ & \prime \\ 32 & 15.6 \\ 32 & 20.4\end{array}$	$\begin{array}{cc:c}0 & \prime \\ 107 & 45.4 & \mathrm{Je} \\ 108 & 42.6 & \mathrm{Je}\end{array}$		East			19	$\begin{aligned} & 23 \cdot 34 \\ & 23 \cdot 34 \end{aligned}$	W.M.H. W.M.H.
				${ }_{-}$Last,	\bigcirc -	r			
			7	1233.31	5938.81	27346			
			9	1309.8	5947.8	27004			

NEW YORK.

NORTH DAKOTA.

OHIO.

PENNSYLVANIA.

Table I.-Magnetic observations on land, July i, 1909, to June 30, 1910-Continued.
PHILIPPINE ISLANDS.

Station	Latitude		Date	$\begin{aligned} & \text { Declina- } \\ & \text { tion } \end{aligned}$	Dip	Hori zontal intensity	Instruments		Observer
							M	DC	
	\bigcirc	- East,		- East,	- ,	γ			
Bee, Tablas Id.	1222	12156	De 9	- 55			735		S.D.S.
Sangelan, Tablas Id.	1234	12159	De 9	108			735		S.D.S.
Duyagan, Mindoro Id.	123^{8}	12132	Oc 5	- 59			735		S.D.S.
Corcuera, Simara Id.	1247	12203	Oc 27	1 06			735		S.D.S.
Mayllague, Mindoro Id.	1249	12130	Oc 5	109			735		S.D.S.
Banton, Banton Id.	1256	12206	Oc 29	102			735		S.D.S.
Pinamalayan, Mindoro Id.	1302	12130	Oc 4	- 51			73.5		S.D.S.
Capalonga, Luzon Id.	1420.0	12229	$\mathrm{Au}, \mathrm{Sc}{ }^{*}$	$\circ 35 \cdot 7$	17×13	38290	17	37. 34	E.H.P.
Hook, Polillo Id.	14 56.2	12149.0	Se 21*	016.6	1639.7	37976	17	37. 23	D.R.J.

PORTO RICO.

Porto Rico Magnetic Observatory	\circ 18 08.8	$\begin{array}{cc} \circ & \prime \\ \sigma_{5} & 26 . \\ 9 \end{array}$	De-Ja	West, 2 2 16.1	$\begin{array}{cc}\circ & \prime \\ 49 & 48 .\end{array}$	$\begin{gathered} r \\ 2893 \mathrm{I} \end{gathered}$	31	1 EI	G.H.

RHODE ISLAND.

	-	,			West,	- 1				
Kingston	4129.2	7131.7	My	23	12 16. 2	72 42.5	17717	20	78. 12	H.E.M.
Providence	4145.5	7127.8	My	25	1241.7	72 47. 2	17524	20	78. 12	H.E.M.

SOUTH CAROLINA.

[^5]Table I.—Magnetic observations on land, July r, rgo9, to June zo, rgio-Continued.
SOUTH DAKOTA.

Station	Latitude	Longitude	Date		$\begin{aligned} & \text { Declina- } \\ & \text { tion } \end{aligned}$	Dip	Horizontal intensity	Instruments		Observer	
								DC			
	- ,	\bigcirc - '				- East,					
Vermilion	4247.5	9655.0	Au	30,31	1056.5	7557.4	19210	20.	78. 12	H.E.M.	
Yankton	4253.4	97 22. 5	$\mathrm{Au}^{\text {a }}$	25,26	115	7258.5	I8054	20	78. 12	H.E.M.	
Tyndall	4259.9	9752.7	Au	23,24	10 57. 2	7159.3	19060	20	78. 12	H.E.M.	
Armour	43 20. 2	9820.3	Au	20	12 21. 2	72 24.9	18777	20	78. 12	H.E.M.	
Mitchell	4341.8	98 or. 0	Oc	20	1204.4	73 04. 4	18047	29	30.12	W.H.B.	
Plankington	43 43. 5	$98 \quad 26.7$	Au	18	12 35.8	7247.9	18254	20	78. 12	H.E.M.	
Madison	44 00. 3	9704.8	Au	11, 12	1055.8	73 10. 5	17972	20	78. 12	H.E.M.	
Flandreau	44 0.4. 2	9634.7	Au	9, 10	1034.2	73 27.7	17650	20	78. 12	H.E.M.	
Woonsocket	4404.6	9816.4	$\mathrm{Au}^{\text {a }}$	14	12 10. 3	7259.9	18073	20	78. 12	H.E.M.	
Wessington Springs	4405.2	9833.0	Au	16	1251.6	7252.6	18196	20	78. 12	H.E.M.	

TENNESSEE.

TEXAS.

VERMONT.

Table I.-Magnetic observations on land, July 1, 1909, to June 30, 1910-Continued.
virginia.

Station	Latitude	Longitude	Date	$\begin{aligned} & \text { Declina- } \\ & \text { tion } \end{aligned}$	Dip	Horizontal intensity	Instruments		Observer
								DC	
	$\bigcirc \quad 1$	\bigcirc -		${ }_{0}$ West,	\bigcirc -				
Bristol	$36 \quad 36.2$	82 10. 5	Ap 29	$\bigcirc 42.4$	68 06. 9	21823	19	23.34	W.M.H.
Lynchburg (new)	3724	7908	Ap 26,27	306.7	69 25.8	20812	19	23.34	W.M.H.
Lynchburg (old)	. 3724.6	79 78 8	Ap 23	253.1			19	23.34	W.M.H.
Charlottesville	$\begin{array}{ll}38 & \text { 02. } 4\end{array}$	$78 \quad 30.3$	Ap 20, 21.	403.3	69 55. ${ }^{\text {O }}$	20238		23.34	W.M.H.

WASHINGTON.

FOREIGN COUNTRIES.

British Columbia:	- ,	\bigcirc			East,		,				
Union 2	4935.8	12454.0	Ap	20*	2626.4		14. 5	19038	8	32. 12	P.C.W.
Union 2	4935.8	12454.0	Oc	7	26 31. 6	7	2I. 5	19028	IIII	34. 56	S.W.T.
Union 2	4935.8	124 54.0j	Ap	21, 22	26 3.3.2	71	18. 0	18086	C	32.23	S.H.S.
Union 2	4935.8	124 54. 0_{1}	My	5	26 28. 3	7	18.7	19042	18	34.56	S.W.T.

Table II.-Magnetic observations at sea, July I, 1909, to June 30, 19 Io.
ATLANTIC OCEAN.

Locality	Lati-	Longitude	Date	Declination	Dip	Horizontal intensity	Total jntensity	Ship	Headings	Sea
	,	- ,		East	,					
At sea	3043	8 r 19	Mh 16	131	$62 \quad 27$	-. 2556	o. 5527	Bache	16	Hvy. sw.
Off Charleston	3240	7943	My 27	$\bigcirc 52$	6439	. 2421	. 5655	Do.	8	Sm.
Chesapeake Bay	3659	7611	Fe 16	424	$68 \quad 54$. 2101	. 5835	Do.	16	Sm.
Do.	3659	7612	Fe 16	454	$68 \quad 57$. 2093	. 5827	Do.	16	Sm.
Mouth of Patuxent	3820	7622	Jy 10	530	6959	. 2057	. 6009	Do.	16	Choppy.
Near Vineyard Sound	$41 \begin{array}{ll}417\end{array}$	7109	Jy 15	1245	7212	. 1813	- 5929	Do.	8	Sm.
Salem Entrance	4232	7050	No 18	1425	7334	. 1719	. 6076	Do.	16	Choppy.

* Observations of rga8, not heretolore published.

Table II.—Magnetic observations at sea, July I, 1909, to June 30, 19ro-Continued.
PACIFIC OCEAN.

* Results of observations in 1909 , not heretofore published.

Table III.-Magnetic observations at sea in Philippine Islands.

Locality	Latitude	Longitude	Year	Date	Declination	Ship	Head-	Sea
	0 ,	$\underset{0}{\text { East, }}$			East			
Off Maasin	1000	12452	1907	Mh 9	2 II	Marinduque	16	Sm.
East of Bohol Island	1001	12437	1909	Ja 21	1 3^{8}	Romblon	16	Sm.
Lion Bay	10.18	12500	1909	Je 29	141	Do.	16	Sm.
Calangaman Island	1104	12415	1907	Ap 19	134	Marinduque	16	Sm.
Off Tablas Island	1220	12154	1909	De 9	100	Fathomer	8	Lt. sw.
Off Sangelan Point	1232	12155	1909	De 9	125	Do.	16	Choppy.
Romblon Harbor	1235	12216	1907	De 8	108	Romblon	16	Sm.
Off Duyagan Point	1235	12138	1909	Oc 5	108	Fathomer	16	Lt. sw.
Off Punta Gorda	1239	12210	1909	My 24	- 50	Do.	16	Sm.
Off Simara Island	1245	12159	1909	Oc 27	- 45	Do.	16	Sm.
Off Mayllague Point	1249	12132	1909	Oc 5	119	Do.	16	Sm.
Off Banton Island	1300	12207	1909	Oc 29	1 I 3	Do.	16	Sm.
Off Pinamalayan	1303	12134	r909	Oc 4	I 10	Do.	16	Long. sw.
Off Point Dumali	1308	12139	1906	De 14	116	Marinduque	16	Sm.
At sea	1317	12227	1909	Ja 25	103	Fathomer	32	Sm.
Do.	1329	12224	1909	Mh 10	- 54	Do.	16	Lt. sw.
East of Varadero Bay	1330	12102	1907	My 23	r or	Marinduque	16	Sm.
Catanauan Bay	1334	12218	1908	Ap 10	$\bigcirc 41$	Romblon	16	Sm.
Near Pitoyo	1346	12201	1907	No 15	104	Do.	16	Sm.
At sea	1408	12303	1907	My 22	103	Do.	16	Sm.
Do.	1408	12303	1907	Au 31	- 58	Do.	16	Sm.
Manila Bay	1426	12043	1907	Oc 22	- 34	Marinduque	16	Sm.
Do.	1427	12046	1909	De 23	I 04	Fathomer	8	Sm.
Do.	1430	12054	1908	My 18	- 59	Romblon	16	Sm.
Do.	1431	12054	1907	Oc 25	- 59	Do.	16	Sm.
Do.	1432	12053	1908	Oc 17	- 51	Marinduque	16	Sm.
Do.	1432	12055	1908	Ap_{12}	- 43	Romblon	16	Sm.
Do.	1432	12051	1906	De 13	107	Marinduque	11	Sm.
Do.	1434	12055	1907	Ap 22	- 16	Do.	16	Sm.
Do.	1434	12056	1907	My 10	- 38	Romblon	16	Sm.
Do.	1434	12057	1908	Oc 22	-37	Do.	16	Sm.
Do.	1434	12056	1908	De 10	I 02	Fathomer	8	Sm.
Do.	1434		1909	Mh 16	- 56	Do.	16	Sm.
Do.	1434	12056	1909	My 20	- 35	Do.	16	Sm.
At sea	1434	12247	1908	Jy 31	- 53	Romblon	16	Sm.
Manila Bay	1435	12056	1907	Se 9	- 55	Do.	16	Sm.
Do.	1436	12058	1908	De 22	- 5^{2}	Do.	16	Sm.
Do.	1436	12058	1909	Jy 9	105	Do.	16	Sm.
Do.	1436	12054	1907	My 22	- 47	Marinduque	16	${ }_{\text {Sm. }}$
At sea	1439	12137	1908	Oc 8	102	Do.	16	Sm.
Do.	1457	12142	1908	Je 6	- 3^{8}	Do.	16	Sm.

DESCRIPTIONS OF STATIONS.

Magnetic observers are instructed to mark every station in as permanent a manner as possible, either with a stone or a post of some durable wood, so that it may be available for future occupation. They are also required to furnish a sufficiently detailed description to locate the station, even if the marking should be destroyed, and to determine the bearing of two or three prominent objects in addition to the one used as reference mark in the azimuth and declination observations. The information is given in abridged form on the following pages for each of the stations occupied during the year. Further details can usually be obtained upon application to the Superintendent

Descriptions of stations-Continued.

of the Coast and Geodetic Survey. The usual method of marking a station is by a stone post about 3 feet long and 6 or 8 inches square, set so as to project an inch or two above ground and lettered on top U. S. C. \& G. S., with a drill hole in the center to mark the exact point. Whenever the local authorities desired, and were willing to bear the expense, a second stone was set to denote the true meridian.

The descriptions are arranged alphabetically by States and by names of stations.

Abstract

ALABAMA. Florence, Lauderdale County.-As the old station could not be occupied, observations were made at a point about 70 feet east of its location and 450 feet east of an electric trolley railroad line running about north and south.

A new station was located in the southeastern corner of the grounds of the Baptist University, about 2 miles northwest of the town's center. It is 78 feet southwest from the fence bordering the grounds on the northeast, 115.3 feet from the fence bordering the grounds on the southeast, and 17 I feet east from the eastern corner of the university building. The station is marked by a limestone post 6 by 6 by 33 inches, projecting about 6 inches above ground and lettered U. S. C. \& G. S., 1909. The following true bearings were determined:


```
Lower edge of town's water tank taken on the abutment sup- \({ }^{\circ}\),
    porting the base (mark)
        4025.2 west of north
Ball over circular window at top of center of south front of
```

 university building
 7 1 54.9 west of south
 A hole in the top of a post of Georgia marble, 4 by 6 by 42 inches, projecting io inches above ground and 300 feet north marks the north end of a meridian.

Huntsville, Madison County.-The station of 1906 was reoccupied as near as possible, the old mark having been plowed up. It is in the southwestern part of the public-school grounds, about one-half mile northeast of the court-house square. The station is 75.5 feet from the southwest corner of the schoolhouse, 18.4 feet south and east from a large oak tree 4 or 5 feet in diameter, and 50.9 feet from the center of the brick sidewalk on Calhoun street. It is marked by a limestone post 5 by 5 by 24 inches, lettered U. S. 1910, and projecting inch above ground. The following true bearings were determined in 1910:

Scottsboro, Jackson County.-The station of 1903 was reoccupied. It is in the southwest corner of the campus of Scottsboro Baptist Institute, about 250 feet from the southwest corner of the college building. It is 38 feet from the south fence, 39 feet from the west fence, and 17.6 fect from a small hickory tree north of east. It is marked by a limestone post 6 by 6 by 38 inches, lettered U. S. C. \& G. S., 1903, and set flush with the ground. The following true bearings were determined in r903:

$$
\begin{aligned}
& \text { Apex of court-house dome (mark)............................. . . } 4753.6 \text { west of north } \\
& \text { North gable of Jackson County Flour Mills..................... } 7^{2} 36.0 \text { west of south }
\end{aligned}
$$

Tuscaloosa, Tuscaloosa County.-The station of 1905 was reoccupied. It is on the grounds of the State University, 20.3 feet west of a board fence, 227.4 feet and 166.3 feet, respectively, from the southeast and northeast corners of Garland Hall, and 180.7 feet from the southeast corner of the boys' dormitory. The station is marked by a limestone post 5 by 6 by 30 inches, set 28 inches in the ground and lettered U. S. C. \& G. S., 1905. The following true bearings were determined in 1905:

Base of flagstaff on main dome of State (mark).	5754.8 east of north
Point of small cupola left of main dome.	$55 \mathbf{5 2 . 3}$ east of north
Point of second cupola left of main dom	5523.8 east of north

Descriptions of stations-Continued.
ALASKA.
Anchor, Cordova Bay.-Magnetic observations were made at a point exactly between the triangulation station Anchor and the triangulation station Rhea about 50 feet from Anchor. The triangulation station is on the highest part of the rock on the southwest end of the second island northeast of Eureka Narrows. Shipwreck Point bears due west (magnetic). The station is marked by a $5 / 8$-inch drill hole in a dike of sandstone and quartz about 6 to 8 inches wide running through the rock in a southwesterly and northeasterly direction. The hole is about 3 or 4 feet above high-water mark.

Beluga; Cook Inlet.-The triangulation station is on the low flat ground of the shore line about $11 / 4$ miles northeast of the mouth of the Beluga River. It is about 150 feet inside and 2 feet above ordinary high-water mark. The station is marked by a pint bottle buried 4 feet underground and a spruce hub 5 inches by 2 feet projecting 3 inches above the surface, with a copper tack in it to mark the exact spot.

Birch Hill, Cook Inlet.-Observations were made 49 feet from the triangulation station on line with the triangulation station Boulder. The triangulation station is on a conspicuous point of the bluff line of the east shore at a point about 11 miles south of Point Possession and about 16 feet from the edge of the cliff on a grassy knoll which crowns the bluff at this point. It is marked by a pint bottle buried 3 feet below the surface of the ground and a hub 5 inches by 2 feet set flush with the ground, with a copper tack in it to mark the exact spot.

Boulder, Cook Inlet.-Observations were made at a point 15 feet from the triangulation station on line with East Foreland. The station is on the first point about 5 miles north 27° east from East Foreland, on the east shore of Cook Inlet, about 500 feet south of the extreme end of the point and at the top of a steep bluff which rises about 160 feet above the high-water line. It is marked by a quart bottle buried 2 feet below the surface and a 3 -by- 4 hub set flush with the ground having a copper tack in it to mark the exact spot.

Clark Point, Nushagak Bay.-The magnetic station of 1909 was reoccupied. It is about one-half mile south of the cannery at Clark Point, on the beach some 30 feet from the water's edge and on a line between hydrographic signal "Uno" and hydrographic signal "Can," which is a smokestack on a cannery near Ekuk Point. The trail from Clark's cannery to the native village near the bluff to the south passes a few feet to the west of the station. The station is marked by a buried bottle and a concrete block $11 / 2$ feet square at bottom, about 10 inches square on the top, and 15 inches deep, set with its top flush with the ground. A wooden peg one-half inch in diameter set in the concrete marks the exact spot. The true bearing of station "Can," determined from the triangulation station, is $2^{\circ} 34^{\prime}$. r west of south.

Controller Bay.-The magnetic station is at the entrance between Kayak Island and the south end of Wingham Island, near the northern end of a low spit north of Kayak Island, on a line between the triangulation stations Spit and West Base. It is 50 feet above high-water mark, in the direction of Okalu Spit. The station is marked by a section of stovepipe filled with cement, set upright in the ground and projecting 4 inches above the surface.

Dutch Harbor.-The station is on Amaknak Island on the hill just southeast of the village of Dutch Harbor, near the station of 1908 . It is about 164 feet south of a water tank covered with sod, and 98 feet south of the azimuth mark, on a line from the azimuth mark to the astronomical station in Unalaska. The station is marked by a bottle with its top ifoot below the surface and by a bowlder 6 by 10 by 16 inches, with a 1 -inch drill hole to mark the exact spot. The astronomical station bears $0^{\circ} \mathrm{or}^{\prime} .0$ west of true south.

Kodiak.-The station of 1907 was reoccupied. It is on a bluff on the north side of St. Paul roadstead and about three-fourths of a mile east of Kodiak. East of the bluff is a small bight. The bluff is about 15 feet high and 200 feet long and slopes back about roo feet to low ground where are some huts. A small stream comes down behind the bluff. The station is marked by a green bottle set in cement, with the neck about 3 inches below the turf. On the bluff are two spruce trees and the stump of a third, marked with a blazed triangle of nails. The distance to the easterly one is 28.6 feet; to the northerly one, 43.4 feet; to the westerly one, 94 feet, and to the east end of the bluff, 75.5 feet.

$$
6348 \mathrm{I}^{\circ}-1 \mathrm{I}-7
$$

Descriptions of stations-Continued.
 ALASKA-C'ontinued.

The station is about 6 feet from the south side of the bluff. The following true bearings were determined in 1907:

Little, Cook Inlet.-The station is on the low ground at the mouth of the Little Susitna River, about 9 miles west of Point Mackenzie at the entrance to Knik Arm. It is on the east bank of the river about one-half mile above the point which defines its mouth at ordinary high water and about 25 feet inside and 2 feet above the high-water mark. The station is marked by a pint bottle set 4 feet underground and a hub 5 inches by 2 feet projecting 3 inches above ground, with a copper tack in it to mark the exact spot.

Moose Point, Cook Inlet.-Magnetic observations were made 108 feet from the triangulation station on line with the triangulation station Possession. The triangulation station is on the projecting low wooded point of the shore line about 8 miles south of Point Possession. It is on the edge of the tree line, about r 5 feet above and 33 feet inside of high-water mark. A low grassy flat extends about onethird mile beyond the station in a southwesterly direction. The station is marked by a pint bottle buried 3 feet beneath the surface and a spruce hub 6 inches by 2 feet set 18 inches in the ground, with a copper tack in it to mark the exact spot.

Port Moller.-The station is on the highest ground on the long narrow spit at Port Moller, about 25 feet above high-water mark and about $11 / 2$ miles from Harbor Point. It is about 250 fect south of an eroded dark sand bluff, which is about as high as the station and noticeable from offshore to westward. The station is marked by a glass bottle buried neck upward and a stone about 18 inches long projecting about 2 inches above ground and having a small conical hole drilled in its apex to mark the exact spot. A cement pier io inches square surrounds the stone and is lettered U.S. C. S. The following true bearings were determined:

- ,

Protection Poini, Nushagak Bay.-Magnetic observations were made at a point 27 feet from the triangulation station "Pro" in the direction of and in line with triangulation station "Tec." The magnetic station is marked by a pine hub having a V-shaped cross section with an 8-penny mail for center. The triangulation station is on the southwestern side of the entrance to Nushagak Bay, on the spit extending out from the general bluff line. It is on a low grass-covered sand ridge, about 200 feet from the high-water line. The triangulation station is marked by a small granite bowlder buried 1.7 feet below the surface and a long granite stone projecting 5 inches above ground and having a small triangle cut on its seaward face and a small drill hole in the top to mark the center. The following true bearings were determined from the triangulation:

Race Point, Cook Inlet. -The triangulation station is on the west side of Fire Island on the point of the bluff projecting farthest on that side and at a point about midway between the ends of the island.

Descriptions of stations-Continued.

ALASKA-Continued.

It is about 16 feet from the edge of the bluff, at an elevation of 165 feet. The station is marked by a pint bottle buried 3 feet underground and a hub 5 inches by 2 feet set 20 inches in the ground, with a copper tack in it to mark the exact spot.

Rhea, Cordova Bay.-Magnetic observations were made roo feet from triangulation station Rhea on range to the triangulation station Anchor. The triangulation station is on the highest rock of an outlying reef between Hunters Bay and Tah Bay. The ledge is a prominent line of rocks extending in a northwesterly and southeasterly directlon, about 300 feet long and 75 feet wide. The station is on the west side about roo fect from the northwest end, on the summit of a very prominent bowlder. It is marked by a $1 / 2$-inch hole drilled 3 inches deep.

Sitka Magnetic Observatory, Sitka. - In the absolute building. For description of the observatory see Appendix 5, Report for 1902.

Turn, Cordova Baj.-Magnetic observations were made 17 feet from the triangulation station on range with the triangulation station Rhea. The triangulation station is on the summit of Turn Island, which is I mile southwest of the entrance to Hunter Bay. It is on the south end of the island, about r_{3} ofeet above high-water mark, on a grassy knoll 6 feet square and about 165 feet southeast of a clump of five trees. The station is marked by a $1 / 2$-inch drill hole 4 inches deep.

ARIZONA.

Benson, Cochise County.-The station of 1903 was reoccupied. It is on the grounds of the Industrial School, in line with the north side of the building and 195.4 feet from the northeast corner of the building. The station is marked by a post of black marble 5 by 5 by 28 inches, set so as to project 2 inches above ground, and lettered on top U.S. C. \& G. S., 1903. The following true bearings were determined:

Tucson, Pima County.-The observations were made in the building for absolute observations at the Tucson magnetic observatory, about 8 miles east of the city of Tucson.

Yuma, Yuma County.-The station of 1905 was reoccupied. It is on the military reservation, which is to be turned into an irrigation plant and experimental farm. It is about 800 feet southeast of the government office building and west of the reservoir and water tank near the Southern Pacific Railroad station and 132 feet northeast of an iron post which marks the southern point of a meridian line. The station is marked by a field stone about 3 feet long, showing 6 inches above ground, and having a cross cut in the top to mark the exact spot. The following true bearings were determined in 1910:

> Highest point on Cago Muchacho Mountain (mark). 3950.8 west of north
> Lowest point to be scen on flag pole at Indian school $34 \quad 03.3$ east of north

CALIFORNIA.

Barstow, San Bernardino County.-The station of 1906 was reoccupied. It is nearly in line with the east end of the new Harvey Hotel and the top of the small hill to the south. It is between a line of fence posts just north of town and a fence on the southern boundary of a field immediately on the south bank of the river. The station is marked by a rough piece of red tufa rock, $51 / 2$ by $61 / 2$ by 30 inches, showing about 6 inches above ground, with the highest point marking the exact spot. The following true bearings were determined in igto:

North gable of roof of building marked Barstow Ice Company.

Descriptions of stations-Continued.

CALIFORNIA-Continued.

Goat Island, San Francisco County.-The station of Igo4 was reoccupied. It is near the center of the plateau just west of the hill at the extreme eastern end of the island, on ground belonging to the army. The station is 50 feet north of the line of the two flag poles, one of which is on the highest part of the island and the other on the southern part of the lawn in front of the officers' quarters. The station is marked by a rough stone 6 by 6 by 12 inches, projecting about I inch above ground and having a flat top in which there is a small hole to mark the exact spot. The following true bearings were determined in 1904:

Indio, Riverside County. -The station of 1905 was reoccupied. It is on Indian land about 700 or 800 feet a little east of south of the Southern Pacific Railroad station. It is east of the schoolhouse and north of a road running east and west. It is 187.7 feet from a fence to the south and 235.8 feet from a fence to the west and about 213 feet northeast of a plank shack used as a jail. The station is marked by two terra-cotta chimney tops fastened end to end by copper wire, and buried so that the point of one chimney top shows 3 inches above ground. The following true bearings were determined in rgro:

Rod at top of Southern Pacific Railroad water tank (mark).. in 10.7 west of north Top of a windmill about one-half mile distant. 28 02.5 east of south Highest point on mountain south of west. 7557.7 west of north

San Bernardino, San Bernardino County.-The station of 1897 was reoccupied. Observations were made as near as possible to the old site, which is located near the middle of the west half of the city park, between E and F streets and south of Sixth street. It is about 52 feet from the fence line on F street and about 164 feet from the fence line on Sixth street, in line with the north fence of the pavilion, which is located in the center of the park. It is 4 feet from the border of the nearest walk way through the park.

The old station being unsuited for further occupation, another station was established in the southwest corner of the grounds of the County Hospital, about I mile southwest of the court-house. It is 70.3 feet east of a fence made with posts of driven piles and 76.5 feet north of another fence. The station is marked by a granite post 6 by 8 by 40 inches, projecting about 12 incnes above ground, and lettered U. S. C. \& G. S., rgio. The following true bearings were determined:

Upper northwest corner of main hospital building sighted on ${ }^{\circ}$,
the bricks (mark)
East gable on roof of small tool house.
5908.9 east of north

Upper northwest corner of cement house southwest of main building, under eaves of roof.

A similar stone to that used as the marking stone, cut with a hole in the top and placed 240 feet distant, marks the north end of a meridian line.

Stockton, San Joaquin County.-The station of 1906 was reoccupied. It is in the northwestern corner of the rural cemetery, about $21 / 4$ miles north of the county court-house. The azimuth station is marked by a smooth white marble post 4 inches square on top and 4 feet long, projecting 88 inches above the ground. The post is lettered on its vertical faces: Magnetic Station, U. S. C. \& G. S., r897. The post is placed on a dike, 16 feet from the north fence of the cemetery and 30.5 feet from the northwest corner, as measured along the fence line. The magnetic station is in the line joining the center of the marble post with the top of the statue on the court-house dome and is 10 feet from the center of the post. The following true bearings were determined in 1906:

Top of statue on court-house (mark)	535.9 east of south
Spire of Central Methodist Episcopal Church.	622.2 east of south
Pole on roof of a squa	1452.7 west of south

Descriptions of stations-Continued.

CONNECTICUT.

New Haven, New Haven County.-The station of 1904 was reoccupied. It is on the grounds of the Yale Astronomical Observatory, about 200 feet north of the transit house, and due north of the eyepiece of the transit instrument. It is marked by a cedar post bearing a brass screw to mark the exact spot.

New London, New London County.-The station of 1904 was reoccupied. It is on the grounds of the city almshouse, about a mile west of the city hall. It is in a small pasture, about 600 fect due west of a water tank and 59 feet from the west post of the gate leading into this pasture. It is 44.6 feet from the nearest point of the north wall and is in line with the northeast corner of the pasture fence and southeast corner of Detention Hospital, which is about 75 yards away. The pasture is about 80 by 85 yards and is full of granite bowlders. A second stone, marking a meridian line is 222.8 feet south from the station. 'It is 21.7 feet from the top of a bowlder in the south wall in line with the meridian. This bowlder is 25.6 feet from the southwest corner of the pasture. The north stone is $21 / 2$ feet long and 6 inches square and has its top about I inch above ground. The south stone is 27 inches long and 6 inches square and is set flush with the ground. Both stones are lettered U.S.C.S. The following true bearings were determined in 1904:

FLORIDA.

Fernandina, Nassau County.-The station of 1908 was reoccupied. It is on the Indian mound about 1,200 feet north of Center street and three-fourths mile west of the Amelia Island Light-house. The station is 52 feet south of the remains of a hedge, 300 feet north of Broome street, and about 300 feet east of the street running north by the water works. It is marked by a limestone post 5 by 8 by 30 inches, projecting about 2 inches above ground, and lettered U. S. C. \& G. S., 1908. The following true bearings were determined:

- ,

Top of Amelia Island Light-house (mark). 8644.0 east of south
West edge of standpipe. .. 2042.0 west of south
Cupola on county court-house 6321.0 west of south
Cupola on simall wooden church............................... . 754 1.0 west of south
GEORGIA.
Brunswick, Glynn County.-The station is in the middle of Winsor Park, at the northeast end of Mansfield street, almost in line with the north curb, and about 600 feet beyond the last house on the street. It is 60 feet south of one oak tree and 45 feet southeast of another, and almost opposite the end of Lee street. The station is marked by wooden stake driven well into the ground. The following true bearing was determined:

Flagstaff on top of custom-house. 8650.8 west of north.

HAWAII.

Honolulu Magnetic Observatory, Oahu Island.-The observatory is about $121 / 2$ miles west of HonoIulu and about three-quarters of a mile south of the station Sisal, on the Oahu Railway. The observatory is described in Appendix 5, Report for 1902.

ILLINOIS.

Carlyle, Clinton County.-The station is in the high-school grounds toward the northeast corner. It is 154.5 feet northeast of the northeast corner of the school building and approximately 45 feet from the eastern boundary of the grounds. The station is marked by a Bedford limestone post 6 by 6 by 24

ILLINOIS-Continued.

inches, sunk level with the ground, and lettered U.S.C. \& G. S. The following true bearings were determined:

Left edge of water standpipe (mark)	3930.2 west of south
Cupola of barn	208.5 west of south
Highest pinnacle on schoolhouse	3140.9 west of south

Dixon, Lee County. -The station is in the northeast corner of Assembly Park, about $11 / 2$ miles northeast from the court-house, on a river bank 5 paces east of the row of elm trees standing between the driveway and the river. It is 37 paces from the front of Mrs. Cates's cottage and 3^{1} paces southeast from Mr. Bennett's cottage. The station is marked by a Bedford stone 6 by 6 by 3^{2} inches, projecting 6 inches above ground, and lettered on top U. S. C. \& G. S., 1909. The following true bearings were determined:

Eureka, Woodford County.-The station is near the center of a pasture belonging to J. H. Klopfenstein, east of the main road, and'about one-half mile due north of the court-house. The station is west of a small stream, and is 219.2 feet from the fence between the pasture and the main road, 241.3 feet from a fence to the south, 174.5 feet from a fence to the north, and 80.5 from a tree to the northwest. It is marked by a Bedford limestone post 8 by 15 by 8 inches, set 1 foot below the surface of the ground, and lettered U.S. C. \& G. S., 1909. The following true bearings were determined:

- 1
 West edge of base of pole on Toledo, Peoria and Western Rail way water tank.

19 35.5 east of south
Galena, Jo Daviess County.-The station is on the county farm about 2 miles southeast of the town, and in the pauper burying ground at the northwest corner of the farm. It is 69.5 feet from the west fence of the farm, and 54 feet from the north fence. The station is marked by a Bedford stone 6 by 6 by 32 inches, projecting 6 inches above ground, and lettered U. S. C. \& G. S., 1909. The following true bearings were determined:

$$
\begin{aligned}
& \text { Staff on high-school tower (mark) . } 4825.8 \text { west of north } \\
& \text { Cross on highest church steeple . } 43 \\
& 53.0 \text { west of north } \\
& \text { Southwest edge at top of large smokestack on county farm . . . } 5624.5 \text { east of south }
\end{aligned}
$$

Joliet, Will County.-The station of 1905 was reoccupied and is in a pasture 6 miles southwest from the town, lying between the Chicago, Rock Island and Pacific Railway and the old Michigan Canal. It is nearly due east and about 40 rods distant from the northeast corner of the fence around Rock Run Park. It is 100 paces from the Chicago, Rock Island and Pacific Railroad fence and 82 paces from the edge of the canal. The Chicago, Rock Island and Pacific Railroad semaphore post No. 460 is 230 paces northeast from the station, or 210 paces east along the track from the foot of a perpendicular line drawn from the station to the track. The station is marked by a marble post 4 by 8 by 27 inches, projecting 4 inches above ground and lettered U. S. C. \& G. S., 1905. The following true bearings were determined in 1909:

- ,

Descriplions of stations-Continued.
ILLINOIS-Continued.
Moline, Rock Island County.-The station is north of Moline, about 4 miles east of the Rock Island court-house. It is in a pasture belonging to John Hemmingson and known as "Davenport's pasture." It is $30 r$ feet south from the south fence of the road along the Mississippi River, 330 feet from the bank of the Mississippi River, 150 feet north from the Chicago, Minneapolis and St. Paul Railroad, 63.7 feet from the northwest corner of a house belonging to Mr. Cady, 136 feet north of a fence south of Mr. Cady's house, and about 400 feet west of "Cemetery ditch." The station is marked by a Bedford limestone post 6 by 6 by 36 inches, projecting 4 inches above the surface and lettered U.S.C. \& G. S., 1909. The following true bearings were determined:

Southeast corner (mark). Northeast edge of the river Apex of high obe	

Morrison, Whiteside County.-The station is in the county fair grounds, about 1 mile to the south rom the court-house. It is in the oval inclosed by the race track, slightly east from the longer axis of the ellipse and near the south end. It is 21 paces from the inside fence of the track on the south and 35 paces from it on the east, measuring along the line to the azimuth mark. The station is marked by ${ }^{*}$ a Bedford stone 6 by 6 by 32 inches, projecting 5 inches above ground and lettered on the top U.S. C. \& G. S., rgog. The following true bearings were determined:

Northwest edge of large brick smokestack at the greenhouse, - ,
just below the enlargement at top of stack (mark)..... 83 or.o east of north
Northwest corner post in the timekeepers' stand (opposite
grand stand) . in 26.5 west of north
Quincy, Adams County.-The station is in Indian Mound Park, south of the town and just south of Woodland Cemetery. It is 90 feet west of the drive in the east side of the park, 350 feet southwest of a brick house belonging to Mr. Bredenbeck at the corner of Fifth and Harrison streets, and 47.2 feet west of the northwest one of five elm trees and. 51.7 feet northwest of the southwest one of the trees. The station is marked by a Bedford stone 6 by 6 by 20 inches, lettered U. S. C. \& G. S., and sunk level with the ground. The following true bearings were determined:

> Left edge of small chimney on old workhouse (mark). 1221.6 west of north
> Catholic Church spire.
> $\begin{aligned} & 1221.6 \text { west of north } \\ & 4643.1 \text { east of north }\end{aligned}$
> Right edge of southeast chimney on Mr. Saunder's house, about
> two blocks northeast of station.
> 7553.4 east of north

Watseka, Iroquois County.-The station is on the county farm, about $21 / 2$ miles east and one-half mile south of the town's center. It is about one-fourth mile east of the farm buildings and about 175 feet north from the road, in an old apple orchard. It is distant 175.3 feet from the fence to the south, 201.5 feet from the fence to the west, 149 feet from the comer of the fence to the northwest, and 42.5 feet from an apple tree to the northeast. The station is marked by a Bedford limestone post 8 by 8 by 36 inches, projecting about 4 inches above ground, and lettered U.S.C. \& G. S., 1909. The following true bearings were determined:

Yorkville, Kendall County.-The station is at the foot of the hill at the south of Elm Wood Cemetery. It is down the hill almost due south from a massive gray monument bearing the name Marshall, which is seen while walking westward into the cemetery from the main gate. It is about 60 feet south from
the cemetery fence on a low embankment, at one time thrown up for a mill race. The station is marked by a Bedford stone 6 by 6 by 34 inches, projecting 6 inches above ground, and lettered on top U. C.S. \& G. S., 1909. The following true bearings were determined:

$$
\begin{aligned}
& \text { Flag pole on court-house (mark) } 5157.5 \text { east of south } \\
& \text { Southeast corner of south chimney on Knight's farmhouse.. } 56 \quad 52.0 \text { west of south } \\
& \text { Northwest edge on red granite Dixon monument. } 78 \quad 18.5 \text { east of north }
\end{aligned}
$$

INDIANA.

Boonville, Warrick County.-The station is in the southwestern corner of the city park, about r mile southwest of the town's center. It is 39.9 feet from the fence bounding the park on the south and 89 feet from the west fence. The station is marked by a limestone post 6 by 8 by 32 inches, projecting about 5 inches above ground, and lettered U.S. C. \& G. S., 1909. The following true bearings were determined:

- ,

Top of cupola on Turley Taylor's house (mark) 8027.4 west of north
West gable of T. P. Tillman's house.
19 46.4 east of north
A hole in the top of a second limestone post 5 by 7 by 26 inches, projecting 2 inches above ground, indicates the north end of a meridian line. This post is about 180 feet due north of the first.

Brazil, Clay County.-The station is in the southeastern part of the grounds surrounding the "Orphans' Home" about 2 miles east of the town's center. It is 67.7 feet from the south fence and 69 feet from the east fence. The station is marked by a limestone post 6 by 6 by 30 inches, projecting about 6 inches above ground, and lettered U. S. C. \& G. S., 1909. The following true bearings were determined:

- ,

Top of steeple of Methodist Church in Harmony (mark)....... 4354.8 east of north
South end of gable of Mr. Phillip's barn. 6025.4 east of north
Center of northwest chimney on Ross Carruther's house. 3935.0 west of south
A hole in a marble post 6 by 6 by 36 inches and 8 inches above ground marks the north end of a meridian line. It is 336 feet due north.

Corydon, Harrison County.-The station is in the northwestern comer of the county fair grounds, about one-half a mile south of the town's center. It is inclosed in a space bounded by the road around the race track, the fence on the southwest border of the fair grounds, a row of posts separating the space from the exhibition buildings, and a wire fence along a stream on the north border of the fair grounds. It is 54.5 feet northeast from the row of posts spoken of above, 105 feet west from the fence around the outside of the race track, and 68.6 feet a little west of north from the northeast corner of the poultry house. The station is marked by a limestone post 5 by 7 by 30 inches, projecting about 4 inches above ground, and lettered U. S. C. \& G. S., 1909. The following true bearings were determined:

> West gable of grain elevator (mark) 4050.2 east of north
> West gable of house containing the Fair Association office. . . . 8350.8 east of north

Covington, Fountain County.-The station is in the southeastern part of the county fair grounds, about three-fourths mile a little east of north of the town's center. It is 133.9 feet from the fence bounding the fair grounds on the east, 120.9 feet southwest of the southeast corner and 107.4 feet southeast of the southwest corner of the sheep shed. The station is marked by a limestone post 6 by 6 by 30 inches, projecting about 2 inches above ground, and lettered U.S.C. \& G. S., igog. The following true bearings were determined:

Base of cross on Catholic Church steeple (mark). 2028.8 west of south
Northeast corner of iron fence around top of Normal School
cupola.............................. 19 40.5 east of south
Úpper northeast corner of large square cupola just under eaves. 6320.5 east of south

Decatur, Adams County.-The station is in the northwestern corner of a piece of ground belonging to the county, and called the old fair grounds, about I mile southeast of the town's center. It is near the southeast corner of the intersection of Grant and High streets. It is 104.9 feet from the north fence, and 149.5 feet from the west fence. The station is marked by a limestone post 5 by 7 by 30 inches, projecting about 5 inches above ground, and lettered U.S.C. \& G. S., 1gog. The following true bearings were determined:

$$
\begin{aligned}
& \text { Spire on steeple of Evangelical Church (mark)................. } 4212.7 \text { west of north } \\
& \text { Top of cupola of South Ward public school. 83. } 54.7 \text { west of north } \\
& \text { Lower southwest corner above stone foundation of a brick } \\
& \text { building which is sixth from the southwest comer of Grant } \\
& \text { and High streets. } \\
& 4000.8 \text { west of south }
\end{aligned}
$$

Delphi, Carroll County.-The station is in the northern part of the school gardens in the city park, which was formerly an old cemetery, about i mile northeast of the town's center. It is 240.7 feet due north of a south meridian stone which is 6 by 6 by 40 inches, projecting about 12 inches above ground, and set 58.5 feet northeast of the northeast corner of John Best's barn, and 56.6 feet from the fence bounding the park on the south. The station is marked by a stone 6 by 6 by 32 inches, projecting about 5 inches above ground, and lettered U.S. C. \& G. S., igog. The following true bearings were determined:

North point on gable of Doctor Gouchenau's house (mark).... . 3940.1 west of south
Lower southeast corner of John Best's house above foundation. 555.7 east of south
English, Crawford County.-The station is in the northeastern part of a field belonging to Mr. Jerry Suddarth and which surrounds the statue of Congressman English. It is about one-fourth of a mile southwest of the town's center and about 17 I feet north of the English statue. It is 139.5 feet from the fence bounding the field on the east, 20 feet from the fence bounding the field on the north, and about I5O feet southwest of a mineral spring. The station is marked by a marble slab 2 by 8 by 24 inches, projecting about $21 / 2$ inches above ground, and lettered U.S. A small hole in the top indicates the exact spot. The following true bearings were determined:

court-house. 4105.5 east of south
Evansville, Vanderburg County. -The station of 1900 on the grounds of the Southern Indiana Hospital for the Insane, about 3 miles east of the town, was reoccupied. It is about 600 feet south of west of the main building, on the roadside. It is marked by a white limestone post 6 inches square, lettered on top U. S. C. \& G. S., and projecting about 4 inches above the surface of the ground. The mark or range used was the middle of the foot of the flagstaff on the main building, and bears $23^{\circ} 52^{\prime} \cdot 5$ east of true north.

Fowler, Benton County.-The station is in the northwestern corner of a piece of ground laid out in the form of a park or square which belongs to Mr. Daniel W. Osborn. It is at the intersection of Tenth and Park streets, and about one-half mile southeast of the county court-house. It is 94 feet from the fence on the west border of the ground, and 76.5 feet from the fence on the north. The station is marked by a limestone post 6 by 6 by 32 inches, projecting about 3 inches above ground, and lettered U.S. C. \& G. S., 1909. The following true bearings were determined:

Base of fiagstaff on cupola of county court-house (mark)...... 53 10.6 west of north
Top of a pointed roof between the smokestack of power house
and city standpipe. 80 . 30.6 west of north
North end of gable of Mr. William Albertson's house. 66 21.1 west of south

Descriptions of stations-Continued.

INDIANA-Continued.

Franklin, Johnson County.-The station is in the fair grounds near the center of the space inclosed by the race track. It is 283 feet east of the inside race-track fence on the west, and 98 feet south of a large tree. The station is marked by a stone post 6 by 6 by 24 inches, sunk level with the ground, and lettered U.S.C. \& G. S. The following true bearings were determined:

> Court-house flag pole (mark)
> Left edge of large smokestack (at the top).
> 6721.2 east of south
> Flag pole of judges' stand
> 8355.5 east of north
> 5104.2 west of south
-

Huntington, Huntington County.-The station is in the eastern part of the oval within the race track at the county fair grounds, about i mile southeast of the town's center. It is i2i.5 feet southwest of the fence around the outside of the race-track to the northeast, and 276 feet southeast of the southeast corner of the grand stand. The station is marked by a limestone post 6 by 6 by 32 inches, projecting about 5 inches above ground, and lettered U. S. C. \& G. S., 1gog. The following true bearings were determined:

Base of flagstaff on cupola of public school (mark).	5228.2 east of south
Top of a pyramid-shaped cupola to the south.	634.5 east of south
Rod at top of a large water tank	${ }_{78} 13.1$ west of north
	5404.6 wes

La Porte, La Porte County.-The station is on the county farm 2 miles southwest from the courthouse, on the edge of a low bank which skirts the western side of a marsh that lies to the southwest of the county asylum for the poor. From the asylum to the station is a distance of 40 rods or more. It is about 50 rods south from the public road which crosses the farm. In the field west of the marsh is an east and west fence which would pass ro feet north of the station if extended to the marsh. A gatepost at the east end of this fence is noticeable for its great circumference, and from this post the station is 116.3 feet in a direction slightly south of east. A pasture fence passes some 80 feet west of the station. The station is marked by a Bedford stone 6 by 6 by 34 inches, projecting 7 inches above ground, and marked in the center and lettered U. S. C. \& G. S., 1909. The following true bearings were determined:

Lebanon, Boone County.-The station is in the cemetery east of town. It is about 125 feet south of the road on the north side of the cemetery and about 150 feet southwest of the superintendent's house. It is 42.3 feet northeast of the Tyre monument and 43.5 feet south of the south edge of the drive running east to the house and greenhouses. The station is marked by a Bedford stone 5 by 5 by 30 inches, lettered U. S. C. \& G. S. and sunk level with the ground. The following true bearings were determined:

Left edge black iron smokestack on interurban power station \quad,
(mark) . 49 17.0 west of south
Left edge standpipe. 6723.3 west of south
Catholic Church spire'. 7949.3 west of south
Logansport, Cass County. -The station of 1907 was reoccupied. It is in the southern portion of the Spencer Park race track grounds 175.8 and 94.6 feet, respectively, from the centers of two large trees, one to the northeast and the other to the northwest. The station is marked by a Bedford limestone post 5 by 6 by 28 inches, projecting about r inch above the surface of the ground and lettered U.S.C. \& G. S., 1907. The following true bearings were determined in 1909:

Rod on east cupola of large barn (mark) . 4028.3 . 40.3 west of north
Flag pole on judges' stand . 5243.8 west of north

Descriptions of stations-Continued.
INDIANA-Continued.
Noblesville, Hamilton County.-The station is in the cemetery northeast of the town. It is near the center of the northern part of the older portion of the cemetery, 27.5 feet south of the base of the Spannuth monument, 3 1.2 feet west and a little north of the base of the Peck monument, and 35.5 feet north and a little east of the base of the Virgin monument. It is marked by a Bedford stone 5 by 5 by 30 inches, lettered U.S. C. \& G. S., and sunk level with the ground. The following true bearings were determined:

0 ,
Right edge of largest smokestack at carbon factory (mark) . . . 2512.3 west of south
Right edge of south chimney on county farmhouse. 8406.0 east of north
Left edge of north chimney on county farmhouse. 7959.9 east of north
Petersburg, Pike County.-The station is in the eastern part of Hornaday's Park about $11 / 2$ miles southwest of the town's center. It is about 414 feet almost due south of the iron gate at the northeast corner of the park, 74 feet west from the fence bordering the park on the east, and 129.5 feet southwest of the point where a barbed-wire fence joins a picket fence on the east boundary of the park. The station is marked by a limestone post 6 by 6 by 33 inches, projecting about 7 inches above ground and lettered U. S. C. \& G. S., sgog. The following true bearings were determined:

$$
\begin{aligned}
& \text { Steeple on Presbyterian Church (mark)........................ } 6940.4 \text { east of north } \\
& \text { North edge of town standpipe. } 69 \text { 15.8 east of north } \\
& \text { Cupola of county court-house . } 7228.9 \text { east of north } \\
& \text { North edge at top corner of chimney of glassworks............ } 78 \quad 32.2 \text { east of south }
\end{aligned}
$$

Portland, Jay County.-The station is in the northwestern part of the oval within the race track at the county fair grounds, about $3 / 4$ of a mile northeast of the town's center. It is 151.5 feet southwest from the lower eastern comer of the judges' stand, and 13 r .2 feet southeast from the lower western corner of a similar stand west of the first. The station is marked by a limestone post 6 by 6 by 30 inches, projecting about 4 inches above ground and lettered U. S. C. \& G. S., 1gog. The following true bearings were determined:

> East end of gable of elevator of Hayne Milling Company ${ }^{\circ}$.
> (mark).. . 80 30.8 west of south
> Base of flagstaff on cupola of keeper's house at main entrance to fair grounds. 5840.7 west of south
> West end of gable of a red barn at east end of race track...... $88_{4} 21.5$ east of south

Rockport, Spencer County.-The station is in the southwestern part of the infield within the race track at the county fair grounds, about 1 mile west of the town's center. It is 58.8 feet from the fence around the inside of the race track to the south and 116.3 feet from the west fence. The station is marked by a limestone post 6 by 6 by 36 inches, projecting about 7 inches above ground and lettered U.S.C \& G. S., 1909. The following true bearings were determined:

- ,

Spire on Methodist Church (mark). 83 45.1 cast of north
Spire on small red-topped cupola...................................... 78 22.6 east of north
East gable on roof of Mr. Well's house . 7834.6 west of north
A hole in the top of a second limestone post 6 by 6 by 36 inches, projecting about 9 inches above ground and placed about 430 feet due north on a bank about 15 feet high on the north side of the race track indicates the north end of a meridian line.

Rockville, Parke County.-The station is in the eastern part of Beechwood Park, between the baseball field and the fence bounding the park on the east, and about one-half mile southwest of the town's center. It is 40.5 feet northeast of the south corner of the bleacher, 117.6 feet southwest of the southeast corner of the grand stand and 70.9 feet from the fence bounding the park on the east. The station is

INDIANA-Continued.
marked by a limestone post 8 by 8 by 34 inches, projecting about 9 inches above the ground and lettered U. S. C. \& G. S., 1go9. The following true bearings were determined:

```
South end of gable of house at northeast entrance of park o ,
```

 (mark).

Point of south roof of gable on white house.................... . 5 I 14.3 east of north

Spencer, Owen County.-The station is on a farm immediately north of the town. This farm was formerly an experiment station and is now managed by Mr. Humphreys. The station is on the slope of a hill 90 rods northwest of the house and across the road. It is about 125 feet south of the hill, 53 feet south of a honey locust tree, and 6.3 feet southeast of another locust tree. The station is marked by an irregular limestone post sunk level with the ground and wedge shaped on the top, with a small notch in the center. The following true bearings were determined:

$$
\begin{aligned}
& \text { Highest steeple of Christian Church (mark) } 3536.2 \text { west of south } \\
& \text { Railroad water tank. } 4740.4 \text { west of south } \\
& \text { Left edge of brick smokestack. } 5502.4 \text { west of south }
\end{aligned}
$$

Valparaiso, Porter County.-The station is on the county farm $11 / 2$ miles southwest from the courthouse and is indicated by the north stone of a meridian line. Thisstone is on the east bank of the creek, some 30 rods northeast from the county home, and about 400 feet northwest from the bridge at the public highway. A second magnetic station was placed in the azimuth line 14 paces to the northeast from the north stone. The south stone is 568 feet from the north one and on the west bank of the creek 113 feet south from the middle of the highway. The meridian line is marked by two Bedford stone slabs having two sawed faces. They are dressed to 8 by 18 inches at the top and taper to 8 by 14 inches at the bottom arid are $41 / 2$ feet long and project about 4 inches above ground with the broader sides in the meridian. These stones are lettered U. S. C. \& G. S., igog. The following true bearing was determined:

Flag pole on court-house tower (mark).
$3^{2} \quad 10.5$ east of north

IOWA.

Algona, Kossuth County.-The station is in the fair grounds at the southeast edge of the city of Algona and very near to the exact center of the field surrounded by the race track. It is 8 feet to the east from a north and south line passed through the center of the main exhibition building, 27 paces south of a line passed along the south end of the amphitheater, and 130 paces from the southwest corner of the same. The station is marked by a gray sandstone 5 by 8 by 30 inches, projecting 5 inches above ground and lettered on top U.S.C. \& G. S., 1909. The following true bearings were determined:

> East flag pole on main exhibition building (mark) 219.3 east of north
> Outer edge of northwest post in amphitheater 32 35.9 east of north

Audubon, Audubon County. - The station is in the Arlington Heights Cemetery, belonging to the Independent Order of Odd Fellows, about one-half mile northeast of the center of the town. It is in the southwestern part of the cemetery 35.5 fect east of the top of the bank at the east edge of the westernmost road in the cemetery and 39 feet north of the top of the bank at the north edge of the southernmost road. It is also 30.1 feet southeast of the southeast corner of the base of the Russell monument and 18.7 feet east-northeast of the northeast corner post of the Wilson lot. The station is marked by a Bedford sandstone post 6 by 6 by 24 inches lettered U.S.C. \& G. S. The following true bearings were determined:

- ,

Cross on Catholic Church (mark)................................ . . 36 og.0 west of south
Peak of city water tank . 359.5 west of south
Tip of tower of residence west of Catholic Church............ 4 I or. 4 west of south

Descriptions of stations-Cöntinued.
IOWA-Continued.
Bedford, Taylor County.-The station is in the New Fairview cemetery, about mile southwest of the court-house. It is 350 feet from the cemetery gate, at the west edge of the easternmost road, 54 feet west of the east fence of the cemetery, and 39 feet nearly east of the Dickerson monument. The station is marked by a granite post 6 by 6 by 24 inches, set flush with the ground, and lettered U.S C. \& G. S. The following true bearings were determined:
$0 \quad 1$
Peak of belfry of public school (mark) . 2648.3 east of north
Spire of First Presbyterian Church. 40 08.2 east of north
Peak of court-hoùse tower (bottom of flag pole)............... 4337.5 east of north
Weather vane on fire-engine house 4337.5 east of north
4635.3 east of north

A meridian line was determined and marked by a similar stone 600 feet south of the magnetic station.
Chariton, Lucas County.-The station is in the Chariton cemetery, about three-quarters of a mile south of the court-house, at a point reached by the northernmost road in the cemetery about 990 feet from the gate. This point is at the south edge of the pathway south of the Mallory lot and north of the Stuart lot. It is 19 feet southeast of the southeast corner of the Mallory monument and 33 feet north of the north face of the Bonnet monument. The station is marked by a Bedford sandstone post 6 by 6 by 20 inches, projecting about one-half inch above ground, and lettered U. S. C. \& G. S. The following true bearings were determined:

Clarinda, Page County. - The station is in the grounds of the Chatauqua Association, about threequarters of a mile east of the court-house, and about 800 fect east of the Chicago, Burlington and Quincy Railroad station. It is $20 g$ feet east of the west fence of the grounds and 62 feet south of the south edge of the sidewalk north of the main road entering the grounds. The station is marked by a marble post 6 by 6 by 24 inches, projecting I inch above ground, and lettered U.S.C. \& G. S. The following true bearings were determined:

0 ,

A stone similar to the above 600 feet to the south of the station determines a meridian line.
Corning, Adams County.-The station is in the county fair grounds, about one-half mile east of the court-house. It is near the right field of the baseball grounds in the western part of the ring within the race track. It is 41.8 feet east of the fence inside the race track and 62.6 fect southeast (nearly) of the small wooden building (with a bell in its upper story and used for storing clay pigeons) inside the race track. The station is marked by a St. Lawrence stone post 6 by 6 by 20 inches, set with its face level with the ground, and lettered•U.S.C. \& G. S. The following true bearings were determined:

Top of steel framework supporting flag pole (base of flag pole) 0,
in front of court-house (mark) . 6230.7 west of south
Tip of tower on yellow-brick building north of court-house . . . 7119.9 west of south
Tip of water tower. 75 13.6 west of north
Cresco, Howard County. -The station is on what is known as "Baldwin's Hill," in a pasture about r1/2 miles northeast from the court-house. It is on Doctor Connely's farm, three-eighths mile northeast from his house, close to the north brow of the hill, and 20 paces west from the pasture fence which runs north and south. The station is marked by a Bedford stone 6 by 12 by 24 inches, set in limestone,

IOWA-Continued.
projecting 8 inches above ground, and roughly lettered U. S. C. \& G. S., 1gog. The following true bearings were determined:

> Steel windmill tower (distant) mark.
> 5225.4 west of south
> Ornamental tower on Doctor Connely's house. 5354.2 west of south
> Steel windmill about 1 mile away . 6554.9 west of north

0 ,

Denison, Crawford County.-The station is in the Roman Catholic cemetery, about $1 / 2$ miles eastnortheast of the court-house. It is about 150 feet north-northwest of the gate of the cemetery in the pathway west of the McMahon and Burke lots, 8.9 feet north-northwest of the northwest corner of the Burke lot, and 8 feet south-southwest of the southwest corner of the McMahon lot. The station is marked by a Bedford sandstone post 6 by 6 by 24 inches, set flush with the ground. The following true bearings were determined.

> Peak of main building of Denison Normal College (mark) 1204.8 west of south
> Tip of court-house tower . 6I 38.5 west of south
> North edge of top of city standpipe.
> 7148.9 west of south

Des Moines, Polk County.-The station of 1907 could not be occupicd. A new station was established in the state fair grounds, about one-fourth mile east of the old station. It is on the slope of the hill below and about 275 feet northwest of the poultry building, about in the place Grand avenue would run if extended east through the grounds. It is 63.0 fect northwest of a large hickory tree, which stands between the station and the Polk County headquarter's building, and 74.5 feet southwest of another hickory tree near a small building. The station is marked by a large rough stone lettered U. S. C. \& G.S. The following true bearings were determined:

Lower cupola on Drake Sanitarium (mark)	1735.2 west of north
Higher cupola on Drake Sanitarium.	1634.1 west of north
Main cupola on state capitol building.	8314.0 west of south
Center of base of rod on poultry b	12.2 east of south

Elkader, Clayton County.-The station is on the fair grounds, about one-half a mile east from the court-house. It is inside the race track, near the east end of the half-mile course, 171.3 feet from the north fence of the grounds. It is 2 feet west of a north and south line along the east end of the amphitheater and 140 paces north from the northeast corner of the same. The station is marked by a Bedford stone 6 by 6 by 30 inches, projecting 3 inches above ground, and lettered U.S.C. \& G. S., rgog. The following true bearings were determined:

Cross on Catholic Church steeple (mark)	8855.8 west of north
Staff on city reservoir	7629.8 west of north
Artesian well on fair grounds.	$5735 \cdot 3$ west of south

Glenwood, Mills County.-The station is in Glenwood Park, about one-half mile east of the courthouse. It is 200 feet south of the north end of the artificiallake, 65 feet east of the east edge of the lake, and 8 feet west of the west edge of the roadway running east of the lake. It is also 34.5 fcet west of the east fence of the park, and 39 feet from the obtuse angle of the fence. The station is marked by a Bedford sandstone post 5 by 5 by 24 inches, set flush with the ground, and lettered U.S.C. \& G.S. The following true bearings were determined:

Peak of schoolhouse west of town, base of flag pole (mark)... 8530.6 west of south
Steeple of church southwest of court-house. 8906.4 west of north
Belfry of south building of school east of court-house......... 7824.2 west of north
Greenfield, Adair County.-The station is in the Greenfield cemetery, about $\mathrm{I}_{1}^{1 / 2}$ miles south of the court-house. It is in the old part of the cemetery about 385 feet west of the main entrance and about rgo feet north-northwest of the tool house. It is at the center of the intersection of the pathways south and east of the Mathews lot, 18.9 feet southeast of the southeast corner of the base of Mathews monu-
ment, 26 . I feet northwest of the northwest corner of the base of the Sevasin monument, and 24.8 feet northeast of the northeast corner of the base of the Stewart monument. The station is marked by a concrete post 2 feet long and of nearly triangular cross section, 5 inches on each side, set flush to the ground. The following true bearings were determined:

01
East point of gable of court-house tower (mark). 1740.9 west of north
Steeple of wooden church south of the court-house........... . 21 I6. 4 west of north
South side of top of railroad water tank near Chicago, Burling-
ton and Quiticy Railroad station.
5706.6 west of north

Guthrie Center, Guthrie County.-The station is in the county fair grounds, about une-half mile west of the court-house. It is across the creek 12 feet east of the edge of the race track in the northwest part of the infield, 75.5 feet east of the iron pump at the north end of the south shed just outside of the track, and 75.3 feet southeast of the end of the fence at the outer edge of the track. The station is marked with a marble post 2 by 8 by 20 inches, projecting about 1 inch above ground and lettered U.S. C. \& G. S. The following true bearings were determined:

North side of top of smokestack on electric light-station (mark). 5036.4 east of north Center of top of windmill just south of grand stand. 81 18.6 east of south Center of top of windmill on fair grounds. 5907.6 east of south
Harlan, Shelby County.-The station is in the Harlan cemetery, about one-half mile west of the court-house. It is in the western or new part of the cemetery in the pathway between the Byers lot, No. 76, and the Huber lot, No. 77, at the intersection of the pathway with the principal road. It is about 150 feet north of the tool house, 15.2 feet west of the west face of the monument of Frank Byers, and 18.8 feet north of the north face of the base of the monument of Thessa M. Reynolds. The station is marked by a marble post 6 by 6 by 24 inches, set flush with the ground, and lettered U. S. C. \& G. S. The following true bearings were determined:

Indianola, Warren County.-The station is in the Indianola cemetery belonging to the Independent Order of Odd Fellows, about three-quarters of a mile south of the court-house. It is 54 feet north of the fence north of the main road into the cemetery and about iso feet west of the tool house. It is at the south side of the pathway at the northwest corner of the Madden lot (lot 456), 14.3 feet north of the north face of the base of the Madden monument, and 5.9 feet south of the south face of the base of the tombstone of Robert Cooper Brown. The station is marked by a marble post 6 by 6 by ig inches, set flush with the ground, and lettered U. S. C. \& G. S. The following true bearing was determined:

Peak of court-house tower (mark) . 656.5 west of north
Jefferson, Greene County.-The station is in the Jefferson cemetery, about one half mile east of the court-house in "Potter's field" in the southwest corner of the old part of the cemetery. It is just off the east edge of the fourth pathway from the western boundary of the cemetery, running north and south. It is 107.6 feet east of the west fence of the cemetery, 39.5 feet northwest of the northwest corner of the base of the tombstone of G. Frederick Hotchkiss, and 13.5 feet south of a pine tree at the edge of the pathway. The station is marked by a marble post 5 by 5 by 20 inches, projecting about one-half inch above ground, and lettered U.S. C. \& G.S. The following true bearings were determined:

Peak of court-house tower (mark) . 78 35.6 west of north
Peak of city water tower. 89 or. 5 west of south
Leon, Decatur County.-The station is in the Leon cemetery about I mile west of the court-house at a point reached by the easternmost road in the cemetery about 500 feet from the gate. It is 6 feet east
of the edge of this road at the north edge of the path south of the Sanders's lot, 47 feet west of the east fence of the cemetery, and 90 feet southwest (nearly) of the tool house. The station is marked by a marble post 6 by 6 by 20 inches, set flush with the ground, and lettered U.S.C. \& G. S. The following true bearings were determined:

> Peak of court-house tower, bottom of flag pole (mark). 6545.3 east of south
> Steeple of Methodist Church....................................... 54 5r. 9 east of south
> Water tank.
> 7 48.9 east of south

Mason City, Cerro Gordo County. -The station is in the northeast corner of the National Memorial University campus, 1 mile south from the court-house. It is exactly in line with the north wall of Barton Hall and 863 feet (by wheel measure) east from the northeast corner of the building. It is 51 paces south from the center of the street at the north side of the campus. The station is marked by a Bedford stone post 6 by 6 by 30 inches, projecting 5 inches above ground, and lettered U. S. C. \& G. S., 1909 . The following true bearings were determined:
Tip on court-house tower (mark).
Extreme north cdge of the roof on Barton Hall............... 89 45.0 west of north
Southeast edge of lower story wall of Barton Hall........... 80 13.2 west of south

- ,

Mount Ayr, Ringgold County.-The station is in the Rose Hill Cemetery about one-half mile southeast of the court-house. It is 18 r feet south of the north fence of the cemetery, 24 feet west of the west edge of the principal road in the cemetery, and 16 fect northeast of the Kinsell monument at the south edge of the pathway north of the Kinsell lot. The station is marked by a Bedford sandstone post 6 by 6 by 24 inches, set flush with the ground, and lettered U.S. C. \& G. S. The following true bearing was determined:

Peak of court-house tower just below weather vane (mark)... 5^{2} 10. 2 west of north
Nevada, Story County.-The station is in the county fair grounds, about three-fourths of a mile northeast of the court-house. It is 5^{8} feet northeast of the inside edge of the race track in the southwest part of the infield, and 152 feet southeast (nearly) of the southeast corner post of the grand stand. The station is marked by a Bedford sandstone post 6 by 6 by 24 inches, set flush with the ground, and lettered U. S. C. \& G. S. The following true bearings were determined:

Center of cross on Catholic Church steeple (mark)	1729.6 west of south
Center of head of statue on top of court-house	3454.9 west of south
Peak of city water tank	$40 \quad 06.7$ west of south

Osage, Mitchell County.-The station is on the county fair grounds about one-half mile east and one-half mile south of the town's center. It is within the race course at the southwest corner and is 108.5 fect west of south from the flagpole within the race course, 93 feet north of south fence around the race course, 12 feet west of a fence south of the exhibition sheds, if fence were produced north, 247.5 feet northeast of the northeast corner of the sheds in the southwest corner of the grounds, and $3_{3}{ }^{6}$ feet southwest from the southwest corner of the judges' stand. The station is marked by a Bedford limestone post 6 by 6 by 36 inches, set level with the surface of the ground, and lettered U.S. C. \& G. S., rgo9. The following true bearings were determined:

> Base of flagstaff on steel water tank (mark)..................... . . 455 5.4 west of north
> Base of cross on Catholic Church steeple....................... . 26 o6.6 east of north
> East edge of base of flagstaff on fair-grounds office. 354 r.7 west of north
> East edge of base of flagstaff on judges' stand................. 1434.9 east of north

Red Oak, Montgomery County.-As the station of rgoo was not suitable for reoccupation a new one was established in the Evergreen (New City) Cemetery within the "omamental circle," nearly southwest from the center of the soldiers' monument. It is 26.9 feet from the southwest comer of the base

Descriptions of stations-Continued.
IOWA-Continued.
and 31.6 feet from the southeast corner of the base of the monument. The station is marked by a limestone post 6 by 6 by 24 inches, tapering to about 2 by 2 inches at the bottom, set flush with the ground, and lettered U. S. C. \& G. S. The following true bearings were determined:

Rockwell City, Calhoun County.-The station is in the northern part of the cemetery, I mile northeast of the town. It is 40 feet east of the west fence and 126.5 feet north of the south fence. It is 115 feet north of the northeast corner of the tool house and about in 5 feet north and a little west of the large Brower monument. The station is marked by a cement block 7 by 7 by 18 inches, roughly lettered U. S. C. \& G. S. and sunk level with the ground. The following true bearings were determined:

South edge of standpipe (mark). 6348.3 west of south
Center of smokestack on factory north of Chicago, Milwaukee
and St. Paul Railway depot (canning factory). 84 03.2 west of south
Center of windmill 1 mile northwest. 3928.7 west of north
Sibley, Osceola County.-The station of 1891 was reoccupied. It is just southeast of the Sibley Hotel, 121.4 feet south of the fence along the main street of the town and 14.2 feet west of the fence along the road leading to the prairie. It is marked by a drill hole in the top of a dressed-marble post 4 inches square, sunk flush with the surface of the ground. The point of the cupola on the rear of the Sibley Hotel bears $64^{\circ} 47^{\prime} .5$ west of true north.

A new station was occupied about three blocks east of the northeast corner of the county courthouse square, in the city park. It is 114.7 feet north from the new cement walk running east along the south edge of the park. It is 62.7 feet east from the row of maple trees at the east side of the drive that enters the park at the south side, or about 80 feet east from the center of the north and south street which passes on the east side of the high-school block. The station is marked by a cement post 6 by 6 by 24 inches, set I inch below the surface, and very dimly lettered U. S. C. \& G. S., igog, on the top with a countersink mark at the center. The following true bearings were determined:

Northwest corner of the brick wall of high school just below 0 ,
the cornice (mark)... 2822 west of south
Intersection of north edge of north walk with west edge of east walk (cement) east side of street east of park. 6411.3 east of south
Sidney, Fremont County.-The station is in the Sidney cemetery, about one-half mile southeast of the court-house. It is at the east edge of the pathway west of the Bickel lot; 107 feet south of the north fence of the cemetery, 91 fect east of the east edge of the main road into the cemetery, and 16.5 feet south of the south face of the tall marble monument in the Jordan lot. The station is marked by a concrete post 5 by 5 by 20 inches, projecting about I inch above ground, and lettered U. S. The following true bearing was determined:

- 1

West edge of top of water tower (mark)........................ 3^{6} or. 3 west of north
Spencer, Clay County.-The station is in a pasture lot on Mr. F. B. Felt's farm at the north edge of the city of Spencer. It is directly in line with a row of elms that line the west side of Prairie avenue, and also in line with the gable or ridge pole of Mr. Felt's carriage barn, so that the intersection of these two lines meeting at right angles locates the station. It is 195 feet north from Mr. Felt's fence on the south line of his farm. The station is marked by a Bedford limestone post 8 by 8 by 30 inches, projecting 3 inches above ground, and lettered on top U. S. C. \& G. S., rgo9. The following true bearings were determined:

Staff on Spencer city elevated water tank (mark)	- 34.6 west of south
Cross on a church steeple.	442.6 east of south
Smokestack at the Spencer brick and tile factory $6348 \mathrm{I}^{\circ}-1 \mathrm{I}-8$	51.5 west of north

Descriptions of stations-Continued.

IOWA-Continued.
Spirit Lake, Dickinson County.-The station is in the parade ground of the Templar's Park, $21 / 2$ miles north of the town. It is 28.5 feet south from a line along the south wall of the west wing of the Apartment Building, and 222.6 feet east from the fence along the east side of the highway which passes by the park. The station is marked by a Bedford limestone post 8 by 10 by. 28 inches, set flush with the surface, and lettered on top U. S. C. \& G. S., 1909. The following true bearing was determined:

> Wooden staff on gable of west wing of Apartment Building, ○ ,
> (mark).. 81 52.9 east of south

Webster City, Hamilton County.-The station is in the cemetery, about one-half mile south of the court-house in the central park belonging to the Grand Army of the Republic just south of the road in the cemetery nearest the north fence. It is 70.4 feet south of the north fence, 5 I.I feet south-southeast of the southeast corner of the base of the tombstone to Electa Hammitt, and 88 feet west-southwest of the west post of the principal gateway into the cemetery. The station is marked by a Bedford stone post 5 by 6 by 24 inches, set level with the ground, and lettered U.S.C. \& G.S. The following true bearings were determined:

> Flag pole at center of court-house tower (mark)................ . 27 54.3 east of north
> Steeple of high school... 2200.7 east of north
> Letter " 1 " in the word "CITY"' on inscription above Web-
> ster City Mausoleum.
> 2954.5 west of south

Winterset, Madison County.-The station is in the Rock City cemetery, about one-half mile south of the court-house. It is on the roadway nearest the north fence of the cemetery, 76.6 feet south of the north fence and 10 feet west of the west edge of the principal road. It is 10.8 feet north-northwest of the northwest corner of the base of the Knight monument, and 26.9 feet north-northeast of the northeast corner of the base of the tombstone of Mary Whitmore Smith. The station is marked by a Bedford sandstone post 6 by 6 by 24 inches, set flush with the ground, and lettered U.S.C.\& G.S. The following true bearings were determined:

Peak of court-house tower, base of weather vane (mark). 2933.3 west of north
Tip of tower of the south ward school building................ 6042.0 west of north
Tip of water tower. .. . 15 39.1 west of north

KANSAS.

Baldwin, Douglas County.-Observations were made in the absolute house of the magnetic observatory. The flagstaff on Science Hall, Baker University, was used as a mark. Its true bearing is $4^{8^{\circ}} 20^{\prime} .6$ west of north. When the observatory was discontinued in October, 1909, a cement reference stone was set 36.25 feet due south of the declination pier in the absolute house. It is in a field belonging to J. G. Brockway, 207.I feet from his well and 143 feet from the corner of the building in which the variation instruments had been mounted. The stone is lettered U. S. C. \& G. S., 1909. From it the following true bearings were determined:

> Howard monument in cemetery................................. 5409.3 west of south
> South edge of south chimney of a house 6253.2 west of south
> South edge of north chimney of the same 63 o4.7 west of south
> Brockway's well 83 o6.9 west of south

Council Grove, Morris County.-The station is within the race track in the fair grounds north of the town. It is ${ }_{171}$ feet northeast of the north gatepost at the entrance to the space inclosed by the race track, and 15 r .5 feet east of the nearest point on the outside race track fence, 4 posts south of the one mentioned above. It is about 130 yards south of the judges' stand. The station is marked by a stone 6 by 6 by 24 inches, sunk level with the ground, and lettered U.S.C.\&G.S. The following true bearings were determined :

> North edge of water standpipe (mark) 6759.7 west of south
> Base of flag pole on judges' stand............................... 329.7 east of north

Descriptions of stations-Continued.

KANSAS—Continued.

Iola, Allen County.-The station is in the fair grounds southwest of the town, near the river. It is near the south side of the space inclosed by the race track. It is 21.5 feet from the inside race track fence south of the station, 32 I .5 fcet west of the judges' stand, and about 300 feet east and a little north of the Driving Club stables. The station is marked by a limestone post 6 by 6 by 24 inches, sunk level with the ground, and letfered U.S.C. \& G.S. The following true bearings were determined:

Court-house cupola (mark)	5413.8 east of north
Base of flag pole on judges' stand.	8705.9 east of south
South edge of chimney on school.	8253.5 east of south

Leavenworth, Leavenworth County.-The station is on the government reservation west of Fort Leavenworth Post buildings, east of the national cemetery, and east of the road leading to the fort from Broadway in town. It is 80 feet north from a large oak tree, and 273 feet east of the northeast corner of the stone fence around the cemetery. The station is marked by a marble post 6 by 6 by in inches, lettered U.S.C. \& G. S., and sunk level with the ground. The following true bearings were determined:

Lincoln, Lincoln County.-The station is on the school grounds in the southern part of the town, 150.5 feet north west from the northwest corner of the school building, and 24.5 feet south from the inner edge of the stone walk along the north side of the grounds. The station is marked by a marble slab sunk level with the ground and lettered U.S. C. \& G.S. The following true bearings were determined:

$$
\begin{aligned}
& \text { East gable of Union Pacific station house (mark). } 8304.7 \text { west of south } \\
& \text { West one of two cupolas on a barn . } 7508.9 \text { west of north } \\
& \text { Flag pole on schoolhouse. } 5754.3 \text { east of south }
\end{aligned}
$$

Oskaloosa, Jefferson County.-The station is about in the center of the cemetery north of the town, in a driveway, 28.5 fect southeast of the base of the large Sands monument, and 13.5 feet northwest from the base of the Lohmann monument. The station is marked by a limestone post about 6 by 6 by 24 inches, sunk level with the ground, and lettered U. S. C. \& G. S. The following true bearings were determined:

$$
\circ \quad,
$$

Cupola of barn one-half mile north (mark)..................... . . 407.5 west of north
Tip of west iron gatepost at entrance to cemetery 1328.0 east of south
Salina, Saline County.-The station of 1904 was reoccupied. It is on the grounds of the Kansas Wesleyan University at a point 327.6 feet northeast of the northeast corner of the main building, 209.2 feet south and a little east of the southeast corner of the dwelling across the strect, and 300 feet (about) west of the tracks of the McPherson Branch, Union Pacific Railroad. It is marked by a limestone post 6 by 6 by 30 inches, set flush with the ground, and lettered U. S. C. \& G. S., Igo4. The following true bearings were determined in 190g:

Figure 1 on corner stone of the university building (mark)... 6204.2 west of south
East gable of ladies' dormitory. 6557.5 west of north

KENTUCKY.

Bowling Green, Warren County.-The station is in the eastern corner of the grounds surrounding Ogden College, about I mile southwest of the town's center. It is 45.8 feet from a fence bounding the ground on the northeast, 51.4 fcet from the fence on the southeast, 157.2 feet due east of a south meridian stone, and 289.4 feet southeast of a north meridian stone. The station is marked by a neck of a white glass bottle, about 4 inches under the surface of the ground. The following true bearings were determined:

Corner at center of base post at northeast corner of northeast ${ }^{\circ}$. piazza of college building (mark) . 8545.7 west of north
Upper northeast corner of John R. Drake's house, under eaves. 6508.6 east of south
The meridian line mentioned above was set by request of the county authorities.

Descriptions of stations-Continued.

KENTUCKY-Continued.

Brownsville, Edmonson County. - The station is in the eastern part of a piece of lapd belonging to D. A. Logan and is near the top of small hill about 600 feet east of the county court-house. It is 107.4 feet a little west of north of the fence bounding this ground on the southeast, 104.5 feet north of east of the northeast corner of a small cabin on the west side of the ground, and about 63 feet west of the edge of a large mass of rock at the top of the hill. The station is marked by a limestone post 5 by 8 by 30 inches, projecting about 5 inches above ground, and lettered U.S.C. \& G. S., igog. The following true bearings were determined:

> East gable of roof of J. P. Reed's residence (mark) 56 . 53.5 west of south Base of spire on cupola of county court-house.............. 50 12.2 west of south Top of steeple of Baptist Church. 83 42.8 west of south

Elizabethtown, Hardin County. -The station is in Elizabethtown cemetery, about 30 yards from the main entrance or northeast gate. It is in the edge of the driveway, near the northeast corner of the Wintersmith lot, 5.9 feet from the northeast edge of a large square stone marking the northeast corner of the lot, and 23.5 feet from the northwest edge of a similar stone marking the northwest corner of the lot. No permanent mark was considered necessary. The following true bearings were determined:

Franklin, Simpson Couniy.-The station is in the southwestern corner of the ground surrounding the Trade School, about one-fourth mile south of the town's center. It is 9 I .5 feet from the fence across the road on the south side of the ground, and 115.8 feet east of the east edge of the sidewalk on the west border of the ground. The station is marked by a limestone post 5 by 7 by 33 inches, projecting about 6 inches above ground, and lettered U.S.C. \& G.S., 1909. The following true bearings were determined:

- ,

Upper northwest edge of a small brick stable under caves (mark) 1653.1 east of north
West ball at top of tower of Female College..................... 6058.9 west of south
Northwest comer of stone cornice just above foundation of
grade school building... 5955.7 east of north
A hole in the top of a stone 6 by 6 by 30 inches, projecting about 5 inches above ground and set 240.9 feet due north marks the north end of a meridian.

Munfordville, Hart County.-The station is a little northwest of the center of the ground surrounding the grade school, about 1,000 feet southwest of the county court-house. It is 25.6 feet northwest of the fence between the boys' and girls' playgrounds, and 103.8 feet southwest from the western corner of the school building. The station is marked by a limestone post 5 by 7 by 30 inches, projecting about 6 inches above ground, and lettered U.S.C. \& G.S., rgos. The following true bearings were determined:

Cupola on south corner of tower of Presbyterian Church (mark). 2340.3 east of north
Southeast gable of Mr. Campton's house 3525.5 west of north
Southeast gable of Mrs. William White's house. 6414.3 west of south
About 350 feet due north in the north corner of Doctor Adams's orchard a hole placed in the top of a second limestone post indicates the north end of a meridan line. This post is 5 by 8 by 30 inches and projects about 5 inches above ground.

Descriptions of stations-Continued.

LOUISIANA.

Ruston, Lincoln Parish.-The station of 1904 was reocicupied. It is on the meridian line established by Dr. G. D. Harris in 1902 on the grounds of the State Industrial College. It is 55 feet north of the south monument and is marked by an ash stake driven flush with the ground. The following true bearings were determined in 1gio:

Lower northwest corner of main building

- ,

Top of pyramidal roof on a frame house
$3^{8} 03.4$ west of south
Shreveport, Caddo Parish.-The station of 1904 was reoccupied. It is in the northeastern part of the space inside the Caddo Downs race track, which is about 3 miles southwest of the court-house. The inner fence about the race track is distant from the station 38 . I feet, measuring due north, and 34.4 feet measuring in the direction of the Mulkaupt House. There is a small pear orchard about 15 rods north and west of the station and across the race track. The station is marked by a Bedford limestone post 5 inches square, projecting 5 inches above the general surface, and having a hole filled with lead to mark the center. Two other similar stones mark the meridian, the south stone being 600 feet south of the magnetic station and 6 feet inside the inner fence of the race track, while the north stone is 940 feet north of the magnetic station and is 6 feet inside the high board fence surrounding the race-track grounds. The spire of the Jewella Christian Church bears $76^{\circ} 59^{\prime} .4$ west of true south.

Tallulah, Madison Parish.-The station of 1904 was reoccupied. It is in the southeastern part of the parish farm and about three-fourths of a mile south of Tallulah. It is $3 x$ feet from the fence along the west edge of the road by the bayou and 23.7 feet from a fence to the southwest. The station is marked by the neck of a bottle embedded in a 6 -inch tile filled with cement and surrounded by a mass of concrete. A similar monument, 252.5 feet north, marks the meridian line. This north monument is north of a small peach orchard, 63.7 feet from the northwest corner of a small house and 54.5 feet from the south west corner of a small fenced lot. The south gable of the Frisco section house bears $4^{\circ} 37^{\prime} .6$ east of true north.

MAINE.

Auburn, Androscoggin County. -The station is in Auburn Heights near the top of Merrill Hill, about I mile west of the town's center. It is in line with the east side of a cement reservoir and nearly in line with the northwest side. It is 121.5 feet north of the northeast comer of the reservoir, 213.4 feet northeast from the nearer northwest corner of the same, 92 feet east of an ash tree, and 102 paces southeast of a birch tree. The station is marked by an exposure of granite with a cross and drill hole cut in it to mark the exact spot. The following true bearings were determined:

rch spire in Lewist	8841.2 east of south
East gable of distant barn.	1112.0 east of south
Ball on north tower of Poland Springs Hotel	51 02.0 west of south
Cupola on distant barn	237.5 west of north
Spire on north tower Sum	6435.6 west of so

Bethel, Oxford County. -The station is near the top of Pine Hill, about three-fourths mile west of the town's center. It is near the southern extremity of the top of the hill, about 250 paces from Grover Hill road, 200 paces from the extreme top of the hill, 48 feet northwest of a pine tree, 35 feet northeast of a second pinc tree, and 108 feet south west of the comer of a stone fence. It is marked by a cross and a drill hole cut on the face of a rounded granite bowlder projecting a little above ground. The following true bearings were determined:

dge of south chimney on Dr. J. G. Gehring's house... . 8507.6 east of south ge, near ground of large stone on meadow r mile away... 1846.5 west of south

Capens, Piscataquis County.-The station is about one-fourth mile west of the hotel, near the center of a pasture covered with very large bowlders and belonging to Mr . Capens. It is 149 feet from a fence on the southeast, 125.8 feet southeast from the southeast comer of a bowlder projecting io feet above ground. Observations were made over the center of a rounded bowlder projecting about 6 inches above

Descriptions of stations-Continued.

MAINE-Continued.
ground, and cut with a cross and drill hole to mark the exact spot. The following true bearings were determined:

An iron bolt set in a rock 253 feet to the north marks the north end of the meridian line.
Fort Kent, Aroostook County. -The station is on the point on which stands the old Block House of 1838 , on land owned by Mr. Dickey, collector of customs at Fort Kent, and across a small branch from his residence. It is $I_{3} \sigma$ feet south of the southeast corner of the Block House and z_{4} feet west of the edge of the bank and west of the trail leading to the Block House. The station is marked by a 4 -inch sewer tile which projects about 4 inches above ground. The following true bearings were determined:
Flagstaff on east end of G. H. Page's store (mark)............. 13 I8.8 east of south
Southeast corner of Block House................................ . . 538.6 west of north
Center of chimney on new hotel near depot. 33 24.0 east of north
Cross on Catholic Church..................................... . 74 36.9 east of north

Greenville Junction, Piscataquis County.-The station of 1887 could not be occupied. A new one was established about one-fourth mile west of Greenville Junction on Squaw Mountain. It is near the east end of a pasture belonging to Mr. A. A. Craft, about 43 paces west of the brow of the hill, 27 feet north of a pine tree, 24 paces northwest from a large bowlder, and 34 I feet southeast from a very large bowlder near the ball diamond. The station is very nearly in line with the Canadian Pacific Railroad, extended. Observations were made over a large field stone which projected a few inches above ground. A cross and drill hole mark the exact spot. The following true bearings were determined:

> Weather vane on cupola of south barn belonging to Mr. Charles ${ }^{\circ}$,
> Jackson (mark)... . . 62 33.2 east of south
> Ball on cupola of house in village. 8041.3 east of south
> West gable of Moosehead Hotel.................................... . . 8351.8 east of north
> West gable of house in village.. 7551.9 east of south

Kineo, Piscataquis County.-The station is on the south slope of Mount Kineo and about 2100 feet northwest of the west end of the Kineo Hotel, in line with the center of the hotel and Sandbar Island. It is about 80 feet from the edge of the timber line on the east, and 240 feet from the timber line on the west, on grounds at present used for golf links. Observations were made over a flint bowlder, projecting 6 inches above ground, and cut with a cross mark and drill hole to mark the exact spot. The following true bearings were determined:

Apex of cupola on southwest corncr of Kineo Hotel (mark) .. $3^{1} 58.9$ east of south Weather vane on south cupola of large barn at Kineo station
(Rockwood) . 12 13.9 west of south
Spire on east end of Kineo store. 51 37.9 east of south

$$
\text { Spire on west end of Kineo store. } 4945.1 \text { east of south }
$$

Kittery Point, York County.-The station is on Gerrishe's Island, on the north side of the entrance of the harbor of Portsmouth, N. H. It is near the Pocahontas Hotel, and almost directly in line with the east gable of the hotel and Whales Back Light-house. The station is 120 feet from the west corner of the piazza, ino feet from the south corner, and 75.3 feet from the flagstaff. It is marked by a concrete post, projecting about 2 inches above ground, and lettered U. S. C. \& G. S., 1909. The point is marked by an old tool handle, with a brass end, embedded in the cement. The following true bearings were determined:

Whales Back Light-house (mark).	4333.6 west of south
Gable, Pocahontas Hotel	4332.8 east of north
Cupola, life-saving station	80 o6.8 west of south
Portsmouth breakwater ligh	6807.7 west of north

Descriptions of stations-Continued.

MAINE-Continued.

Oakland, Kennebec County.-The station is in a pasture belonging to Mr. John Fish, about three-fourths mile west of the town. It is near the north center of the pasture, on the highest point, and in feet southwest of a very large bowlder. It is 192.4 feet south of a fence, 150 paces east of an elm tree, at the base of which is a large pile of field stones, and one-fourth mile south of the reservoir. Observations were made over a field stone projecting a little above ground. A cross and drill hole marks the exact spot. The following true bearings were determined:
-

MARYLAND.

Cheltenham, Prince George County.-The station is at the Coast and Geodetic Survey magnetic observatory, on the grounds of the state reform school.

Greenbury Point, Anne Arundel County.-Magnetic observations were made at the triangulation station Greenbury Point, near Annapolis.

MASSACHUSETTS.

Bosion, Suffolk County.-The 1906 station was reoccupied. It is on Castle Island south of Fort Independence, about 50 fect northwest of the station of 1905 . It is 143 paces from the south entrance to the fort, and is 6 feet west of a direct line from the south entrance of fort to a large tank on a distant hill to the south. It is also 142 paces from the southeast corner of the fort, 153 paces from the southwest corner, and 63 paces from a small walk, in a direct line to the south entrance. The station is marked by a limestone post 6 by 6 by 32 inches, projecting i inch above ground, and lettered U. S. C. \& G. S., 1905. The following true bearings were determined in 1906:

Dedham, Nofolk County.-The station is in Fairbank's Park, near the middle of Central avenue, produced. It is about three-fourths mile almost due south of the Memorial Hall, in feet 7.8 inches southwest from a hydrant, and 12 I feet 5.5 inches southeast from the southeast corner of Mrs. Campbell's house. The station is marked by a granite post 6 by 6 by 24 inches, round on top, center-marked and lettered U. S., and set level with the ground. The following true bearings were determined:

Flag pole on Memorial Hall (mark) 1534.5 west of north
Top of northeast side of Blue Hill observatory
Lawrence, Essex County.-The station of 1905 was reoccupied. It is the south stone of a meridian line established by Essex County in 1874 in the city common. It is nearly in line with the center of Garden street extended and is 71.1 feet due west of the curbstone on the west side of Jackson street. The north stone is a few feet south of the sidewalk on Haverhill strect. There is a third stone midway between the two. These monuments are of granite and project about 18 inches above ground. They are hexagonal in shape and have a circular brass plate bolted in the top. A cross is cut in the plate, and the center of the cross marks the exact spot. The following true bearings were determined in 1905:

Middle meridian stone (mark).	004.6 west of north
North meridian sto	005.8 west of north
Congregational Church	3007.4 west of no

Descriptions of stations-Continued.

MASSACHUSETTS-Continued.

Plymouth, Plymouth County.-The station is on Long Beach, about 98 feet from high-water mark on the east side of the point and exactly on the line between the Plymouth national monument and the North Tower of the Gurnet Light-house. It is marked by a wooden stake, about 3 by 3 inches on top, driven into the sand, and projecting about 4 inches above ground.

The North Tower of Gurnet Light-house bears $52^{\circ}{ }^{\circ} 0^{\prime} \cdot 3$ east of true north.
Salem, Essex County.-The station of 1906 was reoccupied. It is on the government reserve around Fort Pickering Light-house. The fort has been torn down and only the embankments now remain. The station is on the south embankment, almost due east from the light-keeper's dwelling. It is 82 paces from the light-house and bears 15° west of north and is 42 paces from the head of the steps leading down from the embankment to the light-house. The station is marked by a limestone post 6 by 6 by 32 inches, projecting 1 inch above ground, and lettered U.S.C. \& G. S., 1905. The following true bearings were determined in 1g06:

Catholic Church spire in Salem (mark) $7^{1} 3^{2.6}$ west of south
Prominent spire in Salem... . $7^{66}{ }_{46.0}$ west of south
Church spire.
7616.8 west of south

Spire in Beverly.
2906.5 west of north

Spire in Marblehead
II 0.5 .2 east of south
Vineyard Haven, Dukes County.-The station of 1906 was reoccupied. It is on the reservation of the United States Marine-Hospital Service on the lawn in front of the building. It is 88.5 feet southeast from the flagstaff and 193 feet east-northeast from the northeast corner of the brick basement of the building. It is I .5 feet southeast from the line of tangency of the cast end of the hospital building and the east end of the attendants' quarters to the rear. The station is marked by a granite post 5 by 5 by 30 inches, set flush with the ground. The following true bearings were determined in 1906:
Center of East Chop Light-house (mark)
49 Or. 7 east of north
Town hall spire.
4429.6 west of north
Center of standpipe.
5509.0 east of south

MICHIGAN.
Alpena, Alpena County.-The station of 1907 was reoccupied. It is in the southwest part of the oval within the race track at the county fair grounds, about $11 / 2$ miles southwest of the center of the town. It is 120.2 feet north of the fence around the inside of the race track at the south end, 106.5 feet east of the inside fence on the west, and 232.4 feet west of the fence on the east. The station is marked by a Bedford limestone post, 5 by 6 by 36 inches, projecting about 6 inches above ground, and lettered U. S. C. \& G. S., r907. The following true bearings were determined:
-
Flagstaff to the south (mark). 1 . 38.8 west of south
Spire of only church steeple in sight. 45 20.4 east of south
Flagstaff on cupola of Garfield School........................... 30 I5.3 cast of south
Flagstaff on grand stand... . 4950.7 east of north
Iron River, Iron County.-The station is near the west side of the large playground on the north side of the public-school building. Observations were made over a wooden stake driven flush with the ground, 50.5 feet from the permanent mark and in an exact line from the spire on the Catholic Church produced eastward through the permanent mark. The permanent station mark is a 6 -inch sewer tile filled with cement and inscribed on top U. S. C. \& G. S. It projects 7 inches above ground and is 2.2 feet from the west fence of school grounds and ${ }_{53}$ feet from the northwest corner of the school building. The following true bearings were determined:

Ball on tall flag pole on First National Bank Building (mark). . 234.4 west of south
Catholic Church spire. .. . 4823.4 west of south
Small cupola on residence of Doctor Libby...................... $5^{6} \quad 23.2$ east of south

Descriptions of stations-Continued.

MINNESOTA.

Ada, Norman County.-The station is in the cemetery, i mile east and slightly south from the county court-house. It is in the end of the east-and-west driveway, 48.9 feet southeast from the base of the W. S. Levalley monument, 7 I.i feet northeast from the base of the Roesch monument, 29.4 feet southwest from the Bullock monument, and 55 fect from the cemetery fence by the highway on the east. The station is marked by a glazed clay marker, $43 / 4$ inches in diameter and 16 inches in length, with a cross mark in the top, and set 3 inches below the surface. The following true bearings were determined:

$$
\begin{aligned}
& \text { Tip on high-school cupola (mark). } 7342.9 \text { west of north }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Distant barn cupola. } 7939.4 \text { east of north }
\end{aligned}
$$

Aitkin, Aitkin County.-The station is in the central driveway of the Lakeview Cemetery, $1 / 2$ miles west of the city. It is 16.8 feet southwest from the base of the John C. Polley monument, 65 feet east of the Almon F. Stearnes monument, 44.7 feet northeast of the Nils Shank monument, and 39.5 feet northwest from the Charles W. Cluff monument. The station is marked by a hexagonal brick tile, 4 inches across and 12 inches in length, set in the sand 12 inches below the surface of the drive. The following true bearings were determined:

$$
\begin{aligned}
& \text { Cross on Aitkin Catholic Church spire (mark). } 584542.8 \text { east of north } \\
& \text { High-school cupola. } 56 \text { east of north }
\end{aligned}
$$

Austin, Mower County. -The station is in the fair grounds, $11 / 4$ miles west from the court-house, in the field surrounded by the race track exactly in line with the cast wall of the amphitheater, 357.5 feet from the southeast corner of the same. It is also due east on a line with the ridge pole of the poultry exhibit building, so that the intersection of the line from this with the line along the east end of the amphitheater locates the station. The station is marked by a Bedford stone 7 by 7 by 3^{2} inches, projecting 5 inches above ground, and lettered U.S.C. \& G. S., rgog. The following true bearings were determined:

$$
\begin{aligned}
& \text { Court-house tower (mark) . } 65 \text {. } 49.4 \text { east of north } \\
& \text { Cross on Catholic Church steeple. } 49.242 .2 \text { east of north } \\
& \text { Smokestack at cement factory (very distant) } 24.8 \text { east of south }
\end{aligned}
$$

Bagley, Clearwater County.-The station is in the new cemetery, i mile north from the village of Bagley. It is in the driveway and quite near the center of the ro-acre plat, 259.4 feet east of an iron stake which marks the center of the west end of the driveway, 19.8 feet from the lot stakes on the north edge of the driveway, or 20.2 feet from the lot stakes on the south edge of the driveway. The station is marked by a glazed clay marker, $43 / 4$ inches in diameter and 16 inches long, with a cross-mark in the top, and set 3 inches below the natural surface (very sandy loam). The following true bearings were determined:

> Northeast edge of Ole M. Rolland monument above the base o,
> (mark) . 8087.0 west of north
> Apex on Caroline Brown monument. 4848.4 west of south

Breckenridge, Wilkin County. -The station is in the south side of the county court-house yard, 22.6 feet from the tree row on the south and 78.5 feet from the cement walk on the west side of the yard. It is marked by a limestone post 6 by 6 by 24 inches, set flush with the ground, and lettered U. S. C. \& G. S., 1909. The following true bearings were determined:

Northwest comer above the water table on the St. Francis \circ,
Hospital (mark) . 6122.4 west of south
Cross on cupola of St. Francis Hospital. $48{ }_{56} 6.5$ west of south
Carlton, Carlton County.-The station is in the cemetery, approximately i mile south of the town. It is in the edge of the driveway adjoining the county poor lot at the southwest comer of the old part of the cemetery. The station is 102.5 feet and 174.4 feet, respectively, from the south and west fences

Descriptions of stations-Continued.

MINNESOTA-Continued.

of the cemetery, measuring in each case from the thirtieth post from the southwest comer post of the cemetery fence adjoining the highway. The station is marked by a field stone, egg-shaped, small end up, one flat face at the south, about 2 feet in depth, and set flush with the ground. The following true bearings were determined:

$$
\begin{aligned}
& \text { Cloquet city steel water tower (mark } 6 \text { miles distant)......... }{ }^{21} 58.7 \text { west of north } \\
& \text { New Catholic Church steeple at Carlton........................ . } 10 \text { o3.0 east of north } \\
& \text { Apex of Freelove Adelaide Owens monument. } 2243.8 \text { east of north }
\end{aligned}
$$

Center City, Chisago County.-The station is in the west end of a vacated strect at the south side of the county court-house grounds, 84 feet from the northwest corner of the Bee Bee cottage, and 150.5 feet west from the west corner of the fire-proof vault at the court-house. The station is marked by a granite stone 6 by 6 by 26 inches, set three inches above the surface, and lettered on the top U.S.C. $\&$ G. S., 1go9. The following true bearing was determined:
\circ
North cupola of barn on John Smith's estate (mark)......... 8403.3 west of north
Ely, St. Louis County.-The station is 73.9 feet south $1 I^{\circ}$ east from the southwest corner of concrete fence surrounding the "Ely High School rgo5" and in a line due south from the center of a concrete pier (16 by 24 by 40 inches high) erected for transit station, this pier being 6 paces east and 2 paces south of southwest corner of concrete fence mentioned. The ground is not fenced in and has numerous bowlders scattered over it. The station is marked by a small wooden stub. The following true bearings were determined:

- ,

Montevideo, Chippewa County.-The station is on the campus of Windom Institute at the north edge of the town. It is 52 I feet from the northeast corner of Jones Hall. A line along the east wall of the building passes 6 r paces west of the station. The station is marked by a marble block 5 by 10 by 20 inches, set I inch above the surface of the prairie sod, and lettered on the top U. S. C. \& G. S., igo9. The following true bearings were determined:

$$
\begin{aligned}
& \text { Camp Release monument (mark) (} 3 \text { miles away)............... } 3647.9 \text { west of south } \\
& \text { German country church (3 miles away)........................ } 7549.7 \text { east of north } \\
& \text { Church steeple at Watson (} 7 \text { miles away)....................... . } 4400.6 \text { west of north } \\
& \text { Northwest corner of Jones Hall (approximately)............... } 2653 \text { west of south }
\end{aligned}
$$

Morris, Stevens County.-The station is on the grounds of the old Indian school one-half mile northeast from the county court-house. It is in the west edge of the grounds some 30 paces north of the gateway and 307.4 feet west from the southwest corner of the brick building known as the girls' dormitory, located exactly in line with the south wall of the building. It is 35.8 feet from the west fence of the grounds. The station is marked by a limestone post approximately 4 by 5 by 24 inches, set 2 inches above the surface of the ground, and lettered on the top U. S. C. \& G. S., rgog. The following true bearings were determined:

- ,

> County court-house cupola (mark).
> 61 34.4 west of south
> Cross on Devenney monument (massive granite).
> 7849.9 west of north

New Ulm, Brown County.-The station is in the county fair grounds $11 / 4$ miles northwest from the court-house in the field surrounded by the half-mile race track and exactly in line with the north wall of the west wing of the brick exposition building (new 1909). It is 366.6 feet to the west from the northwest corner of said wing of the building. The station is marked by a Bedford stone 8 by 8 by 27 inches, set 1 inch above the surface, and lettered on the top U. S. C. \& G. S., 1909. The following true bearings were determined:

- ,

Descriptions of stations-Continued.

MINNESOTA-Continued.

Owatonna, Steele County.-The station is about three-fourths mile southwest of the town's center, in the southwest comer of a hay field belonging to R. H. Chapin, which overlooks the valley of the Straight River to the west and north. The Chicago, Rock Island and Pacific Railroad runs along the base of the hill, west of the station. It is 517 feet west of the hedge along the road, 122.3 feet from the fence to the southwest, 112.8 feet from the fence to the south, and 17.4 feet from the tree to the north. The station is marked by a Bedford limestone post 6 by 6 by 36 inches, projecting 2 inches above the ground, and lettered U. S. C. \& G. S., 1909. The following true bearings were determined:

Park Rapids, Hubbard County.-The station is in the cemetery i mile east of town. It is at the south end of the 26 -foot driveway upon which the Davis, the Winship, and the Phipps monuments front. It is 114.6 feet from the southeast corner of the base of the Phipps monument, 168.8 feet from the southeast corner of the base of the Winship monument, and 13.5 and 12.5 feet, respectively, from the lot lines on the east and the west sides of the driveway. The station is marked by a large countersink in the end of a brick set in the sand 9 inches below the surface of the natural sod. The following true bearings were determined:

- ,

Pine City, Pine County.-The station is in the Protestant portion of the cemetery at the west edge of the town. It is on a reserve space at the south end of the central driveway, 43.7 feet westward from the southwest corner of the base of the Kowalke monument, 43.9 feet northwest from the base of the Glasow monument, and 40.6 feet northeast of the base of the Kick monument. The station is marked by a chiseled hole in the top of a sandstone 5 by 5 by 14 inches, set 8 inches below the surface of the ground. The following true bearings were determined:

$$
0 \quad 1
$$

Pipestone, Pipestone County.-The station is near the southeast corner of the campus of the Pipestone Indian Training School, about $1 / 2$ miles due north of the town's center. It is 54.4 feet north of a lattice fence on the south edge of the campus, 126 feet east of the center of a road running north and south through the campus, and 124.5 feet northeast of the east edge of the main gate to the campus. The station is marked by a Bedford limestone post 8 by 8 by 42 inches, projecting about 3 inches above ground, and lettered U. S. C. \& G. S., 1909. The following true bearings were determined:

Redwood Falls, Redwood County.-The station is in the Redwood Cemetery $11 / 4$ miles northeast from the county court-house. It is in the center of the main drive one block east from the gateway. It is 51.9 fect southeast of the Schmall monument, 43.8 fect south of the Jaehning monument, 37.3 feet northeast of the Henry D. Chollar monument, and 63.8 feet from the Rev. T. T. Vandollar monument. The station is marked by a block of marble 8 by 8 by 17 inches, set 3 inches below the surface of the prairie sod, and lettered on top U. S. C. \& G. S., 1909. The following true bearings were determined:

City water tank or tower (mark)
Southwest edge of monument opposite the name Fleischer.

- 1
3647.8 west of south

76 or. 6 west of north

MINNESOTA-Continued.

Rochester, Olmsted County.-The station is on the fair grounds, about a mile south and one-half mile east of the town's center. It is within the race course at the west end, on a small meadow, 16.6 feet east from the inner board fence of the race coursc, and 63.6 feet east from the outer board fence of the race course. The station is marked by a Bedford limestone post 6 by 8 by 30 inches, projecting 6 inches above ground, and lettered U.S.C. \& G. S., 1909. The following true bearings were determined:

Base of flagstaff on city water tank (mark).................... 4255.1 west of north
Base of flagstaff on State Hospital for Insane. 4205.9 east of north
Base of flagstaff on central school building...................... 20 19.2 west of north
North edge of base of flagstaff on judges' stand 5556.8 east of north
Slayton, Murray County. -The station is about $11 / 2$ miles west and i mile north of the town's center, near the northwest corner of a pasture belonging to Mr. Mark Tisdal. It is 156.4 fect south of a fence south of a road leading to Mr. Tisdal's house, 35.3 feet south from a long row of maple trecs, and i 79.6 fect southeast of Mr. Tisdal's barn. The station is marked by a Bedford limestone post 8 by 8 by 24 inches, projecting one inch above the surface, and lettered U. S. C. \& G. S., 1909. The following true bearings were determined:

$$
\begin{aligned}
& \text { Center of base of flagstaff on court-house (mark) } 5035.0 \text { east of south } \\
& \text { Center of base of flagstaff on high school. } 4930.5 \text { east of south } \\
& \text { Apex of steeple on Lutheran church . } 5400.0 \text { east of south } \\
& \text { Center of base of pole on water tank........................... . . 6I } 44.3 \text { east of south }
\end{aligned}
$$

St. James, Watomman County.-The station is in the Protestant cemetery imile south from the county court-house. It is about 100 feet from the north fence of the cemetery and about the same distance from the public road on the cast. The station is in the driveway 102 paces due north from the Thornton vault, 75.5 feet northwest from the northwest corner of the base of the Dr. C. R. Bacon monument, 8i. 7 feet due east from the base of the Weymouth monument, and 52 feet due east from the northeast corner of the base of the H. Hendrickson monument. The spot is marked by a brick tile $5 \frac{1}{6}$ inches in diameter and 12.8 inches in length, set two inches below the surface of the driveway. The following true bearings were determined:

County court-house tower (mark)
1356.6 west of north

Front face of base of pillar of Thornton vault.
00×5.9 cast of south
Stillwater, Washington County.-The station is on the new state prison farm site 2 miles south from Stillwater. It is in the ravine 175.8 feet south of the east corner of the brick valve house at the concrete dam for the water supply of the new prison and on the east side of the ditch leading away from the dam. The station is marked by a limestone 8 by 8 by 24 inches, set 4 inches above the surface of the ground, and lettered on the top U.S. C. \&.G.S., 1909. The following true bearing was determined:

East edge of valve house (mark) . 19 06.2 west of north
Wabasha, Wabasha County.-The station is in the River View Cemetery, approximately 2 miles west of the city. It is on the edge of the bank in what will be the north drive of the new part of the cemetery, at the present time not staked off. It is 140.5 fect southeast of the Dezell monument and 194.5 feet east of the Haines monument. The station is marked by a Bedford stone, 7 by 7 by 26 inches, set flush with the surface of the ground, and lettered on the top U.S.C. \& G. S., 1gog. The following true bearings were determined:

South edge above base of Dugan and James families' monu- - , ment (mark). 8236.4 west of north
Dan Kopman's barn cupola (on bluff several miles distant)... 20 50.6 east of south
Waseca, Waseca County.-The station is within the race course at the county fair grounds, about three-fourths mile northeast of the town's center. It is 84 fect from a tree on the northwest, 60.4 feet from a tree on the southwest, and 29.I feet north of the northwest corner of the exhibition hall. The station is

Descriptions of stations-Continued.
MINNESOTA-Continued.
marked by a Bedford limestone post, 8 by 8 by 24 inches, sunk level with the surface and lettered U.S.C. \& G. S., I909. The following true bearings were determined:

Windom, Cottonwood County.-The station is in the county fair grounds at the northwest edge of the town. It is near the center of the field, surrounded by the half-mile race course, and is in a line between the one-eighth-mile and three-eighths-mile posts, and slightly south from a line between the quartermile post and the judges' stand: It is 85 paces from the center of the north track and 70 paces from the center of the south track. The station is marked by a rough sandstone, 6 by 12 by 18 inches, tapering to 6 by 6 inches at the bottom, set I inch above ground, with a $5 / 8$-inch hole in the top and lettered U.S. The following true bearings were determined:

Cross on Catholic Church tower (mark) . 78 . 48 49.5 east of north
County court-house dome. 26.2426 .2 east of south 26 east of south
Judges' stand (approximate) . 73 08.0 east of south
Winona, Winona County.-The station is in Bluffside Park, 2 miles southwest of the city's center. It is on the grassy slope about 100 feet south from the public road along the north of the park, and is approximately 40 rods from the northeast corner of the park. The station is marked by a Bedford stone, 7 by 7 by 34 inches, projecting 8 inches, and lettered on the top U. S. C. \& G. S., 1909. The following true bearings were determined:

$$
\begin{aligned}
& \text { Tower on post-office building (mark). } 6041.8 \text { east of north } \\
& \text { Tower on a brick building . } 533.0 \text { west of north }
\end{aligned}
$$

Worthington, Nobles County.-The station is in the park on the lake shore about one-half mile southwest from the county court-house. It is io paces west from the southernmost point of the park and 10 feet from the edge of the bank at the lake shore. It is 160 feet from the west fence of the park (the present boundary) and 84.2 feet from the pavilion building. The station is marked by a brick tile, $51 / 8$ inches in diameter and $12 \frac{1}{2}$ inches long, set I inch below the surface of the ground. The following true bearings were determined:

Barn cupola (mark). 8403.1 west of south	
East edge of passageway in overhead railroad bridge......... 2448.3 west of south	
est pole on p	I8 39.4
mokestack at city	24.8 east of sors

MISSISSIPPI.

Jackson, Hinds County.-The station of 1908 was reoccupied. It is about 2 miles from the town, on the grounds of Millsaps College, on the south side of Observatory Hill, about 300 feet south of the observatory and 224.5 feet east of a board fence. The station is marked by a limestone post, 6 inches square, projecting 3 inches above the ground. A hole in the top marks the exact spot. The following true bearings were determined:

Meridian, Lauderdale County.-The station of 2901 was reoccupied. It is about 2 miles from the town, on the grounds of the State Asylum for the Insane. It is about 150 feet south of the walk leading

MISSISSIPPI—Continued.

to the front of the main building and 260 feet from the southeast corner of this building. The station is marked by a stone post, 6 inches square, projecting 3 inches above the surface of the ground. The following true bearings were determined:

> Upper northwest corner of building farthest to the southwest, ${ }^{\circ}$, under eaves (mark).
> . 5724.3 west of south
> Lower south edge of main building. 81 18.0 west of south
> Flagstaff on main building. 5855.2 west of north

MISSOURI.

Lebanon, Laclede County.-The station is in the high-school playgrounds 197 fect east from the northeast corner of the building, and 121.5 feet from the east edge of the cement walk which runs north and south in front of the building between the building and the playgrounds. It is 177 feet from the northeast corner of the block on which the building stands at the north end of the cement walk. The station is marked by a Bedford limestone post, 6 by 6 by 20 inches, sunk level with the ground and lettered U. S. C. \& G. S. The following true bearings were determined:

Southeast corner of schoolhouse (mark)	7951.0 west of south
Court-house flag pole.	3607.1 cast of south
Congregational Church spir	6925.4 east of south

Rolla, Phelps County.-The station is located on the campus of the Missouri State School of Mines, 2 Ir. 5 feet due north of the northwest corner of Norwood Hall, and 125 feet east of the east edge of the cement walk which runs north and south west of Norwood Hall. It is 21.5 feet southwest of a cement marking stone established by " 1909 " civil engineering students. The station is marked by a Bedford limestone post, 6 by 6 by 20 inches, sunk level with the ground and lettered U.S.C.\&G.S. The following true bearings were determined:

Northwest corner of house across street, southwest of Norwood ${ }^{\circ}$,	
Hall (mark).	120.0 west of south
Right (north) edge of tallest smokestack at power plant. 68 or. 2 west of south	
Northeast corne	159.3 east of south

NEBRASKA.

Alma, Harlan County.-The station is on the high-school square in the north part of town. It is 13 r .5 feet north and a little west of the north west corner of the schoolhouse, and 48 feet south and a little east of the electric-light pole at the northwest corner of the grounds. The station is marked by a Bedford limestone post, 6 by 6 by 22 inches, sunk level with the ground and lettered U. S. C. \& G. S. The following true bearings were determined:

- ,

> Court-house flag pole (mark). 19 41.5 west of south
> Evangelical Church spire. 88 I0.6 west of south
> Water standpipe tip. 42 1.0 east of south

Auburn, Nemaha County.-The station is within the space inclosed by the race track in the fair grounds north of the town. It is 133.5 feet northeast from the outside race-track fence at the northeast corner of the grand stand and 112 feet north of the northeast post of the judges' stand. The station is marked by a Bedford limestone post, 6 by 6 by 18 inches, sunk level with the ground and lettered U.S. C. \& G.S. The following true bearings were determined:

Left edge of iron smokestack (mark). 321.1 west of north East gable of house at northwest corner of fair grounds. 2138.4 west of north Left edge of chimney on cottage... 57 ro.6 west of north	

Descriptions of stations-Continued.

NEBRASKA-Continued.

Bloomington, Franklin County.-The station is in the northeast corner of the court-house yard. It is ino feet northeast from the northeast corner of the court-house and 112.5 feet east of the cement walk running north to the street from the center of the court-house. The station is marked by a Bedford limestone post, 6 by 6 by 22 inches, sunk level with the surface of the ground and lettered U. S. C. \& G.S. The following true bearings were determined:

- ,

Central City, Merrick County.-The station is situated near the southeastern corner of the cemetry, about one-half mile east and $11 / 2$ miles north of the town's center. It is in the center of a north-south alley, 141.1 feet north of the cemetery fence, 142.8 fect northwest from the northwest corner of the office, 15.5 feet northwest from the northwest corner of the Conner monument, and 142 feet from the middle of the road on the east. The station is marked by a Bedford limestone post, 6 by 6 by 28 inches, set level with the ground and lettered U.S. C. \& G.S., sgog. The following true bearings were determined:

Northwest corner of the capsto (mark).	14 44.1 cast of north
West edge of extreme top of stand	2235.7 west of south
Cross on Catholic Church steeple.	23 11.1 west of south
Spire on cupola of high school	858.7 west of south

Columbus, Platte County.-The station is situated near the northeast corner of the cemetery, about I mile east and one-fourth mile south of the town's center. It is 156.7 feet southwest from the south rail of the Union Pacific Railroad, 156.3 feet west of the cemetery fence, and 38.2 feet northwest from the northwest comer of the Oppliger monument. The station is marked by a Bedford limestone post, 6 by 6 by 28 inches, set level with the ground and lettered U. S. C. \& G. S., 1909. The following true bearings were determined:

```
North edge of gilded ball at base of cross on Catholic Church - ,
steeple (mark)................................................... . 5630.2 west of north
North edge of black ball at base of cross on cupola of hospital. . 5059.0 west of north
Northeast corner of top of the H. S. Elliott monument......... 7. 11.3 west of south
```

Dakota City, Dakota County.-The station is situated near the southeast corner of the cemetery, about I mile north of the town's center. It is 216 feet from the west cemetery fence, $85 . \mathrm{I}$ feet from the east fence, and 87.9 feet from the south fence. The station is marked by a Bedford limestone post 6 by 6 by 30 inches, lettered U.S.C. \& G. S., 1909, and set level with the ground. The following true bearings were determined:

West edge of top of monument to Adam J. Sides (mark).	st of north
Northwest corner near center of basestone of L. A. Harte's monument	68 54.1 west of south
Northwest corner of base of brick chimney on F. Wasmond's house	43.9 east of north

Falls Gity, Richardson County.-The station is in the city park at the west side of town. It is 103 feet northwest from the northwest corner of the west end of the Auditorium and 77 feet west from the fence running north from the west end of the same. It is about 300 or 325 feet west and a little south of the main entrance to the park. The station is marked by a Bedford limestone post 6 by 6 by 18 inches, lettered U.S.C. \& G. S., and sunk level with the ground. The following true bearings were determined:
East edge of smokestack at waterworks power-house (mark) ... 4039.0 west of south
East gable of a brick house................................... 55 17.8 west of north
Right edge of chimney on Doctor Hahn's residence........... 56 in. 8 east of north

Descriptions of stations-Continued.

NEBRASKA-Continued.

Fremont, Dodge County.-The station is situated near the north center of the cemetery, about onefourth mile north and $13 / 4$ miles west of the town's center. It is 86.6 feet from the center of the road on the south, 57 feet northeast from the northeast corner of Haubensak monument, and 143.6 feet northwest from the northwest corner of the Springer monument. The station is marked by a Bedford limestone post 6 by 6 by 30 inches, set level with the ground, and lettered U. S. C. \& G.S., Igog. The following true bearing was determined:

0 ,
North edge of top of standpipe (mark)............................ . . 7341.2 east of south
Greeley, Greeley County. - The station is situated on the county fair grounds, about one-half mile south of the town's center, near the north end of the space within the race track. It is 196.7 feet from the fence on the north, 222 feet from the fence east of the Burlington and Missouri River Railroad, 318.5 feet northwest from the northwest corner of the judges’ stand, and 328.8 feet southwest from the northwest corner of the Floral Hall. The station is marked by a limestone post 6 by 8 by 20 inches, sunk 4 inches below the surface of the ground, and lettered U.S. C. \& G. S., rgog. The following true bearings were determined:

Hebron, Thayer County.-The station is in the school grounds in the northeastern part of town, at • the northwest corner of the grounds. It is IAI feet northwest from the northwest corner of the school building and 32.5 feet northeast from a small elm tree standing on the west line of the grounds. The station is marked by a Bedford limestone post 3 by 8 by 18 inches, sunk level with the ground, and lettered U. S. C. \& G. S. The following true bearings were determined:

$$
\begin{aligned}
& \text { Presbyterian Chureh spire (mark)......................... } 5247.2 \text { west of south } \\
& \text { Court-house flag pole. } \\
& \text { Right edge of chimney on a residence on the hill northwest of } \\
& \text { station. } 4740.8 \text { west of north }
\end{aligned}
$$

Nebraska City, Otoe County.-The station is in the grounds of the State Institution for the Blind, north of the town. It is 196 feet west from the southwest corner of the main building and 66.5 feet south from the fence along the orchard. The station is marked by a Bedford limestone post 6 by 6 by i8 inches, sunk level with the ground, and lettered U.S.C. \& G. S. The following true bearings were determined:

- ,

Nelson, Nuckolls County.-The station is in the fair grounds south of the town, just outside the race track and north of the grand stand. It is 74.5 feet north and a little east from the northwest corner post of the grand stand (new addition) and 28 feet west from the outside race-track fence. The station is marked by a cement block 8 by 10 by ${ }^{5} 5$ inches, unlettered, with a hole drilled in the center of the top, and sunk level with the ground. The following true bearings were determined:

$$
\begin{aligned}
& \text { Court-house flag pole (mark) . } 21 \text { 26. } 26 \text { west of north } \\
& \text { Schoolhouse flag pole... 34 36.8 west of north } \\
& \text { Flag pole on square building on the fair grounds. } 60 \text { 48. x west of south }
\end{aligned}
$$

Ord, Valley County.-The station is situated near the south center of the cemetery, about threefourths mile northwest from the town's center. It is near the center of a north-south avenue, 2 I feet east from the northeast corner of lot $228,23.6$ feet west from the northwest corner of lot 219 , and 200 feet

Descriptions of stations-Continued.

NEBRASKA-Continued.

from the south cemetery fence. The station is marked by a Bedford limestone post 6 by 6 by 28 inches, set level with the ground, and lettered U.S.C. \& G. S., Igog. The following true bearings were determined:

0 ,
Center of base of flagstaff on court-house (mark)............... 4249.4 east of south
Center of base of flagstaff on cupola of high school. 3826.5 east of south
South edge of ball at base of cross on Catholic Church steeple. 5026.6 east of south
Pawnee City, Pawnee County.-The station is on the school grounds 133.5 fect northwest from the northwest corner of the primary school building, and 26.5 fect east from the inside fence on the west, and 80 feet south from the fence on the north. The station is marked by a cement block 6 by no by 24 inches, sunk level with the ground, and roughly lettered U.S.C. \& G. S. The following true bearings were determined.

0 -
Cupola on academy building (mark).......................... 235.7 east of north
Gable on southwest corner of academy building. 4 i 45.9 east of north
Flag pole in cemetery.
7826.7 west of south

Pierce, Pierce County.-The station is situated near the northwest corner of the county fair grounds, about I mile south of the town's center. It is on the right-hand side of the road leading into the fair grounds, in line with the main gate and the judges' stand. It is Ir 3.4 fect south of a fence on the north, 164.6 feet southwest of a large tree north of the main gate, and 172.5 fect northwest of a board fence around the race track. The station is marked by a Bedford limestone post 6 by 6 by 30 inches, set level with the ground, and lettered U.S.C. \& G. S., 1909. The following true bearings were determined:

> Center of base of flagstaff on steel water tank (mark)......... 557.8 west of north
> Southeast corner of barn at fair ground (4 feet from the ground). 86 19. 3 east of north
> Southwest comer of top of brick chimney on house of John Druebert.
> 3 19. O west of north

Plattsmouth, Cass County. -The station is on the eastern part of the school grounds on the hill west of the business part of town. It is 147 feet east from the schoolhouse and 126.5 feet north from the inside edge of the cement walk running east and west on the south side of the grounds. The station is marked by a rough limestone rock about 7 by 7 by 14 inches, unlettered, with a small hole drilled in the center, and sunk level with the ground. The following true bearings were determined:

> Right edge of chimney on house on hill I mile south (mark). . 2 10. I west of south
> Southwest corner of church. 3. or. I east of south
> Southeast corner of high school. 68 03. 2 west of south

Red Cloud, Webster County.-The station is on the old school grounds northeast of the court-house block. It is in the southwest corner of the block, 132 feet southwest of the southwest corner of the school building and 53 feet north from the inside edge of the walk on the south side of the grounds. The station is marked by a Bedford limestone post 6 by 6 by 22 inches, sunk level with the ground, and lettered U. S. C. \& G. S. The following true bearings were determined:

$$
\begin{aligned}
& \text { Northwest corner of the Congregational Church (mark)........ . . . } 19.0 \text { west of south } \\
& \text { Southeast corner of school. } 50 \text { 18. } 5 \text { east of north }
\end{aligned}
$$

Stanton, Stanton County.-The station is situated near the south center of the cemetery, about $11 / 2$ miles northeast of the town's center. It is 44.5 feet northwest from the northwest corner of the Sharp monument, 48 feet from the center of the road on the west, and ${ }_{5 I}$ feet southwest from the southwest

$$
63481^{\circ}-1 \mathrm{I} \longrightarrow 9
$$

Descriptions of stations-Continued.

NEBRASKA-Continued.

corner of the Mack monument. The station is marked by a Bedford limestone post 6 by 6 by 30 inches, lettered U. S. C. \& G. S., rgog. The following true bearings were determined:

Top of spire on Lutheran Church (mark)
Center of ball on court-house dome.
Southeast corner of base of east brick chimney on house of Mr. Perry
Wayne, Wayne County. -The station is situated near the southeast comer of the cemetery, about three-fourths mile northwest of the town's center. It is in the center of a north-south alley, in6.2 feet from the south cemetery fence, 249.6 feet from the east fence, and 132.4 feet from the southeast corner of the cemetery office. The station is marked by a Bedford limestone post 6 by 6 by 30 inches, set level with the ground, and lettered U.S.C. \& G.S., igag. The following true bearings were determined:

> Center of base of flagstaff on court-house (mark).
> North edge of top of standpipe.
> $67 \quad 22.9$ east of south
> Spire on large water tank at normal school.
> 7824.0 east of north
> 5340.0 east of north

- ,

Wilber, Saline County. -The station is in the northeast part of the court-house grounds, 25 feet south from the inside-edge of the brick walk running along the north side of the grounds, and 85 feet southwest from the outside corner of the walks at the northeast corner of the grounds. It is marked by a cement block 8 by 10 by 12 inches, sunk level with the ground and roughly lettered U.S. C. \& G. S. The following true bearings were determined:

NEW HAMPSHIRE.

Concord, Merrimack County. -The station is on city property about three-fourths mile northeast of the town's center. It is near the east bank of the Merrimack River, 100 paces north of the north walk on Bridge street, 120 feet from a tree on the bank of the river, and 143.6 feet east of a corner stone projecting 6 inches above ground. The station is marked by a granite post 8 by 8 by 40 inches, lettered U.S.C.S., center marked, and set level with the ground. The following true bearings were determined:

Spire on Congregational Church (mark)	7357.0 west of north
Spire on First Methodist Church.	8334.0 west of north
Apex of dome on statehouse	7229.0 west of south
Spire on Catholic Church	2216.3 west of south

Gorham, Coos County.-The station is near the center of a pasture belonging to Mrs. Hitchcock, about three-fourths mile southeast of the town's center. Observations were made on a granite field stone, rounded on top, and with a half-inch hole marking the exact spot. The station is 29.15 feet from the point of an arrow pointing toward it, which was cut on the top of a very large stone to the southwest. It is in line with two large stone piles about 340 feet apart. The following true bearings were determined:

Ball on Methodist Church spire (mark)	5333.8 west of north
Northwest comer of cement power house.	5422.6 east of north
Chimney at top of Mount Washington	43 00.r west of south
Monument on apex of Mount Madison	5815.5 west of south
Cross on Catholic Church spir	6109.0 west of north

Descriptions of stations-Continued.

NEW HAMPSHIRE-Continued.

Plymouth, Grafton County.-The station of 1905 was reoccupied. It is west of the village, on Mr. D. M. Tenney's farm, and near the top of a knoll, back of a wood of small trees. Observations were made over the exposed top, level with the ground, of a granite stone or portion of the bed rock, which was marked with the letters U.S. From the station to the end of an arrow cut across the top of a large rounded stone is 19.7 feet, bearing $79^{\circ} 40^{\prime}$ west of south. The north face of a stone is 67.7 feet a little west of south and another stone is 80.1 feet a little east of south. The following true bearings were determined in 1905:

West gable of distant large barn (mark).	$5^{8} 06.9$ east of north
West gable of house in village	8443.6 east of south
Northeast gable of Mr. C. Preece's hou	6429.8 west of north
East edge of large ston	424.9 west of nor

Woodsville, Grafton County.-The station is in a meadow belonging to Mr. E. B. Mann, about onefourth mile south of the town's center. It is about east of the middle of an island in the Connecticut River and in line with the chimneys of a row of cottages and a barn on the east side of Court strect. It is 36 feet from the east bank of the Connecticut River, 70 feet northeast from a willow tree on the bank of the river, 128 paces (374 feet) from an elm tree at the foot of the hill to the east. The station is marked by a granite post 6 by 6 by 30 inches, center marked with a $1 / 2$-inch hole. The stone is not lettered. It is set flush with the surface of the ground. The following true bearings were determined:

Spire Congregational Church, Wells River, Vt. (mark)...... 79.56 .3 west of north	
Cupola on High school, Wells River, Vt 7545.8 west of north	
Ball on court-house tower	4657.8 east of north
Spire Methodist Church.	6235.0 east of south
Ball at base of weather vane on large b	322.1 east of south

NEW JERSEY

Boonton, Morris County.-The station is near the northern corner of the Presbyterian cemetery on the hill about three-fourths mile northeast of the Delaware, Lackawanna and Western Railroad station. It is near the middle of the pathway running parallel to the northeast wall of the cemetery at a point about 50 feet southwest of the wall and about 100 feet southeast of the northwest wall. The station is 17.6 feet northeast of the north corner of the Looker monument and 12 fect south of the southeast edge of the tombstone of Elizabeth Steventon. The station is marked by a block of concrete 6 by 8 by 9 inches (unlettered), with a hole in the center and buried flush with the path. The following true bearings were determined:

- ,

Tip of Hill monument about 150 feet away.
1633.6 east of south

West side of chimney on distant house (mark)
2313.2 east of south

Trenton, Mercer County.-The station of 1903 was not recovered. A new one was established as near as possible to the old one. It is on the front lawn of the grounds of the State Hospital for the Insane, about 400 feet southeast and in front of the main building. It is about 94 feet east of the large tulip tree in the center of the lawn, 6 feet about west-southwest of a maple tree near the pathway, and about 77 feet southwest of another maple tree near the pathway. The station is marked by a marble post 6 by 6 by 18 inches (unlettered), buried flush with the ground, and having a hole in its center to mark the exact point. The following true bearings were determined in rgro:

> Tip of sundial near fountain in front of main building (mark) . . 6358.7 west of north
> Peak of central tower on main building. $56 \quad 22.6$ west of north
> Peak of west tower on main building....................... $80 \quad 09.6$ west of north

NEW MEXICO.

Deming, Grant County.-The station of 1905 was reoccupied. It is in the northwest comer of a lot owned by Mr. W. C. Wallis, about I mile south of the Presbyterian Church and one-half mile west of a water tank and windmill at a ranch house. It is 150.4 feet a little south of east of a stone at the intersection of the road along the south limit of the town and a line of telephone poles. It is 99 feet south of the sonthern town section line, and about 132 feet east of a property line to the west, running north and south. The station is marked by a stone 6 by 6 by 30 inches, lettered U.S. C. \& G. S., rgo5, and projecting 6 inches above ground. The following true bearings were determined in 1905:

- ,

Cross on Catholic Chyrch (mark). 3949.2 east of north
Flag pole on public school. 3224.8 east of north
Top of belfry Presbyterian Church. 2032.2 east of north
Highest point on Cook's Peak. 6 r8.1 east of north
Lordsburg, Grant County.-The station of 1903 was reoccupied. It is in the vacant space on the south side of the railroad, being south of the Methodist Church, 232 .1 feet from the southeast corner of the adobe across the street from Mrs. Marble's house, and nearly in line with this adobe and the cupola of the church. The station is marked by a limestone post 4 by $1 x$ by 24 inches, projecting 4 inches above ground. The following true bearings were determined in 1910:

- ,

Point at top of Southern Pacific Railroad water tank (mark)... 1331.5 west of north
Base of flagstaff on the schoolhouse . 3 53.1 west of north
Steeple of Methodist Church. 16 55.8 east of north

NEW YORK.

Carmel, Putnam County.-The station is on ground belonging to New York City, as a part of the Croton water system, near the northwest corner of Lake Gleneida close to the channel connecting it with reservoir D. The station is 17 feet north of the edge of the lake, 14.8 feet east of the west edge of the masonry wall east of the channel. It is marked by a granite post 6 by 6 by 42 inches, buried with its face about I inch above ground, and having a cross cut in its center to mark the exact spot. The following true bearings were determined:

Tip of northeast gable of railroad station (mark)	3422.8 east of south
Belfry of schoolhouse	37 04. 1 east of south
North side (farthest projecting brick) of north chimney of	
Mr. Weeks's house, about 500 feet dist	8355.8 west of south

Lake Placid, Essex County.-The station of 1907 was reoccupied as nearly as could be determined from the measured distances, the stone having been removed or buried in grading. It is 20 feet from the water's edge, on the south shore of Lake Placid. It is on the Schell property, 83.3 feet north and slightly west from the northwest corner of the house porch: It is ro2.7 feet west from the United States land survey monument No. 262, which is set in a granite rock near the water's edge. Observations were made over a wooden stake. The following true bearings were determined in igog:

Descriptions of stations-Continued.

NEW YORK-Continued.

Potsdam, Saini Lawrence County.-The station of 1874 could not be recovered. A new station was located in the north-central part of the city park lying just west of the state normal school. The grounds are thickly covered with trees and surrounded by a low fence of stone posts with chain railing. The station is 40 feet south, 115.5 feet east, and 86 fect west of the fence. It is marked by a 3 -inch sewer tile filled with cement and projecting i inch above ground. The following true bearings were determined:

- ,

Large head of screw in center of white doorknob. 10 58.1 east of south
Methodist Church spire . 7I ro. 3 westof south
Spire on northwest corner of Baptist Church. r6 $35 \cdot 3$ east of north
Presbyterian Church spire . 5758.3 east of north
Normal school spirc. 5525.8 east of south
Wilson, Niagara County.-The station is in the southwest comer of the grounds of the Wilson Union School. It is 32 feet 3 inches from the west fence, 46 feet 2 inches from the south fence, 97 feet II inches from the southwest corner of the schoolhouse, and 7 feet 6 inches north of the south face of the rear part of the schoolhouse produced westward. The station is marked by a sewer tile 3 by 26 inches, the upper part filled with cement, and lettered U.S. C. \& G. S., projecting 3 inches above ground. The following true bearings were determined:

- 1

South end of gable on residence of Mr. George Hamblin. . 557.0 east of north Spire on Methodist Church. 3740.4 east of north
Flag pole on Wilson Union School . 82 04.0 east of north
Northeast corner post of cupola on residence of Mr. Wm.
Albright. 6558.0 east of south

NORTH DAKOTA.

Pembina, Pembina County.-The station of 1905 was recovered. It is about 700 feet southward from the junction of the Pembina and Red rivers, on land held by the city and now used as a baseball park. It is 536 feet from the west side of the county road and 73 feet from the board fence inclosing the park, measured in prolongation of the line perpendicular to the county road. From a point 6 feet west of the station a flag pole and the Catholic Church spire appear in line. The station is marked by a cement block 6 by 10 by 24 inches sunk flush with the ground, and marked U. S., 1905. The following true bearings were determined in 1905:

- ,

Icelandic Lutheran Church spire (mark). 4 I 53.8 west of south
Catholic Church spire. 956.0 west of north
East dormer gable of Oliver's house . 7026.1 west of south
OHIO.
Dayton, Montgomery County. -The station of 1905 was reoccupied. It is in the grounds of the National Soldiers' Home, 103.2 feet from a double ash tree, 155.3 feet from a 12 -inch ash tree to the northeast, and 65.4 feet from the middle of West Virginia avenue. The station is marked by a marble post 6 by 6 by $2 I$ inches, set flush with the ground, and lettered U.S.C. \& G. S., 1905. The following true bearings were determined in 19ro:

Rightedge of standpipe (mark)

- ,
....................... . . $5^{1} 45.8$ east of south
Left edge of standpipe. 5230.6 east of south

Cupolaon headquarters 8803.7 east of south

Protestant chapel steeple 81 34.4 east of north
South cupola on hospital. 56 50.3 east of north

Easton, Northampton County.-The station of 1902 could not be recovered. A new one was established in the northwest part of the March athletic field of Lafayette College, 38 feet southeast of the concrete wall surrounding the field, in feet northwest of the outer edge of the running track, and I foot southwest of the continuation of one of the sides of the baseball diamond. The station is marked by a marble post 6 by 6 by 15 inches, lettered U.S. C. \& G. S., and buried with its face flush with the ground. The following true bearings were determined in 1910:

$$
\begin{aligned}
& \text { Church spire } 2 \text { miles away (mark) } 3726.8 \text { west of south } \\
& \text { Tower of another church about } 1 \text { mile away. } 23 \text { 29.1 west of south } \\
& \text { Peak of clock tower on campus. } 3644.7 \text { east of south }
\end{aligned}
$$

Meadville, Crawford County.-The station of 1908 was reoccupied. It is in St. Bridget's Catholic cemetery, in the south edge of the cinder drive, 8 r .6 feet from the northeast corner of the base of the Geary monument, and 96.7 feet from the northeast corner of the base of the Lyons monument. The station is marked by a white marble stone $71 / 2$ by $73 / 8$ inches on top, which is lettered U.S.C. \& G.S., 1902, and projects I inch above the ground. The following true bearings were determined:

```
Right edge of right (south) chimney on Mr. Lark's dwel- o ,
ling (mark)................................................ . 33 55.7 east of north
Tower on Hulings Hall of Allegheny College. . . . . . . . . . . 1847.2 west of north
```

Norristown, Montgomery County.-The station is in Riverside cemetery, about I mile northwest of the court-house. It is near the northeast corner of the cemetery, about 300 feet northwest of the inner gate and about 1,500 feet from the outer entrance, at the street-car tracks. It is 30 feet south of the north fence and $\mathbf{r 2 6}$ feet west of the east fence, and 52 feet west of the southwest corner of a barn belonging to the cemetery. The station is marked by a Bedford limestone post 5 by 5 by 20 inches, buried with its face flush with the ground, and lettered U.S. C. \& G. S. The following true bearings were determined:

Tip of pyramidal column marking grave of John C. - ,
Hambrecht, distant about 300 feet (mark).............. I3 ${ }^{2} 3.8$ east of south
Peak of Rittenhouse country home (about I mile away)... 495 r .3 west of north
West gable of cemetery caretaker'shouse.................. 8983.8 east of south

PORTO RICO.

Porto Rico, Magnetic Observatory, Vieques Island.--Since April, 1907, the observatory has been in operation at the new site, about five-eighths mile west of old Fort Isabel, the former location. The buildings comprise an absolute observatory, variation observatory, seismograph house, and an office.

RHODE ISLAND.

Kingston, Washington County.-The station of 1904 was reoccupied. It is on the grounds of the Rhode Island Agricultural College, on the open square south of Lippitt Hall. It is 236.3 feet east of the northeast corner of the dormitory and 175 feet southwest of the flag pole. The station is marked by a marble post 10 by 10 by 30 inches, set about 2 inches below the level of the ground, and lettered U. S. C. S. A one-half inch hole in the center marks the exact spot. The following true bearings were determined in 1904:

- ,

Congregational Church spire (mark)............................. 12 19.5 east of south	
Boarding hall lightning rod. 6632.5 west of south	
Cap of north tower Davis Hall	251.9 west of north
Experiment station weather va	56.0 west of north
Dairy barn weather va	42.5 west of north

Descriptions of stations-Continued.

RHODE ISLAND-Continued.

A second stone marking a meridian line was set 290 feet south of the station and 5 r. 3 feet slightly southeast of a tree. This stone is of granite, 7 by 7 by 36 inches, set flush with the ground, and unlettered. It has a 1 -inch hole about 2 inches deep in the center of top, which bears $0^{\circ} 02^{\prime} .6$ west of south from the magnetic station.

Providence, Providence County.-The station of 1904 was recovered. It is on city property on the grounds of the Socanosset reservoir, about 5 miles (air line) southwest of city hall. It is in a pasture south of the center of the reservoir, and about 125 yards west from a house where the gatekeeper lives, and about 120 yards from the nearest wall of the reservoir. It is 36.4 feet from a wire fence on the north side and 47.1 feet due east of an oak tree. It is also 61.3 fect due west of an ash tree. A second stone marking a meridian line was set 251.7 feet due south of the station. This stone is i8.1 feet northeast of an ash tree and 188.7 feet from the south wall of a pasture. The stones are each 4 feet long, in inches square at bottom, and 6 inches square at top, set flush with the ground, and lettered U.S.C.S. A small hole $11 / 2$ inches deep marks the exact spot. The following true bearings were determined:

SOUTH CAROLINA

Charleston, Charleston County.-The station is at the eastern end of Sullivan's Island, near Breach Inlet, and is reached by the car line which runs to the Isle of Palms. It is almost on a direct line between station No. 29 and an embankment and pit used in rifle target practice, about 750 feet from the trolley line and 500 feet from the embankment. The Fort Moultric water tank and a red steeple on a Catholic church are almost in line at the station. The station is marked by a wooden stake about a by 5 inches, set so that its top projects about 3 inches above ground. The following true bearings were determined:

- \quad

Charleston Light-house (mark) . 3625.4 west of south
Cupola beyond Fort Moultrie. 6350.4 west of south
Red church stceple. : . 6446.4 west of south
Ferris wheel. ${ }_{5} 6$ or. 4 east of north

SOUTH DAKOTA.

Armour, Douglas County.-The station is situated on the fair grounds, about one-half mile north of the town's center, near the northwest corner of the space enclosed by the race course. It is 180.3 feet east of the fence west of the race course, 229.3 feet south of the fence north of the race course, and 536.7 feet north from the northeast corner of the grand stand. The station is marked by a Bedford limestone post, 6 by 6 by 30 inches, projecting $1 / 2$ inches above ground and lettered U.S.C. \& G. S., 1909. The following true bearings were determined:

Center of base of flag pole on high school (mark). 26.6 east of south
Center of base of cross on Catholic Church...................... 300.7 east of south
Apex of steeple on Methodist Church. I7 05.0 east of south
Flandreau, Moody County.-The station is near the southeast corner of the campus of the Flandreau Indian School, about y mile due north of the town's center. It is 254.5 fect northeast of the superintendent's house, 352.2 fect southwest of the dining hall, and 144.5 fect south of the band stand. The station is marked by a Bedford limestone post 6 by 6 by 30 inches, set level with the surface and lettered U. S. C. \& G. S., 1909. The following true bearings were determined:
-
Center of base of pole on water tank (mark).................. . 18 . 39.0 east of south
Apex of Methodist Church stceple. 226.6 east of south
Center of base of flag pole on high school. 2614.8 west of south

Descriptions of stations-Continued.
 SOUTH DAKOTA-Continued.

Madison, Lake County.-The station is on the fair grounds, about three-fourths mile east of the town's center, in the northwest comer within the race course. It is 141.5 feet south and a little west from the judges' stand, 200.5 feet south from the southwest corner of the grand stand, and 3 ro feet east from the north barn west of the race track. The station is marked by a Bedford limestone post 6 by 6 by 30 inches, projecting about I inch above the ground and lettered U.S.C. \& G. S., 1909. The following true bearings were determined:

$$
\begin{aligned}
& \text { Center of base of flag pole on court-house (mark)............ } 8355.4 \text { west of north }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Apex of cupola on "east hall" of normal school. } 55 \text { 14.9 west of north }
\end{aligned}
$$

Mitchell, Davison County.-Observations were made on the grounds of the Dakota Methodist University, on the high ridge about one-half mile south of the Chicago, Milwaukee and St. Paul Railway passenger station, at a point about 16 feet to the westward of the 1896 station. The 1909 station is 222.0 feet west of the west face of college hall, 44.2 feet north of the north face of college hall, and 22.8 feet north of the north edge of the walk running along the north side of the building. The station is marked by a concrete block 4 by 4 by 12 inches with a hole in its side and lying horizontally 1 foot below the ground. A vertical concrete block 4 by 4 by 12 inches rests on the lower block and projects about threefourths inch above ground. A hole in the top marks the exact point. The following true bearings were determined in 1909:

$$
\begin{aligned}
& \text { Cross on Catholic Church (mark). } 29 \text { Ir. } 5 \text { east of north } \\
& \text { South gable of house. } 80 \text { 23.2 east of north } \\
& \text { Spire on college hall . } 79 \text { 52.4 east of south }
\end{aligned}
$$

Plankinton, Aurora County.-The station is situated near the south center of the cemetery, near the center of a north-south alley, and about $1 / 2$ miles northeast of the town's center. It is 84.6 feet northwest from the northwest corner of Mulliran monument, 78.2 feet west from the northwest corner of Groves's monument, and 86.7 feet southeast from the southeast corner of Lindsey's monument. The station is marked by a Bedford limestone post 6 by 6 by 30 inches, projecting about inch above ground and lettered U. S. C. \& G. S., Igog. The following true bearings were determined:

Center of base of flagstaff on court-house (mark).	$7^{6} 34.4$ west of south
Center of base of flagstaff on high school.	5843.5 west of south
Center of base of cross on Catholic Church.	6553.8 west of south
	2937.8 west of no

Tyndall, Bonhomme County.-The station is situated near the east center of the cemetery, about I mile west of the town's center. It is 164.4 feet from the north fence of the cemetery, 171.9 feet from the east fence, and 158.2 feet east and a little south from the southeast corner of the base stone of the Grand Army of the Republic monument. The station is marked by a Bedford limestone post 6 by 6 by 30 inches, projecting half an inch above ground and lettered U. S. C. \& G. S., 1909. The following true bearings were determined:

$$
\begin{aligned}
& \text { Center of base of flagstaff on high school (mark)................ } 6 \text {. } 06.7 \text { east of south } \\
& \text { Center of base of cross on Catholic Church. } 88 \text { 12.9 east of north } \\
& \text { Center of base of pole on city water tank. } 8080.3 \text { east of north }
\end{aligned}
$$

Vermilion, Clay County.-The station is situated on the campus of the State University, about one-half mile northeast of the town's center. It is near the southwest corner of the campus, 36 feet north from the cement walk on the south and 114 feet east from the cement walk on the west. The station is marked by a Bedford limestone post io by 10 by 36 inches, projecting about 3 inches above the ground and lettered U. S. C. \& G. S., 1gog. The following true bearings were determined:

Descriptions of stations-Continued.
SOUTH DAKOTA-Continued.
A second stone of equal size and similarly lettered was set 400 feet due north of the first to mark a meridian line.

Wessington Springs, Jerauld County.-The station is situated near the south central part of the cemetery, about one-half mile southeast of the town's center. It is 30.3 feet northwest from the northwest corner of the base stone of the Barret monument, 27 feet west from the southwest corner of the base stone of the Hall monument, 40.6 feet southwest from the southwest corner of the base stone of the Toofelmire monument, and 136.5 feet northeast from the southwest corner of the cemetery fence. The station is marked by a Bedford limestone post 6 by 6 by 30 inches set level with surface and lettered U.S.C.\& G.S., 1909. The following true bearings were determined:

- ,

Center of base of flag pole on high school (mark)............... . 3224.9 west of north
Flagstaff on seminary, on a level with top of chimney....... . 4431.2 west of north
Center of base of cross on Catholic Church steeple............. 2233.0 west of north
Woonsocket, Sanborn County.-The station is situated near the west center of the cemetery, about one-half mile northwest of the town's center. It is near the center of a north-and-south alley, 188.5 feet from the board fence on the east, 237 feet from the board fence on the south, and 44.1 feet north and alittle west from the northwest corner of the base stone of the tombstone to the Briggs family. The station is marked by a Bedford limestone post 6 by 6 by 30 inches, set level with the surface and lettered U.S.C. \& G. S., 1909. The following true bearings were determined:

Rod on cupola of high school (mark).

- ,

Southeast corner of base stone of tombstone to Mr. Reese. . .
2954.0 east of south

Northwest corner of base stone of tombstone to the Willis
family... i4 04.8 west of south
5657.9 west of south

Yankton, Yankton County.-The station of 1905, on Observatory Hill of the Yankton College grounds, about three-fourths mile north of the town's center, was reoccupied. It is 205.1 feet southeast from the southeast corner of the observatory, 46.1 feet northwest of an elm tree, and 860 feet south of the main hall of the college. The station is marked by a Bedford limestone post 6 by 6 by 30 inches, projecting 4 inches above ground and lettered U.S. C. \& G. S., 1905. The following true bearings were determined in 1909 :

TENNESSEE.

Athens, McMinn County.-The station of 1903 was reoccupied. It is on ${ }^{\circ}$ a hill north of the town, about 800 feet northeast of the railroad station and about 600 feet south of the standpipe. It is 43 feet east of an apple tree and 118 feet southeast of the lower road from Athens to Sweetwater. The station is marked by a stone 3 by 8 by 16 inches, lettered U. S. C. \& G. S., 1903, on top, in the center of which there is a drill hole. The following true bearings were determined in 1903:

$$
\circ \text {, }
$$

Spire on Baptist Church (mark) . 3506.3 east of south
Cupola of the Bandfield Home. 2805.6 east of south
Franklin, Williamson County.-The station is in the southwestern corner of the ground surrounding the People's Academy, about x mile a little west of south of the town's center. It is about 69 feet from the fence on the south and about 400 feet southwest of the southwest corner of the main academy building. The station is marked by a blue limestone post 6 by 8 by 35 inches, projecting about 7 inches above ground and lettered U. S. C. \& G. S., 1909 . The following true bearings were determined:

- ,

South cupola on tower of Episcopal Church (mark)........... 1848.9 east of north
Upper southern corner of tower on Cumberland Presbyterian
Church, under eaves ... 17 15.2 east of north
Spire on the cupola of parsonage of Methodist Episcopal Church . 6324.5 east of north

Descriptions of stations-Continued.

TENNESSEE-Continued.
Gallatin, Sumner County.-The station is in the northwest corner of the ground surrounding Hawkins's Training School, about 1 mile east of north of the town's center. It is 72 feet from the fence to the north, 260.3 feet northwest of the northwest corner of the horse shed, and about 324 feet northwest of the northwest corner of the school building. The station is marked by a blue limestone post 7 by 7 by 26 inches, projecting about 3 inches above ground and lettered U. S. C. \& G. S., igog. The following true bearings were determined:

North gable of barn on the William Allen farm (mark)........ $59 \quad 38.9$ east of south
Upper northeast corner of gymnasium, under eaves........ 1744.5 east of south
West point at top edge on roof of small yellow house with red
roof. 3749.9 east of south
Knoxville, Knox County.-The station of 1907 was reoccupied. It is on the University of Tennessee experiment farm, about $1 / 2$ miles from the court-house in a south westerly direction. It is about 3 feet from the eastern edge of the lawn east of the dwelling house, 42.7 fcet from the northeast corner of the house, and 62.7 feet from the east post of the south piazza. It is marked by a square marble post, projecting about 2 inches above the lawn and lettered U.S.C.S. The following true bearings were determined in 1907:

- ,

Spire on Daniel Briscoc's residence (mark).................... . 4447.5 east of north
Cupola of public school. 75 32.6 east of north
Southeast corner of dormitory . 6424.8 west of south
Center of south gable of gray house. 8 I 8 . 5 west of north
Center of east chimney of same house............................ 1753.4 west of north
Lawrenceburg, Laurence County.-The station is in the southwest comer of the ground surrounding the high school, about one-half mile south of east of the town's center. It is 115.6 feet from the fence bounding the ground on the west and 107.3 feet from the fence on the south. The station is marked by a blue limestone post 6 by 8 by 33 inches, projecting about 5 inches above ground and lettered U. S. C. \& G. S., 190g. The following true bearings were determined:

East gable on Jim Crew's barn, about x mile to the northeast ${ }^{\circ}$,
(mark). 39 09. 6 east of north
Lower southwest corner of brick foundation of high school.... 1757.7 east of north
Springfield, Robertson County. -The station is in the southeastern part of the grounds of the Peoples and Tucker Academy, about one-half mile west of the town's center. It is 170.7 feet a little south of west from a fence bounding the grounds on the northeast, and 247 feet southeast from the southeast corner of the academy building. It is marked by a blue limestone post 6 by 8 by 35 inches, projecting about 7 inches above ground and lettered U.S. C. \& G. S. rgog. The following true bearings were determined:

TEXAS.

El Paso, El Paso County.-The station of 1905 was reoccupied as nearly as could be determined. It is on ground formerly owned by the El Paso Water Company, about $1 / 2$ miles west of the town's center. It is east of reservoir No. 2, and about 1,000 feet a little north of east of a Geological Survey bench mark.

As the station of 1905 was no longer suited for magnetic observations, a new station was established in the southern part of the parade ground at Fort Bliss, about $5 \frac{1}{2}$ miles northeast of the town's center. It is 334 feet west of the northwest comer of the fence surrounding the old hospital, 43 I feet southwest from the northwest corner of the new hospital, 79 paces north of a row of trees along the south border of

Descriptions of stations-Continued.
TEXAS-Continued.
the parade ground, and 20 paces northwest of the center of a road running mortheast and southwest across the parade ground. The station is marked by a limestone post 6 by 6 by 30 inches, projecting about 5 inches above ground and lettered U. S. C. \& G. S., igro. The following true bearings were determined:

> Rod at top of band stand on parade ground (mark).......... 7 12.7 west of north
> West gable on roof of headquarters. 9 . 0.9 east of north
> Upper southeast corner of El Paso Country Club................ 59.09 .5 west of north
> Top of northwest tower of pumping station..................... 728.4 east of south

Kerrville, Kerr County.-The 2 monuments of the meridian line established in 190 were recovered and found in good condition, except that the north monument has part of the top knocked off. Magnetic observations were made in rgio over a point 87.6 feet from the north meridian mark and in an exact line with the south meridian mark. The station is 63.3 fect from the iron fence and is marked by a wooden stake and three instrument stubs. The following true bearings were determined in 1910 from the meridian line:

> East gable on residence of Mr. Joseph Gardiner, three-eighths ${ }^{\circ}$,
> mile north near depot (mark)................................... 1213.8 east of north
> Spire on Presbyterian Church 7040.8 east of south
> Spire on residence of Charles Shreiner . 2259.0 west of south

Mineola, Wood County.-The station of r902 was reoccupied. It is in the northwestern corner of a grove belonging to the village, which grove formed part of the old fair grounds. It is about one-half mile west of the town's center. The station is II3 paces south of the fence bounding the groye on the north and 42 paces east of the fence bounding it on the west. It is 22.4 feet from the center of the trunk of an oak tree to the northeast blazed with a cross, and 66.4 feet from the center of the trunk of an oak tree to the west blazed with a cross. The station is marked by the neck of a quart glass bottle buried 6 inches under ground. The following true bearings were determined:

$$
0 \quad 1
$$

Top of steeple of St. Paul's colored Baptist Church (mark)... 357.4 east of south
Top of steeple of white Baptist Church........................ . . . 5934.7 east of south
North gable of Christian Church . 23 r4.8 east of south
Lower southeast corner of a house at south west corner of grove. 3239.6 west of south
Odessa, Ector County.-The station of 1905 was reoccupied. It is in the northeast corner of the grounds surrounding the county court-house, about in the center of the town. It is 60 feet from the fence to the north, $6_{1.7}$ feet from the fence to the east, and 138.8 feet northeast of the northeast corner of the court-house. The station is marked by an oak stake 1 by $11 / 2$ by 18 inches, projecting 4 inches above ground, with a small rod of silver in the top to mark the exact spot. The following true bearings were determined in 1905:

railroad station (mark) ... 24 36.7 east of south Top of windmill tower I mile distant. 6845.5 east of south

Sweet Water, Nolan County. -The station is located in the southeast corner of the park of the Grogan Mineral Wells, which is the property of Sweet Water Mineral Springs Company, and it is about onehalf mile southeast of the Texas and Pacific Railway depot in Sweet Water. It is 89.6 feet from the east fence and 80.4 feet from the south fence, on rising ground southeast of the park bath house.

The station is marked by a concrete post 6 by 8 by 24 inches, trimmed to 6 by 6 inches on the top with a drill hole to mark the point, and projecting about 4 inches above ground. The following true bearings were determined:

```
Cupola on schoolhouse (mark)............................... . . 2 08.4 east of north
Spire on Texas and Pacific depot................................. 6I 43.9 west of north
Spire on Methodist Church.......................................... 30 26.7 west of north
```

- ,

Descriptions of stations-Continued.

VERMONT.

North Hero, Grand Isle County. -The station is in the northeast corner of the court-house grounds. It is 30.5 feet from the southeast corner post of the lot of Mr. Kingsbury, 95.5 feet from the northeast corner of the court-house, and in line with and ro. 5 feet from the north tree of the west row in front of the court-house. The station is marked by a concrete block $5^{1 / 2}$ by $5 \frac{1}{2}$ by 20 inches, projecting 6 inches above ground. It has a small hole in the top to mark the exact spot. The following true bearings were determined:

- ,

West end of gable ridge on residence of Colonel Watson (mark). 556.7 west of north
Northeast corner of Captain Hudson's house. 8555.2 east of south
Northeast gable of Mr. Brook's house on Knights Island. 68 27.1 east of south
Court-house spire . 4520.4 west of south
VIRGINIA.
Bristol, Washington County.-The station of 1906 was reoccupied. It is on the grounds of the Southwestern Virginia Institute, 107 feet from the front line of the grounds and 60 feet to the right from the center of the walk leading to the main entrance of the building. It is marked by a limestone post projecting 3 or 4 inches and lettered U.S.C. \& G. S., I8.98. A similar but unlettered stone 120.5 feet to the south determines a meridian line. One hundred and twenty-six feet to the north is a hole in the granite step of the institute, also in the meridian. The following true bearings were determined in 1906 :

Flagstaff on public school	3439.7 west of south
Spire on First Baptist Church	653.0 west of south
Spire on First Christian Churc	82 I . I west of south
Spire on Mary Street Church	327.0 west of south
Southeast side smokestack Col	5903.3 east of south

Charlottesville, Albemarle County.-The station of 1906 was reoccupied, as nearly as could be determined. It is on the tennis courts of the Young Men's Christian Association of the University of Virginia, to the rear of Madison Hall. It is 88.6 feet south of the north meridian stone and 8 I feet east of the northwestern edge of the third tennis backstop from the Young Men's Christian Association Building. The station is marked by the neck of a quart glass bottle sunk 6 inches under ground. The following true bearings were determined:

- ,

Northeast weather vane on museum (mark). 659.2 east of south
Spire on Young Men's Christian Association building........ 1745.4 west of south
Northwest corner of Anthony's Hall .
88 r9.5 east of south
Lynchourg, Campbell County.-The station of igor was reoccupied, but found unsuitable for magnetic observations, and a new station was established in the southeastern corner of the county fair grounds, about $15 / 2$ miles southeast of the town's center. It is 1×1.7 feet northwest from the fence bounding the grounds on the southeast and 14 r feet northeast from the fence on the southwest. The station is marked by a granite post 5 by 10 by 24 inches, projecting 2 inches above ground, and lettered U.S.C. \& G.S., 1910. The following true bearings were determined:

Base of flagstaff on Odd Fellows' Home (mark) 217.2 west of south
Southwest corner of grand stand, just under eaves $53 \quad 22.0$ west of north
Upper shaft of a windmill. 8458.3 west of south

Descriptions of stations-Continued.

WASHINGTON.

Peter Point (Vashon Island), Colvos Passage. -The station is on a grassy spot 33 feet from the highwater line, on the outer point of a broad gravel spit at Peter Point. It is at the highest part of the spit. A low swampy area extends from the station 164 feet inland to an abrupt rising hill, which is cleared of trees at this point, and has two houses on its crest. The station is marked by a white glass quart flask buried in the soil with its cork 8 inches below the surface. A 2 -inch stub extends 2 inches above ground. The following true bearings were determined:

Steilacoom, Pierce County.-The station is on Union avenue between Lafayette street and the beach, about 28 feet from the fence. It is marked by a stake driven firmly into the ground and projecting 2 inches above the surface. A nail is set in the center of the upper face of the stake. A witness stake alongside projects 6 inches above the surface of the street. The following true bearings were determined:

> Spire Congregational Church on Lafayette street (mark) 6408.1 east of north Southwest corner of small brown cottage distant 60 feet. 4634 east of north Northwest comer of cottage on corner of Lafayette street and
> Union avenue. 3754 east of south
> Telegraph pole distant 70 feet. 53 r6 5 west of south
> Corner of fence distant 65 feet. 793^{2} west of north
> Second telegraph pole distant 100 feet. 32 I4 west of north

Von Gelderns Cove, Carrs Inlet.-The station is on the eastern side of Von Gelderns Cove in Carrs Inlet on a sand spit which is on the broad running point, about 2000 fect from the outer point which separates this cove from Mayo Cove (locally known as Lake Bay). It is directly opposite the wharf of Home, the settlement in this cove. The station covers I foot at high water and is marked by a green bottle buried deep in the sand, over which, near the surface, was set a cylindrical tin can with a small hole marking the center of its upper face. The can was covered with about $\mathrm{r} 1 / 2$ feet of sand and a stake driven alongside, projecting a foot above the surface. It is about 80 feet from the tree line of the point. Between the station and the tree line is a flat area about 3 feet lower than the crest of the spit on which the station is located. The following true bearings were determined:

BRITISH COLUMBIA.

Union Bay.-The new station of 1906 was reoccupied. It is about 1000 feet north of the old one, in a direct line to the church spire at Comox, on a low shingle spit across the small stream. It is marked by a dressed fir post 3 inches square, set about 30 inches underground, and projecting about 8 inches above the surface. A small heap of stones is placed around the post and the letters U. S. and a cross are cut in the top surface. The following true bearings were determined in 1909:

> Light-house at southeast end of Baynes Sound (mark) 33 . 34.7 east of south Church spire at Comox. 48.8 west of north Northeast corner of chimney of brick kiln. 35.5 west of south

APPENDIX 4
 REPORT 1910

PRIMARY BASE LINES AT STANTON, TEX., AND DEMING, N. MEX.

By

WILLIAM BOWIE

Inspector of Geodetic Work; Assistant, Coast and Geodetic Survey

CONTENTS.

Page.
General statement 145
Methods used 147
Standardization of tapes 147
Stanton base line 147
Size of party 148
Divisions of the base 148
Apparatus used 149
Setting stakes and measuring r 54
Wind effect on tapes r 54
Equations of tapes 155
Reduction to sea level 157
Results of the measurement 158
Probable errors 160
Cost of the Stanton base 161
Deming base line 162
Size of party 162
Divisions of the base 162
Standardization and equations of the tapes 163
Reduction to sea level. 165
Results of the measurement 166
Probable errors. I68
Cost of the Deming base. I68
Summary of tape values. 169
Conclusions. 170

ILLUSTRATIONS.

Fig. r. Stanton and Deming base nets.
Page. 146
2. Tape stretcher used on the ninety-eighth meridian in 1900-190x. 150
3. Tape stretcher used on the Stanton and Deming bases I5I
4. Improved form of tape stretcher. 152
5. Making the rear contact 153

PRIMARY BASE LINES AT STANTON, TEX., AND DEMING, N. MEX.

By William Bowie,
Inspector of Geodetic Work; Assistant, Coast and Geodetic Survey.

GENERAL STATEMENT.
As the nickel-steel or invar base tapes were satisfactory in the measurement of six primary bases in 1906,* it was decided to use them in measuring the two primary base lines, one at Stanton, Tex., and one at Deming, N. Mex., on the Texas-California arc of primary triangulation. The invar tapes held their lengths well during the season of 1906, and because of their small coefficients of expansion it was possible to do the measuring in the hours of daylight. The average coefficient of expansion of the invar tapes used on primary bases by this Survey is only about o.04 that of steel, hence an error of 2.9° in the temperature of an invar tape would make only the error caused by an erroneous reading of $0 .{ }^{\circ} \mathrm{I}$ in the temperature of the steel tape.

As it was found, during the campaign of roo6, to be unnecessary to standardize the tapes in the field, it was decided to have the base lines on the Texas-California arc measured by the triangulation party when the triangulation had progressed to the vicinity of the bases.

There are only two base lines on the Texas-California arc. This triangulation extends about i 200 miles from the ninety-eighth meridian triangulation in the vicinity of Weatherford, Tex., to the Pacific coast primary triangulation near San Diego, Cal. The locations of the base lines were made to depend upon the summation of the strength of the individual figures rather than upon the number of figures or the length of the scheme between bases. The average distance between bases on the ninety-eighth meridian is about 120 miles, while the distance between the nearest base on the ninetyeighth meridian to the Stanton base is 254 miles, from the Stanton base to the Deming base is 399 miles, and from the Deming base to the Los Angeles base is 628 miles. The average of these three distances is 427 miles. The two base lines are shown in their relation to the scheme of triangulation in Fig. 1 .

It is interesting to note that no extra stations or lines were used as a base net to connect the Stanton base line with the main triangulation, as the base is one of the lines of the main scheme. Such a condition is very unusual and there is no similar case in primary triangulation in the United States.

[^6]

Fig. y.-Stanton and Deming base nets.

METHODS USED ON THE STANTON AND DEMING BASE LINES.

The instructions issued to Assistant J. S. Hill, who was in charge of the triangulation party working on the Texas-California arc during the season of $1908-9$, provided that:

During the progress of the triangulation you will measure the Stanton base with invar tapes.
Very little increase in the average accuracy of the lengths of the triangle sides in the triangulation connected with this base will result from increasing the accuracy of the base measurement beyond that represented by a probable error of 1 part in 500000 in the length of the base. The following limits of accuracy are selected with a view of attaining a probable error but little, if any, greater than x part in 500000 . You will strive to keep as far within these limits as is possible by the use of good judgment and skill, but you will restrict the time and money expended upon each operation substantially to that required to keep barely within them.

Four invar tapes are to be standardized at the Bureau of Standards, both before and after the base measurement. The base is to be measured with three of these invar tapes used in daylight. The base shall be measured in sections approximately y kilometer in length, except that one shorter section may be used. Each section of the base shall be measured with at least two different invar tapes. Different pairs of invar tapes shall be used on different sections, so that the three tapes used on the base shall thereby be thoroughly intercompared. Two, and only two, measurements of each section shall be made, ynless the discrepancy between these two measurements exceeds 20 millimeters $\sqrt{\mathrm{K}}$ (in which K is the length of the section in kilometers), in which case additional measurements must be made until two are obtained which agree within this limit. The fourth invar tape standardized is to be retained for use in case of serious damage to any of the three tapes with which the measurements would otherwise be made.

Such precautions should be taken to secure accurate horizontal and vertical alignment of the tapes and the determination of the tension applied to the tapes as is necessary to insure that the errors arising from these sources on the base shall each be less than I part in I 000000 .

STANDARDIZATION OF TAPES.

The tapes were standardized at the Bureau of Standards, at Washington, D. C., both before and after the measurement of each of the two bases. The length of the 50 -meter comparator was measured with iced bar B_{17} just before and after the comparison of the tapes with the comparator. In the determinations at the Bureau of Standards the tapes were used in practically the same manner as in the field. They were supported at the ends and at the middle point with all three supports in a straight line. Two thermometers were attached to each tape about I meter from the graduation mark at each end, and the fixed tension of 15 kilograms was applied. The tapes were suspended under the end microscopes of the comparator, using the cut-off cylinders for the end supports. For a full description of the standardization of base tapes, see pages II5-119 of Appendix 4, Report for 1907.

STANTON BASE LINE.

The Stanton base line was located by the reconnaissance party in $1907-8$ about 9 miles west and a little north of the town of Stanton, on the Texas and Pacific Railway. The land is level and smooth, and partly covered by small brush, with no ravines of sufficient size to interfere in any way with the preparation or measurements. The base was measured over the prairie, except for a short distance, which was over cultivated land.

SIZE OF PARTY.

The triangulation party which measured the Stanton base consisted of Assistant J. S. Hill, the chief of party, Signalman J. S. Bilby, and 7 other persons- 9 in all. The actual measurement with the tapes was made by Mr. Hill, Mr. Bilby, and 4 other persons. Mr. Hill was in charge, making the forward contact and reading the forward thermometer, and Mr. Bilby making the rear contact and reading the rear thermometer. Two men held the forward and rear tape stretchers, one man recorded the observations, and one man stood at the center stake during the time the tape was on its supports and assisted in carrying the tape forward.*

The party lived in camp pitched close to the base line, and consequently only a small amount of time was consumed in going to and from the work.

DIVISIONS OF THE BASE

There were three main divisions in the Stanton base; the first extending from south base to the end of the fourth kilometer, the second from the beginning of the fifth kilometer to the end of the eighth kilometer, while the third section extended from the beginning of the ninth kilometer to north base, which is just beyond the thirteenth kilometer. The total length of the base is 13193 meters. Each main division of the base was measured at least twice, with two tapes, a different pair of tapes being used on each division; hence an intercomparison of the three tapes used could be made. The following table shows the divisions of the base with the tapes used on each and the approximate length of the divisions:

Division	Tapes used	Length of di- visions
	Numbers	Meters
No. 1	516 and 521	4000
No.2	516 and 517	4000
No.3	521 and 517	5193

The southern end of the base line is on level prairie land, $71 / 2$ miles west of Stanton and about two-thirds of a mile north of the railroad. The upper mark is a cylinder of concrete 30 inches long and 20 inches in diameter, with its top flush with the surface of the ground. In the center of the concrete was placed a 3 -inch iron pipe, on the top of which is fastened a round brass cap triangulation station mark. A small hole drilled into the center of this station mark indicates the Stanton south base triangulation station and the southern end of the Stanton base line. The underground mark is a small drill hole in a metal disk triangulation station mark, cemented into bed rock 3 feet below the surface of the ground.

The northern end of the base is situated about II miles northwest of Stanton, on the highest point of a small bare knoll in the pasture owned by Mr. J. E. Henson. The surface mark is similar to that at south base, except that the cylinder of concrete is 24 inches in diameter. The underground mark is a cylinder of concrete 12 inches in

[^7]height and 12 inches in diameter, with its top 36 inches below the surface of the ground. In the center of this cylinder was placed an iron pipe 12 inches long and $11 / 2$ inches in diameter. The projecting point of a large wire nail, cemented into the pipe with its head down, marks the station and the northern end of the base line.

APPARATUS USED.

The invar tapes used on the Stanton and Deming bases were similar to those used in 1906, and described on pages III-113 of Appendix 4, Report for 1907, "Six primary bases measured with steel and invar tapes."

Each tape was kept on an aluminum reel 16 inches in diameter, a reel of this size being found, by experiments in 1906, to be large enough not to injure the tape nor to cause any change in its length. During the measurement of the base the tape in use was seldom allowed to touch the ground, being held up by the several members of the party while moving forward or being supported by the stakes while the actual measurements were being made. Care was taken to protect the tape from shocks and sharp bends. This was especially the case while passing obstructions, such as wire fences and ditches.

The tape stretcher shown and described on pages 414 and 415 of Appendix 8, Report for 1892 , was used on the measurements of the nine primary base lines along the ninetyeighth meridian in 1900-1901 (Fig. 2). It weighed $463 / 4$ pounds. In 1906 this stretcher was modified by taking off the platform on which the operator stood and substituting a steel point bolted to the rod. Instead of being held in position by the weight of the operator on the platform, the stretcher was held by the point, driven into the ground. Even this modified stretcher was heavier than necessary and not easily operated. An entirely new stretcher was used during the measurements of the Stanton and Deming bases. It is shown in Fig. 3 and was designed by Signalman J. S. Bilby and made under his direction. It consists of an iron tube 1.35 meters long and 34 millimeters in diameter, with a shallow longitudinal groove into the bottom of which is drilled a number of holes about 12 millimeters apart. A short collar, fitted with a frame to support the spring balance and a weight to balance it, and sliding over the long tube, carries a pin which, pressed into one of the holes by a spring, fixes the position of the collar on the tube. When the spring is released by a handle this collar may be quickly raised or lowered and placed in any desired position on the tube. The bottom of the tube ends in a round conical point which permits it to rotate on its axis, thus allowing the tension to put the balance into alignment with the tape. This stretcher, which weighs but $173 / 4$ pounds, has a short iron rod near the bottom of the tube to give a hold for the foot in forcing the point into the ground.

The general principle embodied in this tape stretcher has been retained in a new one made in the Instrument Division of this Survey for use in the future. It differs from the former stretcher only in being lighter in weight and in that its sliding collar can be quickly brought to a desired position at any point on the tube by means of a friction lever device. It is shown in Fig. 4. The length of the tube of the new stretcher is 1.35 meters and its diameter is 32 millimeters. Its total weight is only $111 / 2$ pounds.

As in previous base measurements, the rear end of the tape was held by a simple wooden staff, fitted with a metal shoe, the end of the tape being fastened to the staff by a strap. (See Fig. 5.)

On all base lines measured with tapes, previous to the Stanton base, the observer made the rear contact using his bare or gloved hand to place the mark on the tape in exact coincidence with the mark on the metal strip of the tape support after an approximate contact had been made by the holder of the rear end of the tape. An efficient method of making the exact contact was found in having the graduation on the tape

Fig. 2.-Tape stretcher used on the ninety-eighth meridian in 1900-1901.
brought close to but slightly forward of the mark on the copper strip. Then the observer, by grasping and flexing the tape with his hand, brought the mark on the tape into exact coincidence with the mark on the stake. Of course it is understood that this flexure is put into the tape between its rear end and the mark. It was found that by using this method a sensitive and certain control of the tape could be maintained, but

Fig. 3.-Tape stretcher used on the Stanton and Deming bases.

Fig. 4.-Improved form of tape stretcher.

Fig. 5.-Making the rear contact.
it was also found that the hand needed some protection from the tape. For this purpose a device called a "tape-stretching hand guard" was used on the Stanton and Deming base lines, and it was found to be entirely satisfactory. It is shown in Fig. 5. It consists of a piece of metal ino millimeters long, 25 millimeters wide, and 3 millimeters thick, made in the form of a flattened " S ."

SETTING STAKES AND MEASURING.

On the Stanton base there were three supports for each tape length. The two end supports were made of sawed lumber 4 inches square and about 3 feet long. They were driven into the ground to a depth of about 18 inches, thus leaving an equal length above ground. It was found in most cases that it was not necessary to dig a hole for the stake. A crowbar was used to start the hole, into which was inserted the sharpened end of the stake, which was then driven down with a sledge until it was firm. The intermediate support consisted of a piece of lumber 2 by 4 inches in cross section, set just off the line of the base. A wire nail driven into this and crossing the line, with its top in a straight line between the tops of the end stakes, served to support the tape at its center. The nail usually projected about 2 inches. No point was marked on the nail to indicate the line of the base, as the tape was supposed to assume that line when the tension was applied. The tape was tapped on its under side, close to the nail, just before the forward observer marked the tape length.

The triangulation party had erected signals over the ends of the base before any work on the base was done. Upon starting this work several points were located in the line between the base ends to assist in aligning the stakes, which was done with a 6 -inch theodolite. The theodolite was moved forward frequently in order to secure a good control of the alignment. One or more of the members of the party preceded those who set the stakes, and cleared away the small brush, but this was only a small part of the preparation of the base for the measurement.

Two lines of levels were run over the base, using a precise level and a self-reading rod. The rod was held only on the stakes supporting the ends of the tapes, except in the few cases where the grade between the end supports was broken at the middle support. In such cases the rod was held also on the middle support.

Set-ups and set-backs were made on the copper strips nailed to the stakes supporting the ends of the tapes. These strips were made of soft copper and were 55 millimeters long, 2 millimeters thick, and 12 millimeters wide. One edge of the strip was placed about half the width of the tape from the line of the base. The thickness of the strip was exactly the thickness of the sleeves on the ends of the tapes, which made it very. easy to extend the line from the mark of the tape onto the strip. The lengths of the set-ups and set-backs were measured by means of a pair of hairspring dividers and a scale reading to tenths of millimeters.

WIND EFFECT ON TAPES.

During the measurement of the Stanton base, and especially during the day, there was usually wind of considerable force. The invar tape has a tendency not to lie perfectly flat or smooth-that is, the elements of the tape normal to its length are not horizontal when suspended with tension applied and ready for measurement. With
this peculiarity, it is more sensitive to wind effects than the steel tape. The effect of wind on the latter is to cause it to vibrate or flutter. This makes it difficult to mark its forward end on the copper strip; but the length of the tape, or rather the distance between its end marks, is not materially shortened. With the invar tape, however, where a portion of its length is approximately normal to the moving air, the distance between the end marks is materially lessened during strong winds, although the mark on the forward end of the tape remains fairly steady. No two single measures of a section of the Stanton base differed by as much as the allowable maximum limit. The chief of party, however, noticing that a strong wind had a decided effect on the lengths of the tapes, decided to measure certain sections in both strong and light winds, in order to form an estimate of the amount of this effect. In each case it was found that the measurement during the strong wind gave a value for the length of the section larger than that obtained during moderate or light winds. In fact, the effect of the wind on the tapes seemed to be a function of its velocity or strength.

Having found that there was a constant error in all the sections which were measured during strong winds, all of those sections were remeasured when the wind was light or moderate. A light wind was considered to be one which did not in any way interfere with the measurements of the base. A moderate wind was one which disturbed the tape, but not sufficiently to interfere seriously with the progress of the measurements. A strong wind interfered materially with the accuracy of the measurement and made necessary the remeasurement of a number of sections. In every case where the wind was moderate or strong, it was blowing at right angles to the line of the base.

With a certain velocity it is probable that the effect on the tape decreases as the direction of the wind approaches the line of the base. The effect of wind blowing in the exact direction of the base is probably small, but no experiments were made to show whether that effect is positive or negative.

In order to obtain favorable conditions, some of the measurements were made at night, when generally the wind was not strong. The office computation verified the conclusion reached by the chief of party in the field regarding the effect of strong wind, and in computing the final length of the base line the measurement of any section which was made in a strong wind was rejected, provided that there were at least two other measures of that section which were made in a light or moderate wind, or when there was no wind.

EQUATIONS OF TAPES.

The equations of tapes, furnished by the Bureau of Standards and resulting from standardization in January, 1909, are:
$\mathrm{T}_{321}=50 \mathrm{~m}+(9.678 \mathrm{~mm} \pm 0.018 \mathrm{~mm})+(0.0205 \mathrm{~mm} \pm 0.0008 \mathrm{~mm}) \times\left(t-17^{\circ} .7 \mathrm{C}\right)$
$\mathrm{T}_{518}=50 \mathrm{~m}+(9.480 \mathrm{~mm} \pm .017 \mathrm{~mm})+(.0178 \mathrm{~mm} \pm .0007 \mathrm{~mm}) \times\left(t-17^{\circ} .7 \mathrm{C}\right)$
$\mathrm{T}_{517}=50 \mathrm{~m}+(9.679 \mathrm{~mm} \pm .018 \mathrm{~mm})+(.0160 \mathrm{~mm} \pm .0007 \mathrm{~mm}) \times\left(t-17^{\circ} .7 \mathrm{C}\right)$
$\mathrm{T}_{522}=50 \mathrm{~m}+\left(10.3^{22} \mathrm{~mm} \pm .019 \mathrm{~mm}\right)+\left(.06 \mathrm{r}_{4} \mathrm{~mm} \pm .001 \mathrm{~mm}\right) \times\left(t-17^{\circ} .6 \mathrm{C}\right)$

The equations of these same tapes, furnished by the Bureau of Standards and resulting from the restandardization in May, 1909, are:

$$
\begin{aligned}
& \mathrm{T}_{\Delta 21}=50 \mathrm{~m}+(9.907 \mathrm{~mm} \pm 0.02 \mathrm{Imm}) \text { at } 24^{\circ} .7 \mathrm{C} \\
& \mathrm{~T}_{510}=50 \mathrm{~m}+(9.518 \mathrm{~mm} \pm .028 \mathrm{~mm}) \text { at } 24^{\circ} .8 \mathrm{C} \\
& \mathrm{~T}_{517}=50 \mathrm{~m}+(9.840 \mathrm{~mm} \pm .025 \mathrm{~mm}) \text { at } 24^{\circ} .8 \mathrm{C} \\
& \mathrm{~T}_{622}=50 \mathrm{~m}+(10.78 \mathrm{~mm} \pm .024 \mathrm{~mm}) \text { at } 24^{\circ} .7 \mathrm{C}
\end{aligned}
$$

The standardizations from which the preceding equations were obtained were made as far as practicable under field conditions. Each tape was supported at both ends and at the middle point and under a tension of 15 kilograms.

Tape No. 522 was carried to the field but was not used in any of the measurements.
No determination of the coefficients of expansion was made at the time of the second standardization.

The adopted equations of the tapes used in the final computation of the Stanton base are:

$$
\begin{aligned}
& \mathrm{T}_{521}=50 \mathrm{~m}+(9.775 \mathrm{~mm} \pm 0.014 \mathrm{~mm})+(0.0205 \mathrm{~mm} \pm 0.0008 \mathrm{~mm}) \times\left(t-2 \mathrm{I}^{\circ} .2 \mathrm{C}\right) \\
& \mathrm{T}_{51 \mathrm{~B}}=50 \mathrm{~m}+(9.490 \mathrm{~mm} \pm .016 \mathrm{~mm})+(.0178 \mathrm{~mm} \pm .0007 \mathrm{~mm}) \times\left(t-21^{\circ} .2 \mathrm{C}\right) \\
& \mathrm{T}_{817}=50 \mathrm{~m}+(9.734 \mathrm{~mm} \pm .015 \mathrm{~mm})+(.0160 \mathrm{~mm} \pm .0007 \mathrm{~mm}) \times\left(t-2 \mathrm{I}^{\circ} .2 \mathrm{C}\right)
\end{aligned}
$$

These values were obtained by taking a weighted mean of the equations of January and May, 1909. Each determination was given a weight inversely proportional to the probable error of the length of the tape.

In order to compare the lengths of the tapes, as obtained by the two standardizations of January and May, 1909, just before and after the measurement of the Stanton base, the values of the lengths were reduced to the mean temperature, $21^{\circ} .2$. The table below shows the comparison:

```
Jan. 22, \(\mathrm{T}_{\mathrm{BlO}}=50 \mathrm{~m}+9.542 \mathrm{~mm} \pm 0.017 \mathrm{~mm}, \mathrm{v}=-0.044 \mathrm{~mm}\)
May 25, \(\frac{=50 \mathrm{~m}+9.454 \mathrm{~mm} \pm .028 \mathrm{~mm}, \quad+.044 \mathrm{~mm}}{\text { Mean }=5.498 \mathrm{~mm}}\)
Jan. 22, \(\mathrm{T}_{317}=50 \mathrm{~m}+9.735 \mathrm{~mm} \pm .018 \mathrm{~mm}, \quad+.023 \mathrm{~mm}\)
May 25, \(=50 \mathrm{~m}+9.782 \mathrm{~mm} \pm .025 \mathrm{~mm}, \quad-.024 \mathrm{~mm}\)
    Mean \(=\quad+9.758\)
Jan. 22, \(\mathrm{T}_{521}=50 \mathrm{~m}+9.750 \mathrm{~mm} \pm .018 \mathrm{~mm}, \quad+.042 \mathrm{~mm}\)
May 25, \(=50 \mathrm{~m}+9.835 \mathrm{~mm} \pm .02 \mathrm{~mm}, \quad-.043 \mathrm{~mm}\)
Jan. 22, \(\mathrm{T}_{522}=50 \mathrm{~m}+10.543 \mathrm{~mm} \pm .019 \mathrm{~mm}, \quad+.01 \mathrm{~mm}\)
May 25, \(\quad=50 \mathrm{~m}+10.566 \mathrm{~mm} \pm .024 \mathrm{~mm}, \quad-.012 \mathrm{~mm}\)
```

In no case was the residual for a given tape length as much as three times the probable error of its length from a single standardization, and it may therefore be inferred that the tapes underwent no permanent changes in length between the two standardizations, thus justifying the assumption that the differences were due to accidental errors of standardization. This assumption is certainly true for tape 522 , which was not unreeled in the field between the two standardizations.

The thermometers used during the measurements of the base line were graduated to half degrees and read to tenths of degrees. Their corrections are shown in the following table:

APPENDIX 4. PRIMARY BASE LINES.

Correction to-	No. 7175	No. 7180	No. 7183	No. 7184	No. 7188
$0^{\circ} \mathrm{C}$	-0.05	-0.05	-0.05	0.00	0.00
$10^{\circ} \mathrm{C}$	-.00	-.05	.00	.00	-.10
$20^{\circ} \mathrm{C}$	-.10	-.05	-.10	-.10	-.10
$30^{\circ} \mathrm{C}$	-.05	-.05	-.05	.00	-.10
$40^{\circ} \mathrm{C}$	-.05	.00	-.05	.0	-.05

REDUCTION TO SEA LEVEL.
The best available elevations were those furnished by the field computation of the trigonometric leveling through the scheme of triangulation from the ninety-eighth meridian. This gave 821 meters as the elevation of Stanton south base. A line of precise leveling is being carried along the Texas and Pacific Railway within the scheme of triangulation, and it will be connected with Stanton south base. When the resulting elevation is available, the true correction to the length of the base for reduction to sea level can be applied. The formula used in reducing the base to sea level is

$$
C=-S \frac{h}{r}+S \frac{h^{2}}{r^{2}}-S \frac{h^{3}}{r^{3}} \& \mathrm{c}
$$

where C is the reduction to sea level for a section of length S and mean height h, r being the radius of the earth's curvature for this line. All but the first term on the righthand side of this equation are negligible. The reduction to sea level for each section of the base is given in the following table:

Corrections for reduction to sea level.

Section	Correction	Section	Correction	Section	Correction
	Meters				
I	-0.1289	VII	Meters		
II	-.1293	VIII	-.1301	XIII	Meters
III	-.1296	IX	-.1305	XIV	-.0200
IV	-.1298	X	-.1315	XV	-.0054
V	-.1300	XI	-.1324	Total	- I. 7245
VI	-.1300	XII	-.1328		

RESULTS OF THE MEASUREMENT.
The results of the measurement of the Stanton base are given in the following table:

Stanton Base Line.

Section	Date and hour	Direction ofmeas-und ure	Tape No.	Weather and wind *	Temperature		
					R, F, or S \dagger	$\begin{gathered} \text { Mean } \\ \text { corrected } \end{gathered}$	$\begin{gathered} \text { Correction to } \\ T_{0} \end{gathered}$
I	$\begin{gathered} \text { 1909. } \\ \text { Feb. } 11,10.40 \mathrm{a} . \mathrm{m} . \\ \text { 11, } 11.37 \mathrm{a} . \mathrm{m} . \end{gathered}$	$\underset{\mathrm{S}}{\mathbf{S}}$	$\begin{aligned} & 521 \\ & 516 \end{aligned}$	$\begin{aligned} & \text { C, L, SW } \\ & \text { C, L SW } \end{aligned}$	R, F	$\begin{aligned} & 16.29 \\ & 16.7^{2} \end{aligned}$	m-0.0020-.0016
S.B.-20							
II	$\begin{aligned} & \text { II, } 9.56 \mathrm{a} . \mathrm{m} . \\ & \text { II, in. } 55 \mathrm{a} . \mathrm{m} . \end{aligned}$	$\stackrel{S}{\mathrm{~N}}$	$\begin{aligned} & 521 \\ & 516 \end{aligned}$	C., L. MW	R\mathbf{R}	$\begin{aligned} & 12.92 \\ & 18.08 \end{aligned}$	-.0034
20-40							
$\begin{array}{r} \text { III } \\ 40-60 \end{array}$	$\begin{aligned} & 1 \mathrm{I}, ~ 2.16 \text { p.m. } \\ & \mathrm{II}, \quad 3.54 \text { p.m. } \end{aligned}$	N	516	$\begin{aligned} & \text { Cy,M SW } \\ & \text { Cy,L SW } \end{aligned}$	$\underset{\mathrm{F}}{\mathbf{S}}$	20. 3920. 11	-.0003-.0004
			521				
$\begin{gathered} \text { IV } \\ 60-80 \end{gathered}$	$\begin{aligned} & 11,2.48 \mathrm{p} . \mathrm{m} . \\ & \mathrm{II}, 3.30 \mathrm{p} . \mathrm{m} . \end{aligned}$	NS	516	$\begin{aligned} & \text { Cy,M SW } \\ & \text { Cy,LsW } \end{aligned}$	S	19. 3020. 14	-.0007
			52 I				
$\underset{80-100}{V}$	13, 11.09 a . m. 13, 11.54 a. m. 19, 9.26 p. m. 19, 10.16 p. m.	SNSN	517516	Cy,Vs W Cy,M W C,L SW	R, F	22.3420.96	+.0004-.0001
					S		
			517		R	09.4509.78	-.
				$\begin{aligned} & \text { C,L SW } \\ & \text { C,L W } \end{aligned}$	F		
$\underset{100-120}{V I}$	$13,10.30 \mathrm{a} . \mathrm{m}$. 13, $12.18 \mathrm{p} . \mathrm{m}$. 19, 8.58 p. m. 19, 10.44 p. m.	$\begin{aligned} & S \\ & \mathbf{N} \\ & \mathbf{S} \\ & \mathbf{N} \end{aligned}$	517	Cy,s W	R	19. 5^{8}	-. 0005
			516	Cy, M WC,L SW	R	20. 97	
			517		R	09. 32	-.0001
			516	C, L, W	S	09.01	-. 0043
$\underset{120-140}{\text { VII }}$	$\begin{aligned} & 13,9.53 \mathrm{a} . \mathrm{m} . \\ & 13,12.40 \mathrm{p} . \mathrm{m} . \\ & 19,8.30 \mathrm{p} . \mathrm{m} . \end{aligned}$	SNS	$\begin{aligned} & 517 \\ & 516 \\ & 517 \end{aligned}$	$\begin{aligned} & \mathrm{Cy}, \mathrm{~L} \mathrm{~W} \\ & \mathrm{C}, \mathrm{M} \mathrm{~W} \\ & -, \mathrm{L} \end{aligned}$	$\underset{\mathrm{F}, \mathrm{R}}{\mathrm{R}}$	17.2722. 57	-.0013+.0005
					R	07.25	
$\begin{gathered} \text { VIII } \\ 140-160 \end{gathered}$	$13,9.16 \mathrm{a} . \mathrm{m}$.$16,8.59 \mathrm{a} . \mathrm{m}$.	$\underset{\mathrm{S}}{\mathbf{S}}$	517516	$\begin{aligned} & \mathrm{Cl}, \mathrm{~L} \mathrm{~W} \\ & \mathrm{C}, \mathrm{O}+\mathrm{W} \end{aligned}$	R\mathbf{R}	$\begin{aligned} & 15.70 \\ & 00.82 \end{aligned}$	-.0018
$\underset{160-180}{\text { IX }}$	$\begin{array}{ll} 16, & 9.35 \text { a. m. } . \\ 16, & 1.56 \text { p. m. } \end{array}$$19,7.32 \text { p. m. }$	NSS	$\begin{aligned} & 521 \\ & 517 \\ & 517 \end{aligned}$	$\begin{aligned} & \mathrm{C}, \mathrm{O}+\mathrm{SW} \\ & \text { C,S SW } \\ & \mathrm{C}, \mathrm{O} \end{aligned}$	$\mathbf{R}$$\mathbf{R}$$\mathbf{S}$	$\begin{aligned} & 04.35 \\ & \text { 18. } 46 \\ & \text { 1o. } 3^{6} \end{aligned}$	-. .0069 $-.0009$ $-.0035$
$\frac{X}{180-200}$		NSSS	$\begin{aligned} & 521 \\ & 517 \\ & 517 \\ & 517 \end{aligned}$	$\begin{aligned} & \text { C,L SW } \\ & \text { C,S SW } \\ & \text { C,O } \\ & \text { C,L, NW } \end{aligned}$	R$\mathbf{S}$$\mathbf{F}$$\mathbf{R}$	$\begin{aligned} & 07.97 \\ & 17.98 \\ & 12.27 \\ & 12.43 \end{aligned}$	$\begin{aligned} & \text {-. .0054 } \\ & =.0010 \\ & =.0029 \\ & -.0028 \end{aligned}$
$\begin{gathered} \text { XI } \\ 200-220 \end{gathered}$	$\begin{aligned} & \text { 16, } 10.38 \mathrm{a} . \mathrm{m} . \\ & \mathbf{1 6}, \mathrm{I} .12 \mathrm{p} . \mathrm{m} . \\ & \text { 19, } \\ & \text { 20.40 p. m. } \\ & \text { 20.47 p. m. } \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & 521 \\ & 517 \\ & 517 \\ & 517 \end{aligned}$	$\begin{aligned} & \text { C,L SW } \\ & \text { C,SSW } \\ & \text { C,O } \\ & \mathrm{C}, \mathrm{O}+\mathrm{W} \end{aligned}$	R$\mathbf{S}$$\mathbf{R}$F	$\begin{aligned} & 10.63 \\ & 17.44 \\ & 14.67 \\ & 13.3^{8} \end{aligned}$	$\begin{aligned} & -.0043 \\ & -.0012 \\ & -.0021 \\ & -.0025 \end{aligned}$
$\begin{gathered} \text { XII } \\ .220-240 \end{gathered}$	$\begin{aligned} & 16,10.58 \mathrm{a} . \mathrm{m} . \\ & 16,11.38 \mathrm{a} . \mathrm{m} . \end{aligned}$	$\stackrel{\mathrm{N}}{\mathrm{S}}$	$\begin{aligned} & 521 \\ & 517 \end{aligned}$	C. L SW C, M SW	$\stackrel{R}{\text { R }}$	$\begin{aligned} & 12.67 \\ & 14.99 \end{aligned}$	-. 0035
$\begin{array}{r} \text { XIII } \\ 240-260 \end{array}$	19, 7.5^{2} a. m. 20, 8.56 a. m. 20, 9.5 I a. m. 20, $10.40 \mathrm{a} . \mathrm{m}$. 21, 12.37 p. m.	NSNSS	$\begin{aligned} & 521 \\ & 517 \\ & 521 \\ & 517 \\ & 517 \end{aligned}$	$\begin{aligned} & \mathrm{C}, \mathrm{~L} \text { NW } \\ & \mathrm{C}, \mathrm{M} \text { W } \\ & \mathrm{C}, \mathrm{M} \text { W W } \\ & \mathrm{C}, \mathrm{O}+\mathrm{SW} \end{aligned}$	R	03.29	
					R	13. 20	-.0026
					R	18. 59	-. 0011
					R	21. 37	+.0001
					R	04.40	-.0054
260-263	$\begin{aligned} & \text { rg, } 8.10 \mathrm{a} . \mathrm{m} . \\ & \text { 19, } 8.4^{2} \mathrm{a} . \mathrm{m} . \end{aligned}$	$\stackrel{\mathrm{N}}{\mathbf{S}}$	$\begin{aligned} & \mathbf{5 2 1} \\ & 517 \end{aligned}$	$\begin{aligned} & \text { C,L NW } \\ & \text { C,L NW } \end{aligned}$	$\mathbf{R}$$\mathbf{R}$	$\begin{aligned} & 06.27 \\ & 09.70 \end{aligned}$	$\text { -. . } 0009$
263-N. B.	20, 8.00 a. m.		5×7	-, L W		08. 51	-. 0002

* These letters represent the following: C, clear; Cy, cloudy; O. calm; L. light; M, moderate; S, strong; VS, very strong; W. west: SW, southwest; and NW, northwest.

Stanton Base Line-Continued.

Set-up or set-	Grade correction	Tape correction	Reduction to sea level	Reduced lengths of sections	$\begin{gathered} \text { Means by } \\ \text { tapes } \end{gathered}$	Adopted length of seotion.	(v)	(ov)
m	m	m	m	m	m	\boldsymbol{m}	mm	mm
-0.0168	-0.0575	+o. 1955	-0. 1289	999. 9903			+2. 6	6. 76
$-.0063$	-. 0.0575	+. 1898	-. 1289	999.9955		999.9929	-2.6	6. 76
$+.0208$	-. 0147	+.1955	-. 1293	1000. 0689			+1. I	1. 21
$+.0263$	-. 0147	+.1898	-. 1293	1000.0710		1000.0700	-1.0	1. 00
-. O112	-. 0047	+. 1898	-. 1296	1000.0440			-0.8	0. 64
-.0184	-. .0047	+. 1955	-. 1296	1000. 0424		1000. 0432	+o. 8	0. 64
-. 0635	-. 0018	+. I898	-. 1298	999. 9940			-0.4	-. 16
-. 0702	-. 0018	+. 1955	-. 1298	999. 9933		999.9936	+o. 3	0. 09
$+.0803$	-.. 0155	+. 1946	- . r300	$\ddagger 1000.1298$				
+.0697	-. 0155	+.1898	-. 1300	1000. I 139				
$+.0706$	-. 0155	+. 1946	-. 1300	1000. II 59	1000. II 59		-2. 5	6. 25
+.0674	-. 0155.	+.1898	-. 1300	1000. 1076	1000. 1108	1000. 1134	+2.6	6. 76
-.0070	-. or 56	+. 1946	-. 1300	$\ddagger 1000.0415$				
-. 0123	-. 0156	+. 1898	-. 1300	1000.0318				
-. 0148	-. Or 56	+.1946	-. 1300	1000. 0304	1000. 0304			0.64 0.64
-.0141	-. 0156	- . 1898	-. 1300	1000. 0258	1000. 0288	1000. 0296	+0.8	
$+.0389$	-. 0673	+. 1946	-. 1301	1000. 0348				
+.0464	-. 0673	+. 1898	-. 1301	1000.0393	1000. 0393		-3. 1	9.61
$+.0390$	-. 0673	+. 1946	-. 1301	1000. 0317	1000. 0332	1000. 0362	$+3.0$	9. 00
$+.0133$	$-.0084$	+. 1946	-. 1305	1000. 0672			-3.8	14.44
$+.0161$	$-. .0884$	+. 1898	-. 1305	1000.0597		1000. 0634	+3.7	13.69
$+.0218$	-. Ori3	+. 1955	-. 1309	1000. 0682			-0.4	0. 16
	-.0113	+. 1946	-. 1309	$\ddagger+1000.0769$				
$+.0184$	-. or 13	+. 1946	-. 1309	1000.0673		1000. 0678	+o. 5	0. 25
+.0052	-. 0234	+.1955	-.1315	1000.0404	1000. 0404		- I. 6	2. 56
+.0076	-. 0234	+. 1946	-. 1315	\ddagger 1000. 0463				
-.0013	-.0234	+.1946	-. 3155	1000.0355 1000.0389		1000. 0388	+1.6	2. 56
+.0020	-. 0234	+. 1946	-.1315	1000.0389	O. 0	1000.0388	+1.6	2.56
-. 0240	-. 0257	+. 1955	-. 1324	1000.0091	1000.0091		-2.6	6. 7^{6}
-. 0177	-. 0257	+. 1946	-. 1324	$\ddagger 1000.0176$				
-. 0344	-. 0257	+. 1946	-.1324	1000. 0000				
-. 0262	-. 0257	+.1946	-. 1324	1000. 0078	1000.0039	1000. 006	+2.6	6. 76
-.0515	-. or62	+. 1955	-. 1328	999: 9915			+o. 3	0. $\infty 9$
-. .0515	-. .0162	+.1946	-. 1328	999.992		999.9918	-0.3	0. $\infty 9$
-. 0465	-. 0345	+.1955	-. 1333	999. 9739				
-. 0368	-. 0345	+. 1946	-. 1333	999. 9874				
-. 0485	-. 0345	+. 1955	-. 1333	999. 9785	999.9762		+2.8	7.84
$-.0300$	-. 0345	+. 1946	-. 1333	\$999.9969				
-. 0449	-. 0345	+. 1946	-. 1333	999.9765	999.9819	999.9790	-2.9	8. 41
	-. 012126	$\begin{aligned} & +.0293 \\ & +.0292 \end{aligned}$	-.0200	$\begin{aligned} & 149.9958 \\ & 149.9960 \end{aligned}$		149.9959	$\begin{aligned} & +0.1 \\ & -0.1 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$
-9.0821	-. 0024	$+. .0097$	-. . 0054	40.9196		40.9196		

\ddagger These measures rejected, having been made in a strong wind.

The length of the Stanton base line $=13191.3417$ meters.
The logarithm of this length $=4.1202889$
± 2
The probable error of the length $=5.15 \mathrm{~mm}$, which corresponds to I part in 2561000.

COMPUTATION OF PROBABLE ERRORS.
The following table shows the various probable errors for each section of the base:

Section	Probable error due to-			Combined probable error of each section
	Uncertainties in the lengths of the tapes	Uncertainties in the coelficients of expansion	Accidental errors of measure	
	mm	$m m$	$m m$	$m m$
I	± 0.21	± 0.05	± 1.75	± 1.76
II	$\pm .21$	$\pm .00$	$\pm .71$	$\pm .74$
III	$\pm .21$	$\pm .01$	$\pm .54$	$\pm .58$
IV	$\pm .21$	$\pm .02$	$\pm .24$	$\pm .32$
V	$\pm .22$	$\pm .09$	± 1.72	± 1.74
VI	$\pm .22$	$\pm . \infty$	$\pm .54$	$\pm .59$
VII	$\pm .22$	$\pm .04$	± 2.06	± 2.07
VIII	$\pm .22$	$\pm .13$	± 2.53	土2. 54
IX	$\pm .21$	$\pm .15$	$\pm .30$	$\pm .40$
$\underset{\mathbf{X I}}{ }$	$\pm .21$	$\pm .11$	± 1.08	± 1.11
XI	$\pm .21$	$\pm .09$	± 1.75	± 1.76
XII	$\pm .21$	$\pm .08$	$\pm .20$	$\pm .30$
XIII	$\pm .21$	$\pm .12$	± 1.92	± 1.94
XIV	$\pm .03$	$\pm .02$	$\pm .07$	$\pm .08$

The probable error of the base from all sources $= \pm 5.15 \mathrm{~mm}$.
The probable error of the weighted mean of a tape was computed as if a direct and not a weighted mean had been taken-that is, $e=1 / 2 \sqrt{e^{2}+e^{2}}{ }_{2}$, where e is the probable error of the mean value of the length of the tape, and e_{1} and e_{2} the probable errors of the January and May values of the length of the tape. The probable error obtained in this way differs not more than o.001 millimeter from what it would be had weights been used.

In writing the expansion term of the tape equations, the coefficient determined at the January standardization was used with t_{0} (the standard temperature), denoting the direct mean of the temperatures of the two standardizations.

In computing the probable error of each section of the base, three causes of uncertainty in the length were considered. (a) The uncertainty of the lengths of the tapes. The probable error of the length of a section due to this cause was assumed to be the number of tape lengths in the section multiplied by one-half the square root of the sum of the squares of the probable errors of the lengths of the two tapes used in measuring the section. (b) The uncertainty caused by not knowing the true temperature coefficient. The probable error of the length of a section due to this cause was assumed to be $n\left(t_{0}-t\right)$ multiplied by one-half the square root of the sum of the squares of the probable errors of the temperature coefficients of the two tapes used in the measurement of the section. In this expression n is the number of tape lengths in the section,
t_{0} the temperature of standardization, and t the temperature of the tapes. (c) The accidental errors of measurement. The probable error of the measurement of a section from the accidental errors was computed from the residuals using the formula $r_{0}=0.6745 \sqrt{\frac{\left[v^{2}\right]}{n(n-1)}}, v$ being a residual and n the number of measures of a section.

The final probable error of the length of a section was obtained by taking the square root of the sums of the squares of the three probable errors obtained as indicated in the preceding paragraph, while the probable error of the length of the entire base was taken to be equal to the square root of the sums of the squares of the probable errors of all the sections.

COST OF STANTON BASE.

The triangulation party was engaged on the preparation and measurement of the Stanton base line seventeen days, from February 7 to February 23, 1909. This was the period during which no triangulation was done. It came between the last observations of horizontal directions at south base station and the beginning of observations at station Elkins. The total field expenses of the party, including the salary of its chief, for the month of February were \$1 214 . These expenses included transportation of light keepers both by rail and by hired teams between the triangulation stations and to and from the base line. It is believed that a fair estimate of the cost of the field work during the measurement of the Stanton base line is $\$ 739$. This estimate was obtained by multiplying the average cost per day during the month, $\$ 43 \cdot 50$, by the total number of days on the base line. This made the field cost per kilometer $\$ 56$ and the cost per mile $\$ 90$.

The average cost of the field work per kilometer of measurements with steel tapes in ryoo-1901 was $\$ 89$. The average field cost per kilometer measured by tapes or bars during that season was $\$ 145$. The average cost of the measurement of a kilometer in 1906, using both steel and nickel-steel (invar) tapes on each section, was $\$ 99$. In the 1906 cost the expense of standardizing at the Bureau of Standards was not included. During both of those seasons standardizations in the field were made at the beginning and at the end of the work. The low cost of the work on the Stanton base line was due largely to the following causes: (a) There was only the expense of local travel; (b) the party was well trained, though it had never worked together on the measurement of a base line; (c) there was no standardization of the tapes in the field; (d) the chief of party and his assistant were experienced in base line measurements; and (e) there was no unproductive period before and after the actual work on the base. To the cost of the Stanton base line should be added $\$ 400$, the approximate expense to the Bureau of Standards of standardizing four tapes both before and after the measurement.*

The cost of the office computation of the Stanton base line was $\$ 129$. Hence the total cost of that base line, including all expenses except that involved in preparing results for publication and the printing of this appendix, was $\$ 1268$. This made a cost of $\$ 96$ per kilometer and $\$ 147$ per mile. The total cost per kilometer, measured with steel tapes in 1900-1901, was $\$ 98$, and that of a kilometer measured with both steel and invar tapes in 1906 was $\$ 115$. The chief of party who conducted the work

[^8]in 1906 stated that the cost would have been $\$ 94$ per kilometer if invar tapes only had been used.

DEMING BASE LINE.

The Deming base line was measured by a primary-triangulation party, which was also under the direction of Assistant J. S. Hill, during the season of 1909-10 on the Texas-California arc.

This base line is located in the valley south of Deming, Grant County, N. Mex., the northern end of the base being about $61 / 2$ miles due south of that town. The approximate length of the base is 15554 meters. From the north base to the south base the line has a general direction of south 26° west, while the land over which it runs is level and smooth and crosses no ravines or other obstructions and there is no grade of more than 1 per cent for any one tape length. Portions of the line had to be cleared of sagebrush, greasewood, and mesquite, but this work was not difficult.

SIZE OF PARTY.
The triangulation party which measured the Deming base consisted of Assistant J. S. Hill, the chief, Signalman J. S. Bilby, and 10 other persons- 12 in all. On the base line work the party was reduced to an average of 9 persons. There were 12 persons engaged on the base the first few days, while during the latter part of the work there were only 6 . Being able to reduce the size of the party, it being at the end of the season on triangulation, decreased the cost of the base.

After the base had been prepared, the actual measurements with the tapes were made in three days by the 2 observers and 4 men. The leveling along the base in both directions was done by an observer and 3 men in three and one-half days. As was the case on the Stanton base, the party camped close to the base line in order to make the time of getting to and from work a minimum.

DIVISIONS OF THE BASE.
As in the Stanton base line, this line had three main divisions: The first extended from north base to the end of the fifth kilometer, the second from the beginning of the sixth kilometer to the end of the tenth kilometer, while the third was from the beginning of the eleventh kilometer to south base.

Each main division of the base was measured twice, with two tapes, a different pair of tapes being used on each division; hence an intercomparison of the three tapes could be made.

The following table shows the divisions of the base line, the tapes used, and the approximate length of each division:

Division	Tapes used*	Length of division
	Numbers	Meters
No. 1	516 and 521	5000
No. 2	516 and 517	5000
No. 3	517 and 521	5554

*These tapes were also used on the Stanton base.

The north end of the base is marked by a drill hole in the center of a metal station mark (see description of Stanton south base, p. 148) embedded in a cylinder of concrete 24 inches long by 20 inches in diameter, the top of concrete being even with the surface of the ground. An underground mark consisting of a metal disk set in concrete was placed 30 inches below the surface mark.

The south end of the Deming base is located about $11 / 2$ miles east of the Midland switch on the Deming branch of the El Paso and Southwestern Railroad and about 15 miles to the southward of Deming. It was marked in exactly the same manner as the north base.

The instructions to the chief of party were identical with those issued to him for the measurement of the Stanton base, except that they called for 5 supports- 2 for the ends and 3 intermediate-for a tape length. It was decided to adopt this number of supports owing to the difficulty with the wind on the Stanton base when using only 3 supports. Five supports used on the Deming base proved to be very effective in eliminating most of the effect of wind on the tapes. It prevented the wind causing errors in two ways-it reduced the catenary, or the distance between any two supports, and it made the tape assume more nearly a horizontal position, and consequently the wind pressed only against the edge of the tape instead of on its broad surface. The wind effect was not entirely eliminated, but it was believed to be so small as to be negligible.

The measurement of the Deming base was made in a manner similar to that of the Stanton base, except as noted above. The intermediate supports of the tape were nails driven into pieces of lumber 2 inches by 4 inches in cross section, set into the ground at intervals of $121 / 2$ meters between the end supports and just off the line of the base. These nails were driven in horizontally with their tops placed approximately on the straight line joining the top of the end supports of the tape, except where it was necessary to break the grade of the tape in crossing an obstruction. In such a case the elevation of the point at which the tape length changed grade was determined during the leveling of the base. In the normal cases, where all of the supports were in the same straight line, the leveling rod was held only on the end supports.

STANDARDIZATION AND EQUATIONS OF THE TAPES.
The results obtained on the Stanton base showed that in using invar tapes it is desirable to have the interval between supports considerably less than 25 meters, and accordingly, in May, 1909, the 50 -meter invar tapes were standardized, using 5 as well as 3 supports.

The equations of the 4 tapes using the 5 supports, as determined by the May, 1909, standardization, are given below. The base was measured with tapes 516,517 , and 52 I , while tape 522 was taken to the field for use in case of accident to one of the other tapes.

May 25, 1909.
$\mathrm{T}_{516}=50 \mathrm{~m}+12.410 \mathrm{~mm} \pm 0.026 \mathrm{~mm}$, at $24^{\circ} .8 \mathrm{C}$
$\mathrm{T}_{317}=50 \mathrm{~m}+12.785 \mathrm{~mm} \pm .026 \mathrm{~mm}$, at $24^{\circ} .8 \mathrm{C}$
$\mathrm{T}_{521}=50 \mathrm{~m}+13.012 \mathrm{~mm} \pm .02 \mathrm{Imm}$, at $24^{\circ} .7 \mathrm{C}$
$\mathrm{T}_{522}=50 \mathrm{~m}+13.922 \mathrm{~mm} \pm .020 \mathrm{~mm}$, at $24^{\circ} .7 \mathrm{C}$

The coefficients of expansion for these various tapes, for both this standardization and the one of March 10, 1910, were assumed to be unchanged from the standardization of January, 1909 (p. I55).

The equations of these tapes, furnished by the Bureau of Standards and resulting from the standardization in March, rgro, using 5 supports, are:

March io, rgio.
$\mathrm{T}_{510}=50 \mathrm{~m}+12.37 \mathrm{~mm} \pm 0.017 \mathrm{~mm}$, at $26^{\circ} .8 \mathrm{C}$
$\mathrm{T}_{517}=50 \mathrm{~m}+12.768 \mathrm{~mm} \pm .015 \mathrm{~mm}$, at $26^{\circ} .8 \mathrm{C}$
$\mathrm{T}_{521}=50 \mathrm{~m}+13.066 \mathrm{~mm} \pm .015 \mathrm{~mm}$, at $26^{\circ} .8 \mathrm{C}$
$\mathrm{T}_{522}=50 \mathrm{~m}+14.029 \mathrm{~mm} \pm .017 \mathrm{~mm}$, at $26^{\circ} .8 \mathrm{C}$

Values were also obtained at this time with the tapes on 3 supports. These values were not used on the Deming base, but are shown in the table on page 169 for the purpose of making a comparison with other values.

The adopted equations of the tapes used in the final computation of the Deming base are:

$$
\begin{aligned}
& \mathrm{T}_{510}=50 \mathrm{~m}+(12.382 \mathrm{~mm} \pm 0.016 \mathrm{~mm})+(0.0178 \mathrm{~mm} \pm 0.0007 \mathrm{~mm})(t-25.8 \mathrm{C}) \\
& \mathrm{T}_{517}=50 \mathrm{~m}+(12.772 \mathrm{~mm} \pm .015 \mathrm{~mm})+(.0160 \mathrm{~mm} \pm .0007 \mathrm{~mm})(t-25.8 \mathrm{C}) \\
& \mathrm{T}_{521}=50 \mathrm{~m}+(13.048 \mathrm{~mm} \pm .013 \mathrm{~mm})+(.0205 \mathrm{~mm} \pm .0008 \mathrm{~mm})(t-25.8 \mathrm{C})
\end{aligned}
$$

These values were obtained by taking the weighted means of the equations furnished by the standardizations in May, 1909, and March, 1910. Each determination was given a weight inversely proportional to the probable error of the length of the tape. See page 160 , which gives a statement regarding the manner of deriving the probable errors of the mean values of the equations of the tapes used on the Stanton base.

