UNITED STATES COMMISSION OF FISH AND FISHERIES.

PARTXIV

REPORT

or

THE COMMISSIONER

HOR

1886.

Rardbrole
SH
11
. A15
1886
A. -INQUIRY RESPECTING FOOD-FISHES AND THE FISHING GROUNDS.
B. -PROPAGATION OF FOOD-FISHES.

WASHINGTON:
GOVERNMENT PRINTING OFFICE.
1589.
S. Mas. $90-I$

National Oceanic and Atmospheric Administration

Report of the United States Commissioner of Fisheries

ERRATA NOTICE

One or more conditions of the original document may affect the quality of the image, such as:

Discolored pages
Faded or light ink
Binding intrudes into the text
This has been a co-operative project between the NOAA Central Library and the National Marine Fisheries Service (NOAA Fisheries). To view the original document, please contact the NOAA Central Library in Silver Spring, MD at (301) 713-2607 x124 or www.reference@nodc.noaa.gov.

LASON
Imaging Contractor
12200 Kiln Court
Beltsville, MD 20704-1387
November 19, 2004

Resolved by the Senate (the House of Representatives concurring), That the report of the Commissioner of Fish and Fisheries for the year 1886 he printed; and that there be printed 11,000 extra copies, of which 3,000 shall be for the use of the Senate, 6,000 for the use of the House of Representatives, 1,500 for the use of the Commissioner of Fish and Fisheries, and 500 for sale by the Public Printer, under such regulations as the Joint Committee on Printing may prescribe, at a price equal to the additional cost of publication and 10 per cent. thereto thereon added, the illustrations to be obtained by the Public Printer, under the direction of the Joint Committee on Printing.

Agreed to by the Senate February $26,1887$.
Agreed to by the House March $2,1887$.
II

RKW

CONTENTS

I．－REPORT OF THE COMMISSIONER．

Pago．
1．Inthodictone votre IX
 x
A．－Field work x
1．－Speeinl invertigations XIV
d．－Prepatation of reports，ete スV
D．－Proposed oxtension of tho inquiry to tho Pacific coust． XV
3．Inquilu minitcting the mememes xyI
A．－Oflico and held work ふVI
Ib．Tho macherel fisiory duting 1886 XVII
C．－Tho schoner Grampus XIX
4．Fismemy helations of ther Onited Stajes wimit Camana． XXI
Information furnished the Secretary of the Treasury by tho Commissioner XXI
5．Proprgation of food－pibhies XXVII
Distribution of fish and oggs xxyIf
Notes on the spocies propagated and distributed x̌vill
a．Tho Fole（Sulea 8olea） xxvili
b．＇The IInlibut（IIippoglossus hippoglossus） גXVIII
c．The Codfins（Gadus morihua） XXIX
d．Tho Dincherel（Scomber seombrus） XXX
e．Tho EInck Eians（Nicropterus dulomici） xスx
f ：Tho Eied－oye（Ambloplites rupestris） xXX
g．The Sunfinh（Lepomis giblosus） xNX
h．The White Perch（Roccus americanas） か入ス
i．The Itoclifinh or stripod Istann（Etoccus lincatus） XXX
j．The gmelt（Osmerus mordax） Exix
k．The Whitenuh（Coregonus chupeiformis） XXXI
l．The Dwarf whitefinh（Coregonuts albula）． XXXI
m．Tho IRrook Trout（Nalvelinus fintinalis） xXXII
3．The Saibling（Salvelinus alpintes）． xxerir
0．The Lake Trout（Ealvelinus namayoush） xXXII
p．Tho Itainbow Tront（Salmo irideus） XxXII
q ．The krown Trout（Salmo fario） NxスIII
b．The Ehoch Heven Trout（Salmo levenchais） xxXiv
8．The Atiantic Animou（Salmo salar） cxivy cxivy
The IIanillocised Enlmon（Salmo salar vnr．sebago） XXXV
＇Iheo Bhad（Clupea sapuliszima） xxXyI
v．Tho Cnvip（Cuprinus carpio） xxxpill
20．Tho Taldinsh（Carassites auratus） xxXvili
x ．The Teneh（Tinca tinca） xaxvill
y．The Loobnter（IIomarus americanus） xxxvili
2．The（1）yater（Ostraa virginica） スペスIX
Page.
0. The stathong of the Fibil Commishon XXXIX
A.-Marine stations xxxix
Gloucester, Al_{1} ass XXXIX
Wood's Ifoll, Mass XXXIX
Saint Jerome, Md XL
B. -Stationg for propacaion of the Salmonidio XL
Grand Lako Stream mud Euckejort, Mo $\boldsymbol{\lambda L}$
Cold Spring Marbor, N. Y XLI
Wytherille, Va XLI
Notha XL_{I}
McClond Liver, Cal XLI
C.--Stations for propagation of shad XLII
Laftery Ishad, Md XLII
Washingtou, I. C XLII
Fort Washington, Md XLII
Delawaro River XLII
1).-Stations for propagation of carp XLIII
Fashington, D. C XIIII
E.-New latching stations proposen XLIII
At Dulutl, Minn XLliI
On tho Clackamas River, Oregon XLIV
7. The vessimg of the Fibh Commishon XLV
A. Thos steamer Albatross XLV
13.-Tho meamer Fish Mawk XLVI
C.-Tho steamer Haleyon, XLVI
J). -The sehooner Girampue. Xivit
Assignments of naval officers XLVII
8. Couhymeb and absistance heceived in the Fibit Commegion XLVIII
A.-From tho Tinted States Government XLVIII
B.-From railroad companies of the Unitcd Statea XLIX
C.-From steam-ship companics L
D.-From foreign kovermuents L
9. Courtheims and asithtance hendmed by the Fisif Commbsion LI
A.--To forvign comutries LI
13.-To others LII
10. Pimbic rxmmitions of the methods and meselty of the Commenton LII
At Louisville, Ky III
At Lincolu, Nebr LIII
At Chicago, In LIII
At Wilmington, Dol LIII
11. Visits fiom mepiegentativer of foleigis govehnafents. LIII
Mr. Kadzution Ito, of Japan I.ILI
Dr. Filip Trybom, of Sweden LIII
12. Deatios puming fill year LIII
Notice of Capt. Hubbard C. Chestor LIII
Notice of Capt. Nathaniel E. At wood LIV
13. Ipullications hy the Fibi Commission nuing $1 \& 86$ LIV
Anmal reports LIV
Quarto reporta LV
Bullotin LV
Irmphets 1 LV
 LVI
A.-The fishorics LTV
3.-Scientitic investigation tivi
C.-Fish-culture
LVII
LVII
D.-Reports of ressels and stations
D.-Reports of ressels and stations LVII