In order to compare the lengths of the tapes obtained by two standardizations, before and after the measurement of the Deming base, values of the lengths were reduced to the mean temperature of standardizations, $25^{\circ} .8 \mathrm{C}$. The following table shows the comparison:

$$
\begin{aligned}
& \text { May } 25, T_{810}=50 \mathrm{~m}+12.428 \mathrm{~mm} \pm 0.026 \mathrm{~mm}, \mathrm{v}=-0.038 \mathrm{~mm} \\
& \text { Mar. 10, }=50 \mathrm{~m}+12.352 \mathrm{~mm} \pm .017 \mathrm{~mm}, \quad+.038 \mathrm{~mm} \\
& \text { Mean }=+12.390 \mathrm{~mm} \\
& \text { May 25, } \mathrm{T}_{617}=50 \mathrm{~m}+12.801 \mathrm{~mm} \pm .026 \mathrm{~mm}, \quad-.025 \mathrm{~mm} \\
& \text { Mar. 10, } \quad=50 \mathrm{~m}+12.752 \mathrm{~mm} \pm .015 \mathrm{~mm}, \quad+.024 \mathrm{~mm} \\
& \text { Mean }=\quad+12.776 \mathrm{~mm} \\
& \text { May 25, } \mathrm{T}_{521}=50 \mathrm{~m}+13.034 \mathrm{~mm} \pm .02 \mathrm{Imm}, \quad+.006 \mathrm{~mm} \\
& \text { Mar. 10, } \quad=50 \mathrm{~m}+13.046 \mathrm{~mm} \pm .015 \mathrm{~mm}, \quad-.006 \mathrm{~mm} \\
& \begin{aligned}
\text { Mean } & =+13.040 \mathrm{~mm} \\
\text { May } 25, \mathrm{~T}_{622} & =50 \mathrm{~m}+13.989 \mathrm{~mm} \pm .020 \mathrm{~mm}, \quad-.011 \mathrm{~mm}
\end{aligned} \\
& \text { Mar. го, } \quad=50 \mathrm{~m}+13.968 \mathrm{~mm} \pm .0 \dot{1}_{7} \mathrm{~mm}, \quad+.010 \mathrm{~mm} \\
& \text { Mean }=+13.97^{8} \mathrm{~mm}
\end{aligned}
$$

As tape 522 was not used at all in the field, the length of that tape is assumed to be constant and the difference in its values to be due to the accidental errors of the two standardizations.

It is seen from the above table that in no case was the residual of a tape length from the mean of the two standardizations as much as three times the probable error of a single determination of that tape length, and we may therefore conclude that no one tape underwent any permanent change in length between the standardizations before and after the measurement of the Deming base.

We are justified in assuming, as in the case of the Stanton base, that the differences shown are due to the standardizations; hence in forming the adopted equation of each tape a mean of the two values was taken.

The thermometers used during the measurements of the Deming base were similar to those used on the Stanton base. Their corrections are given in the following table:

Correction to-	No. 14109	No. 14128	No.14130	No.14131	No.14135
$10^{\circ} \mathrm{C}$	0.0	0.0	+0.1	0.0	+0.1
$0^{\circ} \mathrm{C}$	-.1	.0	.0	.0	.0
$15^{\circ} \mathrm{C}$	-.1	.0	-.1	.0	-1
$30^{\circ} \mathrm{C}$.0	.0	.0	.0	-.1
$45^{\circ} \mathrm{C}$.0	.0	.0	-1	.0

REDUCTION TO SEA LEVEL.
Elevations referred to mean sea level were carried by spirit leveling from the Pacific coast to Deming, N. Mex., by the United States Geological Survey, using precise methods on a greater portion of the work; the remainder of the leveling was of a grade slightly less accurate than the precise leveling. The elevation at Deming was carried to the northern end of the Deming base by trigonometric leveling, the adopted value of the elevation of the surface mark at Deming north base being 1278.582 meters. (See page 157 for the formula used in making the reduction to sea level.)

The corrections for reducing the lengths of the sections to sea level are shown in the following table:

Corrections for reduction to sea level.

Section	Correction	Section	Correction	Section	Correction
I	$\begin{aligned} & \text { Meters } \\ & -0.2010 \end{aligned}$	VIII	$\begin{gathered} \text { Meters } \\ -0.2001 \end{gathered}$	XV	$\begin{gathered} \text { Meters } \\ -0.1982 \end{gathered}$
II	-. 2005	IX	- . 1999	XVI	-. 1088
III	. 2015	X	-. 1994	XVII	-. 0016
IV	. 2010	XI	- . 1991		
V	. 2008	XII	-. 1988	Total.	-3.1080
VI	. . 2004	XIII	- . 1986		
VII	-. 2002	XIV	-. 1985		

RESULTS OF THE MEASUREMENT.
The results of the measurement of the Deming base are given in the table following.

Deming Base Line.

Section	Date and hour	$\begin{aligned} & \text { Direction } \\ & \text { of } \\ & \text { of } \end{aligned}$	Tape No.	Weather andwind *	Temperature		
					R, F. S. \dagger	$\underset{\text { Mean }}{\text { corrected }}$	Correction tot.
	I910				S	6.82	m. -0.0068
$\stackrel{\text { I }}{\text { N. B. }-20}$		N S	516 521	--, M N N NE	$\underset{\mathrm{F}}{\mathbf{S}}$	6.82 8.34	-0.0063
II	14, II.15 a.m.	N	516	-, M NNE	R	6. 13	$-.0070$
20-40	I4, $2.06 \mathrm{p} . \mathrm{m}$.	S	52 I	-, M NNE	R	8. 54	-.0071
III	14, $10.32 \mathrm{a} . \mathrm{m}$.	N	516 !	--, M NNE	S	4.97	-. 0074
40-60	14, $2.39 \mathrm{p} . \mathrm{m}$.	S	52 I	-, L NNE	F	9.08	-. 0069
IV	14. $9.44 \mathrm{a} . \mathrm{m}$.	N	516	-, L NNE	F	5.41	-. 0073
60-80	14, $3.12 \mathrm{p} . \mathrm{m}$.	S	52 I	-, L NNE	S	9.04	-. 0069
V	14, $8.54 \mathrm{a} . \mathrm{m}$.	N	516	C, L NNE	R	5. 68	$-.0072$
80-100	14, $3.41 \mathrm{p} . \mathrm{m}$.	S	52 I	-, L NNE	F	8.88	-.0069
VI	14, $9.30 \mathrm{p} . \mathrm{m}$.	S	516	-, 0	R	7.97	-.0063
100-120	15. $2.33 \mathrm{P} . \mathrm{m}$.	N	517	C, 0	S	15.91	-. 00032
VII	I5, 10.03 a . m.	S	516	C, 0	R	8. 78	-. 0061
120-140	${ }_{15}$, $2.06 \mathrm{p} . \mathrm{m}$.	N	517	C, O	R	14.86	-. 0035
VIII	I5, 10.34 a. m.	S	516	C. O	R	10. 92	-. 0053
140-160	$15,1.39 \mathrm{p} . \mathrm{m}$.	N	517	C, 0	F	14.00	-. 0038
IX	15, 11.0.4 a. m.	S	516	C. O	S	10.82	-. 0053
160-180	$15,1.15 \mathrm{P} . \mathrm{m}$.	N	517	C, O	S	14.66	$-.0036$
X	$15,11.3 .3$ a. m.	S	516	C, O	R	II. 84	-. 0050
180-200	$15,12.49 \mathrm{p} . \mathrm{m}$.	N	517	C, O	R	13.64	-. 0039
XI	$17,8.34$ a. m.	S	517	C. I, W	R	8. 45	-. 0056
200-220	17, $4.21 \mathrm{p} . \mathrm{m}$.	N	52 I	C. L-M W	S	13.24	-.0051
XII	17, 9.02 a. m.	S	517	C. L W	R	10.07	-. 0050
220-240	I7, $4.00 \mathrm{p} . \mathrm{m}$.	N	52 I	C, M-L W	F	14. 18	-.0048
XIII	17, 9.28 a. m.	S	517	C, L W	R	11. 22	-.. 0047
240-260	17, $3.36 \mathrm{p} . \mathrm{m}$.	N	52 I	-, S-M W	S	14.83	-. 0045
XIV	17., 9.55 a. m.	S	517	-, M W	R	13. 28	-. .0040
260-280	17, $12.38 \mathrm{p} . \mathrm{m}$.	N	521	-, S-VS W	R	10. 18	-. 0039
XV		S		C, M W	S	14.49	-. 0036
280-300	17, $12.08 \mathrm{p} . \mathrm{m}$.	N	52 I	-, S-VS W	F	16. 17	$-.0039$
XVI	17, 10.47 a.m.	S	517	C, S W	R	14. 72	-. 0019
300-311	17, 11.46 a. m.	N	52 I	C, S W	S	16. 12	-. 0022
$3 \mathrm{II}-\mathrm{S} .13$.	17, $2.50 \mathrm{p} . \mathrm{ml}$.	S	490	C, S W		15.5	-. 0008
	17, $2.53 \mathrm{p} . \mathrm{m}$.	N	490	C, S W		15.5	$-.0008$

*These letters represent the following: C. elear; O, calm; L, light; M, moderate; S, strong; VS, very strong; W, west; SW,
southwest; and NNE, north-northeast.
\dagger These letters R, F, and S indicate whether the temperature was rising, falling, or stationary.

Deming Base Line.

Set-up or setback	Grade correction	Tape correction	Reduction to sea level	Reduced lengths of sections	Adopted lengths of see tions	v	v
m.	m.	n.	m.	m.	m.	mm.	$m m$.
-0.4415	-0.0134	+0. 2476	-0. 2010	999. 5849		-5.3	28.09
-. 4641	-. O134	+.2599 \ddagger	. 2010	999. 5742	999. 5796	+5.4	29. 16
-. 3697	-. orgr	+. 2476	-. 2010	999.6508		-5.2	27.04
-. 3923	-. orgr	+. $2599 \ddagger$	-. 2010	999.6404	999.6456	+5.2	27.04
-. 2292	-.0091	+ . 2476	-. 201 1	999.8008		-4.0	16. 00
-. 2500	-.0091	+ . $2599 \dagger$	-. 201 I	999.7928	999.7968	+4.0	16.00
-.3174	-. .0187	+.2476	. 2010	999.7032		-4.3	18. 49
-. 33^{87}	$-.0187$	+.2599+	-. 2010	999.6946	999.6989	+4.3	18. 49
-. 2069	-. 0.303	+.2476	-. 2008	999.8024		-4. 4	19. 36
-. 2283	-. 0303	+.2599 ${ }^{+}$	-. 2008	999.7936	999. 7980	+4.4	19.36
-. 1863	-. 0164	+.2465t	-. 2004	999.8423		+1. 5	2. 25
-. 1952	-. 0164	+.2554	-. 2004	999.8454	999.8438	-1. 6	2. 56
-. 3429	-. .0007	$+.2476$	- . 2002	999. 6977		+1. 7	2. 89
-. 3500	-. 0007	+.2554	. 2002	999.7010	999.6994	-1. 6	2. 5^{6}
-. 2324	-. 0054	$+.2476$	-. 2001	999. 8044		+I. I	I. 21
-. 2395	-. . 0054	+.2554	-. 2001	999.8066	999.8055	-r. I	I. 21
-. 2532	-. 0214	$+.2476$	- . 1999	999. 7678		+2. 4	5.76
-. 25^{80}	. 0214	+.2554	- . 1999	999. 7725	999.7702	-2. 3	5. 29
-. 3088	-. 0034	+. 2476	- . 1994	999.7310		+1.4	1. 96
-. 3148	-. . 034	+.2554	-. 1994	999. 7339	999.7324	-1. 5	2.25
-. 2768	-. .065	+. 2554	-. 1991	999. 7674		-1. 4	1. 96
-. 2857	-. 0065	+.2610	- . 1991	999.7646	999.7660	+1. 4	1. 96
-. 2648	-. 0028	+.2554	- . I988	999. 7840		-0.9	0. 8 I
-. 2724	$-.0028$	+.2610	- . 1988	999.7822	999.783	+o. 9	o. 8 I
-- . 2373	-. 0030	+. 2554	- . 1986	999.8118		-0.7	O. 49
-. 2445	-. .0330	+.2610	- . 1986	999.8104	999.811	+o. 7	O. 49
-.2217	-. .0015	+.2554	-. 1985	999.8297		+2. 5	6. 25
-. 2223	-.0015	+.2610	-. 1985	999.8348	999.8322	-2.6	6.76
-. 2937	-. 0045	$+.2554$	- . 1982	999. 7554		+1. 2	1. 44
-. 2965	-. 0045	$+.2610$	- . 1982	999. 7579	999. 7566	-1. 3	I. 69
-. 1579	. 0 ro	$+.1404$	-. 1088	549.8708		+ I. I	1. 21
-. 1585	-. . 010	+.1435	-. 1088	549.8730	549.8719	- I. I	I. 21
-. .0082	. 0002	$+.0022$	-. 0016	8. 1914		0.0	0. ∞
$-.0082$	$-.0002$	+.0022	-. .0016	8. 1914	8. 1914	0.0	0. ∞

\ddagger These quăntities have had applied to them a correction of -.0011 meter for change in length due to change in tension.

The length of the Deming base line $=15554.3825$ meters．

$$
\pm 79
$$

The logarithm of this length $=4.1918528$ ．
± 2
The probable error of the length $=7.93 \mathrm{~mm}$ ，which corresponds to 1 part in 1 961 000 ．

PROBABLE ERRORS．

The following table shows the various probable errors for each section of the base：

Section	Probable error due to－			Combined prob－ able error of each section
	Uncertainties in the lengths of the tapes	Uncertainties in the coefficients of ex－ pansion	Accidental errors of measure	
	$m m$	mm	$m m$	mm
I	± 0.21	± 0.18	± 3.61	± 3.62
II	$\pm .21$	$\pm .19$	± 3.51	± 3.52
III	$\pm .21$	$\pm .20$	± 2.70	± 2.72
IV	$\pm .21$	$\pm .20$	± 2.90	± 2.91
V	$\pm .21$	$\pm .20$	± 2.97	± 2.98
VI	$\pm .22$	$\pm .14$	± 1.05	± 1.08
VII	$\pm .22$	土．14	± 1.11	± 1.14
VIII	$\pm .22$	$\pm .13$	$\pm .74$	士． 78
IX	$\pm .22$	$\pm .13$	士r． 58	± 1.60
X	$\pm .22$	$\pm .13$	$\pm .98$	± 1 ．OI
XI	$\pm .19$	$\pm .16$	$\pm .94$	$\pm .97$
XII	士．19	$\pm .14$	$\pm .61$	$\pm .65$
XIII	士．19	$\pm .14$	$\pm .47$	$\pm .52$
XIV	$\pm .19$	$\pm .12$	$\pm \mathrm{I} \cdot 72$	± 1.73
XV	$\pm .19$	$\pm .11$	$\pm .84$	$\pm .87$
$\underset{\text { Fraction }}{ }$	$\pm .10$	$\pm .06$	$\pm .74$	$\pm .75$
Fraction	$\pm . \infty$		$\pm . \infty$	$\pm .00$

The probable error of the length of the base from all sources $= \pm 7.93$ millimeters． The methods of computing the probable errors are shown on pages 160 and 161 ．

COST OF DEMING BASE．

The triangulation party was engaged on the measurement of the Deming base line from the time of finishing the observations for horizontal directions at the south base on January 8，to and including January 2 I ，when the party moved from the base line to Deming to store the outfit and disband．It is believed that a fair estimate of the cost of field work during the measurement of the Deming base line is $\$ 600$ ．This estimate was obtained from the accounts of the party and includes the pay and subsistence of the officers and men and the feed and care of teams between January 9 and 21 and the pay and subsistence of temporary employees while on the measurement of the base line and for several days previous to January 8 while clearing the line，also the cost of the lumber for the stakes forming the tape supports，and the expressage of tapes and other base apparatus from the office to the field．This made the cost per kilometer measured $\$ 39$ and the cost per mile $\$ 62$ ，which is 30 per cent lower than the cost of the Stanton base line，shown on page 161 of this publication．

Some of the reasons for the small field cost of the Deming base line were：（1）The base was measured in the vicinity of the town at which the triangulation party would have been disbanded，hence no traveling expenses of light keepers from the several triangulation stations to Deming were included in the cost of the base；（2）The base was measured after the completion of the triangulation，and the party was reduced in number to only what was needed for the base measurement；（3）Five supports were used for each tape length，thus permitting accurate measurements to be made under conditions which should prevent measuring when only three supports are used．No section was measured more than twice，and all measurements were made in daylight．

The total cost of the Deming base line was as follows：Field expense，$\$ 600$ ；standard－ izing＊ 4 tapes before and after measuring the base，$\$ 400$（see cost of Stanton base line， page 161），and office computations，$\$ 92-a$ total of $\$ 1,092$ ．

This made a cost of $\$ 72$ per kilometer and $\$ 116$ per mile，which is 25 per cent less than the total cost per kilometer of the Stanton base line， 27 per cent less than the average total cost of the measurement of a kilometer in 1900－1901 \dagger（both bars and tapes were used in measuring nine bases during that season and the total average cost of the work was $\$ 160$ per kilometer），and 38 per cent less than the average total cost of a kilometer measured in $1906 . \ddagger$

SUMMARY OF TAPE VALUES．

In the following table are shown the values for the lengths of the base tapes resulting from the three standardizations of January 22 and May 25，1909，and March 10，1910， reduced to a common temperature of $21^{\circ} .2 \mathrm{C}$ ．These values are for the lengths of the tapes when resting on three points of support，and subjected to a fixed tension of 15 kilograms．There are shown also the probable errors of the lengths from the various standardizations，and the residuals from the straight mean of the lengths for each tape．

$$
\text { At temperature of } 21^{\circ} .2 C \text {. }
$$

Date of stand－ ardization	T316 $=$		T ${ }_{\text {bir }}$		Torn ${ }^{-}$		T38－	
	$50 \mathrm{~m}+$	v	$50 \mathrm{~m}+$	v	$50 \mathrm{~m}+$	v	50 mt	v
	mm mm	mm	mm mm	mm	$m m \quad m m$	mm	$m m \quad m m$	mm
Jan．， 1909	9． 542 ± 0.017	－0．072	9．735土0． 018	＋0．017	9． 750 ± 0.018	＋0．071	10． 543 ± 0.019	＋o． 024
May， 9909	$9.454 \pm .028$	＋．016	9．782土．025	－． 030	9．835土．021	－． 014	10． $566 \pm .024$	＋．001
Mar．，igio	9．415士．017	＋．055	9．738土 ． 015	$+.014$	9．878士 ． 015	－． 057	10． $593 \pm .018$	－． 026
Means，	9.470		9．752		9． 82 I		10． 567	

An examination of the above table will show that no residual is as large as five times the probable error of a single standardization，while the first and last standardiza－ tions give values which for no one tape differ as much as I part in 400000 ．For tape

[^9]522 this difference amounts to 0.050 millimeter, and as that tape was carried in the field as a reserve, not being unreeled at either base line, we must assume this difference to be due to the accidental errors of standardization. From the above we may conclude that this assumption holds good for the other țapes.

SPEED.
The following table shows the speed attained in the measurements of the two base lines. The times given are from the time of the first observation to that of the last on each day. There are included the times occupied in changing from one tape to another and in placing copper strips on the end stakes. Delays of long duration, such as stopping for luncheon, are not included in the column under the heading "Time."

Speed with invar tapes.
stanton base.

Date	Time	Distance	Kilometers per hour
$\begin{gathered} 1909 \\ \text { Feb. } \end{gathered}$	$\begin{array}{ll}h & m \\ 4 & 33\end{array}$	Kilometers	1. 76
13	$3 \quad 55$	7.00	1. 79
16	4 II	9.00	2. 15
19	502	9. 15	1. 82
20	221	4.00	1. 70
21	- 26	1. 00	2. 33
DEMING BASE.			
$\begin{gathered} 1910 \\ \text { Jan. } 14 \end{gathered}$			
15	4 41	10.00	2. 13
17	453	12.00	2. 46

The mean kilometers per hour on the Stanton base was r .86 , and on the Deming base, 1.99 . The average (weighted) speed on the two bases is 1.9 x kilometers per hour.

CONCLUSIONS.

Some of the conclusions which may be drawn from the measurements of the Stanton and Deming base lines are:

The cost of measuring a single base line, or several base lines widely scattered, by the triangulation party when in the vicinity of each base line, will be much less than when measured by a party organized especially for measuring base lines. Where there are a number of base lines to be measured, which are not widely separated, as was the case on the ninety-eighth meridian, the cost would not be very different whether they were measured by the triangulation party or by a party organized for base-line measurements only. When a base is measured by a triangulation party, what may be called the unproductive periods, before and after the measurement, are eliminated. Such periods are usually occupied by traveling to and from the base and in organizing and disbanding the base party.

The 50 -meter tape has been found to be both convenient and satisfactory, thus confirming the conclusions based upon previous tape work in this survey.

Invar tapes, with measurements made in daylight or at night, give results which have probable errors comparable with those obtained by the duplex base bars, which were used to measure the Salt Lake base, and in 1900-1901, in connection with steel tapes, in the measurement of 9 bases along the ninety-eighth meridian.

It is not necessary to standardize invar tapes in the field.
Owing to their smaller coefficients of expansion, invar tapes are better than steel tapes for measuring primary base lines.

With proper care during measurements in the field, the invar tape does not appreciably change in length. While not so elastic as steel, yet it is sufficiently strong to withstand the ordinary shocks due to excessive tension, and no change in its length should be caused by using a reel which has a diameter of 16 inches or more. During the measurements, the tape should not be dragged along the ground but should be carried forward by the members of the measuring party. Caution is necessary to prevent giving the invar tapes sharp bends, as they are not so elastic as steel tapes.

To minimize the effect of winds, the 50 -meter invar tape should be supported by 5 . stakes, equally spaced, 2 of these being the end supports on which the markings of the tape lengths are made and the other 3 being the intermediate supports from which the tape is suspended. By using this number of supports, measurements may be made with an invar tape during wind which would make it impracticable to secure good results were the tape on only 3 supports, I at each end and in the center. It is believed that more than 5 supports should not be used for a 50 -meter tape, for with a decrease in the distance between supports the difficulty of obtaining the grade corrections is increased.

The information contained in the reports of Assistant Hill was largely used in preparing this publication.

The office, or final, computations of the two bases were made under the direction of Computer H. C. Mitchell. He also assisted the writer with valuable suggestions while preparing the manuscript for publication.

APPENDIX 5
REPORT 1910

TRIANGULATION IN CALIFORNIA
 PART II

By
C. R. DUVALI and A. L. BALDWIN

Computers, Coast and Geodetic Survey

CONTENTS.

General statement 177
Triangulation executed between July 12, 1906, and July 2, 1907 178
Primary triangulation of $1906-7$ 178
Secondary triangulation of $1906-7$ 180
Tertiary triangulation in the vicinity of Colma, 1907 18I
Tertiary triangulation of Tomales Bay, 1906. I8r
Tertiary triangulation in the vicinity of Fort Ross, 1906 18I
Tertiary triangulation in the vicinity of Point Arena, 1906 18I
Old triangulation and the earthquake of 1906 182
Earthquake of 1868 184
Triangulation from Montercy Bay to San Francisco Bay, San Pablo and Suisun bays and tribu- taries, 1851-r895 185
Triangulation from Golden Gate to Point Arena, 1854-189 185
Triangulation from Point Arena to Shelter Cove, 1870-1897. 186
Triangulation from Shelter Cove to Trinidad Head, 1854-1872 186
Inland Peaks and astronomic stations. 186
Adjustment of the subordinate triangulation 187
United States Standard Datum 188
Lengths 191
Explanation of the tables of geographic positions 192
Table of geographic positions, azimuths, and lengths 193
Latitudes, longitudes, azimuths, and lengths corrected for the 1906 earthquake 290
Positions corrected for earthquake movements 291
Descriptions of stations 295
Elevations. 397
Index to geographic positions, descriptions, sketches, and elevations. 399
ILLUSTRATIONS.

1. Index map to sketches 430
2. Primary triangulation, $1906-7$, first figure adjustment. 430
3. Primary triangulation, 1906-7, second figure adjustment 430
4. Secondary triangulation, 1906-7, first figure adjustment 430
5. Secondary triangulation, 1906-7, second figure adjustment 430
6. Triangulation of $1906-7$, general sketch 430
7. Tertiary triangulation in the vicinity of Colma, 1907 430
8. Tertiary triangulation in the vicinity of Tomales Bay, rgo6 430
9. Tertiary triangulation in the vicinity of Fort Ross, rgo6 43°
10. Tertiary triangulation in the vicinity of Point Arena, 1906. 430
ir. Triangulation of San Francisco Bay, general sketch. 430
11. Triangulation of San Francisco Bay, Golden Gate 430
12. Triangulation of San Francisco Bay, northern part 430
13. Triangulation of San Francisco Bay, north central part 430
r5. Triangulation of San Francisco Bay, south central part 430
14. Triangulation of San Francisco Bay, southern extremity.
Page.
430
15. Triangulation, Monterey Bay to San Francisco Bay, ((southern part).
430
16. Triangulation, Monterey Bay to San Francisco Bay, 2 (northern part) 430
17. Triangulation, San Pablo Bay. 43°
18. Triangulation, Petaluma Creek and Napa Creek 43°
19. Triangulation, Suisun Bay 430
20. Triangulation, Golden Gate to Point Arena, 430
21. Triangulation, Golden Gate to Point Arena, 2 430
22. Triangulation, Golden Gate to Point Arena, 3 430
23. Triangulation, Golden Gate to Point Arena, 4 430
24. Triangulation, Point Arena to Navarro Ridge 430
25. Triangulation, Navarro Ridge to Pudding Creek 430
26. Triangulation, Pudding Creek to Cottaneva Point 430
27. Triangulation, Cottaneva Point to Shelter Cove 430
28. Triangulation, Shelter Cove to Mattole Point 430
29. Triangulation, Mattole Point to Oil Creek 430
30. Triangulation, Oil Creek to Humboldt Bay 430
31. Triangulation, Humboldt Bay to Trinidad Head 430
32. Triangulation, general sketch of California (northern part) 430
33. Triangulation, general sketch of California (southern part) 430
34. Triangulation, Ukiah 430
35. Triangulation, Marysville 430
36. Triangulation, Mount Helena. 430
37. Triangulation, Mount Hamilton 430
40: Triangulation, Mount Conness. 430

TRIANGULATION IN CALIFORNIA, PART II.

By C. R. Duvall and A. L. Baldwin, Computers, Coast and Geodetic Survey.

General Statement.
In Appendix 9, Report of the Coast and Geodetic Survey for 1go4, "Triangulation in California, Part I," there is published upon the United States Standard Datum the results of the primary triangulation along the coast from Point Arena to the Mexican boundary and along the thirty-ninth parallel from the Pacific coat to the eastern boundary of the State, together with the results of the subordinate triangulation along the shore line between Monterey Bay and the southern boundary.

The aim of the present appendix is to give upon the United States Standard Datum and in a convenient form for the use of the engineer, surveyor, and cartographer, the geographic positions of all additional triangulation stations from Monterey Bay northward to Trinidad Head, for which the computations are completed. Descriptions and elevations are given for these points as far as available. By means of the sketches and the index to positions, descriptions, and elevations, pages 399 to 429, any information herein contained may readily be found.

In addition to the results that have already been published in the appendix referred to above and those contained in the present publication, there remains for future publication upon the United States Standard Datum triangulation in three localities in California, as follows: (1) A chain of primary triangulation following the Sacramento Valley from the vicinity of the thirty-ninth parallel to the Oregon boundary and thence to Tacoma, Wash., the results of which will soon be published; (2) the tertiary triangulation along the eastern boundary of the State, which was published on the Yolo Datum as Appendix 3, Report of the Coast and Geodetic Survey for 1900, under the title, "The oblique boundary line between California and Nevada;" (3) the tertiary triangulation along the coast line from Trinidad Head to the Oregon boundary. During the field season of 1908 the observations connecting the tertiary triangulation in this third locality with the primary and secondary triangulation of Oregon were completed. The final computations of this triangulation can now be made with the desired check.

The earliest observations of the triangulation under consideration in this appendix were made in 1851 , and the latest in 1907 . The points are located principally along the tide-water shore line from Monterey Bay to Trinidad Head. The positions are given, however, of a number of far inland astronomic stations and their local connection with the triangulation, together with those of a few mountain peaks in the interior and near the eastern boundary of the State. Besides these interior points just mentioned, some of the primary and subprimary stations, which control the smaller triangulation, are 75 kilometers or more from the coast; but with these comparatively. few exceptions the points of this appendix are the subordinate triangulation stations used in the hydrographic and topographic surveys of the shore line.

$$
63481^{\circ}-11-12
$$

For convenience of reference and discussion, the points are treated in the following order: (1) Triangulation executed between July 12, 1906, and July 2, 1907; (2) the primary triangulation of $1906-7$; (3) the secondary triangulation of $1906-7$; (4) tertiary triangulation in the vicinity of Colma, 1907 ; (5) tertiary triangulation of Tomales Bay, 1906; (6) tertiary triangulation in the vicinity of Fort Ross, 1906; (7) tertiary triangulation in the vicinity of Point Arena, 1906; (8) the old triangulation and the earthquake of 1906 ; (9) the earthquake of 1868 ; (10) from Monterey Bay to San Francisco, San Pablo, and Suisun bays and tributaries, 1851-1905; (in) Golden Gate to Point Arena, 1854-1891; (12) Point Arena to Shelter Cove, 1870-1897; (13) Shelter Cove to Trinidad Head, $1854-1872$; (14) inland peaks and astronomic stations.

Triangulation Executed Between July 12, 1906, and July 2, 1907.
[The $1906-7$ positions should be used in preference to those determined before the earthquake of 1906 , when the best values of the present relative positions are desired.]
This triangulation was done primarily to determine the effect of the earthquake of April 18, 1906, on the relative positions of points in the disturbed area and to replace that part of the old triangulation which might be found so distorted as to destroy its value. The results of this investigation are published as Appendix 3, Report of the Coast and Geodetic Survey for 1907, "The earth movements in the California earthquake of 1906." This paper is limited to a discussion of the earth movements, as is indicated by the title, so it remains for the present appendix to give the complete tables of positions, with the accompanying sketches and descriptions of the 1906-7 triangulation. In all, 61 old points were recovered and their positions redetermined. In the table of positions two or three values are given for each of these 61 points. The values in italics are for the $1906-7$ position and are to be used when the present relative positions of the points are desired. The other values, for one or two positions, as the case may be, are the positions before the earthquake of 1906, the affixed date showing whether the values are for the position before or after 1868 . It was found on making the computations that observations made before and after 1868 , when computed separately, showed that there had been a real change in the relative positions during the interval in which the earthquake of 1868 occurred. For details of these movements, see tables 2 and 3 of Appendix 3 of 1907.

Primary Triangulation of igo6-7.
[Sketches 2, 3, 6.]
The adjustments of this work were made in two figures. The first, sketch 2 , is based on the two fixed lines, Mount Diablo to Mocho and Mocho to Santa Ana. The positions of these three points are held as given in Appendix 9, Report of the Coast and Geodetic Survey for 1904, "Triangulation in California, Part I."

The angles at Mount Toro, Gavilan, and Loma Prieta were measured with a 10 -inch Gambey repeating theodolite. As a general thing, ten measures of six repetitions each were made of the separate angles, with the single condition of closing the horizon, though there was an occasional departure from this rule. The angles at Sierra Morena and Mocho were measured with a 12 -inch direction theodolite in sixteen positions.

In the two closed triangles the closing error is for Loma Prieta, Sierra Morena, and Mocho, $\mathrm{o}^{\prime \prime} .06$; and for Gavilan, Mount Toro, and Loma Prieta, $4^{\prime \prime} .88$. Thíe probable error of an observed direction, resulting from the adjustment of the seven conditions involving twenty directions, is $\pm 0^{\prime \prime} .88$. The corrections to the separate direc-
tions are given in the following table, the numbers of the directions in the table corresponding to the numbers on the lines in sketch 2 :

Primary triangulation 1906-7.

Number of direction	Correction to direction	Number of direction	Correction to direction	Number of direction	Correction to direction
	"		"		"
1	-0.039	8	+1. 743	15	+o. 062
2	-0. 377	9	-0. 505	16	-0.074
3	-0. 262	10	+o. 321	17	+o. 055
4	+0.623	II	-0.163	18	-0.145
5	-1. 5^{60}	12	+0. 778	19	+o. 090
6	+1.415	13	-0.615	20	+o. 332
7	-1.469	14	+o. 011		

The second primary figure adjustment, sketch 3 , is based on the line Sierra Morena to Mount Diablo, as fixed in the preceding adjustment. The angles at Sierra Morena and Red Hill were measured with a 12 -inch direction theodolite in sixteen positions. At the other occupied points of the figure the angles were measured with a 12 -inch Gambey repeating theodolite. Iwenty-six measures of six repetitions each were made of the primary angles at these stations, with the single condition of closing the horizon.

Farallon Light-house was not observed as a primary. From Sierra Morena it was observed on in five of the sixteen positions of the direction instrument, while at the other five stations angles were observed on it varying in number from ten to twenty-four sets of six repetitions each. The corrections to the directions arising from the figure adjustment do not show that these lines were of an inferior grade of accuracy.

There are 5 closed triangles in the figure, with an average closing error of $1^{\prime \prime} .35$ and a maximum of $\mathrm{I}^{\prime \prime} .70$. The probable error of an observed direction is $\pm 0^{\prime \prime} .32$. The number of conditions satisfied is 13 , and the number of directions 36 . The following table shows the corrections to the separate directions, the numbers of the directions in the table corresponding to the numbers on the lines in sketch 3:

Primary triangulation, 1906-7.

Number of direction	Correction to direction	Number of direc. tion	Correction to direction	Number of direction	Correction to direction
	/		"		"
1	+0.0329	14	-0.4843	27	+o. 3205
2	+o. 3647	15	+o. 3295	28	+o. 2118
3	-0.2792	16	-0. 1075	29	+o. 0490
4	-0.0590	${ }^{1} 7$	+o. 1592	30	-0. 1661
5	+0.0970	18	-0.3148	31	-0.0951
6	+0.0632	19	-0.2722	32	+o.0785
7		20	+0.6135	33	-0.0781
8	-0. 1370	21	+0.2856	34	+o. 331 I
9	-0.0436	22	+o. 0140	35	+o. 0860
10	+o. 3330	23	-0.377^{8}	36	-0.2575
II	-0.6408	24.	+o. 1855	37	-0. 1596
12	+o. 3281	25	-0.6415		
13	+o. 1548	26	+o. 1354		

Secondary Triangulation, igo6-7.

[Sketches 4, 5. 6.1
San Bruno Mountain, Pulgas east base, Pulgas west base, Pise Hill, Ridge 2, and Guano Island were adjusted at one time (sketch 4). The heavy lines of the sketch represent, as is customary, the lines fixed by previous adjustments. Four observers took part in measuring the angles of this figure, though the greater part of the work was done by one. The eight closed triangles have an average closing error of $4^{\prime \prime} .38$ and a maximum of $8^{\prime \prime} .44$. The probable error of an observed direction is $\pm I^{\prime \prime} .66$, the number of directions involved being 34 and the number of conditions satisfied ${ }_{17}$. The numbers of the directions in the following table correspond to the numbers on the lines in sketch 4 :

Secondary triangulation, 1906-7.

Number of direction	Correction to direction	Number of direction	Correction to direction	Number of direction	Correction to direction
	/		/		"
1	-2.032	13	-0.937	24	-0. 973
2	-2. 253	14	+1.827	25	+2. 524
3	$+3.333$	15	-1. 634	26	+0.608
4	+2.020	16	+1. 344	27	-1.950
5	-0.676	17	-0.433	28	+1. 704
6	-0.221	18	+o. 723	29	+o. 041
7	+1. 998	19	+o. 342	30	-0.046
8	-2. 468	20	+1. 264	31	+0.251
9	+3.020	21	+0.441	32	-1.951
10	-4.178	22	-2. 047	33	-0. 122
II	+o. 574	23	-1. 526		
12	-0.305	23 a	+2.084		

Santa Cruz Azimuth Station, Point Pinos Light-house, and Pajaro Mouth 2 were adjusted together on the line Loma Prieta to Gavilan, as fixed in the first primary figure (see sketch 5). The single closed triangle has a closing error of $2^{\prime \prime} .50$. The probable error of an observed direction resulting from the figure adjustment of the three conditions is $\pm I^{\prime \prime} .27$. Following are the corrections to the 11 directions, the numbers in the table corresponding to the numbers on sketch 5 ::

Secondary triangulation, 1906-7.

Black Mountain was determined as an intersection point from the four stationsRidge 2, Red Hill, Sierra Morena, and Loma Prieta. The probable error of an observed
direction resulting from satisfying the two conditions is $\pm \mathrm{I}^{\prime \prime} .20$, with a maximum correction to a direction of $2^{\prime \prime} .24$. (See sketch 6.)

Lick Observatory small dome was observed from only four points, viz: Mocho, Loma Prieta, Sierra Morena, and Red Hill. The adjustment of the two conditions gave $\pm \mathrm{I}^{\prime \prime} .40$ as the probable error of an observed direction, with a maximum correction to a direction of $2^{\prime \prime} .52$. (See sketch 6.)

Tertiary Triangulation in the Vicinity of Colma, 1907.

[Sketch 7.]
The occupied stations of this triangulation and one unoccupied station, Black Ridge 2 , were adjusted at one time, there being 32 directions in the figure with 13 conditions to satisfy. The adjustment is based on the position of San Bruno Mountain, as fixed by the secondary triangulation of $1906-7$, holding the direction of the line San Bruno Mountain to Black Ridge 2 from the 1907 observations, but using the length of this line as fixed by the triangulation of 1899 . The maximum correction to a direction is $2^{\prime \prime} .2$, while the average closing error of 11 triangles is $4^{\prime \prime}$.o, with a maximum error of closure of $\mathrm{IO}^{\prime \prime} .2$.

Tertiary Triangulation of Tomales Bay, 1906.
[Sketch 8.]
This work is based on the line Tomales Bay to Bodega, as fixed in the second primary figure of $1906-7$. The occupied stations were adjusted in four steps, two of 10 conditions each, one of 1 I , and one of 4 . The maximum correction to a direction is $8^{\prime \prime}$.o. Thirty-one triangles have an average closing error of $8^{\prime \prime} .2$ and a maximum of $26^{\prime \prime}$. 1 .

Tertiary Triangulation in the Vicinity of Fort Ross, 1906.
[Sketch 9.$]$
The principal adjustments, based on the line Ross Mountain to Bodega Head of 1906-7, were made in four figures-one of 12 conditions, one of 10 , one of 5 , and one of 4. The maximum correction to a direction is $5^{\prime \prime} .9$. There are 20 closed triangles with an average closing error of $3^{\prime \prime} .7$ and a maximum of $12^{\prime \prime} .3$.

In the table of positions the date 1891 is given to some of the old 1861 points of this vicinity for purposes of earthquake movement comparisons. The corresponding position depends on the primary work of 1891, though the point was established in 1861. In such cases the description shows when the station was established.

Tertiary Triangulation in the Vicinity of Point Arena, 1906.
[Sketch 10.]
This triangulation is based on the line Fisher to Cold Spring, as fixed by the triangulation of 1891 and published in Appendix 9, Report of the Coast and Geodetic Survey for 1904, "Triangulation in Califormia, Part I." The connection with the other triangulation of $1906-7$ is through the primary work done before the 1906 earthquake.

There is a possibility that the line Fisher to Cold Spring was displaced at the time of the earthquake of 1906 , though it is very improbable that it was appreciably changed in length or azimuth. Hence the present relative positions of the new points in this
locality are very probably correctly expressed in the tables of positions. All the latitudes and longitiudes, however, of the 1906 triangulation stations on Point Arena are in error by as much as the line Fisher to Cold Spring has been displaced. Evidence afforded by a comparison of the old and new triangulation between Monterey Bay and Ross Mountain shows that such displacement must have been very small and is most likely masked by the errors of observation of the triangulation. See Appendix 3, Report of the Coast and Geodetic Survey for 1907, "The earth movements in the California earthquake of 1906."

The principal points of this work are fixed by four figure adjustments-one of 8 conditions, one of 3 , and two of 2 each. The maximum correction to a direction is $4^{\prime \prime} \cdot 3$, and the average closing error of 7 triangles is $2^{\prime \prime} .9$, with a maximum of $5^{\prime \prime} .5$.

Old Triangulation and the Earthquake of 1 go6.
In the tables of positions for the 1906-7 work the values both before and after the earthquake of 1906 will be found, one just preceding the other. A comparison will show that many of the lines have undergone large changes in length and azimuth. The line Hans to Foster, for example, one of the Tomales Bay lines, determined both before and after the 1906 earthquake, has been changed in length by about one part in 1000 and in azimuth by about 5^{\prime}.I. The latitudes and longitudes are changed by corresponding amounts. Since 95 per cent or more of the positions given in the present appendix depend entirely on observations made before the earthquake of 1906, and since such large changes are known to have taken place in the positions of the re-determined points, it is important to determine whether similar changes have taken place in the positions of this large percentage of old points, and to derive the probable values of such changes as far as the information at hand permits.

The method of deriving these changes is based on the results arrived at in Appendix 3, Report of the Coast and Geodetic Survey for 1907, "The earth movements in the California earthquake of 1906," summarized on pages $8 \mathrm{I}, 82,91$, and 92 , as follows:

First, points on opposite sides of the fault moved in opposite directions, those to the eastward of the fault in a southerly direction, and those to the westward in a northerly direction. Second, the displacements of all points were approximately parallel to the fault. Third, the displacements on each side of the fault were less the greater the distance of the displaced points from the fault. Fourth, for points on opposite sides of the fault and the same distance from it, those on the western side were displaced on an average about twice as much as those on the eastern side. * ${ }^{*}{ }^{*}$

On the eastern side of the fault, ten points at an average distance of 1.5 kilometers (0.9 mile) from the fault have an average displacement of 1.54 meters (5.1 fect), three points at an average distance of 4.2 kilometers (2.6 miles) have an average displacement of 0.86 meter (2.8 feet), and one point, Mount Tamalpais, at 6.4 kilometers (4 miles) from the fault, has a displacement of 0.58 meter (1.9 feet). These fourteen points are the only ones on the eastern side of the fault for which the observed displacements were determined with reasonable certainty. For no point to the eastward of the fault at a greater distance than 6.4 kilometers (4 miles) was any displacement detected with certainty. To the westward, twelve points at an average distance of 2 kilometers (1.2 miles) from the fault have an average displacement of 2.95 meters (9.7 feet). Seven at an average distance of 5.8 kilometers (3.6 miles) have an average displacement of 2.38 meters (7.8 feet). The only other point to the westward of the fault of which the displacement was determined with certainty was Farallon Light-house, distant 37 kilometers (23 miles) and displaced r .78 meters (5.8 feet).

For convenience of reference and to serve also as a warning, this fault line of 1906 is shown on all the sketches for both the old and the new triangulation. Running
southward, it crosses the shore line just north of Point Arena and reaches a maximum inland distance in this locality of about 7 kilometers. Continuing nearly parallel to the coast line which it slowly approaches, the fault crosses out to sea again in the vicinity of Fort Ross. It is next traced where it crosses Bodega Head at a distance of about 2.5 kilometers from the extreme point. Then, following Bodega and Tomales bays southward, it crosses the land to Bolinas Bay and is again lost in the sea. The land is finally entered in the vicinity of Colma, from which locality the fault has been traced southward to San Juan in San Benito County.

In the second paragraph quoted, it is stated that no displacement was discovered with certainty at a greater distance east of the fault than 6.4 kilometers. This extreme eastern displacement is for Mount Tamalpais, a primary station, determined with the highest degree of accuracy both before and after the earthquake of 1906. For Ross Mountain, another primary station, also determined with the highest grade of accuracy before and after the 1906 earthquake, the displacement of 0.53 meter is doubtful; that is, for this primary station, only 7 kilometers east of the fault, the observed displacement is not much larger than the uncertainty of position arising from errors of observation. Hence, for the 80 per cent or more of old points in the present appendix which are east of the fault and at a greater distance than 7 kilometers, it is reasonable to assume that there has been no disturbance large enough to be detected by the triangulation. These old points are, as a rule, determined with a low grade of accuracy, and the consequent uncertainty of position is much larger for them than for a primary triangulation station like Ross Mountain. It will be necessary, then, to compute corrections to be applied to the old positions, only for those points east of the fault that are within a distance of 7 kilometers. It is believed, however, that all the old points on the San Francisco peninsula and in the vicinity of Pulgas base should be used with caution, and they are so marked in the tables of positions.

Practically all the old points in this appendix that lie west of the fault have been disturbed. At Farallon Light-house 37 kilometers west the displacement is certain. All the other points to the westward, for which displacements have been determined with certainty, are much nearer the fault than Farallon Light-house. The assumption that the general movement extended as far west as 37 kilometers seems to be justified, though it rests on the evidence furnished by this single point. Over against the fact that the motion near the fault is determined from the mean of a number of points, so that the effect of errors of observation is presumably eliminated, is to be placed the fact that the two determinations of Farallon Light-house, before and after the 1906 earthquake, are much stronger than the average for points near the fault. The question of corrections for earthquake movements is to be considered, therefore, for all old points as far west of the fault as Farallon Light-house and for all old points less than 7 kilometers distant on the eastern side. This includes all old points west of the fault except a few island summits and rocks among the Farallon Islands, which are slightly farther west than the light-house. The corrections are computed only for definitely marked points, determined with a check, for which it may reasonably be assumed that the markings are still in existence. For other points that lie in the disturbed area, such as nocheck points, points that are lost or probably lost, summits and rocks, attention is called to the fact that the positions have probably been disturbed, without attempting
to give the amount of disturbance. In the case where a new point of $1906-7$ has been established in the near vicinity of an old point, no corrections have been computed, even though the old point may not be lost.

Referring again to the second paragraph quoted, it is seen that the magnitude of the displacement is given for three different distances from the fault, for both the eastern and western sides. Take the case for either side and plot three points with abscisse proportional to the three distances from the fault, and ordinates proportional to the three corresponding displacements, draw a smooth curve through the three points thus plotted, and the ordinate corresponding to any abscissa, or distance from the fault, will be the displacement for that distance. Two such curves were drawn one for the eastern side of the fault and one for the western, and the magnitudes of the displacements for the different points were thus graphically computed. These displacements, all assumed parallel to the fault, were then transformed into changes in latitude, longitude, length, and azimuth. The -results arrived at by applying these corrections are placed in a separate table and referred to by footnotes to the original tables of positions. Only those corrections are taken account of that are appreciably larger than the uncertainties in the corresponding values, arising from errors of observation. In all other cases a note of warning is given.

No attempt has been made to apply these corrections so as to maintain the consistency between the two systems of coordinates; that is, after the corrections have been applied the latitudes and longitudes may not agree with the lengths and azimuths out to the last figure.

The general plan, outlined above, of inferring displacements and deriving the resulting corrections was departed from in the following three cases: (1) Owing to the conflicting evidence and uncertainty of displacement at the southern end of San Francisco Bay, no displacements were computed for that locality, though a number of points on the eastern side were nearer the fault than 7 kilometers; (2) between the triangula. tion stations Pescadero and Santa Cruz Light-house the general method was modified so as gradually to conform to the actually observed displacement at Santa Cruz Lighthouse; (3) points in the vicinity of Monterey Bay were not corrected, owing to the uncertainty of displacement.

The Earthquake of 1868.

In a preceding paragraph it has been stated that there was an appreciable disturbance of the relative positions of many of the points given in this appendix at about the time of the earthquake of 1868 . The information at hand concerning the movement indicates that a large block of the earth's crust, from the Golden Gate to some distance north of Ross Mountain, was bodily displaced in a northerly direction, without rotation or distortion. In the vicinity of the southern part of San Francisco Bay the motion was somewhat irregular and uncertain. Farther south, toward Monterey Bay, there was a large and unquestionable motion in a southerly direction.

It is not thought that any of the results in the present appendix are seriously in error on account of this 1868 disturbance. The relative positions of points within the large area that moved to the northward have not been affected, and the effect of the motion on the positions of these points with respect to points outside the disturbed region has been largely compensated for by the method of adjustment. The primary
triangulation which controls this whole region has all been done since 1868 . The old work, done before 1868 , was made to conform to the new primary triangulation done between 1868 and $\mathbf{1 8 9 2}$. In the same way, it is believed that the effect of the disturbances to the southward has been largely eliminated by making the work done before I 868 fit that done between 1868 and 1892 . The adjustments that fix the old points given in this appendix were made in this manner without any reference to earthquake disturbances, but with the sole object of bringing the results into accord. It was known that the old work received much larger corrections than the observations seemed to warrant, but for only one station, Mount Tamalpais, was it recognized, when the adjustments were made, that the earthquake motion must be taken into consideration. For this point two positions were used in the old adjustments that fix the old positionsone for the position before 1868, and one for that after 1868 . In this way, also, the effect of the earthquake of 1868 on the results in this appendix was partly eliminated.

From Monterey Bay to San Francisco, San Pablo, and Suisun Bays and
 Tributaries, $1851-1905$.
 [Sketches in to 2:.]

This triangulation has a wide range of accuracy. Some of the larger controlling triangulation of $1851-1854$ is of the primary grade, with an average error of closure of triangles not much in excess of one second. Much of the smaller triangulation, done for use in hydrography and topography, falls below the present standard for tertiary triangulation, which is that the average error of closure of triangles shall be from four to five seconds.

A large part of the area covered by this triangulation lies within the region known to have been disturbed by the earthquake of 1906. Having this fact in view, and remembering also the large number of stations involved, some occupied ten or more times by as many different observers, and the complicated overlapping of the triangles, it is deemed impracticable to go into details concerning the procedure in adjustments and the accuracy of results.

Golden Gate to Point Arena, 1854-189i.
 [Sketches 22 to as.]

A large part of this area is covered by the new triangulation of 1906-7, the positions of which are to be used whenever the best values of the present relative positions are desired. The old points of this whole section have, no doubt, been disturbed by the earthquake of 1906. The fault line accompanying this earthquake crosses the lines of the triangulation in many places, and is nowhere far enough away from the scheme of old points in this locality to leave them undisturbed. Corrections have been computed for all these old points and are referred to in footnotes to the tables of positions.

In view of the complications arising from the proximity of all the old points of this section to the fault line of igob, it is useless to go into details in regard to the accuracy. All that need be said is that this triangulation is well controlled by the primary, with which it is connected in several places.

Point Arena to Shelfer Cove, r870-1897.
[Sketches 26 to 29.]
It is not believed that the earthquake disturbance of 1906 has appreciably affected the relative positions at a greater distance than 15 to 20 kilometers north of Point Arena. Corrections have been computed accordingly, and are referred to in footnotes to the tables of positions, for all points from Point Arena to the triangulation station Cavanaugh.

In addition to the starting length from the Point Arena base there is in this chain the further control of three bases, viz, Navarro Ridge base, Ten Mile River Beach base, and the Shelter Cove base. The discrepancies in length at Ten Mile River Beach base, as brought from the north and south, were 34 and 25 in the sixth decimal place of the logarithms, or one part in 13000 and 17000 , respectively. The discrepancy in length between the Point Arena base and the Navarro Ridge base was about one part in 250 . The final corrections to the directions showed that this extremely large ratio was mostly due to the unfavorable shape of the triangles through the small angles of which the length had to be computed.

The latitudes, longitudes, and azimuths, as brought from the south, were made to conform to the primary triangulation station, Chemise Mountain, which is at the northern extremity of this section. The discrepancies at this point in latitude, longitude, and azimuth were $o^{\prime \prime} .221,0^{\prime \prime} .031$, and $34^{\prime \prime} .4$, respectively. The mean error of closure of 327 triangles is $7^{\prime \prime} .6$, with a maximum of $42^{\prime \prime} .2$.

The scheme connecting points in Ukiah with the main body of the triangulation (sketch 36) is based on the primary line Paxton to Mount Sanhedrin, the lengths being checked by a local base.

Shelter Cove to Trinidad Head, 1854-1872.
[Sketches 30 to 33.]
This section is controlled at the southern end by the length of the Shelter Cove base and the latitude, longitude, and azimuth at the primary station, Chemise Mountain. The length is further held by the base at Humboldt bay, while the latitude, longitude, and azimuth are subject to the conditions of bringing out those at the primary station, Bear Ridge. The discrepancies were as follows: In length, 113 in the sixth decimal place of the logarithms, or one part in 4 ooo; in azimuth, $63^{\prime \prime}$; in latitude, $0^{\prime \prime} .469$; and in longitude $0^{\prime \prime} .230$. The mean error of closure of 288 triangles is $13^{\prime \prime} .9$, with a maximum of $112^{\prime \prime} \cdot 5$. This maximum value occurs in a triangle with one side barely over 200 meters long, and the large mean error is due, in great part, to the many short lines over which observations were made.

Inland Peaks and Astronomic Stations.

[Sketches 34 to 40.]
The positions of the mountain peaks given in this appendix are determined principally from the primary stations of which the positions were published in Appendix. 9 , Report of the Coast and Geodetic Survey for 1904, "Triangulation in California, Part I." When the final results are published for the primary triangulation following the Sacra-
mento Valley northward from the thirty-ninth parallel of latitude the positions of a number of additional peaks will be given, and others still will be available when the final computations are made for the tertiary triangulation along the oblique boundary between California and Nevada.

An astronomic station is always either near or identical with a triangulation station, generally a primary station. The connection with the triangulation is often made by a measurement of the distance and direction to the astronomic station. In several cases the connection is made by a small local triangulation. The positions are given for the points of such connecting triangulation, though these points are often not permanently marked. This small triangulation is shown, on separate sketches, for Marysville, Mount Helena, Mount Hamilton, and Mount Conness.

Adjustment of the Subordinate Triangulation.

All inconsistencies have been eliminated by least square adjustments from the results set forth in the tables of positions. That is, the sum of the three adjusted angles of each triangle is equal to 180° plus the spherical excess; from whatever line and through whatever chain of triangles the length and azimuth of a given line are computed the results will be the same as those given in the tables of positions for that line, and from whatever point and through whatever chain of lines the latitude and longitude of a given point are computed the results will be the same as those given in the tables of positions for that point. In the preceding statements no account is taken of those small discrepancies in the last place that arise from accumulations of neglected figures in the next place to the right of the last place used.

The process of adjustment is to start from the large primary work and gradually come down to the triangulation of the lower grades of accuracy. The points selected at each step, to be fixed by one figure adjustment, are somewhat arbitrarily chosen, the general aim being to get the best results from the observations at hand, without unduly extending the amount of computation. At each stage in the process, then, those points are taken for the next adjustment that are most strongly determined, the number of points taken and the consequent amount of computation involved corresponding in a general way to the importance of the results to be attained. Thus, the important points of the larger, controlling triangulation are adjusted, several at a time, in figures involving a large number of conditions, using all the available obscrvations. Points of less importance are adjusted one or two at a time, of ten not making use of every observed line. In case only a part of the observations are used, those selected are for the lines that give the least uncertainty of position for a given uncertainty of direction. The lengths and azimuths of the remaining lines, the observations of which have received no weight in the adjustment, are computed to fit the position thus fixed by the selected lines. Hence, the azimuths and lengths of all lines observed over, whether from both ends or from one end only, are to be found in the tables of positions.

In the case of unoccupied points, determined by intersections, such as chimneys, smokestacks, flagstaffs, cupolas, and spires, the general rule followed has been to make the determination depend upon not more than four lines; that is to say, upon not more than two conditional equations. More than two conditions have occasionally been used for such points, when their positions were to be used further in fixing other points.

When a chain of subordinate triangulation closes upon itself or upon previously fixed primary work, there arise discrepancies in latitude and longitude, or in latitude, longitude, azimuth, and length, according as the loop is closed on a point or on a line. This introduces either two or four conditions, in addition to the usual angle, side, and length equations, viz, a latitude equation and a longitude equation; or a latitude equation, a longitude equation, an azimuth equation, and a length equation. In subordinate triangulation, these additional circuit-closure conditions, two or four, as the case may be, are satisfied in a separate adjustment, after a preliminary adjustment has been made of a part or all the other conditions. The least laborious process used is to close up a continuous chain of the best-shaped triangles, connecting the two fixed extremities of the network, by applying one-third of the error of closure of each triangle to each separate angle of the triangle. This is a least square adjustment of the angles (not directions) of this selected chain of triangles. Through the chain of triangles thus adjusted the discrepancies of circuit closure are computed and a least square adjustment is made of the results of the preliminary adjustment, satisfying the conditions of circuit closure. This second adjustment gives the final positions for a chain of triangles fitting between the originally fixed extremities. All other observed lines and points of the chain, in addition to those thus fixed, are now computed either by the simple solution of triangles in the case of the undetermined diagonal of a fixed quadrilateral, or by a least-square adjustment in the case of a point not in the selected chain. A plan more often followed is to satisfy all the angle and side conditions by preliminary adjustments, in several steps, as a rule, and then to satisfy the conditions of circuit closure, in the same way as just described by making a least-square adjustment of a selected chain of these closed triangles. The adjustments are then completed as described above.

The United States Standard Datum.

All of the positions and azimuths have been computed upon the Clarke spheroid of 1866, as expressed in meters, which has been in use in the Coast and Geodetic Survey for many years.

After a spheroid has been adopted and all the angles and lengths in a triangulation have been fully fixed, it is still necessary, before the computation of latitudes, longitudes, and azimuths can be made, to adopt a standard latitude and longitude for a specified station and a standard azimuth of a line from that station. For convenience the adopted standard position (latitude and longitude) of a given station, together with the adopted standard azimuth of a line from that station, is called the geodetic datum.

The primary triangulation in the United States was commenced at various points, and existed at first as a number of detached portions in each of which the geodetic datum was necessarily dependent only upon the astronomic stations connected with that particular portion. As examples of such detached portions of triangulation there may be mentioned the early triangulation in New England and along the Atlantic coast, a detached portion of the transcontinental triangulation centering on St. Louis and another portion of the same triangulation in the Rocky Mountain region, and three separate portions of triangulation in California in the latitude of San Francisco, in the vicinity of Santa Barbara channel, and in the vicinity of San Diego. With the lapse of time these separate pieces have expanded until they have touched or overlapped.

The transcontinental triangulation, of which the office computation was completed in 1899, joins all of the detached portions mentioned and makes them one continuous triangulation. As soon as this took place the logical necessity existed of discarding the old geodetic data used in these various pieces and substituting one datum for the whole country, or at least for as much of the country as is covered by continuous triangulation. To do this is a very heavy piece of work, and involved much preliminary study to determine the best datum to be adopted. On March 13, 1901, the Superintendent adopted what is now known as the United States Standard Datum, and it was decided to reduce the positions to that datum as rapidly as possible. The datum adopted was that formerly in use in New England, and therefore its adoption did not affect the positions which had been used for geographic purposes in New England and along the Atlantic coast to North Carolina, nor those in the States of New York, Pennsylvania, New Jersey, and Delaware. The adopted datum does not agree, however, with that used in "The transcontinental triangulation" and in "The eastern oblique arc of the United States," publications which deal primarily with the purely scientific problem of the determination of the figure of the earth and which were prepared for publication before the adoption of the new datum.

As the adoption of such a standard datum is a matter of considerable importance, it is in order here to explain the desirability of this step more fully.

The main objects to be attained by the geodetic operations of the Coast and Geodetic Survey are, first, the control of the charts published by the Survey; second, the furnishing of geographic positions (latitudes and longitudes), of accurately determined elevations, and of distances and azimuths, to officers connected with the Coast and Geodetic Survey and to other organizations; third, the determination of the figure of the earth. The first two of these objects are purely practical; the third is purely scientific. For the first and second objects it is not necessary that the reference spheroid should be accurately that which most closely fits the geoid within the area covered, nor that the adopted geodetic datum should be absolutely the best that can be derived from the astronomic observations at hand. It is simply desirable that the reference spheroid and the geodetic datum adopted shall be, if possible, such a close approximation to the truth that any correction which may hereafter be derived from the observations which are now or may become available shall not greatly exceed the probable errors of such corrections. It is, however, very desirable that one spheroid and one geodetic datum be used for the whole country. In fact, this is absolutely necessary if a geodetic survey is to perform fully the function of accurately coordinating all surveys within the area which it covers. This is the most important function of a geodetic survey. To perform this function it is also highly desirable that when a certain spheroid and geodetic datum have been adopted for a country they should be rigidly adhered to without change for all time, unless shown to be largely in error.

In striving to attain the third object, the determination of the figure of the earth, the conditions are decidedly different. This problem concerns itself primarily with astronomic observations of latitude, longitude, and azimuth, and with the geodetic positions of the points at which the astronomic observations were made, but is not concerned with the geodetic positions of other points fixed by the triangulations. The geodetic positions (latitudes and longitudes) of comparatively few points are therefore concerned in this problem. However, in marked contrast to the statements made in
preceding paragraphs, it is desirable in dealing with this problem that, with each new important accession of data, a new spheroid fitting the geoid with the greatest possible accuracy, and new values of the geodetic latitudes, longitudes, and azimuths of the highest degree of accuracy, should be derived.

The United States Standard Datum was adopted with reference to positions furnished for geographic purposes, but has no reference to the problem of the determination of the figure of the earth. It is adopted with reference to the engineer's problem of furnishing standard positions, and does not affect the scientist's problem of the determination of the figure of the earth.

The principles which guided in the selection of the datum to be adopted were: First, that the adopted datum should not differ widely from the ideal datum for which the sum of the station errors in latitude, longitude, and azimuth should each be zero; second, it was desirable that the adopted datum should produce minimum changes in the publications of the Survey, including its charts; and, third, it was desirable, other things being equal, to adopt that datum which allowed the maximum number of positions already in the office registers to remain unchanged, and therefore necessitated a minimum amount of new computation. These considerations led to the adoption as the United States Standard of the datum which had been in use for many years in the northeastern group of States and along the Atlantic coast as far as North Carolina.

An examination of the station errors available in 1903, on the United States Standard Datum, at 246 latitude stations, 76 longitude stations, and 152 azimuth stations, scattered widely over the United States from Maine to Louisiana and to California, indicated that this datum approaches closely the ideal with which the algebraic sum of the station errors of each class would be zero.

The adopted United States Standard Datum, upon which the positions and azimuths given in this publication depend, may be defined in terms of the position of the station Meades Ranch as follows:

$$
\left.\begin{array}{llll}
\phi & =39 & 13 & 26.686 \\
\lambda & =98 & 32 & 30.506 \\
\lambda & \text { to Waldo } & =75 & 28
\end{array}\right)
$$

Points are then said to be upon the United States Standard Datum when they are connected with the station Meades Ranch by a continuous triangulation, through which the corresponding latitudes, longitudes, and azimuths have been computed on the Clarke spheroid of 1866 , as expressed in meters, starting from the above data.

Appendix 9, Report of the Coast and Geodetic Survey for 1904, entitled "Triangulation in California, Part I," and Appendix 3, Report of the Coast and Geodetic Survey for 1907, "The earth movements in the California earthquake of 1906," are the only publications of this Office, previous to the present one, in which California positions are given upon the United States Standard Datum. Appendices 9 and 3, Reports of the Coast and Geodetic Survey for 1885 and ig00, respectively, and special publication No. 4, "The transcontinental triangulation, r900," give positions in California which are not upon the United States Standard Datum. The principal lists of positions heretofore published upon the Standard Datum throughout the whole United States are contained in the following publications of the Coast and Geodetic Survey and of other organizations:

Appendix 8 of the Report for 1885 , positions in Massachusetts and Rhode Island; Appendix 8 of the Report for 1888 , positions in Connecticut; Appendix 8 of the Report for 1893, positions in Pennsylvania, Delaware, and Maryland; Appendix 10 of the Report for 1894, positions in Massachusetts; Appendix 6 of the Report for 1901, positions in Kansas and Nebraska; Appendix 3 of the Report for 1902 , positions in Kansas, Missouri, Nebraska, and Colorado; Appendix 4 of the Report for 1903, positions in Kansas, Oklahoma, and Texas; Appendix 9 of the Report for 1904, positions in California; Appendix 5 of the Report for 1905, positions in Texas; Appendix 3 of the Report for 1907, positions in California; in Appendix EEE, pages 2905-3031, Annual Report of the Chief of Engineers, 1902, positions of points on and near the Great Lakes; in publications of the Massachusetts Harbor and Land Commission; and in various bulletins of the United States Geological Survey.

Lengths.

The lengths from Monterey Bay to the vicinity of Point Arena, for the triangulation both before and after the earthquake of $\mathbf{r g o 6}$, are controlled by the Yolo base, the Pulgas base, and the Los Angeles base. From Point Arena northward the lengths of the small shore line triangulation are controlled principally by five small bases, viz, Point Arena base, Navarro Ridge base, Ten Mile River Beach base, Shelter Cove base, and Humboldt Bay base. As far north as the primary station Bear Ridge, which is north of Cape Mendocino, positions of this small shore line triangulation are controlled by the primary triangulation, and to some extent the lengths are thus indirectly controlled by the primary work.

The lengths as given are all reduced to sea level. If the actual length of a line simply reduced to the horizontal is desired, it may be obtained with all the accuracy ordinarily needed by adding to the sea level length as given a correction=(length of line as given) ($\frac{\text { Mean elevation of two ends of line in meters }}{6370000}$). The maximum value of this correction does not exceed ${ }_{T \varepsilon^{\frac{1}{0}} \boldsymbol{\sigma}}$ of the length for any portion of the triangulation here published. The maximum error made in the use of the above approximate formula for the correction does not exceed $\overline{\sigma \delta \delta \delta \sigma}$ of the length for any portion of this.triangulation.

For the convenience of those who may wish to compare the lengths here given with others which are expressed in feet, or vice versa, the following conversion table is here inserted:

Meters	reet	Feet	Meters
1	3. 280833	1	0. 3048006
2	6. 561667	2	o. 6096012
3	9. 842500	3	o. 9144018
4	13. 123333	4	I. 2192024
5	16. 404167	5	I. 5240030
6	19.685000	6	I. 8288037
7	22. 965833	7	2. 1336043
8	26. 246667	8	2. 4384049
	29. 527500	9	2. 7432055
10	32.808333	10	3. 0480061

Tables of Positions.
In the tables of positions the latitude and longitude of each point are given and also the length and azimuth of each line observed over, whether one or both ways. This is, in \neq way, a duplication, as the lengths and azimuths are implicitly contained in the corresponding latitudes and longitudes, while, on the other hand, from the latitude and longitude of a single point all the remaining latitudes and longitudes may be derived by means of the given lengths and azimuths. The amount of computation involved in transforming one of these systems of coordinates into the other is so great that it is necessary to have the double system for the convenient use of tables of positions. Along with the latitude and longitude of each point the lengths and azimuths are given of all lines from that point to other points of the triangulation, except that lengths and azimuths already given are not repeated.

For the convenience of the draftsman a column of "seconds in meters" is given, in which is placed the length (in meters) of each small arc of meridian or parallel corresponding to the seconds of a given latitude or longitude. To facilitate further the use of the tables of positions, a column is given for the logarithms of the lengths.

The rule followed in recent publications of this Office has been to give the latitudes and longitudes to thousandths of seconds for all points the positions of which are fixed by fully adjusted triangulation. In the present publication exceptions have been made in the following two cases: (i) Points not definitely marked or which are not in themselves well-defined objects for pointing upon, such as most of the mountain summits, rocks, and points of land; (2) astronomic stations that are not triangulation stations proper, but connected therewith by linear measurements or by small local triangulation. These exceptions are made in the present case to save the labor of changing computations already made. The latitudes and longitudes are given to hundredths of seconds, then, in the present appendix for the two classes of points mentioned above and also for points determined without a check.

In the columns giving azimuths, distances, and logarithms of distances various numbers of decimal places are given, the intention being to indicate the accuracy to a certain extent, it being understood that in each quantity two doubtful figures are given. In some cases there is very little doubt of the correctness of the second figure from the right, and in a few cases some doubt may be cast upon the third figure.

These tables may be conveniently consulted by using as finders the forty sketches at the end of this appendix, and the index, on pages 399 to 429 . In the third column of the index will be found for each point a reference to the page on which its description is given, in the fourth column the sketches on which it occurs, and in the fifth column the page on which its elevation above sea level may be found.

Primaries and Secondaries for 1906-7 and older positions of same points.

Station	$\begin{aligned} & \text { Latitude } \\ & \text { and } \\ & \text { longitude } \end{aligned}$	Seconds in meters	Azimuth	Back azimuth	To station	Distance	Logarithm
	- , "	m	- , "	- , "		meters	
Sierra Morena ${ }^{1883}$	3724 38. 266	1179.7	2632339.45	835106.64	Mocho	67011.26	4. 8261478
	1231828.006	688.7	1560303.27	3355349.43	Mount Tamalpais	62422. 54	4. 7953414
			$213 \quad 3032.29$	33 44 59.40	Mount Diablo	62842.01	4.7982501
Sterra Morena 1907	37 122 248888.305 88	1180.9	2133037.68	33 45 04.82 83 51 10.60	Mount Diablo	62881.70 67012.32	4.7882479
		680.9	$263 \quad 2343.47$	835110.69	Mocho	67012.32	4.8261547
$\underset{1854}{\text { Loma Prieta }}$	37 06 121 50 0.971 36.521	1263.8	1304036.75	3102935.73	Black Mountain	35483.63	4. 5500280
		901.8	$20031 \begin{array}{ll}35.15\end{array}$	$2035 \quad 26.95$	Masters Hill		4.4297533
$\underset{1884}{\text { I_oma Prieta }}$	$\begin{array}{r} 370640.912 \\ 12150.36 .423 \end{array}$	1261.3	1290183.52	308 355 350 50 30 21.46	Sierra Morena Mount Diablo		4. 7235535
		889.3	$\begin{array}{lllll}175 & 52 & 59.49 \\ 212 & 04 & 03.95\end{array}$	355 32 32 14 14 326.67	Mount Diablo Mocho	85760.84 48021.28	4. 9332890 4.6814337
Loma Pricta 1006	$\begin{array}{r} 37 \text { of } 40.805 \\ 125 \quad 50 \quad 36.300 \end{array}$	1270.8	129 or 13.83	3084421.72	Sierra Morena	\$2014.40	4.7235746
		808.5	1755257.67	3555024.20	Mount Diablo	85701.43	4.0332030
			212 202 203 27	$\begin{array}{cccc}32 & 14 & 28.54 \\ 12 & 50 & 28.70\end{array}$	Mocho Santa Ana	48021.30 58068.62	4. 6814330 4.7706200
$\begin{aligned} & \text { Mount Toro } \\ & 1885 \end{aligned}$	$\begin{array}{r} 363134.712 \\ 1213632.276 \end{array}$	1070.0	16a 12 31. 32	3420405.43	Loma Prieta	68212. 25	4. 8338624
		803.0	1823442.13	323638.58	Mocho	105688.3	5. 0240270
			2183131 10	384433.91	Santa Ana	53847. 56	4.7311660
$\underset{\text { Mount Toro }}{\substack{\text { Mon }}}$	$\begin{array}{rrr} 36 & 31 & 34.742 \\ 121 & 36 & 32.284 \end{array}$	1070.0 801.3	$\begin{array}{llll}102 & 12 & 32.85 \\ 182 & 34 & 42.61\end{array}$	$\begin{array}{rrrr}342 & 04 & 06.98 \\ 2 & 30 & 30.07 \\ 3 & 46 & 30.7\end{array}$	$\underset{\text { Moma Prieta }}{ }$	$\begin{array}{r} 08210.45 \\ 105087.37 \end{array}$	$\begin{aligned} & 4.8338515 \\ & 5.0240231 \end{aligned}$
			182 218 31 34 1060.92	${ }_{38}{ }^{2} 84830.72$	Santa Ane	10830.48 53847.06	4.0240231
$\underset{1854}{\substack{\text { Gavilan }}}$	$\begin{array}{r} 3645 \\ 121 \\ 31 \\ 31 \\ 11.068 \\ \hline 1.504 \end{array}$	649.4	1435622.65	3234442.60	Loma Prieta	48855.98	4. 6890066
		285.3	18009 11.72	- 0984.29	Murphy	39551. 38	4. 5971616
Gavilan 1006-7		646.1	172434.20	1972122.66	Mount Toro	26086. 58	4.4262930
		281.3	143 236 236 58	$\begin{array}{rrrr}323 & 44 \\ 57 & 42.16 \\ 30.52\end{array}$	Loma Prieta Santa Ana	48867.18 30520.50	4. 6890173 4.4845016
			2365810.93	57 os 30.52	Santa Ana	30520.50	4.4845910
Santa Cruz 1854-1864	$\begin{array}{cccc} 36 & 58 & 42.106 \\ 122 & 03 & 18.728 \end{array}$	1298.0	2315057.63	$5158{ }_{51} 56.81$	Loma Prieta	23930.71 53743.68	4. 3789556
		463.2	2971156.89	1173043.15	Gavilan	53743.68	4. 7303274
Santa Cruz 1906	$\begin{array}{rrrr} 36 & 58 & 42.027 \\ 122 & 03 & 18.702 \end{array}$	1205.4	2315150.00	515850.23	Loma Prieta	23032.82	4. 3780038
		462.5	$20711 \begin{array}{lll}23.72\end{array}$	$117 \quad 3040.06$	Gavilan	53747.10	4.7303550
$\underset{1854-\times 856}{\text { Point Pinos } L . H .}$	$\begin{array}{rrrr} 36 & 38 & \text { 1. } 551 \\ 121 & 55 & 58.939 \end{array}$						
		1464.3	$\begin{array}{lll} 188 \quad 32 \quad 27.51 \end{array}$	83540.97	Loma Prieta	53600.54	$\text { 4. } 7291692$
$\underset{\text { Igo6 }}{\text { Point Pinos L. } H .}$	$\begin{array}{ll}36 & 38 \\ \text { or. } 300\end{array}$ 1215558.705		1640710.84	3440253.20	Santa Cruz	30767.15	4. 5095244
		1460.6	1883224.95	883538.40	Loma Priela	53602.79	4.7201874
			2404335.36	60 5884.19	Gavilan	30332.75	4. 5047543
$\underset{\text { Pajaro Mouth } 2}{ }$	$\begin{array}{rl} 36 & 51 \\ 122 & 14.150 \\ 48 & 38.179 \end{array}$	4.36 .2	$\begin{array}{llllllll}22 & 25 & 30.35\end{array}$	3021641.47	Santa Crur	25800.52	4. 4116284
		945.8	1741000.4 4	3540849.30	Loma Prieta	28717.33	4.4581441
			2924032.43	1125049.57	Cavilan	2814 I .43	4.4493462
Point Pinos Latitude Sta.$18_{54}-1860$	$\begin{array}{r} 36 \quad 3759.413 \\ 2215531.685 \end{array}$	1831.4 787.1	$\begin{array}{llll}163 & 13 & 20.40 \\ 249 & 17 & 38.67\end{array}$	$343 \text { of } 40.59$	Santa Cruz Gavilan	40017.79 38720.60	4. 6022531 4. 5879421
		787.1	2491738.67	69 32 11. 19	Gavilan	38720.60	4. 5879421
Point Pinos Latitude Sta. 1006	$\begin{array}{llll}36 & 37 & 50.270\end{array}$ $\begin{array}{llll}121 & 55 & 31.578\end{array}$	1827.2	1631313.02	3430833.17	Santa Cruz	40010.96	4. 6022767
		784.5	$24017 \quad 37.10$	693200.75	Gavilan	38722.21	4.5870002
$\underset{\substack{\text { Santa } \\ \text { tion } \\ 1907}}{ }$	$\begin{array}{r} 36 \quad 57 \text { O6. } 145 \\ 122 \text { of } 32.959 \end{array}$	189.4	1382958.68	31828 5s. 10	Santa Cruz	3946.98	3. 5962644
		815.5	22225 54.84	$42{ }^{42} 3830.26$	Loma Prieta	24026.01	4. 3806816
			2953404.75		Gavilan	50090.05	4. 6997514
			3213640.92	141515138.58	Mount Toro	60121.38	4.7790289
Santa Cruz L. H.* 1884	$\begin{array}{rrrr} 36 & 57 & 08.82 \\ 122 & \text { OI } & 33.67 \end{array}$	271.9 833.0	$\begin{array}{lllll}222 & 35 & 36.4 \\ 325 & 28 & 50.4\end{array}$		Loma Prieta Mount Toro	23976.9 60197.8	$\begin{array}{\|l} 4.379793 \\ 4.779581 \end{array}$
Santa Cruz L. H. 1906-7	$\begin{array}{lll}36 & 57 & 08.837\end{array}$ 122 OI 33.682	272.4 83.4	3475034.	1675024.8	Santa Cruz Mag.Sta.	84.805	1. 92888
Mount Tamalpais 1854	37 55 27.455 122 35 45.228	$\begin{array}{r} 846.4 \\ 1104.6 \end{array}$	$\begin{array}{lll} 133 & 02 & 20.97 \\ 182 & 25 & 39.63 \end{array}$	$\begin{array}{rrrr} 312 & 49 & 23 . & 38 \\ 2 & 36 & 27.38 \end{array}$	Tomales Bay Sonoma Mountai.	$\begin{aligned} & 42007.3 \\ & 44348.7 \end{aligned}$	4. 6233250 4. 6468808
Mount Tamalpais 1882	$\begin{array}{lllll}37 & 55 & 27.507 \\ 122 & 35 & 45.242\end{array}$	848.0	1774654.317	3574532.153	Mount Helena	8280050	4. 91806179
		1104.9	2741519.460	944028.800	Mount Diablo	60205.71	4. 77963767
			2980315.847	1184127.018	M	104307.60	5.0183159
Mount Tamalbais 1006-7	$\begin{array}{rl} 37 & 55 \\ 122 & 27.402 \\ 122 & 45.228 \end{array}$	$\begin{gathered} 847.6 \\ 1104.6 \end{gathered}$	$\begin{array}{llll} 274 & 15 & 17.89 \\ 335 & 52 & 57.85 \end{array}$	$\begin{array}{r} 944027.23 \\ 15603 \end{array}$	Mount Diablo Sierra Morena	$\begin{aligned} & 00205.32 \\ & 62420.39 \end{aligned}$	$\begin{aligned} & 4.7706349 \\ & 4.7953265 \end{aligned}$

No check on this position.
$63481^{\circ}--1 \mathrm{r} \longrightarrow 13$

Primaries and Secondaries for 1906-7 and older positions of same points-Continued.

Station	Latitude and longitude	Seconds in meters	Azimuth	Back	To station	Distance	Logarithm
	- ' ${ }^{\text {c }}$	m	- . ${ }^{\prime}$	- , "		meters	
Red Hill	37 3 122	145.4 1006.5		$\begin{array}{llllll}260 & 07 & 45.48 \\ 340 & 31 & 30.83\end{array}$	Ridge Rocky Mound	$\begin{aligned} & 25154.9 \\ & 38985.8 \end{aligned}$	4. 4006225 4. 5909069
	1220541.003		$160 \quad 3654.76$	$34031 \begin{array}{llll} & 31 & 30.83\end{array}$			
Red Hill	373304.730	145.8	502520.65	2301733.92	Sierra Morena	24473.2	4. 3886905
1885	1220540.982	1006.0	133 160 160		Mount Tamalpais Rocky Mound	60542.9 38986.1	4. 7820631 4. 5909094
Rcd Hill	373304.738	140. 1	50 25 34.38 33 7 3	2301747.61	Sierra Morena	24473.60 60542.30	$\text { 4. } 3886078$
1005	1220540.975	1005. 8	$53317 \begin{array}{ll}33.33\end{array}$	3125000.03	Mount Tamalpats	60542.30	4.7820580
Rocky Mound	375257.237	${ }^{1764.6}$	$\begin{array}{llll}16 & \text { O1 } & 57.70 \\ 08 & 34 & 03.83\end{array}$	$\begin{array}{lllll}195 & 57 & 04.11 \\ 278 \\ 21 & \text { 1 } & 00.73\end{array}$	Ridge Mount Tamalpais	$42 \log _{3} .0$ 31484.5	4. 6303570 4. 4980964
1854	1221430.510	745.6	983403.83	2782100.73			4.4980964
Rocky Mound	375257.253	1765.1	${ }_{6}^{6} 2146.49$	1861921.43	Sierra Morena	52702. 1	4. 7218276
	1221430.507	745. 5	$\begin{array}{rr}98 & 34 \\ 270 & 10.47 \\ 270 & \text { 27.08 }\end{array}$	$\begin{array}{r}278 \\ 90 \\ 90 \\ \hline 12\end{array}$	Mount Tamalpais Mount Diablo	31485.0 28888.8	4. 4981040 4. 4607300
Rocky Mound	375257.262	1765.5	3403126.06	1003650.91	Red Hill	38086.24	4. 5000114
${ }_{1006}$	1221430.515	745.7	${ }_{6} 62150.72$	1861025.63	Sicrra Morena	52701.24	4.7218209
			083400.22	2782103.12	Mouni Tamalpais	31484.38	4.4080951
Sonoma Mountain	$\begin{array}{llll} \\ 8 & 19 & 34.539\end{array}$	756.6			Mount Diablo	75905. 21	4. 8802716
${ }_{1855}$-6	1223427.894	677.6	$226 \quad 27 \cdot 38$	$18225 \quad 39.63$	Mount Tamalpais	44348 69	4. 6468808
Sonoma Mountain	381024.570	757.9	3005048.37	1302416.74	Mount Diahlo	75005.93	4. 8802757
1007	1223427.801	677.5		140 182 18 182 25 12.50 30.03	Rocky Mound Mount Tamalpais	57107.17	$\begin{aligned} & 4.7560006 \\ & 4.6468820 \end{aligned}$
Farallon L. H.	374158.210		2081642.06	283227.78	Sonoma Mountain	78740.80	4. 8961998
1854-1860	12330003.579	87.7	$234 \begin{array}{ll}54 & 23.73\end{array}$	550917.80	Mount Tamalpais	43531.48	4. 6388034
Farallon L. H.	374×58.250	1795.8	1963354.6	164734.2	Mount Helena	213422.7	5. 0508540
1891	1230003.605	88.3	2345423.2	$\begin{array}{lllll}55 & 09 & 17.3\end{array}$	Mount Tamalpais	43531.9	4. 6388077
			2972500.5	1175021.8	Sierfa Morena	69138.3	4.8397187
Farallon L. H.	374158.277	1706.6	2345433.28	550027.41	Mount Tamalpais	43532.73	4. 6388150
1007	1230003.609	89.9	2085648.24	283234.01	Sonoma Mounlain		4. 8062017
			2812026.44	1015338.31	Red Hill	81681.07	4. 0121214
			2072450.17	117 50 20. 30	Sierra Morena	60138.46	4.8307107
Point Reyes Hill	380448.325	1490	$\begin{array}{llll}223 & 23 & 20.35 \\ 305\end{array}$	4334 I1. 51	Sonoma Mountain	37231.58	4. 5709115
1859	1225200801	19.5	3055456.79	1260457.44	Mount Tamalpais	29420.37	4.4686481
Point Reyes Hill	380448.470	1405.4	2232343.14	433434.30	Sonoma Mountain	37231.03	4. 5700050
	1225200.006	22.1	$\begin{array}{rrrrrrrrrrrr}305 & 55 & 05.23 \\ 15 & 38 & 34.80\end{array}$	$\begin{aligned} & 1200505.05 \\ & 1053338.32 \end{aligned}$	Mount Tamalpas Farallon L. H.	20424.40 43860.65	4.4087076 4. 6420750
Tomales Bay			24408 32.85	6422 21. 73	Sonoma Mountain	36139.91	4.5579870
1856	1225646.733	1137.4	$328 \quad 2231.00$	$14825 \quad 37.55$	Point Reyes Hill	13290. 12	4. 1235289
Tomales Bay	38 so 55.606	1714.6	244 O8 56.84	642245.82	Sonoma Mountain	36.40 .85	4. 5570084
1006	3225646.84 I	1140.0	3124927.13	133 02 24.78 188 185	Mount Tamalpais	42011.61	4.6233604
					Point Reyes Hill Farallon L. H.	13200.29 53770.44	4. 1235345
				1131155.18	Sonoma Mountain	51703.36	4. 7135187
1859	123 128 1809	633.0 23.5	$\begin{array}{ll}292 & 51 \\ 337 & 07 \\ 29.25\end{array}$		Tomales Bay	38974.27	4. 5907780
Ross Mountain	383020.583	634.7	2463609.171	6654 21. 548	Mount Helena	46 r 33.46	46640160
1891	12307 c9. 221	223.4	3025149.822	1233633.890	Mount Diablo	126290.35	5. 1013702
			3242722.348	1444647.824	Mount Tamalpais	79153.78	4.8984717
Ross Mountain	383020.572	634.3	2025137.64	1131150.29	Sonoma Mountain	51703.05	4. 7135161
1007	1230700.204	223.0		$\begin{array}{lllll}157 & 14 & 03.79 \\ 173 & 25 & 38.68\end{array}$	Tomales Bay Farallon L. H.	38070.07 00082.90	4. 5007312 4.9540423
					Sonoma Mountain		
1860	1230003.726	90.5	3405155.85	16053 57.79	Tomales Bay	14626.77	4. 1651484
$\begin{gathered} \text { Bodega } \\ \text { I006 } \end{gathered}$	$\begin{array}{r} 38 \quad 1823.605 \\ 1230003.694 \end{array}$	730.680.8	1550002.01	3345537.08	Ross Mountain	24306.36	4. 3873250
			2665014.57	871506.74	Sonoma Mountain	37357.62	4. 5723702
			34052 22. 26	1605424.12	Tomales Bay	14621.72	4. 1640085
Point Reyes L. H. 1874		$\begin{array}{r} 1400.0 \\ 502.5 \end{array}$	17130351	3512659.3	Ross Mountain	57215.3	4.757512
			1975238.3	175587.2	Tomales Bay	21710. 2	4. 336063
				243643.3	Mount Helena	82886.2	4.914799
			2815050.0	1020640.4	Mount Tamalpais	38315.5	4. 583374

Primaries and Secondaries for 1906-7 and older positions of same points-Continued.

Station	Latitude and longitude	Seconds in meters	Azimuth	$\underset{\text { Back }}{\text { azimuth }}$	Tostation	Distance	Logerithm
$\begin{aligned} & \text { Point Reyes L. H. } \\ & I \varphi 06-7 \end{aligned}$	- , "		- , "	- ' ${ }^{\prime}$		meters	
	$\begin{array}{ccc}37 & 50 & 45.372 \\ 723 & \text { O1 } 20.018\end{array}$	$\begin{gathered} 1405 . I \\ 503 . I \end{gathered}$	$\begin{array}{llll}171 & 30 & 35.80 \\ 107 & 52 & 27.68\end{array}$	$\begin{array}{ccc}351 & 26 & 50.09 \\ 77 & 55 & 16.57\end{array}$	Ross Mountain Tomales Bay	\$57210.03	4. 757.7721 4.3300440
			281 5155.10	102 06 50. 54	Mount Tamalpais	38316.75	4. 58338887
Lick Observatory simall dome 1882-1887	$\begin{array}{r} 372031.511 \\ 121 \quad 38 \quad 31.707 \end{array}$	$\begin{aligned} & 971.4 \\ & 780.5 \end{aligned}$	345758.329	2145039.898	Loma Prieta	31222. 23	4.4944639
			973314.341	2770859.663	Sierra Morena	59446. 34	4.7741251
			1201435.79	2995805.15	Red Hill	46293.59	4. 6655208
			1274754.555	3071257.967	Mount Tamalpais	506127.90	5. 0258296
			1581749.069	$\begin{array}{cc}338 & 07 \\ 53.002\end{array}$	Mount Diablo	04541. 51	4. 80983991
				$\begin{array}{ccccc}27 & 06 & 31.843 \\ 143 & 13 & 29.249\end{array}$	Mocho	16903. 50 60602.20	4. 22797966
				1788884.519	Mount Toro	90578.12	4. 485792383
Lick Observatory small dome 1007	$\begin{array}{rrrr}37 & 20 & 31.511 \\ 121 & 38 \\ 31.702\end{array}$	978	345752.48	2145034.07	Loma Pricla	31222. 27	4.4084645
						50447.78	4.7741356
			1201430.02	2005805.08	Red Hill	40203.04	4.0655213
			2070320.72	270030.82	Mocho	10003. 44	4.2270751
Black Mountain 1854	371909.810	302.4	1364900.42	3164041.48	Ridge	29469. 48	4.4693725
	1220849.462	1217.9	19011157.95	101312.51	Red Hill	26152.77	4.4175177
Black Mounlain 1000-7.	$\begin{array}{\|ccc\|}37 & 10 & 00.761 \\ 122 & \text { O8 } \\ 40.402\end{array}$	$\begin{array}{r} 300.9 \\ 1216.4 \end{array}$	3102032.57	1304033.68	Loma Prieta	35485.40	4. 5500508
			1252824.57	3052233.43	Sierra Morena	17473.02	4. 2423004
			136 100 55 00.61 1 08.74	$\begin{array}{rrrr}316 & 46 & 47.48 \\ 10 & 13 & 03.28\end{array}$	Ridoc 2 Rcd Hill	20536.03 26154.74	4.4703522 4.4175504
$\underset{1906}{\text { Pise Hill } 2}$	37 27 42.836 122 20 33.188	$\begin{array}{r} 1320.6 \\ 815.6 \end{array}$	11435828.04	2941122.35	Farallon L, H.	63863.46	4. 8052524
			1904449.86	104831.51	Rocky Mound	47528.12	4.6769506
			$245 \quad 33$ 37.77	654241.00	Red Hill	24056.07	4.3812246
$\begin{aligned} & \text { Ridge } 2 \text { Eccentric } \\ & \text { Igo6 } \end{aligned}$	373048.7301222230.868	$\begin{array}{r} 1502.3 \\ 758.0 \end{array}$	$15657 \begin{aligned} & 18.51 \\ & 105 \\ & 59\end{aligned}$	$33^{6} 4922.54$	Mount Tamalpais	49568.02	4.6952016
			1955920.39	160414.14	Rocky Mound	42615.74	4. 6295700
			224 44 09.77 260 18 59.11	45 801060.32 80 29 14.35	Mount Diablo	57722.95 25147.51	4. 76134885
			3331314.12	$15314 \begin{array}{ll}14594\end{array}$	Pise Hill 2	6418.86	3.8074578
San Bruno Mountain 1899		$\begin{aligned} & 497.3 \\ & 130.9 \end{aligned}$	881053.5	268 o8 45.6	Colma	5129.3	3. 710060
			1200837.8	3000606.6	Black Bluff	7004.9	3. 845404
			1572548.4	3372438.7	Black Ridge 2	7281. 7	3. 862232
San Bruno Mountain 1006	37 41 122 26 16.129	$\begin{aligned} & 407.2 \\ & 130.7 \end{aligned}$	91 3040.02	27110020.73	Farallon L. H.	40055.33	4. 6085810
					Mount Tamalpais	20836.16	4.4747430
			$\begin{array}{llll}218 & 07 & 37.12 \\ 341 & 57 \\ 52.03\end{array}$		Rorky Mound Pise Hill	27501.42 26364.82	4. 4303552 4.4210248
Guano I 1851	373423.655		2791736.23	9923 43.52	Red Hill	14985.73	4. 1756778
	1221543.475	1066.9		2101302.88	Pise Hill	14259.27	4.1540973
			$56 \sim 949.94$	2360541.86	Ridge	12037.50	4.0805364
Guanol. 1906-7	$\begin{array}{rrrr}37 & 34 & 23.640 \\ 122 & 15 & 43.470\end{array}$	720.1	2701729.74	002337.04	Red Hill	14085. 04	4. 1756841
		1067.0	$\begin{array}{llll}20 & 57 & 21.06 \\ 56 & 30 & 33\end{array}$	$\begin{array}{llll}209 & 54 & 25.52 \\ 236 \\ 26 & 25.43\end{array}$	Pise Hill 2	142588.50	4. 15448739
			s6 3033.68	2362625.43	Ridoe 2 Eccentric	11006.60	4.0700616
$\underset{1853}{\text { Pulgas East Base }}$	$\begin{array}{rrr} 37 & 28 & 36.265 \\ 122 & 08 & 08.14 .3 \end{array}$	$\begin{array}{r} 1118.0 \\ 200.1 \end{array}$	850332.95	2645558.05	Pisc Hill	18445.60	4. 2658929
			920826.88	2720406.74	Pulgas W. Base	10511.79	4. 0216767
			13348 21.77	3134344.42	Guano IT	15482.40	4. 1898394
			2033436.60	2336 06. 21	Red Hill.	9031.19	3.9557449
$\begin{aligned} & \text { Puloas East Base } \\ & 1006-7 \end{aligned}$	$\begin{array}{rr} 37 & 28 \\ 122 & 36.258 \\ 128 & 08.120 \end{array}$	$\begin{array}{r} 1117.8 \\ 100.7 \end{array}$	845521.81	2644748.56	Pise Hill 2	18382.46	4. 2648037
			1334817.81	3134340.45	Guanol.	$15.488_{2.81}$	4. 1808408
			2033428.67	233558.28	Red Mill	0031.55	3.0557022
Pulgas West Base18_{53}		1504.0	1761312.52	3561255.59	Guano. I.	10346. 23	4.0147820
		385.3	24044 34.78	605024.76	Red Hill	16169.40	4. 2086940
$\underset{\substack{\text { Pulaas West Base } \\ \text { Jo0 }}}{ }$	$\begin{gathered} 372848.764 \\ 1221515.673 \end{gathered}$	$\begin{array}{r} 1503.3 \\ 385.1 \end{array}$	752532.28	2552210.12	Pise Hill 2	8062. 58	3.0064740
			1761307.57	3561250.63	Guanol.	10346.79	4.0148057
			2404423.09	0050817.07		10100.00	4. 20870072
			27203030.64	92 o8 16.79	Puloas E. Base	10511.06	4.0216837
Point Reyes Head 2 1907	$\begin{array}{r}37 \\ 123 \\ 120 \\ \hline 0\end{array}$	1491.3	1960547.15	160817.64	Tomales Bay	21414.01	4.3306980
		1239.1	234205858	$\begin{array}{r}54 \\ \hline\end{array}$	Point Reyes Hill	2 S 892.68	4. 2011971
			2821256.35	1022822.46	Mount Tamalpais	37622.82	4.5754513
Mount Tamalpais, IE. Peak Observatory 1907		1419.8915.0	705830.85	2505749.10	Mount Tamalpais	1754.87	3. 2442440
			$123 \quad 2316.07$	3031233.49	Point Reyes Hill	30461.94	4.4837576
				310 45 33.62 323 61	Tomales Bay	${ }^{42861.47}$	4.6320670
			143 34 180 180 87 8 58.16	323 14 0 388 0 18	Ross Mt. Sonoma Mt.	79660. 78 43737.16	4. 9012446 4.6408506

Primaries and Secondaries for 1906-7 and older positions of same points-Continued.

Station	$\begin{aligned} & \text { Latitude } \\ & \text { and } \\ & \text { longitude } \end{aligned}$	Seconds in meters	Azimuth	Back azimuth	To station	Distance	Logarithm
Mount Tamalpais, wireless house 1907	- , "	m	- ' $"$,		meters	
	375544.714	1378.6	571948.5	2371927.6	Mount Tamalpais	983. 59	2.9928131
	1223511.327	276.6	${ }_{1} 1440430.3$	3234443.8	Ross Mt.	79203. 62	
			1812250.4	${ }^{1} 2317.2$	Sonoma Mt.	43790. 57	4.6413806
San Jose Court-house dome, flagstaff * 1884	$\begin{array}{rrrr}37 & 20 & 19.33 \\ 121 & 53 & 31.17\end{array}$	$595 \cdot 9$	3501743.9	1701929.6	Loma Prieta	25595.0	4.408155
		767.3	1022121.0	2820612.4	Sierra Morena	37683.7	4. 576153
San Jose Court-hou se dome. flapstaff*	$\begin{array}{ccc}37 & 20 & 19.34 \\ 121 & 53 & 35.18\end{array}$	505. 2			Loma Prieta		
		707.6	$\begin{array}{ll}102 & 21 \\ 25 & 51\end{array}$	2820010.4	Sierra Morena	37684.6	4.576104

Vicinity of Colma, 1907, and older positions of same points.

Black Ridge 2 1899	37 4454.214	1671. 3	452853.9	2252732.3	Black Bluff	4574.6	3.660350
	1222759.502	1456.6	1373203.7	3173035.1	Cement	5235.4	3.718946
			1554936	33549 29.2	Black Ridge	660.3	2.819724
			183 of 48.8	3 0655.7	Presidio Hill	5085.8	3.706360
			2013206.2	213240.2	Lone Mit. Cross	3725.1	3.571139
Black Ridge 2 1007	$\begin{array}{r} 3744 \\ 12227 \\ 27 \\ 20.507 \\ \hline \end{array}$	$\begin{aligned} & 1671.4 \\ & 1456.7 \end{aligned}$	3372420.3	1572530.1	San Bruno Mt.	7281.7	3.862232
$\begin{aligned} & \text { Black Bluff } \\ & 1899 \end{aligned}$	374310.158	313.1	1832557.6	32608.6	Point Lobos 2	7382.3	3. 868192
	1223012.684	310.5	1902501.9	102522.8	Sand Knoll	4625.2	3.665135
			2180657.8	380812.6	Black Ridge	4843.9	3.685192
$\begin{gathered} \text { Black Bluff } \\ 1007 \end{gathered}$	3743 10. 140	312.0	22527 17.1	452838.6	Black Ridge 2	4574.4	3.660333
	1223012.072	310.3	3000601.6	$120 \quad 08 \quad 32.8$	San Bruno Mt.	7004.8	3.845305
Colma 2 1907	374110.823		1654452.4	34544 29. 1	Black Bluff	3795.7	3. 579293
	1222934.517	845.8	1983940.8	184039.0	Black Ridge 2	7269.5	3.861505
			$268 \quad 9914.9$	881122.8	San Bruno Mt.		3.709946
Fog Cap 2 1907	374008.218	253.4	$\begin{array}{lllll}163 & 25 & 55.4\end{array}$	3432541.1	Colma 2	2013.7	3. 304003
	1222911.081	271.6	1911424.8	$\begin{array}{llll}11 & 15 & 08.7 \\ 605 & 18 & 50.7\end{array}$	Black Ridge 2	8989.7	3.953746
			24516 57.1	651850.7	San Bruno Mt.	5010.1	3.699848
Road 1899	373757.595	1775.6	1652125.0	3452058.8	Fog Cap	4150.5	3.618095
	12238 28.512	699.1	2094852.3	$29 \quad 5019.8$	San Bruno Mt.	7055.4	3.848523
			3270654.9	1470727.4	Flat	2408.4	3.381726
Road 1007	373757.665	1777.8	165 20003.1	3452837.1	Fog Cap 2	4157.7	3.618854
	12228 28. 559	700.3	2004058.0	205125.5	San Bruno Mi.	7054. 2	3.848446
${ }^{\text {Flat }}{ }_{180}$	373651.991	1602.8	2584112.8	33840 14. 1	Fog Cap	648 r .8	3. 811896
	122 27	863.2		3395052.3	Colma	8498.9	3.929360
			1950739.6	15 5	San Bruno Mt.	8436.0	3.926138
Flat ${ }^{1007}$		1605.0	14780717.3	3270644.7	Road	2408. 5	3. 3^{81740}
	$122 \quad 2735.236$	864.2	1584627.0	3384588.4	Foo Cab 2	6488.0	3.812100
			1505250.9	33951388.0	Colma 2	8406.6	3.020244
			1950822.0	150016.0	Son Bruno Mt.	8434.2	3.926044
$\begin{aligned} & \text { False Cattle Hill } 2 \\ & \quad 1899 \end{aligned}$	373650.401	1553.8	1864748.6	64806.6		6130.3	3. 787480
	-122 2940.926	1003.7	$22035 \quad 52.2$	$\begin{array}{llll}40 & 36 & 36.4\end{array}$	Road	2728.6	3. 435932
			2690443.1	89 O5 59.8		3084. 1	3.489124
False Callle Hill 2 1007	$37 \quad 3650.460$	1555.6	18651 Or. 7	65720.0	Foo Cap 2	6140.7	3.788218
	1222040.067	1004.7	220	403611.7	Road	2728.7	3.435055
			2600422.4	800530.2	Flat	3084.0	3.480121
San Pedro Rock 1899		$136 \mathrm{r} .3$		213508.4		8741.8	
	1323122.422	550.0	226 O1 14.3	460300.5	Road	5925.9	3. 772751
			2303742.2 249	$503844 \cdot 2$	False Cattle Hill 2	3220.0	3. 507856
			2492451.5	692710.2	Flat	5953.0	3. 774735
San Pedro Rock 1907	37 3544.239	1363.8	2013451.8	213682.0			3.042137
	1223122.441	550.5	$217,1203.7$ $226 \text { ot } 07.2$	371517.4	San Bruno Mt. Road	12850.6	4. 108023
			$\begin{array}{lll} 226 & 01 & 07.2 \\ 230 & 37 & 35.7 \end{array}$	$\begin{array}{llll} 46 & 02 & 53.3 \\ 50 & 38 & 57.0 \end{array}$	False Callle Hill 2	5025.1 3250.2	3.772000 3.507747
			23037 \$5.7	503857.0	False Callic Hill 2	3250.2	3. 907747

* No check on this position.

Vicinity of Colma, 1907, and older positions of same points-Continued.

Station	$\begin{aligned} & \text { Latitude } \\ & \text { and } \\ & \text { longitude } \end{aligned}$	Seconds in meters	Azimuth	$\underset{\text { azimuth }}{\text { Back }}$	To station	Distance	Logarithm
	- , "	m	- , "	- ' "		meters	
Colma Schoolhouse tower.	374123.097	732.1	2741651.5	941803.0	San Bruno Mt.	2871.3	3.458079
finial	1222802.194	53.8	361050.6	2161008.5	Fog Cap 2	2859.9	3.456344
1907			803038.7	2602942.3	Colma ${ }^{\text {a }}$	2293.5	3. 300495
Bonita Point L. H. 1894	374857.4471223143.569	$\begin{aligned} & 1771.0 \\ & 1065.7 \end{aligned}$	$23622 \begin{array}{ll}16.4\end{array}$	$\begin{array}{llll}56 & 23 & 06.5\end{array}$	Diablo Hill	2407.7	3. 38 t 608
			2540738.7	740834.7	West Diablo	2330.8	3.367502
			2804733.5	10051460.8	Russian Hill	10292.0	4.012501
			2924703.1	1124927.3	Presidio Hill	6245.8	3. 795586
			2953308.2	1153504.1	Rob	5128.9	3.710020
				114124408.4	Point Lobos 2.	4271.6	3. 630595
			29516929.4 3221856.0 3		${ }_{\text {Rob }}{ }^{\text {Roint }}$ Lobos	5109.8 3977.5	3. 708401 3. 590615
					${ }_{\text {Plack R }}$ Pidge	3977.5 8644.9	3.599615 3.936762
			2952744.4	1152940.5	Rob 2	5135.9	3.710617
			3314932.2	1515021.0	Cement	4 T 26.5	3.615579
			$\begin{array}{lllll}338 & 15 & 20.8 \\ 372\end{array}$	1681616.5	Black Bluff	10935.7	4.038847
			2722856.6	923457.5	Yeriba Buena I.	14409.3	4. 158643
			2442755.1	642959.2	Point Cavallo 2	5485. 1	3.739183
Bonita Point L. H.* 1007	1223143.554	1768.5	3204538.0	1404005.0	San Bruno Mt.	16454.0	4. 2102095
		1065. 3				14726.4	
			3481513.2	1681008.9	Black Bluff	10033.5	4.038758
Cliff House tower \dagger 1899	374643.581223047.84	1343.5	2295328	495343	Cement	764	2.88323
		1170.7	2642448	842504		645	2.80973
Cliff House turret, highest finial 1907	374643.422	1338.7	3253159.2	1453452.1	San Rruno Mt.	12235.5	4.087623
	1223047.047	1173.3	35002533.1	170033880			
			3523053.4	1723115.0	Black Bluff	6631.8	3.821630
Ingleside race-course building, flagstaff 1907	$\begin{array}{r} 3743.35 .654 \\ 1222801.248 \end{array}$	$\begin{array}{r} 1099.2 \\ 30.6 \end{array}$	3263345.8	14634560.7	San Bruno Mt.		3. 712158
			${ }^{14} 5585688$	194.5814 .1	Fog Cap 2	6620.2	3. 820868
			270618.5	2070511.5 256 15	Colma 2	5015.7	3. 700333
			761655.8	2561534.8	Black Bluff	3313.2	3. 520254
Montara Mountain Peak 1899	$\begin{array}{r} 373342.51 \\ 1222836.94 \end{array}$	$\begin{array}{r} 1310.5 \\ 906.6 \end{array}$	$\begin{array}{llll}164 & 50 & 28.6 \\ 172 & 50 \\ 174 & 32 & 09.1\end{array}$		False Cattle Hill a Black Blufi	6001. 6	
			$\begin{array}{llll}172 & 22 & 07.1 \\ 174 & 0 & 55.2\end{array}$	$\begin{array}{llll}352 & 21 & 08.6 \\ 354 & 09 & 20.0\end{array}$	Black Blufi	17657.4 13892.9	4. 246936 4. 142792
					Black Ridge ${ }^{\text {c }}$	13892.9 20729.0	4. 142792 4.310578
			1813017.3	I 3022.5	Road	7867.0	3. 898807
			1943155	$143^{2133.0}$	Flat	6034.9	3. 780670
Montara Mountain Peak 1907	$\begin{array}{rr} 37 & 33 \\ 12228 & 42.540 \\ 30.904 \end{array}$	$\begin{aligned} & 2311.7 \\ & 009.0 \end{aligned}$	2644033.2	3444854.1	False Catle Hill 2	6002.7	
			1723157.6	3522050.1	Black Bluff	17655.8	4.246888
				35400200.5	Colma 2	13802.2	
			$\begin{array}{llll}175 & 58 \\ 181 & 20 & 34.5 \\ 104\end{array}$	$\begin{array}{rrrrr}355 & 57 & 52.7 \\ 150 \\ 20 & 30.0\end{array}$	Foo Cap 2	$\begin{array}{r}11010.6 \\ 7867.8 \\ \hline 0.8\end{array}$	4. 076261 3. 80585
			181 104 104 30	12930.0 143134.5	Road Flat	7867.8 6035.3	3.805854 $3.7800 \% 8$
			1945210.3	145352.0	San Bruno Mt.	$14400 \cdot 3$	4.160447

Tomales Bay, 1906, and older positions of same points.

$\underset{1906}{\text { Bodead } 2}$	$\begin{array}{rrrrr}38 & 18 & 29.367 \\ 123 & 03 & 45.469\end{array}$	905.5 1104.7	$\begin{array}{ll} 167 & 18 \\ 271 & 52.0 \\ 271 & 50 \\ 34.4 \\ 323 & 55 \\ 26.8 \end{array}$	$\begin{array}{rr} 347 & 16 \\ 91 & 45.4 \\ 143 & 41.9 \\ 143 & 59 \\ 45.9 \end{array}$	Ross Mountain Bodega Tomales Bay	$\begin{array}{r} 22479.4 \\ 539 \mathrm{I} .2 \end{array}$ 17302.3	$\begin{aligned} & 4.351785 \\ & 3.731682 \\ & 4.238105 \end{aligned}$
Smith 1856	3814 122 12951.518	1588.5 25.6		$\begin{array}{lll} 187 & 12 & 36.8 \\ 318 & 52 & 10.7 \end{array}$	Tomales Bay Bodega	7336.5 8882.3	$\begin{aligned} & \text { 3. } 865490 \\ & 3: 938633 \end{aligned}$
Smith 1006	$\begin{array}{rrr} 38 & 14 & 51 . \\ 122 & 56 \\ 128 & 58.830 \end{array}$	$\begin{array}{r} 1588.6 \\ 214.0 \end{array}$	$\begin{gathered} 71447.0 \\ 121 \\ 138 \\ 548 \\ 54 \end{gathered} 44.8$	1871423.5 3010832.0 3185210.0	Tomales Bay Bodega Head 2 Bodega	7332.5 12073.1 8082.4	3.865250 4. 113044 3.038639
$\underset{1856}{\substack{\text { Tomales Point } \\ 1}}$	38 12 45.732 122 58 14.449	1410.1 351.5	$\begin{array}{lllll}218 & 12 & 43.8 \\ 327 & 52 & 27.2\end{array}$	3814 147 14 3	${ }_{\text {Smith }}^{\text {Tomales Bay }}$	4936.7 4014.5	$\begin{aligned} & 3.693440 \\ & 3.603635 \end{aligned}$
$\underset{\text { tomales Point }}{\substack{\text { Tomate }}}$	$\begin{array}{ccc} 38 & 12 & 45.874 \\ 122 & 58 & 14.540 \end{array}$	$\begin{array}{r} 1414.5 \\ 354.0 \end{array}$	1424824.18 1654300.8 $\begin{array}{llll}218 & 16 & 13.4 \\ 327 & 52 & 28.7\end{array}$ 3275228.7	3224450.2 3454153.3 $\begin{array}{rrrr}38 & 17 & 31.2 \\ 147 & 53 & 22.0\end{array}$	Bodepa Head a Bodega Smith Tomales Bay	13900.2 10748.8 4035.3 4014.2	4.123858 4.031358 3.603353 3.603598

* A much stronger determination of this point in 1909 makes it practically certain that there was no appreciable disturbance of its position at the time of the earthquake of 1906 .
\dagger No check on this position.

Tomales Bay, 1006, and older positions of same points-Continued.

Station	Latitude and longitude	Seconds in meters	Azimuth	Back azimuth	7'o station	Distance	Loga- rithm
$\begin{gathered} \text { Preston }{ }_{1906}^{2} \end{gathered}$	"	m	"	- , "		meters	
	$\begin{array}{llll}38 & 12 & 14.897\end{array}$	459.3	4055566.7	$\begin{array}{llll}220 & 55 & 02.8 \\ 283 & 38 & 31.0\end{array}$	Tomales Bay Tomales Point	3235.6 4358.9	3. 509961 3.639380
	1225519.739	480.3	10240 19.I	2823831.0	Tomales Point	4358.9	3.639380
$\begin{array}{r} \text { Mershou } \\ 1856 \end{array}$	381055.295	1704.9	90 os 11.8	2700332.4	Tomales Bay	3911.6	3. 592349
	1225406.016	146. 5	1433449.0	$323 \quad 3402.9$	Preston	3053.4	3.484781
$\begin{array}{r} \text { Mershon } \\ 1000 \end{array}$	$\begin{array}{lllll}38 & 10 & 55.284\end{array}$	1704.6	$\begin{array}{llll}00 & 00 & 33.7 \\ 110 & 20 & 10.3\end{array}$	$\begin{array}{llll}270 & 07 & 54.3 \\ 200 & 23 & 36.0\end{array}$	Tomales Bay Tomales Point	3014.4 3042.8	3.502063 3.841532
	1225406.008	146.2	$\begin{array}{lllll}110 & 20 & 10.3 \\ 143 & 50 & 32.1\end{array}$	20023 323 30.0 40.6	Tomales Point Preston 2	6042.8 3040.5	3.841532 3.482947
Foster1856	380813.410	413.5	1450324.5	325 Of 55.8	Tomales Bay	6096.0	3.785048
	1225423.271	566.8	1844833.7	44844.4	Mershon	5009.0	3.699749
Foster 1006	380813.577	418.6	1450326.9	325 OL 58.3	Tomales Bay	6005.3	3.784009
	1225423.308	570.0	109 184 184 1	$\begin{array}{rrrrr}340 & 33 & 05.3 \\ 4 & 51 & 18.7\end{array}$	Preston 2 Mershon	7565.0 5003.8	$\begin{aligned} & 3.878858 \\ & 3.000207 \end{aligned}$
Reynolds a 1906	380859.25 I	1827.0	5039 46. I	2303902.5	Foster	2221.3	3. 346606
	1235312.852	312.9	1243423.1	$30432 \begin{array}{lll}32 & 10.9\end{array}$	Tomales Bay	6325.1	3.801066
			$160 \quad 0710.6$	3400637.8	Mershon	3804.4	3.580290
Mike 2 1906	3807 34.782	1072. 5	1202209.3	3002117.5	Foster	2366.4	3.374095
	1225259.559	1450.6	1725457.4	35254 49.2	Reynolds 2	2624.4	3.419031
Hans	380758.492	1803.5	973751.0	2773623.8	Foster	3469.4	3. 540249
1856	1225202.072	50.5	1371788.9	3171645.2	Reynolds	2541.3	3.405056
Hars	380758.470	1803.2	$62 \begin{array}{llll}66 & 23.5\end{array}$	2422548.0	Mike 2	1578.8	3. 108336
	1225202.093	51.0	974258.3	2774131.0	Foster	3472.6	3. 540650
			1372417.2	3172333.5	Reynolds 2	2545.6	3.405786
$\begin{array}{r} \text { Frink } 2 \\ 1906 \end{array}$	380659.863	1845.8	1102348.4	2902235.0	Mike 2	3090.7	3.490052
	1225100.623	15.3	1144342.5	2944137.3	Foster	5436.7	3.735338
			1384948.6	3184827.0	Reynolds ${ }^{\text {Hans }}$	4890.9 2346.9	3.689385
			1402153.3	3202115.4			
${\underset{1906}{ }{ }^{\text {Agnew }}}^{2}$	380641.381	1276.0	1560540.0	3360452.2	Reynolds 2		3.667451
	1225155.463	1351.2		356 66 66 54	${ }_{\text {Frink }}$ Hans	2382.6 1452.4	3. 377049
			2465340.0	665413.8	Frink 2	1453.4	3. 162090
Sigvart 2 1906	380608.242	254.1	1108801.8	2902652.4	Agnew 2	2923.3	3.465878
	1225003.040	74. 1	1383643.5	$318 \quad 3607.9$	Frink 2	2121.6	$3 \cdot 326660$
Willow Point 2 1906	380525.525	787.0	1375108.4	3175014.8	Agnew 2	3154.9	3.498983
	12250 28.561	696.0	$164 \quad 58 \quad 12.5$	3445752.8	Frink ${ }^{2}$	3011.7	3.478816
			2051621.2	251637.0	Sigvart a	1456.5	3.163307
$\begin{array}{r} \text { Creck } 2 \\ 1906 \end{array}$	380425.243				Willow Point a	2305.9	3. 362846
	1224932.559	793.6	1665015.6	3464956.8	Sigvart 2	3261.4	3. 513405
$\underset{5856}{\text { Hammond }}$	380445.046	1388.9	1145942.5	$2045^{8} 32.1$	Willow Point	3069.8	3.4871:7
	1224834.993	853.8	1394715.8	3194621.1	Sigvart	3349.0	3. 524909
Hammond IOn	380445.037	1388.7	662816.3	2462740.0	Creek 2		
	1224835.064	854.5	11418801.1	$\begin{array}{llll}204 & 16 & 51.1 \\ 320 & 06 & 28.3\end{array}$	Willow Point 2 Siguarl 2	3034.6 3343.2	3.482104 3.524108
			1400722.5	3200628.3	Siquarl 2	3343.2	3. 924108
Bodega Head 1856	381829.249	901.9	2714824.8	915042.2	Bodega	5389.0	3.731506 ${ }^{\text {- }}$
	1230345.417	1103.4	3235520.8	1435940.0	Tomales Bay	17303.9	4.238145
$\begin{gathered} \text { Bodeoa IIead } \\ I 000 \end{gathered}$	$\begin{array}{llll}38 & 18 & 20.477\end{array}$	007.1	22 II	202 II	Bodega Head 2	1. 65	0.21854
	1230345.443	1104.0					
Teton 2 1906	381513.551	417.8	32927 ¢9.3	1492831.9	Preston 2	6395.3	3.805863
	1225733.332	810.6	3515409.3	1715438.1	Tomales Bay	8033.2	3. 904889
			$\begin{array}{ll}13 & 25 \\ 10.3\end{array}$	1922444.8	Tomales Point	4662.3	3.608603
			1234521.4	3034130.9	Bodega Head 2	10874.8	4.036422
			1480430.4	328 02 57.3	Bodega	6908.5	3.839383
			2881714.6	1081806.9	Smith	2163.9	3.335228
Trainor 1906	331410.514	324. 3	1410645.8	32104 Or. 6	Bodega Head 2	10256.9	4.011017
	1225920.439	497. I	1721957.3	3521930.5	Bodega	7876.8	3.896351
			2544802.9	7450 or 5		4827.9	3.683755
			3282620.7	14827 01. 5	Tomales Point	3062.6	3.486087
$\underset{\text { Igoo }}{\mathrm{Hog}_{2}}$					Tomales Point	3606.7	3. 557113
	1225603.606	87.8	1784 L 24.0	3584120.8	Smith	5566.3	3. 745566
			2353518.9	552546.0	$\mathrm{P}^{\text {reston } 2}$	1296.3	3.112710
			3005858.2	1210010.8	Mershon	3338.5	3. 523545

Tomales Bay, 1906, and older positions of same points-Continued.

Station	Latitude and longitude	Seconds in meters	Azimuth	Back azimuth	Tostation	Distance	Logarithm
```Franklin Schoolhouse, flagstaff 1906```	- ' 1	$m$	- ' "	"		meters	
	381459.003	1819.2	24800.2	1824750.9	Tomales Bay	7513.6	3. 875847
	1225631.760	772.4	312108.6	211 20050	'romales Point	4806.1	3.681797
			1213827.5	3013358.9	Bodega Head 2	12377.3	4.092625
			1404748.5	$32045 \quad 37 \cdot 3$	Bodega	8146.7	3.910981
			2922845.2	1122859.4	Smith	603.2	2. 780437
McDonald's house, south chimney: 1906	381100.803	24.8	289 or 03.6	1090116.2	Mershon	522.2	2.717872
	1225426.295	640.0	3591257.8	1791259.6	Fioster	5156.5	3.712355
			871947.5	2671820.6	Tomales Bay	3424.3	3. 534578
Halleck Schoolthouse, cupola 1906	$\begin{array}{rrrr}38 & 11 & 35.240 \\ 122 & 54 & 02.469\end{array}$	1086.6 60.1	$\begin{array}{llll}3 & 59 & 58.9 \\ 4 & 41 & 10.4\end{array}$	$\begin{array}{llll}183 & 59 & 56.7 \\ 184 & 40 & 57.3\end{array}$	Mershon Foster		$\begin{aligned} & 3.091654 \\ & 3.795088 \end{aligned}$
	1225402.469	60.1	4 4 73 or 10. 36.8		Foster Tomales Bay	6238.6 4182.7	$\begin{aligned} & 3.795088 \\ & 3.621456 \end{aligned}$
			$\begin{array}{r}73 \\ \hline 109 \\ 109613.8 \\ \hline\end{array}$	2525955.2 289 31	Tomales Bay Tomales Point	4182.7 6508.6	3.621456 3.813485
Millerton horse barn, north gable 1906	3806.33 .159	1022.4	3521053.0	17211500.3	Willow Point 2	2104.9	3.323222
	1225040.312	982.0	975323.0	2775236.6	Agnew 2	1848.3	3. 266771
			1191601.4	29914350.5	Mike ${ }^{\text {a }}$	3887.9	3. 589712
			1485953.9	3285941.4	Frink 2	960.6	2.982540
```Preston ranch barn, north gable 1906```	381321.915	675.7	3405610.4	16056828.5	Preston 2	2186.2	3.339693
	1225549.087	1194.3	$17 \quad 1825.1$	1971749.3	Tomales Bay	4724.9	3.674392
			723441.0	2523311.0	Tomales Point	3708.9	3. 569248
			1700816.7	3500804.5	Smith	2804. 3	3.447822
Point Reyes Station Schoolhouse, cumola 1906	380406.424	198. I	1094645.0	289460.04 .2	Creek ${ }^{2}$	1715.2	3.234327
	122 48 26. 339	642.1	112919490.4	3091754.0	Willow Point ${ }^{\text {Hammond }}$	3849.9 1209.4	3. 585448 3. 082575
			1695222.3	3495216.9	Hammond	1209.4	3.082575
Schoolhouse on hill, cupola* 1906	$\begin{array}{rrrr}38 & 04 & 19.64 \\ 123 & 48 & 09.38\end{array}$	605.6 228.6	945243 $\times 412136$	2745152 3212120	Creek 2 Hammond	2034.9 1002.6	$\begin{aligned} & 3.308534 \\ & 3.001133 \end{aligned}$
	1224809.38	228.6	1412136	3212120	Hammond	1002.6	3.001133
Cypress Grove, flagstaff * 1906	380957.47	1772.0	3272740	1472809	Reynolds a	2129.2	3.328223
	1235359.89	1458.0	100803	1900748	Foster	3254.0	3! 512424
Conte's barn, west gable* 1906	38 If 41.14	1268. 5	80751	1880746	Mershon	1438.1	3. 154762
	12353 57.71	1404.3	711055	2510910	Tomales Bay	4348.8	3.638370
Huff's house, west gable* 1906	381227.60		335108	2135020	Tomales Bay	3415.1	
	1225528.68	697.8	975748	2775606	Tomales Point	4074.6	3.610086
Inverness post-office flagstaff * 1906	$\begin{array}{ccc}38 & 05 & 49.22 \\ 122 & 51 & 03.92\end{array}$	1517.7 95.3	$\begin{array}{lll}182 & 06 & 18 \\ 298 & 36 & 11\end{array}$	20620 1188743	Frink 2 Hammond	2179.5 4132.0	$\begin{aligned} & 3 \cdot 33^{8363} \\ & 3 \cdot 616156 \end{aligned}$
	1225103.91	$95 \cdot 3$	2983611	118.3743	Hammond	4132.0	3.616156
```Hitchcock ranch barn, cupola* 1906```	38 16 58.49   22 58	1803.5	11105140		Bodega Head 2	$7878.3$	$3.896435$
	1225842.46	1032.0	1430515	3230425	Bodega	$3286.2$	$3 \cdot 516694$
High sharp peak 1906	380451.790	1596.8	819819.6	2611659.3	Creek 2	5412.3	3. 733383
	1234553.050	1292.9	865944.4	2665880.5	Hammond	3954. x	3. 597048
			984946.5	2784656.6	Willow Point 2	$6794 \cdot 3$	3.832146
			1105810.5	2905427.0	Agnew 2	9455.2	3.975670
			1223932.4	3023544.8	Hans	8480.0	3.928398
Lone tree on hill 1906	38 132 13	1570.3 1200.4		$\begin{array}{llll}176 & 19 & 28.4 \\ 192 & 02 & 40.4\end{array}$	Creck 2 Willow Point 2		
	1324949.286	1200.4	$\begin{array}{lllll}12 & 03 & 04.7 \\ 55 & 06 & 30.9\end{array}$	$\begin{array}{llll}192 & 02 & 40.4 \\ 235 & 05 & 13.0\end{array}$	Willow Point ${ }^{\text {a }}$	4584.0 3747.5	$\begin{aligned} & 3.661249 \\ & 3.573747 \end{aligned}$
			$\begin{array}{llll} 55 & 06 & 30 \cdot 9 \\ 94 & 07 & 44 \cdot 1 \end{array}$		Agnew 2 Hans	3747.5 3242.9	$\begin{aligned} & 3 \cdot 573747 \\ & 3 \cdot 510929 \end{aligned}$
```Howard ranch barn, cupola* 1906```	$\begin{array}{llll}38 & 08 & 56.29\end{array}$	1735.6	$268 \quad 88$	88 10 05	Reynolds a	2840.1	3.453329
	1225509.43	229.6	3193530	1393558	Foster	1729.4	3.237901

Vicinity of Fort Ross, 1906, and older positions of same points.

Peaked Hill	382553.725	1656.6	1402451.0	320 22.26.8	Chaparral	8814. 2	3.945184
1891	1230704.450	107.9	1791142.8	35911139.8	Ross Mountain	8329.3	3.915356
			321 2888	1413046.8	Bodega Hill	8682.8	3.938601
Peaked Hill	382553.704	1655.9	1701125.9	3501122.0	Ross Mountain	8220.5	3. 915373
1006	1230704.405	106.8	3403357.4	$100 \quad 3000.0$	Bodega Head 2	14520.7	4.162168

* No check on this position.

Vicinity of Fort Ross, 1906, and older positions of same points-Continued.

Station	Latitude and longitude	Seconds in incters	Azimuth	Back azimuth	Tostation	Distance	Logatithm
$\underset{1856}{\text { Chaparral }}$	$38 \quad 29 \quad 33.905$ 1231056.207	m	- ' '	- , "		meters	
		1045.4	$\begin{array}{llll}255 & 19 & 57.8 \\ 305 & 89 & 58 .\end{array}$	$\begin{array}{r}7522.19 .1 \\ 12515 \\ \hline 159.0\end{array}$	Ross Mountain Kedwood	5685.1	3. 754737 4.235835
		1362.2	3050958.5	1251559.0	Kedwood		4235835
$\begin{gathered} \text { Chaparral } \\ 189 \mathrm{I} \end{gathered}$	$\begin{array}{rrr}38 & 29 & 33.964 \\ 123 & 10 & 56.216\end{array}$	1047.3	2552006.0	752227.3	Ross Mountain	5685.3	3. 754755
		1362.4	3051007.4	1251608.0	Redwood	17212.7	4. 235849
			32054 Or. 2	1405843.7	Bodega Hill	17496.3	4. 242946
			3325025.2	1530052.6	Bodega Head	23006.6	4.361853
$\begin{gathered} \text { Chaparral } \\ 1006 \end{gathered}$	$\begin{array}{rrr} 38 & 20 & 33.927 \\ 123 & 10 & 50.187 \end{array}$	1046. 7	2551034.2	752155.5	Ross Mountain	5685.3	3.754750
		1361.6	3202212.4	1402436.6	Peaked Hill	8814.7	3.045176
			3325619.6	1530047.2	Bodeoa Head 2	23002.4	4.361773
$\underset{1891}{\text { Dixon }_{1}}$	$\begin{array}{rrrr}38 & 30 & 30.735 \\ 123 & \text { I } & 54.496\end{array}$	947.7	2723406.8	923704.4	Ross Mountain	6919.2	3. 840055
		1320.4	3203049.3	1403349.8	Peaked Hill	11063.2	4. 043881
			3205451.1	1410009.8	Bodega Hill	19745.4	4. 295466
			3210601.1	1410637.4	Chaparral	2249. 1	3. 352015
Dixon 1006	$\begin{array}{ccc}38 & 30 & 30.703 \\ 123 & \text { II } & 54.457\end{array}$	940.7	$272 \begin{array}{lll}273 & 46.7\end{array}$	923044.3	Ross Mountain	6018.6	3.840020
		1310.4	3203042.7	1403343.2	Peaked Hill	tro63.0	4.043874
			321 or 25.2	1410701.5	Chaparral	2249. 1	3. 352000
$\begin{array}{r} \text { Fort } \mathrm{Ro} \\ \mathrm{r} 89 \mathrm{I} \end{array}$	$\begin{array}{rrr} 38 & 30 & 46.084 \\ 123 & 15 & 12.655 \end{array}$	1421.0	2753646.4	953849.8	Dixon	4824.4	3. 683439
		306.6	2894009.0	1094248.7	Chaparral	6599.7	3.819525
			3071517.8	1272021.6	Peaked Hill	14877.0	4. 172515
$\underset{\substack{\text { Fort Ross } \\ \\ \hline 006}}{ }$	$\begin{array}{rrrr}38 & 30 & 40.152 \\ 123 & 15 & 12.711\end{array}$	1423.1	2753847.0	054050.4	Dixon	4826.0	3. 683671
		308.0	28041271.5	1004401.2	Chaparral	6002.7 14880.6	3.810724
			3071520.9	1272030.7	Peaked Hill	14880.6	
$\begin{aligned} & \text { Henry Hill } \\ & 189 \mathrm{I} \end{aligned}$	3832 47. 724	1471. 5	2930603.8	1131036.8	Ross Mountain	11545.6	4. 06.2418
	383247.7241231427.513	666.2	$\begin{array}{ll}318 & 43 \\ 10 & 12.1\end{array}$	1384447.4	Dixon	5619.6 3906.8	3. 749705
			$16 \pm 5 \quad 24.8$	1961456.7	Fort Ross	3906.8	
	3812312314	1470.4	2930554.6	1131027.6	Ross Mountain	11544.8	4.002388
		665.3	3184310.0	1384445.3	$\xrightarrow{\text { Lixom }}$	5019.5 3004.4	3.749700
			$16 \quad 18 \quad 07.7$		Fort Ross	3004.4	3. 591555
Table Mount 2 1906	$\begin{array}{rrrr}38 \\ 123 & 12 & 30.215\end{array}$	1355. 1	322 or 58.6	1420518.7	Ross Mountain	12643. I	
		73112	354 352 37 37 35 16.6	$\begin{array}{ll}174 & 52 \\ 207 & 34.9 \\ & \end{array}$	Dixon Henry Hill	9697.5 6131.6	$\text { 3. } 986660$ $\text { 3. } 78757^{2}$
			273516.5	2073403.4	Henry Hill	6131.6	3.787572
$\begin{array}{r} \text { Funcke } \\ 1891 \end{array}$	$38 \quad 3434.972$	1078. 3	2552050.1	752489.4	Table Mount	8393.9	3.923966
	$123 \quad 1807.323$	177.2	3015013.9	1215230.9	Henry Hill	6265.6	3. 796965
Funcke 1006	$38 \quad 3435.029$	1080. 1	2552228.7	752550.0	Table Mount 2	8432.7	3.025060
	$12318 \quad 07.386$	178.8	3015051.7	1225308.8	Henry Hill	6269. 3	3.707217
$\begin{gathered} \text { L_ancaster } 2 \\ 1906 \end{gathered}$	38 123 123	495.9	2872251.2	1072644.8	Table Mount 2		
		1078. 6	3230211.3	143 1694 169 13	Henry Hill	10354.5 5047.0	4.015129 3. 703029
			34943123.2	1694346.4	Funcke	5047. 0	3. 703029
Salt Point 1891	3812412319	9.3	2481151.3	681300.0	Funcke	2879.5	3.459318
		1398.6	31054 34.2	1305731.8	Fort Ross	9140.2	3. 960957
Sall Point 1006	$\begin{array}{rrr} 38 & 34 & 00.350 \\ 123 & 10 & 57.827 \end{array}$	10.8	2481126.7	$\begin{array}{rrrr}68 & 12 & 35.6 \\ 130 & 57 & 21.0\end{array}$	Funcke Fort Ross	2870.5	$\text { 3. } 450311$
		1400.1	3105424.2	1305721.9	Fort Ross	9130.8	3. 900039
Chamisal 1906	$\begin{array}{rrr} 38 & 34 & 38.900 \\ 123 & 18 & 20.830 \end{array}$	1199.5	$17314{ }^{18} 89$	35314.04 .1	Lancaster 2	4880. 7	3. 6888478
		504. 2	2900818.6	1108827.0	Funcke	346.6 363.8	2. 5398843
			63×31.0	2430830.5	Salt Point	2631.8	3.420256
Horseshoe Point 1891	$\begin{array}{r}38 \\ 123 \\ 123 \\ \hline 22\end{array}$	862.4	3004250.4	1204521.4	Funcke	6817.6	3.833632
		228.9	3245948.5	1450110.6	Salt Point	5558.0	3. 744917
Horseshoe Point 1006	$\begin{array}{rrr}38 & 36 & 28.004 \\ 123 & 22 & 00.504\end{array}$	863.5	3011633.7	1218856	Chamisal	6476.4	3.811336
		230.0	3245051.2	145 O1 13.3	Sall Point	5557. 5	3.744876
$\underset{1906}{\text { Henry Tree }}$	$\begin{array}{rrrr}38 & 3247.722 \\ 123 & 14 & 27.739\end{array}$	1478.5	$\begin{array}{rrrr}1612 & 27.0\end{array}$	$\begin{array}{llll}196 & 11 & 59.0 \\ 30152\end{array}$			
		671.7	$\begin{array}{llll}121 & 54 & 30.4 \\ 143 & 06 & 21.0\end{array}$	$\begin{array}{llll}301 & 52 & 13.5 \\ 323 & 03 & 40.8\end{array}$	Funcke	6263.3 10349.8	3. 796801 4. 01493 I 3.
			14330631.0	323 27 27 3 3 844.44 .4	Lancaster ${ }^{2}$ Table Mount	10349.8 6133.6	4. 014931 3. 787715
				$\begin{array}{r}27 \\ 113 \\ 13 \\ 13 \\ \hline 8 \\ \hline\end{array}$	Table Mount ${ }^{2}$	6133.6 11551.2	3. 787715 4. 062626
			$\begin{array}{llll}293 & 05 & 26.7 \\ 318 & 40 & 38.6\end{array}$	1130959.9 1384294.1	Ross Mountain Dixon	11551.2 5624.5	4.062626
$\begin{gathered} \text { Timber Cove } \\ 189 \mathrm{y} \end{gathered}$	$\begin{array}{rrrr}38 & 31 & 59.557 \\ 123 & 16 & 35.519\end{array}$	$\begin{array}{r} 1836.4 \\ 860.3 \end{array}$	$\begin{array}{llll}244 & 19 & 03.7 \\ 318 & 27 & 03 .\end{array}$				
			$\begin{array}{llll}318 & 27 & 03.0 \\ 137 & 15 & 33.6\end{array}$	1382754.6 3071327.6	Fort Ross	3026.8 6152.0	3. 480990
			1371533.6	3071327.6	Salt Point	6152.0	

Vicinity of Fort Ross, 1906, and older positions of same points-Continued.

Station	Latitude and longitude	Seconds in meters	Azimuth	Back azimuth	Tostation	Distance	Logarithin
$\underset{1006}{\text { Timber Cove }}$	$\begin{array}{rrrr}38 & 31 & 50.615 \\ 123 & 16 & 35.573\end{array}$	$\begin{gathered} m \\ 1838.2 \\ 861.6 \end{gathered}$	- ' ${ }^{\prime}$	- . 1		meters	
			1271525.6	3071310.5	Sall Point	6151.9	
			2442318.7	642438.3	Henry Tree	3433.0	$\text { 3. } 535071$
			3182651.2	1382742.8	Fort Ross	3026.6	
$\text { Stockhoff } 2$$1906$	$\begin{array}{rrrr}38 & 32 & 50.948 \\ 123 & 18 & 11.803\end{array}$	$\begin{array}{r} 1756.0 \\ 285.9 \end{array}$	12718 or. 2	3071655.1	Sait Point	3226.8	3. 508774
			. 2725854.6	930114.2	Henry Tree	5433.4	3. 735069
			3071027.7	1271127.7	Timber Cove	2925.1	3. 466147
			3125356.0	1325547.6	Fort Ross	5923.0	3. 772545
Lancaster1891	$\begin{array}{r} 38 \\ 37 \\ 123 \\ 18 \\ 16.134 \\ 44.268 \end{array}$	497.51070.9	2873055.8	$107344^{8.2}$	Table Mount	9453.3	3.975584
			3230433.7	1430713.8	Henry Hill	10349.7	4. 014929
			3494752.7	1694815.7	Funcke	5049.2	3. 703221
Lancaster r006	$\begin{array}{ccc}38 & 37 & 16.086 \\ 123 & 18 & 44.228\end{array}$	$\begin{array}{r} 406.0 \\ 1070.0 \end{array}$	8015	26015	Lancaster 2	. 8.60	0.03450
Pinnacle Rock 1891	$\begin{array}{rrr}38 & 30 & 02.982 \\ 123 & 14 & 02.956\end{array}$	$\begin{aligned} & 92.0 \\ & 71.6 \end{aligned}$	$\begin{array}{llll}128 & 13 & 28.4\end{array}$	3081145.0	Fort Ross	2149.0	3. 332244
			2543659.6	743819.6	Dixon	3228.1	3. 508950
			2811006.3	1011202.6	Chaparral	4612.9	3.663971
			2972025.4	11723 127 10	Russian River Peaked Hill	8782.0 12728.3	3.943593
			3070629.2	12710404	Peaked Hill	12728.3	4. 104770
Pinnacle Rock 1006	$\begin{array}{r} 38 \quad 3003.056 \\ 123 \quad 1402.005 \end{array}$	04.272.6	128 II 51.3	30811107.9	Fort Ross	2140.2	
			2544051.8	$\begin{array}{r}74 \\ 108 \\ 42 \\ \hline 12\end{array} 1.8$	Dimon	3220.1 4015.2	3. 500082
			2811220.4	1011410.7	Chaparral	4015.2	3. 604180
$\underset{\substack{\text { Stockhoff } \\ 1891}}{ }$	$\begin{array}{rrr} 38 & 32 & 56.969 \\ 123 & 18 & 11.870 \end{array}$	$\begin{array}{r} 756.6 \\ 287.5 \end{array}$	$\begin{array}{lllll}127 & 18 & 07.2\end{array}$	30717901.1		3223.1	3. 508270
			2830959.0	1031055.7	Allston Tree	2264.0	3. 354885
			2725555.3		Silvers Tree Timber Cove	5440. 4	3. 735629
			3071038.8	12711138.8	Timber Cove	2929.0	3.466713
			3125355.1	1325546.7	Fort Ross	5927.1	3. 772842
Stockhoff 1006	$\begin{array}{rrrr}38 & 32 & 57.016 \\ 123 & 18 & 11.013\end{array}$	$\begin{array}{r} 1758.1 \\ 288.5 \end{array}$	30811	128 It	Slockholl 2	3.38	0. 52802

Vicinity of Point Arena, 1906, and older positions of same points.

Dunn $189:$	$\begin{array}{rrrr}39 & 00 & 39.986 \\ 123 & 38 & 40.716\end{array}$	1233.3 979.6	$\begin{array}{llll}219 & 11 & 37.5 \\ 263 & 05 & 27.4\end{array}$	$\begin{array}{llll}39 & 13 & 49.1 \\ 83 & 10 & 04.6\end{array}$	Fisher Cold Spring	7949.4 10668.0	$\begin{aligned} & \text { 3. } 900333 \\ & 4.028083 \end{aligned}$
Dunn	$30 \quad 0030.004$	1232. 4	2101118.3	301329.9	Fisher	7040.6	3.000346
${ }_{1006}$	$123 \quad 3840.600$	979.2	263 O5 13.9	$830051 . t$	Cold Sprino	10667.7	4.028070
Clark 1891	3859537.744	1163.8	14933488.1	$\begin{array}{rrrr}329 & 33 & 18.6 \\ 25 & 46 & 32.6\end{array}$	Dunn Fisher	2226.2 8970.2	
	$123 \quad 3753.842$	1295.8	$\begin{array}{lllll}205 & 44 & 50.5 \\ 251 & 18 & 35.7\end{array}$		Fisher Cold Spring	8970.2 9989.8	$\begin{aligned} & \text { 3. } 952800 \\ & 3.999555 \end{aligned}$
Clark 1906	$385037 \cdot 721$	1163.2	1403347.6	3203318.7	Durn	2226.3	3. 3475880
	1233753.824	1295. 3	$\begin{array}{lllll}205 & 44 & 34.2 \\ 251 & 18 & 10.1\end{array}$	$\begin{array}{lllll}25 & 40 & 16.3 \\ 71 & 22 & 26.7\end{array}$	Fisher	8070.6 9080.6	$\begin{aligned} & 3.052821 \\ & 3.900547 \end{aligned}$
Lane 1891	390034.636	1068. 2	$\begin{array}{llll}26744 & 22.8 \\ 288 & 10 & 8.8\end{array}$	$\begin{array}{r}87 \\ \hline 108 \\ \hline 13 \\ \hline 128\end{array}$	Dunn		
	1234135.602	856.6	$\begin{array}{rrrr}288 & 10 & 48.4 \\ 33 & 51 & 19.0\end{array}$	$\begin{array}{llll}108 & 13 & 08.0 \\ 213 & 49 & 33.1\end{array}$	Clark Arena L. H.	5617.2 7273.6	$\begin{aligned} & \text { 3. } 749518 \\ & \text { 3. } 861749 \end{aligned}$
Lane		1066. 6	2674344.7	874534.8	Dunn	4270.9	3.624376
1006	12341 35. 580	856.0	2881023.5	1081243.1	Clark	5616.9	3.740406
Point Arena L. H. 1891	38 387 123	577.3	$\begin{array}{llll}233 & 02 & 57.7 \\ 245 & 25 & 30.6\end{array}$	$\begin{array}{llll}53 & 06 & 33.5 \\ 65 & 29 & 35.9\end{array}$	Dunn Clark		4. 014171
	1234423.887	575.2	245 328 328 53 3		Clark High Bluft	10321.6 7018.6	$\begin{aligned} & 4.013747 \\ & 3.846252 \end{aligned}$
			3314059.7	1514207.0	Smith	5444.4	3. 735954
			$342 \begin{array}{llll} \\ 3 & 00.2\end{array}$	1625898.8	Arena	3803.5	3. 58698 I
Point Arena L. H. 1006	385718.707	570.6	2135103.1	335240.0	Lane	7271.2	
	1234423.920	576.0	233 245 203 150.6	53 63 07350	$\xrightarrow{\text { Dunn }}$	10330.9 10321.5	4.014138 $\begin{aligned} & 4.018150 \\ & \text { 1. } 173741 \end{aligned}$
			2452635.0	653041.0		10321.5	4.013743
Arena Latitude Station 1891	$\begin{array}{llll}38 & 55 & 18.937\end{array}$	583.6	2154414.7	354721.0	Dunn		4.086399
	1234336.908	889.1	2255717.4	460053.1	Clark	11486. 1	4.060171
Arena Latitude Station 1006			1625828.8				
	1234336.942	890.0	$\begin{array}{llllll}215 & 45 & 02.1 \\ 225 & 58 & 13.5\end{array}$	35 30 40 8 Of 08.40 .3	Dunts Clark	$\begin{aligned} & 12100.3 \\ & 11484.8 \end{aligned}$	$\begin{aligned} & \text { 4. } 086336 \\ & 4.060124 \end{aligned}$

Vicinity of Point Arena, 1906, and older positions of same points-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station \& \[
\begin{aligned}
\& \text { Latitude } \\
\& \text { and } \\
\& \text { longitude }
\end{aligned}
\] \& Seconds in meters \& Azimuth \& Back azimuth \& To station \& Distance \& \[
\begin{aligned}
\& \text { Loga- } \\
\& \text { rithm }
\end{aligned}
\] \\
\hline \multirow{4}{*}{\[
\begin{array}{r}
\text { Smith } 2 \\
19006
\end{array}
\]} \& - ' " \& \(m\) \& \& \& \& meters \& \\
\hline \& \(\begin{array}{lllll}38 \& 54 \& 46.965\end{array}\) \& 1448.2 \& \(\begin{array}{llll}122 \& 38 \& 03.5 \\ 150 \& 16 \\ 168.5\end{array}\) \& \begin{tabular}{l}
302 \\
30 \\
330 \\
30 \\
\hline 15
\end{tabular} \& Arena Lat. Sta. \({ }_{\text {Point Arena L. }}^{\text {H. }}\) \& 1832.4
5392.0 \& 3. 263021 \\
\hline \& 1234232885 \& 792.3 \& 1501628.7
2070945.4 \& 330
37
27
12
12 1118.4 \& \({ }_{\text {Point Arena L. }}^{\text {Dunn }}\) \& 5392.0
12236.9 \& \[
\begin{aligned}
\& \text { 3. } 731748 \\
\& 4.087672
\end{aligned}
\] \\
\hline \& \& \& 2164932.1 \& \& Clark \& 11204.6 \& 4. 049395 \\
\hline \multirow[t]{2}{*}{} \& 385916.465 \& 507.7 \& 585656.7 \& 2385419.4 \& Point Arena L. H. \& 7030.3 \& 3. 846972 \\
\hline \& 1234013.787 \& 33 I .8 \& 1404530.2 \& 3204438.7 \& Lane \& 3111.0 \& 3.492895 \\
\hline \multirow[t]{3}{*}{\[
\underset{1906}{\substack{\text { Shoemake } 2}}
\]} \& 385759.88 r \& 1846.6 \& 753180.3 \& 2552902.4 \& Point Arena L. H. \& 5060.6 \& 3. 704198 \\
\hline \& 1234150.430 \& 10.4 \& 1095650.5 \& \(\begin{array}{llll}349 \& 56 \& 28.4\end{array}\) \& Lane \& 4845.2 \& 3.685310 \\
\hline \& \& \& 2052523.3 \& 252552.7 \& Spur \({ }^{\text {a }}\) \& 261 \& 3.417455 \\
\hline \multirow[t]{4}{*}{Spur 1891} \& 3859 16. 549 \& 5103 \& 373111.14 \& 2172921.6 \& Hall \& 6887.0 \& 3. 8380077 \\
\hline \& 1234013.994 \& 336.8 \& 55
58
58
59
5960.4
26.0 \& 235
238
238
50 \& Pt. Arena NW. Base
Point Arena L. H. \& 6976.1
7027.9 \& 3. 8483615
3. 846823
3.483 \\
\hline \& \& \& \(\begin{array}{r}58 \\ 140 \\ 148 \\ 48 \\ 48 \\ \hline\end{array}\) \& \& Prant Arena L. H . \& 7027.9
\(310 \%\) \& 3. 3.4923874 \\
\hline \& \& \& 2580622.7 \& 780748.3 \& Adams \& 3346. 7 \& 3. 524615 \\
\hline \multirow[t]{2}{*}{Spur 1006} \& 38.5010 .500 \& 500.1 \& 28830 \& 10830 \& Spur 2 \& 4.32 \& 0.63548 \\
\hline \& 12380153.957 \& 335.9 \& \& \& \& \& \\
\hline \multirow[t]{4}{*}{\[
\begin{gathered}
\text { Shoemake } \\
1891
\end{gathered}
\]} \& 385758.425 \& 1801.5 \& 454655.1 \& 2254533.2 \& Hall \& 4378.8 \& 3.641355 \\
\hline \& 1234057.846 \& 1392.7 \& 722835.0 \& \& Pt. Arena NW. Base \& 4957.5 \& 3. 695265 \\
\hline \& \& \& \(\begin{array}{rrrr}76 \& 99 \& 16.8 \\ 169 \& 19 \& 13.5\end{array}\) \& \& Point Arena L. H. \& \& 3. 708393
3. 690376
3 \\
\hline \& \& \& 20339 26. 5 \& \(23 \quad 39\) 54.1 \& Spur \& 2630.2 \& 3.419989 \\
\hline \multirow[t]{2}{*}{Shoemake 1906} \& 385758.527 \& 2804. 8 \& J2415 \& 30415 \& Shoemake 2 \& 74. 18 \& 1. 87029 \\
\hline \& 1234057.883 \& 1303.6 \& \& \& \& \& \\
\hline \multirow[t]{3}{*}{\[
\underset{189 \mathrm{I}}{\text { High Bluff }}
\]} \& 385403.866 \& 119.2 \& 1325052.1 \& 3124947.2 \& Arena Lat. Sta. \& 3404. 1 \& 3. 532006 \\
\hline \& 1234153.305 \& 1284. 5 \& \({ }^{139} 17554.6\) \& \begin{tabular}{l}
319 \\
\hline 17 \\
7
\end{tabular} \& Smith \& 1603. 2 \& 3. 204981 \\
\hline \& \& \& \(\begin{array}{llll}200 \& 46 \& 17.9 \\ 209 \& 13 \& 55.8\end{array}\) \& \& \({ }_{\text {Dunn }}^{\text {Clark }}\) \& 13065.6
1800.6 \& \[
\begin{aligned}
\& \text { 4. 116131 } \\
\& 4.071905
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{\[
\underset{\text { Higot }}{\text { High Bluf }}
\]} \& 385403.950 \& -121.8 \& 1325053.5 \& 3524088.4 \& Arena Lat. Sta. \& 3403.9 \& 3. 531974 \\
\hline \& 1234153.347 \& 1285.6 \& 14410001.1 \& 32418 36. 3 \& Smith 2 \& 1633. 1 \& 3. 21.3007 \\
\hline \& \& \& \(\begin{array}{llll}200 \& 46 \& 57.4 \\ 200 \& 14 \& 46.3\end{array}\) \& \(\begin{array}{cccc}20 \& 48 \& 58.5 \\ 20 \& 17 \& 16.0\end{array}\) \& Dunn \& 13063.2

1798.5 \& 4. 1110048
4.071827

\hline \multirow[t]{3}{*}{$\underset{\substack{\text { Sinclair } \\ \text { Sin }}}{ }$} \& \& \& \& \& High Bluff \& 1264.6 \&

\hline \& | 38 | 54 |
| ---: | :--- |
| 123 | 42 |
| 19.093 | | \& 1220. 46 \& \& \& Smith \& 1264. 43 \& 3.202945

2.64203

\hline \& \& \& $14^{8} 3124.3$ \& 3283005.9 \& Point Arena L. H. \& 5754.7 \& 3. 760023

\hline \multirow[t]{3}{*}{Sinclair 1006} \& 385430.66 I \& 1223.0 \& 3303408.3 \& 1503424.5 \& High Bluff \& 1264.3 \& 3. 101850

\hline \& 1234210.120 \& 400.0 \& \& | 304 | 11 | 54.7 |
| :--- | :--- | :--- | :--- | :--- |
| 328 | | | \& \& 400.7 \& 2. 602836

\hline \& 123 42.120 \& \& 1483822.8 \& 3283004.4 \& Point Arena L. H. \& 5754.6 \& 3.760015

\hline \multirow[t]{3}{*}{Point Arena Catholic Church, spire 1891} \& 385445.079 \& 1390.0 \& 3135539.3 \& 1335546.7 \& Pt.Arena Long. Sta. \& 306.4 \& 2. 598183

\hline \& 1234136.283 \& 874. 2 \& 221753.5
80 \& $\begin{array}{llllll}202 & 1744 \\ 360\end{array}$ \& Marr \& 877.0 \& 2.942975

\hline \& \& \& 804014.9 \& 2603948.0 \& Sinclair \& 1045.3 \& 3.019248

\hline \multirow[t]{2}{*}{Point Arena Catholic Church, spire 1006} \& 38 5445.162 \& 1302.7 \& 803052.0 \& 2603025.1 \& Sinclair \& \&

\hline \& 3234130.315 \& 874.9 \& 022025.6 \& 2721050.7 \& Smith 2 \& 1304. 1 \& $$
3.134840
$$

\hline \multirow[t]{2}{*}{Manchester Presbyterian Church, spire* 1906} \& 385832.58 \& 1004.6 \& 2240537 \& 44 ob 12 \& Spur 2 \& 1884.5 \& 3. 275186

\hline \& 1234108.27 \& 199. 1 \& 34923 50 \& 1692354 \& Shoemake 2 \& 1025.8 \& 3.011062

\hline \multirow[t]{2}{*}{Manchester Methodist Church, center of tower* 1906} \& $385^{8} 43.46$ \& 1340.2 \& 2331923 \& 531959 \& Spur 2 \& 1704 \& 3. 231536

\hline \& 1234110.58 \& 254. 7 \& 3494139 \& 1694545 \& Shoemake a \& 1365.8 \& 3. 135383

\hline \multirow[t]{2}{*}{Morse's house chimney * 1906} \& 3858 39.78 \& 1226. 7 \& 2422554 \& 622651 \& Spur 2 \& 2445.2 \& 3. 388313

\hline \& 1234143.85 \& 1055. 5 \& 3193842 \& 1393909 \& Shocmake a \& 1614.3 \& 3. 207986

\hline \multirow[t]{2}{*}{Scott'shouse, peak of roof * 1906} \& \& 120.9
512.8 \& 2335406 \& $\begin{array}{llll}53 & 55 & 27 \\ 93 & 40 & 02\end{array}$ \& Spur a
Shocmake \& 3798.0
1950.8 \& 3.579552

\hline \& 12342 21.30 \& 512.8 \& 27339 II \& 934002 \& Shocmake 2 \& 1950.8 \& 3. 290205

\hline \multirow[t]{2}{*}{Cuthbertson's house
chimney*
1906} \& 385900.02 \& \& 2404648 \& 604712 \& Spur 2 \& 1038.9 \& 3.016565

\hline \& 1234051.46 \& 1238.6 \& 63832 \& $28638 \quad 26$ \& Shoemake 2 \& 1867.0 \& 3.271153

\hline \multirow[t]{2}{*}{$$
\underset{1906}{\substack{\text { Kenney's house chimney }}}
$$} \& $385853 \cdot 17$ \& 1639.6 \& 2552788 \& 75883 x \& Spur 2 \& 2861.9 \& 3.456654

\hline \& 123420889 \& 214.0 \& 3145453 \& 1345535 \& Shoemake a \& 2327.3 \& 3. 366849

\hline \multirow[t]{2}{*}{| Kendall's (A. B.) house. |
| :--- |
| E. chimney* |
| 1906 |} \& 385928.34 \& 873.9 \& 3270817 \& \& Spur 2 \& 436.5 \& 2.639969

\hline \& 1234023.66 \& 569.4 \& 175844 \& 1975821 \& Shoemake 2 \& 2867.7 \& 3.457531

\hline
\end{tabular}

* No check on this position

San Francisco Bay.

Station	Latitude and longitude	Seconds in meters	Azimuth	Back azimuth	Tostation	Distance	Logarithm
$\begin{array}{r} \text { Ridge }{ }^{*} \\ 18_{54} \end{array}$	- ' ''	m	- " "			meters	
	373046.046	1419.5	1565916.78	3365110.63	Mount Tamalpais	49645.60	4. 6958808
	1222230.006	751. 7	1955702.00	16 ot 55.58	Rucky Mound	42693.28	4.6303595
			7244025.93	$44 \begin{array}{llll}47 & 52 \\ 80\end{array}$	Mount Diablo	57777.21	4. 7617566
			$3600743 \cdot 38$	801758.44	Red Hill	25155.04	4.4006250
$\underset{1854}{\text { Pise Hill }}$	372744.0761222035.922	1358.8	1532032.56	$\begin{array}{llll}333 & 29 & 22.76\end{array}$	Ridge	6277.72	3. 7978019
		882.8	1905006.81		Rocky Mound	47502.88	4.6767199
			2454233.22	655138.10	Red Hill	2410122	4.3810391
$\begin{gathered} \text { Contra Costa (} 1853 \end{gathered}$	374144.4801221115.240	1371.3	3325247.6	1525611.7	Red Hill	17998.6	4. 255239
		373. 3	255048.0	2054804.2	Guano I.	15098.3	4. 178927
			391629.9	2190937.9	Ridge	26201.0	4.418319
Point Avisadero* 1851-1903	$\begin{array}{rrr}37 & 43 & 33.884 \\ 122 & 21 & 47.476\end{array}$	1044. 5	28214 or. 6	1022028.3	Contra Costa (1)	15849.0	4. 200002
		1162.8	3091313.2	12923080.4	Red Hill	30622.4	$\text { 4. } 486040$
			333313136.4	15217908	Guano	19167.2	4. 282559
$\underset{1853}{\text { San Antonio Creek } /}$	374730.0401223420.905	926.1 511. 5	334 336 3 53838.0	154 156 156 50 530.78	Red Hill Contra Costa (I)	29564. 1 11582.9	
		5tI. 5	$\begin{array}{r}336 \\ 21 \\ 21 \\ 14 \\ \hline\end{array}$	156 154 201 2093 29. 21.1	Contra Costa (i)	11582.9 33199.1	$\begin{aligned} & 4.063820 \\ & 4.521127 \end{aligned}$
			$\begin{array}{llll}56 & 72 & 20.3\end{array}$	2361746.8	Point Avisadero	13133.9	4.118395
				2950131.2	Mount Tamalpais	34675.0	4.540017
$\begin{gathered} \text { Yerba Buena I. } \\ 1851-1897 \end{gathered}$	374836.796	1134.4	38027812	1003159.9	San Antonio Creck	11299.5	4.053061
	1222155.059	1346.7	3585139.0	178 S1 43.6	Point Avisadero	9340.8	3.970382
San Leandro Pt. 2	$12214 \begin{array}{ll}59.946\end{array}$	336.0	8404 41. 7	2640032.2	Point Avisadero	10033.5	4. 001454
		146\%.8	329 I6 33. 5	3091218.8	Yerba Buena I.	13117.3	4. 117844
			3260638.9	1461220.2	Ked Hill	24606.8	4. 391055
$\underset{1891-1894}{\text { Sierra Point * }}$	374028.62112223.34 .509	882.4 845.8		$\begin{array}{rrrr}9 & 11 & 53.5 \\ 24 & 40 & 02.6\end{array}$	Yerba Buena 1 . Poinl Avisadero	15246.3 6284.8 2983	
			$\begin{array}{llll}204 & 38 & 57.2 \\ 297 & 22 & 21.6\end{array}$	$\begin{array}{r}24 \\ 84002.6 \\ 11733 \\ \hline 16.7\end{array}$	Poinl Avisadero Red Hill	6284.8 29673.5	$\begin{aligned} & 3.798289 \\ & 4.472369 \end{aligned}$
			241.9635 .4	6151501	San Leandro Pt. 2	14299.6	4.155325
			$\begin{array}{llllll}14 & 12 & 3 \mathrm{~J} .2\end{array}$	13417818.8	Guano 1.	16125.3	4. 207509
$\begin{gathered} \text { Stony Hill* } \\ 1851-x 903 \end{gathered}$		166.7	19103 Or. 1	110342.0	Yerba Rucna I.	8525.3	3.930708
	1222301.860	45. 5	2840157.2	1040909.3	Contra Costa (1)	17844.0	4. 251493
			298 6 649 49 35.9	$\begin{array}{llll}118 & 05 & 19.4 \\ 186 & 49 & 15.3\end{array}$	Point Avisadero Sierra Point	2064.5 673 r .2	3. 314825 3.828094
South 1851	37 49 51. 333	349. 4	394682.7	2194236.2	Point Avisadero	13529.7	4. 131389
	$t 221554.043$	1322.0	8300917.5	26305 36.2	Yerba Buenal.	8894. 2	3.949106
$\underset{1851}{\text { North }}$	375148.197	1485.9			South		3. 720364
	1221717.860	436.5	$\begin{array}{lllll}48 & 58 & 52.4\end{array}$	$228 \quad 56 \quad 02.4$	Yerba Buena I.	8987.0	3.953615
$\underset{1881-1897}{\text { Telegraph Hill } 2}$		312.1	2564525.8		Yerba Buena 1.	3593.8	3. 555431
	1223428.030	441.4	$336 \begin{array}{llllllll} & 35 & 23.4\end{array}$	${ }_{5}^{156} 36555.6$	Point Avisadero	9279. 7	3. 967532
			3460651.2	1060738.1	Stony Hill	7771.7	3.890514
Angel Y. Peak 18!1-588!		1317.5	2691100.8	891614.2	North		
	1222548.536	1180.3	$\begin{array}{llll}315 & 05 & 51.4 \\ 341 & 20 & 06.8\end{array}$		Yerba Buenal. Telegraph Hill a	8090.6 0018.5	3.907979
$\begin{gathered} \text { I'uint San Jose * } \\ 185_{1-1} \mathrm{Kg} 2 \end{gathered}$	$\begin{array}{r}3748 \\ 122 \\ \hline 25 \\ \hline 8.620 \\ \hline 8.190\end{array}$	820.7	1773617.5	3.736 II. 2	Angel I. Peak	6051.7	3. 781874
		934. 2	2064127.9	864344.7	Yerba Buena I,	5467.2	3. 737763
Presidio Hill * 1851-1904	$\begin{array}{rrrr}37 & 47 & 38.930 \\ 122 & 27 & 48.212\end{array}$	1200. 2	3131051.3		Stony Hill		
		1179.5	2011550.4	211503.8	Angel I. Peak	8060.4	3.906678
			245 258 2580 18	$\begin{array}{lllll}65 & 12 & 11.7 \\ 78 & 21 & 44.7\end{array}$	Point San Jose Yerba Buenal,	3504.3 882.8	3. 544600
I, ime Point Bluff 1852-1857	374940.5081222851.245	1248. 8		495158.8			
		1248.8	2295006.7	495158.8	Point San Jose	5844.4	3. 766737
		1253.3	395 394 3 37	1154614.9 157	Point San Jose Presidio Hill	52.43 .7 4053.1	3. 719556 3.607785
$\begin{gathered} \text { Rocky I. } \\ .1851 \end{gathered}$	37 53 48 122 21 175	1496.9	3022132.8	1222359.8	North	6929.2	3.840685
		423.1	5 29 12.3	18528 49-2	Yerlsa Buena I.	9656.0	3. 984796
			225753.5	2025602.6	Telegraph Hill 2	11330.9	4.054265
			594105.2	2393818.7	Angel I. Peak	7679.9	3. 885357
Angel I. Peak a 188」	$\begin{array}{rrrr}37 & 51 \\ 122 & 42.800 \\ 48.146\end{array}$		$23936 \text { 56. 1 }$	593942.2	Rocky I.	7670. 7	
		2786	3112657.1	J31 33 34-3	San Lcandro Pt. 2	21175.2	4.325827
			3150920.6	1351143.5	Yerba Buena I.	8085.3	3. 907695
			3412455.9	16: 2551.2	Telecraph Hill 2	6917.3	3. 839939
			212032.3	2011918.6	I'residio Hill	8071.7	3. 906967
			$\begin{array}{llll}77 & 53 & 55.9 \\ 49 & 54 & 40.0\end{array}$	25754 06. 8	Angel I. Peak Lime Point Bluft	$\begin{array}{r} 9.8 \\ \mathrm{c} 8 \mathrm{~g} .0 \end{array}$	0. 989166
			495440.0	2295247%	Lime Point Bluft	5853.0	3. 767376

*This point is in the area of the 1906 earthquake disturbance.
.San Francisco Bay-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station \& Latitude and longitude \& Secandsin meters \& Aximuth \& Back azimuth \& To station \& Distance \& Logarithm \\
\hline \multirow{7}{*}{\[
\underset{1881}{\text { Russian Hill }}
\]} \& \multirow[t]{7}{*}{\[
\begin{array}{r}
374754.736 \\
1222450.330
\end{array}
\]} \& \multirow[t]{7}{*}{\[
\begin{gathered}
m \\
1687 \cdot 5 \\
1231.3
\end{gathered}
\]} \& " \& " \& \& meters \& \\
\hline \& \& \& 833734.0 \& 2633544.9 \& Presidio Hill \& 4379. 2 \& \[
3.641399
\] \\
\hline \& \& \& \& \& Angel I. Peak \& 7172.1
7172.1 \& \[
\begin{aligned}
\& 3.855643 \\
\& 3.855649
\end{aligned}
\] \\
\hline \& \& \& 1683808.0
2053009.6 \& \& Angel l. Peak 2
Rocky \& 7172.1
12088.0 \& 3.855649
4.082353 \\
\hline \& \& \& \& 25
59
59 \& Telegraph Hill 2 \& 922.7 \& 2.964592 \\
\hline \& \& \& 25309283 \& 7311159 \& Yerba Buena I. \& 4479.5 \& 3.651228 \\
\hline \& \& \& \(118{ }^{8} 877.9\) \& 2985680.3 \& Lime Point Bluff \& 6735.0 \& 3.828339 \\
\hline \multirow[t]{5}{*}{\[
\underset{188 \mathrm{I}}{\text { Reservoir }}
\]} \& \multirow[t]{5}{*}{\[
\begin{array}{r}
374807.6=1 \\
1222509.116
\end{array}
\]} \& \multirow[t]{5}{*}{\[
\begin{aligned}
\& 234.9 \\
\& 223.0
\end{aligned}
\]} \& 1714859.4 \& \(3514835 \cdot 4\) \& Angel I. Peak \({ }^{2}\) \& 6702.4 \& 3.826233 \\
\hline \& \& \& 25915154.9 \& \begin{tabular}{ll}
79 \& 17 \\
\hline 13 \& 13.8
\end{tabular} \& Yerba Buena I. \& 4831.6 \& 3.684092 \\
\hline \& \& \& \(26627 \quad 37.3\) \& 862808.6 \& Telegraph Hill 2 \& 1252.1 \& 3.097655 \\
\hline \& \& \& 3105016.6 \& 1305028.1 \& TRussian Hill \& 607.5 \& 2.783529 \\
\hline \& \& \& 771236.0 \& 2571058.4 \& Presidio Hill \& 3991.6 \& 3.601146 \\
\hline \multirow[t]{8}{*}{\[
\begin{aligned}
\& \text { Point Cavallo } 2_{188}^{*}
\end{aligned}
\]} \& \multirow[t]{8}{*}{\[
\begin{array}{r}
375014.088 \\
12328 \\
21.164
\end{array}
\]} \& \multirow[t]{8}{*}{\[
\begin{aligned}
\& 434 \cdot 3 \\
\& 517 \cdot 5
\end{aligned}
\]} \& 23346 Or. 3 \& \(534734 \cdot 9\) \& Angel 1. Peak \& \(4625 \cdot 3\) \& 3.665141 \\
\hline \& \& \& 2334858.8 \& 535032.7 \& Angel I. Peak \({ }^{2}\) \& 4634.2 \& 3.665977 \\
\hline \& \& \& 28735123.5 \& 1073920.2 \& Yerba Buena I. \& 9907.9 \& 3.995980 \\
\hline \& \& \& 3024239.5 \& 1224458.6 \& Telegraph Hill 2 \& 7068.8 \& 3.849349 \\
\hline \& \& \& 3094046.7 \& 1294244.4 \& Reservoir \& 6104.6 \& 3.785656 \\
\hline \& \& \& \(30946 \quad 53.4\) \& 1294902.6 \& Russian Hill \& 6712.0 \& 3.826850 \\
\hline \& \& \& 3502600.2 \& 1703620.4 \& Presidio Hill \& 4851.1 \& 3.685838 \\
\hline \& \& \& 3553515 \& 2152333.1 \& Lime Point Bluff \& 1270.0 \& \[
3 \cdot 103817
\] \\
\hline \multirow[t]{4}{*}{\[
\underset{1852}{\text { Point Lobos 2 }}
\]} \& \multirow[t]{4}{*}{\[
\begin{array}{r}
374709.177 \\
1222954.620
\end{array}
\]} \& \multirow[t]{4}{*}{\[
\begin{array}{r}
282.9 \\
1336.5
\end{array}
\]} \& \(\begin{array}{llll}198 \& 22 \& 30.6 \\ 301 \& 50 \& 32.5\end{array}\) \& \(\begin{array}{llll}18 \& 23 \& 09.5 \\ 21 \& 51 \& 29.8\end{array}\) \& Lime Point Bluff
Point Cavallo 2 \& 4916.5
6142.2 \& \\
\hline \& \& \& \& \& Point Cavallo 2
Angel I. Peak 2 \& 6142.2
10368.4 \& \[
\begin{aligned}
\& 3.788325 \\
\& 4.015710
\end{aligned}
\] \\
\hline \& \& \& 21531736.4 \& \(\begin{array}{llllllllllll}35 \& 34 \& 07.6 \\ 79 \& 30 \& 31.1\end{array}\) \& Angel I. Peak \({ }^{2}\)
Russian Hill \& 10368.4
7576.5 \& 4.015710
3.879468 \\
\hline \& \& \& \(\begin{array}{llll}259 \& 17 \& 24.6 \\ 353 \& 28 \& 12.5\end{array}\) \& \(\begin{array}{llll}79 \& 20 \& 31.1 \\ 73 \& 29 \& 30.0\end{array}\) \& Russidio Hill \& 7576.5
3226.1 \& 3.879468
3.508679 \\
\hline \multirow[t]{4}{*}{\[
\begin{gathered}
\text { Fort Point } \\
18_{51}
\end{gathered}
\]} \& \multirow[t]{4}{*}{\(\begin{array}{r}3748 \\ 122 \\ 128 \\ \hline\end{array}\)} \& \multirow[t]{4}{*}{\[
\begin{array}{r}
927.4 \\
825.7
\end{array}
\]} \& 1685050.8 \& \(3485040 \cdot \mathrm{I}\) \& I,ime Point Bluff \& 2213.1 \& 3. 344997 \\
\hline \& \& \& 2712432.5 \& 912620. 2 \& Point San Jose \& 4295.7 \& 3.633034 \\
\hline \& \& \& 3244547.1 \& 1444615.0 \& Presidio Hill \& 1930.8 \& 3.285729 \\
\hline \& \& \& 382552.4 \& 2182502.8 \& Point Lobos 2 \& 3183.9 \& 3.503960 \\
\hline \multirow[t]{4}{*}{Point Lobos*} \& \multirow[t]{4}{*}{37
127
122
30} \& \multirow[t]{4}{*}{\[
\begin{aligned}
\& 472.7 \\
\& 102.7
\end{aligned}
\]} \& 2014354.8 \& 214439.5 \& Lime Point Bluff \& 4818.4 \& 3.682902 \\
\hline \& \& \& 2234957.8 \& \(435053 \cdot 2\) \& Fort Point \& 3195.0 \& 3. 5044471 \\
\hline \& \& \& 2573923.9 \& 77404772 \& Presidio Hill \& 3405.8 \& 3. 532224 \\
\hline \& \& \& 309 O1 06.5 \& 129 O1 12.3 \& Point Lobos 2 \& 301.6 \& 2.479479 \\
\hline \multirow[t]{7}{*}{\[
\begin{aligned}
\& \text { Black Ridge* } \\
\& 182
\end{aligned}
\]} \& \multirow[t]{7}{*}{\[
\begin{array}{r}
374513.752 \\
12228 \text { 10. } 547
\end{array}
\]} \& \multirow[t]{7}{*}{\[
\begin{aligned}
\& 424.0 \\
\& 258.1
\end{aligned}
\]} \& 1443454.0 \& \(324 \begin{array}{lll}33 \& 50.2\end{array}\) \& Point Lobos \({ }^{2}\) \& 4376.3 \& \(3.641 \mathrm{rr}_{4}\) \\
\hline \& \& \& 1782338.8 \& 3582332.2 \& Point Cavallo 2 \& 9263.2 \& 3.966764 \\
\hline \& \& \& 1865739.0 \& 65752.7 \& Presidio Hill \& 4509. 2 \& 3.654096 \\
\hline \& \& \& 1961055.5 \& 161222.8 \& Angel I. Peak 2 \& 12490.2 \& 4.096570 \\
\hline \& \& \& 2193708.0 \& 393859.3 \& Reservoir \& 6960.4 \& 3. 842639 \\
\hline \& \& \& 22436552.8 \& 443855.6 \& \& 6974.4 \& 3.843506
3.806008 \\
\hline \& \& \& 2261647.2 \& \(46 \quad 1909.9\) \& Telegraph Hill 2 \& 7870.6 \& 3.896008 \\
\hline \multirow[t]{3}{*}{\[
\underset{185!}{\text { Sand Knoll* }}
\]} \& \& 1162.5 \& 17202473 \& 3520237.4 \& Point Lobos a \& \& \\
\hline \& \multirow[t]{2}{*}{12329 38. 518} \& 942.7 \& 2154949.6 \& 355057.3
1085615.0 \& Presidio Hill
Black Ridge \& 4610.3
2276.6 \& \[
3 \cdot 653729
\] \\
\hline \& \& \& 28855 21.1 \& 1085615.0 \& Black Ridge \& 2276.6 \& 3.357277 \\
\hline \multirow[t]{2}{*}{\[
\underset{1851}{\text { Creen Bluff * }}
\]} \& \& 671.5 \& 1671448.1 \& 34714 29. 2 \& Black Bluff \& 3425.8
7492.8 \& \[
\text { 3. } 534763
\] \\
\hline \& 1222941.806 \& 1024.3 \& 1972048.4 \& 172144.2 \& Black Ridge \& 7492.8 \& \[
3.874642
\] \\
\hline \multirow[t]{3}{*}{\[
\underset{185 I}{\text { Abbey Hill * }}
\]} \& \multirow[t]{3}{*}{\(\begin{array}{rrrr}37 \& 41 \& 12.089 \\ 127 \& 26 \& 82.848\end{array}\)} \& 708.7 \& 893606.4 \& 2693358.6 \& Green Bluff \& 5119.8 \& 3. 709255 \\
\hline \& \& 314.8 \& 11922 24.1 \& 2991957.4 \& Black Bluf \& 6740.4 \& 3.828688 \\
\hline \& \& \& 1575715.1 \& 3375603.15 \& Black Ridge \& \({ }^{7676.3}\) \& 3.885150 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Cattie Hill } \\
185 \mathrm{I}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\(\begin{array}{rrrr}37 \& 36 \& 27.320 \\ 122 \& 28 \& 54.349\end{array}\)} \& 842.3 \& 1724204.7 \& \& Green Bluff \& 9152.5 \& 3. 961538 \\
\hline \& \& 1333.2 \& 2032747.5 \& \(23 \quad 2926.2\) \& Abbey Hill \& 9938.1 \& 3.997302 \\
\hline \multirow[t]{6}{*}{\[
\underset{1877}{\text { Cement } \dagger}
\]} \& \multirow[t]{6}{*}{\(\begin{array}{rrrr}37 \& 46 \& 39.455 \\ 122 \& 30 \& 23.948\end{array}\)} \& 1832.9 \& 2243731.5 \& 443743.6 \& Point Lobos \& 688.0 \& 2. 837575 \\
\hline \& \& 586.0 \& 2471947.6 \& 672005.6 \& Point Lobos 2 \& 777. 7 \& 2. 890832 \\
\hline \& \& \& 25216 28.3 \& 721803.7 \& Presidio Hill \& 4000. 3 \& 3.602087 \\
\hline \& \& \& 3145605.8 \& 1345727.6 \& Black Ridge \& 4613.1 \& 3. 663992 \\
\hline \& \& \& 3574554.5 \& 17746 or. 5 \& Black Bluff \& 7074.7
11036.9 \& 3.849708 \\
\hline \& \& \& 2173901.2 \& 374150.3 \& Angel I. Peak 2 \& 11036.9 \& 4.042847 \\
\hline \multirow[t]{8}{*}{Lone Mountain Cross* 1877} \& \multirow[t]{8}{*}{\[
\begin{array}{r}
374646.601 \\
1222703.625
\end{array}
\]} \& \multirow[t]{8}{*}{\[
\begin{array}{r}
1436.6 \\
88.8
\end{array}
\]} \& \& \& \& \& \\
\hline \& \& \& \(\begin{array}{rrrrr}39 \& 47 \& \text { O1. } 5\end{array}\) \& 20946 20. 5 \& Black Ridge \& 3298.0 \& 3. 518258 \\
\hline \& \& \& 3072910.7 \& 1273224.5 \& Point Avisadero \& 9757. I \& 3.989319 \\
\hline \& \& \& 943821.3 \& 2743618.5 \& Cement \& 4918.1 \& 3. 691794 \\
\hline \& \& \& 993732.6 \& 2792547.8 \& Point Lobos a \& 4241.8 \& 3. 627551 \\
\hline \& \& \& 2371314.8 \& 571336.7 \& Russian Hill \& 3879.5 \& 3. 588772 \\
\hline \& \& \& 1458510.2 \& 3255542.9 \& Presidio Hill \& 1947.6

3753.6 \& 3. 289498

\hline \& \& \& 2281619.1 \& 481729.3 \& Reservoir \& 3753.6 \& 3. 574450

\hline
\end{tabular}

* This point is in the area of the 1906 earthquake disturbance.
\dagger See p. 291.

San Francisco Bay-Continued.

* This point is in the area of the 1906 earthquake disturbance.
t See p. 29 r.

San Francisco Bay-Continued.

Station	Latitude and longitude	Seconds in meters	Azimuth	Back azimuth	To station	Distance	Logarithm
$\underset{\text { Heights }}{\substack{\text { Hg }}}$	- ' '	m	- , 1	"		meters	
	3747.34 .830	1073.8	1533205.8	3333104.6	Point Cavallo 2	5485.2	3. 739195
	1222641.195	1007.9	1893735.4	93807.9	Angel I. Peak 2	7754.4	3.889549
			24549 22. 2	655018.6	Reservoir	2469.2	3. 392554
			$2524343 \cdot 5$	724511.4	Telegraph Hill 2	3667.7	3. 564394
			$27315 \begin{array}{llll} \\ 2 & 50.9\end{array}$	931630.1	Lalayette Park	1567.6	3.195243
			$942449 \cdot 3$	2742408.1	Presidio Hill	1644.6	3. 216056
$\begin{gathered} \text { Fort Point L. H.* } \\ 1877 \end{gathered}$	374839.246	1209.9	1865047.4	65056.1	Point Cavallo 2 Angel I. Peak ${ }^{2}$	2945.1	3. 469094
	1272835.520	868.9	2155839.2	355321.8	Angel I. Peak 2	6984.0	3.844106
			283 288 8	1040025.5	Russian Hill	5677.2	3.754137
			328 os 55.5	1480624.4	P'residio Hill	2190.3	3.340512
			$345243 \cdot 5$	2145155.0	Point Lobos 2	3384.7	3. 529516
			395927.1	2195832.7	Point Lobos	3376.2	3.528434
			404641.2	2204534.7	Cement	4062.3	3.608777
			$96 \begin{gathered} \\ 8 \\ 818.0\end{gathered}$	2765632.7	Bonita Point L. H.	4633.8	3.665939
Fort Point old L. H.* 1857	374840.386	1245.0	3482650.7	$168 \quad 2652.3$	Fort Point	324.3	2. 510893
	1222886.397	880.3	391952.9	2191859.5	Point Lobos	3389.7	$3 \cdot 530155$
				$34^{8} 54478$	Lime Point Bluff	1888.8	3.276192
East Diablo 1887	374922.016	678.7	$\begin{array}{lllllll}318 & 45 & 39.3\end{array}$	1384649.1	Presidio Hill	4225.9	3. 625919
	1222942.070	1028.9	41717.8	1841710.1	Point I obos 2	4107.0	3. 613523
			$\begin{array}{lllllll}7 & 53 & 33.8\end{array}$	187535	Point Lobos	3942.9	3. 595819
			130788.7	1930703.1	Cement	4513.0	3.654468
New Lime Point 1887	374939.979	1232.5	2131805.4	331822.7	Point Cavallo a	1258.3	3. 099777
	1228849.417	1208.5	$33^{8} 080809$	1580847.2	Presidio Hill	4021. 1	3.604346
			${ }_{22} 181837.3$	2021751.5	Point I,obos	4820.0	3.683049
			250311.4	2050213.5	Cement	5462.6	3.737403
			664359.9	2464327.6	East Diablo	1401.7	3. 146668
West Diablo 1887		$55^{8.4}$	3110034.8	13150202.9	Presidio Hill	4659.0	3.608291
	1223011.904	291.2	35355136.9	1735547.5	Point Lobos 2	3997.6	3.601803
			3570852.4	17708 57.2	Point Lobos	3790.0	3. 578640
			$35^{6} 37.8$	1835630.5	Cement	4285.1	3.631959
$\underset{1887}{\substack{\text { Diablo Hill }}}$	374940.690	1254.4	31500097	1350143.7	Presidio Hill	5307.4	
	1223021.594	528.1	3411152.6	16111588	West Diablo	735.2	$\text { 2. } 866434$
			3543426.4	174 180 18	Point Lobos	4501.5	3.653356
			- 3951.0	$: 803949.7$	Cement	4971.3	3. 696469
$\operatorname{Rob}_{1877}^{*}$	374745.651	1407.4	2802238.7	1002307.0	Presidio Hill	1149.9	3. 060663
	1228834.442	842.6	3091908.4	1292004.0	I,one Mt. Cross	2872.7	3.458291
			3525249.1	$172 \begin{array}{llllllll}1723\end{array}$	Black Ridse	4719.5	3. 673896
			601106.0	2401016.9	Point Lobos 2	2261.2	3. 354340
			620059.7	2415952.6	Cement	3034.4	3.482073
$\underset{1887}{\text { Rob }_{2} *}$			2804030.7	1004058.8	Presidio Hill		3.057283
	1222834.040	832.8	60.1258 .2	2401208.8	Point Lobos 2	2271.8	3. 356379
			620200.4	2420053.0	Cement	3045.1	3.483601
			6657152.2	2465617.0	Point Lohos	2397.4	3.37974
			1395637.8	3195537.8	West Diablo	3719.3	3. 570465
			143 194 1	3232328.7	Diablo Hill	4412.6	3.644690
			1504259.9	3304218.2	İast Diablo	3401.6	3. 531686
			1735410.3	35354 ¢0.9	New I, ime Point	3540.6	3. 549079
			1835620.6	3 5628.5	I'oint Cavallo 2	4583.1	3.601155
$\underset{1892}{\operatorname{Rob}_{3} *}$			2814807.8	101 $48 \quad 36.3$	Presidio Hill	1162.3	3.065300
	1228834.711	849. I	592558.1	2392509.1	Point Lobos 2	2270.9	3. 356197
			6 ± 2659.3	2412552.4	Cement	3043.1	3.483316
	-		1504427.7	3304346.3	İast Diablo	3370.6	3. 527705
			$\begin{array}{ll}184 \\ 18 & 10 \\ 209 & 12\end{array} 3.4$	41012.7	I'oint Cavallo'z	4557.9	3. 658765
			2091239.7	291421.9	Angel I. Peak 2	8342.9	3.921317
$\underset{1892}{\text { Spring Valley* }}$	374725.38 I	782.4	2914539.9	111 4654.9	Ione Mt. Cross	3223.5	3. 508333
	1222905.965	146.0	671422.7	2471352.9	Point Lobos 2	1291.1	3.110060
			1262225.3	3062048.8	Bonita Point L. H.	4787.7	3.680131
			$1550633 \cdot 5$	3350553.1	West Diablo	38.3 I. 7	3. 58339 I
			1661212.1	3461150.0	Fast Diablo	3702.8	3. 568529
			1980626.9	180645.7	Fort Point L. H.	2396.0	3. 379486
			2292334.5	492353.7	Rob 3	1007.2	3.003109
Point Lobos $3 \dagger$ 1892	374713.804	425.5	2171330.5		Angel I Peak 2	10478.4	4. 017799
	1223005.979	140.3	2200135.3	400230.8	liort Point L. H.	3440.5	3. 5.36018
			2453614.2	653710.1	Rob 3	2451.9	3.389501
			2562001.0	762037.7	Spring Valley	1511.2	3. 179330
		-	2570246.6	770411.0	Presidio Hill	3458.7	3. 538917
			2971002.5	117 1009.5	Point Lobos 2	312.4	2.494760
			444933.8	2244922.8	Cement	623.7	2. 794994
			1431434.0	3231334.2	Bunita Point L. H.	3988.8	3.600842

* This point is in the area of the 1906 earthquake disturbance.
†Sce p. 20 r .

San Francisco Bay-Continued.

Station	Latitude and longitude	Seconds in meters	Azimuth	Back azimuth	To station	Distance	Logarithm
$\underset{1892}{\text { Cermetery* }}$	"	m	- , "	- ' 1		meters	
	374657.289	1766.1	2121911.8	322001.7	Fort Point L. H.	3720.0	3. 570538
	1231956.828	${ }^{1} 390.6$	2325123.1	525213.4	Rob 3	2520.4	3. 401469
			2474747.6	674906.4	Presidio Hill	3398.8	3. 53133 I
			1882313.2	82314.6	Point Lobos a	370.5	2. 588761
			2742551.6	942737.7 27544	Lone Mit. Cross	4251.2	3. 628514
			954456.8	27544 40. 2	Ceraent	667.0	2.824118
$\begin{aligned} & \text { Under Cement* } \\ & 1892 \end{aligned}$	374704.203	129.5	2230408.4	430517.1	Fort Point L. H.	4011.7	3.603331
	1223027.515	$673 \cdot 3$	2404032.0	604045.2	Point Lobos 3	604.4	2. 781333
			2591243.5	791303.7	Point Lobos a	819.4	2.913505
			3291134.8	149 If 37.0	Cement	170.4	2. 231577
			1515708.6	3315622.0	Bonita Pt. L. H.	3956. 2	3. 597281
$\underset{188 \mathrm{I}}{\mathrm{High}}$	375342.659	1315.2	295040.3	2094824.6	Yerba Buena I.	10869.8	4.036222
	1231813.921	340. 1	405953.9	2205610.5	Telegraph Hill 2	13577.7	4.132826
			420756.3	2220353.1	Russian Hill	14456.8	4.160071
			713735.0	2513256.2	Angel 1. Peak 2	11699.6	4.008171
			713754.0	2513314.9	Angel I. Peak	11709.3	4.068532
			922018.4	2721825.7	Rocky I.	4484.6	3.651721
$\underset{1852}{\underset{H i g h}{H i l l}}$	$37 \quad 56 \quad 33 \cdot 715$ 122	1039.4 139.9	301 3031.8	$\begin{array}{llll}121 & 34 & 08.1 \\ 141 & 04\end{array}$	Highland	10082.4 6546.	
	1222405.729	139.9	$\begin{array}{llll}321 & 03 & 12.8 \\ 15 & 3 & 45.9\end{array}$	$\begin{array}{llllll}141 & 04 & 56.3 \\ 195\end{array}$	Rocky I.	6546.0	3.815978
			$\begin{array}{llll}15 & 3545.9 \\ 15 & 38 & 57.7\end{array}$	195 195 14 1	Angel 1. Peak ${ }^{\text {Angel I. Peak }}$	9311.7 9316.2	3. 969030
			$15 \quad 3857.7$	1953754.6	Angel I. Peak	9316.2	
Point San Quentin 1852	375639.202	1208.6	2712028.2	912320.9	High Hill	7096.8	3. 851063
	1222856.294	1374. 5	2950608.3	1151050.4	Rocky I.	12383.7	4.092850
			3331654.4	15318 50.3	Angel I. Peak 2	10229. 3	4.009848
			$333 \quad 2004.8$	1532200.2	Angel I. Peak.	10226.9	4.009742
$\underset{\text { I } 88 \text { M }}{\substack{\text { Mound }}}$	375631.739	978. 5	3343321.8		Hishland	5772.4	3. 761360
	122195.5422	1353.2	214119.0	2014028.6	IRocky I.	5414.2	3.733537
			903533.0	2703259.0	High Hill	6112.2	3. 786199
Topog 1881	3754 46.627	$1437 \cdot 5$	3372023.0	1572043.7	Highland	2137.1	
	1221847.619	1163.2	635538.3	2435400.3	Rocky I,	4071.9	3.609793
			1525624.6	3325542.9	Mound	3639.3	
$\begin{gathered} \text { Iः1 Cerrito } \\ 188 \mathrm{I} \end{gathered}$	375526.45 t	815.5	2061151.6	261216.5	Mound	2243.4	3. 350910
	1222035.983	878.8	2945235.9	1145342.5	Topog	2917.8	$3 \cdot 465049$
			3124001.4	1324128.7	Highland	4720.5	3.673992
			183000.4	1982934.9	Rocky I.	3182.7	$3 \cdot 502793$
			1120335.0	292 of 25.9	High Hill	5526.0	$\text { 3. } 742414$
$\underset{1852}{ }$	$375545 \cdot 767$	1411.0	1094659.7	2894504.3		4871.3	3. 687646
	1222548.565	1886.0	2393024.4	593127.6	High Hill	2914.0	3.464492
			2983506.9	1183753.6	Rocky I.	7547.3	3. 877792
			3595518.4	1795519.0	Angel I. Peak 2	7491.0	3. 874.538
			$3595941 \cdot 3$	1795941.4	Angel I. Pcak	7493.0	3.874654
California Point 1852	375448.84 .3	1505.8	16757 00.0	3475641.7	Print San Quentin	3479.2	3. 54148 I
	1222826.547	6484	2430354.2	630634.5	High Hill	7143.4	3.853907
Corte Madera \dagger 1852	375556.23	1733.4	2312222	512304	Point San Quentin	2122.8	3.326913
	1223004.21	102.9	3110242	1310342	California Point	3163.3	3.500137
I'oint Richmond 2 1897				2133758.2			
	122 23 22.499	549.6	1145800.0	2945434.7	Point San Quentin	8990.4	$3.95378 \mathrm{r}$
			1210026.4	3005856.6	Red Rock	4162.0	3.619297
			1634500.7	34344 34. I	High Hill	3772.3	3. 576607
$\begin{aligned} & \text { California I'oint } 2 \\ & 1897 \end{aligned}$					Point San Quentin	3480.0	
	1222826.489	647.0	2430321.8	630602.2	Yidh Hill	7142.4	3.853843
			2453051.4	$65 \quad 3228.5$	IRed Rock	4237.9	3.627155
			2725744.9	930051.9	Loint Richmond 2	7435.9	3.871334
$\begin{aligned} & \text { IBluff Point a } \\ & 1897 \end{aligned}$	3753 17.4.51	538.0	1384247.4	3184145.2	California Point 2	3749.7	3. 573991
	1222645.203	1104.6	1524020.5	3324459.9	I'oint San Quentin	6996.0	3.844852
			1964946.3	165021.1	12ed Rock	4777.5	3.679200
			2124528.3	324706.4	High Hill	2196. 4	3.857118
			2435106.2	$63 \quad 5310.9$	Point Richmond 2	5516.3	3.741646
			$334 \begin{array}{ll}37 & 16.6\end{array}$	1542752.1	Angel I. Peak ${ }^{2}$	3234.3	3.509775
Brooks Island 1895	375348.439	$1493 \cdot 3$	594025.1	23937 39.1	Angel I. Peak 2	7666.4	3.884580
	1222117.435	425.9	528817.2	1852754.3	Yerba BuenaI.	9652.2	3.934625
			831330.9	263 1009.5	Bluft I'oint 2	8065.4	3.906628
			1000631.0	2800207.2	California Point 2	10645.8	4.027178
			1:5 1204.7	2950722.7	Point San Quentin	12382.6	4.092812
			1154600.1	$2954443 \cdot 3$	Point Riclimond 2	3392.4	3. 530507
			1183957.1	2983710.5	Red Rock	$75.46 \cdot 5$	3.877743
			1410718.0	3210534.6	High Hill	6547.0	3.816040

* See page 291.
\dagger No check on this position.

San Francisco Bay-Continued.

Station	Latitude and longitude	Seconds in meters	Azimuth	Back azimuth	Tostation	Distance	L.ogarithm
$\begin{aligned} & \text { Marin Island F. } \\ & 1897 \end{aligned}$	$\begin{array}{r} 375752.977 \\ 1222803 \cdot 389 \end{array}$	$\begin{array}{r} m \\ 1633.2 \\ 82.7 \end{array}$	- ' ''	' 11		meters	
			2924910.6	1125136.8	High Hill	6295.8	3. 799051
			3195851.7	1400014.6	Red Rock	5120.4	3. 709308
			54032.1	1854017.8	California Point 2	5705.6	3.756301
			293540.1	2093507.6	Point San Quentin	2655.7	3.417593
			3471928.2	1672016.3	Bluff Point ${ }^{\text {a }}$	8706.8	3.939858
			3435041.6	1635205.2	Angel I. Peak ?	1188 x .5	4.074872
Molate Point 2 1897	$\begin{array}{r}37 \\ \hline 122 \\ \hline 25 \\ \hline\end{array}$	$\begin{array}{r} 1555.5 \\ 329.0 \end{array}$	2871922.9	1072004.5	High Hill	1732.8	3. 238743
			$32645 \quad 52.5$	1464700.7	Point Richmond 2	4946.3	3. 694280
			185045.1	1984948.6	Bluff Point 2	6938.8	3.841287
			231509.2	2031447.6	Red Rock	2170.7	3. 336596
			513044.6	2312845.8	California Point 2	6023.4	3. 779841
			862212.9	$\begin{array}{llllll}266 & 19 & 55.8\end{array}$	Point San Quentin	5451.5	3.736518
			1145620.8	2945436.2	Marin I. E.	4574. 1	3. 660308
			50620.9	1850559.9	Angel I. Peak 2	9523.1	3.978780
San Pablo Ridge	$37 \quad 5733.061$1222455.287	$\begin{aligned} & 1019.2 \\ & 1349.7 \end{aligned}$	$\begin{array}{llll}326 & 31 & 12.8 \\ 18 \\ 18 & 40 & 40.5\end{array}$	$\begin{array}{lllll}146 & 31 & 43.1 \\ 108 & 40 & 30.3\end{array}$	High Hill Molate Point	2193.6 1386.6	$\begin{aligned} & 3.341158 \\ & 3.141961 \end{aligned}$
				$\begin{array}{ll}198 & 40 \\ 201 & 29.3 \\ 2014\end{array}$	Molate Point ${ }^{\text {Red Rock }}$	1386.6 3554.6	$3 \cdot 141961$
			$\begin{array}{llll}21 & 28 & 17.7 \\ 45 & 32 & 38.6\end{array}$	2012744.6 2253028.6	Red Rock California Point 2	3554.6 7227.7	3.550792 3.858999
			741539.5	25413 II. 1	Point San Quentin	6113.9	3.786318
			973758.5	2773602.5	Marin I. E.	4632.6	3.665827
Point San Pablo a 1897	375755.0891222536.786	$\begin{array}{r} 1698.3 \\ 898.0 \end{array}$	12309.1	$\begin{array}{llll}181 & 23 & 02.6\end{array}$	Angel Island Peak 2	11481.5	4.059998
			40735.3	1840988.2	Red Rock	3997.5	3.601792
			150304.4	1910222.4	Bluff Point 2	8721.5	3940590
			35494 I .5	2154757.2	California Point?	7081.7	3.850140
			642133.1	2441930.5	Point San Quentin	5403.5	3. 732676
			885812.9	2685642.7	Marin I. E.	3579.2	3. 553783
			1543321.0	3343250.0	East Sister	2861.5	3.456592
$\begin{aligned} & \text { Point San Pedro } \\ & 1852 \end{aligned}$	$\begin{array}{r}37 \\ 122 \\ 129 \\ \hline 16.462 \\ \hline 2.657\end{array}$	$\begin{array}{r} 507.5 \\ 64.8 \end{array}$	3191557.5	1391746.4	High Hill	6620.4	3.820884
			2947 O1. 1	2094551.2	Point San Quentin	5585.9	3.747096
E. Brother I. L. H. 1874-1897	$\begin{array}{rrrr}37 & 57 & 48.876 \\ 122 & 25 & 57.954\end{array}$	1506.8	2874024.5	1074103.1	San Pablo Ridge	1605.6	3. 205634
		1414.7	3101251.7	1301400.7	High Hill	3588.4	3. 554903
			3285443.8	1485511.2	Molate Point 2	2103.2	3. 322880
			75119.2	1875050.1	Bluff Point 2	8447.6	3.926735
			$3563234 \cdot 2$	1763240.0	Red Rock	3802.5	3. 580072
			331021.2	2130849.8	California Point ?	6631.1	3. 821585
			634517.0	2434327.3	Point San Quentin	4855. 1	3.686195
			922232.2	2722115.0	Marin I. E.	3064.5	3. 486363
			1653544.2	3453526.2	East Sister	2865.5	3.457204
			2272011.5	472239.1	Point Pinole	7953.4	3.900554
Quarry1895	$\begin{array}{rrr}37 & 51 & 44.992 \\ 122 & 25 & 08.581\end{array}$	$\begin{array}{r} 1387.1 \\ 209.8 \end{array}$	$\begin{array}{llll}172 & 30 & 22.6 \\ 179 & 16 & 32.8\end{array}$	$\begin{array}{llll}353 & 29 & 57.8 \\ 359 & 16 & 19.7\end{array}$	Red Rock		
			1791622.8	3591619.7	Molate Point 2	9418.5	$\text { 3. } 973984$
			189 26 26653.7	94732.1 260926.5	High Hill ${ }^{\text {Point Richmond } 2}$	9033.1 5882.1	3.955837 3.769535
			$\begin{array}{llll}206 & 08 & 21.4 \\ 236 & 0 & 33.6\end{array}$		Point Richmond 2 Brooks I.	5882.1 6811.4	3.769535 3.833234
			3204702.7	1404901.5	Yerba Buena I.	7487.2	3.874322
			860019.5	2655955.4	Angel I. Peak 2	969.5	2.986555
Judson Point 1895	$\begin{array}{rrr} 37 & 53 & 06.24 \mathrm{I} \\ 12218 & 48.022 \end{array}$	192.4 1173.5		$\begin{array}{llll}208 & 48 & 54.9 \\ 254 & 53 & 38.1\end{array}$	Yerba Buena I. Quarry	9482.7 9632.3	
		1173.5	$\begin{array}{llll}74 & 57 & 31.8 \\ 75 & 58 & 12.8\end{array}$	$\begin{array}{lllll}254 & 53 & 38.1 \\ 255 & 53 & 55.0\end{array}$		9632.3 10585.3	$\begin{aligned} & 3.983732 \\ & 4.024705 \end{aligned}$
			$\begin{array}{rrrr}75 & 58 & 12.8 \\ 109 & 37 & 36.2\end{array}$	255 289 28	Angel I. Pcak ${ }^{2}$ Brooks I.	10585.3 3875.7	4.024705 3. 588353
North Brooks 1895		$\begin{aligned} & 153 \cdot 3 \\ & 629.1 \end{aligned}$					
	$\begin{array}{r} 375404.973 \\ 1222125.750 \end{array}$		2950911.9	115 10 48.8	Judson Point	4258.1	3.639215
			33818617.5	1581622.6	Brooks I.	548.7	2.739375
			513713.9	23113457.1	Quarry Peat	6948.3	3.841878
			$55 \quad 39 \quad 59.9$	2353718.9	Angel I. Peak 2	7767.4	3. 890274
$\underset{1895}{\text { Angel I. S. E. } 2}$	$\begin{array}{rrr}37 & 51 & 25.658 \\ 122 & 25 & 22.358\end{array}$	$\begin{aligned} & 791.0 \\ & 546.6 \end{aligned}$	2333850.2	534120.2	Brooks I.	7430.2	3.870999
			3154445.8	135 3 4652.7	Yerba Buena I.	7266.4	3.861320
			631358.6	24312808.9	Point Cavallo 2	4897.0	3. 689926
			1295840.4	3095824.6	Angel I. Peak 2	822.6	2.915196
Alcatraz flagstaff 1893	$\begin{array}{rrr} 37 & 49 & 37.208 \\ 122 & 25 & 18.406 \end{array}$	$\begin{array}{r} 1147.1 \\ 450.1 \end{array}$	1041722.6	2841530.7	Point Cavallo ?	4611.6	3.663852
			1692158.9	3492140.7	Angel I. Pcak 2	3939.8	3. 595474
			1832918.2	32924.2	Quarry	3947.0	3. 5968269
			2171352.1	371619.8	Brooks I.	9731.0	3.988t56
			2355607.1	560006.5	Judson Point	11515.6	4.061287
			2903047.2	1103258.9	Yerba Buena I.	5310.9	3.725164
Belvedere Point 1895	$\begin{array}{rrrr}37 & 51 & 45.386 \\ 132 & 27 & 26.734\end{array}$	$\begin{array}{r} 1399.2 \\ 653.3 \end{array}$	2715312.6	915413.1	Angel I. Peak 2	2411.0	3.382191
			3053635.3	1253958.6	Yerba Buena I.	9979.0	$3 \cdot 999087$
			3213234.4	14 I 3352.9	Alcatraz flagstaff	5045.8	3. 702933
			251841.5	20518 08.1	Point Cavallo 2	3113.6	3.493266

San Francisco Bay-Continued.

Station	Latitude and longitude	Seconds in meters	Azimuth	Back azimuth	To station	Distance	Logarithm
$\underset{1895}{\text { Peninsula Hill }}$	$\begin{array}{r} 375214 \cdot 490 \\ 1222755 \cdot 794 \end{array}$	$\begin{gathered} m \\ 446.7 \\ \mathbf{3 6} 3.7 \end{gathered}$	- ' 1	- ' 1		meters	
			2532344.4	732748.6	Brooks I.	10156. 5	4.006744
					Angel I. Peak 2	3269.5 32083.6	3. 514477
			$\begin{array}{lllll}307 & 14 & 15.7 \\ 321 & 33 & 12.8\end{array}$		Yerba Buena I	11083.6 6190.4	4.044682
			321 321 31712.819 .7		Alcatraz flagstaff	6190.4 1144.6	3. 791718 3. 058844
			929 14.4	18938488	Point Cavallo 2	3763.6	3. 575000
$\underset{1895}{\text { Angel I. N. W. } 2}$	$\begin{array}{rrr} 37 & 51 & 40.896 \\ 122 & 26 & 43.065 \end{array}$	$\begin{aligned} & 1260.8 \\ & 1052.7 \end{aligned}$	3315957.9	15130.49 .6	Alcatraz fiagstaff	4339.0	3.637391
			41523 c .4	2215121.2	Point Cavallo 2	3593. 8	3. 555551
			9723 39.2	2771312.4	Belvedere Point	1076.1	3.031871
			1201355.2		Peninsula Hill 2	2057.4	3. 313325
			2672931.4	873005.1	Angel I. Peak 2	1343.7	3. 128317
Tiburon Gate Tower 1895	$\begin{array}{r}375225.572 \\ 122 \\ 26 \\ \hline\end{array}$	$\begin{array}{r} 788.4 \\ 1332.9 \end{array}$	3090535.3	1290616.0	Angel I. Peak ${ }^{2}$	2091.0	3. 320356
			3482932.8	$168 \quad 2939.8$	Angel I. N. W. 2	1405.7	3. 1478880
			273534.7	2073431.5	Point Cavallo ${ }^{2}$	4573.6	3. 660260
			322501.7	212244 X .9	Belvedere Point	1467.6	3. 106622
			770858.7	25708 21. 2	Peninsula Hill 2	1535.7	3. 186300
Ridge Rock 1895		$\begin{array}{r} 1019.2 \\ 6.3 \end{array}$	31181853.9	1321938.1	Angel I. Peak 2 .	2346.8	3. 370478
			3284818.0	148482121.5	Tiburon Gate Tower	269.9	2. 431126
			3452123.3	1652133.8	Angel I. N. W. 2	1667.1	3. 220690
			2345 67 ${ }^{3} 80.6$	2034514.3	Belvedere Point	1605.9 1473.9	3. 205715
				34.9			-
Under Cavallo 1895	$\begin{array}{rrr} 37 & 50 & 16.828 \\ 122 & 28 & 20.558 \end{array}$	$\begin{aligned} & 518.8 \\ & 502.7 \end{aligned}$	$\begin{array}{llll}189 & 28 & 20.7 \\ 205 & 43 & 54.6\end{array}$	$\begin{array}{r}92835.9 \\ \\ \hline\end{array}$	Peninsula Hill a	3677.8 3031.0	
			2054354.6	254497.6	Belvedere Point	3031.0	3.481586
			222 $35 \begin{array}{lll}37.2 \\ 234 & 33 & 40.6\end{array}$	423637.0	Angel I. N. W. ${ }^{\text {Angel }}$	3521.3 4572.8	3. 546699
			234 385 38 19		Angel I. Peak $2 \times$	4572.8 4618.8	3. 660179 3. 664532
			$\begin{array}{r}385 \\ \hline 9 \\ 9 \\ 56 \\ \hline 19.1 \\ \hline 9.4\end{array}$		Alcatraz flagstaff Point Cavallo 2	4618.8 85.77	$\begin{aligned} & 3.664532 \\ & 1.933317 \end{aligned}$
$\begin{gathered} \text { Halfway } \\ 1895 \end{gathered}$	$\begin{array}{r} 375040.871 \\ 1222912.492 \end{array}$	$\begin{array}{r} 1260.1 \\ 281.0 \end{array}$	2123929.0	324015.5	Peninsula Hill a	3428.6	3. 535117
			2432608.1	633058.7	Brooks I.	12949. 5	4.112254
			2485819.4	690034.2	Angel I. Peak ${ }^{\text {? }}$	5325.3	3. 726341
			2894050.5	1094518.2	Yerba Buena I.	113380	4. 054537
			3035159.8	1235200.7	Point Cavallo 2	1482.0	3. 170837
			492452.6	2292239.4	Bonita Point L. H.	48988	3. 690093
Richardson East 1895	$\begin{array}{rrrr} 37 & 51 & 05.878 \\ 122 & 29 & 51.544 \end{array}$	$\begin{array}{r} 181.2 \\ 1260.2 \end{array}$			Peninsula Hill 2 Brooks I.	3532.8 13527.6	3. 548114
			$\begin{array}{llll}248 & 12 & 35.8 \\ 251 & \infty & 04.9\end{array}$		Brooks I. Belvedere Point	13527.6 3743.9	4.131231
			$2564747 \cdot 3$	764943.0	Angel I. N. W. 2	4732. 4	3.675077
			2590855.7	79 11 25.1	Angel I. Peak ${ }^{2}$	6058.	3. 782328
			3912911.8	11134004.1	Yerba Buena I.	12526.0	4.09781I
			3081241.1	128813050	Halfway	1246.3	3.095628
Strawberry Hill 2 1895	$\begin{array}{rrr} 37 & 52 & 46.598 \\ 132 & 29 & 52.278 \end{array}$	$\begin{aligned} & 1436.5 \\ & 1277.6 \end{aligned}$	$\begin{array}{lllll}288 & 13 & 25.1\end{array}$	1081555.0	Angel I. Peak a	6282.7	3. 798149
			2890950.1	1091101.6	Peninsula Hill 2	3014. 0	3. 479149
			3453421.2	1653446.2	Haliway	4002.4	3. 602325
			3594007.5	1794007.9 .	Richardson East	$3105 \cdot 3$	$\text { 3. } 492108$
Oakland Point 1881	374830.031	925.8	922610.4	3722406.7	Yerba Buena I.	4941.7	
	1221833.219	812.6	1574736.6	3374555.9	Rocky I.	10608.2	$4.02564 \mathrm{I}$
			1824802.8	$24^{814.7}$	Highland	9650.1	3.984534
Alameda Whatl 188ı	$\begin{array}{rrrr}37 & 46 & 27.502 \\ 122 & 18 & 14.884\end{array}$	847.8	$\begin{array}{llll}126 & 31 & 07.6 \\ 173 & 13 & 45.1\end{array}$	$\begin{array}{llll}306 & 28 & 52.7 \\ 353 & 13 & 33.9\end{array}$	Yerba Buena I. Oakland Point	6701.5 3804. 2	$\begin{aligned} & \text { 3. } 826174 \\ & \text { 3. } 580262 \end{aligned}$
		364.2	1731345.1	3531333.9	Oakland Point	3804. 2	3. 580262
$\begin{aligned} & \text { Yerba Buena I. } 2 \\ & 1895 \end{aligned}$	$\begin{array}{r} 3748 \quad 36.778 \\ 1223155.019 \end{array}$	1133.8 1345.8		$\begin{array}{llll}189 \\ 1911 & 11 & 06.9 \\ 101 & 03 & 26.9\end{array}$	Sierra Point Stony Hill		
		1345.8	$\begin{array}{llll}11 & 04 & 07.8 \\ 65 & 48 & 14.7\end{array}$	$\begin{array}{llll}191 & 03 & 26.9 \\ 245 & 45 & 05 .\end{array}$	Stony Hill	8524.9 8279.4	3.930689 3.917998
			7812202.2	$\begin{array}{ll}258 & 18 \\ 25 & 25.7\end{array}$	Presidio Hill	8022.6	3.945598
			923504.8	2722904.0	Bonita Point L. H.	14410.2	4.158671
North Twin* 1895	374513.2121229647.990	407.31174.8	1615033.1	3414956.0	Presidio Hill	4728.1	
			1722549.0	3522539.4	Lone Mt. Cross	2904. 5	3. 463076
			29846 31. 7	484931.0	Yerba Buena I. a	9528.2	3.979009
			2903959.1	1104217.5	Stony Hill	5917.9	3. 772165
			3313634.2	$1513^{8} 32.8$	Sierra Point	9972. 0	3. 998781
$\begin{gathered} \text { Point Avisaderoz } \\ 1852 \end{gathered}$	$\begin{array}{r}3743 \\ 12231829 \\ \hline 27.449\end{array}$	$\begin{aligned} & 1042.9 \\ & 1162.0 \end{aligned}$	244045.9	2043940.4		6283.5	3. 798201
			1123754.0	2923449.9	North Twin	7971.0	3.901514
			1180718.2	2980632.6	Stony Hill	2065.9	3. 315117
			1273244.7	3072930.4	Lone Mt. Cross	9758.7	3.989390
			1583535.6	$\begin{array}{lllllllllllll}338 & 35 & 35.5\end{array}$	Point Avisadero	1.83	0. 26188
			1785150.9	3585146.1	Yerba Buena I. a	9341.9	3-970434

*This point is in the area of the 1906 earthquake disturbance.
$6348 \mathrm{r}-1 \mathrm{I}=14$

San Francisco Bay-Continued.

Station	Latitude and longitude	Seconds in meters	Azimuth	Back azimuth	To station	Distance	Logarithm
Visitation Knob* 1895	"	m	"	- , "		meters	
	374255.722	1717.8	01007.4	1801007.1	Sierra Point	4535.2	3.656592
	12223 33.964	831.9	1314521.7	3114322.7	North Twin	6367.0	3.803938
			200 o5 49.9	20 65 6 060930.5	Stony Hill	2287.7 2861.1	$\begin{aligned} & \text { 3. } 359406 \\ & 3.456529 \end{aligned}$
Point San Bruno a* 1895		528.7		33401 16. 3	Sierra Point	2451.0	3. 389347
	$\begin{array}{rlrl}37 & 39 & 17.151 \\ 122 & 22 & 30.709\end{array}$	528.7 1243.0	$\begin{array}{llll}154 \\ 171 & 03 & 55.3 \\ 178\end{array}$	335103188	Visitation Knob	6821.4	3.833875
			1781424.7	35814178	Stony Hill	8891.2	3. 948959
			1910409.8	110448	Point Avisadero	8065.3	3. 906621
			3320742.9	521230.9	San Leandro Pt. 2	14602.5	4. 164427
$\underset{1895}{\text { Candlestick Point * }}$	374248.341	1490. 3	3570039.3	177 O 47.9	Point San Bruno 2	6519.9	3. 814238
	1222304.579	112. 2	93948.2	1893930.0	Sierra Point	4369. 5	3.640434
			$\begin{array}{ll}181 & 36 \\ 87.4\end{array}$	13619.1	Stony Hill	2376.9	3. 376013 .
			2332410.6	532457.8	Point Avisadero 2	2352.7	3. 371562
Lower Sierra Point* 1895	374031.000	955. 7	3443236.3	1643242.0	Point San Bruno 2	2362.2	3.373321
	1222316.396	401.7	803702.6	26036		449.9	2.653096
			1491416.4	3391206.6	North Twin	10127. 2	4.005489
			1742930.4	3542919.6	Visitation Knob	4482.5	3.651521
			1830456.1	30504.8	Stony Hill	6619.8	3.820845
			18354438.6	$35445 \cdot 7$	Candlestick Pt.	4244. I	3.627785
			2010740.2	210834.7	Point Avisadero 2	6043 : 1	3.781262
$\begin{aligned} & \text { Baden Hill * } \\ & 1895 \end{aligned}$	3739 29.150	898.6	1863946.1	639 51. 5	Sierra Point	1845.9	3. 266219
	$122 \begin{array}{ll} \\ 23 & \text { 43. } 249\end{array}$	1060.0	1990220.1	190236.7	Lower Sierra Point	2017.1	3. 304749
			286 or 23.0	106 ar 55. 1	Point San Bruno 2	1339.9	3. $12708{ }_{4}$
			2003606.0	203716.9	Point Avisadero a	8059.3	3.906299
Oyster Point*1895		1767.0	3470841.7	1670848.8	Point San Bruno 2	1270.2	3. 103859
	$122 \quad 3302.237$	54.8	491047.7	2291032.6	Baden Hill	1328.3	3. 123309
			1404007.0	3203947.3	Sierra Point	12478	3. 096133
			1613127.4	3413118.8	Lower Sierra Point	1094.9	3.039372
			1952034.0	151219.8	Point Avisadero 2	6922.0	3.840230
			171 57 3r. 3	3515711.8	Visitation K nob	5554.9	3. 744677
			1792236.9	3592235.4	Candlestick Point	5273.0	3. 722055
			18004093	00409.5	Stony Hill	7648.7	3.883585
Belair Island1895	$\begin{array}{r}37 \\ \hline 128 \\ \hline 19.419\end{array}$	598.6 1095.3	$\begin{array}{llll}180 & 55 & 57.0\end{array}$	0 3 3 345 151.7	Baden Hill	2101.2 3091.1	
	1222344.677	1095.3	$\begin{array}{lllll}183 & 34 & 45.4 \\ 216 & 37 & 10.8\end{array}$	3 34451.7 36 37 43.8	Sierra Point San Bruno Point 2	3991.1 2317.7	3.601091 3.345906
```Pt. San Mateo Extremity* 1895```			2443232.0	3342988.3	Sierra Point	11323.2	4.053968
	$\begin{array}{rrrr}372 \\ 121 & 19 & 06.468\end{array}$	158.7	1651233.7	3451055.2	Point Avisadero	15444.9	4. 188786
			1702126.5	35019 43.2	Yerba Buena I.	24620.0	4. 391288
			2004155.8	204426.4	San Leandro Point a	17078.0	4. 232438
			2823932.9	1024743.9	Red Hill	$20364 \cdot 3$	4.306731
$\begin{gathered} \text { Angelo 2 } \\ 1895 \end{gathered}$		$282.5$	146. 4908.5	3264427.7	Sierra Point	20617.3	4.314231
	2221554.066	1327.7	1493252.6	3293055.3	Point San Mateo Ex.	9313.3	3.969104
			1592059.3	3391723.6	Point Avisadero	24540.8	4. 389888
		,	1830937.8	31011.1	San Leandro Point 7	24037.4	4. 380888
			25637 54.1	764407.6	Red Hill	15468.1	4. 189438
$\underset{\text { I } 895}{\text { Union City Creek }}$		114.8	3202143.8	1402337.3	Red Hill	7164.2	3.855165
	$1230847 \cdot 170$	1157.1	$\begin{array}{r}49 \\ 49 \\ 96 \\ \hline 18 \\ \hline 12.2\end{array}$	2390252.0	Angelo 2	13865.3	4.141927
			860503.6	2655846.0	Point San Mateo Ex.	15228.8	4. 182667
			1103901.5	2903000.1	Sierra Point	23238.1	4.366201
Coyote Hill Creek 1895	373.349 .065	1512.6	2910440.8	1110608.8	Red Hill	3798.4	3. 579601
	1220805.372	131.8	665033.2	$\begin{array}{llll}246 & 46 & 07.9\end{array}$	Angelo a	12517.7 16514.8	4.097537
			1005200.5	3804517.6	Point San Mateo Ex.	16514.8	4.217873
West Point * 1895	$373015 \cdot 777$	$486.4$	975049.5	2774551.8	Angelo 2	12118.8	4. 083458
	$1220745.190$	11809.9	$1754131.9$	3554119.6	Coyote Hill Creek	$6594.1$	$3.819156$
			2102022.9	302138.5	Red Hill	$6035 \cdot 9$	3.780739
Dumbartonchimney1895	$373003 \cdot 34 \mathrm{x}$		9817414.3		Angelo 2		
	1230623.957	$588.5$	1005303.4	2805214.0	West Point	$2031.8$	$\text { 3. } 307878$
			11881843.3	$\begin{array}{rrrr}298 & 10 & 58.6 \\ 10 & 41 & 33.3\end{array}$	Point San Mateo Ex.   Red Hill	21248.6 5690.8	4.327329 3.755171
			$1904057 . x$	104123.3	Red Hill	5690.8	3.753171
South Red Hill 1895	$\begin{array}{r} 373219.483 \\ 12204 \quad 53.961 \end{array}$	$\begin{array}{r} 600.6 \\ 1324.8 \end{array}$	274636.8	2074542.0	Dumbarton flumehouse chimney	4743. 4	3.676092
			1102747.4	3002530.7	Coyote Hill Creek	$5450.0$	$\text { 3. } 736399$
			14023 47.7	32023 19. 1	Red Hill	1810.6	3. 257825

*This point is in the area of the 1906 earthquake disturbance.

San Francisco Bay-Continued.

Station	Latitude and longitude	Sec onds in meters	Azimuth	Back azimuth	To station	Distance	Logarithm
	, "	m	- "	- 11		meters	
Interior flumehouse chim-	373056.844	1753.4	710256.8	251 O1 25.5	West Point	3896. 1	3. 590088
ney	1320515.164	372.4	1705206.2	3505150.5	Red Hill	3993.2	3.601321
$1895$			19133 54.2	113307.1	South Red Hill	2600.3	$3.415019$
Dumbarton oysterhouse	3728 57.296	1766.4	$104 \begin{array}{lll} \\ 188 & 03.6\end{array}$	28431366.4		16149.3	
flagstaff*	1220517.778	436. 8	123   18   185   185   175   15	$\begin{array}{rrrr}303 & 44 & 10.3 \\ 5 & 21 & 47.2\end{array}$	West Point South Red Hill	$4355 \cdot 3$ 6260.6	$\begin{aligned} & 3.639004 \\ & 3.796616 \end{aligned}$
1895			185   175   175   43   17.1	521 35543 36.2	South Red Hill Red Hill	6260.6	$\begin{aligned} & 3.796616 \\ & 3.883698 \end{aligned}$
San FrancisquitoCreek 2*	37 2749.252	2518.4		$\begin{array}{rrrr}331 & 18 & 21.2 \\ 3 & 24 & 48.7\end{array}$	West Point Red Hill	$5149.2$ $9743.1$	
1895	1220604.588	113.8	$\begin{array}{lll} 183 & 24 & 34 \cdot 3 \\ 191 & 45 & 25 \cdot 5 \end{array}$	$\begin{array}{llll}3 & 24 & 48.7 \\ 11 & 46 & 88.4\end{array}$	Red Hill   South Red Hill	9743.1 $8509.6$	3.988699   3. 929911
Alviso 1896	372741.467 122 O1 50.346	1278.4	931317.1	2721042.4	San Francisquito Creek 2	6252.7	3. 796069
		1237.3	1143920.9	29437 14.7	Durnbarton oysterhouse	5607.6	3.748778
			1521541.8	3321350.0	South Red Hill	9685.2	3.986108
Mowry's oysterhouse ${ }^{\text {* }}$	$\begin{array}{rrrr}37 & 29 & 33.965\end{array}$	1047.1 385.4	99 1034249.2 49.2	$\begin{array}{llll}279 & 35 & 41.5 \\ 383 & 47 & 12.2\end{array}$	Angelo ${ }^{2}$ West Point	17500.9 5402.2	
$1895$	1220411.617	285.4	103   116   16   15	283   296   26   26   36   12.2   37.5	West Point Point San Mateo Éx.	5402.2 24551.2	$\begin{aligned} & 3 \cdot 732571 \\ & 4 \cdot 390072 \end{aligned}$
			$\begin{array}{ll}161 & 20 \\ 46.8\end{array}$	3411952.3	Red Hill	6858.3	3.836314
			$168 \quad 2906.4$	3482840.6	South Red Hill	5207.6	3. 716641
			3145750.5	1345916.5	Alviso	4906.8	'3.690802
Albrac	$\begin{array}{llll}37 & 28 \\ 46.126\end{array}$	1422.0	684446.0	$\begin{array}{llll}248 & 42 & 39.2\end{array}$	Alviso	$5494.6$	$\text { 3. } 739936$
1896	1215821.976	540.0	915756.9	2715343.8	Dumbarton oysterhouse	$10221.8$	$4.009529$
			994618.9	3794246.0	Mowry's oysterhouse	$8715.6$	$\text { 3. } 940297$
			1242230.3	3041831.6	South Red Hill	$11659.7$	4.066687
Dyke 1806	372720.420 $121 \quad 5643.512$	$\begin{gathered} 629.5 \\ 1009.5 \end{gathered}$		$\begin{array}{llll}374 & 53 & 30.8 \\ 307 & 23 & 06.1\end{array}$	Alviso   South Red Hill	$\begin{array}{r} 7568.9 \\ 15170.6 \end{array}$	$\begin{aligned} & 3 \cdot 879031 \\ & 4 \cdot 181002 \end{aligned}$
	1215643.512		$\begin{array}{ll}137 & 31 \\ 134 & 34.0\end{array}$	3173034.1	Albrae	3582.7	4. 554216
Goucher		1448. 5	68 28 05.8   123 52	2482353.1	Pulgas F. Base	10963.4	4. 039945
1852	1220113.086	321.4	1235209.6	3024926.4	Red Hill	7829.3	3.893721
Punta Potrero	373003.769	186.2		2233402.0	Pulgas E. Base		3. 570971
185i	1220623.662	581.2	19038	103833.1	Red Hill	5676.5	$\text { 3. } 754077$
			2600358.2	800707.3	Goucher	7743. 5	3.888938
Union Island	3734 21.701	669.0	3415608.6	1615627.8	Red Hill	2495.9	3. 397235
1852	1220612.513	307. 1	743621.8	$25426 \quad 25.8$	Ridge	24914.9	4. 396459
Uncle Edward	373403.420		2541201.3	$\begin{array}{rrrr}74 & 1250.8\end{array}$	Union I.	2070.8	$3.316146$
$1857$	1220733.713	$827 \cdot 3$	3031023.1	1231131.8	Red Hill	$3305.9$	3. 519292
Union City Mills		1344. I	$\begin{array}{llll}25 & 29 & 33\end{array}$			$2797.1$	
$1857$	1220533.456	575.4	45 119 19	225   299   299   28   23   12.7	Uncle Edward Contra Costa (2)	$\begin{aligned} & 4444 \cdot 4 \\ & 6224.2 \end{aligned}$	$\begin{aligned} & 3.647818 \\ & 3.794082 \end{aligned}$
Contra Costa (2)	373722.737 1220904.516	701.0 110.8		$\begin{array}{llll}119 & 25 & 44.3 \\ 142 & 55 & 30.9\end{array}$	Unlon City Mills Union 1.		
1852	1220904.516	110.8	$\begin{array}{lll}322 & 53 & 46.0 \\ 327 & 51 & 44.4 \\ 340\end{array}$		Union 1.   Red Hill	$\begin{aligned} & 6996.7 \\ & 9391.8 \end{aligned}$	$\begin{aligned} & 3.844894 \\ & 3.972749 \end{aligned}$
			327 51   340 03   38.4	1475348.9   16004   103	Uncle Edward	9391.8 6536.2	3.972749 3.815323
			603619.2	2403215.7	Guano I.	11236.8	4.05064 ${ }^{\text {3 }}$
			158 2117.6	3381957.6	Contra Costa (1)	8682.4	3.938638
Point San Matco*	373597.086	835.0	16556 57.1	3455523.4			
1852	1221914.089	$345 \cdot 7$	225   290   290   12   126.9	4517 110 444.3	Contra Costa (1) Guano I.	16528.4 5525.3	$\text { 4. } 218232$
			2904236.1	110 $4444 \cdot 5$	Guano I.	5525.3	3.742355
Mowrys Crcek $\dagger$	$\begin{array}{rrr}37 & 28 & 22.94 \\ 122 & \text { O1 } & 27.34\end{array}$	707.2 675.8	$\begin{array}{r} 922518 \\ 1843024 \end{array}$	2722114 43033	Pulgas E. Base Goucher	$9856.9$ $4454 \cdot 4$	$\begin{aligned} & 3.99374 \\ & 3.64879 \end{aligned}$
1852	122 or 27.34	671.8					
San Antonio Polnt $\dagger$	$\begin{array}{rrrr}37 & 48 & 23.96 \\ 122 & 18 & 26.12\end{array}$	717.1 639.0	285600 944111	$2085557$ $2743903$	Point Avisadero   Yerba Buena I.	10192.2   5127.9	$4.00897$
1852	1321826.12	639.0	9441 II				
Middle Point $\dagger$ 1852	$\begin{array}{rrr}37 & 46 & 35.14 \\ 122 & 17 & 36.80\end{array}$	$\begin{array}{r} 1083.3 \\ 900.6 \end{array}$	$\begin{array}{r} 4742 \text { OI } \\ 1204254 \end{array}$	$\begin{array}{lll} 227 & 39 & 28 \\ 300 & 40 & 16 \end{array}$	Point Avisadero Ferba Buena I.	$8299.8$ $7348.2$	$\begin{aligned} & 3.91907 \\ & 3.86618 \end{aligned}$
Ditch (Cutts) $\dagger$		290.7	3354821	1555026	Red Hill	13324.8	4.09078
$1852$	1220906.77	166.2	5 5 5213	2314402	Ridge	25096.3	4.3996I
Union Island Rock $\dagger$	373421.62 1220611.80	666.5 289.6	$\begin{array}{r}342 \\ \hline 16 \\ 16 \\ \hline\end{array}$	$\begin{array}{lll} 162 & 18 & 28 \\ 196 & 49 & 25 \end{array}$	Red Hill West Point	$\begin{aligned} & 2488 \\ & 7018 \end{aligned}$	$\begin{aligned} & \text { 3. } 39589 \\ & 3 \cdot 89864 \end{aligned}$

* This point is in the area of the 1906 earthquake disturbance.
$\dagger$ No check on this position.

San Francisco Bay-Continued.

Station	Latitude and longitude	Seconds in meters	Azimuth	Back azimuth	Tostation	Distance	Logarithm
Ditch (Rodgers)	"	m	"	"		melers	
	373939.388	1214.3	$\begin{array}{llll}353 & 38 & 04.3\end{array}$	1733816.0	Contra Costa (2)	4239.0	3.62767
	1220923.682	580.5	1444046.0	3243937.8	Contra Costa (1)	4727.2	3.674603
$\begin{gathered} \text { San Lorenzo } \\ 1857 \end{gathered}$		1428.9	$\begin{array}{llll}10 & 1 & 26.0 \\ 80 & 26 & 06.7\end{array}$	$\begin{array}{llll}190 & 17 & 06.0 \\ 260 & 25 & 35.0\end{array}$	Contra Costa (2) Ditch (Rodgers)	4499.9 1291.1	$\begin{aligned} & 3.653303 \\ & 3.110975 \end{aligned}$
	12208 31. 737	$777 \cdot 9$	802606.7	2602535.0	Ditch (Rodgers)	1291.1	3. 110975
Thompsons Point 1857		1113.7	$\begin{array}{lllll}306 & 06 & 57.9\end{array}$	126078080	San Lorenzo	2603.0	3.415477
	1220957.531	1409.8	$\begin{array}{llll}334 & 37 & 27.9 \\ 347 & 42 & 55.9\end{array}$		Ditch (Rodgers) Contra Costa (z)	1935.9 6102.1	3. 286889 3. 785480
			$1375433 \cdot 5$		Contra Costa (x)	2840. 1	3.453336
$\begin{aligned} & \text { Kerr } \\ & 1857 \end{aligned}$	374030.276	933.4	$14 \begin{array}{lll}13 & 42.9\end{array}$	1943234.1	San Lorenzo	1399.1	3.145835
	1220817.401	426.4	$46 \times 0808$	2255927.9	Ditch	2258.3	3. 353791
				2741140.4	Thompsons Point		3-390994
Polite Man$1857$	374123.750	732.2	3342051.7	1542111.4	Kerr	1828.8	3. 262170
	1220849.708	1217.9	483240.9	2283159.4	Thompsons Point	2217.6	3. 345878
			1001029.0	2800859.8	Contra Costa (1)	3622.3	3. 558983
Dumbarton Point * 1895	373004912	151.4	9806 54.3	278 or 07.8	Angelo a	14115.7	4.149701
	1220625:009	614.3	993931.7	2793842.9	West Point	1997. 7	3. 300534
			191 or 51.8	1180218.6	Red Hill	5648.0	3. 751898
			2081850.0	281945.4	South Red Hill	4712.8	3.673279
Second interior flumehouse, flagstaff $\dagger$ i89s	373101.95		1604851	3404818	Red Hill	4008	3.60292
	1220447.33	1162.3	1760559	356 O5 55	South Red Hill	2396	3. 37946
```Ravenswood old wharf. flagstaff* } 1895```	$\begin{array}{r}372842.39 \\ \hline 120\end{array}$	1303.8	$\begin{array}{llll}160 & 23 & 56 \\ 104 & 03 & 17\end{array}$	3402311 14	West Point   Red Hill	3000 830	$\text { 3. } 48567$
	1320703.40	83.5	1940217	140307	Red Hill	8340	$\text { 3. } 92118$
West Point flumehouse, E. gable 1895	372937.517	848. 3	1041319	284 0812	Angelo 2	12793	$\text { 4. } 10697$
	1220729.095	714.8	1650642	3450632	West Point	1540	$\text { 3. } 18738$
			2013655	2138	Red Hill	7203	3. 85754
South South Tree* 1894-5	372243.780	1349.7	1690022.1	3485630.1	Yerba Buena I.	48779.2	4.688235
	1221534.770	855.5	1781598.4	3581516.7	Angelo ${ }^{\text {a }}$	15587.6	4.192779
			2171600.5	373201.7	Red Hill	24070.5	4.381485
			2193555.6	394041.1	West Point	18094.7	$\text { 4. } 257555$
Menlo Park floodhouse, tower*1894	372814.449 122	445.4 $\times 168.6$	1253617.8 137 13 8 19.9		Angelo 2 Pt. San Mateo Ext.		3.966500
	$1221047 \cdot 556$	1168.6			Pt. San Mateo Ext. Red Hill	18165.3 11695.2	4. 259242 4. 068007
			2300737.9	500918.9	West Point	5836.4	3. 766144
South Tree*$1894-5$	37 23 52.458 123 17	1617.2	$\begin{array}{lllll}160 & 58 & 36.4\end{array}$	3405447.3	Belair I.	28a77. 1	4.451435
	1221798.745	707.0	$\begin{array}{llll}162 & 22 & \text { Of. } 5 \\ 163 & 43 & 54.8\end{array}$	$\begin{array}{llll}342 & 18 & 18.3 \\ 343 & 40 \\ 12\end{array}$	Baden Hill	30306. 2	4.481531
			$\begin{array}{lllll}163 & 43 & 54.8 \\ 164 & 31 & 8 \\ 164 & \end{array}$	34344012.0	Sierra Point	31996.9	4. 505108
			16431588.3	$\begin{array}{llll}344 & 28 & 26.6 \\ 344 & 38 & 23.2\end{array}$	Lower Sierra Point	31945.9 39583.6	4. 504414
			16431539.2		Point San Bruno 2 Point A visadero	29583.6 36972.0	4. 471051
			1700956.0 1715354.7	350 351 151 51812.2	Point Avisadero Yerba Buena I.	36972.0 46225.5	4. 567873
			185 183 16.8	53447.7	San Leandro Point 2	37641. 3	4. 575665
			2253251.4	454002.0	Red Hill	34337.6	4.386278
Pesk Flag 1895	373315.124	466.3	3274430.8	1474457.6	South Red Hill	2028. 4	3. 307154
	1320538.059	934. 2	35239 m 2.4	1722926.3	Interior flumehouse chimney	4299.9	3.633459
			104744.7	1904716.7	Dumbarton flumehouse chimncy	6019.0	3. 779534
			110733.7	1910705.1	Dumbarton Point	5976.3	3. 776431
			123723.5	1923721.7	Red Hill	328.4	2. 516375
			292730.2	2092612.8	West Point	6349.4	3. 802734
			$\begin{array}{r}75 \\ \hline 10606.4\end{array}$	2553251.5	Angelo 2 2ill Creek	15614.3	4. 193523
			1060909.5	2860739.8	Coyote Hill Creek	3764.0	3. 575651
			$13815 \begin{array}{ll}13 & 53.4\end{array}$	$31813 \quad 38.1$	Union City Creek	6967.9	$\text { 3. } 843100$
			$1453^{8} 49.4$	3253307.1	San Leandro Point 2	24381.6	4. 387063
Ravenswood warehouse, E. gable ${ }^{\text {t }}$ 1895	$372835 \cdot 590$	1097.2		$29032 \begin{array}{lll}57.3\end{array}$	Angelo 2	13461.2 3145.0	
	1220775.072	517.8	$\begin{array}{ll}169 & 08 \\ 196 & 39.8 \\ 196 & 36.5\end{array}$	349 16 163031.1 37	West Point Red Hill	3145.0 8653.8	3. 497621 3.937307
				16 27	South Red Hill	7790.9	3. 3. 891588
			2813427.2	101 3748.4	Alviso	8296.6	3. 918899

*This point is in the area of the 1906 earthquake disturbance.
\dagger No check on this position.

San Francisco Bay-Continued.

Station	Latitude and longitude	Secondsin meters	Azimuth	Back azimuth	To station	Distance	Logarithm
Red brick chimney 1857	"	$\begin{gathered} m \\ 1003.2 \\ 718.6 \end{gathered}$		1621509.5 180573^{88}. 1 26237 00. 2 3242055.5	Union I. Uncle Edward Contra Costa (a) Ditch (Rodgers)	meters 6177.7 6448.0	3. 790827
	373732.540 1920739.305						
	1220729.305						3. 809424
						2354.3	3. 371862
						4812.1	3.682337
$\begin{gathered} \text { Eden staff } \\ 1857 \end{gathered}$	$\begin{array}{rrrr}37 & 37 & 04.472 \\ 122 & 07 & 05.983\end{array}$	$\begin{array}{r} 137.9 \\ 146.7 \end{array}$	$\begin{array}{rrr} 345 & 20 & 47.0 \\ 6 & 57 & 04.4 \\ 100 & 58 & 22.3 \\ 144 & 45 & 22.3 \end{array}$	1652119.6	Union I. Uncle Edward Contra Costa (2) Ditch (Rodgers)	$\begin{aligned} & 5186.8 \\ & 5623.1 \\ & 2960.9 \\ & 58487 \end{aligned}$	$\begin{aligned} & \text { 3. } 714897 \\ & 3 \cdot 749973 \\ & 3 \cdot 471426 \\ & 3 \cdot 767062 \end{aligned}$
				1865647.5			
				2805710.0			
				3244358.4			
North chimney1857	373914.0021220714.908	$\begin{aligned} & 431.7 \\ & 365.4 \end{aligned}$	$\begin{array}{rrr} 38 & 05 & 07.2 \\ 103 & 56 & 13 \cdot 2 \\ 117 & 54 & 42 \cdot 2 \\ 122 & 26 & 20.3 \\ 146 & 55 & 39.2 \end{array}$	21804000	Contra Costa (2) Ditch (Rodgers) San Lorenzo Thompsons Point Kerr	4357.6 3252.0 2130.9 4721.9 2806.3	3.639345
				2835454.5			3.512152
				2975355.3			3. 328570
				3022440.9			3.674114
				3265501.1			3. 448140
Thompsons staff 1857	$\begin{array}{r} 374042.849 \\ 1220948.724 \end{array}$	$\begin{aligned} & 1321.0 \\ & 1194.0 \end{aligned}$	$\begin{aligned} & 228 \\ & 24 \\ & 279 \\ & 279 \\ & 312 \\ & 39 \\ & 32 \\ & 342 \\ & 34 \\ & 34 \\ & 24 . \\ & 55 \cdot 4 \end{aligned}$	$48 \quad 54 \quad 57.7$	Polite Man Kert San Lorenzo Ditch (Rodgers)	1918.6	$\text { 3. } 282989$
				995004.2		2271.2	3. 356255
				1324311.9		2567.8	3. 409567
				1623510.7		$\begin{gathered} 2050.5 \\ 21862.9 \end{gathered}$	
High lone tree* 1894	$\begin{array}{r} 372653.257 \\ 1221959.721 \end{array}$	$\begin{aligned} & 1641.9 \\ & 1468.1 \end{aligned}$	1652317.1	3452100.0	Belair I. Baden Hill Sierra Point Luwer Sierra Point Point San Bruno 2 Point Avisadero Yerba Buene I. San Leandro Pt. 2 Red Hill		4. 339707
			1664613.6	3464357.5		23941.0	4.379142
			1681027.4	3480816.8		25684.0	4.409662
			1691039.3	3490839.6		25668.5	4.409400
			$\begin{array}{llll}169 & 38 & 36.8 \\ 175\end{array}$	3493652.8		23314.7	4. 367629
			1750639.3	3550533.8		30961.9	4. 490827
			1755903.5	3555753.2		40287. I	4.605166
			192 241 24 $35 \begin{aligned} & 39.9 \\ & 43.7\end{aligned}$	13 61 61 $34 \begin{aligned} & \text { a } \\ & \\ & \end{aligned}$		32727.1 34005.8	$\text { 4. } 514907$
			2415543.7	613426.5		24003. 8	4. 3^{80243}
Chinahouse, E. gable* 1894	$\begin{array}{r} 373124.657 \\ 122 \quad 1223.679 \end{array}$	$\begin{aligned} & 760.2 \\ & 588.5 \end{aligned}$	$\begin{array}{r} 844410.2 \\ 1272406.2 \\ 2523806.5 \end{array}$	2644202.1 3072000.7 724211.9	Angelo 2 Pt. San Mateo Ext. Red Hill	5188.312439.1	$\begin{aligned} & \text { 3. } 715026 \\ & 4.094789 \end{aligned}$
Redwood City Creek* 1894	$\begin{array}{rrr} 37 & 32 & 14 \cdot 906 \\ 122 & 11 & 37 \cdot 580 \end{array}$	$\begin{aligned} & 459.5 \\ & 922.6 \end{aligned}$	$\begin{array}{rl} 72 & 10 \\ 118 & 57.4 \\ 118 & 36 \\ 51.3 \\ 130 & 50 \\ 260 & 21.1 \\ 01 & 03.4 \end{array}$	$\begin{array}{rrrr} 252 & 08 & 21.2 \\ 298 & 32 & 17.7 \\ 310 & 49 & 03.7 \\ 80 & 04 & 40.7 \end{array}$	Angelo 2 Pt. San Mateo Ext. Sierra Point Red Hill	6515.8	3. 820584
						12544.7	4. 098461
						23257.6	4. 366564
						8887.8	3.948793
Redwood little oysterhouse, E. gable* 1894	$\begin{array}{rrr} 37 & 32 & 13.411 \\ 122 & 18 & 37 \cdot 738 \end{array}$	$\begin{aligned} & 413.4 \\ & 926.5 \end{aligned}$	$\begin{array}{r} 723310.9 \\ 11848 \\ 25943 \\ 2594 \end{array}$	$\begin{array}{rlr} 252 & 30 & 34.8 \\ 298 & 43 & 51.8 \\ 79 & 47 & 25.1 \end{array}$	Angelo 2 Pt. San Mateo Ext. Red Hill	6598.2 12563.5 8899. 7	$\begin{aligned} & \text { 3. } 819424 \\ & 4.099110 \\ & 3.949373 \end{aligned}$
$\begin{gathered} \text { Tree Hill* } \\ 1894 \end{gathered}$	$\begin{array}{r} 373104.956 \\ 1227412.611 \end{array}$	$\begin{aligned} & 152.8 \\ & 309.7 \end{aligned}$	1823904.1	23921.8	Baden Hill Sierra Point	15560.8	
			1830432.7	30455.9		17403.6	4. 240616
				431823.5	Lower Sierra Point	17505.3	4. 243170
			1855525.4	55649.3	Yerba Buena I.	32602.9	4. 513256
			1873212.5	73300.4	Point San Bruno a	15306.6	4. $\times 84880$
			1884503.3	84631.8	Point Avisadero	23362.0	4. 368509
			2091622.4	292159.9	San Leandro Point 2	27675.7	4.442098
			$\begin{array}{lllll}263 & 12 & 03.4 \\ 273 & 29 & 38.1\end{array}$	8223 20. 5	Red Hill	27541.2	4. 439982
			27329 38.1	933939.3	West Point	24298.0	4.385570
South Beimont oysterhouse, red tank* 1894	$\begin{array}{rrr} 3732 & 40.319 \\ 122 & 13 & 17.830 \end{array}$	1243.0	534715.0	2334539.8	Angelo 2		
		437.7	1212410.3	3012037.8	Pt. San Mateo Ext.	10020.9	4. 000908
			1334310.3	3133653.9	Sierra Point	20909.9	4. 320352
			3660719.9	861158.3	Red Hill	11239.7	
			29835×2.1	1183834.7	West Point	9304. 5	3. 968692
$\begin{gathered} \text { Angelo Creek * } \\ 1894 \end{gathered}$	$\begin{array}{rrr} 37 & 33 & 38.244 \\ 122 & 14 & 48.086 \end{array}$	$\begin{aligned} & 1179.0 \\ & 1180.2 \end{aligned}$		$\begin{array}{cccc} 199 & 24 & 33 \cdot 1 \\ 298 & 23 & 59.8 \\ 314 & 22 & 34 \cdot 1 \\ 94 & 26 & 45 \cdot 9 \end{array}$	Angelo 2 Pt. San Mateo Ext. Sierra Point Red Hill	$\begin{array}{r} 4873.1 \\ 7209.1 \\ 18076.1 \\ 13468.3 \end{array}$	$\begin{aligned} & \text { 3. } 687804 \\ & \text { 3. } 85788 \mathrm{I} \\ & \text { 4. } 257104 \\ & \text { 4. } 129312 \end{aligned}$
San Matco oysterhouse, N. geble* 1894	$\begin{array}{rr} 37 & 34 \\ 128.956 \\ 122 & 15 \\ 49.118 \end{array}$	$\begin{array}{r} 892.7 \\ 2205.3 \end{array}$		181 0745.7	Angelo 2	6160.6	3. 789624
			1110638.1	181 310437.8 314 108	Pt. San Mateo Ext. Sierra Point	5189.8	3. 715155
			1341252.0	3140808.0	Sierra Point	15912.2	4. 201729
			1522532.0	3322153.2	Point Avisadero	18958.2	4. 277796
			2794904.3	995515.0	Red Hill	15149.4	4. 180396
Coyote warchouse, S. gable	3733 49.775	1534.4	29303 34.9	1130455.8	Red Hill	3543. 6	3. 549439
1894	$12307 \quad 53.809$	1320.6	358 O9 44. 6	1780949.8	West Point	6600.7	$\text { 3. } 819587$
			671536.9	2471044.3	Angeld 2	$1278 \% 6$	$\text { 4. } 106790$

* This point is in the area of the 1906 carthquake disturbance.

San Francisco Bay-Continued.

* This point is in the area of the 1906 earthquake disturbance.

San Francisco Bay-Continued.

Station	Latitude and longitude	Sec onds in meters	Azimuth	Back azimuth	To station	Distance	Logarithm
```Point Avisadero hog- ranch, white tank * 1894```	"	$m$	- ' "	"		meters	
	$37^{\circ} 4335.350$	1089.8	2833619.0	1033623.8	Point Avisadero 2	199.3	2. 299417
	1222155.356	1355.5	191540.3	1991451.1	Lower Sierra Point	6020. 2	3. 779614
			225304.3	2025204.0	Sierra Point	6248.3	$\text { 3. } 795762$
			$49 \quad 2845.9$	2292803.5	Candlestick Point	2230.4	$3 \cdot 348376$
$\underset{1903}{\text { Bernal }^{*}}$	374419.537	602.3	2804731.0	1004828.0	Stony Hill		
	1222435.128	860.0	3295345.6	1495423.0	Visitation Knob	2886.8	$3.475201$
Start 1903	374505.252	167.9	$\begin{array}{llll}351 & 30 & 39.7\end{array}$	1713046.6	Stony Hill	1855.5	3. 270792
	1223313.106	320.8	545636.7	2345546.5	Bernal	2453.4	3. 389763
$\begin{aligned} & \text { Mile }{ }^{*} \\ & 1903 \end{aligned}$	374410.954	337.6	3123107.6	132313188.8	Point Avisadero	1690.9	3. 228126
	1222238.368	939.5	$73{ }^{76} 41 \mathrm{l} 3$	2532626.9	Stony Hill	600. 1	2. 778233
			1530412.3	3330351.0	Start	1877.7	3. 273628
$\begin{array}{r} \text { Army* } \\ 1903 \end{array}$	374457.883	1784. 4	2542044.0	74.2104 .3	Start	842.1	
	1222346.229	1131.6	3260700	1460727.1	Stony Hill	$1948 \cdot 7$	$\text { 3. } 289754$
			452152.9		Bernal		3. 225966
$\begin{gathered} \text { Quarter* } \\ 1903 \end{gathered}$	3744 47.797	1473.5	3494850.8	1694856.7	Stony Hill		3. 123143
	1222311.450	280.4	110	39003 34.4	Army	906.4	2.957352
			1754124.8	3554123.8	Start	539.6	2.732135
$\begin{aligned} & \text { Half* } \\ & 1903 \end{aligned}$	374433.044	1018.7	3555441.9	1755443.4	Stony Hill	854.2	2.931575
	$122 \quad 2304.347$	106.4	$\begin{array}{r}79 \\ \hline 12347.2\end{array}$	2592251.7	Bernal	2261.4	3. 354373
			1264598.9	3064503.3	Army	1279.8	3. 107137
			1674853.3	3474846.8	Start	1015.9	3. 006846
			$31657 \mathrm{ra.1}$			931	2.969366
$\underset{1903}{T w o-M i l e}$	374327.659	852.6	695024.5	2494917.6	Visitation Knob	2855.7	3.455706
	1222144.514	1090. 1	1591749.6	3391747.8	Point Avisadero	205. 1	2.312107
$\begin{aligned} & \text { Hunters Point, chimney } z^{*} \\ & 1003 \end{aligned}$	$374345 \cdot 546$		360332.7	2160322.6	Two-Mile	682.2	
	$122 \text { 21 } 38.118$	688.5	524918.3	2324906.4	Point A visadero	594.9	$\text { 2. } 774498$
			633107.7	2432950.7	Visitation Knob	3443.6	3. 537010
			1045637.7	2845540.3	Stony Hill	2375.7	3. 375797
			1142920.2	29428 37. 1	Mile	1890.2	3. 276500
			1232500.3	3032335.8	Army	4050.8	3. 607540
			1334308.9	3134204.6	Start	3556.2	3. 550985
```California sugar-refinery, chimney* 1881-1903```	374535.039	771.6	491838.3	2291739.6	Bernal	3096.5	3. 490872
	1222359.234	1449.9	535810.3	2335741.6	Army	1422.6	3.153093
			861749.1	2661529.0	North Twin	5611.6	3.740089
			1262354.7	3062138.6	Heights	6746.9	3.829106
			1591531.9	3391443.5	Telegraph Hill 2	5443.0	3. 735837
			1945210.6	1452500	Yerba Buena I.	61173	3. 786559
			2384507.5	484750.6	Oakland Point	8654.8	3. 937258
			3325103.4	1525147.4	Point Avisadero 2	3852.6	3. 585756
			13000.4	1812958.8	Stony Hill	2455.6	3. 390158
			52413.5	1852352.1	Sierra Point	9179.0	3.962798
			143610.6	1943603.1	Quarter	1186.2	3.074145
$\underset{1881-1894}{\text { Yerba Buena L. H.* }}$	374837.558	849.6	2690206.9	890402.3			
	122 2141.442	1013.7	3061200.5	1261407.1	Alameda Whari	6264.5	$\text { 3. } 796884$
			13 41 15 33	1934044.4	Stony Hill	8318.5	3.920040
			512436.8	2312129.0	North Twin	9600.6	3.982305
			773950.1	2573754.1	Russian Hill	4730.3	3.674891
```Melrose smelting.works, chimney 1894-95```	3745 20.540	$633 \cdot 2$	292241.8	2091826.4	Pt. San Mateo Ex.	20902.2	4.320191
	1221308.504	208.2	454619.3	2254502.3	Bay Farm		3.633459
			615258.7	2414559.1	Sierra Point	19060.6	4. 280137
			1125429.5	2924830.1	Yerba Buena I.	15576.4	4. 192467
Moraghan's oysterhouse. 1.. window N. iront* 1894	373730.424	937.9	1213319.6	3013218.1	Belair I.	2887.0	3. 460447
	1222204.336	106.3	146.2859 .2	3262758.6	Baden Hill	4390.7	3. 642537
			158 os 22.3	33804 27.2	Sicrra Point	5921.8	3. 772455
			1605630.8	3405602.4	Point San Bruno 2	3481.2	3. 541733
			1732407.3	3537332.0	Stony Hill	12258.6	4.088442
			1820650.2	20700.5	Point Avisadero 2	11211.4	4.049661
```Point Avisadero (Potrero) N. Range* 1893-1897```	37 45 425 21	661. 6	1183414.0	2983213.1	Lone Mt. Cross	5491.4	3. 739687
	1222346.549	1139.5	1335421.3	3135234.2	Heights	5930.8	3.773115
			$\begin{array}{r}163 \\ \hline 18\end{array}$	3434738.3	Hopkins Art Inst.	4157.7	3.618851
			2654836.6	$345 \begin{array}{llll}3 & 32.9 \\ 345 & 47\end{array}$	Jewish Synarogue	3883.4	3. 588210
			1654845.3	3454730.7	Angel I Peak ${ }^{2}$	12127.3	4. 083764
			$\begin{array}{lllll}170 & 24 & 35.4 \\ 181 & 49 & 19.9\end{array}$	3502421.4 14922.8	St. Patricks Church Selby shot-tower	3356.7 3652.8	3. 525911 3. 562621
			$\begin{array}{llll}181 & 49 & 19.9 \\ 204 & 21 & 43.2\end{array}$	14922.8 242251.5	Yerba Buena I.	3652.8 6611.4	3. 562621 3.890292
			$2080423 \cdot 3$	28 O5 40.0	Yerba Buena L. H.	6503.1	3.813119
			26434124.6	843453.5	Cal. sugar-refinery	1163.4	3.065734
			3184026.7	1384139.6	Point Avisadero	4415.9	3.645017
			3345856.1	1545923.5	Stony Hill	2587.5	3.412883

* This point is in the area of the 1906 earthquake disturbance.

San Francisco Bay-Continued.

*This point is in the area of the 1906 earthquake disturbance.
\dagger No check on this position.

San Francisco Bay-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station \& \begin{tabular}{l}
Latitude and \\
longitude
\end{tabular} \& Seconds in meters \& Azimuth \& Back azimuth \& To station \& Distance \& Logarithm \\
\hline \multirow{5}{*}{\[
\begin{aligned}
\& \text { Pinnacle Rock } \\
\& \text { I894 }
\end{aligned}
\]} \& - ' " \& th \& - 11 \& " \& \& meters \& \\
\hline \& 374247.603 \& 1467.6 \& 17948 54. 1. \& 3594853.9 \& Stony Hill \& 2398.7 \& 3. 379985 \\
\hline \& 12223 Or. 544 \& 37.8 \& 2315058.4 \& 515143.7 \& Point Avisadero 2 \& 2307.4 \& 3.363123 \\
\hline \& \& \& 45632.1 \& 1845613.1 \& Lower Sierra Point \& 42772 \& 3.626050 \\
\hline \& \& \& 104037.3 \& \(19040 \times 7.2\) \& Sierra Point \& 4360.3 \& 3.639514 \\
\hline \multirow[t]{5}{*}{Mission Rock ventilator *
\[
1894-1897
\]} \& 374634.663 \& 760. 3 \& 1564234.4 \& 3364038.6 \& Angel I. Peak 2 \& 10680.0 \& 4.028570 \\
\hline \& 1223255.375 \& 1355.2 \& 1995430.6 \& 195507.6 \& Yerba Buena I. \& 4332.8 \& 3.636770 \\
\hline \& \& \& 28954 26.0 \& 10959 17.2 \& San Leandro Point 2 \& 12381.1 \& 4.093760 \\
\hline \& \& \& 3422822.5 \& 1622904.1 \& Point Avisadero \& 5521.3 \& 3. 742044 \\
\hline \& \& \& 20705.6 \& 1820701.7 \& Stony Hill \& 4296.2 \& 3.633088 \\
\hline \multirow[t]{2}{*}{Union City Presbyterian Church, spire \(\dagger\) 1894} \& 373544.45 \& 1369. 1 \& 130753 \& 1930726 \& Peak Flag \& 4726 \& 3. 67449 \\
\hline \& 1220457.32 \& 1406. 2 \& 884858 \& 2684019 \& Pt. San Mateo Ext. \& 20911 \& 4.32037 \\
\hline \multirow[t]{2}{*}{Centerville Catholic Church, spire ctoss 1894} \& 3733
122 \& 804.8
266.2 \& \(\begin{array}{rrrr}342 \& 46 \& 51.7 \\ 73 \& 33 \& 33.4\end{array}\) \& \(\begin{array}{llll}162 \& 47 \& 57.9 \\ 253 \& 30 \& 40.9\end{array}\) \& Albrae
South Red Hill \& 9036.1
7346.9 \& \[
\begin{aligned}
\& 3.955982 \\
\& 3.860155
\end{aligned}
\] \\
\hline \& 1220010.845 \& 266.2 \& \begin{tabular}{l}
73 \\
87 \\
87 \\
\hline
\end{tabular} \& 253
2673040.9
267 \& South Red Hill
Peak Flag \& 7246.9
8038.6 \& 3. 860155
3. 905179 \\
\hline \multirow[t]{5}{*}{```
Avissdero Bight, white
barn*
1894
```} \& 374341.416 \& 1276.8 \& 2785544.7 \& \(9856 \mathbf{2 1 . 9}\) \& Point Avisadero 2 \& 1506.3 \& 3.177936 \\
\hline \& 1222248214 \& 1180.7 \& \(\bigcirc 2548.0\) \& 1802546.5 \& Point San Bruno 2 \& 8147.5 \& 3. 911025 \\
\hline \& \& \& 25052.4 \& 1825043.8 \& Oyster Point \& 6917.5 \& 3. 839950 \\
\hline \& \& \& 64234.5 \& 1864217.3 \& Lower Sierra Point \& 5911.0 \& \[
3.771660
\] \\
\hline \& \& \& 10 4821.6 \& 1904753.3 \& Sierra Point \& 6051.1 \& \[
3 \cdot 781836
\] \\
\hline \multirow[t]{2}{*}{Agnews, tall brick chimney \(\dagger\) 1896} \& 372341.06 \& 1265.8 \& 1684139 \& 3484052 \& Albrac \& 9591.1 \& 3.98187 \\
\hline \& 1215705.45 \& 134. I \& 1843330 \& 43343 \& Dyke \& 6784. 1 \& 3. 83149 \\
\hline \multirow[t]{3}{*}{Agnews, tall flagstaff 1896} \& \(\begin{array}{llll}37 \& 23 \& 33.228\end{array}\) \& 1024.4 \& 1390653.4 \& 3190409.5 \& Alviso \& 10126.0 \& 4. 005438 \\
\hline \& 1215720.653 \& 508.0 \& 1453349.0 \& 325929313 \& South Red Hill \& 19680. 1 \& 4. 294028 \\
\hline \& \& \& 1710721.0 \& \(\begin{array}{cccc}351 \& 06 \& 43.7 \\ 7 \& 25 \& 54.8\end{array}\) \& Albrae
Dyke \& 9763.4
7063.3 \& \begin{tabular}{l}
3. 989599 \\
3. 840008
\end{tabular} \\
\hline \multirow[t]{3}{*}{\[
\begin{array}{r}
\text { Agnews } \\
1896
\end{array}
\]} \& 3723 38.157 \& 1176.3 \& 1372639.0 \& 3172348.6 \& Alviso \& 10186.8 \& 4.008037 \\
\hline \& 1215710.014 \& 246. 3 \& 14441816.4 \& 32436 \& South Red Hill \& 19705. I \& \[
4.294579
\] \\
\hline \& \& \& 169
185
185
27 \& \(\begin{array}{r}349 \\ 3 \\ 5 \\ 5 \\ 26 \\ \hline 6 \\ \hline\end{array}\) \& Albrae Dyke \& \begin{tabular}{l}
9657.7 \\
6883. 0
\end{tabular} \& \[
3.984875
\] \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Milpitas black warehouse, \\
S . ventilator
\[
1896
\]
\end{tabular}} \& 372728.838 \& 889. 0 \& 775716.3 \& 2575646.2 \& Dyke \& 1243.0 \& 3. 094489 \\
\hline \& 1215554.049 \& 1328.4 \& 923433.9 \& 2723057.2 \& Alviso \& 8765.2 \& 3.942760 \\
\hline \& \& \& 1231523.8 \& 3031353.8 \& Albrae Hill \& 4346.4 \& 3.638130 \\
\hline \& \& \& 12405122.5 \& 3035953.8 \& South Red Hill \& 16005.5 \& 4. 204268 \\
\hline \multirow[t]{3}{*}{Large red warehouse, \(N\). gable 1896} \& \& 1261.8 \& 1291314.2 \& 309115315 \& Alviso \& 5879.0 \& 3. 769305 \\
\hline \& 121 58450019 \& 1107.0 \& 1433651.4 \& \(323 \begin{array}{ll}33 \& 06.9\end{array}\) \& South Red Hill \& 15268.8 \& \[
4.183804
\] \\
\hline \& \& \& \(224 \begin{array}{llll}13 \& 46.4\end{array}\) \& 441500.3 \& Dyke \& 4281.3 \& \\
\hline \multirow[t]{2}{*}{Old hut, SE. gable 1896} \& \(\begin{array}{r}372645.882 \\ 13159 \\ \hline 153.850\end{array}\) \& 1414.5 \& \(\begin{array}{llll}144 \& 23 \& 26.7 \\ 211 \& 20 \& 13.5\end{array}\) \& \(\begin{array}{rrrr}324 \& 20 \& 24.0 \\ 31 \& 21 \& 09.4\end{array}\) \& South Red Hill Albrae \& 12654.1
4340.5 \& \\
\hline \& 1215953.850 \& 1323.7 \& \(\begin{array}{llll}211 \& 20 \& 13.5 \\ 257 \& 09 \& 45.0\end{array}\) \& \(\begin{array}{llll}31 \& 21 \& 09.4 \\ 77 \& 11 \& 40.8\end{array}\) \& \begin{tabular}{l}
Albrae \\
Dyke
\end{tabular} \& 4340.5
4798.0 \& \[
\begin{aligned}
\& 3.637535 \\
\& 3.681063
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{Old shed, SE. gable I 896} \& 372643.600 \& \& \& \& South Red Hill \& 12726.8 \& 4. 10472 \\
\hline \& \(\begin{array}{llll}121 \& 59 \& 52.775\end{array}\) \& 1297.3 \& 2103350 \& 30 3445 \& Albrae \& 4387.2 \& 3.64219 \\
\hline \& 12 59 52.775 \& 1297.3 \& 2561617 \& 761812 \& Dyke \& 4788.5 \& 3. 68020 \\
\hline \multirow[t]{2}{*}{Irvington wine vaults, cupola \(\dagger\) 1896} \& 373159.01 \& 1819.2 \& 172210 \& 1972124 \& Albrae \& 6230.2 \& \[
\text { 3. } 79450
\] \\
\hline \& 1215706.28 \& 154.2 \& 93 I1 11 \& 2730627 \& South Red Hill \& 11499.5 \& 4. 06068 \\
\hline \multirow[t]{3}{*}{Tuit 18} \& \& 1324.7 \& 72753.8 \& 1872739.5 \& Dyke \& 4432.2 \& 3. 6.46619 \\
\hline \& \(121 \quad 56 \quad 20.083\) \& 493.4 \& \(\begin{array}{rl}59 \& 40 \\ 1517.6\end{array}\) \& 2393913.4 \& Albrae \& 3469.7

3510.6 \& $$
\text { 3. } 540288
$$ <br>

\hline \& \& \& 110 5804.8 \& 290525 L .8 \& South Red Hill \& 13510.6 \& 4. 130676 <br>
\hline \multirow[t]{2}{*}{Mud Creek, N. draw lantern box 1896} \& $\begin{array}{rrrr}37 & 28 & 10.608 \\ 121 & 58 & 23.609\end{array}$ \& 327.0
582.4 \& \& \& Alviso Albrae \& \& 3. 712407
3.039731
3.46358 <br>
\hline \& 1215823.699 \& 58.4 \& $\begin{array}{llll}182 & 12 & 49.8 \\ 302 & 08 & 14.7\end{array}$ \& $\begin{array}{rrr}2 & 12 & 50.8 \\ 122 & 09 & 15.6\end{array}$ \& Albrae
Dyke \& 1095.8

2907.9 \& $$
\begin{aligned}
& 3.039731 \\
& 3.463586
\end{aligned}
$$ <br>

\hline \multirow[t]{4}{*}{Warehouse, SE. gable 1896} \& \& \& $1452443 \cdot 5$ \& 3252328.8 \& Alviso \& 5320.7 \& 3. 725970 <br>
\hline \& 1215947.444 \& 1166.6 \& 1495050.9 \& 3394744.4 \& South Red Hill \& 14981.2 \& 4.175547 <br>
\hline \& \& \& 19814 11. 0 \& 181503.0 \& Albrae \& 6710.5 \& 3.826752 <br>
\hline \& \& \& 2302727.8 \& 502919.6 \& Dyke \& 5862.2 \& 3. 768060 <br>
\hline \multirow[t]{3}{*}{Coyote Creek, S. draw lantern box 1896} \& 3727 39.077 \& 1204. 7 \& 905129.9 \& 2704925.6 \& Alviso \& 5019.0 \& 3. 700616 <br>
\hline \& 12158 26. 145 \& 642.5 \& 1825012.1 \& 25014.6 \& Albrae \& 2069.6 \& 3. 315883 <br>
\hline \& \& \& 282 5012.7 \& 1025115.1 \& Dyke \& 2587.1 \& 3.412821 <br>
\hline
\end{tabular}

*This point is in the area of the 1906 earthquake disturbance.
$\dagger$ No check in this position.

San Francisco Bay-Continued.

| Station | Latitude and longitude | Sec onds in meters | Azimuth | Back azimuth | To station | Distance | Logerithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | - ' " | m | ' " | - ' " |  | meters |  |
| Milpitas old warehouse, | $\begin{array}{rrrr}37 & 97 & 29.87 \\ 131 & 55 & 56.12\end{array}$ | 705.1 1379.3 | $\begin{array}{rrrr}86 & 17 & 55 \\ 125 & 37 & 13\end{array}$ | $\begin{array}{llll}266 & 17 & 26 \\ 305 & 35 & 44\end{array}$ | Dyke Albrae | 1167.2 4408.5 | $\begin{aligned} & 3.06715 \\ & 3.64429 \end{aligned}$ |
| W. gable* 1896 | 1215556.12 | 1379.3 | 1253713 | 3053544 | Albrae | 4408. 5 | $3.64429$ |
| Brick warehouse, SE. | $\begin{array}{r}37 \\ 126 \\ \hline 1204 \\ \hline 125\end{array}$ | 38.5 540.9 | 1760902 230 | $\begin{array}{rrrr}356 & 08 & 43 \\ 50 & 21 & 35\end{array}$ | South Red Hill Alviso | $\begin{array}{r} 11587.2 \\ 484 \mathrm{I} .8 \end{array}$ | $\begin{aligned} & 4.06771 \\ & 3.68501 \end{aligned}$ |
| $\begin{gathered} \text { ventilator } \\ 1896 \end{gathered}$ | 1220422.00 | 540.9 | 2302002 | 502135 | Alviso | $4841.8$ | 3.6850I |
| Albrac tile chimney* | $379847 \cdot 99$ | 1479.5 | 3205529 | 1405623 | Dyke | 3477. 3 | 3. 54124 |
| 1896 | 12158.12 .69 | 311.8 | 755050 | 2555044 | Albrae | $235 \cdot 2$ | 2.37150 |
| Noonan water tank $\dagger$ | 373547.688 | 1470.1 | $\begin{array}{lllll}179 & 29 & 05.9 \\ 179 & 56 & 27.1\end{array}$ | 359 29 04.8 <br> 359 56  <br> 18   | Belair I. Baden Hill | 4678.0 6827.6 |  |
| 1894 | 1223342.961 | 1053.9 | $\begin{array}{llll}179 & 56 & 27.1 \\ 191 & 13 & 06.4\end{array}$ | $\begin{array}{rrrr}359 & 56 & 26.9 \\ 11 & 13 & 38.3\end{array}$ | Baden Hill Point San Bruno 2 | $\begin{array}{r} 6827.6 \\ 6583.5 \end{array}$ | $\begin{array}{r} 3.834269 \\ 3.818460 \end{array}$ |
| Point San Mateo Rock $\dagger$ | 373530.034 | 925.6 | 1272537.5 | 3072247.5 | Relair I. | 8597.6 | 3.934378 |
| 1894 | 1221906.200 | 152.1 | 1372141.0 | 3171851.8 | Baden Hill | 10025.3 | 4.001096 |
|  |  |  | 1425033.1 | $3214^{816.0}$ | Point San Bruno 2 | 8907.5 | 3.949755 |
| San Bruno house, minaret $\dagger$ | 373748.349 | 1487.5 | 2034405.1 | 234439.2 | Baden Hill | 3398.3 3816.8 |  |
| 1894 | 1222439.054 | 957.7 | 2240533.7 | $\begin{array}{lllll}44 & 06 & 39.4 \\ 54 & 13 & 18.8\end{array}$ | Point San Bruno 2 Belair I. | 3816.8 1643.5 | $\begin{aligned} & 3 \cdot 581696 \\ & 3.215770 \end{aligned}$ |
| Red cupola | 373925.454 |  | 2670206.8 | 870301.8 | Baden Hill | 2209.0 | 3-344201 |
| 1894 | 122 2513.250 | 324.8 | 2741041.8 | 941208.9 | Point San Bruno 2 | 3503.4 | 3. 544484 |
|  |  |  | 3130851.2 | 1330945.3 | Belair 1. | 2976.5 | 3.473706 |
| Sierra Barn. 玉. gable* $\dagger$ | 374083.47 | 388.4 |  | 1234123 | Oyster Paint | $842 \cdot 4$ | $2.92550$ |
| 1894 |  | 755.8 | 124956 | 1924949 | Baden Hill | 1369.8 | $3 \cdot 13666$ |
| Guadalupe warehouse* $\dagger$ | 374140.19 | 1239.0 | 214 18 51 <br> 223   | 341927 | Candlestick Point | 2544. 1 | $3.405533$ |
| 1894 | $122 \quad 2403.13$ | 76.7 | 2232838 | 433001 | Point Avisaderc 2 | 4829.2 | $3.683872$ |
| Pacific Bone Fertilizer Co., | $374155 \cdot 97$ | 1735.5 | 2300751 | 500840 | Candlestick Point | 2519.2 | $3.401257$ |
| $\begin{aligned} & \text { smokestack } * \uparrow \\ & 1894 \end{aligned}$ | 1223423.53 | 376. 1 | 2324216 | 5 4352 | Point Avisadero 2 | 4869.9 | $3.687518$ |
| Ewell's XL, Dairy, smoke- | 3741806 | 200.3 | 2020904 | 220936 | Candlestick Point | 3390.2 5537.8 | 3. 530222 |
| $\begin{gathered} \text { stack } \\ 1894 \end{gathered}$ | 1323356.77 | 1390.9 | 2145251 | 345410 | Point Avisadero a | 5537.8 | 3.743335 |
| Distillery smokestack $\dagger$ | 374337.886 | 1168.0 | 12045.08 .8 | 30043 05. 1 | North Twin | 5750.6 | 3.759710 |
| 1894 | 1222326.113 | 639.5 | 2725716.6 | 92 <br> 68 <br> 160 <br> 517 | Point Avisadero 2 | 3419.4 3616.0 | $3.383709$ |
|  |  |  | 3405659.4 | 1605712.6 | Candlestick Point | 1616.0 | 3.208430 |
| San Bruno Range, N. end, | 374203.09 | 95.3 | 383700 | 2183549 | Fog Cap | 4546.6 | 3.65769 |
| ```rocky peak* t 1899``` | 1233715.54 | 380.7 | 644109 | 24439.44 | Colma | 3768.6 | 3. 57618 |
| San Bruno Range, S. end, | 373954.77 $\times 221588.49$ | 1688. 5 | $\begin{array}{rrr}93 & 5347 \\ 80 & 4743\end{array}$ | 273 <br> 281 <br> 289 <br> 15 | For Cap Colma | $5965.1$ <br> 6929.3 | $\begin{aligned} & 3.77562 \\ & 3.84069 \end{aligned}$ |
| $\begin{aligned} & \text { low peak }{ }^{1899} \dagger \end{aligned}$ | 1221508.49 | 208.1 | 1094743 | 2894501 | Colma | $6979.3$ | $\text { 3. } 84069$ |
| South Twin (peak) $\dagger$ | 374507.008 | 216.0 | 290634 | 2090452 | Colma | 8333.9 | 392085 |
| 1894-1899 | 1322649.114 | 1203.3 | 770645 | 257 O603 | Black Ridge ? | 1767.7 | 3. 24742 |
|  |  |  | 1625042 | 3425006 | Presidio Hill | 4902. 1 | 3.69038 |
|  |  |  | 188 II 30 | 81132 | North Twin | 193.3 | 2. 28614 |
|  |  |  | 2280135 | 480455 | Yerba Buena I. 2 | 9675.6 | 3.98568 |
|  |  |  | 2884937 | 1085157 | Stony Hill | 5879.2 | 3.76932 |
|  |  |  | 2911336 | 1111641 | Point Avisadero 2 | 7935.6 | $3 \cdot 89903$ |
| Start Pile $\dagger$ | 374518.040 | 550.2 | 352036.1 | 172 ¢ 43.4 | Mile | 2088.6 | 3.319848 |
| 1903 | 1223250.224 | 1229.4 | 135945.5 | 1935936.9 | Hall | 1429.7 | 3.155240 |
|  |  |  | 290755.7 | 2090742.7 | Quarter | 1067.4 | 3.028330 |
|  |  |  | 545146.7 | 2345132.7 | Start | 685.0 | 2.835679 |
| Quarter Pile $\dagger$ | 374502.520 | 77.7 | 3540435.5 | 174 90439.6 | Mile |  |  |
| 1903 | 12222 45:104 | 1194.2 | $\begin{array}{lllll}27 & 24 & 15.1 \\ 54 & 51 & 58.6\end{array}$ | 207 234 234 51 | Malf | 1023.6 788.7 | $\begin{aligned} & 3.010130 \\ & 2.896899 \end{aligned}$ |
|  |  |  | 545158.6 | 2345142.4 | Quarter | 788.7 | 2.896899 |
| Mile Pile * $\dagger$ | 374419.60 | 604.2 | 545056 | 2345046 | Mile | 462.9 | 2.66552 |
| 1903 | 1222222.91 | 560.9 | 1385344 | $318 \quad 5213$ | Start | 1868.5 | 3.27150 |
| Half Pile* $\dagger$ | 374445.95 | 3486.6 | 545330 | 2345316 | Hall | 698.8 | 2.83998 |
| 1903 | 1222245.24 | 1009.6 | 1271949 | 3071930 | Start | 981.2 | 2.99175 |
| Sand $\ddagger$ | 374645.519 | $1403 \cdot 3$ | $1722234 \cdot 2$ | 3522232.8 | Cement | $433 \cdot 5$ | 2.636981 |
| 1897 | 1223021.598 | 538.6 | 2390525.9 | 590541.1 | Cemetery | 706.5 | 2.849086 |

* No check on this position. t This point is in the area of the so06 earthquake disturbance.
$\ddagger$ See page 391.

San Francisco Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Aximuth | Back azimuth | To station | Distance | Lorarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Point Lobos, windmill*$1883$ | " | $m$ | " | - ' " |  | meiers |  |
|  | 374709.380 | 289.2 | 890302.0 | 2690252.5 | Point Lobos 2 | 376.2 | 2.575404 |
|  | 1222939.249 | 960.4 | 2512708.6 | 712816.6 | Presidio Hill | 2865.5 | 3.457204 |
|  |  |  | 3283906.7 | 14840 0x.0 | Black Ridge | 4173.8 | 3.620538 |
| Railroad Point* 1892 | 374717.878 | 55 t .2 | 140726.3 | 1940722.7 | Cement | 585.7 | 2. 767662 |
|  | 1223018.107 | 443.0 | 283812.5 | 2083800.7 | Under Cement | 480.3 | 2.681549 |
|  |  |  | 2504032.4 | 704125.8 | Rob 3 | 2680.8 | 3.428261 |
|  |  |  | 2595705.7 | $7958{ }^{4} 37.6$ | Presidio Hill | 3724.6 | 3. 571079 |
|  |  |  | 20231139.6 | $\begin{array}{rrrrr}82 & 32 & 23.8 \\ 112 & 56 & \end{array}$ | Spring Valley | 1780.3 | 3. 250497 |
|  |  |  | 2925612.4 | 1125619.8 | Point Lobos 3 | 322.2 | 2. 508185 |
| Baker Beach Life-Saving Station, weather vane* 1891-1900 | 374731.181 | 961.3 | 374523.4 | 2174519.9 | Spring Valley | 226.3 | 2.354415 |
|  | 1222900.305 | 7.5 | 625744.7 | 2425711.4 | Point Lobos 2 | 1492.1 | 3. 173806 |
|  |  |  | 713404.3 | 2513324.1 | Point Lobos 3 | 1693.9 | 3.228886 |
| Fort Point Life-Saving Station, flagstaff* 1895 | 374817.411 | 536.8 | 1555001.8 | 3354912.0 | Halfway | 4848. I | 3.685573 |
|  | 1222750.316 | 1230.9 | 1680926.9 | $34809 \% 80$ | Point Cavallo 2 | 3675.5 | 3.565319 |
|  |  |  | 1785702.1 | 3585658.8 | Peninsula Hill 2 | 7310.6 | 3.863952 |
|  |  |  | 2051448.8 | 251603.8 | Angel I. Peak 2 | 7001.7 | 3.845302 |
| Point Bonita, for-siren smokestack $\dagger$ 1877 | 374858.845 | 1814. 1 | 2773508.6 | 973702.1 | Fort Point L. H. | 4568.0 | 3.659723 |
|  | 1223140.630 | 993.8 | 2933434.2 | 1133656.6 | Presidio Hill | 6196.6 | 3.792150 |
|  |  |  | 2963026.1 | 1162220.2 | Rob | 5083.0 | 3.706124 |
|  |  |  | 3223004.7 | 1423109.7 | Point Lobos 2 | 4261.2 | 3.629537 |
|  |  |  | $\begin{array}{lllll}332 & 59 & 13.8 \\ 348 & 40 & 11.7\end{array}$ | 1530000.8 | Cement |  | 3.616094 |
|  |  |  | 34840 11.7 | 1684105.6 | Black Bluft | 10963.6 | 4.039952 |
| Bonita Bluff $\dagger$ 1887 | 374917.447 | 537.7 | 2473632.4 | 673716.0 | Diablo Hill | 1882.1 | 3. 274654 |
|  | 1223132.754 | 801.1 | 2692330.1 | 892419.7 | West Diablo | 1977.5 | 3. 296110 |
|  |  |  | 2985514.8 | $118 \quad 5732.6$ | Presidio Hill | 6276.5 | 3.797719 |
|  |  |  | 3025144.3 | 1225334.0 | Rob 2 | 5205.4 | 3.716453 |
|  |  |  | 3024258.0 | 1324447.3 | Rob 3 | 5177.3 | 3.714102 |
|  |  |  | 3135254.8 | 1335424.9 | Spring Valley | 4983.0 | 3.697490 |
|  |  |  | 3284349.9 | 1484450.1 | Point Lobos 2 | 4626.1 | 3. 665318 |
|  |  |  |  | 1500519.8 | Point Lobos | 4343-4 | 3.637828 |
|  |  |  | 3382425.8 | 1582508.2 | Cement | 4575.1 | 3.660399 |
| Point Bonita, keeper's house * <br> 1857 |  |  | 2872546.6 | 1072743.8 | Fort Point | 4900.7 |  |
|  | 1223144.884 | 1097.8 | 29743 56. 7 | 1174621.8 | Presidio Hill | 6542.0 | $3.815713$ |
|  |  |  | 3265132.4 | 1465234.1 | Point Lobos | 4506.4 | 3.65383 |
| North Bonita* 1887 | 3749 22.562 | 695.6 | 2564021.8 | 764120.8 | Diablo Hill | 2425.9 | $3 \cdot 384880$ |
|  | 1223558.120 | 1421.5 | 2973420.9 | 1173654.0 | Presidio Hill | 6897.8 | $3.838713$ |
|  |  |  | 3005052.7 | 1205257.8 | Rob 2 | 5815.8 | 3.764609 |
|  |  |  | 33329513.7 | 1522611.4 | Cement | 4977.3 | $3.696997$ |
|  |  |  | 273 ¢ 48.0 | 93 O1 53.0 | West Diablo | 2601.4 | $3.4 \times 5206$ |
| $\underset{\leq 887}{\text { High Bluff }}$ | 374934.100 | 1051.3 | 539 It. 6 | 18589000.5 | Point Lobos 2 | 4489.9 | 3.652235 |
|  | 1322936.545 | 893.8 | 85914.6 | $188 \quad 58 \quad 57.7$ | Point Lobos | 4331.3 | 3.036618 |
|  |  |  | 134027.4 | 1933958.4 | Cement | 4906.8 | 3.690798 |
|  |  |  | 3231523.1 | 1431629.6 | Presidio Hill | 4430.6 | 3.646464 |
|  |  |  | 3352336.4 | 1552414.7 | Roba | 3589.1 | 3. 554986 |
|  |  |  | 3491920.6 | 1691939.2 | Spring Valley | 4038.4 | 3.606204 |
| Alcatraz fog-bell 1887 | $\begin{array}{r}37 \\ 42 \\ 42 \\ \hline\end{array}$ | 979.6 | 472725.1 564033.2 | 237 2365 36 | Presidio Hill | 5144.2 |  |
|  | 1222513.304 | 325.4 | $564033 \cdot 2$ | $23638 \quad 29.8$ | Rob 3 | 5897.3 | 3. 770649 |
| $\underset{1857}{\text { Alcatraz L. H. }}$ |  | 1510.9 |  | 1951800.5 | North Twin |  |  |
|  | 1222517.344 | 434.0 | 453826.5 | 2253654.0 | Presidio Hill | 5162.8 | 3.712882 |
|  |  |  | 550445.3 | 2350244.3 | Rob 3 | 5889.1 | 3. 770051 |
|  |  |  | 6704727.9 | 2470227.5 | Fort Point | 5216.3 | 3. 717361 |
|  |  |  | 913143.7 | 2719932.6 | Lime Point Bluff | 5232.9 | 3.718744 |
|  |  |  | 290 14444.4 | 1101648.4 | Yerba Buena I. 2 | 5275.0 | 3.722225 |
|  |  |  | $\begin{array}{llllllllllllll}348 & 03 & 03 .\end{array}$ | 1680320.4 | Russinn Hill | 3192.2 | 3. 504094 |
| $\underset{1851}{\text { Point Diablo }}$ | 374915.485 |  | 3584032.8 | 1784035.0 | Point Lobos 2 | 3895.2 | 3. 590529 |
|  | 13229 58. 299 | 1425.9 | 21353.8 | 1821349.2 | Point Lobos | 3707. 1 | 3. 569030 |
|  |  |  | 25205.1 | 1825200.4 | Point Lobos 3 | 3756.2 | 3. 574746 |
|  |  |  | 83043.5 | 1883026.8 | Cement | 4240.5 | 3.627422 |
|  |  |  | 1034135.9 | 2834127.5 | West Diablo | 342. 5 | 2. 534657 |
|  |  |  | 2430609.7 | 630619.6 | East Diablo | $445 . x$ | $\text { 2. } 648426$ |
|  |  |  | 2455059.0 | 655141.2 | New Lime Point | 1846. 1 | 3. 266264 |
|  |  |  | 3040458.5 | 1240550.3 | Fort Point | 2497.4 | 3. 397490 |
|  |  |  | 3130445.4 | 1330605.1 | Presidio Hill | 4357.5 | 3. 639242 |
|  |  |  | $\begin{array}{llll}323 & 17 & 40.9 \\ 323 & 15 & 05.6\end{array}$ | $\begin{array}{llll}143 & 18 & 32.5 \\ 143 & 15 & 56.8\end{array}$ |  | 3449.0 | 3. 537698 3. 533781 |
|  |  |  | $323 \leq 505.6$ | 1431556.8 | Rob 3 | 3418. 1 | 3. 533781 |

* This point is in the area of the 1906 carthquake disturbance.
tSee p. 291.

San Francisco Bay-Continued.

| Station | Latitude and longitude | Sec ouds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Lime Point foghorn, south } \\ & \text { stack } \\ & 1883 \end{aligned}$ | - 1 | m | " | " |  | meters |  |
|  | 374932.940 | 1015.5 | 223543.9 | 2023457.7 | Point Lobos 2 | 4800.6 | 3. 681296 |
|  | 1222839.240 | 959.7 | 2982254.8 | 1283515.1 | Russian Hill | 6365.4 | 3. 803829 |
|  | 1322839.20 |  | 34026 43. 2 | 1602714.5 | Presidio Hill | 3730.1 | 3. 571717 |
| Oakland Point Congregational Church, spire 1881 | 374832.135 | 990.7 | 912650.0 | 2712425.4 | Yerba Buena I. | 5770.0 | 3. 761179 |
|  | 1221759.250 | 1449.4 | 1533709.7 | 3333508.2 | Rocky I. | 10891.1 | 4.037072 |
|  |  |  | 1775120.9 | 3575111.9 | Highland | 9580. 5 | 3.981386 |
| Oakland Point R. R. de pot, flagstaff 1881 | $\begin{array}{ll}37 & 48 \\ 33.699\end{array}$ | 1038.9 | 914032.2 | 2713909.8 | Yerba Buena I. | 3287.9 | 3. 516918 |
|  | 1221940.705 | 995.7 | 1662000.2 | 3461900.9 | Rocky I. | 9990.5 | 3. 999586 |
|  |  |  | 1923257.5 <br> 273 <br> 274 | 12 123 93 93 550.8 | Highland Oakland Point | 9758.9 1654.7 | 3. 989403 $\text { 3. } 218714$ |
| Point Blunt Rock 1892 | 37511056 | 325.6 | 314747 | 2114606 | Presidio Hill | 7675.7 | 3. 88512 |
|  | 122350291 | 71.1 | 393012 | 2192802 | Rob 3 Henal | 8146.1 | 3. 91095 |
|  |  |  | 3155259 | 1355454 | Yerba Buena I. 2 | 6602.4 | 3.81970 |
| Point Blunt Knob 1897 | 375112.470 122 | 384.4 | $\bigcirc 4951$ | $\begin{array}{llll}180 & 49 & 49\end{array}$ | Reservoir | 5699. 5 | 3. 75584 |
|  | 1223505.738 | 140.3 | $\begin{array}{llll}132 & 03 & 19 \\ 315 & 48 & 39\end{array}$ | 312 31250253 13505 | Ankel I. Peak 2 | 13961 6691.4 | 3. 14493 3. 82552 |
|  |  |  | 3154839 | 1355037 | Yerba Buena I. | 6691.4 | $\text { 3. } 82552$ |
| Angel I., U. S. flagstaff 1892 | 375135.379 | 1090. 7 | 144042.4 | 1943954.5 | Presidio Hill | 7535.6 | 3. 877120 |
|  | 1222630.168 | 737.4 | 2322 IT. 5 | 2032055.1 | Rob 3 | 7681.7 | 3. 885460 |
| Quarantine Station, flagstaff * 1805 | 375159.12 | 1822.6 | 1283338 | 3083305 | Ridge Rock | 1678.9 | 3. 225025 |
|  | 1222606.54 | 159.9 | 1475701 | 3275643 | Reservoir | 1381.7 | 3. 140422 |
| $\underset{\substack{\text { Quarantine } \\ \text { staff }}}{\text { wharf, flag- }}$ | 375209.012 | 277.8 | 933113.5 | 2733004.4 | Peninsula Hill 2 | 2757.8 | 3.440561 |
|  | 1222603.174 | 77.6 | 1120810.2 | 292 of 38.7 | Tiburon Gate Tower | 1355.2 | 3. 132006 |
| 1895 |  |  |  | 2975856.4 | Ridge Rock | 1579.9 | 3. 198623 |
|  |  |  | ${ }^{1} 364332.6$ | 3164312.1 | Reservoir | 1189.5 | 3. 075394 |
| $\begin{gathered} \text { Angel I. fog-bell } \\ 1892 \end{gathered}$ | 375123.220 |  | $15 \quad 2057.3$ | 1952009.6 | Presidio Hill | 7170.6 | 3. 855555 |
|  | 1222630634 | 748.9 | 242659.0 | 2042542.7 | Rob 3 | 73.34 .4 | 3. 865362 |
|  |  |  | 323049.3 | 2122844.1 | Point Lobos 2 | 9286.3 | 3.967843 |
|  |  |  | 350441.0 | 2150217.9 | Cement | 9934. 5 | 3. 997144 |
| Judson Chemical Works, chimney* 1895 | 375301.53 | 47.2 | 764922 | 2564502 | Angel I. Peak 2 | $\text { 10618. } 9$ | 4.02608 |
|  | 1221845.17 | 1103.8 | 1542125 | 3342123 | Judson Point | $161.2$ | 2. 20733 |
| $\underset{1852}{\text { Contra Costa }(3)}$ | $\begin{array}{lllllllllll}37 & 53 & 05.98\end{array}$ | 184.4 | 285705.9 | 2085510.7 | Yerba Buena I. | 9483.0 | 3.976945 |
|  | 1221847.40 | 1158.3 | 10943 36.3 | 2894204.2 | Rocky I. | 3891.2 | 3. 590089 |
| House flagstaff1805 | 375306.994 | 215.6 | 2922319.8 | 1122557.9 | Angel I. Peak ${ }^{2}$ | 6808.7 | 3.833065 |
|  | 1223005.691 | 139.1 | 2970024.9 | 117.0144 .7 | Peninsula Hill 2 | 3563.4 | 3.551866 |
|  |  |  | 3544229.8 | 1744238.5 | Richardson Last | 3750.1 | 3. 574041 |
| Quarry hyd. 1895 |  |  | 2313846 | 514102 | North Brooks | 6883.7 | 3. 83788 |
|  | 1323506.704 | 163.9 | 2360700 | 560920 | Brooks I. | 6747.6 | 3.82915 |
|  |  |  | 255 44 4405 50 | 750912 324 50 | Judson Point Quarry | 9576.1 65.0 | 3. 98119 <br> 1. 81280 |
| $\begin{gathered} \text { Fence signal * } \\ 1895 \end{gathered}$ | 3753 14.17 | 436.8 | 3004812 | 1304930 | Peninsula Hill 2 | 3592.0 | 3.55533 |
|  | 1223002.02 | 49.4 | 3442048 | 1642054 | Strawberry Hill 2 | 882.8 | 2.945871 |
| Angel | 375211.520 | 355.2 | 2384014 | 584248 | North Brooks | 6731.6 | 3. 82812 |
|  | 1222521.114 | 516.0 | 2431955 | 63 80 2224 | Brooks I. | 6602.5 | 3.82364 |
|  |  |  | 2600022 | 800423 | Judson Point | 9753.7 | 3.98917 |
|  |  |  | $339 \quad 28 \quad 02$ | 1592809 | Quarry | 873.4 | 2.94121 |
| Marsh Point 1895 | 375254.162 | 1669.9 | 2795858.6 | ${ }^{9} 95931.9$ | Strawberry Hill 2 | 1344.7 | 3. 228839 |
|  | 1223046.471 | 1135.6 | 2861941.8 | 1062126.6 | Peninsula Hill 2 | 4346.9 | 3.638177 |
|  |  |  | 3380516.9 | 1580550.6 | Richardson East | 3598.3 | 3. 556103 |
| $\underset{\text { Brooks I. } 2}{ }$ | 375348.442 | 1493.4 |  | $2393735.0$ | Angel I. Peak 2 | 7666.3 | 3.884586 |
|  | 1222187.440 | 426.1 | 1183956.3 | 29837097 | Red Rock | 7546.3 | 3.877734 |
| North East X I 1905 | $37 \begin{array}{lll}37 & 52 & 14.898\end{array}$ | 459.3 | 1355228.1 |  |  |  | 3. 429275 |
|  | 1222528.642 | 700.1 | 175 <br> 173 <br> 44 <br> 18 <br> 17.8 | 3554300.0 | Red Rock | 6519.5 6782.4 | 3.8154217 3.831381 |
|  |  |  | 2444847.8 | 645123.1 | Brooks I. 2 | 6782.4 | 3.831381 |
| Southampton Shoal L. H. 1905 | 37 52 122 52 | 1728.3 | $\begin{array}{llll}49 & 56 & 42.4\end{array}$ |  | Angel I. Peak 2 | $3509.1$ |  |
|  | 122 23 58. 267 | 1423.9 | 60 60745.4 1524543.2 | 240 33206449.8 3 | NE. XI <br> Red Rock | $2547.3$ | 3. 406080 |
|  |  |  | $1524543.2$ | $\begin{array}{r}332 \\ 6744 \\ 67 \\ \hline\end{array}$ | Red Rock Brooks I. 2 | $\begin{aligned} & 5885.4 \\ & 4248.8 \end{aligned}$ | 3. 769779 <br> 3.628262 |
|  |  |  | 2473839.1 | 674017.9 | Brooks I. 2 | 4248.8 | 3.628262 |

* No check on this position.

San Francisco Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back szimuth | To station | Distance | Iogarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Black-rool house 1895 | $\begin{array}{r} 3753 \\ 122 \\ 28 \\ 28.458 \\ 28.052 \end{array}$ | $\begin{gathered} m \\ 476.6 \\ 685.4 \end{gathered}$ | $\begin{array}{rrr} 306 & 0 & 08.2 \\ 27 & 03 & 54.3 \\ 66 & 37 & 42.2 \end{array}$ | , " |  | meters |  |
|  |  |  |  | 1261046.4 | Angel I. Peak ${ }^{2}$ | 4840.9 | 3.684924 |
|  |  |  |  | 20703030 | Richardson East | 4486. 1 | 3. 651865 |
|  |  |  |  | 2463650.5 | Strawberry Hill 2 | 2242. 3 | 3. 350699 |
| $\begin{gathered} \text { Bridge Point } \\ 1895 \end{gathered}$ | $\begin{array}{rrrr}37 & 52 & 35.077 \\ 122 & 36 & 32.959\end{array}$ | $\begin{array}{r} 1081.4 \\ 805.5 \end{array}$ | 3254749.8 | 14548178 | Angel I. Peak 2 | 1948.7 | 3. 289747 |
|  |  |  | 82444.8 | 18842438.7 | Angel I. NW: ${ }^{2}$ | 1688.6 | 3. 227530 |
|  |  |  | 403735.0 | 2203702.0 | Belvedere Point | 2018.4 | 3. 305008 |
| Angel I., white tank 1895 | $\begin{array}{rrr} 37 & 52 & 08.090 \\ 122 & 25 & 59.805 \end{array}$ | $\begin{array}{r} 249.4 \\ 146 \mathrm{I} .8 \end{array}$ | 711817.0 | 2511654.7 | Richardson Eest | 5980.4 | 3. 776728 |
|  |  |  | 935928.4 | 27358178 | Peninsula Hill 2 | 2841.8 | 3. 453596 |
|  |  |  | 1155701.3 | 2915627.7 | Tiburon Gate Tower | 1442.2 | 3.159027 |
|  |  |  | 1173136.9 | 2973059.8 | Ridge Rock | 1666.0 | 3. 221670 |
|  |  |  | 1345348.2 | $314 \begin{array}{ll}53 & 25.7\end{array}$ | Reservoir | 1267.4 | 3. 102905 |
|  |  |  | 3395516.7 | 1595523.8 | Angel I. Peak 2 | 830.2 | 2.919169 |
| $\begin{gathered} \text { Isabel Pile } \\ 1895 \end{gathered}$ | $375345 \cdot 592$ | 1405.6 | 3242450.9 | 1443512.7 | Judson Point | 1491.8 | 3. 173708 |
|  | 1221923.547 | 575.3 | 680537.8 | 248 O1 41.8 | Angel I. Peak a | 10132.8 | 4.005731 |
|  |  |  | 1011940.2 | 2811825.1 | North Brooks | 3044.9 | 3.483568 |
| High 1903 | 37 5325.335 | 78 r .1 | 1533248.3 | 33332 16. 1 | California Point 2 | 2875. 2 |  |
|  | 1222734.054 | 832. 1 | 2813020.4 | 1013050.4 | Bluff Point ${ }^{\text {a }}$ | 1218.2 | 3. 085715 |
|  |  |  | 3304054.2 | $1404 \times 59.6$ | Angel I. Peak 2 | 4085.7 | 3. 611269 |
| Bluf Point North Base 1903 | 375332.908 | 1014.5 | 3374049.6 | 1574054.5 | Bluff Point 2 | 515.2 | 2. 711942 |
|  | 1225653.209 | 1300.2 | $76 \quad 5008.3$ | 2564943.2 | High | 1025.0 | 3.010712 |
| Fence 1903 | $\begin{array}{rrrr}37 & 53 & 18.892\end{array}$ | 582.4 | 105 2019.6 | 28520 아. 4 | High | 751.0 | 2. 875656 |
|  | 1222704.413 | 107.8 | - 1440758.5 | 3240708.0 | California Point a | 3421.8 | 3. 534259 |
|  |  |  | 212 11 <br> 375 14.4 <br> 1  | $\begin{array}{llll}32 & 21 & 21.3 \\ 95 & 24 & 34.6\end{array}$ | Bluff Point N. Base Bluff Point 2 | 511.5 | 2.708884 |
|  |  |  | 2752423.8 | 952434.6 | Bluff Point 2 | 475.5 | 2.673490 |
| Bluff Point South Base 1903 | 375383.332 | 719.3 | 742002.5 |  | Fence | 506.9 | 2. 704939 |
|  | $\begin{array}{llll}122 & 2644.438\end{array}$ | 1085.9 | 144 O1 27.0 | 324 Or 21.6 | Bluff Point N. Base | 364.8 | 2. 562075 |
| Corinthian flagstafi 1895 | 375218.967 | 584.7 | 2953843.8 | 1153942.1 | Angel I. Peak 2 | 2575.7 | 3.410890 |
|  | 1222723.135 | 565.4 | 3200915.0 | 1400939.6 | Angel I. NW: ${ }^{2}$ | 1528.7 | 3.184332 |
|  |  |  | 45033.5 | 1845031.3 | Belvedere Point | 1039.1 | 3.016640 |
|  |  |  | 801127.0 | 26011507.0 | Peninsula Hill 2 | 810.1 | 2.908524 |
| Belvedere, telegraph pole 1895 |  | 1437.0 | 2980334.8 | 1180507.4 | Angel I. Peak 2 |  |  |
|  | 1222819.070 | 466.0 | 3603020.5 | 2160223.7 | Richardson East | 3841.1 | $3 \cdot 584460$ |
|  |  |  | 895953.5 | 2695856 | Strawberry Hill 2 | 2277.9 | $3 \cdot 357530$ |
| North Trestle 1895 | 375236.712 | 1131.8 | $\begin{array}{r}23052.2 \\ \hline 56851\end{array}$ | $1823049 \cdot 3$ | Richardson East | 2802.9 |  |
|  | 1222946.847 | 1144.9 | 1562801.9 | 3362758.6 | Strawberry Hill 2 | 332.4 | 2. 521684 |
|  |  |  | 2840928.8 | 1041037.0 | Peninsula Hill 2. | 2799.3 | 3.447049 |
| Middle Trestle 1895 | 37 52 <br> 122 19.024 | 586.5 | 31222.2 | $\begin{array}{llll}183 & 12 & 19.0\end{array}$ | Richardson East | 2358.7 | 3.353857 |
|  | 1222946.377 | 1133.5 | $\begin{array}{llll}170 & 22 & 16.8 \\ 272 & 57 & 05.8\end{array}$ | 3502213.2 | Strawberry Hill 2 | 862.3 | $2.935645$ |
|  |  |  | 2725705.2 | 925813.1 | Peninsula Hill 2 | 2706.4 | $3 \cdot 432386$ |
| South Trestle 1895 | 375202.185 | 67.4 | 43113.1 | 1843108.6 | Richardson East | 1741.4 | 3. 240897 |
|  | 1222945.930 | 1522.6 | 1733211.2 | 3533207.3 | Strawberry Hill 2 | 1378.1 | 3.139268 |
|  |  |  | 2615806.7 | 815914.3 | Peninsula Hill 2 | 2718.5 | 3.434334 |
| $\begin{aligned} & \text { Reservoir } \\ & 1895 \mathrm{l} \end{aligned}$ |  |  |  | $\begin{array}{llllll}185 & 15 & 25.4\end{array}$ | Angel I. NW. 2 | 1740.2 | 3.240609 |
|  | 1222636.548 | 893.0 | 510309.7 | 2310258.6 | Tiburon Gate Tower | 565.5 | $2.752462$ |
|  |  |  | 775142.7 | 2575128.2 | Ridge Rock | 593.8 | $2.772938$ |
|  |  |  | 3244515.8 | 1444545.5 | Angel I. Peak? | 2049.9 | 3.311737 |
| Raccoon Point 1895 | $375250 \cdot 356$ | 1552.4 |  | 1612597.3 | Angel I. Peak 2 | 2197.4 | 3.341906 |
|  | 1222616.798 | 410.5 | 164126.3 | 1964110.1 | Angel I. NW, ${ }^{2}$ | 2335.7 | 3.349407 |
|  |  |  |  |  | Belvedere Point | 2633.1 632.1 | 3.420467 2.800884 |
|  |  |  | 4944 38. I | 2294426.0 | Reservair | 632.2 | 2.800884 |
| Railroad curve, telegraph pole. 1895 | $\begin{array}{rrr}37 & 5311.150 \\ 122 & 31\end{array}$ | $343 \cdot 7$ |  | $108 \quad 30 \quad 19.2$ | Angel I. Peak ${ }_{2}$ | 8594.7 | 3.934229 |
|  | 12231 21.688 | 529.9 | $\begin{array}{llll}389 & 06 & 02.4 \\ 330 & 17 & 19.5\end{array}$ | $\begin{array}{llll}109 & 06 & 57.3 \\ 150 & 18 & 14.8\end{array}$ | Strawberry Hill Richardson East | 2312.3 4446.5 | $3 \cdot 364052$ 3.648017 |
|  |  |  | 3301719.5 | $15018 \quad 14.8$ | Richardson East | $4446 \cdot 5$ | 3.648017 |
| -San Pablo flagstaff 188! | $\begin{array}{rrrr}37 & 57 & 33 \cdot 501\end{array}$ | 1032.8 | 33515105.7 | $1555203 \cdot 7$ | Topog | 5638.0 | 3.751186 |
|  | 1222022.044 | 538.2 | 33661592.2 | 1561640.9 | Highland | 7774.6 | 3.890680 |
|  |  |  | 3410906.8 | 1610923.1 | Mound | 2012.1 | 3. 30.3645 |
|  |  |  | 45802.8 | 1845754.2 | El Cerrito | 3931.9 | 3. 594601 |
| Ellis Landing barn, inner gable $\mathbf{8 8 1}$ | $37 \quad 5505.384$ | 166.0 | 2473435.9 | 673515.5 | El Cerrito | 1703.2 | 3.231268 |
|  | 2222140.447 | 987.9 | 2774707.7 | 974853.9 | Topor | 4261.0 | 3.629511 |
|  |  |  | 2964759.2 | 1165006.1 | Highland | $5653 \cdot 3$ | 3.752305 |
|  |  |  | 3463957.7 | 1664012.4 | Brooks I. | 2438.0 | $3 \cdot 387030$ |

San Francisco Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | Tostation | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ellis Landing, window 1895 | - ' ', | $m$ | - ' $\quad 1$ | - . ${ }^{\prime}$ |  | melers |  |
|  | 375509.801 | 302.2 | 3114059 | 1314246 | Judson Point | 5726.8 | 3.75791 |
|  | 1222143.045 | 1051.3 | 3455938 | 1655953 | Brooks I. | 2585.4 | 3.41252 |
|  |  |  | 34800346 | 1680355 | North Brooks | 2042.9 | 3.31025 |
| Bill | 375514.278 | $440 \cdot 2$ | 3065209 | 1265235 | California Point 2 | 1307.7 | 3.11652 |
|  | 1222909.317 | 237.6 | 1865528 | 65536 | Point San Quentin | 2637.6 | 3.42121 |
|  |  |  | 1981222 | 18 I 303 | Marin I. E. | 5151.0 | 3.71189 |
|  |  |  | 2261718 | 461929 | Point San Pablo 2 | 7177.3 | 3.85596 |
|  |  |  | 2424415 | 624640 | Molate Point 2 | 6477.8 | 3.81143 |
|  |  |  | 2584656 | 784900 | Red Rock | 4998.3 | 3.69882 |
| San Pablo Road flagstaff * 188 I | 375530.33 | 935. 1 | 47 ¢ 20.6 | $2270455 \cdot 7$ | Rocky I. | 4609.1 | $3.663613$ |
|  | 1221859.11 | 1443-7 | 34: 3602.3 | 1613630.1 | Highland | 3498.4 | $3.543865$ |
| Mt. Tamalpais, wireless tower 1905 | 375544.840 | 1382.4 | 3694958.6. | 895545.2 | Red Rock | 13771.6 | 4.138984 |
|  | 122 3512.466 | 304.4 | 2795425.5 | 1000258.6 | Brooks I. 2 | 20710.8 | $4 \cdot 316196$ |
|  |  |  |  | $\begin{array}{lllll}114 & 27 & 28.5 \\ 118 & 28 & 16.4\end{array}$ | NE. XI | 1566.3 .6 15678.0 | $4 \cdot 194892$ |
|  |  |  | 29822 29.5 | 1182816.4 | Angel 1. Peak | 15678.0 |  |
| San Quentin wharfhouse, SE. gable 1897 | $\begin{array}{llll}37 & 56 & 34.984\end{array}$ | 1078.6 | 1973404.8 | 173424.0 110 | Marin I. East | 2522.3 4328.7 | $3.401798$ |
|  | 122 2884.578 | 844.3 | 290 306 30 | 110 32 <br> 176  <br> 12 07.5 | Red Rock | 4328.7 3279.0 | $3.636354$ |
|  |  |  | 3563242.6 | 1763247.5 | California Point 2 | 3279.0 |  |
| Weils Fargo wharfhouse, chimney 1899 | 375636.334 | 1117.1 | 1005006.01 | 2804954.0 | Point San Quentin | 486.9 | 2.687457 |
|  | 2228836.708 | 896.3 | 19858 11. | 185831.6 | Marin I. East | 2502.0 | 3. 398292 |
|  |  |  | 2121316.3 | 321436.0 | East Sister | 5928.7 | 3.772960 |
|  |  |  | 2410114.7 ! | 610305.3 | Point San Pablo 3 | 5020.5 | 3.700745 |
|  |  |  | 252 or 24.4 | 720340.6 | San Pablo Ridge | 5682.7 | 3.754558 |
| Molate E. Reef 1899 |  | 1820.3 | 721057 | 2521025 | Red Rock | 1336.9 | 3.126It |
|  | 1222456.446 | 1378.5 | 101 5732 | 2815504 | Point San Quentin | 5986.3 | 3.77716 |
|  |  |  | 1273600 | 3073405 | Marin I. East | 5759.7 | 3.76340 |
|  |  |  | 1651818 | 3451807 | Molate Point 2 | 1638.9 | 3.21455 |
| Molate W. Reef 1899 |  | 1839.5 | 1015943.0 | 28157818.2 | Point San Quentin | $5875 \cdot 3$ | 3. 769029 |
|  | 1222500.926 | 22.6 |  | 34885537.4 | Molate Point 2 | $1595.7$ | 3.203949 |
|  |  |  | 1380712.0 | 3080519.8 | Marin I. East | 5661.4 | 3.752925 |
| Prison gearchlight$1897$ | $37 \quad 5619.654$ | 605.9 | 2212509.7 | 412523.1 | Point San Quentin | 803.7 | 2.905115 |
|  | 1222918.672 | 441.3 | 281 3125.4 | Jot 33 34.2 | Red Rock | 5221.8 | 3.717822 |
|  |  |  |  | $\begin{array}{llll}146 & 23 & 59.1 \\ 155 & 46 & 57.4\end{array}$ | Bluff Point ${ }^{2}$ | 6745.4 | 3.829008 3.487236 |
|  |  |  | 3354625.7 | 1554657.4 | Calfornia Point 2 | 3070.7 | 3.487236 |
| Gray house, chimney* 1897 | 375649.14 |  | 2262605 |  | Marin I. East | $2856.1$ | 3.45578 |
|  | $122 \quad 2988.17$ | 687.8 | 2912914 | 1112934 | Point San Quentin | $836.5$ | 2.92245 |
| San Rafael Court-house flagstaff* 1897 | $\begin{array}{rrr}37 & 58 & 26.29\end{array}$ | 810.6 | 300 It 08 | 1201442 | Red Rock | 9834.4 | $3.99275$ |
|  | 1223136.65 | 894.5 | 3100754 | 1300932 | Point San Quentin | 5121.1 | $3 \cdot 70936$ |
| San Rafael Rock 1897 |  |  | 2584125.3 | $\begin{array}{llll}78 & 42 & 06.3\end{array}$ | Marin I. East | 2064.5 |  |
|  | $122 \quad 2926.319$ | 642.5 | 303 38 3 | $\begin{array}{ll}123 & 30 \\ 158 & 18.8\end{array}$ | Red Rock | 6375.0 | $3.804480$ |
|  |  |  | 3383529.0 | 1583547.5 | Point San Quentin | 2008.4 |  |
| San Rafael Creek* 18s2 |  | $564.6$ |  |  | Point San Pedro | 3648.6 | 3.56213 |
|  | 1222912.86 | 313.9 | 352 27 <br> 18  | 1722738 | Point San Quentin | 3082.4 | 3.48889 |
| Brickworks, tall chimney 1899 | 375642.478 | 1309.6 | 3221707 | 1421814 | California Point 2 | 4428.8 | 3.64639 |
|  | 1223017.402 | 424.9 | 328 33 33 | 148 14846 157 46 | Bill Large Boulder | 3187.4 | $3 \cdot 50343$ $3 \cdot 47385$ |
|  |  | - | 3374608 | 1574636 | Large Boulder | 2977. 5 | $3 \cdot 47385$ |
| ```Point San Pedro house, SE. gable 1897``` | 375910.600 | 326.8 | $24805 \text { 5I. } 7$ |  | Point Pinole 3 |  |  |
|  | 1223650.718 | 1237.7 | 2460044.1 | $\begin{array}{rrrrr}66 & 00 & 58.6 \\ 136 & 52 & 38.4\end{array}$ | East Sister | 629.0 4122.8 | $2.79868 x$ |
|  |  |  | 3165127.4 31512 | $\begin{array}{lllll}136 & 52 & 38.4 \\ 151 & 13 & 35.8\end{array}$ | San Pablo Ridge | 412 c .8 4929.9 | $3.614984$ |
|  |  |  | 331 346 346 3 | $\begin{array}{llll}151 & 13 & 35.8 \\ 1666 & 29 & 44.1\end{array}$ | Molate Point 2 <br> Red Rock | 4929.9 6495.0 | $\begin{aligned} & 3.692841 \\ & 3.81258 \mathrm{I} \end{aligned}$ |
|  |  |  | 34619905.8 | $\begin{array}{lllllllllll}166 & 29 & 44.1 \\ 213 & 16 & 55.0\end{array}$ | Red Rock | 6495.0 5584.4 | $3.81258 \mathrm{I}$ |
|  |  |  |  | 213 216 216 | Point San Quentin Marin I. East | 5584.4 2978.8 | $3 \cdot 746973$ |
|  |  |  | 363255.7 | 2163218.0 | Marin I. East | 2978.8 | 3.474046 |
| Point San Pablo Hydrographic 1897 |  |  | 25583.1 | 1825517.9 | Red Rock | 4023.5 | 3.604497 |
|  | 1222540.166 | 980.4 | 102854.5 | 1908814.5 | Bluff Point ${ }^{2}$ | 8735.6 | 3.941295 |
|  |  |  | 350829.9 | 2150647.5 | California Point 2 | 7058.4 | 3.848705 |
|  |  |  | 625729.0 | 2425718.0 | E. Brother I. L. H. | 487.5 | 2.688003 |
|  |  |  | 8827 08. 1 | 2082540.0 | Marin I. East | 3497.4 | 3. 543744 |
|  |  |  | 1554854.4 | 3354825.5 | East Sister | 2799. 5 | 3.447087 |
|  |  |  | 2262147.4 | ${ }^{46} 24$ 04.2 | Paint Pinole 3 | 7488.2 | 3.874379 |

*No check on this position.

San Fransciscó Bay-Continued.


* No check on this position.
$\dagger$ This point is in the area of the 1906 earthquake disturbance.

San Francisco Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Three gable warehouse, middle $W$. gable 1897 | - ' 1 | m | - , " | " |  | meters |  |
|  | 3758 30. 587 | 943.0 | $\begin{array}{llll}38 & 51 & 27.9\end{array}$ | 2185014.8 | High Hill | 4626. 7 | $3.665270$ |
|  | 1222206.850 | 167.4 | $\begin{array}{llll}66 & 40 & 47.3 \\ 82 & 26 & 26.8\end{array}$ | 246 262 292 | San Pablo Ridge Marin I. Fast | 4477.7 8779.5 | $\begin{aligned} & \text { 3. } 651055 \\ & 3.943468 \end{aligned}$ |
|  |  |  | $\begin{array}{r}82 \\ 103 \\ 126 \\ 12 \\ \hline\end{array}$ | $\begin{array}{lll}262 & 22 & 47.4 \\ 283 & 10 & 18.8\end{array}$ | Marin I. Fast East Sister | 8779.5 6525.1 | $\begin{aligned} & 3.943468 \\ & 3.814589 \end{aligned}$ |
| Shanty <br> wharf <br> 1899 | 375633.137 | 1021.6 | 492350.6 | 2292307.7 | Red Rock | 2243.9 | 3. 350996 |
|  | 1222438.806 | 947.6 | 595831.4 | 23956 II. 4 | California Point ${ }^{2}$ | 6423.6 | 3. 807779 |
|  |  |  | 954331.5 | 2714053.2 | Point San Quentin | 6289.9 | 3. 798647 |
| Large Boulder 1900 | $3755 \times 3.080$ | 403. 2 | 1975005 | 175026 | Point San Quentin | 2789.3 | 3. 44550 |
|  | 1222931.282 | 764.0 | 24429 Or | 643139 | Molate Point 2 | 6974.9 | 3. 84354 |
|  |  |  | 2592906 | 793123 | Red Rock | 5532. 1 | 3. 74289 |
|  |  |  | 2660355 | 860408 | Bill | 537.7 | 2. 73057 |
| Outer gable small whitewashed house 1900 | $\begin{array}{rrrrr} & 37 & 56 & 02.381\end{array}$ | 73.4 | $\begin{array}{llll}15 & 48 \\ 35\end{array}$ | 1954756 2154333 | Angel I. Peak ${ }^{\text {a }}$ Bluff Point | 8317.6 6264.6 | $\begin{aligned} & \text { 3. } 92000 \\ & \text { 3. } 79689 \end{aligned}$ |
|  | 1222415.409 | 376.3 | 354505 694334 | 2154333 24941 29 | Bluff Point ${ }^{2}$ California Poinc 2 | 6264.6 6538.2 | $\begin{aligned} & \text { 3. } 79689 \\ & \text { 3. } 81546 \end{aligned}$ |
|  |  |  | 6943 77 79 | 249 <br> 25718 <br> 257 | Red Rock | 2332.0 | 3. 36772 |
| Stump near H. W. M. 1899 | 375556.926 | 1754.8 | 183223 | 1983117 | Angel 1. Peak a | 8263.4 |  |
|  | 1222400.658 | 16. 1 | 391651 | 2191510 | Bluff Point ${ }^{2}$ | 6350.5 | $\text { 3. } 8028 \mathrm{I}$ |
|  |  |  | 720611 | 2520327 | California Point 2 | 6823.5 2657.5 | $3.83401$ |
| Whitewashed rock on point 1900 |  |  |  |  |  |  |  |
|  | 375548.216 | 1486.6 | 193200 | 1993052 | Angel I. Peak 2 | 8038.0 | 3.9046I |
|  | 122 23 58.337 | 1424.7 | 411549 | 2211405 | Bluff Point a | 6182.4 | 3. 79116 |
|  |  |  | 742412 | 2542127 | California Point 2 | 6800.6 | 3.83255 |
|  |  |  | 882410 | 26812302 | Red Rock | 2693.1 | 3. 43025 |
| ```Red Rock southernmost rock 1899``` | 375540.653 122 | 1253.2 1123.0 | 02452 180857 | 180 <br> 198 <br> 198 <br> 8 <br> 298 <br> 20 | Angel I. Peak ${ }^{\text {a }}$ Bluff Point |  |  |
|  | 1222545.977 | 1123.0 | 18 111 11459 | $\begin{array}{rl}198 & 08 \\ 291 & 12 \\ 128\end{array}$ | Bluff Point ${ }^{\text {a }}$ Point San Quentin | 4646.1 4985.7 | $\begin{aligned} & \text { 3. } 66709 \\ & \text { 3. } 60773 \end{aligned}$ |
|  |  |  | $\begin{array}{llll}111 & 14 & 35 \\ 183 & 05 & 54\end{array}$ | 291 2912 3 1258 | Point San Quentin Point San Pablo 2 | 4985.7 4151.0 | 3.6773 |
|  |  |  | 2001428 | 201448 | Molate Point 2 | 2293.8 | 3. 36055 |
| Angel I. E. Point 189 | 375218.112 | 558.4 | $\begin{array}{lllll}66 & 32 & 0 . & 3\end{array}$ | 24631103.9 | Belvedere Point | 2533.0 | 3.4036.34 |
|  | 1222551.670 | 1262.8 | $\begin{array}{llllllllllll}69 & 13 & 23.5\end{array}$ | 2491056.3 | Richardson East | 6272. 2 | $\text { 3. } 797423$ |
|  |  |  | 875408.4 | 2675252.2 | Peninsula Hill 2 | 3035.8 | $3.482276$ |
|  |  |  | 9831107.3 | 2783038.7 | Tiburon Gate Tower | 1553.6 | $\text { 3. } 191352$ |
|  |  |  | 1052239.6 | 285 285 29 | Ridge Rock | $1738.5$ | $\text { 3. } 240166$ |
|  |  |  | 1180606.4 | 2980538.8 | Reservoir | 1243.2 | 3. 094533 |
| Angel I. Middle Point 1895 |  | 230.1 407.9 | $\begin{array}{llll}41 & 03 & 08.2 \\ 68 & 19 & 39.0\end{array}$ |  |  | $\begin{aligned} & 4634.5 \\ & 1842.2 \end{aligned}$ |  |
|  | $132 \quad 26 \quad 16.690$ | 407.9 | $\begin{array}{llll}68 & 19 & 19.0 \\ 70 & 08 & 32.5\end{array}$ | $\begin{array}{llll}248 & 18 & 36.0 \\ 250 & 06 & 20.6\end{array}$ | Belvedere Point Richardson East | 1842.2 5584 | $\begin{aligned} & \text { 3. } 265335 \\ & \text { 3. } 747002 \end{aligned}$ |
|  |  |  | $\begin{array}{lllll}70 & 08 & 32 . \\ 95 & 07 & 08.5\end{array}$ | 250 27506076 | Peninsula Hill ${ }^{\text {a }}$ | 5584.7 2431.9 | 3. 747002 3. 385954 |
|  |  |  | 1210701.6 | 3010638.4 | Tiburon Gate Tower | 1080. 5 | 3. 033606 |
|  |  |  | 126 32 50.1 <br> 152   <br> 1   | $\begin{array}{llll}306 & 32 & 23.4 \\ 332 & 02\end{array}$ | Ridge Rock | 1325.3 | $\text { 3. } 122326$ |
|  |  |  | 1520214.2 | 3320202.0 | Reservoir | 1034.6 | $3.014786$ |
| Alcatraz Rock 1895 | 3749 41.046 | 1265.5 | 1433505 | $\begin{array}{llll}323 & 33 & 38\end{array}$ | Peninsula Hill 2 | 5879.6 |  |
|  | 1222532.989 | 806.7 | 1440310 | $\begin{array}{llll}324 & 02 & 01 \\ 354 & 21 & 38\end{array}$ | Belvedere Point | 4735.9 3772.0 | $3.67540$ |
|  |  |  | 1742147 | 3542138 | Angel I. Peak 2 | 3772.0 | 3. 37657 |
| Lime Pt. fog-station 1892 |  |  | 92455.6 | 1892439.2 | Spring Valley | 3992.1 | 3.601197 |
|  | 12228 39.274 | 960. 5 | 233339.0 | 2023252.8 | Point Lobos a | 4805.4 | 3.681732 |
|  |  |  | 2824 ¢0. 3 | 2082256.2 | Cement | 5385.3 | 3.731213 |
|  |  |  | 295858.0 | 2095751.7 | Under Cement | 5300.0 | 3.724280 |
|  |  |  | 358030808 | 1780311.5 | Rob 3 | 3284.7 | 3.516493 |
| $\begin{aligned} & \text { Needles (Lime Rocks) } \\ & 1892 \end{aligned}$ | $3749 \text { 46. 505 }$ | 1433.7 945.1 | 2064112.0 3424455.6 | $\begin{array}{r} 2641 \\ 16232.7 \\ 35 \end{array}$ | Point Cavallo 2 Presidio Hill | 951.8 4122.2 |  |
|  | $123 \quad 28 \quad 38.646$ | $945.1$ | 342 34 55.6 <br> 358   <br> 55 56.8  | 162 178 178 15 15 | Presidio Hill Rob 2 | 4122.2 3723.5 | $\begin{aligned} & 3.615127 \\ & 3.570956 \end{aligned}$ |
|  |  |  | $\begin{array}{llll}358 & 15 & 56.8 \\ 358 & 30 & 29.2\end{array}$ | 17815 <br> 178 <br> 178 | Rob 2 Rob 3 | 3723.5 3696.7 | $\begin{aligned} & 3.570950 \\ & 3 \cdot 567815 \end{aligned}$ |
| Yellow Bluff tip 1892 |  |  | 352011 | $1720027$ | Presidio Hill | 4787.7 | $3.68013$ |
|  | 1222815.44 | 377.4 | 55842 | $1855^{88} 30$ | Rob 3 | 4528.0 | $3.6559 \mathrm{I}$ |
| Richmond Rock 1897 |  | 1104.5 | 254820.7 | 2054716.7 | Quarry | 5850.0 |  |
|  | 1223324.398 | $596.0$ | 332233.2 | $2132105.1$ | Angel I. Peak 2 <br> Bluff Point ? | 6387.3 5488.9 | $3.805316$ |
|  |  |  | 634743.2 | $2434539.5$ | Bluff Point 2 | 5468.9 7300.3 | $3.737898$ |
|  |  |  | 930803.6 | 2730457.6 | California Point ${ }^{\text {P }}$. | 7390.3 | 3.868601 |
|  |  |  | 1151093.1 | 2950638.8 | Point San Quentin | 8954.0 | 3.952015 |
|  |  |  | 1213938.9 | 3012810.1 | Red Rock | 4129.1 | 3.615855 |
|  |  |  | 1642854.3 | 3442828.7 | High Hill | 3772.2 | 3.576594 |
|  |  |  | . 2951241.4 | 1151359.4 | Brooks I. | 3428.6 | 3.535120 |

San Francisco Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Point Richmond tip 1895 | " | m | - ' " | " |  | meters |  |
|  | 375435.48 | 1093.8 | 26 II 30 | 2061018 | Angel I. SE., 2 | 6521.5 | 3. 81435 |
|  | 1222324.61 | 601.2 | 254824 | 2054720 | Quarry | 5838.1 | $\text { 3. } 76027$ |
|  |  |  | 332323 28756 | $\begin{array}{lllll}213 & 2155 \\ 107 & 57 & 30\end{array}$ | Angel I. Peak 2 | 6375.4 | 3. 80451 |
|  |  |  | 287 28517 | 1075730 | North Brooks | 3052.2 3428.8 | 3. 48462 |
|  |  |  | 2950046 3484744 | $\begin{array}{r}1150203 \\ 16848 \\ \hline\end{array}$ | Brooks I. | 3428.8 11273.0 | 3. 53514 4.05204 |
| ```Projection S. Pt. Rich- mond 1899``` | $375435 \cdot 500$ | 1094.4 | 2962406 | 1162519 | Brooks I. | 3261.9 |  |
|  | $122 \begin{array}{lll}37 & 17.024\end{array}$ | 1094.4 415.8 | 2961406 344528 | 1162519 2144355 | Argel I. Peak 2 | 3261.9 6479.9 | 3. 51347 3.81157 3.75037 |
|  |  |  | 644158 | 2443949 | Bluff Point 2 | 5626.9 | 3. 75027 |
| End of wharf 1890 | 375441.083 | 1266.6 | 30716 01 | 1271654 | Brooks I. | 2679.9 | 3. 42812 |
|  | 12223 44.722 | 1092.4 | 391238 68123 | 2191045 | Angel I. Peak 2 | 7092.5 | 3.85080 |
|  |  |  | 661934 | 2461706 | Bluff Point ${ }^{2}$ | $64 \times 6.2$ | 3.80728 |
| Brooks Rock 1895 | 375345.988 | 1417.8 | 550045.0 | 23458 3I. 2 | Quarry | 6502.8 | 3. 813101 |
|  | 1222130.629 | 748.4 | 585440.0 | 2385202.0 | Angel I. Peak $a$ | 7350.6 | 3. 866323 |
|  |  |  | 832949.8 | $263 \begin{array}{lll}26 & 36.3\end{array}$ | Bluff Point 2 | 7736.6 | 3.888549 |
|  |  |  | 1202350.1 | 3002111.5 | Red Rock | 7303.2 | 3. 863514 |
|  |  |  | 1913036.2 | 113039.2 | North Brooks | 597.4 | 2. 776230 |
|  |  |  | 2564815.9 | 764834.0 | Brooks I. | 331.1 | 2. 519956 |
|  |  |  | 2870737.3 | 1070917.2 | Judson Point | 4157.9 | $3.618876$ |
| $\underset{1895}{\text { Brooks I. S. tip }}$ 1895 | 3753 39.775 | 1226.2 | $7 \quad 5808$ | 1875736 337 | Yerba Buena I. | 9432.1 |  |
|  | 1222101.604 | 39.2 | 570242 | 2370003 | Angel I. SE. 2 | 7596.8 | 3. 88063 |
|  |  |  | 593817 | 2393546 | Quarry | 6996.6 | $3.84489$ |
|  |  |  | 624634 | 2424339 | Angel I. Peak 2 | 7877.0 | 3. 89636 |
| $\begin{gathered} \text { Fort Rock } \\ 1892 \end{gathered}$ | 374841.50 | 1279.4 | 310949 | 211 090 | Cemetery | 3754.7 | 3. 57457 |
|  | $122 \quad 28 \quad 37.43$ | 915.6 | 415540 | 3215433 | Under Cement | 4031.6 | 3. 60548 |
| Blackhead Rock* 1892 | 374722.553 | 695.3 | - 5633.0 | 1805632.6 | Cement | 712.2 | 2. 852625 |
|  | 1223023.470 | 574.3 | 95534.2 | 1895531.7 | Under Cement | $574 \cdot 3$ | 2. 759170 |
|  |  |  | 2542347.2 | 742453.8 | Rob 3 | 2762.7 | 3. 441332 |
|  |  |  | 2672141.8 | 8722 29.2 | Spring Valley | 1898.4 | 3. 278386 |
| Fort Pt. Rock 1887 |  | 931.0 | 165634 | 1965619 | Spring Valley | 2089.0 | 3. 31993 |
|  | 122 28 41.08 | 1004.9 | 354608 | 2154523 | Point Lobos 2 | 3078.4 | $3.48833$ |
|  |  |  | 412452 | 2212400 | Point Lobos 3 | 3140.3 | 3. 49697 |
|  |  |  | 442934 123 | 224 28 30 306 36 36 | West Diablo | 3717.1 3667.8 | 3. 57020 |
|  |  |  | $\begin{array}{llll}123 & 37 & 54 \\ 136 & 58 \\ 15\end{array}$ | $\begin{array}{llll}303 & 36 & 57 \\ 316 & 57 & 34\end{array}$ | West Diablo | 2667.8 2185.7 | 3. 42615 3. 33960 |
|  |  |  | 1743522 | 3543517 | New I, ime Point | 2161.0 | 3. 33466 |
|  |  |  | 1883851 | 83903 | Loint Cavallo 2 | 3239.8 | 3. 5105a |
| $\underset{1892}{\text { Spring Valley Rock }}$ | 374723.40 | 72 I .5 | 614735 | 2414714 | Point Lobos a | 928 | 2.96746 |
|  | 1222921.21 | 518.9 | 764212 | 2564145 | Point Lobos | 1081 | 3.03380 |
|  |  |  | 1720323 | 3520310 | East Diablo | 3692 | 3.56730 |
|  |  |  | 1902738 | 102757 | New Lime Point | 4282 | 3.63164 |
|  |  |  | 2374727 | 574756 | Rob 3 | 1344 | 3. 12853 |
|  |  |  | 2390653 | $\begin{array}{ll}50 & 0722\end{array}$ | Rob ${ }^{2}$ | 1345 | 3.12861 |
|  |  |  | 2604329 | 804239 | Spring Valley | 378 | 2. 57734 |
| $\begin{aligned} & \text { Cone Rock (Sail Rock) } \\ & 1895 \end{aligned}$ | $\begin{array}{r}37 \\ \hline 1215151.790 \\ \hline 128\end{array}$ | 1596.6 304.3 | 604232 123 | $\begin{array}{llll}240 & 41 & 28 \\ 303 & 37 & 38\end{array}$ | Richardson East | 2892.3 3050.6 | $3.46125$ |
|  | $122 \quad 28$ 08. 359 | 204. 3 | 1233842 2034132 | $\begin{array}{r}303 \\ 33 \\ 23 \\ \hline 2\end{array}$ | Strawberry Hill 2 Peninsula Hill 2 | 3050.6 764.3 | $\begin{aligned} & 3.48439 \\ & 2.88335 \end{aligned}$ |
|  |  |  | 2034132 2743640 | 23 41 <br> 94 38 <br> 0  | Peninsula Hill 2 Angel I. Peak 2 | 764.3 3438.6 | 2.88335 3.53638 |
|  |  |  | 2805834 | 1005849 | Belvedere Point | 1036.8 | 3.01569 |
| Shore Cone 1887 | 374929.812 | 919.I | 2963350 | 1163409 | West Diablo | 806.4 | 2. 90654 |
|  | 1223041.395 | 1012.4 | 3154917 | $1355035$ | Rob 2 | 4471.1 | 3. 65041 |
|  |  |  | 3473704 | $1673728$ | Point Lobos | 4244.6 | 3.62784 |
|  |  |  | 3481924 | $1681946$ | Point Lobos 3 | 4291.5 | $3.63261$ |
|  |  |  | 3544417 | 1744428 | Cement | 4655.2 | 3. 66794 |
| $\underset{1892}{\text { Tick Rock } \dagger}$ | 374917.34 1223004.41 | 534.6 107.8 | 356 3 7 7 50 | $\begin{array}{llll}176 & 32 & 0 \\ 187 & 50 & 22\end{array}$ | Point Lobos 2 Under Cement | 3958.7 4143.5 | $\begin{aligned} & 3.59755 \\ & 3.61737 \end{aligned}$ |
|  | 1223004.41 | 107.8 | 75036 | 1875022 | Under Cement | 4143. 5 | $3.61737$ |
| Bonita Wash Rock $\dagger^{*}$ i892 | $\begin{array}{rrr}37 & 48 & 57.12 \\ 123 & 31 & 50.08\end{array}$ | 1761.0 1225.0 | 319 3090 329 | $\begin{array}{llll}139 & 41 & 13 \\ 149 & 53 & 06\end{array}$ | Point Lobos 2 Under Cement | 4365.0 4024.7 | $3.63998$ $3.60473$ |
|  | 1223150.08 | 1225.0 | 3295215 | 1495306 | Under Cement | $4024.7$ | $3.60473$ |
| South Seal Rock * 1877 | 37 4643.608 |  |  |  | Diabla Hill |  |  |
|  | 1223056.790 | 1389.8 | 192 <br> 200 <br> 20 <br> 20 <br> 10 <br> 10 | $\begin{array}{llll}12 & 59 & 08 \\ 20 & 31 & 38\end{array}$ | West Diablo East Diablo | 4888.5 5214.7 | $3.68918$ |
|  |  |  | 200 <br> 238 <br> 238 <br> 20 | $\begin{array}{llll}20 & 31 & 38 \\ 58 & 42 & 23\end{array}$ | East Diablo | 5214.7 940.5 | 3.71733 2.97338 |
|  |  |  | 30414 | $\begin{array}{r}124 \\ 124 \\ \hline 15\end{array}$ | Black Ridge | 4922.4 | 3.69218 |
|  |  |  | 3075023 | 2275212 | Black Ridqe 2 | $5495 \cdot 9$ | 3. 74004 |
|  |  |  | 3504040 | 1704107 | Black Blufi | 6668.7 | 3.82404 |

*This point is in the area of the 1906 carthquake disturbance.

+ No check on this position.
$634^{81}-11-15$

San Francisco Bay-Continued.

| Station | Latitude and longitude | Sec onds in meters | Azimuth | Back azimuth | To station | Distance | Logarithrn |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| North Seal Rock * 1887 | '' | $m$ | " | - ' 1 |  | melers |  |
|  | 374650.722 | 1563.8 | 190 <br> 194 <br> 194 <br> 13 | 101350 143526 | Diablo Hill | 5324.8 $4695 \cdot 5$ | $\begin{aligned} & 3.72630 \\ & 3.67168 \end{aligned}$ |
|  | 1223100.240 | 5.9 | 194 304 302 30 | 14 <br> 22 <br> 25 <br> 18 | West Diablo East Diablo | 4695.5 5041.3 | 3.67168 <br> 3. 70254 |
| $\underset{1887}{ } \mathrm{Helmet}_{7}$ Rock | $\begin{array}{r} 3748 \text { 07. } 58 \\ 12228 \quad 52.07 \end{array}$ | $\begin{array}{r} 233.7 \\ 1273.8 \end{array}$ | $143^{8} 39$ | 1943832 | Spring Valley | 1344.6 | 3.12860 |
|  |  |  | 402204 | 2202126 | Point Lobos a | 2363.0 | 3. 37347 |
|  |  |  | 472926 | 2278841 | Point Lobos 3 | 2453.2 | 3. 38974 |
|  |  |  | 473707 | 22736 | Point Lobos | 2389.2 | 3.37875 |
|  |  |  | 1515701 | 3315631 | New Lime Point | 2000.5 2849.6 | 3.41505 |
|  |  |  | 1905757 | 10 58 <br> 17  | Point Cavallo 2 | 3973.0 | 3. 59912 |
| Pescada Landing fishhouse, flagstaff 1895 | $375211.57^{8}$ | $\begin{aligned} & 356.9 \\ & 196.6 \end{aligned}$ | 50337.9 | 1850329.8 | Point Cavallo a | 3636.5 | 3. 560685 |
|  | $\begin{array}{lllll}322 & 28 & 08.045\end{array}$ |  | 29 O1 0509 | 20980026.9 | Halfway | 3197.9 | 3. 504864 |
|  |  |  | 511936.1 | 231581832.5 | Richardson East | 3241.0 | 3. 510676 |
|  |  |  | $1125^{8} 38.4$ | 2925734.4 | Strawberry Hill 3 | 2766.8 | 3. 441979 |
| Benjamin's yellow house, flagstaff 1895 | $\begin{array}{rrr}37 & 51 & 53.852 \\ 122 & 27 & 30.270\end{array}$ | 1660.2 739.9 |  | $\begin{array}{llll}161 & 37 & 43.5 \\ 202 & 01 & 1.5\end{array}$ | Belvedere Point Point Cavallo 2 | 275.0 3318.0 | $\begin{aligned} & \text { 2. } 439367 \\ & \text { 3. } 520870 \end{aligned}$ |
|  |  | 739.9 | $\begin{array}{llll}22 & 01 & 44.5 \\ 66 & 49 & 39.4\end{array}$ | 202 01 <br> 246 48 <br> 8 13.3 <br> 12.7  | Point Cavallo ${ }^{2}$ | 3318.0 3756.9 | $\begin{aligned} & 3.520870 \\ & 3.574829 \end{aligned}$ |
|  |  |  | 664939.4 13544 | 246 315 315 33 | Peninsula Hill 2 | 391.1 | 2.949938 |
| Belvedere Rock 1895 |  | $\begin{array}{r} 1354.6 \\ 055.6 \end{array}$ | 275 ¢ 09 | 950036 | Angel I. NW. 2 | 1073.7 | 3.03087 |
|  |  |  | 353743 | 2053710 | Point Cavallo 2 | 3072.2 | 3. 48745 |
|  |  |  | 753952 |  | Richardson East | 3727.4 | 3. 57141 |
|  |  |  | 1183157 | 2983028 | Strawberry Hill a | 4046.2 | 3.60705 1. 65123 |
|  |  |  | $\begin{array}{lllll}183 & 0 & 03 \\ 370\end{array}$ | $\begin{array}{rrrr}300 & 03 \\ 90 & 50 & 24\end{array}$ | Angel I. Peak 2 | 44.8 2412.2 | 3.38242 |
|  |  |  |  |  |  |  |  |
| ```Angel I. wharfhouse, W. gable I895``` | $\begin{array}{rrrr}37 & 51 & 35 \cdot 088 \\ 122 & 26 & 37 \cdot 241\end{array}$ | $\begin{array}{r} 108 \mathrm{I} .7 \\ 910.4 \end{array}$ | 1221939.5 | 3021851.4 | Peninsula Hill 2 | 2272.2 | 3. 3564.34 |
|  |  |  | 453012.8 | 2253900.1 | Point Cavallo ${ }^{2}$ | 3562.6 | 3. 551767 |
|  |  |  | 791653.2 | 2591454.0 | Richardson East | 4834.6 | 3. 684360 |
|  |  |  | 1044245.6 | 2844215.2 | Belvedere Point | 1250.6 | 3. 097108 |
| Tiburon Rock $\times 895$ | $\begin{array}{rrr}37 & 52 & 20.49 \\ 122 & 26 \\ 59.36\end{array}$ | $\begin{array}{r} 631.7 \\ 1450.8 \end{array}$ | 271018 | 3070927 | Point Cavallo ${ }^{2}$ | $43^{80.4}$ | 3. 64151 |
|  |  |  | 314256 | 2114239 | Belvedere Point | 1272.3 | 3. 10460 |
|  |  |  | 61 2120 | 2411934 | Richardson East | 4796.6 | 3.68093 |
|  |  |  | 822150 | 2622154 | Peninsula Hill 2 | 1391.6 | 3. 14353 |
|  |  |  | 3034317 | 1234400 | Angel I. Peak 2 | 2093.0 | 3. 32076 |
| Lrobos Rock* 1887 | $\begin{array}{rrrr}37 & 47 & 35.22 \\ 122 & 30 & 34.95\end{array}$ | $\begin{aligned} & 469.2 \\ & 855.2 \end{aligned}$ | 1981822 | 181855 | East Diablo | 4157.7 | 3. 61465 |
|  |  |  | 2514547 | 714702 | Rob 3 | 3097.3 | 3.49099 |
|  |  |  | 2521914 | 722028 | Rob ${ }^{2}$ | 3104.8 | 3.49204 |
|  |  |  | 2694328 | 894347 | Point Lobos | 752.5 | 2. 87652 |
|  |  |  | 3733118 | 933137 | Point Lobos 3 | 710.2 | 2. 85141 |
|  |  |  | $\begin{array}{llll}331 & 0 & 49 \\ 331 & 49 & \end{array}$ | 1510050 1514915 | Under Cement | 555.6 385.3 | 2. 74479 2. 58583 |
| $\underset{5887}{\text { Pyramid Rock** }}$ | $\begin{array}{rrr} 3747 & 23.43 \\ 122 & 30 & 21.17 \end{array}$ |  |  |  |  |  |  |
|  |  | $\begin{aligned} & 723.3 \\ & 518.0 \end{aligned}$ | 1943925 | 143948 | East Diablo | 3779. 1 | 3. 57739 |
|  |  |  | 2080319 | $\begin{array}{ll}28 & 04 \\ 74\end{array}$ | New Lime Point | 4770.8 | 3. 67859 |
|  |  |  | 2543738 | 743844 | Rob 3 | 2701.2 | 3.43155 |
|  |  |  | 2551523 | 7516 <br> 17 | Rob 2 | 2710.3 | 3.43301 |
|  |  |  | 2680725 | 880801 | Spring Valley | 1841.0 | 3. 26506 |
|  |  |  | 3005958 | 1200008 | Point Lobos | 484.4 | 2.68522 |
|  |  |  | 30836 | 1283638 | Point Lobos 3 | 475.6 | 2.67731 |
|  |  |  | 51540 144110 | 194410 | Cement | 742.3 607.2 | 2. 87856 2. 88330 |
| Mile Rock* 1887 | $\begin{array}{rrr} 37 & 47 & 35 \cdot 21 \\ 122 & 30 & 34 \cdot 51 \end{array}$ | 1085.5 <br> $844 \cdot 3$ |  |  | East Diablo | 3533.9 | 3. 54826 |
|  |  |  | 363074 | 830908 | Rob 3 | 2952.1 | 3.47013 |
|  |  |  | 177 57 <br>  57 <br> 15  | 9758 O8 | Spring Valley | 2187.6 | 3.33996 |
|  |  |  | 3093318 | 279336 | Point Iobos | 962.0 | 2.98318 |
|  |  |  | 3132316 | 1332334 | Point I_obos 3 | 960.6 | 2.98255 |
|  |  |  |  | 16648 169 | Cement Under Cement | 1132.2 921.1 | 3.05392 2.98737 |
|  |  |  | 3495055 | 169 51 0 | Under Cement | 971.1 | 2.98727 |
| Little Mile Rock* 1887 | 374734.431223032.74 | 1061.4801.0 |  |  |  |  |  |
|  |  |  | 213 <br> 20208 <br> 2083 <br> 23 | $\begin{array}{llll}33 & 09 & 0 \\ 82 & 34 & 55\end{array}$ | New Lime Point Rob 3 | 4622.7 2912.3 | 3.65490 3.46423 |
|  |  |  | $\begin{array}{llll}262 & 33 & 43 \\ 263 & 06 & 58\end{array}$ | 823455 830810 | Rob 2 | 2912.3 2925.3 | 3.4643 |
|  |  |  | 2772844 | 972937 | Spring Valley | 2141.5 | 3.33072 |
|  |  |  | 3100732 | 1300748 | Point Lobos | 913.4 | 2.96067 |
|  |  |  | 3140943 | $134{ }^{1} 9959$ | Point Lobos 3 | 912.8 | 2.96037 |
|  |  |  | 348 <br> 352 <br> 129 | 1684304 | Cement | 1099.6 | 3.04123 |
|  |  |  | 3521117 | 172 1120 | Under Cement | 940. 7 | 2.97344 |
| Double White 1892 | 3712912331 | 975. 7 | 338 os 00 | 1580545 | Point Lobos 2 | 4734.6 | 3.67578 |
|  |  | 167.3 | 3404 4 18 | 16004156 | Point Lobos 3 | 4503.2 | 3.65352 |
|  |  |  | 3472388 | 1672355 | Cement | 4808.2 | 3. 68198 |

*This point is in the area of the 1906 earthquake disturbance.

San Francisco Bay-Continued.

| Station | Latitude and longitude | Secondsin meters | Azimuth | $\underset{\text { azimuth }}{\text { Back }}$ | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\substack{\text { Bonita Rock } \\ 1887-92}}{ }$ | $\begin{array}{ccc} \circ & \prime \prime \\ 37 & 48 & \prime \prime \\ 123 & 35 \\ 123 & 38.89 \end{array}$ | $\begin{gathered} m \\ 1642.9 \\ 951.0 \end{gathered}$ | - ' " | , " |  | meters |  |
|  |  |  | 2321710 <br> 250 <br> 250 <br> 12 <br> 17 | 52 17 <br> 70 17 <br> 0 10 | Diablo Hill West Diablo | 2389.4 2260.9 | 3. 37829 |
|  |  |  | 2501217 <br> 25050 <br> 08 | 7013 70 70 50 51 | New Lime Point | 2360.9 4387.6 | 3.35428 3.64223 |
|  |  |  | 2942959 | $1143^{15} 52$ | Rob ${ }_{3}$ | 5067. 1 | 3. 70476 |
|  |  |  | 3055432 | 1255606 | Spring Valley | 4619.4 | 3.66459 |
|  |  |  | 3213104 | 1413208 | Point Lobos 2 | 4099.9 | 3.61277 |
|  |  |  | 3223007 | 1423104 | Point Lobos | 3806.0 | 3. 58047 |
|  |  |  | 32327 ro | 143 2806 | Point Lobos 3 | 3817.4 | 3. 58177 |
|  |  |  | 3322444 332 | 1522530 | Cement | 3959. 5 | 3. 39764 |
|  |  |  | 3323327 | 1523411 | Under.Cement | 3789.3 | 3. 57856 |
| $\underset{1887}{\text { Bonita Bluff a } \dagger}$ |  | $\begin{aligned} & 725.4 \\ & 634.7 \end{aligned}$ | 27515150 <br> 3011097 <br> 10 |  | West Diablo |  | 3. 35975 3. 79424 3. |
|  |  |  | 3052840 | 1253025 | Rob ${ }_{3}$ | 5144.8 | 3.71137 |
|  |  |  | 3053635 | 1253820 | Rob ${ }^{2}$ | 5173.4 | 3. 71378 |
|  |  |  | 3164522 <br> 331 <br> 888 <br> 8 | 1364647 151 159 | Spring Valley | 4999.5 4766.3 | 3.69893 3.67268 |
|  |  |  | 331 <br> 338 <br> 385 <br> 98 | 251 <br> 153 <br> 15954 <br> 159 | ${ }^{\text {Point }}$ ( Lobras 2 | 4700.3 4429.5 | 3.67268 3.64635 |
|  |  |  | 3410824 | 1610902 | Cement | 4693.6 | 3.67151 |
| Shore Cone Rock 1887 | $\begin{array}{r} 374928.70 \\ 1223042.08 \\ 30 \end{array}$ | $\begin{array}{r} 884.8 \\ 1027.3 \end{array}$ | 3151719 | 1351836 | Rob 3 | 4426.7 | 3. 64608 |
|  |  |  | 3281643 | 1481742 | Spring Valley | 4469.3 | 3. 65024 |
|  |  |  | 3445451 | 1645520 | Point Lobos 2 | 4455.0 | 3.64885 <br> 3.66487 |
|  |  |  | 354 <br> 350 <br> 355 <br> 26 <br> 58 | 174 175 175 31 | Cement | 4622.4 4469.0 |  |
| White Top Rock ${ }^{1887}$ | $\begin{array}{rrr} 37 & 49 & 26.97 \\ 122 & 30 & 27.57 \end{array}$ | $\begin{aligned} & 8_{3 \text { r. } 5} \\ & 674.3 \end{aligned}$ |  |  |  |  |  |
|  |  |  | 30528 50 | 1252900 | West Diablo | 470.6 | 2.67262 |
|  |  |  | 3181437 | 1381536 | Rob 3 | 4146.0 | 3.61763 |
|  |  |  |  | 1515812 | Spring Valley | 4247.1 | 3.62809 3.63500 |
|  |  |  | 349 3 3 3 1588 | 1691533 171585 172 | ${ }^{\text {Point }}$ Point Lobos ${ }^{2}$ | 4324.1 <br> 4098. | 3. 63590 3.61262 |
|  |  |  | 3515842 <br> 35240 <br> 102 | 17158 172 170 40 15 | Point Lobos Point Lobos 3 | 4098.5 4139.4 | 3. 61262 3.61694 3 |
|  |  |  | 3585259 | 1785302 17985 | Cement | 4548.9 | 3.65791 |
|  |  |  | 3595855 | 1795855 | Under Cement | 4401.7 | 3. 64362 |
| Grayback white tip 1892 | 374922.701223122.97 | 699.8 | 3054320 | 1254503 | Rob 3 | 5070.5 | 3. 70505 |
|  |  | 561.7 | 3321732 | 1521827 | Point Lobos 2 | 4649.3 | 3. 66739 |
|  |  |  | 3343809 | 1543856 | Point Lobos 3 |  | 3.64321 |
|  |  |  |  | 161 162 16203 | Cement | 46463 | 3. 66711 |
|  |  |  | 3422213 | 1622247 | Under Cement | 4480.3 | 3.65131 |
| Point Diablotip 1887 | $\begin{array}{r}37 \\ 122 \\ 129 \\ \hline 9\end{array}$ | $\begin{array}{r} 410.0 \\ 3331.0 \end{array}$ | 2282128 | 482136 | East Diablo | 404.4 | 2.60677 |
|  |  |  |  |  |  | 1790. 1 | 3. 252887 |
|  |  |  | $\bigcirc$ | 180 0416 | Point Lobos 2 | 3826.7 | 3. 58888 |
|  |  |  | 34541 <br> 4 | 183.4535 184 18.2311 | Point Lobos | 3644. 8 | 3. 56867 |
|  |  |  | 312319 <br>  <br> 95549 | 1842311 <br> 1895935 <br> 95 | $\underset{\text { Point Lobos }}{ }$ | 3694.9 4189.3 | 3. 56760 3. 62214 |
|  |  |  | $\begin{array}{r}11 \\ \hline 29 \\ \hline 8\end{array}$ | 1912938 | Under Cement | 4061.6 | 3. 60870 |
| Under Rock 1887 | $\begin{array}{rr} 37 & 49 \\ 30.82 \\ 122 & 29 \\ 26.59 \end{array}$ | $\begin{aligned} & 950.2 \\ & 650.2 \end{aligned}$ | 3382044 | 1582117 | Rob 2 | 3483.9 | 3. 54207 |
|  |  |  | 3382616 | 1582648 | Rob 3 | 3453.4 | 3. 53825 |
|  |  |  | 3523400 | 1723413 | Spring Valley | 3900.0 | 3. 59107 |
|  |  |  | 8255 38 |  |  |  |  |
|  |  |  | $\begin{array}{llll}12 & 51 & 15 \\ 12 & 25 & 32 \\ 20 & 4 & \end{array}$ | 1925052 192 19510 | ${ }^{\text {Point Lobos }}$ Point Lobos | 4332.8 4277.1 | 3. 63674 3.63115 |
|  |  |  | 162532 164428 | 1964353 | Cement | 4873.0 | 3. 68780 |
|  |  |  | 181519 <br> 54 <br> 12 | 1981442 <br> 234 <br> 12 | Under Cement | 4759.6 465.9 |  |
|  |  |  | 542222 | 2342213 | East Diablo | 465.9 | $2.66830$ |
| $\underset{\text { Bird Point * }}{\substack{\text { B92 }}}$ | 374926.461223232.09 | $815.7$$295 \cdot 7$ | 3213107 | 1413232 | Point Lobos 2 |  | 3. 73287 |
|  |  |  | 3225739 | 1425856 | Point Lobos 3 | 5122.8 524 | 3. 70951 |
|  |  |  | 3294302 | 1494409 | Cement | 5247.8 | 3. 71998 |
|  |  |  | 3294407 | 1494512 | Under Cement | 5077.4 | 3. 70564 |
| Whale Point ${ }^{1887}$ | 374933.931228846.57 | $\begin{aligned} & 1046.0 \\ & 1138.9 \end{aligned}$ | 3544450 | 1744457 | Rob 2 | 3348.1 | 3. 52480 |
|  |  |  | 3545914 | 1745920 | Rob 3 | 3320.3 | 3. 52118 |
|  |  |  | 64943 | 1864931 | Spring Valley | 3901.4 476.1 | 3.60113 |
|  |  |  | 202746 24 | 200 204 12 12 205 |  | 4763. I | 3. 67789 <br> 3.67548 |
|  |  |  | 24 24 23 53 58 | 2041220 <br> 2035720 <br> 18 | Point I Iobos 3 Point Lobos | 4736.7 <br> 4675.8 | 3. 67548 3.66986 3.685 |
|  |  |  | 263459 | 2063359 | Cement | 5325.0 | 3. 72632 |
|  |  |  | 28.998 | 2080813 | Under Cement | 5235.2 | 3. 71893 |
|  |  |  | 745153 | 2545118 | East Diablo | 1406.2 | 3.14805 |

* This point is in the area of the 1906 earthquake disturbance.
† See p. 291.

San Francisco Bay-Continued.

| Station | I_atitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Grayback } \\ 1892 \end{gathered}$ | " | $m$ | - ' " | , " |  | meters |  |
|  | 374929.77 | 917.8 | 3093507 | 1293643 | Rob 3 | 4988.2 | 3. 69794 |
|  | 1223111.84 | 289.5 | 3368647 | 1562735 | Point Lobos 2 | 4728.2 | 3.67470 |
|  |  |  | 3385817 | 1585857 | Point L,obos 3 | 4490.9 | 3.65233 |
|  |  |  | 3454833 | 1654902 | Cement | 4780.0 | 3.67943 |
|  |  |  | 3462452 | 1662518 | Under Cement | 4617.0 | 3.66436 |
| Cluster Rock 1892 | $374925 \cdot 22$ | 777. 5 | 3332952 | 1533038 | Spring Valley | 4128.3 | 3.61577 |
|  | 1223021.25 | 519.7 | 3544346 | 1744355 | Point Lobos 3 | 4068.8 | 3. 60947 |
|  |  |  | 3511003 | 1711019 | Point Lobos 2 | 4244.6 | 3.62784 |
|  |  |  | - 5024 | 1805023 | Cement | 4494.6 | 3.65269 |
|  |  |  | 20104 | 182 Of OI | Under Cement | 4350.4 | 3. 63853 |
| Diablo Diamond 1892 | 374913.87 | 427.6 | 3224427 | 1424518 | Rob 3 | 3378.7 | 3. 52875 |
|  | 122 2958.32 | 1426.4 | 3390240 | 1590313 | Spring Valley | 358 r .7 | 3. 55409 |
|  |  |  | $\begin{array}{lll}358 & 39 & 07\end{array}$ | 1783910 | Point L-obos 2 | 3845.6 | 3. 58496 |
|  |  |  | 25357 | 1825352 | Point Lobos 3 | 3706.6 | 3. 56897 |
|  |  |  | 83621 | 1883605 | Cement | 419 I .4 | 3.62336 |
|  |  |  | 100757 | 1900739 | Under Cement | 4061. 1 | 3. 60864 |
| E. Diablo E. tip 1892 | 374923.09 | 717.8 | 3321042 | 1521120 | Rob 3 Valley | 3362.0 | 3. 52660 |
|  | 1222938.85 | 950.2 | 3473000 | 1673020 | Spring Valley | 3717. 1 | 3. 57020 |
|  |  |  | 92725 | 1892708 | Point Lobos 3 | 4040.8 | 3. 60647 |
|  |  |  | 135941 153235 | $\begin{array}{lllll}193 & 59 & 14 \\ 195 & 32 & 06\end{array}$ | Cement | 4263.7 4444.4 | 3.65932 3.64781 |
|  |  |  | 153235 | 1953206 | Under Cement | 4444.4 | 3.64781 |
| E. Diablo, W. tip 1892 | 374920.54 | 633.2 | 329 57 <br> 19  | 14958 or | Rob 3 |  |  |
|  | 1222943.15 | 1055.3 | 3453741 | 1653805 | Spring Valley | 3665.1 4059.8 | 3. 50409 |
|  |  |  | 35757 808 | 1835750 | Point Lobos 2 | 4059.8 | 3. 60850 |
|  |  |  | 80814 | 18808 or | Point Lobos 3 | 3947.1 4462.8 | 3. 59628 3. 64961 |
|  |  |  | 125540 <br> 14 <br> 18 | 1925515 | Cement | 4462.8 4341.3 | 3.64961 3.63762 |
|  |  |  | 142858 | 19423 31 | Under Cemant | 434.3 | 3.63762 |
| Second Under Rock 1892 | 374928.15 122 | 866.3 756.0 | $\begin{array}{llll}336 & 16 & 15 \\ 350 & 50 & 07\end{array}$ | $\begin{array}{llll}156 & 16 & 51 \\ 170 & 50 & 23\end{array}$ | Rob 3 Spring Valley | 3417.0 3832.7 | $\begin{aligned} & \text { 3. } 53364 \\ & \text { 3. } 58350 \end{aligned}$ |
|  | 1222930.91 | 756.0 | 350 70 7 42 | 1705023 1874235 | Spring Valley Point I obos 2 | 3832.7 4322.4 | $\begin{aligned} & \text { 3. } 58350 \\ & 3.63572 \end{aligned}$ |
|  |  |  | 114229 | 1914209 | Point Lobos 3 | 4228.5 | 3.62619 |
|  |  |  | 154841 | 1954809 | Cement | 4763.1 | 3.67789 |
|  |  |  | 172020 | 1971946 | Under Cement | 4647.6 | 3.66723 |
| Third Under Rock 1892 | $\begin{array}{rrrr}37 & 49 & 24.92 \\ 122 & 29 & 35.85\end{array}$ | 768.3 875.8 |  |  | Rob 3 Spring Valley | 3378.5 3757.0 | $\begin{aligned} & 3.52872 \\ & 3.57484 \end{aligned}$ |
|  | 1222935.81 | 875.8 | 348 <br> 64737 <br> 6 <br> 10 | 1684755 1861620 | Spring Valley | 3757.0 4210.2 | 3.57484 3.62430 |
|  |  |  | 61639 102103 | $\begin{array}{llll}186 & 16 & 29 \\ 190 & 20 & 46\end{array}$ | Point Lobos 2 Point Lobos 3 | 4210.2 4109.1 | 3.62430 3.61375 |
|  |  |  | $\begin{array}{llll}10 & 21 & 103 \\ 14 & 43 & 06\end{array}$ | 1902046 1944237 | Cement | 4109.1 4636.8 | 3.61375 3.66622 |
|  |  |  | 161538 | 1961507 | Under Cement | 4519.0 | 3. 65504 |
| Andrew Rock 1892 | 374936.13 | 1113.9 | 3442354 | 1642418 | Rob 3 | 3504. 8 | 3. 54466 |
|  | 1322913.34 | 323.8 | 3572819 | 1772825 | Spring Valley | 4035.2 | 3. 60586 |
|  |  |  | 123554 | 1923599 | Point Lobos 2 | 4642.5 | 3.66675 |
|  |  |  | 162318 | 1962246 | Point Lobos 3 | 4573.9 | 3.66029 |
|  |  |  | 194229 | 1994146 | Cement | 5730.9 | 3. 71019 |
|  |  |  | 211229 | 201 If 44 | Under Cement | 5024.2 | 3. 70107 |
| Under High tip 1892 |  |  |  |  | Rob 3 Valley | 3542.7 |  |
|  | 1222926.41 | $645 \cdot 9$ | 3524838 | 1724852 | Spring Valley | 3996.4 | 3.60167 |
|  |  |  | 84727 | 18847 10 | Point Lobos 2 | 4517.5 | 3. 65490 |
|  |  |  | 123743 | 1923720 | Point Lobos 3 | 4428.9 | 3. 64630 |
|  |  |  | 16.2756 | 1962721 | Cement | 4967.8 485.8 | 3. 69616 |
| - |  |  | 175637 | 19756 | Under Cement | 4853.8 | 3.8868 |
| $\underset{\text { Point } 3}{\substack{\text { P9 }}}$ | 37 4936.04 | 1111.1 | 3465937 359 | 1665956 179 | Rob ${ }^{3}$ Spring Valley |  |  |
|  | 1223906.55 | 160.2 | 3594742 | 1794742 | Spring Valley | 4028.3 | 3. 60512 |
|  |  |  | 143342 | 1943312 | Point L.abos 2 | 4678.0 | 3.67006 |
|  |  |  | 182044 21516 | 1982007 | Point Lobos 3 | 4619.9 | 3.66463 |
|  |  |  | $\begin{array}{llll}21 & 25 & 16 \\ 22 & 56 & 23\end{array}$ | $\begin{array}{llll}201 & 24 & 28 \\ 202 & 55 & 33\end{array}$ | Cement <br> Under Cement | 5185.6 5082.8 | 3. 71480 |
|  |  |  | 22563 | 2025533 |  | 58.8 | 3.700.0 |
| $\underset{1892}{\text { Bird Lime Pt. }}$ | $\begin{array}{rrr}37 & 49 & 37.17 \\ 122 & 29 & 04.36\end{array}$ | 1145.9 106.6 | $\begin{array}{rrrr}347 & 58 & 58 \\ 0 & 33 & 14\end{array}$ | $\begin{array}{llll}167 & 59 & 16 \\ 180 & 33 & 13\end{array}$ | Rob 3 Spring Valley | 3484.0 4063.3 | 3. 54208 3. 60888 |
|  | 1222904.36 |  | 03314 150508 | 180 <br> 195 <br> 194 <br> 04 <br> 18 | Point Lobos 2 | 4063.3 4725.5 | 3. 3.67445 |
|  |  |  | 185011 | 1984933 | Point Lobos 3 | 4670.0 | 3.66932 |
|  |  |  | 214943 | 2014854 | Cement | 5237.8 | 3.71915 |
|  |  |  | $23 \quad 2023$ | 2031932 | Under Cement | 5136.2 | 3. 71064 |
| North Pt. Rock* 1892 | 375002.68 | 82.6 | 3204212 |  |  |  |  |
|  | 122325349 | 1308.0 | 321470 | $14 \times 4842$ | Point Lobos 3 | 6625.7 | 3.82123 |
|  |  |  | 3270024 | 147 O1 53 | Under Cement | 6559.8 | 3.81689 |
|  |  |  | 3270341 | 1470512 | Cement | 6730.2 | 3. 82803 |

* This point is in the area of the 1906 earthquake disturbance.

San Francisco Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | Tostation | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} \text { Point } 2 \\ 1892 \end{array}$ | - ' " | $m$ | - ' " | - ' " |  | metets |  |
|  | $\begin{array}{rrr}37 & 49 & 34.16 \\ 123 & 28 & 55.89\end{array}$ | 1053.1 1367.0 | $\begin{array}{rrr}351 & 06 & 52 \\ 3 & 33 & 08 \\ 1\end{array}$ | $\begin{array}{llll}171 & 07 & 05 \\ 183 & 33 & 02\end{array}$ | Rob 3 Spring Valley | 3355.0 | 3. 52569 |
|  | $123 \quad 2855.89$ | 1367.0 | 33308 | 183 <br> 183 <br> 197 <br> 18 | Spring Valley | 3977.9 | $\text { 3. } 59965$ |
|  |  |  | 174923 2147 | 1974847 20146 | Point Lobos 2 | $4695 \cdot 0$ | 3.67164 |
|  |  |  | 21 <br> 24 <br> 24816 <br> 189 | $\begin{array}{llll}201 & 36 & 33 \\ 204 & 17 & 55\end{array}$ | Point Lobos 3 | 4654.5 5233 | 3.66787 3.71879 |
|  |  |  | $\begin{array}{llll}24 & 18 & 49 \\ 25 & 52\end{array}$ | 2041755 20558 | Cement <br> Under Cement | 5233.5 5137 | $3.71879$ |
|  |  |  | 255222 | 2055126 | Under Cement | 5137.8 |  |
| $\mathrm{H}^{1892}$ | 374936.06 | 1111.7 | 3532333 | 173 23 <br> 8  | Rob 3 | 3396. 1 | 3. 53098 |
|  | $\begin{array}{llll}122 & 28 & 50.68\end{array}$ | 1239.5 | 518 18 | 1851758 | Spring Valley | 4046.3 | 3. 60706 |
|  |  |  | 190333 | 1990253 | Point Lobos a | 4791.2 | 3. 68044 |
|  |  |  | 224714 | 2024627 | Point Lobos 3 | 4757.0 | 3.67733 |
|  |  |  | 251802 | 2051704 | Cement | 5340.2 | 3.72756 |
|  |  |  | 265043 | 2064943 | Under Cement | 5247. 1 |  |
| Lime Pt. Rock (Cross) 1892 | $\begin{array}{rrrr}37 & 49 & 32.99 \\ 122 & 28 & 42.38\end{array}$ | 1017.1 1036.5 | $\begin{array}{rrr}356 & 43 \\ 8 & 32 \\ 42\end{array}$ | $\begin{array}{llll}176 & 43 & 36 \\ 188 & 20 & 27\end{array}$ | Rob 3 Spring Valley | 3284.2 3976.5 | 3. 51643 3. 58950 |
|  | 1222842.38 | 1036. 5 | 8 81 21442 4 | $\begin{array}{llll}188 & 20 & 27 \\ 201 & 43 & 28\end{array}$ | Spring Valley Point Lobos? | 3976.5 4773.2 | 3. 59950 <br> 3. 67881 |
|  |  |  | 252918 | 2052826 | Point Lobos 3 | $4753 \cdot 7$ | 3.67703 |
|  |  |  | 274214 | 2074111 | Cement | 5346.3 | 3. 72805 |
|  |  |  | 291714 | 2091609 | Under Cement | 5259-1 | 3. 72091 |
| Bonita Outer Rock* 1892 | $\begin{array}{rrrr}37 & 48 & 53.85 \\ 123 & 31 & 44 & 58\end{array}$ | 1660. I | 3050530 | 1250708 | Spring Valley | 4743. 1 | 3. 67606 |
|  | 1233744.58 | 1090.4 | 3201039 | 1401147 | Point Lrobos 2 | 4201.4 | 3. 62339 |
|  |  |  | 3215758 | 1415858 | Point Lobos 3 | 3915.8 | 3. 59282 |
|  |  |  | 33304631 | 1504721 | Cement | 4041.0 | 3. 60649 |
|  |  |  | 3305044 | 1505131 | Under Cement | 3870.7 | 3. 58779 |
| Shag rock 1851-95 | 375005.876 | 181. 1 | 241731.6 | 2041640.4 | Presidio Hill | 4970. 3 | 3. 696380 |
|  | 1223624.641 | 602.6 | 3614444.2 | 2161324.9 | Rob 2 | 5354.6 | 3. 728726 |
|  |  |  | $3633 \begin{array}{ll} \\ \\ 75 & 17.2\end{array}$ | 2163157.5 | Rob 3 . ${ }^{\text {r }}$ | 5343.1 | 3. 727793 |
|  |  |  | 77 <br> 18 <br> 18 <br> 12 121 | 2578643.4 | New Lime Point | 3629.3 <br>  <br>  <br> 800.5 | 3. 559828 |
|  |  |  | 950516.6 | 2750405.2 | Point Cavallo a | 2860.5 | 3. 456448 |
|  |  |  | 1341943.6 | 314.1736 .3 | Strawberry Hill a | 7093. 5 | 3. 850863 |
|  |  |  | 1504020.6 | 3303924.8 | Peninsula Hill 2 | 4548.6 | 3. 657876 |
| ```San Fyancisco: Ladies Pavilion, flag- staff \dagger* I892``` | 3746 11.80 | 363.8 | 1915957 | 120005 | Cement | 1502 | 3. 17673 |
|  | 1223036.78 | 898. 5 | 2144949 | 345014 | Cemetery | 1709 | 3. 23268 |
| ```McLain watertank tower* 1894``` |  |  | 3220650.6 | 1420857.0 | Stony Hill | 8219.2 |  |
|  | 1223627.989 | $684.8$ | 6 21 08.5 | 1862056.3 | North Twin | 4425. 1 | $3.645926$ |
|  |  |  | 924556.0 | 2724506.8 | Presidio Hill | 1965 . 1 | 3. 293376 |
| Hopkins Art Institute tower, flagstaff * 1877-97 | 374730.963 | 954.5 | 374140.5 | 2174018.4 | North Twin | 5366.3 | 3. 729677 |
|  | 1222433.952 | 830.6 | 512538.1 | 2312325.4 | Black Ridge | 6781.9 | 3. 831354 |
|  |  |  | 833330.4 | 2632955.8 | Cement | 8618.9 | 3. 935452 |
|  |  |  | 850803.7 | 26504 47. I | Point Lobos 2 | 7874.9 | 3.896247 |
|  |  |  | 925888.9 | 2725629.7 | Presidio Hill | 4759-3 | 3.677543 |
|  |  |  | 1975248.8 | 175258.6 | Telegraph Hill 2 | 1268. 7 | 3. 103352 |
|  |  |  | 2423455.5 | 622632.9 | Yerba Buena I. | 4385.2 | 3.641989 |
|  |  |  | 33050495 | 1505231.6 | Point Avisadero 2 | 8370.2 | 3. 922738 |
|  |  |  | 3402444.9 | 1602541.4 | Stony Hill | 6726.3 | 3. 827776 |
| Selby shot-tower*1881-97 | $\begin{array}{r}37 \\ 172 \\ 12 \\ \hline 18\end{array}$ | $6129$ | $\begin{array}{llllllllllll}338 & 05 & 26.6\end{array}$ | 1580636.6 | Point Avisadero 2 <br> Stony Hill |  |  |
|  | 1222341.802 | $1022.8$ | 3504407.5 | 1704432.0 | Stony Hill | 6074.9 | $\text { 3. } 783540$ |
|  |  |  | $\begin{array}{r}49 \\ 46 \\ 125 \\ \hline 15\end{array}$ |  | North Twin Russian Hill | 6001.3 | 3. 778246 |
|  |  |  | $\begin{array}{llll}122 & 39 & 44.0 \\ 150 & 13 & 32 .\end{array}$ | 30239 330 30 | Russian Hill | 1991.4 1784.7 | 3. 299168 |
|  |  |  | $\begin{array}{llll}150 & 13 & 32.7 \\ 159 & 08 & 40.9\end{array}$ |  | Telegraph Hill ${ }^{\text {a }}$ Angel I. Peak | 1784.7 8674.9 | 3. 251564 3. 938265 |
|  |  |  | 2274459.9 | 474605.3 | Yerba Buena 1. | 3527.4 | 3. 54746 x |
| Selby smelting - works, chimney* 1895 | 374827.790 | 856. 7 | 1250752.3 | 3050555.5 | Point Cavallo 2 | 5697.4 | 3.755677 |
|  | 1222510.609 | 259. 5 | 1495927.6 | 3295746.3 | Peninsule Hill 2 | 8072.5 | 3. 907008 |
|  |  |  | 1512140.9 | 3312017.4 | Belvedere Point | 6942.0 | 3. 841486 |
|  |  |  | 1711922.2 | 3511859.4 | Angel I. Peak a | 6082.0 | 3. 784045 |
|  |  |  | 1802802.1 | 02803.3 | Quarry | 6080. 1 | 3. 783912 |
|  |  |  | 2663940.4 | 864140.3 | Yerba Buena I. | 4791. 5 | 3.680473 |
| ```Telegraph Hill, U. S. time-ball flagstaff * 1894-5``` | 3748 II. 878 | $366.2$ |  |  | Quarty | $6083.5$ |  |
|  | 1223418.520 | $453.0$ | $2030525.4$ | $230716.5$ | Brooks I. | 11281.4 3593.3 | 4. 052364 |
|  |  |  | $2573909.0$ | $774036.9$ | Yerba Buena 1. 2 | 3593.3 0335.9 | 3. 555494 3. 970154 |
|  |  |  | 336 <br> 346 <br> 346 <br> 16.0 <br> 36.3 | 1564048.8 16608 13.5 | Point Avisadero 2 | 9335.9 7827.0 | 3. 970154 3. 893506 |
|  |  |  | $\begin{array}{lllllllll}346 & 07 \\ 355 & 26.3\end{array}$ | $\begin{array}{llll}166 & 08 & 13.5 \\ 175 & 41 & 30.7\end{array}$ | Stony Hill Sierra Point | 7827.0 14323.0 | 3. 893596 4. 156033 |
|  |  |  | 3554053.3 <br> 33 <br> 15 <br> 55.0 | 1754120.7 2133423.6 | North Twin | 6612.3 | 3.820350 |
|  |  |  | 1612254.5 | 341 2159 | Angel I. Peak 2 | 6862.3 | 3.836468 |

*This point is in the area of the $1 g 06$ earthquake disturbance.
$\dagger$ No check on this position.

San Francisco Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Iogarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ```San Francisco-Cont'd. Butchertown smoke- stack* I894``` | " | m | - | - ' 1 |  | meters |  |
|  | 374444.192 | 1362.4 | 3172324.6 |  | Point Avisadero 2 | 2947.2 1208.2 | $\begin{aligned} & 3.469412 \\ & 3.082141 \end{aligned}$ |
|  | 1222308.925 | 218.5 | $\begin{array}{r}351 \\ 36 \\ 90 \\ \hline 9\end{array}$ | $\begin{array}{llll}171 & 46 & 11.0 \\ 279 & 27 & 08.6\end{array}$ | Stony Hill <br> North Twin | 1208. 2 | $\begin{aligned} & 3.08214 \mathrm{I} \\ & 3.735369 \end{aligned}$ |
|  |  |  | 992922.8 | 2792708.6 | North Twin | 5437.1 |  |
| California Pressed Brick | 3748188.268 | 563.2 | 1451120.3 | 3251018.0 | Point Cavallo 2 | 4349.6 | $\text { 3. } 638448$ |
| Co., stack* | 1223639.618 | 969.2 | 1694642.0 | 3494613.1 | Belvedere Point | 6488.7 6430.3 | $3.812157$ |
| 1895 |  |  | 1911701.1 | 111732.7 | Angel I. Peak 2 | 6430.3 | 3.808229 |
| Fort Point whari * ${ }^{1895}$ | 374832.081 | 989.0 | $1581908.0^{\circ}$ | 3381828.4 | Halfway | 4273.1 | 3.630748 |
|  | 12238 | 169.4 | 1734056.2 | 3534047.5 | Yoint Cavallo 2 | 3164.2 | 3. 500260 |
|  |  |  | 1821618.8 | 21625.7 | Peninsula Hill 2 | 6862.4 | 3.836478 |
|  |  |  | 1892145.6 | 92210.4 | Belvedere Point | 6040.3 | 3. 781056 |
|  |  |  | 2095843.6 | 300008.8 | Angel I. Peak 2 | 6789.0 | 3.831806 |
|  |  |  | 2690310.2 | 890658.2 | Yerba Buena I. | 9097. 5 | 3.958924 |
| Engineers warehouse* 1895 | 3748 54.763 | 1688.3 | 1061542.6 | 286 11 0 c. 7 | Halimay | 11709.9 | 4. 068552 |
|  | 1222131.720 | 188.3 775 | 1082035.9 | 2881529.4 | Richardson East | 12873.6 | 4. 109701 |
|  |  |  | 1211446.8 | 30111509.2 | Belvedere Point | 10150.0 | 4. 006468 |
|  |  |  | 1231710.8 | 3031315.4 | Peninsula Hill 2 | 11229.6 | 4.050365 |
|  |  |  | 1293513.6 | 3093236.4 | Angel I. Peak 2 | 8133.5 | 3.910278 |
|  |  |  | 1293219.4 | 3092958.2 | Angel I. SE. a | 7310.9 | 3. 863972 |
|  |  |  | 1344324.2 | 3144111.2 | Quarry | 7460.7 | 3.872781 |
|  |  |  | 1821227.0 | 21235.8 | Brooks 1. | 9061.0 | 3.957178 |
|  |  |  | 2071716.3 | $27 \quad 18 \quad 56.7$ | Judson Point | 8725. 2 | 3.940778 |
| Ocean House, flagstaff $\dagger$1877-1893 | 3744 21.818 | 672.4 | $\pm 78 \quad 58$ 36. 7 | 3585884.5 | Cement | 4860.8 | 3. 686717 |
|  | 1223020.400 | 499. 5 | 1865143.8 | ${ }^{3} 651581$ | Cemetery | 4827.9 | 3. 683757 |
|  |  |  | 2431524.4 | 631643.9 | Black Ridge | 3559.6 | 3. 551399 |
|  |  |  | 2535026.0 | 735152.3 | Black Ridge 3 | 3591.3 | 3. 555357 |
|  |  |  | 3550636.4 | $\times 750641.1$ | Black Bluff | 2217.3 | 3.345829 |
| Sutro's stable, red spire $\dagger$ 1892 | 374638.016 | 1572.0 | 1900353.4 | 100356.3 | Cement | 671.3 | 2. 826919 |
|  | $\begin{array}{rrrrr}37 \\ 122 & 30 & 38.742\end{array}$ | 1172.0 703.4 | 217 O5 02.0 | 370506.3 | Sand | 290.0 | 2. 46233 3 |
|  |  | 703.4 | 2334358.6 | 524418.1 | Cemetery | 981.3 | 2.991812 |
| ```Sutro's Observatory, tower f 1892``` | 374641.629 | 1283.4 | 21624 O2. I | 362412.3 | Cement | 682.8 | 2. 834303 |
|  | 1223040.507 | 991.3 | 24541818.2 | 654144.9 | Cemetery | 1172.9 | 3. 069243 |
|  |  |  | 25528 11.2 | $75 \quad 2822.8$ | Sand | 478.0 | 2. 679450 |
| Baker Beach. windmill* ${ }^{*}$$1892$ | 374747.364 | 1460.2 | 270350.9 | 2070342.2 | Spring Valley | 761. 1 | 2. 881440 |
|  | 1223851.812 | 1267.6 | 601856 | 2401811.4 | Point Lobos 3 | 2088.9 | 3. 319927 |
| Golden Gate Park, N. base* 1889 |  | 419.6 | 22435.0 | $\begin{array}{lllll}182 & 24 & 33.6\end{array}$ | Blue Mountain | 1319.6 | 3. 120445 |
|  | 122 27 21. 103 | 516.5 | 331540.1 | 2131509.8 | Black Ridge | 2206.8 | 3. 343777 |
| Children's playhouse* 1889 | 374607.352 | 226.6 |  |  |  | $1964.2$ |  |
|  | 1222727.168 | 664.9 | $2173424.4$ | 3734 28. 1 | Golden Gate Park, N. Base | $243.4$ | $\text { 2. } 386350$ |
|  |  |  | 3551640.7 | 1751643.0 | Blue Mountain | 1129.4 | 3.052839 |
| ```Azimuth Mark, Golden Gate Park* 1889``` | $\begin{array}{r}37 \\ 122 \\ 15 \\ 27 \\ \hline\end{array}$ | 949.5 573.4 | 182 28046 | 22806.0 | Golden Gate Park, N. Base | 1321.1 | 3. 120933 |
|  | 1222723.427 | 573.4 | 2244532.0 ! | 444532.0 | Blue Mountain | 2.0 | 0. 302354 |
| $\underset{\substack{\text { Califormia } \\ \text { flagstaff } \\ 1903}}{ }$ Glue | 3744 42.092 | 1297.6 | 655602.9 | 2455524.0 | Bernal | 1704.9 | 3. 231702 |
|  | 1323331.549 | 773.4 | 1433359.3 | $323 \begin{array}{llll}33 & 50.3\end{array}$ | Army | 605.1 | 2. 781844 |
|  |  |  | 2131820.7 | 321832.0 70 | Start | 844.8 522.6 | 2. 926760 2. 718152 |
|  |  |  | 2501949.9 | 7020 02.2 | Quarter | 522.6 | 2.718152 |
| Couservatory. Gate Park* 1889 |  |  |  | $17040 \mathrm{og.} 8$ | Blue Mountain | 1620.2 |  |
|  | $122 \quad 2734-104$ | 834.7 | 224600.3 | 2024538.0 | Black Ridge | 2305.3 | 3. 362736 |
|  |  |  | 1713840.2 | 3513831.6 | Presidio Hill | 2375.3 | 3. 375726 |
| Prayer Book Cross* 1894-1899 | 374619.543 | 602.5 | I15 3957.2 | 2953853.1 | Cement | 2842.0 | 3.453619 |
|  | $122 \begin{array}{ll}38 & 39.268\end{array}$ | 961.0 | 1253110.3 | 3013022.7 | Cemetery | 2226.4 | 3. 347611 |
|  |  |  | 1294138.8 | 3094052.6 | Point Lobos 2 | 2396.3 | 3. 379532 |
|  |  |  | 2070215.9 | 270247.2 | Presidio Hill | 27480 | 3. 439012 |
| Cogswell Monument * 1892-1900 |  |  |  |  | Cemetery |  |  |
|  | 122 29 51.694 | 2364.9 | 83 O3 28.2 | 263 O3 16.3 | Point Lobos 2 | 72.1 | 1. 858036 |
|  |  |  | 1105800.7 | 2905751.9 | Point Lobos 3 | 374.3 | 2. 573258 |
|  |  |  | 2384006.3 | 584053.4 | Rob 3 | 2205.0 | 3. 343412 |
|  |  |  | 24618185.1 | 661903.1 | Spring Valley | 1221.9 | 3. 087027 |
|  |  |  | 25315094 | 731625.0 | Presidio Hill | 3155.0 | 3. 499003 |

* This point is in the area of the 1906 earthquake disturbance.
$\dagger$ See p. 291.

San Francisco Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| San Francisco-Cont'd. Broderick Monument* 1877 | - ' " | $m$ | - ' $"$ | - ' 1 |  | meters |  |
|  | 374704.505 | 138.9 | 881805.3 | 2681555.3 | Cement | 5197. 3 | 3. 715778 |
|  | 1222651.648 | 1263.8 | 915129.6 | 2714937.5 | Point Lobos 2 | 4479. 5 | 3.651234 |
|  |  |  | 11646 24.2 | 2964521.3 | Rob | 2816.9 | 3.449777 |
|  |  |  | 1272916.1 | 3072841.5 | Presidio Hill | 1744.1 | 3. 241572 |
| Crocker's house, flagstaff | 374731.948 | 984.9 | 830904.3 | 2630536.4 | Cement | 8365.6 | 3.922497 |
|  | 1323444.519 | 1089.3 | 844424.3 | 2644154.3 | Point Lobos ${ }^{2}$ | 7620.0 | 3. 881957 |
|  |  |  | 924526.9 | 2724334.4 | Presidio Hill | 4499. 5 | 3.653169 |
| Parker Monument*$1877$ | 374645.822 | 1412.6 | 265143.9 | 2065108.0 | Black Ridge | 3181.8 | 3. 502668 |
|  | 1222715.819 | 289. 2 | 1001532.7 | 2801353.0 | Point Lobos 2 | 4048. 4 | $3.607279$ |
|  |  |  | 1322302.1 | 3122211.6 | Rob | 2736. 7 | $3.437230$ |
|  |  |  | 1512745.6 | 3312723.4 | Presidio Hill | 1863.8 | 3. 270409 |
| Tetlow's SE. chimney $\dagger$ 1877 | $\begin{array}{rrr}37 & 4641.276 \\ 122 & 30 & 39.736\end{array}$ | 1272.5 972.4 | $\begin{array}{llll}214 & 34 & 40.3 \\ 306 & 27 & 02.4\end{array}$ |  | Cement <br> Black Ridge | 680.8 4540.4 | $\begin{aligned} & 2.83299 \mathrm{Y} \\ & 3.657093 \end{aligned}$ |
|  | 1223039.736 | 972.4 | 3063702.4 | 126 174 17411 11 | Black Ridge Black Blufí | 4540.4 6542.4 | $\text { 3. } 657093$ |
| Edison Light and Power Co., dynamo stack* 1894 | 3746 49.301 | 1519.9 | 3514900.3 | $17149 \times 8.5$ | Stony Hill | 5104.9 | 3. 707983 |
|  | 12223 35. 535 | 771.7 |  | 2382044.0 | North Twin | 5647.7 | 3.751871 |
|  |  |  | 21598006 | 352859.7 | Yerba Buena I. 2 | 4068. 9 | 3.609475 |
| Chronicle tower, flagstaff * 1894 |  | 573. 5 | 451320.7 | 2251143.2 | North Twin | 5487.2 | 3. 739349 |
|  | 1223408.878 | 217. 2 | 2333811.4 | 5333933.4 | Yerba Buena I. a | 4066.1 | 3. 609183 |
|  |  |  | 3332631.8 | 2532758.4 | Point Avisadero a | 7746.5 | 3.889105 |
|  |  |  | 3443546.4 | 1643627.4 | Stony Hill . | 6178.0 | 3.790851 |
| Union St. powerhouse, stack 1894 | 374758.548 | 1805.0 | $26 \quad 5843.5$ | 2065734.4 | North Twin | 5719.4 |  |
|  |  | $49.0$ | 731423.0 | 2531322.1 | Heights | 2534.5 | $3.403899$ |
|  |  |  | $8 \mathrm{8r} 3314.3$ | 2613132.2 | Presidio Hill | 4111. 1 | 3. 613961 |
|  |  |  | 148 <br> 251 <br> 258 <br> 18 | $\begin{array}{r}328 \\ 71 \\ 71 \\ 38 \\ \hline 8 \\ \hline 154.3\end{array}$ | Reservoir <br> Telegraph Hi | 329.4 | 2. 517752 3.054412 |
| ```Pier No. 27, outer ga- ble* 1897``` | 3748 21. 273 | 655.8 | 530209.3 | 2330157.9 | Telegraph Hill a | 571. 6 | 2. $75706_{4}$ |
|  | 1222359.362 | 1452.2 | 1564953.3 | 33648466 | Angel I. Peak ${ }^{\text {a }}$ | 6758.7 | 3.829865 |
|  |  |  | 2610241.2 | 810357.4 | Yerba Buena I. | 3078. 1 | 3. 488.86 |
| $\begin{gathered} \text { Gas tank } \\ 1894 \end{gathered}$ | 374814.930 |  | 13513258.3 | 3153127.9 |  | 5147.4 |  |
|  | 1222553.746 | 1314.8 | 16041 49.3 | 3404052.3 | Belvedere Point | 6875.4 | 3. 837296 |
|  |  |  | 28181325.3 | 1 13 83 | Angel I. Peak ${ }^{\text {a }}$ | 6410.3 | 3. 806878 |
|  |  |  | 2632336.3 | 832602.6 | Yerba Buena 1. | 5877.6 | 3.769202 |
| Sailors' Home, flagstaff* 1897 | 3747 21. 25 | 655.1 | 1374439 | 3174405 | Telegraph Hill 2 | 2036 | 3. 30876 |
|  | 1222322.07 | 540.0 | 2222507 | 423600 | Yerba Buena 1. | 3155 | 3.49903 |
| U. S. barge office, flagstaff * 1897 | $\begin{array}{lllll}37 & 48 & 33.750\end{array}$ | 1040. 5 | 240735.9 | 2040797.0 | Reservoir | 882. 7 | 2.945801 |
|  | 12224 54, 368 | 1330.0 | 55 512 123.9 | 23511918.4 | Heights | 3182.7 | 3. 502801 |
|  |  |  | 16717725.9 | 3471659.9 | Angel I. Peak 2 | 5839. 1 | 3. 766344 |
|  |  |  | 26845 28.a | 884718.1 | Yerba Buens I. | 4387.2 | $3.642183$ |
|  |  |  | $309193^{8.4}$ | 1292000.8 | Telegraph Hill 2 | 1149.2 | 3.060401 |
| Pier No. ra, outer gable* 1897 | 3747 32. 213 | 993. 1 | 1110718.0 | 2910607.2 | Reservoir | 3030. 7 |  |
|  | 1223313.555 | 331.6 | 1263235.8 | 3063156 | Telegraph Hill 2 | 1963.3 | $3.292980$ |
|  |  |  | 2235723.0 | 4358 11.1 | Yerba Buena I. | 2766.3 | 3.441894 |
| Pier No. 2, outer gable ${ }^{*} \ddagger$ 1897 | $\begin{array}{rrr}37 & 47 & 42.80 \\ 122 & 23 & 23.40\end{array}$ | $1319.5$ | $\begin{array}{llll}122 & 13 & 26 \\ 232 & 23 & 09\end{array}$ | 302 50 52 24 | Telegraph Hill a Verba Buena I. | $1580$ |  |
|  | 1222323.40 | $572.5$ | 2322309 | 522403 |  | $2728$ | $3.435^{82}$ |
| Mariners' Church, spire* | 37 <br> 1742.208 <br> 132 | 1301.2 | 1033240.0 1363637.5 | $2833 I 59.8$ |  |  | $\text { 3. } 217437$ |
|  | 12233 44.770 | 1095.4 | 13636 23754 23 | 3163617.1 -575509.5 | Telegraph Hill 2 <br> Yerba Buena 1. | 1184.4 3168.0 | $\begin{aligned} & 3.073515 \\ & 3.500779 \end{aligned}$ |
| Pier No. 3. outer gable ${ }^{*} \ddagger$ 1897 | 37 47 53.92 <br> 522   | 1662.4 | 1144413 | 2944346 | Telegraph Hill a | 1194 | 3.07694 |
|  | 12223 33.71 | 824.6 | 2411653 | $6 \times 1753$ | Yerba Buena 1. | 2752 | 3.43957 |
| Pier No. s, outer gable* 1897 | 37 47 56. 560 | 1743.7 | 1121153.4 | 2921126.7 |  | 1107. 1 | 3.044192 |
|  | 12323 36.129 | 883.8 |  | 3350906.5 | Angel I. Pcak a | 7686. 0 | $3.885703$ |
|  |  |  | $24330506$ | 632152.5 | Yerba Buena 1. | 2766.2 | $3.441886$ |
| St. Marys Hospital, tank 1897 | 374707.376 | 327.4 | $\begin{array}{llll}339 & 09 & 23.4\end{array}$ | 1591026.1 | Point Avisadero | 7042.6 | 3. 847730 |
|  | 1223329802 | 729.2 | 3530248.9 | 1730306.1 | Stony Hill | 5651.7 | 3.752180 |
|  |  |  | 14837424.9 | 3283655.4 | Telegraph Hill a | 2266. 0 | $\text { 3. } 355368$ |
|  |  |  | 15817152.8 | 3381548.0 | Angel I. Peak 2 | $9140.8$ | $3.960983$ |
|  |  |  | 2200253.8 | - 400351.9 | Yerba Buena I. | 3601.8 | 3.556522 |

* This point is in the area of the 1906 earthquake disturbance.
$\$$ No check on this position.

San Francisco Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | Tostation | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ```San Francisco-Cont'd. St. Brendans Church, cross* 1897``` | - , " | $m$ | - ' $/ 1$ | - ' ${ }^{\prime}$ |  | melers |  |
|  | $\begin{array}{llll}37 & 4714.475\end{array}$ | 446.3 | 3395522.3 | 1595624.5 | Point Avisadero | 7240.5 | 3. 859770 |
|  | 1222328.973 | 709.0 | 3533008.7 | 1733025.4 | Stony Hill | 5866.7 | 3. 768393 |
|  |  |  | 145 O1 46. 5 | 3250136.5 | Telegraph Hill 2 | 2093.9 | 3. 320951 |
|  |  |  | 1573851.9 | 3373726.6 | Angel I. Peak ${ }^{2}$ | 8945.5 | 3.951605 |
|  |  |  | 2220844.8 | 420942.4 | Yerba Buena I. | 3423.5 | 3. 534474 |
| Ferry tower, flagstaff * 1897 | 374744.895 | 1384.2 | 1064823.1 | 2864725.0 | Reservior | 2424.4 | 3. 384599 |
|  | 12223 34.249 | 837.9 | 1255932.1 | 3055905.3 | Telegraph Hill 2 | 1323.7 | 3. 121805 |
|  |  |  | 1555714.6 | 3355552.5 | Angel I. Peak 2 | 8032.5 | 3.904852 |
|  |  |  | 2363521.3 | 56 36 22. 5 | Yerba Buena I. | 2966.6 | 3.463392 |
|  |  |  | 3411948.1 | 1612053.5 | Point Avisadero | 8168.2 | 3.912125 |
|  |  |  | $35318 \quad 56.0$ | 1731915.9 | Stony Hill | 6813.2 | 3.833349 |
| ```Pacific Mail duck, outer gable* 1897``` |  | 1675.4 | 2100202.9 | 300248.6 | Yerba Buena I. | 3648. 7 | 3. 562144 |
|  | 1222309.718 | 1675.4 237.8 | $\begin{array}{llllll}310 & 51 & 56 & 58 . \\ 3\end{array}$ | 1615748.8 | Point Avisadero | 6499.9 | 3.812909 |
|  |  |  | 3575303.7 | 1775308.5 | Stony Hill | 5212.0 | 3. 717002 |
| Pier No. 24, outer gable* 1897 | 374713.834 | 426.5 | 3435049.0 | 1635138.15 | Point Avisadero | 7059.6 | 3. 848781 |
|  | 1222307.675 | 187.8 | 3583545.1 | 1783548.7 | Stony Hill | 581i.0 | 3. 764252 |
|  |  |  | 13514 27.7 | 3151344.6 | Telegraph Hill ${ }^{2}$ | 2444.3 | 3. 388 I 60 |
|  |  |  | 2144636.5 | 344721.0 | Yerba Buena I. | 3114.2 | 3. 493350 |
| Blue Mountain*$1889$ | 374530.845 | 950.9 | 652832.0 | 24588 c3. 1 | Black Ridge | 1269.4 | $\text { 3. } 103600$ |
|  | 122 27 23.370 | 572.0 | 1711500.6 | 3512445.4 | Presidio Hill | 3995.4 | $3.601565$ |
| Sutro's Olympus* 1889 | $\begin{array}{r}37 \\ 12 \\ +2649.240 \\ \hline 26\end{array}$ | $\begin{array}{r}1518 \\ 500 \\ \hline\end{array}$ | 61 <br> 154 <br> 154 <br> 08 <br> 19 | 2411222.4 | Blue Mountain Presidio Hill | 1177.6 3758.3 | 3.070993 3.574096 |
|  | 1222641.208 | 1008. 6 | $\begin{array}{lllll}154 & 08 & 19.9 \\ 30 & 06 & 31.9\end{array}$ | $\begin{array}{llll}334 & 07 & 38.7 \\ 120 & 09 & 31.4\end{array}$ | Presidio Hill Point Avisadero 2 | 3758.3 8315.9 | 3. 574996 3. 919908 |
|  |  |  | $\begin{array}{lllll}300 & 0 & 31.5 \\ 300 & 46 & 54.4\end{array}$ | $\begin{array}{llll}120 & 09 & 3 \mathrm{I} .4 \\ 120 & 49 & 08.8\end{array}$ | Point Avisadero 2 Stony Hill | 8315.9 6251.7 | $\begin{aligned} & \text { 3. } 919908 \\ & \text { 3. } 795998 \end{aligned}$ |
|  |  |  | 830 04.0 | $\begin{array}{ll}188 & 29 \\ 59 & 5\end{array}$ | North Twin | 1123.1 | 3.050415 |
| Market St. nowerhouse, stack* 1894 | 374620.897 | 644.2 | 2294104.7 | 494308.4 | Yerba Buena I. 2 | 6477.3 | $3.811392$ |
|  | 1222516.925 | 414.2 | 3213733.0 | 1413855 | Stony Hill | 5327.4 | $\text { 3. } 726516$ |
|  |  |  | 465341.4 | 2265245.6 | North Twin | 3053.4 | 3.484778 |
| $\begin{aligned} & \text { Grace Church, cross* } \\ & 1894 \end{aligned}$ | $374733 \cdot 017$ | 1017.9 | 2413152.0 | 613322.9 | Yerba Buena I. 2 | 4125.6 | 3. 615485 |
|  | 1222423.282 | 569.6 | $\begin{array}{lllllllllll}332 & 38 & 07.6\end{array}$ | 1523943.1 | Point Avisadcro 2 | 8302.4 | 3.919204 |
|  |  |  | 3424154.4 | $1624244 \cdot 3$ | Stony Hill | 6703.8 | 3.826319 |
| Edison Light and Power Co., electric stack * 1894 | $3747 \times 9.900$ | 305. 2 | 23113078 | 511431.2 | Yerlsa Buena I. 2 | 4277.5 | 3.631185 |
|  | 122 24 I1. 335 | 277.4 | 3432055.0 | 1632137.5 | Stony Hill | 5936.8 | $\text { 3. } 773549$ |
|  |  |  | $46 \quad 5010.6$ | 22648 34.5 | North Twin | 5257.6 | 3. 720789 |
| First Baptist Mission, cupola 1881 | 3743 51. 238 | 1579.6 | $\begin{array}{lllll}161 & 55 & 03.3\end{array}$ | 3415358.1 | Telegtaph Hill 2 |  |  |
|  | 1222231.496 | 771.3 |  | $\begin{array}{rrrr}5 & 47 & 13.5 \\ 34 & 10 & 35.3\end{array}$ | Yerba Buena I. Oakland Point | $\begin{array}{r} 8848.9 \\ 10387.0 \end{array}$ | $\begin{aligned} & 3.946890 \\ & 4.016488 \end{aligned}$ |
| Potrero Presbyterian Church, spire 1881 | 374532.833 | 1012. 2 | 1631311.9 | $3431235 \cdot 3$ | Telegraph Hill 2 | 5065.2 | 3. 704596 |
|  | $\begin{array}{rrrrr}122 & 23 & 18.255\end{array}$ | 146.8 | 1994416.3 | 194507.3 | Yerba Buena I. | 6026.0 | 3. 780027 |
|  |  |  | 2315420.1 | $5 \times 5714.7$ | Oakland Point | 8859.7 | 3.947417 |
| ```Tannery ventilator, flagstaff* 1894``` | 3743122.678 | 699.2 | 2114005.2 | 314025.5 | Stony Hill | 1547.9 | 3. 189729 |
|  | 1223335.047 | 858.3 | 26233188.6 | 823434.4 |  | 2657.4 | 3. 424452 |
|  |  |  | 32449047 | 144 49 23.3 | Candlestick Point | 1295. 2 | 3. 112338 |
| Powder house, windmill * |  |  | $\begin{array}{lllllllll}182 & 52 & 15.8\end{array}$ | 25217.8 | Stony Hill | 1608.0 | 3. 206292 |
|  | 1222305.150 | 126. 1 | 2513632.3 | 713719.8 | Point Avisadero 2 | 2005.2 | 3. 302165 |
|  |  |  | $3585735 \cdot 3$ | 1785735.7 | Candlestick Point | 770.1 | 2.886550 |
| Catholic Orphan Asylum. flagstaff 1894 | 3744 or. 784 | 55.0 | 1120411.8 | 29203 38. 1 | Bernal |  |  |
|  | 12223 39.983 | 979.0 | 1153459.9 | $295 \begin{array}{lll}39 & 03.8 \\ 354 & 56\end{array}$ | North Twin | 5102.7 | $\text { 3. } 707796$ |
|  |  |  | 174 106 1065050.6 50 | 354 <br> 16 <br> 16 <br> 51 <br> 81 <br> 156.8 <br> 56.4 | Army | 1736.3 8888.8 | 3. 239628 |
|  |  |  | 1965052.2 | 165156.4 | Yerba Buena I. 2 Stony Hill | 8858.8 | 3.947375 |
|  |  |  | 263 10 24. 1 | 831047.5 | Stony Hill | 940. 2 | 2.973197 |
|  |  |  | 2872158 | 1072237.4 | Point Avisadero 2 | 2887.4 | 3.460500 |
|  |  |  | 3390238.1 | 1590259.8 | Candlestick Point | 2424.6 | 3. 384642 |
| City Hall, dome* 1897 |  | 1475.7 | 119 O1 59.4 | 2990053.6 | Heights | 2992.5 | 3.476033 |
|  | 1222454256 | 1327.7 | 1714538.2 | 3514505.0 | Angel I. Peak ${ }^{2}$ | 9192.0 | 3.963410 |
|  |  |  | 1991400.1 | 191422.2 | Telegraph Hill 2 | 2690.3 | 3. 429796 |
|  |  |  | 2322959.0 | 523148.7 | Yerba Buena I. | 5525. 1 | 3. 742344 |
|  |  |  | 3223358.2 | 1423552.5 | Point Avisadero | 7525.0 | 3.876507 |
|  |  |  | 3311127.7 | 1511236.5 | Stony Hill | 5711.1 | 3.756719 |
| ```Spreckels Building, dome* 1897``` | $\begin{array}{rrrr}37 & 4715.163\end{array}$ | 467.5 | $\begin{array}{llll}163 & 49 & 22.3 \\ 173 & 33 & 52 .\end{array}$ | 3434822.3 | Angel I. Peak $=$ | 8592.0 | 3.934094 |
|  | 1222410.217 | 250.0 | 1735352.2 | 3533347.5 | Telegraph Hill 2 | 1705.3 | 3. 231792 |
|  |  |  | 2324244.2 | 524407.1 | Yerba Buena 1. | 4155.5 | 3.618623 |
|  |  |  | 3325202.3 | 1525329.8 | Point Avisadero | 7664.9 | 3.884504 |
|  |  |  | 3440200.4 | 1640242.4 | Stony Hill | 6084.8 | 3. 784247 |

*This point is in the area of the 1906 earthquake disturbance.

San Francisco Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ```San Francisco-Cont'd. Jewish Synagogue, E spire* 188!``` |  | $\begin{aligned} & m \\ & 728.2 \\ & 617.0 \end{aligned}$ | $\begin{array}{llll} 165 & 41 & 51 \cdot 3 \\ 186 & 59 & 30.9 \\ 238 & 25 & 59 \cdot 5 \end{array}$ | $\begin{array}{r} 3454100.2 \\ 65935 \cdot 3 \\ 58 \quad 2731 \cdot 5 \end{array}$ | Angel I. Peak Telegraph Hill 2 Yerba Buena I. | meters <br> 8244. 3 <br> 1444.4 <br> 431c. 9 | $\begin{aligned} & 3.916155 \\ & 3.150681 \\ & 3.634572 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| St. 'Patrick's Church, spire*I881 | $\begin{array}{r} 374708.817 \\ 1222409.404 \end{array}$ | $\begin{aligned} & 271.8 \\ & 230.0 \end{aligned}$ | $\begin{array}{lll} 163 & 59 & 25 . \\ 173 & 37 & 46.8 \\ 230 & 17 & 24.7 \end{array}$ | $\begin{array}{rrr} 343 & 58 & 24.8 \\ 353 & 37 & 41.5 \\ 50 & 28 & 47.0 \end{array}$ | Angel I. Peak Telegraph Hill 2 Yerba Buena I. | 8786.2 1901. 9 4261. 5 | $\begin{aligned} & 3.943801 \\ & 3.279194 \\ & 3.629562 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| ```Marine Hospital, flag- staff* 1892``` | $\begin{array}{rrr} 37 & 47 & 21.224 \\ 122 & 28 & 17.717 \end{array}$ | $\begin{aligned} & 654 \cdot 3 \\ & 433 \cdot 5 \end{aligned}$ | 810620.9 <br> 850426.0 <br> 1521150.2 <br> 23254087 | $\begin{array}{rrr} 261 & 05 & 21.5 \\ 265 & 03 & 19.7 \\ 332 & \text { II } & 40.2 \\ 52 & 54 & 26.8 \end{array}$ | Point Lobos a Point Lobos 3 Rob 2 <br> Presidio Hill | $\begin{array}{r} 2400.0 \\ 2658.9 \\ 856.9 \\ 905.1 \end{array}$ | $\begin{aligned} & 3.380212 \\ & 3.424701 \\ & 2.932559 \\ & 2.956685 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Pier No. 7 , outer gable* 1897 | $\begin{array}{rrr} 37 & 47 & 58.760 \\ 122 & 23 & 38.314 \end{array}$ | $\begin{array}{r} 1811.5 \\ 937.3 \end{array}$ | $\begin{array}{lll} 109 & 50 & 03 \\ 155 & 19 & 30 \\ 245 & 05 & 16 \end{array}$ | $\begin{array}{rrr} 289 & 49 & 39 \\ 335 & 18 & 11 \\ 65 & 06 & 19 \end{array}$ | Telegraph Hill a Angel I. Peak a Yerba Buena I. | $\begin{aligned} & 1033 \\ & 7602 \\ & 2785 \end{aligned}$ | 3. 014043 <br> 3. 880933 <br> 3.444805 |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Pier No. 9, outer gable* 1897 | $\begin{array}{r} 3748 \text { O1. } 109 \\ 1232340.325 \end{array}$ | $\begin{array}{r} 34.2 \\ 986.6 \end{array}$ | $10646 \quad 23.7$ <br> $155 \quad 26 \quad 05.9$ <br> 2465120.1 | $\begin{array}{r} 286 \\ 36 \\ 335 \\ 24 \\ 66 \\ 6 \\ 52 \end{array} 24.6$ | Telegraph Hill 2 Angel I. Peak 2 Yerba Buena I. | $\begin{array}{r} 963.4 \\ 7515.7 \\ 2800.3 \end{array}$ | $\begin{aligned} & 2.983805 \\ & 3.875972 \\ & 3.447205 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Washington Square * 1869-1887 | $\begin{array}{r} 374804.721 \\ 122 \quad 2431.525 \end{array}$ | $\begin{aligned} & 145.6 \\ & 775.0 \end{aligned}$ | $\begin{array}{rrr} 56 & 13 & 40.4 \\ 95 & 33 & 16.8 \\ 246 & 15 & 06.4 \end{array}$ | $\begin{array}{rrrr}236 & 13 & 28.9 \\ 275 & 32 & 53.8 \\ 66 & 14 & 14.7\end{array}$ | Russian Hill <br> Reservoir <br> Telegraph Hill | $\begin{aligned} & 553.8 \\ & 924.2 \\ & 361.7 \end{aligned}$ | $\begin{aligned} & 2.743326 \\ & 2.965770 \\ & 2.558333 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| ${ }_{\text {Union street }}{ }^{\text {* }}$ | $\begin{array}{r} 3748 \\ 122 \\ 124 \\ \hline 21.548 \\ 31.53 \end{array}$ | $\begin{array}{r} 78.6 \\ 770.9 \end{array}$ | $\begin{array}{lll} 179 & 57 & 14.9 \\ 237 & 13 & 21.3 \end{array}$ | $\begin{array}{r}359 \\ 57 \\ 57 \\ \hline 13 \\ \hline\end{array}$ | Washington Square Telegraph Hill | $\begin{array}{r} 67.0 \\ 393.5 \end{array}$ | 1. 825965 <br> 2. 594932 |
|  |  |  |  |  |  |  |  |
| $\underset{1869}{\text { Engine house }}{ }^{*}$ | $\begin{array}{r} 374810.071 \\ 1222431.519 \end{array}$ | $\begin{aligned} & 320.5 \\ & 771.0 \end{aligned}$ | $\begin{array}{llll} 273 & 16 & 11.8 \\ 359 & 57 & 14.9 \\ 359 & 57 & 14.9 \end{array}$ | $\begin{array}{rrr} 93 & 16 & 19.4 \\ 179 & 57 & 14.9 \\ 179 & 57 & 14.9 \end{array}$ | Telegraph Hill <br> Union street <br> Washington Square | $\begin{aligned} & 332.6 \\ & 232.9 \\ & 165.0 \end{aligned}$ | $\begin{aligned} & \text { 2. } 520566 \\ & 2.365372 \\ & 2.217366 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Presidio: <br> Longitude Station* 1896-1903 | $\begin{array}{r} 374751 \cdot 386 \\ 12227 \text { 05. } 233 \end{array}$ |  |  |  |  |  |  |
|  |  | $\begin{array}{r} 1584.2 \\ 128.0 \end{array}$ | $\begin{array}{llll} 157 & 07 & 12.8 \\ 194 & 47 & 38.6 \\ 259 & 59 & 53.5 \\ 310 & 57 & 18.6 \end{array}$ |  | Point Cavallo 2 Angel I. Peak 2 Reservoir Heights |  | 3.679019 <br> 3. 868026 <br> 3.460072 <br> 2. 891410 |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| $\underset{1852}{\text { Magnetic Station * }}$ | 374738.1631232713.554 | 1207.3331.6 | $\begin{array}{rrr} 89 & 31 & 03.3 \\ 160 & 54 & 32.4 \\ 195 & 31 & 55.9 \end{array}$ | $\begin{array}{rll} 269 & 30 & 42.1 \\ 340 & 53 & 51.0 \\ 15 & 32 & 48.4 \end{array}$ | Presidio Hill Point Cavallo a Angel I. Peak 2 | 848. 0 5054.6 7796.5 | $\begin{aligned} & 2.928392 \\ & 3.703689 \\ & 3.891902 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
| $\begin{gathered} \text { Flagstaff * } \\ 1897 \end{gathered}$ | $\begin{array}{r} 374757.727 \\ 1222727.245 \end{array}$ | $\begin{array}{r} 1779.8 \\ 656.6 \end{array}$ | $\begin{array}{llll}199 & 14 & 33.3 \\ 264 & 49 & 48.8 \\ 302 & 03 & 58.6\end{array}$ | $\begin{array}{rrrr}19 & 15 & 34.0 \\ 84 & 51 & 13.4 \\ 122 & 04 & 26.8\end{array}$ | Angel I. Peak 2 Reservoir Heights | $\begin{array}{r} 7350.2 \\ 3393.0 \\ 1329.5 \end{array}$ | $\begin{aligned} & \text { 3. } 866298 \\ & \text { 3. } 530579 \\ & 3.123704 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { Whari, NE. corner * } \\ & 1895 \end{aligned}$ | $\begin{array}{r}37 \\ 122 \\ 122 \\ 27 \\ \hline 10.971\end{array}$ | $\begin{aligned} & 794.8 \\ & 268.3 \end{aligned}$ |  | $\begin{array}{rrrr}332 & 47 & 08.4 \\ 351 & 09 & 40.1 \\ 18 & 26 & 48.7\end{array}$ | Point Cavallo 2 Peninsula Hill 2 Angel I. Peak 2 | $\begin{aligned} & 3754.7 \\ & 7136.0 \\ & 6403.1 \end{aligned}$ | $\begin{aligned} & 3.574573 \\ & 3.853455 \\ & 3.806587 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Wharfhouse * 1895 |  | $\begin{aligned} & 782.8 \\ & 305.3 \end{aligned}$ | 1415025.8 1450827.8 1532301.4 $1712835 \cdot 3$ $17646 \quad 07.7$ 1984242.4 | 3214848.2 3250714.8 333 a2 19. 3 35128 08. 8 3564559.0 $184334 \cdot 2$ | Richardson East Haliway Point Cavallo a Peninsula Hill 2 Belvedere Point Angel I. Peak a | 6293.8 5090.9 | 3. 798914 3.706797 3.57387 |
|  |  |  |  |  |  | 5090.9 3748.6 | 3. 706797 3.573867 |
|  |  |  |  |  |  | 3748.6 7142.2 | 3. 573807 3.853832 |
|  |  |  |  |  |  | 6175.8 | 3. 750693 |
|  |  |  |  |  |  | 6426.1 | 3.807950 |
| South San Francisco: Artesian well tower* 1894 |  |  |  |  | Belair I. <br> Baden Hill <br> Sierra Point <br> Stony Hill <br> Point Avisadero 2 |  |  |
|  | 373909.8051223312.795 | $\begin{aligned} & 302.3 \\ & 313.6 \end{aligned}$ | $\begin{array}{rrrr}26 & 42 & 45.5 \\ 128 & 37 & 34.6 \\ 167 & 38 & 51.1 \\ 181 & 40 & 57.8 \\ 194 & 23 & 59.7\end{array}$ | $\begin{array}{r} 20642 \\ 308 \\ 37 \\ 347.0 \\ 347 \\ 38 \\ 1 \\ 41 \\ 47.0 \\ 14.9 \\ 14 \\ 24 \\ 52.0 \end{array}$ |  | $\begin{array}{r} 1739.0 \\ 955.5 \\ 2487.5 \\ 9117.4 \\ 8404.2 \end{array}$ | $\begin{aligned} & \text { 3. } 240283 \\ & 2.980239 \\ & 3.395766 \\ & 3.959871 \\ & 3.924495 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Packinghouse, smokestack* <br> 1894 | 3712239 | $\begin{aligned} & 139.7 \\ & 396.4 \end{aligned}$ | 264057.51384951.01700952.6 | $\begin{array}{llll} 206 & 40 & 40.1 \\ 318 & 49 & 34 \cdot 5 \\ 350 & 09 & 41 . \end{array}$ | Belair I. <br> Baden Hill <br> Sierra Point |  |  |
|  |  |  |  |  |  | 1008.3 2631.2 | 3.003610 3.430152 |
| Linden House, cupola*$1894$ | $\begin{array}{r} 373917.295 \\ 1223434.255 \end{array}$ | $\begin{array}{r} 533.2 \\ 839.6 \end{array}$ | 27339 19. a <br> 24118 37. 2 <br> 2534200.6 <br> 2700530.4 <br> 3254402.5 | $\begin{array}{rrrr} 33 & 39 & 55 \cdot 8 \\ 61 & 19 & 33 \cdot 5 \\ 73 & 42 & 31.8 \\ 90 & 06 & 33 \cdot 7 \\ 145 & 44 & 32.8 \end{array}$ | Sierra Point <br> Oyster Point <br> Baden Hill <br> Point San Bruno 2 <br> Belair I. | 2647. 9 | 3.431920 |
|  |  |  |  |  |  | 2570.9 | 3. 410080 |
|  |  |  |  |  |  | 1302.6 | 3.114811 |
|  |  |  |  |  |  | 2538.2 | 3.404522 |
|  |  |  |  |  |  | 2158.9 | 3. 334242 |
| Armour Hotel, flagstaff* 1894 | 373924.5441223422.833 | $\begin{aligned} & 756.7 \\ & 559.6 \end{aligned}$ | 2105621.4 <br> 2425412.9 <br> 2614006.8 <br> 2754520.9 <br> 3.35 or or. 7 | $\begin{array}{rrrr} 30 & 56 & 51.0 \\ 62 & 55 & 02.2 \\ 81 & 40 & 31.0 \\ 95 & 46 & 17.2 \\ 155 & 01 & 25.0 \end{array}$ | Sierra Point <br> Oyster Point <br> Baden Hill <br> Point San Bruno a <br> Belair I. | 2303.3 | 3. 362355 |
|  |  |  |  |  |  | 2218.8 | 3. 346121 |
|  |  |  |  |  |  | 980.6 | 2.991488 |
|  |  |  |  |  |  | 2269.6 | 3. 355950 |
|  |  |  |  |  |  | 2215.0 | 3. 345370 |

*This point is in the area of the 1906 earthquake disturbance.

San Francisco Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | Tostation | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ```Soulh San Francisco-Con. Merriam Block E. cupola* 1894``` | 3739 18. 586 <br> 1222425.914 | $\begin{gathered} m \\ 573.0 \\ 635.2 \end{gathered}$ | " | - ' ${ }^{\prime}$ |  | meters |  |
|  |  |  | 2101532.2 | 301603.7 | Sierra Point. | 2499.9 | 3. 397920 |
|  |  |  | 2524148.1 | $\begin{array}{llll}72 & 42 & 14.2 \\ 91 & 05 & 38.2\end{array}$ | Baden Hill | $1095 \cdot 3$ 2334.1 | 3. 039550 3. 368121 |
|  |  |  | 2710439.9 | 910538.2 | Point San Bruno 2 | 2334. 1 | 3. 368121 3. 319210 |
|  |  |  | 3310003.5 | 1510028.7 |  |  | 3.319aro |
| $\underset{\substack{\text { Merriam } \\ \text { cupola } \\ 1894}}{ }$ Block W. | $\begin{array}{r} 373918.98 x \\ 122 \quad 2427.687 \end{array}$ | $\begin{aligned} & 585.2 \\ & 678.7 \end{aligned}$ | 3111520.0 | 311552.5 | Sierra Paint | 2511.6 | 3. 399954 |
|  |  |  | 2535622.1 | 7315649.2 | Baden Hill | 1133.5 2337.8 | 3. 054410 |
|  |  |  | 2712107.4 | $\begin{array}{r}91 \\ 98 \\ 150 \\ \hline\end{array} 0823.6$ | Point San Bruno 2 Belair I. | 23778 2117.5 | $\begin{aligned} & 3 \cdot 376179 \\ & 3 \cdot 325822 \end{aligned}$ |
|  |  |  | 3300756.1 | 1500823.3 |  | 2177.5 |  |
| $\begin{aligned} & \text { Depot, chimney }{ }^{*} 1894 \end{aligned}$ | 373908.146122 | $\begin{array}{r} 251.1 \\ 847.6 \end{array}$ | 2104049.2 | 304125.9 | Sierra Point | 2885.0 | 3. 460144 |
|  |  |  | 2424543.8 | 624615.1 | Baden Hill | 1415.1 | 3. 150777 |
|  |  |  | 3205016.6 | 1405047.0 | Belair I. | 1937.4 | 3. 287213 |
| Berkeley: California building 188! | 373722123812215 | $\begin{aligned} & 654 \cdot 8 \\ & 589.0 \end{aligned}$ | 540801.0 | 23404 O1. 1 | Yerba Buena I. | 12801.0 | 4.071918 |
|  |  |  | $\begin{array}{r}54 \\ 107 \\ 101 \\ \hline 181\end{array}$ | $\begin{array}{llll}234 & 04 \\ 287 & 17 & 31.4\end{array}$ | Rocky I. | 9041.5 | 3.956339 |
|  |  |  | 1211104.1 | 3010919.8 | Highland | 4850.1 | 3.685747 |
| $\underset{\text { S88I }}{\text { Shellmound, flagstaff }}$ | 3712212009.51817 |  | 273518.0 | 20734 37.9 | Oakland Point | 3460.6 | 3. 539150 |
|  |  | 293.4677.4 | 662429.3 | 2463145.3 | Yerba Buena I. | 7136.3 | 3.853474 |
|  |  |  | 1031613.2 | 2831106.3 | Angel I. Peak ${ }^{\text {a }}$ | 12568.5 | 4.099284 |
|  |  |  | 14015 39.3 | 3201318.3 | Brooks I. | 8780.0 | 3.943493 |
|  |  |  | 1401725.2 | 3201504.4 | Rocky I. | 8780.8 | 3.943535 |
|  |  |  | 1601125.0 | 3401035.8 | Judson Point | 5791.5 | 3.762791 |
| Powder wharf 1895 | $\begin{array}{r} 375302.567 \\ 1221900.620 \end{array}$ | $\begin{aligned} & 79.1 \\ & 15.2 \end{aligned}$ | $\begin{array}{llll}27 & 30 & 40.7 \\ 72 & 16 & 33.5\end{array}$ | $\begin{array}{llll}207 & 18 & 53.7 \\ 252 & 12 & 39.2\end{array}$ | Yerba Buena I. Angel I. SE. | 9237.4 9796.9 | $\begin{aligned} & 3.965550 \\ & 3.991088 \end{aligned}$ |
|  |  |  | $\begin{array}{lllll}72 & 16 & 33.5 \\ 75 & 08 \\ 78.1\end{array}$ | 252 <br> 255 <br> 25 <br> 12 0332.2 | Angel I. SE. ${ }^{\text {Quarry }}$ | 9796.9 9305.7 | $\begin{aligned} & 3.991088 \\ & 3.968749 \end{aligned}$ |
|  |  |  | 750818.1 | $\begin{array}{lllll}255 & 04 & 32.0 \\ 256 & 05 & 44.2\end{array}$ | Angel I. Peak 2 | 9395.7 10259.3 | 4.011116 |
|  |  |  | 1125634.4 | 2925510.2 | Brooks I. | 3629.9 | 3. 559893 |
|  |  |  | 2494749.3 | 694756.9 | Judson Point | 328.0 | 2. 515932 |
| Corder tannery, chimney 1895 | 375054.746 | 1687.8 | 970446.4 | $2765945 \cdot 3$ | Angel I. Peak a | 12092.1 | 4.082501 |
|  | 1221737.238 | 910.5 | 98 or 50. 3 | 2775713.3 | Quarry | 11141.9 | 4. 046959 |
|  |  |  | 1345236.0 | 3145020.8 | Brooks I. | 7592.2 | 3.880366 |
|  |  |  | 1565341.6 | 3365258.3 | Judson Point | 4407.9 | 3. 64423 I |
| University Ave. wharf 1895 |  | 1812.4607.2 |  |  | Quarry | 9878.0 |  |
|  | 37122188184.838 |  | 1284342 | 3084156 | Brooks I. | 5405.6 | $\text { 3. } 73284$ |
|  |  |  | 1644548 | 3444534 | Judson Point | 2155.6 |  |
| $\begin{aligned} & \text { California } \\ & \text { flagstaff } \\ & 1894^{-5} \end{aligned}$ | $\begin{array}{r} 37 \\ 32 \\ 122 \\ 15 \end{array} 25.846$ | $\begin{aligned} & 642.7 \\ & 627.8 \end{aligned}$ | 3573735.7 | 1773751.4 | San Leandro Point a | 15218.4 | 4. 182368 |
|  |  |  | 295540.6 | 2095446.5 | Point Avisadero | 18740.2 | 4. 272774 |
|  |  |  | 540413.8 | 2340014.9 | Yerba Buena I. | 11762.5 | 4. 070501 |
|  |  |  | 832348.0 | 2631741.9 | Angel I. SE. ${ }^{2}$ | 14683.5 | 4. 16683 I |
|  |  |  | 853840.1 | 2653218.0 | Angel I. Peak ${ }^{2}$ | 15259.6 | 4. 183544 |
|  |  |  | 1054915.3 | 2854710.8 | Judson Point | 5139.1 | 3. 710888 |
|  |  |  | 1072818.8 | 2872442.6 | Brooks I. | 9009.9 | 3.954718 |
| Pipeworks, chimney 1895 | $\begin{array}{rrr}37 & 51 & 59.039 \\ 122 & 18 & 02.906\end{array}$ | $\begin{array}{r} 1820.1 \\ 71.0 \end{array}$ | 873910.6 |  | Quarry Angel Peak |  |  |
|  |  |  | 8731907.8 | $\begin{array}{llll}267 & 26 & 22.3 \\ 305 & 20 & 23.0\end{array}$ | Angel I. Peak 2 | 11383.1 5828.9 | 4.056361 <br> 3. 765585 |
|  |  |  | 1252222.5 | 3052023.0 | Brooks I. | 5828.9 2347.1 | 3.765585 3. 370523 |
|  |  |  | 1515858 | 3315830.8 | Judson Point | 2347 I | 3.370523 |
| ```Reduction works, chim- ney 1895``` | $\begin{array}{r} 375020.289 \\ 1221732.416 \end{array}$ | $\begin{aligned} & 635.4 \\ & 792.6 \end{aligned}$ | 1015347.1 | 3814842.9 | Angel I. Peak a | 12383.7 |  |
|  |  |  | 1031304.9 | $\begin{array}{llll}283 \\ 38 & 08 & 25.0\end{array}$ | Quarry | 11454.0 8451.8 | $4.058954$ |
|  |  |  | 1392517.6 100 | 319 3195959 | Brooks I. Judson Point | 8451.8 5440.0 | 3. 926951 3.735599 |
|  |  |  | 1600845.8 | 3400759.4 | Judson Point | 5440.0 | 3. 735599 |
| State Deaf and Dumb Asylum, fiagstafi 1895 | $\begin{array}{r} 375152.425 \\ 1221451.482 \end{array}$ | 1656. 2 1258.4 | 885948.7 | 268533050 | Angel I. Peak 2 | 16054. I | 4. 205586 |
|  |  |  | 1104803.5 | 290440605 | Brooks I. | 10087.4 | 4.003779 |
|  |  |  | 1113030.0 | 2912804.8 | Judson Point | 6212.9 | 3.793293 |
| Lumber wharf1895 | $\begin{array}{r} 375202.986 \\ 12218 \\ 16.232 \end{array}$ | $\begin{array}{r} 92.0 \\ 641.2 \end{array}$ | 384726.6 | 2184518.5 | Yerba Buena I. | 8153.8 | 3.911362 |
|  |  |  | 833449.4 | $2633034 \cdot 3$ | Angel I. SE. ${ }^{2}$ | 10236.8 | 4.010161 |
|  |  |  | 864434.6 | 2663953.6 | Angel I. Peak 2 | 10819.8 | 4.034217 |
|  |  |  | 864830.6 | 2664413.6 | Quarry | 9850.3 | 3.993450 |
|  |  |  | 1275156.0 | 3075010.8 | Brooks I. | 5298.6 | 3.734157 |
| Capworks, wharf 1895 | $\begin{array}{r} 375431.739 \\ 1222002.766 \end{array}$ | $\begin{array}{r} 978.5 \\ 67.6 \end{array}$ | 3251648.5 | 1451734.4 | Judson Point | 3206.8 | 3.506072 |
|  |  |  | 534830.7 | 2334744.8 | Brooks I. | 2260.5 | 3. 354210 |
|  |  |  | 582056.0 | 23817 24.1 | Angel I. Peak 2 | 9917.7 | 3.996411 |
|  |  |  | 675126.0 | 2475035.0 | North Brooks | 2188.8 | 3.340209 |
| West Berkeley: <br> Episcopal Church spire, cross 188: |  |  |  |  |  |  |  |
|  | $\begin{array}{r} 3752 \\ 122.795 \\ 12 \\ 17 \\ 38.304 \end{array}$ | $\begin{aligned} & 425.3 \\ & 936.2 \end{aligned}$ | $\begin{array}{r}431203.8 \\ 11888 \\ 38 \\ \hline 1.8\end{array}$ | $\begin{array}{llll}223 & 0 & 26.3 \\ 298 & 36 & 37.2\end{array}$ | Rocky I. | 60977.5 | 3. 785149 |
|  |  |  | 1623244.6 |  | Highland | 2874 | 3.458590 |

* This point is in the area of the 1906 earthquake disturbance.

San Francisco Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ```West Berkeley-Cont'd. Presbyterian Church spire, vane 288!``` | - ' ${ }^{\prime}$ | $\boldsymbol{m}$ | - ${ }^{\prime}$ | 1 |  | meters |  |
|  | 375212.098 | 373.0 | 425943.9 | $\begin{array}{llll}222 & 57 & 08.8\end{array}$ | Yerba Buena I. | 9072.4 | 3. 957722 |
|  | 1221742.136 | 1029.9 | $\begin{array}{llll}119 & 30 & 30.2 \\ 164 & 27 & 23.6\end{array}$ |  | Rocky I. Highland | 6041.1 3898.1 | 5.981113 3.463116 |
| Standard Soap Co., flagstaff 1881 | 375155.661 | 1756.0 | 431703.1 | 2231438.4 | Yerba Buena I. | 8419.6 | 3.925991 |
|  | 1221759.069 | 1443.6 | 1254241.8 | 3054040.1 | Rocky I. | 5965.4 | 3.775640 |
|  |  |  | 27343 22.3 | 3534313.2 | Highland | 3318.8 | 3. 520976 |
| Boot and shoe factory, cupola 1881 | $\begin{array}{rrr}37 & 52 & 48.538 \\ 123 & 18 & \text { co. } \\ \text { 5 }\end{array}$ | 1496. 4 | $\begin{array}{rrrr}36 & 18 & 29.2 \\ 115 & 03 & 57.2\end{array}$ | $\begin{array}{llll}216 & 26 & 05 . \\ 201 & \text { or } & 56.4\end{array}$ | Yerba Buena I. Rocky I. | 9649.6 5151.8 | 3. 984508 3.719059 |
|  | 1221800.550 | 13.4 | $\begin{array}{lllll}315 & 03 & 57.2 \\ 168 & 55 & 24.3\end{array}$ | $\begin{array}{lll}291 \\ 348 & \text { or } & 56.4 \\ 16.1\end{array}$ | Rocky I. Highland | 5151.8 1700.3 | $\begin{aligned} & 3.7 \text { rr959 } \\ & 3.2305^{22} \end{aligned}$ |
| "Butchertown" windmill 1881 | 375052.060 | 1605.0 | 194557.3 | 1994517.8 | Oakland Point | 4652.9 | 3.667720 |
|  | 1221738.895 | 706.5 | 572231.5 | 2371948.2 | Yerba Buena 1. | 7730.4 | 3. 888202 |
|  |  |  | 1341706.8 | 3141446.6 | Rocky I. | 7796.0 | 3.891870 |
| Oakland: <br> Oakland Harbor L. H. $\dagger$ 1894 | 374801.367 | 42. 2 | 190656.4 | 1990544.9 | Point Avisadero 2 | 8729.2 | 3.940972 |
|  | 1221950.719 | 1340.8 | 324537.8 | 2124340.6 | Stony Hill | 8849.2 | 3.936974 |
|  |  |  | 1094537.4 | 28944 21. 2 | Yerba Buena I. 2 | 3230.8 | 3. 509308 |
| Methodist Church, spire 1881 | $\begin{array}{rrr}37 & 48 & 19.602 \\ 132 & 16 & 22.020\end{array}$ | 604.4 538.7 | $\begin{array}{rrrr}93 & 45 & 04.6 \\ 144 & 34 & 50.4\end{array}$ |  | Yerba Buena I. | 8164.1 12449.0 | 3. 911907 |
|  | 1321622.020 | 538. 7 | 144 <br> 164 <br> 164 <br> 1 | $\begin{array}{llll}324 & 31 & 49.2 \\ 344 & 37 & 54.3\end{array}$ | Rocky I. Highland | 12449.0 10329.0 | $\begin{aligned} & 4.095133 \\ & 4.014060 \end{aligned}$ |
| Presbyterian spire 1881 | 374815.419 | 475.4 | 942893.4 | 2742430.6 | Yerba Buena I. | 8517.5 | 3.930310 |
|  | 1221607.916 | 193. 7 | 1433920.8 | 3233610.9 | Rocky I. | 12755.7 | 4.105705 |
|  |  |  | 163 O1 52.5 | 3430035.2 | Highland | 10548.9 | 4.023209 |
| Catholic Church, spire 1895 | $\begin{array}{rrr}37 & 48 & 41.155^{\circ} \\ 132 & 16 & 10.892\end{array}$ | 1368.6 486.6 | $\begin{array}{llll}113 & 43 & 10.2 \\ 142 & 30 & 32.2\end{array}$ | $\begin{array}{lll}293 & 37 & 45.9 \\ 322 & 27 & 29.6\end{array}$ | Quarry Brooks I. | 14115.7 11944.3 |  |
|  | 1321619.892 | 486.6 | 142 156 156 0642.20 | $\begin{array}{llll}322 & 27 & 29.6 \\ 336 & 05 & 18.2\end{array}$ | Judson Point | 11944.3 8939.4 | $\begin{aligned} & 4.077162 \\ & 3.951310 \end{aligned}$ |
| ```Congregational Church, spire 188!``` | 3748 16. 262 | 501. 3 | 943119.5 | 27427577 | Yerba Buena I. | 8079.8 | 3.907398 |
|  | 1231625.780 | 630.7 | 1457153.5 | 3250854.6 | Rocky I, | 12480.3 | 4.096325 |
|  |  |  | 1651719.8 | 345161314 | Highland | 10404.6 | 4.017226 |
| County Court-house dome, flagstaff 1881 | 374753.960 | 1663. 5 | 992714.1 | 2792354.8 | Yerba Buena 1. | 8063.9 | 3.906543 |
|  | 1221629.878 | 731.0 | 14717278 | 3271431.4 | Rocky I. | 12996.4 | 4. 113822 |
|  |  |  | 1664148.5 | 3464044.7 | Highland | 11047.6 | 4.043266 |
| Landing N. tower 2895 | 3748383.769 | 1047. I | 173830.5 | 1973717.0 | Point Avisadero 2 | 9703. I | 3.986911 |
|  | $1221947 \cdot 367$ | 1158.7 | 295544.2 | 2095345.1 | Stony Hill | 9545.3 | 3.979788 |
|  |  |  | 214343.8 | 2714125.6 | Yerbs Buena I. ${ }^{\text {a }}$ | 3123.9 | 3.494700 |
| Mole outer switch-house 1895 | $374833 \cdot 777$ | 1047.3 | 1221417.5 | 3021025.4 | Angel I. Peak 2 | 10934.6 | 4.038801 |
|  | 1321929.780 | 728. 5 | 1252752.3 | 3052424.4 | Quarry | 10168. 1 | 4.007338 |
|  |  |  | 1644950.9 | 3444844.8 | Brooks I. | 10052.0 | 4.002252 |
|  |  |  | 1865533.9 | 65558.5 | Judson Point | 8463.1 | 3.927479 |
| Moleinnerswitch-house* 1895 | 374829.06 | 896.0 | 1190937 | 299 os 08 | Angel I Preak 2 | 12273.0 | 4.08895 |
|  | 1221829.70 | 726. 5 | 1770003 | 3565952 | Judson Point | 8557.4 | 3. 93734 |
| Nev. Smith wharfhouse gable 1895 | $\begin{array}{rrrr}37 & 49 & 34.070 \\ 122 & 17 & 57.998\end{array}$ | $1048.5$ $1418.4$ | $\begin{array}{lll}111 & \text { Or } 22.0 \\ 109 & \text { O5 46. } 2\end{array}$ | $\begin{array}{llll}290 & 56 & 57.8 \\ 289 & \infty & 57.8\end{array}$ | Querry <br> Angel I. Peak 2 | 11275.7 12161.6 | 4. 052143 4. 084992 |
|  | 12217 57.998 |  | 109 105846.2 1480923.9 | $\begin{array}{llll}289 & 00 & 57.8 \\ 328 & \text { O7 } & 21.5\end{array}$ | Angel I. Peak ${ }^{\text {Brooks I }}$ | 12161.6 9235.8 | 4. 084992 3.965474 |
|  |  |  | $169 \quad 2504.7$ | 3492434.2 | Judson Point | 6656.6 | 3.823251 |
| Nailworks stack 1895 | 374949.420 | 1523.6 | 1073550.6 | 2873108.0 | Quarry | 11811.4 | 4.077303 |
|  | 1221727.988 | 684.5 | $1424444 \cdot 3$ | 3224223.5 | Brooks I. | 9260.7 | 3. 966644 |
|  |  |  | 1620811.4 | 3420722.4 | Judson Point | 6375.8 | 3. 804535 |
| Sarsalito: |  |  |  |  |  |  |  |
| Crag Hazel boathouse, | $\begin{array}{rrr}37 & 50 & 50.212 \\ 122 & 28 & 37.454\end{array}$ | 1548.0 985.7 | $\begin{array}{llll}225 & 27 & 44.9 \\ 248 & 35 & 39.7 \\ 33 & 7\end{array}$ | $\begin{array}{llll}45 & 28 & 38.3 \\ 68 & 37 & 23.6\end{array}$ | Belvedere Point Angel J. Peak 2 | 2425.6 4445.2 |  |
| $\begin{aligned} & \text { flagstaff } \\ & \text { I8955 } \end{aligned}$ | 1223837.454 | 915.7 | $\begin{array}{llll}348 & 35 & 39 . & 7 \\ 338 & 07 & 48 \\ 7\end{array}$ |  | Angel I. Peak 2 <br> Under Cavallo | 4445.2 1109.1 | $\begin{array}{r} 3.647893 \\ 3.04496 \mathrm{I} \end{array}$ |
| S. Dock-light 1895 | 375122.876 | 705.2 | 1442345.7 | 3243259.3 | Strawberry Hill a | 3175.0 | 3. 501739 |
|  | $122 \quad 2836.643$ | 896.0 | 2120612.4 | 320637.5 | Peninsula Hill 2 | 1878.6 | 3. 273841 |
|  |  |  | 2475339.2 | 6754 22.1 | Belvedere Point | 18447 | 3. 265929 |
|  |  |  | 26130 kr 7 | 81 3155.1 | Angel I. Peak? | 4164.5 | 3. 619568 |
|  |  |  | $3490405 \cdot 3$ | 1690415.2 | Under Cavallo | 2073-9 | 3. 316796 |
| N. Dock-light 1895 | $375 \times 24.538$ | 756. 5 | $723^{8} 54.5$ | 2523808.3 | Richardson East | 1928. 3 | 3. 285109 |
|  | 123 28 36. 359 | 886.4 | 1434344.6 | 3234157.9 | Strawberry Hill a | 3139.0 | 3.496790 |
|  |  |  | 2134294.8 | 324249.6 | Peninsula Hill a | 1830.3 | 3. 262533 |
|  |  |  | 2491648.4 | 691731.0 | Belvedere Point | 1817.3 | 3. 259419 |
|  |  |  | 26211103.6 | 82 1246.7 | Ankel I. Peak 2 | 4147.9 | 3. 617832 |
|  |  |  | 3493445.6 | 1693455.2 | Under Cavallo | 2123.6 | 3. 326859 |

* No check on this position.
$\dagger$ Rebuilt in 1903.

San Francisco Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | 'Tostation | Distance | L.ogarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sausalito-Continued. Baron whart 1895 | - ' 1 | $m$ | , | - ' " |  | meters |  |
|  | 375130.388 | 12121.8 | 5508127.7 | 2350753.8 | Richardson East | 1645. 5 | 3. 216303 |
|  | 1232886.313 | 1376.6 | 1474256.0 | 32742 21. 7 | Strawberry Hill a | 2560.6 | 3.408345 |
|  |  |  | 2313225.8 | 513303.0 | Peninsula Hill 2 | 1889.0 | 3.276225 |
|  |  |  | 2673122.3 | 873317.8 | Angel I. Pea | 4603.9 | 3.663126 |
| Railroad depot, inner flagstaff 1895 |  | $767.2$ | $\begin{array}{llll}146 & 22 & 33.4 \\ 217 & 26 & 54.8\end{array}$ | 3262151.3 372724.2 | Strawberry Hilla Peninsula Hill | 3025.7 1926.5 | $\begin{aligned} & \text { 3. } 480819 \\ & \text { 3. } 284760 \end{aligned}$ |
|  | 1222843.720 | $1068.8$ | $\begin{array}{llll}217 & 26 & 54.8 \\ 251 & 25 & 5.8 \\ 51\end{array}$ | 372724.2 <br> 71 <br> 1689 | Peninsula Hill a Belvedere Point | 1926.5 1985.5 | $\begin{aligned} & \text { 3. } 284760 \\ & \text { 3. } 297863 \end{aligned}$ |
|  |  |  | $\begin{array}{llll}251 & 25 & 52.1 \\ 262 & 39 & 08.1\end{array}$ |  | Angel I. Peak ${ }^{\text {a }}$ | 1985.5 4327.3 | 3.297863 3.636218 |
|  |  |  | 34453 40.2 | 1645354.4 | Under Cavillo | 2173.4 | 3.337131 |
| Railroad depot, outer flagstaff 1895 | 375124.296 | 749.0 | 72 Or 27.0 | $2520043 \cdot 0$ | Richardson East | 1839.3 | 3. 264660 |
|  | $123 \quad 2839.980$ | $977 \cdot 3$ | 1450908.0 | 3250823.6 | Strawberry Hill 2 | 3092. 1 | 3.490258 |
|  |  |  | 2145431.2 | 345458.3 | Peninsula Hilla | 1887.2 | 3.275807 |
|  |  |  | 2500216.5 | 7003 Or. 4 | Belvedere Point | 1905. 1 | 3.279928 |
|  |  |  | 2621504.3 | 821649.7 | Angel I. Peak ${ }^{\text {a }}$ | 4239. 1 | 3.627269 |
|  |  |  | 3470822.0 | 1670833.9 | Under Cavallo | 2133.6 | 3.329117 |
| Tide Station, wharf 1895 | 375038.060 | 1173.4 | 1971017.7 | 171040.8 | Peninsula Hill 2 | 3111.8 | $3.493009$ |
|  | $1222833 \cdot 382$ | 816.2 | 2180745.2 | 3808126.1 | Belvedere Point | 2639.0 | $3.42143^{8}$ |
|  |  |  | 2434159.4 | 634310.8 | Angel I. Peak ${ }^{\text {Under }}$ Cavallo | 4505.8 725.8 | $\begin{aligned} & 3.653770 \\ & 2.860826 \end{aligned}$ |
|  |  |  | 3342413.6 | 15424 21. 5 |  |  |  |
| ```Tiburon: Freight wharf, SE. cor- ner 1895``` | 375220.123 | 630.3 | 2995640.5 | 1195730.5 | Angel I. Peak 2 | 2304.8 | 3. 362624 |
|  | 1232709846 | 240.6 | $33: 3422.0$ | 1513438.3 | Angel I. NW. ${ }^{2}$ | 1375.2 | 3. 138355 |
|  |  |  | $21040 \% 5$ | 2010357.0 | Belvedere Point | 1147.7 | 3. 059814 |
| $\begin{gathered} \text { Dock-bell } \\ 1895 \end{gathered}$ | $37 \mathrm{~S}^{2} 19.226$ | 592.7 | $30036 \begin{array}{lll}30.5\end{array}$ | 1203708.2 | Angel I. Peak 2 | 2205.4 | 3. 343494 |
|  | 1222705.800 | 141.8 | 3344848.0 | 1544902.0 | Angel I. NW. ${ }^{2}$ | 1305.9 | 3. 115909 |
|  |  |  | 260654.2 | 2060641.4 | Belvedere Point | 116 r .9 | 3. 065183 |
|  |  |  | 83 II 19.7 | 2631049.1 | Peninsula Hill 2 | 1230.6 | 3.090118 |
| Ferry-slip, E. end 1895 |  |  | $\begin{array}{llll}301 & 00 & 03.1 \\ 336 & 40 & 57.3\end{array}$ | 1210049.4 1564109.9 | Angel I. Peak ${ }^{\text {angel }}$ | 2153.5 1271.9 |  |
|  | 1223703.662 | 89.5 |  | 1564109.9 20841 20.1 | Angel I. NW. ${ }^{2}$ Belvedere Point | 1271.9 1173.9 | $\begin{aligned} & \text { 3. } 104468 \\ & \text { 3. } 069614 \end{aligned}$ |
|  |  |  | $\begin{array}{lllll}28 & 42 & 0 . & 3 \\ 84 & 04 & 28.4\end{array}$ | 2084150.1 2640356.4 | Belvedere Point Peninsula Hill 2 | 1173.9 1281.0 | 3. 069614 3.107565 |
| Depot flagstaff 1895 | 375221.256 | 655.3 | 3023748.8 | $1223235 \cdot 5$ | Angel I. Pcak 2 | 2304.4 | 3. 343293 |
|  | 1222704.179 | 102. 1 | 25 <br> 3 | 205 38.08. | Point Cavallo ${ }^{2}$ | 4349.0 | 3.638391 |
|  |  |  | 262919.4 | 2062905.6 | Belvedere Point | 1235.6 | $3.091870$ |
|  |  |  | 803657.2 | 2603625.6 | Peninsula Hill 2 | 1278.7 | 3. 106761 |
| Catholic Church 1895 |  | 1365.8 | 53356.9 | 1853352.4 | Belvedere Point | 1825.1 | 3. 261289 |
|  | 1222719.483 | 476.1 | 435948.4 | 22359 26. I | Peninsula Hill a | 1277. 7 | 3. 106432 |
|  |  |  | 5047 or. 0 | 2304527.7 | Richardson East | 4798.3 | 3.681087 |
|  |  |  | 910552.7 | 2710418.9 | Strawberry Hill 2 | 3734.8 | 3. 572264 |
| Bluff Point: <br> S. Range E. 1897 |  |  | 3410708.4 | 1610727.7 | Angel I. Peak 2 | 2326.2 | 3.36065I |
|  | 37 122 26 2648 18.942 | 1670.7 462.9 | 187 <br> 188 <br> 8 | 759 28.2 | Red Rock | 5341.7 | 3.727677 |
|  |  |  | 2053958.7 | 254120.6 | High Hill | 7509.8 | 3.875627 |
|  |  |  | 2334039.4 | 534226.8 | Richmond Rock | 5292.1 | 3.723029 |
|  |  |  | $2335133 \cdot 3$ | 535327.8 | Point Richmond ${ }^{\text {Brooks }}$ | 5337.2 7554.8 | 3.727317 3.878225 |
|  |  |  | $2571102 \cdot 3$ | 771407.5 | Brooks L. | 7554.8 | 3.878225 |
| S. Range W. | $\begin{array}{r}37 \\ 122 \\ 122 \\ 36 \\ 42.338 \\ \hline\end{array}$ | 1305.2 1122.3 | $\begin{array}{llll}322 & 25 & 23.1 \\ 234 & 35 & 04.7\end{array}$ | 1423558.8 543708.6 |  | $\begin{aligned} & 2315.9 \\ & 6040.6 \end{aligned}$ | $\begin{aligned} & 3 \cdot 364736 \\ & 3 \cdot 781082 \end{aligned}$ |
|  | 1223645.923 | 1122.3 | 234 <br> 234 <br> 234 <br> 4 | 54 <br> 54 <br> 54 <br> 46 <br> 18 <br> 18.8 | Richmond Rock ${ }^{\text {Point Richmond } 2}$ | 6040.6 6086.0 | $\begin{aligned} & \text { 3. } 781082 \\ & 3 \cdot 784334 \end{aligned}$ |
|  |  |  | 234 <br> 240 <br> 240 <br> 59 <br> 15 | 54  <br> 61 46 <br> 10505  | S. Range E. | 753.9 | 2.877318 |
|  |  |  | 25543 32.1 | 754653.8 | Brooks I. | 8281. 5 | 3.988110 |
| $\underset{1897}{\text { N. Range E. }}$ |  | 1234.8 | 1390522.6 | 3190456.4 |  |  |  |
|  | 1222711.264 | 275.2 | 155 150544.9 |  | Point San Quentin Red Rock | 6090.1 4370.8 | $\begin{aligned} & 3.784621 \\ & 3.640556 \end{aligned}$ |
|  |  |  | 2073119.0 | 273209.8 | Red Rock | 4370.8 7014.6 | 3.640556 |
|  |  |  | 220 <br> 253 <br> 1343.6 | 40 <br> 72 <br> 72 <br> 4 <br> 4 | Richmond Rock | ${ }_{5803.2}$ | 3. 763666 |
|  |  |  | $\begin{array}{llll}25244 & 39.8 \\ 25245 & 23.1\end{array}$ | $\begin{array}{ll}72 & 46 \\ 72 & 47 \\ 4 & 43.8\end{array}$ | Point Richmond 2 | 5859.4 | 3. 767257 |
| $\underset{1897}{N .}$ |  | 1050.8 | 1465031.2 | 3264953.3 | California Point 2 | 2752. 7 | 3.439765 |
|  | $122 \begin{array}{lll}37 & 34.852\end{array}$ | 607. 2 | 2100438.6 | 300537.7 | Red Rock | 4693.1 | 3.671364 |
|  |  |  | 2405948.0 | 605956.3 | N. Range E. | 379.6 | 2. 579329 |
|  |  |  | 252 or 30.4 | 720358.3 | Richmond Rock | 6175.3 | 3. 790660 |
|  |  |  | 252023 I .1 | 720500.1 | Point Richmond a | $6233 \cdot 5$ | 3. 794033 |
| Alameda: <br> Borax-works, round brick stack 1895 |  |  |  |  |  |  |  |
|  | 374644.508 | 1372.1 | 370298.1 | 9165850.2 | Sierra Point | 14512.7 | 4. 161748 |
|  | $12217 \begin{array}{ll}37.768\end{array}$ | 924.3 | 460813.1 | 2260540.2 | Point Avisadero 2 | 8480.5 | 3.928429 |
|  |  |  | 581758.0 | 2381439.6 | Stony Hill | 9327.4 | 3.969758 |
|  |  |  | 781429.5 | 2580852.7 | North Twin | 13758.1 | 4. 138559 |
|  |  |  | $\times 184946.6$ | 29847 Cg 3 | Yerba Buena I. 2 | 7183.0 | 3.850308 |

San Francisco Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alameda-Continued. Pacific Oilworks, stack 1895 | " | $m$ | - , " | - ' $"$ |  | meters |  |
|  | 374631.360 | 966.8 | 3205752.2 | 1405855.0 | San Leandro Pt. 2 | 5703.4 | 3. 756132. |
|  | 1221726.666 | 652.6 | 340651.9 | 2140259.5 | Oyster Point | 14667.2 | 4. $16034{ }^{6}$ |
|  |  |  | $\begin{array}{ll}38 & 52 \\ 49 & 25\end{array}$ | 2184913.6 | Sierra Point | 14360.2 | 4.157160 |
|  |  |  | 492520.2 | 2292213.4 | Point Avisadero 2 | 8409.2 | 3.924756 |
|  |  |  | 611745.6 | 2411353.2 | Stony Hill | 9358.2 | 3.971192 |
|  |  |  | 800632.0 | 2600020.9 | North Twin | 13948.8 | 4. 144537 |
|  |  |  | 1203129.8 | 3002818.0 | Yerba Buena I. 2 | 7619.8 | 3.881942 |
| Pipeworks, stack 1895 |  | 1300. 1 | 394212.0 | $21938 \times 3.4$ | Sierra Point | 14961.9 | 4. 174987 |
|  | 1321704.486 | 109.8 | 500307.5 | 2300014.2 | Point Avisadero 2 | 9038.9 | 3.956115 |
|  |  |  | 610639.1 | 2410300.3 | Stony Hill | 9994.5 | 3.909759 |
|  |  |  | 791044.0 | 2590446.4 | North Twin | 14542.7 | 4. 162646 |
|  |  |  | 1162718.9 | 2962420.7 | Yerba Buena I. 2 | 7938. 1 | 3.899716 |
| St. Joseph's spire, cross 1895 | 374558.351 | $\times 798.9$ | 3540045.6 | 174 ¢ 54.6 | San Leandro Pt. 2 | 3435.5 | 3. 53548 I |
|  | 1221514.564 | 356.4 | 162125.9 | 1961904.3 | P't. San Mateo Ext. | 20202.0 | 4.305393 |
|  |  |  | 502029.0 | 2301523.2 | Sierra Point | 15914.1 | 4. 201782 |
|  |  |  | 651118.4 | 2450717.9 | Point Avisadero | 10600.5 | 4.025327 |
|  |  |  | 1163147.2 | 2961741.8 | Yerba Buena I. | 10949.6 | 4.039397 |
| Narrow gauge landinc, N. tower 1895 | 374748.708 | 150 x .6 | 185943.9 | 1985836.3 | Point Avisadero 2 | 8310.1 | 3. 919607 |
|  | 1221956.995 | 1394.4 | 33194888 | 2131755.6 | Stony Hill | 8238.3 | 3.915836 |
|  |  |  | 1171051.8 | 2970939.6 | Yerba Buena I. a | 3245.4 | 3.511271 |
| Cupola 2881 | 374615.608 | $4^{81} .2$ | 1184645.6 | 2984326.9 | Yerba Buena I. | 9049.4 | 3.956620 |
|  | 1221630.807 | 754.0 | 1263125.4 | 3062543.4 | Angel I. Peak | 16965.0 | 4. 229555 |
|  |  |  | 1693829.3 | 3493726.0 | Highland | 14011.7 | 4.146491 |
| Cupola flagstaff 288 | 374643.902 | 1353.5 | 1185734.3 | 2985456.6 | Yerba Buena I. | 7193.5 |  |
|  | 1221737.755 | $923.9$ | 1572844.7 | 33728 ro. 7 | Oakland Point | 3542.3 | $\text { 3. } 54928 \mathrm{I}$ |
|  |  |  | 1574318.7 | 3374104.0 | Rocky I. | 14150.4 |  |
| Warmsprings: <br> Red warehouse, W. gable 2896 | 372848.559 | 1497.0 | 3543125.1 | 1743131.6 | Dyke | 2729.7 | 3.436111 |
|  | 121 5654.115 | 1329.6 | 740946.5 | 2540646.3 | Alviso | 7567.5 | 3.878951 |
|  |  |  | 88 O1 04.5 | 26800 II. 1 | Albrae | 2160.1 | 3.334480 |
|  |  |  | 1185543.4 | 2985051.3 | South Red Hill | 13460.1 | 4. 129048 |
| Schoghouse flagstaft 1896 | 372858.847 | 1814.2 | $3204 \times 4.3$ | 21203 27.2 | Dyke | 3580.6 | 3. 553957 |
|  | 1215526.158 | 643.7 | 8449 38. 5 | 2644751.5 | Albrae | 4337.5 | 3.637240 |
|  |  |  | 11358 | 2935219.0 | South Red Hill | 15255.3 | 4. 183420 |
| $\begin{aligned} & \text { Depot chimney * } \\ & 1896 \end{aligned}$ | 372907.41 | 228.4 | 222237 | 2022153 | Dyke | 3566.7 | 3. 55227 |
|  | 1225548.27 | 1186.0 | 800927 | 2600753 | Albrae | 3832.9 | 3. 58353 |
| Hip-roof house, flagstaff* 1896 | 373000.21 | 6.5 | 232959 | 2032906 | Dyke | 5371.6 | 3.73010 |
|  | 1215516.36 | 401.8 | 632433 | 2432240 | Albrae | 5099.9 | 3.70756 |
| Alviso: <br> Church spire ${ }^{2} 896$ |  |  |  |  |  |  |  |
|  |  | 1371.2 | 1243634.7 | 3043425.3 | Alviso |  |  |
|  | 1215817.590 | 432.4 | 17853505 | 3585348.0 | Albrae | $5601.1$ | $3.748273$ |
|  |  |  | 2180045.5 | 38 OI 42.7 | Dyke | 3754.6 | $\text { 3. } 574564$ |
| $\underset{ \pm 896}{\text { Factory, SE. Mable }}$ |  | 1225.6 | 1261725.7 | 3061519.2 | Alviso |  | 3.802236 |
|  | $\begin{array}{llll} 121 & 58 & 22.339 \end{array}$ | 549.3 | 1420304.7 | 3215906.3 | South Red Hill | 15634.5 | 4. 194084 |
|  |  |  | 180 os 20.3 | $\bigcirc 0520.5$ | Albrac | 5745.6 | $3.759336$ |
|  |  |  | 2180247.8 | 380347.9 | Dyke | 3941.2 | 3. 595626 |
| $\begin{aligned} & \text { Warchouse gable * } \\ & i 896 \end{aligned}$ |  | 1261. 2 |  |  | Alviso | 4114. 1 | $3.6 \times 428$ |
|  | 1220302.13 | 52.4 | $167 \quad 2417$ | 3472309 | South Red Hill | 12591.0 | $\text { 4. } 10006$ |
| Mill ${ }_{1854}^{\text {chimney }}$ * | 372546.00 | 1418. 1 | 2950357 | 1151948 | Masters Hill | 23803.6 | 4.378642 |
|  | 1215849.15 | 1208.4 | 502740 | 2302135 | Black Mountain | 19165.7 | 4. 282525 |
| Redwood City: |  |  |  |  |  |  |  |
| Waterworks tank 1894 | 372857.000 | 1757.3 | 1369903.3 | 3162727.4 | Angelo a | 5619.8 | 3. 749724 |
|  | 1311316.490 | 405.2 |  | 324 35 55 42 | Pt. San Mateo Ext. Red Hill | 14841.8 13544.7 | 4. 171486 4. 131770 |
|  |  |  | 3353819.1 | 554256.5 | Red Hill | 13544.7 | 4.131770 |
| High-school tower 1894 | 3729 It. 39.3 |  | 13838 a1. 2 | 31837029.0 | Angelo 2 | 4838.2 | 3. 684688 |
|  | 1221343.874 | 1078.0 | 1455015.3 | 3254658.8 | Pt. San Mateo Ext. | 14093.6 | 4. 149024 |
|  |  |  | 23843 02. 3 | 584756.4 | Red Hill | 13869.7 | 4. 142058 |
|  |  |  | 2571637.4 | 772005.8 | West Point | 9031.8 | 3.955773 |
| Frank's tannery stack 1894 | $\begin{array}{r}37 \\ 372932.764 \\ 222 \\ \hline 13\end{array}$ | 1010.1 647.0 |  | $\begin{array}{llll}309 & 18 & 25.6 \\ 322 & 46 & 02.3\end{array}$ | ${ }_{\text {Angelo } 2}{ }^{\text {Pt. San Mateo Ext. }}$ | 4690.2 13809.6 | $\begin{aligned} & 3.671197 \\ & 4.140180 \end{aligned}$ |
|  | $\mathbf{1 2 2} 13$ 26. 334 | 647.0 | $\begin{array}{lllll}142 & 49 & 29.5 \\ 240 & \text { II } & 50.2\end{array}$ | 322 <br> 6602.3 <br> 60 <br> 86 | Ped San Mateo Ext. | 13809.6 13163.7 | 4.140180 |
|  |  |  | 2605844.1 | 81 0311.8 | West Point | 8484.0 | 3.92800 |

*No check on this position.

San Pablo Bay.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | - ' 11 | $m$ | " | - ' ${ }^{\text {c }}$ |  | meters |  |
| Point Pinole | 380043.627 | 1345.2 | 220021.6 | 2015903.1 | High Hill | 8310.0 | 3.919602 |
| 1852 | 1222158.200 | 1419.9 | 700810.3 | 2500502.9 | Point San Pedro | 7899.4 | 3. 897592 |
| East Sister | 375918.894 | 582. 5 | 32529 36. 2 | 1453032.7 | San Pablo Ridge | 3959.3 | 3. 597615 |
| 1897 | 1222627.166 | 663.9 | $32551 \times 3.9$ | 1455240.8 | High Hill | 6152.7 | 3. 789063 |
|  |  |  | $33832 \begin{array}{llll} & 35.2\end{array}$ | 1583300.7 | Molate Point 2 | 4917.4 | 3. 691734 |
|  |  |  | 3515008.4 | 1715032.2 | Red Rock | 6638.2 | 3.822053 |
|  |  |  | 21553.5 | 1821542.3 | Bluff Point 2 | 11152.5 | 4. 047375 |
|  |  |  | 191737.0 | 1991623.6 | California Point ${ }^{2}$ | 8831.5 | 3. 945543 |
|  |  |  | $36 \quad 2923.2$ | 2162751.5 | Point San Quentin | 6123.1 3540.1 | 3. 786970 |
|  |  |  | 4134 O1.0 | 2213301.8 | Marin I. E | 3540. 1 | 3. 549012 |
| Marsh Island | 375736.669 | 1130.5 | 80749.2 | 1880742.2 | High Hill | 1960.7 | 3. 292406 |
| 1852 | 1222354.373 | 1327.4 | 1234909.1 | 3034713.2 | Point San Pedro | 5530.4 | 3. 742753 |
|  | 12.331373 | 1327 | 2061040.8 | 26 If 52.2 | Point Pinole | 6423.6 | 3. 807778 |
| Petaluma Creek | $38 \quad 6613.466$ | 415.2 | $313 \propto 40.8$ | 1331414.6 | Point Pinole | 14856. 1 |  |
| 1851 | 1222922.425 | 546.4 | 34129850.4 | 161 165144.5 | East Sister | 13477. 5 | 4. 129610 |
|  |  |  | $\begin{array}{llll}345 & 08 & 31.6 \\ 357 & 56 & 10.3\end{array}$ | 1650957.7 | Point San Pedro | 13301.1 17717.1 | $\text { 4. } 123886$ |
|  |  |  | 3575610.3 | 1775626.4 | Point San Quentin | 17717.1 |  |
| Long Pond | 380741.070 | 1266.4 | 15 11 112.2 | 1950942.9 | Point Pinole | 13335.6 | $\text { 4. } 125011$ |
| 1852 | 1221935.002 | 852.5 | $\begin{array}{llllll}35 & 05 & 12.6 \\ 79 & 21 & 40.4\end{array}$ | $\begin{array}{llll}215 & 0 & 36.6 \\ 359 & 15 & 37.8\end{array}$ | Point San Pedro Petaluma Creek | 19004.2 14562.3 | $\text { 4. } 278849$ |
|  |  |  | 792140.4 | 2591537.8 | Petaluma Creek | 14562.3 |  |
| Long Point 2 | $\begin{array}{llll}38 & 02 & 48.268\end{array}$ | 1488.3 | 19401888 | 140218.9 | Petaluma Creek |  | $\text { 3. } 814335$ |
| L886 | 1223027.302 | 665.7 | $\begin{array}{ll}317 & 45 \\ 323 & 36.2\end{array}$ | 13748 01. 3 | East Sister | 8716.8 8219.7 | 3. 940358 |
|  |  |  | 3223516.2 | 1423722.2 | Point San Pedro |  |  |
| Point Pinole 2 | 380043.599 | 1344.4 | 5313546.2 | 2333128.9 | Point San Quentin | 12685.9 7000.8 | 4. 103322 |
| 1886 | 1222158.130 | 1418.0 | 700848.7 | 2500541.2 | Point San Pedro | 7900.8 | 3. 89767 t |
|  |  |  | 10714432.8 | 2870919.2 | 1,ong Point ${ }^{2}$ | 12999.3 | $4.113921$ |
|  |  |  | 1331406.0 | 31309 32.1 | Petaluma Creck | 14858. 1 |  |
| Tolay Creek 2 | $\begin{array}{llll}38 & 07 & 55.787\end{array}$ | 1720.2 | 3414355.1 | 1614546.3 | Point Pinole 2 | 14031.2 |  |
| 1886 | 1222458.428 | 1423.0 | $\begin{array}{llll}63 & 53 & 38.5 \\ 10 & 43 & 16.7\end{array}$ | 243 <br> 100 <br> 100 <br> 12 | Petaluma Creek Point San Pedro | 7163.0 16295.7 | $3.855093$ |
|  |  |  |  | 1904200.0 | Point San Pedro |  |  |
| Sears Point | $\begin{array}{llll}38 & 08 & 24.275\end{array}$ | 748. 5 | 2891503.9 | 1091607.6 | Tolay Creek ${ }^{\text {a }}$ | 2662.8 |  |
| 1886 | 1222641.649. | 1014.2 | $\begin{array}{rrrr}334 & 01 & 55.4 \\ 1 & 44 & 18.6\end{array}$ |  | Point Pinole ${ }^{\text {a }}$ | 15795.4 L6808.0 | $4.198530$ |
|  |  |  | $\begin{array}{rrrr}1 & 4418.6 \\ 44 & 10 & 15.7\end{array}$ | $\begin{array}{lll}181 & 44 & 05.8 \\ 224 & 88 & 36.4\end{array}$ | Point San Pedro Petaluma Creek | 16898.0 5621.6 | $\begin{aligned} & 4.227834 \\ & 3.749863 \end{aligned}$ |
| Point Pinole 3 | 380043.612 | 1344.8 | 220218.3 | 2020059.7 | High Hill | 8311.4 | 3. 919674 |
| $1897$ | 1222158.007 | 1415.0 | 362257.0 | 2162108.1 | San Pablo Ridge | 7296.0 | 3. 863085 |
|  |  |  | 454745.0 | 2254530.3 | Point San Pablo 2 | 7449.7 | 3.872140 |
|  |  |  | 472413.7 | 2272146.1 | E. Brother I. L. H. | 7956. 7 | 3.900732 |
|  |  |  | 533610.1 | 2333552.7 | Point San Quentin | 12688.5 | 4. 103413 |
|  |  |  | 6820 00.0 | 24817714.3 | East Sister | 7067.4 | 3.849362 |
|  |  |  | 824705.4 | 2624705.3 | Point Pinole 2 | 2.997 | 0.476716 |
|  |  |  | 1331314.8 | 3130900.1 |  | 14880.0 | 4.172018 |
|  |  |  | $\begin{array}{ll}59 & 29 \\ 19.8\end{array}$ | 3392534.8 | Marin I. E. | 10352.6 | 4.015048 |
| Island Hydrographic | 380017.449 | 538.0 | 2642787.4 | 84.3058 .3 | Point Pinole 3 | 8396.0 | 3.921072 |
| 1896 | 1322740.574 | 989.9 | 3151313.8 | 1351359.1 | East Sister | 2543.1 | 3.405364 |
|  |  |  | 3212815.0 | 1412956.9 | San Pablo Ridge | $6477 \cdot 6$ | 3.811412 |
|  |  |  | 3224425.6 | $1{ }^{1} 24637.8$ | High Hill | 8664.9 | 3.937762 |
|  |  |  | 3334757.2 | 1534820.4 | Point San Pedro | 2095.6 | 3.321308 |
|  |  |  | 1671541.9 138 50 |  | Petaluma Creek Long Point 2 | 11254.1 6177.3 | 4.051310 3.790801 |
|  |  |  |  |  |  |  |  |
| Lone Tree Point | 380219.816 | 611.0 | 701838.7 | 2501509.7 | Point Pinole | 8-89.9 | 3.943983 |
| 1852 | 1221618.950 | 463. 1 | 1104405.1 | 290.3602 .2 | Petaluma Creek | 20410.7 | $4 \cdot 309857$ |
|  |  |  | ${ }^{1} 541554.2$ | 3341.353 .3 | Long Pond | 10997.1 | 4.041278 |
|  |  |  | 701804.7 | 2501435.8 | Point Pinole 2 | 8788.4 | 3.943912 |
| Vallejo (3) | 380412.827 | 395.5 |  | 2305649.2 | Lone Tree Point | 55.32 .1 | 3. 742893 |
| $185 \lambda$ | 1221322.704 | 553.5 | 625253.0 | $2424735 \cdot 5$ | Point Pinole | 14128.7 | 4.150101 |
|  |  |  | 1251920.8 | 3051531.1 | Long Pond | 111133.6 | 4.045854 |
| Sonoma Creek | $38 \quad 08 \quad 27.160$ | 837.5 | 3234212.7 | 1434543.2 | Lone Tree Point | 14047.5 | 4. 147599 |
| 1852 | 1322159.955 | 1460.0 | 3594944.4 | 1794945.5 | Point Pinole | 14291.8 | 4. 155086 |
|  |  |  | $6906 \quad 27.7$ | 249 or 54.6 | Petaluma Creek | 11539.0 | 4.062170 |
| Wilson | $38 \times 0.43 .994$ | 1356.5 | 895211.6 | 2695019.3 | Point Pinole | 4448.7 | 3.648230 |
| 8852 | 1221855.842 | 1362.2 | 17545 2929.6 | 3554505.5 | Long Pond | 12894.7 | 4. 110410 |
|  |  |  | 2321859.4 | 522036.1 | Lone Tree Point | 4834.4 | 3.684340 |
| Mare Island SE. | 380437.424 | $1153.9$ | $285 \quad 25 \quad 12.7$ | 1052622.2 | Vallejo (3) | 2850.4 | 3.4549 rt |
| 1853 | 1221515.434 | 376.2 | 200322.7 | 2000243.5 | Lone Tree Point | 4516.5 | 3.654798 |

San Pablo Bay-Continued.

| Station | Lstitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{1852}{\text { Vallejo (1) }}$ | - , " | m | - " | " |  | meters |  |
|  | 38 05 18.453 | 569.0 | 3153246.1 | 1353336.3 | Vallejo (3) | 9834.3 | 3.45144 |
|  | 1221444.136 | 1075.5 | 3 I 0529.0 | 2110509.7 | Mare I. SE. | 1477.2 | 3. 169430 |
| Mare Island NW. 1852 | 380522.275 | 686.8 | 2733133.4 | 933221.7 | Vallejo (x) | 1912.4 | 3.281568 |
|  | 1221602.462 | 60.0 | 2984738.9 | 1184966.7 | Vallejo (3) | $4443 \cdot 5$ | 3.647731 |
|  |  |  | 3202036.4 | 1402105.4 | Mare I. SE. | 1796.1 | 3.254319 |
|  |  |  | 40517.5 | 1840507.4 | Lone Tree Point | 5639.9 | 3.751269 |
|  |  |  | 1293525.9 | 3093314.8 | Long Pond | 6717.5 | 3.827207 |
| ```Lone Trec Point, Iron Rod (U.S. E.)* 1903-1906``` | $\begin{array}{rrr} 38 & 02 & 20.12 \\ 122 & 16 & 20.84 \end{array}$ | $\begin{aligned} & 620.4 \\ & 508.3 \end{aligned}$ | 281 1727 | 101 1728 | Lone Tree Point | 46.94 | 1.67154 |
| Abbot 1851 | 380313.585 | 418.8 | $1582355 \cdot 2$ | 33823 29. 3 | Mare I. SE. | 2780.3 | 3.444085 |
|  | 1221433.438 | 815.1 | $2232045 \cdot 3$ | 432128.9 | Vallejo (3) | 2511.9 | $3 \cdot 400006$ |
| Bush Hill 1851 | 380300.970 | 29.9 | 964742.4 | 2764619.8 | Abbot | 3292.5 | 3.517529 |
|  | 1221219.340 | 472.5 | 1450712.1 | 3250633.1 | Vallejo (3) | 2700.8 | $3.431492$ |
| North Bay 1851-53 | 380400.234 | 6.9 | 501241.2 | 230 II 45.7 | Bush Hill | 2854.4 |  |
|  | 1221049.382 | 1203.8 | $95 \quad 5651.7$ | 2755517.2 | Vallejo (3) | 3757.4 | $3 \cdot 574891$ |
| $\begin{gathered} \text { Vallejo Hill } 2 \\ 1887 \end{gathered}$ | 380701.471 | $45 \cdot 2$ | 3323213.8 | 1523255.6 | Vallejo (1) | 3579.5 | $3 \cdot 553818$ |
|  | 1221551.876 | $1263.7$ | 44917.2 | 18449 10.7. | Mare I. NW. | 3069. 3 | $3.487037$ |
| $\begin{array}{r} \text { Brush }{ }^{*} \\ \mathbf{1 8 8} 7 \end{array}$ | 380732.62 | 1005.8 | 2813500 | 101 3658 | Vallejo Hill ${ }^{2}$ | 4777.3 | 3.67918 |
|  | 1221904.00 | 97.4 | 3131446 | 1321638 | Mare I. NW. | 5976.0 | 3.77641 |
| Slaughterhouse Point 2* 1887 | 380917.94 | 553.2 | 3481339 | 1681418 | Mare I. NW. | 7422.0 | 3.87052 |
|  | $\times 121704.60$ | 112.0 | 415110 | 2214957 | Brush | 4358. 5 | 3.63934 |
| $\begin{gathered} \text { Red Marsh * } \\ 188_{7} \end{gathered}$ | 380834.80 | 1073.0 | 2510218 | 710356 | Slaughterhouse Pt. 2 | 4095. 7 | 3.61233 |
|  | $1221943 \cdot 70$ | 1064.2 | 3174442 | 1374659 | Mare I. NW. | 8017.5 | 3.90404 |
| Black Marsh *$1887$ | 380909.41 | 290.2 | 2673415 | 873653 | Slaughterhouse Pt. 2 | 6259.9 | 3.79657 |
|  | 122-21 21.48 | 523.0 | 3115952 | 1320309 | Mare I. NW. | 10460.7 | 4.01956 |
| Marsh Pole* 1887 | 380720.01 | 617.0 | 281 0917 | 1011030 | Vallejo Hill 2 | 2958. 5 | 3.47005 |
|  | 1321750.75 | 1236.2 | 3235850 | 1435957 | Mare I. NW. | 4487. 5 | 3.65200 |
| Grove Point 2 1887-99 | 38 $\infty$ <br> 182 48.802 | 1504.7 | $\begin{array}{llll}155 & 26 & 21.2 \\ 179 & 35 & 10.6\end{array}$ | $\begin{array}{lllll}335 & 25 & 38.7\end{array}$ | Long Point 2 |  |  |
|  | 1232918.263 | 445. 5 | 179 <br> 246 <br> 246 <br> 26 <br> 10 | $\begin{array}{r}3592508.0 \\ 6634 \\ \hline 8.8\end{array}$ | Petaluma Creek Mare I. NW. | 10010.6 21155.6 | 4.000458 4.325426 |
|  |  |  |  | 663448.8 905329.9 | Pare 1. NW. ${ }^{\text {Point Pinole }}$ | 21155.6 10740.9 | 4.325426 4.031039 |
|  |  |  | 2920417.9 | 1120518.1 | Island Hydrographic | 2571.7 | 3.480223 |
| $\underset{1896}{\text { Point Pinole } 2} \odot$ | $\begin{array}{r} 380043.609 \\ 12221 \quad 58.069 \end{array}$ | $\begin{aligned} & 1344.6 \\ & 1426.5 \end{aligned}$ | $46 \quad 23 \quad 36.3$ | 2262119.6 | Point San Pablo Hydrographic | 7487. 1 | 3.874313 |
|  |  |  | 681945.1 | 2481659.5 | E. Sister | 7066.0 | 3.849174 |
|  |  |  | 843056.1 | 2642725.4 | Island Hydrographic | 8394.5 | $3.923994$ |
|  |  |  | 905331.2 | 2704900.1 | Grove Point a | 10739.4 | $4.030978$ |
|  |  |  | 1331349.1 | 3130915.2 | Petaluma Creek. | 14858.9 | 4.171987 |
| Observatory 1877 | .380602 .414 | 74.4 | 3011551.2 | 1218647.7 | Vallejo ( I ) | 2611.1 |  |
|  | 1221615.723 | 383.0 | 3304300.0 | 15043 37.2 | Mare I. SE. | 3004.2 | $3.477726$ |
|  |  |  | 3452155.2 | 165 2203.4 | Mare I. NW. | 1279. 1 | 3.106896 |
| $\begin{gathered} \text { Vallejo (a) '96 } \\ 1896 \end{gathered}$ |  | 524.0 |  |  | Lone Tree Point |  |  |
|  | 1221402.259 | 55.1 | 10927 <br> 134424.2 <br> $17 \cdot 3$ | $\begin{array}{lllll}289 & 26 & 39.1 \\ 314 & 41 & 29.1\end{array}$ | Mare I. SE. <br> Navy-yard, tall chim- | 1891.5 4341.6 | $\begin{aligned} & 3.276801 \\ & 3.637651 \end{aligned}$ |
|  |  |  | $1344247 \cdot 3$ | 3144129.1 | Navy-yard, tall chimney | 4341.6 | 3.637651 |
|  |  |  | 13722 14.2 | 3178047.4 | Navy-yard, foundry chimney | 5058.8 | 3.704051 |
|  |  |  | 1521117.4 | 3321028.1 | PresbyterianChurch, spire | 4170.3 | 3.620167 |
|  |  |  | 2773523.9 | 973548.2 | Vallejo (3) | 972.7 | 2.987986 |
| $\underset{1896}{\text { Wilson }^{2}}$ | $\begin{array}{rrr} 38 & \infty & 43.960 \\ 122 & 18 & 55.857 \end{array}$ | $\begin{aligned} & 1355.5 \\ & 1362.6 \end{aligned}$ | 1995433.6 | 195607.9 | Navy-yard, foundry chimney | 10944.6 | 4:039198 |
|  |  |  | 2061249.1 | 261436.0 | Mare I. NW. . | 9565.8 | 3.980723 |
|  |  |  | 2313404.8 | 513730.2 | Vallejo (3) | 10366.7 | 4.015639 |
|  |  |  | 232 <br> 218 <br> 216 <br> 1832.3 <br> 45.4 | 52 56 36 009.0 | Lone Tree Point | $4835 \cdot 3$ | 3.684424 |
|  |  |  | 2164345.4 | 3646 Or. 2 | Mate I. SE. | 8983.4 | 3.953439 |
| $\underset{I 896}{\text { Point Pinole } 2 \text { ' } 66}$ | 380043.612 1323158.145 | 1344.8 | $\begin{array}{lllll}225 & 14 & 12.0 \\ 250 & 14 & 47.5\end{array}$ |  |  |  |  |
|  | 1222158.145 | 1418.4 | 250 <br> 260 <br> 269 | 70 <br> 70 <br> 89 <br> 89 <br> 52 <br> 52 | Lone Tree Point Wilson 2 . | $\begin{array}{r} 8788.6 \\ 4446.8 \end{array}$ | $\begin{aligned} & 3.943922 \\ & 3.648052 \end{aligned}$ |

* No check on this position.

San Pablo Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lone Tree Point 2 1896 | - , " | $m$ | - ' " | - ' " |  | meters |  |
|  | 380219.897 | 613.5 | 520726.8 | 2320550.6 | Wilson ${ }^{\text {a }}$ | 4816.2 | 3.682701 |
|  | 1221620.018 | 488. 2 | 1842102.9 | 42113.7 | Mare I. NW. | 5639.4 | 3.751231 |
|  |  |  | 2310809.1 | 510958.4 | Vallejo (3) | 5550.8 | 3. 744358 |
| Ferris 1887 | $380445 \cdot 994$ | 1418.2 | 2194259.7 | 394356.4 | Petaluma Creck | 3506. 5 | 3. 544875 |
|  | $122 \quad 30 \quad 54.389$ | 1325.6 | 3494154.5 | $16945 \mathrm{3I} .2$ | Long Point 2 | 3689.3 | 3. 566945 |
| Novato Bend 1887 | 380513.454 | 414.8 | 2410447.2 | 610612.0 | Petaluma Creek | 3827.6 | 3. 58293 I |
|  | 1223139.935 | 973.2 | 3071948.8 | 1272017.0 | Ferris. | 1396.0 | 3.144890 |
|  |  |  | 3382449.6 | 1582534.4 | Long Point 2 | 4813.8 | 3.682488 |
| $\begin{array}{r} \text { Pacheco } \\ 1887 \end{array}$ | 380405.076 | 156. 5 | 1740633.9 | 354 \%6 28.4 | Novato Bend | 2119.4 | 3.326213 |
|  | 1223131.009 | 755.9 | 2151636.3 | 351658.9 | Ferris | 1545.4 | 3.189042 |
| $\begin{aligned} & \text { Ferris chimney * } \\ & 1887 \end{aligned}$ | 380447.06 | 1451.1 | 2715544 | 915609 | Ferris | 975. 7 | 2. 989320 |
|  | 1223134.40 | 838.4 | 3562047 | 1762049 | Pacheco | 1297. 1 | 3. 1112978 |
| North Grass 1887 | 380423.478 | 723.9 | 351541.2 | $\begin{array}{llllll}215 & 14 & 48.7\end{array}$ | Long Point ${ }^{2}$ | 3594.8 | 3. 555674 |
|  | . 1222902.190 | 53.4 |  | $\begin{array}{r}351 \\ 34 \\ 34 \\ 46 \\ \hline 14.7\end{array}$ | Petaluma Creek | 3426.9 8175.9 | 3. 534896 3.912533 |
|  |  |  | 2044447.9 | 244614.7 | Sears Point | 8175.9 | 3.912533 |
| South Grass 1887 | 380334.467 | 1062.8 | 464443.8 | 2264405.5 | Long Point 2 | 2078. 5 | 3. 317754 |
|  | 1222925.217 | 614.8 | 1804742.5 | $\bigcirc 4744.2$ | Petaluma Creek | 4902.7 | 3. 690439 |
|  |  |  | 204 or 26.7 | 240307.7 | Sears Point | 10365.1 | 4.015573 |
| Novato Pole* 1887 | $\begin{array}{llll} \\ 88 & 04 & 39.89\end{array}$ | 1230.0 | 2114715 | 314800 | Petaluma Creek | 3394. 5 | 3. 53078 |
|  | 1223035.82 | 873.0 | 3563253 | $176325^{8}$ | Long Point 3 | 3447.9 | 3. 53755 |
| Sonoma Landing, flagstaff$1887$ | 380639.524 | 1218.7 | 603316.4 | 2403240.4 | Petaluma Creek | 1634. 1 | 3. 213275 |
|  | 1228834.019 | 585. I | 1692509.4 | 3492052.8 | Swift 2 | 3539.7 | 3. 548970 |
|  |  |  | 2173937.4 | 374040.6 | Sears Point | 4080.2 | 3.610681 |
| $\underset{1887}{\text { Austin's windmill * }}$ | $380745 \cdot 13$ | 1391.6 | 2443034 | 643138 | Sears Point | 2805.0 | 3.44794 |
|  | $\begin{array}{ll}122 & 28 \\ 25.62\end{array}$ | 624.0 | 26 O5 24 | $206044^{8}$ | Petaluma Creek | 3146.9 | 3. 49788 |
| Story's windmill$1887-99$ | 3807 39.573 | 1220. 2 | 2021451 | 221506 | Sears Point | 1489. I | 3.17293 |
|  | 12227 04.801 | 116.9 | 2604548 | 884707 | Tolay Creek ${ }^{2}$ | 3118.2 | $3.49390$ |
|  |  |  | $5^{1} 3810$ | 2313645 | Petaluma Creek | 4276.4 | 3.63108 |
| Old barn, SW. gable* 1887 | 3808 52.21 | 1609.9 | 2851414 | 1051534 | Sears Point | 3275.1 | 3.51522 |
|  | 1222851.41 | 1251.8 | 84637 | 1884617 | Petaluma Creek | 4952.4 | 3.69482 |
| $\begin{aligned} & \text { Tubb's windmill * } \\ & 1887 \end{aligned}$ | 380938.96 | 1201.3 |  | 1720231 | Tolay Creek 2 | 3212.0 | 3. 50077 |
|  | 1222516.70 | 406.5 | 41563 | 2215531 | Sears Point | 3095.2 | 3.49069 |
| Sonoma Pole 1887 | 380908.879 | 273.8 | 371030.8 | 2170947.4 | Tolay Creek 2 | 2828. 1 | 3.451497 |
|  | 1223348.260 | 1175.0 | $56 \quad 25 \quad 27.3$ | 2362201.0 | Petaluma Creek | 9772.0 | 3. 989985 |
|  |  |  | 755821.6 | 2515634.5 | Sears Point | $4440 \cdot 3$ | 3.647417 |
| Midshipman Point * 1887 | 380657.44 | 1771. 1 | 681336 | 2481210 | Petaluma Creek | 3653. 1 | 3. 562660 |
|  | 1223703.18 | 77.5 | 1910456 | 110509 | Sears Point | 2728.2 | 3.435880 |
| $\underset{1887}{\text { Sonoma Creek } 2}$ | $\begin{array}{llll}38 & 08 & 34.817\end{array}$ | 1073.6 | 3234535.9 | 1434910.2 | Lone Tree Point | 14329.8 | 4. 156241 |
|  | 1222206.340 | 154.4 | 3591236.7 | 1791241.8 | Point Pinole 2 | 14530.0 | 4. 162266 |
|  |  |  | 674345.3 | 24739 17.1 | Petaluma Creek | 11481.3 | 4. 059992 |
|  |  |  | 871453.1 | 2671204.2 | Sears Point | 6712.2 | 3.826862 |
| House in tules, S. gable 1896 | 3808 19. 182 | 591.5 | 3074001.3 | 1274410.0 | Vallejo (3) |  | 4.094133 |
|  | 1222006.049 | 147. 2 | 3332622.3 | 1532842.3 | Lone Tree Point | 12385.2 | 4.092904 |
|  |  |  |  | $\begin{array}{llll}173 & 03 & 22.7 \\ 190 & 59 & 52.3\end{array}$ | Wilson ${ }^{2}$ P ${ }^{\text {Paint Pinole a }}$ 'o6 | 14139.3 14309.4 | 4. 150428 |
|  |  |  | 110101.2 | 1905952.3 | Point Pinole 296 | 14309.4 | 4.155621 |
| Chinahouse, E. gable 1899 | $\begin{array}{llll}38 & 03 & 26.896\end{array}$ | 829.3 | $2975233 \cdot 7$ | 117 75633.8 | Point Pinole 3 | 10755.6 | 4.031634 |
|  | 1328827.748 | 676. 5 | 3385703.7 | ${ }^{1} 585818.0$ | F. Sister | 8192.5 | 3.913418 |
|  |  |  | 34851 10. 7 | 1685139.7 | Island Hydrographic | 5952.8 | 3. 774756 |
|  |  |  | 1411151 | 1941044.0 | Grove Point 2 | 5027.6 | 3. 701360 |
|  |  |  | 674708.4 165 | 2474554.7 | Lonk Point 2 | 31488 | 3. 498145 |
|  |  |  | 1652732.1 | 3452658.2 | Petaluma Creek | 5305.8 | 3. 724747 |
| $\begin{gathered} \operatorname{San}(1896) \\ 1896 \end{gathered}$ | 380322.018 | 678.9 | 2490642 | 691048 | Mare I. NW, | 10415.0 | 4. 01766 |
|  | 1223241.769 | 1018. 2 | 2813440 | 1013836 | Lone Tree P'oint | 9529.3 | 3.97906 |
|  |  |  | 3112828 | 1313046 | Wilson 2 | 7355.3 | 3. 86660 |
| South windmill 1899 | 3803088890 | 890.8 |  |  |  | 6515 | 3.813670 |
|  | 1222933.297 | 811.8 | 462614.0 | 2262540.7 | Long Point 2 | 1817.2 | 3. 259413 |
|  |  |  | 1825917.5 | 25924.2 | Petaluma Creek | 5081. 1 | 3. 705958 |

* No check on this position.

San Pablo Bay-Continued.

| Station | -Latitude and longitude | Seconds in meters | Azimuth | $\underset{\text { Back }}{\text { azimuth }}$ | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{1896}{\text { Middie windmill }}$ | $\begin{array}{cc} 38 & 03 \\ 122 & 29 \\ 50.545 \\ 10.005 \end{array}$ | $\begin{gathered} m \\ 1589.4 \\ 463.3 \end{gathered}$ | - ' $\quad$ ' | - " ${ }^{\prime}$ |  | meters |  |
|  |  |  | $\begin{array}{rrrr}359 & 48 & 57.4 \\ 40 & 29 & 09.0\end{array}$ |  | Grove Point 2 Long Point 3 | 5634.3 564.9 | 3. 750842 <br> 3. 400073 |
|  |  |  | 1785432.8 | 3585430.5 | Petalurna Creck | 25876.9 4376 | 3.4 <br> 3.645126 |
|  |  |  | 2981655.6 | 1182127.1 | Point Pinole ${ }^{\text {a }}$ ( () | \$2214.5 | 4.086876 |
|  |  |  | 3332910.1 | 1533055.8 | E. Sister | 9393. 3 | 3. 972817 |
|  |  |  | 3340044.1 | 1540258.8 | Point San Pablo Hydrographic | 12191.1 | 4.086043 |
|  |  |  | 340 cos8.0 | 160 01 28.6 | Island Hydrographic | 7024.0 | 3. 846583 |
| McNears Landing wharihouse, front gable 8896 | $\begin{array}{r} 375929.255 \\ 1220686.450 \end{array}$ | $\begin{array}{r} 902.0 \\ 1377.4 \end{array}$ | 14404478 |  |  | 1834.9 |  |
|  |  |  | 2940458.8 | 1140516.8 | E. Sister | 7882.7 | $\text { 2. } 8936 \times 8$ |
|  |  |  | 327 93 02.6 | 1470349.5 | Point San Pablo Hy- drographic | 3423.7 | 3. 534490 |
| $\underset{1899}{\text { North windmill }}$ | $\begin{array}{r} 38 \quad 0422.791 \\ 522 \quad 2902.890 \end{array}$ | $\begin{array}{r} 702.7 \\ 70.4 \end{array}$ | 3375821.3 | 1575657.5 | E. Sister | 10110.2 | 4. ${ }^{\text {Pa4738 }}$ |
|  |  |  | 3450782.0 | 1650843.0 | Istand Hydrographic | 7826.1 | 3. 893552 |
|  |  |  | 3514402.1 17203484 | $\begin{array}{lllllll}215 & 13 & 10.1 \\ 352 & 03 & 32.1\end{array}$ | Long Point ${ }^{2}$ | 3567.6 3445.4 | 3. $\begin{aligned} & \text { 35 } 532380 \\ & \text { 3. } 537238\end{aligned}$ |
| $\underset{8899}{\text { Novato windrally }}$ |  | 841.0 | 2021029 |  | Pctaluma Creek |  |  |
|  |  | 1 $\times 27.0$ | 342 1214 | $\begin{array}{ll}22 & 10 \\ 162 \\ 163 \\ 13 & 34\end{array}$ | Island Hydrographic | 1537.9 10032.8 | 3. 18692 4.00139 |
|  |  |  | 11 115 | 1913200 | Long Point 2 | 5003.6 | 3.69928 |
| $\underset{8899}{C h}$ | $\begin{array}{lll} 38 & 00 & 16.548 \\ 122 & 27 & 53.114 \end{array}$ | $\begin{array}{r} 510.2 \\ \mathrm{~s} 29 \mathrm{~s} .8 \end{array}$ | $\begin{array}{llllllllllll}115 & 35 & 25 \\ 141 & 12 & 58\end{array}$ | $\begin{array}{llll}295 & 34 & 32 \\ 312 & 11 & 23\end{array}$ | Grove 2 Long Point | 2303.0 6003.1 |  |
|  |  |  | $\begin{array}{lllll}141 & 12 & 58 \\ 168 \\ 48 & 55\end{array}$ | 311 <br> 348 <br> 18 <br> 8 | Long Point 2 | 6002.1 11217.9 | 3. 77830 4. 04991 |
|  |  |  | 264 28 O6 | 348481 843145 | Point Pinole 3 | 11217.9 8703.2 | 3. 3.93968 |
|  |  |  | 3644920 | 844987 | Island Hydrographic | 309.2 | 2. 48748 |
| Pinole Landing, outside end 1896 |  | $\begin{array}{r} 1676.7 \\ 154.5 \end{array}$ | 863936 | 28663713 | Point Pinole 2 'ob | 5664.6 | 3. 75317 |
|  |  |  | 200 <br> 304 <br> 27 | 200544 | Mare I. NW. | 8794.5 | 3.94421 |
|  |  |  | 2243047 238 28 | 44 48 48 31 |  | 3698.0 9234.2 | 3. 56797 3.96540 |
| Mill <br> 1877 | $\begin{array}{rrr} 38 & 04 & 50.906 \\ 122 & 14 & 42.514 \end{array}$ | $\begin{aligned} & 1569.5 \\ & 1036.1 \end{aligned}$ | 623653.3 | 2423633.0 | Mare I. SE. | 903.6 | 2. 955988 |
|  |  |  | 1162423.0 | 29623333.7 | Mare I. NW. | 2175.2 | 3. 337499 |
|  |  |  | 1344898.5 | 3140821.0 | Observatory | 3165.4 | 3. 500434 |
|  |  |  | 1772004 -4 | 3572003.4 | Vallejo ( 1 ) | 850.2 | 2.929542 |
| Stackyard wharf, outer W. corner 2896 | $\begin{array}{ccc} 38 & 02 & 29.468 \\ 122 & 16 & 20.358 \end{array}$ | $\begin{aligned} & 908.6 \\ & 496.5 \end{aligned}$ | 492337 | 229 21 01 | Wilson 2 | 4906.3 | 3.69865 |
|  |  |  | 682506 | 2483138 | Point Pinole a '96 | 8861.4 | 3.94750 |
|  |  |  |  | 44058 |  | 5345.8 | 3. 72801 |
|  |  |  | 233 3 3 $3^{38} 228$ | 53 104012 | Vallejo (3) | 5377.2 | 3. 73056 |
|  |  |  | 3532431 | 1732432 | Lone Tree Point | 299.4 | 2. 74624 |
| Oil wharf, outer W.corner 1896 | $\begin{array}{r} 38 \quad 0300.895 \\ 1221535.888 \end{array}$ | $\begin{aligned} & 305.1 \\ & 875.0 \end{aligned}$ | 341316 | 2141249 | Lone Tree Point | 1877.2 | 3. 27120 |
|  |  |  |  |  | Point Pinole 3 'po |  |  |
|  |  |  | 1902757 | 102810 | Mare I. SE. | 2744.4 | 3. 43844 |
|  |  |  | 2390732 | 590854 | Vall | 3782. | 3. 57777 |
| Ojiworks, E. chimney 1896 | $\begin{array}{r} 38 \quad 0300.662 \\ 122 \times 534.340 \end{array}$ | $\begin{array}{r} 30.4 \\ 834.9 \end{array}$ | 405310 4024 49 | $\begin{array}{lll}220 & 53 \\ 220 & 32 \\ 205\end{array}$ | Lone Tree Point Wilson a |  | 3. 2211602 3.811325 4 |
|  |  |  | 492454 6544 64 | 2292250 2454037 | Wilson a ${ }^{\text {P }}$ Point Pinole a 6 | 6476.3 10272.8 | 3. 8111325 4.011659 |
| Oilworks, W. chimney 1896 | $\begin{array}{ccc} 38 & 03 & 00 . \\ 122 & 15 & 56 \\ 15 & 34.460 \end{array}$ | $\begin{array}{r} 17.5 \\ 840.5 \end{array}$ | $404^{8} 41$ 492412 |  | Lone Tree Point Wllson 2 | $\begin{array}{r} 1660.0 \\ 6337.7 \end{array}$ |  |
|  |  |  | 49 <br> 64 <br> 6544 <br> 88 | 2292808 <br> 34540 <br> 86 | Point Pinole a 'o6 | $\begin{array}{r}16337.7 \\ \text { 10266. } \\ \\ \hline\end{array}$ | 3.80193 4.01140 |
|  |  |  | 1884934 | -84946 | Mare I. SE. | 3022.0 | 3.48030 |
| Calliornia Powderworks, large stack 1896 | 12217009.534 | $\begin{aligned} & 324.4 \\ & 232.6 \end{aligned}$ |  |  |  |  |  |
|  |  |  |  | 263 215 115454.8 20 | Point Pinole 2 '06 Mare I NW | 7098.9 |  |
|  |  |  | 191 53 <br> 209 27.4 <br> 684  | 11 <br> 29 <br> 29 <br> 29 <br> 1 <br> 184.8 | Mare I. NW. <br> Lone Tree Point 2 | 7932.4 2456.2 | 3. 899403 <br> 3. 390266 |
| Cationnia Powderworks, outside lower stack 1896 | $\begin{array}{llll} 38 & 01 & 14.183 \\ 122 & 17 & 17.957 \end{array}$ | $\begin{aligned} & 437.3 \\ & 438.0 \end{aligned}$ | 684838 |  | Wilson 2 |  |  |
|  |  |  | 881021 | 2620738 | Point Pinole ${ }^{\text {a }}$ '06 | 6899.2 | 3. 83888 |
|  |  |  | 2145320 | 345356 | Lone Tree Point 2 | 2470.1 | 3.39372 |
| $\underset{1896}{\substack{\text { Refugio } \\ 18 \text { whf end }}}$ | $\begin{array}{r} 38>123.200 \\ 1221729.590 \end{array}$ | $\begin{aligned} & 715.4 \\ & 721.8 \end{aligned}$ | 60 $06{ }^{\circ} 50.1$ |  |  |  |  |
|  |  |  |  | 1604 58.0 | Mare I. NW. | 7671.1 | $\begin{aligned} & 3.3051890 \\ & \text { 3. } 88480 \end{aligned}$ |
|  |  |  | 2240823.6 <br> $228 \quad 5942.7$ |  |  | 2436.1 7974 | 3. 386695 <br> 3. 901696 |
| Lone Tree Point Plasterworks, chimney 1896 | $\begin{array}{r} 380217.591 \\ 1221619.972 \end{array}$ | $\begin{aligned} & 542.4 \\ & 487.0 \end{aligned}$ |  |  | Wilson 2 |  |  |
|  |  |  | 704022.1 | 2503653.8 | Point Pinole ${ }^{\text {' }} \mathbf{9} 6$ | 8742.2 | 3.941623 |
|  |  |  | 1841708.0 | + 417188 | Mare I. NW. | 5710.1 | 3. 756647 |
|  |  |  | 19957 27.7 | 195738.4 | Lone Tree Point | 73.0 | 1. 8633395 |
|  |  |  | 2303342.7 | 503532.0 | Vallejo (3) | 5594.8 | 3.747788 |

$6348 \mathrm{I}^{\circ}-\mathrm{II}-\mathrm{I} 6$

San Pablo Bay-Continued.


* No check on this position.

San Pablo Bay-Continued

| Station | Latitude and longitude | Sec onds in meters | Azimuth | Back azimuth | Tostation | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Petaluma Creck-Cont'd. <br> San Antonio $1857$ | - | $m$ |  | - , " |  | meters |  |
|  | $\begin{array}{cccc}38 & 09 & 55.79 \\ 122 & 34 & 06.41\end{array}$ | 1720.2 156.0 | $\begin{array}{lll}259 & 16 & 24 \\ 318 & 29 & 57\end{array}$ | $\begin{array}{rrrr}79 & 18 & 03 \\ 138 & 31 & 02\end{array}$ | Sears Novato | 3979.6 3846.7 | 3. 59984 <br> 3. 58509 |
| Lakeville * 1857 | 381214.62 | 450.8 | 328 co 54 | 148 or 50 | Sears | 4174.4 | 3.62059 |
|  | 1223256.62 | 1377.6 | 213857 | 2013814 | San Antonio | 4605.4 | 3.60327 |
| $\underset{1857}{\text { Haydon }}$ | 381226.02 | 802.3 | 2750914 | 951053 | Lakeville | 3901.8 | 3. 59126 |
|  | 1233536.33 | 883.9 | 3344218 | 1544314 | Sau Antonio | 5123: 5 | 3. 70953 |
| $\begin{gathered} \text { Bodwell * } \\ 1857 \end{gathered}$ | $\begin{array}{llllll}38 & 13 & 55.18\end{array}$ | 1701.4 | 3252440 | 1452535 | Lakeville | 3765.9 | 3. 57587 |
|  | 1223424.48 | 595.5 | 322707 | 2122633 | Haydon | 3257 7 | 3. 51291 |
| $\begin{gathered} \text { Italian * } \\ 1857 \end{gathered}$ | $\begin{array}{lllll}88 & 13 & 36.81\end{array}$ | 1135.0 | 2605005 | 805134 | Bodwell | 3561.9 | 3. 55168 |
|  | 1223649.06 | 1193.4 | 3205748 | 1405833 | Haydon | 2809.6 | 3.44855 |
| $\begin{aligned} & \text { Flat }{ }^{*} 8_{57} \end{aligned}$ | 381455.70 | 1717.5 | 3030654 | 1230806 | Bodwell | 3414.6 | 3. 53334 |
|  | 1223622,07 | 536.8 | 346 15 15 $06 \begin{array}{ll}13 \\ 13\end{array}$ | $\begin{array}{ll}166 & 27 \\ 195 & 01 \\ 05 & 56\end{array}$ | Haydon Italian | 4747.3 2519.6 | 3.67645 3.40133 |
| ```Petaluma Baptist Church, spire* 1857``` | 381443.00 | 400.9 | 2472422 | 672543 | Flat | 3429.0 | 3. 53517 |
|  | $\begin{array}{llll}122 & 38 & 32.27\end{array}$ | 784.8 | 2935727 | 1135831 | Italian | 2746.9 | 3.43885 |
| Swift 2$1887-99$ | $\begin{array}{r}38 \\ 3 \\ 122 \\ \hline 88 \\ \hline 8\end{array}$ | 997.6 |  | $\begin{array}{rrrr}94 & 32 & 09.4 \\ 100 & 10 & 15.3\end{array}$ | Sears Point | 3156.7 | $\text { 3. } 499240$ |
|  | 1222850.877 | 1239.0 | 101034.8 | 1901015.3 | Petaluma Creek | 4350.6 | $3.638547$ |
| $\begin{array}{r} \text { Dyke } 2 \\ 1899 \end{array}$ | $\begin{array}{llll}38 & 07 & 52.897\end{array}$ | 1631.0 | 2494146.0 | $\begin{array}{llll}69 & 43 & 09.4\end{array}$ | Swift 2 | 3507.6 | 3. 545015 |
|  | 1223105.970 | 145.4 | 261 320 320 | $\begin{array}{rrrr}81 & 28 & 32.1 \\ 140 & 33 & 46.8\end{array}$ | Sears Point | 6509.4 | 3.813543 |
|  |  |  | $3203242 \cdot 9$ | 1403346.8 | Petaluma Creek | 3969.9 | 3. 598785 |
| Green Point 1887 | 380654.810 | 1689.9 | 2163921.9 | 364018.6 | Swift 2 | 3749.2 | 3. 573942 |
|  | 1233022.795 | 555.3 | 2425847.6 | 6254 94. 1 | Sears Point | 6051.5 | 3. 781864 |
| $\begin{aligned} & \text { Brown } \\ & 1899 \end{aligned}$ | 381019.445 | 599.6 | 3110702.1 | 13110838.0 | Swift ? | 5019.9 | 3. 700093 |
|  | 1233126.179 | 637.3 | 3381904.1 | 158 <br> 15 <br> 173 <br> 17 | Pctaluma Creek | 8161.0 | 3.911743 |
|  |  |  | 3534700.7 | 1734713.2 | Dyke a | 4545. 1 | 3. 657547 |
| $\mathrm{San}_{18}$ | 380930.686 | 946.2 | 2293608.9 | 492653.5 | Brown | 2312.1 | 3.364009 |
|  | $1223238.33^{8}$ | 933.4 | ${ }^{283} 14407.7$ | 1031748.0 | Sears Point | 8923.1 | 3.950516 |
|  |  |  | 2875818.0 | 1080038.5 | Swift ${ }^{2}$ | 5823.1 | 3. 765153 |
|  |  |  | 3215145.4 | 1415346.4 | Petaluma Creek | 7729.3 | 3.888141 |
|  |  |  | 3231611.0 | 1431708.1 | Dyke a | 3761.6 | 3. 575370 |
| Slaten's windmill 1887-99 |  | 1278.2 | $\begin{array}{llll}172 & 04 & 02.3\end{array}$ | $\begin{array}{llll}352 & 03 & 51.6\end{array}$ | Brown |  |  |
|  | 1223108.883 | 216.3 | 2743748.9 | 944033.9 | Sears Point | 6519.0 | $3.814847$ |
|  |  |  | 27445415 | $\begin{array}{rrrr}94 & 47 & 06.4 \\ 150 & 33 & 59.1\end{array}$ | Swift 2 Petaluma Creek | 3372.3 5248.1 | 3. 527911 |
|  |  |  | 3302353.4 | 1502359.1 | Petaluma Creek | 5248. 1 | 3. 720005 |
| White House, S. gable* 1887 | 380730.09 | 927.8 | $\begin{array}{llll}248 & 08 & 28\end{array}$ | 681014 | Sears Point | 4490.0 | $3.65225$ |
|  | 1222932.77 | 798.2 | 3535433 | 1735439 | Petaluma Creek | 2375.9 | $3 \cdot 37582$ |
| $\begin{gathered} \text { Red Hyd } \\ 1899 \end{gathered}$ | 380826.461 | 815.9 | 163850.9 | 1963819.8 | Petaluma Creek | 4279.8 | 3.631426 |
|  | 1323832.102 | 781. 7 | 1081754.9 | 2881522.8 | San | 6314.1 | 3.800313 |
|  |  |  | 1114015.9 | 2914000.3 | Swift a | 492.0 | 2.691937 |
|  |  |  | 12926 O1. 3 | 3092413.8 | Brown | 5486.2 | $\text { 3. } 739268$ |
|  |  |  | 2712532.7 | 912640.9 | Sears Point | 2690.6 | 3.429846 |
| Boathouse, E. gable 1899 |  | 863.4 | 2355643.5 |  | Brown |  |  |
|  | 1223302.611 | 63.6 | $\begin{array}{llll}262 & 01 & 12.7 \\ 315 & 54 \\ \\ 3\end{array}$ | $\begin{array}{r}82 \\ 13501527.7 \\ \hline 135\end{array}$ | San <br> Dyke a | 596.7 | $\text { 2. } 77578 \mathrm{z}$ |
|  |  |  | 315 318 318 10 | $\begin{array}{llll}135 & 55 & 22.3 \\ 138 & 13 & 10.3\end{array}$ | Dyke a Petaluma Creek | 4082.3 8045.7 | 3.610904 3.905564 |
| Barn, W. gable 1899 | 380749.021 |  | 942958.1 | 2742919.6 | Dyke 2 | 1525.3 | 3.183359 |
|  | 1223003.534 | 88.1 | $\begin{array}{r}15633 \\ \hline 5309.9\end{array}$ | 3363218.9 | Brown | 5055.7 | 3. 703779 |
|  |  |  | 2325623.7 | 525707.6 | Swift 2 | 2217.2 | 3. 345801 |
|  |  |  | 2573058.9 | $\begin{array}{r}77 \\ \hline\end{array}$ | Sears Point | 5035.4 | 3. 702032 |
|  |  |  | 3411324.6 | 1611350.0 | Petaluma Creek | 3111.7 | 3. 493000 |
| Barn, SE. gable 1886 |  |  |  | 1951646.9 | Petaluma Creek | 3407.5 | 3. 532438 |
|  | $1222845 \cdot 553$ | 1109.4 | 861832.6 | 2661705.9 | Dyke a | 3426.9 | 3. 534907 |
|  |  |  | 1374238.6 | 3174049.4 | Brown | 5810.3 | 3. 764202 |
|  |  |  | I72 $3442 \mathrm{42.1}$ | 3523438.8 | Swift 2 | 1003.6 | $3.001547$ |
|  |  |  | 2560602.1 | 760718.6 | Sears Point | 3108.3 | $3 \cdot 492528$ |

* No check on this position.

San Pablo Bay-Continued.

| Station | $\begin{aligned} & \text { Latitude } \\ & \text { and } \\ & \text { longitude } \end{aligned}$ | $\begin{array}{\|c\|} \text { Sec- } \\ \text { onds in } \\ \text { meters } \end{array}$ | Azimuth | $\underset{\text { azimuth }}{\text { Back }}$ | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Petaluma Creek-Cont'd. San Antonio 2 1899 | $\begin{array}{ccc} \bullet & \prime \prime \\ 38 & \prime \prime \\ 122 & 0960.093 \\ 124 & 30.157 \end{array}$ | $\begin{gathered} m \\ 1729.6 \\ 149.9 \end{gathered}$ | - '" | - ' ' |  | mesters |  |
|  |  |  | $\begin{array}{llll}259 & 30 & 40.1 \\ 284 & 37 & 54.2\end{array}$ | 793219.0 1044848.7 | $\xrightarrow{\text { Brown }}$ Sears Point | 3960.3 1186.9 | 3. 597727 4.048711 |
|  |  |  |  | 10441488.7 1083703.0 | Swift ${ }^{\text {Salars }}$ | 11868.9 8098 | 4.04871 3.908424 |
|  |  |  | 2900656 | 1100750.8 | San | 2276.9 | 3. 357353 |
|  |  |  | 3105208.3 | 1305359.6 | Dyke ${ }^{\text {Petalum }}$ | 5803.2 973.8 | 3. 3683670 |
|  |  |  | 3144705.8 | 13450 or. 0 | Petaluma Creek | 9739.8 | 3.988550 |
| Clubbouse, flagstaff 1899 | $\begin{array}{cc} 38 & 09 \\ 122 & 23.380 \\ 123 & 12.907 \end{array}$ | $\begin{aligned} & 720.9 \\ & 314 \cdot 2 \end{aligned}$ | 2550048.9 | 75 or 10.3 | San | 871.3 | 2.940146 |
|  |  |  | 23621185.5 | $\begin{array}{rrrr}56 & 22 & 21.5 \\ 100 & 51 & 45.6\end{array}$ | Brown | 3120.7 0699.6 | 3.494253 3.086753 3 |
|  |  |  | 2804743.9 |  | Sears Point | 9699.6 | 3. 986753 |
|  |  |  | 3834948.2 | 1035230.1 | Swift a | 6571.3 | 3. 817651 |
|  |  |  | $\begin{array}{llll}312 & 03 & 25.5 \\ 116 & 11 & 21.1\end{array}$ | 132 04 <br> 136 43 <br> 13  | Dyke 2 Petaluma Creck | 4163.8 8112.6 | 3.619491 3.909100 |
|  |  |  | 316 I1 21.1 | 1361343.5 |  |  |  |
| Warehouse, W. gable 1899 | $\begin{array}{r} 380831.388 \\ 122 \quad 3109.367 \end{array}$ | $\begin{gathered} 967.8 \\ 228.8 \end{gathered}$ | 3560044.7 | 1760046 | Dyke 2 | 1189.6 | 3. 075414 |
|  |  |  | 1301015 | 3100920.4 | San | ${ }^{2834.7}$ | 3.452510 |
|  |  |  | 1725951.7 36989 | 3525941.3 | Brown | 3356.7 3372.6 | 3. 525917 |
|  |  |  |  |  | Swift ${ }^{\text {S }}$ | 3372.6 6523.1 | 3. 527959 3.814453 3 |
|  |  |  | 271 324 380 30 | $\begin{array}{r}918 \\ \hline 15150.0\end{array}$ | Petaluma Creek | 4986.9 | ${ }_{3.697826}$ |
| Barn, NW. gable 1899 | $\begin{array}{r} 38 \quad 0806.297 \\ 122 \quad 3004.074 \end{array}$ | $\begin{array}{r} 194.2 \\ 99.2 \end{array}$ | 744041.5 | 2544003.3 | Dyke 2 | 1563.0 | 3. 193970 |
|  |  |  | 1540236.2 | 334 O1 45. 5 | Brown | 4566.1 | 3.659548 |
|  |  |  | 2454402.9 | 654448.1 | Swift ${ }^{\text {a }}$ | 1955.2 | 3. 291186 |
|  |  |  | 26334020 | 833607.0 | Sears Point | 4960.7 | 3.695542 |
|  |  |  | 3434418.9 | 1634444.6 | Petaluma Creek | 3623.8 | 3. 559159 |
| Double barn, N W. gable 1899 | $\begin{array}{rrr} 38 & 1 & 70.402 \\ 122 & 29 & 36.357 \end{array}$ | $\begin{aligned} & 937.4 \\ & 885.5 \end{aligned}$ | 1073811.8 | 2873716.5 | Dyke 2 | 2290.2 | 3. 359865 |
|  |  |  | 1525056.4 | 3324948.6 | Brown | 5858.0 | 3. 767746 |
|  |  |  | 2100619.8 | 300647.9 | Swift 2 | 2208.0 | 3. 343906 |
|  |  |  |  | $\begin{array}{r}6848 \\ \times 715131.8 \\ \hline\end{array}$ | Sears Point | 4567.7 2306.3 | 3.659694 3.379536 |
|  |  |  | 3515123.2 | 1715131.8 | Petaluma Creek | 2396.3 | 3.379536 |
| $\underset{18_{99}}{\text { Building, S. gable }}$ | $\begin{array}{rrr} 38 & 09 & 17.069 \\ 122 & 32 & 15.175 \end{array}$ | $\begin{aligned} & 544.8 \\ & 369.5 \end{aligned}$ |  | 3052610.5 | San | 692. 2 | 2.840214 |
|  |  |  | 2120305.6 | 320335.9 | Brown | 2247.4 | 3. 351674 |
|  |  |  | 2812550.6 | 1012916.6 | Sears Point | 8286.4 | 3.918364 |
|  |  |  |  |  | Switi 2 Petaluma Creek | 5167.0 7068.1 | 3.783238 3.840303 |
|  |  |  | $\begin{array}{llll}353 & 27 & 12.3 \\ 327 & 10 & 55.7\end{array}$ | 14711188.6 | Dyke | 3109.9 | 3.492744 |
| Lone Tree 1899 |  | ${ }_{1186.3}^{906.6}$ | 3395349.8 |  | Petaluma Creek |  |  |
|  |  |  | 3454240.6 |  | Brown | 3225.8 6756.2 | 3. 347495 3.829700 |
|  |  |  | 3510745.6 | 1710812.0 | Dyke ${ }^{\text {a }}$ | 6756.2 | 3.829700 |
| $\text { Dosn }_{1899}$ | $\begin{array}{rrrr}38811 & 09.988 \\ 12232925.733\end{array}$ | $\begin{aligned} & 308.0 \\ & 626.3 \end{aligned}$ | 3170406.0 | 1370442.8 | Brown | 2128.3 | 3.328028 |
|  |  |  | 3335741.3 | 1535934.5 | Petaluma Creek | 10173.9 63 | 4. 007489 |
|  |  |  | 342 <br> 18617.8 | 36217078.1 | Dyke | 6379.6 3077 | 3.804790 3.488140 |
|  |  |  | 54325.8 | 18543188.0 |  | 3077. 1 | 3.488140 |
| $\begin{gathered} \text { Green Point } \\ { }_{1899} \end{gathered}$ | $\begin{array}{rrr} 38 & 06 & 54.885 \\ 122 & 30 & 22.709 \end{array}$ | $\begin{array}{r} 1692.2 \\ 553.2 \end{array}$ | 1452958.6 | 3252834.8 |  | 5829.7 | 3. 765645 |
|  |  |  | 1493000.7 | 3292934.0 | Dyke ${ }^{\text {d }}$ | 2076.0 | 3. 317217 |
|  |  |  | 1661411.7 | 346 33 32.5 | Brown | 6493.7 | 3.812491 |
|  |  |  | 2163906.0 |  | Swift ${ }^{\text {S }}$ Sears Point | 3746.1 60488 | 3. 573588 3.781653 |
|  |  |  | 3425225.5 | 625442.0 | Sears Point | 6048.6 | 3.781653 |
| Chickenhouse, E. gable 1899 | 380704.577 | 141. Y | 1723022.2 | 3523017.2 | Dyke 2 | 1502.7 | 3. 176859 |
|  | 1223057.924 | 1411.0 |  | 35327593.8 | Brown | 6047.6 | 3.781580 3.613925 |
|  |  |  | 228 <br> 248 <br> 248 <br> 8 | 48 68 68 3 | Swift ${ }^{\text {S }}$ Sears Point | 4170.8 6708.0 | 3.613925 3.826994 |
| Haré farmhouse cupola, flagstaff <br> 1899 | $\begin{array}{ccc} 38 & 07 & 29.313 \\ 122 & 31 & 17.933 \end{array}$ | $\begin{aligned} & 903.8 \\ & 436.8 \end{aligned}$ |  | 3322226.2 |  | 4223.5 | 3.625673 |
|  |  |  |  |  | Brown | 5249.5 | 3. 720114 |
|  |  |  | 2015002.9 | $\begin{array}{rrrrr}31 & 50 & 10.3\end{array}$ | Dyke 2 | 783.4 | 2.893963 |
|  |  |  | 2412955.1 | 613125.9 | ${ }_{\text {Swift }}{ }^{\text {S }}$ | 4074.8 | 3.610111 |
|  |  |  | 2555026.2 | 755316.8 | Sears Point | 6938.9 | 3.841288 |
| $\underset{1899}{\text { Barn, SW. sable }}$ | $\begin{array}{rl} 38 & 09 \\ 122 & 32.646 \\ 41.580 \end{array}$ | $\begin{aligned} & 1006.6 \\ & 1002.5 \end{aligned}$ | 3263701.0 | 1463732.0 | Swift a | 2276 | 3. 347568 |
|  |  |  | 3554441.1 | 1754452.6 | Petaluma Creek | 6158. 1 | 3.789450 |
|  |  |  | 335255.0 | $\begin{array}{ll}213 & 5202.6 \\ 369\end{array}$ | Dyke? | 3704. 3 | 3. 568701 |
| Burdell red R. R.tank | $\begin{array}{r} 38 \propto 921.042 \\ 1223349.442 \end{array}$ | $\begin{array}{r} 648.8 \\ 1203.7 \end{array}$ |  |  |  |  |  |
|  |  |  |  | $\begin{array}{llll}62 & 42 & 15.4 \\ 80 & 15 & 35.7\end{array}$ | San | 1756. 5 | 3. 244646 |
|  |  |  | 2793005.6 | 993429.8 | Sears Point | 10562.6 | 4.023769 |
|  |  |  | $\begin{array}{lllll}281 & 388 \\ 3 & 31.7\end{array}$ | $10148{ }^{1} 36.1$ | Swift ${ }^{\text {a }}$ | 7254.2 | 3. 860590 |
|  |  |  | 3041880.0 | 1242011.0 | Dyke ${ }_{\text {Detaluma Creek }}$ | 4819.9 87020 | $3.683941$ |
|  |  |  | 3113725.8 | 1314010.7 | Petaluma Creek | 8702.9 |  |

San Pablo Bay-Continued.

| Station | L_atitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Petaluma Creek-Cont'd. White tank 1899 | - ' " | m | " | , " |  | meter 5 |  |
|  | 380907.634 | 235.1 | 3361043.4 | 1561055.6 | Swift 3 | 1188.8 | 3.075103 |
|  | 1229910.594 | 258.0 | 310423.5 | 1830415.2 | Petalurna Creek | 5377.4 | 3.730575 |
|  |  |  | 503923.7 | 2303811.5 | Dyke a | 3633.5 | 3. 560324 |
|  |  |  | 98 OI 12.3 | 2775904.0 | San | 5107.7 | 3.708223 |
| Red barn cupola, weather vane 1899 | 380818.929 | 583.7 | 2233336.2 | 433429.5 | San | 3053.5 | 3.484795 |
|  | 1223404.766 | 116.1 | 126 05 07.0 | 460644.9 | Brown | 5358.7 | 3. 729058 |
|  |  |  | 2665226.3 | 865540.1 | Swift 2 | 7655.0 | 3.883946 |
|  |  |  | 2802543.2 | 1002733.6 | Dyke 2 | 4427. 7 | 3.646179 |
| White barn, SE. gable 1899 | $\begin{array}{llll} \\ 8 & 08 & 15.759\end{array}$ | 485.9 | 2203326.0 | 403416.1 | San | 3041.0 | 3.483013 |
|  | 1223359.554 | 1450.3 | $\begin{array}{lllllll}224 & 23 & 05 . \\ 260\end{array}$ | 443440.2 | Brown | 5337.4 | $\text { 3. } 727328$ |
|  |  |  | 2660448 | 8607 59. 1 | Swift 2 | 7534.3 | $3.877043$ |
|  |  |  | 2683307.8 | 883738.2 | Sears Point | 20667. 2 | 4.038052 |
| Napa Creek: <br> Vallejo Hill $1858$ | 3807 or. 368 |  | 3322858.2 | 1521939.8 | Vallejo (1) | 3577.7 | 3.553601 |
|  | 122 1551.965 | 1265.9 | 4 44708.5 | 1844702.0 | Mare I. NW. | 3066.0 | 3.486567 |
|  |  |  | 1024301.7 | 2834044.0 | Long Poud | 5568.9 | $3.745769$ |
| Slaughterhouse 1858 | $3809 \times 7.872$ | 551.1 | 3371238.7 | 1571323.6 | Vallejo Hill | 4564.9 | 3.659432 |
|  | 1221704.552 | 110.8 | 3481401.0 | 1681439.3 | Mare I. NW. | 7419.8 | 3.870392 |
|  |  |  | 505041.2 | 2304908.3 | Long Pond | 4725.5 | 3.674450 |
| $\underset{1858}{\text { Napa Branch }}$ | 381111.901 | 367.0 | 3542715.0 | 1348845.9 | Slaughterhouse | 5019. I | 3.700622 |
|  | 1221931.702 | 771.5 | 04230.3 | 1804228.3 | Long I'oud | 6501.0 | 3.812977 |
| Navy-Yard Slough 1858 | 380927.229 | 839.6 | 101109.4 | 1901054.5 | Long Poud | 3325.5 | 3. 521863 |
|  | 1221910.856 | $264 \cdot 3$ | 1710359.5 | 3510346.6 | Napa Branch | 3267.0 | 3. 514143 |
|  |  |  | 2752057.4 | 95 22 15.4 | Slaughterhouse | 3088.6 | 3. 489758 |
| $\begin{gathered} \text { Green Hill } \\ 1858 \end{gathered}$ |  |  |  | 1760727.4 | Slaughterhouse |  |  |
|  | 1321719.087 | 464.4 | 621023.3 | 2420901.3 | Napa Branch | $3649.4$ | $3.562221$ |
| Good Luck Point 1858 | 3811502.395 | 73.8 | $\begin{array}{rrrr}98 & 34 & 49.3\end{array}$ | 2782358.8 | Napa Branch | 2004.8 |  |
|  | 1221810.211 | 248.5 | $\begin{array}{llll}211 & 54 & 48.7 \\ 313 & 36 & 57.4\end{array}$ | $\begin{array}{r}315520.3 \\ 153 \\ 37 \\ \hline\end{array}$ | Green Hill | 2353.0 3597.3 | $3 \cdot 371631$ |
|  |  |  | 3333657.4 | 1533738.0 | Slaughterhouse | 3597.3 | 3. 555974 |
| $\begin{gathered} \text { Flys Hill } \\ 1858 \end{gathered}$ | 3813312.506 | 385.6 | 2965242.1 | 1165423.1 | Green Hill | 4453.5 | 3.648705 |
|  | 122 20 02.350 | 57.2 | 3483929.7 | 2683948.7 | Napa Branch | 3792.6 | 3.578940 |
| $\begin{gathered} \text { Suscol Hill } \\ 1858 \end{gathered}$ | 381436648 | 1133.1 | 140897.0 | 1940737.5 | Green Hill | 4755. 7 | 3.677214 |
|  | 122 1631.355 | 762.5 | 631019.8. | 2430809.3 | Flys Hill | 5751.6 | 3. 759788 |
| $\underset{1858}{\text { Green Island }}$ | 381248.855 | 1506.4 | 274230.1 | 2074150.2 | Napa Branch | 3376.4 | 3. 528451 |
|  | 1221827.193 | 661.6 | 1073939.2 | 2872840.3 | Flys Hill | 2427.0 | 3. 385065 |
|  |  |  | 23015 I1. 2. | 401622.9 127 48 | Suscol Hill | 4359.4 | 3.639430 3.321591 |
|  |  |  | 30747 29.1. | 12748 11.2 | Green Hill | 2097.0 | 3.321591 |
| $\begin{gathered} \text { Home Hill } \\ 1858 \end{gathered}$ | $\begin{array}{rrrrr}38 & 14 & 96.497\end{array}$ | 817.0 | 2600811.0 | 800857.2 |  | 1846. 1 |  |
|  | 1221746.149 | 1122.3 | $\begin{array}{r}351 \\ 55 \\ 55 \\ \hline 17\end{array}$ | $\begin{array}{llll}171 & 17 & 24.7 \\ 235 & 36 & 03.3\end{array}$ | Green Hill Flys Hill | 4345.9 4032.2 | $\begin{aligned} & 3.638079 \\ & 3.604467 \end{aligned}$ |
|  |  |  | 552727.6 | $235 \quad 36 \quad 03 \cdot 3$ | Flys Hill | 4032.2 | 3. 604467 |
| $\underset{1858}{\text { Stony Hill }}$ | $\begin{array}{llll}38 & 16 & 00.594\end{array}$ | 18.3 | 3174342.7 | 1374442.5 | Suscol Hill | $3493 \cdot 3$ | 3. 54323 x |
|  | 1221807.981 | 194.0 | 3493746.6 | 16938 co. 1 | Home Hill | 2949.4 | 3. 469739 |
|  |  |  | 281345.9 | 20812351 | Flys Hill | 5881.7 | 3.769503 |
| $\underset{1858}{\text { Napa }^{\text {Hill }}}$ | $\begin{array}{lllll}38 & 18 & 06.707\end{array}$ | 206.8 | 8014.0 | 188 os 50.5 | Suscol Hill | 6539.0 | 3.815508 |
|  | 1221553.450 | 1298.8 | 215858.8 | 2015749.0 | Home Hill | 7321.6 | 3.864605 |
|  |  |  | 400415.3 | 2200252.0 | Stony Hill | 5080.4 | 3. 705902 |
| Green's house, chimney 1858 | $\begin{array}{rrrrr}38 & 17 & 24.585 \\ 122 & 18 & 41.379\end{array}$ | 850.6 1005.6 | $\begin{array}{llll}253 & 31 & 03.0 \\ 329 & 01 & 19.3\end{array}$ | 733247.1 1490239.9 | Napa Hill Suscol Hill |  |  |
|  | 1221841.379 | 1005.6 | $\begin{array}{llll}329 & 01 \\ 343 & 19.3 \\ 329 & 32.7\end{array}$ | 149 163 163 0939.953 .5 | Suscol Hill Stony Hill | 6143.0 2802.3 | 3.788381 3.447519 |
| Fly's house, chimney 1858 | 3813 49. 152 | 1515.8 | 2475422.2 | $6755 \cdot 53 \cdot 2$ |  | 3903.7 | 3. 591477 |
|  | 1221900.006 | 2.3 | $\begin{array}{rrrr}32 \times & 59 & 03.9 \\ 53 & 16 & 33.1\end{array}$ | $\begin{array}{llll}142 & 00 & 05.4 \\ 233 & 15 & 53.6\end{array}$ | Green Hill Flys Hill | 3990.6 1889.3 | 3.601034 3.276300 |
|  |  |  | 531633.1 | 2331553.6 | Flys Hill | 1889. 3 | 3.276300 |
| Ferry-house, chimney 1858 | 381437.978 | 1171.0 | 50644.3 | $\begin{array}{llll}185 & 06 & 33.7\end{array}$ | Green Hill | 4668. 3 | 3.669158 |
|  | 1221701.991 | 48.4 | 590109.6 | 23859 18.0 | Flys Hill | 5117.3 | 3.709044 |
|  |  |  | 714532.7 | 2514505.4 | Home Hill | 1130.7 | 3.053339 |
|  |  |  | 1474759.7 | 3274718.9 | Stouy Hill | 3010.5 | 3.478636 |
| $\begin{gathered} \text { Napa Creck } \\ 1858 \end{gathered}$ |  | $1216.6$ | 3345790.6 | 1545725.6 | Suscol Hill | 2134.2 | 3.329230 |
|  | $1221708.513$ | 207.0 | 220823.4 | 2020800.1 | Home Hill | 2428. 5 | 3. 38.5346 |
|  |  |  | $11416 \times 7.2$ | 2941540.4 | Stony Hill | 1585.8 | 3. 200257 |

San Pablo Bay-Continued.


Suisun Bay.

| Carquinez Point 1851-2 | 38 122 122 10 046.570 | 1127.6 1147.4 |  | 288 <br> 358 <br> 38 <br> 84 <br> 44 <br> 18.6 | Bush Hill North Bay | 2372.6 2579.8 | $\begin{aligned} & \text { 3. } 375222 \\ & \text { 3. } 411594 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Monument Hill | $3803 \begin{array}{llll} & 35.428\end{array}$ | 1092.4 | 481059.9 | 2281008.6 | Carquinez Point | 2731.3 | 3. 434783 |
| 1851-2 | 1220923.877 | 582.2 | I10 0859.0 | 2900806.3 | North Bay | 2220. 1 | 3. 346380 |
| Martinez | 380109.936 | 306.4 | 1310426.2 | 3190308.8 | Carquinez Point | 4066.2 | $3.609189$ |
| 1851-2 | 12208.41 .341 | 1008. 4 | 1665902.4 | $346 \quad 58 \quad 36.2$ | Monument Hill | 4604. I | $3.663146$ |
|  |  | 104.8 1162. | 203108.8 1125018.7 | $\begin{array}{llll}200 & 30 & 35.7 \\ 292 & 49 & 19.4\end{array}$ | Martinez Monument Hill | 3735.2 2545.0 | 3. 572309 3.405688 |
| $185 x-a$ | 1220747.667 | 1162.2 | 1125018.7 | 2924919.4 | Monument Hill | 2545.0 | 3. 405688 |
| Island | 380150.849 | 1567.9 | $\begin{array}{r}69 \\ \hline 1344.7\end{array}$ |  |  | 3530.3 |  |
| 1851-2 | 1220626.153 | 637.9 | 13883257.8 | 31822076 | Army Point | 2992.4 | 3.476019 |
| Goodyear 1864 |  | 705.9 312.8 | 21301.6 203607.0 | $\begin{array}{lllll}182 & 12 & 53 & 4 \\ 200 & 35 & 08 & 5\end{array}$ | Island Army Point | $\begin{aligned} & 8393.9 \\ & 657^{\circ} .7 \end{aligned}$ | $\begin{aligned} & 3.923966 \\ & 3.8176 x 1 \end{aligned}$ |

Suisun Bay-Continued.

| Station | Latitude and longitude | Sec onds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{1878}{\text { Martinez East }}$ | - ' 1 | $m$ | - ' " | " |  | meters |  |
|  | $\begin{array}{rrr}38 & \text { ol } & 13.600 \\ 122 & 07 & 37.562\end{array}$ | 419.3 916.2 | $\begin{array}{llll}192 & 12 & 47.9 \\ 236 \\ 35 & 37.4\end{array}$ | $\begin{array}{llll}12 & 13 & 40.2 \\ 56 & 36 & 21.5\end{array}$ | Goodyear <br> Island | 9757.2 2086.2 | $3.989324$ $\text { 3. } 319359$ |
|  | 1220737.562 | 916.2 | 236 <br> 35 <br> 309 <br> 12 | 5636 129 20 | Island Mount Diablo | 2086.2 24259.9 | 3. 319359 <br> 4. 384889 |
| $\underset{1878}{\text { Benecia }}$ B. M. | 380240289 | 1242.3 | 3034502.9 | 1234600.6 | Island | 2743. I | 3. 438848 |
|  | 1220759.673 | 1455.1 | $348.35 \quad 28.7$ | $168 \quad 3542.3$ | Martinez East | 2726.6 | 3. 435628 |
| $\underset{1880}{\text { Naylor }}$ | 380204.628 | 142.7 | 33 I 4657.6 | 1515046.2 | Mount Diablo | 19208.7 | 4. 283498 |
|  | 1320100.005 | 0. I | 804903.7 | 2604458.8 | Martinez East | 9823.0 | 3.993242 |
|  |  |  | 865813.9 | 2665452.9 | Island | 7965.3 | 3.901203 |
|  |  |  | 961005.7 | 2760547.1 | Benecia B. M. | 10292.7 | 4. 012528 |
|  |  |  | 1361601.4 | 31612480 | Goodycar | 13025.1 | 4.042381 |
| Clayton. MountAzimuth Mark | -37 58 56.356 | 1737.4 | 3501647.7 |  | Mount Diablo | 11288.1 | 4.052619 |
|  | 1275606.344 | 154.8 | 1040840.4 | 284 O1 34.8 | Martinez East | 17387. 1 | 4. 240228 |
|  |  |  | 1290229.1 | 3085928.3 | Naylor | 9320.6 | 3.964759 |
| $\begin{gathered} \text { Hewston } 2 \\ 1886 \end{gathered}$ | 380821.016 | 648.0 | 02545.7 | 1802543.5 | Naylor | 11605.2 | 4. 064652 |
|  | 122 O 56.439 | 1374.5 | 334609.1 | 2134245.7 | Island | 14466.4 | $\text { 4. } 160362$ |
|  |  |  | 6443 58. 5 | 2444043 . 1 | Goodyear | 8524.0 | $3.930644$ |
| Middle 1886 | 380541.549 | 1281. 2 | 301239.6 | 210 II OI. 2 | Naylor | 7738.2 | 3.888641 |
|  | I2I 58 20. 342 | 495.7 | 590308.3 | 2385808.8 | Island | 13814.9 | 4. 140347 |
|  |  |  | 962131.3 | 276 36 320 16 39.8 | Goodycar | 11582.8 6215.6 | 4. 063814 |
| Collinsville$1866-1867$ | 380533.618 | 1036.6 | 662027.2 | 2461416.2 | Naylor | 16024.1 | 4. 204774 |
|  | 1215058.159 | 1417.4 | 912017.0 | 2711544.2 | Middle | 10777.6 | 4. 032522 |
|  |  |  | 1093308.0 | 2892658.9 | Hewston 2 | 15461. 1 | 4. 189240 |
| $\underset{1886}{\text { Diamond }}$ | 3880296.678 | 822.6 | 863517.6 | 2663032.8 | Naylor | 11293.2 | 4.052817 |
|  | 13153 17.745 | 432.8 | 12921010 12126.7 | 3090820.1 | Middle Collinsville | 9513.5 6693.1 | $\text { 3. } 978339$ $3.825630$ |
| $\begin{aligned} & \text { Meins } \\ & \mathbf{I} 886 \end{aligned}$ | 3808 21.542 | 664. 2 | 318089293 | 1381026.8 | Collinsville | 6949.8 | 3. 841970 |
|  | 121 5408.476 | 206. 4 | $35332 \begin{array}{llll}32 & 57.9\end{array}$ | 1733329.2 | Diamond | 11010.8 | 4. 041830 |
|  |  |  | 5151318.9 | 23118043.5 | Middle | 7872.5 | 3.896115 |
|  |  |  | 895659.4 | 2695217.6 | Hewston 2 | 9934.9 | 3.997165 |
| Anderson$1886$ |  |  | 5850588 | 3384817.9 | Diamond | 7434.2 | 3. 871235 |
|  | $\begin{array}{lllllllllll}121 & 48 & 56.836\end{array}$ | 1385.3 | 1225656.0 | 3025541.2 | Collinsville | 3523.1 | 3. 546923 |
| Sand$1886$ | $\begin{array}{cccc}38 & 0 & 52.283\end{array}$ |  | 962140.0 | 2761309.0 | Naylor | 20358. I |  |
|  | 1214710.356 | 252.6 | 108 or 31.0 | 2875744.7 | Diamond | 9421.2 | $3.974108$ |
|  |  |  | 1472315.8 | 3272055.4 | Collinsville | 10299.9 | $4.012832$ |
|  |  |  | 1585937.4 | 33858818 | Anderson | 7240.0 | 3. 859740 |
| $\begin{gathered} \text { Buckler } 2 \\ 1886 \end{gathered}$ | 38 38 122 | x599.4 |  |  | Naylor <br> Island |  |  |
|  | 122 O1 11.919 | 290.4 |  |  | Island Goodyear | 10672.4 7393.9 | $\begin{aligned} & 4.028262 \\ & 3.868876 \end{aligned}$ |
|  |  |  | 972730.7 18441510.1 | $\begin{array}{r}2772425.0 \\ 441 \\ \hline\end{array}$ | Goodyear Hewston 2 | 7393.9 4614.0 | 3.868876 3.664073 |
| $\begin{gathered} \text { Coon } 2 \\ 1886 \end{gathered}$ | $3808 \quad 35.818$ | 1104.4 | 2771358.2 | 971529.2 | Hewston 2 | 3618.7 | 3. 558548 |
|  | 1220323.853 | 580.9 |  | 1473352.3 | Buckler 2 | 5990.0 | 3. 777427 |
|  |  |  | 450813.3 | 2250629.1 | Goodyear | 5808.5 |  |
| $\begin{gathered} \text { Hastings } \\ 1888 \end{gathered}$ | $\begin{array}{llll}38 & 12 & 02.336\end{array}$ | 72.0 | 3163041.0 | $\begin{array}{llll}136 & 33 & 24.8 \\ 306 & 59\end{array}$ | Meins |  |  |
|  | 121 58 33.549 | 816.4 | 27 or 15.8 | 2065947.5 | Hewston 2 | 7659.2 | $\text { 3. } 88_{4} 184$ |
|  |  |  | 4800 If. 5 | 22757 12.1 | Coon 2 | 9512.0 | 3.978274 |
| Stuisun Hill 1888 | 381254.086 | 1667.6 | 2925126.7 | 1125302.9 | Hastings | 4105.5 | 3. 613361 |
|  | 122 O1 09.027 | 219.6 |  | 1775501.5 20253 | Hewston 2 Coon 2 | 8425.0 8012.7 | $3.925572$ |
|  |  |  | $\begin{array}{llll}22 & 24 & 28.3 \\ 31 & 32 & 36.6\end{array}$ | $\begin{array}{lll}202 & 23 & 05.0 \\ 211 & 29 & 29.0\end{array}$ | Coon 2 Goodyear | 8612.7 14148.7 | $\begin{aligned} & \text { 3. } 935141 \\ & 4.150716 \end{aligned}$ |
| Pierce 1888 | 38 38 123 0938.867 | 119883 488 | $\begin{array}{llll}236 & 16 & 51 . & 3 \\ 388 & 39 & 18.0\end{array}$ | $\begin{array}{r} 56 \\ 50 \\ 40.7 \end{array}$ | Suisun Hill Coon 2 | $\begin{array}{r} 10851.9 \\ 6071.0 \end{array}$ | $\begin{aligned} & \text { 4. } 035507 \\ & \text { 3. } 783258 \end{aligned}$ |
|  | 1230720.065 | 488. 5 | 2883918.0 | $1084144.0$ | Coon 2 | $6071.0$ | $\text { 3. } 783258$ |
| $\begin{gathered} \text { Bridgeport } \\ 1888 \end{gathered}$ | $\begin{array}{cccc}38 & 13 & 03 . & 312\end{array}$ | 102. 1 |  |  |  | $8386.5$ |  |
|  | 1220653.574 | 1303.3 | $3150025.8$ | 1350406.6 | Hewston 2 Pierce | 12301.1 6336.5 | 4. 089944 <br> 3. 801847 |
|  |  |  | 55029.7 | 1855013.4 | Pierce | 6336.5 | 3. 801847 |
| $\underset{\text { I888 }}{\text { Marsh }}$ | 381033.941 | $1046.5$ | 231310.2 | 2031146.2 | Goodyear | 8421.9 | 3. 935411 |
|  | 1220356.550 | 1376.5 |  | $2510346.1$ | Pierce | 5237.0 | 3. 719082 |
|  |  |  | 1365547.8 | 3165358.4 | Bridgeport | 6306.0 | 3. 799755 |
|  |  |  | 2231902.3 | 432045.8 | Suisun Hill | 5940.5 | 3. 773821 |
|  |  |  | 2505058.1 | 705418.0 | Hastings | 8319.7 | 3.920107 |

Suisun Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Edith 1864 | , " | $m$ | - ' $"$ | - ' ${ }^{\prime}$ |  | meters |  |
|  | $\begin{array}{rrrr}38 & 03 & 14.410 \\ 12204 & 11.476\end{array}$ | $444 \cdot 3$ | $\begin{array}{llll}51 & 53 & 50.3\end{array}$ | $\begin{array}{llll}231 & 52 & 27.3 \\ 333 & 26 & 18.4\end{array}$ | Maland | 4174.1 6255.5 | 3.620558 3.796262 |
|  |  | 279.9 |  | $\begin{array}{llll}233 & 26 & 18.4 \\ 266 & 17 & 46.8\end{array}$ | Martinez East Army Point | 6255.5 5281.9 | 3.796262 3.722791 |
|  |  |  | $\begin{array}{r}86 \\ 153 \\ \hline 102006.2\end{array}$ | 33300515 | Goodyear | 6520.8 | 3.814299 |
|  |  |  | 2944331.6 | 1144529.6 | Naylor | 5140.6 | 3.711017 |
| Garnett1864 | $\begin{array}{r}38 \\ 122 \\ 1202829.893 \\ \hline\end{array}$ | $\begin{aligned} & 582.6 \\ & 465.3 \end{aligned}$ | 353137.1 | 2153027.8 | Edith | 4715.4 | 3.673522 |
|  |  |  | 431309.4 | 2231037.1 | Island | 8799.0 | 3.944435 |
|  |  |  | $62 \quad 2854.8$ | 2422532.2 | Army Point | 9033.2 | 3.955844 |
|  |  |  | 109 of 43.0 | 289 O5 18.7 | Goodyear | 6027.8 | 3.780156 |
| $\underset{1864}{\text { Seal Bluff }}$ | $\begin{array}{rrr} 38 & 03 & 19.798 \\ 122 & 02 & 20.030 \end{array}$ | $\begin{aligned} & 610.4 \\ & 488.4 \end{aligned}$ | 652745.1 | 2452513.4 | Island | 6598.5 | 3. 819444 |
|  |  |  | 863038.9 | 2662930.2 | Edith | 2722.2 | 3.434916 |
|  |  |  | 1345237.5 | 3145003.9 | Goodycar | 8003.9 | 3.903301 |
|  |  |  | 1802128.5 | 02129.1 | Garuett | 3672.0 | 3. 564906 |
|  |  |  | 3195356.2 | 1395445.4 | Naylor | 3029.6 | 3.481392 |
| $\operatorname{Simmons}_{2866}$ | $\begin{array}{rrrr} 38 & 05 & 17.189 \\ 121 & 58 & 42.102 \end{array}$ | $\begin{array}{r} 530.0 \\ 1026.0 \end{array}$ | 554456.6 | 2354242.2 | Seal Bluff | 6427.8 | 3. 808063 |
|  |  |  | 903516.2 | 2703302.4 | Garnett | 5288.0 | 3. 723295 |
|  |  |  | 26733 41.2 | 872827.6 | Collinsville | 11316.9 | 4.053726 |
| Hill ${ }_{1866}$ | $\begin{array}{r} 38 \text { or } 55.756 \\ 1220004.042 \end{array}$ | $\begin{array}{r} 1719.1 \\ 98.6 \end{array}$ | 128 or 00.5 | 3075936.7 | Seal Bluff | 4208.3 | 3.624104 |
|  |  |  | 1521657.7 | 3321534.5 | Garnett | 7075.7 | 3. 849770 |
|  |  |  | 1974922.0 | 175012.5 | Simmons | 6523.9 | 3.814510 |
|  |  |  | 2431011.9 | 63 \% 548.7 | Collinsville | 14906.5 | 4.173377 |
| Mallard1866 | $\begin{array}{rrr}38 & 02 & 29.777 \\ 121 & 5600.071\end{array}$ | $\begin{array}{r} 918.0 \\ 1.7 \end{array}$ | 80 or 19.8 | $\begin{array}{llll}259 & 58 & 49.5 \\ 322 & 33 & 43.5\end{array}$ | Hill | $\begin{aligned} & 6041.3 \\ & 6499.5 \end{aligned}$ |  |
|  |  |  |  | 322 32 52 2543.5 | Simmons | 6499.5 9289.2 | $\begin{aligned} & \mathbf{3} \cdot 812882 \\ & \mathbf{3} \cdot 967977 \end{aligned}$ |
| $\underset{\mathrm{I} 866}{\mathrm{Mc}^{2}}$ |  |  | 2701302.8 | 901530.9 | Collinsville | $5442 \cdot 3$ | 3. 735784 |
|  | $\begin{array}{r}380534 \cdot 346 \\ 12154 \\ \hline 15.504\end{array}$ | 1059.01011.3 | 27 18 8 | 2983537.2 | Mallard | 6004.3 | 3. 778462 |
|  |  |  | 845154.1 | 2644925.7 | Simmons | 5886.8 | 3. 769881 |
| New York 1866 |  |  | 923200.2 | 2722017.3 | Mallard | 4076.3 |  |
|  | $\begin{array}{rrrr}38 & 02 & 24.350 \\ 121 & 53 & 73.049\end{array}$ | 318.3 | 1594759.3 | 3394704.8 | McDuff | 6242.2 6698.1 | $\begin{aligned} & 3 \cdot 795338 \\ & 3.825949 \end{aligned}$ |
|  |  |  | 2092314.8 | 292438.3 | Collinsville | 6698.1 | 3.825949 |
| Pittsburg 1867 | $\begin{array}{r} 38 \text { o1 } 37.978 \\ 1215056.912 \end{array}$ | 1170.9 | 1131837.9 | 2931714.0 | New York | 3614.8 | $\text { 3. } 55808 \mathrm{~B}$ |
|  |  | 1388.0 | 1794533.8 | 3594533.0 | Collinsville | $7265 \cdot 3$ | 3.861254 |
| $\begin{array}{r} \text { Marshal } \\ 1867 \end{array}$ | $\begin{array}{rr} 3804 & 31.460 \\ 121 & 48 \\ 56.846 \end{array}$ | $\begin{array}{r} 970.0 \\ 1385.6 \end{array}$ | 284207.2 | 20840 53.2 | Pittsburg | 6097.5 |  |
|  |  |  | 575457.1 | 2375219.2 | New York | $7373 \cdot 7$ | $3 \cdot 867687$ |
|  |  |  | 1225741.4 | 3025626.6 | Collinsville | 3523.4 | 3. 546959 |
| $\begin{array}{r} \text { Antioch } \\ 1867 \end{array}$ | $\begin{array}{rrr} 38 & \text { or } & 00.595 \\ x 21 & 47 & 54.533 \end{array}$ | $\begin{array}{r} 18.3 \\ 1330.2 \end{array}$ | 1043228.5 | 2843036.1 | Pittsburg | 4595.3 8186.2 |  |
|  |  |  | 1083454.0 | 288 91 37.5 | New York Collinsville | 8186.2 9534.3 | $3.913085$ |
|  |  |  | 1520034.6 16651 | $\begin{array}{llll}331 & 58 & 41.4 \\ 346 & 50 & 25.8\end{array}$ | Collinsville | $\begin{aligned} & 9534 \cdot 3 \\ & 6676.5 \end{aligned}$ | $\begin{aligned} & 3.979289 \\ & 3.824552 \end{aligned}$ |
| Grant 1867 | 380429.508 | 909.8 | 72956.6 | 1872935.3 | Antioch | 6496.7 |  |
|  | 1214719.773 | 482.0 | 4500255.2 | 2250041.4 245 50 | Pittsburg | 7483.2 9437.6 | $\begin{aligned} & 3.874085 \\ & 3.974862 \end{aligned}$ |
|  | 12147 19.733 |  | $\begin{array}{lllll}65 & 53 & 44.2 \\ 91 & 27 & 5.3\end{array}$ | 245 271 260 26 | New York Marshal | 9437.6 2368.8 | $\begin{aligned} & 3.974862 \\ & 3.374157 \end{aligned}$ |
| $\begin{aligned} & \text { Hammond } \\ & 1867 \end{aligned}$ | $\begin{array}{rrr} 38 & \text { o1 } 08.172 \\ 121 & 45 & 50.443 \end{array}$ | 252.0 | 853551.1 | $2653434 \cdot 7$ | Antioch | 3035.9 | 3. 482283 |
|  |  | 1230.4 | 970205.6 | $27658 \quad 50.8$ | Pittsburg | 7531.3 | 3.876870 |
|  |  |  | 102 1847.2 | 2821414.4 | New York | 11047.1 | 4.043249 |
|  |  |  | 1373056.7 | $3172747 \cdot 3$ | Collinsville | 11102.5 | 4.045419 |
|  |  |  | 1440406.3 | 3240211.5 | Marshal | 7742.2 6578.6 | $\text { 3. } 888866$ |
|  |  |  | 1604021.3 | 3403926.3 | Grant | 6578.6 | 3. 818136 |
| Foley 1888 | $\begin{array}{rrr} 38 & 07 & 58.197 \\ 122 & 06 & 49.496 \end{array}$ | $\begin{aligned} & 1794 \cdot 3 \\ & 1305 \cdot 5 \end{aligned}$ | 1663103.6 | 3463044.6 | Pierce | 3191.9 | 3. 504050 |
|  |  |  | 1792345.5 | 3592342.8 | Bridgeport | 9408.0 | 3. 973498 |
|  |  |  | 3211355.6 | 411542.4 | Marsh | 6386.6 | 3. 805273 |
|  |  |  | 2565689.1 | 76 58 1636.0 | Coon ${ }^{2}$ | 5140.6 | 3. 711012 |
|  |  |  | 343 O5 34.9 | 1630557.6 | Goodyear | 3071.1 | 3.487300 |
| $\begin{gathered} \text { Delta } 2 \\ 1886 \end{gathered}$ | $\begin{array}{rrr} 38 & 07 & 36.143 \\ 122 & 04 & 36.962 \end{array}$ | $\begin{array}{r} 1114.4 \\ 900.3 \end{array}$ | 455808.6 | 2255709.4 | Goodycar |  |  |
|  |  |  | 1015425.0 | 281 5303.2 | Foley | 2298.8 | 3. 518356 |
|  |  |  | 1333736.0 | 3133555.1 | Pierce | 5485.6 | 3. 739228 |
|  |  |  | 2240310.0 | 440355.1 | Coon ${ }^{2}$ | 2560.4 | 3.408301 |
|  |  |  | 30244 55.1 | 1224701.6 | Buckler 2 | 5940.3 | 3. 773809 |
| Army Point a 1886 | 383822 0303.151 | 97.21128.1 | 2001702.3 | 201759.9 | Goodyear | 6565.9 | 3. 817297 |
|  |  |  | 2253010.3 | 453423.3 | Hewston 2 | 13992.0 | 4.145879 |
|  |  |  | $2413237 \cdot 7$ | 613640.8 | Buckler a | 10929.2 | 4.038588 |
|  |  |  | 2502718.8 | 703307.7 | Middle | 14633.1 | 4. 165336 |
|  |  |  | 2661121.1 | $86 \quad 13 \quad 33.5$ | Edith | 5248.4 | 3. 720026 |
|  |  |  | 2801716.8 | 1002127.2 | Naylor | 10069.4 | 4.003004 |
|  |  |  | 3184548.1 | 1384637.5 | Island | 2964.1 | 3.471893 |
|  |  |  | 3562410.4 | 1762415.6 | Martinez East | 3384.3 | 3. 529469 |

Suisun Bay-Continued.

| Station | Latitude and longitude | Sec onds in meters | Aximuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{1886}{\text { Suisun }} \mathbf{P o i n t}$ | - ' $"$ | m | - '. " | , " |  | meters |  |
|  | $\begin{array}{ccc}38 & 02 & 06.870\end{array}$ | 211.8 | 293637.8 | 3092614.3 | Martinex East | $188 \mathrm{~s} \cdot 9$ | 3. 275525 |
|  | 1220650555 |  | 14643 20. 5 | 3364351.7 | Army Point ${ }^{\text {a }}$ | 2075.7 | $3.317164$ |
|  |  |  | 18812126.8 | 81245.6 | Goodyear | 7975.4 | 3.901754 |
|  |  |  |  | 50 <br> 63 <br> 63 <br> 04 <br> 186.8 | Edith ${ }^{\text {Buckler }}$ | 10951.5 | 4.039475 3.664835 |
|  |  |  | $\begin{array}{llll}243 & 03 & 02.8 \\ 270 & 25 & 15.4\end{array}$ |  | Naylor | 4597.1 8768.6 | 3.662465 3.942929 |
|  |  |  | 3011348.2 | 2211408.8 | Island | 952. 7 | 2.978936 |
| Stake 1886 | 380304.710 | 145.2 | 723403.1 | 2523134.1 | Naylor | 6176.3 | 3. 790728 |
|  | 1215658.378 | 1423.4 | 1573334.8 | 3373244.2 | Middle | 5232.1 | 3. 718078 |
|  |  |  | 2429151.0 | 622533.1 | Collinsville | 9908.1 | 3.995990 |
|  |  |  | 3828637.5 | 2021853.5 | Diamond | 5506.0 | 3. 740840 |
| Bark 1886 | 380209.674 | 298.3 | 851916.9 | 2651828.9 | Naylor | 1904.7 | 3. 279829 |
|  | 12159 42.164 | 1028.3 | 1965818.7 | 165909.1 | Middle | 683 C .3 | 3.834437 |
|  |  |  | 2465759.6 | 665940.5 | Stake | 4339.3 | 3.637419 |
|  |  |  | 19604557.9 | 864954.7 | Diamond | 9389.0 | 3.972619 |
| $\underset{1887}{\text { Upham }_{7}}$ | 380539.368 | 1213.8 | 1532436.5 | 3332333.0 | Meins | 5592.0 | 3.747569 |
|  | 1215295.691 | 626.1 | 2744438.2 | 944532.2 | Collinsville | 2140.3 | 3.330471 |
| Birds Landing watehouse, <br> S. gable <br> 1887 | 380723.000 | 709.2 | 3394154.7 | 1594224.6 | Upham | 3406.7 | 3. 532339 |
|  | 1215314.199 | 345.9 | 14347716.3 | 3234642.7 | Meins | 2237.3 | 3.349715 |
|  |  |  | $3 \times 52913.1$ | 1353037.0 | Colliasville | 4728.4 | 3.674717 |
| $\begin{aligned} & \text { Mass } \\ & 1864 \end{aligned}$ | $\begin{array}{llllllllll}38 & 03 & 34 & 536\end{array}$ | 1064.9 | 741143.2 | 2541047.7 | Edith | 2277.3 | 3.357413 |
|  | 1220241.602 | 1014.3 | $\begin{array}{r}82 \\ 415 \\ 135 \\ \hline 15\end{array}$ | 2623833.6 | Army Point | 7523.4 | 3.876415 |
|  |  |  | 1351517.9 | 3151307.6 | Goodyear | 7310.7 | $3.863960$ |
| $\begin{array}{r} \text { Preston } \\ 1864 \end{array}$ | $\begin{array}{lllllllll}38 & 04 & 16.558\end{array}$ | 510.5 | 501042.5 | 3300826.2 | Island | 7012.4 | 3. $84586_{4}$ |
|  | $1220245 \cdot 320$ | 1104.7 | 73 co 37. 7 | 2525731.3 | Army Point | 7708.1 | 3. 880949 |
|  |  |  | 1273732.2 | 3073514.2 | Goodyear | 6383.3 | 3.805045 |
| $\begin{gathered} \text { Marked tree * } \\ 1864 \end{gathered}$ |  | 1775.3 | $\begin{array}{llll}132 & 48 \\ 180 & 50\end{array}$ | 3124752 | Army Point | 2986.4 | 3.47515 |
|  | 122 of 17.81 | 434.4 | 1805056 | - 5059 | Goodyear | 8180.9 | 3. 91280 |
| $\underset{1864}{\text { King }^{*}}$ | 380525.72 | 793.0 |  | 2235037 | Island | 9188.8 | 3. 96326 |
|  | 1220204.96 | 120.9 | 621857 | 2421526 | Army Point | 9435.8 | 3.97478 |
| Ryer's house, cupola 1886 | 380436.660 | 1130.3 |  | 1935688.3 | Naylor | 4829.7 | 3. 683923 |
|  | 1220012.275 | 298.2 | 6044 48. 8 | 2404057.6 | Island | 10451.1 | 4. 019164 |
|  |  |  | 65 Of 28.6 | 245 or 17.5 | Suisun Point 2 | 10951.0 | 4.039453 |
|  |  |  | 752615.0 | 255121351 | Army Point 2 | 11436.5 | 4.058294 |
|  |  |  | 1103832.2 | 2902449.7 | Goodyear | 9377.0 | 3.973063 |
|  |  |  | 1475589.7 | 3275453.0 | Buckier 2 | 2736.8 | 3.437242 |
|  |  |  | 2315558.5 | 515943.0 | Meins | 11253.9 | 4.051268 |
|  |  |  | 3005617.8 | 1305817.3 | Stake | 5551.7 | 3. 741285 |
|  |  |  | 3504746.5 | 1704805.1 | Bark | 4590.9 | 3. 661901 |
|  |  |  | $29 \times 3545.2$ | III 4000.6 | Diamond | 10871.5 | 4.036288 |
| $\begin{aligned} & \text { Big barn, S. gable* } \\ & 1886 \end{aligned}$ | 38 os 43.38 |  |  | 1692357 | Stake | 4977. 1 | 3. 696980 |
|  | $\begin{array}{ll}121 & 57 \\ 35\end{array}$ | 876. 1 | 362536 | $216 \quad 3330$ | Neylor | 8380.5 | 3.923270 |
| Dutton's tauk 1886 |  |  |  |  | Bark |  |  |
|  | $121 \quad 58 \quad 16.126$ | 393. I | 405640.6 | 2205459.6 | Naylor | 6098.6 13091.6 | $\text { 3. } 785230$ |
|  |  |  | $\begin{array}{llll}106 & 99 & 05.4 \\ 220 & 40 & 58 .\end{array}$ | 2860411.4 | Coodyear | 13001.6 | 4.082484 |
|  |  |  | $\begin{array}{lllll}220 & 40 & 58.7 \\ 260 & 12 & 06.6\end{array}$ | $\begin{array}{lllll}40 & 43 & 31.5 \\ 80 & 16 & 36.7\end{array}$ | Meins Collinsville | 9251.7 10830.3 | 3.966220 4.034639 |
|  |  |  | 32528 .05. 7 | 5452853.6 | Stake | 3344.0 | 3. 524271 |
|  |  |  | 2982026.8 | 3182330.8 | Diamond | 8366.9 | 3.917342 |
| Dutton's flagstaff 1886 | $38 \quad 0427.000$ | $832.5$ |  | 205 10 54.6 <br> 321 31  <br> 10.5   |  |  |  |
|  | 12158120.484 | 499.3 | $\begin{array}{lllll}41 & 33 & 17.8 \\ 67 & 54 & 56.3\end{array}$ | 321 <br> 247 <br> 29 <br> 29 <br> 29 | Naylor Island | 5864.7 1278.5 | 3. 768247 4. 106616 |
|  |  |  | $\begin{array}{llll}67 & 54 & 56.3 \\ 79 & 25 & 56.3\end{array}$ | 247 259 29 20 | Island Point 2 | 12782.5 14032.8 | 4. 106616 |
|  |  |  | 79 <br> 107 <br> 10 <br> 17 <br> 10 <br> 10.4 | 259 287 287 12 | Army Point ${ }^{\text {Goodyear }}$ | 14032.8 12052.5 | 4. 1477144 4. 081077 |
|  |  |  | 1220428.8 | 3020243.1 | Buckler a | 4929.7 | 3.692831 |
|  |  |  | 22018 39. 2 | 402114.7 | Meins | 9486. 3 | 3.977096 |
|  |  |  | 2591028.1 | 791500.9 | Collinsville | 10973.7 | 4. 040354 |
|  |  |  |  | 141 1644 1643 42 42.0 | Stake Diamond | 3231.6 8260.5 | 3. 509424 |
|  |  |  | 2963935.4 | 1164242.0 | Diamond | 8260.5 | 3.917006 |
| Red brick chimney 2886 |  | $1348.0$ |  |  |  |  |  |
|  | 1220817.345 | 422.9 | $\begin{array}{lllll}301 & 00 & 16.8 \\ 340 & 44 & 55.5\end{array}$ | $\begin{array}{llll}131 & \text { O1 } & 25.3 \\ 160 & 45 & 19.8\end{array}$ | Island Martinez East | 3163.8 2943.1 | 3. 500210 |

* No check on this position.

Suisun Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Army flagstaff1886 | " | $m$ | " | - ' 1 |  | meters |  |
|  | 3803180.188 | 632.4 | 3172431.0 | 1372535.0 | Island ${ }^{\text {Suisun Point }}$ | 3741.0 | 3. 572986 |
|  | 1220880.964 | 242.9 |  | 142 <br> 147 <br> 168 <br> 63 | Suisun Point ${ }^{2}$ | 2838.6 3982.1 | $\begin{aligned} & 3.453099 \\ & 3.600113 \end{aligned}$ |
| Arsenal flagstaff1886 | $\begin{array}{rrr}38 & 02 & 51.116 \\ 122 & 08 & \text { 01. } \\ \end{array}$ | $\begin{array}{r} 1576.0 \\ 28.3 \end{array}$ | 22422489 | 443258.1 | Army Point ${ }^{\text {a }}$ | 519.2 | 2. 715326 |
|  |  |  | 3084321.1 | 1284419.7 | Island | 2969.9 | 3.472744 |
|  |  |  | 3121413.5 | 1321451.5 | Suisun Point 2 | 2029.2 | 3. 30733 r |
|  |  |  | 3490942.3 | 1690956.7 | Martinez East | 3061. 2 | 3. 485886 |
| $\underset{1886}{\text { Arsenal clocktower }}$ | 380247.309 | 1458.6 | 1993525.3 | 193529.7 | Army Point 2 | 518.5 | 2. 714722 |
|  | $1220743 \cdot 398$ | 1302.0 | 3091659.4 | 1291753.2 | Island | 2748.9 3810.6 | 3. 43916 r |
|  |  |  | 3133054.1 | 133115127.3 173 | Suisun Point 2 Martinez East | 1810.6 | 3.257826 3.464621 |
|  |  |  | $352 \begin{array}{llll}33 & 07.8\end{array}$ | 1722317.4 | Martinez East | 2914.9 | 3.464621 |
| $\begin{gathered} \text { Ventilator } \\ 1886 \end{gathered}$ | 380421.586 | 665.6 | 3431730.8 | 16318 06. 1 | Island | 4852.3 | 3. 685945 |
|  | 12207 23. 354 | 569.3 | 3520344.6 | 1720959.3 | Suisun Point 2 | 4193.9 | 3.622617 |
|  |  |  | 32519.6 | 1832510.7 | Martinez East | 5806.3 | 3. 763809 |
|  |  |  | 130030.9 | 1930016.8 | Army Point ? | 2482.0 | 3. 394800 |
| $\underset{1886}{\text { Windmill }}$ | $\begin{array}{rrr} 38 & 04 & 55 \cdot 536 \\ 122 \quad 06 & 48.444 \end{array}$ | 1712.3 | 3543247.6 | 1743301.3 | Island Peint | 5720. 1 | 3. 757406 |
|  |  | 1180.6 | 25858.0 | 1825851.1 | Suisun Point 2 | 5207.3 | 3. 716616 |
|  |  |  | 95553.0 | 18955 | Martinez East | 6946.7 3740.8 | $3.841779$ |
| Goodyear R. R. station, tank 1886 | $\begin{array}{rr} 38 \quad 05 & 42.804 \\ 122 & 06 \\ 09.531 \end{array}$ | $\begin{array}{r} 1319.7 \\ 232.2 \end{array}$ |  |  | Island |  |  |
|  |  |  | $\begin{array}{rrrr}3 & 14 & 39.5 \\ 10 & 23 & 00.8\end{array}$ | $\begin{array}{llll}183 & 14 & 29.3 \\ 190 & 22 & 30.0\end{array}$ | Suisun Point ${ }^{\text {Island }}$ | 7163.1 6768.4 | $\begin{aligned} & 3.855102 \\ & 3.830488 \end{aligned}$ |
|  |  |  | 102300.8 143017.7 | 180 194 29 29 230.0 | Suisun Point ${ }^{2}$ Martinez East | 6768.4 8573.0 | 3.830488 3.933135 |
|  |  |  | 2536 Ir. 1 | 2053511.5 | Army Point 2 | 5458.0 | 3. 737032 |
|  |  |  | $3114128: 4$ | 1314439.3 | Naylor | 10108. 5 | 4.004686 |
| $\begin{gathered} \text { Montezuma Hill } \\ 1887 \end{gathered}$ | $\begin{array}{r} 3810 \\ 121 \\ 55 \\ 11.88 \end{array}$ | 128.6 | $\begin{array}{llll}333 & 58 & 19.6\end{array}$ | 1535858.8 | Meins | 3519. 1 | 3. 546432 |
|  |  | 289.3 | ${ }_{6} 616416$ | 2491308.9 | Hewston 2 | 8971.0 | 3. 952843 |
|  |  |  | $136 \quad 3710.6$ | 3063506.0 | Hastings | 6113.6 | 3.786300 |
| White house, S. gable 1886 | $\begin{array}{rrr} 38 & 05 & 02.593 \\ 12206 & 52.426 \end{array}$ | $\begin{array}{r} 79.9 \\ 1277.7 \end{array}$ | 3023201.7 | 1223538.9 | Naylor | 10194.2 | 4.008355 |
|  |  |  | $35348 \quad 50.3$ | 17349 06. 5 | Island | 5946.4 | 3. 774254 |
|  |  |  | 15015.9 | 18150115 | Suisun Point 2 | 5420.6 | 3. 734048 |
|  |  |  | 193712.4 | 1993639.2 | Army Point 2 | 3909. 5 | 3. 592117 |
| Bull 2 1886 | $\begin{array}{rrr} 38 & 02 & 08.488 \\ 122 & 04 & 36.716 \end{array}$ | $\begin{aligned} & 261 \cdot 7 \\ & 895 \cdot 3 \end{aligned}$ | $\begin{array}{llll} \\ 7 & 29 & 30.7\end{array}$ | 2582883.3 | Island Point | 2723.7 |  |
|  |  |  | 1100300.0 | $\begin{array}{llll}290 & 01 & 03.2 \\ 343 & 21 & 38.6\end{array}$ | Army Point 2 | 4919.7 8186.3 | $3.691942$ |
|  |  |  | $\begin{array}{lllll}163 & 22 & 37.9\end{array}$ | $\begin{array}{r}343 \\ 91 \\ 91 \\ \hline 18\end{array}$ | Goodyear Naylor | 8186.3 5286.2 | 3.913087 3.723146 |
|  |  |  |  |  |  |  |  |
| $\begin{gathered} \text { Bay } 2 \\ 1886 \end{gathered}$ | $\begin{array}{rrr} 38 & 04 & 07.300 \\ 122 & 07 & 16.510 \end{array}$ | 225. I | 2922137.7 | 1122529.7 | Naylor | 9928.3 | 3.996877 |
|  |  | 402. 5 | 34343 34. 3 | 1634405.2 | Island | 4382.6 | 3.641728 |
|  |  |  | $3533^{8} 845$. 0 | 1733855.4 | Suisun Point 2 | 3736.0 | 3. 572410 |
|  |  |  | 52837.2 | $185 \quad 2834.0$ | Martinez East | 5380.0 | 3. 730785 |
|  |  |  | 200841.5 | 2000823.1 | Army Point 2 | 2106.7 | 3.323600 |
| Schoolhouse, E. gable 1886 | $\begin{array}{rrrr} 38 & 05 & 37.832 \\ 122 & 06 & 17.795 \end{array}$ | $\begin{array}{r} 1166.4 \\ 433.6 \end{array}$ | ${ }_{8} 4006.6$ | ${ }^{181} 40001.4$ | Island |  |  |
|  |  |  | 85355.4 | 1885329.7 | Suisun Point a | ${ }_{658}{ }^{3} .6$ | $3.818461$ |
|  |  |  | 132557.2 | 1932507.9 | Martinez East | 8375.7 | 3. 923019 |
|  |  |  | 24 20 20. 1 | 2041925.6 | Army Point 2 | 5234.0 | 3. 718836 |
|  |  |  | $184 \quad 5802.5$ | 45805.5 | Goodyear | 1394.6 | 3. 144437 |
|  |  |  | $266 \quad 3900.9$ | 864209.6 | Buckler ${ }^{\text {a }}$ | 7465.8 | 3.873074 |
|  |  |  | 3101719.9 | 1302035.9 | Naylor | 10159.9 | 4.006891 |
| Seal Bluff W. warehouse, N. gable 1886 | $\begin{array}{rrr} 38 & 03 & 16.068 \\ 122 & 02 & 30.081 \end{array}$ | $\begin{aligned} & 495 \cdot 4 \\ & 733 \cdot 4 \end{aligned}$ | 652912.8 | 2452647.3 | Island |  | 3. 801248 |
|  |  |  | 720206.2 | 2515920.0 | Suisun Point 2 | 6908.4 | 3.839379 |
|  |  |  | 870412.6 | $267 \times 57.6$ | Army Point 2 | 7719.2 | 3.887573 |
|  |  |  | 1.364253 .7 | 3164036.2 | Goodyear | 7915.5 | 3. 898477 |
|  |  |  | 2013733.0 | 213821.1 | Buckler 2 | 5167.7 | 3. 713301 |
|  |  |  | 27272702.6 | 923027.0 | Stake | 8094.9 | 3. 908210 |
|  |  |  | 2063252.8 | 1163436.3 | Bark | 4577.7 | 3.660643 |
|  |  |  | 3150422.0 | 1350517.5 | Naylor | 3110.5 | 3.492837 |
| Baypoint R. R. warehouse, W. gable 1886 | $\begin{array}{rrr} 38 & 02 & 45 \cdot 325 \\ 122 & \text { OI } 42.431 \end{array}$ | 1397.4 |  | $\begin{array}{llll}140 & 29 & 54.7 \\ 256 & 19 & 50.0\end{array}$ | Naylor Island | 1626.3 7119.8 |  |
|  |  |  | $\begin{array}{llll}76 & 22 & 44.8 \\ 81 & 18 & 37.5\end{array}$ | $\begin{array}{lll}256 & 19 & 50.0 \\ 2615 & 15 & 22.0\end{array}$ | Suisun Point a | 7119.8 7823.5 | 3.852465 3.893399 |
|  |  |  | 1353143.2 | $315 \quad 2856.5$ | Goodyear | 9404.0 | 3.973313 |
| Seal Bluff E. warehouse, N. gable I886 | $\begin{array}{rrr} 38 & 03 & 20.576 \\ 122 & 02 & 18.898 \end{array}$ | $\begin{gathered} 634 \cdot 4 \\ 460.7 \end{gathered}$ |  |  | Stake <br> Bark |  |  |
|  |  |  | $\begin{array}{lllll}299 & 45 & 22.2 \\ 320 & 35 & 22.2\end{array}$ | 119 <br> 140 <br> 146 <br> 16858.8 <br> 10.8 | Bark | 4402.8 3030.5 | 3. 643727 3.485590 |
|  |  |  |  |  | Naylor | 3030.5 6633.5 | 3. 481510 3. 821743 |
|  |  |  | 713915.0 | 2513622.0 | Suisun Point 2 | 7210.8 | 3. 857985 |
|  |  |  | 1343649.7 | 3143425.3 | Goodyear | 8006.6 | 3.903447 |

Suisun Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} \text { Green } 2 \\ 1886 \end{array}$ | $\begin{array}{r} 380414.829 \\ 12202 \\ 45.141 \end{array}$ | $\begin{gathered} m \\ 457.2 \\ 1100.3 \end{gathered}$ | - , " | " |  | meiers |  |
|  |  |  | 32725 S1. 7. | 1472656.5 | Naylor | 4762.9 | 3. 677876 |
|  |  |  | 503213.2 | 23029 57.0 | Island | 6981.7 | 3. 843959 |
|  |  |  | 515627.2 | 2315326.7 | Martinez East | 9058.7 | 3. 957008 |
|  |  |  | 573350.3 | 2373113.4 | Suisun Point 2 | 7351.2 | 3. 806358 |
|  |  |  | 731617.6 | 2531311.9 | Army Point 2 | 7666.4 | 3. 884590 |
|  |  |  | 1275834.7 | 3075626.5 | Goodyear | 6419.4 | 3.807491 |
| $\begin{gathered} \text { Garnett } 2 \\ 1886 \end{gathered}$ | $\begin{array}{rrr} 38 & 05 & 18.976 \\ 122 & 02 & 19.956 \end{array}$ | $\begin{aligned} & 5^{85 . ~} \\ & 4^{86.3} \end{aligned}$ | 430625.4 | 2230353.6 | Island | 8786.4 | 3. 943812 |
|  |  |  | 490202.0 | 22859009.6 | Suisun Point 2 | 9030.0 | 3. 955687 |
|  |  |  | 621540.0 | 2421218.8 | Army Point 2 | 8989.0 | 3. 953713 |
|  |  |  | 1091017.8 | 2890754.1 | Goodyear | 6006.9 | 3. 778650 |
|  |  |  | 23832321.2 | 58 <br> 563 <br> 6505 | Buckler ${ }^{\text {N }}$ | 1943.5 | 3. 288589 |
|  |  |  | 34158830.5 | 1615919.8 | Naylor | 6301.2 | 3. 799420 |
| Hastings warchouse, W. gable 1886 | $\begin{array}{rrr} 38 & \text { or } & 58.624 \\ 122 & \text { O1 } & 59.682 \end{array}$ | 1807.5 | $80 \quad 2802.6$ | 2602434.2 | Martinez East | 8356.9 | 3. 922045 |
|  |  | 1455.4 | 8754437.2 | 2675153.0 | Island | 6503.1 | 3.813123 |
|  |  |  | 1031634.5 | 2831300.9 | Army Point 2 | 8682.4 | 3.938639 |
|  |  |  | 1425300.3 | 3225024.0 | Goodyear | 10220.9 | 4.00949I |
| Tormey's windmill 1886 | 380136.85 | 1136.2 | 1161840 | 2961634 | Army Point a | 6007.2 | 3. 77867 |
|  | 1220405.41 | 132.0 | 971047 | 2770920 | Island | 3459.6 | 3. 53903 |
| Tormey's new barn, N. gable* 1886 | $\begin{array}{ccc}38 & \text { or } & 18.63 \\ 123 & 04 & 02.30\end{array}$ | 574.4 56.1 | $\begin{array}{llll}105 & 49 & 20 \\ 120 & 33 & 42\end{array}$ | $\begin{array}{llll}285 & 47 & 49 \\ 300 & 31 & 24\end{array}$ | Island Army Point 2 | $\begin{array}{r} 3646.5 \\ 6341.8 \end{array}$ | $\begin{aligned} & 3 \cdot 561880 \\ & 3 \cdot 802210 \end{aligned}$ |
|  | 1230402.30 | 56.1 | 1203342 | 3003124 | Army Point 2 | $6341.8$ | 3.802210 |
| Drawbridge flagstaff 1888 | $\begin{array}{rrrr}38 \\ 38 & 09 & 09.729 \\ 122 & 05 & 20.449\end{array}$ | 300.0 | $\begin{array}{llll}13 & 56 & 07.4 \\ 44 & 31 & 18.0\end{array}$ | 193 224 350 35 | Goodyear | 5299.9 3092.9 3 | $\begin{aligned} & 3 \cdot 724264 \\ & 3 \cdot 490372 \end{aligned}$ |
|  | 1220520.449 | 497.9 | 443118.0 1070997.0 | 224 <br> 280 <br> 287 <br> 8.08 .08 .0 | Foley | 3092.9 3047.6 3 | $\begin{aligned} & 3 \cdot 490372 \\ & 3 \cdot 483964 \end{aligned}$ |
|  |  |  | 1070917.0 3181055.4 | 28708.02 .9 381114.0 | Marsh | 3047.6 3303.5 | 3.483964 3.518973 |
|  |  |  | $29012 \begin{array}{ll}27 & 3\end{array}$ | 11013 39. | Coon 2 | 3025.5 | 3.480794 |
|  |  |  | 3395032.1 | 1595058.9 | Delta 2 | 3073.7 | 3.487665 |
| Suisun schoolhouse, cupola 1888 | 3814.43 .999 | 431.6 | 3204111.4 | 1404202.7 | Suisun Hill | 3184.3 | 3. 503017 |
|  | 1220231.957 | 777.2 | 165254.9 | 1965202.6 | Marsh | 7090.3 | 3.850664 |
|  |  |  | 201951.2 | 2001734.9 | Goodyear | 15488.5 | 4. 190010 |
|  |  |  | 393541.8 | 2193243.6 | Pierce | 11004.9 | 4. 041586 |
|  |  |  | 710657.0 | 2510415.0 | Bridgeport | 6726.2 | 3.827771 |
| $\begin{array}{r} \text { Upper } 2 \\ 1886 \end{array}$ | 38 of 47.374 |  | 3361457.1 |  | Middle | 2114.5 | $3 \cdot 345272$ |
|  | 1285856.700 | $138 \mathrm{n} .3$ | 6233 38.1 | 2423214.6 | Buckler a | 3712.4 | $3 \cdot 569652$ |
|  |  |  | 855825.0 | 2655355.8 | Goodyear | 10652.0 | 4. 027432 |
|  |  |  | 1344316.3 | 3144202.4 | Hewston 2 | 4103.8 | 3.613187 |
| $\mathrm{Sun}_{1864}$ | 380544.982 |  | 3473940.9 | 1674006.6 | Edith |  |  |
|  | 1220453.126 | 1294.6 | 172652.6 | 1972555.3 | Island | 7566.6 | $3.878902$ |
|  |  |  | 401421.9 | 2201235.1 | Army Point 2 | 6535.0 | 3.815343 |
|  |  |  | 1210251.9 | 3010202.6 | Goodyear | 2266.8 | 3. 355412 |
| Suisun, flagstaff 1888 |  |  |  |  | Suisun Hill | 3118.9 | 3.494003 |
|  | 1220222.980 | $558.9$ | 18 20 40 40 10 | 1981942.9 | Marsh | 7236.4 | 3.859524 |
|  |  |  | 401058.2 | 220 250 250 59 59 53.4 | Pierce | 11209.4 | 4.049581 |
|  |  |  | 710241.5 | 2505953.9 | Bridgeport | 6960.0 | 3.842008 |
| Honker 1866 | $380453 \cdot 676$ | $1654.9$ | $\begin{array}{llll}28 & 07 & 53.1 \\ 48 & 53 & 01.3\end{array}$ | 208 <br> 228 <br> 228 <br> 10 | Stake | 3809.5 7686.3 | 3. 580866 3.885718 |
|  | $1215544 \cdot 708$ | 1089. 6 | $\begin{array}{llll}48 & 53 & 01.3 \\ 49 & 04 & 31.6\end{array}$ | 228 <br> 229 <br> 298 <br> Of <br> 235 <br> 1.6 | Bark Hill | 7686.3 8370.4 880.4 | 3.885718 3.922748 |
|  |  |  | 555314.0 | 2354959.6 | Naylor | 9287.2 | 3. 967883 |
|  |  |  | 993206.1 | 2793016.5 | Simmons | 4383.4 | 3.641812 |
|  |  |  | $\begin{array}{lllll}111 \\ 15 & 1643.7\end{array}$ | 2911507.7 | Middle | 4069.7 | $3.609567$ |
|  |  |  | $\begin{array}{lllll}259 & 58 & 26.0 \\ 321 & 39 & 39.2\end{array}$ | $\begin{array}{rrr}80 & \text { or } & 22.7 \\ 141 & 41 & 09.8\end{array}$ | Collinsville | 7090.9 5777.3 | 3.850700 <br> 3. $7^{6} 1723$ |
|  |  |  | 3213939.2 | 1414109.8 | Diamond | 5777.3 | 3.761723 |
| $\underset{1864}{\text { Freeman }}$ | 380440.860 |  | 3094154.5 | 1294324.8 | Stake | 4639.9 | 3.666509 |
|  | 1215924.801 | $604.5$ | 51125.1 | 1851114.4 | Bark | 4680.5 | 3.670396 |
|  |  |  | 254409.0 | 2054310.3 | Naylor | 5347.0 | 3.728111 |
|  |  |  | 594055.8 | 2393907.8 | Scal Bluff | 4948.9 | $3.694509$ |
|  |  |  | 630009.8 | 2425550.1 | Island | 11532.8 | 4.061936 |
| Stephenson 1864 | 3803 18. 168 | 560.2 | 73340.6 | 1873333.5 |  | 2130.3 |  |
|  | 1215930.669 | 747. 7 | 435139.0 | $2235043 \cdot 9$ | Naylor | 3144.3 | 3.497519 |
|  |  |  | 750914.8 | 2550458.7 | Island | 10482.9 | 4.020482 |
|  |  |  | 90 4242.5 | 2704058.1 | Seal Bluff | 4129.3 | 3. 61588 I |
|  |  |  | $\begin{array}{ll}183 & 12 \\ 276.4\end{array}$ | 3 3 0 1242.0 | Freeman | 2553.6 | 3.407148 |
|  |  |  | 2762148.9 | 962322.8 | Stake | 3736. 1 | 3. 572420 |

* No check on this position.

Suisun Bay-Continued.


* No check on this position.

Suisun Bay-Continued.

| Station | L, atitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logerithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Large gray house, chimney* 1886 | - ' $\quad 1$ | $m$ |  | , " |  | meters |  |
|  | $\begin{array}{rrrr}38 & 07 & 08.27 \\ 121 & 54 & 39.02\end{array}$ | 255.0 950.6 | $\begin{array}{lll}198 & 13 & 15 \\ 298 & 27 & 18\end{array}$ | $\begin{array}{r}1813 \\ 118 \\ \hline 8\end{array}$ | Meins Collinsville | 2378.4 6121.2 | $\begin{aligned} & 3.376290 \\ & 3.78684 \circ \end{aligned}$ |
| $\begin{gathered} \text { Coalhouse } \\ 1867 \end{gathered}$ |  | 1187.9 | 1124222 | 2924057 | New York | 3661.8 | 3. 56370 |
|  | 1215054.517 | 1329.6 | 1791795 <br> 20816 <br> 164 | $\begin{array}{r}359 \\ 28 \\ \hline 8 \\ 17 \\ \hline 1799\end{array}$ | Collinsville | 7248.9 6054.8 | 3.86027 |
|  |  |  | 2244710 | 444923 | Grant | 7430.0 | 3.87099 |
|  |  |  | 2770958 | 971305 | Hammond | 7475.5 | 3.87364 |
|  |  |  | 28454 06 | 1045557 | Antioch | 4543. 2 | 3.65736 |
| White houge, E. gable 1867 | $\begin{array}{rrr}38 & 03 \\ \text { ras } & 09.600\end{array}$ | 296.0 | 1354023.8 |  | New York Collinsville | 635.7 | 2.803274 |
|  | r21 5254834 | 1337.2 | 2041909.2 | 242021.1 | Collinsville | 6903.3 | 3.839059 |
|  |  |  | $\begin{array}{llllll}232 & 58 & 09.5\end{array}$ | 530036.2 | Marshal | 7266.0 | 3.861295 |
|  |  |  | $\begin{array}{lll}280 & 19 & 38.4 \\ 286 \\ 10 & 18.9\end{array}$ |  | Hammond | 10522.4 7627.0 | 4. 0212115 3.882351 |
|  |  |  | 2884304.0 | 1084416.7 | Pittsburz | 3036.6 | 3.482389 |
| Bowman, N. gable | $\begin{array}{llll}38 & 03 & 39.937\end{array}$ | 123 I. 3 | 141411.9 | 1942340.0 | Antioch | 5072. I | 3. 705191 |
|  | 1214702.810 | 68.5 | 1194524.7 | 2994414.4 | Marshal | 3201.6 | 3. 505370 |
|  |  |  | $\begin{array}{lllll}164 & 51 & 45.7 \\ 339 & 19 & 50.8\end{array}$ | 344 315 159 50 | Grant | 1583.3 | 3.199569 |
|  |  |  | 3391950.8 | 1598035.3 | Hammond | 5000.9 | $3.69905^{\circ}$ |
| End house, N. gable 1866 | $\begin{array}{r}38 \\ 131 \\ 131 \\ \hline 19\end{array}$ | 1234. r | $\begin{array}{lllll}31 & 56 & 10.3 \\ 67 & 37 & 48\end{array}$ | 3115581.0 | Pittsburg | 4433.8 | 3. 646777 |
|  | 1214920.746 | 505. 8 | 673748.6 145533.9 | 247 325 325 51 25 25 | New York | 6125.6 | 3. 787155 |
|  |  |  | $\begin{array}{llll}145 & 52 & 23.9 \\ 200 & 10 & 20.9\end{array}$ | 325 30 30 10 1234.8 | Collinsville | 4231.2 1689.4 | 3. 626461 3.227737 |
|  |  |  | $312 \mathrm{a2} \mathrm{37.2}$ | 1322446.7 | Hammond | 6944.1 | 3.841618 |
|  |  |  | 3365010.0 | 1565103.1 | Antioch | 5346.3 | 3. 728056 |
| $\underset{1867}{ }$ | 3880431.6081 | 974. 5 | 74405 | 1874343 | Hammond | 6329.9 |  |
|  | 1214515.519 | 378.3 | $\begin{array}{llll}30 & 48 \\ 88\end{array}$ | 2104647 | Antioch | 7573.6 | $3.87930$ |
|  |  |  | 884708 | 2684550 | Grant | 3029.3 | $3 \cdot 48134$ |
| Collinsville Pt., E. house 2867 | $\begin{array}{rlrl} 38 & 04 & 35 . & 708 \\ 121 & 50 & 39 . & 504 \end{array}$ | $\begin{array}{r} 1100.8 \\ 962.8 \end{array}$ | 42548 424530 | $\begin{array}{llll}284 & 25 & 37 \\ 222 & 43 & 56\end{array}$ | Pittsburg New York | 5496.2 51515 | 3. 74006 <br> 3. 74155 |
|  | 1215039.504 |  | 424530 1654249 | 222 <br> 345 <br> 345 <br> 23 <br> 28 | New York | 5515.1 1842.4 | 3. 74155 <br> 3. 26539 |
|  |  |  | 3725919 | $9300 \% 2$ | Mershal | 2505.6 | 3. 30891 |
|  |  |  | 3284456 | 1484638 | Antioch | 7756.9 | 3.88969 |
| Collinsville degot, flagstaft ${ }^{2864}$ | 3804 28. 560 | 880.6 | 403407.2 | 2203244.4 | New York | 5040.6 | 3. 702482 |
|  | 1215058.614 | 1429.0 | 420438.0 | 2320332.5 | Diamond | 5062.4 | 3. 704353 |
|  |  |  | $\begin{array}{cccc}110 & 29 & 42.2 \\ 180 & 18 & 48.1 \\ 78\end{array}$ | 290 29 0 0 8 1848.6 | McDuff | 5798.3 | 3. 763302 |
|  |  |  | $\begin{array}{lllll}180 & 18 & 48.1 \\ 268 & 14 & 54.4\end{array}$ |  | Collinsville | 2005.9 2069.5 | 3.302307 3.472679 |
|  |  |  | 2681550.3 | 881705.4 | Mershal | 2969.3 | 3.472650 |
|  |  |  | 3092406.3 | 1293716.2 | Fiammond | 9798. | 3.988023 |
|  |  |  | 3200747.2 | 14010080 | Sand | 8685.8 | $3.938809$ |
|  |  |  | 3245998.8 | 145 or 22.3 | Antioch | 7826.9 | 3. 893588 |
|  |  |  | 3593251.7 | 1793253.8 | Pittsburg | 5259.5 | 3. 720948 |
| Datk house, ventilator 1886 | $\begin{array}{rrrr}38 & 05 \\ 16.311\end{array}$ | 502.9 1286.3 | 63827.7 763068 | $\begin{array}{lllll}186 & 38 & 12.3\end{array}$ | Diamond |  | $\text { 3. } 721433$ |
|  | 121 52 52.776 | 1286.2 | $\begin{array}{lll}161 & 06 & 39.8 \\ 259 & 10 & 25.6\end{array}$ | $\begin{array}{rrrrr}342 & 05 & 53.1 \\ 79 & 11 & 36.3\end{array}$ | $\xrightarrow{\text { Meins }}$ Collinsville | 6001.4 | $\begin{aligned} & 3.77895^{6} \\ & 3 \cdot 453^{81} \end{aligned}$ |
|  |  |  | 2835939.2 | 1033204.6 | Anderson | 5913.9 | 3. 771874 |
|  |  |  | 3141449.6 | 1341820.6 | Sand | 11650.6 | 4.066719 |
| ```Collinsville schoolhouse, chimnney``` | 380458.448 | 1802.0 | $363047 \cdot 2$ | 2169919.8 | Diamond | 5831.2 | 3. 765011 |
|  | 1215055.707 | 1357.7 |  |  | Collinsville <br> Anderson | 1086.0 | 3.035845 |
|  |  |  | $\begin{array}{llll}285 \\ 324 & 59 & 56.5 \\ 324 & 54 & 40\end{array}$ | 106 or 98.8 | Anderson | 3014.0 | 3.479148 |
|  |  |  | 3240440.0 | 2440658.9 | Sand | 9369.8 | 3.971732 |
| $\begin{aligned} & \text { Robinson's large windmill } \\ & 1886 \end{aligned}$ | 38 01 37.464 | 1155.1 | 1790624.0 | 350 06 91. 1 |  | 7282.0 |  |
|  | 121 50 53.502 | 1304.9 | 2075512.6 | 275634.5 | Anderson | 6072.8 | $\text { 3. } 783392$ |
|  |  |  | 28420 10. 2 | 1042227.7 | Sand | 5618.4 | $\text { 3. } 749609$ |
| Black Diamond engine house, flagstaff 1886 | $380209.690$ | 298.8 1313.0 |  |  | Diamond |  |  |
|  | 1215253.842 | 1313.0 | 204 285 885 52 | 240959.6 105 55 48 | Collinsville Sand | 6891.0 8711.0 | $\begin{aligned} & 3.838280 \\ & 3.940069 \end{aligned}$ |
| Black Diamond Catholic Church, cross 1886 | $\begin{array}{rl} 38 & 02 \\ 138 & 08 \\ 140 \end{array}$ | $269.2$ $189.7$ |  |  | Diamond Collinsville |  |  |
|  | $1215307.780$ | 189.7 |  |  | Collinsville | 7063.0 | $3.848989$ |
|  |  |  | $\begin{array}{lll} 234 & 14 & 53.6 \\ 285 & 06 & 02.1 \end{array}$ |  | Anderson Sand | 7536.6 9030.8 | 3.877176 3.955724 |
| Soldetimilkhouse, cupola* $1887$ | $\begin{array}{rrrr} 38 & 06 & 39.06 \\ 121 & 55 & 51.86 \end{array}$ | 1204.3 1263.4 | $\begin{array}{lll} 218 & 32 & 29 \\ 285 & 43 & 14 \end{array}$ | $\begin{array}{r}38 \\ 38 \\ 105 \\ \hline\end{array}$ | Meins Collinsville | 4040.5 7434.8 | $\begin{aligned} & 3.60643 \\ & 3.87827 \end{aligned}$ |

* No check on this position.

Suisun Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ferry, flagstaff ${ }^{*}$ 1887 | - , " | $m$ | " | " |  | meters |  |
|  | $\begin{array}{ccc}38 & 06 & 19.66\end{array}$ | 606.2 | 1624355 | $\begin{array}{llll}342 & 43 & 25\end{array}$ | Meins | 3935. 5 | 3. 59500 |
|  | 1215320.50 | 499.4 | 2921444 | 1121612 | Collinsville | 3747. 5 | 3. 57374 |
| Schoolhouse chimney* 1886 | 380814.23 | 438.4 | 2665320 | 865506 | Meins | 4176.8 | 3.62084 |
|  | 1215659.74 | 1454.8 | 2991848 | 119231 | Collinsville | 10104.6 | 4.00452 |
| Millerick milkhouse, cupola* 1887 | $\begin{array}{cccc}38 & 08 & 57.16\end{array}$ | 1762.3 | 2844120 | 1044306 | Meins | 4327.0 | 3.63619 |
|  | 12157 00. 35 | 8. 5 | 30523 41 | 1252725 | Collinsville | 10826.8 | 4.03450 |
| White shanty. W. gable 1886 | 380348.750 | 1503. 1 | 5808388.3 | 2380655.4 | Diamond | 4792.5 | 3.680560 |
|  | 1215030.815 | 751.2 | 1682158.4 | 34821 OI .5 | Collinsville | 3301.3 | 3. 518684 |
|  |  |  | 2400503.1 | 6006 or.0 | Anderson | 2642.7 | 3.422053 |
| $\begin{aligned} & \text { Montezuma House } \\ & 1867 \end{aligned}$ | 380435.708 | 1100.9 | 172136.5 | 1972053.2 | Pittsburg | 5741.1 | 3. 758996 |
|  | 1214946.675 | 1137.6 | 511102.5 | 2310855.2 | New York | 6458.8 | 3.810149 |
|  |  |  |  | 3154148.4 | Collinsville | 2494.6 | 3. 397004 |
|  |  |  | 2760903.1 | 960933.8 | Marshal | 1221.6 | 3.086915 |
|  |  |  |  | 138 or 38.9 | Hammond | 8609.4 | 3. 934972 |
|  |  |  | 3373506.1 | 1573615.2 | Antioch | 7173.9 | 3. 855755 |
| Island house, red chimney 1886 | 38 or 55.531 | 1712.1 | $\begin{array}{llll}102 & 19 & 01.9\end{array}$ | $\begin{array}{lllll}282 & 17 & 10.6\end{array}$ | Diamond | 4507.3 | 3.653921 |
|  | 1215017.166 | 418.7 | 1713255.1 | 3513229.8 | Collinsville | 6797.9 | 3.832377 |
|  |  |  | 2030911.0 | 221000.4 | Anderson | 5191.9 | 3. 715329 |
|  |  |  | $293<94.6$ | 11311096 | Sand | 4956. 1 | 3.695139 |
| White house stovepipe 1886 | 380536.493 | 1125. 2 | 1652824.0 | 3452750.6 | Meins | 5257.0 | 3. 720738 |
|  | 1215314.329 | 349. 1 | 2713106.2 | 913230.2 | Collinsville | 3319.3 | 3. 521038 |
|  |  |  | 2874138.2 | 10744 O6.9 | Anderson | 6587.5 | 3.818720 |
|  |  |  | - 4858.1 | 1804856.0 | Diamond | 5853.0 | 3. 767375 |
| Black house, chimney 1866 | 3803 34. 577 | 1066. 1 | 49 O1 36.4 | 229 co 28.3 | Mallard | 3046.3 | 3.483770 |
|  | 1215425.754 | 627.9 | 694521.6 | 2494152.6 | Hill | 8793.3 | 3.944151 |
|  |  |  | $\begin{array}{ll}116 & 52 \\ 754 & 38.3\end{array}$ | 2964959.7 | Simmons | 7003.5 | 3.845318 |
|  |  |  | 1740400.2 | 35403500 | McDuff | 3712.7 | 3. 569685 |
|  |  |  | 3204110.7 | 1404155.0 | New York | 27983 | 3. 446899 |
| Black shanty, N. gable 1886 | $38 \quad 0415.946$ |  | 2082229.5 | 282302.3 | Collinsville | 2721.9 |  |
|  | 521 5151.245 | 1249.0 | 2633315.0 | $83 \quad 3502.5$ | Anderson | 4278.0 | $\text { 3. } 631242$ |
|  |  |  | 3122923.2 | $13232 \begin{array}{llll}16.3\end{array}$ | Sand | 9292.1 | 3.968513 |
| $\begin{gathered} \text { Brant }_{1866} \end{gathered}$ | 8 08 59.287 | 1828. 0 |  |  | Simmons |  |  |
|  | 1320001.429 | 34.8 | $\begin{array}{lllll}26 & 16 & 35.4 \\ 47 & 59 & 19.3\end{array}$ | $\begin{array}{cccc}206 & 15 & 10.4 \\ 227 & 58 \\ 45.6\end{array}$ | Garnett Hewston | 7577.6 $\times 788.8$ | 3.879530 3. 252573 |
| Antioch: Distillery, large smokestack 1886 |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  | $38 \infty \quad 57.468$ | $177 x .8$ |  |  | Diamond | 7777.3 | 3.890829 |
|  | $1214^{8} 19.470$ | 474.9 | $\begin{array}{llll}155 & 34 & 33.6 \\ 172 & 08 & 30 & 8 \\ 775 & \end{array}$ |  | Collinsville | 9352.1 6661.2 | 3. 970907 3.823552 |
|  |  |  | $\begin{aligned} & 17208301 \\ & 275 \quad 2437.7 \end{aligned}$ | 352 95 95 25 | Anderson Sand | 6661.3 1693.5 | $\begin{aligned} & \text { 3. } 823552 \\ & 3.228792 \end{aligned}$ |
| Congregational Church, spite 1886 |  | 1588.8 |  | 2112134.7 | Mount Diablo | 17194.0 |  |
|  | 121 48 41.549 | 1013. 5 |  | 211 339 020001 | Collinsville | 17134.2 | $\text { 3. } 969100$ |
|  |  |  | 1765117.9 | 3565188 | Anderson | 6791.9 | 3.831989 |
|  |  |  | $3692343 \cdot 3$ | 8924 39.5 | Sand | 2324. 7 | 3.347267 |
| Tall chimney1866 | $38 \text { or or. } 787$ | 55.1 |  | $28747 \quad 15.2$ | Pittsburg <br> New York |  |  |
|  | 1214834423 | 839-7 | $\begin{aligned} & 1103336.1 \\ & 1571914.3 \end{aligned}$ | $\begin{array}{ll}290 & 30 \\ 337 & 17 \\ 34 & 45.8\end{array}$ | New York Collinsville | 7256.5 9084.3 | $\begin{aligned} & 3.860730 \\ & 3.958290 \end{aligned}$ |
|  |  |  | 175 to 03.2 | 3550949.4 | Marshal | 6487.7 | 3. 81212092 |
|  |  |  | 19551 32.7 | 155218.8 | Grant | 6658.1 | 3.823350 |
|  |  |  | 2671005.4 | 871146.3 | Ifammond | 4004. 7 | 3. 602575 |
|  |  |  | 2720929.4 | 920954.1 | Antioch | 973. 7 | 2.988433 |

Monterey Bay to San Francisco Bay.

| Santa Cruz Point $\dagger$ 1852 | $\begin{array}{r}36 \\ 122 \\ \text { 12 } \\ \hline 1\end{array}$ | 171.4 809.1 | $\begin{array}{llll}138 & 36 & 14.0 \\ 222 & 23 & 21.8\end{array}$ | $\begin{array}{rrrr}318 & 35 & 10.3 \\ 42 & 29 & 57.1\end{array}$ | Santa Cruz <br> Loma Prieta | 3964.5 240349 | $\begin{aligned} & \text { 3. } 598188 \\ & \text { 4. } 380842 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Moore 1852 | $\begin{array}{rrrrr}36 & 56 & 54 & 994 \\ 122 & 03 & 54 & 097\end{array}$ | 1695.2 1313.8 | 194 264 264 40 08.0 | $\begin{array}{llll}14 & 52 & 09.3 \\ 84 & 41 & 33.6\end{array}$ | Santa Cruz <br> Santa Cruz Point | 3413.6 3513.6 | $\begin{aligned} & \text { 3. } 533209 \\ & \text { 3. } 545755 \end{aligned}$ |
| St. Johns Hill $\dagger$ 18 s2 | $\begin{array}{rrrr}36 & 58 & 38.069 \\ 122 & 05 & 31.441\end{array}$ | 1173.5 777.6 | $\begin{array}{lllll}267 & 51 & 46.6 \\ 322 & 50 & 03.1\end{array}$ | $\begin{array}{ccc}87 & 53 & 06.4 \\ \text { 142 } & 5 \times & 01.6\end{array}$ | Santa Cruz Moore | $\begin{array}{r} 3285.5 \\ 3986.9 \end{array}$ | 3. 516605 <br> 3. 600630 |

* No check on this position.
$\dagger$ See p. 29 I.

Monterey Bay to San Francisco Bay-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station \& Latitude and longitude \& Seconds in meters \& Azimuth \& Back azimuth \& To station \& Distance \& Logafithm \\
\hline \& - , " \& m \& " \& - ' \(\quad\) \& \& meters \& \\
\hline \[
\underset{1852}{\text { Baleraft }} \text { : }
\] \& \(\begin{array}{rrrrr}36 \& 57 \& 88.355 \\ 122 \& 05 \& 30.098\end{array}\) \& 565.8
\(744 \cdot 7\) \& \(\begin{array}{llll} \\ 279 \& 13 \& 31.6 \\ 286 \& 51 \& 30.6\end{array}\) \& \(\begin{array}{llll}359 \& 13 \& 30.8 \\ 106 \& 52 \& 28.3\end{array}\) \& St. Johns Hill Moore \& \[
\begin{aligned}
\& 2457.5 \\
\& 34^{82.0}
\end{aligned}
\] \& \[
\text { 3. } 390497
\]
\[
\text { 3. } 394799
\] \\
\hline Parsons* \& 365748.26 r \& 1487.7 \& 2363750.4 \& 563847.1 \& St. Iohns Hill \& 2792.0 \& 3.44.5921 \\
\hline 1864 \& 1220705.716 \& 141.4 \& 2911702.7 \& III 18 co. 2 \& Balcraft 1 \& 2538.8 \& 3.404 \({ }^{\text {¢ }} 32\) \\
\hline Rice* \& 365849.491 \& 1525.5 \& 2802745.3 \& 1002831.6 \& St. Johns Hill \& 1937.8 \& 3. 287316 \\
\hline 1864 \& 1220648.487 \& 1199.2 \& \(\begin{array}{r}325 \\ 12 \\ 12 \\ 43 \\ 43 \\ \hline\end{array}\) \& \begin{tabular}{l}
145 \\
192 \\
192 \\
\hline 13
\end{tabular} \& Balcraft \({ }^{\text {Parsons }}\)
Pater \& 3413.6
1935.0 \& 3. 533215
3. 286684 \\
\hline Lagoon* \& \(\begin{array}{llll}36 \& 58 \& 36.797\end{array}\) \& 1134.3 \& \(263 \quad 2819.2\) \& 832942.5 \& Rice \& 3448.2 \& 3. 537597 \\
\hline 1864 \& 1220907.005 \& \(173 \cdot 3\) \& 2962942.3 \& \(1163055 \cdot 2\) \& Parsons \& 3352.5 \& 3. 525374 \\
\hline Butler* \& 365930.769 \& \(94^{8 .} 5\) \& 3983630.4 \& 1183727.2 \& Rice \& 2656.8 \& 3. 424.354 \\
\hline 1864 \& 12208 22.793 \& 563.6 \& \(\begin{array}{r}328 \\ 3 \\ 33 \\ \hline 3 \\ \hline 18\end{array}\) \& \(\begin{array}{ll}148 \& 54 \\ 1815.1 \\ 213 \& 18 \\ 3 \& 1.7\end{array}\) \& Parsons
Lagoon \& 3690.5
1900.9 \& \begin{tabular}{l}
3. 567080 \\
3. 290050
\end{tabular} \\
\hline Glassell* \& \(365958-152\) \& 1792.6 \& 2823128.7 \& 102 33 O1. I \& Butler \& 3888.6 \& 3. 589790 \\
\hline 1864 \& 1321056.300 \& 1392.4 \& 3125053.2 \& 1325159.0 \& Lagoon \& 3687. 1 \& 3. 566690 \\
\hline Redwood* \& 370207.445 \& \& 3335303.0 \& 1535359.6 \& Butler \& 5378.6 \& 3. 730667 \\
\hline 1864 \& 12209 58. 536 \& 1446.7 \& 194257.9 \& 19942 23.1 \& Glassell \& 4233.7 \& 3.626723 \\
\hline Point * \& 37 01 31.639 \& 975. 3 \& 2572835.1 \& 773036.4 \& Redwood \& 5097.0 \& 3. 707313 \\
\hline \({ }^{1864}\) \& 1328319.862 \& 491.0 \& 3090351.2 \& 1290517.6 \& Glassell \& 4571.8 \& 3. 66009 x \\
\hline Manzanita* \& 370244.214 \& 1363.0 \& 2872022.4 \& 1072150.8 \& Redwood \& 3800.6 \& 3. 579847 \\
\hline 1864 \& 1221235.325 \& 635.8 \& 310419.4 \& 2110346.6 \& Point \& 2611.9 \& 3.416956 \\
\hline Cook * \& 370348.979 \& 1509.9 \& 30437332.4 \& 1243842.9 \& Manzanita \& 3512.8 \& 3. 545650 \\
\hline 1864 \& 1221432.300 \& 550.9 \& 3395816.2 \& 1505853.8 \& Point \& 4506. 1 \& 3.653804 \\
\hline Pitie* \& 370530.709 \& 946.7 \& 3483902.2 \& 2683927.3 \& Manzanita \& 5234.8 \& 3. 718001 \\
\hline 1864 \& 12913.07.013 \& 173.2 \& 2
30 803.6 \& 182
210
210
3 \& Point \& 7376.6 \& 3. 867857 \\
\hline \& \& \& 304027,2 \& 2103941.8 \& \& 3645.9 \& 3. 561809 \\
\hline Tranta* \& 370547.034 \& 1449.9 \& 27633393 \& \(9635 \quad 25.9\) \& Pine \& 4394.6 \& 3.642915 \\
\hline 1864 \& 1221603.791 \& 93.6 \& 3252551.2 \& 1452653.4 \& Cook \& 4419.1 \& 3.645335 \\
\hline Steele* \& 370813.028 \& 405.6 \& 3114293.7 \& I3I 4440.8 \& Pine \& 7518.2 \& 3.876112 \\
\hline 1864 \& 122 2654.285 \& 1339.9 \& 335140297 \& 1551534.4 \& Cook \& 8963.4 \& 3. 952472 \\
\hline \& \& \& 3443049.6 \& 1643120.1 \& Tranta \& 4670.0 \& 3. 669320 \\
\hline Point Ano Nuevo * \& 370652.060 \& 1604.9 \& 2394507.8 \& \& \& 4957.1 \& \\
\hline 1864 \& 132 19 47.783 \& 1179.7 \& \(\begin{array}{llll}289 \& 54 \& 13.0 \\ 305 \& 02 \& 42 .\end{array}\) \& \begin{tabular}{ll}
109 \& 56 \\
125 \& 28.1 \\
\hline 1 \& 59.1
\end{tabular} \& Tranta Cook \& 5882.9
9821.9 \& \[
\text { 3. } 769588
\]
\[
\text { 3. } 992197
\] \\
\hline \& \& \& \& \& \& \& \\
\hline Masters Hill \& 372017.976 \& 554. 2 \& 864852.95 \& 26633157.80 \& Black Mountain \& \& \\
\hline 1854 \& 12 X 4413.228 \& 325.6 \& 1365132.81 \& \begin{tabular}{l}
306 \\
300 \\
\hline 00 \\
\hline 18
\end{tabular} \& \begin{tabular}{l}
Red Hill \\
Loma Prieta
\end{tabular} \& 39506.6
26901.4 \& \[
\text { 4. } 5966696
\]
\[
4.4297748
\] \\
\hline \& \& \& 203527.74 \& 20031535.93 \& Loma Prieta \& 26901.4 \& 4. 4297748 \\
\hline Murphy \& 370644.043 \& 2357.7 \& \(\mathrm{O}_{0} 0915.85\) \& \& Gavilan \& \& \\
\hline 1854 \& 2213107.053 \& 174. \& \begin{tabular}{rrrr}
89 \& 54 \& 23.33 \\
\hline 142 \& 32 \& 56.75
\end{tabular} \& \begin{tabular}{ll}
26942 \& 47.76 \\
322 \& 15 \\
\hline
\end{tabular} \& Loma Prieta \& \begin{tabular}{l}
28871. 7 \\
31705.4
\end{tabular} \& \begin{tabular}{l}
4. 4604720 \\
4. 5011327
\end{tabular} \\
\hline \& \& \& 1423256.75 \& 3224501.14 \& Masters Hill \& 31705.4 \& 4. 5011327 \\
\hline Johnston* \& 372619.985 \& 6,6. 1 \& 2151707.1 \& 351930.9 \& Ridge \& 10050.9 \& 4. 002304 \\
\hline 1854 \& 1222627.011 \& 664.0 \& 2531458.0 \& 731831.5 \& Pise Hill \& 9010.6 \& 3.954753 \\
\hline Halfmoon Bry* \& 372989.364 \& 597.0 \& 2903609.9 \& 11039 23. 1 \& Pise Hill \& 8337.8 \& 3.921051 \\
\hline 1854 \& 1222553.493 \& 1314.3 \& 82828.5 \& 18818808.1 \& Johnston \& 5591.0 \& 3. 747493 \\
\hline Summit \(\dagger\) \& 3725 39.820 \& 1227.6 \& 1009615.6 \& \& Johnston \& \& \\
\hline 1853 \& 1222152.979 \& 1302.6 \& \(\begin{array}{llll}138 \& 53 \& 16.9 \\ 206 \& 18 \& 18.3\end{array}\) \& \(\begin{array}{cccc}318 \& 50 \& 50.6 \\ 26 \& 18 \& 58.2\end{array}\) \& Halimoon Bay
Pise Hill \& 8986.1
4273.4 \& 3. 953573
3.630771 \\
\hline \& \& \& \& \& Johnston \& \& 3. 719279 \\
\hline \[
1865
\] \& 123 24 19. 236 \& 473.0. \& 2185732.6 \& 3859485 \& Pise Hill \& 8728.0 \& 3. 940974 \\
\hline \& \& \& 2303506.4 \& 503635.3 \& Summit \& 4654.3 \& 3.607850 \\
\hline Wetraer \(2 \dagger\) \& \& 1120. 5 \& \& 3361506.7 \& \& \& \\
\hline 1864 \& 1232317.672 \& 435.0 \& 16641
102
1023
39 \& 346
31
12

3 \& Sellick \& 6977.9

9584.8 \& $$
\begin{aligned}
& 3.818089 \\
& 3.98158 \mathrm{I}
\end{aligned}
$$ <br>

\hline \& \& \& 1923532.0 \& 123343.4 \& Summit \& 9584.8 \& 3.981581 <br>

\hline Familton $\dagger$ \& 37203 x .753 \& 978.9 \& 9223556.3 \& 972 20831.4 \& Wetner 2 \& \[
3448.0

\] \& \[

3. 537573
\] <br>

\hline 1865 \& 1222057.709 \& 8420.5 \& 1715125.3 \& 3515051.7 \& Summit \& $$
9594.0
$$ \& 3. 982001 <br>

\hline Peak $\dagger$ \& 371746.990
1222134.654 \& 1448.7

853.5 \& $\begin{array}{llll}154 & 05 & 47.6 \\ 190 & 09 & 01.9\end{array}$ \& $\begin{array}{rrrr}334 & 04 & 45.1 \\ 10 & 09 & 24.3\end{array}$ \& Wetrier a Hamilton \& \begin{tabular}{l}
5804.5 <br>
5160.1

\end{tabular} \& \[

$$
\begin{aligned}
& \text { 3. } 763764 \\
& \text { 3. } 712602
\end{aligned}
$$
\] <br>

\hline 1865 \& 1232134.654 \& 853.5 \& 190980.9 \& 10094.3 \& \& \& <br>
\hline
\end{tabular}

*See p. 991-292.
$\dagger$ This point is in the area of the 1906 eart hquake disturbance.

Monterey Bay to San Francisco Bay-Continued.

| Station | Latitude and longitude | Sec onds in meters | Azimuth | Back azimuth | Tostation | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Pescadero } \\ 1805 \end{gathered}$ | - 11 | $m$ | - | - ' " |  | meter 5 |  |
|  | 371631.891 | 983.2 | 1900039.5 | 100112.3 | Wetner a | 7652.7 | $\text { 3. } 883814$ |
|  | $122 \begin{array}{ll}1411.718\end{array}$ | 288.7 | 2390528.3 | 590703.5 | Peak |  | 3. 654057 |
| $\begin{aligned} & \text { Beutro } \\ & 1865 \end{aligned}$ | $37133^{8.803}$ | 1196.3 | 1344437.8 | 3144325.4 | Pescadero | 7582.6 | $\text { 3. } 879816$ |
|  | 12230 33.116 | 816.4 | 1684742.4 | 3484705.1 | Peak | 7799.9 | 3. 892088 |
| $\begin{gathered} \text { Young } \\ \text { 185s } \end{gathered}$ | 3712 24. 72 I | 762.1 | 1672112.8 | 3472030.8 | Pescadero | 7809.3 | 3. 892612 |
|  | 1223302320 | 57.2 | 1931541.4 | $\begin{array}{llll}12 & 16 & 34-4 \\ 58 & 10 & 50\end{array}$ | Peak | 10167.0 4330.0 | 4. 007193 3. 636483 |
|  |  |  | $33809 \pm 9.8$ | 581050.0 | Beutro | 4330.0 | 3.636483 |
| $\begin{gathered} \text { Gushee } \dagger \\ 1864 \end{gathered}$ | 37.0947 .883 | 14762 | 3153610.3 | 1353720.3 | Steele Ano Nuevo | 4091.8 5602.9 | $\text { 3. } 611910$ |
|  | 122'18 50. 270 | 1240.4 | 144049.5 127 163 | 1944014.8 <br> 304 <br> 101 <br> 101 | Point Ano Nuevo | 5602.9 7875.8 | $\begin{aligned} & 3 \cdot 748412 \\ & 3 \cdot 896295 \end{aligned}$ |
|  |  |  | 127 160 163 23 | 3075101.1 3402247.1 | Young | 7875.8 7557.0 | 3.898295 |
| ```Pigeon Point (denter L. H. site)* 1865``` |  |  | 1063820.8 | 163841.0 | Young | 2868.4 | 3.457647 |
|  | 371055.570 1222335.629 | 1713.2 878.9 | 196 <br> 286 <br> 18 | 1063201.4 | Gushee | 7342.6 | 3.865847 |
|  |  |  |  |  |  |  |  |
| $\text { Middle Point } \dagger$ | 370900.723 | 22.3 | 1395137.4 | 3195024.3 | Pigeon Point | 4631.8 | 3. 665754 |
|  | 122 2134.580 | $853 \cdot 3$ | 2501534.1 | 701713.3 | Gushee | 4307.2 | 3. 634190 |
|  |  |  | 2815832.5 | 1020121.7 | Steele | 7072. I | 3. 849546 |
|  |  |  | $3262255 \cdot 3$ | 1462359.8 | Point Ano | 4762.4 | 3.6778a5 |
| Seal* 1865 | 3723 36. 137 |  | 161 393838 | $\begin{array}{llll}341 & 38 & 56.9 \\ 53 & 02 & 31 .\end{array}$ | Johnston | 5321.7 6339.0 |  |
|  | 1222518.897 | 464.8 | $\begin{array}{llll}233 & 00 & 16.3 \\ 239 & 40 & 01.8\end{array}$ |  | Summit | 6339.0 1700.4 | $\begin{aligned} & \text { 3. } 802021 \\ & \text { 3. } 230558 \end{aligned}$ |
|  |  |  | 239 <br> 331 <br> 33 <br> 42 <br> 2006.4 | 594038.0 1514320.0 | Selick Wetner 2 | 6294.3 | $3 \cdot 798946$ |
| $\begin{gathered} \text { Gibbert }{ }^{\text {F }} \\ \text { I865 } \end{gathered}$ | $372135 \cdot 234$ | 1086. 2 | 65701.2 | 1865640.1 | Peak | 7088.4 | 3. 850547 |
|  | 1222059.828 | 1472.4 | 61 5135.6 | 2415012.0 | Wetner 2 | 3847.8 | 3. 5858208 |
|  |  |  | 1701003.1 | 3500930.8 | Summit | 7652.7 | 3. 883813 |
| $\begin{gathered} \text { Tunitas } \\ 1865 \end{gathered}$ | 372288843 | 889. 2 | $20638 \quad 53 \cdot 7$ | 864016.9 | Gilbert | 3381.4 | 3. 529100 |
|  | 1222316999 | 4183 | - 3512.7 | 1803511.3 | Wetner 2 | 1618.5 | 3. 209105 |
| $\underset{\text { Ranch }}{\substack{\text { Res }}}$ | 371155.513 |  | $\begin{array}{ll}72 & 1541.7\end{array}$ | 52 14 54.6 <br> 332 44 05.8 | Pigeon Point Young | 2017.1 | $\begin{aligned} & 3 \cdot 304731 \\ & 3 \cdot 380231 \end{aligned}$ |
|  | 1232217.743 | 437.6 | $\begin{array}{llll}153 & 44 & 32.7 \\ 210 & 16 & 43.9\end{array}$ | $\begin{array}{r}332 \\ 44 \\ 30 \\ 17 \\ \hline 17 \\ \hline 17.2\end{array}$ | Young | 2400.1 5115.5 | 3. 380231 3. 708889 |
|  |  |  |  | 301747.2 1775032.9 | Gushee | 5787.3 | 3. 762478 |
|  |  |  | 3453728.8 | 1653745.0 | Middle Point | 4289.5 | 3.632403 |
| $\begin{aligned} & \text { Bolsa* } \\ & 7865 \end{aligned}$ | 371146668 | 1438.7 | $2355533 \cdot 2$ | 55.5615 .7 | Young | 2094. I | 3. 320996 |
|  | 1223419.602 | 312.3 | 28842 35. 5 | 1084345.0 | Rench | 3992.7 | 3. 476058 |
|  |  |  | 3295329.8 | 14953 42.2 | Pigeon Point | 2820.9 | 3. 260287 |
| Last*$1865$ | 372144.192 | 1363. 4 | 27323 31. 1 | 932525.4 | Gilbert | 4645.5 | 3.667032 |
|  | 1222408269 | 203.5 | 290 | 11033 39.7 |  | 1347.5 | 3. 129535 |
|  |  |  | 3291336.9 | 1491407.6 | Wetner 2 | 3434.2 | 3. 386354 |
| $\underset{2864}{\text { Cutts No. } 2 \dagger}$ |  | 230.4 | 1182859.6 | 29818819.2 | Lagoon |  |  |
|  | 11207 50.639 | 1475.2 | 1672544.6 | 34772530.7 | Butler | 2630.7 3785.0 | 3. 420078 3. 578068 |
|  | 1207 |  | 2553333.6 | 73 3502.8 | St. Johns Hill | 3785.0 | 3. $57^{80688}$ |
|  |  |  | 2935617.6 | 1135650.0 | Parsons | 1459.5 | 3. 164196 |
| $\underset{\Sigma 864}{T o .} 2 \dagger$ | 370052.649 | 1623.0 | 12815155.9 | 3081448.8 | Point | 1941.4 | 3. 288105 |
|  | 1221218.190 | 449.7 | 1970353.2 | 3570349.0 | Manzanits | 3443.7 | 3. 537025 |
|  |  |  | 2361451.2 |  | Redwood | 4151.2 | 3.618171 |
|  |  |  | 3094039.2 | 1294128.7 | Glassell | 2630.8 | 3.420093 |
| $\underset{1864}{\text { Topog No. } 3} \dagger$ | $\begin{array}{r}37 \\ \hline 122002000\end{array}$ | $6.3$ | 16150045.6 |  | Cook <br> Pine | 3546.3 6527.6 |  |
|  | 1221335.507 | 879. 8 | $\begin{array}{llll}186 & 12 & 29.4 \\ 231 & 59 & 41.0\end{array}$ | $\begin{array}{cccc}6 & 12 & 46.7 \\ 58 & 00 & 23.3\end{array}$ | Pine ${ }_{\text {Manzanita }}$ | 6527.6 2203.8 | 3. 814754 3. 343174 |
|  |  |  | $\begin{array}{llll}231 & 59 & 41.0 \\ 336 & 10 & 03.8\end{array}$ | $\begin{array}{ccc}58 & 00 & 23.3 \\ 156 & 10 & 13.4\end{array}$ | Manzanita Point | 2203.8 962.5 | 3. 343174 2. 983414 |
| $\underset{1864}{\text { Topog No. } 1 \dagger}$ | 365920.648 | 636.5 | 139 28 48.4 | 3122817.7 | Glassell | 1712.0 | 3. 233516 |
|  | 1221005.235 | 129. 5 | 3625814.0 |  | Butler | 2552.4 | 3. 406957 |
|  |  |  | 3131058.4 | 1331133.5 | Lagoon | 1975.2 | 3. 295603 |
| Purcell's flagstaff $\dagger$1864-5 | 373415.768 | 486.1 | 122617.7 | 1922611.1 | Seal | 1251.3 | 3. 097317 |
|  | 122 2507.941 | 195.3 | 153 O5 22.4 | 33304344 | Johnston | 4294. 7 | 3.633932 |
|  |  |  | 17310 54. 5 | 3531026.9 | Halfmoon Bay | 9426.2 | 3. 974336 |
|  |  |  | 2865132.1 | 10652 O1. 7 | Sellick | 1252.0 | 3.097604 |
|  |  |  | 3380808.0 | 1580915.0 | Wetner 2 | 7288.2 | 3. 862620 |
| $\underset{2864}{\text { Topog No. } 5 \dagger}$ | 370421.725 | 669.7 | 1590838.3 | 3390813.8 | Tranta | 2814.2 | 3. 44936a |
|  | 122 1583.219 | 573.6 | 2374138.6 | 574250.7 | Pine | 3980.0 | 3. 599888 |
|  |  |  | 3035049.2 | 1935125.9 | Cook | 1812. 1 | 3. 258194 |

* This jolat is in the area of the rgo6 earthquake disturbance.
$\dagger$ See D. 292.

Monterey Bay to San Francisco Bay-Continued.

| Station | Latitude and longitude | Sec onds in meters | Azimuth | Back szimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hilltop with single tree *$1865$ | - ' ${ }^{\prime}$ |  | - ' ${ }^{\circ}$ | , " |  | meters |  |
|  | 370858.505 | 1803.5 | 904102.6 | 2703838.2 | Middle Point | 5900. 7 | 3. 770906 |
|  | 1221735.480 | 875. 5 | 1120802.4 | 2920434.8 | Pigeon Point | 9590.6 | 3. 981844 |
|  |  |  | $121 \quad 153^{8 .} 3$ | 3011247.8 | Ranch | 8144.5 | 3. 910864 |
| $\underset{1864}{T o p o g}{ }^{\text {Topog }}$ | 370825.664 | 791. 1 | 125 If 29.0 | 3051051.5 | Middle Point | 1875.6 | 3. 273129 |
|  | 1232032.468 | 801.3 | 2245052.5 | . 445154.3 | Gushee | 3575. 5 | 3. 553335 |
|  |  |  | 2740707.8 | $94 \quad 0919.4$ | Stecle | 5399. 1 | 3. 732318 |
| $\begin{aligned} & \text { Jack * } \\ & 1865 \end{aligned}$ | $\begin{array}{llll}37 & 15 & 31.337\end{array}$ | 966. I | 20448 26.9 | 244848.1 | Pescadero | 2056.6 | 3.313140 |
|  | 1222446.742 | 11518 | 22835 Or. 2 | $483^{22} 57.5$ | Peak | v315.3 | 3. 800391 |
|  |  |  | 2990027.3 | 1190300.9 | Beutro | 7149.3 | 3.854262 |
| $\underset{1865}{\text { High Top }}$ | 371959.635 | 1838.5 | 685052 | 2484632 | Peak | 11313.7 | 4.053606 |
|  | 1221426.251 | 646.3 | 945922 | 2745400 | Wetner 2 | 13130.4 | 4.118277 |
|  |  |  | 1065716 | 2865317 | Gilbert | 10125.7 | 4.005424 |
| $\begin{gathered} \text { Green Top* } \\ \mathbf{8 8} 5 \end{gathered}$ | 372311.515 | 355.0 | 335354 | 2135039 | Peak | 9820.6 | 3. 992140 |
|  | 1221752.371 | 1288.7 | 695403 | 2495046 | Wetner 2 | 8526.4 | 3.930764 |
|  |  |  | 762311 | 2562117 | Gilbert | 4746.5 | 3.676375 |
| $\underset{8864}{T o p o g} \operatorname{No.~} 8 * \ddagger$ | 37 10 19.54 | 602. 4 | $\begin{array}{llll}281 & 56 \\ 36\end{array}$ | 1015809 | Gushee | 4711.5 | $3.673 \times 6$ |
|  | 1222157.10 | 1408.7 | 347 0708 | 1670722 | Middle Point | 2492.4 | $\text { 3. } 3966 \mathrm{I}$ |
| $\underset{1864}{\text { Topgr No. } 6 * \ddagger}$ | $\begin{array}{rrrr}37 & 06 & 50.32 \\ 132 & 18 & 03.55\end{array}$ | 1548.5 87.6 | $\begin{array}{rrrr}91 & 16 & 28 \\ 168 & 06 & 51\end{array}$ | 271 <br> 378 <br> 348 <br> 15 | Point Ano Nuevo | 2574.1 5597 |  |
|  | 11221803.55 | 87.6 | 1680651 | 348063 | Gushee | 5597. 1 | $\text { 3. } 74796$ |
| Gushee's house chimney* $\ddagger$ 1864 | 37 09 $\infty$ <br> 122   | 16.0 1042.1 | $\begin{array}{llll}284 & 34 & 04 \\ 341 & 14 & 56\end{array}$ | $\begin{array}{llll}104 & 36 & 22 \\ 161 & 15 & 29\end{array}$ | Steele <br> Point Ano Nuevo | 5812.9 4181.8 | 3. 76439 |
|  | 1222042.23 | 1042. 1 | 3411456 | 1614529 | Point Ano Nuevo | 4181.8 | $3.62136$ |
| $\underset{I 864}{\text { Topog No. }} 4 \dagger$ | $\begin{array}{rrrr}37 & 03 & 21.829\end{array}$ | 672.9 | 1954953.8 | $\begin{array}{llll}15 & 49 & 59.6\end{array}$ | Cook | $870.0$ |  |
|  | 1221431.907 | 788.4 | $\begin{array}{llll}331 & 03 & 11.4 \\ 332 & 19 & 58.3\end{array}$ | $\begin{array}{llll}151 & 03 & 45.3 \\ 152 & 20 & 41.6\end{array}$ | Topog No. 3 | $2875.5$ | $\text { 3. } 458706$ |
| $\underset{1864}{\text { Cutts No. } 1} \ddagger \ddagger$ | $36 \quad 5900.39$ | 12.0 | 2913826 | $\begin{array}{ll}111 & 39\end{array}$ | St. Johns Hill | 1865.5 | 3. 27080 |
|  | 1220641.55 | 1027.6 | 270305 | 207 03 or | Rice | 377.3 | 2. 57669 |
| Dunlop's house chimney* $\boldsymbol{t}$ 1864 | $36 \quad 5823.25$ | 716.7 | 3200648 | 1400710 | Parsons | 1405.6 | 3.14785 |
|  | 1220742.15 | 1042.6 | 1011536 | 2811445 | Lagoon | 2139.8 | 3. 33038 |
| $\underset{1864}{\text { N. gable barn No. } 2} * \ddagger$ | $3^{6} 588 \times 5.85$ | 488.6 | 404359 | 2304248 | Parsons | 1122.0 | 3. 04998 |
|  | 1230636.13 | 893.7 | 1633453 | 3433446 | Rice | 1081.2 | 3.03390 |
| Rice's house chimney * $\ddagger$ 1864 | $\begin{array}{rrr}36 & 58 & 10.69 \\ 122 & 06 & 55.98\end{array}$ | 329.5 1384.7 | $\begin{array}{r}19 \\ 188 \\ 188 \\ \hline 8\end{array}$ | $\begin{array}{rrrr}199 & 11 & 47 \\ 8 & 48 & 43\end{array}$ | Parsons Rice | 732.3 1210.3 | $\begin{aligned} & \text { 2. } 86_{4} 66 \\ & \text { 3. } 08286 \end{aligned}$ |
| $\underset{1864}{\text { N. gable, old house }} \ddagger \ddagger$ | 365732.20 | 992.6 | 132 of 23 | 3120519 | Rice | 3554. 2 | 3. 55074 |
|  | 1220501.87 | 46.3 | 1601137 | 340119 | St. Johns Hill | 2158.3 | 3. 33412 |
| Balcraft's Ldg. flagstaff 1864 | $\begin{array}{lllll}36 & 57 & 13.288\end{array}$ | 406.5 | $2073433 \cdot 3$ | 2873421.2 | Balcraft 1 | 527.5 |  |
|  | 1220509.772 | 241.8 | 1103944.7 | 3903835.0 | Parsons | 3065.4 | $\text { 3. } 486488$ |
|  |  |  | 140340808 | 3203309.5 | Rice Hill | 3843.9 | 3. 584777 |
|  |  |  | 1682526.8 |  | St. Johns Hill | 2670.9 | 3. 426660 |
| $\begin{gathered} \text { West gable barn }{ }^{*} \ddagger \\ 1864 \end{gathered}$ | 365741.13 | 1267.9 |  | 1472116 | Baicraft 1 | 833.9 |  |
|  | 1220548.28 | 1194.4 | 963259 | 2763212 | Parsons | 1938. 1 | $\text { 3. } 28514$ |
| $\underset{{ }_{1864}}{\text { Waddell's whari, E. pier* } \ddagger}$ | $\begin{array}{rrrr}37 & 06 & 59.23 \\ 122 & 18 & 44.50\end{array}$ | 1835.9 1098.6 | $\begin{array}{lll}230 & 05 & 12 \\ 299 & 16 & 19\end{array}$ | $\begin{array}{rrr}50 & 06 & 19 \\ 119 & 17 & 56\end{array}$ | Stecle Tranta | 3546.5 4549.6 | $\begin{aligned} & \text { 3. } 54980 \\ & \text { 3. } 65797 \end{aligned}$ |
| San Jose Catholic Institute spire 1854 | 372007.208 | 222. 2 | $\begin{array}{lllll}268 & 35 & 08.9\end{array}$ | 884051.8 | Masters Hill | 13919.9 | 4. 143635 |
|  | 12153 38. 534 | 948.6 | 34944454.3 | 1694635.5 | Loma Prieta | 25258.3 | 4. 402405 |
|  |  |  | 853353.0 | 2652440.8 | Black Mountain | 22495.8 | 4. 352103 |
| Santa Clara Catholic Church, spire 1854 | 3730588.760 | 1811.6 | 2735540.1 | 940304.4 | Masters Hill | 18070.7 | 4. 256975 |
|  | 1215625.605 | 630.3 | $\begin{array}{rrrr}341 & 56 & 27.4 \\ 79 & 40 & 05.1\end{array}$ | $\begin{array}{lllll}261 & 59 & 58.7 \\ 259 & 32 & 34.1\end{array}$ | Loma Prieta Black Mountain | 27811.0 18616.6 | 4. 444217 4. 269901 |
| Gilroy Pres. Ch.,whitesp. $\ddagger$ 1884-85 | $37 \times 0 \times 7.99$ | 862.9 | 1152905.2 | 2951914.7 | Loma Pricta | 26798.3 | 4.428108 |
|  | 121 <br> 184 <br> 16.64 |  | 2903243.9 | 1104456 | Santa Ana | 32225.6 | 4. 508201 |
| $\begin{aligned} & \text { Two Tree Hill * } \\ & \text { s854 } \end{aligned}$ | $36 \quad 29 \quad 33.86$ | 1043. 7 | 184.34 ¢ 00.3 | 42608.5 | Loma Prieta | 68854.4 | 4.837932 |
|  | 1225420.37 | 258. 2 | 2293722.1 | 494104.7 | Gavilan | 45014.1 | 4.653349 |
| Calaveras Point 1854 | 372759.072 | 1821. 2 | 274741.0 | 20744 O8. 9 |  | 18439.6 | 4. 265752 |
|  | 1220300.220 | 5.4 | 1001457.5 | 280 | Ridge | 29209.6 | 4.465526 |
|  |  |  | 1571646.8 | 3371509.0 | Red Hill | 10216.9 | 4.00932 |

* This point is in the area of the rgos earthauake disturbance
$\dagger$ See page 292. $\ddagger$ No check on this position. $6348 \mathrm{I}^{\circ}$ — 1 I ————7


## Monterey Bay to San Francisco Bay-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Whites Landing * $\dagger$ 1854 | ' | m | - ' " | , " |  | melers |  |
|  | $36 \quad 5425.58$ | ${ }^{888.5}$ | 1125522 | 2924747 0 0 | Santa Cruz Loma Prieta | 20349. 1 | 4. 308545 4.355414 |
|  | 121504092 | 1013.0 | 1801650 | $\bigcirc 1653$ | Loma Prieta | 22688.0 | 4.355414 |
| Santa Cruz warehouse, flagstaff * $\dagger$ 1854 | 365740.14 | 1237.4 | 51850 | 1851848 | Santa Cruz Point | 1070. 6 | 3. 02964 |
|  | 122 O1 28.69 | 709.8 | 1250229 | 305 O1 23 | Santa Cruz | 3323.0 | 3. 52153 |
| $\underset{1863}{\text { Wetner } \dagger}$ | 372210.950 | 337.6 | $\begin{array}{llll}156 & 09 & 29.9\end{array}$ | 3360806.0 | Johnston | 8394.4 | 3. 923990 |
|  | 1222408.985 | 221.0 | 207 <br> 146 <br> 146 <br> 10 | 272750.4 3292532.1 | Summit | 7256.2 16604.7 | 3.860712 4.220331 |
|  |  |  | 1492900.8 | 3292532.1 | Pillar Point | $16604 \cdot 7$ | 4.22031 |
| San Jose Mission Church ${ }_{18}$ | $\begin{array}{rrrr}37 & 32 & 03.19 \\ 125 & 55 & 09 . & 09\end{array}$ | 98. 4 | 401800 | $\begin{array}{llll}220 & 09 & 41 \\ 266 & 29 & 04\end{array}$ | Black Mountain Ridge | 31229.8 40378.6 | $\begin{aligned} & \text { 4. } 494569 \\ & \text { 4. } 606151 \end{aligned}$ |
|  | 1215509.09 | 223.2 | 864544 | 2662904 | Ridge | 40378.6 |  |

Astronomic stations, mountain peaks, and miscellaneous points.

| Mt. Lola Latitude Station 1879 | $\begin{array}{rrrr}39 & 26 & 00.28 \\ 120 & 21 & 51.32\end{array}$ | 8.6 1227.4 | 4425 | 22425 | Mount Lola | 9.53 | 0.97887 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Round Top Latitude Station 1879 | $\begin{array}{rrr}38 & 39 & 50.30 \\ 120 & 00 & 01.57\end{array}$ | 1551.0 38.0 | 26806 | 88 -6 | Round Top | 10.70 | 1. 02945 |
| ```Yolo SE. Base Latitude Station I880``` | 383142.63 1214756.59 | 1314.5 1370.7 | 7336 | 25336 | Yolo SE. Base | 48.71 | 1. 68762 |
| Yolo NW. Base Latitude Station 1880 | $\begin{array}{rrrr}38 & 40 & 44.94 \\ 125 & 51 & 28.74\end{array}$ | $\begin{array}{r} 1385.7 \\ 694.7 \end{array}$ | 31145 | 13145 | Yolo NW. Base | 5.95 | -. 77460 |
| Monticello Latitude Station 1880 | $\begin{array}{rrrr}38 & 39 & 50.96 \\ 122 & 11 & 22.22\end{array}$ | 1571.3 537.2 | 1538 | 19538 | Monticello | 9.96 | 0. 99818 |
| Vaca Latitude Station 1880 | $\begin{array}{rrr} 38 & 22 & 33.44 \\ 522 & 05 & 01.22 \end{array}$ | $\begin{array}{r} 1031.1 \\ 29.6 \end{array}$ | 12118 | 30118 | Vaca | 21.95 | 1.34135 |
| Mt. Tamalpais Latitude Station $\ddagger$ 工882 | $\begin{array}{r} 375527.55 \\ 1223545.46 \end{array}$ | $\begin{array}{r} 849.3 \\ 1110.3 \end{array}$ | 28313 | 10313 | Mount Tamalpais | 5.60 | -. 74789 |
| Mocho Latitude Station 1887 | $\begin{array}{r} 3728 \\ 12139.70 \\ 128.72 \end{array}$ | $\begin{array}{r} 1223.9 \\ 460.0 \end{array}$ | 90 | 270 | Mocho | 1.60 | 0.20418 |
| Mt. Diablo Latitude Station 1876 | $\begin{array}{rrr}37 & 5255.45 \\ 122 & 54 & 50.45\end{array}$ | $\begin{array}{r} 1709.6 \\ 1232.7 \end{array}$ | 26902 | 8902 | Mount Diablo | 51.15 | 1. 70886 |
| $\underset{185^{2}}{\text { Presidio Latitude Station } \dagger}$ | $\begin{array}{rrrr}37 & 47 & 39.17 \\ 122 & 27 & 13.62\end{array}$ | 1307.6 333.2 |  |  |  |  |  |
| Presidio Latitude Station, E. pier $\dagger$ 1896 | $\begin{array}{rrrr}37 & 47 & 51.39 \\ 122 & 27 & 05.17\end{array}$ | $\begin{array}{r} 1584.2 \\ 126.5 \end{array}$ | - |  |  |  |  |
| Lafayette Park Latitude Station $\dagger$ 1888-1895 |  | 984.4 909.2 |  |  |  |  |  |
| Ross Mt. Latitude Station 1859-60 | $\begin{array}{r} 383020.58 \\ 1230708.82 \end{array}$ | $\begin{aligned} & 634 \cdot 6 \\ & 213 \cdot 7 \end{aligned}$ | 8950 | 26950 | Ross Mountain | 9.68 | 0. 98876 |
| Mount Helena: Helena Eccentric 1876 | $\begin{array}{rrr}38 & 40 & 10.511 \\ 132 & 37 & 59.520\end{array}$ | $\begin{array}{r} 324.1 \\ 1439.0 \end{array}$ | 2465421 | 665422 | Mount Helena | 44. 77 | 1. 65096 |
| $\underset{1876}{\text { Helena Flank }}$ | 383921.930 1223656.499 | 676.2 1366.2 | $\begin{array}{r} 691942 \\ 13431 \\ 135 \\ 138 \\ 268 \\ 268 \\ 29 \end{array}$ | $\begin{array}{rrr} 249 & \infty & 51 \\ 314 & 30 & 36 \\ 315 & 37 & 44 \\ 88 & 45 & 57 \end{array}$ | Ross Mountain Helena Eccentrio Mount Helena Monticello | 46945.1 2136.8 2120.0 37103.9 | $\begin{aligned} & 4.67159 \\ & 3 \cdot 32977 \\ & 3 \cdot 32633 \\ & 4 \cdot 56942 \end{aligned}$ |

Astronomic stations, mountain peaks, and miscellaneous points-Continued.

| Station | Latitude and longitude | $\mathrm{Sec}-$ onds in meters | Azimuth | Back azimuth | Tostation | Distance | Logerithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mount IIelena-Con. <br> Vertical Circle Station 1876 | - ' 1 | $m$ | , " | - ' " |  | meters |  |
|  | $3840 \quad 10.329$ | $3 \times 8.5$ | 3153916 | 1353953 | Helena Flank | 2086.7 | 3.31946 |
|  | 1223756.826 | $\times 373.8$ | 945458 | 2745456 | Helena Eccentric | 65.36 | 1.85 533 |
|  |  |  | 1340255 | 314 O2 54 | Mount Helens | 33.31 | 1. 52260 |
| Spurgreen tree 1876 | 38 <br> 89 <br> 38 <br> 8.888 | 1199. I | 1381128 | 318 II 05 | Vertical Circle Sta. | 1300.8 | 3. 11421 |
|  | 1223720.955 | 506.6 | 3112918 | 1312933 | Helena Flank | 789.4 | 2.89730 |
| A ${ }_{1876}$ | $\begin{array}{ll}38 & 39 \\ 59.618\end{array}$ | 1838.3 | 3385750 | 1585757 | Spur greentrce | 684.8 | 2. 83559 |
|  | 1223731.123 | 752.4 | 1175948 | 2975932 | Vertical Circle Sta. | 703.7 | 2.84740 |
| $\text { S. Flat }{ }_{1876}$ | $\begin{array}{llll}38 & 39 & 26.247\end{array}$ | 809.3 | 1212407 | 3012351 | Spur areen tree | 748.2 | 2.87400 |
|  | 1223654.543 | 1318:8 | 1320442 | 3120404 | Vertical Circle Sta. | 2028.6 | $3 \cdot 30720$ |
|  |  |  | 1320637 | $\begin{array}{llll}312 & 05 \\ 319\end{array}$ | Mount Helena | 2061.7 | 3-31423 |
|  |  |  | 1391930 | 3191907 |  | 1356.8 | 3. 13253 |
| Latitude Station 1876 | 3840 10. 58 | 326.2 | 1501024 | 3301024 | Mount Helena | 17.74 | 1. 24900 |
|  | 1223757.45 | 1388.8 | 2971149 | 1171150 | Vertical Circle Sta. | 17.00 | 1. 23040 |
| East summit | $\begin{array}{rrrr} \\ 8 & 39 & 57.77\end{array}$ | 1781.3 | 3562230 | 1762231 27351 | South Flat | 974.0 | $2.98855$ |
|  | 12236.57 .99 | 1380.3 | 93 <br> 105 <br> 105 <br> 07 | $\begin{array}{lll} 273 & 57 & 24 \\ 285 & 00 & 23 \end{array}$ | Vertical Circle Sta. | 824.7 1495.1 | $\begin{aligned} & 2.91631 \\ & 3.17468 \end{aligned}$ |
| Mount Conness: <br> W. Base 1890 |  |  |  |  |  |  |  |
|  | 375757.317 | 1767. 2 | 1142414 | 2942405 | Mount Conness | 393.5 | 2. 59495 |
|  | 1191859.546 | 1453.5 |  |  |  |  |  |
| E. Base 189 | 375754.867 | 1691.6 | 1142522 | 2942509 | Mount Conness | 575.9 | 2. 76036 |
|  | 1191852.744 | 1287.5 | 1142742 | 2942737 | W. Base | 182.4 | 2. 26099 |
| Lower Jagged 1890 | 375747.549 | 1466.0 | 1625927 | 3425923 | Mount Conness | 484.9 | 2.68568 |
|  | 1191908.415 | 205.4 | 2154239 | 354244 | W. Base | 370.9 | 2. 56926 |
|  |  |  | 2392746 | 592756 | E. Base | 444. 1 | 2.64749 |
| Slope 1890 | 375746.109 | 1425. 6 | 960205 | 2760155 | Lower Jagged | 422.6 | 2.62593 |
|  | 119 18 51. 199 | 1249.8 | 1320653 | 3120639 | Mount Conness | 757.7 | 2.87952 |
|  |  |  | 1492832 | 3292827 | W. Base | 401.2 | 2.60332 |
|  |  |  | 1720246 | 3520246 | E. Base | 272.7 | 2.43563 |
| Vertical Circle Station 1890 | 375758.988 | 1818.7 | 2834708 | 1034713 | W. Base | 216. 2 | 2.33480 |
|  | 1191908.147 | 198. 9 | 2884007 | 1084017 | E. Base | 396.8 | 2. 59863 |
|  |  |  | 3134926 | 1334936 | Slope | 573.4 | 2. 75848 |
| Magnetic Station1890 | $\begin{array}{rrr}37 & 57 & 59.812 \\ 119 & 19 & 07.720\end{array}$ |  | $\begin{array}{llll}118 & 20 & 05 \\ 291 & 05 & 07\end{array}$ | $\begin{array}{llll}298 \\ 11 & 20 & 01 \\ 11 & 05 & 12\end{array}$ | Mount Conness W. Base | 180.4 213.9 | $2.25634$ <br> 2. 33012 |
|  | 1191907.720 | 188.4 | $\begin{array}{llll}291 & 05 & 07 \\ 292 & 38 & 17\end{array}$ | $\begin{array}{llll}111 & 05 \\ 112 & 12 \\ 123 & 26\end{array}$ | W. Base <br> E. Base | 213.9 | $\text { 2. } 33012$ |
|  |  |  | $\begin{array}{llll}292 & 38 & 17 \\ 316 & 19 & 52\end{array}$ | 1123826 136 30 | E. Base Slope | 396. I 584.1 | $\begin{aligned} & \text { 2. } 59778 \\ & \text { 2. } 76648 \end{aligned}$ |
| Latitude Station 1890 |  |  | 1215906 | 3015902 | Mount Conness | 194. 5 | 2. 28890 |
|  | 1191907.469 | 182.3 | 1602945 | 3402945 | Magnetic Station | 18.4 | 1. 26580 |
|  |  |  | 2870700 | 1070705 | W. Base | 202.4 | 2. 30011 |
|  |  |  | 2903549 | 1103559 | E. Base | 384.0 | 2. 58429 |
| Maryszille: <br> Court-house flagstaff 1898 |  |  | 3153404 | 1353414 | Slope | 567.3 | 2. 75384 |
|  | $\begin{array}{rrr}39 & 08 & 29.645 \\ 121 & 35 & 17.366\end{array}$ | $\begin{aligned} & 914.2 \\ & 417.0 \end{aligned}$ | 1094726.0 | 28938 39.1 | Marysville Butte | 21271. 1 | 4.327790 |
| Stone 189 | 391158.397 1214351.495 | 1800.9 1235.6 | $\begin{array}{r}2973003.5 \\ 95 \\ \hline 5\end{array}$ | $\begin{array}{llll}117 & 35 & 28.2 \\ 275 & 28 & 07.1\end{array}$ | Court-house flagstaff Marysville Butte | 13920.0 7714.8 |  |
|  | 1214351.495 | 1235.6 | 953129.4 | 27528 07. I | Marysville Butte | 7714.8 | $3.887327$ |
| $\begin{array}{r} \text { Walton } \\ 1898 \end{array}$ | $\begin{array}{rrrr}39 & 09 & 40.433 \\ 121 & 41 \\ 16.333\end{array}$ | 2146.9 392.1 |  |  | Marysville Butte Stone |  |  |
|  | 1214116.333 | 393. 1 | 138 <br> 138 <br> 384 <br> 38 <br> 10 | $\begin{array}{llll}318 & 47 & 19.8 \\ 104 & 14 & 35.1\end{array}$ | Stone Court-house flagstaff | $5654 \cdot 3$ 8891.8 | 3. 752378 3.948089 |
|  |  |  | 2841048.5 | 1041435.1 | Court-house flagstaff | 889 I .8 | 3.948989 |
| Roll ${ }_{189}$ | $\begin{array}{llll}39 & 10 & 43 \cdot 885\end{array}$ | 1353.4 | $116443^{88.2}$ | 2964159.3 | Marysville Butte | 6753.6 | 3. 829533 |
|  | 1214500.176 | 4. 2 | 2153850.0 | 35 35 36 36 | Stone | 2827.9 | 3. 451458 |
|  |  |  | 2862545.7 | 1063153.7 | Court-house flagstaff | 14.592 .3 | 4. 164125 |
|  |  |  | 2895920.5 | 110 0141.9 | Walton | 5718.7 | 3. 757298 |
| Fields | 391057.614 | 1776.8 | - 0 08. 7 | 1800008.7 | Walton | 2380.1 |  |
|  | 1214156.329 | 392.0 | 853050.8 | 2652829.4 | Roll | 5389.5 | 3. 731546 |
|  |  |  | 1164358.4 | 2964220.4 | Stone | 4168.9 | 3. 620025 |
| Elmer 1898 | $\begin{array}{rrrrr}39 & 90 & 549\end{array}$ | 325.3 | 1103139.1 |  | Walton Fields | $2629.2$ | $3.419826$ |
|  | 1213933.776 | 811. 1 | 14317 54.1 | 33.31649 .3 | Fields | 4118.5 | $3.614740$ |
| $\begin{array}{r} \text { N. Base } \\ 1898 \end{array}$ | 391123.305 | 718.7 | 3572148.8 | 1772153.8 | Eimer | 4098.2 | 3.612598 |
|  | 1213941.627 | 999. x | $\begin{array}{llllll}35 & 38 & 01.8\end{array}$ | 2153702.0 | Walton | 3902.8 | 3. 591375 |
|  |  |  | 704729.0 | 25046 29.2 | Fields | 2407.0 | 3. $3^{814474}$ |
|  |  |  | 805937.0 | 2605615.8 | Roll | 7741.5 | 3.888826 |
|  |  |  | 973807.2 | 2773307.1 | Marysville Butte | 13796.5 | 4. 139770 |
|  |  |  | 1001508.8 | 3801231.0 | Stone - | 6093.1 | 3.784835 |

Astronomic stations, mountain peaks, and miscellaneous points-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | Tostation | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Marysville-Continued. <br> S. Base 1898 | " | m | " | " |  | meters |  |
|  | 391044.505 | 1372.5 | 490234.2 | 229 or 34.3 | Walton | 3013.8 | 3.479109 |
|  | 1213941.535 | 997.0 | 1000500.1 | 2800400.2 | Fields | 2310.9 | 3. 363780 |
|  |  |  | 179 3063 350 | $\begin{array}{lllll}359 & 53 & 38.2 \\ 176 & 19 & 20.7\end{array}$ | $\underset{\text { Eimer }}{\text { N. Base }}$ | 1196.5 2903.4 | 3.077918 3.462904 |
|  |  |  | $\begin{array}{lllll}356 & 19 & 15.8\end{array}$ | 17619 20.7 | Elmer | 2903.4 | 3.462904 |
| South Meridian$1898$ | $\begin{array}{r}39 \\ \hline 121 \\ \hline 15 \\ \hline 15\end{array}$ | 618.9 | $\begin{array}{llll}111 & \text { Or } & 57.0 \\ 240 & 25 & 33.8\end{array}$ | 290 60 60 $25 \begin{aligned} & 23.8 \\ & 47.4\end{aligned}$ | Marysville Butte Court-house flagstaff | $\begin{array}{r} 20886.3 \\ 598.4 \end{array}$ | 4. 319862 <br> 2. 776991 |
|  | 1213539.036 | 937. 5 | 2402533.8 | 602547.4 | Court-house flagstaff | 598.4 | 2. 776991 |
| North Meridian 1898 | $\begin{array}{r}39 \\ 121 \\ 121 \\ \hline 15\end{array}$ | 898.3 937.5 | $\begin{array}{rrrr}268 & 14 & 15.6 \\ 0 & 00 & 14.6\end{array}$ | $\begin{array}{rrrr}88 & 14 & 29.3 \\ 180 & 00 & 14.6\end{array}$ | Court-house flagstaff South Meridian | 520.7 279.3 | $\begin{aligned} & 2.716559 \\ & 2.446110 \end{aligned}$ |
|  | 1213539.036 | 937. 5 |  | 1800014.6 | South Meridian | 279.3 | 2.446110 |
| Middle Meridian 1898 | $\begin{array}{rrrr}39 & 08 & 25.602 \\ 135 & 35 & 39.037\end{array}$ | 789.6 937.5 | 00014.6 1800014.6 | 180 000514.6 060514.6 | South Meridian North Meridian | 170.6 108.7 | $\begin{aligned} & 2.232106 \\ & 2.036150 \end{aligned}$ |
|  | 1213539.037 | 937. 5 | $\begin{array}{llll}180 & 00 & 14.6 \\ 256 & 31 & 34.8\end{array}$ | $\begin{array}{r}0 \\ \hline 6 \\ 7 \\ \hline\end{array}$ | North Meridian | 108.7 535.3 | $\begin{aligned} & 2.036 \mathrm{r} 50 \\ & 2.72848 \mathrm{I} \end{aligned}$ |
| Presbyterian Church 1898 | 390825.847 | 797. I | 714037.1 | 2514023.0 | South Meridian | 567.3 | 2. 753848 |
|  | 1213516.584 | 398.3 | 891046.7 | 2691032.6 | Middle Meridian | 538.6 | 2.731284 |
|  |  |  | 1023616.7 | 2823334.3 | Elmer | 6328.1 | 3.801276 |
|  |  |  | 10456 28.4 | 2845241.3 | Walton | 8939.4 | 3.951308 |
|  |  |  | 1003707.1 | 2803653.0 | North Meridian | 547.9 | 2. 738720 |
|  |  |  | 1235552.5 | 3035305.2 | S. Base | 7064.8 | 3.884502 |
|  |  |  | 1304311.6 | 3104024.2 | N. Base | 8392.6 | 3.923896 |
| Catholic Church 1898 | 390835.689 | 1100.6 | 994847.9 | 27946 04. 1 | Eimer | 6321.7 | 3.800836 |
|  | $121 \begin{array}{llll}35 & 14.289\end{array}$ | 343. I | 11646 21.1 | 2964054.5 | Stone | 13899.2 | 4. 142991 |
|  |  |  | 1214729.5 | 3014440.8 | S. Base | 7545.2 | 3.877668 |
|  |  |  | 1285237.6 | 3084948.7 | N. Base | 8239.5 | 3.915900 |
| North Butte, summit, pole 1898 | 391411.587 | 357.4 | 3184715.4 | 1314916.4 | Stone | 6161.7 | 3.789702 |
|  | 1214702.958 | 70.9 | 31507178 | 1351056.8 | Walton | 11794.2 | 4.071670 |
|  |  |  | $\begin{array}{lllllllllllllllll}335 & 17 & 24.8\end{array}$ | 1551842.4 | Roll | 7050.1 | 3.848 I 96 |
| Latitude Station 1898 | 390819.59 | 604.2 | 1800 | $0 \infty$ | South Meridian | 14.71 | 1. 1676x |
|  | 1213539.04 | 937.6 |  |  |  |  |  |
| $\underset{1889}{\text { Longitude Station }}$ | 3908 29.19 | 900.2 |  |  |  |  |  |
|  | 1213510.32 | 247.8 |  |  |  |  |  |
| Sacramento, bell on capitol dome 1876-1880 |  |  | 2651718.5 | 861312.4 | Round Top | 130346.2 | 5. 1150983 |
|  | 1712934.498 | 835.1 | 253847.8 | 2052310.9 | Mount Diablo | 85476. 1 | 4.9318447 |
|  |  |  | 664726.3 | 2462522.5 | Vaca | 56188.5 | 4. 7496471 |
|  |  |  | 991555.2 | 2784949.9 | Monticello | 61432.4 | 4.7883974 |
| SacramentoStation$1888-89$ | 383434.80 | 1073.0 |  |  |  |  |  |
|  | 1212930.47 | 737.6 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Mount Hamilion: <br> N. Base <br> 1888 |  | 980.1 | 690150 | 249 of 49 | Lick Obs., N. dome | 24. 28 | 1.38525 |
|  | 1213930.786 | 757.8 | 69015 | 349 or 49 |  |  |  |
| Astronomic Eccentric 1888 | 372034.946 | 1077.4 |  | 2555653 | I,ick Obs., N. dome | 436.2 | 2.63978 |
|  | $121 \quad 3814.515$ | 357.3 | 762127 | 2562117 | N. Base | 412.1 | 2.61504 |
| $\begin{gathered} \text { Tycho } \\ 1888 \end{gathered}$ | 372035.610 | 1097.8 | 2954219 | 1154220 | Astron. Eccentric | 47. 1 | 1. 67346 |
|  | 1213816.241 | 399.8 | 713824 | 3513814 | Lick Obs., N. dome | 401. I | 2.60325 |
|  |  |  | 71487 | 2514818 | N. Base | 376.9 | 2.57617 |
| S. Base 1888 | 372039.000 | 894.0 | $19414 \begin{array}{ll}13 \\ 345\end{array}$ | $\begin{array}{llll}14 & 14 & 13 \\ 60 & 47\end{array}$ | N. Base | 88.8 |  |
|  | 1213831.674 | 779.6 | 2414716 | 614724 663216 | Tycho $\begin{aligned} & \text { Astron. Eccentric }\end{aligned}$ | 431.1 460.4 | $2.63455$ <br> 2.66316 |
|  |  |  | 2463206 | 663216 | Astron. Eccentric | 460.4 | 2.66316 |
| Longitude Station 1888 | 372034.8 I | 1073.2 | 67 | 247 | S. Base | 458.8 |  |
|  | 12 I 3814.52 | $357 \cdot 4$ | 77 | 257 300 | N. Base | 415.1 49.2 | $2.6140$ |
|  |  |  | 120 180 | 300 0 | Tycho Astron. Eccentric | 49.2 4.29 | 1.6917 0.6325 |
| Magnetic Station 1888 | 372036.810 | 1134.8 | 471254 | 2271252 | Astron. Eccentric | 84.6 | 1.92723 |
|  | 1213811.993 | 295.2 | 703049 | 2503046 | Tycho | 110.9 | 3.04494 |
| Residence, flagstaff 1888 | 372031.485 | 970.6 | 451357 | 2251356 | S. Base | 108.8 | 2.03660 |
|  | 1213828.535 | 702.4 | 994349 | 3794347 | N. Base | 56.3 | 1.74972 |
|  |  |  | 2471225 | 671232 | Tycho | 328.3 | 2.51621 |
|  |  |  | 2524900 | 724908 | Astron. Eccentric | 36 I .2 | 2. 55778 |
| Latitude Station 1888 | 37 <br> 121 <br> 120 <br> 184.81 <br> 14.43 | 1073.2 355.2 | 90 | 270 | Longitude Station | 2.02 | 0.3054 |
|  |  |  |  |  |  |  |  |

Astronomic stations, mountain peaks, and miscellaneous points—Continued.

| Station | Latitude and longitude | Sec onds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Calistoga, mark on depot 1876 | - ' ${ }^{\prime}$ | $m$ | " | - , " |  | meters |  |
|  | 383449.288 | 1519.8 | 1540823 | 3340619 | Helena Eccentric | 11008.8 | 4.04174 |
|  | 1223440.894 | 990.0 | 1542221 | 3342018 | Mount Helena | 11006.8 | $4.04 \times 66$ |
|  |  |  | 1542558 | 3342355 | Vertical Circle Sta. | 10976.0 | $4.04045$ |
|  |  |  | $15^{8} 4138$ | 3384012 | Helena Flank | 9025.3 | $3.95546$ |
| Calistoga Church, N. corner 1876 | 383449.573 | 1528.6 | 15542 It | 3354015 | Mount Helena | 10878. 5 | 4.03657 |
|  | 1223452.660 | 1274.6 | 1602236 | 340 a1 17 | Helena Flank | 8917.2 | 3.95023 |
|  |  |  | 2714536 | 914543 | Calistoga, mk. ondp. | 284.9 | 2.45475 |
| Downieville Butte, N. highest peak 1876-79 | 3935588.23 | 1179.0 | 2570931 | 775217 | Pah Rah | 103018.7 | 5.012916 |
|  | $\pm 20{ }^{88} 45.81$ | 1093. 1 | 306154 x | 1262626 | Mount Lola | 30082.1 | 4.478308 |
|  |  |  | 303025 | 2094249 | Mount Diablo | 219664.0 | 5-341759 |
|  |  |  | 59465 T |  | Mount Helena | 200083. 8 | 5.301212 |
| Santa Rosa Court-house, dome* 1891 | 382625.60 | 789.4 | 1014033.90 | $\begin{array}{lllll}281 & 25 & 23.94\end{array}$ | Ross Mt. | 36188.0 | 4. 5585643 |
|  | 1234246.60 | 1130.3 | $195 \quad 2010.75$ | $15 \quad 2310.74$ | Mount Helena | 26396.4 | 4.4215449 |
| Pyramid Peak$1876-79$ | $38 \quad 5043 \cdot 35$ | 1336.7 | 554111 | 2343547 | Mount Diablo | 287063. 1 | 5.271990 |
|  | 1200925.70 | 619.8 | 853555 | 2640256 | Mount Helena | 216061.8 | 5. 334578 |
|  |  |  | 1644308 | 3443516 | Mount Lola | 67688. 5 | 4.830515 |
|  |  |  | 283 2854 325 | 10448 145 1457 | Mount Grant | 122703.8 24317.6 | 5.088858 |
|  |  |  | 3255115 | 1455708 | Round Top | 24317.6 | 4. 385920 |
| Jackson Butte $\dagger$ 1879-98 | $\begin{array}{llll} & 8 & 20 & 24.950\end{array}$ | 769.3 | 1505713.6 | 3304709.9 | Pine Hill | 48224.5 | 4.6832680 |
|  | 1204313.780 | 334. 7 | $240 \times 27.5$ | 602721.5 | Round Top | 72373.2 | 4.8595778 |
| Castle Peak, summit$1876-79$ | 392155.95 | 1725.5 | 692316 | 2475700 | Mount Helena | 212314.6 | 5. 326980 |
|  | 1202056.93 | 1362.8 | 1700852 | 3500818 | Mount Lola | 7641.0 | 3.883152 |
|  |  |  | 2372155 | 575524 | Pah Rah | 89057.4 | 4.949670 |
| Needle Peak, summit 1876-79 | 391203.95 | 12 T .8 | 442102 | 2332045 | Mount Diablo | 203009.3 | 5.307516 |
|  | 12018 OI. 34 | 32.2 | 742826 | $253 \infty 30$ | Mount Helena | 210651.2 | 5. 323564 |
|  |  |  | 1675645 | 3475421 | Mount Lola | 26368.5 |  |
| Dicks Peak or Red Peak 1876-79 | $38 \quad 54 \quad 03.08$ | 95.0 | 835946 | 2622627 | Mount Helena | 217216.1 | 5.336892 |
|  | $\begin{array}{llll}120 & 09 & 00.87\end{array}$ | 21.0 | 1624117 | $34^{2} 3310$ | Mount Lola | 61943.5 | 4. 791996 |
|  |  |  | 2565442 | 772015 | Mount Como | 60193.8 | 4.779552 |
|  |  |  | 3333551 | 1534129 | Round Top | 29345.8 | 4.467546 |
| Carys Peak, cairn 1878-79 | $3844 \times 20.000$ | 6.6 .7 | 532438.0 | 2331948.6 | Round Top | 13937.8 | 4. 144194 I |
|  | 1195218.343 | 440.7 | 1961246.4 | 16 37 <br> 184.0  | Pah Rah | 122162.7 | 5.0869385 |
|  |  |  | 2273816.4 | 475326.9 | Mount Como | 46704. 5 | 4.6693585 |
|  |  |  | 2805308.4 | 101 3339.3 | Mount Grant | 95934. 2 | 4.9819735 |
| Silver Mt. N. Peak, cairn 1879-80 | $3834{ }^{8} 03 \cdot 322$ | 102.4 | 1165249.6 | 2964343.3 | Round Top | 23736.7 | 4.3752376 |
|  | 1194525.781 | 624. r | 2055910.2 | 260950.6 | Mount Como | 56120.6 | 4.7491231 |
|  |  |  | 2611357.4 | 824410.9 | Toiyabe Dome | 211255 | 5.3248077 |
|  |  |  | 2692755.8 | 900405.1 | Mount Grant | 84227. 1 | 4.9254520 |
| Silver Mt. S. Peak or Highland Peak, cairn 1870-80 | 3832388.604 |  | 940458.5 | 2721713.0 | Mount Helena | 251058.6 | 5. 3997751 |
|  | 1194517.417 | 421.8 | 2044109.3 | 245144.3 | Mount Como | 58395.0 | $\text { 4. } 7663759$ |
|  |  |  | 2603135.3 | 82 O1 42.0 | Toiyabe Dome | 211469.6 | 5. 3252480 |
|  |  |  | 2674108.6 | 881712.0 | Mount Grant | 84089.6 | 4.9347424 |
| Jobs Sister, summit 1879-80 | $3^{8} 51545 \cdot 94$ | $14 \times 6.6$ | 244147 | 2043724 | Round Top | 24281. 3 | 4.385272 |
|  | 1195301.51 | 36.4 | 1465332 | 3263520 | Mount Lola | 75752.9 | 4. 879399 |
|  |  |  | 2433016 | 634545 | Mount Como | 39724.6 | 4. 598059 |
|  |  |  | 2700402 | 913918 | Toiyabe Dome | 219774.3 | 5.341977 |
|  |  |  | 2881296 | 1091027 | Mount Grant | 10044. 1 | 4-001910 |
| Swfetwater Mt., summit 1879-80 | $389614.21$ | 438.2 |  | 3195559 | Mount Lola | 143783. 1 | 5. 157708 |
|  | 1191815.64 | 379.3 | 1671758 | 347 II 31 | Mount Como | 66515.1 | 4.832920 |
|  |  |  | 2513306 | 715217 | Mount Grant | 47187.0 | 4.673822 |
|  |  |  | 2545402 | 760710 | Toiyabe Dome | 175540.4 | 5. 244377 |
| Hulls Mt., summit 1878-79 | $393 \times 20.86$ | $643 \cdot 3$ |  |  |  |  |  |
|  | 1325609.82 | 234.6 | $\begin{array}{llll}37 & 11 & 04 \\ 42 & 32 & 30\end{array}$ | $\begin{array}{llll}126 & 56 \\ 222 & 10 & 14\end{array}$ | Paxton Cold Spring | 53784.2 75095 | 4. 730655 |
|  |  |  | 473230 | 2221014 | Cold Spring | 75095.0 | 4.87512 |
| Buck Peak, summit$1875-79$ |  | 667.6 | $14620 \quad 18$ | 2261809 | Cold Spring | 8883.4 | 3. 948578 |
|  | 1231755.78 | 1343. 1 | 1525255 | 3324317 | Great Caspar | 48118.7 | 4.682314 |
|  |  |  | 2133599 | 334118 | Paxton | 23985.2 | 4.379944 |
|  |  |  | 3284942 | 1490243 | Ross Mt. | 58354.6 | 4.766075 |
| Sherwood Mt., highest knoll 1878-79 |  | 1434.7 | 3374034 | 1574807 | Paxton | 45229.1 | 4. 655418 |
|  | $123 \quad 3038.56$ | 921. 1 | 10340 | 2810312 | Cold Spring | 54443.8 | $4.735948$ |
|  |  |  | 432948 | 2332149 | Great Caspar | 36202. 2 | 4.418338 |

* No check on this position.
$\dagger$ Checked by vertical angles only.

Astronomic stations, mountain peaks, and miscellaneous points-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | $\underset{\text { azimuth }}{\text { Back }}$ | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{1878-79}{\text { Round Valley Mit., summit }}$ | - , " | $m$ | " | , " |  | meters |  |
|  | 393544.32 | 1363.7 | 65827 21509 | 1865542 |  | 58412.3 | 4. 711109 |
|  | $123 \begin{array}{lllllll}13 & 23.32\end{array}$ | 556.4 | 21 <br> 183 <br> 55 <br> 59 | 200 <br> 206 <br> 235 <br> 2 | Cold Spring | 68123.3 50026.8 | 4. 8332296 4.699203 |
| Sanel Mt. 1859-78 | $\begin{array}{llll}38 & 56 & 55.800\end{array}$ | 1720.77.6 | 3501113.94 | 1701453.59 | Ross Mt. | 499 I 5.1 | 4.6982323 |
|  | 1231300.314 |  | 107 $16 \begin{aligned} & 54.64\end{aligned}$ | 28705122.50 | Cold Spring | 27716.4 | 44427362 |
|  |  |  | 1582207.64 | 33818 31.62 | Paxton | 22343.5 | 4. 3491519 |
| $\underset{\substack{\text { Walalla } \\ 1 R_{59}-7}}{ }$ | $\begin{array}{rl}38 & 51 \\ 124 & 724 \\ 123 & 29.322\end{array}$ | 762.4 | 1731640.72 | 3531544.08 | Cold Spring | ${ }^{18526.2}$ | 4. 2677874 |
|  |  | 1213.3 | 2072014.36 | 372714.13 | Paxton | 34887.5 | 4. 5426701 |
|  |  |  |  | $\begin{array}{r}67 \\ 139 \\ 139 \\ 57 \\ \hline 150.92\end{array}$ | Sancl Mt. Ross Mt. | 26392.1 51007 | 4. 4214748 4. 7076375 |
| $\underset{1859}{\substack{\text { Sulphur }}}$ | $3845 \quad 54.278$ 1225040.221 | $\begin{gathered} 1673.8 \\ 971.0 \end{gathered}$ | $3948 \times 5.72$ | 2193808.22 | Ross Mt. | 37431.0 | 4.5732317 |
|  |  |  | 1002331.63 | 2795858.67 | Walalla | 57610.0 | 4. 7604979 |
|  |  |  | 122 22 52.06 <br> 209 48 48 <br> 8   |  | Sanel Mt. | 38212.4 <br> 31242.6 | 4. 5822042 |
|  |  |  | 299 48 48.88 <br> 334 15 28.67 | 119 <br> 154 <br> 1545454.45 <br> 25 | Sount Memena | 21242.6 54380.9 | 4. 3272075 |
|  |  |  | ${ }^{7} 5057.83$ | 1874709.78 | Tomales Bay | 65322.4 | 4.8150621 |
| Sulphur Peak, Latitude Station $1859$ | $\begin{array}{rrr} 38 & 45 & 54.27 \\ 122 & 50 & 39.99 \end{array}$ | $\begin{array}{r} 1673.5 \\ 965.4 \end{array}$ | 91 2128 | 2712188 | Sulphur Peak | 5. 537 | 0. 7433 |
| $\underset{\mathrm{I} 88 \mathrm{I}}{\text { King Peak }}$ | 400926.187 | 807.7 | 3083802.37 | 1291733.19 | Mount Sanhedrin | 113170.88 | 5. 0537347 |
|  | . 2240724.332 | 575.9 | 318 05 40.32 <br> 338 58  <br> 17.57   |  | Cahto ${ }_{\text {Great }}$ Caspar | 69971.27 96948.52 | 4. 8449198 <br> 4. 9865412 |
| $\underset{\text { 188I }}{\text { Mount Lassic }}$ | 402003.791 | $\begin{aligned} & 116.9 \\ & 306.4 \end{aligned}$ | $336{ }^{31} 32.60$ | 15649 11. 23 | Mount Sanhedrin | 98977.89 ! | 4. 9952748 |
|  | $123 \quad 33$ 12.978 |  |  | 181 <br> 181 <br> 24743 <br> 17.98 | Cahto | 71916.70 | 4. 8568897 |
|  |  |  | $68 \quad 0622.97$ | 2474417.66 | King Peak | 52321.96 | 4. 7186840 |
| $\underset{工}{\text { Bear Ridge } \dagger}$ |  | $\begin{array}{r} 1624.9 \\ 890.3 \end{array}$ | 285 53 95.9 <br> 338 59  <br> 6.9   | $\begin{array}{lll} 106 & 21 & 53.6 \\ 159 & 06 & 23.7 \end{array}$ | Mount Lassic King Peak | $\begin{aligned} & 6_{5400 .} 3 \\ & 40507.7 \end{aligned}$ | $\begin{aligned} & 4.8155796 \\ & 4.6075375 \end{aligned}$ |
| $\underset{188 \mathrm{x}}{\mathrm{Mad}} \dagger$ |  | $\begin{aligned} & 353.2 \\ & 735.3 \end{aligned}$ | $\begin{array}{rrrr} 335 & 16 & 36.1 \\ 26 & 05 & 24.7 \end{array}$ | $\begin{array}{ll} 155 & 25 \\ 205 & 14.8 \\ 20 & 52.1 \end{array}$ | Mount Lassic <br> King Peak | $\begin{aligned} & 45058.3 \\ & 67430.4 \end{aligned}$ | $\begin{array}{r} 4.6537747 \\ 4.8288560 \end{array}$ |

Golden Gate to Point Arena.

| Point Reyes Mead * 1859 | 375948.260 1230050.766 | 1487.8 1238.6 | $\begin{array}{llll}196 & 06 & 03.11 \\ 282 & 12 & 44.86 \\ 234 & 21 & 19.75\end{array}$ | 16 <br> 102 <br> 102 <br> 28 <br> 54 <br> 54 <br> 26 <br> 10.93 <br> 46.28 | Tomales Bay Mount Tamalpais Point Reyes Hill | $\begin{aligned} & 21413.4 \\ & 37621.9 \\ & 15893.2 \end{aligned}$ | $\begin{aligned} & 4 \cdot 3300866 \\ & \text { 4. } 5754407 \\ & 4.2012108 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{1860}{\text { Red wood }}$ | 382412.028 | 370.9 | 3363615.0 | 1563925.5 | Smith | 18836.6 | 4.374772 |
|  | 1230116.324 | 396. | 3504035.1 | 1704120.1 | Bodega | 12883.8 | 4.036781 |
|  |  |  | 185525.8 | 1985353.3 | Bodega Head | 11173.4 | 4.048106 |
|  |  |  | 1430306.8 | 3225927.3 | Ross Mountain | 14225.3 | 4. 153061 |
| Bodega Hill * 1860 | $\begin{array}{rrr} 38 & 22 & 13.361 \\ 123 & 03 & 21.665 \end{array}$ | $\begin{aligned} & 412.0 \\ & 526.0 \end{aligned}$ | 1595054.0 | 3394832.4 | Ross Mountain | 15004. 6 | 4.204246 |
|  |  |  | 2194343.1 | 394500.9 | Redwood | 4758.3 | 3.677455 |
|  |  |  | 32548 56.2 | 1455058.8 | Bodega | 8558.4 | 3.932395 |
|  |  |  | 44646.3 | 1844631.6 | Bodega Head | $6933 \cdot 5$ | 3.840953 |
| Table Mount $\ddagger$ 1876 | 383543.700 | 1347.5 | 3215247.6 | 141 574 56 08.6 | Ross Mountain | 12659.4 | 4. 102412 |
|  | 1231231.745 | 768.2 | 3543925.4 | 1743948.6 | Dixon | 9692.2 | 3.986421 |
|  |  |  | 271932.6 | 2071820.4 | Heury Hill | 6107.2 | 3. 785839 |
| Lucky Tree $\ddagger$ 1876 | $\begin{array}{r}38 \quad 36 \\ 123 \\ \hline 1\end{array}$ | $\begin{array}{r} 1849.5 \\ 261.5 \end{array}$ | 2615927.1 | $82 \infty 58.4$ | I, ancaster |  | 3. 553874 |
|  |  |  | 315 11 03.0 | 1351257.3 | Funcke | 6301.5 | 3. 799447 |
|  |  |  | 3421756.3 | 1621841.8 | Salt Point | 5815.6 | 3. 764592 |
|  |  |  | 551053.3 | 2351016.7 | Horseshoe Point | 1728.6 | 3. 237704 |
| Smith $\ddagger$ 1870 | $\begin{array}{rrr}38 & 54 & 4.3 .278 \\ 123 & 42 & 36.697\end{array}$ | $\begin{array}{r} 1334.5 \\ 884.2 \end{array}$ | 12709 39. x |  | Arena | 1820.0 | 3. 26008 I |
|  |  |  | 2071748.5 | 272016.9 | Dunn | 12380.4 | 4.092735 |
|  |  |  | 2165053.3 | 365351.1 | Clark | 11350.9 | 4.055030 |
| $\underset{1870}{\text { Adams }}$ | $\begin{array}{rrrr}38 & 59 & 38.894 \\ 123 & 37 & 57.914\end{array}$ | $\begin{array}{r} 1199.3 \\ 1393.8 \end{array}$ | 284624.2 | 20843566.1 | High Bluff | 11784.1 | 4.071296 |
|  |  |  | 362333.0 | $2162037 \cdot 7$ | Smith | 11320.9 | 4.053880 |
|  |  |  | 453243 \% 5 | 2252910.5 | Arena | 11440.6 | 4.058449 |
|  |  |  | 65 108 111 105.6 | 245 288 28 Of 080.8 | $\underset{\text { Point Arena L. H. }}{\text { Lane }}$ | 10247.4 | 4.010615 |
|  |  |  | 1081110.5 | 28808 53. 5 | Lane | 5513.0 | 3.741390 |

*See pp. 292-3. $\quad+$ No check on this position. $\ddagger$ This point is in the area of the 1906 earthquake dist urbance.

Golden Gate to Point Arena-Continued.

| Station | Latitude and longitude | $\begin{gathered} \text { Sec } \\ \text { ondsin } \\ \text { meters } \end{gathered}$ | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{1870}{\substack{\text { Point Arena }}}$ NW. Base * | - ' ${ }^{\circ}$ | $m$ | - ' " | - ' ${ }^{\prime}$ |  | meters. |  |
|  |  | 307.5 341.3 | $\begin{array}{llll}211 & 09 & 01.0 \\ 243 & 04 & 53.5\end{array}$ | $\begin{array}{llll}51 & 50 & 40.7 \\ 63 & 08 \\ 60 & 50.1\end{array}$ |  | 7375.6 10155.1 | 3. 867795 4.006686 |
|  | 1234414.173 | 341.3 | $\begin{array}{llll}243 & 04 & 53.5 \\ 345 & 18 & 36.4\end{array}$ | 6318850.1 1651859.9 | ${ }_{\text {Arena }}$ | 10155.1 3540.0 | 4.006886 |
| $\underset{\mathbf{x 8 7 0}}{\text { Hall }}$ | $38 \quad 5619.376$ | 597.4 | 202322.0 | 2002304.0 | Arena | 1988.6 | 3. 298553 |
|  | 123 4308.149 | 196.3 | 13427522.9 | 31427811.4 | Pt. Arena NW. Base | 2227.6 | 3. 347847 |
|  |  |  | 1350609.5 | 3159591.8 | Point Arena L. H. | 2583.7 8.7 | 3.412249 |
|  |  |  | 195474 4 . 0 | 154839.3 | Lane | 8180.6 | 3.912786 |
| Sand $\dagger$ 1870 | 385721.249 | 655.2 | $\bigcirc 3108.9$ | 1803108.4 | Hall | 1908.0 | 3.280587 |
|  | 1234307.431 | 178.9 | 774749.5 | 25747087.5 | Pt. Arena NW. Base | 1644.3 | 3.215973 |
|  |  |  | 873459.2 | 2673411.0 | Point Arena L. H. | 1842.6 | 3.265437 |
| $\underset{\substack{\text { Point Arena } \\ 1870}}{ }$ SE. Base $\dagger$ | 38564 T . 989 | 1294.7 | 1445942.6 | 3245921.9 | Point Arena L. H. | 1383.0 | 3. 140808 |
|  | 1234350.941 | 1226.8 | 1470248.0 | 3270233.4 | Pt. Arena NW. Base | 1028.4 | 3. 012173 |
|  |  |  | 204 <br> 23043929.6 <br> 20 |  | Lane | 7879.2 | 3. 896480 |
|  |  |  |  |  | Sand | 1601.1 | 3. 204412 |
| $\underset{1879}{\text { Knox } \dagger}$ | 38 53 <br> 123 38.346 <br> 28 3 <br> 5.812  | $11^{82.4}$ $622.1$ |  |  |  |  |  |
|  |  | $622.1$ | $\begin{array}{lll} 108 & 10 & 48.6 \\ 128 & 15 & 48.9 \end{array}$ | 288 288 308 12 12 03.9 | Smith <br> Point Arena L. H. | $\begin{array}{r} 6338.4 \\ 10981.4 \end{array}$ | 3. 804028 4. 040643 |
| $\begin{gathered} \text { Anderson Tree } \dagger \\ \mathbf{1 8 7 9} \end{gathered}$ | 3858126.687 | 822.9 | 1240500.6 | 3040153.9 | High Bluff | 8654.7 | 3.937250 |
|  | 1233655.842 | 1346.4 | 1262711.2 | 3062337.2 | Smith | 10210.0 | 4.009025 |
|  |  |  | 1515349.0 | 3315252.5 | Knox | 4602.9 | 3.663028 |
| $\underset{1891}{M a r r} \dagger$ | $3854{ }^{18} 867$ | 578.7 | 93346.2 | 1893344.2 | High Bluff | 460.0 | 2. 668360 |
|  | 1234150.093 | 1207.0 | 1235654.3 | 3035625.0 | Smith | 1353.6 | 3. 131488 |
|  |  |  | 1323412.9 | 3123354.7 | Sinclair | 948.9 | 2.977198 |
| $\underset{\substack{\text { Point Arena Long. Sta. } \\ 1889}}{\dagger}$ | $\begin{array}{rrrr}38 & 54 & 36.160 \\ 123 & 4 \times 24.432\end{array}$ | 1115.0 588.7 | $\begin{array}{llll}49 & 03 & 38.4 \\ 94 & 35 & 07.6\end{array}$ | $\begin{array}{lllll}229 & 03 & 22.3 \\ 274 & 34 & 33.3\end{array}$ | Mart <br> Sinclair | 818.5 | 2. 913009 |
|  |  |  |  |  |  |  |  |
| $\underset{1879}{\text { Iversen Point } \dagger}$ | 38 <br> 3 <br> 123 <br> 3 <br> 8 | 1456. 3 | 14233468.2 | 3223121.0 | Smith | 9269.6 | 3. 962350 |
|  | 1233845.342 | 1093.5 | $\begin{array}{lllll}143 & 14 & 48.9 \\ 245 & 15 & 00.8\end{array}$ | 323 17 65 6 1651.09 .5 | High Bluff | 7569.5 | 3. 8790067 |
|  |  |  | 2451500.8 | . 651609.5 | Anderson Tree | 2907.3 | 3.463490 |
| $\underset{1878}{\text { Havens Neck }} \dagger$ | 384832.509 | 1002.4 | 1365404.3 | 3165232.8 | Iversen Point | 5690.6 | 3. 755160 |
|  | 1233604.108 | 99.1 | 1665533.3 | $346 \quad 55 \quad 00.3$ | Anderson Tree | 5514.0 | 3. 741463 |
| $\underset{1878}{\substack{\text { Triplet Hill }}} \dagger$ | 384932.638 | 1006.4 | 101946.9 | 19019.38 .5 | Havens Neck | 1884.6 | 3. 275234 |
|  | 1233550.105 | 1208.7 | 1183414.3 | 2983224.4 | Iversen Point | 4811.9 | 3. 682315 |
|  |  |  | $\begin{array}{r}13343400.0 \\ \hline 55\end{array}$ | 3133912.2 | High Bluff | 12109.1 | 4. 083112 |
|  |  |  | 1554423.7 | 3354342.5 | Anderson Tree | 3857.7 | 3. 586335 |
| $\underset{1878}{\text { Rocky Peak } \dagger}$ | 384920.910 | 644.8 |  | 2271844.3 | Havens Neck | 2201.6 |  |
|  | 1233457.024 | 1375.6 | 1054628.6 | 2854554.9 | Triplet Hill | 1330.5 | 3. 123999 |
| $\underset{1878}{\text { Sandstone } \dagger}$ | 384433.089 | 1020. 3 | 134 O1 16.3 | 3135757.9 | Havens Neck | 10629.0 | 4. 026494 |
|  | 123 3047.332 | 1143.1 | 1455034.1 | 3254757.7 | Rocky Peak | 10728. 1 | 4.030522 |
| $\underset{1878}{\text { Robinson Point } \dagger}$ | 384624.788 |  |  | 1465923.3 | Sandstone |  | 3.613600 |
|  | 123 32 20.035 | 483.6 | 1260505.3 | 3060244.9 | Havens Neck | 6689.9 | 3. 825421 |
|  |  |  | 1450654.7 | 3250516.3 | Rocky Peak | 6621.7 | 3.820970 |
| Rutheriord Tree $\dagger$ 1878 | ${ }^{38} 4500.586$ | 18.1 |  | 2335338.1 | Sandstone |  | 3. 158055 |
|  | 1238959.188 | 1429.3 | 12636 | 3063221.7 | Havens Neck | 10967.8 | 4. 040118 |
|  |  |  | 12782388.7 | 30721100.5 |  | 4278.5 | 3. 631291 |
|  |  |  | 1381052.9 | 3180746.4 | Rocky Peak | 10775.6 | 4.032440 |
| $\underset{\substack{1878}}{\text { Knipp }}$ | 3843 <br> 120.365 | 627.9 | 3221343.5 | 1421519.15 | Bihler Point | 6031.3 | 3.780412 |
|  | 1232825.540 | 617.0 | 1231342.1 | $\begin{array}{llll}303 & 12 & 13.4 \\ 323 & 47 & 31.8\end{array}$ |  | 4093.6 3829.6 | 3. 612110 |
|  |  |  | 1434830.4 | 3234731.8 | Rutherford Tree | 3829.6 | 3. 583156 |
| Stengel $\dagger$ 1878 | 38 42 204.637 | 143.0 | 33415 or. 5 | 1541531.9 | Bihler Point | 2701.4 | 3. 431593 |
|  | 12326 41. 260 | 997.0 | 1273712.0 | 30734488.1 | Sandstone | 7502.7 | 3.875218 |
|  |  |  | 1325002.1 | 3124857.0 | Knipp | 3435.2 | 3. 535954 |
|  |  |  | 1383746.4 | 3183542.6 | Rutherford Tree | 7231.5 | 3.859230 |
| $\underset{1876}{\text { Helmke Ridge } \dagger}$ | $38 \quad 3659.236$ 123 | 1826.5 648.9 |  |  | Salt Point | 5923.4 | 3. 772572 |
|  | 12332126.825 | 648.9 | 465622.2 | 2265555.6 | Horseshue Point | 1412.0 | 3. 149825 |
| $\underset{1876}{\text { Rocky Point } \dagger}$ | 383749.157 | 1515.7 | 1454021.3 | 3253845.1 | Bihler Point | 6593.8 | 3.819136 |
|  | 1232318.874 | 456.6 | 2993457.6 | 1193607.5 | Helmke Ridge | 3117.1 | 3. 493755 |
|  |  |  | 3268829.5 | 1460912.8 | Horseshoe Point | 3014.5 | 3-479310 |

* This point is in the area of the 1906 earthquake disturbance.
t See p. 293.

Golden Gate to Point Arena-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Harbeck } \\ 1876 \end{gathered}$ | - '" | $m$ | " | - , " |  | meters |  |
|  | $\begin{array}{rrrr}38 & 38 & 35.796 \\ 123 & 23 & 18.063\end{array}$ | 1103.7 436.8 | 337 0 0 09656.0 | $\begin{array}{lll}157 & 10 & 27.8 \\ 180 & 46 & 56.1\end{array}$ | Horseshoe Point Rocky Point | 4276.6 1438.3 | $\begin{aligned} & 3.631102 \\ & 3.157837 \end{aligned}$ |
|  | $123 \quad 2318.063$ | 436.8 | 04656.6 | 1804656.1 | Rocky Point | 1438.3 | $3 \cdot 157^{837}$ |
| $\underset{1876}{\text { Bihler Point* }}$ | $\begin{array}{llll}38 & 40 & 45 \cdot 725\end{array}$ | 1409.9 |  | $\begin{array}{llll}136 & 59 & 26.8 \\ 145 & 49 & 54.2\end{array}$ | Harbeck Horseshoe Point | 5480.0 9608.2 |  |
|  | 1232552.707 | 1274.0 | 32547 <br> 1344.8 |  | Horseshoe Point Sandstone | 9008.2 | $\begin{aligned} & 3 \cdot 982642 \\ & 3.999618 \end{aligned}$ |
|  |  |  | 1343521.9 | 3143217.7 | Sandstone |  |  |
| Stewart Point* 1876 | 383918.301 | 564.3 | 1365133.7 | 3164738.0 | Sandstone | 13309.7 | 4. 124168 |
|  | 123 2430.482 | 737.1 | 1433606.2 | 3233514.7 | Bihler Point | 3349.4 | 3. 524966 |
|  |  |  | 3064818.8 | 1264904.0 | Harbeck | 2187.4 | 3. 339931 |
|  |  |  | 32659 12. I | 1479080.1 | Horseshoe Point | 6262.6 | 3.796755 |
|  |  |  | 3274656.6 | 1474741.3 | Rocky Point | 3248.8 | 3.511722 |
| $\begin{aligned} & \text { Lark }{ }_{1878} \end{aligned}$ | 384237.457 | 1154.9 | 3484324.0 | 1684341.8 | Bihler Point | 3513.1 | 3. 545690 |
|  | $123 \quad 26$ 21. 128 | 510.5 | 254024.6 | 2054012.0 | Stengel | 1122.9 | 3.050333 |
|  |  |  | 1134609.2 | 2934451.4 | Knipp | 3284.0 | 3. 516408 |
|  |  |  | 1190151.4 | 2985904.9 | Sandstone | 7352.7 | 3. 866449 |
| $\begin{aligned} & \text { Ross Tree * } \\ & 1878 \end{aligned}$ | 384059.071 | 1821.4 | 3303545.8 | 1503650.1 | Harbeck | 5070.7 | 3. 705068 |
|  | 1232501.005 | 24.3 | 346 | 1663837.6 | Stewart Point | 3193.7 | 3. 504289 |
|  |  |  | 714638.2 | 2514605.8 | Bihler Point | 1315.7 | 3.119160 |
|  |  |  | 1295104.5 | 30950 01. 8 | Stengel | 3155.6 6588.6 | 3.49908a |
|  |  |  | 13 I 2453.8 | $\begin{array}{lll}311 & 22 & 45.9\end{array}$ | Knipp | 6588.6 3599.0 | $3.818791$ |
|  |  |  | 1472735.6 | $3272645 \cdot 5$ | Lark | 3599.0 | 3.556131 |
| Sandy Point* 1876 | 38384 4 .863 | 1290.8 | 1440240.1 | 324 Of 28.5 | Bihler Point | 4718.8 | $3.673835$ |
|  | $123 \quad 23$ 58.081 | 1404.6 | 14500649.1 | 325 of 28.9 | Stewart Point | 1369.8 | $3.136649$ |
|  |  |  | $\begin{array}{llll}280 & 56 & 10.6 \\ 327 & 31 & 05.0\end{array}$ | $\begin{array}{lllll}100 & 56 & 35.6 \\ 147 & 32 & 12.8\end{array}$ | Harbeck Horseshoe Point | 985.7 4893.8 | $\begin{aligned} & \text { 2. } 993745 \\ & 3.689644 \end{aligned}$ |
|  |  |  | 327 <br> 327 <br> 329 <br> 4 | 1473212.8 1494429.0 | Rocky Point | 488 r .6 | 3. 274526 |
| Fisk Tree* ${ }^{1876}$ | 383941.917 | 1292.5 | 30907.1 | 1820905.3 | Sandy Point | 1853.1 | 3. 267893 |
|  | $123 \quad 23$ 55.204 | 1334.6 | 493055.0 | 2293033.0 | Stewart Point | 1121.5 | 3. 049813 3. 538505 |
|  |  |  | 1244306.1 | 3044152.7 | Bihler Point | 3455.5 | 3. 538505 |
| Bourns Landing 1878 | 384705.877 | 18 I .2 | $\begin{array}{llllll}27 & 14508\end{array}$ | 3071304.5 | Havens Neck | 4415.3 |  |
|  | $123333^{8.431}$ | 927.6 | 1553110.5 |  | Rocky Peak ${ }^{\text {R }}$ | 4575.4 | $3.660430$ |
|  |  |  | 3034753.4 | 1234842.6 | Robinson Point | 2277.3 | $3 \cdot 357426$ |
|  |  |  | $306 \quad 068.1$ | 1260844.4 | Rutherford Tree | 6553.0 | 3.816438 |
| Island ${ }^{*} 878$ |  | 168.6 | 1350545.2 | 3150300.0 | Havens Neck | 9017.2 | 3.955074 |
|  | 1233140.287 | 972.8 | 1422845.6 | 3222731.6 | Bourns Landing | 4682.0 | 3. 67043 I |
|  |  |  | 14815603.3 | 3285359.9 | Rocky Peak | 9197.4 | 3. 963664 |
|  |  |  | 158 34 49.8 <br> 23 31 12.9 | $\begin{array}{llll}338 & 34 & 25.0 \\ 93 & 32 & 16.2\end{array}$ | Robinson Point | 2627.4 2446.0 | 3.419524 3.388448 3. |
|  |  |  | $\begin{array}{llll}273 & 31 & 12.9 \\ 304 & 33 & 05.0\end{array}$ | 93 124 124506.9 | Rutheriord Tree | 2446.0 5712.0 | 3. 388448 3. 756788 3. |
|  |  |  | 304 307 58 | $127 \quad 5909.6$ | Sandstone | 1623.4 | 3. 210159 |
| $\begin{gathered} \text { False Ford } \\ 1878 \end{gathered}$ | 384510.808 | $333 \cdot 3$ | 1332722.4 | 3132431.8 | Havens Neck | 9046.7 |  |
|  | 1233131.933 | 771 1. 1 | 1391737.9 | 3191618.5 | Bourns Landing | 4681.4 | $3.670380$ |
|  |  |  | 1471926.6 | 3271717.9 | Rocky Peak <br> Robinson Point | 9164.0 2559 | 3.963084 3.408210 |
|  |  |  | 153 or 27.2 | 3330056.9 | Robinson Point Rutheríord Tree | 2559.8 2261.6 | 3.408210 3.354422 |
|  |  |  | 2780011.6 3070528.9 | 1270725.5 | Knipp | 5644.8 | 3. 751647 |
|  |  |  | 3091439.4 | 1291741.2 | Stengel | 90069.4 | 3.957580 |
|  |  |  | 3171143.6 | 1371211.5 | Sandstone | 1585.2 | 3. 200078 |
| Walalla Tree* | 384637.070 | 1143.0 | 3372259.7 | 1572341.1 | Sandstone | 4141.3 | 3.617139 |
|  | 123 3153.278 | 1286.0 | 34902018 | 1690215.1 | False Ford |  | 3.432872 |
|  |  |  | 3533943.2 | $\begin{array}{llll}173 & 39 & 51.3 \\ 239 & 36 & 44.8\end{array}$ | Island | 2842.0 | 3.453623 2.874330 |
|  |  |  | $\begin{array}{r}59 \\ 37 \\ 5017 \\ \hline 15\end{array}$ | $\begin{array}{llll}239 & 36 & 44.8 \\ 380 & 16 & 49.7\end{array}$ | Robinson Point | 748.7 2689.1 | 2.874330 3.439604 |
|  |  |  | $\begin{array}{llll}109 & 17 & 55.6 \\ 120 & 28 \\ 46.1\end{array}$ | $\begin{array}{llll}289 & 16 & 49.7 \\ 300 & 36 & 08.9\end{array}$ | Bourns Landing Havens Neck | 2089.1 7032.5 | 3.439604 3.846490 |
|  |  |  | 1384439.7 | 3184244.5 | Rocky Peak | 6722.0 | 3.827498 |
| Knipp \& Stengel's ranch chimney ${ }^{*}$ 1876-8 |  |  |  |  | Bihler Point | 5916. I | 3.773033 |
|  | $123 \quad 27 \quad 02.607$ | 63.0 | 3440821 | 1640834 | Stengel | 1887.4 | 3. 275874 |
|  |  |  | 1043239 | 2843147 | Knipp | 2069.8 | 3.315922 |
| $\begin{gathered} \text { Peter Tree } \\ 1878 \end{gathered}$ | 384352.817 | 1638.6 | 3342051.2 | 1542202.8 | Bihler Point | 6399.3 | 3.806132 |
|  | 12327 47.317 | 1142.8 | 3342536.8 | 1542618.1 | Stengel | 3697.9 | 3. 567953 |
|  |  |  | 424204.8 | 2224140.3 | Knipp | 1361.6 | 3.134034 |
|  |  |  | 1135544.4 | 2935323.9 | False Ford | 5933.8 | 3.773330 |

*See D. 293-4.

Golden Gate to Point Arena-Continued.

| Station | L.atitude and longitude | Sec onds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Junction } \dagger \\ 1879 \end{gathered}$ | " | $m$ | , " | " |  | meters |  |
|  | 385254.402 | 1677.4 | 1405332.8 | 3205247.4 | High Bluff | 2760.7 | 3.441023 |
|  | 123804048.040 | 989. 2 | 1972808.8 | 179951.3 | Adams | 13077.3 | 4.116518 |
|  |  |  | 1975531.4 | 175716.5 | Clark | 13073.4 | 4. 116387 |
|  |  |  | 2472441.6 | 672606.5 | Knox | 3529.7 | 3. 547732 |
|  |  |  | 2962748.9 | 1163010.3 | Anderson Tree | 6065.4 | 3.782862 |
|  |  |  | 32433 56. 2 | 1443508.9 | Iversen Point | 4812.4 | 3.683359 |
| $\begin{array}{r} \text { Morse } \dagger \\ 1879 \end{array}$ | 385031.223123 36 22.106 | 962.7291.9 | 3433742.1 | 1633755.8 | Triplet Hill | 1882.9 | 3.274821 |
|  |  |  | 3565900.3 | 1765905.6 | Havens Neck | 3665.7 | 3. 564158 |
|  |  |  | 973714.9 | 2773538.8 | Iversen Point | 3728.3 | 3.571511 |
|  |  |  | 1283528.6 | 3083154.5 | High Bluff | 10519.1 | 4.021978 |
|  |  |  | 1364312.4 | 3163803.6 | Point Arena L. H. | \$7272.6 | 4. 237358 |
|  |  |  | 14883036.2 | 3282008.8 | Anderson Tree | 2009.3 | 3.303051 |
| $\underset{1879}{\text { Saunders Hill } \dagger}$ | $385145 \cdot 331$ | 1397.8 | $\begin{array}{llll}131 & 30 & 03.4 \\ 35\end{array}$ | 3112900.7 | Junction | 3214.9 5955 | 3. 507164 |
|  | $123 \quad 3901.146$ | 27.6 | 1355049.4 | 3154901.3 | $\underset{\text { High Blufi }}{\text { Hex }}$ | 5955.6 3587.6 | $3 \cdot 774924$ |
|  |  |  | 1934349.8 | 134412.1 | Knox | 3587.6 |  |
| $\begin{array}{r} \text { Black } \dagger \\ 1870 \end{array}$ | 390054.899 | 1693.1 | 3543123.8 | 1743131.4 | Spur | 3046. 7 | 3.483836 |
|  | 1234026.076 | 627.4 | 800 8 01.9 | 1875941.9 | Shoemake | 5495.4 | 3.739997 |
|  |  |  | 382256.8 | 2182033.4 | Pt. Arena NW.base | 8845.9 | 3. 946741 |
|  |  |  | 693122.4 | 2493038.6 | Lane | 1785.6 | 3.251795 |
| Spur Mountain $\dagger$ 1876 | 383424.704 |  | 3304046.3 | 1504234.9 | Ross Mountain | 8632.1 | 3.936115 |
|  | 1331003.676 | 89.0 | 302456.6 | 2002347.5 | Dixon | 7697.4 | 3. 886342 |
|  |  |  | 645614.5 | 24453 30.0 | Henry Hill | $7053 \cdot 3$ | 3.848390 |
| $\underset{1860}{\text { Russian }} \text { River } \dagger$ | $\begin{array}{r} 382752.052 \\ 1230841.184 \end{array}$ | 1605.0 998.4 | $\begin{array}{llll}133 & 50 & 41.2 \\ 205 & 56 & 36.0\end{array}$ | $\begin{array}{rrrr}313 & 49 & 17.2 \\ 25 & 57 & 33.4\end{array}$ | Chaparral Ross Mountain | 4537.3 5093.4 | $\begin{aligned} & \text { 3. } 650801 \\ & 3.707010 \end{aligned}$ |
|  |  |  | $\begin{array}{llll}205 & 56 & 36.0 \\ 303 & 07 & 18.8\end{array}$ | $\begin{array}{rrrr}25 & 57 & 33.4 \\ 122 & 11 & 55.4\end{array}$ | Ross Mountain Redwood | 5093.4 12745.3 | $\begin{aligned} & 3.707010 \\ & 4.105349 \end{aligned}$ |
|  |  |  | $\begin{array}{llll}302 & 07 & 18.8 \\ 323 & 23 & 16.1\end{array}$ | $\begin{array}{llll}122 & 11 & 53.4 \\ 143 & 36 & 34.8\end{array}$ | Bodega Hill | 12745.3 13005.6 | 4.115129 |
|  |  |  | $\begin{array}{llll}327 & 15 & 12.2\end{array}$ | 1471612.4 | Peaked Hill | 4337.5 | 3.637242 |
| $\begin{array}{r} \text { Benitz } \dagger \\ 1860 \end{array}$ | $\begin{array}{rrr} 38 & 30 & 00.400 \\ 123 & 10 & 51.442 \end{array}$ | $\begin{array}{r} 12.3 \\ 1246.5 \end{array}$ | 1880430.5 | 80500.5 | Spur Mountain | 8231.4 | 3.915472 |
|  |  |  | $\begin{array}{llll}263 & 23 & 17.4\end{array}$ | 832535.8 | Ross Mountain | 5420.5 | 3. 734039 |
|  |  |  | 3073321.5 | 1273919.1 | Redwood | 17602.9 | 4. 245584 |
|  |  |  | 32 I 2425.0 | 1412546.0 | Russian River | 5062.6 | 3.704372 |
|  |  |  | 3224859.7 | 1425339.6 | Bodega Hill | 18066.0 | 4.256863 |
|  |  |  | 32405 38.7 | 14408 co. I | Peaked Hill | 9388.1 | 3.972576 |
| $\begin{gathered} \text { Dry Creek } \dagger \\ 1860 \end{gathered}$ | 382831.916 |  | 1354314.8 | 3154226.9 | Chaparral | 2672.6 | 3.426930 |
|  | 1230939.223 | 950.8 | $\begin{array}{llll}227 & 19 & 13.6\end{array}$ | 472047.0 | Ross Mountain | 4943.9 | 3.694072 |
|  |  |  | 3031545.2 | 12320 57.7 | Redwood | 14593.4 | 4. 104155 |
|  |  |  | 3110811.2 | 1310847.2 | Russian River | 1868.3 | 3.271441 |
|  |  |  | 3215052.5 | 1415447 | Bodega Hill | 14836.6 | 4. 171335 3.78918I |
|  |  |  | 3222444.6 | 1422620.9 | Peaked Hill | 6154.3 | 3.789181 |
| Silvers Tree*$1876$ | $\begin{array}{rrr} 38 & 32 & 47.884 \\ 123 & 14 & 27.506 \end{array}$ | $1476.5$ | 1215008.6 | 3014751.6 | Funcke | 6363.1 |  |
|  |  |  | 1430611.6 | 3230331.5 | İancaster | 10345.8 6102.6 | $4.014766$ |
|  |  |  | 2071932.8 | 272045.0 | Table Mount | 6102.6 | $\text { 3. } 785518$ |
|  |  |  | 2445540.6 | 645825.1 | Spur Mountain Dixon | 7051.0 | $3.848251$ |
|  |  |  | $31845 \times 7.4$ | 13846452.7 | Dixon | 5623.2 | $\text { 3. } 749986$ |
|  |  |  | 161419.7 | 1961351.6 | Fort Ross | 3911.6 | 3.593358 |
| $\underset{1876}{\text { Allston Tree flag * }}$ | $\begin{array}{rrr}38 & 32 & 40.234 \\ 123 & 16 & 40.837\end{array}$ | $1240.6$ | $\begin{array}{llll}328 & 44 & 26.6 \\ 354 & 08 & 00.2\end{array}$ |  | Fort Ross |  |  |
|  | 1231640.837 | $988.9$ | $\begin{array}{llll}354 & 08 & 09.2 \\ 117 & 23 & 23.6\end{array}$ | $\begin{array}{llll}174 & 08 & 12.5 \\ 297 & 21 & 20.8\end{array}$ | Timber Cove Salt Point | 1260.9 5369.6 | $\begin{aligned} & \text { 3. } 100665 \\ & \text { 3. } 729942 \end{aligned}$ |
| $\begin{aligned} & \text { Fox } \dagger \\ & 1879 \end{aligned}$ | $\begin{array}{r} 384955 \cdot 358 \\ 123 \quad 3727 \cdot 562 \end{array}$ | $\begin{array}{r} 1706.9 \\ 664.8 \end{array}$ |  | 31026 47.0 | Iversen Point | 2465.2 | 3.391854 |
|  |  |  | 2863514.3 | 1063615.4 | Triplet Hill | 2453.0 | 3.389700 |
|  |  |  | 3214510.8 | 1414603.1 | Havens Neck | 3252.6 | 3. 512235 |
| Sail Rock $\dagger$ 1878 | $\begin{array}{r} 3849 \quad 52.874 \\ 12338 \quad 03.008 \end{array}$ | $\begin{array}{r} 1630.3 \\ 72.6 \end{array}$ |  | $32838 \quad 55.2$ | Iversen Point | 1962.6 |  |
|  |  |  | $\begin{array}{llll}246 & 08 & 26.3\end{array}$ | 66 809 8 8 | Morse | 2924.6 858.4 | $3 \cdot 466063$ |
|  |  |  | 3645239.8 | 8453 02.0 | Fox | 858.4 | $2.933690$ |
|  |  |  | 2810012.7 | 101 Or 36.0 | Triplet Hill | 3266.0 | 3. 514019 |
|  |  |  | $\begin{array}{llll}282 & 22 & 28.6 \\ 310 & 48 & 54.2\end{array}$ | 102 <br> 130 <br> 130 <br> 0 | Rocky Peak Havens Neck | 4593.3 3790.6 | $\begin{aligned} & 3.662121 \\ & 3.578706 \end{aligned}$ |
| $\underset{1859}{\text { Richards } \dagger}$ | $\begin{array}{r} 380403.074 \\ 122 \quad 57 \quad 58.904 \end{array}$ | $\begin{array}{r} 94.8 \\ 1435.8 \end{array}$ |  | 20803 54.0 | Point Reyes Head | 8904. 5 | 3.949610 |
|  |  |  | $1875143.6$ | 75238.0 | Tomales Bay | 12835.8 | 4. 1084824 |
|  |  |  | $2605312.5$ | $805653 \cdot 3$ | Point Reyes Hill | 8838.5 | 3.946381 |
| Steele $\dagger$ 1859 | $\begin{array}{ccc}38 & 02 & 11.397\end{array}$ | 351.4 | 661844.9 |  |  |  |  |
|  | 1225359.064 | 1440.4 | $\begin{array}{lllll}120 & 30 & 40.2 \\ 210 & 46 & 36.0\end{array}$ | 300 <br> 308 <br> 30 <br> 47 <br> 12.4 | Richards <br> Point Reyes Hill | $\begin{aligned} & 6786.0 \\ & 5632.0 \end{aligned}$ | $\begin{aligned} & 3.831616 \\ & 3.750662 \end{aligned}$ |

* This point is in the area of the 1906 earthquake disturbance.
$\dagger$ See p. 294.

Golden Gate to Point Arena-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{1859}{\text { Number } \mathrm{I}}$ | - , " | m | - , " | '' |  | meters |  |
|  | 38 O1 41.304 | 1273.6 |  | $\begin{array}{llll}254 & 02 & 20.3 \\ 298 & 33 & 02.2\end{array}$ | Point Reyes Head | 12707.8 0137.5 | $\begin{aligned} & \text { 4. } 104070 \\ & \text { 3. } 960828 \end{aligned}$ |
|  | 1225229.810 | 727.1 | $\begin{array}{lll}118 & 36 & 25.0 \\ 186 & 59 & 00.6\end{array}$ | $\begin{array}{r}298 \\ 6 \\ 6 \\ 59 \\ \hline 9\end{array}$ | Richards Point Reyes Hill | 9137.5 5809.4 | $\begin{aligned} & 3 \cdot 960828 \\ & 3 \cdot 764134 \end{aligned}$ |
| Point Reyes, East* 1859 | 3759 26.750 | 824.7 | 984544.0 | $2784355 \cdot 3$ | Point Reyes Head | 4360.8 | 3. 639570 |
|  | 1225754.125 | 1320.7 | 2205735.2 | 410112.9 | Ioint Reyes Hill | 13135.2 | 4.118437 |
| $\begin{gathered} \text { Number } 2 \\ 18_{59} \end{gathered}$ | 38 or 08.343 | 257.2 | 731500.9 | 2531038.8 | Point Reyes East | 10845.8 | 4.035263 |
|  | 1225048.511 | 1183.3 | 803043.1 | 3602432.3 | Point Reyes Head | 14898.5 | 4.173144 |
|  |  |  | 1652559.5 | 3452514.9 | Point Reyes Hill | 7008.0 | 3.845591 |
| $\begin{array}{r} \text { Estero* } \\ 1859 \end{array}$ | 38 O3 11. 794 | 363.6 | $\begin{array}{lllll}54 & 26 & 39.7\end{array}$ | 2342403.5 | Point Reyes Head | 7600.4 | 3. 881978 |
|  | 1225637.148 | 905.9 | 1495105.5 | 3295015.1 | Richards Hill | 3968.0 | 3. 598572 |
|  |  |  | 2342125.7 | 542416.1 | Point Reyes Hill | 8286.8 | 3.918389 |
| $\text { Preston } \dagger$$1857$ | 381214.985 | 462.0 | 403334.6 | 220324 I. 3 | Tomales Bay | 3226.9 | 3. 508785 |
|  | 1225520.550 | 500.1 | 1023847.8 | 2823700.2 | Tomales Point | 4336.5 | 3.637140 |
| $\begin{gathered} \text { Reynolds } \dagger \\ 1857 \end{gathered}$ | 380859.057 | 1821.0 | 50374 r .2 | $23036 \begin{array}{ll} \\ 304 & 7\end{array}$ | Foster | 2218. 1 | $3 \cdot 345974$ |
|  | 1225312.894 | 314.0 | 124 <br> 160 <br> 160 <br> 09 <br> 17.3 | $\begin{array}{llll}304 & 33 & 48.2 \\ 340 & 08 & 44.4\end{array}$ | Tomales Bay Mershon | 6323.6 3810.5 | 3. 800963 <br> 3. 580984 |
| Mike $\dagger$ 1857 | 380730.605 | 943. 7 | 1703045.2 | 3503033.6 | Reynolds | 2765.0 | 3. 441698 |
|  | 1225254.176 | 1319.6 | 2355121.0 | $55 \quad 5 \times 53.2$ | Hans | 1532.3 | 3.185353 |
| $\begin{array}{r} \text { Frink } \dagger \\ 1857 \end{array}$ | 380700.935 | 28.8 | 1082417.0 | 2882307.3 | Mike | 2898.9 | 3.462239 |
|  | 12251 O1 245 | 30.3 | 11426123.7 | 2942418.9 | Foster | 5405.0 | 3.732799 |
|  |  |  | 13839308.4 | 3183747.0 | Reynolds | 4852.2 | 3.685939 |
|  |  |  | 1400809.0 | 3200731.4 | Hans | 2312.4 | 3. 364060 |
| $\begin{array}{r} \text { Agnew } \dagger \\ 1857 \end{array}$ | 380641.003 | 1264.3 | 1553823.8 | 33537734.9 | Reynolds | 4672.8 | 3.669576 |
|  | 1225153.737 | 1309. 1 | 1750732.6 | 3550727.4 | Hans | 2398.8 1418.8 | 3.379850 3.151906 |
|  |  |  | 2441937.3 | 642009.7 | Frink | 1418.8 | 3.151906 |
| $\begin{array}{r} \text { Young } \dagger \\ 1857 \end{array}$ | 380604.405 | 135.8 | 1392923.7 | 3192859.3 | Agnew | 1484.3 | 3.171509 |
|  | 1225114.361 | 345.0 | 1901355.8 | 101403.8 | Frink | 1771.1 | 3.248252 |
| Sigvart $\dagger$1857 | $\begin{array}{llll} \\ 8 & 0607.987\end{array}$ | 246.3 | 861915.9 | $26618 \quad 32.5$ | Young | 1788.7 | 3.235193 |
|  | $1225003 \cdot 7^{67}$ | 9 I .8 | 1104848.3 | 2904740.6 | Agnew | 2866.1 | 3.457288 |
|  |  |  | 13923 co. 7 | 3192225.2 | Frink | 2150.8 | 3. 332597 |
| Willow Point $\dagger$ 1857 |  | 835.8 | 1362350.1 | 3162322.4 | Young | 1588.3 | 3.200920 |
|  | 1225029.205 | 711.7 | 2061056.5 | 26 II 12.2 | Sigvart | 1404.6 | 3.147568 |
| Creek $\dagger$ 1857 | 380425.616 | 789.8 | 1432835.0 | 3232759.5 | Willow Point | 2359.3 | 3.372785 |
|  | 1224931.583 | 769.8 | $\begin{array}{lllll}168 & 02 & 53.1 \\ 246 & 30 & 09.9\end{array}$ | 346 66 66 30 | Sigvart Hammond | 3252.3 1503.0 | 3. 512196 |
| $\begin{array}{r} \text { Teton } \dagger \\ 1860 \end{array}$ | $\begin{array}{lllll} & 8 & 15 & 13.602\end{array}$ |  |  | 1493625 | Preston | 6385.5 | 3.805192 |
|  | 1225733.419 | 812.6 | 3515250 | 1715318 | Tomales Bay | 8039.6 | 3.905237 |
|  |  |  | 122131 | 1922106 | Tomales Point | 4667.0 | 3.669042 |
|  |  |  | 1234440 | 3034050 | Bodega Head | 10870.1 | 4.036233 |
|  |  |  | 1480426 | 3280253 | Bodega | 6907.0 | 3.839288 |
| Sugarloaf Hill $\dagger$ 1860 | 381430.028 |  | 3223806 | 1423928 | Preston | 5238.1 | 3.719177 |
|  | 1225731.204 | 758.8 | 3504252 | 1704320 | Tomales Bay | 6703.4 | 3.826293 |
|  |  |  | 180745 | 1980718 | Tomales Point | $3383 \cdot 3$ | 3.529346 |
|  |  |  | 1524647.6 | $33^{2} \quad 45 \quad 13.8$ | Bodega | 8103.0 | 3.908647 |
| Ocean Beach * | $38 \quad 1957.233$ | 1764.7 | 1904010.5 | 104030.9 | Bodega Hill | 4271.2 | 3.630552 |
|  | 1230354.242 | 1317.4 |  | 117 175 175 29 | Bodega ${ }^{\text {Bodega Head }}$ | 6298.2 2720.5 | 3.799216 |
|  |  |  | 3552935.8 | 1752941.3 | Bodega Head | 2720.5 | 3.434648 |
| $\begin{gathered} \text { Bay Beach* } \\ 1860 \end{gathered}$ | $\begin{array}{llll}38 & 18 & 49.552\end{array}$ | 1527.9 | 674521.3 | 2474442.3 | Bodega Head | 1651.3 | 3.217836 |
|  | 1230242.534 | 1033.3 | 1400917.1 | 3200832.6 | Ocean Beach | 2718.2 | 3.434289 |
|  |  |  | 1712485.1 | 3512351.0 | Bodega Hill | 6355.6 | 3.803157 |
|  |  |  | 2813939.6 | 101 4118.0 | Bodega | 3939. 2 | 3. 595406 |
| Bodega Latitude Station* 1853 | $3818 \quad 29.842$ | 920.2 | 1784702.0 | 3584658.4 | Bodega Hill | 6893.5 | 3.838437 |
|  | 1230315.639 | 380.0 | 2325517.2 | $52 \begin{array}{llll}55 & 37.7\end{array}$ | Bay Beach | 1008. 1 | 3.003490 |
|  |  |  | 2721834.4 | $922033 \cdot 3$ | Bodega | 4666.0 | 3.668944 |
| Bodega Rock* 1860 | 381747132 |  | 15920 Or. 9 | 3391923.2 | Ocean Beach | 4287.5 | 3.632201 |
|  | 1230251.943 | 1262.2 | $1745835 \cdot 7$ | 3545817.4 | Bodega Hill | $8240 \cdot 5$ | 3.915951 |
|  | $1{ }^{3} 51.943$ |  | 1864619.1 | 64624.9 | Bay Beach | 1938. 1 | 3.287386 |
|  |  |  | 2543341.8 | 743526.0 | Bodega | 4239.4 | 3.627306 |

* Sce p. 294.
$\dagger$ This point is in the area of the 1906 earthquake disturbance.

Golden Gate to Point Arena-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{1860}{\text { Lagoon } \dagger}$ | - ' " | $m$ | - " "' | - ' " |  | meters |  |
|  | 381842.104 | 1298.2 | 832104.4 | 2631938.0 | Bodega Head | 3410.9 |  |
|  | x23 01 25.998 | 631.6 | 1564056.5 | 3363944.8 | Bodega Hill | 7093.6 | $3.850869$ |
|  |  |  | 2855049.0 | 1055140.0 | Bodega | 2077. 2 |  |
| $\begin{gathered} \text { Rocky Point } \dagger . \\ 1860 \end{gathered}$ | 3823 39.577 | 1220.3 | 1701015.5 | 3500920.4 | Ross Mountain | 12549.1 | 4.098614 |
|  | 1230540.809 | 990.3 | 3081145 | 128131312.2 | Bodega Hill | 4297.9 | 3.633261 |
|  |  |  | 3434015.6 | 1634127.2 | Bodega Head | 9969.4 | 3.998670 |
| Pigott's (Dr.) house SW. gable $\dagger$ 1860 | 381923.533 | 725.6 | 365504.8 | 2165444.7 | - Bay Beach | 1310.5 | 3. 117427 |
|  | 123 02 10.133 | 346.2 | $\begin{array}{lllll}54 & 09 & 29.2\end{array}$ | 2340830.1 | - Bodega Head | 2858.6 | 3.45585z |
|  |  |  | 1122048.6 | 2931944.0 | Ocean Beach | 2733.9 | 3.436783 |
| Chency's house flagstaff $\dagger$ 1860 | $\begin{array}{lll}38 & 19 & 02.803\end{array}$ | 86.4 | 282539 | 2082524 | Bodera Head | 1175.6 | 3. 070249 |
|  | 1230321.409 | 544.4 | 1551558 | 3351538 | Ocean Beach | 1847.8 | 3. 266655 |
|  | -3 03 20.409 | 54.4 | 1801034 | - 1035 | Bodega Hill | 5875.6 | 3. 760054 |
|  |  |  | 284032 | 1040236 | Bqdega | $4974 \cdot 7$ | 3.696765 |
|  |  |  | 2925154 | $1 \times 25219$ | Bay Beach | 1051.4 | 3.021750 |
| Bodega Head highest part, rock* 1860 | $\begin{array}{llll}38 & 18 & 41.787\end{array}$ | 1288.5 | $\begin{array}{llll}179 & 53 \\ & 36\end{array}$ | 3595335 | Ocean Beach | 2326.3 | 3.366658 |
|  | 1230354.064 | 1313.5 | 2620855 | 820940 | Bay Beach | 1754.2 | 3. 344075 |
|  |  |  | 2754018 | 954241 | Bodega | 5623.3 | 3. 749992 |
| Preston's house, stovepipe $\dagger$ 1857 | $\begin{array}{rlr}38 & 12 & 46.255\end{array}$ | 1426. 2 |  | 1380458.1 | Preston | 1295.8 | 3. 112529 |
|  | 1225556.133 | 1365.6 | 321 319541.0 19 50 |  | Mershon | 4345.0 3631.4 | 3. 637985 3. 560069 |
|  |  |  | $\begin{array}{llll}19 & 50 & 10.4 \\ 89 & 44 & 33.4\end{array}$ | $\begin{array}{llll}199 & 49 & 39.1 \\ 369 & 43 & 06.8\end{array}$ | Tomales Bay | 3631.4 3365.7 | 3. 560069 |
|  |  |  | 894433.4 | 2694306.8 | Tomales Point | 3365.7 | 3.527073 |
| Lone house, south gable $\dagger$ ¢1857 | 3812 28. 106 | 866.6 | 338 or 04. 2 | 158 or 08.4 | Preston | 436.3 | 2. 639744 |
|  | 12255 27.262 | 663.3 | 34 ob 56. 5 | 2140607.4 | Tomales Bay | 3449.8 | 3. 537800 |
|  |  |  | 973739.8 | 2773556.4 | Tomales Point | 4104.3 | 3.613242 |
| $\operatorname{Tom~Point~}_{1857}^{*}$ |  | 323.2 | 3030922 | 1231028 | Preston |  | 3. 495262 |
|  | 1225708.179 | 199.0 | 3531343 | 1331535 | Mershon | 6083.7 | 3.78417x |
|  |  |  | 3525149 | 1725202 | Tomales Bay | 4195.5 | $3.622783$ |
|  |  |  | 644133 | 2444052 | Tomales Point | 1784. 2 | $3.251433$ |
| Point Reyes Beach * 1857 | 380730.599 |  | $\begin{array}{ll}171 \\ 31 & 49\end{array}$ | 3513112 | Tomales Point | 9821.7 |  |
|  | 1225715.000 | 365.3 | 1861234 | 65151 | Tomales Bay | 6353.8 | $3 \cdot 803034$ |
|  |  |  | 253 29 9 2948 | $\begin{array}{r}72 \\ \hline 80988 \\ \hline 8098\end{array}$ | Foster Richards | 4385.1 | $3.641983$ |
| $\underset{1857}{\text { Hog Island }}$ |  |  |  |  |  |  |  |
|  | 381851.914 | 1600. 7 | 11748 دо | 2974650 | Tomales Point | 3559.6 | 3. 551396 |
|  | 1225605.052 | 122.9 | 2364137 | 564204 | Preston | 1295.6 | $\text { 3. } 11246 \mathrm{~s}$ |
|  |  |  | 3010403 | 1210516 | Mershon | 3381.4 | $\text { 3. } 529102$ |
| ```Frost's house, east chim- ney \dagger 1891``` | $38 \quad 5414.309$ | 441.3 | 1273651 | 3073620 | Smith | 1463.8 | 3. 165470 |
|  | 1234148.572 | 1170.4 | $\underline{1363943}$ | 3163934 | Sinslair | 1071.6 | $3.030031$ |
|  |  |  | 1650426 | 345 04 | Mart | 142.3 | $\text { 2. } 1 \$ 3135$ |
|  |  |  | 2204752 | 404807 | Pt. Arena Long. Sta. | 890. 1 | 2.949450 |
| Point Arena Methodist Church, S. gable $\dagger$ 1891 | 385444.554 | 1373.8 | 3210704 | 141 or 09 | Pt. Arena Long. Sta. | 332.5 | 2. 521787 |
|  | 1234133.095 | 797.4 | $\begin{array}{llll}37 & 15 & 04 \\ 82 & 07 & 42\end{array}$ | 20714 262 2629 | Marr <br> Sinclair | 894.4 1118.8 | 2. 951550 |
|  |  |  | 820742 | 2620713 | Sinclair | 1118.8 | $3.048769$ |
| $\underset{\text { 1870 }}{\text { Derrick }}$ |  | 592.7 | 3229045 |  | Hall |  |  |
|  | 1234407.270 | 175.0 | $\begin{array}{rrrr}341 & 05 \\ 30 \\ 30 & 13 & 59\end{array}$ | 161 05 <br> 210 49 | Pt. Arena SE. Base | 213.6 330.1 | $3.084077$ |
|  |  |  | 301359 | 2101354 | Pt. Arena NW.Base | 330. 1 | 2. 518679 |
| Bald Top 1 , lone tree* 1870 |  |  |  |  | Arena Latitude Sta. | 12294.0 |  |
|  | 1233833.614 | 808.8 | 392923.4 | 2192630.8 | Hall | 10397. 1 | $4.016913$ |
|  |  |  | 461238.0 | 2260918.4 | PL. Arena SE. Base | 10580.0 | 4.024732 |
|  |  |  | 514540.8 | 2314206.6 | Pt. Arena N W. Base | 10440.6 | 4.018727 |
| Bald Top 2, highest bush of three* 1870 |  | $1349.0$ | 445740.7 | 2245408.0 | Arena Latitude Sta. | 11535.1 |  |
|  | $133 \quad 3758.548$ | $1408.9$ | 49 48 <br> 62 40 <br> 2 32.0 | $\begin{array}{llll}229 & 45 & 95.7 \\ 242 & 17 & 35.7\end{array}$ | Hall <br> Pt. Arena NW.Base | $9760.7$ | $3.989483$ |
|  |  |  | 622132.0 | 2421735.7 | Pt. Arena NW.Base | 10210.1 | 4.009030 |
| $\underset{1859}{\text { Number }} \ddagger^{*}$ | $\begin{array}{cccc}38 & 00 & 09.42 \\ 122 & 49 & 29.73\end{array}$ | 290.5 725.4 | 874833 1200949 | $\begin{array}{lll} 267 & 41 & 34 \\ 300 & 04 & 35 \end{array}$ | Point Reyes Head Richards | $16629.1$ <br> 14355.6 | 4. 220870 <br> 4. 157020 |
|  | 1224929.73 | 725.4 | 1200949 | 3000435 | Richards | $14355.6$ | 4. 157020 |
| $\underset{1859}{\text { Wildcat }}{ }_{\text {¢* }}$ |  | $16.0$ | $942644$ |  | Point Reyes Head | 19277.5 | $4 \cdot 285050$ |
|  | 1224743.07 | $105 \mathrm{r} . \mathrm{I}$ | 131 5341 | 3014722 | Richards | 17681.1 | $\text { 4. } 247510$ |
| Joyce $\ddagger *$1859 | $\begin{array}{llll}37 & 56 & 38.29\end{array}$ | 1180.4 | 1041929 | 2840947 | Point Reyes Head | 23804.6 | 4.376660 |
|  | 1224505.48 | 133.8 | 1260429 | $305 \quad 5633$ | Richards | 23326.0 | $4 \cdot 36784$ |

* This point is in the area of the 1906 carthquake disturbance.
$\dagger$ See p. 295.
$\ddagger$ No check on this position.

Golden Gate to Point Arena-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | Tostation | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Perrot * | - ' ${ }^{\text {c }}$ | $m$ | a ' 1 | - " ${ }^{\circ}$ |  | meters |  |
|  | $3757 \times 0.40$ | 12.3 | 1040632 | 2835750 | Point Reyes Head | 21338.3 | 4. 32916 |
|  | 1224642.62 | 1040.6 | $128 \quad 2143$ | 3081447 |  | 21024.2 | 4.32272 |
| $\underset{1870}{\text { Shepherd's chimney } \ddagger}$ | 385658.608 | 180\%. 1 | 735320 | 2535234 | Pt. Arena SE. Base | 1846.0 | 3. 266238 |
|  | 1234237.956 | 914.0 | $9833 \sim 9$ | 2783208 | Pt. Arena NW.Base | 2359.0 | 3. 372725 |
|  |  |  | 1033542 | 2833435 | Pt. Arena L. H. | 2640.6 | 3. 421699 |
| Point Reyes Lat. Sta.* $\dagger$ ${ }^{1} 853$ | 3759 44. 28 | 1365.1 | 2253812 | 454214 | Point Reyes Hill | 13414. 1 | 4. 12756 |
|  |  | 837.2 | 2570656 | 771143 | Number 2 | 11555.5 | 4.00653 |
| North Farallon N. Islet * $\dagger$ 1859 | $\begin{array}{rrr}37 & 46 & 20.35 \\ 123 & 06 & 23.36\end{array}$ | 627.4 |  |  | Point Reyes Hill Mount Tamalpais | 40133.8 48001 . 0 | 4. 60351 <br> 4. 68 I 25 |
|  |  | 57 I .7 | 2491614 | 693502 | Mount Tamalpais | 48001.0 | $\text { 4. } 68_{\mathrm{I} 25}$ |
| ```North Farallon Middle Islet* 859``` | $\begin{array}{rrrr}37 & 46 & 02.36\end{array}$ | 72.8 | $\begin{array}{llll}210 & 25 & 46 \\ 348 & 23 & 16\end{array}$ | 30 684 68 | Point Reyes Hill Mount Tamalpais | 40290.3 47625.5 | 4. 60520 <br> 4. 67784 |
|  | 1230558.11 | 1422.3 | $24^{8} 2316$ | 684148 | Mount Tamalpais | 47625.5 | $4.67784$ |
| North Farallon S. Islet* ${ }^{*}$ 1859 | 374552.36 | 1614.2 | 210 01 17 | 300948 | Point Reyes Hill | 40479.0 | 4. 60723 |
|  | 123 305 51.81 | 1368. 1 | 2475830 | 681658 | Mount Tamalpais | 47597.0 | 4. 67758 |
| $\begin{aligned} & \text { North Farallon S. Rock }{ }_{1859} \dagger \end{aligned}$ | 3745 54. 19 | 1670.6 | 2094123 | 294946 | Point Reyes Hill | 40279.1 | 4. 60508 |
|  | $\begin{array}{llllllllllll}123 & 05 & 39\end{array}$ | 964.1 | 2475410 | 681231 | Mount Tamalpais | 47294.4 | 4. 6748 I |
| Point Reyes L. H. site * $\dagger$ 1859 | 375948.62 | 1498. 9 | 2105409 | 305608 | Richards | 9144.7 | 3. 96117 |
|  | 1230111.57 | 282. 3 | 2352526 | 353105 | Point Reyes Hill | 16302.0 | 4. 21224 |
| Middle Farallon* $\dagger$ 1859 | 374341.06 | 1265. 8 | 200162 T | 202225 | Point Reyes Hill | 41664.9 | 4. 61977 |
|  | $123 \quad 0153.17$ | 1302.0 | 2401618 | 603220 | Mount Tamalpais | 44098.1 | 4. 64442 |
| $\underset{1857}{\text { Grasicr }} \underset{ }{*}$ | 3803 45.99 | 1418.1 | 1342349 | 3142317 | Creck | 1746. 5 | 3. 24217 |
|  | 1224840.39 | 984.6 | 1840609 | 40612 | Hammond | 1825.6 | 3.2614 |
| Tomales Bay Mag. Sta.* $\dagger$ 1857 | $\begin{array}{llll}38 & 11 & 13.93\end{array}$ | 429.5 | $\begin{array}{llll}225 & 08 \\ 53\end{array}$ | 450940 | Preston | 2669.5 3750.5 | $3 \cdot 42643$ |
|  | 12256 | 932.8 | 2784747 | 984921 | Mershon | 3750.5 | $\text { 3. } 57409$ |
| Blake's (T) house, SE. gable* $\dagger$ 1857 |  | 1209.0 | 615927 |  | Tomales Bay Tomales Point | 2871.3 5099.3 | 3. 45808 <br> 3. 70751 |
|  | 1325507.60 | 63.3 | 1134417 | 2934218 | Tomales Point | 5099.3 | $\text { 3. } 7075 \mathrm{I}$ |
| Estero* + 1860 | 3817716.16 | 498.3 | 1102103 | 2901828 | Bodega Head | 6488.4 | 3. 81214 |
|  | 1225935.06 | 852.0 | 1612921 | 3412903 | Bodega | 2195.9 | 3. 34162 |
| $\text { Lnlet }{ }^{*} 860$ | $\begin{array}{rrrr}38 & 16 & 29.20 \\ 132 & 59 & 04.00\end{array}$ | 900.4 | $11827 \times$ | $\begin{array}{llll}298 & 24 & 0 \\ 337 & 38\end{array}$ | $\underset{\substack{\text { Bodcga } \\ \text { Bodega }}}{\text { Head }}$ | 7777.3 3817.2 | 3. 89083 |
|  | 1225904.0 | 97.2 | 1573847 | 3373810 | Bodega | 3817.2 | 3. 58175 |
| $\underset{1860}{\text { Tomsles Bluff }} \boldsymbol{+}$ | $\begin{array}{llll}38 & 14 & 24.63\end{array}$ | 759.4 | 141 29 58 <br> 145 13  | 321 27  <br> 355   <br> 5 13 13 | Bodeca Head Bodega | 9641.4 | 3. $98.8_{414}$ <br> 3.86906 |
|  | 1225938.41 | 934. I | 17513139 | 3551313 | Bodega | 7397. 1 | 3.86906 |
| $\underset{1860}{\text { Sandbill }} * \dagger$ | $\begin{array}{rrrr}38 & 20 & 10.78 \\ 123 & 03 & 36.78\end{array}$ | 332.4 888.4 |  | 122 183 1836 | Bodega ${ }_{\text {Bodega Head }}$ | 6134.4 $3137 \cdot 3$ | $\begin{aligned} & 3.78777 \\ & 3.49656 \end{aligned}$ |
|  | 12303 <br> 6.58 | 888.4 | 35605 | $183 \quad 5600$ | Bodega Head | $3 \times 37 \cdot 3$ | $\text { 3. } 49656$ |
| $\underset{1860}{\text { Salmon Creek }}{ }^{*}+$ | $\begin{array}{llll}38 & 21 & 22.94\end{array}$ | 707.3 | $\begin{array}{llll}314 & 08 & 05 \\ 356\end{array}$ | 1341030 | Bodega ${ }^{\text {Bodega Head }}$ | 7933.6 5363.5 | 3. 89947 <br> 3. 72945 |
|  | 12303 58. 10 | 1410.7 | 3564243 | $1764^{2} 51$ | Bodega Head | 5363.5 | $\text { 3. } 72945$ |
| Dougherty's house, SW. gable* 1860 | $\begin{array}{llll}38 & 20 & 04.86\end{array}$ | 149.8 | 30545 Or | 1254652 | Bodega | 5336.4 3130.4 | $3.72725$ |
|  | 1330308.01 | 48.8 | 194219 | 1994152 | Bodega Head | 3130.4 | $3.49560$ |
| Stillwater dead tree * $\dagger$$1876$ | 383235.60 | 1097.7 | 3163939 | 1364006 | Timber Cove | 1527.8 | 3. 18408 |
|  | 1231718.82 | 455.8 | 1170920 | 2970847 | Stockhoff | 1443.8 | 3. 15951 |
| $\text { Fork Tree }{ }^{*}+$ | 38 38 41.90 | 1292.0 | 3391544 | $\begin{array}{llll}159 & 16 & 24 \\ 184 & 94 & \end{array}$ | Horseshoe Point Rocky Point | $4415.8$ | $3.64501$ |
|  | $123 \quad 2314.08$ | 340. 5 | 40427 | 1840434 | Rocky Point | 1630.5 | $\text { 3. } 21233$ |
| Arm Tree ${ }^{*}$ | 383956.43 | 1740.0 | 3543529 | 1743535 | Sandy Point | 2309.5 | 3. 36352 |
|  | $123 \quad 2407.08$ | 171. 2 | 254206 | 205 4151 | Stewart Point | 1304.7 | 3.11550 |
| Bald Top 3 dead tree $\dagger$ 1870 | $\begin{array}{llll}38 & 58 & 51.444\end{array}$ | 1586.2 |  | 2405229.6 | Hall | $9643.8$ <br> 8856.7 | $\text { 3. } 984247$ |
|  | 12337 18 <br> 182  | 436.9 | 714339.6 | 25140000 | Sand | 8856.7 | $3.947270$ |
| Bushy top tree $\dagger$ 1870 | $\begin{array}{ccc}38 & 55 & 12.544 \\ 123 & 42 & 56.597\end{array}$ | 386.8 353.8 | 101 21 <br> 151 04 <br> 1  |  | Arena Latitude Sta. Point Arena L. H. | 1000.3 4427.2 | $\begin{aligned} & 3.000126 \\ & 3.646126 \end{aligned}$ |
|  | 1234256.197 | 1353.8 | 1513053 | 3312958 | Point Arena L. H. | 4427.2 | 3. 646126 |

* No check on this position.

This point is in the area of the 1906 earthqualke disturbance.
$\ddagger$ See p. 295.

Point Arena to Shelter Cove.

| Station | Latitude and longitude | Secondsin meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Round}_{1871}^{*}$ | - | $m$ | " | " |  | meters |  |
|  | 39 O1 45.18I | 1393.4 | 348 If 35. 2 | 1681143.6 | Black | 1584.0 | 3. 199768 |
|  | 1234039.548 | 951.3 | 3522126.2 | 1722142.3 | Spur | 4624.4 | 3. 665058 |
|  |  |  | 314755.8 | 2114720.5 | Lane | 2559.4 | 3.408146 |
| Cuffey Cove * 1871 | 390830.975 | 955. F | 346 II 46.3 | $\begin{array}{llll}66613 & 20.8\end{array}$ | Lane | 25725.0 | 4. 179694 |
|  | 1234405.591 | 134.3 | 11302.8 | 1811251.3 | Point Arena L. H. | 20735.0 | 4.316704 |
| $\begin{gathered} \text { Peak * } \\ 1871 \end{gathered}$ | 390423.720 | 731.5 | $\begin{array}{llll}356 & 37 & 43.6\end{array}$ | 1763751.2 | Round | 4897.4 | 3. 689967 |
|  | 1234051.525 | 1238.5 | 83218.1 | 18831550.3 | Lane | 7143.4 | 3. 853908 |
|  |  |  | 1483406.8 | 3283204.4 | Cuffey Cove | 8937.4 | 3.951212 |
| $\underset{1871}{\text { Red Bluff* }}$ | 390450.610 | 1560.8 | 15818 28. 1 | 33817 x 7.1 | Cuffey Cove | 7313.8 | 3. 864144 |
|  | 1234213.024 | 313.1 | 2925559.0 | 1125650.3 | Peak | 2127.4 | 3. 327844 |
|  |  |  | 3383.3200 .9 | 158 <br> 5 3259.8 | Round | 6144.0 | 3.788452 |
|  |  |  | 3532933.2 | 1732956.8 | Lane | 7944. 7 | 3.900076 |
| $\underset{\text { Elk Creek }}{ }$ | 39 06 33 <br> 196   | 1023.8 |  | 33158 | Cuffey Cove | 4114.3 | $3.614296$ |
|  | 1234245.126 | 1084.6 | 325 <br> 346 <br> 3 <br> 17 | 145 <br> 16688 <br> 1681.8 <br>  | Peak Red Bluff | 4836.8 3256.1 | $3.684558$ |
|  |  |  | 3461747.6 | 1661807.8 | Red Bluff | 3256.1 |  |
| $\underset{1871}{\text { Greenwood }}$ | 390789.428 | 907.3 | $36 \quad 2335.9$ | 2162302.3 | Elk Creek | 2153.8 | 3. 333210 |
|  | 1234151.928 | 1247.4 | 1203616.3 | 3003451.9 | Cuffey Cove | 3729.5 | 3. 571646 |
| $\underset{1871}{\text { Cavanagh }}$ | $\begin{array}{llllllll}39 & 09 & 13.739\end{array}$ | 423.7 | 3234948.7 | 1435050.5 | Greenwood | 3984.5 | 3. 600374 |
|  | 1234329.824 | 216. 1 | 3474528.9 | 1674557.1 | Elk Creek | 5065.9 | 3. 204657 |
|  |  |  | 330433.2 | 2130410.6 | Cuffey Cove | 1573.9 | 3. 196973 |
| $\begin{gathered} \text { Navarro Head } \\ 1871 \end{gathered}$ | 39 If 48.933 | 1509. 1 | 3340503.6 | 1440634.8 | Cavanagh | 5908.4 | 3. 771468 |
|  | 1234554.165 | 1299.7 | 3365212.8 | 1565321.4 | Cuffey Cove | 6637.9 | 3. 822028 |
| Saddle Point 187: | 39 10 36.611 | 1 t 29.1 | $\begin{array}{llll}52 & 03 & 21.4\end{array}$ | 3320250.2 | Navarro Head | 2524.7 | 3. 402216 |
|  | 1234504.862 | 116. 7 | 3181359.9 | $\begin{array}{llllll}138 & 14 & 59.9\end{array}$ | Cavanagh | 3425.9 | $\text { 3. } 534774$ |
|  |  |  | 3394936.5 | 1595013.9 | Cuffey Cove | 4127.5 | 3.615691 |
| Tichenor 1871 | 391126.992 | 832.4 | 3494852.5 | ${ }^{169} 4859.8$ | Saddle Point | 1578. 5 | 3. 198250 |
|  | 1234516.492 | 395.8 | 1264852.3 | 30648 28. 5 | Navarro Head | 1129.3 | 3.052793 |
| Navarro Ridge West Base 1871 | $\begin{array}{llll}39 & 12 & 04.270\end{array}$ | 131.7 | 3281796.8 | 14817825.5 | Tichenor | 1351.3 | $\text { 3. } 130762$ |
|  | 1234546.092 | 1106.0 | 221632.5 | 2021627.4 | Navarro Head | $511.1$ | 2. 708498 |
| Navarro Ridge East Base 1871 | 391211.016 | 339.7 | $\begin{array}{lllll}14 & 12 & 41.3\end{array}$ | 19412332.3 | Tichenor | 1400.5 | 3. 146270 |
|  | 1234502.165 | 52.0 | $\begin{array}{llllllllllllll}61 & 22 & 52.2\end{array}$ |  | Navarro Head N. R. West Base | 1421.5 1074.36 | $\begin{aligned} & 3.152752 \\ & 3.031150 \end{aligned}$ |
|  |  |  | 785021.2 | 2584953.4 | N. R. West Base | 1074.36 | 3.031150 |
| Johnson 1871 | 391249.489 | 1526.2 | 328 or 22.7 | 148 or 42.3 | N. R. East Base | 1398.6 | 3. 145708 |
|  | 1234533.034 | 292.5 | 123949.0 | 1923940.8 | N. R. West Base | 1429.2 | 3. 155105 |
| Salmon Point 1871 | $\begin{array}{rlll}39 & 1251.655\end{array}$ | 1593.0 | 27247 31.7  <br> 324 12 88 | 92 48 144 12 07.7 | Johnson |  |  |
|  | 1234630.007 | 719.9 | $\begin{array}{llll}324 & 12 & 08.8 \\ 336 & 01 & 35.2\end{array}$ | 144 <br> 156 <br> 156 | N. R. West Base Navarro Head | 1801.5 1116.8 | $\begin{aligned} & \text { 3. } 255638 \\ & 3 \cdot 325673 \end{aligned}$ |
|  |  |  | 3360285 | 1560157.9 | Navarro Head | 2116.8 | 3. 325073 |
| $\begin{gathered} \text { McPherson } \\ 187 \mathrm{I} \end{gathered}$ | 3913588.104 | 1791.9 | 3403551.2 | 1603610.8 | Johnson |  |  |
|  | 1234604.097 | 98.3 | 3525901.1 | 173 106 106 59 12.5 | N. R. West Base Salmon Point | 3536.9 3141.4 | $\begin{aligned} & \text { 3. } 548626 \\ & \text { 3. } 330690 \end{aligned}$ |
| $\underset{1871}{\operatorname{Mral} \mathrm{~Pa}_{2} *}$ |  |  |  |  |  |  |  |
|  | $\begin{array}{r}39 \\ 123 \\ \hline 23 \\ \hline\end{array}$ | 609.3 583.4 | 1655128.4 1913756.7 314 | $\begin{array}{r}345 \\ 11 \\ 118 \\ 38 \\ \hline 17.3\end{array}$ | Peak | 4797.4 | 3. 3. 59101394 |
|  |  |  | 31445 or. 7 | 1344529.9 | Round | 1514.3 | 3. 180219 |
|  |  |  | $33 \times 52 \times 8.4$ | 1515155.0 | Black | 2967.5 | 3. 472389 |
|  |  |  | 44846.0 | 18.44838 .9 | Lane | 3253.1 | 3. 512291 |
| Stewart *2872 | 390319.112 | 589.4 | 3583237.8 | 1783239.7 | Round | 2897.5 | 3. 462023 |
|  | 1234042.609 | 1024.5 | 140640.4 | 1940607.0 | Lane | 5229.7 | 3. 718474 |
|  |  |  | 284126.2 | 2084100.0 | Mal Paso 2 | 2086.5 | 3. 319414 |
|  |  |  | $11_{4} 23355.7$ | 3222259.7 | Red 3luff | 3561. 7 | 3. 551661 |
|  |  |  | 1735146.9 | 3535141.2 | Peak | 2003. 9 | 3. 301870 |
| $\begin{gathered} \text { Herricic* } \\ \text { 1871 } \end{gathered}$ | 390554.838 | 2698.2 | 3292210.7 | 74922542 | Peak | 3265.3 | 3. 513917 |
|  | 1234200.727 | 17.5 | 3522800.5 | 1722823.4 | Mal Paso, | 6690.3 | 3. 825445 |
|  |  |  | 82914.2 | 1882906.4 | Red Bluff | 2002.6 | 3. 301589 |
|  |  |  | 1375747.5 | 3175719.5 | Elk Creek | 1592.7 | 3. 302143 |
|  |  |  | 148 os 18. 1 | 3280359.3 | Cuffey Cove | 5672.7 | 3. 753789 |
|  |  |  | 1840841.1 | 40846.7 | Greenwood | 2924.4 | 3. 460033 |
| $\underset{\text { P871 }}{\text { Bight }}$ | 390959.063 | 1821. 5 | 1433642.9 | 3233620.5 | Saddle Point | 1438.4 | 3. 157874 |
|  | 1234429.312 | 703.6 | 1485949.8 | 3285856.2 | Navarto Head | 3953. 1 | 3. 596943 |
|  |  |  | 3142231.2 | 1342308.8 | Cavanagh | 1998. 4 | 3. 300676 |
|  |  |  | 3480923.2 | 1680938.2 | Cuffey Cove | 2775.6 | 3. 443364 |

*See p. 295 .

Point Arena to Shelter Cove-Continued.

| Station | Lsatitude and longitude | Seconds in meters | Azimuth | Back azimuth | Tostation | Distance | I.ogarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Kennedy } \\ & 1871 \end{aligned}$ | " | $m$ | - ' ' | " |  | meters |  |
|  | 391027.121 | 836.4 | 32533 31. 1 | 1453504.4 | Cavanagh | 2743. 2 | 3. 4382615 |
|  | 1234434.415 | 826.1 | 3490342.6 | 1690400.8 | Cufiey Cove Bicht | 3648.0 873.8 88 | $\text { 3. } 562060$ |
|  |  |  | $\begin{array}{llll}351 & 56 & 29.6 \\ 111 & 49 & 29.7\end{array}$ | $\begin{array}{llll}171 & 56 & 32.8 \\ 291 & 49 & 10.5\end{array}$ | Bight Saddile Point | 873.8 787.3 | 2. 941435 <br> 2. 896121 |
|  |  |  | 1424914.7 | 3224824.3 | Navarro Head | 3166.8 | 3. 500624 |
| $\underset{1871}{\text { Navarro }} \mathbf{~ P o i n t ~}$ | 39 11 40.990 | 1264. 1 | 2362035.9 | 562045.6 | Navarro Head | 442.0 | 2. 645442 |
|  | 1234609.498 | 227.9 | 28844 22. 2 | 1084455.7 | 'richenot | 1343.3 | 3. 128174 |
|  |  |  | 3145623.9 | 1345724.0 | Kennedy | 3224.4 | 3. 508453 |
|  |  |  | 3194908.5 | 1395049.4 | Cavanagh | 5942.3 | 3. 773952 |
|  |  |  | 3215927.3 | 1420008.2 | Saddle Point | 2519.5 | 3.401316 |
|  |  |  | 3330432.5 | 1530550.8 | Cuffey Cove | 6571.5 | 3.817665 |
| $\begin{gathered} \text { Monroe } * \\ 1870 \end{gathered}$ | $\begin{array}{r}39 \\ \hline 123 \\ \hline 10\end{array}$ | 1323.0 | $\begin{array}{rrrrr}356 & 40 & 46.0 \\ 5 & 36 & 06.3\end{array}$ | 1764048.3 185 185 78 | Black Shoemake | 1482.6 6955.2 | 3. 171032 3. 842312 4.89088 |
|  | 1234029.646 | 713.2 | 536606.3 |  | Shoemake It. Arena NW. Base | 6955.2 10001.6 | 3. 8423112 |
|  |  |  | 3243 37 | 21240 217 217 | I't. Arena NW. Base Iane | 10001.6 2636.0 | 4. 000068 |
|  |  |  | 370051.5 | 217010.0 | lane | 2636.0 | 3. 420951 |
| $\begin{aligned} & \text { Welch * } \\ & 1870-1 \end{aligned}$ | 390415.600 | 481. I | 3353518.2 | 1553614.2 | Monroe | 5170.9 | 3. 713567 |
|  | 2234158.492 | 1406.1 | 3552345.2 | 1752259.6 | Lane | 6836.1 | 3. 834809 |
| White Rock 1870-1 | 390543.48 I | 1340. 9 | 3065914 | 1270040 | Peak | 4087.3 | 3. 6114344 |
|  | $123 \quad 43 \quad 07.334$ | 176.2 | 3362633 | 1562815 | Black | 9707. 1 | 3. 987089 |
|  |  |  | 3474497 | 1674529 | Shoemake | 14675.4 | 4. 166590 |
| House chimney near big barn* 1870 | 390413.943 | 430.0 | 14813 | 181 4808 | Lane | 6766.2 | 3.830342 |
|  | 1234126.751 | 643 . 1 | 104707 | $19046 \quad 04$ | Sand | 12954.7 | 4. 112427 |
|  |  |  | 135928 | 1935758 | Pt. Arena SE. Base | 14362.3 | 4. 157224 |
| Stillwell 8871 | 391515.433 | 476.0 | 3344432.6 | 154.4502 .4 | McPherson | 2636.6 | 3.421047 |
|  | 1234651.005 | 1222.9 | 3372548.1 | 1572637.4 | Johnson | 4873.6 | 3. 687855 |
|  |  |  | $3533^{1} 06.2$ | 1733119.5 | Salmon Point | 4462.3 | 3.64956r |
| Little River 1871 | 391632.601 | 1005.4 | 3244531.8 | 1444616.2 | Stillwell | 2913.5 | 3. 464417 |
|  | 12348 O1. 120 | 26.8 | 3324115.2 | 1524248.9 | Johnson | 7742.7 | 3. 8888892 |
|  |  |  | 3421245.6 | 1621343.3 | Salmon Point | 7555.3 | 3. 854628 |
| $\underset{1871}{\text { Stickney }}$ | 391558.426 | 1801.8 |  | 1735614.0 | Stillwell . | 1333.3 | 3. 124923 |
|  | 1234656.879 | 1363.5 | $124 \quad 23$ 33.6 | 3042252.9 | Iittle River | 1866. 1 | 3. 270924 |
| $\underset{1871}{\text { Kent }}$ | 391700.308 | 9.5 | $3324043 \cdot 7$ | 1524109.7 | Stickney | 2147.9 | 3. 332004 |
|  | 12347 38.002 | 910.8 | $325^{8} 03.6$ | 2125748.9 | Little River | 1018.4 | 3. 007903 |
| $\begin{gathered} \text { Mendocino } \\ 1871 \end{gathered}$ | 3918 20. 292 | 625.8 | 33157 31. 2 | 1515805.9 | Kent | 2794.5 | 3.4463 11 |
|  | 1234832.816 | 786.2 | 3470651.7 | 1670711.8 | Little River | 3406.8 | 3. 532342 |
| Randlett 1871 | 391752.451 | 16 r 7.6 | 3581314.3 | 1781315.6 | Kent | 1608.8 | 3. 206498 |
|  | 1234740.086 | 960.6 | 1241210.8 | 3041137.4 | Mendocino | 1527.6 | 3. 184003 |
| Gray | 391930.056 | 926. 9 | 3545647.9 | $1745654 \cdot 9$ | Randlett | 3021.7 | 3. 480258 |
|  | 1234751.194 | 1226.3 | 245211.4 | 2045145.0 | Mendocino | 2371.2 | 3. 374977 |
| $\underset{1873}{\text { Point }}$ | 392006.638 | 204. 7 | 3044154.0 | 1244237.1 | Gray | 198r. 5 | 3. 296985 |
|  | 1234859.206 | 1418.0 | 349 O5 14.9 | 1690531.6 | Mendocino | 3339.9 | 3. 523735 |
| $\underset{1873}{\text { Russian Gulch }}$ | 391942.380 | 1307.0 | 14 x 5733.6 | 3215718.1 | Point | 949.8 |  |
|  | $1234834 \cdot 766$ | 832.7 | $\begin{array}{llll}290 & 00 & 25.2 \\ 358 & 56 & 33.2\end{array}$ | $\begin{array}{lllll}110 \\ 178 \\ 178 & 50 & 52.9\end{array}$ | Gray | 1110.7 | $3.045603$ |
|  |  |  |  | 1788634.4 | Mendocino | 2531.9 | 3.403452 |
| ${ }_{\text {Rees }} 1873$ | $3920 \begin{gathered}\text { 16. } 131\end{gathered}$ | 497. 5 | 357 O2 Or. 3 | $1770202.7$ | Kussian Gulch | $1042.3$ | $\text { 3. } 017967$ |
|  | 1234837.019 | 886.6 | 610845.6 | 2410831.5 | Point | 606.7 | 2. 782973 |
| $\begin{array}{r} \text { Cabrillo } \\ 1873 \end{array}$ | 392057.724 | 1780.2 | 31253127.5 | 1325414.1 | Rees | 1884.3 | 3. 275147 |
|  | 1234934.661 | 829.9 | 3314031.7 | 1514054.2 | Point | 1789.7 | 3. 252772 |
| Handley$187 i$ | 391333.473 | 1032.3 | 1575700.5 | 3375601.4 | Little River | 5960. 2 | 3. 77526 r |
|  | 12346 27.770 | 666. I | 1695711.0 | 3495656.3 | Stillwell | 3193.2 | 3. 504224 |
|  |  |  | 2164638.0 | 364653.0 | McPherson | 948.3 | 2. 976964 |
|  |  |  | 3155531.3 | 1355605.9 | Johnson | 1887.8 | 3. 275964 |
|  |  |  | 3210359.2 | 14150453.4 | N. R. East Base | 326 1. 1 | 3. 513364 |
|  |  |  | 340 O1 15.3 | 1600141.7 | N. IR. West Hase | 2927.0 | 3.466417 |
|  |  |  | 3455743.0 | 1655743.5 | Navarro Head | 3323. 1 | 3. 521544 |
|  |  |  | 22258.0 | 1822256.6 | Salmon Point | 1290.7 | 3.110835 |
| Albion 1871 |  | 893.6 | 220 O1 It. 0 | 40 O1 30.9 | McPherson | 1173.0 | 3. 069296 |
|  | 1234635.546 | 852.6 | 3090416.4 | 1290455.9 | Johnson | 1931.8 | 3. 285951 |
|  |  |  | 3353403.2 | 1553434.5 | N. R. West Base | 2869.0 | 3. 457731 |
|  |  |  | 3532446.0 | 1732449.4 | Salmon Point | 1158.6 | 3.063920 |
|  |  |  | 16005 21. 7 | 3400427.5 | İittle River | 6022.9 | 3. 779888 |
|  |  |  | 1733333.0 | 35313323 | Stillwell | 3303.8 | 3. 519009 |

* Sce p. 295.

Point Arena to Shelter Cove-Continued.

| Station | Latitude and longitude | Sec onds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Chaparral } \\ { }_{1871} \end{gathered}$ | $\begin{array}{r} 391725.026 \\ 12347 \\ \hline 66.956 \end{array}$ | $\left\lvert\, \begin{gathered} m \\ 771.8 \\ 1365.0 \end{gathered}\right.$ | - ' " | , " |  | meters |  |
|  |  |  | 15314 48.2 | $\begin{array}{llll}333 & 14 & 25.5\end{array}$ | Mendocino | 1908.7 | 3. 280738 |
|  |  |  | 2053243.8 | 253254.5 | Randlett | 937.4 | 2.971920 |
|  |  |  | 3291225.8 | 149 12 37.8 | Kent | 887.4 | 2.948095 |
|  |  |  | 3382442.3 | 1582524.0 | Stillwell | 4297. 7 | 3. 633239 |
|  |  |  | $33^{32} 02.3$ | 1833159.6 | Little River | 1619.8 | 3. 209449 |
| Mendocino City Latitude Station 1871 | 391813.461 | 415.1 | $306 \quad 28 \quad 56.3$ | $\begin{array}{llll}126 & 29 & 19.5\end{array}$ | Randlett | 1089. 7 | 3. 037288 |
|  | 1234816.649 | 398.9 | 3374037.5 | 15741020 | Kent | 2438.6 | 3. $3^{877149}$ |
|  |  |  | $342 \begin{aligned} & 2754.4\end{aligned}$ | 1522806 | Chaparral | 1566.4 | 3. 194916 |
| Grave$1873$ | $\begin{array}{rrr} 39 & 18 & 32 \cdot 519 \\ 123 & 47 & 52 \cdot 901 \end{array}$ | 1002. 9 | 24021.2 | 1824018.6 | Chaparral | 2083.7 | 3. 3188.6 |
|  |  | 1267.4 | $68 \quad 2905.5$ | 2482840.2 | Mendocino | 1028.0 | 3. 011977 |
|  |  |  | 1511905.7 |  | Point | 3308.6 | 3. 519645 |
|  |  |  | $\begin{array}{lllllllllll}181 & 19 & 13.9\end{array}$ | 11915.0 | Gray | 1774.8 | 3. 249155 |
|  |  |  | $\begin{array}{lllll}346 & 02 & 36.8\end{array}$ | 1660244.9 | Randlett | 1273.2 | 3. 104907 |
| $\underset{1872}{\text { Knoll }}$ | $\begin{array}{r} 391959.725 \\ 1234828.850 \end{array}$ | $\begin{array}{r} 1841.9 \\ 691.0 \end{array}$ | 145017.1 | 1945013.4 | Russian Gulch | 553.3 | 2. 742980 |
|  |  |  | 1062040.5 | 2862021.3 | Point | 757.6 | 2. 879447 |
|  |  |  | 1585148.3 | 3385143.2 | Rees | 542.5 | 2. 734372 |
|  |  |  | $315 \quad 2427.7$ | 1352455.7 | Gray | 1284.8 | 3. 108824 |
| $\underset{\substack{\text { Hargrave } \\ 1872}}{ }$ | $\begin{array}{r}39 \\ 39 \\ 123 \\ \hline 8\end{array}$ | 230.0 258 | 337529296 | 1575242.1 | Gray | 1245.0 | 3. 095184 |
|  | 1234810.771 | 258.0 | $\begin{array}{rrrr}351 & 40 & 51.4 \\ 9 & 04 & 50.5\end{array}$ |  | Grave | 7958.9 | 3. 471123 |
|  |  |  | 90450.5 $36 \quad 3718.4$ | $\begin{array}{llll}189 & 04 & 36.5 \\ 216 & 37 & 03.2\end{array}$ | Mendocino Russian Gulch | 3346.7 963.5 | 3. 534619 a. 983837 |
|  |  |  | 610949.7 | 2410938.2 | Knoll | $494 \cdot 3$ | 2. 693990 |
|  |  |  | 884526.6 | 3684455.9 | Point | 1160.3 | 3.0645s6 |
| $\begin{array}{r} \text { Gordon } \\ 1872 \end{array}$ | 3920477768 | 1473.2 | 3564058.3 | 17645 co.3 | Point | 2270.5 | 3. 103986 |
|  | 1234902.276 | 54.5 | 15153611.4 | 2913550.9 | Cabrillo | 834.I | 2.921190 |
| $\underset{1873}{\text { Meierkoff }}$ | 392040.607 | 1252.3 | 1441324.7 | 3241314.6 | Cabrillo | 650.7 | 2. 813377 |
|  | 1234918.774 | 449.6 | 2404727.5 | 604737.9 | Gordon | 452.6 | 2.655729 |
|  |  |  | 307 02 29.3 | 1270255.8 | Rees | 1252.8 | 3. 297881 |
|  |  |  | 33553849.7 | 1555402.1 | Point | 1147.6 | 3.059783 |
| Pine Grove 1872 | 392034.2161234855.355 |  | 61123.5 | 186 II 21.1 | Point | 855.5 | 2.932201 |
|  |  | 1325.6 | 1092146.9 | 2892132.1 | Meierkoft | 5944 | 2. 774101 |
|  |  |  | $12736 \quad 59.9$ | 3073635.0 | Cabrillo | 1188.6 |  |
|  |  |  | 1582209.9 | 3382205.5 | Gordon | 449.6 | 2. 652818 |
| Mendocino, flagstaff 1875-72 | $\begin{array}{lllll}39 & 18 & 07.682\end{array}$ | 236.9 |  | 325343 | Grave | 912.2 | 2. 960075 |
|  | 1234813.577 | 325.3 | 3002018 | 1201040 | Randlett | 919.9. | 2. 968414 |
|  |  |  | $343 \propto 11$ | $10_{3} \propto 92$ | Chapatral | $\times 374.4$ | 3.138125 |
| White spire cross 1872 | 39.8831 .563 | 973.4 | 348 o5 05.6 | 1680512.3 | Randlett |  |  |
|  | 1234750.707 | 1214.9 | 705944.0 | 2505917.3 | Mendocino | 1067.1 | $3.028193$ |
|  |  |  | 1191832.9 | 2991831.5 | Grave | 60.3 | 1. 780240 |
| $\begin{gathered} \text { Caspar I'oint } \\ 1873 \end{gathered}$ | 392208.329 | 253.8 | 3451157.8 | 1651215.2 | Gordon | 2566.5 | 3. 409333 |
|  | 1234929.655 | 709.9 | 30919.9 | 18309 16.7 | Calsrillo | 2177.6 | 3. 337976 |
| $\begin{aligned} & \text { Scaffold Tree } \\ & 1873 \end{aligned}$ | 392240.582 | 1251.5 | 2316 II. 5 | 2031535.4 | Cabrillo | 3452.8 | 3. 538 s 70 |
|  | $12348 \quad 37.695$ | 902. 2 | 511605.2 | $23 \pm 1532.2$ | Caspar Point | 1594.5 | 3. 202627 |
| Carleson 1873, | 392124.688 | 761.4 | 1358481.9 | 1935834.4 |  | 1173.3 | 3. 069413 |
|  | 1234850.440 | 1207.6 |  | 231515067 | Cabrillo | 1346.3 | 3.129142 |
|  |  |  | 1450236.3 | 3250211.4 | Caspar Point | 1638.4 | 3. 214422 |
|  |  |  | 1872534.9 | 72542.9 | Scaffold Tree | 2360.3 | 3. 372969 |
| Reaver Point 1873 | 392424.411 | 752.8 | 34.35843 .4 | 1635907.8 | Scaffold Tree | 3331.3 | 3. 522616 |
|  | $12349 \times 6.108$ | 385.4 | 42456.3 | 1840447.6 | Caspar Point | 4212.2 | 3.624519 |
| $\begin{gathered} \text { Bald Hill } \\ 1874 \end{gathered}$ | 3928 о6. 701 | 206.8 | 225129.7 | 2024937.2 | Scaffold Tree | 10913.1 | 4. 037949 |
|  | 1234540.580 | 970.1 | 365726.4 | 2165509.5 | Beaver Point | 8576.8 | 3.933324 |
| Soldier Harbur 1874 | $\begin{array}{r}39 \\ \hline 1263195176\end{array}$ | 653.0 | 2364238.2 | 564450.0 |  | 5932.1 | 3. 773206 |
|  | 1234908.021 | 191.8 | 3535434.8 | 1735454.2 | Scaffold Tree | 6841 I. 5 | 3. 835153 |
|  |  |  | 30432.5 | 1830427.5 | Beaver Point | 3606. | 3. 557042 |
|  |  |  | 34754.0 | 1834740.4 | Caspar Point | 7817.9 | 3. 893086 |
| Pudding Creek 1874 | 393731.734 | 978.7 | 2551151.8 | ${ }_{75}^{75} \times 1340.4$ | Bald Hill | 4235.1 | 3. 625839 |
|  | 1234831.468 | 752.3 | 255313.2 | 2015250.0 | Soldicr Harbor | 2344.9 | 3.370131 |
| Laguna Point | $\begin{array}{r}39 \\ 39 \\ 129 \\ \hline 19.367\end{array}$ | 597.2 | 3012759.3 | $\begin{array}{lllll}121 & 29 & 36.7 \\ 187 & 17\end{array}$ |  | 4291.4 | 3.632604 |
|  | $123 \quad 4813.708$ | 327.6 | 71731.3 13175309 | 18717100 | Pudding Creek | 3346.4 | 3. 524578 |
|  |  |  | 131753.9 | 1931719.4 | Soldier Harbor | 5646.6 | 3. 751790 |

Point Arena to Shelter Cove-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back aximuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ten Mile River Bluff 1874 | ' | $m$ | - ' ${ }^{\prime}$ | - ' 1 |  | meters |  |
|  | 393347.339 | 1459.9 | $35634 \begin{array}{lll}33.9\end{array}$ | 1763440.6 | Bald Hill | 10524.0 | 4. 022180 |
|  | 1234606.895 | 164.6 | 200821.1 | 2000700.4 | Laguna Point | 8801.7 | 3.944569 |
| $\underset{1874}{\text { Cunningham Ridge }}$ | 393418.237 | 562.2 | 22445.5 | 1822432.6 | Bald Hill | 11468.3 | 4. 059498 |
|  | 1234520.384 | 486.4 | 241201.9 | 2041011.6 | Laguna Point | 10104.0 | 4. $0^{4} 4493$ |
|  |  |  | 49, 2150.6 | 2292121.0 | Ten Mile River Bluff | 1463.1 | 3. 165274 |
| Brushy Point 1874 | $\begin{array}{r}393442.008 \\ 12346 \\ \hline\end{array}$ | 1295.5 037.9 | $\begin{array}{lllll}291 & 15 & 35.6 \\ 335 & 21 & 17.9\end{array}$ | $\begin{array}{llll}111 & 16 & 25.9 \\ 155 & 21 & 38.6\end{array}$ | Cunningham Ridge Ten Mile River Bluff | 2021.1 1854.9 | $\begin{aligned} & \text { 3. } 305590 \\ & \text { 3. } 268330 \end{aligned}$ |
|  | 1234639.298 | 937.9 |  | 15512138.6 1924532.6 | Ten Mile River Bluft Laguna Point | 1854.9 10202.4 | $\begin{aligned} & \text { 3. } 268330 \\ & 4.008704 \end{aligned}$ |
| $\underset{1874}{\text { Claxton Hill }}$ | 393210.058 123 | 310.2 58.8 | 40 40 152 58 51 16.4 29.8 | $\begin{array}{lllll}220 & 56 & 14.7 \\ 332 & 50 & 48.8\end{array}$ | Laguna Point | 6970. I | $3.843240$ |
|  | 1234502.464 | 58.8 | $\begin{array}{llll}152 & 51 & 29.8 \\ 173 & 49 & 28.3\end{array}$ | 332 <br> 353 <br> 350 <br> 49 <br> 49 <br> 16.9 | Ten Mile River Bluff Cunningham Ridge | 3371. 5 | $\text { 3. } 527828$ |
| ```Ten Mile River Beach, South Base 1874``` | 39 31 36. 714 | 1132. 2 | 1881344.0 | 81359.5 | Ten Mile River Bluff | 4070.4 | 3. 609636 |
|  | 12346 31.300 | 747.6 | 19846 or. 5 | 184646.6 | Cunningham Ridge | 5261.3 | 3. 721092 |
|  |  |  | 2440758.3 | 640854.8 | Claxton Hill | 2357.7 | 3. 372489 |
| $\begin{aligned} & \text { Ten Mile River Beach, } \\ & \text { North Base } \\ & 1874 \end{aligned}$ | $3932 \begin{array}{ll}23 \cdot 742\end{array}$ | 732.2 | 1657443 | 19657.32 .5 | Ten M.R.B..S.B. | 1516.3 | 2. 190786 |
|  | 1234612.778 | 305.1 | 18307093 | 30709.3 | Ten Mile River Bluff | 2581.9 | 3.411946 |
|  |  |  | 19930076 | 193040.9 | Cunningham Ridge | 3746. 1 | 3. 573574 |
|  |  |  | 2840605.3 | 1040650.0 | Claxton Hill | 1731.3 | 3. 238384 |
| Whipple Ridge 1874 | 393519.205 | 592.2 | $330 \begin{array}{llll}55 & 25.1\end{array}$ | 1505553.0 | Cunningham Ridge | 2151.3 | 3. 3.32696 |
|  | 1234604185 | 99.9 | 118 18 <br> 18.5  | 1815878 | Ten Mile River Bluff | 2833.9 | 3. 452384 |
|  |  |  | 360900.3 | 216 c8 37.9 | Brushy Point | 1420.6 | 3. 552473 |
| $\underset{1873}{\text { Mitchell Gulch }}$ | 392331.440 | 069.7 | 1744113.2 | $35441 \mathrm{cm}$. | Beaver Point | 1640.6 | 3. 215006 |
|  | 1234909.758 | 233.5 | 3335534.9 | 1535555.2 | Scaffold Tree | 1746.1 | $3.24200_{4}$ |
|  |  |  | 103053.9 | 1903041.2 | Caspar Point |  | $3.416636$ |
| $\underset{1874}{\text { Bloom Knoll }}$ | 392518.069 | 557. 2 | 20752.4 | 1820747.6 | Scaffold Tree | 4860.1 | 3. 686646 |
|  | 1234830.144 | 721.1 | 3336 29.2 | 2133600.0 | Bcaver Point | 1986.8 | 3. 298153 |
|  |  |  | 1550232.0 | 3350207.9 | Soldier Harbor | 2146.7 | 3.331770 |
|  |  |  | 2175537.1 | 3757 24.7 | Bald Hill | 6594.3 | 3.889171 |
| South Noyo 1874 | 392528.214 | 870.1 | 17630 11. 2 | 3563008.5 | Soldier Harbor | 1636.4 | 3. 213878 |
|  | 1234903.847 | 92.0 | 22449 19.7 | 445128.7 | Bald Hill | 6892.9 | 3. 8384805 |
|  |  |  | 2911228.6 | 1111250.0 | Bloom Knoll | 864.8 | 2.936895 |
|  |  |  | 3530545.6 | 1730602.2 | Scaffold Tree | 5207.3 | 3. 716616 |
|  |  |  | 54313.7 | 1854257.3 | Caspar Point | 6198.2 | 3. 792268 |
|  |  |  | $8 \quad 28$ 46. 3 | $\begin{array}{lllll}188 & 28 & 38.5\end{array}$ | Beaver Point | 1989.4 | 3. 298717 |
| North Noyo 1874 |  |  | 110658.1 | 191 0643.8 | Beaver Point |  | 3. 445626 |
|  | $12348 \quad 53.624$ | $1282.5$ | 173652.1 | 1973645.6 | South Noyo | 808.1 | 2. 907441 |
|  |  |  | $\begin{array}{llllll}158 & 15 & 15.8 \\ 238 & 54 & 54.6\end{array}$ | 3381506.6 | Soldier Hatbor | 629.3 | 2. 968143 |
|  |  |  | $\begin{array}{lllll}228 \\ 382 & 14 & 54.6 \\ 332 & 35 & 59.6\end{array}$ | 481657.1 1523534.5 | Bloom Knoll | 6185.4 1220.0 | $\begin{aligned} & \text { 3. } 791365 \\ & \text { 3. } 086359 \end{aligned}$ |
| McPherson's flagstaff 1873-74 | 392547.314 | 1459. 2 | 75232.3 | 1875229.0 | Bloom Knoll | 910.5 | 2. 959266 |
|  | 1234824.928 | 596. 2 | 574047.1 | 2374022.4 | South Noyo | 1801.6 | 3. 042013 |
|  |  |  | 1044719.8 | 2844701.6 | North Noyo | 709.8 | 2. 851154 |
|  |  |  | 1353256.1 | 3152228.7 | Soldier Harbor | 1467.2 | 3. 166489 |
| Ten Mile River Beach 1874 |  |  | 1895059.3 | 95122.0 | Ten Mile River Bluff | 4992.3 | 3. 698304 |
|  | $1234642.671$ | 1019.3 | 19657 35. 2 | 165754.3 | I.M.R.B.N.B. | 2447.1 | 3. 388844 |
|  |  |  | 1965752.2 | 165759.4 | T.M.R.B.S. B | 930.8 | 2.968837 |
|  |  |  | 198 29 231639.9 165 |  | Cunningham Ridge | 6191.7 306.7 | 3. 791807 |
|  |  |  | $\begin{array}{llll}231 & 16 & 25.9 \\ 345 & 07 & 15.1\end{array}$ | $\begin{array}{r}51 \\ 17 \\ 165929.7 \\ \hline 184.6\end{array}$ | Claxton Hill Bald Hill | 3067.4 5780.1 | 3. 486771 3. 761938 |
|  |  |  | 345 33 0216.4 | 130138 | Laguna Point | 5780.1 3990.4 | 3.601012 |
| $\begin{gathered} \text { Sandhill } \\ 1874 \end{gathered}$ |  | 135.4 | 5745 Or. 4 | 2374402.8 | Laguna Point | 2601.6 | 3.415240 |
|  | 1234641.636 | 994.8 | 1791634.3 | 3591633.6 | Ten Mile Riv. Beach | 1957.1 | 3. 291607 |
|  |  |  | $184 \quad 5718.6$ | 4 4 6 57 3 | I. M. R.B.S.B. | 2857.9 | 3. 456042 |
|  |  |  |  | $\begin{array}{rr}6 & 53 \\ 15 & \text { O1. } 26 \\ 38.4\end{array}$ | Ten Mile River Bluff | 6925.5 | 3. 840451 |
|  |  |  | $2112535 \cdot 3$ | 3512638.4 | Claxton Hill | 4542.2 | 3. 657263 |
| Kibesillah Hill 1873 |  | 265.2 | 3222130.6 | 1422202.0 | Whipple Ridge | 1923.9 | 3. 284172 |
|  | 1234653.422 | 1274.7 | 3454151.6 | 1654221.0 | Ten Mile River Bluff | 4495.9 | 3.652818 |
|  |  |  | $35^{2} 4821.9$ | $17^{2} 4830.6$ | Brushy Point | 2691.8 | 3.430044 |
| Bell Mountain 1873 | 393723.934 | $738.1$ | $352 \times 1 \mathrm{~m} .6$ | 172026.0 | Whipple Ridge | 3884.4 |  |
|  | 1234626.831 | 639.9 | 151627.0 | 1951610.0 | Kibesillah Hill | 2408.2 | $3 \cdot 381696$ |
| $\underset{\substack{\text { Bell Point } \\ \\ \hline 873}}{ }$ | 393737.860 | 1167.6 | 2932524.4 | 1132550.9 | Bell Mountain | 1080. 2 | 3. 033516 |
|  | 1234708.389 | 200. 1 | $35^{2} 3630.7$ | 1723640.2 | Kibesillah Hill | 2775.7 | 3.443375 |

Point Arena to Shelter Cove-Continued.

| Station | Latitude and longitude | Sec onds in meters | Azimuth | $\begin{gathered} \text { Back } \\ \text { azimuth } \end{gathered}$ | To station | Distance | I.ogarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{2873}{\text { Packard Hill }}$ | - " ${ }^{\prime}$ | $m$ | - " ${ }^{\prime \prime}$ | - ' " |  | meters |  |
|  |  | 553.4793.3 |  | 177 184 18429838.0 195 | Bell Mountain Kibesillah Hill | 3519.4 5859.0 |  |
|  |  |  | 151049.0 | 1951026.6 | Bell Point | 3858.1 3198. | 3.767828 3.504898 |
| Abalone Point 1874 | 394003.4161234728.964 | 105.4 | 3163401.6 | 1363437.1 | Packard Hill | 1931.0 | 3. 285792 |
|  |  | 690.4 | 3431356.0 | $1{ }^{163} 314359.6$ | Bell Mountain | 5136.7 | 3.710687 |
|  |  |  | 35319 3 | 1731940.0 | Kibesillah Hill | 7291.1 | 3.862792 |
|  |  |  | 3534543.0 | 1734556.1 | Bell Point | 4515.7 | 3.654726 |
| $\underset{1874}{\text { Gordon Hill }}$ | 3940 12.601 | 390.5 | 34858830.6 | $168 \quad 5839.4$ | Packard Hill | 1719.3 | 3.235340 |
|  | 12346 47.067 | 1121.9 | $6{ }^{6} 9449.0$ | 1860435.4 | Bell Point | 4801.1 | 3.681343 |
|  |  |  | 740406.1 | 2549339.4 | Abalone Point | 1038.5 | 3. 016419 |
| Grave Knoll 1873 |  | ${ }^{288.6}$ | 3310702.0 | 1510753.6 | Gordon Hill | 3987.8 | 3.600731 |
|  | 1234807.880 | 187.7 | 34612006.6 | 1661231.5 | Abalone Point | 3889.3 | 3. 589870 |
| South Cottaneva Ridge 1873 | $\begin{array}{r} 3943 \\ 120.247 \\ 12918.030 \end{array}$ | 624.4 | 3235454.9 | 1435539.8 | Grave Knoll | 2837.5 | 3.452936 |
|  |  | 429.4 | $33^{6} 4855.4$ | 1565004.0 | Abalone Point | 6603.1 | 3.819757 |
| South Cottaneva Point 1873 |  | $\begin{aligned} & 716.1 \\ & 895.5 \end{aligned}$ | 28180749.3 | 101888 | S. Cottaneva Ridge | 475.0 | 2. 676664 |
|  |  |  | 3180748.7 | 1380886.0 | Grave Knoll | 3702.4 | 3. 505475 |
|  |  |  | 3333239.5 | 1533401.6 | Abalone Point | 6882.2 | 3.837728 |
| Cottaneva Ridge 1873 | 39 43 <br> 120.179  <br> 123 49 <br> 6.368  | 1239.1 628.0 | $\begin{array}{rrrr}342 & 05 & 49.0 \\ 27 & 95 & 01.3\end{array}$ | 1620554 -3 <br> 20704 54. I | S. Cottaneva Ridge <br> S. Cottaneva Point | $\begin{gathered} 646.0 \\ 587 \cdot 4 \end{gathered}$ | 2. 810226 <br> 2. 768950 |
| $\underset{8873}{\text { Cottaneva Point }}$ 1873 |  | 1276. 5 | 2765646.5 | 965654.7 | Cottaneva Ridge | 308.8 | 2.489607 |
|  |  | 934.4 | 3560046.7 | 1760047.7 | S.Cottaneva Point | 561.7 | 2. 749517 |
| $\underset{1874}{\text { Smith }}$ Point | $\begin{array}{r}393536.757 \\ 12347 \\ \hline\end{array}$ | $\begin{array}{r} 1133.6 \\ 5.0 \end{array}$ | 18929 213.6 | 92136.9 | Kibesillah Hill | 995.5 | 2.998023 |
|  |  |  | 292882817.5 | 1120253.2 | Whipple Ridge | 1442.2 | 3. 159032 |
|  |  |  | 3433204.1 | $16332 \begin{array}{ll}17.1\end{array}$ | Brushy Point | 1760.6 | 3. 345662 |
| $\underset{\$ 874}{\text { Brubel Point }}$ | $\begin{array}{r}39 \\ 123 \\ 123 \\ \hline 17\end{array}$ | $\begin{aligned} & 161.0 \\ & 345.4 \end{aligned}$ | 1825435.2 | 23439.1 | Bell Point | 2860.7 | 3.456477 |
|  |  |  | 2050507.3 | 250537.7 | Bell Mountain | 2680. 5 | 3.428211 |
|  |  |  |  |  | Kibesillah Hill | 513.1 9415 | 3.710197 |
|  |  |  | 3384752.7 3145 | 15848 or.9 | Smith Point | 941.6 | 2.973847 |
|  |  |  | 3415257.5 | 1645359.7 | Brushy Point | 2700.1 | 3.431374 |
| $\underset{1873}{\text { Harford }} \mathbf{H i l l}$ |  | 394. 3 | $34614 \mathrm{II.1}$ | $\begin{array}{llllll}166 & 14 & 39.8 \\ 78\end{array}$ | Cottaneva Ridge | 2940.5 | 3.468421 |
|  |  | 1327.0 | $352033^{38.3}$ | 27203488 | Cottaneva Point | 2846.0 | 3.454237 |
| $\underset{1873}{\text { Williams Point }}$ | $\begin{array}{rrr} 39 & 45 & 10.180 \\ 123 & 50 & 15.309 \end{array}$ | 314.0 | 2574537.0 | 774547.0 | Hariord Hill | 379.2 | 2. 578830 |
|  |  | 269.3 | 3385448.7 | Y58 5517.4 | Cottaneva Ridge | 2974.8 | 3.473465 |
|  |  |  | 3442453.5 | 1642514.0 | Cottaneva Point | 2842.9 | 3.453755 |
| Soldier Frank Point 1873 | $\begin{array}{r} 394527.219 \\ 1235015.159 \end{array}$ | $\begin{aligned} & 839.4 \\ & 360.8 \end{aligned}$ | 3135513.4 | 1335595.9 | Harford Hill | 641.6 | 2. 807286 |
|  |  |  | $\begin{array}{llll}340 & 36 & 31.3\end{array}$ | 1603702.5 | Cottaneva Ridge | 3499.6 | 3. 544020 |
|  |  |  | 34518486.8 | 1651909.8 | Cottaneva Point | 3374.0 | 3. 528149 |
|  |  |  | 3500632.5 | 1700634.9 | Williams Point | 533.4 | 2. 727043 |
| $\underset{1873}{\text { Soldier Frank Hill }}$ |  | 1095.6 | 3561256.0 | 1761257.3 | Harford Hill | 702.8 | 2. 846833 |
|  |  | $\times 373.3$ | 223130.0 | 208312121.3 | Williams Point | 846.2 | 2. 9274469 |
|  |  |  | 582137.6 | 2382126.5 | Soldier Frank Point | 488.3 | 2. 688725 |
| $\underset{1872}{\text { South }_{8}}$ | $\begin{array}{rrrr}39 & 48 & 35.339 \\ 523 & 50 & 19.071\end{array}$ | 1089. 8 | 3544515.8 | 1744540.0 | Soldier Frank Hill | 5568.9 | 3. 745772 |
|  |  | 453.7 | 35455183.0 | $174{ }^{175} 588.0$ | Harford Hill | 6271.5 | 3. 797373 |
|  |  |  |  | 1781944.8 |  | 6330.0 | 3. 801403 |
|  |  |  | 3590449.8 | 1790452.3 | Soldier Frank Point | 5802.6 | 3.76362I |
| Timber Point 1872 | $\begin{array}{rrrr}39 & 50 & 51.543 \\ 123 & 52 & 37.241\end{array}$ | 1589.5 | 3215730.8 | 1415849.3 |  |  |  |
|  |  | 885.5 | 338 42 <br> 18 31.7 | 1584413.9 | Soldier Frank Hill | 20459.3 | 4. 019503 |
|  |  |  | 34118 59.2 | 1612030.2 | Soldier Frank Point | 10558.2 | 4.023590 |
| $\underset{1872}{\text { Timber Ridge }}$ | 395054.2531235286.813 |  | 3264925.2 | 1465040.6 | South Ussa! | 5118.1 |  |
|  |  | 399.7 | 3412280.6 | 16124 29.7 | Soldier Frank Hill | 10372.1 | 4. 015866 |
|  |  |  | 3435885.5 | 1640003.4 | Soldier Frank Point | 10493. ${ }^{\text {I }}$ | 4.020904 |
|  |  |  | ${ }_{80} 14409.5$ | 2601356.4 | Timber Point | 492.8 | 2. 692662 |
| Little Jackass 1872 |  | 915.1 | 2964742.3 | 1164840.4 | Timber Ridge | 2413.7 | 3. 382678 |
|  |  | 1127.6 | 30504 28.a | 2250513.2 | Timber Point | 2039.2 | 3. 309454 |
| $\underset{1872}{\text { Jackass Ridge }}$ | $\begin{array}{lllll}39 & 52 & 17.379 \\ 123 & 54 & 06.341\end{array}$ | 536.0 | 3143434.3 | 1343544.4 | Timber Ridge | 3652.2 | 3. 562550 |
|  |  | 148.3 | 32121847.9 |  | Timber Point | 3388.8 3 | 3. 530041 |
|  |  |  | 3214257.3 | 14145822.8 |  | 8 | 3. 940604 |
|  |  |  | 3430847.4 | 1630859.5 | Little Jackass | 1541.5 | 3. 187957 |
| $\underset{1872}{J}$ Jackass South |  | 177.9359.2 | 2102921.6 | 302927.3 | Jackass Ridge | 415.5 | 2. 618590 |
|  |  |  | 308 O5 58.4 | 1280714.2 | Timber Ridge | 3573.8 1206.5 | $3.553133$ |
|  |  |  | 3293043.7 | 1493101.4 | Little Jackass | 1296.5 |  |

Point Arena to Shelter Cove-Continued.

| Station | Latitude and longitude | Seconds in meters | Azipmuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{1872}{\text { Anderson Cliff }}$ | - 11 | $m$ | , " | - , " |  | meters |  |
|  | 395232.550 | 1003.8 | 2974402.7 | 1174426.7 | Jackass R idge | 1005.4 | 3.002319 |
|  | $\begin{array}{lllllllll}123 & 54 & 43.684\end{array}$ | 1038.1 | 3203426.4 | $1403444 \cdot 7$ | Jackass South | 1069. 3 | 3.029083 |
| Jackson1872 | 395422.957 | 708.0 | 33723 39.7 | 1572423.2 | Jackass Ridge | 4195. 2 | 3. 622751 |
|  | $123 \quad 5514.094$ | 334.8 | 3414008.0 | 1614045.8 | Jackass South | 4457. 2 | 3. 649058 |
|  | 1235514.94 |  | 348 or 04. 1 | 168 O1 23.6 | Anderson Cliff | 3481. 0 | 3. 541698 |
| $\begin{gathered} \text { Bear Marbor } \\ 1872 \end{gathered}$ | 395525.735 | 793. 7 | 1564847.4 | 3364650.7 | Chemise Mountain | 10943. 2 | 4.039144 |
|  | 2335712.522 | 273.6 | 3044533.7 | 1244649.0 | Jackson | 3395.2 7456.6 | 3. 53086 I <br> 3. 872538 |
|  |  |  | 325 <br> 326 <br> 326 <br> 39 <br> 10.9 <br> 41.1 | 145 146 46 1915.9 | Jackass South Anderson ${ }^{\text {Cliff }}$ | 7456.6 6392.5 | $\begin{aligned} & \text { 3. } 872538 \\ & \text { 3. } 80567 \mathrm{I} \end{aligned}$ |
| $\underset{1872}{\text { Jumper Ridge }}$ | 395547.856 | 1475.9 | 3184211.8 | 1384313.9 | Jackson | 3484.8 | 3. 542174 |
|  | 1235650.914 | 1209.0 | 3313604.1 | 1513743.9 | Jackass South | 7785.6 | 3. 891294 |
|  |  |  | 3332037.4 | 15321590 | Anderson Cliff | 6739.3 | 3.828615 |
|  |  |  | 353908.4 | 2153855.2 | Bear Harbor | 839.6 | 2.93408I |
| Smoky Ridge 1872 | 395604.588 | $141.5$ | 32316817.7 | 14316888.1 | Jumper Ridge | 643.9 | $2.808788$ |
|  | 1235707.130 | 169.3 | 45829.6 | 18458826.8 |  | 1202.8 | 3. 080308 |
| Laurie Flat 1873 | 395634.046 | 1050.0 | 308 or 09. 8 | 128 or 37.1 | Smoky Ridge | 1475.0 | 3. 168784 |
|  | 1235756.069 | 1331.1 | 3330014.5 | 1532043.1 | Bear Harbor | 2357.5 | 3.372444 |
| Cliff Ridge 1872 | 3956 34.971 | 1078.5 | 3375500.7 | 1575581.0 | Smoky Ridge | 1011.3 | 3.004860 |
|  | 1235723.142 | 549. 4 | 3523813.4 | 1723820.9 | Bear Harbor | 2153.1 | 3. 333071 |
|  |  |  | 875444.9 | 2675423.9 | Lauric Flat | 782.2 | 2. 893345 |
| Upper Bear Harbor 1872 | 395755.042 | 1697.5 | 3420033.9 | 1620055.5 | Cliff Ridge | 2596.5 | 3.414382 |
|  | 1235756.921 | 1351.0 | 3464923.2 | 1664952.3 | Bear Harbor | 4729.4 | 3.674805 |
|  |  |  | 3593210.6 | 1793211.2 | Laurie Flat | 2498.2 | 3. 397623 |
| $\begin{gathered} \text { Red Hill } \\ { }_{1872} \end{gathered}$ | 395836.947 | 1139.4 | 3013504.1 | 12136 or. 0 | Upper Bear Harbor | 2467.1 | 3. 397183 |
|  | 2735925.473 | 604.4 | 3221940.1 | 1422058.7 | Cliff Ridge | 4753. 2 | 3.676892 |
|  |  |  | 3304504.0 | 15046 01. 4 | Laurie Flat | 4344. 1 | 3. 637898 |
|  |  |  | 3313918.8 | 1514044.8 | Bear Harbor | 6700.0 | 3.826075 |
| $\underset{1872}{\text { Manzanita }}$ | 3959 38.681 | 1192.9 | $31914{ }^{25} 5$ | 1391539.7 | Upper Bear Harbor | 4219.3 | 3.625242 |
|  | 1235952.992 | 1257.3 | 3334920.4 | 1535104.1 | Bear Harbor | 8691.9 | 3.939117 |
|  |  |  | 3470411.3 | 1610429.0 | Red Hill |  | 3. 303809 |
| $\begin{gathered} \text { Embarcadero } \\ 1871 \end{gathered}$ | 40 o1 23.358 | 720.3 | 2792255.8 | 992534.9 | Chemise Mountain | 5947.6 |  |
|  | 1240420.626 | 489. 1 | 2965602.5 | 1165854.6 | Manzanita | 7131.6 | $3.852580$ |
|  |  |  | $\begin{array}{lllll}306 & 13 & 03.7\end{array}$ | $\begin{array}{lllll}126 & 16 & 13.4 \\ 137 & 19 & 30.3\end{array}$ | Red Hill Bear Harbor | 868 I .15 25015.6 | $\begin{aligned} & \text { 3. } 938576 \\ & \text { 4. } 176426 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
| $\begin{gathered} \text { Big Hill } \\ 1872 \end{gathered}$ | 400202.203 | 68.0 | 3053048.8 | 12532 xI .2 | Chemise Mountain | 3734.4 | 3. 572223 |
|  | 1240221.370 | 506. 7 | 3213011.7 | 1413147.0 | Manzanita | 5654.9 | 3. 752425 |
|  |  |  | 3263551.3 | 1463744.2 | Red Hill | 7581. 8 | 3. 879770 |
|  |  |  | 3285719.6 | 1490038.6 | Bear Harbor | 14268. I | 4. 154365 |
|  |  |  | 670255.1 | 2470138.4 | Embarcadero | 3071. 1 | 3. 487288 |
| ```Harbor (Shelter Cove South Base) 1871``` |  |  | 960956.1 | $\begin{array}{rrrrr}276 & 09 & 41.8 \\ 61 & 32 & 30.8\end{array}$ | Embarcadero <br> Big Hill |  |  |
|  | 12403 58.326 | 1383.1 | 2412127.4 | $\begin{array}{lllll}61 & 22 & 29.8 \\ 09 & 44 & 32\end{array}$ | Biz Hill | 2619.3 5416.6 | $3.418185$ |
|  |  |  | 2794207.9 | 994432.7 183646.6 | Chemise Mountain Manzanita | 5416.6 6627.0 | 3. 733730 3. 821317 |
|  |  |  | 298 <br> 3084 <br> 304 | 118 188 128076.6 185 | Manzanita Red Hill | 6627.0 8225.1 | 3.821317 3.915139 |
|  |  |  | 31837 22.7 | 1384544.2 | Bear Harbor | 14614.8 | 4. 164794 |
| Sbelter Cove, North Base 1873 | 400141.575 1240425.427 | 1282.4 602.9 | $\begin{array}{llll}257 & 47 & 03.4 \\ 313 & 55 & 22.9\end{array}$ |  | Big Hill <br> Harbor (S.C.S.Base) |  |  |
|  | 1240425.427 | 602.9 |  | 133 1685 168 3 | Harbor (S.C.S.Base) Embarcadero | $\begin{aligned} & 892.24 \\ & 573.3 \end{aligned}$ | $\begin{aligned} & \text { 2. } 950479 \\ & \text { 2. } 758361 \end{aligned}$ |
|  |  |  | $34^{88} 3245.5$ | 1683348.6 | Embarcadero | 573.3 | 2. 758361 |
| Colona Cliff 1871 | 400313.785 | 425.2 | $\begin{array}{lllll}310 & 13 & 08.4 \\ 354 & 51\end{array}$ | 1301419.2 | Big Hill Harbor (S.C.S.Base) | 3418.4 3476.9 |  |
|  | 1240411.464 | 271.7 |  |  | Harbor (S.C.S.Base) | 3476.9 3412.8 | 3. 541198 |
|  |  |  | $\begin{array}{r}339 \\ 638 \\ \hline 68.2\end{array}$ | $\begin{array}{lllll}183 & 38 & 54.3 \\ 186 & 38 & 15.6\end{array}$ | Embarcadero ${ }^{\text {Shelter Cove }}$. Base | 3412.8 2863.2 | 3. 533108 3.456852 |
| Shelter Cove$187 x$ | 400205.316 | 164.0 | 263622.0 | 2063603.5 | Harbor (S.C.S.Base) | 1511.2 | 3. 279324 |
|  | 12403 29.785 | 706. 2 | $42 \begin{array}{ll}58 & 27.9\end{array}$ | 2235755.2 | Embarcadero | 1768.6 | 3. 247637 |
|  |  |  | 1545549.0 | 33455 22.2 | Colona Clifi | 2331.5 | 3. 367629 |
|  |  |  | $\begin{array}{rrrr}24 & 55 & 53.6\end{array}$ | 2405747.8 | Shelter Cove N. Base | 1508.9 | 3. 178651 |
| $\underset{187 \mathrm{I}}{\text { Ray Point }}$ | 400288.097 | 866. 7 | 20314 \%6. 7 | 231443.1 | Colona Cliff | 1533.5 | 3. 185693 |
|  | 1240436.988 | 876.9 | 2934730.4 | 1134813.6 | Sheiter Cove | 1741.3 | 3. 240874 |
|  |  |  | 3490013.0 | 1690023.5 | Embarcadero | 2034.1 | 3. 308366 |
|  |  |  | 34911 02. 4 | $16911 \times 8$ | Shelter Cove N. Base | 1460.8 | 3. 164598 |

Point Arena to Shelter Cove-Continued.

| Station | Latitude and longitude | Seconds in meters | Azimuth | Back azimuth | To station | Distance | Logarithm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alviso Ridge 1873 | $\begin{array}{ccc} 0 & 11 \\ 39 & 41 & 42.656 \\ 323 & 47 & 31.318 \end{array}$ | $\begin{array}{r} m \\ 1315.5 \\ 746.2 \end{array}$ | - ' " | , " |  | meters |  |
|  |  |  | 339 If 31.8 | 1591200.0 | Gordon Hill | 2969.1 | 3.472624 |
|  |  |  | 3424635.9 | 1624702.9 | Packard Hill | 4672.5 | $3.669550$ |
|  |  |  | 3585658.2 | 17856 | Abalone Point | 3061.2 | 3. 485885 |
|  |  |  | 1292625.0 | 3092601.6 | Grave Knoll | 1127.9 | 3.053267 |
|  |  |  | 1355311.3 <br> 13949 <br> 1.0 | 315 <br> 319 <br> 319 <br> 48 | S. Cottaneva Point S. Cottaneva Ridge | 4320.6 | 3.635549 |
|  |  |  | 1394931.0 | 31948 22.7 | S. Cottaneva Ridge | 3939.6 | 3. 595455 |
| $\underset{1872}{\text { North Ussal }}$ | $\begin{array}{r} 395010.578 \\ 1235100.163 \end{array}$ | $\begin{aligned} & 326.1 \\ & 217.9 \\ & \end{aligned}$ | $\begin{array}{llllll}337 & 55 & 09 & 0 \\ 348 & 39 & 34 . & \end{array}$ | 1575541.1 1684020.1 | South Ussal Soldier Frank Hill | 3160.7 8651.7 | $\text { 3. } 501018$ |
|  |  |  |  | 1684020.1 1714828.1 | Soldier Frank Hill Soldier Frank Point | 8651.7 8833.7 | $\text { 3. } 93710 \mathrm{i}$ |
|  |  |  | 351 <br> 157 <br> 125 |  | Soldier Frank Point Timber Point | 8833.7 | $\text { 3. } 946113$ |
|  |  |  | 1210638.4 | 301 OS 42.0 | Timber Point | 2445.7 | 3. 388402 |
| $\begin{array}{r} \text { Devilby } \\ 1873 \end{array}$ | 394705.236 <br> 1235000.226 | $\begin{array}{r} 161.5 \\ 5.4 \end{array}$ | 358450064 | 1784508.0 | Soldier Frank Hill | 2767.4 | 3. 442074 |
|  |  |  | 64224.2 | 1864214.6 | Soldier Frank Point | 3043.8 | 3.483410 |
|  |  |  | 1484404.3 | 3284126.7 | Jackass Ridge | 11265.2 | 4.051738 |
|  |  |  | 1515151.8 | 33150 11. 2 | Timber Point | 7915.9 | 3. 898500 |
|  |  |  | 1551845.5 | 3351718.0 | Timber Ridge | 7774.5 | 3. 890670 |
|  |  |  | 1635959.7 | 3435915.5 | North Ussal | 5946.8 | 3. 774280 |
|  |  |  | 1705012.8 | 35050007 | South Ussal | 2814.8 | 3.44945 ${ }^{2}$ |
| Sheep Ridge 1872 | 395130.534 |  | 3095011.3 | 1295047.5 | Timber Ridge | 1746.5 | 3.242175 |
|  | 1235313.225 | 314.4 | 324.34 <br> 87 <br> 15.2 <br> 15 | 1443438.3 | Timber Point | 1475.7 | $\text { 3. } 169009$ |
|  |  |  | 875105.8 | 2675043.9 | Little Jackass | 813.8 | 2.910541 |
|  |  |  | 1262744.1 | 3062704.5 | Jackass South | 1828.9 | 3. 262180 |
|  |  |  | 1385441.0 | 3185407.0 | Jackass Ridge | 1917.1 | 3. 282643 |
| Whale Gulch 1872 | $\begin{array}{r} 395728.763 \\ \times 23 \quad 58 \quad 32.214 \end{array}$ | $\begin{aligned} & 887.0 \\ & 764.6 \end{aligned}$ | $\begin{array}{llll}132 & 53 & 04.2 \\ 148 & 59 & 47.4\end{array}$ | $3124934 \cdot 5$ | Harbor Red Hill | 10554.0 2453.6 | 4.023416 3.389797 |
|  |  |  | $\begin{array}{llll}148 & 59 & 47.4 \\ 235 & 56 & 27.0\end{array}$ |  | Red Hill | 2453.6 1165.6 | 3. 389797 <br> 3. 066541 |
|  |  |  | $\begin{array}{llll}225 & 56 & 27.0 \\ 315 & 19 & 52.0\end{array}$ |  | Unoer Bear Harbor | 1165.6 2332.6 | 3.066541 3.367837 |
|  |  |  | 315 <br> 333 <br> 03 <br> 19.7 | 153 <br> 153 <br> 153 <br> 12.9 | Laurje Flat | 1893.3 | 3. 277194 |
|  |  |  | 3331216.2 | 1531308.0 | Bear Harbor | 4250.6 | 3.628454 |
| Kibesillah Rock$\pm 873$ | $\begin{array}{r} 393410.225 \\ 1254648.405 \end{array}$ | $\begin{array}{r} 315.3 \\ 3155.4 \end{array}$ | 1735834.4 | 35358 27.a | Smith Point | 2683.4 | 3.428693 |
|  |  |  |  | 2362322.6 | Whipole Ridge | 2374.8 | 3.375618 |
|  |  |  | 305 <br> 30 <br> 303 <br> 17 | 1252758.5 | Ten Mile River Bluff | 1216.5 | $3.085126$ |
|  |  |  | 2631700.6 | 8317856 | Cunningham Ridge | 2115.5 | $3.325405$ |
| Clear Point 1872 | $\begin{array}{r} 395936.914 \\ 1240021.637 \end{array}$ | $\begin{array}{r} 1138.4 \\ 513.3 \end{array}$ | 1200557.8 | 3000324.1 | Embarcadero | 6550.5 |  |
|  |  |  | $\begin{array}{llllll}122 & 08 & 02.9\end{array}$ | 3020620.5 | Harbor . | 6068.0 | $3.783046$ |
|  |  |  | 1473853.7 | 3273736.8 | Big Hill | 5305.0 | 3.724688 |
|  |  |  | $\begin{array}{lllllllllll}265 & 24 & 51.0\end{array}$ | $\begin{array}{rrrr}85 & 25 & 09.4 \\ 144 & 13 & 58.5\end{array}$ | Manzanita Red Hill | 681.7 2279.6 | 2.833611 3.357853 |
|  |  |  | 3241322.4 | 14413 58.5 | Red Hill | 2279.6 | $3 \cdot 357853$ |
| $\underset{ \pm 872}{\text { Big Knoll }}$ | $\begin{array}{r} 40 \infty 13.250 \\ 1240032.082 \end{array}$ | $\begin{aligned} & 408.9 \\ & 761.0 \end{aligned}$ |  | 2914335.5 | Embarcadero | 5835.6 |  |
|  |  |  | 11318 11. 2 | 2931558.5 | Harbor | 5325.15 | 3.726330 |
|  |  |  | $\begin{array}{llll}142 & 22 & 00.8 \\ 300 & 37 & 06.6\end{array}$ | 3222050.5 | Big Hill ${ }_{\text {Chemise Mountain }}$ | 4243.6 1271.8 | $3.627734$ |
|  |  |  | $\begin{array}{llll}200 & 37 & 06.6\end{array}$ | $\begin{array}{r}20 \\ 138 \\ \hline 178989\end{array}$ | Chemise Mountain | 1271.8 1413.1 | 3.104410 3.150187 |
|  |  |  |  | 13885939.4 | Manzanita Red Hill | 1413.1 3364.6 | 3. 150187 3. 536930 |
|  |  |  | 3181 347 347 31 | 1515933.1 1673206.5 | Clear Polnt | 3364.6 1147.9 | 3.1508870 3.059903 |
| $\begin{gathered} \text { Chemise Flat } \\ 1872 \end{gathered}$ | $\begin{array}{r} 40 \text { o } 19.122 \\ 124 \cos _{11.829} \end{array}$ | $\begin{aligned} & 898.3 \\ & 280.6 \end{aligned}$ |  | 16358 36.3 | Manzanita | 1818.6 | 3. 209146 |
|  |  |  | 881320.0 | 1881313.6 | Clear Point | 1686.9 | 3.211366 |
|  |  |  | 4428 17.5 | 23428804.5 | Big Knoll | 685.7 | 2. 836161 |
|  |  |  | 10551 OI. 1 | 28548 21. I | Embarcadero | 6133.0 | 3. 787670 |
|  |  |  | 1064537.8 | 2864312.1 | Harbor | 5609.3 | 3. 748907 |
|  |  |  | $\begin{array}{lllll}133 & 04 & 25.7\end{array}$ | $\begin{array}{llll}313 & 03 & 02.4 \\ 357\end{array}$ | Big Hill ${ }^{\text {Chemise Mountain }}$ | 4204.6 |  |
|  |  |  | 17720 49.7 | 3572048.8 | Chemise Mountain | 701.7 | 2.846146 |
| $\underset{1872}{\substack{\text { McKee Flat }}}$ | $\begin{array}{r} 40 \text { oo } 54.036 \\ 124 \text { or } 19.935 \end{array}$ | $\begin{array}{r} 1666.6 \\ 472.8 \end{array}$ | 101 56 or. 7 | 281 5405.5 | Embarcadero |  | 3. 641415 |
|  |  |  | 1024335.4 | 2824149.5 | Harbor | 3850.6 | $3 \cdot 585523$ |
|  |  |  | 145171515 | $3251635 \cdot 7$ | Big Hill | 2557.8 | 3. 407873 |
|  |  |  | $272 \begin{array}{lllll}26 & 04.4\end{array}$ | $922647 \cdot 3$ | Chemise Mountain | 1584.2 | 3.199800 |
|  |  |  | $\begin{array}{llll}295 & 26 & 03.3 \\ 315 & 55 & 59.8\end{array}$ | 115 <br> 137 <br> 13647.1 <br> 10.6 | Chemise Flat | 1788.8 | 3.252552 |
|  |  |  | 3175559.8 | 1375630.6 | Big Knoll |  | 3.228949 |
| $\underset{187 \mathrm{I}}{\text { Bight Knoll }}$ | $\begin{array}{r} 40 \text { or } 39.145 \\ 124 \text { OJ } 31.403 \end{array}$ | 1207.4 |  |  |  |  |  |
|  |  | 744.7 | 672138.5 | 2472106.8 | Embarcadero Shelter Cove | $1264.7$ | $\text { 3. } 101983$ |
|  |  |  | 1824312.9 | 24313.9 | Shelter Cove | 808. 1 |  |
| $\begin{gathered} \text { Crusoe Ridge } \\ 1872 \end{gathered}$ | 3912312347 | 28.8 | 3463747 | 1663756 | Gordon Hill | 1530.2 | 3. 184739 |
|  |  | 45.6 | 195835 | 1995817 | Abalone Point | 1887.4 | 3.275854 |
|  |  |  | 1512602 | 3312543 | Alviso Ridge | 1465.2 | 3.165901 |
| Switzers Rock 1873 | $\begin{array}{r} 393850.401 \\ 1234728.564 \end{array}$ | $\begin{array}{r} 1554.4 \\ 681.0 \end{array}$ | 1794516 |  |  | 2251.8 |  |
|  |  |  | 2011754 | 21 1820 | Gordon Hill | 2723.0 | 3.435047 |
|  |  |  | 331 os 38 | 1510617 | Bell Mountain | 3046. 1 | 3.483747 |
|  |  |  | 3475145 | 1675158 | Bell Point | 2288.3 | 3.359514 |

Point Arena to Shelter Cove-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station \& Latitude and longitude \& Sec onds in meters \& Azimuth \& Back azimuth \& Tostation \& Distance \& Logarithm <br>
\hline \multirow[b]{4}{*}{```
Switzer's warchouse, W.
gable
1873

```} & " & m & - , " & " & & meters & \\
\hline & \(\begin{array}{rrr}39 & 38 & 13.560 \\ 123 & 47 & 08.412\end{array}\) & 418.2

200.6 & \(\begin{array}{lll}171 & 46 & 21 \\ 302 & 52\end{array}\) & \(\begin{array}{rrrr}351 & 46 & 09 \\ 22 & 52 & 44\end{array}\) & Abalone Point & 3423.2
2155.1 & \[
\begin{aligned}
& 3 \cdot 534436 \\
& 3 \cdot 333464
\end{aligned}
\] \\
\hline & 1234708.412 & 200.6 & \(\begin{array}{llll}202 & 52 & 21 \\ 327 & 03 & 22\end{array}\) & \(\begin{array}{rrrr}22 & 52 & 44 \\ 147 & 03 & 49\end{array}\) & Prackard Hill
Bell Mountain & 2155.1
1823.7
129.0 & \[
\begin{aligned}
& 3 \cdot 3.33464 \\
& 3 \cdot 260944
\end{aligned}
\] \\
\hline & & & \begin{tabular}{llll}
327 & 03 \\
359 & 58 \\
\hline 21
\end{tabular} & \(\begin{array}{llll}147 & 0349 \\ 179 & 58 & 21\end{array}\) & Bell Point & 1101.0 & 3.041790 \\
\hline \multirow[t]{3}{*}{Chris house, S. gable 1873} & 394312.648 & 390. I & 3182721 & \(13828 \quad 27\) & Alviso Riáge & 3707.7 & 3. 569104 \\
\hline & 1234914.521 & 345.9 & 3222144 & 1422226 & Grave Knoll & 2599.9 & 3.414950 \\
\hline & & & 3364037 & 1564144 & Abalone Point & 6354.9 & 3.803110 \\
\hline \multirow[t]{3}{*}{Chris Rock 1873} & 394254.64 I & 1685. 1 & 3141430 & 1341531 & Alviso Ridge & 318 r .6 & 3. 502643 \\
\hline & 12349 O. 981 & 166.3 & 3165155 & 1365233 & Grave Knoll & 2059.0 & 3. 313666 \\
\hline & & & 3360758 & 1560901 & Abalone Point & 5774. 1 & 3. 761487 \\
\hline \multirow[t]{4}{*}{\(\underset{1873}{\text { Hardy Rock }}\)} & 394226.14 I & 806.2 & 3352832 & 1552943 & Packard Hill & 6379.2 & 3. 804767 \\
\hline & 1234824.344 & 579.9 & 3431822 & 1631858 & Abalone Point & 4595.3 & 3.662313 \\
\hline & & & \(34^{8} 2900\) & 1682949 & Bell Point & 9073.2 & 3.957762 \\
\hline & & & 3492646 & 1692744 & Kibesillah Hill & 12843.5 & 4.07348I \\
\hline \multirow[t]{2}{*}{Hardy's house, S. gable 1873} & & 767.6 & \(\begin{array}{llll}330 & 03 & 47 \\ 349 & 31 & 38\end{array}\) & 150
169
169 & Alviso Ridge
Abalone Point & 1503.1
4437.1 & \[
\begin{aligned}
& 3.176978 \\
& 3.647096
\end{aligned}
\] \\
\hline & 1234802.800 & 66.7 & \(\begin{array}{rrrr}349 & 31 & 38 \\ 11 & 40 & 02\end{array}\) & \(\begin{array}{lll}169 & 32 & 0 \\ 191 & 39 & 59\end{array}\) & Abalone Point
Grave Knoll & 4437.1
598.5 & \[
\begin{aligned}
& 3.647096 \\
& 2.777030
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{Crusoe's barn, W. gable 1873} & 394038.854 & 1198.2 & 142837 & 1942830 & Abalone Point & 1128.8 & 3.052613 \\
\hline & 1234717.124 & 408. 1 & 1554458 & 3354426 & Grave Knoll & 2944. I & 3. 468946 \\
\hline & & & 1701453 & 3507444 & Alviso Ridge & 1996. 5 & 3.300280 \\
\hline \multirow[t]{4}{*}{South Cottaneva Rock
\[
1873
\]} & 394300.961 & 29.6 & 1663118 & 3463114 & South Cottaneva Pt. & 705.9 & \[
\text { 2. } 848763
\] \\
\hline & 1234930.688 & 73 I .1 & 3101945 & 1302100 & Alviso Ridge & 3730.8 & \\
\hline & & & 3104322 & 1304415 & Grave Knoll & 2603.1
6196.3 & 3. 415493 \\
\hline & & & 3320447 & 152 O6 05 & Abalone Point & 6196.3 & 3. 793134 \\
\hline \multirow[t]{3}{*}{Sealion Rock} & 3944 19.583 & 912.3 & 3234812 & 1434842 & Cottanevr Ridge & 1888.0 & 3. 275998 \\
\hline & 1235013.185 & 314.0 & 3312720 & 1512741 & Cottaneva Point & 1691.9 & 3. 228385 \\
\hline & & & 3373013 & 1573036 & S. Cottaneva Point. & 2215.2 & 3. 345414 \\
\hline \multirow[t]{5}{*}{Cottaneve Rock 1872} & 394319.360 & 597.0 & 3113608 & 1313738 & Alviso Ridge & 4490.8 & 3. 652325 \\
\hline & 1234952.259 & 1244.6 & 3122007 & 1322114 & Grave Knoll & 3364.0 & 3. 526860 \\
\hline & & & 3223112 & 1423310 & Gordon Hill & \(7254 \cdot 3\) & 3. 860594 \\
\hline & & & 3272912 & 14731139 & Packard Hill & 8827.1 & \[
3 \cdot 945816
\] \\
\hline & & & 3303118 & 1503250 & Abalone Point & 6940.9 & 3. 841414 \\
\hline \multirow[t]{3}{*}{Timber Ridge Rock 1872} & & & 2990936 & 1191037 & North Ussal & 2609.4 & \\
\hline & 1235244.997 & 1069.6 & 32029 O1 & 1403034 & South Ussal & 5455.1 & \[
\text { 3. } 736806
\] \\
\hline & & & 3304204 & 1504348 & Devilby & 8011.9 & 3.903734 \\
\hline \multirow[t]{3}{*}{Big White Rock} & & & & & North Ussal & 2941.6 & 3. 408591 \\
\hline & 1235302.756 & \[
65.5
\] & \[
3162940
\] & 1363125 & South Ussal. & 5655.8 & 3. 752492 \\
\hline & & & 3274419 & 1474616 & Devilby & 8137.0 & 3.910463 \\
\hline \multirow[t]{3}{*}{Middle Rock 1872} & 3946 41.334 & 1274.7 & 1693158 & 3493526 & North Ussal & 6562.7 & 3.817081 \\
\hline & 1235019.021 & 452. 7 & 1795851 & 3595851 & South Ussa! & 3516.1
862.2 & 3.546058
2. 935636 \\
\hline & & & 2111437 & 311448 & Devilby & & \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Jackass Tree } \\
1873
\end{gathered}
\]} & \(39 \$ 159.696\) & 1847.0 & 300 os 31 & 1200613 & Sheep Ridge & 1793.5 & 3. 253712 \\
\hline & 1235418.510 & 440.0 & 3045337 & 1245455 & Timber Ridge & 3527.3
3195.8 & 3. 547443 \\
\hline & & & 3120705 & 1310810 & Timber Point & 3195.8 & 3. 504573 \\
\hline \multirow[t]{3}{*}{Shoreline Rock 1873} & & 561.9 & \(13845{ }^{32}\) & 3184424 & Timber Point & 3828.2 & 3. 582998 \\
\hline & 1235051.086 & 1214.9 & 1452814 & 3252720 & Timber Ridge & 3595.4 & 3. 555750 \\
\hline & & & 1650542 & 3450530 & North Ussal & 1671.0 & 3. 222987 \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Ussal Rock } \\
1872
\end{gathered}
\]} & 394814.424 & 444.8 & 1501517 & 3301402 & Timber Point & 5581.8 & 3. 746771 \\
\hline & 1235040.752 & 969.4 & 1691916
31540 & 3491857 & North Ussal & 3645.5
23415.5 & \[
3 \cdot 561763
\] \\
\hline & & & 3354049 & 1554114 & Devilby & 23415.5 & 4.309503 \\
\hline \multirow[t]{2}{*}{Double Cone W. Rock 1873} & 394631.669 & 976. 7 & 1703401 & & & & \\
\hline & \(123 \quad 5021.988\) & 523.3 & 181
206
206
34 & 1
18
36
3 & South Ussal
Devilby & 3814.8
1157.6 & \[
\begin{aligned}
& \text { 3. } 581470 \\
& 3.063542
\end{aligned}
\] \\
\hline \multirow[b]{3}{*}{Cottaneva Needle 1872} & & 1820.3 & 1804807 & 04807 & Williams Point & & 2. 536643 \\
\hline & 394459.025
1235011.512 & 1820.3
274.1 & \(\begin{array}{llll}180 & 48 & 07 \\ 221 & 29 & 25\end{array}\) & 412935 & Harford Hill & 566.6 & 2. 753273 \\
\hline & & & 3360853 & 1560922 & Cotteneva Ridge & 2658.7 & 3. 424666 \\
\hline \multirow[t]{3}{*}{Morgan Rock 1872} & 395503.038 & 93.7 & 1412501.7 & 3312446.6 & Bear Harbor & 895.5 & 2. 952070 \\
\hline & 1235648.005 & 1140.0 & 1770818.3 & 3570816.4 & Jumper Ridge & 1384.0 & 3. 141135 \\
\hline & 1235648.005 & & 29859 16.1 & \(119 \quad 0016.3\) & Jacksom & 2550.2 & 3.406574 \\
\hline \multirow[t]{3}{*}{\(\underset{1872}{C l}\)} & & & & & & 1754. 2 & \\
\hline & \[
123 \quad 56 \quad 23.604
\] & \[
\begin{array}{r}
130.7 \\
50.6
\end{array}
\] & 162 10 44.6 & 3421027.1 & Jumper Ridge & 2118.9 & 3. 326116 \\
\hline & & & 29000 It .2 & 1100055.8 & Jackson. & 1757.1 & 3. 244794 \\
\hline
\end{tabular}

Point Arena to Shelter Cove-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station & Latitude and longitude & Sec onds in meters & Azimuth & Back azimuth & Tostation & Distance & Logarithm \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& \text { Jackson Pinnacle } \\
& { }^{2872}
\end{aligned}
\]} & - , " & m & - " & " & & meters & \\
\hline & 39533636.349 & 1121.0 & 3371210.0 & 1571232.5 & Anderson Cliff & 2134.4 & 3. 329275 \\
\hline & 1235518.485 & 439.2 & \(1412943 \cdot 3\) & 3212830.8 & Bear Harbor & 4311.7 & 3.634644 \\
\hline & & & 1513458.1 & 3313358.8 & Jumper Ridge & 4611.9 & 3.663884 \\
\hline \multirow[t]{3}{*}{Ray's barn S. gable 1872} & 40 O1 43.885 & 1353.6 & 2414326.7 & 614400.0 & Shelter Cove & 1395.6 & 3.144747 \\
\hline & 1240421.623 & 512.7 & 3211929.7 & 1411944.7 & Harbur & 884.1 & 2. 946484 \\
\hline & & & 3575140.4 & 1775141.1 & Embarcadero & 633.5 & 2. 801776 \\
\hline \multirow[t]{3}{*}{Ray's dairyhouse, S. gable 1872} & 40 O1 45. 394 & 1400.2 & 1865500.9 & 65500.8 & Colona Cliff & 2746.2 & 3.438732 \\
\hline & 1240425.418 & 602.7 & 2450102.7 & 650138.5 & Shelter Cove & 1455.1 & 3.162901 \\
\hline & & & 3185443.9 & 1385501.3 & Harbor & 977. 5 & 2.990110 \\
\hline \multirow[t]{3}{*}{\[
\underset{2872}{\text { Needle Rock }}
\]} & 395641.941 & 1293.4 & 1545916 & 33488 & Whale Gulch & 1593.6 & 3. 202376 \\
\hline & \(123 \quad 58 \quad 03.827\) & 90.8 & 1840927 & 40932 & Upper Bear Harbor & 2260.6 & 3.354315 \\
\hline & & & 282 3234 & 1023300 & Cliff Ridge & 989.5 & 2.995419 \\
\hline \multirow[t]{4}{*}{```
Upper Bear Harbor barn,
W.gable
 1872
```} & \(\begin{array}{r}39 \\ 123 \\ 123 \\ 58 \\ 16.743 \\ \hline 19.307\end{array}\) & 516.4 & \begin{tabular}{l}
322 \\
334 \\
334 \\
\hline 10
\end{tabular} & 142
15449
154 & Smoky Ridge
Bear Harbor & 2808.7
3783.1 & 3.448501
3.578849 \\
\hline & 1235819.307 & 458.3 & \begin{tabular}{lll}
334 & 49 & 03 \\
337 \\
\hline 16 & 08
\end{tabular} & 1544947
1576
1623 & Bear Harbor & 3783.1
1427.7 & 3.577849
3.15465 \\
\hline & & & \begin{tabular}{l}
337 \\
140 \\
140 \\
\hline 15 \\
\hline
\end{tabular} & \(\begin{array}{llll}157 & 16 & 23 \\ 320 & 25 & 48\end{array}\) & Laurie Flat & 1427.7
480.9 & 3.154652
2.682072 \\
\hline & & & 1473551 & 3273510 & Red Hill & 2930.0 & 3.466868 \\
\hline \multirow[t]{3}{*}{Jackass Cone 1872} & 395139.636 & 1232.4 & 1500636 & 3300448 & Bear Harbor & 8044.4 & 3.905492 \\
\hline & 1235423.714 & 5392.9 & 1551854 & 3351719 & Jumper Ridge & 8426.4 & 3.925642 \\
\hline & & & 163 or os & 3430052 & Anderson Cliff & 1706.4 & 3.232082 \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Black Rock } \\
{ }_{1871}
\end{gathered}
\]} & 40 or 12.712 & 392. 1 & 3145526 & 1345736 & Red Hill & 6801.0 & 3.832576 \\
\hline & 1240248.405 & 1147.9 & & 2791704 & Harbor & 1680. 1 & 3.225342 \\
\hline & & 174.9 & 1283857 & 3083829 & Bight Knoll & 1305.5 & 3. 115762 \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { White Rock } \\
187 \mathrm{~s}
\end{gathered}
\]} & 395859.250 & 1837. 2 & 1271010.4 & 3070731.4 & Embarcadero & 7360.3 & 3. 860893 \\
\hline & 1240013.295 & 315.5 & 1362402.9 & 3162155.5 & Bight Knoll & 6811.8 & \[
3.833260
\] \\
\hline & & & 1292621.4 & 3093356.5 & Harbor & 6909.6 & \[
3.839450
\] \\
\hline \multirow[t]{3}{*}{Cottaneva Cone 1873} & 394418.509 & 570.8 & 1645457 & 3445328 & Timber Ridge & 12641.4 & \\
\hline & \(1234958.43^{\circ}\) & 1391.2 & 3270826 & \begin{tabular}{l}
147 \\
14 \\
158 \\
\hline 14
\end{tabular} & Cottaneva Ridge
Cottaneva Point & 1407.2
1232.6 & \[
\text { 3. } 148369
\] \\
\hline & & & \(33^{88} 1407\) & 1581419 & Cottaneva Point & 1232.6 & \[
3 \cdot 090835
\] \\
\hline \multirow[t]{3}{*}{Squatter's Cabin, N. gable 1872} & \(395633.41^{2}\) & 723.0 & 3413414 & 1613430 & Bear Harbor & 1875.0 & 3. 273003 \\
\hline & 1235736.482 & 866. 1 & 125115 & 3051141 & Laurie Flat & 569.0 & \[
\text { 2. } 755137
\] \\
\hline & & & 1475232 & 3275123 & Red Hill & 4863.5 & \[
3.686950
\] \\
\hline \multirow[t]{2}{*}{Forty-acre Opening 1897} & \(\begin{array}{rrrr}39 & 11 & 18.303\end{array}\) & 561.4 & 732332.2 & 2531500.5 & Paxton & 20308.1 & 4. 307670 \\
\hline & 123 O5 12.967 & 311.2 & \(178 \quad 5104.4\) & \(35^{8} 5045 \cdot 0\) & Mount Sanhedrin & 36412.4 & 4.561249 \\
\hline \multirow[t]{3}{*}{\[
\begin{array}{r}
\text { Cleland } \\
1897
\end{array}
\]} & 390701.533 & 47.3 & 1064909.3 & 2864607.7 & Paxton & 7221.8 & 3.858644 \\
\hline & 1331355.427 & 1331.6 & 1945045.9 & 1455597.7 & Mount Sanhedrin & 45860.0 & 4. 661434 \\
\hline & & & 2374217.8 & 574747.7 & Forty-acre Opening & 14833.4 & 4. 171242 \\
\hline \multirow[t]{3}{*}{Cole 2
\[
1897
\]} & 390811.973 & 369. 2 & 89 10 18.3 & 2690746.5 & - Paxton & 5776.3 & 3. 761646 \\
\hline & 1231442.775 & 1027.3 & \(\begin{array}{llll}247 & 10 & 38.3 \\ 332 & 21 & 35.4\end{array}\) & 671638.3
1522205.3 & Forty-acre Opening Cleland & 14836.7
2452.0 & 4.171338 \\
\hline & & & 3322135.4 & 1522205.3 & Cleland & 2452.0 & 3.389514 \\
\hline \multirow[t]{3}{*}{Dihel 1878} & 39. 0857.826 & 1783.3 & 2533113.8 & 733740.3 & Forty-acre Opening & 15308.9 & 4. 184945 \\
\hline & 1231524.644 & 591.7 &  & 14435154.8
25231 & Cole 2 & 1735.0
4999.8 & \[
\text { 3. } 239312
\] \\
\hline & & & 723349.0 & 2523143.6 & Paxton & 4999.8 & 3. 698953 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Ukiah: \\
South Base 1897
\end{tabular}} & & & & & & & \\
\hline & \(\begin{array}{r}39 \\ 128 \\ 123 \\ \hline 12\end{array}\) & 889.8 & & & & & 3. 577851 \\
\hline & 1231204.799 & 115.2 & \(\begin{array}{r}821204 \\ 100 \\ \hline\end{array}\) & \(\begin{array}{lll}262 & 10 \\ 280 & 31 \\ 41\end{array}\) & Cole 2 Dihel & 3829.6
4881.6 & \[
\begin{aligned}
& 3.583150 \\
& 3.688560
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{North Base 1897} & 390909.238 & 284.6 & 3494910 & 1694916 & South Base & 1265.0 & 3.102077 \\
\hline & 1231214.109 & 338.8 & 314323 & 2114219 & Cleland & 4629.1 & 3.665494 \\
\hline & & & 634154 & 2434020 & Cole 2 & 3982.9 & 3.600196 \\
\hline & & & 853719 & 2653518 & Dihel & 4588. 7 & 3.661687 \\
\hline \multirow[t]{4}{*}{```
Court-house cupola,
    flagstaff
        1878
```} & \[
390902.294
\] & & & & & & \\
\hline & 12312 26. 593 & \[
638.5
\] & 643741
88
10 & \begin{tabular}{l}
244 \\
2686 \\
268 \\
\hline 8
\end{tabular} & Cole \({ }^{2}\) & 3619.9
4277.7 & 3.558695
3.631209 \\
\hline & & & 2342950 & 542958 & North Base & 368. 2 & 2. 566134 \\
\hline & & & 3330518 & 153 os 32 & South Base & 1556.4 & 3.063108 \\
\hline \multirow[t]{2}{*}{Magnetic Station 1897} & 39
123
12
12 & \[
148.2
\]
\[
756.9
\] & \[
\begin{array}{llll}
183 & 48 & 51 \\
220 & 51 & 50
\end{array}
\] & \[
\begin{array}{rrr}
3 & 4^{8} & 54 \\
40 & 52 & 0
\end{array}
\] & Court-house South Base & \[
\begin{array}{r}
1776.8 \\
980.7
\end{array}
\] & \[
\begin{aligned}
& 3.24963 \\
& 2.99152
\end{aligned}
\] \\
\hline & 1231231.52 & 756.9 & \[
2205150
\] & \(405^{2} 07\) & & \[
980.7
\] & 2.99152 \\
\hline \multirow[t]{2}{*}{Longitude Station 1897} & 390858.88 & 1815.7 & & & & & \\
\hline & 1231228.13 & \(675 \cdot 4\) & & & & & \\
\hline
\end{tabular}

Point Arena to Shelter Cove-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station & Latitude and longitude & Seconds in meters & Azimuth & Back azimuth & To station & Distance & Logarithm \\
\hline Ukiah-Continued. Latitude Station 1897 & \[
\begin{array}{rll}
39 & 08 & 58.87 \\
123 & 12 & 28.23
\end{array}
\] & \[
\begin{gathered}
m \\
1815.4 \\
677.8
\end{gathered}
\] & - , " & " & & meters & \\
\hline \(\mathrm{Mal} \mathrm{Paso}^{\text {¢870 }} \dagger\) & \(\begin{array}{rrr}39 & 02 & 19.76 \\ 123 & 41 & 24.25\end{array}\) & 609.4
583.3 & \(\begin{array}{r}3315132 \\ 4 \\ 48 \\ \\ \hline\end{array}\) & \(\begin{array}{llll}151 & 52 & 08 \\ 184 & 48 & 45\end{array}\) & Black
Lane & 2967.6
\(3253 \cdot 3\) & \[
\begin{aligned}
& 3 \cdot 47241 \\
& 3 \cdot 51232
\end{aligned}
\] \\
\hline In Line base & \(\begin{array}{rrr}39 & 33 & 16.29 \\ 123 & 45 & 52.06\end{array}\) & 502.4
1242.9 & \(\begin{array}{rrrr}329 & 53 \\ 16 & 58 & 06\end{array}\) & \(\begin{array}{llll}149 & 54 & 01 \\ 196 & 57 & 41\end{array}\) & \begin{tabular}{l}
Claxton Hill \\
T.M. R. B.S. Base
\end{tabular} & \[
\begin{array}{r}
236 \mathrm{r} \cdot 3 \\
3210.9
\end{array}
\] & \[
\begin{aligned}
& 3 \cdot 37316 \\
& 3 \cdot 50663
\end{aligned}
\] \\
\hline Middle test Base 1874 & 393159.67
1234622.26 & 1840.2
531.7 & 2602711
165741 & \[
\begin{array}{rrr}
80 & 28 & 02 \\
196 & 57 & 35
\end{array}
\] & \begin{tabular}{l}
Claxton Hill \\
T. M. R. B. S. Base
\end{tabular} & \[
\begin{array}{r}
1932.3 \\
740.3
\end{array}
\] & \[
\begin{aligned}
& \text { 3. } 28608 \\
& \text { 2. } 86940
\end{aligned}
\] \\
\hline Stillwell's chimney *
\[
1871
\] & 3915
123
46
525.46 & 775.9
1257.9 & \(\begin{array}{llll}141 & 39 & 00 \\ 174 & 06 & 34\end{array}\) & \(\begin{array}{llll}321 & 38 & 17 \\ 354 & 06 & 32\end{array}\) & Little River Stickney & \[
\begin{aligned}
& 2652 \cdot 3 \\
& 103 \mathrm{I} .4
\end{aligned}
\] & \[
\begin{aligned}
& 3.42363 \\
& 3.01344
\end{aligned}
\] \\
\hline \(\underset{1871}{\text { Stillwells }} \mathbf{P t}\). & & 507.0
290.2 & \(\begin{array}{llll}325 & 58 & 19 \\ 347 & 15 & 08\end{array}\) & \(\begin{array}{llll}145 & 59 & 02 \\ 167 & 15 & 35\end{array}\) & McPherson
Salmon Point & \[
\begin{aligned}
& 2913.8 \\
& 4578.3
\end{aligned}
\] & \[
\begin{aligned}
& 3.46446 \\
& 3.66070
\end{aligned}
\] \\
\hline Powell's barn, \(N\) gable*
\[
1873
\] & \(\begin{array}{r}39 \\ 123 \\ \hline 23\end{array}\) & 727.2
858.3 & \(\begin{array}{llll}134 & 46 & 36 \\ 192 & 25 & 44\end{array}\) & \(\begin{array}{rrrr}314 & 46 \\ 12 & 25 & 54\end{array}\) & T. M. R. Bluff
Cunningham Ridge & \[
\begin{aligned}
& 1040.6 \\
& 1726.3
\end{aligned}
\] & \[
\begin{aligned}
& 3.01729 \\
& 3.23712
\end{aligned}
\] \\
\hline \[
\underset{1873}{\substack{\text { Caspar flag }}}
\] & 392206.43
1234927.33 & 198.3
654.3 & 325
346
36
4 44038 & \[
\begin{array}{lll}
145 & 32 & 29 \\
166 & 06 & 56 \\
184 & 44 & 13
\end{array}
\] & Carleson Gordon Cabrillo & \[
\begin{aligned}
& 1560.6 \\
& 2499.0 \\
& 2125.8
\end{aligned}
\] & \[
\begin{aligned}
& 3 \cdot 19329 \\
& 3 \cdot 39777 \\
& 3 \cdot 32753
\end{aligned}
\] \\
\hline Gordon's barn, W gable *
\[
1873
\] & \[
\begin{array}{r}
393939.33 \\
1234701.83
\end{array}
\] & 1212.9
43.6 & \[
\begin{aligned}
& 1385721 \\
& 1985405
\end{aligned}
\] & \(\begin{array}{r}318 \\ 18 \\ 8 \\ 54 \\ 54 \\ \hline 14\end{array}\) & Abalone Point Gordon Hill- & \[
\begin{array}{r}
984.8 \\
1086.5
\end{array}
\] & \[
\begin{aligned}
& 2.99336 \\
& 3.03602
\end{aligned}
\] \\
\hline Timber Ridge, dead tree *
\[
1872
\] & 39
123
50
50 295.74 & 1788.9
702.8 & \[
\begin{aligned}
& 1304404 \\
& 1373726
\end{aligned}
\] & \(\begin{array}{llll}310 & 42 & 57 \\ 317 & 36 & 24\end{array}\) & Jackass South
Jackass Ridge & 3310.6 & \[
\begin{aligned}
& 3 \cdot 51991 \\
& 3 \cdot 53263
\end{aligned}
\] \\
\hline Round Rock* 1871 & 400033.98
1240151.52 & 1048.1
1223.0 & 115
159
30 & \[
\begin{array}{lll}
295 & 58 & 37 \\
310 & 18 & 30
\end{array}
\] & \begin{tabular}{l}
Harbor \\
Bight Knoll
\end{tabular} & \[
\begin{aligned}
& 3345.4 \\
& 3106.5
\end{aligned}
\] & \[
\begin{aligned}
& 3 \cdot 52445 \\
& 3 \cdot 49227
\end{aligned}
\] \\
\hline \[
\text { A plot } \underset{1872}{ }
\] & & \(\begin{array}{r}52.7 \\ 488.8 \\ \hline\end{array}\) & \[
\begin{array}{rrr}
350 & 14 & 48 \\
80 & 14 & 48 \\
108 & 22 & 23
\end{array}
\] & \[
\begin{array}{llll}
170 & 14 & 55 \\
260 & 13 & 59 \\
288 & 21 & 06
\end{array}
\] & North Ussal Timber Point Sheep Ridge & \[
\begin{aligned}
& 1600.1 \\
& 1849.7 \\
& 2821.8
\end{aligned}
\] & \[
\begin{aligned}
& 3.20414 \\
& 3.26710 \\
& 3.45053
\end{aligned}
\] \\
\hline \[
\text { B plot }{ }_{1873}
\] & \(\begin{array}{r}3945 \\ 12349 \\ \hline 9.34 \\ \hline 9.61\end{array}\) & \[
\begin{array}{r}
1830.0 \\
181.1
\end{array}
\] & 55632
582210
1488220 & \[
\begin{array}{lll}
185 & 56 & 20 \\
238 & 21 & 26 \\
328 & 21 & 35
\end{array}
\] & Cottaneva Ridge Soldier Frank Point Devilby & 4315.0 1888.5 2387.1 & \[
\begin{aligned}
& 3.63498 \\
& 3.27611 \\
& 3.37787
\end{aligned}
\] \\
\hline \[
\underset{x 873}{\text { plot }}
\] & 394514.15
1234947.61 & 436.4
1133.5 & \(\begin{array}{r}3560042 \\ 77 \\ \hline 75\end{array}\) & 1760047
25745 & Cottaneva Point Williams Point & \[
\begin{array}{r}
2867.7 \\
577.2
\end{array}
\] & \[
\begin{aligned}
& 3.45753 \\
& 2.76136
\end{aligned}
\] \\
\hline
\end{tabular}

Shelter Cove to Trinidad Head.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Horse Mountain
\[
1871
\] & \(\begin{array}{r}40 \\ 124 \\ 124 \\ \hline\end{array}\) & 542.2
1125.7 & \(\begin{array}{llll}347 & 23 & 06.2 \\ 357 & 16 & 00.5\end{array}\) & \(\begin{array}{lll}167 & 23 & 29.4 \\ 177 & 16 & 07.3\end{array}\) & Colona Cliff
Ray Point & 3912.5
5233.2 & \[
\begin{aligned}
& 3 \cdot 592458 \\
& 3 \cdot 718768
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Fire Hill } \\
187 \mathrm{I}
\end{gathered}
\]} & \multirow[t]{3}{*}{\(\begin{array}{r}40 \\ 124 \\ \hline\end{array}\)} & 1062.1 & 3212031.0 & \(\begin{array}{llll}141 & 22 & 02.8\end{array}\) & Horse Mountain & 54.4 .5 & 3.732755 \\
\hline & & \multirow[t]{2}{*}{237. 2} & \(332 \begin{array}{llllllll} & 13 & 55\end{array}\) & & Colona Cliff & 9084. I & 3.958283 \\
\hline & & & 3385933.9 & 159 O1 12.5 & Ray Point & 10120. 1 & 4.005184 \\
\hline \multirow[t]{4}{*}{Shubrick Peak 187 r} & \multirow[t]{4}{*}{\begin{tabular}{rrr}
40 & 09 \\
124 & 18 \\
\hline
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 557.8 \\
& 432.0
\end{aligned}
\]} & 2983131.5 & 1183411.6 & Fire Hill & 6689.7 & 3.825404 \\
\hline & & & 3084108.5 & 1284519.9 & Horse Mountain & 11858.9 & 4.074043 \\
\hline & & & 31759908 & \(\begin{array}{llllll}138 & 03 & 43.7\end{array}\) & Colona Cliff & 15114.0 & 4. 179379 \\
\hline & & & 3230200.4 & 1430619.0 & Ray Point & 15819.1 & 4. 199183 \\
\hline \multirow[t]{3}{*}{North Slide 1875} & \multirow[t]{3}{*}{40 II 01.640
1241046.705} & \multirow[t]{3}{*}{\[
\begin{array}{r}
50.6 \\
1 \mathrm{I} 04.9
\end{array}
\]} & 3511407.0 & \(141 \begin{array}{lll}16 & 26.9\end{array}\) & Fire Hill & & \\
\hline & & & \(\begin{array}{rrrrrr}13 & 99 & 33.1 \\ 3015\end{array}\) & \(\begin{array}{llll}193 & 99 & 12.7 \\ 125 & 36 & 09.0\end{array}\) & Shubrick Peak King Peak & 3280.1 & \[
3.51588 \mathrm{z}
\] \\
\hline & & & 3013358.4 & 1213609.0 & King Peak & 5621.2 & 3. 74983 I \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Hadiey Peak } \\
1871
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
401025.423 \\
1241214.857
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 784 \cdot 2 \\
& 35 \mathrm{I} \cdot 5
\end{aligned}
\]} & & 61 50 or.1 & North Slide & & \\
\hline & & & \(\begin{array}{llll}306 & 08 & 12.5 \\ 327 & 10 & 35.2\end{array}\) & \(\begin{array}{llll}126 & 11 & 29.1 \\ 147 & 11 & 11.7\end{array}\) & Fire Hill \({ }_{\text {Stubrick Peak }}\) & 8937.1
2475.3 & 3.951198
3.392930 \\
\hline & & & 3271035.2 & 1471151.7 & Stubrick Peak & 2475.3 & 3. 392930 \\
\hline \multirow[t]{3}{*}{Chaparral Peak
1871} & \multirow[t]{3}{*}{\(\begin{array}{rrrr}40 & 15 & 09.994 \\ 124 & 16 & 41.653\end{array}\)} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 308.3 \\
& 984.4
\end{aligned}
\]} & \(\begin{array}{llll}312 & 21 & 15.9\end{array}\) & 1322505.2 & & 11363.0 & 4.055492 \\
\hline & & & 3241603.7 & \(1 \begin{array}{llllllllll}148 & 56.0\end{array}\) & Madley Peak & 10809. 1 & 4.033799 \\
\hline & & & 3244759.7 & 1445128.6 & Shubrick Peak & 13278.2 & 4.123138 \\
\hline
\end{tabular}
* No check on this position.
\(\dagger\) This point is in the area of the 1906 earthquake disturbance.

Shelter Cove to Trinidad Head-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station & Latitude and longitude & Seconds in meters & Azimuth & Back azimuth & To station & Distance & Logarithm \\
\hline \multirow{5}{*}{\[
\begin{aligned}
& \text { Gorda } \\
& 187 \mathrm{I}
\end{aligned}
\]} & " & m & " & " & & melers & \\
\hline & 401448.483 & 1495.5 & 2552024.9 & 752134.3 & Chaparral Peak & 2623.3 & 3.418844 \\
\hline & \(13418 \quad 29.038\) & 686.3 & 3023437.0 & 1223935.6 & North Slide & 12979.7 & 4.113264 \\
\hline & & & 3122906.7 & 1323308.4 & Hadley Peak & 12005.5 & 4.079380 \\
\hline & & & 3145800.6 & 135023888 & Shubrick Peak & 14410.3 & 4.158672 \\
\hline \multirow[t]{2}{*}{Uncle Tornmy 1871} & 401618.704 & 576.9 & 3055629.5 & 1255749.4 & Chaparral Peak & 3609.7 & 3. 557467 \\
\hline & 1241845.310 & 1070. 5 & 3520751.9 & 1720802.4 & Gorda & 2809.2 & 3.448583 \\
\hline \multirow[t]{2}{*}{Barksdale Table 1871} & \(4016 \quad 40.527\)
\(124 \quad 20 \quad 32.373\) & 1250.1
764.8 & \(\begin{array}{llll}284 & 53 & 30.7 \\ 297 & 06 & 03.9\end{array}\) & \(\begin{array}{llll}104 & 54 & 39.9 \\ 117 & 08 & 33.0\end{array}\) & Uncle Tommy & 2617.5
6125.2 & 3. 417882
3.787123 \\
\hline & & & 3195049.4 & 1305209.1 & Gorda & 4520.7 & 3.655207 \\
\hline \multirow[t]{2}{*}{\[
\underset{187 \mathrm{I}}{\substack{\text { Moore Hill } \\ y_{7}}}
\]} & \(\begin{array}{rrrr}40 & 18 & 18.898 \\ 124\end{array}\) & 582.9 & 3320219.0 & 1520312.9 & Uncle Tommy & \[
4106.9
\] & \[
\text { 3. } 622929
\] \\
\hline & 1242008.598 & 203.0 & 102916.5 & 19029 O1. 1 & Barksdale Table & 3085. 7 & \[
3 \cdot 489348
\] \\
\hline \multirow[t]{2}{*}{Petrolia 1871} & 401904.030 & 124.3 & 359 or 31.2 & 179 or 33.6 & Uncle Tommy & 5100.0 & 3. 707571 \\
\hline & 12418 48.982 & 1156.5 & \(53 \quad 2920.3\) & 2332838.8 & Moore Hill & 2339.2 & 3.369076 \\
\hline \multirow[t]{3}{*}{\[
\underset{1871}{\substack{\text { Mussel Knoll } \\ \text { Kin }}}
\]} & 402016.011 & 493.9 & 3093718.9 & 1293833.4 & Petrolia & 3480. 7 & 3. 541668 \\
\hline & 1242042.536 & 1004.0 & \(\begin{array}{ll}342 & 39 \\ 12.8\end{array}\) & 1624039.2 & Gorda & 10582.9 & 4.024604 \\
\hline & & & 3472925.9 & 1672947.8 & Moore Hill & 3700.0 & 3. 568204 \\
\hline \multirow[t]{6}{*}{Windy Point 1871} & 401616.366 & 501.7 & 188 If 09.6 & 811388 & Mussel Knoll & 7470.9 & 3.873371 \\
\hline & 1242127.602 & 652.2 & 2061512.5 & 261603.6 & Moore Hill & 4317.7 & 3.625080 \\
\hline & & & \(2400940 \cdot 3\) & 601016.0 & Barksdale Table & 1504.2 & 3. 177299 \\
\hline & & & 2685142.6 & 885327.5 & UncleTommy & 3835.2 & 3. 583788 \\
\hline & & & 2864819.9 & 1065124.7 & Chaparral Peak & 7059.5 & 3.848771 \\
\hline & & & 3024012.3 & 1224207.7 & Gorda & 5013.6 & 3. 700154 \\
\hline \multirow[t]{2}{*}{McNutt 1871} & 402142.941
\(124 \quad 2007.146\) & 1324.5
168.6 & \(\begin{array}{rrrr}339 & 22 & 01.1 \\ 0 & 18 & 45.1\end{array}\) & \(\begin{array}{llll}159 & 22 & 51.7 \\ 180 & 18 & 44.2\end{array}\) & \begin{tabular}{l}
Petrolia \\
Moore Hill
\end{tabular} & & \\
\hline & \(124 \quad 2007.146\) & 168.6 & 01845.1
\(\times 7 \quad 1817.5\) & \(\begin{array}{llll}180 & 18 & 44.2 \\ 197 & 17 & 54.6\end{array}\) & Moore Hill
Mussel Knoll & 6293.6
2808.4 & \[
\begin{aligned}
& \text { 3. } 798898 \\
& \text { 3. } 448454
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{South of Cape 1869} & 402511.150 & 343.9 & 32443 30. 8 & 1444535.5 & McNutt & 7864.8 & 3. 895686 \\
\hline & 1241319.637 & 463.0 & 33750 & 1575148.0 & Mussel Knoll & 9838.8 & 3. 992500 \\
\hline \multirow[t]{4}{*}{\[
\underset{1869}{\text { Mount Blank }}
\]} & \(\begin{array}{lllll}40 & 24 & 50.400\end{array}\) & 1554.6 & 345 or o6. 3 & 165 O1 48.8 & McNutt & 5985.3 & 3. 777089 \\
\hline & 1242112.722 & 300.0 & 3551117 & 175 11 36. 7 & Mussel Knoll & 8493.2 & 3. 929072 \\
\hline & & & 1020508.1 & 2830345.8 & South of Cape & 3059.9 & 3. 485706 \\
\hline & & & 2082915.1 & 283134.7 & Bear Ridge & 10610. 2 & 4.025722 \\
\hline \multirow[t]{2}{*}{\[
\underset{1869}{\text { Cape Ridge }}
\]} & 402644.019 & 1357.8 & \(356 \begin{array}{lll}67 & 34.9\end{array}\) & \(\begin{array}{lllll}76 & 27 & 30.9\end{array}\) & Mount Blank & 3511.3 & 3. 545464 \\
\hline & 1242121.926 & 516.7 & 440548.9 & 2240432.5 & South of Cape & 3987.9 & 3. 600747 \\
\hline \multirow[t]{3}{*}{\[
\underset{1869}{\text { Mendocino }}
\]} & 403639.598 & 1231.4 & 2672543.1 & 872707.1 & Cape Ridge & 3053.5 & \\
\hline & 1242331.364 & 739. 1 & 37551506.8 & 1355236.7 & Mount Blank & 4693. I & \[
3.671458
\] \\
\hline & & & 3541249.6 & 1741257.2 & South of Cape & 2742. 1 & 3.438083 \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Bear River } \\
: 869
\end{gathered}
\]} & 402750.319
124 & 1552.1 & \(\begin{array}{lllll}308 & 27 & 14.2 \\ 333 & 17 & 03.3\end{array}\) & \(\begin{array}{llll}128 & 28 & 25.0 \\ 153 & 18 & 20.0\end{array}\) & Cape Ridge & & 3. 516884 \\
\hline & 1242311.175 & 263.3 & \(\begin{array}{rrrrr}333 & 17 & 03.3 \\ 12 & 18 & 18.3\end{array}\) & & Mount Blank
Mendocino & 6212.2
2232.6 & 3. 793244
3. 348815
3. \\
\hline & & & 24417515 & 642197.8 & Bear Ridge & 8712.0 & 3.940117 \\
\hline \multirow[t]{3}{*}{Odell 1869} & 40
40
134
29 & 721. I & 258 20643.2 & \(\begin{array}{cc}78 & 084 \\ 48\end{array}\) & Bear Ridge & 4393.4 & \\
\hline & 1342040.382 & 951.0 & 5 10 28.6 & \(\begin{array}{llll}185 & 10 & 07.5 \\ 191 & 15 & 26.3\end{array}\) & Mount Blank
Cape Ridge & 8454.4 & 3. 927083 \\
\hline & & & & 191151526.3
231 & Cape Ridge
Bear River & 5011.9
4566.8 & \[
\begin{aligned}
& 3.700003 \\
& 3.6596 \times 5
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Palse Cape 1869} & 403034.701 & 1070. 4 & 3050147.7 & 1250314.2 & Odell & 3831.5 & 3. 583364 \\
\hline & 1243253.601 & 1262.0 & 44006.5 & 1843955.1 & Bear River & 5087. 2 & 3. 706481 \\
\hline \multirow[t]{3}{*}{Oil Creek 1869} & 4031 10.835 & 333.9 & 2944613.0 & 1144836.9 & Bear Ridge & 5748.6 & 3. 759563 \\
\hline & 1242119.475 & 458. 5 & \(344 \begin{array}{lll}28 \\ 38 & 28.9\end{array}\) & 1642854.3 & Odell & 3439.6 & 3. 536510 \\
\hline & & & 631849.2 & \(2431748 \times\) & False Cape & 2480.3 & 3. 394502 \\
\hline \multirow[t]{5}{*}{\[
\begin{gathered}
\text { Miller Peak } \\
187 \mathrm{I}
\end{gathered}
\]} & 4007 50. 737 & \[
1564.7
\] & & 3159829.6 & Shubrick Peak & 3778.6 & 3. 577333 \\
\hline & 1240926.342 & 623.6 & 1620635.1 & 3420533.3 & North Slide & 6187.9 & \[
\text { 3. } 791544
\] \\
\hline & & & 2785014.4 & 985142.3 & Fire Hill & 3266.5 & 3. 514087 \\
\hline & & & 3053305.8 & 12546405.5 & Horse Mountain & 8119.0
\(\times 2083.6\) & \[
3.909504
\] \\
\hline & & & 3252439.4 & \(145 \quad 2745.9\) & Ray Point & 22083.6 & 4.082195 \\
\hline \multirow[t]{4}{*}{Shipman 1875} & \begin{tabular}{rrrr}
40 & 07 \\
134 & 11.868 \\
\hline
\end{tabular} & \[
366.1
\] & & & & & \\
\hline & 1340758.111 & 1376. 1 & 238
30
307
30
58
3 & \[
583415.1
\] & Fire Hill & 1334.6
5727.6 & \[
\text { 3. } 125348
\] \\
\hline & & & \(\begin{array}{llll}307 & 58 & 04.6 \\ 323 & 48 & 16.4\end{array}\) & \(\begin{array}{llll}178 & 00 & 07.4 \\ 143 & 50 & 42.4\end{array}\) & Horse Mountain
Colona Cliff & 5727.6
9096.9 & 3.757969
3.958895 \\
\hline & & & 3312456.2 & 15137058 & Ray Point & 9065.5 & 3.998498 \\
\hline
\end{tabular}

Shelter Cove to Trinidad Head-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station & I_atitude and longitude & Seconds in meters & Azimuth & Back azimuth & To station & Distance & Logarithm \\
\hline \multirow{6}{*}{\(\underset{1871}{\text { Miller Ridge }}\)} & " & \(m\) & " & - ' 11 & & meters & \\
\hline & 400805.129 & 158.2 & 615926.0 & 2415903.3 & Miller Peak & 945.8 & \\
\hline & 1240851.073 & 1209. 2 & \(\begin{array}{llll}122 & 52 & 14.4 \\ 153 & 49\end{array}\) & \(\begin{array}{llll}302 & 50 & 39.5 \\ 333 & 18 & 11.2\end{array}\) & Shubrick Peak
North Slide & 4147.4
6093.2 & \[
\begin{aligned}
& 3.617780 \\
& 3.784848
\end{aligned}
\] \\
\hline & & & 1531925.7 & \(\begin{array}{llll}333 & 18 & 12.2 \\ \text { I11 } & 35 & 52.4\end{array}\) & North Silde
Fire Hill & 6093.2
2573.0 & 3. 784848
3. 410446 \\
\hline & & & \(\begin{array}{llll}291 & 34 & 47.3 \\ 311 & 50 & 10.5\end{array}\) & \(\begin{array}{lllll}111 & 35 \\ 131 & 52 & 47.4\end{array}\) & Horse Mountain & 7744.5 & 3. 888991 \\
\hline & & & 3223820.1 & 14238 54.2 & Shipman & 2066.6 & 3. 315265 \\
\hline \multirow[t]{5}{*}{Wyman
1871} & 400459.619 & 1838.8 & 1330307.5 & \(3130033 \cdot 7\) & Miller Peak & 7733.8 & 3. 888395 \\
\hline & 1240597.644 & 654.9 & 1385206.3 & 3185029.4 & Shipman & 5416.6 & 3. 733729 \\
\hline & & & 1530514.7 & 3330408.8 & Fire Hill & 5355.4 & 3. 728788 \\
\hline & & & 331 O2 54.6 & 1510343.7 & Colona Cliff & 3730.2 & 3. 571730 \\
\hline & & & 3453518.2 & \(165 \quad 35 \quad 50.8\) & Ray Point & 4825.1 & 3.683506 \\
\hline \multirow[t]{6}{*}{\[
\begin{array}{r}
\text { Midway } \\
187 \mathrm{I}
\end{array}
\]} & 400617.239 & 531.7 & 1213400.4 & 3013152.6 & Miller Peak & 5510.9 & 3. 741222 \\
\hline & 1240608.019 & 189.9 & 1225257.5 & 3025146.6 & Shipman & 3104.3 & 3. 491961 \\
\hline & & & 1482041.4 & 32820 01. 5 & Fire Hill & 2797.2 & 3.446730 \\
\hline & & & \(\begin{array}{llllllll} \\ 13 & 58 & 14.5\end{array}\) & 1335906.4 & Horse Mountain & 2650.0 & 3. 423250 \\
\hline & & & 3335826.1 & 1535941.2 & Colons Cliff & 6296.2 & 3. 799080 \\
\hline & & & 343 O1 08. 1 & 1630206.8 & Ray Point & 7389.2 & 3.868599 \\
\hline \multirow[t]{4}{*}{\[
\underset{187 \mathrm{I}}{\text { Big Flat }}
\]} & 400752.766 & 1627.6 & \(\begin{array}{llll}271 & 27 & 42.3\end{array}\) & 9 I 2848.7 & Miller Peak & \(2449 \cdot 7\) & 3.389119 \\
\hline & 1241109.777 & 231.5 & 2923249.8 & 1122604.2 & Midway & 7729.3 & 3. 888140 \\
\hline & & & 3032123.4 & 1232503.7 & Wyman & 9704.6 & 3.986979 \\
\hline & & & 3170349.6 & 1370802.5 & Ray Point & 13670.0 & 4. 135770 \\
\hline \multirow[t]{4}{*}{\[
\begin{gathered}
\text { Oat Hill } \\
187 \mathrm{I}
\end{gathered}
\]} & & 1730.6 & 1435204.5 & 3235095.0 & Chaparral Peak & 7405.9 & 3. 869575 \\
\hline & 1241336.878 & 872.3 & 2923813.7 & 1124002.9 & North Slide & 4361.9 & 3. 639673 \\
\hline & & & 3251434.4 & 14515989 & Hadley Peak & 3404. I & 3. 532006 \\
\hline & & & 1273637.7 & 3073328.9 & Gorda & 8716.9 & 3.940362 \\
\hline \multirow[t]{3}{*}{Wild Oat 1871} & & 687. 1 & \(\begin{array}{llll}228 & 36 & 04.7 \\ 276 & 56 & 42.0\end{array}\) & \begin{tabular}{l}
483637.0 \\
\hline 69504.1
\end{tabular} & Oat Hill
North Slide & \begin{tabular}{l}
1578.1 \\
5248.4 \\
\hline 158
\end{tabular} & \[
\begin{aligned}
& \text { 3. } 198139 \\
& \text { 3. } 720027
\end{aligned}
\] \\
\hline & 1241426.928 & 637.0 & \(\begin{array}{llll}276 & 56 & 42.0 \\ 209 & 17 & 21.2\end{array}\) & & North Slide & 5248.4
3583.0 & \[
\text { 3. } 720027
\] \\
\hline & & & & 119
130
18884649.1 & Hadley Peak & 3583.0
5882.3 & \[
\begin{aligned}
& \text { 3. } 554241 \\
& \text { 3. } 769545
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{\(\underset{1871}{\text { Spanish Hill }}\)} & 401212.333 & 380.4 & 1365436.0 & 3165232.7 & Gorda & 6596.8 & 3. 819336 \\
\hline & 1241518.366 & 434.4 & 28156057 & 1014711.2 & Oat Hill & 2452.0 & 3. 389512 \\
\hline & & & 3071114.1 & 1271412.5 & Hadley Peak & 5451.4 & 3.736510 \\
\hline & & & 3214524.2 & 1414557.4 & Wild Oat & 1965. 7 & 3. 293528 \\
\hline \multirow[t]{3}{*}{Spanish Creek 1875} & & & 1775432.0 & 3575430.6 & Spanish Hill & 1393.3 & 3. 144037 \\
\hline & 1341516.217 & 383.6 & \begin{tabular}{llll}
249 & 12 & 20.9 \\
\hline 27 & 24 & 18
\end{tabular} & 691325.0 & Oat Hill & 2513.3 & \[
\text { 3. } 400242
\] \\
\hline & & & 2772418.0 & 972449.8 & Wild Oat & 1175.8 & 3. 070318 \\
\hline \multirow[t]{4}{*}{Lake Hill 1871} & 401249.378 & 1523.1 & 1512534.0 & 3312439.1 & Gorda & 4183.4 & 3.62153x \\
\hline & 1241704.381 & 103.6 & 29429 28.0 & 11433036.4 & Spanish Hill & 2755.2 & 3.440156 \\
\hline & & & 3054736.8 & \(\begin{array}{ll}125 & 49 \\ 134 & 18.4 \\ 134 & 53.1\end{array}\) & Wild Oat & 4591.9
3601.4 & 3. 661993 \\
\hline & & & \(3144343 \cdot 3\) & 1344453.1 & Spanish Creek & 3601.4 & 3. 556475 \\
\hline \multirow[t]{3}{*}{\(\underset{187 \mathrm{I}}{\text { Reynolds Point }}\)} & 4012
1210132 & 651.8 & & 82153.2
95533.0 & Lake Hill & 880.6
2649.3 & \[
\text { 2. } 944762
\] \\
\hline & 1241709.798 & 231.7 & 27552 11. I & 95
93
53
23.0 & Spanish Hill & 2649.3
3159.9 & \[
3 \cdot 423 \geq 34
\] \\
\hline & & & 3014536.1 & 1214649.4 & Spanish Creek & 3159.9 & 3. 499677 \\
\hline \multirow[t]{3}{*}{Cooskie Creek
\[
287!
\]} & 401302.643 & 81. 5 & 1661019.1 & 34680956 & \begin{tabular}{l}
Gorda \\
Lake Hill
\end{tabular} & 3361.9 & \\
\hline & 12417 55.040 & 1301.5 & 288 51 13. 1 & 1085145.8 & Lake Hill & 1265.9 & \[
\text { 3. } 102385
\] \\
\hline & & & 3200647.7 & 1400716.9 & Reynolds Point & 1688.5 & 3.222333 \\
\hline \multirow[t]{3}{*}{Four Mile Creek 1871} & & & & & & 2164.8 & 3. 335417 \\
\hline & 1243044.829 & \[
1059.4
\] & \(18618 \quad 23.9\) & 61831.9
54 & Barksdale Table & 2678.9 & 3. 427955 \\
\hline & & & \(\begin{array}{llllll}234 & 49 & 33 \cdot 1 \\ 283 & 52 & 13.1\end{array}\) & 54
50
503
50
53
40.3 & Uncle Tommy
Gords & 3454.7
3305.9 & 3.538406
3.519289 \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Coyote 1871} & 401506.711 & 207.0 & 972431.2 & 2772332.6 & Four Mile Creek & 1793.6 & 3. 253732 \\
\hline & 1241929.569 & 698.9 & 1273437.5 & 3073321.2 & Windy Point & 3518.8 & 3. 546393 \\
\hline & & & 1525117.2 & 3325036.6 & Barksdale Table & 3252.0 & 3.512149 \\
\hline & & & 2912654.6 & 1112733.7 & Gorda & 1537.1 & \\
\hline & & & 32058086 & 1405942.6 & Lake Hill & 5451.9 & 3. 736546 \\
\hline \multirow[t]{4}{*}{Morgan
1871} & 401445433 & 1401.4 & 1372224.2 & & Four Mile Creek & & \\
\hline & 1242010.272 & 242.8 & 235414 t .5 & 554207.8 & Coyote & 1164.6 & \[
3.066100
\] \\
\hline & & & \[
3090847 .
\] & \[
1291047.4
\] & \begin{tabular}{l}
Lake Hill \\
Couskie Creek
\end{tabular} & 5668. 1 & \[
\text { 3. } 7534.36
\] \\
\hline & & & 3144454.6 & 1344622.3 & Cooskie Creek & 4502.4 & 3. 653447 \\
\hline \multirow[t]{4}{*}{\[
\underset{\substack{\text { Mackey } \\ 1871}}{ }
\]} & & & & & Lake Hill & 3863.1 & 3. 586937 \\
\hline & 1241836.741 & \[
868.4
\] & 3402717.4 & 1602744.7 & Cooskie Creek & 2947.4 & 3.469437 \\
\hline & & & 1000456.6 & 2800356.2 & Morgan & \(2245 \cdot 5\) & \(3 \cdot 351285\) \\
\hline & & & 1300226.7 & 3100152.6 & Coyote & 1630.8 & 3. 212400 \\
\hline
\end{tabular}

Shelter Cove to Trinidad Head-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station & Latitude and longitude & Seconds in meters & Azimuth & Back azimuth & To station & Distance & Logarithm \\
\hline \multirow{4}{*}{\[
\begin{gathered}
\text { Mackey Ridge } \\
1875
\end{gathered}
\]} & " & \(m\) & , " & " & & meters & \\
\hline & 401340.934 & 1262.6 & 1381154.1 & 3181105.5 & Morgan & 2669.0 & 3. 426345 \\
\hline & \(12418 \quad 55.004\) & 1300.4 & 1950744.1 & 150755.9 & Mackey Hill & 1654.0 & 3. 218530 \\
\hline & & & 3094718.0 & 12947 57.1 & Cooskie Creek & 1845.2 & 3. 266046 \\
\hline \multirow[t]{3}{*}{Mackey Beach 1871} & 4013 49.506 & 1537.0 & 1451614.2 & 3251541.5 & Morgan & 2099. 0 & 3.322018 \\
\hline & \(124 \quad 19 \quad 19.678\) & 465.2 & 2171756.3 & 371824.0 & Mackey Hill & 1674.8 & 3. 233973 \\
\hline & & & 2942254.1 & 1142306.9 & Mackey Ridge & 640.5 & 2. 806498 \\
\hline \multirow[t]{6}{*}{Mattole Point 1871 .} & 401822.203 & 684.8 & 18321017 & 32107.3 & Mussel Knoll & 3516.3 & 3. 546086 \\
\hline & 12420 51.241 & 1210. I & \(2754633 \cdot 7\) & 954701.3 & Moore Hill & 1012.2 & 3.005255 \\
\hline & & & 3220007.5 & 142 OI 29.0 & Uncle Tommy & 4833.0 & 3.684219 \\
\hline & & & 3325853.1 & 1530035.1 & Gorda & 7398.7 & 3.869154 \\
\hline & & & \(\begin{array}{rrrr}351 & 54 & 36.1 \\ 12 & 38 & 16.4\end{array}\) & 1715448.3 & Barksdale Table & 3167.6 & 3. 500727 \\
\hline & & & 122816.4 & 1922752.9 & Windy Point & 3978.2 & 3. 599686 \\
\hline \multirow[t]{4}{*}{\[
\underset{1871}{\text { Bagley }}
\]} & 401651.715 & 1595.3 & 1891608.2 & 91620.6 & Mattole Point & 2827.9 & 3.451466 \\
\hline & \(1242110.53{ }^{\circ}\) & 248. 7 & 2083233.5 & 283303.6 & Moore Hill & 3061.2 & 3.485886 \\
\hline & & & 290564 L .8 & 1105706.5 & Barksdale Table & 965.2 & 2. 984627 \\
\hline & & & 201458.5 & 2001447.5 & Windy Point & 1165.4 & 3.066483 \\
\hline \multirow[t]{7}{*}{Taylor Peak 1871} & 402239.300 & 1212.2 & 1545013 & 3344720 & Bear Ridge & 14772.3 & 4. 169449 \\
\hline & 1241311.078 & 261.3 & 2743745 & 950337 & Mount Lassic & 56791.8 & 4.754286 \\
\hline & & & 3412708 & 1613052 & King Peak & 25798.1 & 4.411587 \\
\hline & & & 3505851 & 1710024 & North Slide & 21787.3 & 4. 338203 \\
\hline & & & 194519 & 1994302 & Chaparral Peak & 14723.6 & 4. 168013 \\
\hline & & & 272203 & 2071837 & Gorde & 16348.1 & 4. 213467 \\
\hline & & & 505118 & 2304647 & Moore Hill & 12713.3 & 4. 104258 \\
\hline \multirow[t]{3}{*}{Mattole Beach 1871} & \(4017 \quad 38.602\) & 1190.7 & 23153315 & 5 5 5414.8 & Moore Hill & 2014.2 & 3. 304099 \\
\hline & 1242115.710 & 371.1 & 3044357.0 & 1244534.2 & Uncle Tommy & 4323.9 & 3.635874 \\
\hline & & & 3552132.8 & 1751036.1 & Bagley & 1450.8 & 3.161619 \\
\hline \multirow[t]{6}{*}{Chaparral Mountain 1875} & 401534.070 & 742.4 & 3175520 & 1375839 & North Slide & 10900.5 & 4.037445 \\
\hline & \(124 \times 555.480\) & 1311.2 & \(332 \begin{array}{llll}32 & 36\end{array}\) & 1525706 & Oat Hill & 7202.9 & 3.857505 \\
\hline & & & 681824 & 2481754 & Chaparral Peak & 1174.4 & 3.069815 \\
\hline & & & 731108 & 2530929 & Gorda & 3791.5 & 3.5788ı5 \\
\hline & & & \begin{tabular}{l}
1124736 \\
148 \\
\hline
\end{tabular} & \begin{tabular}{l}
292 \\
328 \\
328 \\
\hline 50
\end{tabular} & Uncle Tommy & 4352.4 & 3.638732
3.809065 \\
\hline & & & 1485047 & 385056 & & & - \\
\hline \multirow[t]{5}{*}{Widow Cranks 1871} & & 45.9 & & 1403431.5 & Petrolia & & \\
\hline & 1241950.711 & 1197. \({ }^{\text {I }}\) & & & Gorda & 9845.1 & \[
3.993219
\] \\
\hline & & & \(\begin{array}{cccc}7 & 36 & 15.6 \\ 25 & 01 & 25.4\end{array}\) & \(\begin{array}{llllll}187 & 36 & 04.1 \\ 305 & 00 & 46.4\end{array}\) & Moore Hill
Mattole Point & 3192.3
3370.4 & \[
3.504104
\] \\
\hline & & & & \(\begin{array}{llll}205 & 00 & 46.4 \\ 290 & 06 & 30.2\end{array}\) & Mattole Point
Mussel Knoll & 3379.4
1302.8
3153 & 3.528837 \\
\hline & & & \(\begin{array}{lllll}110 & 07 & 03.7 \\ 172 & 56 & 8.6\end{array}\) & 290
35255506
58.0 & Mussel Knoll
McNutt & 1302.8
3153.2 & \[
\begin{aligned}
& 3 \cdot 114868 \\
& 3 \cdot 498753
\end{aligned}
\] \\
\hline \multirow[t]{5}{*}{Mussel Ridge 187} & 402035.324 & 1089. 6 & 2112216.6 & 3 I 2251.5 & McNutt & 2442.8 & 3.387892 \\
\hline & 1242101.041 & 24.6 & 3020902.4 & 1220947.9 & Widow Cranks & 1960.9 & 3. 292446 \\
\hline & & & 3234452.1 & 1434504.1 & Mussel Knoll & 738.6 & 2.868430 \\
\hline & & & 3433559.7 & 1633633.7 & Moore Hill & 4386.3 & \[
3.642094
\] \\
\hline & & & 35646 28. 3 & 1764634.8 & Mattole Point & 4112.5 & 3.614103 \\
\hline \multirow[t]{3}{*}{Oil Creck West 1871} & & 889.5 & \(\begin{array}{llll}198 & 59 & 13.6 \\ 309 & 27 & 36.1\end{array}\) & & Eel River Oil Creck & & \\
\hline & 1242148.148 & 1133.3 & 309
427
42
42
20.4 & \begin{tabular}{l}
1292744.7 \\
222 \\
\hline 21
\end{tabular} & Oil Creck False Cape & 874.2
2272.1 & 2.941605
3.356430 \\
\hline & & & 424220.4 & 2224137.9 & Faise Cape & 2272.1 & 3.356430 \\
\hline \multirow[t]{6}{*}{\[
\underset{187 \mathrm{I}}{\text { Mount Blank }}
\]} & 403439.769 & 1226.7 & \(1113454 \cdot 7\) & 2913347.4 & South of Cape & 2632.6 & 3.420381 \\
\hline & 1242135.799 & 844. 1 & 1433707.5 & 3233552.6 & Mendocino & 4591.5 & 3. 661956 \\
\hline & & & 1845234.5 & 45243.6 & Cape Ridge & 3846.4 & 3. 585051 \\
\hline & & & 23855929.7 & 585544.7 & Mount Blank & 635.3 & 2. 802958 \\
\hline & & & 3390058.1 & \(\pm 59\) O1 55. 5 & McNutt & 5841.3 & 3. 766507 \\
\hline & & & 3512255.6 & 17113301 & Mussel Knoll & 8231.9 & 3. 915500 \\
\hline \multirow[t]{5}{*}{\[
\begin{gathered}
\text { Davies Creek } \\
187 \mathrm{y}
\end{gathered}
\]} & 402251.737 & 1595.8 & 1472937.0 & 32728 21.7 & South of Cape & 5099.6 & 3. 707534 \\
\hline & 1242123.393 & 551.8 & 17459 00. 1 & 35458 52.1 & Mount Blank 2 & 3345.0 & 3. 524399 \\
\hline & & & 3194217.9 & 1394307.3 & McNutt & 2781.8 & 3.444330 \\
\hline & & & 3483850.9 & \(168 \quad 3917.4\) & Mussel Knoll & 4899.0 & 3.690111 \\
\hline & & & 3525113.7 & 1725128.2 & Mussel Ridge & 4240.5 & 3.627417 \\
\hline \multirow[t]{6}{*}{Walker Ridge 1871} & 4022 49. 196 & & & 1693823.0 & Petrolia & 7060. 3 & 3. 848822 \\
\hline & 1241943.810 & 1009.8 & 154141.8
1645 & 1954126.0 & McNutt & 2122.7 & 3. 326892 \\
\hline & & & 163651.6 & 1963612.9 & Mussel Knoll & 4930.6 & 3. 692899 \\
\hline & & & 240537.2 & 2040446.5 & Mussel Ridge & 4523.0 & 3. 655428 \\
\hline & & & 915405.1 & 2715259.9 & Davies Creek & 2373.9 & 3. 375468 \\
\hline & & & 1502649.2 & 3302550.9 & Mount Blank & 4297.9 & 3.633258 \\
\hline
\end{tabular}

Shelter Cove to Trinidad Head-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station & Latitude and longitude & Sec onds in meters & Azimuth & Back azimuth & To station & Distance & Logarithm \\
\hline \multirow{6}{*}{\[
\begin{gathered}
\text { Davies Ridge } \\
287 \mathrm{x}
\end{gathered}
\]} & \multirow[t]{6}{*}{\begin{tabular}{l}
402304.110 \\
12420 36. 511
\end{tabular}} & \multirow[t]{6}{*}{\[
\begin{gathered}
m \\
826.8 \\
86: 2
\end{gathered}
\]} & - ' " & - ' \({ }^{\prime}\) & & meters & \\
\hline & & & \begin{tabular}{lllll}
289 & 57 & 14.8 \\
344 & 31 \\
\hline 18
\end{tabular} & 1095749.6 & Walker Ridge
McNutt & \begin{tabular}{l}
13477 \\
2597 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 3.129578 \\
& 3.414586
\end{aligned}
\] \\
\hline & & & \(\begin{array}{rrrr}344 & 31 & 50.1 \\ 1 & 34 & 17.5\end{array}\) & 1643299.1
1813459 & McNutt
Mussel Knoll & 2597.7
5186.8 & \[
\begin{aligned}
& \text { 3. } 414586 \\
& 3.714902
\end{aligned}
\] \\
\hline & & & \(\begin{array}{lllll}1 & 34 & 17.5 \\ 7 & 11 & 26.4\end{array}\) & 161
187
1871
15
10.5 & Mussel Ridge & 4625.6 & 3.665164 \\
\hline & & & 705754.7 & 2505724.3 & Davies Creek & 1169.9 & 3. \(068 \times 35\) \\
\hline & & & 1353239.0 & 3153053.3 & South of Cape & 5491. I & 3.739660 \\
\hline \multirow[t]{6}{*}{\[
\underset{1875}{\text { Domingo }^{2}}
\]} & \multirow[t]{6}{*}{\[
\begin{array}{r}
402135 \cdot 973 \\
1242107.059
\end{array}
\]} & \multirow[t]{6}{*}{\[
\begin{array}{r}
1109.6 \\
166.6
\end{array}
\]} & 1703817.0 & 3503806.4 & Davies Creek & 2368.5 & 3. 374468 \\
\hline & & & 1945043.1 & 145102.9 & Davies Ridge & 2812.5 & 3.449085 \\
\hline & & & 2212032.8 & 412127.4 & Walker Ridge & 3008.6 & 3.478367 \\
\hline & & & 2612058.5 & 81 2137.3 & McNutt & 1429.9 & 3. 155320 \\
\hline & & & 3464731.7 & 1664747.6 & Mussel Knoll & 2533.3 & 3.403690 \\
\hline & & & 3553929.6 & 1753933.5 & Mussel Ridge & 1876.0 & 3. 273244 \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Devils Gate } \\
187 \mathrm{I}
\end{gathered}
\]} & \multirow[t]{3}{*}{\(\begin{array}{r}40 \\ 124 \\ 124 \\ \hline 23\end{array}\)} & 935. 3 & 3065532.6 & 1265709.8 & Davies Ridge & 4424.9 & 3.645906 \\
\hline & & 152.7 & 3212055.2 & 1412202.0 & Davies Creek & 3893.2 & \[
\text { 3. } 590310
\] \\
\hline & & & 3322040.2 & 1522157.4 & Domingo & 6070.8 & \[
\text { 3. } 783246
\] \\
\hline \multirow[t]{3}{*}{\[
\underset{187 t}{\text { Fraser Ridge }}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
401055.206 \\
1241339.633
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
1702.8 \\
937.6
\end{array}
\]} & 12644 o6. 0 & 3064335.5 & Wild Oat & 1396.0 & 3. 144892 \\
\hline & & & \(13532 \begin{array}{llll}10.5\end{array}\) & 3153106.8 & Spanish Hill & 3333.7 & 3. 522925 \\
\hline & & & \begin{tabular}{l}
181 \\
294 \\
\hline 95 \\
35 \\
511.6 \\
57.4
\end{tabular} & \(\begin{array}{rr}15913.4 \\ 11436 & 51.1\end{array}\) & Oat Hill & 1879.5
2206.1 & 3. 274051
3.343624 \\
\hline \multirow{4}{*}{Lower Hadley
\(\mathbf{1 8 7 5}\)} & \multirow[t]{4}{*}{\[
\begin{array}{r}
401026.677 \\
1241247.487
\end{array}
\]} & \multirow[t]{4}{*}{\[
\begin{array}{r}
822.8 \\
1123.5
\end{array}
\]} & & & Fraser Ridge & & \\
\hline & & & 1253008.3
126
155
52 & 305
306
304
3 & Fraser Ridge
Widd Oat & 1515.4
2911.2 & \[
\text { 3. } 180524
\]
\[
3.464075
\] \\
\hline & & & & & Oat Hill & 2911.2
2995.6 & \[
\begin{aligned}
& 3 \cdot 464075 \\
& 3 \cdot 47.6485
\end{aligned}
\] \\
\hline & & & 2725148.1 & 92252092 & Hadley Peak & 773.0 & 2. 888191 \\
\hline \multirow[t]{3}{*}{Rancheria Beach 1871} & \multirow[t]{3}{*}{\(\begin{array}{rrrr}40 & 09 & 58.274 \\ 124 & 13 & 15.874\end{array}\)} & 1797.5 & 147 Of 43.5 & 3270057.7 & Wild Oat & 3088. 5 & 3.489750 \\
\hline & & 375.6 & 21728 31.9 & 372850.2 & Lower Hadley & 1103.9 & 3. 042938 \\
\hline & & & 3222121.8 & 14223454 & Big Flat & 4887.9 & 3.689122 \\
\hline \multirow[t]{7}{*}{\[
\underset{\mathbf{1 8 7 1}}{\text { Mount Blank } 3}
\]} & 402440.807 & 1258. 7 & 81204.6 & 1881850.9 & Walker Ridge & 3478. I & 3. 541346 \\
\hline & \multirow[t]{6}{*}{4241931.778} & 513.4 & 110229.7 & 1910200.2 & McNutt & 5589.6 & 3. 747378 \\
\hline & & & 303510.8 & 2103422.3 & Davies Ridge & 3464.4 & 3. 539625 \\
\hline & & & 402736.9 & 2202618.0 & Davies Creek & 4420.9 & 3.645507 \\
\hline & & & 96, 27 48. 7 & 2762636.8 & Mount Blank & 2632.5 & 3.420367 \\
\hline & & & 121 5611.6 & 3015339 & Mendocino & 6931.0 & 3.840798 \\
\hline & & & 14319004 & 3231742.5 & Cape Ridge & 4739. 7 & 3.675747 \\
\hline \multirow[t]{3}{*}{Little Spanish 1871} & \multirow[t]{3}{*}{\[
\begin{array}{ccc}
40 & 12 & 15.889 \\
124 & 16 & 09 . \\
274
\end{array}
\]} & 490.1
210.3 & & \(\begin{array}{llll}276 & 26 & 26.3 \\ 308 & 23 & 36.0\end{array}\) & Reynolds Point
Lake Hill & & \\
\hline & & 219.3 & 1282411.6 & 3082336.0 & Lake Hill & 1663.0 & \[
3.320891
\] \\
\hline & & & 27512 O1. 2 & 951234.0 & Spanish Hill & 1208.9 & 3.082376 \\
\hline \multirow[t]{2}{*}{Cape Mendocino Latitude Station 1869} & \multirow[t]{2}{*}{\[
\begin{array}{r}
4026 \text { 11. } 018 \\
12424 \text { IL. } 230
\end{array}
\]} & \[
648.3
\] & & 1233635.5 & Mount Blank & \begin{tabular}{l}
5051.7 \\
\hline 244
\end{tabular} & \\
\hline & & \[
264.6
\] & 3303330.6 & 150 34 04.1 & South of Cape & 2474. 5 & 3. 393487 \\
\hline \multirow[t]{3}{*}{Steamboat Rock 1871} & 4024 56. 389 & 1739.3 & 1792602 & 3592602 & C. Mendocino Latitude Station & 2610.4 & 3.416713 \\
\hline & 1242410.135 & 239.0 & 3142027 & 1342215 & Davies Creek & 5499.6 & 3. 740328 \\
\hline & & & 3250253 & 1450452 & Domingo & 7540.6 & 3.877403 \\
\hline \multirow[t]{2}{*}{\[
\underset{1869}{\text { Light-house No. I }}
\]} & \(\begin{array}{r}4026 \\ 12423.292 \\ \hline 23\end{array}\) & \[
996.0
\] & & 670438.1
1293601.2 & \begin{tabular}{l}
Mendocino \\
Mount Blank
\end{tabular} & 578.4
4932.0 & \\
\hline & 1242353.968 & \[
1271.9
\] & \(\begin{array}{llll}309 & 34 & 16.6 \\ 342 & 04 & 44.8\end{array}\) & \(\begin{array}{llll}129 & 36 & \text { O1. } 2 \\ 162 & 05 & 07.1\end{array}\) & Mount Blank
South of Cape & 4932.0
2630.4 & \[
\begin{aligned}
& 3.693025 \\
& 3.420016
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Light-house No. a 1869} & 403630.795 & 949.9 & 2570409 & 770415 & Light-house No. 1 & 206. 3 & 2. 314495 \\
\hline & 1242402.500 & 58.9 & 3373825 & 1573852 & South of Cape & 2656. 3 & 3. 424274 \\
\hline \multirow[t]{3}{*}{Cape Mendocino L. H. 1869-71} & 402625.726 & 793.5 & 2501114 & 701126 & Light-house No. 2 & 461. 4 & 2.664033 \\
\hline & 1242420.917 & 493.0 & 3275203 & 1475242
1585500 & South of Cape & 2716.2
23053.7 & 3.433960 \\
\hline & & & 3385112 & 1585500 & Gorda & \(23053 \cdot 7\) & 4.362740 \\
\hline \multirow[t]{4}{*}{\[
\begin{gathered}
\text { Fortunas } \\
1869
\end{gathered}
\]} & 402936.572 & 1128. 1 & 224704.9 & 20246 27.0 & Bear River & 3554.6 & 3. 550794 \\
\hline & 1242212.745 & 300.1 & 1514718.2 & 3314651.7 & False Cape & 2034.8 & 3. 308516 \\
\hline & & & 2031953.8 & 232028.4 & Oil Creek & 3166.2 & 3. 500545 \\
\hline & & & 28035178 & 1003617.6 & Odell & 2212.9 & 3. 344061 \\
\hline \multirow[t]{3}{*}{Odell 2 1869} & & 688.7 & & & Odell & 56. 1 & \\
\hline & 1242038.435 & 905. 1 & 2573416.1 & 773613.6 & Bear Ridge & 4355.4 & \[
\text { 3. } 639025
\] \\
\hline & 124203843 & & 53018.7 & 1852956.5 & Mount Blank & 8426.4 & 3.925643 \\
\hline \multirow[t]{4}{*}{\(\underset{1869}{\text { Blunts Reef, N. Rock }}\)} & \multirow[t]{4}{*}{\[
\begin{array}{r}
4026 \quad 59.086 \\
124 \quad 27 \quad 57.389
\end{array}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 1822.5 \\
& 1352.4
\end{aligned}
\]} & & & & & \\
\hline & & & 2564715
37515 & 765016 & Bear River & \begin{tabular}{l}
6926.5 \\
6297 \\
\hline
\end{tabular} & \[
\text { 3. } 840515
\] \\
\hline & & & 2752711 & \(\begin{array}{r}9530 \\ \hline 12 \\ \hline 129\end{array}\) & Mendocino & 6297.8
10331.3 & \[
\text { 3. } 799193
\] \\
\hline & & & \(\begin{array}{llll}292 & 33 & 27 \\ 296 & 55 & 49\end{array}\) & 1123750
1165849 & Mount Blank
South of Cape & 10331.3
7344.5 & \[
\begin{aligned}
& \text { 4. } 014156 \\
& 3.865962
\end{aligned}
\] \\
\hline
\end{tabular}

Shelter Cove to Trinidad Head-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station & Latitude and longitude & Sec onds in meters & Azimuth & Back azimuth & To station & Distance & Logarithm \\
\hline \multirow{5}{*}{\(\underset{1869}{\text { Blunts Reef, S. Rock }}\)} & \multirow[t]{5}{*}{\[
4026 \quad 56.939
\]
\[
1242805.252
\]} & \multirow[t]{5}{*}{\[
\begin{gathered}
m \\
1750.3 \\
123.8
\end{gathered}
\]} & - , " & - ' " & & meters & \\
\hline & & & 2273047 & 473410 & False Cape & 9950.0 & 3. 997883 \\
\hline & & & \begin{tabular}{l}
256 \\
374 \\
37425 \\
\hline 29
\end{tabular} & 763938
944543 & Bear River Mendocino & 7132.1
6476.5 & 3. 859607 \\
\hline & & & 2744246
2914959 & 944543
\(\times 115427\) & Mrendocino & 6476.5 & 3.811342 \\
\hline & & & 29540 & 111
115
153
53 & South of Cape & 10477.9
7481.1 & 4. 020275
3.873965 \\
\hline \multirow[t]{4}{*}{\[
\underset{187 \mathrm{I}}{\text { Mussel }}
\]} & \multirow[t]{4}{*}{\[
\begin{array}{r}
402056.046 \\
1242146.428
\end{array}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 1728.8 \\
& 1095.7
\end{aligned}
\]} & 1642351 & \(344225^{\circ}\) & South of Cape & 8170.0 & 3. 912230 \\
\hline & & & 1883930 & 83944 & Davies Creek & 3609.6 & 3. 557458 \\
\hline & & & 2023937 & 224022 & Davies Ridge & 4280.7 & 3.631512 \\
\hline & & & 217 or 36 & 37 as or & Domingo & 1542.6 & 3.188262 \\
\hline \multirow[t]{3}{*}{Devils Gate Rock 1871} & 4023 49.742 & \multirow[t]{3}{*}{\[
\begin{array}{r}
1534.3 \\
859.8
\end{array}
\]} & 1885820 & 85831 & South of Cape & 2542.1 & 3.405194 \\
\hline & \multirow[t]{2}{*}{\(124 \quad 23\) 36.454} & & 2881954 & 1082151 & Davies Ridge & 4471.3 & 3.650436 \\
\hline & & & 3192907 & 1393044 & Domingo & 5426.2 & 3.734497 \\
\hline \multirow[t]{3}{*}{Walker's house, chimney 1875} & 402222.367 & 689.9 & 233906 & 2033851 & McNutt & 1327.6 & 3. 123053 \\
\hline & \multirow[t]{2}{*}{1241944.575} & \multirow[t]{2}{*}{1051.5} & 534049 & 2333956 & Domingo & 2415.6 & 3.383027 \\
\hline & & & 1111445 & 2911341 & Davies Creek & 2501.0 & 3.398110 \\
\hline \multirow[t]{3}{*}{\[
\underset{187 \mathrm{x}}{\text { Sealion Rock }}
\]} & \(401933 \cdot 577\) & 1035.7 & 2271631 & 471710 & Mussel Knoll & 1929.3 & 3. 28.5399 \\
\hline & \multirow[t]{2}{*}{1242142.582} & \multirow[t]{2}{*}{1005. 2} & 3160334 & 1360435 & Moore Hill & 3198.4 & 3. 504936 \\
\hline & & & 3310924 & 1510958 & Mattole Point & 2513.1 & \(3 \cdot 400215\) \\
\hline \multirow[t]{3}{*}{\[
\underset{187 \mathrm{x}}{\text { Gorda Rock }}
\]} & 401459.476 & 1834.6 & 1985916 & 185938 & Windy Point & 2504.8 & 3. 398775 \\
\hline & \multirow[t]{2}{*}{1242202.094} & \multirow[t]{2}{*}{49.5} & 2560141 & 760235 & Four Mile Creek & 1881.7 & \[
3.274550
\] \\
\hline & & & 2791751 & 991903 & Morgan & 2678.2 & \[
3 \cdot 427842
\] \\
\hline \multirow[t]{2}{*}{Reynolds Rock 187x} & & 331.0 & \(165 \quad 5302.2\) & 3455250.5 & Cooskie Creek & 1754. I & 3. 244058 \\
\hline & 1241736.948 & 873.9 & 2104750.4
23645
30.8 & \(\begin{array}{r}30 \\ 38 \\ 56 \\ \hline 15\end{array}\) & Lake Hill \({ }^{\text {Reynolds Point }}\) & 1594.1 & 3. 177382 \\
\hline \multirow[t]{3}{*}{Island Peak 1871} & \multirow[t]{3}{*}{\[
\begin{array}{r}
400407.522 \\
1240225.524
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 232.0 \\
& 604.9
\end{aligned}
\]} & 452814 & & Ray Point & & 3.640667 \\
\hline & & & 563450 & 2363341 & Colona Cliff & 3008.5 & 3.478352 \\
\hline & & & 1224323 & \(302415^{2}\) & Horse Mountain & 3998. 5 & 3.601894 \\
\hline \multirow[t]{3}{*}{Shipmen Tree 1871} & 4007 II. 551 & 356.3 & 22949 29.2 & 494929.5 & Shipman & 15.1 & 1.180285 \\
\hline & \multirow[t]{2}{*}{1240758.600} & \multirow[t]{2}{*}{1387.7} & 3023545.1 & 12236 & Midway & 3108.7 & 3.492583 \\
\hline & & & 3074910.8 & 1275113.9 & Hors Mountain & 5730.7 & 3.758207 \\
\hline \multirow[t]{3}{*}{Petrolia flagstaff 1871} & 401928.665 & 884.0 & 630518 & 2430322 & Moore Hill & 4751.4 & 3.676823 \\
\hline & 12417909.228 & 217.9 & 1045306 & 28451522 & Widow Cranks & 3945.2 & 3. 596070 \\
\hline & & & 1493819 & 3293640 & Walker Ridge & 7169.5 & 3.855487 \\
\hline \multirow[t]{3}{*}{Outer Break 1871} & 402439.218 & 1209.7 & 20316 II & 231655 & Mendocino & 4042.0 & 3.606599 \\
\hline & 1243439.132 & 922.4 & 2421603 & 621654
138 & South of Cape & 3117.1 & \[
3.325734
\] \\
\hline & & & \(318 \quad 28 \quad 23\) & 1383040 & Domingo & 7547.6 & 3.877807 \\
\hline \multirow[t]{3}{*}{Mackey's house, chimney 1871} & 401358.626 & 1808. 3 & 663245
31 & 2363233 & Mackey Beach & 510.2 & 2.707757 \\
\hline & \multirow[t]{2}{*}{12419 O1. 672} & 39.5 & 1314108 & 3114024 & \begin{tabular}{l}
Morgan \\
Mackey Hill
\end{tabular} & 2171.1 & 3.336685 \\
\hline & & & 2091647 & 291703 & Mackey Hill & 1204.9 & 3.080958 \\
\hline \multirow[t]{2}{*}{Domingo's house, chim\(187^{1}\) [ney*} & 402150.62 & 1561.4 & 1460059 & 3260024 & Davies Creek & 2273.6 & 3.356722 \\
\hline & 1242029.52 & 696.5 & 2940934 & 1140948 & McNutt & 578.5 & 2.763317 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Bagley's house, chimney * } \\
& 187 \mathrm{I}
\end{aligned}
\]} & \(\begin{array}{rlll}40 & 17 & 13.77 \\ 124 & 21 & 08.11\end{array}\) & 424.7
101.6 & \begin{tabular}{l}
19041 \\
714 \\
\hline 18 \\
\hline 8
\end{tabular} & 104137
3459 & \begin{tabular}{l}
Mattole Point \\
Moore Hill
\end{tabular} & 2147.9
2451.7 & \[
3 \cdot 332017
\]
\[
3 \cdot 389464
\] \\
\hline & 1242108.11 & 191.6 & 1145844 & 345922 & Moore Hill & 2451.7 & \[
3 \cdot 389464
\] \\
\hline \multirow[t]{2}{*}{False Cape Rock 1869} & \(\begin{array}{r}403036.094 \\ 124 \\ \hline\end{array}\) & 1113.3 & 239
272
372
03 & & & 3191.2
1205.4 & \\
\hline & 12423 44, 768 & 1054. I & \(\begin{array}{llll}272 & 02 & 15 \\ 310 & 15 & 59\end{array}\) & \(\begin{array}{r}92 \\ 130 \\ 130 \\ 16 \\ \hline 8\end{array}\) & False Cape
Fortunas & 1205.4
2840.0 & \[
\begin{aligned}
& 3.081146 \\
& 3.453325
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Griffith Hill } \\
& 1869
\end{aligned}
\]} & 4025 O1. 636 & 50.2 & 11100132 & 2905518 & Bear River & & 4. 162496 \\
\hline & 12413 35.201 & 829.9 & 1285413 & 3084939 & Odell & 12837.6
10643.3 & \[
\text { 4. } 108485
\] \\
\hline & & & 1473210 & 3272932 & Bear Ridge & 10643.3 & \\
\hline \multirow[t]{3}{*}{East Twin 1869} & 4024 47.706 & 1471.5 & 1373720 & 3173550 & Cape Ridge & 4857.6 & 3. 686419 \\
\hline & 1241902.995 & 70.6 & 1645420 & 3445317 & Odell & 8807.3 & 3.944843 \\
\hline & & & 913404 & 2713240 & Mount Blank & 3059.8 & 3.485687 \\
\hline \multirow[t]{3}{*}{Mount Pierce 1869} & 40
124
124
0. & 20.0
210.0 & 113
103
103
05
05 & & \begin{tabular}{l}
Odell a \\
Bear River
\end{tabular} & & \\
\hline & 1240709.160 & 210.0 & \(\begin{array}{llll}103 & 05 & 04 \\ 121 & 21 & 41\end{array}\) & 282
301
3014
100 & Bear River
Bear Ridge & 23269.0
17336.2 & \(4 \cdot 366777\)
4.238955 \\
\hline & & & 28036 & 100 58 & Mount Lassic & 18899.9 & 4.689308 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Rainbow Peak } \\
1869
\end{gathered}
\]} & 402341.15 & 1268.0 & \[
1245020
\] & & Odell a & \[
18450.2
\] & \[
\text { 4. } 36600
\] \\
\hline & 12409.55 .45 & 1307.7 & 1362919 & 3162419 & Bear Ridge & \[
15813.9
\] & \[
\text { 4. } 19904
\] \\
\hline
\end{tabular}
* No check on this position.

Shelter Cove to Trinidad Head-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station & Latitude and longitude & Seconds in meters & Azimuth & Back azimuth & To station & Distance & Logarithm \\
\hline & - , " & \(m\) & ' " & 11 & & meters & \\
\hline \(\underset{\text { Monument }}{\text { (869 }}\) Ridge \({ }_{\text {[trec* }}\) lone & 402807.74
1241234.96 & 238.7
823.6 & \(\begin{array}{lll}63 & 3210 \\ 78 & 17 & 58\end{array}\) & \(\begin{array}{llll}243 & 26 & 34 \\ 258 & 12 & 16\end{array}\) & Mount Blank Cape Ridge & 13636.4
12682.2 & \[
\begin{aligned}
& \text { 4. } 134699 \\
& \text { 4. } 1031994
\end{aligned}
\] \\
\hline 1869 [tree* & 1241234.96 & 823.6 & 781758 & 2581216 & Cape Ridge & & 4. 103194 \\
\hline Joel Flat* & 402336.15 & 1115.0 & 150054 T & 3300251 & Odell & 12358.3 & 4.091960 \\
\hline 1869 & 12416 18.76* & 442.4 & 1705338 & 3505247 & Bear Ridge & 11762.6 & 4.070502 \\
\hline Cape Rock & 402621.578 & 665.6 & 1984508 & 18
23
4631 & False Cape & 824.5 .7
10363.8 & \[
3.916229
\] \\
\hline 1869 & 12424 46.191 & 1088.6 & 2035106 & \(\begin{array}{llll}23 & 53 & 12 \\ 31 & 01 & 17\end{array}\) & Oil Creek West
Fortunas & 10303.8
7017.4 & \[
\begin{aligned}
& \text { 4. } 01552 \mathrm{I} \\
& 3.846174
\end{aligned}
\] \\
\hline Mattole Mt. tree & 4015 28.182 & 869.3 & 1494128 & 3293639 & South of Cape & 20836.6 & 4.318826 \\
\hline 1869 & \(12415 \quad 53.600\) & 1266.7 & 151 0454 & 3305943 & Lisht-house No. I & 23411.1 & \(4 \cdot 369421\) \\
\hline & & & 1563258 & 3362931 & Mount Blank & 18906.5 & 4.276612 \\
\hline Outer Twin Rock* & 402642.72 & 1317.7 & 2034806 & 234933 & False Cape & 7821.4 & 3.893283 \\
\hline 1869 & 1242507.67 & 180.8 & 2173130 & 373323 & Fortunas & 6763.0 & 3.830138 \\
\hline Mattole Peak, tree & \(\begin{array}{llll}40 & 15 & 09.813\end{array}\) & 302. 7 & \(\begin{array}{llll}153 & 28 & 51 \\ 554\end{array}\) & \begin{tabular}{lll}
333 & 23 & 37 \\
334 & 21 \\
\hline 8
\end{tabular} & South of Cape
Light-house No. & 20738. 17 & \[
4 \cdot 316769
\] \\
\hline 1869 & 1241646.646 & 1102.4 & \begin{tabular}{l}
1542724 \\
16041 \\
\hline 18
\end{tabular} & \(\begin{array}{llll}334 & 21 & 48 \\ 340 & 38 & 55\end{array}\) & Light-house No.
Mount Blank & 23341.7
18977.2 & \[
\begin{aligned}
& 4 \cdot 368 \mathrm{I}_{33} \\
& 4 \cdot 27^{8232}
\end{aligned}
\] \\
\hline Cape Knob* & 4026 36. 15 & 1115.0 & 1903608 & 103646 & False Cape & 7486. 1 & 3.874255 \\
\hline 1869 & 12423 52.10 & 1227.9 & 2024809 & 224913 & Fortunas & 6037.4 & 3. 780847 \\
\hline Barksdale Ridge, E. peak* & \(40 \quad 0906.64\) & 204.8 & 1422432 & \(\begin{array}{llll}322 & 14 & 03\end{array}\) & South of Cape & 37588. 1 & 4.575050 \\
\hline 1869 (& 1240707.02 & 166.2 & 1453650 & 3252743 & Mount Blank & 35305. 1 & 4.547838 \\
\hline Keeper's house,chimney* & 402650.84 & 642.8 & 3024814 & 1225013 & Mount Blank & 5146.8 & 3.711535 \\
\hline 1869 & \(12424 \quad 16.20\) & 381.8 & 3281059 & 1481136 & South of Cape & 2529.5 & 3.403035 \\
\hline Conical Rock* & \(401543 \cdot 38\) & 1338. 1 & 173064 L & 353 O5 43 & South of Cape & 17640.3 & 4.246505 \\
\hline 1869 & 1242149.89 & 1178.9 & 1825824 & 25848 & Mount Blank & 16895. 2 & 4.227763 \\
\hline Rock awash* & \(403039 \cdot 33\) & 1213. 1 & 3324712 & 1524855 & Cape Ridse & 8160.6 & 3.911724 \\
\hline 1869 & 1242400.28 & 0.6 & 3544403 & 1744422 & Mendocino & 7425.9 & 3.870751 \\
\hline Eel River & 403842.871 & 1322.4 & 35531556.5 & 1753231.8 & Bear Ridge & \[
16403.7
\] & \[
4.214942
\] \\
\hline 1869 & 12418378074 & 753.6 & 154655.6 & 1954506.7 & Oil Creek & \[
14488.7
\] & 4. 161031 \\
\hline Table Ridge & 404022.616 & 697.6 & 143732.8 & 1943512.7 & Bear Ridge & 20079.6 & \[
4.302756
\] \\
\hline 1869 & 1241402.498 & 58.7 & 640642.6 & 2440346.9 & Eel River & 7040.6 & \[
3.847610
\] \\
\hline Table Bluff & 404152.889 & 1631.4 & 3114008.6 & 13 I 4135.4 & Table Ridge & 4187.4 & 3.621945 \\
\hline 1869 & \(124 \quad 16 \quad 15.679\) & 368.1 & 45832.5 & 1845739.0 & Bear Ridge & 22299.1 & 4. 348287 \\
\hline & & & 2840 17.2 & 2083848.3 & Eel River & 6679.6 & 3.824752 \\
\hline Eel River Beach & 404000.698 & & 2113544.9 & 313644.0 & Table Bluff & 4063.3 & 3.608874 \\
\hline 1869 & 1241746.353 & 1088.8 & 2623909.5 & 824135.4 & Table Ridge & 5301.1 & 3.724370 \\
\hline & & & 24063 I. 6 & 2040601.8 & Eel River & 2630.0 & 3.419956 \\
\hline Nelson & 404042.907 & 1323.5 & 2144103.8 & \(344145 \cdot 3\) & Table Bluff & 2625.3 & 3.419183 \\
\hline 1869 & 1241719.311 & 453.5 & & 97
90643
200 & Table Ridge
Lel River Beach & 4664.5
1448.6 & 3.068804
3.160958 \\
\hline Sisson & 404254.720 & 1687.8 & 302446.3 & 2102329.8 & Table Ridge & 54.39 .8 & 3.735584 \\
\hline 1854 & 1241205.249 & 123.2 & 720253.6 & 2520010.3 & Table Bluff & 6180.4 & 3. 791020 \\
\hline Humboldt L. H. & 404609.060 & 279.5 & 3451033.9 & 165 Ir 18.0 & Sisson & 6200.9 & 3. 792456 \\
\hline 1869 & 1241312.841 & 301. 1 & 2830 59.1 & 2082859.8 & Table Bluff & 899:. 5 & 3.953834 \\
\hline Red Bluff Latitude Sta. & 4044 44.184 & 1362.8 & 3401812.1 & 1601845.7 & Sisson & 3586.3 & 3. 554646 \\
\hline 1854 & 1241256.746 & 1331.3 & 105008.4 & 1904925.5 & Table Ridge & 8214.7 & 3.914591 \\
\hline & & & 412856.8 & 2212647.0 & Table Bluff & 7051.0 & 3.848252 \\
\hline & & & 1714745.2 & 3514734.8 & Humboldt L. H. & \(2645 \cdot 2\) & 3.422460 \\
\hline Bucksport (69) & 404643.429 & 1339.6 & & & Sisson & & \\
\hline 1869 & 1241130.028 & 704.1 & & \[
\begin{array}{llll}
208 & 56 & \text { or. } 2 \\
246 & 15 & 19.8
\end{array}
\] & Red Bluff Lat. Sta. Humboldt L. H. & 4203.1
2633.9 & \[
\begin{aligned}
& 3.623582 \\
& 3.420595
\end{aligned}
\] \\
\hline & & & 661626.9 & 2461519.8 & Humboldt L. H. & 2633.9 & 3.420595 \\
\hline Sandhill (R) & 404718.800 & 579.9 & 308 or 07.6 & 128 ol 46.5 & Bucksport (69) & 1771. 2 & 3. 248274 \\
\hline 1869 & 12412 29.534 & 692.4 & 73727.9 & 1873799.9 & Red Bluff Lat. Sta. & 4811.9 & 3.682314 \\
\hline & & & 251628.1 & 2051559.8 & Humboldt L. H. & 2378.9 & 3. 376372 \\
\hline Humboldt Bay N. B. 1870 & \[
\begin{array}{r}
404744.540 \\
1241103.315
\end{array}
\] & 1373.8
77.7 & \begin{tabular}{l}
18 \\
18 \\
68 \\
\hline 23 \\
\hline
\end{tabular} & \(\begin{array}{llll}198 & 22 & 37.3 \\ 248 & 32 & 50.5\end{array}\) & Bucksport (69) Sandhill (R) & \[
\begin{aligned}
& 1986.39^{\circ} \\
& 2175.7
\end{aligned}
\] & \[
\begin{aligned}
& 3.298065 \\
& 3.336807
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
* No check on this position.
}

Shelter Cove to Trinidad Head-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station & Latitude and Iongitude & Sec onds in meters & Azimuth & Hack azimuth & Tostation & Distance & Loga. rithma \\
\hline \multirow{5}{*}{Humboldt Bay Middle
1870} & \multirow[t]{5}{*}{\[
\begin{array}{ccc}
0 & 11 \\
40 & 47 & 08.172 \\
124 & 12 & 12.022
\end{array}
\]} & \multirow[t]{5}{*}{\[
\begin{gathered}
m \\
258.1 \\
281.9
\end{gathered}
\]} & - , " & - ' \({ }^{\prime}\) & & meters & \\
\hline & & & 98445.9 & 1890411.0 & Sisson & 7917.2 & 3. 898569 \\
\hline & & & 285709.9 & 20886 & Red Bluff Lat. Sta. & 5075.5 & 3.705476 \\
\hline & & & \(\begin{array}{rrrrr}28 & 57 & 10.5\end{array}\) & 2085658.8 & Bucksport (69) & 872.221 & 2.940626 \\
\hline & & & \(\begin{array}{cccc}100 & 13 & 58.2 \\ 190 & 18 & 43.8\end{array}\) & \(\begin{array}{rrrr}280 & 13 & 07.6 \\ 10 & 18 & 49.5\end{array}\) & Sandhill (R) & \[
\begin{aligned}
& 1846.7 \\
& 1140.265
\end{aligned}
\] & 3.266404
3.057006 \\
\hline \multirow[t]{4}{*}{\[
\underset{1853}{\text { Curlew }}
\]} & \multirow[t]{4}{*}{\[
\begin{array}{r}
404748.151 \\
124 \times 1 \mathrm{4x} \cdot 395
\end{array}
\]} & \multirow[t]{4}{*}{\[
\begin{array}{r}
1485.2 \\
970.5
\end{array}
\]} & 2770630.4 & 970655.3 & Humboldt Bry N. B. & 899.6 & 2.954066 \\
\hline & & & 3304904.5 & 1504923.6 & Humboldt Bay M. B. & 1412.5 & 3.149080 \\
\hline & & & 35223 44.0 & 1722351.4 & Bucksport (6) & 2014. 2 & 3.304093 \\
\hline & & & 511603.4 & 23 I 15 31.9 & Sandhill (R.) & 1446.9 & 3. 160434 \\
\hline \multirow[t]{4}{*}{\[
\underset{5870}{\substack{\text { Peninsula }}}
\]} & \multirow[t]{4}{*}{\[
\begin{array}{r}
404822.687 \\
1241143.780
\end{array}
\]} & \multirow[t]{4}{*}{\[
\begin{array}{r}
699.8 \\
1026.2
\end{array}
\]} & 3219723.4 & 1410949.8 & Fumboldt Bay N. B. & 1511.4 & 3. 179385 \\
\hline & & & 3420258.3 & \(1{ }_{102} 0319.0\) & Humboldt Bay M. B. & 2416.1 & 3.383117 \\
\hline & & & 356 & 17685944.2 & Curlew & 1066.8 & 3.028076 \\
\hline & & & 283346.1 & 2083316.2 & Sandhill (R.) & 2243.7 & 3.350962 \\
\hline \multirow[t]{3}{*}{Eureka Methodist Church
\[
1870
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
404^{8} 15 \cdot 461 \\
1340947 \cdot 320
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
476.9 \\
\times 109.2
\end{array}
\]} & 615033.0 & 24 I 494 4 .3 & Humboldt Bay N. B. & 2020. 7 & 3.305511 \\
\hline & & & 651951.0 & 2451805.0 & Sandhill (R.) & 4185.2 & 3.621721 \\
\hline & & & 944041.7 & 2743925.6 & Peninsula & 2738.9 & 3. 437579 \\
\hline \multirow[t]{3}{*}{\(\underset{1870}{\text { Sand Bluff }}\)} & \multirow[t]{3}{*}{\[
\begin{array}{r}
404924.442 \\
1341029.732
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 753.9 \\
& 696.7
\end{aligned}
\]} & 3345723.8 & 15457 5r. 5 & Eureka Meth. Ch. & 2348.6 & 3.370801 \\
\hline & & & \(\begin{array}{llll}14 & 19 & 53.9 \\ 47 & 20 & 27.0\end{array}\) & 1941931.8 & Humboldt Bay N. B. Peninsula & 3180.6 & 3. 502507 \\
\hline & & & 422027.0 & 2221938.6 & & 2576.9 & 3.411103 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { West Point } \\
5870
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
404942.327 \\
1241012.421
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
2305.6 \\
291.0
\end{array}
\]} & 3473654.4 & 1673710.8 & Eureka Meth. Ch. Sand Bluff & \(2743 \cdot 3\) & 3. 438280 \\
\hline & & & \(\begin{array}{llll}36 & 19 & 36.7\end{array}\) & 2161925.4 & Sand Bluff & 684.8 & 2. 835545 \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { East Point } \\
1870
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
4048 \\
12408 \\
43.327 \\
\hline
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 1305.3 \\
& 1010.0
\end{aligned}
\]} & 618054.6 & 2411012.6 & Eureka Meth. Ch. & \({ }_{1718} 78\) & 3. 2.15096 \\
\hline & & & 1173853.6 & 2972743.9 & Sand Bluff & 2816.8 & \[
3.44975 \mathrm{I}
\] \\
\hline & & & 1312936.4 & 3113838.0 & West Point & 2794.4 & 3. 446793 \\
\hline \multirow[t]{5}{*}{Eureka Plaza, flagstaff
\[
1870
\]} & \multirow[t]{5}{*}{\[
\begin{array}{r}
404812.173 \\
1240941.214
\end{array}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& 375.5 \\
& 963.8
\end{aligned}
\]} & \(\begin{array}{llll}66 & 08 & 4 x .1\end{array}\) & \(\begin{array}{llll}246 & 07 & 47.3\end{array}\) & Humboldt Bay N. B. Peninsula & 2107.1 & 3. 3183879 \\
\hline & & & \(\begin{array}{r}96 \\ \hline 156 \\ 152 \\ \hline 15\end{array}\) & \begin{tabular}{l}
276 \\
2725 \\
33 \\
\hline 25 \\
\hline
\end{tabular} & \begin{tabular}{l}
Peninsula \\
Sand Bluff
\end{tabular} & 2893.5
3503.6 & \\
\hline & & & \begin{tabular}{l}
1525551.4 \\
\hline 16515
\end{tabular} & 3325519.6 & West Point & 2503.6
2876.1 & \[
3 \cdot 398560
\] \\
\hline & & & \(\begin{array}{llll}165 & 13 & 22.0 \\ 235 & 38 & 00.3\end{array}\) & \(\begin{array}{rrrrr}345 & 13 & 01.5 \\ 55 & 38 & 38.1\end{array}\) & West Point & \[
\begin{aligned}
& 2876.1 \\
& 1647.4
\end{aligned}
\] & \[
3.458805
\] \\
\hline & & & \(235 \quad 38 \quad 00.3\) & \(\begin{array}{llll}55 & 38 & 38.1\end{array}\) & East Point & 1647.4 & 3. 216809 \\
\hline \multirow[t]{3}{*}{Eureka Azimuth Station 1869} & \multirow[t]{3}{*}{\[
\begin{array}{r}
404811.981 \\
1240948.270
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 369.6 \\
& 990.8
\end{aligned}
\]} & \(132 \begin{array}{lll}12 & 09.5\end{array}\) & 3121206.2 & Eureka Meth. Ch. & 559.8 & 2. 203513 \\
\hline & & & 1654629.8 & 3454610.1 & West Point & 2875. \({ }^{\text {27 }}\) & 3. 458644 \\
\hline & & & 2574133.7 & 774234.5 & Eureka Plaza figstf. & 27.7 & 1. 443164 \\
\hline \multirow[t]{5}{*}{Eureka Congregational Church 1870} & \multirow[t]{5}{*}{\[
\begin{array}{r}
4048 \\
124.693 \\
124.351
\end{array}
\]} & \multirow[t]{5}{*}{\[
\begin{array}{r}
359.8 \\
1224.8
\end{array}
\]} & 632017.7 & 2431931.2 & Humboldt Bay N. B. & 1864. 2 & 3. 270490 \\
\hline & & & 972513.1 & 2772400.2 & Peninsula & 2636.3 & 3. 420990 \\
\hline & & & \(\begin{array}{r}158 \\ 58 \\ 170 \\ \hline 0\end{array}\) & & Sand Bluff & 2410.7
3836.3 & \[
3 \cdot 382142
\] \\
\hline & & & 170
26
267
36
36 29.3 & \(\begin{array}{rl}350 & 24 \\ 8 & 16.1 \\ 87 & 36\end{array}\) & West Point
Eureka Az. Sta. & 2836.3 & \[
3.452755
\] \\
\hline & & & 2673600.3 & 8736068 & Eureka Az. Sta. & 234.2 & \[
\text { 2. } 369527
\] \\
\hline \multirow[t]{3}{*}{Wheeler 1870} & \multirow[t]{3}{*}{\[
\begin{array}{r}
4051 \\
2240927.632 \\
2098
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
328.0 \\
634.8
\end{array}
\]} & 3471745.2 & 1671814.0 & East Point & 4689.8 & \[
3.671154
\] \\
\hline & & & 5478088.0 & 1850034.8 & Eureka Meth. Ch. & 5424.2 & \[
3.734336
\] \\
\hline & & & 2158 or. 2 & 2011735.6 & West Point & 2923.6 & \\
\hline \multirow[t]{4}{*}{Green Bluff 1870} & \multirow[t]{4}{*}{\[
\begin{array}{r}
404937.259 \\
1240505.185
\end{array}
\]} & \multirow[t]{4}{*}{\[
\begin{array}{r}
1149.3 \\
121.5
\end{array}
\]} & & \(\begin{array}{llll}248 & 32 & 48.4 \\ 249 & 05 \\ 16.2\end{array}\) & Eureka Cong. Ch. Eureka Meth. Ch. & 7227.4
7077.3 & \\
\hline & & & 690820.6
713937.2 & & Eureka Meth. Ch. East Point & 7077.3
5380.6 & \[
3.849868
\] \\
\hline & & & \(\begin{array}{llllll}71 & 39 & 37.2\end{array}\) & \begin{tabular}{llll}
251 & 37 \\
266 & 59 \\
\hline 29.8 \\
\hline
\end{tabular} & East Point & 5380.6
7615.4 & \[
\text { 3. } 730832
\] \\
\hline & & & \(\begin{array}{r}87 \\ 815 \\ 1510 \\ \hline 12.09\end{array}\) & 296507 17.7 & Wheeler & 7678.4
678.5 & 3.831131 \\
\hline \multirow[t]{4}{*}{Arcata Church
1870} & \multirow[t]{4}{*}{\[
\begin{array}{rll}
40 & 52 & 18.647 \\
124 & 05 & 07.184
\end{array}
\]} & \multirow[t]{4}{*}{575.2
166.6} & 3592847.4 & 1792848.7 & Green Bluff & 4978. 5 & 3.697101 \\
\hline & & & 371126.2 & 2170905.0 & East Point & 8374.5 & 3.912959 \\
\hline & & & 543652.4 & 23433215 & Sand Bluff & 9273. I & 3. 967226 \\
\hline & & & 710039.8 & 2505749.8 & Wheeler & 6440.1 & 3.808898 \\
\hline \multirow[t]{3}{*}{\[
\begin{array}{r}
\text { Morgan } \\
1870
\end{array}
\]} & \multirow[t]{3}{*}{40
49
12411
11} & \multirow[t]{3}{*}{\[
\begin{array}{r}
1009.4 \\
185.0
\end{array}
\]} & 3253608.1 & 1413700.8 & Eureks Meth. Ch. & 3040.8 & \\
\hline & & & 3243925.1 & 1444014.6 & Eureka Cong. Ch. Peninsula & 3065.1
2318.4 & \[
3 \cdot 486449
\] \\
\hline & & & 211637.4 & 2011604.0 & Peninstala & 2318.4 & \\
\hline \multirow[t]{5}{*}{\[
\begin{gathered}
\text { Cut Hill } \\
1870
\end{gathered}
\]} & \multirow[t]{5}{*}{\(\begin{array}{rrrr}40 & 51 & 03.379 \\ 124 & 10 & 06.238\end{array}\)} & \multirow[t]{5}{*}{\[
\begin{aligned}
& 101.2 \\
& 146.1
\end{aligned}
\]} & 2513650.2 & 714005.9 & Arcata Church & \({ }_{7381} 73\) & \\
\hline & & & 29035121.6 & & Green Bluff & 7535.8
5195.6 & \[
3.877128
\] \\
\hline & & & \begin{tabular}{l}
355 \\
350 \\
350 \\
\hline 127 \\
12
\end{tabular} & 175
176
176
7 & Eureka Meth. Ch. & 5195.6
5303.9 & \[
3.715635
\] \\
\hline & & & \begin{tabular}{l}
356 \\
3 \\
27 \\
\hline 7
\end{tabular} & \begin{tabular}{l}
176 \\
2072030.4 \\
\hline 10.6
\end{tabular} & Fureka Cong. Ch. & 5303.9
3144.7 & \[
3 \cdot 734595
\] \\
\hline & & & 272050.0 & 2072029.6 & Morgan & 3144.7 & 3.497576 \\
\hline \multirow[t]{6}{*}{Slough 1870} & \multirow[t]{6}{*}{404815.931
1240799.071} & \multirow[t]{6}{*}{\[
\begin{aligned}
& 49 \mathrm{r} .1 \\
& 68 \mathrm{I} .4
\end{aligned}
\]} & \[
894541.6
\] & 26944 II. 2 & Eureka Meth. Ch. & & \\
\hline & & & 1150847.6 & 2950759.2 & \begin{tabular}{l}
East Point \\
Sand Bluff
\end{tabular} & 1916.6 & \[
\text { 3. } 28253 \mathrm{I}
\] \\
\hline & & & \(\begin{array}{ll}116 & 32 \\ 158.8 \\ 150\end{array}\) & 2963040.7 & Sand Bluff Wheeler & \[
4732.4
\]
\[
6057.5
\] & \[
3.675082
\] \\
\hline & & & & \begin{tabular}{rrrr}
332 & 49 & 25.7 \\
23 & 57 \\
\hline 53 & 48.9
\end{tabular} & \begin{tabular}{l}
Wheeler \\
Arcata Church
\end{tabular} & \[
\begin{aligned}
& 6057.5 \\
& 8192.8
\end{aligned}
\] & \[
3.782291
\] \\
\hline & & & 20356 & \begin{tabular}{l}
23 \\
23 \\
53 \\
51 \\
\hline 1 \\
\hline 1 \\
4 \\
48.9
\end{tabular} & Arcata Church
Green Bluff & 8192.8
4203.2 & \[
\begin{aligned}
& 3.913430 \\
& 3.623576
\end{aligned}
\] \\
\hline & & & 23.32011 .7 & \(535145 \cdot 7\) & Green Bluff & 4203. 2 & 3.623576 \\
\hline
\end{tabular}

Shelter Cove to Trinidad Head-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station & Latitude and longitude & Seconds in meters & Azimuth & Back azimuth & Tostation & Distance & Logarithm \\
\hline \multirow{5}{*}{Slough Fork 1870} & " & \(m\) & " & - ' & & meters & \\
\hline & 4048 02.141 & 66.0 & 1053324.5 & 2853241.9 & Slough. & 1585.5 & 3. 200166 \\
\hline & 1240623.909 & 560.4 & 110 4845.1 & 2904714.1 & East Point & 3489.9 & 3. 542815 \\
\hline & & & 1934814.9 & 124905.1 & Arcata Church & 8114.4 & 3.909256 \\
\hline & & & 2120923.0 & 321014.4 & Green Bluff & 3466.0 & 3.539826 \\
\hline \multirow[t]{4}{*}{\[
\underset{1870}{\text { Marsh Point }}
\]} & 405129.883 & 92 r .8 & 2474634.6 & 674817.3 & Arcata Church & 3979.4 & 3. 599823 \\
\hline & 1240744.430 & 1040.6 & 3125647.4 & 1325831.5 & Green Bluff & 5097.8 & 3.707379 \\
\hline & & & 2539 27. 8 & 205 \(38 \quad 07.4\) & Eureka Meth. Ch. & 6652.7 & 3.823000 \\
\hline & & & 760816.0 & 2560708.8 & Wheeler & 2477.0 & 3.393921 \\
\hline \multirow[t]{3}{*}{John Brown 1870} & 405213.166 & 406. 1 & 26811297.4 & 881358.5 & Arcata Church & 5417.7 & 3.733814 \\
\hline & 1240858.358 & 1366.5 & 3073753.7 & 1273842.1 & Marsh Point & 2186.4 & 3.339723 \\
\hline & & & 191418.2 & 1991359.4 & Wheeler & 2043. 1 & 3.310282 \\
\hline \multirow[t]{4}{*}{\[
\underset{1870}{\text { Mosquito Point }}
\]} & 405302.669 & 82.3 & 2863123.4 & 1063331.0 & Arcata Church & 4769.9 & 3.678505 \\
\hline & \(124 \quad 08 \quad 22.397\) & 524.4 & 3424426.0 & 1624450.9 & Marsh Point & 2997 - 1 & 3.476700 \\
\hline & & & 234044.9 & 2034002.6 & Wheeler & 3773.6 & 3. 576753 \\
\hline & & & 285234.6 & \(20852 \mathrm{Is.1}\) & John Brown & 1743.8 & 3. 241496 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Northerner } \\
& 1869
\end{aligned}
\]} & 403400.997 & 30.8 & 25153.6 & 1825146.3 & Oil Creek & 5255.5 & 3. 720618 \\
\hline & 1243108.317 & 195.6 & 111749.2 & 191 \(17 \begin{aligned} & 73.3\end{aligned}\) & Oil Creek West & 4786.1 & 3.679979 \\
\hline \multirow[t]{4}{*}{Eccentric
1869} & 403556.225 & \(1734 \cdot 3\) & 223241.5 & 20221 or. 4 & Oil Creek & 9519.3 & 3.978004 \\
\hline & 1241845.520 & 1070.3 & 273157.5 & 2072958.8 & Oil Creek West & 9399.7 & 3.968467 \\
\hline & & & 432320.9 & 2232148.1 & Northerner & 4889.9 & 3.689301 \\
\hline & & & 1833059.6 & 33188.4 & Eel River & 5150.0 & 3.71811 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Centerville } \\
& 1889
\end{aligned}
\]} & 4037 20.794 & 641.4 & 2040051.5 & 24 Or 22.8 & Eel River & 2771.7 & 3. 442748 \\
\hline & 1241920.082 & 472.0 & 3424146.7 & 1624209.2 & Eccentric & 2732.2 & 3.436917 \\
\hline & & & 3500658.7 & 1700805.2 & Bear Ridge & 14030.1 & 4. 14706I \\
\hline \multirow[t]{5}{*}{Centerville South
2869} & & & 2045955.4 & 250017.3 & Centerville & 1885.9 & \\
\hline & \[
134 \quad 1953.992
\] & \[
1269.3
\] & 299 II 09.4 & 1191153.9 & Eccentric & 1844. 1 & 3. 365776 \\
\hline & & & 114302.1 & 1914206.4 & Oil Creek & 9908.9 & 3.996026 \\
\hline & & & 162218.0 & 1962103.7 & Oil Creek West & 9533.2 & 3.979237 \\
\hline & & & 212604.7 & 2012516.4 & Northerner & 4784.4 & 3.679829 \\
\hline \multirow[t]{6}{*}{\[
\begin{gathered}
\text { Russ Cut Off } \\
\text { I869 }
\end{gathered}
\]} & 40
40
124
10 & & \(\begin{array}{llll}329 & 03 & 00.3 \\ 349 & 40 & 88.0\end{array}\) & \(\begin{array}{lll}149 & 03 & 18.0 \\ 169 & 41 & 29.7\end{array}\) & Eccentric Bear Ridge & \[
\begin{array}{r}
1250.3 \\
12487.8
\end{array}
\] & \\
\hline & 1241912.867 & 302.5 & 349
164988.0
16404 & \begin{tabular}{l}
16941 \\
19646 \\
\hline 18 \\
18.7
\end{tabular} & Bear Ridge Oil Creek & \[
\begin{array}{r}
12487.8 \\
10314.9
\end{array}
\] & \[
\begin{aligned}
& 4.096487 \\
& 4.013467
\end{aligned}
\] \\
\hline & & & 2 2 2457.2 & 2012316.2 & Oil Creck West & 10010.3 & 4.000445 \\
\hline & & & 302456.6 & 2102341.5 & Northerner & 5364.4 & 3. 729518 \\
\hline & & & 795157.1 & 2595130.4 & Centerville South & 982. I & 2. 992174 \\
\hline & & & 1734201.8 & 3534157.0 & Centerville & 1545. 7 & 3.189115 \\
\hline \multirow[t]{4}{*}{\[
\begin{gathered}
\text { Picket Pile } \\
1869
\end{gathered}
\]} & & 284.2 & 94623.1 & 1894617.5 & Russ Cut Off & 1196. 5 & 3. 077906 \\
\hline & 1241904227 & 99.4 & 405220.7 & 2205148.5 & Centerville South & 1787.8 & 3. 251327 \\
\hline & & & 1334719.4 & 31347 c9. I & Centerville & 516.2 & 2.712832 \\
\hline & & & 1943916.5 & 143937.5 & Eel River & 2986.1 & 3.475106 \\
\hline \multirow[t]{3}{*}{Russ house, north chimney
\[
1869
\]} & & & \(14614{ }^{28} 8\) & 3261338.4 & Centerville South & 3258.2 & \\
\hline & \[
124 \quad 38 \quad 36.979
\] & 869.6 & 1670500.2 & 3470432.0 & Centerville & 4532.6 & 3.656346 \\
\hline & & & 1733952.4 & 3533946.8 & Eccentric & 1820.3 & 3. 260151 \\
\hline \multirow[t]{3}{*}{East Point 1869} & 403831.493 & & 341457.0 & 2141455.9 & Centerville & \[
2638.1
\] & \\
\hline & 1241816.915 & 397.6 & 1343431.8
1943716.8 & 31434
14
14737.0 & \begin{tabular}{l}
Eel River \\
Eel River Beach
\end{tabular} & \[
\begin{array}{r}
500.0 \\
2843.7
\end{array}
\] & \begin{tabular}{l}
2. 699008 \\
3.453801
\end{tabular} \\
\hline & & & 1943716.8 & 143737.1 & Eel River Beach & \(2843 \cdot 7\) & \\
\hline \multirow[t]{3}{*}{Fishhouse, N. gable 1869} & \[
403936.669
\] & 1131. 1 & 164907.9 & 2264818.9 & & 2424.7 & 3. 384656 \\
\hline & 1241716.826 & 395.2 & 13685481.2 & 3165352.0 & Eel River Beach & 1015. 1 & \[
3.006523
\] \\
\hline & & & 1783147.4 & 3582145.9 & Nelson & 2044. 0 & 3. \(3^{10488}\) \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Flag Tree } \\
\mathbf{2 8 6 9}
\end{gathered}
\]} & 403749.768 & 1535.1 & 660230.0 & 246 or 34. 3 & Centerville & 2300.2 & 3. 342472 \\
\hline & 1241754537 & 1281.7 & 1514158.6 & 3314154.2 & Eel River & 1860. 4 & 3. 269607 \\
\hline & & & 1574637.6 & 3374633.0 & East Point & 1390.3 & 3. 143118 \\
\hline \multirow[t]{2}{*}{South Beach I869} & & & \(\begin{array}{llll}237 & 34 & 12.1 \\ 200 & 55 & 56.0\end{array}\) & 573531.7
1105749.2 & & & \\
\hline & \(124145^{88} 736\) & \[
1378.3
\] & \(\begin{array}{llll}290 & 55 & 56.0 \\ 348 & 04 & 03.6\end{array}\) & 1105749.2
1680440.3 & \begin{tabular}{l}
Sisson \\
Table Ridge
\end{tabular} & 4359.8
6388.4 & 3. 639465
3. 805395 \\
\hline \multirow[t]{3}{*}{South Spit 1869} & & & & & & & \\
\hline & 404449.383
1341357.498 & \[
1523.2
\]
\[
1348.9
\] & \(\begin{array}{llll}276 & 24 & 50.4 \\ 323 & 18 & 48.7 \\ 30 & 47 & 38 . y\end{array}\) & 962530.0
1432001.9 & Sisson & 1434.3
4410.0 & 3.156640
3.644439 \\
\hline & 12413 57.498 & 1340.9 & 323
30
30473848.7 & 143
210 \(4^{26} 08.95\) & Table Bluff & 6336.9 & 3.644439
3.801875 \\
\hline \multirow[t]{6}{*}{\[
\]} & 405226.184 & 807.6 & 21439.6 & 1821431.1 & Slough & 7735.8 & 3.887942 \\
\hline & 1240716.164 & 378. 5 & 30.5200 .9 & 2005142.4 & Marsh Point & 1858.6 & 3. 269888 \\
\hline & & & 524633.7 & 2324508.0 & Wheeler & 3851.6 & 3. 585637 \\
\hline & & & 803859.9 & 2602753.0 & John Brown & 2426. 5 & 3. 384979 \\
\hline & & & 1355832.5 & 3055749.1 & Mosquito Point & 1916. 1 & 3. 282427 \\
\hline & & & 2742318.2 & 942442.4 & Arcata Church & 3030.8 & 3.481560 \\
\hline
\end{tabular}

Shelter Cove to Trinidad Head-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station & Latitude and longitude & Seconds in meters & Azimuth & Back azimuth & To station & Distance & Logarithm \\
\hline \multirow{4}{*}{\[
\begin{gathered}
\text { Round Top } \\
2870
\end{gathered}
\]} & - ' " & m & " & - ' 1 & & meters & \\
\hline & 405228.810 & 888.6 & 2713407.1 & 913529.3 & White Barn & 2936.6 & 3. 467847 \\
\hline & 13409 21. 528 & 504. 2 & 2725921.3 & 930207.8 & Arcata Church & 5965.7 & 3. 775659 \\
\hline & & & 213903.6 & 2013834.4 & Cut Hill & 2838.6 & 3.453099 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Ocean } \\
& 287^{\circ}
\end{aligned}
\]} & 405506.709 & 207.0 & 3443906.1 & 1643944.2 & White Barn & 5134.7 & 3. 710588 \\
\hline & 1240814.205 & 332.4 & 175604.7 & 1975530.6 & Round Top & 5119.3 & 3. 709213 \\
\hline & & & 191553.0 & 1991438.7 & Cut Hill & 7954.0 & 3.900587 \\
\hline \multirow[t]{5}{*}{Trinidad Head \(\mathbf{2 8 7 0}\)} & 410317.141 & 528.8 & 3555856.1 & 1755925.9 & Ocean & 15105.8 & 4. 180867 \\
\hline & 1240859.615 & 1393.3 & 12810.8 & 1812756.4 & Round Top & 20006.0 & \(4 \cdot 301165\) \\
\hline & & & 35636.8 & 1835553.3 & Cut Hill & 22691.4 & 4.35586I \\
\hline & & & 64427.9 & 1864305.0 & Morgan & \(25607 \cdot 5\) & 4. 408368 \\
\hline & & & 75622.6 & 1873435.3 & Peninsula & 27857.6 & 4. 444944 \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Fir Trce } \\
1870
\end{gathered}
\]} & 405258.634 & 1808.3 & \(14 \mathrm{II} \times\) & 1941040 & Marsh Point & 2893.4 & 3. 450777 \\
\hline & 1240714.893 & 348.6 & 595649 & 3395541 & John Brown & 2799.2 & 3.44703 \\
\hline & & & 943115 & 2743031 & Mosquito Point & 1585.4 & 3.200179 \\
\hline \multirow[t]{4}{*}{} & 405405.314 & 163.8 & 3322713 & \(\begin{array}{llll}152 & 27 \\ 168\end{array}\) & Pir Tree & 2320.1 & 3. 365514 \\
\hline & 1240800722 & 16.9 & 3410935 & 1611004 & White Barn & 3230.9 & 3. 509324 \\
\hline & & & 144251 & 1944237 & Mosquito Point & 1997.9 & 3. 300577 \\
\hline & & & 1703318 & 3503220 & Ocean & 1980.0 & 3. 283294 \\
\hline \multirow[t]{3}{*}{Onsley 1870} & 4054 2x. 56x & 663.2 & 352304 I & 1723050 & Fir Tree & 2580.4 & \\
\hline & 12407 29. 257 & 684.7 & 554558 & 2354537 & Laguna & 890.8 & \[
\text { 2. } 949786
\] \\
\hline & & & 1425623 & 3235553 & Ocean & \(1745 \cdot 3\) & 3. 241865 \\
\hline \multirow[t]{3}{*}{Canal 1870} & 405459.257 & 1837.8 & 3434212 & \(\begin{array}{lll}16342 & 29\end{array}\) & Onsley & 1311.5 & 3.083318 \\
\hline & 12407 43.782 & 1034.5 & \(1324 \% 9\) & 1933358 & Laguna & 1710.6 & 3.233143 \\
\hline & & & 1075343 & 2875323 & Ocean & 748. 1 & 2. 873965 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Mad River } \\
1870
\end{gathered}
\]} & 40.56 57.981 & 1788.4 & \(\begin{array}{llll}12 & 58 & 02.4\end{array}\) & 1925740.3 & Ocean & 3522.2 & 3. 546814 \\
\hline & 1240740.429 & 945.4 & 1710058.2 & 3510006.3 & Trinidad Head & 11841.7 & 4. 073415 \\
\hline \multirow[t]{3}{*}{Dows Prairie \(187^{\circ}\)} & 405914.955 & 461.3 & 145636.7 & 1945539.5 & Ocean & 7925.5 & \\
\hline & 1240646.868 & 1095.6 & 163054.1
1572759.7 & 1963019.0
337 & Mad River
Trinidad Head & 4407.0
8080.1 & \[
3.644146
\] \\
\hline & & & 157.27 59.7 & 3372632.6 & Trinidad Head & 8089.1 & \\
\hline \multirow[t]{3}{*}{Little River \(187^{\circ}\)} & 41 O2 43.306 & 1336.1 & 43041.7 & 1843631.3 & Dows Prairie & 4591.2 & 3. 661923 \\
\hline & 1240631.077 & 736.2 & 10 26 33-0 & 1902547.5 & Mad River & 8949-7 & 3. 9518807 \\
\hline & & & \(1295 \times 09.9\) & 3094932.4 & Trinidad Head & 4518.3 & 3.654977 \\
\hline \multirow[t]{3}{*}{Underwood Creek 1870} & 405759.785 & 1844.1 & 1663141.1 & 3463035.2 & Trinidad Head & & 4.002905 \\
\hline & 1240719.182 & 448. 5 & 189 15 24.7 & 81556.3 & Little River & 6986.3 & 3.84424 \\
\hline & & & 1980235.2 & 180256.4 & Dows Prairic & 2438.8 & 3. 387176 \\
\hline \multirow[t]{5}{*}{Worth 2870} & 404907.130 & 219.9 & 3063459.5 & 1263559.4 & Eureka Meth. Ch. & 2673.8 & 3.427172 \\
\hline & 1241118.914 & \(443 \cdot 3\) & 3514952.8 & 1715003.0 & Humboldt Bay N. B: & 2573.8 & \[
3.410568
\] \\
\hline & & & 121222.2 & 1921207.5 & Curlew & 2492.6 & \[
3 \cdot 396654
\] \\
\hline & & & 33 or 57.3 & 203 or 4r. 1 & Peninsula & 1489.7 & \[
\text { 3. } 173096
\] \\
\hline & & & 263133.3 & 2063047.2 & Sandhill (R.) & 3729.2 & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Fay's mili } \\
1870
\end{gathered}
\]} & 404726.604 & 820.6
945.9 & 2372909
31034 & & & & \\
\hline & 1242140.345 & 945.9 & \begin{tabular}{l}
310 \\
349 \\
348 \\
\hline 18
\end{tabular} & \begin{tabular}{l}
130 \\
16942 \\
\hline 18
\end{tabular} & \begin{tabular}{l}
Humboldt Bay, M. B. \\
Bucksport (\(6 g\))
\end{tabular} & 874.2
1353.6 & 2.941610
3.131477 \\
\hline \multirow[t]{3}{*}{Worth's house, chimney 2870} & 404859.58 r & 1837.8 & 2244323 & & Sand Bluff & 1079.4 & \\
\hline & 12411 02.144 & 50.3 & 04046 & 1804045 & Humboldt Bay, N. B. & 2314.9 & 3. 364538 \\
\hline & & & 403657 & 3203630 & Peninsula & 1489.3 & 3.175851 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Duff's mill, stack, } \\
& 1870
\end{aligned}
\]} & \(\begin{array}{r}40 \quad 48 \\ 194.007 \\ 124 \\ \hline 10\end{array}\) & 586.3
300.6 & & & Humboldt Bay, M. B.
Humboldt Bay, & 2588.6
1591.15 & \\
\hline & \(12410 \times 2.822\) & 300.6 & \(\begin{array}{llll}48 & 04 & 17 \\ 65 & 22 & 51\end{array}\) & \(\begin{array}{llll}238 & 03 & 54 \\ 245 & 31 & 52\end{array}\) & \(\underset{\text { Curlew }}{\text { Humboldt Bay, N. B. }}\) & 1591.1
2284.1 & 3.301688
\(3 \cdot 358718\) \\
\hline & & & 930330 & 2730200 & Peninsula & 2135. 1 & 3.329421 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Jones's mill, stack } \\
& 1870
\end{aligned}
\]} & & 13.3004 & 401217 & 220 10 33 & Humboldt Bay, N. B. & & \\
\hline & 1240956.038 & 1313.4 & 74
14
14685
58 & \begin{tabular}{ll}
254 & 41 \\
326 & 47 \\
\hline 15
\end{tabular} & Peninsula
Sand Bluff & 2618.1
1448.5 & 3.417982
3.100910 \\
\hline \multirow[t]{3}{*}{\(\underset{\substack{1870}}{\text { Cousin's mill, stack }}\)} & 404839.466 & 1217.3 & 382341 & 2182204 & Humboldt Bay. N. B. & 2161. 1 & 3-334674 \\
\hline & 1241006.083 & 183.6 & 772638 & \(257 \times 527\) & Peninsula & 2347.7 & 3. 370638 \\
\hline & & & 1581334 & 3381319 & Sand Bluff & 1494.0 & 3.174344 \\
\hline \multirow[t]{3}{*}{Little River Beach 1870} & 410039.224 & 1210.1 & & 184 2453.5 & & & \\
\hline & 1240638.379 & 894.5 & 1455307.6 & 3255134.8 & Trinidad Head & 5884.8 & 3.769733 \\
\hline & & & \(1845 \times 53.9\) & 45158.6 & Little River & 1984.0 & 3. 297532 \\
\hline \multirow[t]{4}{*}{Little River Rack 1870} & 410208.729 & 269.3 & & 1234018.6 & Little River & & \\
\hline & 12407 21.479 & 5c1. 7 & 3395459.7 & 1595528.1 & Little River Beach & 2939.7 & 4.468310 \\
\hline & & & 3512501.9 & 1712524.5 & Dows Prairie & 5421.2 & 3.734098 \\
\hline & & & 1323844.7 & 3123740.3 & Trinidad Head & 3115.6 & 3.493541 \\
\hline
\end{tabular}

Shelter Cove to Trinidad Head-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station & Latitude and longitude & Seconds in meters & Azimuth & Back azimuth & To station & Distance & Logarithm \\
\hline \multirow{5}{*}{Shelton 1870} & - ' \("\) & m & - 11 & - ' \({ }^{\prime}\) & & meters & \\
\hline & 410332.600 & 1005.7 & \(3301745 \cdot 3\) & 1501318.8 & Little River Rock & 2978. 5 & 3.473906 \\
\hline & 1240824.663 & 575.9 & 3350408.3 & 1550518.2 & Little River Beach & 5897.4
8269.7 & 3.770663 \\
\hline & & & 3435708.8 & \(\begin{array}{lllllllllll}103 & 58 & 12.9\end{array}\) & Dows Prairie & 8269.7 & 3.917491 \\
\hline & & & 594219.7 & 2394156.8 & Trinidad Head & \(945 \cdot 3\) & 2.975574 \\
\hline \multirow[t]{3}{*}{\(\underset{1870}{ } \operatorname{Timber}^{2}\) Ridge} & 410409.672 & 298.4 & \(3393944 \cdot 3\) & 1593956.2 & Shelton & 1319.6 & 3.086226 \\
\hline & 1240842.815 & 999.6 & \(343 \begin{array}{llll}33 & 54.7\end{array}\) & 163 & Dows Prairie & 9486.3 & 3.977099 \\
\hline & 1240842.815 & & 133632.6 & 1933631.6 & Trinidad Head & 1667.3 & 3.222016 \\
\hline \multirow[t]{3}{*}{Off Trinidad Rock
1870} & 410335.448 & 1093.5 & 23313018 & 531341.4 & Timber Ridge & 1763.4 & 3.246342 \\
\hline & \(1240943 \cdot 307\) & 1011.2 & 2985746.8 & & Trinidad Head & 1166.1 & 3.066752
3.841668 \\
\hline & & & 3212947.3 & 1415158 & Little River Beach & 6944.9 & \\
\hline \multirow[t]{3}{*}{\(\underset{1870}{\text { North Trinidad }}\)} & 410429.403 & 907. I & 3163116.9 & 1363133.1 & Timber Ridge & 838.8 & \\
\hline & \(124 \quad 9007.536\) & 175.9 & 35515123.9 & \(\begin{array}{llllll}175 & 15 & 29.0\end{array}\) & Trinidad Head & 2236.8 & \[
3 \cdot 349634
\] \\
\hline & & & \begin{tabular}{l}
26 \\
38 \\
\hline 89
\end{tabular} & 2063836.0 & Off Trinidad Rock & & \\
\hline \multirow[t]{3}{*}{Scottys Point 1870} & 410606.250 & 191. 2 & 3453211.5 & \(1653233 \cdot 2\) & North Trinidad & 3085.3 & \[
3 \cdot 4^{89300}
\] \\
\hline & 1240940.545 & 946. I & 34937002.7 & 16937 29.6 & Trinidad Head & 5303.5 & 3.724564 \\
\hline & & & 04739.1 & 1804737.3 & Off Trinidad Rock & 4652.4 & 3.667681 \\
\hline \multirow[t]{3}{*}{Cone Rock 2870} & \begin{tabular}{c}
41 \\
\hline 124 \\
\hline 15
\end{tabular} & 1023.5
104.0 & \(\begin{array}{llll}292 & 58 & 40.7 \\ 324 & 26 & 06.7\end{array}\) & \(\begin{array}{llll}112 & 59 & 35.8 \\ 144 & 27 & 23.0\end{array}\) & Scottys Point & & \\
\hline & 1241104.462 & 104.0 & \(\begin{array}{llll}324 & 26 & 06.2 \\ 334 & 15 & 32.3 \\ 340\end{array}\) & \(\begin{array}{llll}144 & 27 & 23.0 \\ 154 & 16 & 54 \cdot 3\end{array}\) & North Trinidad & 4693.1
6712.9 & \[
\begin{aligned}
& 3.671465 \\
& 3.826913
\end{aligned}
\] \\
\hline & & & \(\begin{array}{lllll}334 & 15 & 32.3 \\ 340 & 55 & 55.0\end{array}\) & \(\begin{array}{llll}154 & 16 & 54 \cdot 3 \\ 160 & 56 & 48 \cdot 3\end{array}\) & Off Trinidad Rock & 5800.6 & 3. 763474 \\
\hline \multirow[t]{4}{*}{\[
\underset{\substack{\text { Trinidad Head L. H. } \\ \\ \hline 873}}{ }
\]} & 410308.571 & 264.4 & 3063927 & 1264106 & Little River & 4404. 2 & 3. 643865 \\
\hline & 1240902.315 & 54.1 & 3235042 & 1435216 & Little River Beach & 5705.0 & 3. 756252 \\
\hline & & & 3502921 & 1703015 & Mad River & 11591.0 & 4.064120 \\
\hline & & & 1305405 & 3105338 & Off Trinidad Rock & 1266.4 & 3. 802563 \\
\hline \multirow[t]{3}{*}{Patricks Roint South 1870} & 410748.600 & 1499.4 & 3561146.0 & & & & \\
\hline & 12409 49.541 & 1155.5 & 3585555.5 & \(\begin{array}{llllll}178 \\ 76 & 55 & 59.6\end{array}\) & Off Trinidad Rock & \[
7810.7
\] & \[
3.892688
\] \\
\hline & & & \(3655 \times 5.0\) & 2165425.8 & Cone Rock & & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Inmer Turtle Rock } \\
& 1870
\end{aligned}
\]} & 410754.448 & 1679.8 & 2763126.2 & 9632 \begin{tabular}{llll}
\\
\hline 10.6
\end{tabular} & Patricks Pt. South & 1586.3 & \\
\hline & 1241057.108 & 1332.0 & 33 I 5019.8 & 1515110.1 & Scottys Point & 3785.6 & \[
3 \cdot 57^{813} 8
\] \\
\hline & & & 3474941.8 & 1675030.3 & Off Trinidad Rock & 8173.2 & \\
\hline \multirow[t]{4}{*}{Auxlliary Dow 1870} & & & 1594737.8 & 3394618.9 & Trinidad Head & 8131.8 & \\
\hline & 174 ¢ 59.340 & 1387.2 & 17438 & 35438 39.1 & Little River Rock & 5544.6 & \[
3.743870
\] \\
\hline & & & 1900644.5 & 100658.5 & Little River Beach & 2802.9
332.9 & \[
3.447607
\] \\
\hline & & & \(24115 \begin{gathered}15.2 \\ 12\end{gathered}\) & 61
1920807.5
192 & Dows Prairie & 332.5
3208.3 & \[
\begin{aligned}
& 2.521758 \\
& 3.344056
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{\[
\underset{1870}{\text { Pilot Rock }}
\]} & \(410237 \cdot 702\) & 1163.2 & 2083940 & 284007 & & 1930.0 & 3. 285566 \\
\hline & 1340904.305 & 101.0 & 2950614 & 1150755 & Little River & 3953.0 & 3. \(59693{ }^{\circ}\) \\
\hline & & & 3165733 & 1365909 & Little River Beach & 4999.6 & 3.698932 \\
\hline & & & 3324831 & 1525002 & Dows Prairie & 7030.6 & 3.846992 \\
\hline \multirow[t]{3}{*}{Trinidad, flagstaff 1870} & & & 540051 & & & & 2. 895702 \\
\hline & 1240832.362 & 755.6 & 933302 & 2733216 & Off Trinidad Rock & \[
1659.8
\] & 3. 220047 \\
\hline & & & 2680609 & 348 o6 03 & Timber Ridge & & 3.073270 \\
\hline \multirow[t]{3}{*}{\[
\underset{1870}{\text { Blank Rock }}
\]} & 410319.350 & 596.9 & 3045149 & 1245349 & & 5180.9 & 3. 714405 \\
\hline & \(124 \propto 3.3 .044\) & 771.7 & 32024
33244
3 & 140
152634
152 & Little River Beach & 6408.3
8480.1 & \[
\begin{aligned}
& \text { 3. } 806742 \\
& 3.928400
\end{aligned}
\] \\
\hline & & & \(33244{ }^{13}\) & 1524603 & Dows Prairie & & 3.928400 \\
\hline \multirow[t]{3}{*}{Smith's Chute 1870} & 410320.610 & \[
635 \cdot 9
\] & & & Little River Beach Dows Prairie & & \\
\hline & 1240811.542 & \[
269.5
\] & 3452141
8433 & 165
165
264
23
32 & \begin{tabular}{l}
Dows Prairic \\
Trinidad Head
\end{tabular} & 7831.9
1127.7 & \[
3.893866
\] \\
\hline & & & 8433
102
104 & \begin{tabular}{l}
264 \\
232 \\
282 \\
\hline
\end{tabular} & Trinidad Head & 1127.7
2191.1 & 3.052186
\(3 \cdot 340672\) \\
\hline \multirow[t]{3}{*}{Mad River Tree 1870} & 405747.675 & 1470. 5 & 26 or 56 & 206 or 35 & Mad River & 1706.0 & 3. 231977 \\
\hline & 1240708.418 & 196.9 & 146 or 44 & 326 or 37 & Underwood Crcek & 450.4 & 2. 653630 \\
\hline & & & 1844725 & 44732 & Auxiliary Dow & 2541.4 & 3.405080 \\
\hline \multirow[t]{3}{*}{In Line} & & \[
\text { 788. } 7
\] & 1925747.0 & 125836.4 & Mad River & 2925.2 & \\
\hline & 1240808.484 & 198.5 & 3243225.0 & 14432 41.2 & Canal & 996.4 & 2. 998448 \\
\hline & & & 125729.8 & 1925726.1 & Ocean & 597.0 & 2. 775973 \\
\hline \multirow[t]{3}{*}{Mad River Bluff 1870} & \(40 \quad 5623.628\) & 728.8 & 194712.5 & 1994648.6 & Ocean & 2521.6 & 3.401670 \\
\hline & 1240737.736 & 882.5 & 215333.7 & 2015313.6 & In line & 1930. \({ }^{\text {d }}\) & 3.285581 \\
\hline & & & 1763511.3 & 3563540.6 & Mad River & 1061.6 & 3. 025947 \\
\hline \multirow[t]{6}{*}{Island 1870} & 4049 38. 732 & 1194.8 & 3340852.7 & 1540916.2 & East Point & 1933.7 & 3. 286388 I \\
\hline & 1240919.069 & 446.8 & 142734.4 & 1942705.8 & Eureka Methodist Ch & 2652.6 & 3.423669 \\
\hline & & & 750559.8 & 2550513.6 & Sand Bluff & 1713.5 & 3. 233887 \\
\hline & & & 950429.1 & 2750354.2 & West Point & 1255.1 & 3. 098670 \\
\hline & & & 1761315.6 & 3561210.3 & Wheeler & 2841.1 & 3.453485 \\
\hline & & & 2300516.3 & 50.0801 .0 & Arcata Church & 7692.0 & 3.886037 \\
\hline
\end{tabular}

Shelter Cove to Trinidad Head-Continued.

Shelter Cove to Trinidad Head-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Station & Latitude and longitude & Seconds in meters & Azimuth & Back azimuth & To station & Distance & Logarithm \\
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { North Base } \\
& 18_{54}
\end{aligned}
\]} & - ' " & \(m\) & - ' 11 & - " & \multirow[b]{3}{*}{\begin{tabular}{l}
Martin \\
Red Bluff
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { melcers } \\
& 3234.3 \\
& 3228.1
\end{aligned}
\]} & \multirow[b]{3}{*}{\[
\begin{aligned}
& 3 \cdot 509784 \\
& 3 \cdot 508951
\end{aligned}
\]} \\
\hline & 404629.010 & 894.9 & 3021436 & 5221552 & & & \\
\hline & 1241307.407 & r73.7 & 3554730 & 1754737 & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Bucksport } \\
18_{54}
\end{gathered}
\]} & \multirow[t]{3}{*}{\(\begin{array}{rrrr}40 & 46 & 42.89 \\ 124 & 11 & 36.13\end{array}\)} & \multirow[t]{3}{*}{\[
\begin{array}{r}
1323.0 \\
847.2
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{rrr}
344 & 34 & 11 \\
78 & 42 & 01 \\
176 & 29 & 03
\end{array}
\]} & 1643428 & \multirow[t]{3}{*}{Martin North Base Curlew} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 2234.6 \\
& 2182.8 \\
& 2017.0
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 3 \cdot 34920 \\
& 3 \cdot 33902 \\
& 3 \cdot 30470
\end{aligned}
\]} \\
\hline & & & & 25841 Or & & & \\
\hline & & & & 3562900 & & & \\
\hline \multirow[t]{3}{*}{Sandhill 1854} & \multirow[t]{3}{*}{\[
\begin{array}{r}
404718.82 \\
12412 \quad 29.47
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
580.6 \\
69 \mathrm{r} .0
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{rl}
231 & 14 \\
311 & 30 \\
32 & 37 \\
30 & 04
\end{array}
\]} & 51.1501 & \multirow[t]{3}{*}{\begin{tabular}{l}
Curlew \\
Bucksport \\
North Base
\end{tabular}} & \multirow[t]{3}{*}{1445.1
1671.4
1775.5} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 3.15991 \\
& 3.22307 \\
& 3.2493 \mathrm{I}
\end{aligned}
\]} \\
\hline & & & & \begin{tabular}{l}
131 \\
210 \\
\hline 12
\end{tabular} & & & \\
\hline & & & & 2100342 & & & \\
\hline \multirow[t]{3}{*}{South Base 1854} & \multirow[t]{3}{*}{\(\begin{array}{r}4045 \\ 124 \\ \hline 13 \\ \hline 15.815\end{array}\)} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 919.5 \\
& 354.4
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{lll}
185 & 39 & 07 \\
268 & 01 & 07 \\
343 & 18 & 37
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{rrr}
5 & 39 & 12 \\
88 & 02 & 28 \\
163 & 18 & 47
\end{array}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
North Base \\
Martin \\
Red Bluff
\end{tabular}} & \multirow[t]{3}{*}{1835.3 20:8. I 1454.4} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 3 \cdot 26371 \\
& 3 \cdot 46510 \\
& 3 \cdot 16268
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{Road 1854} & \multirow[t]{2}{*}{\(\begin{array}{rrrr}40 & 47 & 33.73 \\ 124 & 10 & 39.96\end{array}\)} & \multirow[t]{2}{*}{1040. 5
\[
936.9
\]} & \multirow[t]{2}{*}{400132
1071002} & \multirow[t]{2}{*}{2200055
2870922} & \multirow[t]{2}{*}{Bucksport Curlew} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2047.9 \\
& 1507.5
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 3. } 31130 \\
& 3 \cdot 17827
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{\(\underset{1854}{\text { Indian Island * }}\)} & \multirow[t]{2}{*}{\(\begin{array}{rrrr}40 & 48 & 53.23 \\ 124 & 09 & 55.56\end{array}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1642.0 \\
& 1302.2
\end{aligned}
\]} & \multirow[t]{2}{*}{\(\begin{array}{llll}22 & 59 & 58 \\ 51 & \text { Of } & 43\end{array}\)} & \multirow[t]{2}{*}{\[
\begin{array}{lll}
202 & 59 & 29 \\
331 & 0 & 34
\end{array}
\]} & \multirow[t]{2}{*}{Road Curlew} & \multirow[t]{2}{*}{\[
\begin{array}{r}
2664.2 \\
3191.5
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 3.42556 \\
& 3.50399
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { Point }{ }^{*} \\
1854
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
404915.18 \\
124 \quad 10 \quad 42.54
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 468.3 \\
& 996.9
\end{aligned}
\]} & \multirow[t]{2}{*}{\(\begin{array}{rrrr}358 & 53 & 32 \\ 27 & 12 & 17\end{array}\)} & \multirow[t]{2}{*}{\(\begin{array}{lll}178 & 53 & 34 \\ 207 & 11 & 39\end{array}\)} & \multirow[t]{2}{*}{Road Curlew} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 3529.9 \\
& 3018.9
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 3.49553 \\
& 3.47976
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{Bother 1854} & \multirow[t]{2}{*}{\(\begin{array}{rrrr}40 & 48 & 19.97 \\ 124 & 11 & 25.92\end{array}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 594.4 \\
& 607.5
\end{aligned}
\]} & \multirow[t]{2}{*}{3223004
204248} & \multirow[t]{2}{*}{1423034
2004238} & \multirow[t]{2}{*}{Road Curlew} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1770.1 \\
& 1025.9
\end{aligned}
\]} & \multirow[t]{2}{*}{3.24801
3.01112} \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Paddle } \\
1854
\end{gathered}
\]} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{array}{r}
3.7 \\
408.1
\end{array}
\]} & \multirow[t]{2}{*}{293
12
31} & \multirow[t]{2}{*}{\(\begin{array}{llll}113 & 37 & 53 \\ 192 & 38 & 06\end{array}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Curlew \\
Sandhill
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{array}{r}
921.4 \\
1305.0
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2.96443 \\
& 3.11562
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{\[
\underset{1854}{\text { Hammon }}
\]} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{array}{r}
1285.7 \\
583.2
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{lll}
174 & 36 & 56 \\
268 & 08 & 22
\end{array}
\]} & \multirow[t]{2}{*}{\(\begin{array}{rrr}354 & 36 & 53 \\ 88 & 08 & 54\end{array}\)} & \multirow[t]{2}{*}{Sandhill Bucksport} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1150.6 \\
& 1543.5
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 3.06094 \\
& 3.05825
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Fort Humboldt * } \\
& 1854
\end{aligned}
\]} & \multirow[t]{2}{*}{\(\begin{array}{rrrr}40 & 46 & 38.32 \\ 124 & 11 & 19.97\end{array}\)} & \multirow[t]{2}{*}{\[
\begin{array}{r}
1182.1 \\
468.3
\end{array}
\]} & \multirow[t]{2}{*}{\(\begin{array}{llll}33 & 04 & 41 \\ 83 & 30 & 37\end{array}\)} & \multirow[t]{2}{*}{213
263 03937} & \multirow[t]{2}{*}{Red Bluff North Hase} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 4184.4 \\
& 2535.8
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 3.62163 \\
& 3.40415
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{Meridian Mark 1854} & \multirow[t]{2}{*}{\(\begin{array}{rrrr}40 & 46 & 09.57 \\ 124 & 12 & 56.74\end{array}\)} & \multirow[t]{2}{*}{\[
\begin{array}{r}
295.2 \\
1330.8
\end{array}
\]} & \multirow[t]{2}{*}{\(\begin{array}{rrrr}294 & 22 & 09 \\ 0 & 16 & 52\end{array}\)} & \multirow[t]{2}{*}{\(\begin{array}{llll}114 & 23 & 18 \\ 180 & 16 & 52\end{array}\)} & \multirow[t]{2}{*}{Martin Red Bluff} & \multirow[t]{2}{*}{\[
\begin{array}{r}
2729.0 \\
2619.9
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 3.43601 } \\
& 3.41828
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{Ell \({ }^{*}{ }^{\text {\% }}\)} & \multirow[t]{2}{*}{\(\begin{array}{rrrr}40 & 45 & 4 \mathrm{r} \cdot 99 \\ 124 & 11 & 43 \cdot 33\end{array}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1295.2 \\
& 1016.3
\end{aligned}
\]} & \multirow[t]{2}{*}{\(\begin{array}{rrrr}80 & 06 & 21 \\ 126 & 20 & 58\end{array}\)} & \multirow[t]{2}{*}{\[
\begin{array}{lll}
260 & 05 & 21 \\
306 & 20 & 03
\end{array}
\]} & \multirow[t]{2}{*}{South Base North Base} & 2185.3 & 3. 33951 \\
\hline & & & & & & 2447.8 & 3. 38878 \\
\hline \multirow[t]{2}{*}{South Spit 1854} & \multirow[t]{2}{*}{\(\begin{array}{rrrr}40 & 45 & 05.95 \\ 124 & 13 & 27.04\end{array}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 183.4 \\
& 634.4
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{lll}
200 & 48 & 57 \\
313 & 17 & 26
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{rrr}
20 & 49 & 05 \\
1.33 & 17 & 45
\end{array}
\]} & \multirow[t]{2}{*}{South Base Red Bluff} & \multirow[t]{2}{*}{\[
\begin{array}{r}
287.4 \\
058.3
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2.89618 \\
& 2.98151
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{\[
\underset{1854}{\text { Ruder* }}
\]} & \multirow[t]{2}{*}{\(\begin{array}{r}404424.58 \\ 124 \\ \hline 14 \\ \hline 16.75\end{array}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 758.2 \\
& 626.7
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{lll}
219 & 50 & 52 \\
253 & 32 & 51
\end{array}
\]} & \multirow[t]{2}{*}{\(\begin{array}{llll}39 & 51 & 39 \\ 73 & 33 & 49\end{array}\)} & \multirow[t]{2}{*}{South Base Red Bluff} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2621.2 \\
& 2187.3
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 3.41850 \\
& 3.33991
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{\(\mathrm{A}^{*}{ }^{\text {* }} 885\)} & \multirow[t]{2}{*}{\(\begin{array}{rrrr}40 & 43 & 32.05 \\ 124 & 12 & 27.94\end{array}\)} & \multirow[t]{2}{*}{988.6
655.7} & \multirow[t]{2}{*}{\(\begin{array}{llll}162 & 53 & 33 \\ 205 & 52 & \text { O1 }\end{array}\)} & \multirow[t]{2}{*}{\(\begin{array}{rrrr}342 & 53 & 14 \\ 35 & 52 & 51\end{array}\)} & \multirow[t]{2}{*}{Red Bluff Martin} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2342.7 \\
& 4148.2
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 3 \cdot 36971 \\
& 3 \cdot 61786
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline
\end{tabular}
* No check on this position.

Latitudes, Longitudes, Azimuths, and Lengths Corrected for the 1906 EARTHQUAKE.

The following table gives the resulting values of the coordinates after corrections for the 1906 earthquake have been applied. These corrections have been computed in accordance with the method described on pages \(182-4\). In those cases where the corrections have appreciably exceeded the probable errors of the quantities under consideration, the corrected values are tabulated below. These corrected values are to supersede the corresponding quantities in the main body of the tables of positions. Corrections to the latitudes and longitudes have been applied to hundredths of seconds and the results are given to hundredths. All azimuth corrections of ten seconds or more have been applied and the results are given to seconds. All length corrections as large as one part in 5000 have been applied and the results are given to tenths of meters.

In combining inferred displacements with those actually observed, some contradictions have arisen. For example, lines lying entirely on one side of the fault were turned in azimuth in a counter clockwise direction, at the time of the 1906 earthquake, according to the assumed laws of displacement. It will be found on examination that clockwise corrections have been applied to such lines in cases where the observed displacement of one end of the line did not conform closely with the assumed laws of displacement as applied to the other end.

Positions corrected for earthquake movements.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station & Latitude and longitude & Azimuth & Back azimuth & Tostation & Distance \\
\hline Cement & \[
\begin{array}{ccc}
\circ & \text { " } 11 \\
37 & 46 \\
122 & 30 & 53.4
\end{array}
\] & , " & - , " & & meters. \\
\hline Pillar Point & \[
\begin{array}{rrr}
37 & 29 & 54.87 \\
122 & 29 & 52.28
\end{array}
\] & & & & \\
\hline Point Lobos 3 & \[
\begin{array}{cccc}
37 & 47 & 13.78 \\
122 & 30 & 05 & 97
\end{array}
\] & 44490 0: & 3244850 & Cement & \\
\hline Cemetery & \[
\begin{array}{r}
374057.27 \\
1222956.82
\end{array}
\] & 954434 & 3754417 & Cement & \\
\hline Under Cement & \[
\begin{array}{r}
374704.18 \\
1223027.51
\end{array}
\] & 2403958 & 604011 & Point Lobos 3 & \\
\hline Sand & \[
\begin{array}{r}
374645 \cdot 50 \\
1223021: 59
\end{array}
\] & 2390457 & 590512 & Cemetery & \\
\hline Point Bonita fog-siren & \[
\begin{array}{r}
374858.82 \\
1223_{31} 40.62
\end{array}
\] & & & & \\
\hline Bonita Bluff & & & & & \\
\hline Bonita Bluff 2 & & & & & \\
\hline Ocean House flagstaff & 374421.79
1223020.38 & \[
\begin{aligned}
& 180 \quad 5129 \\
& 3431455 \\
& 253.4940
\end{aligned}
\] & \[
\begin{array}{rl}
6 & 51 \\
63 & 43 \\
63 & 16 \\
73 & 51
\end{array}
\] & \begin{tabular}{l}
Cemetery \\
Black Ridge \\
Black Ridge a
\end{tabular} & \\
\hline Sutro's stable red spire & 374638.00
1223028.73 & \[
\begin{array}{llll}
190 & 03 & 31 \\
217 & 03 & 54 \\
23 & 43 & 54 \\
\hline 3
\end{array}
\] & \[
\begin{aligned}
& 1003 \\
& 37 \\
& 37 \\
& 57 \\
& 52 \\
& 52 \\
& 43 \\
& \hline 3
\end{aligned}
\] & Cement Sand Cemetery & \\
\hline Sutro's Observatory tower & 374641.61
1223040.49 & \[
\begin{aligned}
& 21623 \\
& 245 \\
& 255 \\
& 255 \\
& 27 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lll}
36 & 23 & 44 \\
65 & 41 & 11 \\
75 & 27 & 42
\end{array}
\] & \begin{tabular}{l}
Cement \\
Cemetery \\
Sand
\end{tabular} & \\
\hline Tetlow's southeast chimney & \[
\begin{array}{r}
374641.26 \\
1223039.72
\end{array}
\] & 2143412 & 343422 & Cement & \\
\hline Santa Cruz Point & & & & & \\
\hline St. Johns Hill & \[
\begin{array}{r}
365838.08 \\
122053 \mathrm{r} .45
\end{array}
\] & & & & \\
\hline Balcralt I & \[
\begin{array}{r}
365718.37 \\
1220530.11
\end{array}
\] & & & & \\
\hline Parsons & \[
\begin{array}{rrrr}
36 & 57 & 48.28 \\
122 & 07 & 05 . & 73
\end{array}
\] & & & & \\
\hline Rice & \[
\begin{array}{rrr}
36 & 58 & 49.51 \\
122 & 06 & 48 . \\
50
\end{array}
\] & & & & \\
\hline Lakoon & \[
\begin{array}{rrr}
36 & 58 & 36.82 \\
122 & 09 & 07.02
\end{array}
\] & & & & \\
\hline Butler & & & & & \\
\hline
\end{tabular}

Positions corrected for earthquake movements-Continued.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station & Latitude and longitude & Azimuth & Back azimuth & To station & Distance \\
\hline & - ' " & - , " & - ' \("\) & & meters. \\
\hline Classell & \[
\begin{array}{rl}
36 \\
122 & 59 \\
120 & 50.17 \\
50.32
\end{array}
\] & & & & \\
\hline Redwood & \[
\begin{array}{ccc}
37 & 02 & 07.47 \\
12209 & 58.56
\end{array}
\] & & & & \\
\hline Point & \[
\begin{array}{rlrl}
37 & 01 & 31.67 \\
122 & 13 & 19.88
\end{array}
\] & & & & \\
\hline Manzanita & \[
\begin{array}{rl}
37 & 024 \\
122 & 12
\end{array}
\] & & & & \\
\hline Cook & 370349.01
1221422.32 & & & & \\
\hline Pine & \begin{tabular}{rrrr}
37 & 05 & 30.74 \\
122 & 13 & 07.04 \\
\hline
\end{tabular} & & & & \\
\hline Tranta & \[
\begin{array}{rrr}
37 & 05 & 47.06 \\
122 & 16 & 03.82
\end{array}
\] & & & & \\
\hline Steele & \[
\begin{array}{rrr}
37 & 08 & 13.07 \\
122 & 16 & 54 \cdot 32
\end{array}
\] & & & & \\
\hline Point Ano Nuevo & \[
\begin{array}{rrr}
37 & \text { o6 } 52.10 \\
122 & 19 & 47.81
\end{array}
\] & & & & \\
\hline Johnston & \[
\begin{array}{rr}
37 & 26 \\
122 & 20.03 \\
127.05
\end{array}
\] & & & & \\
\hline Halimoon Bay & \(\begin{array}{r}372919.42 \\ 1222553.54 \\ \hline\end{array}\) & & & & \\
\hline Gushee & 370947.92
\(\times 228850.30\) & & & & \\
\hline Middle Point & & & & & \\
\hline Cutts No. 2 & \[
\begin{array}{rrrr}
36 & 58 & 07.50 \\
12207 & 59.66
\end{array}
\] & & & & \\
\hline Topog No. 2 & \(\begin{array}{rrrr}37 & 00 & 52.68 \\ 122 & 12 & 18.21\end{array}\) & & & & \\
\hline Topog No. 3 & \[
\begin{array}{rrr}
37 & 02 & 00.23 \\
122 & 13 & 35.62
\end{array}
\] & & & & \\
\hline Topor No. 1 & \[
\begin{array}{lll}
36 & 59 & 20.67 \\
122 & 10 & 05.26
\end{array}
\] & & & & \\
\hline Purcell's flagstaff & \[
\begin{array}{ccc}
37 & 24 & 15.82 \\
122 & 25 & 07.98
\end{array}
\] & & & & \\
\hline Topog No. 5 & & & & & \\
\hline Topog No. 7 & 370825.70
1222032.50 & & & & \\
\hline Topog No. 4 & & & & & \\
\hline Mount Tamalpais Latitude Station & 375527.53
1223545.45 & & & & \\
\hline Walalla & \[
\begin{array}{rrr}
38 & 51 & 24.70 \\
123 & 29 & 50.30
\end{array}
\] & & & & \\
\hline Point Reyes Head & \[
\begin{array}{rlrl}
37 & 59 & 48.31 \\
123 & 00 & 50.81
\end{array}
\] & \[
\begin{array}{lll}
196 & 05 & 48 \\
234 & 20 & 58
\end{array}
\] & \[
\begin{array}{lll}
16 & 08 & 19 \\
54 & 26 & 23
\end{array}
\] & Tomales Bay Point Reyes Hill & \\
\hline Redwood & \[
\begin{array}{rll}
38 & 24 \\
123 & 52.02 \\
120 & \text { ot } & 16.31
\end{array}
\] & 385686 & 1985443 & Bodega Head & 11168.3 \\
\hline Bodega Hill & \(\begin{array}{rrrr}38 & 22 & 13.33 \\ 123 & 03 & 21.63\end{array}\) & \[
\begin{array}{r}
2194313 \\
44750
\end{array}
\] & \[
\left.\begin{array}{rrr}
39 & 44 & 31 \\
184 & 47 & 36
\end{array} \right\rvert\,
\] & \begin{tabular}{l}
Redwood \\
Bodega Head
\end{tabular} & 6929.2 \\
\hline
\end{tabular}

Positions corrected for earthquake movements-Continued.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station & Latitude and longitude & Azimuth & Back azimuth & To station & Distance \\
\hline & - , " & - ' " & - ' \({ }^{\prime}\) & & meters. \\
\hline Adams & \begin{tabular}{l}
38 \\
\hline 89 \\
123 \\
3
\end{tabular} & 28
47
47
19 & 2084451 & & \\
\hline & 1233757.89 & & 225
2450209
2085 & \begin{tabular}{l}
Arena \\
Point Arena L. H.
\end{tabular} & \\
\hline & & 650613
1081054 & \begin{tabular}{l}
245 \\
288 \\
288 \\
\hline 28 \\
\hline 8 \\
\hline 8
\end{tabular} & \begin{tabular}{l}
Point Arena L. H. \\
Lane
\end{tabular} & \\
\hline Sand & \(3^{8} 5721.32\) & 873449 & 26734 or & Point Arena L. H. & \\
\hline Point Arena Southeast Base & 385642.05 & 2042558 & 242723 & Lane & 7876.8 \\
\hline Knox & 385338.42 & & & & \\
\hline & \(\begin{array}{lllll}123 & 38 & 25.87\end{array}\) & & & & \\
\hline Anderson Tree & 385126.76 & & & & \\
\hline Marr & \(38 \quad 54 \times 8.83\) & 936 or & 1893559 & High Bluff & 465.6 \\
\hline & 1234150.14 & 1323435 & 3123417 & Sinclair & 949.2 \\
\hline Point Arena Longitude Station & 385436.22 & 490313 & 2290257 & Marr & \\
\hline & 1234124.48 & 943535 & 2743500 & Sinclair & \\
\hline Iversen Point & \(38 \quad 5047.29\) & 2451440 & 651549 & Anderson Tree & \\
\hline & 1333845.39 & & & & \\
\hline Havens Neck & \[
\begin{array}{rrrr}
38 & 48 & 32 \cdot 57 \\
123 & 36 & 04 \cdot 16
\end{array}
\] & & & & \\
\hline Triplet Hill & \[
\begin{array}{rrr}
38 & 49 & 32.71 \\
123 & 35 & 50.15
\end{array}
\] & 101931 & 1001922 & Havens Neck & \\
\hline Rocky Peak & 384920.98 & 471859 & 2271814 & Havens Neck & \\
\hline & 1233457.08 & 1054619 & 2854545 & Triplet Hill & \\
\hline Sandstone & 384433.16 & & & & \\
\hline Robinson Point & 3846 24.86 & & & & \\
\hline Rutherford Tree & 384500.66 & 535339 & \(23353 \quad 9\) & Sandstone & \\
\hline Knipp & 384320.43 & & & & \\
\hline Stengel & 384204.71 & & & & \\
\hline Helmke Ridge & 38
38
123 & 338
36910
46
52 & \[
\begin{array}{lll}
158 & 40 & 06 \\
226 & 52 & 15
\end{array}
\] & Salt Point Horseshoe Point & \\
\hline Rocky Point & \[
\begin{array}{rrrr}
38 & 37 & 49.23 \\
123 & 23 & 18.93
\end{array}
\] & & & Horseshoe Point & 3015.7 \\
\hline Harbeck & \(\begin{array}{rrrr}38 & 38 & 35.88 \\ 123 & 23 & 18.12\end{array}\) & 337
0926
09640 & \[
\begin{aligned}
& 1571009 \\
& 1804639
\end{aligned}
\] & Horseshoe Point Rocky Point & 4277.9 \\
\hline Bihler Point & \(384045 \cdot 79\) & & & & \\
\hline Stewart Point & \(\begin{array}{rrrr}38 & 39 & 18.37 \\ 123 & 24 & 30.54\end{array}\) & & & & \\
\hline Lark & \[
3842 \quad 37 \cdot 54
\] & & & & \\
\hline & 12326 21. 20 & \[
\begin{array}{r}
253921 \\
11345 \quad 56
\end{array}
\] & \[
\begin{array}{lll}
205 & 3908 \\
293 & 44 & 38
\end{array}
\] & \begin{tabular}{l}
Stengel \\
Knipp
\end{tabular} & \\
\hline Ross Tree & \[
\begin{array}{rrr}
38 & 40 & 59.15 \\
123 & 25 & 01.07
\end{array}
\] & 714553 & 2514521 & Bihler Point & \\
\hline Sandy Point & \[
\begin{array}{rrrr}
38 & 38 & 41.93 \\
123 & 23 & 58 . & 14
\end{array}
\] & 3805542 & 1005607 & \begin{tabular}{l}
Harbeck \\
Horseshoe Point
\end{tabular} & 4895.0 \\
\hline Fisk Tree & \[
\begin{array}{rrr}
38 & 39 & 42.00 \\
123 & 23 & 55.27
\end{array}
\] & \[
\begin{array}{r}
20840 \\
492941
\end{array}
\] & \[
\begin{array}{lll}
182 & 08 & 38 \\
229 & 29 & 19
\end{array}
\] & Sandy Point Stewart Point & \\
\hline
\end{tabular}

Positions corrected for earthquake movements-Continued.

Positions corrected for earthquake movements-Continued.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station. & Latitude and longitude. & Azimuth. & Back azimuth. & To station. & Distance. \\
\hline & - ' \({ }^{\prime}\) & - ' " & - ' 1 & & meters. \\
\hline I،agoon & \(3^{8818} 42.05\) & \(\begin{array}{rrr}83 & 26 & 09\end{array}\) & 2632443 & Bodega Head & 3412.3 \\
\hline & 123 O1 25.96 & 2855030 & 1055121 & Bodega & \\
\hline Rocky Point & 3823 39.54 & 1701006 & 3500910 & Ross Mountain & \\
\hline , & 1230540.78 & 3434027 & 1634138 & Bodeca Head & 9964.3 \\
\hline \multirow[t]{3}{*}{Pigotl's (Dr.) house, southwest gable} & \(3^{8} 1923.48\) & 370856 & 2170836 & Bay Reach & 1308.8 \\
\hline & 1230210.09 & 541550 & 2341451 & Bodega Head & 2855.3 \\
\hline & & 112 2433 & 2922328 & Ocean Beach & 2738.4 \\
\hline \multirow[t]{4}{*}{Cheney's house, flagstaff} & 381902.89 & 382618 & 3082603 & Boricga Head & \\
\hline & 1230322.49 & \(\begin{array}{llll}180 & 12\end{array}\) & 01203 & Bodega Hill & 5871.9 \\
\hline & & 2840240 & 1040444 & Bodega & 4978.4 \\
\hline & & 2925112 & 1125137 & Bay Beach & 1051.1 \\
\hline \multirow[t]{2}{*}{Preston's house, stovepine} & \(3^{8} 1246.21\) & 195433 & 1995402 & Tomales Bay & 3638.2 \\
\hline & 1225556.09 & 894902 & 3694737 & Tomales Point & 3368.9 \\
\hline \multirow[t]{2}{*}{Lone house, south gable} & \(3^{8} \quad 1228.07\) & 341200 & 2141115 & Tomales Bay & 3447.9 \\
\hline & 1225527.22 & 974045 & 27739 O1 & Tomales Point & 4108.0 \\
\hline \multirow[t]{2}{*}{Frost's house, east chimney} & 385414.37 & 1363959 & 3163940 & & \multirow[t]{8}{*}{1071.9} \\
\hline & 1234848.62 & 2204730 & 404745 & Pt. Arena Longitude Station & \\
\hline Point Arena Methodist Church, & 385444.61 & 271444 & 2071433 & Mart & \\
\hline south gable & 1234133.15 & 820817 & 2620748 & Sinclair & \\
\hline \multirow[t]{2}{*}{Shepherd's chimney} & \(3^{8} \quad 5658.68\) & 735259 & 2535213 & Pt. Arena, S. E. Base & \\
\hline & 1234238.02 & & & & \\
\hline \multirow[t]{2}{*}{Round} & 39 or 45.15 & 314743 & 2114707 & Lane & \\
\hline & 1334039.52 & & & & \\
\hline \multirow[t]{2}{*}{Cuffey Cove} & 390830.95 & 11315 & 18: 1303 & Point Arena L. H. & \\
\hline & 1234405.57 & & & & \\
\hline \multirow[t]{2}{*}{Peak} & 390423.70 & 83208 & 1883140 & Lane & \\
\hline & 1234051.50 & & & & \\
\hline \multirow[t]{2}{*}{Red Bluff} & 390450.58 & 2925545 & 1125636 & Peak & \\
\hline & 1234213.00 & & & & \\
\hline \multirow[t]{2}{*}{Elk Creek} & 390633.17 & & & & \\
\hline & 1234245.10 & - & & & \\
\hline \multirow[t]{2}{*}{Greenwood} & 390729.40 & \(36 \quad 2319\) & 2162245 & Elk Creek & \\
\hline & 1234151.92 & & & & \\
\hline \multirow[t]{2}{*}{Cavanagh} & 390913.72 & 330412 & 2130350 & Cuffey Cove & \\
\hline & 32343 29.81 & & & & \\
\hline \multirow[t]{2}{*}{Mal Paso 2} & 390219.72 & 1913742 & 113802 & Peak & \\
\hline & 123 4124. 23 & & & & \\
\hline \multirow[t]{3}{*}{Stewart} & 390319.09 & 358327 & 1783292 & Round & \\
\hline & 1234042.59 & 140626 & 194 O5 53 & Lane & \\
\hline & & 284054 & 2084028 & Mal Paso 2 & \\
\hline \multirow[t]{2}{*}{Herrick} & 39 O5 54.82 & 82903 & \(188 \quad 2855\) & Red Bluff & \\
\hline & 1234200.71 & & & & \\
\hline \multirow[t]{2}{*}{Monroe} & 39 O1 42.87 & 53704 & 1853646 & Shoemake & 6951.2 \\
\hline & 1234029.62 & 370032 & 2165950 & Lane & \\
\hline \multirow[t]{2}{*}{Welch} & \(3904 \times 5.57\) & & & & \\
\hline & 1234158.47 & & & & \\
\hline \multirow[t]{2}{*}{House chimney, near big barn} & \begin{tabular}{l}
39 \\
\hline 123 \\
\hline 1
\end{tabular} & 104737
135955 & \[
1904634
\] & \begin{tabular}{l}
Sand \\
Pt. Arena, S E. Base
\end{tabular} & 12951.9 \\
\hline & 1234126.73 & 135955 & \[
193 \quad 5825
\] & Pt. Arena, S E. Base & \\
\hline
\end{tabular}

Descriptions of Stations.
This list may be conveniently consulted by reference to the illustrations at the end of this publication and to the index.

All directions in the descriptions given in the form of azimuths are reckoned continuously from south around by west to \(360^{\circ}\), west being \(90^{\circ}\), north \(180^{\circ}\), and east
\(270^{\circ}\). The azimuths are true; where magnetic bearings are given they are indicated as such.

In general, the surface and underground marks are not in contact, so that a disturbance of the surface mark will not usually affect the underground mark. The underground mark should be resorted to only when there is evidence that the surface mark has been disturbed.

Any person who finds that one of the stations here described has been disturbed, or that the description no longer fits the facts, is requested to send such information to "Superintendent, Coast and Geodetic Survey, Washington, D. C."

\section*{GENERAL NOTES IN REGARD TO STATION MARKS.}

NoTE 1.-The station was marked by a copper tack in the center of a redwood block buried 3 feet below the surface of the ground. Over this was placed a stub projecting I foot above the ground. Four stubs were driven, each 6 feet from the center, and usually to the north, south, east, and west, and the lines joining them diagonally intersect at the center.

NOTE 2.-The station was marked by a pine stub 3 feet long with its top even with the surface of the ground. The reference marks were four stubs, placed each 6 feet from the center, and usually to the north, south, east, and west of it. Usually there was a nail, covered with a cartridge shell, in the center stub, and a nail in each of the four reference stubs.

Note 3.-The station was marked by a stub in the top of which was a nail with a cartridge placed over it. Four witness stubs, each with a nail in top, were placed 6 feet from the center, to the north, south, east, and west.

Note 4.-The station was marked by a stone with a drill hole one-half to \(11 / 2\) inches deep, buried 3 feet below the surface of the ground, and the three theodolite stubs were left. In many cases a mound of earth was made over the station, making the underground mark about 6 feet below the top of the mound.

Note 5.-The station was marked by a nail in a large stub, and by four similar stubs, each 6 feet from the center. Diagonal lines connecting these stubs intersect at the center at approximately right angles.

Note 6.-The station was marked by a stub 3 feet long, the top level with the surface of the ground, and by four stubs, each 6 feet from the center, and to the north, south, east, and west of it.

Note 7.-The station was marked by a stub, usually of redwood, and 3 feet long, with its top even with the surface of the ground.

Note 8.-The station was marked by a drill hole three-fourths inch in diameter and 3 inches deep, in a stone buried 3 feet underground; over this stone was placed a redwood stub projecting about \(11 / 2\) feet above the ground, and having a copper nail in its top. The reference marks were four stubs, each with a nail in its top, placed 6 feet from the center and projecting \(\mathrm{x} 3 / 4\) feet above ground.

NoTE 9.-The station was marked by a one-half-inch drill hole in a stone buried 2 feet underground. The reference marks were drill holes in three stones placed even with the surface of the ground, 6 feet from the center in the directions given.

NOTE 10.-The station was marked by three stubs, each having a copper nail in its top, 6 feet from the center of the station, two placed in line with the station, and the third at right angles to that line.

NOTE ir.-The station was marked by a section of 5 -inch earthenware pipe filled with coal cinders, its top level with the surface of the ground.

Note 12.-The station was marked by a bottle buried 3 or more feet deep, and by three stubs each with a copper nail in its top, driven in the ground even with the surface, and 6 feet from the center.

Note 13.-The station was marked by a stone buried 3 feet or less below the surface of the ground, and having in its top a lead bolt marked with cross lines. Three stones similarly marked were placed at or near the surface of the ground, 6 feet from the center, usually two in line with the center and the third at right angles to that line.

NOTE 14.-The station was marked by a bottle set neck up, \(21 / 2\) feet below the surface of the ground. Over it was driven a stub 2 feet long, top level with the surface, and usually having a tack in its top to mark the exact center.

Note 15 .-The station was marked by a section of \(21 / 2\)-inch iron gas pipe, 2 feet long, set so that from 2 to 5 inches of its top projects above the surface of the ground.

Note i6.-The station was marked by a bottle buried about 2 feet below the surface of the ground, and by a surface mark consisting of a one-half-inch drill hole in the upper face of an irregular shaped stone.

NOTE 17.-The station was marked by a copper tack in the top of a redwood stub, 3 inches square and \(21 / 2\) feet long, placed in the ground with its top level with the surface, and by three other stubs, two in line with the station, the third at right angles to that line, and each 3 feet from the center.

Note i8.-The station was marked by a cross on a lead plug in a stone buried from 2 to 4 feet below the surface of the ground. The reference marks were copper tacks in the tops of three stubs, each 6 feet from the center, two in line with it, and the third at right angles to that line.

Note 19.-The station was marked by a large nail driven into the center of a piece of 3 by 4 inch scantling, 1 foot long, with its top about 2 feet below the surface of the ground. The reference marks consist of copper tacks driven in four stakes, which are each 6 feet from the center. Lines drawn diagonally between these tacks intersect at the center of the station at approximately right angles.

PRIMARIES AND SECONDARIES, I 906-7.
Sierra Morena (San Mateo County, Cal., G. D., 1883; 1907).-On the range of mountains extending northwest and southeast along the San Francisco peninsula, about 50 meters from the county road following along the ridge from Kings Mountain House, which is about 12 miles by good road from Redwood City. Station is on land belonging to the Virginia Mill Company, about \(21 / 2\) miles south from Kings Mountain House, and on the highest knoll in the vicinity, near where the road forks, one road going to the south, and the other circling the hill to the north and west. The top of the hill was covered with growth of trees 20 feet or more high, all of which were cut, except five large redwood trees standing about 75 feet southwest of the station. These were left standing as a landmark for the peak in all directions. The station was marked
by a copper bolt in a stone 2 feet below the surface. Over this was built a hexagonal pier, 26 inches in diameter, 4 feet above the ground, in the top of which a copper bolt one-half inch in diameter marks the station. In 1907 an observatory 8 feet by 10 feet was left standing over the station.

Loma Prieta (Santa Clara and Santa Cruz counties, Cal., R. D. C., 1851-52; 1906).On Mount Bache, the highest peak of the range of mountains forming the boundary line between the counties of Santa Clara and Santa Cruz. It is S. \(27^{\circ} \mathrm{W}\)., and distant \(151 / 2\) miles from San Jose, and N. \(30^{\circ}\) E., 14 miles from the village of Santa Cruz. Mount Bache (Loma Prieta) is the highest mountain within a circuit of 50 miles; the peak itself, being some 300 or 400 feet above the surrounding ridges, presents a bold and remarkable appearance, and can easily be distinguished at first glance from the valleys of San Jose and Santa Cruz. The mountain is steep and covered on all sides with chaparral. A good mountain road runs from Wrights station on the Southern Pacific Railroad io miles to the base of the last rise, thence by trail up north end of the ridge to the station. The home of Doctor Jones is about i mile northwest of the station. The subsurface mark is a brown stone with copper bolt in the center. A rock with a drill hole filled with lead, having a cross, was lowered \(243 / 8\) inches and placed above and three-eighths inch west of the copper bolt in brown stone. A concrete foundation \(31 / 2\) feet square and 9 inches deep was laid around the rock and on it was built a hexagonal pier, 30 inches in diameter at the base, and 26 inches at the top. In 1906 this pier was enlarged about 3 inches at the base, extending up about 1 foot. An 8 by \(1 / 2\)-inch copper bolt in top of the pier marks the station.

Mount Toro (Monterey County, Cal., G. D., 1885 ; 1906).-On the smooth, untimbered range of mountains bordering the Salinas Valley on the west; on the smooth, grassy hill about 500 yards south of A. B. Parson's house, and on his land. It is easily reached from Salinas City and is in full view of the town. The station is marked by a copper bolt set in a flat-topped rock 2 feet beneath the surface of the ground, and by a cross in copper bolt in top of pier built of concrete and topped with brick and cement. Two other piers are standing northwest of the station.

Gavilan (Monterey County, Cal., R. D. C., 1851-52; 1906).-About I mile northwest of Fremont Peak, at the northwest foot of a small summit that rises 20 feet above it and cuts off the view to the southeast. About 4 miles to the southward of the Mission of San Juan, and on the crest of the mountain separating the Pajaro Valley from the broad valley of the Salinas. The crest, composed of a line of sharp, rocky peaks, 2800 to 3000 feet above the sea, forms a conspicuous object and can be seen and recognized for many miles to the northward, and from Monterey to the southward. The station is on the western extremity of the crest, on a small platform of level land, just where the land commences to fall rapidly. Approach is from the Salinas plains by following the road to the Stokes ranch, thence along one of the ridges leading to the summit. Or from the north, by starting from San Juan and following up the canada (White's) for about \(31 / 2\) miles, then turning to the right and ascending one of the spurs of the summit till the crest is reached, then along the south side of the crest to the station. The station is marked by a stone block \(21 / 2\) feet in the ground, with a leaden bolt one-third inch in diameter, and cross lines. For reference three other blocks, similarly marked, are placed flush with the ground, two in line and the other at right
angles, each 6 feet from the station. Also three rocks projecting above the surface and firmly bedded, each with a drill hole filled with lead and bearing as follows: S. \(59^{\circ} \mathrm{W}\)., 8.45 feet; N. \(16^{\circ}{ }_{4} 0^{\prime}\) E., 5.77 feet; S. \(63^{\circ}{ }^{\circ} 0^{\prime}\) E., 3.17 feet.

The surface mark is a stone with a drill hole in it.
Santa Cruz (Santa Cruz County, Cal., R. D. C., 1851-1854; 1906).-On the heights back of the village of Santa Cruz, on a round, smooth hill about 170 yards southwest of Gordon's limekiln, on ground claimed by Medear. The station bears N. \(69^{\circ} 30^{\prime} \mathrm{W}\)., 2 miles from the embarcadero, and S. \(74^{\circ} \mathrm{W}\)., one-half mile from the Mission Church. (Note 13, p. 297.)

Pajaro Mouth 2 (Monterey County, Cal., C. H. S., 1906).-On the southern end of the ridge of sand hills on the north side of the mouth of the Pajaro River. The station is marked by four drain tiles, 3 feet long and 4 inches in diameter. The center one is filled with concrete and has a small iron rod centered in it to mark the point. The other tiles were placed two in line with the station along the ridge, and the third at right angles, all 6 feet from the station.

Point Pinos Latitude Station (Monterey County, Cal., G. D., 1851; 1906).-On the northeasterly part of Point Pinos, 680 meters east of the light-house and 200 meters from the shore. The center of a rocky knoll, with pine tree standing on the western edge, bears N. \(15^{\circ} \mathrm{E}\). by compass, distant 153 feet from the center of the station, and is in range with and south of another rocky knoll and a large broken rock on the beach, the first large rock east of Luces Point triangulation station. From the center of the station another rocky knoll bears N. \(73^{\circ} \mathrm{W}\). by compass, distant 104 feet. This knoll is in the direction of and in range with the whistling buoy of Point Pinos and White Rock stations. There are three pine trees northwest of the knoll and one south of it within a short distance. The station was marked by a stone block, the top of which was even with the surface and had in it a drill hole filled with lead. West of the station 6.5 feet, east 6 feet, and south 8 feet are bottles buried with necks even with the ground. Eighteen feet southwest and 18 feet southeast are stones with holes drilled in top. The center stone and each of these reference marks were covered with a pile of stones; 18.8 feet northeast was a hole drilled in a large rock. A copper nail in a double pine tree was 75.7 feet \(\mathrm{S} .55^{\circ} \mathrm{W}\). of the station.

Santa Cruz Magnetic Station (Santa Cruz County, Cal., C. H. S., 1906-7).-On Point Santa Cruz, in the light-house grounds, between the old light-house foundation and the present light-house, and 84.9 meters from the latter. The station is marked by a block of marble 6 inches square, with the letters U.S. C. \& G. S. cut in its top surface.

Mount Tamalpais (Marin County, Cal., G. D., 1859-60; 1909).-On a bold ridge running east and west, about io miles north of the Golden Gate, on the top of the western and highest of three peaks. The center of the station was marked by a stone bottle set in concrete, with the neck 20 inches below the surface of the ground. Over this was built a stone and concrete pier, about 36 inches in diameter at the base and 26 inches at the surface. Here there was placed an irregular-shaped stone, the top even with the ground, with a copper bolt to mark the center of the station. Upon this was built a hexagonal pier with the same diameter to a height of 24 inches from the ground, where a stone bottle was placed and the pier continued 29 inches higher. In the top was put a
two-third-inch copper bolt, with a hole marking the center of the station. The reference marks were three stones, with drill hole in the top, on the surface of the ground, each 6 feet from the center; one along the ridge to the east, one to the south, and the other to the west. In a rock i8 feet \(91 / 4\) inches distant from the center was a mass of lead. There were three other concrete piers, one bearing N. \(76^{\circ} 47^{\prime} \mathrm{W}\). (truc), distant 18.36 feet; one N. \(79^{\circ} 48^{\prime}\) W. (true), distant 23.20 feet; and one N. \(5^{\circ} 54^{\prime}\) E. (true), distant 41.12 feet from the center.

Red Hill (Alameda County, Cal., R. D. C., 185r ; 1907).-About 3 miles a little south of east of the town of Alvarado, on what are known as the Coyote or Red Hills, a range \(31 / 4\) miles long, remarkable and readily distinguished by their isolated position, being nearly surrounded by marsh and separated from the main Contra Costa range by 7 or 8 miles of level land. The station is not on the highest part of the hill, but on a spur or shoulder running off to the southwest from the high rocky peak at the north end of the range and is about 500 meters from it. The station is on the old Briggs ranch, and is best reached from Alvarado, by way of the Brown and Sweazey dairy in the hills and up the swale to the northwest of the cow barn to the saddle, from which the station can be seen about 300 meters to the northwest. The station was marked as follows: A surface stone with lead in the drill hole to mark the station was put in place, top level with the surface. Concrete was then filled in a hole around the stone (but not touching it) 5 feet square and 10 inches deep. The stone was then covered with a wooden box and over the station center was built a cement pier 21 inches square by 45 inches high; embedded in the top of the pier was a stone block 6 by 8 by 15 inches, top level with the top of the pier and with hole filled with lead to mark the station. The top of the pier bears the letters C. \&G.S., 1907. Three cement blocks 5 by 5 by 6 inches on which to mount the theodolite were placed on the pier. There are two reference marks 6 feet from the center and flush with the ground. They are stones with drill holes. Two rocks projecting above the surface were marked by drill holes filled with lead; one is in azimuth \(38^{\circ}\), distant 7.9 feet; the other \(71^{\circ} 30^{\prime}\), distant 7.8 feet. Azimuth to a tall redwood tree on San Jose plain is \(30^{\circ}\), to Guano Island, called "Little Coyote," \(98^{\circ} 45^{\prime}\), to Union Island \(23^{2}\). An observatory 8 by io feet was left standing in 1907.

Rocky Mound (Contra Costa and Alameda counties, Cal., R. D.C., 1851-1854; 1906).About 6 miles northward from Oakland, a few degrees west of the high peak of the Contra Costa ridge, directly north of the principal street of Oakland. The hill slopes slightly to the westward and on the summit are a few dark clumps of small laurel trees and a quantity of loose rock. About 1,000 meters northwest of Rocky Mound is another and lower hill, the only summit in the vicinity which at all resembles the hill on which the station is located. The station is not on the highest part of the hill but on the westward slope, 59.3 feet, S. \(86^{\circ} \mathrm{W}\). from the top of the highest rock on the hill and almost exactly in line from the rock to Table Mountain Peak. The station was marked by a lead plug in a stone block buried \(11 / 4\) feet below the surface of the ground and resting on solid rock. Two holes were drilled in the rocks and filled with lead, as follows: 13.7 feet from the station, N. \(86^{\circ} 30^{\prime} \mathrm{W}\)., and 15.3 feet, N. \(7^{\circ} 45^{\prime} \mathrm{W}\).

Sonoma Mountain (Sonoma County, Cal., R. D. C., 1851-1854; 1907).-Upon a prominent hill about 6 miles due north from the town of Petaluma, on a knoll immediately south of Trundle's house. The station was marked by a stone 6 inches long,
buried ifoot 4 inches below the surface, in the top of which was a leaden plug with a small hole in the center. Over this earth was filled in and another stone, i.i feet long, was placed just below the surface and with lead plug and cross in top. Four other similar stones were placed to the northwest, northeast, southeast, and southwest, and exactly 6 feet from the center, each marked by a plug and cross. The distances between the stones were 8.84 feet, 8.25 feet, 8.95 feet, and 7.85 feet, beginning with the distance from the northwest to the northeast stone. In 1859 the southeast stone was found to be only 5 feet in inches from the center; the southwest stone was not found.

Point Reyes Hill (Marin County, Cal., G. A. F., 1855 ; 1906).-On the summit of the lighest hill to the northward of the road leading from the head of Tomales Bay to the Point Reyes ranch and easily distinguished after passing about i mile over that road. This hill from its height and steepness is inaccessible to loaded vehicles, but may be conveniently ascended with pack animals on several of the ridges leading from the Point Reyes road on the southwest side. Between this hill and a hill of nearly the same height toward Bolinas is a ridge covered with pines. The station was marked by a flat stone 15 inches below the ground, the top of which was marked by a five-eighth-inch drill hole and the letters U. S. C. S. Three stones similarly marked were placed each 6 feet from the center, one a little to the eastward of the line to the east peak of Table Mountain, another exactly in line with this to the northwest, and the third toward the east point of Point Reyes. A hole was drilled into a rock projecting a foot above the ground, to the northwest, distant 15.58 feet, and bearing \(19^{\circ} 101 / 2^{\prime}\) west of the line to Tomales, and a large spike was driven in a rock bearing N. \(69^{\circ} \mathrm{W}\)., at a distance of either \(\mathrm{I}_{4}\) feet 9 inches, or 14.9 feet from the center.

Tomales Bay (Sonoma Ccunty, Cal., G. A. F., 1855; 1906).-Upon the highest hill of Tomales Point, immediately opposite the embarcadero; on the highest point of the Pierce ranch, and about one-half mile south of the ranch house. The station was marked by a stone, in the top of which was a leaden plug with a small hole in its center. Reference marks are three large stones set with tops 2 inches above the surface, holes drilled in them being at the following azimuths and distances: \(180^{\circ} 21^{\prime}, 25.07\) feet; \(00^{\circ} 00^{\prime}, 24.75\) feet ; \(89^{\circ} 43^{\prime}, 24.94\) feet.

Ross Mountain (Sonoma County, Cal., R. D. C., 1855; 1906).-On the mountain locally known as Pole Mountain, on land belonging to Baker and sons. It may best be reached from Duncans Mills on the railroad by a good wagon road for about 10 miles to the station. A good camping place with fine spring of water is about one-fourth mile southeast and about 250 feet below the station. The station is marked by a copper bolt in the top of a concrete pier, 42 inches high and 24 inches square. The reference marks are three stones, each with a one-half-inch drill hole in the top, placed level with the surface of the ground, and 6 feet from the station, one nearly in line to Tomales Bay, one toward Mount Helena and the third toward Walalla. A charred oak stump with a wrought-iron nail in the top was 20 feet 4 inches N. \(54^{\circ}\) or \({ }^{\prime} \mathrm{W}\). (true), from the station.

Bodega (Sonoma County, Cal., G. A. F., 1855 ; 1860). -On the highest point of the ridge just north of the Estero Americano and on the Gale ranch, one-fourth mile from the estero. To reach the station, follow the Bodega post road to the highest point on the last ridge, within a mile of the embarcadero, then turn to the eastward and follow the ridge. The underground mark is a rock with a hole in it, buried 2 feet. The
surface mark is a large irregular shaped rock with hole \(51 / 2\) inches deep, top being 2 inches ahove the surface. One reference mark was in line to the point of Tomales, another to the south tangent of Bodega Head, and the third toward Sonoma Mountain triangulation station. A large cairn of rock is built over and around the station.

Black Mountain (Santa Clara County, Cal., R. D. C., 1852; 1906.)—On the northwestern part of the level summit of the most easterly and prominent spur of the Redwood range, easily distinguished by its superior height; on rocky ground just within the line of chaparral. The station was marked as in note 13, p. 297.

Pise Hill 2 (San Mateo County, Cal., C. H. S., 1906).-On the range of hills that lies between the lake (Crystal) of the Spring Valley Water Company and the coast; about \(21 / 2\) miles south of where the Halfmoon Bay road, between San Mateo and Halfmoon Bay, crosses the ridge; on the east side of the road leading along this ridge to Kings Mountain House, about 100 feet from the road and about 400 meters north of where the road enters the redwood timber; about 200 meters north of the ranch house on the McFarland ranch. The hills are bare of trees and in grain north of the redwoods. The underground mark is a bottle, mouth up, \(2 \frac{1}{2}\) feet below the surface; over the bottle is 1 foot of dirt and a large stone set flush with the surface, with drill hole and triangle to mark the station. A concrete pier 21 inches square and 45 inches high and resting on a foundation 5 feet square and 10 inches thick was built over this stone, which was protected from the pier by having a box placed over it. The top of the pier was marked C. \& G. S., 1907, and an iron bolt one-half inch in diameter and 12 inches long marks the station. For reference marks drill holes were made in three fixed rocks at the following azimuths and distances: \(292^{\circ} 29^{\prime} ; 30.60\) feet; \(12^{\circ} 58^{\prime}\), 136.76 feet; \(66^{\circ} 33^{\prime}\). 100.25 feet.

Ridge 2 Eccentric (San Mateo County, Cal., C. H. S., 1906).-On the range of bare hills between Crystal Lake, of the Spring Valley Water Company, and the coast; about \(11 / 2\) miles north of the Halfmoon Bay road where it crosses the summit and about 75 feet east of the road which runs from Halfmoon Bay road along the ridge to the Carl ranch, and about 400 meters south of the Carl ranch house. The land on the west side of the Carl ranch road is cultivated, but on the east side belongs to the Spring Valley Water Company and is covered with a growth of low bushes. The land on the west side of the road and northwest of the station is considerably higher than at the station. The station was marked as follows: A bottle was buried, mouth up, \(21 / 2\) feet below the surface of the ground. The center of the station is 0.115 meter due north of the center of the bottle; over the bottle was placed 1 foot of dirt, and over this a large rock weighing about 500 pounds, set with its top level with the surface of the ground. A drill hole in top of the rock is surrounded by a triangle cut in the rock, and o.ins meter due north of the drill hole is cut a cross, which marks the center of the station. Over this rock was built a concrete pier 21 inches square and 45 inches high, resting on a concrete foundation 5 feet square and 10 inches thick. A box was placed over the surface stone to protect it from the pier. The top of the pier was marked with letters C. \& G. S., 1907, and inserted in it is an iron bolt one-half inch in diameter and 12 inches long. The center of the station is o.in 5 meter due north of the bolt.

San Bruno Mountain (San Mateo County, Cal., F. M., 1899; 1907).-On the highest peak of the San Bruno Mountains in an outcropping ledge, which is about \(41 / 2\) feet
long northwest and southeast, if foot wide in the middle, and 4 inches above the surface; at a point 27 feet south of a ledge of rock that projects about 4 feet above the ground and forms the highest part of the peak. Marked by a one-half-inch drill hole 2 inches deep at the center of the station and three reference marks, consisting of one-half-inch drill holes one-half inch deep in sides of rocks facing the station, and 5.95 feet north of it, 12.40 feet east of it, and 4.82 feet west of it.

Guano Island (San Mateo County, Cal., R. D. C., 1851; 1907).-About 18 miles south of San Francisco, on the summit of a small island known as Little Coyote, in the marsh on the west side of the bay, 270 meters from the bay shore and on a large dairy ranch belonging to Frank McC. Brewer, who lives at San Mateo. The island is about y mile northeast from the ranch house and dairy buildings. Coyote Island is composed of very good road material, and it is only a question of time ere the whole island will have been carted away.

The center is marked as follows: A stone block is sunk 3 feet in the ground and has embedded in it a lead bolt with cross lines. Over the stone was placed 6 inches of dirt, then a bottle, set mouth up and central with the station. Over the bottle was placed 6 inches more of dirt, and then a large rock set with its top level with the surface of the ground, a drill hole in it marking the station. Over this rock was placed a concrete pier 21 inches square and 45 inches high, resting on a foundation 4 feet square and 12 inches thick. A box placed over the rock protects it from the pier. The top of the pier was marked with the letters C. \& G. S., 1907, and a one-half inch iron bolt 12 inches long set in the top of the pier marks the center of the station. In 1851 three reference marks were set, each consisting of a stone block with leaden bolt and cross lines set even with the surface of the ground and each 6 feet from the center of the station.

Pulgas East Base (San Mateo County, Cal., R. D. C., 1851-52; 1907).-On the Cooley ranch and about \(11 / 2\) miles west of the landing called Ravenswood; on the north side of the road going from Redwood City to Ravenswood, about 300 meters from the road, opposite the Cooley house, and plainly visible from the road, being in an open field. The station is marked by a monument of Benicia freestone, consisting of a square shaft and pedestal; the shaft is 5 feet high, its top is 1 foot 10 inches square, its base 2 feet square, and it weighs \(1 / 2 / 2\) tons. The pedestal weighs three-fourths of a ton, and is 2 feet 8 inches square and r foot 3 inches high, including the inch bevel on top, upon which the shaft rests. The following inscriptions were cut on the shaft: On the east side, "United States Coast Survey;" on the west side, "Measured in July, 1853," and on the north side, "Alex. Dallas Bache, Superintendent."

Pulgas West Base (San Mateo County, Cal., R. D. C., 1853; 1907.-At the southern extremity of the county, on the west side of the bay, and about 30 miles distant from San Francisco; i mile northwest of Redwood City and just west of Wellsley Park; on a hill about 130 feet above high water; about \(21 / 2\) miles south of Angelo House, \(11 / 2\) miles S. \(52^{\circ} 30^{\prime} \mathrm{W}\). of the embarcadero of the Pulgas ranch. The station was marked by a monument similar in every way to the one at Pulgas east base.

VICINITY OF COLMA, 1907.
Black Ridge 2 (San Mateo County, Cal., F. M., 1899; 1907).-On the summit of the highest knoll of the Black Ridge range. The station was marked by a stone about 12 inches in diameter and 5 inches deep, with a three-quarter-inch drill hole marking the
center. A marble post, \(5 \frac{1}{4}\) inches square and \(21 / 2\) feet long, marked with a drill hole and the letters U. S. C. S., was set over it.

Black Bluff (San Mateo County, Cal., R. D. C., 1852; 1907).-Four and one-half miles south of Point Lobos, on a hill 202 feet above tide, between the ocean and Laguna Merced and overlooking both, 140 meters from the coast line and 400 meters from the lake shore. The station is marked by a bottle buried 3 feet deep and surmounted by a marble post \(21 / 2\) feet long, \(53 / 4\) inches square on top, marked U.S.C.S. Six feet to the southeast a glass bottle was buried and there were also two stubs set with copper nails in the top, 6 feet from the center.

Colma 2 (San Mateo County, Cal., E. S., 1907). -West of the town of Colma, on a bluff overlooking the ocean, and on the highest point of a knoll. An old line fence once crossed this knoll from east to west, and in plowing along this fence a steep bank about 7 feet high has gradually been formed. The station is about 13 feet south of this bank. It is marked by a drill hole in a triangular-shaped rock 15 inches on a side and 8 inches thick, buried with its top 18 inches below the surface of the ground.

Fog Cap 2 (San Mateo County, Cal., E. S., 1907). -In cultivated ground, on the highest point of the bluff overlooking the ocean, southwest of the town of Colma. Marked by a hole drilled in a smooth-topped rock, 10 by 12 inches and 8 inches thick. The top of the stone is even with the subsoil and the surface soil is I foot deep.

Road (San Mateo County, Cal., F. M., 1899; 1907).-About I mile back from the coast, abreast of the northern end of the Salt Lagoon, which is about 3 miles north of Point San Pedro; on a prominent knoll overlooking the ocean, around the base of which winds the road from Colma to Halfmoon Bay. The station was marked underground by a stone about 4 by 8 inches on top and 4 inches deep, having a three-fourth-inch hole drilled in it one-fourth inch deep to mark the center. Four rough stones about 5 inches in diameter were set on the surface, north, south, east, and west and 6 feet from the station, marked by very shallow depressions, three-fourth-inch in diameter, sufficiently deep, however, to be recognized. A line fence runs across the knoll about northwest and southeast. A fence post in line with the station and the first knob to the right of the highest peak of the San Bruno Mountain has three nails driven in a triangle near the top. These nails are 41.7 feet from the station.

Flat (San Mateo County, Cal., F. M., 1899; 1907).-On the northern end of the flat ridge that runs north and south between the San Bruno Mountain ridge and the Montara Mountain ridge, and about in line between the. highest peaks of these two ranges; on a little rocky shoulder of the ridge where the best view could be obtained toward the north and west. It can be reached by wagon from Colma by taking the Halfmoon Bay road and following it till it turns toward the ocean abreast of the Salt Lagoon. At the turning point a lane leads straight ahead (south) toward Sneath's Jersey farm dairy, where information can be obtained as to the way up the ridge and the keys to the gates secured. The road from the farmhouse winds around on the eastern and southern sides of the ridge on which the station is located and comes out on top of the ridge about half a mile to the south of the station. Once on top of the ridge a wagon can be driven along the crest and up to within roo yards or so of the station, where an east and west cross fence stops further progress. The station is marked by a three-fourth-inch hole
drilled about 1 inch deep in a rough stone about 15 inches square and 18 inches thick, and weighing about 200 pounds, set with its surface level with the ground.

False Cattle Hill 2 (San Mateo County, Cal., F. M., 1899; 1907).-On a small rocky hill on the coast just south of the Salt Lagoon within about one-fourth mile of the Halfmoon Bay road. The station was marked by a stone about 8 inches in diameter, buried 18 inches below the surface of the ground. A saucer-shaped depression about 5 inches in diameter is in the upper surface of the stone and in this depression is a shallow hole, marking the center of the station. The witness marks are holes drilled in solid outcropping ledges, facing the station, one three-fourth inch in diameter and \(r\) inch deep and 9.65 feet north of the station; another of the same dimensions 10.4 feet south of the station, and one one-half inch in diameter and three-fourths inch deep 13.55 feet southwest. The true azimuths of certain points are as follows: Montara Mountain (highest point) \(164^{\circ} 49^{\prime} 50^{\prime \prime}\); a rock off Point San Pedro, sharpest peak (inshore) \(230^{\circ}\) \(3^{\prime \prime} 45^{\prime \prime}\); the top of the largest rock off next point north of the station (nearest inshore rock) \(335^{\circ} 45^{\prime} 35^{\prime \prime}\); the outermost peak of an arch rock, off point 4 miles north, \(357^{\circ}\) \(5^{\prime} 50^{\prime \prime}\).

TOMALES BAY, 1907 .
Bodega Head 2 (Sonoma County, Cal., W. B. F., 1906).-On a high hill about onehalf mile north of the extreme end of Bodega Head, on the highest point of the Campbell ranch, which is the ranch on the extreme point of the head, the highest point on the head being on the Grafney ranch and 400 yards northwest of the station. Marked as follows: 20 inches below the surface is the solid ledge; in it a cavity 15 inches in diameter was made, and in the center of this cavity was drilled a hole three-fourths inch in diameter and 5 inches deep, and a copper bolt three-fourths inch in diameter and 5 inches long driven in. Ten inches of dirt was placed over the bolt, and on it was placed a large irregular-shaped stone weighing about 300 pounds; in the upper surface of this rock, which was flat and even with the surface of the ground a drill hole 4 inches deep, with a triangle cut around it marks the station. For reference marks holes three-fourths inch in diameter and 4 inches deep were drilled in five large fixed rocks at the following azimuths and distances: \(204^{\circ} 10^{\prime}\), 99.00 feet; \(24^{\circ}{ }^{\circ} 17^{\prime}, 4 \mathrm{I} .08\) feet; \(241^{\circ} 57^{\prime}\), 128.08 feet; \(309^{\circ} 59^{\prime}, 58.55\) feet; \(339^{\circ} 31^{\prime}, 65.87\) feet. A large cairn of rocks was built over and around the station.

Smith (Marin County, Cal., G. A. F., 1855; 1906).-About 2 miles from Preston's embarcadero, and one-fourth mile north of the house occupied in 1855 by a German named Smith, on the top of a plowed hill which has on its side some large and noticeable bowlders. Station is on the old Smith ranch now owned by Andrew Gaver; it is on the road to Dillon's ranch from Tomales. The underground mark is a piece of 4 -inch terra-cotta pipe placed flange down and top 18 inches below the surface of the ground. For a surface mark a piece of 4 -inch terra-cotta pipe was set in black earth brought from a distance. For reference marks four 4 -inch drain-tile pipes, inside each of which was a redwood stub with a nail in its top, were set at the following azimuths and distances: \(179^{\circ} 40^{\prime}, 49.98\) feet; \(269^{\circ} 55^{\prime}, 49.98\) feet; \(359^{\circ} 4 I^{\prime}, 49.99\) feet; \(89^{\circ} 4^{\prime}, 49.93\) feet.

Tomales Point (Marin County, Cal., G. A. F., 1856 ; 1906).-About 2 miles southeast of the extreme end of Tomales Point on the Pierce ranch about one-half mile north of the fence dividing the upper and lower ranches. It is on one of the rocky points (not
\[
63481^{\circ}-11-20
\]
the highest) and on the eastern edge of the hill, about 150 yards east of the ranch road. It is marked as follows: Underground mark is a spike in the rock, above which is a stone with hole drilled in it, set with its top 18 inches below the surface of the ground. The surface mark is a large stone with drill hole to mark the station, a triangle being cut around the drill hole. Reference marks are three-fourth-inch drill holes 4 inches deep in fixed rocks at the following azimuths and distances: \(211^{\circ} 22^{\prime}, 8.45\) feet; \(309^{\circ} 51^{\prime}\), 9.67 feet; \(20^{\circ} 16^{\prime}, 18.15\) feet; \(83^{\circ} 23^{\prime}, 13.76\) feet. A large cairn of rocks 6 feet high and 8 feet in diameter was built over the station.

Preston 2 (Marin County, Cal., W. B. F., 1906).-On the east side of Tomales Bay, south of Keys Creek, about three-fourths mile southeast of Preston's store, on a rocky point or ledge about 60 feet back from the edge of the bluff, and 60 feet west of the county road, on what is known as Hamlet ranch and directly. back of the railroad station, the track being at the foot of the bluff. The center is marked by a drill hole in a fast rock with a triangle cut around it. Reference marks are drill holes in fixed rocks, the first whose azimuth and distance are given below being in the top of a large bowlder io feet high. Azimuths and distances of reference, marks are as follows: \(354^{\circ} 14^{\prime}\), 34.93 feet; \(106^{\circ} 5\) r \(^{\prime} 18.62\) feet; \(158^{\circ}{ }^{10}{ }^{\prime}, 7.49\) feet.

Mershon (Marin County, Cal., G. A. F., i856; 1906).-On top of a hill on the east side of Tomales Bay, about three-eighths mile from the shore, on the Miller ranch, now leased by Mr. McDonald, and about one-half mile east from the ranch house. Marked by a hole drilled in the top of a large stone 18 inches below the surface of the ground, above which for a surface mark another stone with drill hole in it was set. Reference marks are two 4 -inch drain tile pipes set at the following azimuths and distances: \(180^{\circ}\) \(32^{\prime}, 50.02\) feet; and \(270^{\circ} 05^{\prime}, 49.97\) feet; and drill holes in two fixed rocks at the following azimuths and distances: \(288^{\circ} 4^{\prime}, 23.71\) feet; \(78^{\circ} 4^{\prime}\), 91.85 feet.

Foster (Marin County, Cal., G. A. F., 1857 ; 1906).-On the west side of Tomales Bay, about one-half mile south of Foster's landing, on a round bare knoll on the bay side of the top of a prominent hill, the sides of which are covered with a growth of low bushes, and on the south side of which are a few pine trees, the farthest northward of the Punta Reyes forest. Ninety yards north of the tallest tree on the ridge, 20 yards northeast of the station, the ridge descends abruptly to a gully; 30 yards northward it descends moderately to a gully one-fourth mile distant. Station is on Shafter ranch, about I mile south of the ranch house. Station is marked by an iron nail in a stub 22 inches below the surface of the ground, over which was placed a stone with a hole drilled in it and its top set 18 inches below the surface and over this for a surface mark another stone with drill hole was set. A triangle was cut around the hole in the surface mark. For reference marks 3 stones with drill holes in them were set at the following azimuths and distances: \(179^{\circ} 54^{\prime}, 31.35\) feet; \(269^{\circ} 32^{\prime}, 32.15\) feet; \(0^{\circ} 45^{\prime}, 34.73\) feet.

Reynolds 2 (Marin County, Cal., W. B. F., 1906).-On the east side of Tomales Bay, a few hundred yards north of Reynolds Landing, and about three-fourths mile south of Marshall railroad station; about 14 feet back from the edge of and on the highest point of a low perpendicular cliff rising from the shore and presenting a reddish appearance from the bay. About one-fourth mile south of the station is a Portuguese fishing hamlet, back of which on the side hill is a cemetery; station is about 160 yards west of county road. The station was marked as follows: A bottle was buried, mouth up,

20 inches below the surface; above the bottle dirt was filled in, and over this was set a 4 -inch drain tile pipe, flange down, in which is a 2 by 4 inch redwood stub with nail to mark the center of the station. For reference marks two 4 -inch drain tile pipes were set, flange down, one to the north, distant 24.8I feet, the other east of the station, distant 24.72 feet.

Mike 2 (Marin County, Cal., W. B. F., 1906).-On the west side of Tomales Bay, about \(21 / 2\) miles north of Inverness, on the first cleared grassy point north from Cavallo Point; this bluff is quite prominent and the station is on the slope of the bluff, back from the edge, just where the grass ends and the wood begins. Marked as follows: A bottle was buried, mouth up, 2 feet below the surface; over this was placed 6 inches of dirt, then a large rock was set with drill hole in to mark the station. Reference marks are: A drill hole in a rock, distant 57.21 feet in azimuth \(5^{\circ} 14^{\prime}\), and triangles cut in two pine trees back from the station, one distant 102.0 feet, in azimuth \(73^{\circ} 24^{\prime}\) and the other in azimuth \(85^{\circ} 23^{\prime}\).

Hans (Marin County, Cal., G. A. F., 1857; 1906).-On a small knoll on the east side of Tomales Bay, about i mile south of Reynold's embarcadero, 150 paces from shore, and about 200 yards east of the county road. Marked as follows: A rock 15 inches square, and 6 inches thick, with a hole drilled in it was set with its top 2 feet below the surface of the ground; over this was put 6 inches of dirt, and then another rock, having drill hole to mark the station, and weighing about \(\mathbf{r} 75\) pounds was set with top level with the surface. For reference marks three 4 -inch drain tile pipes, with redwood stakes 2 by 4 inches and nails in top, were set as follows: One north, distant 25.00 feet; one east, distant 24.97 feet; and the third west, distant 24.85 feet.

Frink 2 (Marin County, Cal., W. B. F., 1906).-On the east side of Tomales Bay, about 200 yards from the shore, about one-half mile north of Millerton railroad station, on the Miller ranch and on the slope of the hill just back of the first Portuguese cabin on the county road north of Millerton. It is marked as follows: A rock 15 by 15 by 10 inches with drill hole in it was set \(21 / 2\) feet below the surface; this stone was covered with dirt and another rock weighing about 125 pounds, set top level with the surface, a drill hole in its top marking the station. Reference marks were nails in the tops of redwood stubs 2 by 4 inches, and 2 feet long, in 4 -inch drain tile pipes 2 feet long, set flange down at the following azimuths and distances: \(180^{\circ} 57^{\prime}, 25.22\) feet; \(270^{\circ} 33^{\prime}\), 25.43 feet; \(359^{\circ} 53^{\prime}, 24.90\) feet.

Agnew 2 (Marin County, Cal., W. B. F., 1906).-On the little cleared bluff, known as Cavallo Point, that is just north of where the county road leaves the bay shore and runs up into the hills. On top of the bluff, 30 feet back from its edge, and \(\mathrm{I}_{5}\) feet south of the fence running east and west; a house occupied by Italians is at the foot of the bluff. Marked as follows: A bottle was buried, mouth up, 22 inches below the surface of the ground; 6 inches of dirt was placed above the bottle, then a large stone set with drill hole in it, marking the station. Reference marks are: Two rocks with drill holes in them set at the following azimuths and distances: \(170^{\circ} 43^{\prime}, 23.04\) feet; and \(54^{\circ} 42^{\prime}\), 34.30 feet.

Sigvart 2 (Marin County, Cal., W. B. F., 1906).-On the east side of Tomales Bay, about 200 yards from the shore, and about three-fourths mile southeast of Millerton
railroad station, almost directly across the bay from Inverness, on the first rise of the hill, and about 100 feet below and to the west of a clump of trees growing over and among the rocks of a rocky point; these trees are the only ones on the hill and show prominently from all directions. From station, Tomales Bay triangulation station and southeast gable of large cow barn at Millerton are almost exactly in line. The station is about 300 yards east of the county road. Marked as follows: A large rock 15 by 18 by 12 inches with hole drilled in it was buried with top 18 inches below the surface; dirt was filled in, and another rock weighing about 200 pounds was set, its top projecting about 8 inches above the surface of the ground, and having a drill hole \(41 / 2\) inches deep surrounded by a triangle to mark the station. For reference marks holes were drilled in three fixed rocks at the following azimuths and distances, \(149^{\circ} 38^{\prime}, 36.40\) feet; \(221^{\circ}\) \(21^{\prime}, 66.93\) feet; \(262^{\circ} 45^{\prime}, 36.95\) feet.

Willow Point 2 (Marin County, Cal., W. B. F., 1906).-On the western shore of and near the head of Tomales Bay, about 15 feet from the edge of the woods on a prominent point, about one-half mile south of Young's house, on Hamilton ranch and one-half mile north and east of the ranch house, on a narrow sand ridge surrounded by soft marsh, and 250 yards from the workman's cottage on the county road, now occupied by a man who keeps a harness and repair shop. Marked as follows: Center mark is a 4 -inch drain tile pipe, 2 feet long, set in cement, flange down, and filled with cement; top of pipe is marked C. G. S. 1906, and has a nail to mark center. Reference marks are nails in redwood stubs, 2 by 4 inches, and 2 feet long, in 4 -inch drain tile pipe, 2 feet long, set along the same ridge, at the following azimuths and distances: \(329^{\circ} 42^{\prime}\), 38.86 feet; \(329^{\circ} 42^{\prime}, 65.56\) feet.

Creek 2 (Marin County, Cal., W. B. F., igo6).-On the western shore of and near the head of Tomales Bay, on the Piedmont ranch owned by Mrs. Hamilton, about 50 feet from the edge of the woods, and 150 yards from the estero; 150 yards from the cottage of one of Mrs. Hamilton's laborers, living about one-half mile from the Hamilton house, in the direction of Point Reyes station on the county road between Inverness and Point Reyes station. Center mark is a 4 -inch drain tile pipe, 2 feet long, set in and filled with cement, having a nail to mark the station, and marked with the letters C. G. S. 1906. For reference marks, two 4 -inch drain tile pipes with redwood stubs 2 by 4 inches and 2 feet long, having nails in their tops were set as follows: One north (magnetic), distant 33.05 feet, and the other east (magnetic), distant 56.15 feet.

Hammond (Marin County, Cal., G. A. F., 1857 ; 1906).-On the summit of a small knoll, on the east side of Tomales Bay, on the Berdel ranch, about one-fourth mile northwest of the ranch house and some 300 yards from the county road. Marked as follows: A bottle was buried, mouth up, 2 feet below the surface of the ground; over this some dirt was placed, and then a large rock weighing about 250 pounds was set, with a drill hole in its top and a triangle cut around it to mark the center. For reference marks three large stones were set with drill holes in them, at the following azimuths and distances: \(180^{\circ} 28^{\prime}, 29.67\) feet; \(359^{\circ} 53^{\prime}, 31.71\) feet; \(90^{\circ}{ }_{1} 3^{\prime}, 34.78\) feet.

Bodega Head (Sonoma County, Cal., G. A. F., 1855; 1906).-Station is 1.65 meters from Bodega Head 2, in azimuth \(202^{\circ}\) II' from it. It is marked by an iron spike driven \(^{\prime}\) into the solid rock. For full description see Bodega Head 2, page 305.

Teton 2 (Marin County, Cal., W. B. F., 1906).-On top of a sharp rocky hill which bears N. \(48^{\circ}\) E., and 2 miles distant from the extreme point of Tomales. This hill is
very prominent, is just above a resort called Dillons Beach, and is on Dillon's ranch. The top of the hill is not more than 8 feet across. The station is marked by a hole drilled in the solid ledge, with a triangle cut around it.

Trainor (Marin County, Cal., E. S., 1906).-On the northernmost hill or elevation of Tomales Point, on the lower Pierce ranch, and about one-half mile from the extreme northern part of Tomales Point; the hill is covered with a growth of large sagebrush. The station is marked by a drill hole in a large stone placed 6 inches below the surface of the ground. A pile of stones was placed over and around the station.

Hog Island 2 (Marin County, Cal., W. B. F., 1906).-On the east side of Hog Island in Tomales Bay, 15 feet from the edge of the bluff, which is just west of the dwelling house, on line with the north side of the house, and about 30 feet from its ridgepole. Marked as follows: A rock 10 by 15 by 10 inches with hole drilled in its top was buried 2 feet below the surface, ro inches of dirt was then filled in, and a large irregular rock weighing about 250 pounds was set with its top level with the surface, with a drill hole to mark the station. A 4 by 4 inch redwood post, 10 inches high and 2 feet in the ground is distant 49.4 feet in azimuth \(129^{\circ} 40^{\prime}\) :

\section*{VICINITY OF FORT ROSS, 1906.}

Peaked Hill (Sonoma County, Cal., G. D., 1860; 1906).-About I mile below the mouth of Russian River, on a sharp-pointed, isolated hill, and on land belonging to the Winfield Wright estate. About one-half mile up the coast from the ranch house. It is 5 miles by road from the nearest railroad station, Duncan Mills, and one can drive to within 200 yards of it. The azimuth of a smaller hill, inland, and covered with loose rock, is \(167^{\circ} 30^{\prime}\), and of a white rock in the water, distant 500 or 600 yards, is \(359^{\circ}\). Marked by a one-half inch drill hole in a rock sunk i foot below the surface. Two reference marks were in line with the station and Bodega Head, and a third at right angles to that line.

Chaparral (Sonoma County, Cal., G. D., 1860; 1906).-About \(31 / 2\) miles below Fort Ross, 200 yards from the old abandoned coast road, on land belonging to Frank Fisk, and on the center of small hill south of his house. Station is now reached by ridge road, from which it can be seen. A team can be driven to within roo yards of the station. It is marked by a one-half inch drill hole in a stone sunk 2 feet below the surface of the ground. Reference marks are drill holes in rocks, two in line with the station and Ross Mountain, and the third at right angles to that line.

Dixon (Sonoma County, Cal., L. A. S., \(1876-1879\); 1906).-At the head of Timber Gulch, on the highest point of a little round-top hill, about one-fourth mile west of the ridge road. This is the only hill in the vicinity having a bare top. Land is owned by A. Schroyer, and is occupied by James Doda. The underground mark is a drill hole three-fourths inch deep in a rock sunk 3 feet below the surface of the ground. The surface mark is a stone with a drill hole. Rocks were piled around the signal pole and braces.

Fort Ross (Sonoma County, Cal., L. A. S., 1876-1879; 1906).-About one-fourth mile north of the Fort Ross landing, on the extreme western point, within to meters of the edge of the perpendicular bluffs forming the shore line, and on land owned by G. W. Call. The underground mark is a drill hole three-fourths inch deep in a rock 3 feet below surface of the ground, and the surface mark is a stone with drill hole in it.

Henry Hill (Sonoma County, Cal., L. A. S., 1876-1879; 1906).-About threefourths mile west of Sea View Hotel, on a round-top hill covered with oak and fir timber, and about ioo yards south of the ridge road from Russian River to Salt Point; on land owned by the D. H. McEwen Lumber Company. The subsurface mark is a three-fourth-inch drill hole in a rock sunk 6 feet below the top of a mound which has been thrown up 3 feet over the station. A redwood post 1 foot in diameter and io feet long was set firmly over the station mark.

Table Mount 2 (Sonoma County, Cal., E.S., 1906).-Near the center of the top of the mountain locally known as Table Mount. Marked by a drill hole in a flat stone set 7 inches below the surface of the ground, in a hole picked in the rock, the soil being only 4 inches deep. From the station 2 large pine or fir trees are at the following azimuths and distances: \(94^{\circ}\) o7 \(7^{\prime}\), 102.9 feet; \(130^{\circ} 52^{\prime}, 63.0\) feet; a stump is in azimuth \(63^{\circ} 22^{\prime}\), distant 32.3 feet, and a hole in a large rock at the foot of the second pine tree bears \(122^{\circ} 00^{\prime}\), distant 62.4 feet.

Funcke (Sonoma County, Cal., L. A. S., 1876-1879; 1906).-A fir tree about 2 miles back of Salt Point, on the left and above the road just before reaching what is known as the prairie, and on land owned by - Walsh. When first used this tree was cut off at an elevation of 80 feet above the ground, its branches cut off and a triangle, inside of which were the letters C.S., cut in its side 5 feet above the ground. In 1906 only a badly burned and rotted stump 27 feet high remained and this was cut off 20 feet above the ground and the center used as station. For reference marks 4 stones with drill holes were set, two being in line with Henry Hill, distant 81.3 feet, and 60.5 feet, and the other two in line with Salt Point, distant 303.3 feet, and 90.8 feet.

Lancaster 2 (Sonoma County, Cal., E. S., 1906).-On the farm of Jacob Lancaster, on the east end of a ridge of bare rocks in hay field and near fence. Marked by a stone with drill hole set even with the ground. For reference marks two stones with drill holes were set near the fence, one 1.42 meters from the station, the second stone 8.25 meters from the first, easterly along the fence, and 4.7 meters from Lancaster station of \(1876-1879\), which is 8.6 meters from the station of 1906 . A rock beyond the fence is in azimuth \(312^{\circ} 32^{\prime}\), distant 36.66 meters from the station of 1906 .

Salt Point (Sonoma County, Cal., L. A. S., 1876-1879; 1906).-On the extreme point, north of Gerstle's cove or Salt Point landing (now abandoned) on a little mound or rise, near the edge of the bluff, on land owned by Funcke \& Co. It is marked by a one-halfinch drill hole in a flat rock sunk 3 feet below the surface of the ground.

Chamisal (Sonoma County, Cal., E. S., 1906).-In the chamisal brush, 347 meters from station Funcke in azimuth \(10^{\circ} 08^{\prime}\). Marked by a bottle, the top of which is even with the subsoil. Over this was placed a stone with a drill hole. For reference marks two stones with drill holes in them were set in line with Horse Shoe Point, one on each side of Chamisal. There are no other large stones in this vicinity, and in setting the center mark the soil, which is gravel, and the subsoil, which is yellow clay, were well mixed.

Horseshoe Point (Sonoma County, Cal., L. A. S., 1876-1879; 1906).-On the northwest extremity of the high round-topped hill near the coast line and about a mile north of Helmke, or Fisk Mill landing. Marked by a one-half-inch drill hole in a large flat rock 3 feet below the ground. Reference marks are two holes drilled in two natural rocks,
one toward the ocean being flat and of a triangular shape, the hole is 12.17 feet from the station in azimuth \(4^{\circ}\) o \(0^{\prime}\). The other rock is a bowlder projecting 2 feet above the ground; the hole is 6.85 feet from the station, in line with it and the other reference mark, the station being between the two reference marks.

Henry Tree (Sonoma County, Cal., E. S., 1906).-On Henry Hill, a fir tree 1.45 meters in circumference and about 70 feet high. A triangle cut on it about to feet from the ground is 9.15 meters and in azimuth \(98^{\circ} 08^{\prime}\) from Henry Hill. The tree was trimmed at the top and flag fastened to it. The tree leans toward the northwest; its top only was determined.

Timber Cove (Sonoma County, Cal., L. A. S., 1876-1879; 1906).-On top of the highest rocky hill back of the north point of Timber Cove, about 4 feet east of the highest bowlder on the hill. From the station the east gable of Miller's barn is in range with the southeast edge of his home. Marked by drill hole one-half inch deep in the upper surface of a slab of sandstone 14 inches square, buried I foot below the surface of the ground and resting on a solid bowlder. The owner of the land is named Miller.

Stockhoff 2 (Sonoma County, Cal., E. S., 1906).-On the extreme outer bluff formed about halfway between Timber Cove and Salt Point landings, near the bluff and on land occupied by Stockhoff, but also claimed as a light-house reservation. The bluff is bare of soil for about 40 feet inshore. The station is marked by a drill hole in a flat rock 2 feet below the surface and by a similarly marked stone placed a few inches below the surface. At the fence line 6 I .3 feet distant in line to Henry Tree was placed a stone with drill hole in it. Stones were piled about the signal pole and braces.

Lancaster (Sonoma County, Cal., L. A. S., 1876-1879, 1906).-For description of location, see Lancaster 2, page 310. Marked by a drill hole one-half inch deep in a rock sunk 3 feet below the surface of the ground.

Pinnacle Rock (Sonoma County, Cal., L. A. S., 1876-1879; 1906).-About I mile south of Fort Ross Landing, being the highest part of the largest rock on the Fort Ross Reef. The station is about 35 feet above high water.

Stockhoff (Sonoma County, Cal., L. A. S., 1876-1879; 1906).-Station is 3.38 meters from Stockhoff 2, approximately on the extension of the line from Timber Cove. Marked by a one-half-inch drill hole in a flat rock sunk 3 feet below the surface of the ground. (See description of Stockhoff 2, p. 311 .)

VICINITY OF POINT ARENA, 1906.
Dunn (Mendocino County, Cal., B. A. C., 1878; 1906).-On a hill, best reached by the tan-bark road through Denman's fields, not on the highest part of the hill, but io or 15 paces from it in the direction of Point Arena Light-house. The station was marked by a black bottle, buried with the top i i inches below the surface. Over this was placed a stone about 12 by 14 by 8 inches, with the top even with the surface, and bearing a one-half-inch drill hole three-fourths inch deep. The reference marks are drill holes in stones, two in range to Point Arena Light-house, the one nearer the light-house being rounded on top, with its smaller end in the ground and the top 4 inches above the surface, the farther one having a sharp end, with the larger end in the ground, and one at right angles and almost in the direction of Clark triangulation station, having a kind of sag on its top, in which the drill hole was made.

Clark (Mendocino County, Cal., B. A. C., 1878 ; 1906).-In a plowed field of the old ranch formerly occupied by Frank Adams, who lives about 3 miles from the station (1891). The station was marked by a square glass bottle 9 inches high, placed with the top of the bottle 22 inches below the surface. Over this a stone, irregular but somewhat square, 12 inches long, 8 inches wide, and 5 inches thick, was placed, a drill hole in the top being 13 inches below the surface. Above this was a stone, rounded on top, with a flat base, and about 12 inches deep, the top of the stone 3 inches above the surface. The reference marks are two 3 -inch terra-cotta pipes, 26 inches long, set in the fence lines; one in the prolongation of the line from station Dunn is 185.3 feet distant and the other in prolongation of the line from the station Cold Spring is distant 182 feet. A fir tree marked by spike in triangle is 227 feet southeast of the station.

Lane (Mendocino County, Cal., L. A. S., i870; igo6).-About one-fourth mile west of Denman's house on the county road on the most westerly point of a field formerly belonging to -_Lane, but in 189 r to L. Redermeyer; 30 feet 7 inches east from edge of bluff. The bluff is all earth, no stone being visible, and an earthquake crack is about. 50 feet inshore from the station. Marked by a three-fourth-inch drill hole 3 inches deep in a stone buried \({ }_{3}\) feet below the surface. The surface mark set in 1906 is a 3 -inch terra-cotta pipe projecting 3 inches above the ground. Two reference marks, consisting of drill holes in rocks, were set, one in line to station Spur, distant 32.1 feet, and the other in line to station Dunn, distant \(321 / 4\) feet.

Arena Latitude Station (Mendocino County, Cal., L. A. S., 1870; 1906).—About one-third mile north of the northern point of the Point Arena Cove, near the edge of the bluff and north of the first small stream. The bluff has an earthquake crack about 50 feet inshore from the station. The station was marked by a brick pier, which in 1906 was found broken down to the ground and was not rebuilt. The center was preserved by a large nail driven into the top of the remains of the pier. Reference mark is a 3 -inch terra-cotta pipe set in the direction of station Clark and 109.8 feet from the center.

Smith 2 (Mendocino County, Cal., E. S., 1906).-On the point of the bluff south and just above Point Arena harbor; this bluff is of rock with very shallow soil where the station is situated. The station is marked by a hole drilled in the natural rock about i foot below the surface of the ground; above this was placed, level with the ground, a rock with a hole drilled in it. The reference mark is a 3 -inch terra-cotta pipe set in the fence line 585.5 feet distant and in line with station High Bluff.

Spur 2 (Mendocino County, Cal., E. S., igo6).-On the top of the first and highest spur north of Brush Creek, about 30 feet down the slope of the hill, in the direction of station Lane, in cultivated ground owned by Courtney Kendall and his father. The station is marked with a white glass bottle, the bottom of which is in the subsoil and whose top is 18 inches below the surface of the ground. The surface mark is a drill hole in a rounded stone projecting about 4 inches above the ground. The reference marks are drill holes in two rocks set one on each side of the center and in line with station Shoemake. The one toward Shoemake is flat and the drill hole is 5.2 feet from the center; the one on the line from Shoemake extended is a rounded one and the drill hole is 4.9 feet from the center. Close to the fence on the west side was set another stone with drill hole \(791 / 2\) feet from the center in azimuth \(86^{\circ} 40^{\prime}\). (See description of Spur, p. 3r3.)

Shoemake 2 (Mendocino County, Cal., E. S., 1906).-On a rocky hill, the first high point off the county road just south of Manchester. The soil is only 2 or 3 inches deep. A hole was picked in the solid rock, in which was set a stone with a drilled hole to mark the center. Reference mark is a hole drilled in the natural rock 63.3 feet from the center of the station and in line with station Lane; this reference mark is about 10 feet from the fence, which is north of the station. From the station the chimney of Fairbanks house is in azimuth \(178^{\circ} 09^{\prime}\) and the bell tower of schoolhouse is in azimuth \(126^{\circ} \mathrm{O4}^{\prime}\). (See also description of Shoemake, p. 313.)

Spur (Mendocino County, Cal., L. A. S., 1870; 1906).-On top of the first and highest spur north of Brush Creek, and 4.32 meters from Spur 2, in azimuth \(108^{\circ} 30^{\prime}\). The station is marked by a three-fourth-inch drill hole 3 inches deep in a stone buried 3 feet below the surface of the ground. For a surface mark a stone with a drill hole was set, projecting about 3 inches above the surface. (See also description of Spur 2, p. 312.)

Shoemake (Mendocino County, Cal., L. A. S., 1870; 1906).—Distant 74.18 meters from station Shoemake 2 , in azimuth \(304^{\circ} \mathrm{I} 5^{\prime}\); near the county road about south from the bridge over Brush Creek, on top of the northern end of the hill back of Andrews's house; elevation about 230 feet. Magnetic bearings to various points are as follows: Andrews's house S. \(144^{\circ} \mathrm{W} . ;\) Fairbanks's house, N. \(19^{\circ} \mathrm{E} . ;\) light-house S. \(120^{\circ} \mathrm{W}\). The station is marked by a three-fourths-inch drill hole, 3 inches deep, in a stone buried 3 feet below the surface. Above this was placed a large stone with a drill hole to mark the center. (See also description of Shoemake 2, p. 313.)

High Bluff (Mendocino County, Cal., L. A. S., 1879 ; 1906).-Upon the point of the highest bluff, about 1 mile south of Point Arena Landing, 48 feet from the nearest edge of the bluff; under the top of the bluff and to the south and southwest of the station were a number of scrub pines. The station was marked by a slate stone sunk \(11 / 2\) feet below the surface of the ground and filled over about 2 feet above the natural surface. In the upper face of the stone a hole one-half inch deep was drilled to mark the station, in which rests the end of a spike driven in center of the signal pole.

Sinclair (Mendocino County, Cal., E. F. D., 1891; 1906).-Situated on the mesa, on the south side of the gulch or canyon leading from the cove to Point Arena, in a small fenced field. In the direction of the light-house it is about 160 meters to the bluff on the south side of the canyon. In the direction of the Catholic Church it is about 30 meters to the eastern fence of the inclosure. In the direction of High Bluff triangulation station it is about 50 meters to the southern fence of the inclosure. The station was marked by a stone ale bottle buried about 2 feet below the surface of the ground and by 4 witness stubs, each 6 feet from the station, one in line to the light-house and one on prolongation of the same line to the southeast, and the other two at right angles, to the northeast and southwest.

\section*{SAN FRANCISCO BAY.}

Ridge (San Mateo County, Cal., R. D. C., 1851-1859).-About 20 miles south of San Francisco, \(41 / 2\) miles south \(20^{\circ} 45^{\prime}\) west of the Public House at San Mateo and 6 miles south \(69^{\circ} 30^{\prime}\) west of the old Angelo, Flashner or Porter House, a well-known hotel at the San Jose road; on a broad ridge forming the northern spur of the Redwood range and
which, at that point, divides the waters flowing, respectively, into the bay and the ocean. The ridge in the vicinity of the station has no remarkable peculiarity; it is comparatively level, free from trees, undergrowth, or outcroppings of rocks. A rich greensward covers the summit of the ridge for 3 or 4 miles north and south. A high round point bears N. \(72^{\circ}\) W., distant \(11 / 4\) miles and between the point and the station there is a narrow canyon about 200 feet in depth. (Note 13, p. 297.) Station was not found in 1907, and a new station, Ridge 2 Eccentric, was established. (Page 302.)

Pise Hill (San Mateo County, Cal., R. D. C., r854).-Near San Francisco Bay, on the top of the range of redwood hills, about a quarter of a mile from the northwest terminus of the redwood forest; about one-half mile from Mr. Pise's house, on the road from the house of Pena in the valley to the northeast of the range of hills to Pise's house on top of the hill and thence to the ocean, about 200 meters from where the road on reaching the crest of the ridge turns to the south, and 24 meters west of the road. The bearings of certain points are as follows: The end of San Mateo Point, N. \(6^{\circ} \mathrm{W}\). ; a high steep hill covered with bushes, S. \(4^{\circ}\) E.; the northeast corner of a fence (within one-fourth mile) S. \(64^{\circ} 30^{\prime}\) E.; a rocky knoll (within 300 or 400 meters) S. \(42^{\circ} 0^{\prime}\) E. (Note 12, p. 297.) Station was not found in 1907, and a new station called Pise Hill 2 established. (Page 302.)

Contra Costa (1) (Alameda County, Cal., R. D. C., 1851-52).-On the east side of San Francisco Bay, about 7 miles southeast of the village of San Antonio, 460 feet S . \(30^{\circ} 10^{\prime} \mathrm{E}\). from a small wharf on the creek, and about 30 feet from high water mark. The azimuth of Estredello's house is \(210^{\circ} 30^{\prime}\) and of Hick \& Co.'s house, which is in line with the wharf, \(167^{\circ} 40^{\prime}\). (Note 13, p. 297.)

Point Avisadero (San Francisco County, Cal., R. D. C., 1851; 1903).-About \(41 / 2\) miles south of San Francisco, on the summit of a symmetrical, round-top hill, about 169 feet high. The station was marked by a stone block, sunk 3 feet in the ground, bearing a leaden bolt, marked with cross lines and covered with coal cinders. A stone block at the surface marking Point Avisadero 2 is 6 feet distant to the south.

San Antonio Creek (Alameda County, Cal., R. D. C., 1851-52).-Within 600 yards of San Antonio, on the north side of the head of San Antonio Creek, on the first hill immediately back of the town; about 85 feet above tide, and 800 meters from the end of Lain's wharf, within 3 feet of a corner of a fence. (Note 13, p. 297.)
\(\stackrel{\square}{Y}\) Yerba Buena Island (San Francisco County, Cal., R. D. C., 1851-52; 1897).—Upon the highest point of Yerba Buena Island. The station was originally marked according to note 13, page 297. It was recovered in 1881 and in 1894 , but there was given no description of the recovered marks nor any new description. In 1897 the center stone was described as level with the surface and bearing a drill hole and cross lines. In 1907 the United States engineer in charge of the Twelfth Light-House District reported that one of his assistants finding the center post badly rotted had replaced it with a new post of redwood with a copper tack carefully centered over the bottle. The marking of this station is in doubt.

San Leandro Point 2 (Alameda County, Cal., A. F. R., 1894-1896).-On San Leandro Point, now usually known as Bay Farm Island, about 20 feet from the shore line on a nearly vertical bluff 6 to 8 feet in height, upon the property of Amos McCartney, about 300 meters south of his house. The nearest house is one occupied by a man named Kammer. (Note 14 p. 297.)

Sierra Point (San Mateo County, Cal., R. D. C., 1851-52; 1894).-On the west side of San Francisco Bay, on the point where the high range of San Bruno makes down to the water. The station is marked by a bottle and coal cinders.

Stony Hill (San Francisco County, Cal., R. D. C., 185I; 1903).—Marked by a bottle, neck up, \(21 / 2\) feet below the surface of the ground.

South (Alameda County, Cal., R. D. C., \(185 \mathrm{I}-52\)).-On the east side of the bay, about \(I, 1 / 3\) miles north of Oakland; on a slight elevation on the east side of the road leading from Oakland to the house of Vincent Peralta; 100 meters from the road and 304 meters N. \(19^{\circ}\) E. from a house on the road, occupied by Vanhooter. (Note 13, p. 297.)

North (Alameda County, Cal., R. D. C., 1851-52).-On the eastern side of the bay, about \(51 / 2\) miles from Oakland, on the county road to San Paolo, on the open plain 920 meters from the bay side and 83 meters east of the road. (Note 13, p. 297.) Center stone buried \(21 / 2\) feet.

Telegraph Hill 2 (San Francisco County, Cal., L. A. S., 188 r ; 1897).-On the summit of Telegraph Hill in San Francisco, a wall of concrete and rubble surrounds the summit and on the north side there is an entrance for carriages through the wall; on each side of the entrance is a post of the same material as the wall. The station is 56 feet from the center of the northeast post and 62 feet 3 inches from the northwest post. The station was marked by a basalt paving block \(7 \frac{1 / 2}{}\) by \(61 / 2\) by 4 inches, set with its upper surface 2 feet below the surface of the ground, the center being marked by a hole 1 inch deep and one-half inch in diameter, into the bottom of which was forced a copper tack. A granite block 2 feet long and 6 inches square on top, was set over the stone, its top projecting 3 or 4 inches above the surface and marked U. S. C. AND G. SURVEY I88ı.

Angel Island Peak (Marin County, Cal., R. D. C., 1852; 1881).-About 30 meters from the western end of the summit of Angel Island. The station was marked by a stone block buried 3 feet in the ground, in which was a lead plug marked with cross lines. Above this was a stake, 5 inches in diameter and projecting 6 inches above the surface.

Point San Jose (San Francisco County, Cal., R. D. C., 1851-52).-On the second point west of Fishermans Bay or North Beach, called on Wilkes chart, Point de San Jose; on the highest part of the bluff, 114.85 feet above high tide and about 150 meters from the water's edge. Reported lost, 1892. (Note 12, p. 297.)

Presidio Hill (San Francisco County, Cal., R. D. C., 1851-52; 1904).-Upon the highest part of the ridge about a quarter of a mile southwest of the barracks at the Presidio military post, at the edge of the woods, in a northwest direction from the gate on the south side of the grounds. The station was marked by cross lines on a lead plug in a sandstone post set \(21 / 2\) feet below the surface of the ground. Over this was placed a granite block, 2 feet long, 6 inches square, projecting about 6 inches above the surface. The top was marked U. S. C. AND G. SURVEY 1881. At a distance of 60.68 feet and in azimuth \(295^{\circ} 47^{\prime}\) is another block of granite, 6 inches square on top.

Lime Point Bluff (Marin County, Cal., R. D. C., 1852; 1857).-On a high bluff nearly due north of the rock known as Lime Rock. It was reported in 1886 that the station marks were all destroyed.

Rocky Island (Contra Costa County, Cal., R. D. C., 1851-52).-On the highest part of the small island lying on the Contra Costa side of the bay, and bearing from the island
of Yerba Buena N. \(10^{\circ} \mathrm{W}\)., and distant \(51 / 2\) miles. (Note 13, p. 297.) Reported lost in 1895. (See Brooks Island, p. 321).

Angel Island Peak 2 (Marin County, Cal., L. A. S., 1881; 1903). -On the summit of Angel Island. The station was marked underground by a spike in the end of a stake 1 foot long, 5 inches in diameter, buried \(2^{1 / 2}\) feet below the surface. Above this was set a granite block 2 feet long, 6 inches square, with its top projecting slightly above the surface and marked U.S. C. AND G. SURVEY, 188 r : Three witness stones were set each 6 feet from the station to the north, south, and east of it.

Russian Hill (San Francisco County, Cal., L. A. S.; 1881-83).-On the summit of Russian Hill, San Francisco; from the station the smokestack of the Clay Street Hill Railroad Company is in range with the right-hand comer of the chimney of the small cottage on the corner of Vallejo and Florence streets. The old tower of Point Bonita Light is about in range with the east gable of the house on top of the hill, corner of Green and Leavenworth streets and the shot tower shows about twice its diameter to the right of a cupola, surmounted by a flagpole. The station was marked by a basalt paving block 8 by 4 by 4 inches, set with its upper surface about \(21 / 2\) feet below the general level of the ground with a hole 1 inch deep and one-half inch in diameter drilled in the upper surface, the center of the hole marking the center of the station. A copper tack was pounded into the bottom of the hole. A block of granite 1 foot long by 6 by 4 inches was set on end with its top level with the surface of the ground and in the upper surface a hole was drilled.

Reservoir (San Francisco County, Cal., L. A. S., \(188 \mathrm{I}-\mathrm{I} 883\); 1900).-On the embankment of the Spring Valley Water Company's reservoir, on the corner of Hyde and Lombard streets, San Francisco; in the middle of the embankment on the north or Lombard street side, and 33 feet from the northeast corner of the roof of the reservoir, 28 feet 9 inches from the edge of the rim of the large pipe at the northeast corner of the reservoir, 34 feet 8 inches from the outer angle of the old gutter and 6 feet 6 inches from the top of the concrete incline at the south edge of the coping of the reservoir. The station was marked by a basalt paving block 8 by 5 by \(41 / 2\) inches, 2 feet below the surface, in the largest face of which a one-half-inch hole was drilled about 1 inch deep and a copper tack pounded into the bottom. The center of the hole is the center of the station.

Point Cavallo 2 (Marin County, Cal., L. A. S., 188 I ; 1900).-On the United States reservation about \(11 / 2\) miles south of Sausalito, near the south end of a bank above a level space which had been excavated in the side of a ridge north of the fortifications. The station was marked by a stone 10 by iz by 8 inches, set 3 feet below the surface, with a hole drilled in its upper face to mark the center. Above this was set a granite block 2 feet long and 6 inches square on top, projecting above the surface and marked U. S. C. AND G. SURVEY i88r. Three witness stubs were set to the north, south, and east of the station and 6 feet distant therefrom.

Point Lobos 2 (San Francisco County, Cal., R. D. C., 1851; 1894).-About the center of the knoll back from the bluff on the south head of the entrance to San Francisco Bay. The station was marked by a bottle buried 3 feet below the surface, over which were placed about 10 inches of sand, then a stone about 6 inches square on top and \(21 / 2\) feet long, with a three-fourths-inch hole, 3 inches deep, drilled in the top of it.

Fort Point (San Francisco County, Cal., R. D. C., 1851-52; 1857).-On the high ground about 220 meters south of the old fort. Reported lost, 1892. (Note 12, p. 297).

Point Lobos (San Francisco County, Cal., R. D. C., 1851 ; 1886).-On the south head of the entrance to San Francisco Bay, on the top of the bluff. The station is marked by a bottle buried 3 feet below the surface, over which was placed a rough gray stone block about 6 inches square on top and \(21 / 2\) feet long, with a three-fourth-inch hole, 3 inches deep, drilled in the top of it. Northwest of the station was a granite block about 6 by 8 inches on top, with the number 330 cut on it. Reported lost in 1892 .

Black Ridge (San Francisco County, Cal., R. D. C., 1852; 1877).-On one of the summits of the range of hills which run parallel with the coast and form the eastern boundary of the sand or drifts, about 751.5 feet above tide and a little over 2 miles from the ocean shore. The station was marked by a stone with a hole in one side of it about one-half inch deep; over this was a bottle, neek up, and over it a marble block \(2 \frac{1}{2}\) feet long and \(53 / 4\) inches square, the top marked with a drill hole and the letters U. S. C. S. Reported lost, 1892.

Sand Knoll (San Francisco County, Cal., R. D. C., 1851-52).—On the ocean shore, about 2 miles south of Point Lobos, on a sand hill, 226 feet above high water and 1410 meters from shore. (Note 12, p. 297.)

Green Bluff (San Mateo County, Cal., R. D. C., 1852).-About 7 miles south of Point Lobos, on top of the bluff, 511 feet above tide and 135 meters from high-water mark. (Note 12, p. 297.)

Cattle Hill (San Mateo County, Cal., R. D. C., 1852).-About \(21 / 4\) miles northeast of the prominent rocky point called Point San Pedro or Point Piedras, on the summit of a high hill, south of the valley of the Calera and distant from the shore or outlet of the Calera 1290 meters. (Note 12, p. 297.)

Cement (San Francisco Counity, Cal., B. A. C., 1877; 1900).-About 340 meters northeast of the western terminal of the Ferries and Cliff House Railroad, on the southeast extremity of Point Lobos, on a barren drift, at a point where the sandstone crops out, and about 50 yards east by south of some rough barren rocks. The station was marked by the neek of a bottle set in cement in the bottom of a hole made in the stone over which was set a granite block 6 inches square, projecting about 4 inches above the surface of the ground and bearing a drill hole filled with lead, marked with cross lines.

Lone Mountain Cross (San Francisco County, Cal., B. A. C., 1877; 1892).-A large wooden cross on the top of the sand hill called Lone Mountain, in the Catholic cemetery.

Colma (San Mateo County, Cal., F. M., 1899).-West of the town of Colma, on a bluff overlooking the ocean, in plowed ground, on a knoll and a little to the south of the highest part of it. An old line fence once crossed the knoll from east to west. In plowing along this a steep bank about 6 or 7 feet high has gradually been formed. The station is about ro feet from the edge of the bank and south of it. The station was marked by a bottle 3 feet below the surface, over which earth was filled in and a square piece of board was put about 2 inches above the top of the bottle.

Fog Cap (San Mateo County, Cal., F. M., 1899).-Southwest of the town of Colma, on the highest point of the bluff overlooking the ocean, about to feet inside of the edge of the bluff, and placed so near it to be as far as possible out of the way of the market gardeners who cultivate all the surrounding land. In the course of a few years the
bluff will probably be washed away and the station wilt be lost. The station was marked by a bottle set 3 feet below the surface, over which earth was filled to the depth of about 2 inches and a square piece of board was put over it.

Pillar Point (San Mateo County, Cal., R. D. C., 1854; 1863).-On land belonging to Mr. Dennison, on top of the hill which is at the extremity of Point Miramontes, between 5 and 6 miles north of, and across Halfmoon Bay from Johnston station. Center marked by the intersection of two lines upon a flat pebble stone buried 2 feet in the ground. Reference marks are copper tacks in the top of three stubs, two in line with the station and the third at right angles to this line, and each 6 feet from the station.

Point Cavallo (Marin County, Cal., R. D. C., 185I-52).-About I \(1 / 4\) miles to the southward of Sausalito, on the summit of a hill, about 124 feet above the tide, forming the eastern point of Horseshoe Bay, about midway of the summit and 30 fect from the edge of the bluff. Reported lost, 1892. (Note 13, p. 297.)

Angel Island Northwest (Marin County, Cal., R. D. C., 1851-52).-On the northwest extremity of Angel Island, nearly at the end of the ridge. Reported lost in 1895. (See Angel Island Northwest, 2, p. 322 .)

Sausalito Point (Marin County, Cal., R. D. C., 1851-52). -On the western side of the entrance to Richardson Bay, about 650 meters north of Sausalito, \(911 / 2\) feet above tide, and about 100 feet from the shore. (Note 12, p. 297.)

Peninsula Hill (Marin County, Cal., R. D. C., 1851-52).-On the summit of the hill opposite Sausalito, which forms the northern point of the west entrance to Raccoon Strait and which is connected with the mainland by a narrow beach and strip of marsh. (Note 12, p. 297.)

Strawberry Hill (Marin County, Cal., R. D. C., 1851-52).-On the summit of the sharp point which makes down from the northward and divides Richardson Bay into two parts. (Note 12, p. 297.)

Point Bonita (Marin County, Cal., R. D. C., \(1851-52\)).-On the highest part of the point (282 feet above high-water mark), being the northern headland of the entrance to San Francisco Bay, on the top of the bluff on the ocean side 430 meters from the extreme end of the point, 140 meters from the bay, and 50 meters from the ocean. The station was reported lost in 1892. (Note 12, p. 297.)

Lafayette Park (San Francisco County, Cal., L. A. S., 188ı; 1896).-In Lafayette Park, just north of the intersection of Clay and Octavia streets. The latitude pier was 5.1 feet east of the station and the "Davidson Equatorial" was mounted upon a pier 37.60 feet south and 16.83 feet east of the station.

Heights (San Francisco County, Cal., J. J. G., 1896; 1897).-At Pacific Heights on the northeast quarter of the block bounded by Pacific avenue, Broadway, Baker, and Lyons streets, 7 paces back from the bluff bordering Broadway, 8 paces east of a board fence, and 30 feet from a corner of the fence, in line with the northeast corner of the fence and with the southwest corner of the school building in the next block east. The station was marked 16 inches below the surface by a stone 12 by 12 by 4 inches, with a copper bolt set in the center and projecting 2 inches above the surface of the stone.

East Diablo (Marin County, Cal., A. F. R., 1887).-On the first point east of Point Diablo and 380 meters distant from it, near the bluff which is rock bound and falls abruptly to the water. (Note II, p. 297.)

New Lime Point (Marin County, Cal., A. F. R., 1887).-Near the top of the steep slope leading from Lime Point fog-station to the battery on Lime Point, about 480 feet above tide. It was reported probably lost by the United States engineers in 1900. (Note II, p. 297.)

West Diablo (Marin County, Cal., A. F. R., 1887 ; 1892).-Upon the round point 350 meters west of Point Diablo, about 160 feet above the water. The ground falls rapidly to the southward and terminates in a rock-bound bluff. (Note 11, p. 297.)

Diablo Hill (Marin County, Cal., A. F. R., 1887).-On the most prominent elevation, 980 meters northwest from Point Diablo, about 400 meters from the nearest point of the beach. (Note II, p. 297.)

Rob (San Francisco County, Cal., G. D., 1877).-Lost. (See Rob 3.)
Rob 2 (San Francisco County, Cal., A. F. R., 1887).-Lost. (See Rob 3.)
Rob 3 (San Francisco County, Cal., A. F. R., I892; 1900).-Upon an artificial bench, graded level, within 50 meters of the Presidio reservation road. The location is known to the United States Army officers at the Presidio. (Note 1 5, p. 297.)

Spring Valley (San Francisco County, Cal., A. F. R., 1892).-Upon the bluff about 40 feet above tide and 75 meters southwest of the outlet of Mountain Lake at the western end of Baker Beach, 120 feet west of a small one-story house belonging to the Spring Valley Water Company. A line from the station parallel to the rear of the house, passes through the center of the rear porch and crosses the board fence west of the house and at a point 35.31 meters from the station. (Note 15, p. 297.)

Point Lobos 3 (San Francisco County, Cal., A.F. R., 1892).-Upon the beach 80 feet below and 312 meters northwest from Point Lobos 2 and about 200 meters west from the site of Point Lobos 1 . The station was marked according to note 15 , page 297, and in addition by a stone block. Recovered in 1900.

Cemetery (San Francisco County, Cal., A. F. R., 1892; 1897).-Upon the southern verge of the higher portion of Point Lobos, slightly lower in elevation and 371 meters from Point Lobos 2. Reported in 1900 as probably lost. (Note i5, p. 297.)

Under Cement (San Francisco County, Cal., A. F. R., 1892).-Upon a comparatively level beach, on the northern slope of Point Lobos, about 150 feet below and 170 meters northwest of Cement. Recovered in 1900. (Note 15, p. 297.)

Highland (Alameda County, Cal., L. A. S., i881). -On the summit of a hill, called by the residents of the neighborhood "Ceritos" (not, however, the hill so named by the Coast and Geodetic Survey), near the railroad station of the same name, just north of West Berkeley. The station was marked by a stone, \(11 / 2\) feet below the surface, with a hole picked in it. The reference marks were three stones, north, south, and east of the station, and 6 feet distant, the north and east stones having holes in them, the south stone none.

High Hill (Contra Costa County, Cal., R. D. C., 1851-52; 1897).-On the summit of the range of hills on the eastern side of San Francisco Bay. The station was marked according to note 13 , page 297, and in 1897 a surface mark was added, consisting of an irregular-shaped rock, the top even with the ground, with a half-inch hole drilled in its upper face to mark center.

Point San Quentin (Marin County, Cal., R. D. C., \(1851-52\); 1899).-On the summit of Point San Quentin 700 meters N. \(29^{\circ} 30^{\prime}\) E. from the state prison. The station
was marked by a stone block, bearing a leaden bolt with cross lines, buried 3 feet; above it and about 2 feet below the surface was placed a sandstone block about 5 inches square on top, with a half-inch hole drilled in its upper face to mark the center. The following measures were made for reference: To the highest rock cropping out of the summit of the knoll, 42.3 feet; to a rocky ledge in line to Marin Island East and San Pedro Point stations, \(\mathbf{2 7 . 2}\) feet; to a drill hole in a rock in line to California City Point, 43.2 feet.

Mound (Contra Costa County, Cal., L. A. S., 188 I).-On a slight mound to the west of San Pablo road and about \(11 / 4\) miles south of San Pablo, on land owned by a man named Boyd, whose house is just at the foot of the mound, to the east. The station was marked underground by half a brick with a hole one-fourth inch in diameter drilled in it. Azimuths of certain points are as follows: Boyd's windmill, \(15^{\circ} 12^{\prime}\); the nearest corner of a square spire in San Pablo, \(151^{\circ} 51^{\prime}\); flagstaff, San Pablo, \(161^{\circ} 09^{\prime}\); north gable of Boyd's barn, \(308^{\circ}\) 19'.

Topog (Contra Costa County, Cal., L. A. S., 1881). -On a small hill on the western side of San Pablo road, on the northwest side of and in a corner close to a ledge of rocks that crop out on the summit. The station was marked by a stone with a hole in it, set about i foot below the surface of the ground.

El Cerrito (Contra Costa County, Cal,, I. A. S., 188 I). -On a hill of the same name, on the north side and about 12 feet from a fence running east and west across the hill. To aid in the recovery of this station, three of the fence posts are notched; the one nearest the station has two notches in it, on one corner about 1 foot from the ground, the other two posts have one notch each. The station was marked by a stone with a hole in it, buried about \(11 / 2\) feet below the surface.

Red Rock=Molate Island (Contra Costa County, Cal., R. D. C., 185 I; 1900).-On top of Molate Island, about 2 miles southwest of the entrance to San Pablo Bay. The station was marked by a bottle, with neck broken off buried 3 feet deep; above it was placed an irregular-shaped sandstone rock, the top even with the surface of the ground, with a half-inch hole drilled in the upper face to mark the center.

California Point (Marin County, Cal., R. D. C., \(1851-52\)). -On the west side of the bay, 3 miles north of Raccoon Strait, on a low point (65 feet above tide) which extends from the shore and is connected with the mainland by a marsh only; on the northern part of the rather flat top. (Note 12, p. 297.) Reported lost in 1897. (See California Point 2, p. 320.)

Corte Madera (Marin County, Cal., R. D. C., 1851-52).-About 1000 meters south of the entrance to Corte Madera Creek, in the bight between Point San Quentin and California Point, on the shore in the edge of the marsh. (Note 12, p. 297.)

Point Richmond 2 (Contra Costa County, Cal., E. F. D., 1897).-On the outer knob of the point, which is connected with the main point by a narrow ridge of rock, about 40 feet above tide. (Note 16, p. 297.)

California Point 2 (Marin County, Cal., E. F. D., 1897; 1900).-For location, see California Point, p. 320. The station was marked with a brick, with a hole drilled in its upper end, buried about 3 feet below the surface and above it a 2 by 3 inch pine scantling extending about a foot above the surface, sawed off square on top, with a wire nail driven into it to mark the center.

Bluff Point 2 (Marin County, Cal., E. F. D., 1897 ; 1903).-About two-thirds mile north of Raccoon Strait, on the first ridge south of Lynde \& Hough's fishery, about 180 or 200 feet above tide. The northwest tangent of Molate Point is in range with the southeast extremity of Red Rock and the summit of the knoll on the northeast end of Yerba Buena Island is in range with the summit of the northeast point of Angel Island. (Note 16, p. 297.)

Brooks Island (Contra Costa County, Cal., A. F. R., 1895; 1897).-On the island formerly called Rocky Island, marked underground by a bottle as in note 14, page 297 and on the surface by a 4 by 4 inch redwood stub, projecting 3 inches above the ground, with a nail in the top. Reported in 1905 as lost.

Marin Island East (Marin County, Cal., E. F. D., 1897; 1899).-On the summit of the larger of the two small islands lying on the western side of the channel, about halfway between Point San Quentin and Point San Pedro; about 75 feet above tide. (Note 16, p. 297.)

Molate Point 2 (Contra Costa County, Cal., E. F. D., I897).-The present station is located on the first knoll of Molate Point, about 120 feet above tide. The station was marked by an irregularly shaped rock about 2 feet long and 8 by 5 inches on top, buried with the top even with the surface of the ground and having a half-inch hole drilled in its upper face to mark the center of the station.

San Pablo Ridge (Contra Costa County, Cal., E. F. D., 1897).-On the eastern side of a prominent knoll of the ridge running up from Point San Pablo to High Hill station about three-fourths mile from the point, about 340 feet above tide. (Note 16. p. 297.)

Point San Pablo 2 (Contra Costa County, Cal., E. F. D., 1897).-About 100 feet above tide, on a flat bench of the ridge which makes back from Point San Pablo at the head of San Francisco Bay. Marked by a copper bolt in a large flat-top rock \(21 / 2\) feet underground, and on the surface by a drill hole in the flat top of another rock. Recovered in 1899.

Point San Pedro (Marin County, Cal., R. D. C., 1851-52; 1886).-On the conical hill which forms the northern head of the entrance to San Pablo Bay, 44.7 feet N. \(39^{\circ} \mathrm{W}\). of the rock on the summit. The top of the hill is inclosed by a barbed wire fence. (Note 13, p. 297.) Over the center was placed in 1887 a sandstone block 8 inches square and 27 inches long, projecting above the ground, dressed square on top and bearing the letters U. S. C. \& G. S. and a drill hole.

Quarry (Marin County, Cal., A. F. R., 1895; 1897).-On the summit of Quarry Point, on the eastern shore of Angel Island. (Note I4, p. 297.)

Judson Point (Alameda County, Cal., A. F. R., 1895).-On the reservoir which is thought to cover the site of Contra Costa (3) the property of the Judson Powder Company. The station was marked by a hole 6 inches deep, excavated in the rim of the reservoir, and filled with pounded glass.

North Brooks (Contra Costa County, Cal., A. F. R., 1895).-On the northern extremity of Brooks Island, on a little islet joined at low water to Brooks Island, but cut off from the main island at high water. Not permanently marked.

Angel Island Southeast 2 (Marin County, Cal., A. F. R., 1895).-On a shoulder of Angel Island in San Francisco Bay. This shoulder is on the southeastern part of the island, and viewing the island from the south appears to be the first prominent shoulder from the east and to be about halfway up the peak. Station is marked by a stone post
\(6348 x^{\circ}-11-21\)

Alcatraz Flagstaff (Marin County, Cal., A. F. R., 1892-1895). -The flagstaff of the United States Army post on Alcatraz Island.

Belvedere Point (Marin County, Cal., A. F. R., 1895; i897).-Upon the extremity oi Peninsula or Belvedere Point. The station was marked according to note 14, page 297, except the stub projected about 2 inches.

Peninsula Hill 2 (Marin County, Cal., A. F. R., 1895).-Near the center of what is now known as Belvedere Hill. The station was marked according to note 14, page 297, except that the stub projects about 3 inches.

Angel Island Northwest 2 (Marin County, Cal., A. F. R., i895; 1897).—Upon. Point Stuart, at the northwest extremity of Angel Island in Raccoon Strait. (Note 14, p. 297, except the top of the stick was about 4 inches above the surface.)

Tiburon Gate Tower (Marin County, Cal., A. F. R., 1895).-.North of Tiburon Ferry landing and in sight from all parts of Raccoon Strait; the ornament at the apex of the conical roof of a circular tower of gray stone.

Ridge Rock (Marin County, Cal., A. F. R., 1895).-A stub in a small outcropping rock on the ridge northeast from Tiburon Ferry slip.

Under Cavallo (Marin County, Cal., A. F. R., i895).-Marked by a stub.
Halfway (Marin County, Cal., A. F. R., I895).-Near Sausalito, marked by a stub.
Richardson East (Marin County, Cal., A. F. R., r895).-About 150 meters south of the county road from Sausalito to Mill Valley, and west of the most southern point of the road before its junction with the road from Point Bonita. (Note 14, p. 297.)

Strawberry Hill 2 (Marin County, Cal., A. F. R., 1895).-About 190 feet above the tide, on the summit of the sharp point which makes down from the northward and divides Richardsons Bay into two parts. Not marked.

Oakland Point (Alameda County, Cal., L. A. S., 1881).-On the Central Pacific Railroad filling at Oakland Point about 200 yards outside of the old shore line, on the outside of the filling clear of all tracks and 7 feet from the outer rail of the outer track of the four parallel lines of track; at a point \(181 / 2\) feet to the west of the station there is a switch in the outer track, and it divides and begins to curve to the right, looking shoreward; this switch is the farthest one out from shore in that locality. The station was marked by a smooth oval stone in which a hole is drilled one-half inch deep. The upper surface of the stone is \(11 / 2\) feet below the surface of the ground.

Alameda Wharf (Alameda County, Cal., L. A. S., 1881). -On the northern arm of the ferry slip (no longer used as such) at Alameda wharf and close to its outer extremity. The station was marked by a nail driven into the planking of the wharf and surrounded by four other nails in the form of a square. The following distances and reference marks are given to aid in finding the station: A small notch in the plank of the extreme end of the slip is 19 feet \(5 \frac{1 / 2}{2}\) inches from the station; three nails in a vertical row facing the station, on a hitching pile projecting through the planking of the wharf, near the end of the slip, are io feet \(51 / 2\) inches from the station; three nails in the side of the stringer, on which the planking rests over the edge of the wharf, between it and the row of fender piles, abreast of the station, are 5 feet 6 inches from the station.

North Twin (San'Francisco County, Cal., A. F. R., 1894).-Upon the northern one of the Twin Peaks known as Las Papas, about 925 feet above high water, and very nearly on the western prolongation of Market street, San Francisco. (Note 14, p. 297.)

Point Avisadero 2 (San Francisco County, Cal., R. D. C., 1851-52).-See Point Avisadero, page 314.

Visitation Knob (San Francisco County, Cal., F. M., 1903).-On top of the most marked summit close to the bay shore south of San Francisco, in a deep crevice of the outcropping rocks. Station was marked by a tack in the end of a piece of scantling 4 inches long, and by two reference marks consisting of holes drilled in neighboring rocks, as follows: One, in the top of a large rock which shows a little to the left of the Catholic Orphan Asylum, is distant 6.15 feet from the station; the other drill hole is in the top of a rock which shows a little to the right of Shag Rock, and is 6.57 feet from the station.

Candlestick Point (San Francisco County, Cal., A. F. R., I894).-On the shore line point southeast from and under Visitation Knob; about 130 feet above high water, on a point immediately under which, near high water mark, is a sharp pinnacle rock about 8 feet in height. (Note 14, p. 297.)

Lower Sierra Point (San Mateo County, Cal., A. F. R., 1894).-On the point where the San Bruno Mountain terminates. (Note 14, p. 297.)

Baden Hill (San Mateo County, Cal., A. F. R., 1894).-On a well-defined peak, 165 feet high and 300 meters northwest of the stock yards at Baden or South San Francisco. (Note 14, p. 297.)

Oyster Point (San Mateo County, Cal., A. F. R., 1894).-On the summit of the marked point rising to 50 feet above high water, the first point south of Sierra Point, forming a small shoal-water bay. (Note 14, p. 297.)

Belair Island (San Mateo County, Cal., A. F. R., I894).-On the summit of the little island in the salt marsh lands on the western shore of San Francisco Bay, about \(11 / 4\) miles southwest from San Bruno Point, about 60 feet above high water. (Note 14, p. 297, except the stub projects 2 inches above the ground.)

Point San Mateo Extremity (San Mateo County, Cal., A. F. R., 1894).-On the northeast extremity of Big Coyote or San Mateo Point, on a narrow point about 15 feet above high water, to the southeast of the eastern one of two northern peaks of the promontory. (Note 14, p. 297.)

Angelo 2 (San Mateo County, Cal., A. F. R., 1894).-Near Belmont, on the railroad from San Francisco to San Jose, on land owned by Wm. M. Newhall, about 400 meters north of his house, on the top of a hill. The station was marked by a stone marked ANGELO U. S. C. AND G. S., the top placed level with the ground.

Union City Creek (Alameda County, Cal., A. F. R., 1894).-Upon the eastern shore of San Francisco Bay, upon the south side of the mouth of Union City Creek, close to the bay shore. The station was marked by a bottle \(21 / 2\) feet below the surface of the ground.

Coyote Hill Creek (Alameda County, Cal., A. F. R., I894).-At the mouth of Coyote Hill Creek. Signal was a redwood scantling, 4 inches square and 12 feet long, supported by 4 braces. Not marked.

West Point (San Mateo County, Cal., A. F. R., 1894).-On the western shore of the southern part of San Francisco Bay, nearly 2 miles north of Ravenswood warehouse; on the shore of the bay and edge of the salt marsh at a place where the marsh holds deposits of white shells. (Note 14, p. 297.)

South Red Hill (Alameda County, Cal., A. F. R., 1895; 1896).-On top of the spur of Coyote Hills making out to the southward, about 200 meters southwest of the highest point on all these hills. The station was marked by a bottle buried 2 feet for a center mark, over which was set a redwood block 4 inches square by \(21 / 2\) feet long, with top of the block 6 inches above the surface and the center marked by a copper tack.

Dumbarton oysterhouse (San Mateo County, Cal., A. F. R., 1894). The flagstaff on a substantial white building supported by piles, the property of the Morgan Oyster Company, about the center of the open area shoal water at the southern end of San Francisco Bay and about \(15 / 8\) miles south of Potrero or Dumbarton Point.

San Francisquito Creek 2 (San Mateo County, Cal., A. F. R., 1894).-About onehalf mile northwest of the mouth of San Francisquito Creek, on the edge of the newly made marsh land. Not marked.

Alviso (Santa Clara County, Cal., A. F. R., I896).-On the marsh land 700 meters west of the entrance of Alviso Slough and io paces back from the bank. The station was marked by a copper tack in a piece of redwood scantling 4 inches square and 6 feet long, driven through the sod and into the soft mud beneath until it projects only io inches above the ground. Three stubs, 4 inches square and 4 feet long, were driven in flush with the surface to hold the tripod. The pole, 4 inches square and 18 feet long, stood on the top of the center stub and was secured to four other stubs driven in the ground for the purpose.

Mowry's oysterhouse (Alameda County, Cal., A. F. R., 1894-96).-The flagstaff on the substantial white building of the Morgan Oyster Company, built on piles and located near the channel entering Mowrys Creek.

Albrae (Alameda County, Cal., A. F. R., 1896).-On the platform at the side of the narrow gauge railroad at the proposed town site of Albrae, about 200 meters north of a small station house designated "Albrae." The platform is 36 feet long and 8 feet wide and elevated about 2 feet above the track. The station was marked by a wire nail driven in the 2 -inch plank over the middle of the five bents which support the platform and on the third plank from the east, or 31 inches from the east edge of the platform.

Dyke (Santa Clara County, Cal., A. F. R., 1896).-About 1200 meters west of Milpitas landing on Coyote Creek on top of the dyke inclosing some 300 acres of reclaimed land, known as "The Island." Station is 3I paces southeast of the south bank of a slough 15 meters wide, which is cut off by the dyke, 310 paces northwest of a flood gate for draining the canal which surrounds the island inside the dyke, and 15 paces west of a bend in the dyke and canal and on the highest knob of the dyke in this vicinity. The flagstaff of Warmsprings schoolhouse is in line with the right tangent of old limestone quarry near the top of Contra Costa hills. The station was marked by the mouth of a bottle sunk 2 feet below the surface, over which was a fir block, projecting 2 feet above the surface, on which the center was marked by a wire nail. The hole was partly filled with cinders.

Goucher (Alameda County, Cal., R. D. C., 1851-52).-At the head of Mowrys Creek in the southeastern part of San Francisco Bay, about 960 meters from the small white house at Mowrys landing, on the land of Doctor Goucher, and about 214 meters from his house. The country is almost uniformly level in this vicinity, without distinguishing
marks; the spot, however, where the station is forms a slight elevation scarcely perceptible from a distance. (Note 13, p. 297.) Center stone I foot 5 inches below the surface. Each reference stone has no lead bolt, but has cross lines cut in the store.

Union Island (Alameda County, Cal., R. D. C., 1851, 1857). On the summit of Union Island, the northernmost of two small islands lying about 3200 yards to the southward of Union City and to the northwest of the Red Hills. The mouth of a small creek bears S. \(70^{\circ} \mathrm{W}\). Station is on summit of island \(\mathrm{I}_{3} 0\) feet above tide and 47 feet S. \(80^{\circ} \mathrm{W}\). from a large rock. Center is marked by a stone block sunk 3 feet in the ground, while for reference marks three other blocks were set 6 feet from the center, with squared tops just above the surface of the ground.

Point San Mateo (San Mateo' County, Cal., R. D. C., 1851, 1895).-On San Mateo Point, an island on the west side of San Francisco Bay, about 15 miles to the southward of San Francisco and \(11 / 4\) miles northwest of the mouth of San Mateo Creek. Known as Big Coyote and separated from the mainland by creeks and marsh. (Note 12, p. 297, coal cinders being placed over the bottle.)

Mowrys Creek (Alameda County, Cal., R. D. C., 1852).-On the northeastern bank of the southern entrance to Mowrys Creek in the southeastern part of San Francisco Bay. On the open marsh, 8 meters from high-water line. (Note 12, p. 297.)

San Antonio Point (Alameda County, Cal., R. D. C., 1852).-On the east side of San Francisco Bay, i mile N. \(47^{\circ} 30^{\prime}\) W. from the mouth of San Antonio Creek; on the fast land 20 feet from the edge of the bank. (Note 12, p. 297.)

Middle Point (Alameda County, Cal., R. D. C., 1852).-On the east side of San Francisco Bay on the extreme western point of the peninsula formed by San Antonio and San Leandro creeks; 40 feet from high-water line and 330 meters S. \(26^{\circ} 30^{\prime} \mathrm{E}\). from the junction of the line of marsh and the fast land. (Note 12, p. 297.)

Ditch (Cutts) (Alameda County, Cal., R. D. C., 1852).-In the marsh on the east side of San Francisco Bay, about \(31 / 2\) miles southeasterly from Contra Costa (r), or Wicks landing. Locality is distinguished by a fresh-water pond and a ditch connecting it with the bay. Station is 6 yards south of the ditch, 250 yards from the pond, and 90 yards from the bay shore. Center is marked by a stone, while three redwood reference stubs are 6 feet from the center.

Dumbarton Point (Alameda County, Cal., A. F. R., 1895).-On Potrero Point on the salt marsh near the red flume house of the Spring Valley Water Company. Marked by a bottle \(21 / 2\) feet below the surface of the ground and a 2 -foot stub projecting 3 inches above the ground.

Ravenswood old wharf flagstaff (San Mateo County, Cal., A. F. R., 1895).-On the southeast corner pile of the remains of the old wharf at Ravenswood landing in the southern part of San Francisco Bay.

South South Tree (San Mateo County, Cal., A. F. R., 1894).-A prominent tree, the upper half of which is dead.

Peak flag (Alameda County, Cal., A. F. R., 1894).-In the center of a pile of rocks on the summit of the Coyote or Red Hills. A flag placed by the United States Geological Survey.

Chinahouse east gable (San Mateo County, Cal., A. F. R., 1894).-East gable of a small unpainted house or shanty on the north bank of Redwood City Creek and on the south side of the first creek making into Redwood City Creek west of its mouth.

Redwood City Creck (San Mateo County, Cal., A. F. R., 1894).--On the point on the northern side of Redwood City Creek on the salt marsh close to the shore of San Francisco Bay. It is close and south of a small building belonging to the Morgan Oyster Company and known as the Redwood Oyster House. Marked by a bottle \(21 / 2\) feet below the surface.

Angelo Creek (San Mateo County, Cal., A. F. R., 1894).-About one-half mile north of the mouth of Angelo Creek. (Note 14, p. 297.)

San Mateo oysterhouse north gable (Alameda County, Cal., A. F. R., 1894).-North gable of a small white building belonging to the Morgan Oyster Company, on the salt marsh lands near the shore of San Francisco Bay.

Coyote warehouse south gable (Alameda County, Cal., A. F. R., 1894).-The south gable of an old and apparently deserted building supposed to belong to the Morgan Oyster Company, and situated about one-fourth mile east of Coyote Creek triangulation station.

San Mateo eucalyptus tree (San Mateo County, Cal., A. F. R., 1895).-About the center of the grove of eucalyptus trees covering San Mateo Point, sometimes called Big Coyote. The trees are planted in rows not over to feet apart, and are about 50 feet high; the tree observed on and determined is about io feet higher than any other in the grove.

Coyote house stovepipe (San Mateo County, Cal., A. F. R.,' 1894).-The stovepipe of a white building on the south side of Coyote Creek.

Red house cupola (Alameda County, Cal., A. F. R., 1894).-Cupola with flagstaff on the center of the roof of a small red building used as a lodging and boarding house by the Union Pacific Salt Company. On the south side of Union City Creek, and about 300 meters from the shore of the bay.

Bay Farm (Alameda County, Cal., A. F. R., 1894).-On the southeasterly extremity of Bay Farm Island. (Note 14, p. 297.)

San Leandro eucalyptus tree (Alameda County, Cal., A. F. R., I894).-The tallest tree on Bay Farm Island, being about 60 feet high and overtopping the hedges of osage orange trees. On land belonging to an old settler named Cleveland.

Boardinghouse flagstaff (Alameda County, Cal., A. F. R., 1894).-Flagstaff in the center of a lookout platform surmounting a salt warehouse, belonging to the American Salt Company. It is about 1 mile south of Haywards landing and within 100 meters of the bay shore.

Triple warehouse northeast gable (Alameda County, Cal., A. F. R., 1894).-At Haywards landing, close to the shore. The northeast gable of what was at the time it was observed upon a triple warehouse, or three-gabled building. Later a fourth building was added on the east, making the station the gable next to the northeast gable. The new building is painted white; the old dark red.

Mulford Landing (Alameda County, Cal., A. F. R., I894).-On the eastern side of San Francisco Bay, on the southern side of the salt marsh slough which makes in from the bay at Mulford landing; \(3^{1 / 2}\) miles southward from Bay Farm Island, and 170 meters from the warehouse at the landing, which is on the opposite side of the slough from the station. (Note 14, p. 297.)

Roberts Landing (Alameda County, Cal., A. F. R., I894).-On the bay shore, on the west side of the slough entering the bay at Roberts landing, formerly called Thompsons landing, on land owned by a man named Roberts. (Note 14, p. 297.)

Double Rock east peak (San Francisco County, Cal., A. F. R., 1894).-The eastern peak of a rock in the bight southwest of Point Avisadero, within 200 meters of the shore line. At extreme low tide it is surrounded by mud flats.

Bernal (San Francisco County, Cal., F. M., 1903).-On the crest of the ridge making off from the south side of Bernal Heights, and 4 meters north of the highest point in the vicinity. In the city block between Putnam and Bronte streets, and east of the line of Ellert street. It is about 32 meters from the center of the sewer manhole in Putnam street, and 16 meters from the north line of Bronte street as fixed by the fence line. It is marked by a hole in a buried stone.

Start (San Francisco County, Cal., F. M., 1903).-On the sidewalk on the west side of Kentucky street, and about 100 meters north of Army street. It is 3.2 feet inside of the outer edge of the curbstone, and 3.2 feet from the southwest corner of pole No. 176 of the Independent Electric Light and Power Company. Marked by a drill hole onehalf inch deep in a small piece of serpentine buried 2 feet below the surface of the ground.

Mile (San Francisco County, Cal., F. M., 1903).-About 60 feet above the bay on the side hill back from the first point north of Hunters Point, and about at the intersection of Avenue \(S\) and I street south, neither of which are at present cut through. A drill hole with a triangle cut around it in an outcropping ledge about 8 feet long is ro.5 feet from the station in the direction of Hunters Point; a rock southwest of the station has a hole drilled in face toward the station distant 29.4 feet; from this second reference mark the station is in line with the left tangent of Goat Island. Station is marked by a hole in a buried stone.

Army (San Francisco County, Cal., F. M., 1903).-On crest of ridge south of Army street, and as nearly as can be judged from city maps (streets not being cut through south of Army street) in the block bounded by Army, Marin, Arkansas, and Wisconsin streets. About 52 meters south from the edge of the bluff of the Army street cut. Center is marked by a small drill hole in the ledge, even with the surface of the ground.

Quarter (San Francisco County, Cal., F. M., 1903).-At Butchertown on the sidewalk on the west side of Kentucky street, about 6 meters north of the building line of the slaughterhouses on the north side of First avenue, 4 feet inside of the outer edge of the curbstone and 48 feet south of a fire hydrant. Marked by a shallow hole in a stone buried 2 feet below the surface of the ground.

Half (San Francisco County, Cal., F. M., 1903).-Located among the hogpens of Butchertown, in what would be Fourth avenue south if that street were cut through, and between M and N strects south. Station is 23.6 feet from the southwest corner of Cohen's China Duck House, 34.7 feet from the northwest corner of McCarty's shanty, and 92.3 feet from the northeast corner of the wagon shed attached to the east end of Monehan \& Sons' stable. Marked by a stake driven in the soft muck.

Two-Mile (San Francisco County, Cal., F. M., 1903).-On ridge leading south from Point Avisadero triangulation station and about 205 meters from it. From the station Shag Rock is in range with the point coming down from San Bruno Mountain ridge; the low point below Baden is in range with left hand of two wooded peaks; and Grizzly

Peak is over the middle of the pump house at the dry dock. Station is marked by a shallow hole in a buried stone (piece of jasper).

Hunters Point chimney 2 (San Francisco County, Cal., F. M., 1903).-The large brick smokestack of the pumping plant at the Hunters Point Dry Dock.

Melrose smelting-works chimney (Alameda County, Cal., A. F. R., 1894).-On the line of the Central Pacific broad gauge, about 3 miles south of Fruit Vale railroad station and 650 meters south of the Alameda race track. A brick chimney.

South Shag Rock (San Francisco County, Cal., A. F. R., 1894; 1903).-On the highest point of Shag Rock, a small islet about one-half mile southwest of Point Avisadero. Center marked by a bottle \(21 / 2\) feet below the surface of the ground.

San Leandro Point, McCartney's white tank (Alameda County, Cal., A. F. R., 1894).-Water tank with windmill attached 50 meters north of McCartney's house, belonging to Amos McCartney. The vertical shaft of the windmill was determined.

Roberts' warehouse (Alameda County, Cal., A. F. R., I894).-A black streak down the front of a building at Roberts Landing, on the east side of the slough and about 350 meters from its mouth.

South Point (San Mateo County, Cal., A. F. R., 1894).-Located at the southern extremity of the ridge under Visitation Knob. (Note 14, p. 297.)

Pinnacle Rock (San Mateo County, Cal., A. F. R., 1894).-A pinnacle-shaped rock off Candlestick Point, just below San Francisco; the only rock in the immediate vicinity.

Agnews (Santa Clara County, Cal., A. F. R., 1896).-A tall square spire (the largest and most conspicuous) at the Agnews Insane Asylum.

Old hut southeast gable (Santa Clara County, Cal., A. F. R., 1896). -Southeast gable of an old abandoned hut near the east bank of Alviso slough and about midway between the mouth of the slough and the town of Alviso.

Old shed southeast gable (Santa Clara County, Cal., A. F. R., i896).-Southeast gable of an old abandoned shed near the east bank of Alviso slough and about halfway from the mouth of the slough to the town of Alviso.

Tuft (Alameda County, Cal., A. F. R., r896).-A little more than 2 miles northeast of Albrae, a tall tree, probably an eucalyptus standing near a farmhouse, has its limbs trimmed for a space below the top of the tree, leaving a tufted top, which is quite a conspicuous object.

Warehouse southeast gable (Santa Clara County, Cal., A. F. R., 1896).-The southeast gable of a large unpainted warehouse standing by itself on the marsh west of the town of Alviso.

Albrae tile chimney (Alameda County, Cal., A. F. R., 1896).-A small tile chimney on a dwelling house which stands 235 meters east of station Albrae (see page 324). It belongs to the company which laid out the town site of Albrae.

Noonan water tank (San Mateo County, Cal., A. F. R., 1894).-A large white water tank, adjoining a large white building about 2 miles south of San Bruno House, and one-half or three-fourths of a mile westward of the line of the San Bruno wagon road. On the property of Jeremiah Noonan, a furniture dealer of San Francisco.

San Bruno House minaret (San Mateo County, Cal., A. F. R., 1894).-An ornament on the ridge of the roof of the San Bruno House, 15 miles by road from San Francisco on the San Francisco to San Jose Railroad.

Red cupola (San Mateo County, Cal., A. F. R., I894).-The cupola of the public school building at Baden or South San Francisco.

Ewells XL Dairy smokestack (San Mateo County, Cal., A. F. R., 1894).-The black iron stack of Ewell's XL Dairy, about 10 miles south of San Francisco on the San Bruno road.

Point Lobos Windmill (San Francisco County, Cal., G. D., 1883).-Center of the standard of a windmill, which, with a white wooden tank, stands on an unpainted wooden scaffold in that part of the city cemetery belonging to the French Benevolent Society, near Point Lobos 2 station (see page 316), on the south side of the entrance to San Francisco Bay.

Fort Point Life-Saving Station (San Francisco County, Cal., A. F. R., 1895).-The' flagstaff in front of the keeper's dwelling at the Fort Point Life-Saving Station.

Bonita Bluff (Marin County, Cal., A. F. R., 1887).-On the shore 120 meters from the southeast end of the Bonita Light-House reservation fence, south and a little west from the end of that fence on the bluff. Reported in 1900 by the United States engineers as probably lost. (Note in, p. 297.)

North Bonita (Marin County, Cal., A. F. R., 1887; 1900).-Upon the most northern projection of Bonita Point, on the ocean cliff; on a knoll 260 feet high, the west side of which is nearly vertical and the east side a gradual slope; about one-fourth mile northwest of the old white tower, a conspicuous object on Point Bonita. (Note 11, p. 297.)

High Bluff (Marin County, Cal., A. F. R., 1887-1892).-On a prominent eroded bluff 450 feet above high water and 1400 meters west of Lime Point fog-station.

Alcatraz fog-bell (Marin County, Cal., A. F. R., 1892). -The center of the bell on the southeastern extremity of Alcatraz Island.

Point Diablo (Marin County, Cal., R. D. C., 1851 ; 1886). -On Point Diablo, on the northern side of the Golden Gate. This point is connected with the highland behind it by a very narrow ridge which makes the station a difficult and dangerous one to reach. Marked by a hole drilled 2 feet into the rock (sandstone) to receive the end of the pole.

Oakland Point Railroad depot flagstaff (Alameda County, Cal., G. D., 188ı; 1895).The flagstaff on the inner or eastern end of the depot building of the Southern Pacific Railroad at Oakland Point.

Point Blunt Rock (Marin County, Cal., A. F. R., 1892).-The most prominent detached rock, about 15 feet high, lying off the southeastern extremity of Angel Island.

Angel Island, United States flagstaff (Marin County, Cal., A. F. R., 1895).-The flagstaff at the United States Army post on the western side of Angel Island.
'Angel Island fog-bell (Marin County, Cal., A. F. R., 1892; 1900). -The center of the bell at Angel Island fog-station on Point Knox, on the western side of the island.

Contra Costa (3) (Alameda County, Cal., R. D. C., I852). -On the northern and highest part of the hill at what is now called Fleming Point, directly on the bay shore about 5 miles above the Oakland piers. This hill is isolated from the mainland by a marsh and a narrow sand beach. Station is marked by a small drill hole in a flat rock 3 feet under the surface of the ground. Surface marks are three reference marks, stone blocks 4 inches square and i4 inches long with squared tops level with the surface of the ground, in each of which is a lead plug with cross lines exactly 6 feet from the center of the station.

Quarry hyd. (Marin County, Cal., A. F. R., i895).-At high water mark, under Quarry Point, on eastern side of Angel Island.

Fence signal (Marin County, Cal., A. F. R., 1895).-A flag and pole nailed on the fence in the bight north of Strawberry Hill station.

Marsh Point (Marin County, Cal., A. F. R., i895).-On the little marsh point about 1 mile west of Strawberry Hill station, and projecting into the channel of Richardson Bay which leads into Reeds Creek. Not marked save by signal, a redwood scantling.

Brooks Island 2 (Contra Costa County, Cal., B. A. B., r905).-On the highest point of Brooks Island. Marked by a large wire nail driven in the top of a 4 by 4 -inch pine stub.

Black-roof house (Marin County,.Cal., A. F. R., 1895).-A house with pyramidal red roof, fronting the bay, on the line of the San Francisco and Northern Pacific Railway, three-fourths mile north of Belvedere, and owned by John Reed, of Reed's ranch.

Bridge Point (Marin County, Cal., A. F. R., I895).-A point of rock undermined by the waves, and projecting close to the water line. This is on the point on the northern side of Raccpon Strait, and about midway between Tiburon Point and Bluff Point.

Angel Island white tank (Marin County, Cal., A. F. R., 1895). The northern and eastern of three water tanks on the hill above the quarantine station at Angel Island.

Isabel Pile (Contra Costa County, Cal., A. F. R., I895).-A single pile, the remains of an old wharf at Point Isabel.

Bluff Point North Base (Marin County, Cal., H. C. D., 1903).-Near the northern boundary of the property of Lynde and Hough, at California City, being 6 inches inside or south of said boundary fence. Marked by a piece of water pipe i inch in diameter driven into the ground 4 feet, 3 inches of it remaining above the surface. A tree with a ro-inch triangle cut in it bears northeast from the station, distant \(1351 / 2\) feet; a small bowlder, about 2 feet above the ground, is 4 feet southeast of the station.

Fence (Marin County, Cal., H. C. D., 1903).-Located on the western boundary of the property of Lynde and Hough, at California City, \(5^{1 / 2}\) feet from the northwest corner of the fence line. Marked by a beer bottle buried 6 inches below the surface of the ground.

Bluff Point South Base (Marin County, Cal., H. C. D., 1903).-At California City, 4 feet south of the south side of the wharf on the Lynde and Hough property, and \(421 / 2\) feet from the southeast corner of the wharf. Marked by a rock drill I inch in diameter driven 2 feet into the ground, 4 inches remaining above ground.

Corinthian Clubhouse flagstaff (Marin County, Cal., A. F. R., 1895).-The flagstaff on the clubhouse on the southern end of the small island in Raccoon Strait, cut off from Belvedere by a slough, and joined to the mainland northeast of it by a sand spit.

Belvedere telegraph pole (Marin County, Cal., A. F. R., 1895).-On the southwestern end of the sand spit which connects Belvedere hill with the mainland. The pole is irregular in shape, knotty, and larger than any other in the vicinity. On its south side, toward the town of Belvedere, a triangle surrounding the letters U.S.C.S. was formed of wire nails driven in.

Reservoir (Marin County, Cal., A. F. R., I895).-On the northwest shore of Raccoon Strait, on the inshore side of an old abandoned tank or reservoir, excavated, lined with brick, and covered with boards.

Raccoon Point (Marin County, Cal., A. F. R., 1895).-At the southeast extremity of Bluff Point, on the rocky beach close to high water mark. The fragments of a bottle were placed in a crevice under the foot of the signal.

Railroad Curve Telegraph Pole (Marin County, Cal., A. F. R., 1895).-A telegraph pole at the northern end of a curved trestle, the second railway trestle north of Sausalito. It is the third pole from the northern end of the trestle, it stands alongside of a fence, and is marked with a triangle surrounding the letters U. S..C. S. formed of wire nails driven in.

San Pablo flagstaff (Contra Costa County, Cal., G. D., i88r).-A large flagstaff on the main street in the town of San Pabio.

Ellis Landing barn inner gable (Contra Costa County, Cal., G. D., 1881).-The east gable of the southernmost of two large barns situated on the marsh at Ellis Landing, west of El Cerrito.

San Rafael Creek (Marin County, Cal., R. D. C., 1852).-On the summit of a point about one-half mile to the eastward of the mouth of San Rafael Creek. Station is about 102 feet above high water mark. (Note 12, p. 297.)

Cove (Marin County, Cal., R. D. C., 1852).-On the bay shore in the little cove lying just west of Point San Pedro, and not more than a foot or two above high water line. (Note 12, p. 297.)

Point Cavallo tip (Marin County, Cal., A. F. R., 1892).-The extreme southern end or tip of Point Cavallo.

Flat Rock (San Francisco County, Cal., A. F. R., 1892).-A sheiving flat rock, the highest part not over 5 feet above high water, 200 meters southwest from Pyramid Rock (p. 333) and the same distance from the shore.

Bonita Bight (Marin County, Cal., A. F. R., 1887).-Approximately halfway between Point Bonita and Point Diablo, and 100 meters inshore from the very marked object called "Shore-Cone." Station is approximately 160 feet above the water. (Note 11, p. 297.)

Rock Point (Marin County, Cal., A. F. R., 1895).-A sharp pointed rock jutting over the shore line in the bight northeast of Strawberry Hill.

Carson telegraph pole (Marin County, Cal., A. F. R., 1895).-The only telegraph pole on the bluff I mile northwest of Belvedere Hill. The line of the San Francisco and Northern Pacific Railway crosses and cuts this bluff. The pole is 20 meters north of the railway, and alongside the railway fence.

Railroad tank (Marin County, Cal., A. F. R., 1895).-A prominent red-painted tank on the bluff west of the northern end of the first railroad trestle north of Sausalito.

Marin Island (Marin County, Cal., R. D. C., 1852).-About 63 feet above tide, on the eastern end of the larger of the two small islands in the northern end of San Francisco Bay, on the western side of the channel. (Note 12, p. 297.)

Angel Island East Point (Marin County, Cal., A. F. R., 1895).-On the northeast point of Angel Island, on the point called Point Campbell. Not marked.

Angel Island Middle Point (Marin County, Cal., A. F. R., 1895).-On the abrupt rocky point which forms the western head of quarantine hospital cove. The point is very rocky and covered with oak brush.

Alcatraz Rock (Marin County, Cal., A. F. R., 1895).-The well-known rock projecting but little above high water, approximately 140 meters westerly from the northwest extremity of Alcatraz Island.

Lime Point fog-station (Marin County, Cal., A. F. R., i892).-The south smokestack at Lime Point fog-station. The station building and the rock upon which it is built are white and the station has two black stacks.

Needles (Lime Rocks) (Marin County, Cal., A. F. R., 1892). -The largest and highest rock under Lime Point, being one of the Needles, so called because of their slender pointed shapes.

Yellow Bluff tip (Marin County, Cal., A. F. R.; 1892).-A sharp rock marking the extremity of the shore line at the yellow bluff under Point Cavallo 2 station. This point is rock bound and is remarkable for the strong rush of the tide setting past it on the ebb.

Point Richmond tip (Contra Costa County, Cal., A. F. R., 1895).-A knob or projection just above the water on the extreme western end of Point Richmond.

Brooks Rock (Contra Costa County, Cal., A. F. R., 1895).-The center and highest point of the rock about 150 meters west of Brooks Island.

Fort Rock (San Francisco County, Cal., A. F. R., 1892). -The wash rock northeast of Fort Point Light-House, and less than 50 meters from the face of the sea wall at Fort Point.

Blackhead Rock (San Francisco County, Cal., A. F. R., i892).-A small seaweedcovered rock under the Point Lobos shore. Near to and southwest of Pyramid Rock. (Page 333.)

Fort Point Rock (San Francisco County, Cal., A. F. R., 1887).-The largest of the cluster of rocks about 300 meters southwest of Fort Point Light-House.

Spring Valley Rock (San Francisco County, Cal., A. F. R., 1892).-A rock on the south shore of the Golden Gate, barely detached from the bluff behind it, 550 meters southwesterly from the Baker Beach Life-Saving Station, and 400 meters westerly from the mouth of Mountain Lake outlet.

Cone Rock (Sail Rock) (Marin County, Cal., A. F. R., 1895).-A rock about so feet in height, in the entrance to Richardson Bay. It is the shape of an irregular cone, but from its resemblance to a boat when seen from certain directions is also called Sail Rock; also called Richardson Rock. It is about one-fourth mile south of Pescada landing on the western shore of Belvedere Hill.

Helmet Rock (San Francisco County, Cal., A. F. R., 1887-1892).-The largest of two prominent detached rocks I o50 meters southwesterly from Fort Point Light-House and approximately halfway between the light-house and Bakers Beach Life-Saving Station.

Belvedere Rock (Marin County, Cal., A. F. R., 1895).-The highest point of a small flat rock in Raccoon Strait off Belvedere Point. The rock is not over 8 feet in diameter, and less than 18 inches above high water.

Angel Island Wharf House West Gable (Marin County, Cal., A. F. R., 1895).-The west gable of a red-painted warehouse on the wharf at the military post on Angel Island.

Tiburon Rock (Marin County, Cal., A. F. R., 1895).-A small round rock about 10 feet high and io feet in diameter, in Raccoon Strait east of the Tiburon Ferry Landing.

Lobos Rock (San Francisco County, Cal., A. F. R., 1887 ; 1892).-A prominent rock 600 meters south from the larger Mile Rock. It is 30 feet in height and 210 meters from the nearest point on the shore line. A similar looking but larger rock, 50 feet in height, is 170 meters southeasterly from Lobos Rock, and at low water has a rockribbed connection with the Point Lobos shore.

Pyramid Rock (San Francisco County, Cal., A. F. R., 1887-1892).-A prominent rock, of the shape of an irregular pyramid, about 30 feet high, and is the most northern of the outlying shore rocks along the Point Lobos shore. It is 150 meters distant from the nearest land on the Point Lobos shore, called Lands End or Railroad Point.

Mile Rock (San Francisco County, Cal., A. F. R., 1887-1892).-The larger of the two rocks known as Mile Rocks, about 700 meters from the nearest shore line on Point Lobos.

Little Mile Rock (San Francisco County, Cal., A. F. R., 1887-1892).-The smaller of the two well-known Mile Rocks, about 50 meters southeast of the larger rock, 650 meters from the nearest shore line on Point Lobos, and a little less than 2 miles from the extremity of Point Bonita.

Double White (Marin County, Cal., A. F. R., 1892).-Two slight projections of rock separated by only a few feet, and just above high-water line in the deepest part of the indentation of shore line between Points Bonita and Diablo.

Bonita Rock (Marin County, Cal., A. F. R., I887-1892). -The most prominent and most southern outlying rock south of Point Bonita Light-House. It is 20 feet high and cone shaped when seen from the Point Lobos shore.

Bonita Bluff 2 (Marin County, Cal., A. F. R., 1887).-On the shore about 120 meters north of the east end of the Bonita Light-House reservation fence. Approximately 80 feet above the water. (Note II, p. 297.)

Shore Cone Rock (Marin County, Cal., A. F. R., 1887-1892).-A detached and rather flat rock about 20 meters from the shore line, and under Shore Cone.

White-top Rock (Marin County, Cal., A. F. R., 1887-1892).-The first prominent rock, 15 feet high, 250 meters east of Shore Cone. It is quite close to the line of low water.

Grayback White Tip (Marin County, Cal., A. F. R., 1892).-A small detached grayish looking rock with white tip, 850 meters northeast from Point Bonita Light-House, and less than 50 meters from the rock-bound shore line.

Point Diablo tip (Marin County, Cal., A. F. R., 1887-1892).-A small knob or rock hummock close down to the water line on the most eastern extremity of Point Diablo, on the north shore of Golden Gate.

Under Rock (Marin County, Cal., A. F. R., 1887-1892). -The most easterly of three rocks, all about 20 feet high and less than 100 meters from the shore, close under what is called High Bluff, the highest eroded bluff three-fourths mile west of Lime Point fogstation. It is 250 meters south of the beach known as Gravelly Beach.

Bird Point (Marin County, Cal., A. F. R., I892).-The west part of the large white rock I 150 meters north of Point Bonita Light-House. The rock is about go feet high, with nearly vertical sides, and is separated from the shore by only a narrow opening 20
meters wide, through which the sea washes at all the stages of the tide. The extreme western end of the rock, as seen from the Point Lobos stations, was determined.

Whale Point (Marin County, Cal., A. F. R., 1887).-A projection of Lime Point into the water, i 50 meters west of the white buildings at Lime Point Fog Station.

Grayback (Marin County, Cal., A. F. R., 1892).-A small rock, 6 or 8 feet high, about 100 meters from the nearest shore line, and approximately 1190 meters northeast from the Point Bonita Light-House, and 140 meters southwest from Double White Station. (See p. 333.)

Cluster Rock (Marin County, Cal., A. F. R., 1892). -The largest one of a cluster of rocks lying close to the beach in the eastern end of the first sand-beach bight west of Point Diablo on the north shore of Golden Gate.

Diablo Diamónd (Marin County, Cal., A. F. R., 1892).-A diamond-shaped indentation or crevice in the west face of Point Diablo. It is about 20 feet above high water, and about 2 feet in diameter, being very difficult to identify.

East Diablo east tip (Marin County, Cal., A. F. R., 1892). -The eastern extremity of the shore-line tip under East Diablo station. (See p. 318.)

East Diablo west tip (Marin County, Cal., A. F. R., r892). -The western extremity of the shore-line tip under East Diablo station. (See p. 318.)

Second Under Rock (Marin County, Cal., A. F. R., 1892).-The middle of the three well-defined rocks under High Bluff, the highest eroded bluff three-fourths mile west of Lime Point fog-station, on the north shore of Golden Gate. The rock is about zo feet in height and less than 100 meters offshore.

Third Under Rock (Marin County, Cal., A. F. R., 1892).-The westernmost of the three rocks mentioned in the preceding description. The rock is about 20 feet high and less than 100 meters from the rocky shore.

Andrew Rock (Marin County, Cal., A. F. R., 1892).-A large rock close to the bluff on the northern shore of Golden Gate, being the first prominent rock east of the indentation commonly called Gravelly Beach.

Under high tip (Marin County, Cal., A. F. R., 1892).-A whitewashed projection or tip of rock forming part of the very precipitous shore line under High Bluff, referred to in describing Under Rock (see p. 333). Under High Tip is approximately 100 meters south of the shore line at the beach known as Gravelly Beach.

Point III (Marin County, Cal., A. F. R., I892).-A whitewashed projection on the southwestern extremity of the prominent point 690 meters west of Lime Point fogstation.

Bird Lime Point (Marin County, Cal., A. F. R., 1892).-The point under the shoulder of the extremity of the main ridge forming the first headland west of Lime Point.

Point II (Marin County, Cal., A. F. R., 1892).-The extreme tip of the southwest extremity of the rocky point 400 meters west of Lime Point fog-station. This point is washed by the water at all stages of the tide, and at low tide a sand beach is exposed between it and Lime Point fog-station.
\(H\) (Marin County, Cal., A. F. R., I892).-A large 6 -foot \(H\) whitewashed on the rocky bluff just above high-water mark in the center of the sand-beach bight immediately under Lime Point battery, the first sand beach west of Lime Point fog-station.

Lime Point Rock (Cross) (Marin County, Cal., A. F. R., 1892).-A cross whitewashed on the south face of the rock under the southern extremity of Lime Point, and about 90 meters west of Lime Point fog-station. This rock is 30 feet in elevation, quite close to and separated from the shore line only at extreme high water.

Bonita Outer Rock (Marin County, Cal., A. F. R., 1892). -The most western of the group of low rocks, 150 meters west of Bonita Rock (see p. 333) and roo meters south of the western extremity of the point on which the light-house is built.

Shag Rock (Marin County, Cal., R. D. C., 1851, 1892).-On account of being a danger to navigation this rock has been destroyed.

Ladies Pavilion flagstaff (San Francisco County, Cal., A. F. R., 1892).-The flagstaff on the ladies' pavilion in Golden Gate Park, San Francisco, on the beach about I ooo meters south of the Cliff House.

McLain water tank tower (San Francisco County, Cal., A. F. R., 1894).-On the city block bounded by the following streets: Divisidero, Broderick, Pacific, and Broadway. This tower is the property of Doctor McLain and is a frame structure upon which stand two tanks, one above the other. A spiral staircase leading from the ground to the railed inclosure on top of the tanks winds several times around the structure. A flagstaff in the southeast corner of the tower was determined.

Hopkins Art Institute (San Francisco County, Cal., B. A. C., 1877; 1897).—On Powell street, San Francisco, between California and Pine streets, a large house in the style of a villa, having a square tower on top with a flag pole in one corner of it.

Selby shot-tower (San Francisco County, Cal., G. D., 188r, 1897).-A very prominent tower located on First street, San Francisco, between Howard and Folsom streets.

Selby smelting-works chimney (San Francisco County, Cal., A. F. R., 1895).-A round brick stack, the larger of two smokestacks at the smeltingworks westerly from Powell Street wharf.

Telegraph Hill, United States time-ball flagstaff (San Francisco County, Cal., A. F. R., 1894-95).-The tallest flagstaff, the one rising from the center of a castellated tower on a building on Telegraph Hill, San Francisco. This tower has four other staffs, one at each corner. The time-ball of the hydrographic office is dropped at noon each day from the one determined.

Butchertown smokestack (San Francisco County, Cal., A. F. R., 1894).-A tall slender black stack about the center of the collection of tumble-down buildings known as Butchertown.

Fort Point wharf (San Francisco County, Cal., A. F. R., 1895).-The northeast corner (dolphin) of the Fort Point wharf, about 650 meters east of the light-house.

Engineers' warehouse (San Francisco County, Cal., A. F. R., 1895).-The west gable end of the engineers' warehouse at the torpedo station on Yerba Buena or Goat Island, in San Francisco Bay.

Sutro's Observatory tower (San Francisco County, Cal., A. F. R., r892).-The glassinclosed tower in the Sutro gardens on Point Lobos, erected as an outlook for visitors to the gardens.

Baker Beach windmill (San Francisco County, Cal., A. F. R., 1892).-The center of a windmill approximately 1 mile southwest from Fort Point Light-House and on the side hill about 50 feet above tide mark on Baker Beach.

Children's playhouse (San Francisco County, Cal., G. D., 1889).-The front face of the monument on the north gable of the stone building in Golden Gate Park used as a children's playhouse.

Cogswell Monument (San Francisco County, Cal., A. F. R., 1892).-A bluestone monument, with a height of about 12 feet from the base to summit, standing about 30 feet below (in elevation) and 72 meters east of Point Lobos 2 (see p. 316). It is plainly visible from the vicinity of Fort Point and from Lime Point. Recovered in 1900 by the United States engineers.

Broderick Monument (San Francisco County, Cal., G. D., 1877).-A tall white monument in Laurel Hill Cemetery. The highest monument in the cemetery in 1877.

Parker Monument (San Francisco County, Cal., G. D., I877).-In the eastern part of the Odd Fellows' cemetery, San Francisco, just under the foot of Lone Mount. It is a granite shaft 25 or 30 feet high and has the name PARKER on its east side and BOHEN on its west side, and other inscriptions relating to these two names on its north and south sides.

Edison Light and Power Company's dynamo stack (San Francisco County, Cal., A. F. R., 1894).-An octagonal brick stack 150 feet high and \(71 / 2\) feet in diameter, with an iron ladder on its east side. This stack is on a building belonging to the Edison Light and Power Company, and is on the corner of Townsend and Clarence streets near Third street. The stack stands well back toward Braunan street.

Chronicle tower flagstaff (San Francisco County, Cal., A. F. R., 1894).-The flagstaff on the tower of the San Francisco Chronicle building on the northeast corner of Kearney and Market streets.

Gas Tank (San Francisco County, Cal., A. F. R., 1894).-The center of the large gas tank one-fourth mile southwest of Fort Mason. It is a prominent object seen from either land or water and is about 150 meters from the bay shore.

Mariners Church spire (San Francisco County, Cal., G. D., 1881).-A spire surmounted by a flagstaff on the church on the corner of Drumm and Sacramento streets, San Francisco.

Blue Mountain (San Francisco County, Cal., G. D., 1889).-On the hill called Blue Mountain, in San Francisco, south of the Golden Gate Park. In 1889 this hill was planted with young forest trees. Station is located on about the highest part and 6 feet 9 inches from the east face of a rock which is the highest point on the hill. This rock is about 2 to \(21 / 2\) feet through and of the same height. The station is marked by an empty quart ink bottle set with its top about i foot below the surface of the ground.

Market Street powerhouse stack (San Francisco County, Cal., A. F. R., 1894).A large brick chimney at the powerhouse of the Market Street Railway Company. About 100 feet south of the southern line of Market street, San Francisco.

Grace Church cross (San Francisco County, Cal., A. F. R., 1894).-A gilt cross 5 or 6 feet in height about the center of the ridge roof of the tower on Grace Church, an Episcopal church located on the southeast corner of California and Stockton streets, San Francisco.

Edison Light and Power Company electric stack (San Francisco County, Cal., A. F. R., 1894).-A round brick chimney 175 feet high and 12 feet in diameter on
top, and having an iron ladder on its eastern side. It is located on the north line of Jessie street, 'San Francisco, on the block bounded by Stevenson, Jessie, Third, and Fourth streets. It is about 100 feet westward from an octagonal-shaped stack, 150 feet high and 6 feet in diameter on top.

Potrero Presbyterian Church spire (San Francisco County, Cal., G. D., 1881).The spire of the Presbyterian church located on the side hill to the south of the cut at the end of the long bridge from San Francisco to South San Francisco. The church stands about 100 yards from the cut on the right-hand side when going to South San Francisco, and care must be taken not to mistake for it a church situated at the north end of the cut.

Tannery ventilator flagstaff (San Francisco County, Cal., A. F. R., 1894).-The flag pole on the ventilator of a tannery in Visitation Valley. The tannery is a wooden building, large and prominent.

Jewish Synagogue east spire (San Francisco County, G. D., i88r).-In San Francisco, on Sutter street, between Stockton and Powell streets.

St. Patrick's Church spire (San Francisco County, Cal., G. D., 1881).-On Mission street, San Francisco, between Third and Fourth streets. The church is a brick structure and the spire is tall and prominent.

Washington Square (San Francisco County, Cal., G. D., 1869-1873, 1887).-On the eastern side of Washington square, San Francisco. Two massive piers were placed on a good foundation of Sacramento brick, laid in Oregon cement, and coated on the outside with cement. The transit pier is one piece and the clock pier also one shaft. The depth of the foundations is about 3 feet below the (1869) grade of the square. Between the bottom of the transit block and the brick work was placed a flat granite cap 8 inches thick.

Presidio Longitude Station (San Francisco County, Cal., A. F. R., 1896; 1903).On what is known as Drill Plain Knoll, in the Presidio military reservation, and about 130 meters from the terminus of the Union street car-line. The station is 20 paces from the highest part of the knoll and about 8 feet below it. Nearly in line to Point Cavallo and 53 paces from the station is a small building used as a range station by the military. Two small eucalyptus trees are marked with small triangles just above the ground; from one of these trees the station is distant 36 feet \(101 / 2\) inches and closely in line with Arch Rock; from the other tree the station is distant 29 feet 2 inches and is in line with the nubbin of the ridge over Horseshoe Bay. Station is marked by a granite pier with a copper bolt in its top. The zenith telescope pier is 4.84 feet east of the station.

Presidio Magnetic Station (San Francisco County, Cal., G. D., 1852 ; 1898).-- Marked by a stone post 6 inches square on top and projecting about 2 feet above the ground. Reported in 1904 as being probably covered by one of the buildings of the Presidio military post.

Presidio wharfhouse (San Francisco County, Cal., A. F. R., 1895).-A small window in the north end of a building on Presidio wharf.

Artesian well-tower (San Mateo County, Cal., A. F. R., 1894).-The frame tower over an artesian well 50 feet high and 150 meters north of the packing house in South San Francisco, a large brick structure close to the shore.
\[
63481^{\circ}-11-22
\]

Packing-House smokestack (San Mateo County, Cal., A. F. R., 1894).-A large brick chimney on the Meat-Packing Company's building, in South San Francisco.

Linden House cupola (San Mateo County, Cal., A. F. R., 1894). -The cupola on the west front of the Linden House, at South San Francisco.

Armour Hotel flagstaff (San Mateo County, Cal., A. F. R., 1894).-The flagstaff on the east gable of the Armour Hotel, in South San Francisco. The building is on the west side of the main driveway through the town.

California University building (Alameda County, Cal., G. D., 1881).-The west peak of the tower or cupola surmounting the Bacon Art Building, one of the buildings of the University of California at Berkeley.

Shellmound flagstaff (Alameda County, Cal., G. D., 1881).-The flagstaff on the roof of a circular building at Shellmound Park, in Berkeley. The building stands on top of a shell mound.

Powder wharf (Alameda County, Cal., A. F. R., 1895).-The pile at the southwest corner of the wharf at Judson Point (Fleming Point) belonging to Judson and Sheppard.

Corder tannery chimney (Alameda County, Cal., A. F. R., 1895).-The brick chimney of the stock-yard tannery on the water front at Berkeley. It is within 40 meters of the shore and is the property of T. W. Corder.

Pipe-Works chimney (Alameda County, Cal., A. F. R., r895).-A brick chimney of peculiar shape, something like an old-fashioned lamp chimney, on the Berkeley water front, on the property of William Everdine.

Reduction-works chimney (Alameda County, Cal., A. F. R., 1895).-A brick chimney said to be the property of the Robinson \& Holland Base Ore Reduction Works, approximately \(3 \dot{0}\) meters north from Shellmound Park, in Berkeley.

Berkeley lumber wharf (Alameda County, Cal., A. F. R., 1895).-The southwest corner pile or dolphin of Stege's wharf, the first wharf north of the Berkeley avenue ferry wharf.

Cap-Works wharf (Alameda County, Cal., A. F. R., 1895).-The southeast corner of the wharf of the cap-works which are located on the shore line of the bay north of Berkeley.

Butchertown windmill (Alameda County, Cal., G. D., 1881).-The vane surmounting the roof of the tallest windmill at Butchertown, the stock-yards south of West Berkeley.

Oakland Methodist Church spire (Alameda County, Cal., G. D., 1881).-On the southeast corner of Clay and Fourteenth streets, Oakland.

Oakland Presbyterian Church spire (Alameda County, Cal., G. D., 1881).—The taller of the two spires on the church located on the northeast corner of Franklin and Fourteenth streets, Oakland.

County Court-House dome fagstaff (Alameda County, Cal., G. D., x881).-On Broadway between Fourth and Fifth streets, Oakland.

Oakland Mole outer switch-house (Alameda County, Cal., A. F. R., 1895).-A small building used as a switch-house by the Southern or Central Pacific Railway, located on the outer end of the mole or earth embankment near the Oakland Ferry landing.

Nevada Smith wharf-house gable (Alameda County, Cal., A. F. R., 1895).-The west gable of the small house sheltering the pile-driver engine on the outer end of a long unfinished wharf of the so-called California-Nevada Railway.

Crag Hazel boathouse flagstaff (Marin, County, Cal., A. F. R., 1895).-The flagstaff on a small boathouse having on its eastern gable the words "Crag Hazel" in gilt lecters and belonging to Gen. John M. Dickinson, of Sausalito. The boathouse is on the shore in the southern part of Sausalito and about one-fourth mile north from the tidal station wharf.

South dock-light (Marin County, Cal., A. F. R., r895).-The pyramidal white cover of the dock-light on the south end of Sausalito Ferry wharf, the property of the North Pacific Coast Railway.

North dock-light (Marin County, Cal., A. F. R., 1895).-The pyramidal white cover on the dock-light on the north end of the double-ender ferry wharf at Sausalito belonging to the Nortl Pacific Coast Railway.

Baron Wharf (Marin County, Cal., A. F. R., I895). -The northeast gable of a small white house on the boathouse wharf one-fourth mile northwest of the North Pacific Coast Railway ferry landing at Sausalito. The owner of the wharf hires out boats, has an eating place, and is known in Sausalito as "the baron."

Railroad depot inner flagstaff (Marin County, Cal., A. F. R., 1895).-The western or inshore flagstaff on the North Pacific Coast Railway Ferry Depot at Sausalito.

Railroad depot outer flagstaff (Marin County, Cal., A. F. R., 1895).-The eastern or outer flagstaff on the North Pacific Coast Railway Ferry Depot at Sausalito.

Tide station wharf (Marin County, Cal., A. F. R., i895).-The weather-vane staff on the outer end of the tide wharf at Sausalito. This staff is on the southeast corner of the wharf and is within 5 feet of the self-registering tide gauge.

Tiburon dock-bell (Marin County, Cal., A. F. R., I895). -The bell on the west side of the ferry slip at Tiburon.

Tiburon Depot flagstaff (Marin County, Cal., A. F. R., 1895).-The flagstaff on the south gable of the San Francisco and Northern Pacific Railroad ferry depot at Tiburon.

Tiburon Catholic Church (Marin County, Cal., A. F. R., 1895).-The cross on the west gable of a lone church known as St. Hilary, situated on the land of B. F. Lyford, on the hillside across the valley and estuary north of the village of Belvedere and also north of the ferry landing at Tiburon.

Bluff Point South Range East (Marin County, Cal., A. P. O., 1897; 1902).-A small tripod with pole on the front of the low part of the ridge directly inland from the northeast end of Raccoon Strait. Marked by a hole filled with lead in the center of a granite post 8 inches square on top, projecting 2 inches above the ground and marked " U . S . Range."

Bluff Point South Range West (Marin County, Cal., A. P. O., 1897; 1905).-A tripod situated a little to the northward and eastward of the ridge of rocks above the third cut road and directly back from South Range East (see preceding description). Marked by a hole filled with lead in the center of a granite post 8 inches square on top, projecting 2 inches above the ground, and marked "U.S. Range."

Bluff Point North Range East (Marin County, Cal., A. P. O., 1897; 1905).-A large tripod situated on a slight projecting point just inside the entrance of a bight to the southward of El Campo and outside of the second brickyard to the southward of El Campo. The brickyards are both abandoned, only the remains of brick marking the locations.

Marked by a hole filled with lead in the top of a granite post 8 inches square on top, projecting 2 inches above the ground, and marked "U. S. Range."

Bluff Point North Range West (Marin County, Cal., A. P. O., 1897; 1902).-A small tripod with center pole at the edge of the grove on the slope of the hill and bearing southwest from North Range East (see preceding description). Marked by a hole filled with lead in the center of a granite post 8 inches square on top, projecting 2 inches above the ground, and marked "U.S. Range."

Borax-Works stack (Alameda County, Cal., A. F. R., 1895).-A conspicuous round brick stack on the building of the Borax-Works, located on the water front of the town of Alameda, between the line of the narrow gauge railway and the bay shore.

Pacific Oilworks stack (Alameda County, Cal., A. F. R., 1895).-A brick stack 14 feet square at the base and 150 feet high, belonging to the Pacific Oilworks Company, and situated within the town limits of Alameda, near the Pacific Avenue station of the narrow gauge railway, between the railway and the bay shore, and less than 80 meters from the shore of San Francisco Bay.

Alameda Pipeworks stack (Alameda County, Cal., A. F. R., r895).-A brick stack or chimney, 170 feet high, on the building occupied by N. Clark \& Sons in Alameda. They are manufacturers of vitrified ironstone sewer pipe.

Narrow gauge landing north tower (Alameda County, Cal., A. F. R., 1895).--The northern one of the twin towers at the narrow gauge ferry landing for Oakland and Alameda, on Point Alameda.

Alameda cupola (Alameda County, Cal., G. D., i88ı). -The cupola of the Long Branch bathing establishment at Alameda.

Alameda cupola flagstaff (Alameda County, Cal., G. D., 1881).-The flagstaff surmounting the cupola of the Royal Soap Works, located on the shore of the bay at Alameda near the Alameda wharf.

Redwood City waterworks tank (San Mateo County, Cal., A. F. R., I894).-This is the upper of three tanks, upon the other two of which it rests. On the main street leading south from Redwood City.

Frank's Tannery stack (San Mateo County, Cal., A. F. R., 1894).-The larger of two black stacks on the tannery situated about one-fourth mile north of the center of Redwood City, and on the bank of Redwood City Creek.

SAN PABLO BAY.
Point Pinole (Contra Costa County, Cal., R. D. C., 1851-52; 1874).-On the south side of San Pablo Bay and about one-third of the distance from its entrance to the Strait of Carquinez, on the westernmost part of the point or bluff and 25 feet from the edge. (Note 13, p. 297.) Lost by the caving in of the bank. (See Point Pinole 2 and Point Pinole 3, p. 34 1.)

Petaluma Creek (Marin County, Cal., R. D. C., 1851-52; 1897-1899).-On top of the hill, about 125 feet high, on the point forming the western side of the mouth of Petaluma Creek. The station was marked according to note 13, page 297, and in 1887 additionally marked by a sandstone block, 8 inches square on top and 29 inches long, having the letters U. S. C. \& G. S. cut on the upper face and a hole drilled to mark the center.

Long Pond (Sonoma County, Cal., R. D. C., 1851-52; 1858).-On the north side of San Pablo Bay, about \(51 / 2\) miles northwest of the entrance to the Strait of Carquinez and about 4800 meters from the western extremity of Mare Island, in the marsh, 27 feet from the bay shore and 33.5 feet from the margin of a long pond. (Note 13, p. 297.)

Long Point (2) (Marin County, Cal., J. S. L., 1886; 1897).-On the west shore of San Pablo Bay, on the highest part (about 60 feet) of what is locally known as Pacheco Point, the most easterly projection of the fast land, sparsely wooded, in the marsh about \(23 / 4\) miles south of the mouth of Novato Creek and about 2 miles north of Gallinas Creek. Reference marks made in 1897 are as follows: Wire nail in triangle blazed on oak tree 32 feet distant, bearing S. \(65^{\circ} \mathrm{W}\). (mag.); wire nail in triangle blazed on oak tree 99.2 feet distant, bearing \(\mathrm{N} .78^{\circ} \mathrm{W}\). (mag.); wire nail in dead stump 15.8 feet distant, bearing S. \(75^{\circ} \mathrm{E}\). (mag.). Station is marked underground by a copper tack driven into a leaden bolt set in a stone placed \(21 / 2\) feet below the surface of the ground, and on the surface by a stone with a half-inch hole drilled in it I inch deep.

Point Pinole 2 (Contra Costa County, Cal., J. S. L., 1886).-The eastern one of the reference stones of Point Pinole (p. 340), a stone marked by leaden bolt and cross lines set even with the surface of the ground. Reported lost, 1897. (See Point Pinole 3, p. 341.)

Tolay Creek 2 (Sonoma County, Cal., J. S. L., I886).-On the northern side of San Pablo Bay, about midway between the mouths of Tolay and Sonoma creeks, a little nearer the latter. The station is marked by a section of drain tile pipe, 5 inches in diameter and 30 inches long, set perpendicularly in the marsh, flange downward, leaving 7 or 8 inches above the surface of the marsh.

Sears Point (Sonoma County, Cal., J.S. L., i886; 1899).-Near the extreme southern end of the ridge forming the southern part of the range of hills dividing Sonoma and Petaluma valleys. This ridge is 60 feet high, the southern face is quite steep, and along its base runs the Sonoma Valley Railroad. Formerly all the low land lying between it and the shore line of San Pablo Bay and Petaluma Creek was marsh; now it is retained by dikes and a large part of it is under cultivation. The station was marked by a hole in upper face of a stone placed \(21 / 2\) feet below the surface, and on the surface by a similar hole in a stone which projects 3 inches above the ground.

Point Pinole 3 (Contra Costa County, Cal., E. F. D., 1897; 1899).-On the south side of San Pablo Bay, on the southern side of the point, about io feet back from the edge of the bluff. The station was marked by a soda-water bottle buried about 3 feet below the ground, and above it was placed a sandstone post about 2 feet long and 6 inches square on top, in which is inserted a leaden plug to mark the center, the top of the block being about 2 inches above the ground.

Lone Tree Point (Contra Costa County, Cal., R. D. C., 1852; 1886).-On Lone Tree Point, on the south side of San Pablo Bay, about 2 miles from the entrance to the Carquinez Strait, on a bluff 30 feet high, and near a small buckeye tree, which gives the point its name. A copper tack in the tree is distant 31.5 feet, bearing N. \(2^{\circ} \mathrm{E}\) (mag.). The station was marked in 1852, according to note 13, page 297. In 1886 the north reference stone was gone and a surface mark was put in. It consisted of a nail in a pine stub 2 by 3 by 24 inches, with 2 inches projecting above the ground. In 1906 the station
was reported by the United States Engineers as being almost surrounded by oil tanks and buildings.

Vallejo (3) (Solano County, Cal., R. D. C., 1852; 1886).-On the north side of Carquinez Strait, about I mile from the entrance of Mare Island Strait, on a high hill, about 370 feet above high water and 510 meters from the shore. The station was marked in 1852 according to note 13 , page 297. In 1886 the north reference mark was gone, the south stone had no lead in the hole in its top, and there was no hole in the mark to the east. The center mark was found to be a triangular-sbaped stone, having a hole but no bolt in its top. Broken glass is mixed with the dirt over the center mark. A surface mark was put in consisting of a pine stub 2 by 3 by 24 inches, with a nail in the center of its top. A round rock \(31 / 2\) feet in diameter, projecting out of the ground, is 121 feet from the station, bearing S. \(75^{\circ} \mathrm{W}\). (mag.), and another round rock, 2 feet in diameter, and projecting above the ground, is 147.7 feet from the center and bears \(\mathrm{N} .72^{\circ} \mathrm{W}\). (mag.).

Wilson (Contra Costa County, Cal., R. D. C., 1852; 1886).-On the shore of San Pablo Bay, on the point a short distance west of the Pinole railroad station. Marked by a stub 1 by 3 by 42 inches, with its top 20 inches below the surface of the ground, and by a 2 by 3 by 24 inch pine stub, 20 inches in the ground, with a nail in the center of its top to mark the station.

Mare Island Southeast (Sonoma County, Cal., R. D. C., 1852; 1886).-On the highest point of the hills lying at the southeastern extremity of Mare Island and about 280 feet above high water. A row of trees is growing on the hill west of the station, the nearest of them being \(171 / 2\) feet from the station. The station was marked by a sandstone post. with a lead bolt having a cross cut in it, inserted in its top, which is 6 inches square, and \(22 / 3\) feet below the surface of the ground. Above this is a 2 by 3 by 24 inch pine stub, 22 inches in the ground, with a nail in its top to mark the station. There are fragments of glass in the earth over the center mark. Three reference posts of stone with drill holes in their tops are 6 feet from the station and north, south, and east of it. The east reference post is broken into several pieces. Stones were piled around the station. A rock 30 by 19 by 6 inches is embedded in the ground 237 feet from the station, bearing S. \(38^{\circ}\) E. (mag.).

Vallejo (1) (Solano County, R.D.C., 1852; 1886).-On the north side of Mare Island Strait, about three-fourths mile from its entrance, on the summit of a low hill 85 feet high and 108 meters from the shore. The center is marked by a bottle 3 feet below the surface of the ground; above this is placed another bottle, and for a surface mark an oval stone 2 feet long, \(11 / 2\) feet wide, and I foot deep, with a three-fourths inch drill hole 2 inches deep in its center, was buried with its top a little above the surface of the ground. The upper of the two bottles is marked "J. J. Bleven \& Co., Oakland, Cal." and has a glass stopper on the inside. Reference marks are copper tacks in three stubs, each 6 feet from the center of the station. There are fragments of glass in the earth around the center of the station.

Mare Island'Northwest (Sonoma County, Cal., R. D. C., 1852; 1886).—In a plowed field on a low hill, about 98 feet high, and about midway of Mare Island; it is the last elevation of any importance on the island to the northwest and the first hill to the southeast of the Marine Barracks. Marked by a bottle 3 feet in the ground, the top of which was crushed down into it, and in it was placed another bottle \(7 \frac{1}{4}\) inches long, marked on
one side "Pacific Congress Water" and on the other side with the figure of a deer. The surface mark is a rough granite block with flat top, in which is a three-fourths inch drillhole marking the station. The letters U. S. C. S. are cut in the top of the stone.

Lone Tree Point Iron Rod (United States Engineers) (Contra Costa County, Cal., U.S. E., 1903-1906).-An iron rod about three-fourths inch in diameter and 3 feet long, driven into the ground until only 3 inches of it projects above the ground. It is well out on Lone Tree Point, San Pablo Bay, and about so feet from the edge of the bluff.

Abbot (Contra Costa County, Cal., R. D. C., 1851).-On the high bluff forming the south point of the entrance to Carquinez Strait, opposite the mouth of Mare Island Strait, on the summit of a round conical hill, about 371 feet above high water. (Note 12, p. 297.) The station was searched for in 1886, but none of the marks found; the ground is in cultivation; a large sandstone block, i foot below the surface, whose position as determined by plane table agrees closely with that of the triangulation station, was marked as a topographic station.,

Bush Hill (Contra Costa County, Cal., R. D. C., 1851 ; 1886). -On the south shore of Carquinez Strait, inshore from Granger's wharf and about \(11 / 2\) miles west of Port Costa. Marked by a black bottle with its top 23 inches below the surface of the ground; above the bottle is placed a flat stone, while as a surface mark a nail was driven in the top of a pine stub 2 by 3 by 24 inches, set with its bottom resting on the flat stone. A circle of stone was placed around the station, 18 inches distant from it. A triangle was cut into the side of a scrub-oak tree facing the station, and a nail driven into each corner of the triangle; it is 15 feet \(41 / 2\) inches from the station, in azimuth \(44^{\circ}\). The nearest of four scrub oaks is 30 paces from the station, in azimuth \(197^{\circ}\).

Vallejo Hill 2 (Solano County, Cal., J. S. L., 1887).-On the highest part of the highest hill, about one-half mile north of the town of Vallejo. The top, which is comparatively level, presents no characteristics which can be used as reference marks. Marked by a bottle 2 feet below the surface of the ground and by a stone post 8 inches square and 20 inches high, set with 3 inches of its top projecting above the ground. This top is dressed and has a three-eighths inch hole drilled in its center and the letters U. S. C. \(\&\) G. S. cut into it.

Brush (Solano County, Cal., J. S. L., 1887).-On the edge of the marsh on the north side of San Pablo Bay. Marked by a section of drain-tile pipe 6 inches in diameter and 30 inches long, set flange down, with 8 inches of its top projecting above the surface of the marsh; the foot of the signal, a pole 4 inches square and 20 feet long, was wedged into the top of the pipe.

Slaughterhouse Point 2 (Solano County, Cal., J. S. L., 1887).-On the small round hill on Slaughterhouse Point, 4 miles north of Georgia Street wharf, Vallejo, and on the east side of Napa Creek. The underground mark is a brick with a hole drilled in its upper face, buried \(21 / 2\) feet below the surface of the ground. The surface mark is a hole drilled in the upper face of a stone projecting 3 inches above the ground.

Red Marsh (Solano County, Cal., J. S. L., I887).-A pole in the marsh on the north side of San Pablo Bay.

Black Marsh (Solano County, Cal., J. S. L., 1887).-A pole in the marsh on the north side of San Pablo Bay.

Marsh Pole (Solano County, Cal., J. S. L., 1887).-A pole in the marsh on the north side of San Pablo Bay.

Grove Point 2 (Marin County, Cal., J. S. L., 1887; 1897).-On the summit of a small knoll or island of fast land in the marsh about \(23 / 4\) miles northwest of Point San Pedro, on the west side of San Pablo Bay. In 1897 it could best be reached from San Rafael by following the Petaluma road for about \(1 \frac{1}{2}\) miles, until about halfway down the first grade; then taking a road leading to the right around the edge of the marsh, passing a dairy ranch, powderworks, and old brickyard at the mouth of Gallinas Creek, until the dairy ranch of Joseph Ford is reached; thence around the south side of the point and across the marsh on an old corduroy road to the station, one-fourth mile distant. Underground mark is a tack in a lead bolt set in a stone placed \(21 / 2\) feet below the surface of the ground. The surface mark is a hole \(I\) inch deep drilled in a stone. Three reference stones, each 5 feet from the station, are set approximately north, east, and west; the north stone has a hole drilled in it, the others have copper tacks driven into lead bolts.

Observatory (Sonoma County, Cal., G. D., 1877).-Near the naval observatory on Mare Island, which is a small wooden building with glass slides over the transit. Station is \(231 / 4\) feet south from the observatory pier and 5 feet 5 inches east from an abandoned transit pier, which is a granite block 16 by 19 inches, projecting 12 inches out of the ground, with the inscription "Position of Observatory, Lat. \(38^{\circ} 05^{\prime} 59^{\prime \prime}\), North, -Long. \(122^{\circ} 15^{\prime} \mathrm{I} 5^{\prime \prime}\) West, in time \(8^{\mathrm{h}} \mathrm{O} 9^{\mathrm{m}} \mathrm{OI}^{\mathrm{s}} .2 \mathrm{~W}\)." painted on it in black letters. The station is marked by a bottle buried 2 feet below the surface of the ground. This bottle has on it the following inscription: "Vincent Hathaway \& Co., Boston, Ginger Ale."

Ferris (Marin County, Cal., J. S. L., 1887).-On the reclaimed marsh belonging to John W. Ferris, about I mile from the mouth of Novato Creek and one-fourth mile south of the creek, on the road leading from Mr. Ferris's residence to a dairy house, three-fourths mile east of the residence and one-fourth mile west of the dairy house. Three feet beneath the surface of the ground the station is marked by the neck of a stoneware bottle, and on the surface by a hole drilled in a stone 6 by 6 by 12 inches in size.

Novato Bend (Marin County, Cal., J. S. L., 1887).-On the marsh land on the north bank of Novato Creek, about I mile upstream from the mouth of the first large slough coming into the creek from the north, on the sharp bend of the creek where it runs from north to east. It is about 600 yards north of the barn of Mr. John H. Ferris. The subsurface mark is a stoneware bottlc, neck up, 3 feet below the surface of the ground. The surface mark is a hole drilled in a stone 6 by 6 by 12 inches in size.

Pacheco (Marin County, Cal., J. S. L., 1887).-On a hill 180 feet high, i mile south of Novato Creek and \(11 / 2\) miles west of San Pablo Bay; this hill is partially covered with buckeye trees and appears like an island standing on the low ground, bordered with marsh. The subsurface mark is a stoneware bottle 17 inches below the surface of the ground, which is rocky, the bottle being set on a rock. The surface mark is a hole drilled in a rock 5 by 5 by 14 inches in size.

Ferris chimney (Marin County, Cal., J. S. L., 1887). -The eastern chimney on the house of Mr. John W. Ferris, near Novato Creek.

North Grass (Marin County, Cal., J. S. L., 1887).-A pole stuck in the mud on the outer margin of the high grass on the west side of San Pablo Bay and south of Novato Creek.

South Grass (Marin County, Cal., J. S. L., 1887).-A pole in the mud on the outer edge of the high grass on the west side of San Pablo Bay and south of Novato Creek.

Sonoma Landing flagstaff (Sonoma County, Cal., J. S. L., i887).-On the southeast corner of the wharf known as Sonoma Landing, the bay terminus of the Sonoma Valley Railroad. This wharf is on the north shore of San Pablo Bay, and is just outside of the entrance to Petaluma Creek.

Austin's windmill (Sonoma County, Cal., J. S. L., I887).-On Mr. Austin's place on the reclaimed marsh on the north side of San Pablo Bay near Petaluma Creek, and about three-fourths mile west of the Sonoma Valley Railroad.

Storey's windmill (Sonoma County, Cal., J. S. L., I887).-Near Mr. Storey's house on the west bank of Tolay Creek (Midshipman slough), and about three-fourths mile from its mouth.

Tubbs's windmill (Sonoma County, Cal., J. S. L., r887).-The larger of two windmills on the Tubbs place, which is on the west bank of Sonoma Creek, about \(11 / 2\) miles from its mouth, on the reclaimed part of the marsh island known locally as Tubbs Island. Windmill is 165 meters northwest of the house.

Sonoma Pole (Solano County, Cal., J. S. L., 1887).-A piece of timber 10 inches square and 15 feet high found standing on the eastern side of the mouth of Sonoma Creek. A piece of scantling 2 by 4 inches and 16 feet long was nailed to the top of this timber.

Midshipman Point (Sonoma County, Cal., J. S. L., 1887).-A pole stuck in the marsh on the point on the east side of the mouth of Tolay Creek (Midshipman slough).

Sonoma Creek 2 (Sonoma County, Cal., J. S. L., 1887).-In the edge of the marsh on the north shore of San Pablo Bay; marked by a section of drain-tile pipe set flange down, with 7 or 8 inches projecting above the surface, the foot of the signal pole being set and wedged into the top of the pipe.

Mill (Solano County, Cal., G. D., 1877).-The flagpole on the northwest side of the center of the cupola on a large building used as a flouring mill.

Telegraph (Solano County, Cal., G. D., 1877).-On the side of the hill near Vallejo i.
Commission Rock Beacon (Solano County, Cal., G. D., 1877).-In Napa Creek, on Commission rock; a beacon constructed of an old smoke pipe filled with cement and stones and placed on the rock, which is nearly bare at low water. From the shore at low tide there seems to be some masonry around the outside of the base of the beacon. The beacon is surmounted by a glass globe silvered on the inside and having sharp spikes projecting from it. The beacon is painted in red and white bands.

Mare Island Navy-Yard tall chimney (Sonoma County, Cal., G. D., 1877, 1896).A square chimney to the left of the walk as one approaches the commandant's office at the Mare Island Navy-Yard.

Cravens transit pier (Sonoma County, Cal., G. D., I877).--At Mare Island NavyYard, \(231 / 4\) feet south of the Mare Island Observatory transit and 5 feet 5 inches west of the triangulation station Observatory, Pier is a granite block 16 by 19 inches, and 12 inches above the ground, with an iron bolt on which a male screw is cut projecting
from its center, and bearing the following inscription painted in black letters: "Position of Observatory, Lat. \(38^{\circ} 05^{\prime} 59^{\prime \prime}\) North, -Long. \(122^{\circ} 15^{\prime} 15^{\prime \prime}\) West, in time \(8^{\mathrm{h}} 09^{\mathrm{m}}\) ol \({ }^{\mathrm{k} .2 \mathrm{~W} \text {." }}\)

Mare Island Navy-Yard foundry chimney (Sonoma County, Cal., G. D., 1877, 1896).-A square chimney in the Mare Island Navy-Yard, in the vicinity of the foundry and machine shops.

Swift (Sonoma County, Cal., G. A. F., 1857).-On the eastern side of Petaluma Creek, on the extreme end and on about the highest part of the most southern of the many points of hard land projecting into the marsh. It is the only one of the points from which Tolay Creek signal can be seen. (Note 19, p. 297.)

Novato (Marin County, Cal., G. A. F., 1857).-On a piece of hard marsh on the north side of and about one-fourth mile from the mouth of a small creek emptying into Petaluma Creek some \(31 / 3\) miles above Black Point. This creek is supposed to be Novato Creek. The station is within 6 feet of the water, and just west of the station is a small slough. In the middle of the creek one-fourth mile west of the station is a large marsh island. (Note 19, p. 297.)

Sears (Sonoma County, Cal., G. A. F., I857).-This station bears N. \(65^{\circ}\) W. from the station Swift (see p. 346) and is on the first highland above the marsh in that line looking from Swift. The point on which the station is placed is nearly even with the southern end of the long straight reach of Petaluma Creek below Lakeville. (Note 19, p. 297.)

San Antonio (Marin County, Cal., G. A. F., 1857).-On the most eastern hill of the first range north of the large Novato marsh. The hill has some scattering trees on it. The station is about 20 feet above the marsh. West of the station the hill rises gradually. (Note 19, p. 297.)

Lakeville (Sonoma County, Cal., G. A. F., 1857).-On the eastern shore of Petaluma Creek, on the summit of the first round bare knoll north of Lakeville, and one-half mile distant from the Lakeville House. A small slough makes in from Petaluma Creek at the western foot of the knoll. (Note 19, p. 297.)

Haydon (Sonoma County, Cal., G. A. F., i857).-On the summit of a large roundtopped hill nearly west from Haydon's landing on Petaluma Creek. Near the top of the hill is a single tree very much bent over toward the southeast. This is the only tree on the hill and is a distinguishing mark. (Note 19, p. 297.)

Bodwell (Sonoma County, Cal., G. A. F., 1857).-On the rising ground nearly north of and about one-half mile distant from Mr. Bodwell's house, and on the eastern side of Petaluma Creek. The hill on which the signal stands has a very gradual slope on the side toward Petaluma Creek, and the station is placed on this slope in the middle of a cultivated field. (Note 19, p. 297.)

Italian (Sonoma County, Cal., G. A. F., I857).-On the western side of Petaluma Creek, about \(11 / 4\) miles below the town of Petaluma. There is a garden cultivated by Italians at this place, directly on the road from Petaluma to the Haystack; this garden is on the side of the hill and has a fence around it. Station is on the side of the hill about ro feet above the fence and about 100 yards above the house. (Note 19, p. 297.)

Flat (Sonoma County, Cal., G. A. F., 1857).-On the flat on the north side of Petaluma Creek, in bearing N. \(5^{\circ}\) E., from the Baptist Church spire in Petaluma. (Note 19, p. 297.)

Swift 2 (Sonoma County, Cal., J. S. L., 1887).-In the same locality as station Swift of 1857 (see p. 346), none of the marks of which could be found. The underground mark is a stoneware bottle \(21 / 2\) feet below the surface of the ground. The surface mark is a stone 7 by 3 inches and 10 inches deep projecting 2 inches above the surface of the ground. ' A drill hole one-half inch deep in the top of the stone marks the station.

Green Point (Marin County, Cal., J. S. L., i 887).-On the bluff point on the west side of Petaluma Creek, the first point from and 1 mile north of Black Point, 15 feet above and about 20 feet from high-water mark. Marked by a stoneware bottle 3 feet underground and on the surface by a drill hole in a stone I foot long.

Slaten's windmill (Sonoma County, Cal., J. S. L., 1887).-On reclaimed marsh land on the eastern shore of Petaluma Creek, about \(3^{1 / 2}\) miles north and west of Sonoma Landing. The place is commonly known as "Twin Houses," belongs to Mr. Austin, and is in charge of Mr. Slaten.

SUISUN BAY.
Carquinez Point (Contra Costa County, Cali., R. D. C., I851; 1886).-On the southern shore of Carquinez Strait, on the first hill up the strait from Port Costa; the steep slope of the hill toward the water is covered with scrub oak and other bushes. The underground mark is a stone bottle, filled with coal cinders, buried, neck up, with its top \(21 / 2\) feet below the surface of the ground; surface mark is a nail in the center of the top of a 2 by 3 by 24 inch pine stub, 20 inches in the ground. Over the top of the bottle was placed a pile of soft reddish stones (20 in number) and stones were piled around the foot of the signal pole.

Monument Hill (Solano County, Cal., R. D. C., 1851 ; 1886):-On a hill north of Benicia and quite near the city cemetery. The underground mark is a bottle, with the top 26 inches below the surface of the ground. The bottle is in a small hole dug in the underlying sandstone, and the stones are piled over and around the top of the bottle. Surface mark is a 2 by 3 by 24 inch pine stub, 20 inches in the ground.

Army Point (Solano County, Cal., R. D.C., 1851; 1864).-On Army Point, on the north side of the junction of Carquinez Strait and Suisun Bay. Marked by a one-half-inch drill hole in a rock placed \(\mathrm{I} 1 / 2\) feet below the surface of the ground. Stubs with copper tacks in them were placed east, west, and south of the station, distant 6 feet from it. 'Stones were piled around the foot of the pole in the form of a wall. Station was searched for and not found in 1886 .

Island (Contra Costa County, Cal.; R. D. C., I85I; 1886).-On the western side of Suisun Bay, east of the southern point of the entrance to Carquinez Strait. Marked by a bottle \(\mathrm{I} 3 / 4\) feet below the surface of the ground, into the mouth of which was placed a spike driven into the foot of the signal. Copper nails were driven in three stubs placed one in line to the arsenal at Army Point and the others at right angles to this line, one northwest and the other southwest of the station. The nails were each 6 feet from the station. The southwest stub was not found in 1878 , and in 1886 three instrument stubs were found. Stones were piled around the center pole.

Goodyear (Solano County, Cal., J. S. L., 1864; 1878).-On a hill northeast of John Monroe's farmhouse. The hill rises directly from the wide belt of marsh on the northern side of Suisun Bay and is the next one to the round bald hill where the trend of the
range changes to the northward, forming the south side of Suisun Valley. The road from Benicia to Suisun City runs along the base of the hill and between it and the bald hill just mentioned. The eastern face of the hill is quite steep, especially near the top, where it is traversed from north to south by a ridge of volcanic rocks projecting 2 to 4 feet above the surface. The station is on a small flat spot moderately clear of rocks, on the southern slope of the hill and a few feet from its highest part, in a position where Army Point signal can be seen over the intervening ridge. Marked by a hole drilled in a stone 10 by 20 inches, \(11 / 3\) feet below the surface of the ground. Center is fixed on the surface by two reference marks, one a hole in a knob of the rocky ridge, distant 17.9 feet in line to the mouth of Suisun Creek, and the other a hole in a stone to the southward, distant 8 feet. In 1878 the reference mark 17.9 feet from the center was not found, the rock being broken away and the mark apparently lost.

Martinez East (Contra Costa County, Cal., G. B., 1878).-On the summit of the first hill overlooking Suisun Bay, just east of the town of Martinez. The station is marked as follows: A large stone \(31 / 2\) feet below the surface of the ground has a copper bolt in it with a cross to mark the center; above this stone was built a brick pier rising 4 feet above the surface of the ground. A copper bolt was set in the center of the pier \(11 / 2\) feet below the surface of the ground, and another bolt set in the top of the pier; a cross cut in the top of each bolt marks the station. The station was recovered in 1880, 1886, and 1909.

Benicia B. M. (Solano County, Cal., G. B., 1878).-About 250 feet east of the land end of the army or arsenal wharf at Army Point, in the town of Benicia. Marked by a five-eighth inch iron bolt driven in a hole drilled horizontally into the southeastern face of a large sandstone rock, near high-water mark. The rock is apparently the outcropping of a ledge about 7 feet high, the bench being about 4 feet from the top; the face of the rock was smoothed for the space of a square foot and the letters U. S. C. S. B. M. cut in it.

Naylor (Contra Costa County, Cal., J. J. G., 1880 ; 1886).-On the north slope of a hill on the south side of Suisun Bay; marked by a stone 22 inches below the surface of the ground, and by copper nails in three stubs placed east, south, and west, each 6 feet from the center of the station. The three tripod stubs were also left in position.

Clayton, Mount Diablo Azimuth Mark (Contra Costa County, Cal., G. D., 1876; 1876).-On the ridge of comparatively low hills that stretch northwestward from the northeastern base of Mount Diablo, having the small Diablo Valley on the western flank. The range terminates at Bay View Point on the south shore of Suisun Bay. The mark is about \(21 / 2\) miles northeast of the village of Clayton on the highest part of the ridge in the neighborhood, being the western summit of what is known locally as Rattle Weed Hill. The mark is on the NE. \(1 / 4 \mathrm{sec} .35\), T. 2 N., R. I W. of Diablo meridian on land owned by F. A. Hyde, of San Francisco. The nearest farm on the west of the mark is the Bromley ranch, managed by Jefferson McKinney; the small farm about one-half mile to the northward is owned by a negro named Lowry. The underground mark is an oblong-shaped piece of limestone 10 by 14 by 8 inches in size, with its top face about 2 feet below the surface of the ground; in the center of this stone is set a one-half-inch copper bolt, cut into which is a cross to mark the center of the station.

The mark proper is a redwood post 4 by 4 inches and 8 feet long, to which is fastened a board with aperture for showing the lamp.

Hewston 2 (Solano County, Cal., G. D., 1886).-On the south shore of Grizzly Island on the north side of Suisun Bay, \(231 / 2\) feet inside the center of the levee which protects the island from the waters of the bay and opposite station Hewston. Northeast of the station is a line of rosebushes, the end of the line being about 50 feet from the station. Outside the line of rosebushes and also outside the levee is a willow tree with about a dozen stems rising from the same root; this tree is about 63 feet from the station; the station is marked by a hole drilled in a piece of soft flat sandstone 2 feet below the surface. Above this is driven a 2 by 3 inch stub with a copper tack in it and 3 witness stubs set north, west, and south of the station, each with a copper tack in it, 6 feet from station.

Middle (Solano County, Cal., G. D., 1886).-On the eastern side of the slough separating Wharf and Eads islands in Suisun Bay. These islands form what is known as Simmons Island. The station is I 200 meters above the bridge, which is built across the slough about one-half mile above its mouth and is nearly one-half mile above the mouth of the cross slough leading into Roaring River. About 100 meters above the station the slough begins to curve to the west, and about one-half mile above the station the slough forks. The station is 17 meters from the bank of the slough. Station is marked by a hole drilled in a flat stone \(£ 8\) inches below the surface of the ground. Above this is set a section of sewer pipe with its top projecting about \({ }_{5} 5\) inches above the ground. Three witness stubs set north, west, and south have copper nails in them each 6 feet from the center of the station.

Collinsville (Solano County, Cal., W. E. G., 1866; 1887).-On the first range of hills bearing about due north from the depot at Collinsville and distant about threefourths of a mile. The road leading from the depot passes at the foot of the hill and makes a turn there to the northward; just at this turn there is a dwelling with outhouses and inclosures, but they can not be seen from the station. The center was marked by a drill hole in a red stone block buried \(21 / 2\) feet below the surface, its top being 12 inches below the surface; 3 redwood stubs with copper tacks in their tops were placed north, east, and west of the station and each distant 4 feet from it. In 1887 the station being in plowed ground the red stone block was lowered until its top was 18 inches below the surface of the ground.

Diamond (Contra Costa County, Cal., G. D., 1886).-On the point of hard land running down to the river at the entrance to the New York slough, about 400 meters northwest of the town of Black Diamond, or New York. The place was formerly the site of an old brickyard. The station is on the highest part of the yard south of the old drying ground. Station was marked by a drill hole in a flat stone buried \(\mathrm{I} 1 / 2\) feet below the surface of the ground.

Meins (Solano County, Cal., G. D., 1886).-On the highest part of the hill back of Meins landing on Montezuma Slough, about 4 miles north of Collinsville; it is marked by a drill hole in the center of a soft stone 10 inches square, buried with its top 18 inches below the surface of the ground. No surface marks were placed, as the ground is plowed yearly.

Anderson (Solano County, Cal., G. D., 1886).-On the hill to the east of Montezuma Island, about one-half or three-fourths of a mile back from the Sacramento River and 2 miles cast of Collinsville; this hill is the farthest one to the east from which the signal at Collinsville can be seen. The land on which the station is situated is now owned by a Mr. Anderson, whose house, formerly known as the Marshall house, is the nearest one to the station. The station is marked by a drill hole in a flat stone set 2 feet below the surface of the ground. No surface marks were set, as the ground is plowed yearly.

Sand (Contra Costa County, Cal., G. D., 1886).-On the highest point of the range of low sand hills close to the San Joaquin River and about I mile east of the town of Antioch. The hills, though sandy, are covered with brush. A hill about as high as the one on which the station stands is about 400 or 500 yards east of the station and has a few scrub oaks on it. Marked by a wide-mouthed pickle bottle set 2 feet below the surface of the ground. Three witness stubs with copper tacks were set north, east, and south of the station and each is 6 feet distant from it.

Buckler 2 (Solano County, Cal., G. D., 1886).-On Point Buckler on the western end of Simmons Island in Suisun Bay. From the station it is 38 paces to the shore line in the direction of the north point of the island. The line from the station to Naylor triangulation station crosses a little slough about I foot wide and at a point where it forks; it is 15 paces to the fork and in a continuation of this line it is 43 paces from the station to the shore line in a little bight that has tule growing in it. The station is marked by a drill hole in a flat stone 10 by 12 inches on top set 2 feet below the surface of the ground. Above this is set a joint of 6 -inch earthenware sewer pipe with about 4 inches projecting above the ground.

Coon 2 (Solano County, Cal., G. D., I886).-On the point of hard marsh ground on the eastern side of the mouth of Montezuma Slough. Tules have grown out in the shallow water off the point for a distance of half a mile, and this point of firm marsh is hard to find. A levee extends around the outer edge of the marsh. The station is located on the outside of the levee at a point where it curves to the north and runs up along the shore of the creek. To the eastward of the station the levee is straight for 200 yards. Station is about on the line of the outside edge of the outer ditch prolonged and it is 4 paces to the outside edge of the ditch in line to an unpainted farmhouse half a mile northeast of the station. Marked underground by a drill hole in a flat rock. Surface mark is a joint of sewer pipe projecting 4 inches above the ground. Three reference stubs with copper tacks were set 6 feet from the station, 2 on the line to the house mentioned above and i to the eastward at right angles to this line.

Suisun Hill (Solano County, Cal., L. A. S., 1888). -On the hill southeast of the town of Fairfield. Marked by a half-inch drill hole in an oval rock, 8 by 12 inches in size, 20 inches below the surface of the ground. Three reference stubs were placed 6 feet from and north, east, and south of the center of the station.

Pierce (Solano County, Cal., L. A. S., 1888).-On one of the hills bordering on the western side of the marsh which is north of Suisun Bay. Marked by a half-inch drill hole in a rectangular rock, 8 by 12 inches in size, buried 19 inches below the surface of the ground. Three stubs, with copper tacks, each 6 feet from the center, were placed east, west, and south of the station.

Bridgeport (Solano County, Cal., L. A. S., 1888). -On a hill at the northwest corner of the marsh which is on the north side of Suisun Bay. Marked by a rock 18 inches underground, and by three reference stubs placed north, east, and south of the station, each having a copper tack exactly 6 feet from the center.

Edith (Contra Costa County, Cal., J. S. L., 1864).-On Point Edith, on the south side of Suisun Bay, \(21 / 2\) miles east of Carquinez Strait. The point is marsh, covered with tule. The station is 20 paces from the steep bank of the shore line in the direction of Suisun Point (Suisun Creek). Marked by a half-inch drill hole in a rock \(11 / 2\) feet below the surface of the ground and by three reference stubs with copper tacks each 6 feet from the center and placed as follows: One in line to station Island, one in prolongation of that line, and the third to the southward at right angles to that line. Reported in 1909 as lost.

Garnett (Solano County, Cal., J. S. L., I 864).-On the middle one of the three points forming the southwestern end of Kings Island (Ryer Island), a flat marshy island in the center of Suisun Bay. From the station it is 30 paces to the shore line in the direction of Point Green, 30 paces to the northwest point of the island, and 49 paces to the shore line, in line with the hydrographic signal on the end of the same point on which is situated the station. Marked by a hole in the top of a stake 1 foot below the surface; stake is 5 inches square and 2 feet long. Three reference stubs with copper nails each 6 feet from the center were set as follows: One in line to Point Green, one in prolongation of that line, and the third to the eastward at right angles to that line. Reported in 1886 as lost.

Seal Bluff (Contra Costa County, Cal., J. S. L., I864). -On a bluff of the same name, about 12 feet high, lying on the south side of Suisun Bay, abreast of Preston Island (Roe Island). Station is 28 feet from the edge of the bluff in line to station Green; 86 paces from the southwest corner of an old warehouse standing at the eastern end of the bluff; and in 2 paces from the northeast corner of an old whitewashed dwelling house to the westward, the line to which passes tangent to a curve in the bluff. Inshore, at the edge of the marsh, is a pond over which the top of Mount Diablo shows at a point about one-third the length of the pond from its western end. Marked by a half-inch drill hole in rock 1 foot below the surface of the ground, and by three reference stubs with copper nails in each, 6 feet from the center, and placed as follows: One in line to Green station, one in prolongation of that line, and the third to the southeast at right angles to that line. The hole over the underground mark was filled with sand instead of with the soil that was dug out of it.

Simmons (Solano County, Cal., W. E. G., r 866).-On Simmons Island in Suisun Bay. The island is low and wet and Simmons House presents a conspicuous appearance and can be seen from all parts of the bay. Upon the house is a cupola or lookout some 4 or 5 feet square and the station is in the center of this lookout. Center is marked by a copper tack.

Hill (Contra Costa County, Cal., W. E. G., I866).—On the first ridge east of Quinn's house, and almost due south of Stephensons Point, on the next to the highest point on the ridge. The ridge can easily be distinguished by gullies on each side of it, showing a black appearance when seen from the river. Center mark is a copper tack in a redwood stub. Reference stubs are three stubs north, south, and west of the station, each with a copper tack in top, distant 6 feet from the station.

Mallard (Contra Costa County, Cal., W. E. G., i 866).-On the margin of the first creek east of Picket Point. This creek is known as Mallard Slough, and the station is near its western mouth, opposite the western end of Chipps Island. Station is \(12 \frac{1 / 2}{2}\) feet from high-water mark on the western bank of the slough at the mouth of a smaller creek. (Note 1, p. 296.)
\(M c D u f f\) (Solano County, Cal., W. E. G., 1856).-On the margin of the slough or creek called "Roaring River," about 400 meters from the point where the slough from Honker Bay unites with it. Directly to the northward of the signal is a clump of wild rose bushes, and 7 paces to the eastward is a small creek running into the river. McDuff's house is 97 paces to the eastward of the station. (Note 1, p. 296.)

New York (Contra Costa County, Cal., W. E. G., i866).-On a natural rise of ground about is feet in height and west of the point where the San Joaquin slough (New York slough) and the Sacramento River unite. The station is on the highest point of the rise of ground, about 150 meters from high-water mark, and about 450 meters to the westward of the three houses forming the town of New York. Marked by drill hole in a red stone block sunk \(21 / 2\) feet in the ground, its top being 12 inches below the surface. Three redwood stubs each have copper tacks in their tops, 4 feet from the station and north, east, and west of it.

Foley (Solano County, Cal., I. A. S., 1888).-On the hills west of the mouth of Suisun Creek. Marked by a drill hole in an irregular rock 14 inches below the surface of the ground. Three reference stubs placed east, west, and south of the station have copper tacks in top, each 6 feet from center.

Delta 2 (Solano County, Cal., G. D., i886).-On the lower end of Joice Island, between Suisun Creek and Montezuma Slough, on the southernmost point of the island, inside the levee and 23 paces inside the inner ditch. The station is marked by a drill hole in a rock 34 inches below the surface of the ground. Above this is a joint of earthenware sewer pipe projecting 4 inches above the ground. Three stubs with copper tacks in them are placed 6 feet from the station, and north, east; and south of it.

Army Point 2 (Solano County, Cal., G. D., 1886; 1909). -The top of the hill where Army Point, 1852 (see p. 347), was located has been graded off and a reservoir built there. Army Point 2 is on a line with the outside edge of the coping of the north wall of the reservoir, \(1171 / 2\) feet distant from the northeast corner of the brickwork and east of the reservoir. Marked by a drill hole in a flat stone about I foot square, set 15 inches below the surface of the ground.

Suisun Point 2 (Contra Costa County, Cal., G. D., 1886; 1909).-On Suisun Point opposite the town of Benicia, back from the edge of the bluff on the north side of the point, and so placed that one can see into Suisun Bay as well as down Carquinez Strait. Two small live-oak trees standing on the edge of the bluff just outside of the plowed ground were blazed and a copper nail driven into each blaze. The most eastern of these trees is 96 feet 3 inches from the station and the other 79 feet 11 inches. The station is marked by a drill hole in a stone about 12 inches square set 18 inches below the surface of the ground. In 1909 two reference stones were set near the edge of the bluff and flush with the ground. One is 6 by 8 by 14 inches in size and a drill hole in its top is 33.50 meters from the station and on the extension of a line from Martinez court-house dome through the station; the other reference stone is 8 by 10 by 12 inches in size and
the drill hole in its top is 36.53 meters from the station on the extension of a line through the station from a chimney near a red building about one-fourth mile to the southeast.

Stake (Contra Costa County, Cal., G. D., I886).-On Stake Point, on the south side of Suisun Bay. From the station it is 28 paces to the bank in the direction of station Naylor; 25 paces to the bank in the direction of the highest Montezuma hill, and 22 paces to the bank in the direction of the west point of Chipps Island. If is in paces from the station to the bank of a little slough that makes into the point from the west in the direction of Dutton's warehouse. The station is marked by a drill hole in a flat stone placed 14 inches below the surface of the ground. The three stubs on which the instrument stood were left standing.

Bark (Contra Costa County, Cal., G. D., 1886).-On a hill immediately back of Middle Point and Stephenson triangulation station, and about \(I \frac{1}{2}\) miles distant; not on the highest point of the hill, but on the backbone of the ridge about 60 yards north of the highest point. Marked by a drill hole in a flat piece of sandstone set 20 inches below the surface of the ground. Being in a plowed field, no reference marks were set.

Mass (Contra Costa County, Cal., J. S. L., 1864).-A tall stake standing near the outer end of the Seal Shoal Island in Suisun Bay.

Preston (Solano County, Cal., J. S. L., I864).-A scantling 3 inches square and 15 feet long, set in the middle of a small island forming the eastern end of Preston Island (Roe Island). Station is 22 paces from shore line in the direction of station Seal Bluff and 18 paces from the shore in prolongation of that line; it is 14 paces from the shore in the direction of station Goodyear and 13 paces from the shore in prolongation of that line.

Marked Tree (Contra Costa County, Cal., J. S. L., I864).-A scrub oak about I foot in diameter, the nearest one to the edge of the bluff on the northeast point of the island; the bluff is about 8 feet high, and the tree is 16 paces from it. The tree has a blaze near its base in which a copper nail was driven.

King (Solano County, Cal., J. S. L., 1864).-A 3 by 3 -inch scantling, 55 feet long, set in the eastern end (Point Rose) of Kings Island. The distance from the station to the edge of the tule is 22 paces in the direction of Preston station, and 32 paces at right angles to this line.

Bull 2 (Contra Costa County, Cal., G. D., 1886; 1909).-On the low round mound rising from the marsh just north of the railroad at Avon station, and near the drawbridge on Pacheco Creek. Station is on the highest part of the mound, which is rather indefinite, as the top of the mound is nearly level. The underground mark is a hole in a flat stone. Three reference stones with hole drilled in each were set 6 feet from the center, and northwest, northeast, and southeast of it.

Bay 2 (Solano County, Cal., G. D., 1886).-Located on the first tongue of solid land crossed by the railroad after leaving Army Point going north along the shore of Suisun Bay, in cultivated ground. The station is marked by a hole in a stone \(I\) foot below the surface of the ground. For reference marks the distances are given to telegraph poles along the railroad track as follows: 342 feet to the first telegraph pole that shows from the station to the left of the bluff at Army Point; this pole is on the marsh and is marked by three copper tacks driven in the side nearest the station, one above the other and about io inches above the ground. To the second pole showing to the left of the bluff at Army Point, 173 feet 1 inch; this pole stands on solid ground and is marked by three
\[
6348 I^{\circ}-11-23
\]
copper tacks driven in the side nearest the station, about 1 foot above the ground, in the form of a triangle. To the third telegraph pole the distance is 208 feet 10 inches. This pole is also in solid ground, and is marked by five copper tacks driven in the face nearest the station and I foot above the ground; the tacks form a square with a central point.

Green 2 (Solano County, Cal., G. D., 1886).-An unmarked station on Preston Point, eastern end of Roe Island, Suisun Bay. Searched for and reported lost in 1909.

Garnett 2 (Solano County, Cal., G. D., i886).-On the southwestern point of Ryers Island, in Suisun Bay. The shore line in the direction of the south point of the island is distant 13 paces, and in the direction of the Benicia.Arsenal it is distant ro paces; marked by a drill hole in a flat stone placed underground.

Upper 2 (Solano County, Cal., G. D., 1886).-On the most northern part of Eads Island (Simmons Island), Suisun Bay. The shore line in the direction of a white house with two black barns showing to the right of it on the northern side of the bay is 41 paces. In the direction of a small white house showing to the left of the above the shore line is 18 paces distant. The underground mark is a drill hole in a flat rock in inches square, set 22 inches below the surface. The surface mark is a 6 -inch sewer pipe projecting above the ground.

Sun (Solano County, Cal., J. S. L., 1864 ; 1878).-On very soft flat ground on the western side of Suisun Bay. The ground is covered with tules, and the signal is about 50 yards inside the edge of the tules. When the tide is two-thirds flood the water reaches to within 20 feet of the signal. Marked by a 3 by 3 inch scantling signal. Recovered in 1886.

Honker (Solano County, Cal., W. E. G., 1866; 1878).-On the north side of Honker Bay, on the southern shore of Wheelers Island, on low marshy ground covered with tule. There are no distinguishing features to identify the locality. Station is marked by a redwood stub with copper tack in its center, and by copper tacks driven in four other stubs, 4 feet from the station and north, south, east, and west of it.

Freeman (Solano County, Cal., J. S. L., 1864; 1878).-On the southwest part of Holbrook Island (Freeman Island), a low marshy island covered with tule, and having no natural marks to which to refer the station. From the station it is 35 paces to the passage cutting off a small island which is covered at high water; from the station to the shore line in the direction of Mount Diablo is 23 paces, and in line to Point Buckler is 17 paces. Marked underground by a hole in an irregular rough stone, and on the surface by three instrument stubs, and by copper nails in three reference stubs, 6 feet from the station and southwest, northwest, and southeast of it.

Stephenson (Contra Costa County, Cal., J. S. L., 1864; 1878).-On a marshy point of the same name, \(21 / 2\) miles east of Seal bluff; this point was covered with tule, but it has been destroyed by cattle feeding on it. There are no natural objects by which to identify the location. The shore line is distant from the station 74 paces in the direction of Seal bluff, 43 paces in the direction of Bleak house, and 40 paces in line with the right tangent to Montezuma hills. The subsurface mark is a hole in a triangular wooden block, 5 inches thick and 1 foot below the surface of the ground. Three stubs, with a copper nail in each, 6 feet from the station, are placed as follows: One in line to station Green, one in prolongation of that line, and the third at right angles to that line to the
southwest. In 1878 the stub in prolongation of the line from station Green was not found.

Cupola (Solano County, Cal., W. E. G., 1866).-The cupola or lookout on a conspicuous white house situated on the north side of Montezuma slough and near where it debouches into the upper part of Suisun Bay. It bears about east-southeast from station Hewston.

Dark house ventilator (Solano County, Cal., G. D., 1886). -The ventilator of a dairy house of Montezuma slough, to the westward of Collinsville.

Robinson's large windmill (Contra Costa County, Cal., G. D., 1886).-The standard supporting the wheel of the large windmill at Pittsburg Landing, on the New York slough. There is a tank below the windmill supported by trestle work. The mill stands to the westward of the railroad and only a short distance from the head of the wharf.

White house stovepipe (Solano County, Cal., G. D., 1886).-The stovepipe of a white house located on the west side of Montezuma slough and on the north side of Roaring River, and near their junction.

Black shanty, north gable (Solano County, Cal., G. D., i886).—The north gable of an old dilapidated shanty standing on the point of Van Sickles Island at the mouth of Montezuma slough.

Brant (Solano County, Cal., W. E. G., i866).-Located a few feet from the highwater mark on the upper part of Suisun Bay, near the point where the shore trends to the eastward. It bears about north-northeast from station Hewston. To the westward is a fence running from the margin of the bay into the marshes. Station is marked by three stubs 4 feet from and north, south, and east of the station.

\section*{MONTEREY BAY TO SAN FRANCISCO BAY.}

Santa Cruz Point (Santa Cruz County, Cal., R. D. C., 1852).-About three-fourths mile south of the embarcadero of Santa Cruz and about midway of the point, 270 feet from the extreme end, 130 feet from the edge of the bluff on the east, and 108 feet from the broken bluff on the west; 291.9 feet above high-water mark. The station was marked by a drill hole in a flat stone from 6 to 7 inches in diameter. Three other stones, from \(I\) to 2 feet in length, similarly marked, were placed with their tops just above the surface, two being in line and one at right angles, each 6 feet from the center of the station.

Moore (Santa Cruz̀ County, Cal., R. D. C., 1852 ; 1864).-About \(21 / 2\) miles southwest of the embarcadero of Santa Cruz, on the bluff, about 30 feet above tide. The station was marked by a drill hole in a flat stone 1 foot in diameter. Three other blocks 14 inches in length were placed in the ground, with their tops level with the surface; two in line and one at right angles, and each about 6 feet from the center of the station. Three redwood stubs, each with a nail in the top, were placed 3 feet from the station. In 1904 it was reported by Lieut. F. Swift, U. S. Navy, that one redwood stub with a nail in the end was found, but no stones or other marks.

St. Johns Hill (Santa Cruz County, Cal., R. D. C., 1852; 1864).-About \(41 / 2\) miles west of Santa Cruz. Follow the road leading up the coast for about 4 miles from the
town of Mission; then turn to the right or northward and the signal will be seen a mile distant, standing on the elevated bluff of the second terrace. The station was marked as in note 9 , page 296; the reference stones are two in line and one at right angles.

Balcraft I (Santa Cruz County, Cal., R. D. C., \(185^{2}\); 1864).-About \(33 / 4\) miles west of Santa Cruz Point on land claimed by - Balcraft, on the bluff 38 feet from the edge. The station was marked by a small hole drilled in a flat rock about 9 inches in diameter. (Note 9, p. 296; the reference stones are two in line and one at right angles.) Three redwood stubs, each with a nail in the top, were placed 3 feet from the station.

Parsons (Santa Cruz County, Cal., W. E. G., 1864).-On the bluff about one-third mile south of Rice's house, in full view from it and east of what is known as Parsons Beach. (Note 17, p. 297.)

Rice (Santa Cruz County, Cal., W. E. G., 1864).-On a prominent hill of the second terrace, about three-fourths mile in a northerly direction from Rice's house and in plain view from it. (Note r7, p. 297.)

Lagoon (Santa Cruz County, Cal., W. E. G., I864). -On the first point to the eastward of the mouth of Lagoona Creek, on the bluff about one-eighth mile east of a large sand hill. (Note 17, p. 297.)

Butler (Santa Cruz County, Cal., W. E. G., i864).-On a prominent hill on the second terrace and east of what is commonly known as the big Lagoona Creek. (Note 2, p. 296.)

Glassell (Santa Cruz County, Cal., W. E. G., 1864).-Directly opposite Glassell's landing on the bluff point, to which one end of the hawser from the landing is made fast. (Note 17, p. 297.)

Redwood (Santa Cruz County, Cal., W. E. G., i864).-On the top of a hill about 3 miles from Glassell's landing on the road to his mill, about 50 meters west of the road. (Note 17, p. 297.)

Point (Santa Cruz County, Cal., W. E. G., 1864).-On a prominent bluff point about \(21 / 2\) miles to the westward of Glassell's landing. (Note 17, p. 297.)

Manzanita (Santa Cruz County, Cal., W. E. G., 1864).-On a conspicuous hill, about three-fourths mile to the eastward of the Jarro Valley and the same distance to the northward of the coast road. (Note 17, p. 297.)

Cook (Santa Cruz County, Cal., W. E. G., 1864).-On a high hill west of Scotts Creek (El Jarro) and distant about one-fourth mile from the road, about \(13 / 4\) miles from where the road crosses the creek and about one-fourth mile from Cook's house. (Note 17, p. 297.)

Pine (Santa Cruz County, Cal., W. E. G., r864).-On a hill to the northward of the Jarro Valley (the upper part) and distant from the new road up that valley about \(11 / 2\) miles, on the highest part of the ridge and near the northern end. (Note 17, p. 297.)

Tranta (Santa Cruz County, Cal., W. E. G., 1864). -On the high conspicuous knob immediately to the eastward of the valley of the Tranta. (Note 17, p. 297.)

Steele (Santa Cruz County, Cal., W. E. G., 1864).-On a high ridge about I mile in a northeasterly direction from A. Steele's house and in a northerly direction from a large gulch about one-eighth mile from Steele's house, near the northern extremity of the summit and about 100 meters from the timber line. (Note 17, p. 297.)

Point Ano Nuevo (San Mateo County, Cal., W. E. G., 1864).-On a sandy ridge on Point Ano Nuevo, about 150 meters from high-water mark and at an elevation of about 60 feet above it. (Note 17, p. 297.)

Masters Hill (Santa Clara County, Cal., R. D. C., 1852).--Eight and one-half miles N. \(7 \mathrm{I}^{\circ} 35^{\prime} \mathrm{E}\). from the town of San Jose, on the first range of hills forming the eastern boundary of the valley of San Jose, on a peak whose northwestern and southwestern slopes are covered with trees and undergrowth, the highest summit of that range within 5 or 6 miles, excepting that about two-thirds mile S. \(26^{\circ} \mathrm{E}\). of the station there is another round conical summit, somewhat higher than Masters Hill and somewhat similar in appearance. To the northeastward and eastward there is a still higher range running parallel with this and with a small valley between, called Queery's ranch. The summit is about 50 feet in diameter, the slope from the summit being very steep. The station is within 25 feet of the undergrowth to the northwestward. There are two oak trees, one 80.9 feet \(\mathrm{N} .77^{\circ} 3^{\prime} 0^{\prime} \mathrm{E}\). of it, the other ini. 8 feet N. \(55^{\circ} 30^{\prime}\) E., each with a nail in a blaze on the side facing the station. An outcropping ledge of rock running in a northwesterly direction lies 17.5 feet S. \(23^{\circ} \mathrm{W}\)., and another ledge 220 feet N. \(23^{\circ}\) E. (Note 13, p. 297.)

Murphy (Santa Clara County, Cal., R. D. C., 1852-54).-On the summit of the high ridge forming the eastern boundary of the valley of San Jose, about 2708 feet above tide. (Note 13, p. 297.)

Johnston (San Mateo County, Cal., R. D. C., 1854; 1863).-About 6 miles south of Point Miramontes, on land owned by Mr. Johnston, and about I 800 meters southwest of Mr. Johnston's house. (Note 18; p. 297.)

Halfmoon Bay (San Mateo County, Cal., R. D. C., 1854).-On the first hill inland from the center of Halfmoon Bay, on land belonging to a Spaniard known as "Tobushy Vascas." (Note 18, p. 297.)

Gushee (San Mateo County, Cal., W. E. G., 1864).-On the western end of a prominent high hill about \(13 / 4\) miles from the coast. The north side of the hill is covered with timber. (Note 17, p. 297.)

Middle Point (San Mateo County, Cal., W. E. G., 1864).-On Middle Point, on the coast above Monterey Bay. (Note 17, p. 297.)

Cutts No. 2 (Santa Cruz County, Cal., W. E. G., 1864).-About I mile in a westerly direction from and in plain view of Rice's house and about roo meters from the bluff. (Note 9, p. 296, the reference stones being two in line with the station and the third at right angles.)

Topog No. 2 (Santa Cruz County, Cal., W .E. G., 1864).-On a bluff point about three-fourths mile to the westward of the mouth of Vincente Creek. (Note 17, p. 297.)

Topog No. 3 (Santa Cruz County, Cal., W. E. G., 1864).-On a bluff about one-half mile southeast of the mouth of Scotts Creek. (Note 17, p. 297.)

Topog No. i (Santa Cruz County, Cal., W. E. G., 1864).-On the tip of a bluff point about three-fourths mile distant and westward from the mouth of the Big Laguna Creek. A pole 5 inches in diameter was placed in the ground 3 feet, and three redwood stubs with copper tacks in their tops driven in the ground 3 feet from the center of the station.

Topog No. 5 (Santa Cruz County, Cal., W. E. G., 1864).-About 300 meters south of the coast road. (Note 17, p. 297.)

Topog No. 7 (San Mateo County, Cal., W. E. G., 1864).-On the bluff about half way between Point Ano Nuevo and Middle Point. (Note 17, p. 297.)

Topog No. 8 (San Mateo County, Cal., W. E. G., 1864).-On the bluff about i mile to the westward of Middle Point. Abbott's house is in full view about one-fourth mile to the north of the station. (Note 17, p. 297.)

Topog No. 6 (Santa Cruz County, Cal., W. E. G., 1864).-On the bluff about onefourth mile to the eastward of Waddell's wharf. (Note 17, p. 297.)

Topog No. 4 (Santa Cruz County, Cal., W. E. G., 1864).-About 300 meters south of the coast road. (Note 17, p. 297.)

Cutts No. i (Santa Cruz County, Cal., W. E. G., i864).-About one-fourth mile northeast of Rice station (see p. 356). (Note 9, p. 296; the reference stones are two in line and one at right angles.)

Whites Landing (Santa Cruz County, Cal., R. D. C., 1854).-On the shore of Monterey Bay, \(41 / 2\) miles northwest from the mouth of Pajaro River, 54 feet from the edge of the bluff, and 400 yards northwest of a cluster of stone houses. Station is marked by a drill hole in a rock buried 3 feet in the ground. Reference marks are three stubs with copper tacks in their tops, placed 6 feet from the station, two in line with the station and the other at right angles to that line. The tops of the stubs are even with the surface of the ground.

ASTRONOMIC STATIONS, MOUNTAIN PEAKS, AND MISCELLANEOUS POINTS.
Mount Lola Latitude Station (Nevada County, Cal., G. D., 1879).—Situated 22 feet 3.9 inches north and 21 feet 10.4 inches east of the triangulation station described on page 620, Appendix 9, Report for 1904. Latitude station is marked by a brick pier resting on a rough stone foundation and capped by an unhewn flat stone about \(31 / 2\) inches thick.

Round Top Latitude Station (Alpine County, Cal., G. D., 1879).-Situated 35.09 feet west of and 1.17 feet south of the triangulation station, for a description of which see page 619, Appendix 9, Report for 1904. The latitude station was marked by a rough stone pier, which was built up from the solid rock. This pier had its foundation some 4 or 5 feet below the floor of the observatory, the west end of which rested on a wall of stones, inside of which and clear back to and around the pier stones were filled in.

Yolo Southeast Base Latitude Station (Yolo County, Cal., G. D., 1860).—Situated 48.71 meters from the triangulation station, in azimuth \(253^{\circ} 36^{\prime}\). (For description of triangulation station see p. 622, Appendix 9, Report for 1904.) The latitude station was marked by a brick and cement pier, with its base 3 feet below the surface of the ground.'

Yolo Northwest Base Latitude Station (Yolo County, Cal., G. D., 1880).-Situated 5.95 meters from the triangulation station in azimuth \(131^{\circ} 45^{\prime}\). (For description of triangulation station see p. 623, Appendix 9, Report for 1904.) The latitude station is marked by a brick and cement pier, with its base 3 feet below the surface of the ground.

Monticello Latitude Station (Yolo County, Cal., G. D., 1880). -Situated 31.413 feet north of and 8.823 feet east of the triangulation station, for description of which see page 622, Appendix 9, Report for 1904. The latitude station is marked by a pier of stone and cement, with its foundation 12 inches below the surface of the ground.

Vaca Latitude Station (Solano County, Cal., G. D., 1880).-Located 61.6 feet east of and 37.4 feet south of the triangulation station, for description of which see page 621 , Appendix 9, Report for 1904. The latitude station was marked by a concrete pier, with its base 12 inches below the surface of the ground.

Mount Tamalpais Latitude Station (Marin County, Cal., G. D., 1882).—Situated 5.60 meters from the triangulation station, in azimuth \(103^{\circ} 13^{\prime}\). (For description of triangulation station see page 299.) The latitude station was marked by a pier 18 inches square, made of concrete, and having its base well embedded in the ground.

Mocho Latitude Station (Santa Clara County, Cal., G. D., I887).-Situated r. 60 meters due east of the triangulation station, for description of which see page 621 , Appendix 9, Report for 1904. The latitude station was marked by a concrete pier.

Mount Diablo Latitude Station (Contra Costa County, Cal., G. D., 1876).-Situated 51.15 meters from the triangulation station, in azimuth \(89^{\circ} \mathrm{O} 2^{\prime}\). (For description of the triangulation station see p. 620, Appendix 9, Report for 1904.) The latitude station was marked by a brick pier.

Presidio Latitude Station (San Francisco County, Cal., G. D., 1852).-Situated 5 feet \(61 / 8\) inches west of and 4 inches north of the transit instrument, which was central with Presidio magnetic station, described on page 337. The latitude station was reported in 1904 as lost.

Presidio Latitude Station (San Francisco County, Cal., F. M. and O. B. F., i 896).-In the Presidio Military Reservation, 4.84 feet east of the Presidio longitude station of 1896, for a description of which see page 337 . The latitude station is marked by a solid masonry pier.

Lafayette Park Latitude Station (San Francisco County, Cal., G. D., i888).-Marked by a pier 5.185 feet east of and 0.025 feet north of Lafayette Park longitude station, for description of which see page 318.

Ross Mountain Latitude Station (Sonoma County, Cal., G. D., i859-60).—A solid spruce block, \(3^{1 / 2}\) feet in the ground and resting on a solid rock. The station is 31 feet 9 inches distant, in azimuth \(269^{\circ} 50^{\prime}\) from the triangulation station, for description of which see page 623, Appendix 9, Report for 1904.

Mount Helena Vertical Circle (Napa County, Cal., W. E., 1876).—A brick pier 109 feet \(31 / 2\) inches from the triangulation station, in azimuth \(314^{\circ} 03^{\prime}\). (For description of the triangulation station see p. 621, Appendix 9, Report for 1904.)

Mount Helena Latitude Station (Napa County, Cal., W. F., 1876).-A brick pier just east of the transit pier and 58 feet \(21 / 2\) inches from the triangulation station, in azimuth \(330^{\circ} 10^{\prime}\). (For description of the triangulation station see p. 621, Appendix 9, Report for 1904.)

Mount Conness Vertical Circle Station (Tuolumne County, Cal., G. D., 890).-A pier located 28.6 feet west and 81.4 feet south of the magnetic pier on Mount Conness, for description of which see the following description.

Mount Conness Magnetic Station (Tuolumne County, Cal., G. D., 1890).-The station is 20.7 feet west and 57.7 feet north of the transit pier (which is 5.07 feet west of the latitude pier) and 28.6 feet east and 81.4 feet north of the vertical circle pier. Magnetic pier is 180.4 meters from the triangulation station, in azimuth \(298^{\circ} 20^{\prime}\). (For description of triangulation station see p. 620, Appendix 9, Report for 1904.)

Mount Conness Latitude Station (Tuolumne County, Cal., G. D., 1890).-A concrete pier 194.5 meters from the triangulation station, in azimuth \(30 I^{\circ} 59^{\prime}\). See preceding description of magnetic station and description of triangulation on page 620, Appendix 9, Report for 1904.

Marysville Court-House flagstaff (Yuba County, Cal., C. H. S., 1898).-The courthouse is built of yellow brick and has two towers, both battlemented, but only one has a flagstaff. It is on the southern tower, the one farthest from the street corner.

Stone (Yuba County, Cal., C. H. S., 1898).-About io miles northwest of Marysville on a rocky ridge of the first foothills of Marysville Butte. This ridge is used for pasture only, being too rocky for cultivation, and is only about 50 feet above the general level of the valley. The land belongs to Mrs. Bloomfield. Station is marked by a one-half-inch drill hole in a fast rock about 15 inches in diameter and projecting so inches above the ground. From the station the following distances were measured: To a large bowlder, 12 feet east; to an outcrop of rock, 9 feet south; to an outcrop of rock, 14 feet northeast; and to a fast rock, 6 fect northwest.

Walton (Sutter County, Cal., C. H. S., 1898).-In a field, on east side of a north and south road, 3 feet from the fence, and 34 paces north of the road from Colusa to Marysville. It is 2 feet south of the fifteenth fence post from the corner.

Roll (Sutter County, Cal., C. H. S., 1898).-About 10 miles a little north of west of Marysville, on land belonging to F. X. Lenenager. It is on the crest of the first foothill, about 100 feet in altitude above the valley. The land is used for grazing only, on account of the number of large stones on it. Station is marked by a one-half-inch drill hole in a fast rock, about 12 by 18 inches in size, projecting 4 inches above the surface of the ground. From the station it is 5 meters southeast to a large fast stone, \(5^{1 / 2}\) meters northwest to a small fast stone, \(141 / 4\) meters east to a large fast stone, 62 paces northwest to a fence corner, 9 paces southwest to a stone fence, and 14 meters north to a wire fence.

Fields (Sutter County, Cal., C. H.S., i898).-In a field on the west side of a north and south road, 3 feet from the fence and 50 yards north of the yard fence of John Henry Fields. Marked by a 2 by 3 -inch stub.

Elmer (Sutter County, Cal., C. H. S., I898).-In a field belonging to Mr. Elmer, but now rented by Mr. Sterns; 3 feet south of the fence, on the south side of the road from Colusa to Marysville.

Marysville North Base (Sutter County, Cal., C. H. S., 1898).-In the public road, at the northwest corner where it turns to the east between the lands of William Saunders and Lewis Sterns. It is 6 feet from the west fence and 18 feet from the north fence. Marked by a 2 by 3 -inch stub.

Maxysville South Base (Sutter County, Cal., C. H. S., 1898).-On the west side of the public road, just south of a bridge, 6 feet east of the west fence and about 8 fence panels north of where the road turns east and west. It is between the lands of W. A.

Pinney on the west and William Saunders on the east. The land to the south is owned by Frank Roten. Marked by a 2 by 3 -inch stub.

Marysville Presbyterian Church spire (Yuba County., Cal., C. H. S., 1898).--On the southeast corner of D and Fifth streets, built of red brick. Tallest spire in town. It has clock faces on all four sides.

Marysville Catholic Church spire (Yuba County, Cal., C. H. S., 1898).—On the northwest corner of \(C\) and Seventh streets; a tall spire of a lead color on a brick church erected in 1855 .

Marysville Longitude Station (Yuba County, Cal., C. H. S., 1889).-Located in Cortez square, Marysville. Cortez square is bounded by Fifth, Sixth, B, and C streets, is two blocks west of the Southern Pacific Railroad depot and one block east of the court-house. Station is 126 feet east of \(C\) street and 163 feet north of Fifth street. Marked by a pier of brick, with a foundation 22 inches below the surface of the ground, resting on a rock.

Sacramento Longitude Station (Sacramento County, Cal., C. H. S., I889).-In the capitol grounds on the east side of the capitol. Station is 124.99 meters southeast of the capitol dome, being 78.196 meters south and 97.504 meters east of it. Station is marked by a pier consisting of a granite block 14 by 25 inches and \(61 / 2\) feet long. Recovered in good condition in 1908.

Mount Hamilton Longitude Station (Santa Clara County, Cal., C. H. S., 1888).Located about 1400 feet east of Lick Observatory, upon the east side of the small knoll which is south of the main road running along the ridge. Two piers built of brick are \(791 / 2\) inches from center to center, and the west pier marks the longitude station.

Mount Hamilton Latitude Station (Santa Clara County, Cal., C. H. S., 1888).Marked by a brick pier \(791 / 2\) inches east of the pier marking the Mount Hamilton longitude station, for the description of which see the preceding description.

Jackson Butte (Amador County, Cal., G. D., 1879). -On the summit of Jackson Butte, an isolated steep hill, conical in shape, and covered with a scattering growth of mixed timber. In 1880 the nearest house to the station was that of \(C\). J. Ruffner, situated at the base of the butte, about three-fourths mile northwest of the station and 3 miles east by south from Jackson. The center of the station is marked by a cross in the top of a copper bolt which projects about three-fourths inch above the surface of a rock in which it is fixed. This rock is even with the surrounding surface of the ground. Over the center is placed a pier composed of two stones, one above the other, cemented together. Around this pier is piled a conical cairn of stones. It is about 6 feet in diameter at its base and about 4 feet high. Reference marks are holes drilled in the tops of three isolated rocks which project considerably above the surrounding surface and are at the following distances and magnetic bearings from the station: 66.79 feet, S. \(67^{\circ} 45^{\prime}\) E.; 12.35 feet, S. \(I^{\circ} 26^{\prime}\) W.; 27 feet, N. \(64^{\circ} 40^{\prime}\) W. Recovered in 1898.

Sanel Mountain (Mendocino County, Cal., G. D., 1860; 1878).-On a high roundtopped hill about 24 miles northwest of Sulphur Peak. Approached from Cloverdale, the mountain may be identified by two prominent landmarks-a large white rock which crops out about half way up the mountain-side and shows as a white spot on it, and a pine grove which covers about 3 acres and is the only one on the mountain. Center mark is a cross cut on a flat rock even with the surface of the ground. Reference marks
are shallow holes in three flat stones even with the surface of the ground, two being in line with the station and Ross Mountain, and the third at right angles to that line.

Walalla (Mendocino County, Cal., G. D., 1860; 1878). -On a mountain of that name, about 6 miles from the coast, nearly abreast of the Havens anchorage, locally known as Bulls Landing. Station is within 40 feet of the trail from Gualala to Joshua Adam's ranch and is on what is locally known as Signal Ridge. Marked by a bottle set in a hole in the solid rock 18 inches below the surface of the ground. Above the bottle was placed 3 inches of dirt, then a flat rock, above which was set a wooden pier. When filling around the pier, broken glass was mixed with the earth. Around the pier was placed a cairn of stones, the cairn being 6 feet in diameter and 3 feet high. The reference marks are crosses cut in three flat stones placed each 6 feet from the station, two in line with Ross Mountain, and the third at right angles to this line.

Sulphur Peak (Sonoma County, Cal., G. D., i860; 1878).-On Sulphur Peak, sometimes called Goodwin or Geyser Peak, about 30 miles from the coast, directly inland from Fort Ross. It lies on the eastern side of Russian River Valley, abreast of the town of Geyserville. The summit of the peak is very limited in extent, the ground falling away rapidly in every direction. The peak is covered with chaparral and scrub trees. Center of the station is marked by a hole in a flat rock level with the surface and by three reference marks consisting of holes in stones each 6 feet from the station and placed one in line to Sanel Mountain, one in line to Mount Helena, and the third in line to Ross Mountain.

Sulphur Peak Latitude Station (Sonoma County, Cal., G. D., 1859).-Marked by a wooden pier filled with rocks placed 5.537 meters from the triangulation station in azimuth \(271^{\circ} 21^{\prime}\). (For description of the triangulation station see the preceding description.)

King Peak (Humboldt County, Cal., A. F. R., 1879-1881).-Upon the highest coast summit immediately north of Shelter Cove (Point Delgada). It is about 4000 feet in elevation. Station is marked by a hexagonal pier of cement, sand, and rubble. The pier was covered with a box of pine boards, and the space between the box and pier filled with disintegrated rock, such as composes the surface of the summit. The center of the station was reproduced on top of the pine box covering the pier.

Mount Lassic (Humboldt County, Cal., A. F. R., 188ı; 1892).-On the most westerly and least prominent of those buttes which rise in sharp conical outline about 200 feet above the ground surface of the mountains in the eastern part of Humboldt County. The highest of these buttes is east of and about three-fourths mile from the one on which the station is situated and which is easiest of access. The station was marked by an irregular shaped stone set in cement with its top even with the surface of the ground. In its top was placed a copper bolt to mark the center. Over this stone was erected a concrete pier 20 inches square and 4 feet high, in the top of which was set a copper bolt to mark the center of the station. Two reference marks (holes drilled in the surface rock and filled with lead) were placed, one nearly in line to King Peak, and distant 7 feet 3 inches from the station, and the other in prolongation of that line to the northeast and distant 8 feet in \(1 / 4\) inches from the station.

Bear Ridge (Humboldt County, Cal., A. F. R., 1869-1883; 1882).-On the first main ridge north of Cape Mendocino which at the ocean forms False Cape; upon that part of the ridge known as Big Hill, the summit of which is round and flat. Station is
marked by a heavy redwood stub 3 feet in the ground with top level with the surface, over which was placed a heavy stand of redwood timber, with its feet firmly set in the ground. Four bottles were placed in the ground north, south, east, and west of the station and 6 feet from it.

Mad River (Humboldt County, Cal., A. F. R., 1870-1883; 1892).-Upon the northern of two summits known as the "Mad River Buttes," on the ranch of Tod \& Crawford, 3300 feet above and 5 miles from their ranch house. Station was marked by a pine stub ifoot in diameter.

GOLDEN GATE TO POINT ARENA.
Point Reyes Head (Marin County, Cal., G. D., i859).-On the highest point of Point Reyes, about 580 feet above the ocean and 880 meters from the western extremity of the point, exactly on the prolongation of the base of the bluff shore line running northward, on the southeast side of a round-topped rock. The station was marked by a hole drilled into a rock placed below the surface. The reference mark was a half-inch hole drilled into the top of the round rock, distant 2 feet \(1 / 3\) inches from the station, N. \(50^{1 / 2}{ }^{\circ} \mathrm{W}\). (magnetic).

Redwood (Sonoma County, Cal., G. D., 1860; 1876).-About 5 miles from Russian River ferry, on the ridge along which passes the wagon road from that place, through Colmans Valley to Dutch Bells and Sebastopol, in the forks of the road about one-fourth mile from a gate through which the road passes, about 500 yards from Barnes, 175 paces \(\mathrm{N} .42^{\circ} \mathrm{W}\). of a high, steep, isolated rock near the southern fork of the road, S. \(50^{\circ} \mathrm{E}\). of a small pile of rocks near the northern fork. (Note 9, p. 296.) Two reference stones in line with the station and Bodega Head, and the third at right angles to that line.

Bodega Hill (Sonoma County, Cal., L. A. S., 1860).-On the highest hill on the north side of Salmon Creek about one-half mile from the mouth, on the west slope of the hill, about 50 yards from the wagon road, up the coast ridge. (Note 9, p. 296.) Two reference marks are in line with the station and Bodega Head and the third nearly at right angles to the line.

Table Mount (Sonoma County, Cal., L. A. S., r876).-On a mountain locally known by that name, about 25 meters west of and about 10 or 15 feet lower than the top of the hill and at the edge of the timber (note 4 , p. 296), and there was also a stub 2 feet above the ground at the center. Reported lost in 1906. (See Table Mount 2, p. 310 .)

Lucky Tree (Sonoma County, Cal., L. A. S., 1876).-A tree marked with a triangle and the letters C. S. cut about 5 feet above the ground, on the ridge northwest of Horseshoe Point triangulation station, near the middle fork of the road up the hill. Reported lost in 1906.

Smith (Mendocino County, Cal., L. A. S., 1870; 1891).-On the top of a hill north of the harbor at Point Arena, near the edge of the bluff, at an elevation of about 216 feet. The station was marked by an irregular-shaped sandstone block, flat on top, with a one-half inch hole drilled in it to mark the center of the station, and by four witness stubs, with copper tacks, two to the northwest and northeast, 4 feet from center, and two to the southeast and southwest, 3 feet from center.

Adams (Mendocino County, Cal., L. A. S., 1870).-On a spur near the top of the mountain known as Adams Ridge. The station was marked by a drill hole in a stone
irregular in shape, about 8 by 10 inches, \(41 / 2\) inches thick, flat, and somewhat concave on top, buried 2 feet below the surface. On this was an inch of earth and then a yellow earthenware bottle 6 inches high, the center of the mouth of which marked the station. Above the bottle was 8 inches of earth and then a stone 18 by 14 inches and about 8 inches deep, with a one-half inch drill hole in it, marking the station. The reference stones were each 6 feet \(31 / 4\) inches from the center, two nearly in line to the mouth of Alder Creek, and one at right angles to that line. A triangle was cut on a fir tree and a spike driven in its center, distant 104 feet. A spike in a triangle marked a madrona tree, distant 184 feet 4 inches. To the right of the line to Alder Creek the rocks crop out at a distance of 18 yards.

Point Arena Northwest Base (Mendocino County, Cal., L. A. S., 1870).-Near the northwest extremity of the plateau lying between the two points of Point Arena. Reported lost in 189 r .

Hall (Mendocino County, Cal., L. A. S., 1870).-About one-fourth mile northwest of the Garcia River Mill Hoisting Works, on the highest ground of the vicinity. Reported lost in 1891.

Sand (Mendocino County, Cal., L. A. S., 1870).-On one of the prominent high sand hills on the north side of the Garcia River, on the highest top of the third ridge from the river, a few feet west of a deep slide, easily recognized from the top of adjoining ridges, which bend to the northwest and are well defined. The station is marked by a block of redwood 6 by 6 by 15 inches, buried 2 feet 3 inches below the surface, in the top of which a spike was driven. The reference marks were four stubs, each 6 feet from the center.

Point Arena Southeast Base (Mendocino County, Cal., L. A. S., 1870).-Near the southeast extremity of the plateau, lying between the two points of Point Arena, just north of a clump of bushes and a short distance from the timber line. The station was marked by a block of redwood 15 inches long and 6 inches square, in the top of which a 5 -inch spike was driven, buried about 10 inches below the surface. The reference marks were four stubs, each driven 6 feet from the center of the station, in each of which was a copper tack.

Knox (Mendocino County, Cal., L. A. S., 1879).-On a high ridge in the timber and on the southern edge of the sonthern of two large brushy openings, easily recognized from the coast, on land owned by John Knox. (Note 4, p. 296.)

Anderson Tree (Mendocino County, Cal., L. A. S., 1879).-A redwood tree, at the top of which the branches were trimmed, marked by a large blaze on its north side, in which the letters C. and G. S. were cut in a triangle. A large redwood standing about 12 feet to the northward was blazed on the side facing the signal tree, and a smaller redwood standing beside the road was similarly marked and lies northeast of the station and about 226 feet distant. The tree may be reached by ascending the grade coming to the county road a little north of Saunders Landing.

Marr (Mendocino County, Cal., E. F. D., 1891).-On the mesa, about one-half mile southwest of Point Arena and about 125 meters north of Frost's house. The station was marked by a stone ale bottle buried about 2 feet below the surface of the ground and by four witness stubs, each 6 feet from the center, one in line to the light-house, one in the prolongation of the line to the southeast, and the other two at right angles to the northeast and southwest.

Point Arena Longitude Station (Mendocino County, Cal., C. H. S., 1889; 1891).About 200 meters east of the town of Point Arena, upon the hill where stand the large tanks of the town waterworks. The station was marked by a spike in the center of the top of a brick pier even with the surface of the ground.

Iversen Point (Mendocino County, Cal., L. A. S., 1879). -In the northern part of the point known as Iversen Point, or Rough and Ready Landing, near the edge of the bluff. The station was marked by a drill hole in a large red sandstone about 2 by \(11 / 2\) feet, sunk i foot below the surface, with the ground raised around it about 2 feet.

Havens Neck (Mendocino County, Cal., L. A: S., I878).-On the northwest extremity of Havens Neck, on the highest ground in the vicinity, south of a boulder of rock higher than the ground at the station. The station was marked by a drill hole three-fourths inch deep in a stone resting upon the solid boulder, over which the ground was leveled and raised 3 feet.

Triplet Hill (Mendocino County, Cal., L. A. S., 1878). -On the top of a rocky hill and in a bushy opening, north of Triplet's house. (Note 4, p. 296.)

Rocky Peak (Mendocino County, Cal., L. A. S., 1878).-On a round-topped yellow appearing rocky hill back of Havens anchorage. It may be reached by taking the first grade coming into the county road, about 200 meters north of Captain Ferguson's store. (Note 4, p. 296, except the stone rests on the solid rock at a depth of about \(11 / 2\) feet.)

Sandstone (Sonoma County, Cal., L. A. S., 1878).-On the outer point forming the northern extremity of the bight found north of Bihler Point on land owned by William Bihler; near the edge of the bluff. (Note 4, p. 296.)

Robinson Point (Mendocino County, Cal., L. A. S., 1878).-Upon the west end of a bare spur above the railroad track, about 50 meters distant, on land owned by C. D. Robinson and about one-fourth mile north of his chute. (Note 4, p. 296.)

Rutherford Tree (Sonoma County, Cal., L. A. S., 1878). -The tallest fir tree in the vicinity, at the top of the ridge on the cast side of the gulch which, coming to the coast, passes just south of R. N. Rutherford's dwelling house. The tree is marked by a triangle and the letters \(C\). S. cut into the tree about 5 feet above the ground, with the branches for some distance from the top trimmed.

Knipp (Sonoma County, Cal., L. A. S., 1878).-On a prominent point about 2 miles north of Stengel and about 250 meters southeast of the end of the fence at the bluff, on land owned by Knipp \& Stengel. (Note 4, p. 296.)

Stengel (Sonoma County, Cal., L. A. S., 1878).-On the prominent point in the bight about 2 miles north of Bihler Point, near the edge of the bluff, on land owned by Knipp \& Stengel. (Note 4, p. 296.)

Helmke Ridge (Sonoma County, Cal., L. A. S., 1876).-Upon the same ridge as Lucky Tree, and lower down, at an elevation of about 815 feet, about ioo meters north of the road, on land owned by F. Helmke. (Note 4, p. 296.)

Rocky Point (Sonoma County, Cal., L. A. S., 1876).-On a rocky neck which forms the first prominent point north of Horseshoe Point, near the extremity of the bluff. The station was marked by a hole three-fourths inch deep in a solid boulder.

Harbeck (Sonoma County, Cal., L. A. S., 1876).-On an isolated round-top hill about a mile below the settlement at Stewart Point. (Note 4, p. 296.)

Bihler Point (Sonoma County, Cal., L. A. S., 1876).-On the extreme western point of Bihler or Black Point Landing. (Note 4, p. 296.)

Stewart Point (Sonoma County, Cal., L. A. S., 1876).-On the northwestern'extremity of the island forming the extreme western point, about one-half mile north of Fisherman Bay, near the upper edge of the bluff. (Note 4, p. 296.)

Lark (Sonoma County, Cal., L. A. S., 1878). - At the western extremity of the highest part of a bare slope, about three-fourths mile east of Knipp \& Stengel's house and about 100 meters north of the fence running from the coast, at an elevation of about 475 feet. (Note 4, p. 296.)

Ross Tree (Sonoma County, Cal., L. A. S., 1878). -On the ridge back of Bihler Point, about 350 meters east of a Chinese camp, to which a road leads up the gulch, at a point about 7 Io feet above high water, a very tall and quite straight and slender tree, the highest in the locality, marked by a triangle cut into the tree, about 5 feet above ground, with the letters C. S. cut within the triangle.

Sandy Point (Sonoma County, Cal., L. A. S., 1876).-On the outer point, about one-third mile south of Fisherman Bay, or Stewarts Point Landing, near the edge of the bluff, immediately back of which is a small, bare, and gravelly spot. (Note 4, p. 296.)

Fisk Tree (Sonoma County, Cal., L. A. S., 1878).-About three-fourths mile north of Stewarts Point and directly back of a large opening in the timber, a tall tree, with the branches trimmed for some distance from its top, marked by a triangle cut into the tree about 5 feet above ground.

Bourns Landing (Mendocino County, Cal., L. A. S., 1876).-Near the extremity of the point and at the edge of the bluff forming the northern lea of Bourns and Walalla Mill Company's landings. (Note 4, p. 296.)

Island (Sonoma County, Cal., I.. A. S., 1878).-On the highest part of the island forming the extreme point about i mile south of the mouth of the Walalla River, only to be reached from the main shore at very low water. (Note 4, p. 2g6.)

False Ford (Sonoma County, Cal., L. A.S., 1878).-On the highest part of the point on the main land, directly abreast of Island triangulation station, on land owned by Wm. Bihler. (Note 4, p. 296.)

Walalla Tree (Mendocino County, Cal., I. A. S., 1878).-On the south side of a deep gulch north of Robinson Hotel, about one-fourth mile back from the county road and about 50 meters north of the Robinson grade leading up the hill from the county road, a dead fir tree, marked by a triangle with the letters C. S.

Peter Tree (Sonoma County, Cal., L. A. S., 1878).-About three-fourths mile northeast of Knipp triangulation station, in the dense timber, a fir tree, the tallest in the vicinity, with the branches trimmed for some distance down from the top. Marked by a triangle and the letters C . S .

Junction (Mendocino County, Cal., L. A. S., 1878).-On the outer lower bluff about midway between Iversen's or Rough and Ready I anding and Point Arena Landing, upon the north side of a gulch, near the edge of the bluff on the southernmost point. (Note 4, p. 296, except the stone was buried just below the natural surface of the ground, which was then raised 3 feet.)

Morse (Mendocino County, Cal., L. A. S., 1878).-On a brushy opening on a narrow divide of the first ridge northward of Steen's or Hardscratch Landing, 16 feet south of
a wagon road branching off from the county road about 200 yards north of Steen's landing. (Note 4, p. 296.)

Saunders Hill (Mendocino County, Cal., L. A. S., 1879).-On the second knoll south of Saunders Hill, east of the county road. (Note 4, p. 296, with copper tack in drill hole.)

Black (Mendocino County, Cal., L. A. S., 1870).-On the first and most prominent hill east of Smith's farm, 400 yards west of the timber line. (Note 8, p. 296.)

Spur Mountain.-Sonoma County, Cal., L. A. S., i875).-On what is locally known as the oak ridge, east of the Walalla River, above a fine spring and watering trough. (Note 4, p. 296.)

Russian River (Sonoma County, Cal., G. D., 1860).-About \(11 / 2\) miles from the mouth of Russian River and one-half mile south of the mouth of Dry Creek, about one-fourth mile from the coast, on top of a hill, the seaward side of which descends abruptly and along the foot of which passes the wagon road from Russian River Ferry up the coast. A large square-topped rock in the water bears \(\mathrm{S} .521 / 4^{\circ} \mathrm{W}\). (Note 9, p. 296, except the center stone was sunk I foot below the surface of the ground.) Two reference marks are in line with the station and Bodega Head and the third at right angles to that line.

Benitz (Sonoma County, Cal., G. D., 1860; 1875).-On the top of a small ridge which is covered on the northern side with chaparral and the southern side heavily timbered, about 1700 feet above the ocean, about 200 paces northeast of the trail leading from the mouth of Russian River to Fort Ross. The station was marked by a one-halfinch hole drilled into the solid rock about 2 feet below the surface of the ground. As reference marks pieces of rocks having one-half-inch holes drilled in them were placed at the surface of the ground around the station, 6 feet from it-one toward Ross Mountain, another in the opposite direction, and the third to the south, nearly at right angles to the line joining the others. Magnetic bearings to various points are as follows: To a high hill 8 miles distant, N. \(29^{\circ} \mathrm{W}\).; to the top of a ridge 5 miles distant, N. \(3^{1 / 3^{\circ}} \mathrm{W}\)., and to the top of a ridge \(11 / 2\) miles distant, N. \(81 / 2^{\circ} \mathrm{E}\).

Dry' Creek (Sonoma County, Cal., G. D., \(1860 ; 1875\)). -On a large flat-topped hill about one-half mile from the mouth of Dry Creek and just to the left of the wagon road leading up the coast, 130 yards \(\mathrm{S} .36^{\circ} \mathrm{W}\). from the pile of rocks about 4 yards from the road. (Note 9, p. 296.) Two reference marks were in line with Ross Mountain and the third at right angles to that line.

Silvers Tree (Sonoma County, Cal., L. A. S., 1876).-A tall fir tree about 6 meters to the north of Henry Hill triangulation station. (See p. 310.) Not found in 1906.

Allston Tree, flag (Sonoma County, Cal., L. A. S., 1876).-On the ridge back of Timber Cove and a little north of the road leading from Timber Cove to the ridge road; a fir tree with the branches trimmed off and marked by a triangle with the letters \(\mathrm{C} . \mathrm{S}\). cut in it about 5 feet above ground. Could not be found in 1906.

Fox (Mendocino County, Cal., L. A. S., 1879).-On a point about one-half mile north of Steen's landing, near the edge of the bluff, on land owned by ——Fox. (Note 4, p. 296, the stone being oval.)

Sail Rock (Mendocino County, Cal., L. A. S., 1878).-About midway between Steen's and Iversen's landings, better known as Hardscratch and Rough and Ready
landings, the very sharp and clearly defined top of a high conical rock, about one-half mile offshore, which from the northward resembles a sailing vessel.

Richards (Marin County, Cal., G. A. F., 1857).-On the first prominent hill bearing nearly south from the ranch house on Point Reyes, distant about \(11 / 2\) miles. The station was marked by a nail driven in a redwood stake and by three similar stakes placed 6 feet from the center.

Steele (Marin County, Cal., G. D., 1859).-On the small grassy rise inside the Estero de Limantour, about 500 yards from what is now called Steele's landing and nearly in line with the landing and Point Reyes Hill, about one-half mile from the Bay beach and about 800 yards west-southwest of Steele's house, which is on the inside slope of the ridge and not in sight of the station. The station was marked by an iron nail in a stub, driven into the ground, the reference marks were three iron nails in stubs, each 6 feet from the station, two in line with the center and nearly in line with Point Reyes Hill triangulation station, and the third nearly at right angles toward the west.

Number \(I\) (Marin County, Cal., G. D., 1859).-A Bout 500 yards from the beach, about one-fourth mile southwest of Isaac Steele's house, on the ridge nearest his ranch, and between it and Muddy Hollow, to the east of a pond at the foot of the ridge. Point Reyes Hill is just visible between two hills a little distance northward. The station was marked by one-half-inch hole drilled into a rock placed 2 feet below the surface. The reference marks were iron nails in three stubs, each 6 feet from the station, two in line with the station and Point Reyes Hill and the third nearly at right angles to the westward.

Point Reyes East (Marin County, Cal., G. D., I859).-On the last small elevation on the eastern extremity of Point Reyes, about 130 meters from the extremity of the point, about 170 feet above the ocean, about 30 yards from the nearest bush to the northwest. The station was marked below the surface by one-half-inch hole drilled into a rock. The reference marks were nails in three stubs, each 6 feet from the station; two in line with the center and nearly in line with Point Reyes Hill triangulation station and the third nearly at right angles to the westward.

Number 2 (Marin County, Cal., G. D., 1859). -On the top of a round knoll about 600 yards from the beach, nearly in line with the mouth of the ravine, where \(S . G\). Irish lives, and Point Reyes Hill; to the northward of where the beach terminates and the trail takes up the bluff, about 75 yards northwest of a curious pile of perpendicular rocks. A hill farther along the shore to the eastward has a large mass of white limestone rocks showing. The station was marked by a one-half-inch hole drilled into a rock placed about 2 feet below the surface of the ground. The reference marks were nails in three stubs, each 6 feet from the station, two in line with the station and nearly in line with Point Reyes Hill, the third nearly at right angles to the eastward.

Estero (Marin County, Cal., G. D., 1859).-About one-third mile back from the point of the bluff, at the west side of the entrance to Estero de Limantour, opening from Sir Francis Drakes Bay, on the eastern part of the third rise, and about 40 yards to the west of a steep gulch at the bottom of which is a pond. The station was marked 2 feet below the surface by a stub into which was driven an iron nail. The reference marks are three stubs with iron nails, each 6 feet from the station, two nearly in line with the center and on the line to Point Reyes Head, and the third to the westward.

Preston (Marin County, Cal., G. A. F., 1856).-On the eastern side of Tomales Bay, south of Keys Creek, about three-fourths mile southeast of Preston's store and about one-fourth mile south of a small house claimed by Preston, upon a small cliff about 80 fect above the water line. (Note 5, p. 296.) In 1906 the station could not be found.

Reynolds (Marin County, Cal., G. A. F., 1857).-On the eastern side of Tomales Bay, a few hundred yards north of Reynolds Landing, on a low perpendicular cliff immediately on the shore and presenting a reddish appearance from the bay. (Note 5, p. 269.) Reported lost in 1906. (See Reynolds 2, p. 306.)

Mike (Marin County, Cal., G. A. F., 1857).-On the edge of a bluff on the west side of Tomales Bay, about 40 feet above the water, and about i mile south of the place occupied by a man named Ellins. A pine tree on the south side is blazed. The station was marked by a nail driven in a stub and by three similar stubs to the north, west, and south sides, distant 6 feet. Reported lost in 1906. (See Mike 2, p. 307.)

Frink (Marin County, Cal., G. A. F., 1857).-On the east side of Tomales Bay, about 200 yards from the shore and about one-fourth mile in an easterly direction from the southeast corner of Frink's lot. (Note \(5, \mathrm{p}\). -, except the center was marked by a nail in the rock.) Reported lost in 1906. (See Frink 2, p. 307.)

Agnew (Marin County, Cal., G. A. F., 1857).-On the west side of Tomales Bay, on the bluff above the first rocky point north of the house occupied by Magness and Keatley, about 30 yards distant. The station was marked by a nail in a stub. The reference marks were: A spike driven in a blaze on an oak tree 5 feet 1 inch to the northeast, a similar mark on another tree distant 8 feet 2 inches to the south, and a stub 5 feet distant. Reported lost in 1906. (See Agnew 2, p. 307.)

Young (Marin County, Cal., G. A. F., 1857).-On the first sand point north of Young's house, on the west shore of Tomales Bay, and immediately at the mouth of a small tide-water creek. Reported lost in 1906. (Note 5, p. 296.)

Sigvart (Marin County, Cal., G. A. F., 1857).-On the east side of Tomales,Bay, about 200 yards from the shore, and about three-fourths mile southeast from Miller's house; about 50 yards below a small rocky point on the same ridge. (Note 5, p. 296.) Reported lost in 1907.

Willow Point (Marin County, Cal., G. A. F., 1857).-On the western shore and near the head of Tomales Bay, on a prominent point, about one-half mile south of Young's house, covered to high-water mark with a thick growth of willows. (Note 5, p. 296.) Reported lost in 1907.

Creek (Marin County, Cal., G. A. F., 1857).-On the western shore of Tomales Bay, at the entrance of the estero running into the marsh at the head of the bay. (Note 5, p. 296.) Reported lost in 1906.

Teton (Marin County, Cal., G. D., 1860).-On the top of a rocky pointed hill bearing N. \(48^{\circ} \mathrm{F}\). and 2 miles distant from the extreme tip of Tomales Point. The station was marked by a one-half-inch hole drilled in a rock. Reported lost in 1906. (See Teton 2, p. 308.)

Sugarloaf Hill (Marin County, Cal., G. D., 1860).-On the highest point of a peculiarly shaped hill, bearing N. \(721 / 4^{\circ} \mathrm{E}\). and distant 2 miles from the extreme tip of Tomales Point. The station was not marked.
\[
63481^{\circ}-11-24
\]

Ocean Beach (Sonoma County, Cal., G. D., I860).-About I mile northeast of Bodega Hill, on an oval-topped sand hill about 60 by 15 feet on top, about 150 yards from highwater mark on the outer beach and a third of a mile northeast of a point of land making out in a northwest direction from Bodega Head. 'The northwest tangent of Bodega Rock was in range with the southeast tangent of Bodega Head and the southwest tangent of a little island at Bodega Port in range with Bodega station. The station was marked by a bottle buried 3 feet in the sand.

Bay Beach (Sonoma County, Cal., G. D., 1860).-On the sand spit between the lagoon and Bodega Bay, on the top of the first hillock to the east of the end of the sand spit; in the most northerly part of the bend, about three-eighths mile from the present position of the wreck of the schooner Carolina; 12 feet above high-water mark. The station was marked by a bottle sunk 3 fect in the sand. Three stubs, with nails in the tops, were driven 2 feet into the ground, each 5 feet in inches from the station, one in line to the outside point of Bodega Head, another in the opposite direction, and a third at right angles toward the southeast.

Bodega Latitude Station (Sonoma County, Cal., G. D., 1853-1860).-Near the western end of the sand spit forming the southern boundary of the inner bay of Bodega. The station was marked by a bottle placed 2 feet below the surface of the ground, and by three stubs with nails in the tops, driven 2 feet in the ground.

Bodega Rock (Sonoma County, Cal., G. D., i860).—On the top of a small islet about. 700 yards southeast of Bodega Head. The station was marked by a nail set in the rock 8 or 9 inches below the surface of the ground.

Lagoon (Sonoma County, Cal., G. D., 1860).-On the bluff at the eastern end of the sand spit forming the southern boundary to the inner bay of Bodega. The marking is not described.

Rocky Point (Sonoma County, Cal., G. D., 1860).-On the extreme end of the first point of any extent north of Bodega Head, 75 yards N. \(36^{\circ}\) E. (mag.) of a large rock. (Note 9, p. 296.) Two reference marks were in line with the station and Bodega Head and the third at right angles to the line.

Tom Point (Marin County, Cal., G. A. F., 1856). -On the highest land on Tom Point, on the east side of Tomales Bay, near its entrance from the sea, immediately above and to the southward of Tom Vaquero's house. The station is marked by a buried bottle and by four redwood stakes, each with a nail driven in the top, and placed 6 feet from the center.

Point Reyes Beach (Marin County, Cal., G. A. F., 1856).-On a conspicuous sand knoll, immediately upon the north beach of Point Reyes and a short distance northeast from the mouth of the lagoon. The station was marked by a nail driven in the rock and by four stakes, each with nails driven in the top and 6 feet from the center.

Hog Island (Marin County, Cal., G. A. F., 1856).-On the highest and most northern point of Hog Island, the larger of the two islands in Tomales Bay, about i mile south of Preston's embarcadero. (Note 5, p. 296.)

Number 3 (Marin County, Cal., G. D., 1859).-On a hill covered with grass and very gravelly, about 150 yards from the beach, on the second rise and about 200 feet above the water, N. \(20^{\circ}\) E. of a large rock in Sir Francis Drakes Bay. The station was marked by an iron nail in a stub 2 feet below the surface. The reference marks were iron nails in
three stubs, each 6 feet from the station, two are in line with the station and Richards, and the third to the southward.

Wildcat (Marin County, Cal., G. D., 1859).-On the highest part of the second rise of a ridge near Wildcat Gulch, about 700 yards from the beach and about 500 feet above the water, about 400 yards from a deserted shanty, with a field and pond near by. The hill top is grassy with soft sandstone beneath; about 10 yards southeast of the station the side of the hill descends precipitously into a deep gully; to the northwest it is rather steep toward a small deserted shanty, formerly occupied by one of the Perrot family. The station was marked by a one-half-inch hole drilled in the solid rock about 2 feet below the surface. The reference marks are iron nails in three stubs, each 6 feet from the station, two in line with the station and Point Reyes Head, and the third to the southeast of Steele triangulation station.

Joyce (Marin County, Cal., G. D., 1859).-About three-fourths mile from the beach, on a round-topped hill, about a mile from Tom Joyce's house toward Bolinas, 700 or 800 fect above the ocean, exactly in line with the bluff at Perrot triangulation station and Point Reyes. About io yards to the east of the station the hill descends rapidly into a gully. The station was marked by a one-balf-inch hole drilled into the solid rock about 2 feet below the surface. The reference marks were iron nails in three stubs, each 6 feet from the station, two in line with the station and Point Reyes and the third nearly at right angles to the southward.

Perrot (Marin County, Cal., G. D., 1859).--On the top of the hill, the highest for half a mile around, 12 yards west of the edge of a bluff where the hill falls about 200 feet to a gully in a nearly vertical cliff; 8 feet northeast of the station the hill makes a steep descent for io feet and is then comparatively level. About 300 yards \(\mathrm{S} .86^{\circ} \mathrm{W}\). from the station is the bluff rising vertically from the beach, which is seen from Wildcat triangulation station. The station is reached from Perrot's house, which stands in a hollow about 200 yards from the beach, by taking the trail to Bolinas, following it for about 1 mile, and on mounting the last ridge from which a small lake can be seen, striking abruptly to the right and following the ridge to its highest point. The station was marked by a one-half-inch hole drilled in a stone placed 2 feet below the surface of the ground. The reference marks were iron nails in three stubs, each 6 feet from the station, two in line with the station and Point Reyes Head, the third nearly at right angles to that line to the southeast.

Point Reyes Latitude Station (Marin County, Cal., G. D., 1859).-About \(\mathbf{1}, 240\) meters from the eastern extremity of Point Reyes, about 40 feet above the water, on the ridge forming the north side of the first gully inside the point, about 12 meters from the edge of the bluff toward Point Reyes Hill, about 75 meters from a large pile of rocks on the ridge going west-southwest; 140 meters S. \(3614^{\circ} \mathrm{W}\). from a large black rock in the water. The station was marked by a one-half-inch hole drilled in a rock below the surface. The reference marks were three stubs with iron nails, each 6 feet from the station; two in line with the station and Point Reyes Hill, and the third to the westward, nearly at right angles.

Grasier (Marin County, Cal., G. A. F., 1857).-On the north slope of a very prominent hill, immediately at the head of the salt marsh forming the southern boundary of Tomales

Bay, about 300 yards from the estero, about one-half mile N. \(77^{\circ} 30^{\prime}\) E. of Grasier's house. (Note 5, p. 296.)
. Estero (Marin County, Cal., G. D., 1860).-On the first hill southeast of the first gulch south of the mouth of the Estero Americano. The station was marked by a stone with a one-half-inch hole drilled in it, sunk i foot below the surface of the ground, and by three stones marked in the same way, each placed a little more than 6 feet from the center, one toward Tomales triangulation station, one southwest, and the third northeast.

Inlet (Marin County, Cal., G. D., i 860).-About I mile southeast of the mouth of the Estero Americano, on a high rocky hill which ascends boldly from the beach, the first hill south of a small inlet, called San Antonio. The station was marked by a stone with one-half-inch hole drilled into it, sunk about 1 foot below the surface of the ground, and by three stones with similar marks placed a little more than 6 feet from the center, one toward Tomales triangulation station, one toward Estero triangulation station, and one southwest.

Tomales Bluff (Marin County, Cal., G. D., i860).-On the extreme end of Tomales Point on a spur of rock. The station was marked by a half-inch hole in a stone sunk i foot below the surface of the ground. Reported lost in 1906.

Sandhill (Sonoma County, Cal., G. D., i860).-At the extreme northern end of the lagoon at Bodega Bay, on a sand mound, 100 feet from high water mark, the only one that rises up directly from the beach. The station was marked by a bottle sunk 3 feet in the ground, and by three stubs with nails driven in them, placed a little more than 6 feet from the center, two in line with Bodega triangulation station and one seaward.

Salmon Creek (Sonoma County, Cal., G. D., i86o).-One hundred and fifty yards north of the mouth of Salmon Creek, on a small sand mound, rising abruptly from the beach, a few yards west of the Russian River road, ioo yards south of a ledge of rock which rises 9 feet above the surface of the ground. The station was marked by a large stone with a hole drilled in it, sunk \(21 / 2\) feet in the sand, and by three stubs with nails driven in them, placed a little more than 6 feet from the center, two in line with Bodega station and one inland.

Dougherty's house (Sonoma County, Cal., G. D., I860). -The southwest gable (nearest Bodega triangulation station) of Dougherty's house, on the northeast part of the inner part of Bodega Bay, connected with the shore by a small wharf.

\section*{POINT ARENA TO SHELTER COVE.}

Round (Mendocino County, Cal., L.A.S., 1871).-Upon the top of a hill about 800 feet high, northwest of Monroe's farm, on the first knob reached upon ascending the hill, close by, and north of, the county road. (Note i, p. 296.)

Cuffey Cove (Mendocino County, Cal., L. A. S., 1871).-On the top of a prominent, conspicuous knob near the north point of Cuffey Cove Landing, on land owned by James Kenny. (Note I, p. 296.)

Peak (Mendocino County, Cal., L. A. S., 1871).-On the knob forming the top of the hill back of Thomas Welch's ranch, a little to the westward of the defined timber line, at an elevation of about 1275 feet. (Note i, p. 296.)

Red Bluff (Mendocino County, Cal., L. A. S., 1871). -On the most westerly point between Mal Paso and Elk Creek, on land owned by Wm. Curtis. (Note 1, p. 296.)

Elk Creek (Mendocino County, Cal., L. A. S., 1871).-About 500 meters north of the north point of Elk Creek and near the edge of the bluff which, in a westerly direction from the station. extends about 40 meters to a short precipitous point. (Note I, p. 296.)

Greenwooa (Mendocino County, Cal., L. A. S., 1871).-Near the top of Greenwood Ridge. The station may be reached by taking the road which, starting about 300 meters above the bridge over Greenwood Creek, at the county road, runs up to the top of the ridge through the timber. Upon reaching the top, the road comes into an opening free of timber. When this has been reached the station may then be found by going in a southeasterly direction along the edge of the descent of the different slopes until one is reached where a clump of trees and bushes detached from the main timber will be found. Upon this slope and west of the clump of bushes is the station. (Note 1, p. 296.)

Cavanagh (Mendocino County, Cal., L. A.S., 187 r).-On the face of the slope rising immediately back of Cavanagh's house, a little to the westward of the defined timber line at the top of the hill, at an elevation of about 700 feet. (Note 1, p. 296.)

Navarro Head (Mendocino County, Cal., L. A. S., 1871).-On the top and northern extremity of the first knoll, about one-fourth of a mile east of Navarro Point, where the rapid rise from the coast ends, on land owned by Edward Brayton. (Note 1, p. 296.)

Saddle Point (Mendocino County, Cal., L. A. S., 1871).-On the first prominent point about \(11 / 4\) miles south of the mouth of Navarro River, on land owned by Wm. McFarland, 203.5 meters from the county road, about 50 meters east of the end of the point. Between the extreme point and the station is a saddle, or hollow, caused by a slide in the bluff, making the extreme point inaccessible. (Note i, p. 296.)

Tichenor (Mendocino County, Cal., L. A. S., 1871).-On the south side of the Navarro River, on a small knoll covered with pine trees which can be seen to the east of the road when at the top of the grade coming from the north. The station is a little below the top of the knoll, 58.5 meters from the county road, and about 12 feet southwest of six fir trees, which partly hide Navarro Head from view, and between the fourth and fifth of which a large barn to the northward can be seen. (Note i, p. 296.)

Navarro Ridge West Base (Mendocino County, Cal., L. A. S., 1871).-On the north side of the Navarro River and upon the little knoll forming the western extremity of the Navarro Ridge. The station was marked by a redwood block 12 by 12 by 10 inches, sunk 3 feet below the surface of the ground, in the center of the upper face of which a one-half-inch hole was drilled and a copper tack driven into it. Over this was placed a 6 by 6 -inch redwood block, 6 feet long. Four stubs were driven, each 6 feet from, and north, south, east, and west of, the center.

Navarro Ridge East Base (Mendocino County, Cal., L. A. S., 1871).-On the north side of the Navarro River near the eastern extremity of the Navarro Ridge, about 160 meters nearly west-northwest from the hotel, upon a little rise about midway between the county road and a fence meandering the edge of timber. The station was marked by a redwood block 12 by 12 by io inches, sunk 3 feet below the surface of the ground, in the center of the upper face of which a hole was drilled one-half inch deep, and a copper tack driven into its center. Over it was placed a 6 by 6 inch block of redwood 6 feet long.

Johnson (Mendocino County, Cal., L. A. S., 1871).-On what is locally known as the Middle Ridge lying between the two branches of Salmon Creek, upon the first summit on ascending the hill, nearly south of Johnson's house, and about 370 feet high. (Note I, p. 296.)

Salmon Point (Mendocino County, Cal., L. A. S., 1871).-Upon the outer south point of Salmon Creek, about 600 meters from the beach at the landing, a little northeast of the extreme point, and about 20 meters from the edge of the bluff. (Note r, p. 296.)

McPherson (Mendocino County, Cal., L. A. S., 1871).-About midway between the Albion River and the first deep gulch about a mile to the northward; upon the most prominent spur, which can be easily recognized from either direction, in the timber and at an elevation of about 315 feet. (Note 1, p. 296.)

Mal Paso 2 (Mendocino County, Cal., L. A. S., 1871). -On the northwest point of Mal Paso near the top of the knob east of the edge of the bluff and the clump of bushes. (Note I, p. 296.)

Stewart (Mendocino County, Cal., L. A. S., 1871).-Upon the southwestern extremity of the first knob back of the Stewart upper ranch, about 250 meters west of a small, bare flat. (Note i, p. 296.)

Herrick (Mendocino County, Cal., L. A. S., 1871).-On the north end of the first hill south of Elk Creek, on land owned by Herrick Brothers. The hill is about 630 feet high. (Note 1, p. 296.)

Bight (Mendocino County, Cal., L. A. S., 1871).-Near the head of the bight formed by the shore line between Cuffey Cove and the Navarro River, near the edge of the bluff, 64 meters from the county road, on land owned by James M. Nolan. (Note 1, p. 296.)

Kennedy (Mendocino County, Cal., L. A. S., 187 I). -On a ranch owned by James Kennedy, upon the steep slope rising south of the bridge which crosses a deep' gulch at the county road on this ranch. Back of the station the country rises less rapidly for a distance of about 400 meters, when the defined timber line commences. (Note 1, p. 296.)

Navarro Point (Mendocino County, Cal., L. A. S., 1871).-On the north point of the entrance of the Navarro River, about 300 meters south of another point, the most westerly, which obstructs the view from the station in a northerly direction, 3 meters from the edge of the bluff; 104 meters northerly from the station, a fence ends at a boulder of rocks, and the line to it is tangent to the edge of the bluff of a small bight lying between. (Note 1, p. 296.)

Monroe (Mendocino County, Cal., L. A. S., 1870). -On the ridge northeast of Monroe's house, about east-southeast, 250 meters from the knob at the top of the hill, which is about 60 meters from the end of the fence running up the slope from the house; about 10 meters north of the trail from the timber, which is about 600 feet distant. A fir tree marked by a notch is 194 feet from the station. (Note 8, p. 296.)

Welch (Mendocino County, Cal., L. A. S., 1870).-On land owned by T. Welch, on the top of a bluff, 18.5 feet east of the edge. (Note 8, p. 296.)

Stillwell (Mendocino County, Cal., L. A. S., 1871).-On the top of the most prominent hill lying about midway between the Albion and the Little rivers, close to and west of the county road. Recovered in rgog. (Note I, p. 296.)

Little River (Mendocino County, Cal., L. A. S., 1871).-About 300 meters north of the outer point of Little River, about 10 meters from the edge of the bluff at the foot of which will be found the largest rock in the vicinity. (Note i, p. 296.)

Stickney (Mendocino County, Cal., L. A. S., 1871). -Upon the top of a round-top hill, nearly east of Stickney's house. (Note 1, p. 296.)

Kent (Mendocino County, Cal., L. A. S., 1871).-In a very flat field belonging to Kent, north of his house, and west of the county road, a little west of the highest part. (Note I, p. 296.)

Mendocino (Mendocino County, Cal., L. A. S., 1871).-On the westernmost point of a bluff lying about midway between the north point of Mendocino Bay and the next point of the bight to the northward, near the edge of the bluff and just south of where a long, detached, large island commences. (Note 1, p. 296.)

Randlett (Mendocino County, Cal., L. A. S., 1871).-About 500 meters south of the south point of Big River, and about 100 meters back from the edge of the bluff, and about 60 feet above the road, upon a chaparral-covered spur, timbered at the station, with a little, bare valley to the south. (Note I, p. 296.)

Gray (Mendocino County, Cal., L. A. S., 1872).—Between Jack Peters and Russian gulches, to the east of the county road, and on the eastern end of the top of a bald hill back of Gray's house. (Note I, p. 296.)

Pornt (Mendocino County, Cal., L. A. S., i872).-On the most westerly point about one-half mile north of the north point of Russian gulch, about \(141 / 2\) feet east of the edge of the bluff, on land owned by Charles Hargrave. Recovered in 1909. (Note 1, p. 296.).

Russian Gulch (Mendocino County, Cal., L. A. S., 1872).-On the extreme north point of Russian gulch, upon a little rise of ground near the edge of the bluff. (Note 2, p. 296.)

Rees (Mendocino County, Cal., L. A. S., I872).-On a hill about half a mile inland, upon a rise covered with timber, at an elevation of about 170 feet, on land owned by Charles Hargrave. (Note 1, p. 296.)

Cabrillo (Mendocino County, Cal., L. A. S., 1872).-Upon the most westerly point between Point Arena and Cape Mendocino; also the most westerly point of the Pine Grove ranch, on land owned by Albert Maxwell; 9 feet 10 inches from edge of the bluff to the west, 16 feet 10 inches from the edge of bluff to the south, and 14 feet from the edge of the bluff to the north. Recovered in 1909. (Note 1, p. 296.)

Handley (Mendocino County, Cal., L. A. S., 1871). -Upon the top of the knoll lying nearest to the south point of Albion River, on the east side and at the base of which is suspended a chute from the edge of the bluff known as Handley's chute. (Note 1, p. 296.)

Albion (Mendocino County, Cal., L. A. S., 1871).-Upon the extreme westerly point of the bluff; also the south point of the Albion River, about 10 meters from the edge of the bluff, which on either side bends in, leaving the station about midway between the two inner points. (Note 1, p. 296.)

Chaparral (Mendocino County, Cal., L. A. S., 1871).-About 300 meters south of the extreme south point of Mendocino Bay, on the top of the first chapparal-covered hill. (Note 1, p. 296.)

Mendocino City Latitude Station (Mendocino County, Cal., G. D., 1853; 1870).-On the north point of Mendocino Bay, on the narrowest part of the neck formed by the
cove from the outside and the bight inside the chute, or landing point; in the midst of lumber piles. The station was marked by a 6 by 6 -inch block of redwood solidly driven in the ground with about if foot above the surface, in the top of which was cut a hole 3 inches square and about 5 inches deep.

Grave (Mendocino County, Cal., L. A. S., 1872).-In the Catholic Cemetery at Mendocino City, at the top of the hill on the east side of the county road north of the town. (Note r, p. 296.)

Knoll (Mendocino County, Cal., L. A. S., 1872).-On the west side of the county road, upon the first hill north of the north point of the bluffs of Russian gulch, on an elevation of about 170 feet, on land owned by Charles Hargrave. (Note 1, p. 296.)

Hargrave (Mendocino County, Cal., L. A. S., 1872). -East of Charles Hargrave's house, upon a rise at the edge of timber, about 260 feet high. (Note r, p. 296.)

Gordon (Mendocino County, Cal., L. A. S., 1872).-Upon a bare flat about half way between the Pine Grove Hotel and Meierkoff, on land owned by Gordon Brothers, about 160 meters above a cultivated field. (Note 1, p. 296.)

Meierkoff (Mendocino County, Cal., L. A. S., I872).-About one-third of a mile below Point Cabrillo, on the southern point of the Gordon ranch, and upon the edge of the bluff, 30 feet from the edge to the north and 39.8 feet from the edge to the south. (Note 1, p. 296.)

Pine Grove (Mendocino County, Cal., L. A. S., 1872).-About one-third of a mile from the coast line, on a rise and among timber, near the northern boundary line of the Hargrave ranch. Recovered in 1909. (Note 1, p. 296.)

Caspar Point (Mendocino County, Cal., L. A. S., 1873).-About 82 meters westnorthwest from Caspar Landing in the outer north point of Caspar Creek, near the edge of the bluff, on land owned by Caspar Mill Company. Recovered in 1909. (Note 1 , p. 296.)

Scaffold Tree (Mendocino County, Cal., L. A. S., 1873).-On the north side of Jug Handle Creek and about 200 meters back of Marsh's house, within about 150 meters of the edge of timber land, at an elevation of about 130 feet; a fir tree about 3 feet at the base and 31 inches in diameter at the top.

Carleson (Mendocino County, Cal., L. A. S., i873).—Between Pine Grove and Caspar Creek and just inside the north fence of the county road and abreast of the Carleson ranch-house gate. (Note 1, p. 296.)

Beaver Point (Mendocino County, Cal., L. A. S., 1873).-Upon the outer point lying midway between Mitchell Gulch and Hare Creek and very near the edge of the bluff. (Note I, p. 296.)

Bald Hill (Mendocino County, Cal., A. F. R., 1874; 1878).-About 5 miles northeast of the Noyo mill on the northern end of the clear ridge known as Bald Hill, just below the west brow of the hill. The station was marked by a white earthenware bottle, the top of which was 2.4 feet below the surface mark, which was a sandstone post about 18 inches long, somewhat square, the center of which was marked by a one-half-inch drill hole about \(\mathrm{I} / 2\) inches deep. The reference marks were three sandstone posts somewhat smaller than the center one, in each of which was a one-half-inch drill hole, one-half inch deep placed each 6 feet from the center, two in line to Laguna Point station and one at right angles to the southward.

Soldier Harbor (Mendocino County, Cal., A. F. R., 1874).-On the bluff at the extremity of the ragged point between Noyo Harbor and the little cove known as Soldiers Harbor, upon the land of the Noyo Mill Company and nearly a mile west of the mill. (Note 2, p. 296.)

Pudding Creek (Mendocino County, Cal., L. A. S., I873; 1874).-Three-fourths of a mile north of the Noyo River, on the south side of the mouth of Pudding Creek, on the edge of the bluff just outside of the western fence of McPherson's grain field. (Note 2, p. 296.)

Laguna Point (Mendocino County, Cal., A. F. R., 1874 ; 1878).—About 5 miles north of the Noyo River, on the extremity of the low, flat point just south of the entrance to the lagoon, the first prominent rock-bound point south of the mouth of Ten Mile River. The station was marked by a white earthenware bottle; the top is 2.1 feet below the surface mark, which was bluish stone with a one-half inch drill hole \(11 / 2\) inches deep, marking the center. The reference marks were three bluish stones each with a one-half inch drill hole one-half inch deep set 6 feet from the center, two in line to Bald Hill station and one at right angles to the southward of this line.

Ten Mile River Bluff (Mendocino County, Cal., A. F. R., 1873-74).-About onefourth mile north of the mouth of Ten Mile River, about 400 yards west of Frazer and Dickinson's house, and 250 yards west of the coast road leading to Kibesillah, on a narrow neck or point, the first south of Belobida gulch, close to the edge of the bluff. (Note 2, p. 296.)

Cunningham Ridge (Mendocino County, Cal., A. F. R., 1873-74).-On the first ridge south of Cunninghams gulch, about a mile east of the coast and one-half mile southeast of Cunningham's mill, about 75'o feet above tide. (Note 2, p. 296.)

Brushy Point (Mendocino County, Cal., A. F. R., r873-74).-On the low brushy point on the Whipple ranch, about halfway between Ten Mile River and Kibesillah village, being the north point of the little cove forming Newport Landing; just inside the brush line and about 80 yards northwest of the chute derrick. (Note 2, p. 296.)

Claxton Hill (Mendocino County, Cal., A. F. R., 1874).-On the northern end of the top of a round hill about \(11 / 2\) miles from the coast and about one-fourth mile south of Ten Mile River, on the ranch of Captain Claxton, about one-fourth mile east of the end of the sand dunes extending from the beach. East of the summit the ground falls off rapidly and is covered with chaparral. The western slope is clear of timber or chaparral and at times is cultivated. (Note 2, p. 296.)

Ten Mile River Beach South Base (Mendocino County, Cal., A. F. R., 1874).—Two miles south of Ten Mile River, on '「en Mile River beach, a few feet above high-water mark. The station was marked by a heavy block of redwood 3 feet in diameter and 4 feet long, the center indicated by a nail driven in and covered with a copper shell.

Ten Mile River Beach North Base (Mendocino County, Cal., A. F. R., 1874).-Nearly due west from Claxton, and m mile south of Ten Mile River, upon Ten Mile River beach, a few feet above high-water mark. The station was marked by a heavy block of redwood 3 feet in diameter and 4 feet long, the center indicated by a nail driven in and covered with a copper shell.

Whipple Ridge (Mendocino County, Cal., A. F. R., 1873-74).-Half a mile nearly east of the village of Kibesillah, and 400 yards northeast of the Kibesillah schoolhouse,
on the top of a round knoll on a high ridge running parallel with the coast between Cunningham Gulch and Smith Canyon, and about one-fourth mile from and about 20 feet lower than the top of the ridge. (Note 2, p. 296.)

Mitchell Gulch (Mendocino County, Cal., L. A. S., 1873).-Upon the extreme north point of Mitchell gulch and near the edge of a bluff, on land owned by W. Bromley. (Note I, p. 296.)

Bloom Knoll (Mendocino County, Cal., A. F. R., 1874).-On the highest knoll (ino feet above tide) in the inclosed fields immediately south of Noyo Harbor. (Note 2, p. 296.)

South Noyo (Mendocino County, Cal., A. F. R., 1874).-On the extreme western point, south of Noyo Harbor on the bluff, 40 feet above tide. (Note 2, p. 296.)

North Noyo (Mendocino County, Cal., A. F. R., 1874).-On the north side of Noyo Harbor, one-half mile west from Noyo mill; on the bluff about 50 feet above tide, close to the west of what is locally known as "The Blowhole." (Note 2, p. 296.)

Ten Mile River Beach (Mendocino County, Cal., A. F. R., 1874).-Oñ a small sand knoll on the Ten Mile River beach about halfway between Laguna Point and Ten Mile River and about 40 yards east of high-water mark, and 20 feet above tide; nearly west of a small fresh-water lagoon from which a rivulet runs westerly toward the station and reaching a point east of the station and 80 yards distant bends to the north. (Note 2, p. 296.)

Sandhill (Mendocino County, Cal., A. F. R., 1874).-On a sand hill about \(11 / 2\) miles northeast of Laguna Point and one-half mile east from the beach, close to the edge of the timber, and 190 feet above tide, within 200 yards of the coast road from Noyo River to Kibesillah. The eastern edge of the sand dunes at the location of the station is very steep, rising abruptly 60 feet up from the grass and timber land; the slope toward the ocean is gradual and undulating. The sand is loose and shifting and it is probable the underground markings will not remain in place. (Note 2, p. 296.)

Kibesillah Hill (Mendocino County, Cal., A. F. R., 1873-74).-On the top of a high, round-top hill on the summit of the first high ridge north of Kibesillah, marked by its apparent isolation from the adjacent ridges when seen from north or south on the coast trail; about 300 yards east of the small cabin of Captain Claxton and just above the coast road which passes around the west base of the hill. (Note 2, p. 296.)

Bell Mountain (Mendocino County, Cal., A. F. R., 1873-74).-On Bell Mountain, about \(21 / 4\) miles north of Kibesillah, and one-half mile east of Bell Point, about midway between Switzer's house and Chadburns gulch, close to the old trail over the top of the ridge; about 200 yards south of and 40 feet below the summit of the mountain. (Note 2, p. 296.)

Bell Point (Mendocino County, Cal., A. F. R., 1873-74).-About one-half mile north of Chadburns gulch and one-half mile south of Switzer's ranch house, threefourths mile south of Switzers Landing (Westport Landing, 1883), on the outer extremity of the most westerly point between them, 300 yards west of the coast road on a high prominent point, the first prominent one north of what is known as Bruhels Point, on the north projection of the point near the edge of the bluff. (Note 2, p. 296.)

Packard Hill (Mendocino County, Cal., A. F. R., 1873-74).-On the ridge between Gordon and Wager creeks, the first ridge after passing the gulch and stream I mile north
of Westport Landing; one-fourth mile east of the nearest point of the coast road which runs around the hill, and a few yards south of the trail from Gordons Creek up the ridge; 200 yards west of and about 30 feet lower than the top of the hill; a few yards from the northwestern fence corner of the field of the Packard ranch on top of ridge. (Note 2, p. 296.)

Abalone Point (Mendocino County, Cal., A. F. R., 1873-74).-On the extremity of the low, flat point halfway between Gordon's and Crusoe's houses, the first prominent point north of Gordons gulch, commonly known as Abalone Point, about ioo yards west of the coast road. (Note 2, p. 296.)

Gordon Hill (Mendocino County; Cal., A. F. R., 1873-74).-On the Gordon ranch, on the side of the high ridge directly back from Abalone Point, midway between Gordon's and Crusoe's houses, near the summit, about 740 feet above tide, just south of a clump of small pines and 40 yards west of the fence that crosses the top of the ridge. (Note 2, p. 296.)

Grave Knoll (Mendocino County, Cal., A. F. R., 1873).-On the summit of the knoll directly south of and about 200 yards from the mouth of Juans Creek, near the southern extremity of the knoll, within 50 yards of the fence on north line of Juan Alviso's field and about 100 yards south of a grave inclosed by a picket fence. (Note 2, p. 296.)

South Cottaneva Ridge (Mendocino County, Cal., A. F. R., I873).-On the second ridge south of the mouth of Cottaneva Creek, near the summit, about 700 feet above tide, about 300 yards north of Chris' house, and within a few yards of the southwest corner of his fence. (Note 2, p. 296.)

South Cottaneva Point (Mendocino County, Cal., A. F. R., 1873).-Near the lower extremity of the second ridge, south of the mouth of Cottaneva Creek, on a small flat bench about 100 yards from the nearest point of the bench and 340 feet above tide. (Note 2, p. 296.)

Cottaneva Ridgé (Mendocino County, Cal., A. F. R., 1873). -On the first ridge south of the mouth of Cottaneva Creek, near the summit, about 830 feet above tide, and within 100 yards of the edge of the timber. This location is known to Mr. Dodge, who lives in Cottaneva Valley. (Note 2, p. 296.)

Cottaneva Point (Mendocino County, Cal., A. F. R., I873).-On the first ridge south of the mouth of Cottaneva Creek, on a sharp spur, just above the brink of a big slide, about 200 yards from the beach and 500 feet above tide. (Note 2, p. 296.)

Smith Point (Mendocino County, Cal., A. F. R., 1873-74).-On a low flat point on the ranch of Smith of Kibesillah, about 500 yards west of Smith's hotel, on the edge of the bluff in the first grain field north of the hotel and almost in line with and about 200 yards beyond the west end of the north fence of the field. (Note 2, p. 296.)

Bruhel Point (Mendocino County, Cal., A. F. R., 1873-74).-On the outer end of a low flat point, about three-fourths mile north of Kibesillah, and one-fourth mile south of Bruhels Point, where the coast trail leads to the ocean beach; about 40 feet above tide and immediately north of an indentation on the coast line, about 80 yards wide from north to south and 200 yards from east to west. (Note 2, p. 296.)

Harford Hill (Mendocino County, Cal., A. F. R., 1873).-About one-fourth mile south of the inclosures and fences of "Soldier Frank's" ranch, 620 feet above the tide, and about 2 miles north of Cottaneva Valley. (Note 2, p. 296.)

Williams Point (Mendocino County, Cal., A. F. R., 1873).-On a low flat point about \(11 / 4\) miles north of the mouth of Cottaneva Creek, on the ranch belonging to Wm. Frank. (Note 2, p. 296.)

Soldier Frank Point (Mendocino County, Cal., A. F. R., 1873).-On the outer extremity of a small flat point directly on the coast about 800 yards southwest of the ranch house belonging to Wm. Frank. (Note 2, p. 296.)

Soldier Frank Hill (Mendocino County, Cal., A. F. R., 1873).-On the high ridge running parallel to the coast and between it and Cottaneva Valley, on the ranch belonging to Wm. Frank (commonly known as "Soldier Frank"), on the brow of the hill, about 80 yards west from the gate at the head of the lane leading from the coast trail to the ranch house. (Note 2, p. 296.)

South Ussal (Mendocino County, Cal., A. F. R., I873). -On a knoll of the ridge about \(13 / 4\) miles south of Ussal Creek, I ooo feet above tide and 600 feet east of the most prominent point of the coast between Ussal and Cottavena Valley, within ioo yards of the edge of the timber and about 30 yards east of the coast trail. (Note 2, p. 296.)

Timber Point (Mendocino County, Cal., A. F. R., 1873).-On a high ridge covered with timber about 2 miles up the coast from Ussal Valley, on a small bench near the outer extremity of the ridge, within 300 yards of the coast and about 800 feet above tide. (Note 2, p. 296.)

Timber Ridge (Mendocino County, Cal., A. F. R., I 873). - Near the summit of the outer ridge, about I 200 feet above tide, in the heavy timber. The location of the station of Timber Point was well known to J. A. Davidson, of Ussal Valley. (Note 2, p. 296.)

Little Jackass (Mendocino County, Cal., A. F. R., 1873). -On the outer point of a high sharp ridge, known as the Little Jackass Ridge, about 700 feet above tide and 250 yards from the beach. (Note 2, p. 296.)

Jackass Ridge (Mendocino County, Cal., A. F. R., 1873).-On the summit of the high ridge about 1 mile south of Jackass gulch, within a few yards of the edge of the timber and directly on the trail from Jackass gulch to Ussal Valley, near where it leaves the coast and strikes into the timber eastward. (Note 2, p. 296.)

Jackass South (Mendocino County, Cal., A. F. R., 1873).-On the same ridge as Jackass Ridge station, 400 yards to the south nearly down to the point of the ridge, and about I 000 feet above tide. (Note 2, p. 296.)

Anderson Cliff (Mendocino County, Cal., A. F. R., 1873).-On the first high cliff south of Jackass gulch, about 700 feet above tide and not more than 150 yards from the beach, on the edge of the bluff which is very abrupt. (Note 2, p. 296.)

Jackson (Mendocino County, Cal., A. F. R., 1873).-On a high ridge running parallel with the coast and about halfway beyween Bear. Harbor and Jackass gulch, directly on the trail between the two places and about 200 yards from where the trail first leaves the timber going south, about I o50 feet above tide. (Note 2, p. 296.)

Bear Harbor (Mendocino County, Cal., A. F. R., 1873). -On the sharp ridge about 200 yards south of the squatters' cabin and about three-fourths mile north of Captain Morgan's house at Bear Harbor, on the summit of the southern knoll, 400 feet above tide and 150 yards from the beach. (Note 2, p. 296.)

Jumper Ridge (Mendocino County, Cal., A. F. R., 1872).-On the main ridge above the old Morgan house at Bear Harbor, owned and occupied in 1882 by Keyser brothers,
about 900 feet above tide, and close to the edge of the redwood timber which densely covers the ridge north and east of the station. (Note 2, p. 296.)

Smoky Ridge (Mendocino County, Cal., A. F. R., 1873). -On the high ridge just north of the cabin kown as the squatters' cabin, on the Bear Harbor ranch, about 900 feet above tide and within 150 yards of the edge of the timber. (Note 2, p. 296.)

Laurie Flat (Mendocino County, Cal., A. F. R., i873).-On the edge of the bluff about i mile south of the dairy house at Upper Bear Harbor, about 100 yards west of the trail from Upper to Lower Bear Harbor, about 300 yards south of a high sharp rock on the beach known as Needle Rock. (Note 2, p. 296.)

Cliff Ridge (Mendocino County, Cal., A. F. R., 1873).-On one of the high ridges running eastward from the coast about i mile south of the dairy house at Upper Bear Harbor, about i 000 feet above tide, and directly on the brow of a small cliff of rock about 200 feet west of edge of timber. (Note 2, p. 296.)

Upper Bear Harbor (Mendocino County, Cal., A. F. R., 1873).-On the summit of the high ridge near edge of timber about three-fourths of a mile from the dairy house at Upper Bear Harbor, and about 500 yards north of the trail leading from Bear Harbor to White Thorn Valley. (Note 2, p. 296.)

Red Hill (Mendocino County, Cal.; A. F. R., 1873).-On the summit of a high knoll on the southern ridge of Chemise Mountain, 2 miles north of ranch house at Upper Bear Harbor, and about 50 yards east of the mountain trail leading from Upper Bear Harbor to Shelter Cove, about 1340 feet above tide and 600 yards from the coast. (Note 2, p. 296.)

Manzanita (Mendocino County, Cal., A. F. R., 1873).-On the backbone of Chemise Mountain, \(11 / 2\) miles south of the summit and about 20 yards west of the trail, where the ridge is very rocky and covered with small manzanita bushes. (Note 2, p. 296.)

Embarcadero (Humboldt County, Cal., A. F. R., 1871).-On the southwestern extremity of the bluff at Shelter Cove, 200 yards from the western or outside landing. (Note 3, p. 296.)

Big Hill (Humboldt County, Cal., A. F. R., 1873).-About 2 miles east of the ranch house at Shelter Cove and directly on the trail from Shelter Cove to White Thorn Valley, on a bare, conspicuous knoll, about 2 ooo feet above the level of the sea. (Note 2, p. 296.)

Harbor (Shelter Cove South Base) (Humboldt County, Cal., A. F. R., 1871).-On the southeast extremity of the point which forms Shelter Cove, the position of which is well known to "French Frank," George Collins, of Petrolia, and the Ray brothers at Shelter Cove. (Note 3, p. 296.)

Colona Cliff (Humboldt County, Cal., A. F. R., 1871).-On the cliff above the wreck of the lumber schooner Colona, i 470 feet above tide and I mile north of Shelter Cove, known to the Ray brothers of that place and to "French Frank." (Note 3, p. 296.)

Shelter Cove (Mendocino County, Cal., A. F. R., 1871).-On a prominent round knoll, about 1000 feet high, north of the bight at Shelter Cove. It is well known to the Ray brothers at Shelter Cove and to "French Frank." (Note 3, p. 296.)

Ray Point (Humboldt County, Cal., A. F. R., 1871).-On the prominent round hill west of the main bight at Shelter Cove, 267 feet above tide. The station is well known to the Ray brothers at Shelter Cove. (Note 3, p. 296, the center stub being 15 inches in diameter, 4 feet long, set with the top level with the surface.)

Alviso Ridge (Mendocino County, Cal., A. F. R., 1873).-On the summit of the first high ridge southeast of and about one-half mile from Juan Alviso's house, within 50 yards of the edge of the timber, about 750 feet above tide. (Note 2, p. 296.)

North Ussal (Mendocino County, Cal., A. F. R., 1883).-On a ridge running parallel with the coast just north of Ussal Valley, on a small knoll on the backbone of the ridge, about 500 feet above tide, about 600 yards north of the mouth of Ussal Creek, and not over 200 yards from the nearest point of the beach. (Note 2, p. 296.)

Devilby (Mendocino County, Cal., A. F. R., r873).-On a point of the ridge running parallel to the coast, about three-fourths mile north of Henry Devilby's house in Cottaneva Valley, about 100 yards to the westward of the coast trail and within 300 yards of the nearest point of the beach, about 800 feet above tide. (Note 2, p. 296.)

Sheep Ridge (Mendocino County, Cal., A. F. R., 1873).-On the upper part of the same ridge as South Jackass station, about 1000 feet above tide and about 100 yards from the edge of the timber. As there is no trail leading out to this ridge it would be difficult to give any directions as to how to reach these stations. But the location of this station and of South Jackass triangulation station was well known to Robert Anderson, of Jackass gulch. (Note 2, p. 296.)

Whale Gulch (Mendocino County, Cal., A. F. R., 1873).-About halfway between the mouth of the big ravine known as Whale Gulch and the dairy house at Upper Bear Harbor, on a knoll directly on the coast, the east side of which is covered with timber and chaparral and the west side is a slide which descends very abruptly to the beach; on the southeast end of the top of the knoll. (Note 2, p. 296.)

Kibesillah Rock (Mendocino County, Cal., A. F. R., 1874).-A single lone rock about three-fourths mile northwest of Ten Mile River bluff.

Clear Point (Mendocino County, Cal., A. F. R., 1873).-On a spur of Chemise Mountain, about \(11 / 2\) miles south of the summit and one-half mile west of the trail; about I 300 feet above tide, near the upper edge of a clearing, on the lower part of this ridge, just below a small point of rocks. (Note 2, p. 296.)

Big Knoll (Humboldt County, Cal., A. F. R., 1873).-On a knoll about halfway down one of the spurs of Chemise Mountain, about one-half mile west of the Shelter Cove and Bear Harbor trail, and about 1800 feet above tide, on the second ridge south of the summit of the mountain. (Note 2, p. 296.)

Chemise Flat (Humboldt County, Cal., A. F. R., 1873).-On the first bare flat south of the highest peak of Chemise Mountain, about 50 yards west of the mountain trail from Shelter Cove to Bear Harbor. (Note 2, p. 296.)

McKee Flat (Humboldt County, Cal., A. F. R., 1873).-About one-half mile south of Little Valley and about one-half mile east of and 1400 feet above the beach, on one of the ridges of Chemise Mountain, on a flat bench covered with chaparral, about 100 yards east of the bare hillside known as the "big opening." (Note 2, p. 296.)

Bight Knoll (Humboldt County, Cal., A. F. R., 1871).-About midway of a bight at Shelter Cove, 200 yards from the beach and about 430 feet above tide. (Note 3, p. 296.)

Crusoe Ridge (Mendocino County, Cal., A. F. R., 1883).-On the first ridge north of Crusoes gulch, 620 feet above tide. The coast trail runs around the base of the ridge at 100 feet elevation. (Note 2, p. 296.)

Switzer Rock (Mendocino County, Cal., A. F. R., 1874).-A lone pinnacle rock three-fourths mile northwest of Switzer's warehouse or Westport chute landing.

Timber Ridge Rock (Mendocino County, Cal., A. F. R., 1883).-Upon a rocky ridge jutting into the ocean from the main ridge running north from Ussal Valley, on the only available point for placing a signal. Marked by a drill hole in the rock. (Note 2, p. 296.)

Big White Rock (Mendocino County, Cal., A. F. R., 1883).-The summit of the first prominent beach islet or rock northwest from Ussal Valley.

Middle Rock (Mendocino County, Cal., A. F. R., 1883).-The apex of a rock halfway between Cluster Cone Rock and a group of four or five rocks, three of which are of equal size and equal distances from each other.

Ussal Rock (Mendocino County, Cal., A. F. R., r883). -The top of the first prominent rock, 50 feet high, 200 meters offshore, and \(21 / 2\) miles south of Ussal Valley.

Double Cone, West Rock (Mendocino County, Cal., A. F. R., i883).-The top of the outer and larger one of two rocks, 250 meters from the beach, directly west of Devilby's house, and southwest from the point where the coast trail forks to go down into Cottaneva Valley.

Cottaneva Needle (Mendocino County, Cal., A. F. R., 1883).-The top of a prominent needle rock, i mile northwest of Cottaneva Valley, 200 meters off the beach.

Morgan Rock (Mendocino County, Cal., A. F. R., 1883).-The outer one of two rocks half a mile south of Bear Harbor Cove or landing and halfway from the cove to Cluster Cone Rock.

Cluster Cone (Mendocino County, Cal., A. F. R., 1883).-The summit of the largest rock in a group or cluster about i mile south of Bear Harbor and 150 meters seaward from the first ragged, rocky point south of the Bear Harbor beach landing.

Jackson Pinnacle (Mendocino County, Cal., A. F. R., I883).-A prominent. pinnacle rock 1 mile north of Jackass gulch, so close to the rocky beach that from seaward it might be hard to separate it from the bluff behind it, but seen along shore from the coast trail it is quite a marked object.

Needle Rock (Mendocino County, Cal., A. F. R., 1883).-A high-pointed rock, about halfway between Whale Gulch and Bear Harbor, separated from the ocean bluff only at high water.

Jackass Cone (Mendocino County, Cal., A. F. R., 1883).-The largest and highest of the four rocks 250 meters west of Mistake Point, about \(11 / 2\) miles south of Jackass gulch.

Black Rock (Mendocino County, Cal., A. F. R., 1871).—About I mile below the point at Shelter Cove, a few yards from the first point below the cove, which is impassable except at low water; the higher of the two points of a prominent pointed rock close to the beach and connected with it at low water.

White Rock (Mendocino County, Cal., A. F. R., 187 x).—About \(41 / 2\) miles below Shelter Cove, a pointed rock, as seen from Shelter Cove, partly covered with white (bird lime), and apparently within 100 yards of the beach.

Forty-acre Opening (Mendocino County, Cal., C. H. S., 1897).-On the first knoll in an opening or clearing, about 6 miles east of Ukiah, plainly visible from Ukiah; on the farthest ridge visible to the east from Ukiah. The station is marked by a drill hole in a fast rock, the one nearest to the southwest edge of the bare top. The rock rises slightly above the ground surface and is about 1 foot across; it is not very firm, and is slowly disintegrating. There are several of these outcropping or fast rocks to the east and northeast. A few oak trees are on the north of the summit.

Cleland (Mendocino County, Cal., C. H. S., 1897).-On the most southerly of the three ridges that form the mountain mass west of and nearest to Ukiah, to the eastward of another and higher summit covered with bushes and small growth. The best approach is by a farm road 2 miles south of Ukiah and then by trail to the south of the fence that runs to the summit. It can not be ascended along the backbone on account of small scrub oak and manzanita. The station is marked by a drill hole in the only fast rock on top, flush with the surface and near the center of a round knoll, on the part of the mountain bare of trees.

Cole 2 (Mendocino County, Cal., C. H. S., 1897).-On a hill overlooking Ukiah from the westward. The station was marked by a drill hole in a good-sized stone placed in a small mound of earth with stones around it.

Dihel (Mendocino County, Cal., B. A. C., 1878; 1897).-On a hill overlooking Ukiah from the westward. The station was marked by a bottle buried just below the surface, over which was placed, in 1897, a stone with a drill hole in it and over all a mound of stone.

Ukiah South Base (Mendocino County, Cal., C. H. S., 1897).-About 1 100 meters south of the depot at Ukiah on the west side of the track in line with two large circular piles on the north side of a culvert and i3 feet 7 inches west of the center of the west rail, 9 paces southwest of a whistling post. The station was marked by a drain tile 10 inches in diameter and 2 feet long, with the flange down, filled with concrete, with a half-inch steel rod run through its entire length for a center mark. Concrete was also placed around the outside of the tile at top and bottom.

Ukiah North Base (Mendocino County, Cal., C. H. S., 1897).-About 150 meters north of the depot on the west side of the track, the station was marked like Ukiah South Base.

Ukiah Magnetic Station (Mendocino County, Cal., H. P. R., 1897).-On the western side of the level Russian River Valley, one-half mile east of the base of the mountains, and three-fourths of a mile west of the San Francisco and Pacific Coast Railroad, in meters true west and i 786 meters true south of the county court-house, one square west from the county road, in the southeast corner of a square, 49 and 50 feet, respectively, from the southern and eastern street lines of this square, and near a creek which is dry in summer. The station was marked by a smooth, white marble post 4 feet long, set 2 feet in the ground, 8 inches square on top, with a cross marking the center. The south face of this post is lettered U. S. C. \& G. S., the east face, MAG. STA., and the north face, 1897 . A similar marble post was located on the eastern edge of the street, 250 paces true north. This stone is lettered on its west face MER., on its south face 1897 , and its north face U. S. C. \& G. S.

Ukiah Longitude Station (Mendocino County, Cal., C. H. S., 1897).-Near the southeast corner of the lumber yard of F. M. Mason in Ukiah, Cal., 12 feet to the street south and 4 feet to the street east, building line.

Ukiah Latitude Station (Mendocino County, Cal., C. H. S., I897).-Near the southeast corner of Mr. Mason's lumber yard, 105.37 meters south and 39.245 meters west of the court-house, \(881 / 2\) inches west and 7 inches south of the Ukiah longitude station.

\section*{SHELTER COVE TO TRINIDAD HEAD.}

Horse Mountain (Humboldt County, Cal., A. F. R., 1871). -On the ridge of that name, a part of the claim of Lieutenant Fraser, 1,920 feet above tide, 1 mile north of the mouth of Horse Mountain Creek.

Fire Hill (Humboldt County, Cal., A. F. R., 1871).-On the chaparral-covered ridge, about halfway between Shelter Cove and Big Flat, at an elevation of about 2835 feet. The location was known to Wm. Miller, of Big Flat; "French Frank," of Humboldt County, and to Geo. Collins, of Petrolia. The station was marked by a stub 3 feet long, level with the surface of the ground, in the top of which was a nail covered by a cartridge shell. Stones were piled around the stub.

Shubrick Peak (Humboldt County, Cal., A. F. R., 1871).-On the very marked peak north of Big Flat, 2780 feet above tide. (Note 6, p. 296; nails marking the exact points.)

North Slide (Humboldt County, Cal., A. F. R., 1871).-About 3 miles from the coast, 3420 feet above tide; the location is known to "French Frank," Wm. Roberts, and Wm. Miller, of Big Flat; it must be approached by way of Hadley Peak or by Telegraph Ridge. The station was marked by a nail in a stub 3 feet long, with the top about 6 inches above ground. Large rocks were piled around the stub.

Hadley Peak (Humboldt County, Cal., A. F. R., I871).-Three miles north of Big Flat and 12 miles north of Shelter Cove, at an elevation of 2700 feet above tide; it is 16 miles south of Petrolia, the nearest post-office. The location is well known to "French Frank," Wm. Roberts, Martin Saunders, of Petrolia, and Wm. Miller, of Big Flat. The station was marked by a stub 2 feet long driven about i foot in the ground, with large rocks around it.

Chaparral Peak (Humboldt County, Cal., A. F. R., 1871).-On a prominent peak of the H. K. Davis or Point Gorda ridge, about 3 miles from the beach, 2600 feet above the tide. It is best approached from Point Gorda, and the location was known to "French Frank." The station was marked by a center stub and four witness marksnorth, south, east, and west-6 feet from the center.

Gorda (Humboldt County, Cal., A. F. R., 1871).-At an elevation of 2300 feet on what is known as Davis Ridge, about 4 miles south of the mouth of the Mattole River. The location is known to "French Frank," John Morgan, and H. K. Davis, who live on the western spurs of the ridge, and to John Mackey, who. lives 8 miles south of the Marble River. (Note 6, p. 296; exact points marked by nails.)

Uncle Tommy (Humboldt County, Cal., A. F. R., I871).-On the ridge south of the Mattole River, known as Barksdale Ridge, 2000 feet above tide and about \(21 / 2\) miles inland. (Note 6, p. 296.)

Barksdale Table (Humboldt County, Cal., A. F. R., 1871).-On the Barksdale Ridge, about I mile from the beach and i 300 feet above tide. The location is well known to Eli Bagley, who lives near the mouth of the Mattole River. (Note 6, p. 296.)
\[
63481^{\circ}-11-25
\]

Moore Hill (Humboldt County, Cal., A. F. R., 1871). -On the summit of the hill on the north bank of the Mattole River, known as Moore's hill, about 1210 feet above tide and about i mile from the beach. (Note ro, p. 297.)

Mussel Knoll (Humboldt County, Cal., A. F. R., 1871).-On the most westerly of the two small knolls at the summit of the Mussel Ridge, 950 feet above tide and about one-half mile from the beach; about 50 yards north of a long board fence running east and west across the hill. (Note 6, p. 296.)

Windy Point (Humboldt County, Cal., A. F. R., 1871).-On the edge of the bluff, 800 feet above tide, about 400 yards from the beach and about the same distance from Reynolds house, which is on the table back of the station. The location is well known to Conrad Schumacher and Edward Saunders, of Petrolia. (Note 6, p. 296.)

McNutt (Humboldt County, Cal., A. F. R., 1871).-On a sharp peak about 300 yards north of where the Mattole road crosses the divide between Domingos Creek and the McNutt Gulch. (Note 6, p. 296.)

South of Cape (Humboldt County, Cal., A. F. R., 1869-1872).-On the western extremity of Brandstetters Ridge overlooking Singleys flat, about one-half mile south of the public house owned by Jos. Russ and kept by Jos. Corbett, 900 feet above tide. (Note 6, p. 296.)

Mount Blank (Humboldt County, Cal., A. F. R., 1869-1872).-Immediately south of Cape Mendocino on what is known as Brandstetters Ridge, separated from the cape by Singleys Creek or gulch, about 2 miles inland and west of Singleys flat, 2200 feet above tide. (Note 6, p. 296.)

Cape Ridge (Humboldt County, Cal., A. F. R., 1869-1871).-On the main Cape Mendocino Ridge, 2 miles east of Cape Mendocino light-house and \(11 / 2\) miles south of Bear River, about I 400 feet above tide. The location was known to Thos. Stewart, of Bear River. (Note 6, p. 296.)

Mendocino (Humboldt County, Cal., A. F. R., 1869-1872).-On the highest point of Cape Mendocino on the main ridge of the cape and three-fourths mile east of the light-house. (Note 6, p. 296.)

Bear River (Humboldt County, Cal., A. F. R., 1869). -On the ridge south of Bear River, sometimes called Widow McGregors Ridge, 940 feet above tide. (Note 7, p. 296.)

Odell (Humboldt County, Cal., A. F. R., 1869).-On the ridge known as Bear River Ridge, about 2 miles north of the house of Cornelius Odell. The location was known to him and to Thomas Stewart, of Bear River. (Note 7, p. 296.)

False Cape (Humboldt County, Cal., A. F. R., I869).-On the highest part of the bluff of False Cape, 614 feet above tide and 200 meters west of the county road as it winds off the beach coming from Eel River Valley and turns to the eastward up False Cape ridge. (Note 7, p. 296.)

Oil Creek (Humboldt County, Cal., A. F. R., 1869). -On the ridge north of False Cape, known as Little Bald Hill, 1360 feet above tide. It may be reached by going up the ridge immediately south of where the Eel River and Mattole Valley road leaves the sand beach and rises over False Cape. The location was known to Thomas Stewart, of Bear River, and Smith Fulmore, of Eel River. (Note 7, p. 296.)

Miller Peak (Humboldt County, Cal., A. F. R., 1871).-Ten miles north of Shelter Cove, on the peak south of Miller's house, at Big Flat, about 1980 feet above tide. (Note 6, p. 296.)

Shipman (Humboldt County, Cal., A. F. R., 1871).-South of the mouth of Shipman Creek, on a spur of Fire Hill Ridge, about 1600 feet above tide. A clump of fir trees cover the station from seaward view; one of these trees, called Shipman Tree, about 40 feet southwest of the station, was trimmed down to leave a top tuft only. The location was known to "French Frank" and to Wm. Miller, of Big Flat. (Note 3, p. 296.)

Miller Ridge (Humboldt County, Cal., A. F. R., 1871).-On the main ridge of which Millers Peak is a spur, 2400 feet above tide. The locality is known to Wm. Miller, of Big Flat, and to "French Frank." (Note 6, p. 296; except the center stub was 2 feet long.)

Wyman (Humboldt County, Cal., A. F. R., 187 r).-About 3 miles north from Shelter Cove and a few hundred yards from Fraser's cabin, on a little point projecting out into the beach, 34 feet above tide. (Note 3, p. 296; center stub I foot in diameter and 3 feet long.)

Midway (Humboldt County, Cal., A. F. R., 1871).-About 6 miles north of Shelter Cove, I 260 feet above tide. Gitchell's cabin is the nearest; location is known to "French Frank." (Note 6, p. 296.)

Big Flat (Humboldt County, Cal., A. F. R., 1871).-On the low point north of Big Flat Creek and under Shubrick Peak, 5 feet above tide. (Note 6, p. 296.)

Oat Hill (Humboldt County, Cal., A. F. R., 1871).-Near the summit of Oat Ridge, about 2300 feet above tide. The locality is well known to Martin Saunders, of Petrolia, Wm. Roberts, and "French Frank." (Note 6, p. 296.)

Wild Oat (Humboldt County, Cal., A. F. R., 1871).-On the seaward knob or end of Oat- Ridge, 1870 feet above tide. The location is known to Wm. Roberts, "French Frank," and to Martin Saunders, of Petrolia. (Note 6, p. 296.)

Spanish Hill (Humboldt County, Cal., A. F. R., r871).-On the western summit of Spanish Ridge, 2 100 feet above tide. The location is well known to Wm. Roberts and "French Frank." (Note 6, p. 296.)

Spanish Creek (Humboldt County, Cal., A. F. R., 1871).-On the southwest spur of Spanish Ridge, 820 feet above tide. (Note 6, p. 296.)

Lake Hill (Humboldt County, Cal., A. F. R., 1871).--On the seaward end of Lake Ridge, about i 620 feet above the tide. The locality is well known to "French Frank". and to Wm. Roberts. (Note 6, p. 296.)

Reynolds Point (Humboldt County, Cal., A. F. R., 1871).-On the southwest spur of Lake Ridge, 824 feet above tide. Probably marked according to note 6, p. 296.

Cooskie Creek (Humboldt County, Cal., A. F. R., 1871).-A half mile south of Cooskie Creek and one-fourth mile west of the ocean beach, about i ooo feet above tide. The location is known to Wm. Roberts, "French Frank," and John Mackey, all of Petrolia. (Note 6, p. 296.)

Four Mile Creek (Humboldt County, Cal., A. F. R., 1871).-On the outer edge of a flat table, just south of Four Mile Creek, 800 feet above tide and about 600 yards from the beach, within 150 yards of the trail that leads up the ridge from the mouth of the creek. The location is well known to Conrad Schumacher and Edward Saunders, of Petrolia. (Note 6, p. 296.)

Coyote (Humboldt County, Cal., A. F. R., 1871).-On the ridge south of Four Mile Creek, known as the Davis Ridge, and about 1760 feet above tide and about a mile from the beach. The location is well known to Edward Saunders and Conrad Schumacher, of Petrolia. (Note 6, p. 296.)

Morgan (Humboldt County, Cal., A. F. R., 1871). -On a high bluff about one and a quarter miles south of Four Mile Creek, 950 feet above tide, and about 400 yards from the beach. The location is well known to Conrad Schumacher and Edward Saunders, of Petrolia. (Note 6, p. 296.)

Mackey Hill (Humboldt County, Cal., A. F. R., 1871). -On the ridge above and northeast of the house of John Mackey, I 920 feet above tide. The locality is known to John Mackey and "French Frank." (Note 6, p. 296, exact points marked by nails.)

Mackey Ridge (Humboldt County, Cal., A. F. R., 1871).-On the ridge about one-fourth mile southeast of the house of John Mackey, to whom and to "French Frank" and John McCollis this locality is well known. (Note 6, p. 296, nails marking the exact points.)

Mackey Beach (Humboldt County, Cal., A. F. R., 1871). -On the bluff about 50 feet above tide, a few yards from the sand beach southwest from the house of John Mackey, to whom and to "French Frank" the place is well known. (Note 6, p. 296, except the center stub was 4 feet long, and nails in the top of all the stubs marked the exact points.)

Mattole Point (Humboldt County, Cal., A. F. R., 1871).-About one-half mile north of the mouth of Mattole River, on a high bluff 800 feet above tide and about 400 yards from the beach. (Note 6, p. 296.)

Bagley (Humboldt County, Cal., A. F. R., 1871).-About a half mile south of the mouth of Mattole River, on the edge of a high bluff, 800 feet above tide and about 700 yards south of Eli Bagley's house, to whom the location is well known. (Note 6, p. 296.)

Taylor Peak (Humboldt County, Cal., A. F. R., 1871).-On a conical peak 3350 feet high, well known as Taylors Peak, about 7 miles from the coast at the head or main bend of Mattole River. (Note 7. p. 296.)

Mattole Beach (Humboldt County, Cal., A. F. R., 1871).-On the sand beach at the mouth of the Mattole River, about halfway between the north and south bluffs and about 50 yards from high-water mark. The location is well known to Eli Bagley, who lives at the mouth of the Mattole River. (Note 6, p. 296.)

Chaparral Mountain (Humboldt County, Cal., A. F. R., 1871).-On what is called the Shenanigan Hill, a peak of the Punta Gorda Ridge. The station was marked by a center stub and four witness marks, north, south, east, and west, 6 feet from the center.

Widow Cranks (Humboldt County, Cal., A. F. R., I871).-On a bald hill known as Widow Cranks Hill, 920 feet above tide and about \(11 / 4\) miles from the beach, on the Walker Hunter ranch and 400 yards west of the house occupied by Mr. Titus. (Note 6, p. 296.)

Mussel Ridge (Humboldt County, Cal., A. F. R., 1871).-On the sharp ridge south of a very rough and heavily timbered ravine known as the McNutt gulch, on the Mussel
ranch, about three-fourths mile east of the Mussel Rocks, and 850 feet above tide. (Note 6, p. 296.)

Oil Creek West (Humboldt County, Cal., A. F. R., I869).-On the western verge of the hill known as "Little Bald Hill," i noo feet above tide. It may be reached by the trail leading up just north of where the Eel River and Mattole Valley road leaves the sand beach and rises over False Cape. (Note 7, p. 296.)

Mount Blank 2 (Humboldt County, Cal., A. F. R., 1871).-About 2 miles inland on what is known as Brandstetters Ridge, about 2160 feet above tide. (Note 6, p. 296.)

Davies Creek (Humboldt County, Cal., A. F. R., I871).-On the first ridge south of Davies Creek, about one-half mile from the beach and about 725 feet above tide. (Note 6, p. 296.)

Walker Ridge (Humboldt County, Cal., A. F. R., 1871).-On the high ridge south of Davies Creek, known as Walkers Ridge, about one-half mile north of Jessie Walker's house, to whom the location is well known, about 2 miles from the beach, 1630 feet above tide. (Note 6, p. 296.)

Davies Ridge (Humboldt County, Cal., A. F. R., 187 I). -On the first ridge south of Davies Creek, about \(11 / 4\) miles from the beach and 1300 feet above tide, near a number of boulders, the only rocks on the ridge. (Note 6, p. 296.)

Domingo (Humboldt County, Cal., A. F. R., 1871).-On the first ridge south of Domingo Creck, about one-half mile southeast of where the Mattole road leaves the beach and winds up the hill, about 100 yards east of a break in the hill caused by a landslide, 730 feet above tide. (Note 6, p. 296.)

Devils Gate (Humboldt County, Cal., A. F. R., 1871).-On the ridge running back from the place on the beach about 2 miles south of Cape Mendocino, known as the Devils Gate; about 500 yards from the beach and about 460 feet above tide. (Note 6, p. 296.)

Fraser Ridge (Humboldt County, Cal., A. F. R., 1871).-Four miles north of Big Flat or Shubrickville, the site of the wreck of the steamer Shubrick, about i 600 feet above tide. The location is well known to "French Frank," Martin Saunders, of Petrolia, and Wm. Miller, of Big Flat. (Note 6, p. 296, exact points marked by nails.)

Lower Hadley (Humboldt County, Cal., A. F. R., 1871).-Three miles north of Big Flat, 12 miles north of Shelter Cove, about I 440 feet above tide. The location is known to Wm. Roberts, "French Frank," and Wm. Miller, of Big Flat. The station was marked by a nail in the center of a stub and by four witness marks north, south, east, and west of center.

Rancheria Beach (Humboldt County, Cal., A. F. R., 1871).-About 12 miles north of Shelter Cove, between Frasers Creek and Hadleys Creek, on the sand beach 5 feet above tide. The location is known to Wm. Miller, at Big Flat, 3 miles south, to "French Frank," Martin Saunders, and Geo. Collins, of Petrolia. (Note 6, p. 296, exact points marked py nails.)

Litlle Spanish (Humboldt County, Cal., A. F. R., 1871).-About 13 miles south of Mattole River, on the southwest spur of Spanish Ridge, about 1400 feet above tide. The location is known to Wm. Roberts and "French Frank." (Note 6, p. 296.)

Steamboat Rock (Humboldt County, Cal., A. F. R., 1871). -About \(11 / 2\) miles to the south of Cape Mendocino, about one-third mile offshore, a large flat rock with a sharp
peak at the southern extremity, which rises 46 feet above the tide; from the southward it resembles a steamboat.

Fortunas (Humboldt County, Cal., A. F. R., 1871).-On the western verge of Bear Ridge, 1000 feet above tide, \(1 / 2\) miles north of the river, one-half mile west of the county road crossing Bear River Ridge. The location was known to Thos. Steward, of Bear River. (Note 7, p. 296.)

Mussel Rock (Humboldt County, Cal., A. F. R., 1871).-About I \(1 / 4\) miles south of Domingo Creek and about \(3^{1 / 2}\) miles north of the Mattole River, a large conical rock about 40 feet high, situated on the edge of the beach.

Devils Gate Rock (Humboldt County, Cal., A. F. R., 1871).-The largest of a small group of rocks situated about three-fourths mile offshore and about 3 miles south of Cape Mendocino.

Sealion Rock (Humboldt County, Cal., A. F. R., 1871).-The largest of a small group of rocks about one-half mile offshore and about 2 miles north of the mouth of the Mattole River.

Gorda Rock (Humboldt County, Cal., A. F. R., 1871).-A prominent islet situated about three-fourths mile off Punta Gorda and about 3 miles south of the mouth of the Mattole River.

Reynolds Rock (Humboldt County, Cal., A. F. R., I871).-The top of a rock about a half mile west of the mouth of Reynolds Creek and about 4 yards distant from the beach at Reynolds Point.

Shipman Tree (Humboldt County, Cal., A. F. R., 1871).-A tree trimmed down with only a tuft at the top, on a spur of the Fire Hill Ridge, about 40 feet southwest of Shipman triangulation station (p. 387).

Eel River (Humboldt County, Cal., A. F. R., 1869).-On the north sand spit forming the entrance to Eel River. Reported lost in 1870 .

Table Ridge (Humboldt County, Cal., A، F. R., r869).-On the eastern side of the ridge known as Table Bluff, 340 feet above tide, near a Catholic cemetery (not inclosed in 1869). (Note 6, p. 296.)

Table Bluff (Humboldt County, Cal., A. F. R., 1869).-On the southwest point of Table Bluff, south of Humboldt Bay, 60 feet above tide, upon land owned in 1869 by Dr. Jonathan Clark, of Eureka. (Note 6, p. 296.)

Eel River Beach (Humboldt County, Cal., A. F. R., i869).-On the sand bank about I \(1 / 4\) miles north of the mouth of Eel River. As the beach was covered with drift logs, the station is probably lost. (Note 7, p. 296.)

Nelson (Humboldt County, Cal., A. F. R., 1869).-On the beach between Table Bluff and the mouth of Eel River. As the beach was covered with drift logs, the station is probably lost. (Note 7, p. 296.)

Sisson (Humboldt County, Cal., J. S. L., 1853; 1869).-On the highest ridge of the bare hill, 60 meters long and is meters wide, and nearly level, back of Red Bluff, 200 meters from the point of woods formerly used as a pilot range, and on the far side of the road to Eel River; 300 meters \(91^{\circ} 45^{\prime}\) from Sisson's house; a little west of the crest of the hill, about 600 feet above tide. (Note 6, p. 296.),

Red Bluff Latitude Station (Humboldt County, Cal., G. D., 1854; 1869).-On the highest part of the bluff known as Red Bluff, about 100 feet high, on the western side
and opposite the entrance of Humboldt Bay, 9 meters from the west edge of the bluff and is meters from the north edge. The station was marked by a granite block, 9 inches square, \(5^{1 / 2}\) feet long, set even with the surface of the ground, having a copper bolt leaded in the upper end, marked with a cross, which is 0.85 inch east of the center of the station. A stub with 'a nail in top was set in line to Humboldt Bay Light-house.

Bucksport (Humboldt County, Cal., A. F. R., 1869).-On the eastern shore of Humboldt Bay, on salt marsh ground, about I mile south of the South Park race track and between the east shore of the bay and the county road leading to Eureka. (Note 6, p. 296.)

Sandhill (R) (Humboldt County, Cal., A. F. R., 1869).-On one of the highest of the small sandhills on the south part of the small peninsula, one-fourth mile from the, ocean. (Note 6, p. 296.)

Humboldt Bay North Base (Humboldt County, Cal., A. F. R., 1869).-On the eastern shore of Humboldt Bay, near the outer edge of the salt marsh and about west from the South Park race track. The station was marked in a manner similar to Humboldt Bay Middle Base. (See following description.)

Humboldt Bay Middle Base (Humboldt County, Cal., A. F. R., 1870).-On the east side of Humboldt Bay, 400 yards west of the county road leading south from Eureka and the bay shore, and i20 yards east of the bay beach, on a very small, hard-land island, slightly above the level of the salt marsh, in the inclosure belonging to and nearly west of the slaughterhouse. The station was marked by a cement block, on top of which was a copper plate marked with the letters U.S.C.S. M. BASE, through a hole in the plate a tube of copper one-half inch in diameter by r.foot long was thrust down into the cement, and the upper end of the tube level with the surface of the copper plate marked the center of the station. The witness marks were four redwood stubs placed to the north, east, south, and west, each 6 feet distant from the center.

Curlew (Humboldt County, Cal., J. S. L., 1853; 1869).-On the western shore of Humboldt Bay, on a prominent sand hill on the north peninsula, at the extreme edge of a pine barren, about 150 yards west of the bay beach and half a mile north of Fay's mill. (Note 6, p. 296.)

Peninsula (Humboldt County, Cal., A. F. R., 1869).-On the sand dune between the west shore of Humboldt Bay and the ocean beach. (Note 6, p. 296.)

Sand Bluff. (Humboldt County, Cal., A. F. R., 1870).-On the western shore of Humboldt Bay, on the first prominent point north of Worth's house and wharf, on a sand bluff. (Note 6, p. 296.)

West Point (Humboldt County, Cal., A. F. R., I870).-On a point of land to the north of a small indentation and west of a large island. (Note 6, p. 296.)

East Point (Humboldt County, Cal., A. F. R., 1870).-On the end of a prominent point north of Carson Mill. (Note 6, p. 296.)

Eureka Azimuth Station (Humboldt County, Cal., G. D., 1869; I871.)-On the west side of the plaza or public square in Eureka (between Fourth, Fifth, I, and J streets), 28 feet 2 inches from the west fence of the plaza. From the point where the measure touches the fence to the southwest corner of the plaza is 98 feet 3 inches, and to the northwest corner 139 feet 4 inches. The true meridian of the station was marked on the north and south fences by saw cuts in the upper rail. the south mark being io feet 6
inches from the west fence and the north mark 54 feet \(5 \frac{1 / 2}{}\) inches from the west fence. The station was marked by a block of wood. It was reported in 1886 that large public buildings had been erected on the plaza and the station probably lost.

Wheeler (Humboldt County, Cal., A. F. R., 1870).-On the first prominent point on the west shore of Humboldt Bay, south of the mouth of Mad River slough, about 100 yards northeast of Wheeler's house, on the edge of the timber, 40 yards from the bay shore, and about 20 feet above tide. (Note 6, p. 296.)

Green Bluff (Humboldt County, Cal., A. F. R., 1870). -On the north shore of Humboldt Bay, on Brainards Point, the first prominent hard point north of Eureka, about 20 feet above tide. (Note 6, p. 296.)

Morgan (Humboldt County, Cal., A. F. R., 1870).-On the highest sand dune north of Worth triangulation station, upon the edge of the pine timber which forms an almost complete barrier to observation from the western sand dunes of Humboldt Peninsula toward the east. The location was known to Simon Morgan, of Eureka. (Note 6, p. 296.)

Cut Hill (Humboldt County, Cal., A. F. R., 1870).-On the North Peninsula west of Humboldt Bay, on top of a sand dune, 60 feet above tide. (Note 6, p. 296, nails in each stub.)

Slough (Humboldt County, Cal., A. F. R., i870).-On the marsh bank of slough north of Eureka. The location was known to Wm. Tomlinson, Simon Morgan, and Wm. Johnson, of Eureka. (Note 6, p. 296, nails in each stub.)

Slough Fork (Humboldt County, Cal., A. F. R., 1870).-On the marsh about 1 mile east of Slough triangulation station. The location was known to Simon Morgan and Wm. Johnson, of Eureka. (Note 6, p. 296, nails in each stub.)

Marsh Point (Humboldt County, Cal., A. F. R., 1870). -On a point of the marsh about halfway between the Arcata wharf and the mouth of Mad River slough, on the north shore of Humboldt Bay. (Note 6, p. 296.)

John Brown (Humboldt County, Cal., A. F. R., 1870).-On the first point of hard land inside the entrance to the Mad River slough on the west bank of the slough, about 50 yards north of John Brown's house. (Note 6, p. 296.)

Mosquito Point (Humboldt County, Cal., A. F. R., 1870).-On the marsh on the west bank of Mad River slough, about a mile above John Brown's house. (Note 6, p. 296.)

Northerner (Humboldt County, Cal., A. F. R., 1870). -On the bluff 240 feet above tide, one-half mile south of Centerville, east of the wreck of the steamer Northerner, a little southeast of and nearly over the graves of the persons drowned at the wreck, which are marked by the boom and gaff of one of the steamer's fore and aft sails, planted in the sand, with a cross on top. (Note 7, p. 296.)

Eccentric (Humboldt County, Cal., A. F. R., 1869).-On one of the sloughs south of the mouth of Eel River and reached by going through Salt River; the location was known to Smith Fulmore, of Eel River. (Note 7, p. 296.)

Centerville (Humboldt County, Cal., A. F. R., i869).-One mile and a half south of the mouth of Eel River and about 300 yards south of where the sand.hillock rises above the surface of the beach, on a sand hillock of the spit on the beach between the mouth of Eel River and the collection of shanties on the southern extremity of Eel River beach, known as Centerville. Station is about 40 feet above the tide. (Note 7, p. 296.)

Centerville South (Humboldt County, Cal., A. F. R., 1869).-Nearly 3 miles south of the mouth of Eel River, on the sand spit between the ocean and the marshes of Eel River. The location was known to Smith Fulmore, of Eel River. (Note 7, p. 296.)

Russ Cut-Off (Humboldt County, Cal., A. F. R., 1869).-On the salt marsh about 2 miles south of the mouth of Eel River, on the branch known as Salt River. The location was known to Smith Fulmore, of Eel River. (Note 7, p. 296.)

Picket Pile (Humboldt County, Cal., A. F. R., 1869).-About a mile and a half south of the mouth of Eel River, on the marsh or tule land between Salt River and the sand spit south of the mouth of Eel River, about 100 yards west of the bank of Salt River. The location was known to Smith Fulmore, of Eel River. (Note 7, 296.)

East Point (Humboldt County, Cal., A. F. R., 1869).-On the end of the beach opposite the mouth of Eel River. Reported lost in 1870 .

Flag Tree (Humboldt County, Cal., A. F. R., 1869-1883).-The outer or northern tree of a small clump of redwoods on the south bank of Eel River between Morgan slough and Eastlake slough, trimmed down to leave a tuft at the top.

South Beach (Humboldt County, Cal., A. F. R., 1869).-About 2 miles south of the entrance to Humboldt Bay, on the sand spit running north from Table Bluff, and forming the southwest boundary of the bay. (Note 6, p. 296.)

South Spit (Humboldt County, Cal., A. F. R., 1869).-About one-fourth mile south of the entrance to Humboldt Bay, on the sand spit south of the entrance. (Note 6, p. 296.)

Round Top (Humboldt County, Cal., A. F. R., 1870).-On the north peninsula west of Humboldt Bay, on top of a sand dune 80 feet above tide, at a very narrow part of the sand dune. (Note 6, p. 296, nails in each stub.)

Ocean (Humboldt County, Cal., A. F. R., 1870).-About a mile south of the mouth of Mad River, about one-fourth mile west of the mouth of the canal which connects Mad River with the waters of Humboldt Bay, on a sand dune about 20 feet above tide and about 100 yards east of the ocean beach. (Note 6, p. 296.)

Trinidad Head (Humboldt County, Cal., A. F. R., 1870).-On the summit of Trinidad Head, 380 feet above tide. The station was marked by a stub 3 feet long, the top level with the surface of the ground, directly under which was a bottle; four bottles were buried in the ground 3 feet from the surface, each 6 fect distant and with the mouths pointing toward the center.

Laguna (Humboldt County, Cal., A. F. R., 1870).-On the northern end of a small marsh island lying in the northern part of that portion of Mad River slough where it widens out into what is called the Laguna. (Note 6, p. 296.)

Onsley (Humboldt County, Cal., A. F. R., 1870).-On the marsh about one-half mile northwest of Onsleys Landing. (Note 6, p. 296.)

Canal (Humboldt County, Cal., A. F. R., 1870.)-On the marsh at the head of Mad River slough, about ioo yards east of the mouth of the canal which connects the slough with Mad River and about 200 yards south of the timber which comes down close to the 'edge of the marsh. (Note 6, p. 296.)

Mad River (Humboldt County, Cal., A. F. R., 1870).-On the first sand dune north of Mad River, about I mile therefrom and about ioo yards east of the ocean beach. The station was marked by a round stub 4 feet long and about 1 foot in diameter, the top level with the surface of the ground, and by 4 witness marks north, south, east, and west and 6 feet distant.

Dows Prairie (Humboldt County, Cal., A. F. R., 187o).-On the edge of a bluff about 180 feet above the ocean beach, on what is known as Dows Prairie, about 450 yards west of the house of David Worth. (Note 6, p. 296.)

Little River (Humboldt County, Cal., A. F. R., 1870).-On the summit of the knoll on the north of the mouth of Little River, about 90 feet above tide. (Note 6, p. 296.)

Underwood Creek (Humboldt County, Cal., A. F. R., 1870).-On a sand dune about 300 yards north of the mouth of Underwood Creek and about 100 yards east of the ocean beach. (Note 6, p. 296.)

Worth (Humboldt County, Cal., A. F. R., I870).-On the highest sand dune west of the house of Thomas Worth. (Note 6, p. 296.)

Fay's mill (Humboldt County, Cal., A. F. R., 1869 ; 1883).—About 2 miles north of Humboldt Bay Light-house, on the west shore of Humboldt Bay, the smokestack of Fay's mill.

Worth's house, chimney (Humboldt County, Cal., A. F. R., 1869; 1883).-About 4 miles north of Humboldt Bay Light-house, the chimney of Worth's house, on the west shore of Humboldt Bay, and back of a small wharf known as Worth's wharf.

Jones' mill (Humboldt County, Cal., A. F. R., 1870).-On the east side of Indian Island, west of the town of Eureka, on the opposite side of the main channel, the smokestack of Jones' mill.

Cousin's mill (Humboldt County, Cal., A. F. R., 1870).-On the eastern shore of Indian Island in Humboldt Bay, west of the town of Eureka, on the opposite side of the main channel, the smokestack of Cousin's mill.

Little River Beach (Humboldt County, Cal., A. F. R., I870).-About I mile south of the mouth of Little River and about 100 yards east of the Ocean beach, on a sand dune about 20 feet above tide, about 400 yards south of the cabin of Chas. Beach. The station was marked by a round center stub about I foot in diameter and by 4 witness marks to the north, south, east, and west and each 6 feet from the center.

Little River Rock (Humboldt County, Cal., A. F. R., 1870).-About i mile northwest of Little River and about 400 yards west of the shore, the summit of a prominent rocky islet 120 feet above tide.

Shelton (Humboldt County, Cal., A. F. R., I870). -In the town of Trinidad, in the inclosure of a man named Shelton and near his house. (Note 6, p. 296.)

Timber Ridge (Humboldt County, Cal., A. F. R., 1870).-On the first prominent ridge on the east side of the upcoast trail and about three-fourths mile north of Trinidad. (Note 6, p. 296.)

Off Trinidad Rock (Humboldt County, Cal., A. F. R., 1870).-On the large rock lying about one-half mile west of Trinidad Head and about 80 feet above the sea level. A center stub 1 foot long, surrounded by small rocks, marked the station.

North Trinidad (Humboldt County, Cal., A. F. R., I870).-On a large level table about 160 feet above the level of the sea and about 1 mile north of Trinidad on the west-coast trail. (Note 6, p. 296.)

Scottys Point (Humboldt County, Cal., A. F. R., 1870).-On Scottys Point, about \(31 / 2\) miles north of the coast trail from Trinidad. The station was marked by a center stub 2 feet long, the top level with the surface of the ground.

Cone Rock (Humboldt County, Cal., A. F. R., 1870).—About \(11 / 2\) miles west of Scottys Point and 2 miles south of Turtle Rocks; the top of a conical rock, 40 feet above tide.

Patricks Point South (Humboldt County, Cal., A. F. R., 1870).-About 7 miles north of Trinidad by the coast trail. (Note 7, p. 296, nail in stub.)

Inner Turtle Rock (Humboldt County, Cal., A. F. R., 1870).-On top of the smaller of the two Turtle rocks, the last prominent offlying rocks north of Trinidad.

Auxiliary Dow (Humboldt County, Cal., A. F. R., 1869; 1883).-Three-quarters of a mile south of where the coast trail leaves Dows Prairie and enters the ocean beach and 2 miles south of Little River, under the high bluff in front of Dows Prairie, and about 20 feet above tide. (Note 6, p. 296.)

Pilot Rock (Humboldt County, Cal., A. F. R., 1870).-The top of a prominent rock in the roadstead at Trinidad.

Trinidad flagstaff (Humboldt County, Cal., A. F. R., 1869; 1883).-The town flagstaff of Trinidad, opposite the main street through which the coast road enters and leaves the town, about one-half mile east of the summit of Trinidad Head, on the bluff overlooking Trinidad Bay, 60 feet above tide.

Blank Rock (Humboldt County, Cal., A. F. R., 1869; 1883).-The top of a large rock 100 feet high, the nearest rock west of Trinidad Head and the first prominent rock north of what is well known in Trinidad Bay as "pilot rock."

In Line (Humboldt County, Cal., A. F. R., 1870).-On the sand ridge south of Mad River, which separates the ocean from the marsh lands of Humboldt Bay.

Mad River Bluff (Humboldt County, Cal., A. F. R., 1870).-About 500 yards to the north of the mouth of Mad River, on a bluff about 40 feet above tide.

Island (Humboldt County, Cal., A. F. R., 1870).-On the larger of the two small marsh islets known as the Bird Islands. (Note 6, p. 296.)

Carson's mill (Humboldt County, Cal., A. F. R., I869; 1883).-In the northwestern part of the town of Eureka, close to the bay shore, the smokestack of Carson's mill.

Arcata wharf (Humboldt County, Cal., A. F. R., I870). -On the southern extremity of Arcata wharf, in the northern part of Humboldt Bay. It was reported in 1883 that the wharf had been extended and the station probably lost.

Signal House (Humboldt County, Cal., A. F. R., 1870).-A scantling nailed on a small shanty on the west shore of Humboldt Bay; it is about i mile northwest of the little islands known as Bird Islands.

McNulty's barn, south gable (Humboldt County, Cal., A. F. R., 1869).-The south gable of McNulty's barn, the base of which is about 30 feet above tide, on the south side of what is known as Table Bluff. It is \(11 / 2\) miles from Ocean Beach and one-fourth mile east of McNulty's warehouse.

Guthrie's house, west gable (Humboldt County, Cal., A. F. R., 1869).-On the third ridge south of Centerville, 480 feet above tide, and \(11 / 2\) miles south of the point at which the coast road leaves the hard ground and strikes the beach, which is at the point where there is a cross erected over some graves.

Guthrie's Tree (Humboldt County, Cal., A. F. R., 1869).-On the same ridge as and 550 meters from Guthrie's house. It is on the extremity of the ridge overlooking the ocean beach. In I883 the tree could not be identified.

Red Bluff (Humboldt County, Cal., G. D., 1854).-On the southwest and highest point of the bluff known as Red Bluff, opposite the entrance of Humboldt Bay. The bluff is about 96 feet high, and there is a tall flagstaff used as a pilot range standing at the extreme end of the bluff near the station. Station is about 22 paces from Red Bluff Latitude Station. (See p. 390, also note 10, p. 297.)

Martin (Humboldt County, Cal., G. D., 1854).-On the steep face of the point of table-land east-southeast from the mouth of Elk River and 46 meters north of the road leading to Mr. Martin's house. (Note 1o, p. 297.)

North Base (Humboldt County, Cal., G. D., 1854).-On a sand hillock bearing north \(3 / 4^{\circ}\) east from the light-house, distant 625 meters. (Note io, p. 297.)

Bucksport (Humboldt County, Cal., G. D., 1854).-In the town of Bucksport, on a small ridge above high-water mark. (Note 10, p. 297.) The station was reported in r869 as being probably lost.

Sandhill (Humboldt County, Cal., G. D., 1854).-Near Sandhill (R) triangulation station. (See p. 391.) L.ost, 1869.

South Base (Humboldt County, Cal., G. D., i 854).-On the north point of the entrance to Humboldt Bay, 20 meters from high-water mark, and so placed that the base runs nearly through the middle of the peninsula. (Note 10, p. 297.)

Road (Humboldt County, Cal., G. D., 1854).-On the Bucksport and Eureka road, 136 meters north of the first house out from Bucksport, and about 1 mile from Eureka. At this place the road divides for 100 meters, one part passing through the woods, the other between the edge of the woods and the marsh; the station is on the latter road. (Note 10, p. 297.)

Indian Island (Humboldt County, Cal., G. D., 1854).-On Indian Island, 23 paces from the edge of the marsh on the point of fast land projecting farthest into the marsh from the south face of the wooded mound. About 35 paces east of the station is an Indian village where an arm of the slough running through the island approaches within a few paces of the fast land. (Note ro, p. 297.)

Point (Humboldt County, Cal., G. D., r854).-On the bay shore of the north peninsula of Humboldt Bay, opposite Indian Island, and 12 feet above high-water mark. About 60 meters inshore the ridge is wooded. (Note 10, p. 297.)

Bother (Humboldt County, Cal., G. D., 1854).-On the southern point of the low and drifting sand hills on the bay shore of the north peninsula of Humboldt Bay, opposite the slough below Eureka. These sand hills rise abruptly from a small patch of prairie and continue along the shore for 500 meters, where another small patch of prairie, partly wooded, commences. The station is about 25 feet above high-water mark. (Note 10, p. 297.)

Paddle (Humboldt County, Cal., G. D., 1854).-On top of a small grass-covered sand knoll, io feet high, on the ocean beach of the north peninsula of Humboldt Bay, directly west of station Curlew. (See p. 391; also note 10, p. 297.)

Hammon (Humboldt County, Cal., G. D., 1854).-On a sand knoll on the north peninsula of Humboldt Bay, directly opposite the Bucksport sawmill; 140 meters from the shore line, and 50 meters southeast of Hammond and Marvels house. The line to south base passes on the west side of three or four pine trees situated in a depression about 50 meters from the station. (Note 10, p. 297.)

Meridian Mark (Humboldt County, Cal., G. D., 1854).-On the north peninsula of Humboldt Bay, on a sand hill 18 feet high, rising directly from the shore line of the bay, and due east of the light-house. At the foot of this hill, on the eastern side, is a clump of willows and a few Indian huts. (Note 10, p. 297.)

Elk (Humboldt County, Cal., G. D., 1854).-On the peninsula forming the south point of the mouth of Elk River, 160 meters from the extreme point, and 50 meters east-northeast from the nearest hut of the Indian village. (Note 10, p. 297.)

South Spit (Humboldt County, Cal., G. D., 1854).-On the south point of the entrance to Humboldt Bay, 33 meters from the shore in the direction of North Base. (See p. 391; also note io, p. 297.)

Rudder (Humboldt County, Cal., G. D., 1854).-On the southern peninsula of Humboldt Bay, i 900 meters from the entrance and 50 meters from the ocean beach. (Note 10, p. 297.)
\(A\) (Humboldt County, Cal., G. D., r854).-On the third ridge of the bare hill back of Red Bluff. (Note 10, p. 297.)

\section*{Elevations.}

In order to have for each point the final United States Standard Datum position and the final elevation published together, it has been necessary to repeat in this publication the elevations of a number of points, published in "The Transcontinental Triangulation" and in "Triangulation in California, Part I." For the same reason the positions are reproduced here, from "Triangulation in California, Part I," of the following stations: Mount Lassic, King Peak, Mad River, and Bear Ridge.

The plane of reference is mean sea level. The elevations are divided into three classes, viz: (1) Those determined by spirit leveling in which the probable error varies from \(\pm 0.03\) meter to \(\pm 0.25\) meter; (2) those determined by reciprocal zenith distance measures, in which the probable error varies from \(\pm 0.3\) meter to \(\pm \mathrm{i} .5\) meters; (3) those determined by nonreciprocal zenith distance measures, in which the probable error may be as much, in some cases, as \(\pm 10\) meters.

Table of elevations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station & Point to which elevation refers & Elevation & Station & Point to which elevation refers & Elevation \\
\hline Class 1 & & Meters & Class 2-Continued. & & \\
\hline Point Avisadero & Ground & 52.09 & Strawberry Hill & Ground & 57. 2 \\
\hline Guano Island & Ground & 8.67 & Yerba Bucna Island & Ground & 105.3 \\
\hline North West Straits & Ground & 2.79 & Angel Island Peak & Ground & 238.2 \\
\hline Pulgas East Basc & Ground & 5.87 & Rocky Island & Ground & 47-7 \\
\hline Pulgas West Base & Ground & 39.43 & Point San Quentin & Ground & 52.6 \\
\hline Santa Crinz & Ground & 109.48 & High Hill & Ground & 149.4 \\
\hline Santa Cruz Point & Ground & 9.68 & Point San Pedro & Ground & 108.4 \\
\hline Red Hill & Ground & 57.12 & Richardson & Ground & 340. 2 \\
\hline Ross Mountain & Ground & 672.23 & High Bluff & Ground & 162.5 \\
\hline Bodega Head & Ground & 73.49 & Coyote Ridge & Ground & 315.2 \\
\hline Sonoma Mountain & Ground & 698.56 & Read & Ground & 144.4 \\
\hline Tomales Bay & Ground & 205.13 & Mount Tamalpais & Ground & 790.74 \\
\hline Benicia B. M. & Bench mark & 1. 777 & Jackson Butte & Ground & 704.8 \\
\hline Martincz East & Bench mark & 57.01 & Sierra Morena & Ground & 735.9 \\
\hline & & & Loina l'ricta & Ground & 1157.5 \\
\hline Class 2 & & & Rocky Mound & Ground & 429.4 \\
\hline & & & Mount Toro & Ground & 1081.2 \\
\hline King Peak & Ground & 1248.8 & Gavilan & Ground & 858.2 \\
\hline Mount Lassic & Ground & 1791.9 & Sanel Mountain & Ground & 1022.0 \\
\hline Point Bonita & Ground & 86.2 & Walalla & Ground & 673.5 \\
\hline Angel I. North West & Ground & \(4^{8 .} 5\) & Sulphur Peak & Ground & 1054.5 \\
\hline Peninsula Hill & Ground & 111.9 & Redwood & Ground & 340.7 \\
\hline
\end{tabular}

Table of elevations-Continued.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station & Point to which elevation refers & Elevation & Station & Point to which eleva. tion refers & Elevation \\
\hline Class 3 & & Meters. & Closs 3-Continued & & Meters \\
\hline Bear Ridge & Ground & 753.2 & Green Bluff * & Ground & 148 \\
\hline Mad River & Ground & 1557.0 & Abbey Hill & Ground & 375.4 \\
\hline Dicks Peak & Summit & 3039 & Black Mountain * & Ground & 857 \\
\hline Downieville Butte* & Summit & 2619 & Murphy & Ground & 823.9 \\
\hline Carys Peak \({ }^{\text {c }}\) & Summit & 3057 & Masters Hill & Ground & 745.2 \\
\hline Silver Mt.,S. Peak* & Summit & 3323' & Clayton, Mt. Diablo & Copper bolt & 438. 5 \\
\hline Point Diablo* & Ground & 61 & Azimuth Mark* & & \\
\hline Contra Costa (a)* & Ground & 39 & Lick Observatory & Top of small dome & 1298.9 \\
\hline San Rafael Creek* & Ground & 51
34 & Beadega Hill & Ground & 115
264.0 \\
\hline California Point* & Ground & 23 & Chaparral* & Ground & 393 \\
\hline Petaluma Creek & Ground & 33.8 & Dry Creek* \({ }^{\text {* }}\) & Ground & 194 \\
\hline Mare Isiand SE. & Ground & 86.2 & Russian River* & Ground & 175 \\
\hline Mare Island NW.* & Ground & 31 & Benitz** & Ground & 480 \\
\hline Vallejo (5)* & Ground & 27 & Dunn* & Ground & 587 \\
\hline Vallejo (3) & Ground & 113.0 & Clark* & Ground & 624 \\
\hline Abbott & Ground & 114.3 & Bodega & Ground & \(183+0\) \\
\hline Bush Hill & Ground & 146.8 & Inlet** & Ground & 78 \\
\hline Duxbury* & Ground & 243 & Estero* \({ }^{\text {Sugarlof }}\) & Ground & 97 \\
\hline Sand Knoll & Ground & 69.3 & Sugarloaf Hill \({ }^{*}\) & Ground & 69 \\
\hline Black Ridge
Black Bluf & Ground & 230.4
63 & Teton* \({ }^{\text {Point }}\) Reyes Hill * & Ground & 145
429 \\
\hline
\end{tabular}
* No check on this elevation.

Index to positions, descriptions, sketches, and elevations.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline A. & 290. & 397 & 32 & \\
\hline A, Mount Helena. & 259 & & 38 & \\
\hline A plot. & 278 & & 29 & \\
\hline Abalone Point. & 273 & 379 & 28 & \\
\hline Abbot. & 239 & 343 & 19, 21 & 398 \\
\hline Abbey Hill & 204 & & 11 & 398 \\
\hline Adams. & 262 & 363 & 25 & \\
\hline Agnew . & 266 & 369 & 22 & \\
\hline Agnew 2 & 198 & 307 & 8 & \\
\hline Agnews. & 217 & 328 & 16 & \\
\hline Agnews tall chimney & 217 & & 16 & \\
\hline Agnews tall flagstaff. & 217 & & 16 & \\
\hline Alameda: & & & & \\
\hline Alameda wharf & 209 & 322 & 14 & \\
\hline Borax-works round brick stack. & 236 & 340 & 14 & \\
\hline Cupola. & 237 & 340 & 14 & \\
\hline Cupola flagstaff & 237 & 340 & 14 & \\
\hline Narrow-gauge landing, north tower & 237 & 340 & 14 & \\
\hline Pacific Oilworks stack. & 237 & 340 & 14 & \\
\hline Pipeworks stack. & 237 & 340 & 14 & \\
\hline St. Josephs spire cross. & 237 & & 14 & \\
\hline Albion. & 270 & 375 & - 27 & \\
\hline Albrae. & 211 & 324 & 16 & \\
\hline Albrae tile chimney. & 218 & 328 & 16 & \\
\hline Alcatraz flagstaff. & 208 & 322 & 12 & \\
\hline Alcatraz fog-bell. & 219 & 329 & 12 & \\
\hline Alcatraz Light-house. & 219 & & 12 & \\
\hline Alcatraz Rock. & 224 & \(33^{2}\) & 12 & \\
\hline Alcatraz sentry-box & 223 & & 12 & \\
\hline Allston Tree, flag. & 265 & 367 & 24 & \\
\hline Alvarado Sugar-refinery smokestack & 216 & & 15 & \\
\hline Alviso. & 211 & 324 & 16 & … . \\
\hline Alviso Ridge. & 275 & 382 & 28 & \\
\hline Alviso: & & & & \\
\hline Church spire. & 237 & & 16 & \\
\hline Factory, southeast gable & 237 & & 16 & \\
\hline Mill chimney. & 237 & & 16 & \\
\hline Warehouse gable & 237 & & 16 & \\
\hline Anderson. & 247 & 350 & 21 & - . . . \(\cdot\) \\
\hline Anderson Cliff. & 274 & 380 & 29 & \\
\hline Anderson Tree. & 263 & 364 & 25 & \\
\hline Andrew Rock. & 228 & 334 & 12 & \\
\hline Angel. & 220 & & 13 & \\
\hline Angel Island East Point & 224 & 331 & 13 & \\
\hline Angel Island fog-bell & 220 & 329 & 13 & ….... \\
\hline Angel Island Middle Point & 224 & 331 & 13 & \\
\hline Angel Island Northwest . & 205 & 318 & 11, 13 & 397 \\
\hline Angel Island Northwest 2 & 209 & 322 & 13 & \\
\hline Angel Island Peak. & 203 & 315 & 11 & 397 \\
\hline Angel Island Peak 2 & 203 & 316 & 13 & \\
\hline Angel Island Southeast 2 & 208 & 32 I & 13 & \\
\hline Angel Island United States flagstaff. & 220 & 329 & 13 & \\
\hline Angel Island white tank..... & 221 & 330 & 13 & \\
\hline Angel Island wharfhouse, west gable & 226 & 332 & 13 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.

Index to positions, descriptions, sketches, and elevations-Coninued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline Belvedere Rock & 226 & 332 & 13 & \\
\hline Belvedere telegraph pole & 221 & 330 & 13 & \\
\hline Benicia B. M. & 247 & 348 & 21 & 397 \\
\hline Benitz. & 265 & 367 & 23 & 398 \\
\hline Benjamin's yellow house flagstaff. & 226 & & 13 & \\
\hline Berkeley: & & & & \\
\hline Capworks wharf & 234 & 338 & 13 & \\
\hline California University Building. & 234 & 338 & 13 & ….. \\
\hline California University flagstaff. & 234 & & 13 & \\
\hline Corder tannery chimney..... & 234 & 338 & 13 & \\
\hline Lumber wharf. & 234 & 338 & 13 & \\
\hline Pipeworks chimney & 234 & 338 & 13 & \\
\hline Powder wharf. & 234 & 338. & 13 & \\
\hline Reductionworks chimney & 234 & 338 & 14 & \(\cdot\) \\
\hline Shellmound flagstaff & 234 & 338 & 14 & \\
\hline State Deaf and Dumb Asylum & 234 & & 13 & \\
\hline University Avenue wharf... & 234 & & 13 & \\
\hline Bernal. & 215 & 327 & 11 & \\
\hline Beutro. & 256 & & 18 & \\
\hline Big barn, south gable. & 249 & & 21 & \\
\hline Big flat. & 280 & 387 & 30 & \\
\hline Bigelow flagstaff. & 252 & & 21 & \\
\hline Big Hill..... & 274 & 381 & 29 & \\
\hline Big Knoll & 275 & 382 & 29 & \\
\hline Big White Rock & 276 & 383 & 29 & \\
\hline Bight. & 269 & 374 & 26 & \\
\hline Bight Knoll. & 275 & 382 & 29 & \\
\hline Bight Shore Rock & 223 & & 12 & \\
\hline Bihler Point. & 264 & 366 & 24 & \\
\hline Bill. & 222 & & 13 & \\
\hline Bird Lime Point. & 228 & 334 & 12 & \\
\hline Birds Landing warehouse, south gable. & 249 & & 21 & \\
\hline Bird Point. & 227 & 333 & 12 & \\
\hline Black. & 265 & 367 & 26 & \\
\hline Black Bluff. & 196 & 304 & 7,11 & 398 \\
\hline Black Diamond Catholic Church cross. & 253 & & 21 & \\
\hline Black Diamond engine house flagstaff. & 253 & & 21 & \\
\hline Black house chimney. & 254 & & 21 & \\
\hline Black Marsh. & 239 & 343 & 19 & \\
\hline Black Mountain & 195 & 302 & 6,35 & 398 \\
\hline Black Point wharfhouse, west gable & 223 & & 12 & \\
\hline Black Ridge. & 204 & 317 & I1, 12 & 398 \\
\hline Black Ridge 2 & 196 & 303 & 7, 11, 12 & \\
\hline Black Rock. . & 277 & 383 & 29 & \\
\hline Black-roof house. & 221 & 330 & 13 & \\
\hline Black shanty, north gable & 254 & 355 & 21 & \\
\hline Blackhead rock. & 225 & \(33^{2}\) & 12 & \\
\hline Blakes (T.) house, southeast gable & 268 & & 22 & \\
\hline Blank Rock. & 288 & 395 & 33 & \\
\hline Bloom Knoll. & 272 & 378 & 27 & \\
\hline Blue Mountain, San Francisco & 232 & 336 & 12 & \\
\hline Bluff Point 2....... & 207 & 32 I & 11, 13 & \\
\hline Bluff Point: & & & & \\
\hline North Base. & 221 & 330 & 13 & \\
\hline North Range, east. & 236 & 339 & 13 & \\
\hline North Range, west & 236 & 340 & 13 & \\
\hline South Base & 221 & 330 & 13 & \\
\hline South Range, east. & 236 & 339 & 13 & \\
\hline South Range, west. & 236 & 339 & 13 & \(\cdots\) \\
\hline Blunts Reef, North Rock & 282 & & 31 & \\
\hline Blunts Reef, South Rock & 283 & & 31 & \\
\hline Boardinghouse flagstaff & 214 & 326 & 15 & \\
\hline
\end{tabular}

\footnotetext{
\(6348 \mathrm{I}^{\circ}-\mathrm{II}-26\)
}

Index to positions, descriptions, sketches, and elevations-Continued.

a Position given on sketch, but no name.

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline Canal. & 287 & 393 & 33 & \\
\hline Candlestick Point. & 210 & 323 & 15 & \\
\hline Cape Knob & 284 & & 31 & \\
\hline Cape Mendocino Latitude Station. & 282 & & 3 I & \\
\hline Cape Mendocino Light-house. & 282 & & 3 I & \\
\hline Cape Ridge. & 279 & 386 & 3 I & \\
\hline Cape Rock. & 284 & & 31 & \\
\hline Capworks, Berkeley & 234 & 338 & 13 & \\
\hline Carleson. . & 271 & 376 & 27 & \\
\hline Carquinez Point & 246 & 347 & 2 I & \\
\hline Carson's milla. & 289 & 395 & 33 & \\
\hline Carson, telegrapli pole & 223 & 331 & 13 & \\
\hline Carys Peak cairn. . & 261 & & 34 & 398 \\
\hline Caspar flag. . & 278 & & 27 & \\
\hline Caspar looint & 271 & \(37^{6}\) & 27 & \\
\hline Castle Peak summit & 261 & & 34 & \\
\hline Castro Slough warchouse, west gable. & 223 & & 13 & \\
\hline \begin{tabular}{l}
Catholic Church: \\
Black Diamond.
\end{tabular} & 253 & & 2 I & \\
\hline Centerville... & 217 & & 35 & \\
\hline Marysville & 260 & 361 & 37 & \\
\hline Oakland. & 235 & & 14 & \\
\hline Point Arena. & 202 & & 10, 25 & \\
\hline Tiburon & 236 & 339 & 13 & \\
\hline Vallejo. & 246 & & 19 & \\
\hline Catholic Orphan Asylum, San Francisco & 232 & & 15 & \\
\hline Cattle Hill. . & 204 & 317 & 1 I & \\
\hline Cavanagh. & 269 & 37.3 & 26 & \\
\hline Cement & 20.4 & 317 & 11, 12 & \\
\hline Cemetery. & 207 & 319 & 12 & \\
\hline Centerville. & 286 & \(39^{2}\) & 32 & \\
\hline Centerville Catholic Church spire cross. & 217 & & 35 & \\
\hline Centerville City. & 289 & & 32 & \\
\hline Centerville, South & 286 & 393 & 32 & \\
\hline Chamisal. & 200 & 310 & 9 & \\
\hline Chaparral (1856-1906) & 200 & 309 & 9,23 & 398 \\
\hline Chaparral (1871). & 271 & 375 & 27 & \\
\hline Chaparral Mountain & 281 & 388 & 30 & \\
\hline Chaparral Peak. & 278 & 385 & 30 & \\
\hline Chemise Flat... & 275 & 382 & 29 & \\
\hline Chemise Mountain (sce Part I) & & & 29, 34 & \\
\hline Cheney's house, flagstaff. & 267 & & 23 & - \\
\hline Chicken house, east gable. & 244 & & 19 & \\
\hline Children's playhouse, San Francisco. & 230 & 336 & 12 & \\
\hline Chinahouse, cast gable . & 213 & 325 & 16 & \\
\hline Chinalıouse, east gable & 240 & & 19 & \\
\hline Chinahouse, east gable. & 241 & & 19 & \\
\hline Chris house, south gable & 276 & & 28 & \\
\hline Chris Rock. & 276 & & 28 & \\
\hline Chronicle tower, San Francisco & 231 & 336 & 12 & \\
\hline City Hall dome, San Francisco. & 232 & & 12 & \\
\hline Clam Point telegraph pole. . & 216 & & 15 & \\
\hline Clark. & 201 & 312 & 10, 25 & 398 \\
\hline Claxton Hill. & 272 & 377 & 28 & \\
\hline Clayton, Mount Diablo azimuth mark & 247 & 348 & & 398 \\
\hline Clear Point. & 275 & 382 & 29 & \\
\hline Cleland. & 277 & 384 & 36 & \\
\hline Cliff House tower. & 197 & & 7, 12 & \\
\hline Cliff House turret, highest finial. & 197 & & 7, 12 & \\
\hline Cliff Ridge. ... & 274 & 381 & 29 & \\
\hline Clubhouse, Corinthian. & 22 I & 330 & 13 & \\
\hline Clubhouse flagstaff... & 244 & & I9, 20 & \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Position given on sketch, but no name.

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline Cluster Cone & 276 & 383 & 29 & \\
\hline Cluster Rock & 228 & 334 & 12 & \\
\hline Coalhouse & 253 & & 21 & \\
\hline Cogswell Monument, San Francisco. & 230 & 336 & 12 & \\
\hline Cole 2......... & 277 & 384 & 36 & \\
\hline Collinsville. & 247 & 349 & 21 & \\
\hline Collinsville depot flagstaff & 253 & & 21 & \\
\hline Collinsville Point, east house. & 253 & & 21 & \\
\hline Collinsville schoolhouse, chimney & 253 & & 2 I & \\
\hline Colma. & 205 & 317 & 11 & \\
\hline Colma vicinity, 1906-7 & 196 & 303 & 7 & \\
\hline Colma 2........ & 196 & 304 & 7 & \\
\hline Colma Schoolhouse tower finial & 197 & & 7 & \\
\hline Colona Cliff. & 274 & 381 & 29,30 & \\
\hline Commission Rock Beacon & 242 & 345 & 19 & \\
\hline Cone Rock (Sail Rock). & 225 & 332 & 13 & \\
\hline Cone Rock. & 288 & 395 & 33 & \\
\hline Congregational Church: & & & & \\
\hline Antioch.... & 254 & & 21 & \\
\hline Eureka & 285 & & 33 & \\
\hline Oakland. & 235 & & 14 & \\
\hline Conical Rock. & 284 & & 30 & \\
\hline Conservatory, San Francisco. & 230 & & 12 & \\
\hline Conte's barn, west gable. & 199 & & 8 & \\
\hline Contra Costa (1). & 203 & 314 & 11, 15 & \\
\hline Contra Costa (2). & 211 & & 15 & \\
\hline Contra Costa (3) & 220 & 329 & 13 & 398 \\
\hline Cook. & 255 & 356 & 17 & \\
\hline Coon 2 & 247 & 350 & 21 & \\
\hline Cooskie Creek & 280 & 387 & 30 & \\
\hline Corder tannery, Berkeley. & 234 & 338 & 13 & \\
\hline Corinthian Clubhouse flagstaff. & 221 & 330 & 13 & \\
\hline Cornwall Railroad depot, north chimn & 252 & & 21 & \\
\hline Cornwall Railroad tankhouse. & 252 & & 21 & \\
\hline Corte Madera & 207 & 320 & 13 & \\
\hline Cottaneva Cone & 277 & & 29 & \\
\hline Cottaneva Needle & 276 & 383 & 29 & \\
\hline Cottaneva Point & 273 & 379 & 28, 29 & \\
\hline Cottaneva Ridge & 273 & 379 & 28, 29 & \\
\hline Cottaneva Rock. & 276 & & 28 & \\
\hline Court-house: & & & & \\
\hline Marysville. & 259 & 360 & 34, 37 & \\
\hline Oakland. & 235 & 338 & 14 & \\
\hline Ukiah....... & 277 & & 36 & \\
\hline Cousin's mill stack & 287 & 394 & 33 & \\
\hline Cove. & 223 & 331 & 13, 19 & \\
\hline Coyote & 280 & 388 & 30 & \\
\hline Coyote Creek, south draw lantern box & 217 & & 16 & \\
\hline Coyote Hill Creek. . . . & 210 & 323 & 16 & \\
\hline Coyote house stovepipe. & 214 & 326 & 16 & \\
\hline Coyote oysterhouse, north gable & 214 & & 16 & \\
\hline Coyote Ridge. & 205 & & 11 & 397 \\
\hline Coyote warehouse, south gable. & 213 & 326 & 16 & \\
\hline Crag Hazel boathouse, Sausalito. & 235 & 339 & 13 & \\
\hline Craven's transit pier, Mare Island. & 242 & 345 & & \\
\hline Creek & 266 & 369 & 22 & \\
\hline Creek 2 & 198 & 308 & 8 & \\
\hline Crocker's house, San Francisco. & 231 & & 12 & \\
\hline Crusoe Ridge. & 275 & \(3^{82}\) & 28 & \\
\hline Crusoe's barn, west gable. & 276 & & 28 & \\
\hline Cuffey Cove & 269 & 372 & 26 & \\
\hline Cunningham Ridge. & 272 & 377 & 28 & \\
\hline Cupola............ & 252 & 355 & 21 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline Cupola, Alameda. & 237 & 340 & 14 & \(\ldots\) \\
\hline Cupola flagstaff, Alameda. & 237 & 340 & 14 & - \\
\hline Cupola on house..... & 252 & & 2 I & \\
\hline Curlew..... & 285 & 391 & 32,33 & \\
\hline Cuthbertson's house chimney. & 202 & & 10 & \\
\hline Cut Hill. & 285 & 392 & 33 & \\
\hline Cutts No. 1 & 257 & - 358 & 17 & \\
\hline Cutts No. 2 & 256 & 357 & 17 & \\
\hline Cypress Grove flagstaff. & 199 & & 8 & \\
\hline Dark house ventilator. & 253 & 355 & 21 & \\
\hline Davies Creek. . & 281 & 389 & 3 I & \\
\hline Davies Ridge & 282 & 389 & 3 I & \\
\hline Dead tree.. & 289 & & 33 & \\
\hline Deaf and Dumb Asylum, Berkeley. & 234 & & 13 & \\
\hline Delta 2................. & 248 & \(35^{2}\) & 2 I & \\
\hline Denniston & 205 & & 11 & \\
\hline Depot chimney, South San Francisco & 234 & & 15 & \\
\hline Depot flagstaff, Tiburon.......... . . . & 236 & 339 & 13 & \\
\hline Depot chimney, Warmsprings. & 237 & & 16 & \\
\hline Derrick. & 267 & & 25 & \\
\hline Devilby. & 275 & 382 & 29 & \\
\hline Devils Gate. & 282 & 389 & 3 I & \\
\hline Devils Gate rock & 283 & \(39^{\circ}\) & 3 I & \\
\hline Diablo Diamond. & 228 & 334 & 12 & \\
\hline Diablo Hill. & 206 & 319 & 11, 12 & \\
\hline Diamond. & 247 & 349 & 21 & \\
\hline Dicks Peak or Red Peak & 261 & & 34 & \(39^{8}\) \\
\hline Dihel. & 277 & 384 & 36 & \\
\hline Distillery, Antioch & 254 & & 21 & \\
\hline Distillery smokestack & 218 & & 15 & \\
\hline Ditch (Cutts). & 211 & 325 & 15 & \\
\hline Ditch (Rodgers). & 212 & & 15 & \\
\hline Dixon........ & 200 & 309 & 9, 23 & \\
\hline Dock-bell, Tiburon & 236 & 339 & 13 & \\
\hline Dock, southwest corner & 242 & & 19 & \\
\hline Domingo................... & 282 & 389 & 31 & \\
\hline Domingo's house chimney & 283 & & 31 & \\
\hline Don. & 244 & & 20 & \\
\hline Double barn, north west gable & 244 & & 19 & \\
\hline Double Cone West Rock. & 276 & 383 & 29 & \\
\hline Double Rock, east peak & 214 & 327 & 15 & \\
\hline Double White. & 226 & 333 & 12 & \\
\hline Dougherty's house, southwest gable . & 268 & \(37^{2}\) & 23 & \\
\hline Downieville Butte, north, highest pe & 261 & & 34 & 398 \\
\hline Dows Prairie. & 287 & 394 & 33 & \\
\hline Drawbridge flagstaff & 251 & & 21 & \\
\hline Dry Creek. & 265 & 367 & 23 & 398 \\
\hline Duff's mill stack. & 287 & & 33 & \\
\hline Dumbarton flumehouse chimney & 210 & & 16 & \\
\hline Dumbarton oysterhouse flagstaff. & 211 & 324 & 16 & \\
\hline Dumbarton Point. & 212 & 325 & 16 & \\
\hline Dunlop's house chimney & 257 & & 17 & \\
\hline Dunn. & 201 & , 311 & 10, 25 & 398 \\
\hline Dutton's flagstaff. & 249 & & 2 I & \\
\hline Dutton's tank. & 249 & & 2 I & …… \\
\hline Duxbury ... & 205 & & 11 & 398 \\
\hline Dynamo stack, San Francisco. & 231 & 336 & 12 & \\
\hline Dyke..... & 211 & 324 & 16 & \\
\hline Dyke 2. & 243 & & 19 & \\
\hline East Base, Mount Conness. & 259 & & 40 & \\
\hline East Brother Island Light-house. & 208 & & 13 & \\
\hline East Diablo... & 206 & 318 & 11, 12 & \\
\hline East Diablo, east tip. & 228 & 334 & 12 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline East Diablo, west tip. & 228 & 334 & 12 & \\
\hline East end ferry-slip, Vallejo Junction. & 242 & 334 & 19 & \\
\hline East Peak Observatory, Mount Tamalpais. & 195 & & 6 & \\
\hline East Point (1869). & 286 & 393 & 32 & \\
\hline East Point (1870). & 285 & 391 & 33 & \\
\hline East Sister. & 238 & & 11, 13, 19 & \\
\hline East Stack, Point Pinole & 246 & & 19 & \\
\hline East Summit, Mount Helena. & 259 & & 38 & \\
\hline East Twin. & 283 & & 31 & \\
\hline Eccentric. & 286 & 392 & 32 & \\
\hline Eden Staff & 213 & & 15 & \\
\hline Edith: & 248 & 351 & 21 & \\
\hline Eel River. & 284 & 390 & 32 & \\
\hline Eel River Beach. & 284 & 390 & 32 & \\
\hline El Cerrito. & 207 & 320 & II, 13 & \\
\hline Electric stack, San Francisco & 232 & 336 & 12 & \\
\hline Elk. & 290 & 397 & 32 & \\
\hline Elk Creek. & 269 & 373 & 26 & \\
\hline Ellis Landing, barn, inner gable & 221 & 331 & 13 & \\
\hline Ellis Landing, window & 222 & & 13 & \\
\hline Elmer, Marysville. & 259 & 360 & 37 & \\
\hline Embarcadero. & 274 & 38 r & 29 & \\
\hline End house, north gable. & 253 & & 21 & \\
\hline End of wharf. & 225 & & 13 & \\
\hline End of wharf fence, Bonita Point Light-house & 223 & & 12 & \\
\hline Engine house: & & 1 & & \\
\hline Black Diamond. & 253 & & 21 & \\
\hline San Francisco. & 233 & & 12 & \\
\hline Engineer's warehouse, San Francisco. & 230 & 335 & 14 & \\
\hline Episcopal Church, West Berkeley... & 234 & & 13 & \\
\hline Estero (1860). & 268 & 372 & 23 & 398 \\
\hline Estero (1859). & 266 & 368 & 22 & \\
\hline Eucalyptus tree: & & & & . \\
\hline San Leandro. & 214 & 326 & 15 & \\
\hline San Mateo. & 214 & 326 & 15 & \\
\hline Eureka: & & & & \\
\hline Azimuth Station. & 285 & 391 & 33 & \\
\hline Congregational Church & 285 & & 3.3 & \\
\hline Methodist Church. & 285 & & 33 & . . . \\
\hline Plaza flagstaff. . & 285 & & 33 & \\
\hline Ewell's XL Dairy smokestack. & 218 & 329 & 15 & \\
\hline False Cape...... & 279 & 386 & 31 & \\
\hline False Cape Rock. & 283 & & 31 & \\
\hline False Cattle Hill (2). & 196 & 305 & 7,11 & \\
\hline False Ford. & 264 & 366 & 3, \({ }^{2} 25\) & \\
\hline Farallon Light-house. . . & 194 & & 3, 4, 6, 35 & \\
\hline Farthest house on creck. & 252 & & 21 & \\
\hline Fay's mill. & 287 & 3941 & 32, 33 & \\
\hline Fence. & 221 & 330 & 13 & \\
\hline Fence signal. & 220 & 330 & 13 & \\
\hline Ferndale. . . & 289 & & 32 & \\
\hline Ferris. & 240 & 344 & 19 & \\
\hline Ferris chimney. & 240 & 344 & 19 & \\
\hline Ferry flagstaff. & 254 & & 21 & \\
\hline Ferry-house chimney & 245 & & 20 & \\
\hline Ferry-slip, Tiburon. & 236 & & 13 & \\
\hline Ferry-slip, Vallejo Junction & 242 & & 19 & \\
\hline Ferry tower, San Francisco. & 232 & & 12 & \\
\hline Fertilizer Co. 's stack, Pacific Bone & 218 & & 15 & \\
\hline Fields, Marysville. & 259 & 360 & 37 & \\
\hline Fir tree. & 287 & & 33 & \\
\hline Fire Hill & 278 & 385 & 30 & \\
\hline First tank, Point Pinole. & 246 & & 19 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Eievation. \\
\hline Fish flagstaff . & 252 & & 21 & \\
\hline Fishhouse, north gable & 286 & & 32 & \\
\hline Fisk tree. & 264 & 366 & 24 & \\
\hline Flagstaff, Presidio. & 233 & & 12 & \\
\hline Flag tree. ... & 286 & 393 & 32 & \\
\hline Flat (Sonoma County). & 243 & 346 & 20 & \\
\hline Flat (San Matco County). & 196 & 304 & 7, II & \({ }^{\text {d }}\) \\
\hline Flat Rock. & 223 & 331 & 12 & \\
\hline Flys Hill. & 245 & & 20 & \\
\hline Fly's house chimney. & 245 & & 20 & \\
\hline Fog Cap. & 205 & 317 & 11 & \\
\hline Fog Cap 2 & 196 & 304 & 7 & \\
\hline Fog-bell: & & & & \\
\hline Alcatraz. & 219 & & 12 & \\
\hline Angel Island. & 220 & & 13 & \\
\hline Fog-siren, Point Bonita & 219 & & 12 & - . . \\
\hline Foley . & 248 & 352 & 21 & \\
\hline Fork tree & 268 & & 24 & \\
\hline Fort Humboldt & 290 & & 32 & \\
\hline Fort Humboldt flagstaff & 289 & & 32 & \\
\hline Fort Point. & 204 & 316 & 12 & \\
\hline Fort Point Light-house & 206 & & 12 & \\
\hline Fort Point old light-house & 206 & & 12 & \\
\hline Fort Point Life-Saving Station & 219 & 329 & 12 & \\
\hline Fort Point Rock. & 225 & 332 & 12 & \\
\hline Fort Point wharf, San Francisco. & 230 & 335 & 12 & \\
\hline Fort Rock. & 225 & 332 & 12 & \(\ldots\) \\
\hline Fort Ross. & 200 & 309 & 9, 23, 24 & \\
\hline Fort Ross vicinity, 1906 & 199 & 309 & 9 & \\
\hline Fortunas. & 283 & 390 & 31 & \\
\hline Forty-acre opening & 277 & 384 & 36 & \\
\hline Foster. & 198 & 306 & 8,22 & \\
\hline Foundry chimney, navy-yard, Mare Isla & 242 & 346 & 19 & \\
\hline Four Mile Creek. . & 280 & 387 & 30 & \\
\hline Four-window barn. & 216 & & 15 & \\
\hline Fox. & 265 & 367 & 25 & \\
\hline Franklin schoolhouse flagstaff & 199 & & 8 & \\
\hline Franks Lagoon. . & 205 & ……... & 11 & \\
\hline Frank's tannery, Redwood City. & 237 & 340 & 16 & \\
\hline Fraser Ridge. ... & 282 & 389 & 30 & \\
\hline Freeman. ... & 251 & 354 & 21 & \\
\hline Freight wharf, Tiburon & 236 & & 13 & \\
\hline Frink & 266 & 369 & 22 & \\
\hline Frink 2. & 198 & 307 & 8 & \\
\hline Frost's house, east chimncy & 267 & & 25 & \\
\hline Funcke. & 200 & 310 & 9,24 & \\
\hline Garnett. & 248 & 351 & \(21^{\text {- }}\) & \\
\hline Garnett 2. & 251 & 354 & 21 & \\
\hline Gas tank, San Francisco & 231 & 336 & 12 & \\
\hline Gavilan..... & 193 & 298 & \(2,5,6,35\) & 397 \\
\hline Gilbert. & 256 & & 18 & \\
\hline Gilroy Presbyterian Church, white spire & 257 & & 35 & \\
\hline Glassell. & 255 & 356 & 17 & \\
\hline Glueworks, California, San Francisco. & 230 & & 12 & \\
\hline Good Luck Point. & 245 & & 20 & \\
\hline Goodyear. & 246 & 347 & 21 & \\
\hline Goodyear Railroad station tank. & 250 & & 21 & \\
\hline Golden Gate Park: & & & & \\
\hline Azimuth mark...... & 230
230 & & 12 & \\
\hline Children's playhouse. & 230
230 & & 12 & \\
\hline North base.. & 230 & & 12 & \\
\hline Golden Gate to Point Arena. & 262 & 363 & & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations--Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline Gorda. & 279 & 385 & 30 & \\
\hline Gorda Rock & 283 & 390 & 30 & \\
\hline Gordon. & 271 & 376 & 27 & \\
\hline Gordon Hill & 273 & 379 & 28 & \\
\hline Gordon's barn, west gable. & 278 & & 28 & \\
\hline Goucher. & 211 & 324 & 35 & \\
\hline Grace Church, San Francisco. & 232 & 336 & 12 & \\
\hline Grant. & 248 & & 21 & \\
\hline Grasier & 268 & 371 & 22 & \\
\hline Grave & 271 & 376 & 27 & \\
\hline Grave Knoll & 273 & 379 & 28 & \\
\hline Gray. & 270 & 375 & 27 & \\
\hline Grayback. & 228 & 334 & 12 & \\
\hline Grayback double end & 223 & & 12 & \\
\hline Grayback white tip. & 227 & 333 & 12 & \\
\hline Gray house chimney. & 222 & , & 13 & \\
\hline Greek Jo's house, east gable. & 252 & & 21 & \\
\hline Green 2.. & 251 & 354 & 21 & \\
\hline Green Bluff (Humboldt County). & 285 & 392 & 33 & \\
\hline Green Bluff (San Mateo County) & 204 & 317 & 11 & 398 \\
\hline Green Hill. . & 245 & & 20 & \\
\hline Green's house chimney. & 245 & & 20 & \\
\hline Green Island. & 245 & & 20 & \\
\hline Green Point, 1887 & 243 & 347 & 19 & \\
\hline Green Point, 1899. & 244 & & & \\
\hline Green Top. & 257 & & 18 & \\
\hline Greenwood. & 269 & 373 & 26 & \\
\hline Griffith Hill. & 283 & & 3 I & \\
\hline Grove Point 2. & 239 & 344 & 19 & \\
\hline Guadalupe warehouse & 218 & & 15 & \\
\hline Guano Island. & 195 & 303 & 4, 6, 11, 16 & 397 \\
\hline Gushee & 256 & 357 & 17 & \\
\hline Gushee's house chimney. & 257 & & 17 & \\
\hline Guthrie's house, west gable & 289 & 395 & 32 & \\
\hline Guthrie's tree. & 289 & 395 & 32 & \\
\hline H. & 229 & 334 & 12 & \\
\hline Hadley Peak. & 278 & 385 & 30 & \\
\hline Half... & 215 & 327 & 11, I5 & \\
\hline Halimoon Bay & 255 & 357 & 11 & \\
\hline Half Pile. . . . & 218 & & 12 & \\
\hline Half way. & 209 & 322 & 13 & \\
\hline Hall.... & 263 & 364 & 25 & - . . . \\
\hline Halleck Schoolhouse, cupola & 199 & & 8 & \\
\hline Hamilton. & 255 & & 18 & \(\cdots\) \\
\hline Hammon & 290 & 396 & 32 & . \\
\hline Hammond. & 248 & & 21 & \\
\hline Hammond (Marin County) & 198 & 308 & 8,22 & \\
\hline Handley....... & 270 & 375 & 27 & \\
\hline Hans. . & 198 & 307 & 8,22 & \\
\hline Harbeck........................... & 264 & 365 & 24 & \\
\hline Harbor (Shelter Cove, South Base) & 274 & 38 I & 29 & \\
\hline Hardy Rock. & 276 & & 28 & \\
\hline Hardy's house, south gable. & 276 & & 28 & \\
\hline Hare farmhouse, cupola flagstaff & 244 & & 19 & \\
\hline Harford Hill. & 273 & 379 & 29 & - . . . \\
\hline Hargrave & 271 & 376 & 27 & \(\cdots\) \\
\hline Hastings. & 247 & & 21 & \\
\hline Hastings warehouse, west gable. & 251 & & 21 & \\
\hline Havens Neck. & 263 & 365 & 25 & \\
\hline Haydon: & 243 & 346 & 20 & \\
\hline Hay warehouse, south gable. & 216 & & 15 & \\
\hline Heights.
Helena Eccentric, Mount Helena. & 206
258 & 318 & 12
38 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Pasition. & Description. & Sketch. & Elevation. \\
\hline Helena Flank, Mount Helena. & 258 & & 38 & \\
\hline Helmet Rock. & 226 & 332 & 12 & \\
\hline Helmke Ridge & 263 & 365 & 24 & \\
\hline Henry Hill. .. & 200 & 310 & 9, 23, 24 & \\
\hline Henry Tree. & 200 & 311 & 9 & \\
\hline Herrick. & 269 & 374 & 26 & \({ }^{\text {a }}\) \\
\hline Hewston. & 252 & & 21 & \\
\hline Hewston 2 & 247 & 349 & 21 & \\
\hline High. & 221 & & 13 & \\
\hline High Eluff (Mendocino County). & 202 & 313 & 10, 25 & \\
\hline High Bluff. & 205 & & 11 & 397 \\
\hline High Bluff (Golden Gate). & 219 & 329 & 12 & \\
\hline High Hill. . & 207 & 319 & 11, 13 & 397 \\
\hline High lone tree & 213 & & 1 I & \\
\hline High sharp peak. & 199 & & 8 & \\
\hline High tank, Point Pinole. & 246 & & 19 & \\
\hline High Top. . & 257 & & 18 & … \(\cdot\). \\
\hline Highest part of rock, Bodega Head. & 267 & & 23 & \\
\hline Highland. & 207 & 319 & 11, I3 & \\
\hline Highschool, Redwood City & 237 & & 16 & \\
\hline Hill. . & 248 & 351 & 21 & \\
\hline Hilltop with single tree & 257 & & 17 & \\
\hline Hip-roof house flagstaff, Warmsprings. & 237 & & 15 & \\
\hline Hitcheock ranch, barn cupola. & 199 & & 8 & \\
\hline Hog Island. . & 267 & 370 & 22 & \\
\hline Hog Island 2 & 198 & 309 & 8 & - \(\cdot\) \\
\hline Hogle. & 205 & & 11 & \\
\hline Home Hill & 245 & & 20 & \\
\hline Honker. & 251 & 354 & 21 & \\
\hline Hopkins Art Institute tower, flagstaff & 229 & 335 & 12 & \\
\hline Horse Mountain. & 278 & 385 & 30 & \\
\hline Horeshoe Point. & 200 & 310 & 9,24 & \\
\hline House chimney near big bam & 270 & & 26 & \\
\hline House door. & 289 & & 33 & \\
\hline House east of Brown's. & 252 & & 21 & \\
\hline House flagstaff. & 220 & & 13 & \\
\hline House in tules, south gable. & 240 & & 19 & \\
\hline Howard ranch, barn cupola. & 199 & & 8 & \\
\hline Huff's house, west gable. & 199 & & 8 & \\
\hline Hulls Mountain, summit. & 261 & & 34 & \\
\hline Humboldt Bay, Middle Base & 285 & 391 & 32,33 & … \(\cdot\). \\
\hline Humboldt Bay, North Base. & 284 & 391 & 32,33 & \\
\hline Humboldt Light-house . & 284 & & 32 & \\
\hline Hunters Point, chimney 2 & 215 & 328 & 15 & \\
\hline In Line. & 288 & 395 & 33 & \\
\hline In Line Base & 278 & & 28 & \\
\hline Indian Island. & 290 & 396 & 33 & \\
\hline Ingleside race-course building, flagstaff & 197 & & 7 & \\
\hline Inlet. & 268 & 372 & 23 & 398 \\
\hline Inner Turtle Rock & 288 & 395 & 33 & \\
\hline Interior flumehouse, chimney & 211 & & 16 & \\
\hline Inverness post-office, flagstaff & 199 & & 8 & \\
\hline Irvington wine vaults, cupola.......... & 217 & 343 & 35 & \\
\hline Iron Rod (U. S. E.), Lone Tree Point. & 239 & 343 & 19 & … \(\cdot\). \\
\hline Isabel Pile. & 221 & 330 & 13 & \\
\hline Island (Contra Costa County) & 246 & 347 & 2 I & \\
\hline Island (Sonoma County)... & 264 & 366 & 25 & \\
\hline Island (Humboldt County). & 288 & 395 & 33 & \\
\hline Island house red chimney. & 254 & & 21 & \\
\hline Island Hydrographic. & 238 & & 19 & \\
\hline Island Peak. ... & 283 & & 30 & \(\ldots\) \\
\hline Italian & 243 & 346 & 20 & \\
\hline Iversen Point. & 263 & 365 & 25 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Lilevation. \\
\hline Jack. & 257 & & 18 & \\
\hline Jackass Cone. & 277 & 383 & 29 & \(\cdot\). \\
\hline Jackass Ridge. & 273 & 380 & 29 & \\
\hline Jackass, South & 273 & 380 & 29 & \\
\hline Jackass Trec. . & 276 & & 29 & \\
\hline Jackson. & 274 & 380 & 29 & \\
\hline Jackson Butte. & 261 & 361 & 34 & 397 \\
\hline Jackson Pinnacle. & 277 & 383 & 29 & \\
\hline Jewish Synagogue, San Francisco. & 233 & 337 & 12 & \\
\hline Jobs Sister summit. & 261 & & 34 & \\
\hline Joel Flat........ . . . & 284 & & 31 & \\
\hline John Brown. & 286 & 392 & 33 & \\
\hline Johnson... & 269 & 374 & 27 & \\
\hline Johnston. & 255 & 357 & 1 & \\
\hline Jones's mill stack & 287 & 394 & 33 & \\
\hline Joyce. & 267 & 371 & & \\
\hline Judson Chemical Works chimney. & 220 & & 13 & \\
\hline Judson Point. & 208 & 321 & 13 & \\
\hline Jumper Ridge. & 274 & 380 & 29 & \\
\hline Junction..... & 265 & 366 & 25 & \\
\hline Kammer house, San Leandro Point & 216 & & 15 & \\
\hline Keeper's house chimney. & 284 & & 31 & \\
\hline Keeper's house, Point Bonita. & 219 & & 12 & \\
\hline Kendall's (A. B.) house, east chimn & 202 & & 10 & \\
\hline Kennedy............. . & 270 & 374 & 26 & \\
\hline Kenney's house chimney & 202 & & 10 & \\
\hline Kent. & 270 & 375 & 27 & \\
\hline Kerr & 212 & & 15 & \\
\hline Kibesillah Hill & 272 & 378 & 28 & \\
\hline Kibesillah Rock. & 275 & 382 & 28 & \\
\hline King.... & 249 & 353 & 2 I & \\
\hline King Peak. & 262 & 362 & 30, 34 & 397 \\
\hline Knipp... & 263 & 365 & 24 & \\
\hline Knipp \& Stengel's ranch chimney. & 264 & & 24 & \\
\hline Knoll. & 271 & 376 & 27 & \\
\hline Knox. & 263 & 364 & 25 & \\
\hline Kohler's house stovepipe & 252 & & 21 & \\
\hline Ladies Pavilion, San Francisco. & 229 & 335 & 12 & \({ }^{\text {a }}\) \\
\hline Lafayette Park... & 205 & 318 & 12 & \\
\hline Lafayette Park Latitude Station & 258 & 359 & 12,35 & \\
\hline Lagoon (Sonoma County). & 267 & 370 & 23 & \\
\hline Lagoon (Santa Cruz County) & 255 & 356 & 17 & \\
\hline Laguna. . & 287 & 393 & 33 & \\
\hline Laguna Point. & 271 & 377 & 28 & \\
\hline Lake Hill. & 280 & 387 & 30 & \\
\hline Lakeville. & 243 & 346 & 20 & \\
\hline Lancaster. & 201 & 311 & 9, 24 & \\
\hline Lancaster 2 & 200 & 310 & 9 & \\
\hline Landing north tower, Oakland. & 235 & & 14 & \\
\hline Lane. & 20 r & \(3^{12}\) & 10, 26 & -....... \\
\hline Large Boulder & 224 & & 13 & \\
\hline Large gray house chimney & 253 & & 21 & \\
\hline Large red warehouse, north gable & 217 & & 16 & \({ }^{\text {a }}\) \\
\hline Lark. & 264 & 366 & 24 & \\
\hline Last. & 256 & & 18 & \\
\hline Latitude Station: & & & & \\
\hline Arena. & 201 & & 10, 25 & \\
\hline Lafayette Park. & 258 & 359 & 12,35 & \\
\hline Marysville. . & 260 & & 37 & \\
\hline Mount Conness. & 259 & 360 & 40 & ; \\
\hline Mount Hamilton & 260 & 361 & 39 & \\
\hline Mount Helena & 259 & 359 & \(3^{8}\) & \\
\hline Mount Tamalpais. & 258 & 359 & & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Descriptiou. & Sketch. & EFlevation. \\
\hline \multicolumn{5}{|l|}{Latitude Station-Continued.} \\
\hline Presidio, 1852. & 258 & 359 & 12, 35 & \\
\hline Presidio, 1896 & 258 & 359 & 12 & \\
\hline Ukiah. & 278 & 385 & 36 & \(\ldots . .\). \\
\hline Laurie Flat. & 274 & 38 I & 29 & \\
\hline Lick Observatory, Mount Hamilton. & 195 & & 6,35,39 & 398 \\
\hline Light-house No. 1 & 282 & & 3 I & \\
\hline Light-house No. 2. & 282 & & 31 & \\
\hline Light-house site, Pigeon Point & 256 & & 18 & \\
\hline Light-house wharf, Mare Island & 242 & & 19 & \\
\hline Lime Point Bluff. & 203 & 315 & II, 12 & \\
\hline Lime Point foghorn & 220 & & 12 & \\
\hline Lime Point fog-station & 224 & 332 & 12 & \\
\hline Lime Point Rock (cross). & 229 & 335 & 12 & \\
\hline Linden House, South San Francisco. & 233 & 338 & 15 & \\
\hline Little Jackass. & 273 & 380 & - 29 & \\
\hline Little Mile Rock & 226 & 333 & 12 & \\
\hline Little River (Mendocino County). & 270 & 375 & 27 & \\
\hline Little River (Humboldt County). & 287 & 394 & 33 & \\
\hline Little River Beach & 287 & 394 ! & 33 & \\
\hline Little River Rock. & 287 & 394 & 33 & \\
\hline Little Spanish & 282 & 389 & 30 & \\
\hline Lobos Rock. & 226 & 333 ' & 12 & \\
\hline Loma Prieta. & 193 & 298 & 2, 5, 6, 35 & 397 \\
\hline Lone house, south gable. & 267 & & 22 & , \\
\hline Lone Mountain, cross. & 204 & 317 & 12 & \\
\hline Lone tree. & 244 & & 20 & \\
\hline Lone tree on hill. & 199 & & 8 & \\
\hline Lone Tree Point. & 238 & 341 & 19 & \\
\hline Lone Tree Point 2. & 240 & & & \\
\hline Lone Tree Point, iron rod (U. S. E.). & 239 & 343 & 19 & \\
\hline Lone Trce Point, plasterworks chimney & 241 & & 19 & \\
\hline Lone Trce Point, plasterworks, northwest & 242 & & 19 & \\
\hline Long Point 2. & 238 & 341 & 19 & \\
\hline Long Pond. & 238 & 341 & 19 & \\
\hline \multicolumn{5}{|l|}{Longitude Station:} \\
\hline Marysville . & 260 & 361 & 37 & \\
\hline Mount Hamilton & 260 & 361 & 39 & \\
\hline Point Arena & 263 & 365 & 25 & \\
\hline Presidio. & 233 & 337 & 12 & \\
\hline Ukiah & 277 & 385 & 36 & \\
\hline Lower Hadley & 282 & 389 & 30 & \\
\hline Lower Jagged, Mount Conness. & 259 & & 40 & \\
\hline Lower Sierra Point. & 210 & 323 & 15 & \\
\hline Lower stack, California Powderworks. & 241 & & 19 & \\
\hline Lucky Tree. & 262 & 303 & 24 & \\
\hline Lumber wharf, Berkeley. & 234 & 338 & 13 & \\
\hline Mackey Beach. & 281 & 388 & 30 & . . \(\quad\). \\
\hline Mackey Hill & 280 & 388 & 30 & \\
\hline Mackey Ridge. & 28 r & 388 & 30 & \\
\hline Mackey's house chimney & 283 & & 30 & \\
\hline Mad River. & 262 & 363 & 34 & 398 \\
\hline Mad River. & 287 & 393 & 33 & \\
\hline Mad River Bluff & 288 & 395 & 33 & \\
\hline Mad River Tree. & 288 & & 33 & \\
\hline \multicolumn{5}{|l|}{Magnetic Station:} \\
\hline Mount Conness. & 259 & 360 & 40 & \\
\hline Mount Hamilton. & 260 & & 39 & \\
\hline Presidio & 233 & 337 & 12 & \\
\hline Ukiah & 277 & 384 & 36 & \\
\hline Mallard. & 248 & 352 & 21 & \\
\hline Mal Paso. & 278 & & & \\
\hline Mal Paso 2. & 269 & 374 & 26 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline Manchester Methodist Church, center of tower & 202 & & 10 & \\
\hline Manchester Presbyterian Church spire........ & 202 & & 10 & \\
\hline Manzanita (Santa Cruz County)...... . & 255 & 356 & 17 & \\
\hline Manzanita (Mendocino County). & 274 & \(3^{88}\) & 29 & \\
\hline Mare Island: & & & & \\
\hline Craven's transit pier. & 242 & 345 & 19 & \\
\hline Light-house wharf, southwest corner. & 242 & & 19 & \\
\hline Mare Island Light-house. & 242 & & 19 & \\
\hline Naval Observatory transit. & 242 & & 19 & \\
\hline Navy-yard foundry chimney & 242 & 346 & 19 & \\
\hline Navy-yard tall chimney & 242 & 345 & 19 & \\
\hline Smokestack back of marine barracks. & 242 & & 19 & \\
\hline Mare Island Northwest. . & 239 & 342 & 19 & 398 \\
\hline Mare Island Southeast & 238 & 342 & 19 & 398 \\
\hline Marin Island. & 223 & 331 & 13 & \\
\hline Marin Island East & 208 & 321 & II, 13 & \\
\hline Marine Hospital, San Francisco. & 233 & & 12 & \\
\hline Mariners Church, San Francisco. & 231 & 336 & 12 & \\
\hline Marked tree..... & 249 & 353 & 21 & \\
\hline Mart & 263 & 364 & 25 & \\
\hline Marsh . & 247 & & 21 & \\
\hline Marsh Island. & 238 & & 13 & \\
\hline Marsh Point (Marin County). & 220 & 330 & 13 & \\
\hline Marsh Point (Humboldt County). & 286 & 392 & 33 & \\
\hline Marsh Pole... & 239 & 344 ! & 19 & \\
\hline Marshal. & 248 & & 21 & \\
\hline Martin. & 289 & 396 & 32 & \\
\hline Martinez. & 246 & & 21 & \\
\hline Martinez East & 247 & 348 & 21 & 397 \\
\hline Marysville: & & & & \\
\hline Catholic Church. & 260 & 361 & 37 & \\
\hline Courthouse flagstaff & 259 & 360 & 34, 37 & \\
\hline Elmer. & 259 & 360 & 37 & \\
\hline Fields. & 259 & 360 & 37 & \\
\hline Latitude Station & 260 & & 37 & \\
\hline Longitude Station & 260 & \(3^{61}\) & 37 & \\
\hline Middle Meridian. & 260 & & 37 & \\
\hline North Base. & 259 & 360 & 37 & \\
\hline North Butte, summit polc. & 260 & & 34, 37 & \\
\hline North Meridian & 260 & & 37 & \\
\hline Presbyterian Church & 260 & 361 & 37 & \\
\hline Roll... & 259 & 360 & 37 & \\
\hline South Base & 260 & 360 & 37 & \\
\hline South Meridian & 260 & & - 37 & \\
\hline Stone. & 259 & 360 & 37 & \\
\hline Walton. & 259 & 360 & 37 & \\
\hline Mass. & 249 & 353 & 21 & \\
\hline Masters Hill. & 255 & 357 & 35 & 398 \\
\hline Mattole Beach. & 281 & 388 & 30 & \\
\hline Mattole Mountain tree. & 284 & & 30 & \\
\hline Mattole Peak tree. & 284 & & 30 & \\
\hline Mattole Point. & 281 & 388 & 30, 31 & \\
\hline McCartney's tank, San Leandro Point. & 216 & 328 & 15 & \\
\hline McDonald's house, south chimney. & 199 & & 8 & \\
\hline McDuff. & 248 & 352 & 21 & -.... . . \\
\hline McKee Flat & 275 & \(3^{82}\) & 29 & \\
\hline McLain water tank, San Francisco. & 229 & 335 & 12 & \\
\hline McNears Landing wharfhouse, front gable. & 241 & & 19 & \\
\hline McNulty's barn, south gable & 289 & 395 & 32 & \\
\hline McNutt... & 279 & 386 & 31 & \\
\hline McPherson. & 269 & 374 & 27 & \\
\hline McPherson's flagstaff. & 272 & & 27 & \\
\hline Meierkoff. & 271 & 376 & 27 & \({ }^{\text {a }}\) \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline Meins. & 247 & 349 & 21 & \\
\hline Melrose smelting-works chimney & 215 & 328 & 14 & \\
\hline Mendocino. & 279 & 386 & 31 & \\
\hline Mendocino. & 270 & 375 & 27 & \\
\hline Mendocino City Latitude Station. & 271 & 375 & 27 & \\
\hline Mendocino flagstaff. & 271 & & 27 & \\
\hline Menlo Park floodhouse tower & 212 & & 16 & \\
\hline Meridian Mark. & 290 & 397 & 32 & \\
\hline Merriam Block, east cupola, South San Francisco. & 234 & & 15 & \\
\hline Merriam Block, west cupola, South San Francisco & 234 & & 15 & \\
\hline Mershon. & 198 & 306 & 8,22 & \\
\hline Methodist Church: & & & & \\
\hline Eureka. & 285 & & 33 & \\
\hline Oakland & 235 & \(33^{8}\) & 14 & \\
\hline Point Arena. & 267 & & 25 & \\
\hline Middle. & 247 & 349 & 21 & \\
\hline Middle Farallon. & 268 & & 35 & \\
\hline Middle Meridian, Marysville. & 260 & & 37 & \\
\hline Middle Point (Alameda County). & 211 & 325 & 14 & \\
\hline Middle Point (San Mateo County). & 256 & 357 & 17 & \\
\hline Middle Rock. & 276 & 383 & 29 & \\
\hline Middle Test Base & 278 & & 28 & \\
\hline Middle Trestle. & 221 & & 13 & \\
\hline Middle Windmill. & 241 & & 19 & \\
\hline Midshipman Point. & 240 & 345 & 19 & \\
\hline Midway. & 280 & 387 & 30 & \\
\hline Mike... & 266 & 369 & 22 & \\
\hline Mike 2 & 198 & 307 & 8 & \\
\hline Mile. & 215 & 327 & 11, 15 & \\
\hline Mile Pile & 218 & & 15 & \\
\hline Mile Rock & 226 & 333 & 12 & \\
\hline Mill. & 241 & 345 & 19, 21 & \\
\hline Mill, Alviso. & 237 & & 16 & \\
\hline Millbrae oysterhouse, main window, north front. & 216 & & 15 & \\
\hline Miller Peak. & 279 & 386 & 30 & \\
\hline Miller Ridge. & 280 & 387 & 30 & \\
\hline Millerick milkhouse cupola & 254 & & 21 & \\
\hline Millerton horse barn, north gable. & 199 & & 8 & \\
\hline Milpitas old warehouse, west gable. & 218 & & 16 & \\
\hline Milpitas black warehouse, south ventilator. & 217 & & 16 & \\
\hline Mission Rock ventilator. . & 217 & & 12 & \\
\hline Mitchell Gulch. & 272 & 378 & 27 & \\
\hline Mocho Latitude Station & 258 & 359 & 2 & \\
\hline Molate, East Reef. & 222 & & 13 & \\
\hline Molate Point 2 & 208 & 321 & 11, 13 & \\
\hline Molate, West Reef & 222 & & 13 & \\
\hline Mole, inner switchhouse, Oakland & 235 & & 14 & \\
\hline Mole, outer switchhouse, Oakland. & 235 & \(33^{8}\) & 14 & \\
\hline Monroe. & 270 & 374 & 26 & \\
\hline Montara Mountain Peak & 197 & & 7, 11 & \\
\hline Monterey Bay to San Francisco Bay. & 254 & 355 & & \\
\hline Montezuma Hill. & 250 & & 21 & \\
\hline Montezuma House & 254 & & 2 I & \\
\hline Monticello Latitude Station. & 258 & 359 & & \\
\hline Monument Hill. & 246 & 347 & 21 & \\
\hline Monument Ridge, lone tree. & 284 & & 31 & \\
\hline Moore. & 254 & 355 & 17 & \\
\hline Moore Hill. . . & 279 & 386 & 30, 31 & \\
\hline Moraghan's oysterhouse, east window, north front & 215 & & 15 & \\
\hline Morgan. & 280 & 388 & 30 & \\
\hline Morgan. & 285 & 392 & 33 & \\
\hline Morgan Rock & 276 & 383 & 29 & \\
\hline Morse . & 265 & 366 & 25 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline Navarro Ridge, West Base. & 269 & 373 & 26,27 & \\
\hline Navy-Yard slough. & 245 & & 19,20 & \\
\hline Naylor. & 247 & 348 & 21 & \\
\hline Needle Peak summit & 26 x & & 34 & \\
\hline Needle Rock. & 277 & 383 & 29 & \\
\hline Nicedles (Lime Rocks). & 224 & 332 & 12 & \\
\hline Nelson & 284 & 390 & 32 & \\
\hline Nev. Smith wharfhouse, Oakland & 235 & 338 & 14 & \\
\hline New barn, southeast gable. & 252 & & 21 & \\
\hline Newark, Catholic Church spire cross. & 214 & & 16 & \\
\hline New Lime Point. & 206 & 319 & 12 & \\
\hline New York. & 248 & 352 & 21 & \\
\hline Noonan watertank & 218 & 328 & 15 & \\
\hline North. & 203 & 315 & II, 13 & \\
\hline North Base & 290 & 396 & 32 & \\
\hline Bluff Point & 221 & 330 & 13 & \\
\hline Golden Gate Park & 230 & & 12 & \\
\hline Marysville. & 259 & 300 & 37 & \\
\hline Mount Hamilton & 260 & & 39 & \\
\hline Ukiah. & 277 & 38.4 & 36 & \\
\hline North Bay & 239 & & 21 & \\
\hline North Bonita. & 219 & 329 & 12 & \\
\hline North Brooks. & 208 & 321 & 13 & \\
\hline North Butte summit pole, Marysville. & 200 & & 34, 37 & \\
\hline North chimney. & 2 I 3 & & 15 & \\
\hline North Dock-liglit, Sausalito. & 235 & 339 & 13 & \\
\hline North Liast X I & 220 & & 13 & \\
\hline North Farallon Middle Islet. & 268 & & 35 & \\
\hline North Farallon North Islet. & 268 & & 35 & \\
\hline North Farallon South Islet. & 268 & & 35 & \\
\hline North Farallon South Rock & 268 & & 35 & \\
\hline North gable barn No. 2 & 257 & & 17 & \\
\hline North gable old house. & 257 & & 17 & \\
\hline North Grass. & 240 & 345 & 19 & \\
\hline North Meridian, Marysville & 260 & & 37 & \\
\hline North Noyo. & 272 & 378 & 27 & \\
\hline North Point Rock. & 228 & & 12 & \\
\hline North Range East, Bluff Point. & 236 & 339 & 13 & \\
\hline North Range West, Bluff Point. & 236 & 340 & 13 & \\
\hline North Seal Rock. & 226 & & 12 & - ••• \\
\hline North Slide. & 278 & 385 & 30 & \\
\hline North Trestle & 221 & & 13 & \\
\hline North Trinidad & 288 & 394 & 33 & \\
\hline North Twin. & 209 & 322 & II, 12 & \\
\hline North Ussal. & 275 & 382 & 29 & \\
\hline Northwest Base, Point Arena. & 263 & 304 & 25,26 & \\
\hline Northwest Straits. & 242 & & 19 & 397 \\
\hline North windmill. & 241 & & 19 & \\
\hline Northerner. & 286 & 392 & 32 & \\
\hline Novato. & 242 & 346 & 19 & \\
\hline Novato Bend & 240 & 344 & 19 & \\
\hline Novato Pole. & 240 & & 19 & \\
\hline Novato windmill. & 241 & & 19 & \\
\hline Number 1 & 266 & 368 & 22 & \\
\hline Number 2 & 266 & 368 & 22 & \\
\hline Number 3 & 267 & 370 & 22 & \\
\hline Oakland & & & & \\
\hline Catholic Church spirc. & 235 & & 14 & \(\ldots . .\). \\
\hline Congregatıonal Church spire. & 235 & & 14 & \({ }^{\text {a }}\) \\
\hline County Court-house dome flagstaff & 235 & \(33^{8}\) & 14 & \\
\hline Landing, north tower. & 235 & & 14 & \\
\hline Methodist Church spire. & 235 & \(33^{8}\) & 14 & \\
\hline Mole, inner switch-house & 235 & & 14 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline Oakland--Continued. & & & & \\
\hline Mole, outer switch-house. & 235 & \(33^{8}\) & 14 & \\
\hline Nailworks stack. & 235 & & 14 & \\
\hline Nev. Smith wharfhouse gable & 235 & 338 & 14 & \\
\hline Oakland Harbor light-house. & 235 & & 14 & \\
\hline Presbyterian Church spire. . & 235 & 338 & 14 & \\
\hline Oakland Point. & 209 & 322 & 14 & \\
\hline Oakland Point Congregational Church sp & 220 & & 14 & \\
\hline Oakland Point railroad depot flagstaff. . & 220 & 329 & 14 & \\
\hline Oat Hill. & 280 & 387 & 30 & \\
\hline Observatory & 239 & 344 & 19 & \\
\hline Ocean. & 287 & 393 & 33 & \\
\hline Ocean Beach. & 266 & 370 & 23 & \\
\hline Ocean House, San Francisco & 230 & & IX & \\
\hline Odell. & 279 & 386 & 31 & \\
\hline Odell 2. & 282 & & 31 & \\
\hline Off Trinidad Rock & 288 & 394 & 33 & \\
\hline Oil Creek. & 279 & 386 & 31,32 & \\
\hline Oil Creek West. & 281 & 389 & 31, 32 & \\
\hline Oilworks east chimney & 241 & & 19 & \\
\hline Oilworks west chimney. & 241 & & 19 & \\
\hline Oil wharf outer west corner & 241 & & 19 & \\
\hline Old barn southwest gable. & 240 & & 19 & \\
\hline Old hut southeast gable. & 217 & 328 & 16 & \\
\hline Old shed southeast gable. & 217 & 328 & 16 & \\
\hline Onsley. & 287 & 393 & 33 & \\
\hline Orphan Asylum, Vallejo. & 246 & & 19 & \\
\hline Outer Break.. & 283 & & 31 & \\
\hline Outer gable small whitewashed house. & 224 & & 13 & \\
\hline Outer tank, Point Pinole. & 246 & & 19 & \\
\hline Outer Twin Rock. & 284 & & 31 & \\
\hline Oysterhouse, San Mateo. & 213 & 326 & 16 & \\
\hline Oyster Point. & 210 & 323 & 15 & \\
\hline Pacheco....... & 240 & 344 & 19 & \\
\hline Pacific Bone Fertilizer Co., smokestack & 218 & & 15 & \\
\hline Pacific Mail dock, San Francisco. & 232 & & 12 & \\
\hline Pacific Oilworks, Alameda. & 237 & 340 & 14 & - . \(\cdot\). \\
\hline Packard Hill. & 273 & 378 & 28 & \\
\hline Packinghouse, South San Francisco. & 233 & 338 & 15 & \\
\hline Paddle....... & 290 & 396 & 33 & \\
\hline Pajaro Mouth 2................... & 193 & 299 & 5,6 & \\
\hline Parker Monument, San Francisco. & 23 I & 336 & 12 & \\
\hline Parsons. & 255 & 356 & 17 & \\
\hline Patricks Point South & 288 & 395 & 33 & \\
\hline Peak. & 269 & 372 & 26 & \\
\hline Peak..... & 255 & & 18 & \\
\hline Peak flag. & 212 & 325 & 16 & \\
\hline Peak Mountain & 205 & & 11 & \\
\hline Peaked Hill. & 199 & 309 & 9, 23 & 398 \\
\hline Peninsula. & 285 & 391 & 33 & \\
\hline Peninsula Hill. . & 205 & 318 & 1 I & 397 \\
\hline Peninsula Hill 2. & 209 & 322 & 13 & \\
\hline Perrot. & 268 & 371 & 22 & \\
\hline Pescadero. & 256 & & 18 & \\
\hline Pescada Landing fishhouse flagstaff & 226 & & 13 & \\
\hline Petaluma Baptist Church spire. & 243 & & 20 & \\
\hline Petaluma Creek & 238 & 340 & 19 & 398 \\
\hline Peter Tree. & 264 & 366 & 24 & \\
\hline Petrolia.......... & 279 & & 31 & \\
\hline Petrolia flagstaff. & 283 & & 31 & \\
\hline Picket Pile. & 286 & 393 & 32 & \\
\hline Piedra. & 205 & & 11 & \\
\hline Pier No. 2, San Francisco. & 231 & & 12 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline Pier No. 3, San Francisco. & 231 & & 12 & \\
\hline Pier No. 5, San Francisco. & 231 & \({ }^{\text {a }}\) & 12 & \\
\hline Pier No. 7, San Francisco. & 233 & & 12 & \\
\hline Pier No. 9, San Francisco. & 233 & & 12 & \\
\hline Pier No. 12, San Francisco & 231 & & 12 & \\
\hline Pier No. 24, San Francisco. & 232 & & 12 & \\
\hline Pier No. 27, San Francisco & 231 & & 12 & \\
\hline Pierce & 247 & 350 & 21 & - . \\
\hline Pigeon Point (center light-house site) & 256 & & 18 & \\
\hline Pigott's (Doctor) house, southwest gable. & 267 & & 23 & \\
\hline Pillar Point. & 205 & 318 & 15 & \\
\hline Pilot Rock & 288 & 395 ' & 33 & \\
\hline Pine & 255 & 356 & 17 & \\
\hline Pine Grove & 275 & 376 & 27 & \\
\hline Pinnacle Rock (San Mateo County) & 217 & 328 & 15 & - . . . \\
\hline Pinnacle Rock (Sonoma County). & 201 & 311 & 9,23 & \\
\hline Pinole Landing, outside end & 241 & & 19 & \(\ldots\) \\
\hline Pipeworks: & & & & \\
\hline Alameda. & 237 & 340 & 14 & \\
\hline Berkeley & 234 & 338 & 13 & \\
\hline Pise Hill . . & 203 & 314 & II & \\
\hline Pise Hill 2. & 195 & 302 & 4,6 & \\
\hline Pittsburg. & 248 & & 21 & \\
\hline Plasterworks chimney, Lone Tree Point & 241 & & 19 & \\
\hline Plasterworks gable, Lone Tree Point. & 242 & & 19 & \\
\hline Plaza flagstaff. Eureka. & 285 & & 33 & \\
\hline Point (Santa Cruz County). & 255 & 356 & 17 & \\
\hline Point (Mendocino County) & 270 & 375 & 27 & … . . . \\
\hline Point (Humboldt County) & 290 & 396 & 33 & \\
\hline Point \(2 .\). & 229 & 334 & 12 & \\
\hline Point 3. & - 228 & 334 & 12 & \\
\hline Point Ano Nuevo & 255 & 357 & 17 & \\
\hline Point Arena vicinity, 1906 & 201 & 311 & 10 & \\
\hline Point Arena: & & & & \\
\hline Catholic Church spire. & 202 & & 10, 25 & \\
\hline Longitude Station. & 263 & 365 & 25 & \\
\hline Methodist Church, south gable & 267 & & 25 & … \\
\hline Northwest Base & 263 & 364 & 25, 26 & \\
\hline Point Arena Light-house & 201 & & 10, 25, 26 & \\
\hline Southeast Base. & 263 & 364 & 25 & \\
\hline Pont Arena to Shelter Cove & 269 & 372 & & \\
\hline Point Avisadero. & 203 & 314 & II, 15 & 397 \\
\hline Point Avisadero 2. & 209 & 323 & & \\
\hline Point Avisadero hog-ranch, white tank & 215 & & 15 & \\
\hline Point Avisadero (Potrero), North Range. & 215 & & 12 & \\
\hline Point Blunt Knob . & 220 & & 13 & ... \(\cdot\) \\
\hline Point Blunt Rock & 220 & 329 & 13 & . . . \\
\hline Point Bonita. & 205 & 318 & 12 & 397 \\
\hline Point Bonita fog-siren. & 219 & & 12 & \\
\hline Point Bonita, keeper's house. & 219 & & 12 & \(\cdots\) \\
\hline Point Cavallo. & 205 & 318 & I1, 12 & \\
\hline Point Cavallo 2 & 204 & 316 & 11, 12 & \\
\hline Point Cavallo tip. & 323 & 331 & 12 & … \({ }^{\text {a }}\) \\
\hline Point Diablo. & 219 & 329 & 12 & 398 \\
\hline Point Diabio tip & 227 & 333 & 12 & \\
\hline Point Lobos. & 204 & 317 & 12 & \\
\hline Point Lobos 2 & 204 & 316 & 11, 12 & \\
\hline Point Lobos 3 & 206 & 319 & 12 & \\
\hline Point Lobos windmill & 219 & 329 & 12 & \\
\hline Point Pinole. & 238 & 340 & & \\
\hline Point Pinole 2. & 238 & 34 I & & \\
\hline Point Pinole 2, 1896. & 239 & & & \\
\hline Point Pinole \(2 \bigcirc \bigcirc\) & 239 & & & \\
\hline \(6348 \mathrm{I}^{\circ}\) - \(\mathrm{II}-27\) & & & & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline Point Pinole 3. & 238 & 341 & 19 & \\
\hline Point Pinole: & & & & \\
\hline East stack & 246 & & 19 & \\
\hline First tank. & 246 & & 19 & \\
\hline High tank & 246 & & 19 & \\
\hline Outer tank. & 246 & & 19 & \\
\hline West tall brick chimney. & 246 & & 19 & \\
\hline Point Pinos Latitude Station. & 193 & 299 & 6 & \\
\hline Point Pinos Light-house. & 193 & & 5, 6 & \\
\hline Point Reyes Beach. & 267 & 370 & 22 & \\
\hline Point Reyes East.. & 266 & 368 & \(6^{22}\) & \\
\hline Point Reyes Head. & 262 & 363 & 6,22 & \\
\hline Point Reyes Head 2 & 195 & & & \\
\hline Point Reyes Hill. & 194 & 301 & 3, 6, 8, 22, 35 & 398 \\
\hline Point Reyes Latitude Station & 268 & 371 & \(6^{22}\) & \\
\hline Point Reyes Light-house & 194-5 & & 6,22 & \\
\hline Point Reyes Light-house site. & 268 & & 22 & \\
\hline Point Reyes Station Schoolhouse cupola & 199 & & 8 & \\
\hline Point Richmond 2. & 207 & 320 & 11, 13 & \\
\hline Point Richmond tip. & 225 & \(33^{2}\) & 13 & \\
\hline Point San Bruno 2. & 210 & & 15 & \\
\hline Point San Jose. & 203 & 315 & II, 12 & \\
\hline Point San Mateo. & 211 & 325 & 15 & \\
\hline Point San Mateo extremity & 210 & 323 & 15 & \\
\hline Point San Mateo Rock. & 218 & & 15 & \\
\hline Point San Pablo 2. & 208 & 321 & 13, 19 & \\
\hline Point San Pablo Hydrographic. & 222 & & 13, 19 & \\
\hline Point San Pedro. & 208 & 321 & 11, 13, 19 & 397 \\
\hline Point San Pedro House, southeast gable. & 222 & & 13, 19 & \\
\hline Point San Quentin. & 207 & 319 & 11, 13 & 397 \\
\hline Polite Man... & 212 & & 15 & \\
\hline Powderhouse, San Francisco & 232 & & 15 & \\
\hline Powder wharf, Berkeley.... & 234 & \(33^{8}\) & 13 & \\
\hline Powderworks, California. & 241 & & 19 & \\
\hline Powell's barn, north gable. & 278 & & 28 & \\
\hline Powerhouse: & & & 12 & \\
\hline Market street, San Francisco & 232 & 336 & 12 & \\
\hline Union street, San Francisco . . & 231 & & 12 & \\
\hline Prayer Book Cross, San Francisco. & 230 & & 12 & \\
\hline Presbyterian church: Marysville. & 260 & 361 & 37 & \\
\hline Oakland. & 235 & 338 & 14 & \\
\hline Potrero, San Francisco. & 232 & 337 & 12 & \\
\hline Union City. & 217 & & 15 & \\
\hline Vallejo..... & 246 & & 19 & \\
\hline West Berkeley. & 235 & & 13 & \\
\hline Presidio: & & & & \\
\hline Flagstaff. & 233 & & 12 12 & \\
\hline Latitude Station, \(1852 \ldots\). & 258 & 359 & 12, 35 & \\
\hline Latitude Station, 1896, east pier. & 258 & 359 & 12 & \\
\hline Longitude Station, 1896-97; 1903. & 233 & 337 & 12 & \\
\hline Magnetic Station....... & 233 & 337 & 12 & \\
\hline Wharf, northeast comer & 233 & & 12 & \\
\hline Wharfhouse.. & 233 & 337 & 12 & \\
\hline Presidio Hill. & 203 & 315 & 11, 12 & . \(\cdot\). \\
\hline Pressed Brick Co. stack, San Francisco. & 230 & & 12 & \\
\hline Preston (Solano County). & 249 & 353 & 21 & \\
\hline Preston (Marin County). & 266 & 369 & \(\begin{array}{r}22 \\ 8 \\ \hline\end{array}\) & \\
\hline Preston 2........ & 198 & 306 & 8 & \\
\hline Preston's house stovepipe. & 267 & & 22 & \\
\hline Preston ranch barn, north gable. & 199 & & & \\
\hline Primaries and Secondaries, 1906-7 & 193 & 297 & & \\
\hline Prison searchlight. & 222 & & 13 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline Residence flagstaff, Mount Hamilton. & 260 & & 39 & \\
\hline Reynolds. . & 266 & 369 & 22 & \\
\hline Reynolds 2. & 198 & 306 & 8 & \\
\hline Reynolds Point & 280 & 387 & 30 & \\
\hline Reynolds Rock. & 283 & 390 & 30 & \\
\hline Rice....... & 255 & 356 & 17 & \\
\hline Rice's house chimney. & 257 & & 17 & \\
\hline Richards. & 265 & 368 & 22 & \\
\hline Richardson. & 205 & & 11, 13 & 397 \\
\hline Richardson East & 209 & 322 & 13 & \\
\hline Richardson Schoolhouse tower. & 223 & & 13 & \\
\hline Richmond Rock. & 224 & & & \\
\hline Ridge. & 203 & 313 & 15, 35 & \\
\hline Ridge 2 Eccentric. & 195 & 302 & 4,6 & \\
\hline Ridge Rock & 209 & 322 & 13 & \\
\hline Road (Humboldt County). & 290 & 396 & 32 & \\
\hline Road (San Mateo County). & 196 & 304 & 7, 11 & \\
\hline Rob. & 206 & 319 & 12 & \\
\hline Rob 2. & 206 & 319 & 12 & \\
\hline Rob 3 & 206 & 319 & 12 & \\
\hline Roberts Landing. & 214 & 327 & 15 & \\
\hline Roberts's warehouse. & 216 & 328 & 15 & \\
\hline Robinson Point. & 263 & 365 & 25 & \\
\hline Robinson's large windmill & 253 & 355 & 21 & \\
\hline Rock awash. & 284 & & 31 & \\
\hline Rock Point. & 223 & 331 & 13 & \\
\hline Rocky Island. & 203 & 315 & 11, 13 & 397 \\
\hline Rocky Mound. & 194 & 300 & 3, 4, 6, 35 & 397 \\
\hline Rocky Peak. . & 263 & 365 & 11, 25 & \\
\hline Rocky Point. & 263 & 365 & 24 & \\
\hline Rocky Point. & 267 & 370 & 23 & \\
\hline Roll, Marysville. & 259 & 360 & 37 & \\
\hline Ross Mountain. & 194 & 301 & 3, 6, 9, 23, 34 & 397 \\
\hline Ross Mountain Latitude Station & 258 & 359 & & \\
\hline Ross Tree. & 264 & 366 & 24 & \\
\hline Round. & 269 & 372 & 26 & \\
\hline Round Rock. & 278 & & 29 & \\
\hline Round Top..... & 287 & 393 & 33 & \\
\hline Round Top Latitude Station. & 258 & 358 & & \\
\hline Round Valley Mountain summit. & 262 & & 34 & \\
\hline Rudder. & 290 & 397 & 32 & \\
\hline Russ Cut Off. & 286 & 393 & 32 & \\
\hline Russ house north chimney & 286 & & 32 & \\
\hline Russian Gulch & 270 & 375 & 27 & \\
\hline Russian Hill. & 204 & 316 & II, 12 & \\
\hline Russian River & 265 & 367 & 23 & 398 \\
\hline Rutherford Tree. & 263 & 365 & 24,25 & \\
\hline Ryer's house cupola. & 249 & & 21 & \\
\hline Sacramento ball on capitol dome & 260 & & 34 & \\
\hline Sacramento Longitude Station. & 260 & 361 & 34 & \\
\hline Sacramento Packing Co. cannery smok & 252 & & 21 & \\
\hline Saddle Point. & 269 & 373 & 26 & \\
\hline Sail Rock. & 265 & 367 & 25 & \\
\hline Sailors' Home, San Francisco & 231 & & 12 & \\
\hline St. Brendans Church, San Francisco. & 232 & & 12 & . . . \(\cdot\). \\
\hline St. Johns Hill. & 254 & 355 & 17 & \\
\hline St. Josephs spire, Alameda. & 237 & & 14 & \\
\hline St. Marys Hospital, San Francisco. & 231 & & 12 & \\
\hline St. Patricks Church, San Francisco. & 233 & 337 & 12 & \\
\hline Salmon Creek & 268 & 372 & 23 & \\
\hline Salmon Point. & 269 & 374 & 27 & \\
\hline Salt Point. & 200 & 310 & 9,24 & \\
\hline San. & 240 & & 19,20 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline San. & 243 & & 19 & \\
\hline San Antonio & 243 & 346 & 20 & \\
\hline San Antonio 2 & 244 & & 20 & \\
\hline San Antonio Creek & 203. & 314 & II, 14 & \\
\hline San Antonio Point & 211 & 325 & 14 & \\
\hline San Bruno Mountain & 195 & 302 & 4, 6, 7, II & \\
\hline San Bruno house minaret. & 218 & 328 & 15 & \\
\hline San Bruno oysterhouse west window north front & 216 & & 15 & \\
\hline San Bruno Range north end rocky peak. & 218 & & 15 & \\
\hline San Bruno Range south end low peak. & 218 & & II & \\
\hline San Francisco: & & & & \\
\hline Azimuth mark, Golden Gate Park. & 230 & & 12 & \\
\hline Baker Beach windmill . & 230 & 335 & 12 & \\
\hline Blue Mountain & 232 & 336 & 12 & \\
\hline Broderick Monument & 231 & 336 & 12 & \\
\hline Butchertown smokestack & 230 & 335 & 12 & \\
\hline California Glueworks flagstaff & 230 & & 12 & \\
\hline California Pressed Brick Co. stack & 230 & & 12 & \\
\hline Catholic Orphan Asylum flagstaff. & 232 & & 15 & \\
\hline Children's playhouse, Golden Gate Park. & 230 & 336 & 12 & \\
\hline Chronicle tower flagstaff. & 23 r & 336 & 12 & \\
\hline City Hall dome. & 232 & & 12 & \\
\hline Cliff House tower. & 197 & & 7, 12 & . . \\
\hline Cliff House turret highest finial & 197 & & 7, 12 & \\
\hline Cogswell Monument. & 230 & 336 & 12 & \\
\hline Conservatory, Golden Gate Park & 230 & & 12 & \\
\hline Crocker's house flagstaff. & 231 & & 12 & \\
\hline Edison Light and Power Co. dynamo stack. & 23 I & 336 & 12 & \\
\hline Edison Light and Power Co. electric stack & 232 & 336 & 12 & \\
\hline Engine house. & 233 & & 12 & \\
\hline Engineer's warehouse & 230 & 335 & 14 & \\
\hline Ferry tower flagstaff. & 232 & & 12 & \\
\hline lirst Baptist Mission cupola & 232 & & 15 & ... \\
\hline Fort Point wharf. & 230 & 335 & 12 & \\
\hline Gas tank. & 231 & 336 & 12 & \\
\hline Grace Church cross. & 232 & 336 & 12 & \\
\hline Hopkins Art Institute & 229 & 335 & 12 & \\
\hline Jewish Synagoguc east spire & 233 & 337 & 12 & … \\
\hline Ladics Pavilion flagstaff. & 229 & 335 & 12 & \\
\hline McLain watertank tower. & 229 & 335 & 12 & \\
\hline Market Street powerhouse stack & 232 & 336 & 12 & \\
\hline Marine Hospital flagstaff. & 233 & & 12 & \\
\hline Mariners Church spire. . & 231 & 336 & 12 & \\
\hline North Base, Golden Gate Park & 230 & & 12 & \\
\hline Ocean House flagstaff. & 230 & & 11 & \(\cdot\). \\
\hline Pacific Mail dock outer gable & 232 & & 12 & \\
\hline Parker Monument..... & 231 & 336 & 12 & \\
\hline Pier No. 2 outer gable & 231 & & 12 & … \(\cdot\). \\
\hline Pier No. 3 outer gable. & 231 & & 12 & \\
\hline Pier No. 5 outer gable. & 231 & & 12 & \\
\hline Pier No. 7 outer gable. & 233 & & 12 & … . . . \\
\hline Pier No. 9 outer gable. & 233 & & 12 & \\
\hline Pier No. 12 outer gable. & 231 & & 12 & \\
\hline Pier No. 24 outer gable & 232 & & 12 & \\
\hline Pier No. 27 outer gable & 231 & & 12 & … \\
\hline Potrero Presbyterian Church spire. & 232 & 337 & 12 & \\
\hline Powderhouse windmill. & 232 & & 15 & \\
\hline Prayer Book Cross. & 230 & & 12 & \\
\hline Presidio. (See Presidio.) & & & & \\
\hline Pressed Brick Co. stack. & - 230 & & 12 & \\
\hline Sailors' Home flagstaff. : & 231 & & 12 & \\
\hline St. Brendans Church cross. & 232 & & 12 & \\
\hline St. Marys Hospital tank. & 23 I & & 12 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & 'Elevation. \\
\hline San Francisco-Continued. & & & & \\
\hline St. Patricks Church spire. & 233 & 337 & 12 & \\
\hline Selby shot-tower. & 229 & 335 & 12 & \\
\hline Selby smelting-works chimney. & 229 & 335 & 12 & \\
\hline Spreckels Building dome. & 232 & & 12 & \\
\hline Sutro's Observatory tower. & 230 & 335 & 12 & \\
\hline Sutro's Olympus. & 232 & & 12 & \\
\hline Sutro's stable red spire. & 230 & & 12 & \\
\hline Tannery ventilator flagstaff. & 232 & 337 & 15 & \\
\hline Telegraph Hill, United States time-ball flagstaff & 229 & 335 & 12 & \\
\hline Tetlow's southeast chimney............ & 231 & & 12 & \\
\hline Union Street. & 233 & & 12 & \\
\hline Union Street powerhouse stack & 231 & & 12 & \\
\hline United States barge office flagstaff & 231 & & 12 & \\
\hline Washington Square. & 233 & 337 & 12 & \\
\hline San Francisco Bay... & 203 & 3 I 3 & & \\
\hline San Francisquito Creek 2... & 211 & 324 & 16 & \\
\hline San Jose Catholic Institute spire. & 257 & & 35 & \\
\hline San Jose Court-house dome flagstaff & 196 & & 6 & \\
\hline San Jose Mission Church. & 258 & & 35 & \\
\hline San Leandro cucalyptus tree. & 214 & 326 & 15 & \\
\hline & 203 & 314 & 11, 5 & \\
\hline San Leandro Point, Kammer house, north window, west front & 216 & & 15 & \\
\hline San Leandro Point, McCartney's white tank. & 216 & 328 & 15 & \\
\hline San Lorenzo & 212 & & 15 & \\
\hline San Mateo eucalyptus tree & 214 & 326 & 15 & \\
\hline San Mateo oysterhouse, north gable & 213 & 326 & 16 & \\
\hline San Pablo Bay. & 238 & 340 & & \\
\hline San Pablo flagstaff. & 221 & 331 & 13 & \\
\hline San Pablo Ridge. & 208 & 32 I & 11, 13, 19 & \\
\hline San Pablo Road flagstaff & 222 & & 13 & \\
\hline San Pedro Rock. & 196 & & 7, II & \\
\hline San Quentin wharfhouse, southeast gable & 222 & & 13 & \\
\hline San Rafael Court-house flagstaff & 222 & & It, 13, 19 & \\
\hline San Rafael Creek. & 222 & 331 & 13,19 & 398 \\
\hline San Rafael Rock. & 222 & & 13 & \\
\hline Sand (Contra Costa County) & 247 & 350 & 21 & \\
\hline Sand (Mendocino County). & 263 & 364 & 25 & \\
\hline Sand..... & 218 & & 12 & \\
\hline Sand Bluff. & 285 & 391 & 33 & \\
\hline Sand Knoll. & 204 & 317 & 11, 12 & 398 \\
\hline Sandhill (Sonoma County). & 268 & 372 & 23 & \\
\hline Sandhill (Mendocino County). & 272 & 378 & 28 & \\
\hline Sandhill (Humboldt County). & 290 & 396 & 32 & \\
\hline Sandhill (R.)........ & 284 & 391 & 32,33 & \\
\hline Sandstone. & 263 & 365 & 24, 25 & \\
\hline Sandy Point. & 264 & 366 & 24 & \\
\hline Sanel Mountain. & 262 & 361 & 34 & 397 \\
\hline Santa Clara Catholic Church spire & 257 & & 5.35 & \\
\hline Santa Cruz. & 193 & 299 & 5, 17,35 & 397 \\
\hline Santa Cruz light-house....... & 193 & & 6
6 & \\
\hline Santa Cruz Magnetic Station. & 193 & 299 & 6 & \\
\hline Santa Cruz Point. & 254 & 355 & 17 & 397 \\
\hline Santa Cruz warehouse flagstaff. & 258 & & 17 & \\
\hline Santa Rosa Court-house dome. & 261 & & 34 & \\
\hline Saunders Hill. & 265 & 367 & 25 & \\
\hline Sausalito: & & & & \\
\hline Baron wharf & 236 & 539 & 13 & \\
\hline Crag Hazel boathouse flagstaff & 235 & 339 & \(\pm 3\) & \\
\hline North Dock-light & 235 & 339 & 13 & \\
\hline Railroad depot, inner flagstaff & 236 & 339 & 13 & \\
\hline Railroad depot, outer flagstaff . & 236 & 339 & 13 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline Sausalito-Continued. & & & & \\
\hline South Dock-light. & 235 & 339 & 13 & \\
\hline Tide station wharf & 236 & 339 & 13 & \\
\hline Sausalito Point & 205 & 318 & 11, 13 & \\
\hline Scaffold Tree & 27 I & 376 & 27 & \\
\hline School cupola, Vallejo. & 246 & & 19 & \\
\hline Schoolhouse chimney. & 254 & & 21 & \\
\hline Schoolhouse, east gable & 250 & & 21 & \\
\hline Schoolhouse on hill... & 199 & & 8 & \\
\hline Schoolhouse, Warmsprings & 237 & & 16 & \\
\hline Scott's house, peak of roof. & 202 & & 10 & \\
\hline Scottys Point & 288 & 394 & 33 & \\
\hline Seal... & 256 & & 18 & \\
\hline Seal Bluff. & 248 & 351 & 2 I & \\
\hline Seal Bluff, cast warehouse, north gable. & 250 & & 21 & \\
\hline Seal Bluff, west warehouse, north gable & 250 & & 21 & \\
\hline Sealion Rock (Mendocino County)..... & 276 & & 29 & \\
\hline Sealion Rock (Humboldt County). & 283 & 390 & 3 I & \\
\hline Sears. & 242 & 346 & 20 & \\
\hline Sears Point & 238 & 341 & 19 & \\
\hline Second interior flumehouse flagstaff & 212 & & 16 & \\
\hline Second Under Rock & 228 & 334 & 12 & \\
\hline Sellick. & 255 & & 11, 18 & \\
\hline Sentry-box, Alcatraz & 223 & & 12 & \\
\hline Shag Rock. & 229 & 335 & 12 & \\
\hline Shanty on end small wharf & 224 & & 13 & \\
\hline Shebang: & 289 & & 33 & \\
\hline Sheep Ridge. & 275 & 382 & 29 & \\
\hline Shellmound flagstaff, Berkeley & 234 & 338 & 14 & \\
\hline Shelter Cove.................. & 274 & 38 I & 29 & \\
\hline Shelter Cove to Trinidad Head & 278 & \(3^{85}\) & & \\
\hline Shelter Cove North Base. & 274 & & 29 & \\
\hline Shelter Cove South Base & 274 & 38 I & 29 & \\
\hline Shelton. & 288 & 394 & 33 & \\
\hline Shepherd's chimney. & 268 & & 25 & \\
\hline Sherman Island house. & 252 & & 2 I & \\
\hline Sherman Island house. & 252 & & 21 & \\
\hline Sherwood Mountain, highest knoll. & 261 & & 34 & \\
\hline Shipman. & 279 & 387 & 30 & \\
\hline Shipman Tree. & 283 & 390 & 30 & \\
\hline Shoe-factory smokestack & 216 & & 15 & \\
\hline Shoemake. & 202 & 313 & 10, 25, 26 & \\
\hline Shoemake 2 & 202 & 313 & 10 & \\
\hline Shore Cone. & 225 & & 12 & \\
\hline Shore Cone Rock & 227 & 333 & 12 & \\
\hline Shoreline Rock & 276 & & 29 & \\
\hline Shot-tower, San Francisco. & 229 & & 12 & \\
\hline Shubrick Peak. & 278 & 385 & 30 & \\
\hline Sierra barn, east gable & 218 & & 15 & \\
\hline Sierra Morena. & 193 & 297 & 2, 3, 6, 35 & 397 \\
\hline Sicrra Point. & 203 & 315 & 11, 5 & \\
\hline Signal House. & 289 & 395 & 33 & \\
\hline Sigvart. & 266 & 369 & 22 & \\
\hline Sigvart 2. & 198 & 307 & 8 & \\
\hline Silver Mountain, North Peak cairn. & 261 & & 34 & \\
\hline Silver Mountain, South Peak cairn. & 26 I & & 34 & 398 \\
\hline Silvers Tree. & 265 & 367 & 24 & \\
\hline Simmons. & 248 & 351 & 21 & \\
\hline Sinclair. & 202 & 313 & 10, 25 & \\
\hline Sisson. & 284 & 390 & 32 & \\
\hline Skeleton Stump. & 289 & & 33 & \\
\hline Slaten's windmill. & 243 & 347 & - 19 & \\
\hline Slaughterhouse. & 245 & & 19,20 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Descrintion. & Sketch. & Elevation. \\
\hline Slaughterhouse Point 2 & 239 & 343 & 19,20 & \\
\hline Slope, Mount Conness. & 259 & & 40 & \\
\hline Slough. & 285 & \(39^{2}\) & 33 & \\
\hline Slough Fork. & 286 & 392 & 33 & \\
\hline Smelting-works, San Francisco. & 229 & 335 & 12 & \\
\hline Smith (Marin County). & 197 & 305 & 8,22 & \\
\hline Smith (Mendocino County). & 262 & 363 & 10, 25 & \\
\hline Smith 2. & 202. & 312 & 10 & \\
\hline Smith Point. & 273 & 379 & 28 & \\
\hline Smith's Chute. & 288 & & 33 & \\
\hline Smokestack back Marine Barracks, & 242 & & 19 & \\
\hline Smoky Ridge. & 274 & 381 & 29 & \\
\hline Soldati milkhouse cupola & 253 & & 21 & \\
\hline Soldier Frank Hill. & 273 & 380 & 29 & \\
\hline Soldier Frank Point. & 273 & 380 & 29 & \\
\hline Soldier Haibor. & 271 & 377 & 27 & \\
\hline Sonoma Creek. & 238 & & 19 & \\
\hline Sonoma Creek 2. & 240 & 345 & 19 & \\
\hline Sonoma Landing flagstaff & 240 & 345 & 19 & \\
\hline Sonoma Mountain. & 194 & 300 & 3,6,35 & 397 \\
\hline Sonoma Pole. & 240 & 345 & 19 & \\
\hline South. & 203 & 315 & II, 14 & \\
\hline South Base. & 290 & 396 & 32 & \\
\hline Bluff Point & 221 & 330 & 13 & \\
\hline Marysville. & 260 & 360 & 37 & \\
\hline Mount Hamilton & 260 & & 39 & \\
\hline Ukiah... & 277 & 384 & 36 & \\
\hline South Beach. & 286 & 393 & 32 & \\
\hline South Belmont oysterhouse red tank & 213 & & 16 & \\
\hline South Cottaneva Point. & 273 & 379 & 28 & \\
\hline South Cottaneva Ridge & 273 & 379 & 28 & \\
\hline South Cottaneva Rock. & 276 & & 28 & \\
\hline South Dock-light, Sausalito & 235 & 339 & 13 & \\
\hline Southeast Base, Point Arena. & 263 & 364 & 25 & \\
\hline South Flat, Mount Helena. & 259 & & 38 & \\
\hline South Grass............... & 240 & 345 & 19 & \\
\hline South Meridian, Marysville & 260 & & 37 & \\
\hline South Noyo. & 272 & 378 & 27 & \\
\hline South of Cape. & 279 & 386 & 31 & \\
\hline South Peak. & 205 & & 11 & \\
\hline South Point. & 216 & 328 & 15 & \\
\hline South Range East, Bluff Point. & 236 & 339 & 13 & \\
\hline South Range West, Bluff Point & 236 & 339 & 13 & \\
\hline South Red Hill. & 210 & 324 & 16 & \\
\hline South San Francisco: & & & & \\
\hline Armour Hotel flagstaff. & 233 & 338 & 15 & \\
\hline Artesian well tower. & 233 & 337 & 15 & \\
\hline Depot chimney. & 234 & & 15 & \\
\hline Linden House cupola. & 233 & \(33^{8}\) & 15 & \\
\hline Merriam Block, east cupola. & 234 & & 15 & \\
\hline Merriam Block, west cupola & 234 & & 15 & \\
\hline Packinghouse smokestack.
South Seal Rock & 233 & \(33^{8}\) & 15 & \\
\hline South Seal Rock. & 225 & & 12 & \\
\hline South Shag Rock. & 216 & 328 & 15 & \\
\hline South South Tree. & 212
286 & 325 & 35 & \\
\hline South Spit. & 286 & 393 & 32 & \\
\hline South Spit. & 290 & 397 & 32 & \\
\hline South Trce. & 212 & & 35 & \\
\hline South Trestle. & 221 & & 13 & \\
\hline South Twin Peak. & 218 & & 12 & \\
\hline South Ussal. & 273 & 380 & 29 & \\
\hline South Windmill. & 240 & & 19 & \\
\hline Southampton Shoal Light-house. & 220 & & 13 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline Table Mount. & 262 & 363 & 24 & \(\ldots . .\). \\
\hline Table Mount 2. & 200 & 310 & 9 & \\
\hline Table Ridge. & 284 & 390 & 32 & - \\
\hline Tall chimney, Antioch & 254 & & 21 & \\
\hline Tall chimney, Navy-yard, Mare Island & 242 & 345 & 19 & \\
\hline Tannery, San Francisco............... & 232 & 337 & 15 & \\
\hline Taylor Peak. & 281 & 388 & 3 I & \\
\hline Telegraph. & 242 & 345 & 19, 21 & \\
\hline Telegraph Hill 2. & 203 & 315 & I1, 12 & \\
\hline Ten Mile River Beach. & 272 & 378 & - 28 & \\
\hline Ten Mile River Beach, North Base. & 272 & 377 & 28 & \\
\hline Ten Mile River Beach, South Base. & 272 & 377 & 28 & \\
\hline Ten Mile River Bluff. & 272 & 377 & 28 & \\
\hline Tetlow's chimney, San Francisco. & 231 & & 12 & \\
\hline Teton....... & 266 & 369 & 22 & \(39^{8}\) \\
\hline Teton 2. & 198 & 308 & 8 & \\
\hline Third Under Rock. & 228 & 334 & 12 & \\
\hline Thompsons Point & 212 & & 15 & \\
\hline Thompson's staff. & 213 & & 15 & \\
\hline Three gable warehouse, middle west gable. & 224 & & 13, 19 & \\
\hline Tiburon: & & & & \\
\hline Catholic Church. & 236 & 339 & 13 & \\
\hline Depot flagstaff. & 236 & 339 & 13 & \\
\hline Dock-bell. . & 236 & 339 & 13 & \\
\hline Ferry-slip, east end & 236 & & 13 & \\
\hline Freight wharf. . & 236 & & 13 & \\
\hline Tiburon Gate Tower. & 209 & 322 & 13 & \\
\hline Tiburon Rock. & 226 & 333 & 13 & \\
\hline Tichenor & 269 & 373 & 26 & \\
\hline Tick Rock. . & 225 & & 12 & \\
\hline Tide Station wharf, Sausalito. & 236 & 339 & 13 & \\
\hline Timber Cove. & 200-1 & 311 & 9, 24 & \\
\hline Timber Point. & 273 & 380 & 29 & \\
\hline Timber Ridge (Mendocino County). & 273 & 380 & 29 & \\
\hline Timber Ridge (Hurnboldt County). & 288 & 394 & 33 & \\
\hline Timber Ridge, dead tree. & 278 & & 29 & \\
\hline Timber Ridge Rock. & 276 & 383 & 29 & \\
\hline Time-ball, San Francisco. & 229 & 335 & 12 & \\
\hline Tolay Creek 2. & 238 & 341 & 19 & \\
\hline Tom Point. . & 267 & 370 & 22 & \\
\hline Tomales Bay...... & 194 & 301 & 3, 6, 8, 22, 35 & 397 \\
\hline Tomales Bay, 1907. & 197 & 305 & 8, 8 & \\
\hline Tomales Bay Magnetic Station & 268 & & 22 & \\
\hline Tomales Bluff. & 268 & 372 & 22 & \\
\hline Tomales Point. & 197 & 305 & 8, 22 & \\
\hline Topog. & 207 & 320 & 11, 13 & \\
\hline Topog No. r . & 256 & 357 & 17 & \\
\hline Topog No. 2. & 256 & 357 & 17 & \\
\hline Topog No. 3 & 256 & 357 & 17 & \\
\hline Topog No. 4 & 257 & 358 & 17 & \\
\hline Topog No. 5 & 256 & 358 & 17 & \\
\hline Topog No. 6. & 257 & 358 & 17 & \\
\hline Topog No. 7. & 257 & 358 & 17 & \\
\hline Topog No. 8. & 257 & 358 & 17 & \\
\hline Topographic Tree. & 289 & & 32 & \\
\hline Tormey's new barn, north gable. & 251 & & 2 I & \\
\hline Tormey's windmill. & 251 & & 21 & \\
\hline Trainor. & 198 & 309 & 8 & \\
\hline Tranta. & 255 & 356 & 17 & \\
\hline Tree Hill. & 213 & & 11 & \\
\hline Trinidad flagstaff. & 288 & 395 & 33 & \\
\hline Trinidad Head... & 287 & 393 & 33 & \\
\hline Trinidad Head Light-house. & 288 & & 33 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline Triple warchouse, northeast gable. & 214 & 326 & 15 & \\
\hline Triplet Hill. & 263 & 365 & 25 & \\
\hline Tubb's windmill. & 240 & 345 & 19 & \\
\hline Tuft. & 217 & 328 & 16 & \\
\hline Tunitas. & 256 & & 18 & \\
\hline Two-Mile. & 215 & 327 & 15 & \\
\hline Two Tree Hill. & 257 & & 35 & \\
\hline Tycho, Mount Hamilton. & 260 & & 39 & \\
\hline Ukiah: & & & & \\
\hline Court-house cupola flagstaff & 277 & & 36 & \\
\hline Latitude Station. & 278 & \(3^{88}\) & 36 & \\
\hline Longitude Station. & 277 & 385 & 36 & \\
\hline Magnetic Station. & 277 & 384 & 36 & \\
\hline North Base. & 277 & 384 & 36 & \\
\hline South Base. & 277 & 384 & 36 & \\
\hline Uncle Edward. & 2 II & & 16 & \\
\hline Uncle Tommy. & 279 & 385 & 30 & \\
\hline Under Cavallo. & 209 & 322 & 12 & \\
\hline Under Cement. & 207 & 319 & 12 & \\
\hline Under High tip & 228 & 334 & 12 & \\
\hline Under Rock. & 227 & 333 & 12 & \\
\hline Underwood Creek. & 287 & 394 & 33 & \\
\hline Union City Creek & 210 & 323 & 15 & \\
\hline Union City Mills. & 211 & & 15 & \\
\hline Union City Presbyterian Church spire & 217 & & 15 & \\
\hline Union House, south chimney. & 289 & & 32 & \\
\hline Union Island. & 211 & 325 & 16 & \\
\hline Union street, San Francisco & 233 & & 12 & \\
\hline Union street powerhouse, San Francisco & 231 & & 12 & \\
\hline Union Island Rock. & 211 & & & \\
\hline United States flagstaff, Angel Island. & 220 & 329 & 13 & \\
\hline University Building, Berkeley. & 234 & 338 & 13 & \\
\hline University flagstaff, Berkeley. & 234 & & 13 & \\
\hline University Avenue wharf, Berkeley & 234 & & 13 & \\
\hline Upham. & 249 & & 21 & \\
\hline Upper 2. & 251 & 354 & 21 & \\
\hline Upper Bear Harbor. & 274 & \(3^{81}\) & 29 & \\
\hline Upper Bear Harbor barn west gable & 277 & & 29 & \\
\hline Ussal Rock. & 276 & 383 & 29 & \\
\hline Vaca Latitude Station. & 258 & 359 & & \\
\hline Vallejo: & & & & \\
\hline Catholic Church northwest pinnacle & 246 & & 19 & \\
\hline Orphan Asylum cupola flagstaff. ... & 246 & & 19 & \\
\hline Presbyterian Church spire..... & 246 & & 19 & \\
\hline School cupola. & 246 & & 19 & \\
\hline Vallejo Hill. ... & 245 & & 19 & \\
\hline Vallejo Hill 2. & 239 & 343 & 19 & \\
\hline Vallejo Junction east end ferry-slip. & 242 & & 19 & \\
\hline Vallejo Junction west end ferry-slip & 242 & & 19 & \\
\hline Vallejo (r) & 239 & 342 & 19, 21 & 398 \\
\hline Vallejo (2) 1896 & 239 & & 19, 21 & \\
\hline Vallejo (3)..... & 238 & 342 & r9, 21 & 398 \\
\hline Vance's mill stack. & 289 & & 33 & \\
\hline Ventilator. & \(25^{\circ}\) & & 21 & \\
\hline Vertical Circle Station: & & & & \\
\hline Mount Conness. & 259 & 359 & 40 & \\
\hline Mount Helena & 259 & 359 & 38 & \\
\hline Visitation Knob. & 210 & 323 & II, 15 & \\
\hline Waddell's wharf, east pier & 257 & & 17 & \\
\hline Walalla..... & 262 & 362 & 34 & 397 \\
\hline Walalla Tree. & 264 & 366 & 25 & \\
\hline Walker's house chimney. & 283 & & 31 & \\
\hline Walker Ridge. & 28 r & 389 & 31 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation \\
\hline Walton, Marysville & 259 & 360 & 37 & \\
\hline Warehouse, Castro Slough. & 223 & & 13 & \\
\hline Warehouse southeast gable & 217 & 328 & 16 & \\
\hline Warehouse west gable. & 244 & & 19 & \\
\hline Warmsprings: & & & & \\
\hline Depot chimney. & 237 & & 16 & \\
\hline Hip-roof house flagstaff & 237 & & 16 & \\
\hline Red warehouse west gable & 237 & & 16 & \\
\hline Schoolhouse flagstaff. & 237. & & 16 & \\
\hline Washington Square, San Francisco & 233 & 337 & 12 & \\
\hline Waterworks, Redwood City & 237 & 340 & 16 & \\
\hline Welch. & 270 & 374 & 26 & \\
\hline Wells Fargo wharfhouse chimney & 222 & & 13 & \\
\hline West Base, Mount Conness. & 259 & & 40 & \\
\hline West Berkeley: & & & & \\
\hline Boot and shoe factory cupola. & 235 & & 13 & \\
\hline "Butchertown" windmill. & 235 & \(338^{\circ}\) & 13 & \\
\hline Episcopal Church spire & 234 & & 13 & \\
\hline Presbyterian Church & 235 & & 13 & \\
\hline Standard Soap Co. flagstaff & 235 & & 13 & \\
\hline West chimney, Point Pinole. & 246 & & 19 & \\
\hline West Diablo. & 206 & 319 & 11, 12 & \\
\hline West Diablo Under Rock. & 223 & & 12 & \\
\hline West end ferry-slip, Vallejo Junction & 242 & & 19 & \\
\hline & 257 & & 17
16 & \\
\hline West Point (San Mateo County) & 210 & 323 & & \\
\hline West Point (Humboldt County). & 285 & 391 & 33 & \\
\hline West Point flumehouse cast gable & 212 & & 16 & \\
\hline Wetner. & 258 & & 18 & \\
\hline Wetner 2. & 255 & & 18 & \\
\hline Whale Gulch & 275 & \(3^{82}\) & 29 & \\
\hline Whale Point. & 227 & 334 & 12 & \\
\hline Wharf, Presidio. & 233 & & 12 & \\
\hline Wharfhouse, Angel Island. & 226 & 332 & 13 & \\
\hline Wharfhouse, Black Point. & 223 & & 12 & \\
\hline Wharfhouse, Presidio. & 233 & 337 & 12 & \\
\hline Wheeler. & 285 & 392 & \(\begin{array}{r}33 \\ 28 \\ \hline\end{array}\) & \\
\hline Whipple Ridge. & 272
286 & 377 & 28 & \\
\hline White Barn, . \({ }^{\text {Wrat........... }}\) & 286 & & 33
15 & \\
\hline White Barn, Avisadero Bight
White Barn & 217 & & 15 & \\
\hline White Barn southeast gable. & 245 & & 19 & \\
\hline White house east gable... & 253 & & 21 & \\
\hline White house south gable. & 243 & & 19 & \\
\hline White house south gable. & 250 & & 21 & \\
\hline White house stovepipe. & 254 & 355 & 21 & \\
\hline White Rock. & 270 & & 26 & \\
\hline White Rock. & 277 & 383 & 29 & \\
\hline Whites Landing & 258 & 358 & 35 & \\
\hline White shanty west gable. & 254 & & 21 & \\
\hline White spire cross. & 271 & & 27 & \\
\hline White tank. & 245 & & 19 & \\
\hline White tank, Angel Island & 221 & 330 & 13 & \\
\hline White Top Rock \({ }^{\text {a }}\) & 227 & 333 & 12 & \\
\hline Whitewashed rock on point. & 224 & & 13 & \\
\hline Widow Cranks.
Wild Oat..... & 28 I & 388 & 3 3 & \\
\hline Wild Oat. & 280 & 387 & 30 & \\
\hline Willdcat. \({ }_{\text {W }}\) Williams Point. & 267
273 & 371
380
380 & 22
29 & \\
\hline Willow Point. & 266 & 369 & 22 & \\
\hline Willow Point 2 & 198 & 308 & 8 & \\
\hline Wilson. & 238 & 342 & 19 & \\
\hline Wilson 2. & 239 & & 19 & \\
\hline Windmill. & 250 & & 21 & \\
\hline
\end{tabular}

Index to positions, descriptions, sketches, and elevations-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Station. & Position. & Description. & Sketch. & Elevation. \\
\hline Windmill. & 289 & & 33 & \\
\hline Windmill, Point Lobos. & 219 & 329 & 12 & \\
\hline Windy Point. & 279 & 386 & 30 & \\
\hline Wireless house, Mount Tamalpais. & 196 & & 6 & \\
\hline Wireless tower, Mount Tamalpais. & 222 & & & \\
\hline Wood's house. & 252 & & 21 & \\
\hline Worth. & 287 & 394 & 33 & \\
\hline Worth's house chimney & 287 & 394 & 33 & \\
\hline Wyman........ & 280 & \(3^{88}\) & 30 & \\
\hline Yellow Bluff tip. & 224 & \(33^{2}\) & 12 & \\
\hline Yerba Buena Island. . & 203 & 314 & II, 14 & 397 \\
\hline Yerba Buena Island 2. & 209 & & & \\
\hline Yerba Buena Light-house............... & 215 & & 14 & \\
\hline Yolo Northwest Base Latitude Station & 258 & 358 & & \\
\hline Yolo Southeast Base Latitude Station. & 258 & 358 & & \\
\hline Young. & 266 & 369 & 22 & \\
\hline Young. & 256 & & 18 & \\
\hline
\end{tabular}

No. 1.

No. 2.

PRIMARY TRIANGULATION, 1906-7. FIRST FIGURE ADJUSTMENT.
\(63481^{\circ}-11-28\)

No. 3.

PRIMARY TRIANGULATION, 1906-7, SECOND FIGURE ADJUSTMENT.

No. 4.

SECONDARY TRIANGULATION, 1906-7, FIRST FIGURE ADJUSTMENT.

No. 5.

SECONDARY TRIANGULATION, 1906-7, SECOND FIGURE ADJUSTMENT.

No. 6.

TRIANGULATION OF 1906-7, GENERAL SKETCH.

No. 7.

No. 8.

VICINITY OF TOMALES BAY, 1906.

No. 9.

VICINITY OF FORT ROSS, 1906.

No. 10.

VICINITY OF POINT ARENA, 1906.
```

6348\mp@subsup{I}{}{\circ}-11-29

```


SAN FRANCISCO BAY, GENERAL SKETCH.
\(63481^{\circ}-11\)

\(6348 \mathrm{r}^{\circ}-11\)

\(6348 \mathrm{I}^{\circ}-11\)

No. 14.

SAN FRANCISCO BAY, NORTH CENTRAL PART.

san francisco bay, south central part.

SAN FRANCISCO BAY, SOUTHERN EXTREMITY.

No. 17.

MONTEREY BAY TO SAN FRANCISCO BAY, 1 (SOUTHERN PART).

No. 18.

No. 19.

No. 20.

petaluma creek and napa creek.

suisun bay.
\(63481^{\circ}-\mathrm{II}\)

No. 22.

No. 23.

\(6348 \mathrm{I}^{\circ}-11-30\)

GOLDEN GATE TO POINT ARENA, 3.

No. 25.

No. 26.

No. 27.

NAVARRO RIDGE TO PUDDING CREEK.

No. 28.

No. 29.

No. 30.

No. 31.

MATTOLE POINT TO OIL CREEK

No. 32.

OIL CREEK TO HUMBOLDT BAY.

No. 33.

hUMBOLDT BAY TO TRINIDAD HEAD.

No. 34.

No. 35.

GENERAL SKETCH OF CALIFORNIA (SOUTHERN PART).

No. 36.

No. 38.

No. 39.

MOUNT HAMILTON.

No. 40.

APPENDIX 6

\title{
THE MEASUREMENT OF THE FLEXURE OF PENDULUM SUPPORTS WITH THE INTERFEROMETER
}

\author{
By \\ W. H. BURGER \\ Assistant, Coast and Geodetic Survey
}

\section*{CONTENTS.}
Page.
Description of the interferometer 434
Method of observing 438
Specimen of record and computation 439
Programme of observing 439
Adjustment of fringes 442
Temperature control 443
Sodium light, wave length, etc 443
Independent support for the interferometer. 444
Mounting and adjustment of the interferometer 445
Determination of the coefficient of flexure 446
Interferometer as a field instrument \(44^{8}\)
Comparison of the static with the interferometer method \(44^{8}\)
Peculiar features of the flexure of the pendulum support 449

\section*{ILLUSTRA'TIONS.}
Fig. x. Diagram showing the theory of the interferometer. 434
Fringes and scale 434
2. Pendulum case and observing apparatus with interferometer in position 436
3. The interferometer 437
4 and 5 . Types of independent stands for the interferometer 444,445
432

\title{
THE MEASUREMENT OF THE FLEXURE OF PENDULUM SUPPORTS WITH THE INTERFEROMETER.*
}

\author{
By W. H. Burger, \\ Assistant, Coast and Grodetic Survey.
}

The horizontal component of the force acting on the knife-edge through the swinging pendulum causes the support to move in unison with the pendulum, and thereby affects the period of the oscillation. This movement is the so-called flexure of the pendulum support

This movement or displacement of the pendulum support is an exceedingly minute quantity, the measurement of which has been the subject of much investigation. Its effect upon the period of the pendulum has been more or less satisfactorily determined by various methods, such as by using an auxiliary pendulum which is set in motion by the oscillation of the support under the influence of the standard pendulum; by Hardy's Noddy, and by the static method used in recent years by the Coast and Geodetic Survey.

In the static method used for measuring the flexure of the support a horizontal pull of 1.5 kilograms was applied at the height of the knife-edge, and the resulting displacement was measured by means of a scale and microscope. In none of these methods was the measurement made of the actual displacement of the pendulum support due to the swinging pendulum. The correction for flexure was obtained through methods involving doubtful assumptions, as, for example, in the case of the static method heretofore used by the Coast and Geodetic Survey, it was assumed that the flexure correction was always proportional to the measured displacement, whereas this is not true when the 1.5 kilogram pull applied is sufficient to force the support beyond its limit of elasticity.

In general the apparatus used in the other methods is inferior to the apparatus used in the interferometer method, for with none of them can the measurements be made with such accuracy as with the interferometer.

To avoid the inaccuracies of the static method, Mr. John F. Hayford, Inspector of Geodetic Work of the Coast and Geodetic Survey, proposed the plan of using the interferometer to measure the absolute displacement of the support due to the oscillating

\footnotetext{
* After the investigations were made and the interferometer actually used at many gravity stations in the measurement of the flexure of the pendulum support, it was learned that practically the same method had already been used by another investigator. (See "Eine optische Methods zur direkten Messung des Mitschwingens bei Pendelbeebachtungen'" von K. R. Koch, Leipzig, 1905. As far as can be learned, however, no observer or investigator has used the interferometer method in determining the fiexure of the pendulum support at field stations, where observations must be made under widely different conditions and where speed in observing and simplicity of apparatus are important factors.
}
pendulum and to determine the effect of the displacement upon the period of the pendulum. To the writer was assigned the investigation and experimental work and the elaboration of plans for the use of the interferometer. In this, along both the theoretical and practical lines, much assistance was received from Mr. Hayford and from Mr. E. G.

Fischer, Chief of the Instrument Division, and to them is largely due the success of the work.

The preliminary investigation was made in the fall of 1907 and was only carried far enough to prove that the proposed plan was feasible. Work was then suspended till the fall of 1908, when the final investigations and experiments were taken up. In the interval an interferometer to suit the requirements of the work was designed and constructed.

\section*{DESCRIPTION OF THE INTERFEROMETER. \(\dagger\)}

The principle of the interferometer is graphically shown in fig. I. The beam from the source of light,* with its rays made practically parallel by a lens \(L\), strikes the rear or second surface of the plate \(S\), and separates, part of it being reflected to the plane mirror \(P\), returning exactly on its path through \(S\) and then through \(C\) to \(T\), where it is examined by a telescope. The other part of the ray goes through the glass plate \(S\), passes through the glass plate \(C\), and is reflected by the plane mirror \(M\), returns on its path through \(C\) to the plate \(S\), where it is reflected so as to unite with the first ray under conditions which produce interference. The resulting phenomenon is observed as a series of bands in the form of a grating, the dark band being produced when the two wave trains differ in phase by one-half wave length and the light bands when they meet in the same phase. The plane parallel glass \(C\) is introduced to compensate for the extra thickness of glass which the first portion of the ray has traversed in passing through the plate \(S\). Without it the two paths would not be optically identical, because the first would contain more glass than the second.

Some light is reflected from the front surface of the plate \(S\), but its effect is rendered

Fringes and scale. insignificant if the coating of silver covering the rear surface of that plate is of such thickness that nearly equal portions of incident light are reflected and transmitted.

\footnotetext{
\(\dagger\) Adapted from description on page 40 , "Light Waves and their Uses," by A. A. Michelson, University of Chicago Press, 1903.
}

The plane-parallel plates \(S\) and \(C\) are worked originally in a single piece, which is afterwards cut in two. The two pieces are placed parallel to each other, thus insuring exact equality in the two optical paths \(S P\) and \(S M\).

The interferometer used by the Coast and Geodetic Survey in measuring the flexure of pendulum supports is a modified form of the interferometer described in "Light Waves and their Uses," by A. A. Michelson (pp. 40-41). A detailed description will not be given here, only the modifications and changes being noted. The instrument was designed by Mr. E. G. Fischer, Chief of the Instrument Division, and two instruments were constructed in the shops of the Survey under his direction. The optical parts were furnished by Dr. J. A. Brashear, of Pittsburg, Pa. In figs. 2 and 3 are shown the pendulum receiver and interferometer with accessories used in observing.

The separator plate and the compensator plate are not mounted in separate frames as in the form of interferometer described by Michelson, but are held together in the same metal frame (\(k\), fig. 2), with the silvered surface of the separator plate within, and separated from the inner surface of the compensator plate by a narrow border of tin foil. Great care is taken in the preparation and mounting of this tin foil border in order to make sure the two plates are truly parallel. It also serves to seal the space between the two plates and thus furnish protection from moisture, gases, or other agents which might injure the delicate silvering of the separator plate.

The frame and plates are made considerably longer than in the Michelson form, for, both plates being in the same frame, the frame must be deeper, and as the plates are at an angle of 45 degrees to the line of sight they must be made longer in order not to lessen the area of the fringe field as viewed in the telescope.

Instead of the plane mirrors being silvered on their front faces they are silvered on their back surfaces and the silvering is protected by a coating of varnish.

The frame holding the separator and compensator plates is capable of being rotated on its vertical axis in such a manner that the apparatus can be used as a right or left handed instrument. The instrument is furnished with abutting stops for placing the frame quickly in either position.

The carriage of the fixed mirror (\(M\), figs. I and 2), which moves along the ways (c, fig. 3) and by means of which the two paths are made equal, remains practically unchanged, although special devices have been added for insuring free but accurate motion on the long screw controlling its motion. The other fixed mirror (\(P\), figs. I and 2) is separated entirely from the metal base of the interferometer and is mounted on an arm (\(c\), fig. 2) which is fastened by dowel pins and thumbscrew (\(a, b\), fig. 2) to the pendulum receiver. The top of the receiver is removed before this arm can be attached. The arm when in place supports the mirror in a position directly in front of the window in the receiver through which coincidences or slit images are observed and at the height of the knife-edge.

The 3 foot-screws of the interferometer rest on a base plate (\(Q\), fig. 2) which is fastened to the independent support. A small circular level (\(p\), fig. 2) is attached to the interferometer for quick adjustment.

\section*{METHOD OF OBSERVING.}

In observing flexure by means of the interferometer method, there is presented the problem of finding the shift, or displacement, of the fringes, due to the oscillation of the pendulum support, in terms of the width of one fringe.

As one mirror is attached to the pendulum receiver and the remainder of the interferometer is mounted on a support entirely independent of the pendulum receiver, it is easily seen that any movement in the pendulum case will cause a shift or displacement of the fringes in the interferometer. Owing to the two parts of the interferometer being mounted on separate and independent supports, and the consequent instability in relative position of its parts, vibrations from sources other than the oscillating pendulum cause shifting of fringes, but these are erratic and are seldom mistaken for the shift due to the pendulum. Since the pendulum makes one complete swing in 0.5 second, the shift of fringes will occur as a half-second shift across the field. It is the magnitude of this half-second movement which it is desired to measure. This movement is a measure of the amount of flexure in the pendulum case caused by the oscillating pendulum.

To find the amount of the shift, in terms of the width of a fringe, two methods can be used:
1. By observing the fraction of the fringe width over which any fringe band moves, using as a pointing line any line of the scale in the eyepiece of the observing telescope, as seen projected upon the fringe field. This is the direct method.
2. By observing the width of a fringe in terms of the divisions of the scale in the telescope, and then observing the amount of the shift or displacement of the fringe band in terms of the scale divisions. The second quantity divided by the first will give the shift of the fringes in terms of the width of a fringe. This is the indirect method.

In outlining a plan of observing, the question arose as to whether the direct or the indirect method of observing should be used. After a thorough analysis and test of both methods, it was decided to use the indirect method. The direct method while very simple, may lead to large errors in the results, for any error in estimation made in the first few observations is likely to continue thoughout a series of measurements, as the observer is apt to become prejudiced in his estimation and duplicate the readings which may be in error. There is little chance of introducing varying conditions to eliminate this. Also, the smallest reading which the observer can ordinarily estimate easily while the fringes are in motion is about one-tenth of a fringe. Even this is often difficult or impossible. An error of one-tenth of a fringe width (reduced to standard arc) in the measure of the flexure causes an error of 17 in the seventh place of period, which is an error too large to be allowed.

The second, or indirect method, is almost entirely free from this possibility of error. Such a variety. of conditions can be introduced as will make almost every individual measure an independent one. There is little chance of prejudice affecting the observations, unless it be in the 5 measures of any one set, and this prejudice will be counteracted by the introduction of varying widths of fringes and of varying amplitudes of swings of the pendulum.

The following is a specimen of record and computation in the measurement of flexure as used in the field (station, Kerrville, Tex.; date, January 24, 1910):

PROGRAMME OF OBSERVING.
The programme of observing flexure, by means of the indirect method of using the interferometer, is as follows:

Having adjusted the interferometer in position, and obtained fringes of maximum brightness, the fringe-width is made rather broad, say, 3 to 4 scale divisions, the adjustment for fringe-width being made with the fine adjusting screws (\(d, g, j, f i g .2\)) attached to the mounting of each mirror. The width of fringe depends upon the angle at which the two rays meet. This angle is changed by changing the position of the reflecting mirrors. The are of oscillation of the pendulum is made rather large, say, from 6 to 9 millimeters for the semiarc. The reason for making both fringe-width and arc large will be explained further on.

The semiarcs are read and recorded as above.
The reading scale in the eye end of the observing telescope is set so that it is approximately at right angles to the fringe bands. (See p. 434.) The shift or displacement of the fringes will thus be in the direction of the length of the scale.

The fringe motion is watched for a short period to recognize the half-second shift of the fringes, due to the half-second beat of the pendulum and to accustom the eye to the wavering field. Similarly placed points or lines on any two adjacent black (or yellow) bands are selected for use in measuring the fringe width. The writer's experience has shown the best part of the bands to be the line or edge of the black band, for the observer can casily select this line or edge and keep it in sight.

Before reading, care should be taken that the observer does not touch the flash apparatus or its support, for any motion of it will cause an apparent motion of the fringes and thus not only make observing more difficult, but cause errors in the readings.

Having selected the two fringe lines, their positions are read on the scale at the instant they reach the one limit of their motion as they shift under the action of the oscillating pendulum. The difference between the scale readings of the two lines will give the fringe-width in scale divisions. With practice the positions of both of these lines can be read at the same time, provided the fringe-width is not too great. In case the observer has difficulty in reading the scale for both lines at the same instant as they reach the extreme limit of their shift, a good plan is to read for one line, and then when the next half-second shift in the same direction comes read for the second line. (See \(A\) and \(B\), column 2, p. 439.) The first line is read again, and if this reading is very close to the first reading the first and second readings are recorded as being the scale divisions reached by the two lines. The third reading is only a check upon the stability in position of the various parts of the interferometer for the period between the readings.

It should be noted that the divisions of the scale are in sets of five, but without any figures. In reading, it is convenient to consider any fifth, or long line, as the zero line. This will usually make all readings less than 10.

Immediately after the above readings have been made the reading should be made of the positions reached by one of the chosen fringe lines, in the two extreme positions of its shift under the action of the swinging pendulum. (See A and A, column 3, p. 439.). Their difference will give the amount of shift or displacement of the fringe in terms of the scale divisions.

These two differences are the quantities sought and constitute one measure. Four others, or five measures in all, are made as quickly as possible, then the width of fringe is made narrow (about 2 divisions of scale), and five more measures are made and the semiarcs read. Each five measures constitute a set, and the mean of a set is used in computing one value for the flexure of the support.

When the fringe-width is small, any error in estimating tenths of scale divisions causes large errors in the flexure value, for, assuming the shift to be only two-tenths of a scale division, an error of one-tenth in estimation will cause the resulting value of flexure to be in error by 50 per cent. When the fringe-width is large, an error of one-tenth of a scale division will cause a proportionally smaller error. For this reason it was suggested to begin with a "rather broad" fringe-width. However, if the fringes are made too broad, it is difficult to observe, for their shading from dark to bright bands is so gradual that no definite points can be chosen for observing. When the observer reaches the set where the fringe-width is small, he is better fitted to read them more accurately.

Having obtained two sets as described, two more sets are taken, beginning with a small arc (preferably about 5 mm . total arc) and small fringe-width, and changing the fringe-width back to the large width between the third and fourth sets. The fringe-width, when beginning the third set, may be left as it was at the end of the second set, if desired.

The arcs are read at the beginning of the first and third sets, and at the ends of the second and fourth sets. An interpolation is made between the readings of the first and second sets, and between the third and fourth sets, in order to find the mean total arc for each set. The interpolation is made under the assumption that the observations are made with uniform speed and that the decrease in are is proportional to the elapsed time.

In the reduction of observations it is necessary to reduce the flexure value for each set to what it would have been had the standard arc been used in each case. With a change of arc there is a proportional change in the horizontal force applied to the knife edge, and therefore a proportional change in the flexure of the support. In the actual observations it is not advisable to use an arc of only one magnitude, hence when measures are made with various ares they must all be reduced to the same standard arc. An arc of 5.0 millimeters was chosen as a standard when the coefficient of flexure was determined, and consequently all measures in the field should be reduced to that standard.

In case the four sets do not give the required accuracy, additional sets with other ares and fringe-widths should be obtained. Unless the conditions are very poor, there is no difficulty in obtaining the desired accuracy with four sets, the accuracy required being such that the resulting value obtained should not be in error by more than the onetwentieth of one fringe width. Throughout nearly twenty months of work by the writer, in no case was it found necessary to make more than the four sets, providing observing was possible at all.

The observer is not forced to follow exactly the method of observing outlined above. It is the result of observations for a considerable period, and is one which combines in a minimum of operations nearly a maximum of conditions. Whatever system is employed, the endeavor should be made to introduce many conditions as to widths of fringes and amplitude of ares.

In making the different measures of any set it is well to use fringes in different parts of the fringe field. By doing so different readings of the scale are obtained and advantage is taken of the slight variation which may exist in the several fringe-widths of a fringe field.

The time necessary in making a complete measurement of the flexure value, such as is given above, will vary for different observers, different conditions of mounting the pendulum case and interferometer, and the influence of vibrations from causes outside the interferometer and pendulum case. The observer should accustom himself to make the readings of the fringe-width and fringe movement, in terms of the scale divisions, as rapidly as possible, the one to follow the other with little loss of time. If much time elaspes the fringe-width may change and the ratio of the fringe-width to the fringe motion will not indicate the true flexure existing in the support.

During the observations the observer and the recorder, if there is one, should remain as quiet as possible in order not to cause any erratic movements of the fringes. Should there be any marked erratic vibrations the observer must keep close watch and make the observations in the lulls which occur. These lulls may occur for only a second or two, and therefore the observer must accustom himself to read at a glance and not to hesitate much. It is better to have an error of a tenth of a division than to lose readings, providing the error is of the accidental class.

If the fringe field is fairly stable, the observations can be made with great ease and rapidity, and it is not difficult to make the observations almost as fast as one can record.

Sometimes the wind pressure on the buildings, traffic in near-by streets, or people walking in the building may cause such intense vibrations that the half-second oscillation can not be detected, and, indeed, they may sometimes be so strong as to cause the fringes to disappear entirely or cause them to shift so rapidly that no observations are possible. In order to fully comprehend the foregoing and to gain some idea of the sensitiveness of the instrument and the minuteness of the quantity to be measured, it is noted that the flexure when using a good mounting of the pendulum support varies from about 0.06 to o.ro fringe, corresponding to an actual displacement of the pendulum support of from 0.017 to 0.029 microns. If it is not possible to remedy the conditions by changes in the independent support it will be necessary to delay observations to a time when the wind dies down, when traffic in the street is at a minimum, or when people are quiet or out of the building.

Much annoyance can be saved if the alcohol flame is protected from drafts, for when it flares very much the fringe field may be blurred too much for observing.

In changing the fringe-width between sets only the very slightest touch should be given to the adjusting screws, in order not to cause the fringes to disappear entirely, and thus cause delay in finding them again.

In using the flash apparatus in pendulum observations it is placed about 2 meters from the receiver. In using the telescope of the flash apparatus for flexure measurements it may be necessary to increase the distance from the receiver in order to focus accurately upon the fringe field, for in viewing the slit image the telescope is focused upon an object which is nearly twice as distant as is the fringe field.

Also, when observing coincidence of images the scale in the eye end of the telescope is thrown out of focus in order not to interfere with distinct vision of the slit images. When observing flexure this scale is made clear and distinct by means of the sliding eyepiece tube of the telescope.

It will be found necessary to lower the telescope of the flash apparatus for flexure observing. A higher mounting of the telescope in necessary in pendulum work than is necessary in interferometer work, for in observing coincidence the telescope is pointed at the image of the slit, the slit itself being below the telescope and in the face of the box of the flash apparatus, while in observing the shift of fringe the telescope is pointed horizontally at the compensator and separator glasses, at which point the fringe field is formed.

As the fringes may appear at any angle with the vertical through the instrument, the scale in the eye end of the observing telescope is mounted so that it can easily and quickly be rotated about the optical axis of the telescope. To make this rotation, it is only necessary to turn, by means of a projecting pin, the movable collar which is located between the eye piece and the focusing screw of the telescope.

ADJUSTMENT OF FRINGES.
When hunting for fringes-that is, when manipulating the fine adjustment screws so that fringes will be formed in the interferometer-it may happen that a very fine set of fringes will make its appearance. This is a secondary set of fringes, probably caused by the very thin film of air between the separator and the compensator glasses. These secondary fringes will be very straight unless distortion or optical defect exists in the two plates.

The fringes which are sought will seldom be straight on first appearance, but will be found in the form of parts of concentric rings and may occur with almost any width and of varying intensity. In adjusting for observation the fringes should be made straight and have the maximum brightness. This adjustment is made by turning the long screw by means of the small wheel with handle and milled edge which is placed at the opposite end of the interferometer from the separator and compensator plates (\(D\), Fig. 3). The delicate motion necessary to complete this adjustment should not be made with the handle, but by using the rim of the milled wheel, and after each fraction of a turn the hand should be taken from the wheel to permit the instrument to come to rest. The wheel should be turned while close watch is kept of the movement of the fringes and it should be turned so that the shift of fringes is in the direction in which lies the center of the series of concentric fringe bands. As the wheel is turned in this direction the fringes become straight, and, finally, if the motion is continued, the curvature of the fringes will be in the opposite direction, showing that the desired position of straight fringes has been passed. When this occurs the motion should be reversed until the desired position is obtained and the fringes are straight. In seeking this position it will be noted that the fringes alternately become brighter and dimmer as the wheel is turned. The position of maximum brightness occurs when the paths of the two rays providing interference are equal. This is also the position for straight fringes. This position should always be sought, for observations are more easily made with bright and straight than with dim and curved fringes.

\section*{TEMPERATURE CONTROL.}

In the determination of the intensity of the force of gravity it is very desirable and essential that the observer select a location having a small range of temperature; therefore, in general, the temperature control of the various parts of the interferometer and support will be very good and few stresses, etc., will be set up which might cause undue shift of fringes. However, the wood or other material from which the interferometer independent stand is to be constructed should be placed inside the building some time before it will be needed, in order that it may attain the approximate temperature of the pendulum room. Wood which is moist should be avoided. Any changes in the independent stand due to absorption or evaporation of moisture will cause a slow but constant shift of the fringes, and generally in one direction. This makes observing very difficult, and without using special caution may cause errors in the results.

\section*{SODIUM LIGHT, WAVE LENGTH, ETC.}

In the use of the interferometer it is essential that a monochromatic light be used, for it is necessary to know the wave length. In selecting a monochromatic light to use with the interferometer the sodium light was chosen, for it could very easily be obtained by the use of sodium chloride and an alcohol flame.

If the fringes shift or are displaced by one fringe-width due to the motion of the pendulum, it is easily seen that the pendulum case has moved through a distance equal to one-half the wave length of the light used, for a change of distance between the thinly silvered plate and the mirror on the pendulum case causes a change in the total path of the ray to and from that mirror by double the amount, so that if the length of
the wave of light used is known we have a means of computing the movement of the case.

The wave length of the sodium light is practically 0.58 micron, and therefore a shift or displacement of the fringes by an amount equal to one fringe-width means a displacement of the pendulum case of 0.29 micron.

There is furnished with each interferometer an alcohol lamp and stand with lens and glass tube, asbestos fiber (\(L, z, w, x\), Fig. 2), and sodium chloride to produce the sodium flame, for the value of the flexure coefficient is based upon the value of the wave length of sodium light.

INDEPENDENT SUPPORT FOR THE INTERFEROMFTER.
By means of the rotating frame holding the half-silvered mirror or separator and the compensator glass the interferometer can be used as a right or left handed instrument; that is, it can be used with flame to the right or the left of the interferometer. This permits of a wide range in form of support for the interferometer, which is of great importance in fieldwork, for the pendulum receiver is mounted in various places, and

Fig. 4
P. Pandulum case

F: Pasition of gloss platos ond mirrors of interforometer were the interferometer not capable of being used in both positions its mounting would often be attended with great difficulty.

As the conditions existing at each gravity station may be such as to demand a special form of interferometer support, no description can be given for a form which will suit every station. In general, however, a modification of one of the typical forms described below can be used.

Type 1 .-Best fitted for flexure measures when the pendulum pier is rather high, when the pier is at some distance from the walls of the room, and when the pier is so constructed that vibrations are not communicated to the ground close to the pier. This form of support consists, essentially, of three legs in the form of a tripod, with a head large enough to hold the interferometer. The legs can be sunk into the ground near the pier or else fastened by plaster of Paris to the floor in front of the pier. In all forms avoid resting the stand on wooden flooring, if the observer is compelled to work on this same flooring.

Type 2.-To be used when the pendulum receiver rests upon a concrete floor or low pier and conditions are such that the vibrations may be communicated from the pendulum support to the independent support of the interferometer. This form (see fig. 4) consists of a beam supported by uprights close to the manometer window and parallel to the plane of oscillation of the pendulum. A second beam, at right angles to this, has one end supported by an upright and the other end resting on the first beam. This second beam is the one upon which the interferometer is mounted. The interferometer should be placed far enough from the receiver so that the distance from the center of the separator and comparator frame to the mirror on the receiver will fall within the variable distance between the movable mirror and the center of the separator and compensator frame. If needed to make the stand more rigid, braces may be nailed to
the beam and upright at each point of support. It will often be found advisable to weight the stand with bricks, pails of sand, etc., to increase its stability. Care must be taken that the supports rest far enough away from the receiver so that there is no chance of vibration being communicated to it by the pendulum. In case the receiver is near to a wall the beam may be attached to the wall, but wind pressure against the side of the building may be great enough to make observing difficult when this is done, for the wind pressure may make the wall vibrate, but not the floor. This form of stand may be modified as shown in fig. 5. Other conditions being equal, however, that type of stand should be used which will permit the observer to have room to start the pendulum swinging and to read the arc.

Whatever type of stand is constructed the top of the support at the position where the interferometer is to be mounted should be about \(43 / 4\) inches below the top of the receiver when the cover is off and so placed that, when the interferometer is resting upon it, the distance from the mirror on the receiver to the center of the frame holding the thinly silvered mirror and the compensator fall within the variable distance between the movable mirror and the center of that frame.

\section*{MOUNTING AND ADJUSTMENT OF THE INTERFEROMETER.}

The base plate of the interferometer can be affixed to the support by plaster of Paris, beeswax, or screws, or it may simply rest on the support. Plaster of Paris should not be used if the base plate is to be fastened to
 wood, for moisture should be avoided. By means of the leveling screws the instrument is adjusted to the right height, which can be quickly determined by sighting along the top of the separator frame and the top of the mirror on the receiver; these should be at the same height. The center of the separator frame should be directly in front of the center of the mirror on the receiver and the long axis of the interferometer approximately parallel to the face of the mirror on the receiver. By means of the long screw the movable mirror should be placed the same distance from the center of the separator frame as is the mirror on the receiver, in order to make the two paths from the separator to the two reflecting mirrors equal, a condition essential in using the interferometer. This is easily done by placing one leg of a pair of dividers in the small hole (\(A\), fig. 3) on top of the frame and the other leg alternately to the two small mirrors whose distances are to be made equal.

The sodium flame and the lens should be adjusted for elevation and direction so that, when looking through the thinly silvered glass into the mirror on the receiver, the field is a uniform sodium flame color, or at least that part of it bounded by the circular image of the lens. Two distinct images and one faint image of this lens will be seen. By shifting the interferometer and its base and by using the leveling screws the two brighter images should be made to overlap approximately; then the leveling screws should be clamped. In the field there will be found images of the small ink spot which is on the center of the face of the thinly silvered mirror. The two images of this spot
\[
63481^{\circ}-11-33
\]
should be used in the final adjustment of the coincidence of the images, which adjustment should be made by means of the fine motion screws controlling the motion of the two reflecting mirrors. When the two images are made to coincide exactly, it is well to check the distance of the two mirrors from the center of the separator glass, making corrections if necessary.

Then comes the problem of causing the fringes to appear in the field, and this requires care and patience. If the above adjustments have been made accurately, the fringes may quickly be found. No set rules can be given for the production of the fringe field, as it is largely a matter of experiment in each individual case. With the two images overlapping, as described above, by using first one and then the other of the two fine adjustment screws on the interferometer mirror the spots are made to separate slightly in various directions from the coincident position. If great difficulty is had in finding the fringes, the cause may be in the lack of stability in position of the support or in the incorrect adjustment of the movable mirror. The stability of the support can often be tested by a slight tapping with the finger. If satisfactory, it should show no vibration. The adjustment of the movable mirror may be changed a trifle, but not more than a small fraction of a turn.

When the fringes have been found, they should be made bright and straight and of the desired width as described on pages 439 and 443 ; the telescope and scale should be adjusted as described on page 442, the pendulum set to swinging, and observations made in accordance with the plan previously outlined.

The lid should be on and close up to the arm of the receiver mirror, as this was the position when the flexure coefficient was determined, and it is desirable that observation for flexure be made in the field under the same conditions as when the coefficient was determined.

It is to be noted that the measurements of flexure are made with case not exhausted, while pendulum observations are made with receiver exhausted to 60 mm . pressure. However, it is believed that there is no error introduced into the results, for it is difficult to see how flexure could be changed by exhausting the case.

\section*{DETERMINATION OF THE COEFFICIENT OF FIEXURE.}

The method used to determine the coefficient for flexure correction to the pendulum period was the method first used by Airy and employed since by most observers.

In determining the coefficient for flexure of the supports in terms of the period of the pendulum by this method, simultaneous swings of two different pendulums were observed, the periods of each being determined by using the same two chronometers to operate both flash apparatus. The pendulums were swung on separate piers, and under nearly identical conditions except for flexure. One was kept swinging as a standard with no change of conditions, while the other was swung under constant conditions except for varying flexibility of the support, suitable conditions having been determined by a preliminary investigation with the interferometer. The work was divided into "runs," each run being independent as far as observations were concerned. The pendulums were swung in nominally eight-hour periods, with no renewal of pendulums, each run with not less than six swings and each beginning and ending with a time set. When all corrections had been applied to the period of the standard pendulum, the flexure being constant throughout the run, the variation from the mean period of the run shown by the individual swings was assumed to be due to the variation in rate of the chronometer
for the periods covered by the individual swings and to whatever small observational errors might be present. As the period of the other pendulum was approximately the period of the standard pendulum; it was assumed that its individual periods had the same corrections due to rate as the corresponding period of the standard pendulum.

When these corrections had been applied to the swings of the pendulum having varying flexures, it was found that the periods obtained for the various swings differed. It was assumed that this variation was caused by the variation in flexure conditions and that the change. in period was proportional to the displacement of the support and therefore proportional to the flexure as expressed in terms of the fringe width. (See table of results below.)

In determining the coefficient for flexure correction the following programme of observation was used, observations being made in manner described:

Run A.-Pendulum \(\mathrm{A}_{4}\), under standard conditions, and \(\mathrm{B}_{4}\), under standard conditions except with changes in flexure conditions, as follows: Swings 1 and 2 , small flexure; 3 and 4, large flexure; 5 and 6, medium flexure.

Run B.-Same as Run \(A\), except \(B_{4}\) under standard conditions and \(A_{4}\) under varying changes of flexure.

Run C.-Like Run \(A\), with \(A_{5}\) in place of \(A_{4}\) and \(B_{5}\) in place of \(B_{4}\).
Endeavor was made to vary flexure conditions enough to obtain many points at various places on the flexure curve.

The following table shows the results obtained:
Pendulum \(B_{1}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Small flexure} & \multicolumn{2}{|r|}{1,arge flexure} & \multicolumn{2}{|r|}{Difference} & \multirow[b]{2}{*}{Result} \\
\hline Filexure & (Period corrected except for flexure) & Flexure & (Period corrected except for flexure) & Flexure & Periox & \\
\hline \begin{tabular}{l}
Frinoc \\
o. 10 \\
.08 \\
.07
\end{tabular} & \[
\begin{array}{r}
0 \div 5008099 \\
8117 \\
8099
\end{array}
\] & \begin{tabular}{l}
Frinoe \\
0. \\
\hline
\end{tabular} & 0: 5008166 & Frinue & & \begin{tabular}{l}
\[
\text { o. or } \mathrm{F}=2.13^{*}
\] \\
7 th place of period
\end{tabular} \\
\hline Mean 0.083 & 0. 5008105 & 0. 370 & 0. 5008166 & 0. 287 & 0:0000061 & \\
\hline \multicolumn{7}{|c|}{Pendulum \(A_{1}\).} \\
\hline 0.06
.12
.06 & 0. 50084090 8400 & 0. 322 & 0. 5008438 & & & \begin{tabular}{l}
o. or \(\mathrm{F}=1.32\) \\
7 th place of period
\end{tabular} \\
\hline Mean 0.080 & 0. 5008406 & 0. 322 & 0. 5008438 & 0. 242 & 0. 0000032 & \\
\hline \multicolumn{7}{|c|}{Pendulum \(A_{5}\).} \\
\hline 0. 09 & 0. 5006635 & 0. 26
.28 & -. \(\begin{array}{r}5006649 \\ 6674 \\ \hline\end{array}\) & & & \begin{tabular}{l}
o. or \(F=1.50\) \\
7th place of period
\end{tabular} \\
\hline Mean 0.09 & 0. 5006635 & 0.27 & o. 5006662 & -. 18 & 0. 5000027 & \\
\hline
\end{tabular}
*Difference in period
Difference in flexure \({ }_{2} \frac{61}{28.7}\)

Results weighted according to the differences in flexure give for a final mean \(0.01 \mathrm{~F}=1.73\).

The value o.or \(\mathrm{F}=1.73\) for correction to period in seventh place was adopted as the flexure coefficient for the two sets of pendulums. As the range of period is small, it is sufficiently accurate to consider this coefficient a constant quantity and the correction proportional to the flexure of the support as obtained in fringes.

INTERFEROMETFR AS A FIELD INSTRUMENT.
Although the interferometer was used in the measurement of the flexure of pendulum supports for about twenty months under the varying conditions found in field work, there were exceedingly few cases where measures could not be taken on account of excessive erratic vibrations. Traffic on the streets and wind pressure on the buildings were the principal agents causing a delay. Observing for flexure was mostly done at night, immediately after the close of the pendulum observations. Usually there was little, if any, traffic to hinder work at that time, and the fringes were generally stable enough for the observations to be made without difficulty.
```

COMPARISON OF THE STATIC WITH THE INTERFEROMETER METHOD.

```

In regard to the relative value of the interferometer method as compared with the static method of determining flexure, which had been previously employed in gravity work by the Survey, it is believed the former has enough advantage over the latter to warrant its continued use. The following statements are based mostly on a comparative test of the two methods made at Washington and at various stations; in the field.

While the static method is a little more simple, there is but little gain in time over the interferometer method. The interferometer can always be used under conditions where the static method can be used, except in cases of extreme flexibility of support; but this condition is seldom met in actual gravity work.

The static method, due to the limit of power of the microscope, may easily give results which may be in error by as much as ' 1 micron (if not more), corresponding to an error of 6.5 in the seventh place of period. The interferometer method gives results far more accurate, the results, it is believed, rarely being in error by more than 2 in the seventh place of period.

The use of the dynamic method is preferred to the static method, as the theory connecting the static measurements and the actual dynamic conditions under which gravity observations are made is not considered satisfactory.

Prejudice in observing is practically eliminated by the interferometer method, for by changing arc and fringe-width many conditions are introduced, and the method of observing in terms of scale divisions and on various parts of the scale tend to protect the observer against such error. This is not the case with the static method, where the observer may easily duplicate erroneous readings.

PECULIAR FEATURES OF THE FLEXURE OF THE PENDULUM SUPPORT.
In the preliminary work, when making tests with the interferometer, some very interesting facts were discovered in regard to flexure of the pendulum supports. The details of these experiments are not given, but can be found in the archives of the Survey. Only the results are given here.
(a) The flexure of the concrete pier at the Coast and Geodetic Survey Office produced by the pendulum swinging through an are of 5 mm . is less than the limit of measure by the interferometer, and therefore it can be said that no correction for it is necessary.
(b) When mounted in the best possible manner on this pier, the center of rocking of the pendulum case was found to be 3.75 inches above the capstone of the pier for an are of 5 mm .
(c) It was found that the displacement of the pendulum support, when the pendulum was swinging through an arc of 5 mm ., was one-ninety-fifth of the displacement produced by the i 500 -gram weight used in the static method, both measurements of displacements being made with the interferometer. The computed theoretical result obtained was \(1: 91\) as the ratio existing between the displacement caused by the two forces, showing a marked agreement with the value found by experiment.
(d) The measures by the old, or static, method may be in error by as much as I micron, corresponding to an error of 6 in the seventh place of period, for 1 micron is the smallest reading possible with the apparatus.
(e) In addition to the rocking or rotary motion about a horizontal axis in the support due to the swinging pendulum, there occurs also a very small rotary motion about a vertical axis, for the pendulum is supported at a point slightly eccentric to the center of the case. This movement is too small to be appreciable under working conditions.

\section*{ALPHABETICAL INDEX.}
(Exclusive of Appendices 3-6.)

\section*{A.}

ADAMS. F. L., Magnetic Observer, D. 42.
alabama. Magnetic observations, p. 3 .
ALASKA. Boundary, pp. 7. 59. Hydrography, pp. 42. 43. 44, 45, 46, 47. Magnetic observat ons, pp. 42, 43, 44, 45. Surveys made, \(p\). 10. Tide observations, pp. 42, 45, 46, 47. Topography, pp. 42. 43. 44, 45, 46, 47. Triangulation, pp. 42, 43. 44, 45.46, 47.
ALASKA-YUKON-PACIFIC-EXPOSITION, DD. 8. 56.
ALBEMARLE SOUND, survey of, p. 23
ALPHA, launch. p. 45.
AMERICAN SEAMEN'S FRIEND SOCIETY INSTI-
TUTE, tide indicator, p. 27
APPROPRIATIONS, p. 12 .
ARCTIC TIDE OBSERVATIONS, p. 8.
ARIZONA. Erection of magnetic observatory, p. 35. Gravity observations, p. 24. Leveling, p. 34. Magnetic observations, pp. 31, 39.
ASTRONOMIC OBSERVATIONS, p. g. New Mexico, p. 30. Texas, p. 30.

\section*{B.}

BACHE, STEAMER, p. 31. Work of, p. 13 . BALDWIN, G. C., Assistant, p. 60. BALDWIN MAGNETIC OBSERVATORY, p. 39.
bARNARD, E. C., Chie! Topographer, p. 57.
bASE MEASUREMENT. Texas, p. 30 .
BAYLOR, J. B., Assistant, p. \(5^{8}\).
BECK, H. L., Assistant, p. 42.
BENTON, J. R., Magnetic Observer, p. 13.
BOUNDARIES. Alaska, p. s. United States and Canada, p. 57.

BOUTELLE, J. B., Assistant, p. 23 .
BOWIE, WILLIAM, Assistant, p. 15 .
BRABAZON, A. J., p. 58.
BRAID, ANDREW, Assistant, pp. 12, 65 .
BURBANK, J. E., Magnetic Observer, p. 24.
BURGER, W. H., Assistant, p. 24.
BUZZARDS BAY, supplemental survey, p. 24.

\section*{C.}

CADE, C. M., Aid, p. 33.
CALIFORNIA. Chart revision, p. 26. Gravity observations,
p. 24. Hydrography, p. 25. Magnctic observations, p. 31. Tide obscruations, p. 38. Topography, pp. 40, 4r. Triangulation, pp. 25. 30. 35 .
CANADA AND ALASKA BOUNDARY, p. 59 .
CANADA AND UNITED STATES BOUNDARY. pp. 7, 57.
CHARTS. New drawings, pp. 67, 68. New plates, p. 67. CHART DIVISION, p. 69.
CHART REVISION. California. p. 26.
Connecticut, p. 37. Hawaii, p. 28.
Maryland, p. 26. Massachusetts, pp. 28, 33.
New York, pp. 33. 37. Virginia, p. 26.
Washington, p. 25.

CHELTENHAM MAGNETIC OBSERVATORY, p. 24
COAST PILOT WORK, pp. 9. 13.
COCHRANE, M. F., p. 57 .
COMPUTING DIVISION, p. 65 .
CONNECTICUT. Chart revision, p. 3i. Magnetic observa-
tions, p. 34.
CONTROLLER BAY, survey of, p. 42.
COOK INLET. Survey of, pp. 45, 46.
COSMOS, tender, p. 44.
CRAIG. J. D.. p. 60.
CROWELL, ARTHUR, Assistant, p. so.
D.

DELAWARE. Hydrography. 万. 4o. Triangulation, p. 38 . DELAWARE BREAKWATER SPEED TRIAL
COURSE. p. 40.
DELAWARE OYSTER SURVEY, pp. 8, 62.
DELTA, launch, p. 42.
DENSON, H. C., Assistant, pp. 42, 50.
DERICKSON, R. B., Assistant, pp. 25, 43. DETAILS OF FIELD OPERATIONS, p. aI. DETAILS OF OFFICE OPERATIONS, p. 63. DIBRELL, W. C., Assistant, pp. 25. 44. DICKINS, E. F., Assistant, p. 48.
DISTRICT OF COLUMBIA. Gravity observations, p. 24. DIVISION OF TERRESTRIAL MAGNETISM. p. 65. DRAWING AND ENGRAVING DIVISION.p. 66.
E.

ELGIN, R. R., p. 29.
ENDEAVOR, STEAMER, Dp. 23. 24, 40. Work of, p. 13. EXPLORER, STEAMER, pp. 25. 44. Work of, p. i4. EXPOSITION, Alaska-Yukon-Pacific, p. 8.
F.

FAIRFIELD, W. B., Assistant, pp. 26, 58.
FARIS, R. L., Assistant, p. 16.
FATHOMER, STEAMER, p. 52. Work of, p. 49.
FERGUSON, O. W., Assistant, p. 26.
FIELD OPERATIONS, details of, p. 9 I.
FISCHER, E. G., Mechanician, p. 27.
FLORIDA. Hydrography, p. 3r. Tide observations, p. 38.
Triangulation, pp. 36, 38.
FORNEY. S., Assistant, p. 27.
FORT HAMIL,TON. Tide gauge inspected, p. 27.
FORT MYER MILITARY ROAD, pp. 8, 61 . FRENCH, O. B., Assistant, p. 28.
G.

GAARDEN, O. H., Magnetic Observer, p. 39. GEDNEY, STEAMER, pp. 25, 43. Work of, p. 84. GILBERT, J. J., Assistant. p. 12.
GRANGER, F. D., Assistant. p. 57
GRAVES, H. C., Nautical Expert, p. 29.

GRAVITY OBSERVATIONS, p. 9. Arizone, p. 24. California, p. 24. District of Columbia, p. 24. Maine, p. 24. Michigan, pp. 24, 32. Minnesota, pp. 24. 32. Nevada, p. 24. New Mexico, p. 24. New York, p. 24. North Dakota, D. 24. South Dakota, p. 24. Tennessee, p. 24. Texas, p. 24. Vermont, p. 24.

\section*{H.}

HARGER, C. Y., Assistant, p. 32.
HARRIS, R. A., Computer, pp. 70, 66.
hartineli, GEORGE, Magnetic Observer, p. 54.
HAWAII, Chart Revision, p. 28. Hydrography, p. 28. Magnetic Observations, p. 39. Reconnaissance, p. 28. Topozraphy, p. 28. Triangulation, p. 28.
HAWAIIAN RAILWAY CO., p. 29.
HAYFORD, J. F., Assistant, pp. 15. 61.
HECK, N. H., Assistant, pp. 29, 54.
HILL, J. S., Assistant, pp. 30, 3 I.
HIL,L, W. M., Magnetic Observer, p. 3 .
HODGKINS, W. C., Assistant, D. 3 r.
HODGSON, C. V., Assistant, pp. 50, 51.
HONOLULU MAGNETIC OBSERVATORY,p. 39. H Y DROGRA PHER, STEAMER, p. 29. Work ol, p. 14. HYDROGRAPHIC WORK, p.g.
HYDROGRAPHY. Alaska, pp. 42, 43, 44, 45, 46, 47. California, p. 25. Delaware, p. 40. Florida, p. 31. Hawaii, p. 28. Maine, p. 31. Maryland, pp. 26, 27. Massachusetts, p. 31. New Hampshire, p. 31. North Carolina, p. 23. Philippine Islands, pp. 50, 51,52,53,54. South Carolina, p. 3 I. Virginia, pp. 23, 26, 27, 29, 31

\section*{I.}

IDAHO. Leveling, p. 32.
ILLINOIS. Magnetic observations, pp. 34, 35, 41
INDIANA. Magnetic observations, pD. 31, 35, 41
INSTRUMENT DIVISION, p. 69.
INTERNATIONAL BOUNDARIES, p. 57 .
INTERNATIONAL GEODETIC ASSQCIATION, p. or.
IOWA. Magnetic observations, pp. 23, 35, 41.

\section*{J.}

JAMES RIVER. Survey of, p. 24.
JEWELL, D. R., Assistant, p. 5 r.
K.

KANSAS. Magnetic observations, pp. 39. 41. KENTUCKY. Magnetic observations, p. 3 r.
KING, H. D., Assistant, DD. 32. 33.
KING, W. F., British Commissioner, pp. 57, 59.
KODIAK, survey of harbor, p. 46.
KURTZ, FORD, Aid, p. 33 .
L.

LATITUDE OBSERVATORIES, p. 8.
LELAND, O. M., Surveyor, p. 59.
LEVELING, 9. Arizona, p. 34. Idaho, p. 32. Montana, p.
32. New Mexico, p. 34. Oklahoma, p. 33.

LEYTE, P. I. Survey of, pp. 50,51,52,53.
LIBRARY AND ARCHIVES DIVISION, p. 20.
LOUISIANA. Magnetic observations, p. 31. Tide gauge
inspected, p. 41, Tide observations, p. 38 .
LOUISIANA AND MISSISSIPPI BOUNDARY, pp. g , 56, 62.

\section*{M.}

MAGNETIC OBSERVATIONS. Alabama, p. 3r. Álaska, pp. 42, 43, 44, 45. Arizona, pp. 3x, 39. Calitornia, p. 3i. Connecticut, p. 34. Hawaij, p. 39. Illinois, pp. 34. 35. 4I.

Indiane, pp. 31, 35, 4r. Iowa, pp. 23, 35, 4r. Kansas, pp. 39, 4I. Kentucky, p. 3 I. Louisiana, p. 31. Maine, p. 34 . Maryland, p. 24. Massachusetts, pp. 32, 34. Michigan, p. 25. Minnesota, pp. 25, 34, 35. Mississippi, p. 31. Missouri, p. 41. Nebraska, pp. 34. 45. New Hampshire, p. 34. New Jersey, p. 23. New York, pp. 23. 25. North Carolina, p. 3r. North Dakota, pp. 25. 31. Ohio, p. 4r. Pennsylvanin, pp, 23, 4r. Philippine Islands, pp. 5I, 52. Porto Rico, p. 54. Rhode Ísland, p. 34. South Dakota, pp. 25. 34. Tennessee. pp. 25, 31. Texas, pp. 25, 31. Vermont, p. 25. Virginia, p. 31. At sea, pp. \(32,43,44,51,52\).

MAGNETIC OBSERVATORIES. Baldwin, Kans., p. 39. Cheltenham, Md., p. 24. Honolulu, Hawaii, p. 39. Sitka, Alaska, p. 42. Tucsov, Ariz., p. 35. Vieques, P. R., p. 54. MAGNETIC WORK, p. 10. On land, p. 17. At sea, p. 18. MAGNETIC OBSERVATORY WORK, p. 16.
MAINE. Gravity observations, p. 24. Hydrography, p. 31. Magnetic observations, p. 34. Selections of site for Tide gauge p. 35. Erection of Tide gauge, p. 36. Tide observations, p. 38. Wire drag work, p. 29.

MARINDUQUE, STEAMER, p. si. Work of, p. 49.
MARITIME ASSOCIATION. Tide indicator inspected, \(p\).
27.

MARXLAND. Chart revision, p. 26. Hydrography, pp. 26, 27. Magnetic observations, p. 24. Survey of oyster grounds, p. 41. Topography, pp. 26, 27. Triangulation, pp. 26, 27, 38, 4 s.
MARYLAND SHELL FISH COMMISSION, pp. 8, 4 I. MASBATE, P. I. Survey of, pp. 50, 54.
MASSACHUSETTS. Chart revision, pp. 28, 33. Hydrography, p. 31. Magnetic observatious, DP. 32, 34. Triangulation, p. 24. Wire drag work, p. 29.
MATCHLESS, SCHOONER, п. zt. Work of. p. 14.
MAYNARD, H. W., Aid, p. 34.
McARTHUR, STEAMER, pp. 36, 42, 46. Work of, p. 15.
McCOMB. H. E., Magnetic Observer, p. 34.
McGRATH, J. E., Assistant, p. 58.
MICHIGAN. Gravity observations, pp. 24, 32. Magnetic observations, p. 25.
MILLER, J. B., Assistant. p. 52.
MINDANAO, P. I. Survey of, pp. 50, 51, 53.
MINDORO, P. I. Survey of, p. 52.
MINNESOTA. Gravity observations, pp. 25, 33. Magnetic observations, pp. 25, 34, 35 .
MISCELLANEOUS SECTION, p. 7x.
MISSISSIPPI. Magnetic observations, p. 3 r.
MISSISSIPPI AND LOUISIANA BOUNDARY, pp. g , 56.62.

MISSISSIPPI RIVER COMMISSION, pp. 8, 56.
MISSOURI. Magnetic observations, p. 41 .
MOLBY, F. A., Magnetic Observer, p. 35. MONTANA. Leveling, p. \(3^{2}\).
MORSE, FREMONT, Assistant, pp. 35, 57, 59.
MUELLER, E., Assistant, pp. 35, s6.

\section*{N.}

NANSEMOND RIVER. Survey of, d. 23 .
NAT MEADER, SCHOONER. Assistance rendered, p. 32. NEBRASKA. Magnetic observations, pp. 34, 4f,
NESBIT, SCOTT, Disbursing Agent, p. 88.
NEVADA. Gravity observations, p. 24.
NEW HAMPSHIRE. Hydrography, p. 3i. Magnetic observations, p. 34. Topography, p. 39.
NEW JERSEY. Magnetic observations, p. 23 .
NEW MEXICO. Astronomic observations, p. 30. Gravity observations, p.25. Leveling, p. 34. Magnetic observations, p. 3 5. Triangulation, p. 30 .

NEW YORK. Chart revision, pp. 33, 37. Gravity observa. tions, p. 24. Magnetic observations, pp. 23, 25. Tide gange inspected, p. 27. Tide Indicator, p. 27. Tide observations, p. 38. Topography, p. 33. Triangulation, p. 33. Wire drag work, p. 29.
NORTH CAROLINA. Hydrography, p. 23. Magnetic observations, p. 3 I . Marking boundaries of fishing grounds, p. 37. Tide observations, p. 38. Topography, p.33. Triangulation, p. 33 .
NORTH CAROLINA FISH COMMISSION, p. 37.
NORTH DAKOTA. Gravity observations, p. 24. Magnetic observations, pp. 25, 3 I.
NUSHAGAK BAY. Survey of, p. 44 .
0.

OBSERVATORIES, LATITUDE, p. 8 !
OFFICE WORK, p. II.
OFFICE OF ASSISTANT IN CHARGE, pp. 12, 65 .
OFFICE OF EDITOR OF PUBLICATIONS, p. 19.
OFFICE OF DISBURSING AGENT, D. 18.
OFFICE OF INSPECTOR OF GEODETIC WORK, \(p\). 15.

OFFICE OF INSPECTOR OF HYDROGRAPHY AND TOPOGRAPHY, p. 12.
OFFICE OF INSPECTOR OF MAGNETIC WORK, \(p\). 16.

OHIO. Magnetic observations, p. 41.
OHIO, STEAMSHIP, p. 44.
OKLAHOMA. Leveling, p. 33 .

\section*{P.}

PAGENHART, E. H., Assistant, p. 52.
PARKER, W. E., Assistant, pp. 45. 56.
PATHFINDER, STEAMER, p. 53. Work of, p. 48.
PATTERSON, STEAMER, D. 42. 45. Work of, p. 15 . PEARY, R. F., U. S. N., pp. 56,66 .
PENNSYLVANIA. Inspection of tide gauge, p. 36. Magnetic observations, pp. 23, 41. Tide observations, p. 38.
PHILIPPINE ISLANDS. Hydrography, pp. 50, 51, 52, 53,
54. Magnetic observations, pp. 51, 52. Office work, p. 49.

Progress of survey, p. 49. Sailing directions, p. 50. Surveys, pp. 10, 48. Topography, pp. 50, 51, 52, 53, 54. Triangulation, pp. 50, 51, 52, 53, 54 .
PORTLAND CANAL. Survey of head of, p. 44 .
PORTO RICO. Magnetic observations, p. 54. Wire drag work, p. 54.
PORTO RICO MAGNETIC OBSERVATORY, p. 54. PRATT, J. F., Assistant, p. 53 .
PRINCE WILLIAM SOUND, Survey of. p. 47.
PUBLICATIONS. List of, p. 19. Issued, p. 72. Received, p. 71.

\section*{Q.}

QUILIIIAN, C. G., Assistant, pp. 36, 43, 45.

\section*{R.}

RAINBOTH, G. C., p. 58 .
RECONNAISSANCE. Waslington, p. 31 .
REKATE, G. H., Aid, pp. 31, 36.
RESEARCH, STEAMER, pp. 50, 54. Work ol, 49. RHODE ISLAND. Marnetic observations, D. 34. RHODES, H. W., Assistant, pp. 36, 46.
RIGGS, THOMAS, JR., Surveyor, p. 60.
RITTER, H. P., Assistant, pp. 37, 56.
ROMBLON, STEAMER, pp. 50, 52. Work of, p. 48.
RUDE, G. T., Assistant, pp. 37, 47.
s.

SAILING DIRECTIONS, P. I., p. 50.
SAMAR, P. I. Survey of, pp. 50, 51 .
SAN DIEGO, tide station inspected, p. 40.
SAN FRANCISCO SUBOFFICEE, p. 40. SCHATTSCHNEIDER, S., Assistant, p. 54.
SHELL FISH COMMISSION, MARYLAND, p. 8. SINCI,AIR, C. H., Assistant, p. 57. SITKA MAGNETIC OBSERVATORY, p. 42. SMITH, EDWIN, Assistant, p. 38 .
SOUTH CAROLINA. Hydrography, p. 3 .
SOUTH DAKOTA. Gravity observations, p. 24. Magnetic
observations, pp. 25,34.
SPECIAL DUTY, p. 56 .
ST. LOUIS, U. S. STEAMER, p. 26.

\section*{T.}

TAKU, STEAMER, p. 47. Work of, p. 15.
TENNESSEE. Gravity observations, p. 24. Maguetic observations, pp. 25, 31.
TEXAS. Astronomic observations, p. 30. Base measurement, p. 30. Gravity observatious, p. 24. Inspectiou of tide gauge, p. 35. Leveling. p. 33. Magnetic observations, pp. 25.31. Tide observations, p. 38. Triangulation, p. 30.

TIDAL DIVISION, p. 66.
TIDE INDICATORS, \(\downarrow\). ro.
TIDE INDICATOR, NEW YORK, p. 27.
TIDE OBSERVATIONS, p. 1o. Arctic ocean, p. 56. Alaska, pp. 42. 45, 46, 47. California, p. 38. Florida, p. 38. Louisiana, p. 38. Maine, p. 38. New York, p. 38. North Carolina, p. 38. Pennsylvania, p. 38. Texas, p. 38. Virginia, p. 38. Washington, p. 38 .
TITTMANN, O. H., Superintendent, pp. 57, 59, 6x.
TOPOGRAPHIC WORK, p. o.
TOPOGRAPHY. Alaska, pp. 42, 43,44, 45, 46, 47. California, pp. 40. 41. Hawaii, p. 28. Maryland, pp. 26, 27. New Hampshire, p. 39. New York, p. 33. North Carolina, p. 23. Philippine Islands, pp. 50, 51, 52, 53, 54. Virginia, pp. 23, 26, 27.
TOWNSHEND, S. G., Jr., Maguetic Observer, p. 39.
TRIANGULATION, p.9. Alaska, pp. 42, 43, 44, 45, 46. California, pp. 25, 30. 35. Delaware, p. 38. Florida, pp. 36. 38. Hawaii, p. 28. Maryland, pp. 26, 27, 38, 41. Massachusetts, p. 24. New Mexico, p. 30. New York, p. 33. North Carolina, p. 23. Philippine Islands, pp. 50, 51,52,53,54. Texas, p. 30. Virginia, pp. 23,26,27,38. Washington, p.35. Yukon River, p. 8.
TUCSON MAGNETIC OBSERVATORY, p. 39 .

\section*{\(\mathbf{U}\).}

UNITED STATES AND CANADA BOUNDARY, pp. 7. 57.

\section*{V.}

VERMON'T. Gravity observations, p. 24. Magnetic observations, p. 25.
VESSFLS AND THEIR WORK, p. 13 .
VIRGINIA. Chart revision, p. 26. Hydrography, pp. 23,26,27,29,35. Magnetic observations, p. 31. Tide observa. tions, p. 38. Topography, pp. 23, 26,27. Triangulation, pp. \(23,26,27,38\).

\section*{W.}

WAINWRIGHT, D. B., Assistant, p. 39.
WALLIS, W. F., Magnetic Observer, p. 39.

WASHINGTON. Chart revision, p. 2s. Hydrography, p. 37 Reconnaissance, p. 3r. Tide observations, p. 38. Topoz raphy, p. 36. Triangulation, pp. 31,36. WEEKS, tide station inspected, p. 4r. WELKER, P. A., Assistant, pp. 40,61. WESTDAHL, F., Assistant, p. 40. WHITNEY, P. C., Assistant, p. 26.
WINSTON, ISAAC, Assistant, pp. 41,62.
WIRE DRAG WORK, p. 9. Maine, p. 29. Massachusetts, p. 29. New York, p. 29. Porto Rico, p. 54.

WORK OF THE YEAR. General statement, p. 7 WOODYARD, C. F., Magnetic Observer, p. 4 r.

\section*{\(\mathbf{Y}\).}

YATES, C. C., Assistant, Dp. 4x, 62.
YUKON RIVER. Triangulation, p. 8.
YUKON, STEAMER, pp. 43,45. Work of. D. 15.

0

GENERAL PROGRESS SKETCH

```


[^0]:    To Hon. Charles Nagel,
    Secretary of Commerce and Labor.

[^1]:    * Acting Inspector, September 5 to December 9.

[^2]:    * Meridian stones set as requested by the county surveyors.

[^3]:    * Magnetic observations were also made.

[^4]:    * Meridian lines also established.

[^5]:    *Observations of 1908 not previously published.

[^6]:    * Appendix 4, Report for 1907, "Six primary bases measured with steel and invar tapes."
    $63481^{\circ}-11$ - 10

[^7]:    *See Appendix 3, Report for 1gor, and Appendix 4, Report for 1907, for the field procedure while making actual measurements with base tapes.

[^8]:    *The charge made by the Bureau of Standards to foreign governments or to private individuals for the standardization of base tapes is $\$ 50$ per tape.

    $$
    63481^{\circ}-11-11
    $$

[^9]:    ＊The full price of $\mathbf{\$ 2 0 0}$ for a standardization of 4 tapes has been added to the cost of both the Stanton and Deming base lines for the standardization of the tapes in May， 1909.
    $\dagger$ Appendix 3，1901，＂On the measurement of nine primary bases．＂
    $\ddagger$ Appendix 4，1907，＂Six primary bases measured with steel and invar tapes．＂