II.-LIST OF PAPERS IN THE APPENDICES.

A.-THE FISHERIES.
Page.
I. Bnird. Thfera fibhemes of Eabtem Nobth ambica. By Spencor I:. Bairl. Special index , 3
B.-SCIENTIFIC INVESTIGATION.
II. Jordam and Gosm. A heview of thir floundfre and boles (ileuromicitde) of Ammica and Euhore. By David Start Sordan aud David Liop Goss. Nine plates. Special indox 225
 Eunols. IBy David Starr Jordan and Carl II. Eigenmann. Four platos. Specinl index 343
IV. Linton. Notas on extozoa of mabing risurs of Nrw England, with nescuir. diong of bevemal nde apicies. By Elfin Lintou. Six plates. Special index. 453
V. Fewhea, Repohit on time menube collectid by the U. S. Fibil Comaibsion etramer Alibathoss in the hegion of the Gulf Stieam, in 1885-'80. . By J. Walter Fowkes. One plate. Special index 613
C.-FISH-CULTURE.
VI. Bettoni and Vinciguerma. On the fish-cultiral ebtambishments of Cey. tral Eurore. By Eugenio Bettoni and Decio Vinciguerra. Special index 530
D.-REPORTS OF VESSELS AND STATIONS.
VII. Tanner. Repont on the wonk of the U. S. Fist Commiasion steamer alda. thoss for thr year hening Deckmber 31, 1866. Ioy Lieut. Commander Z. L. Tanner, U. S. Nafy, commanding. Ten platos. Special index 005
 Lawk folt the yhail finding Drcembele 31, 1886. By Mate Janes A. Smith, U S. Navy, commanding c93
 ing Drechmer 31, 1886 600
 Gramids from Junat 6, 1886, so Marica 15, 1887. By Capt. J. W. Collids. Ono plate. Special index
701
701
XI. Mather, Rebom of ormations at Cond Shma Labbon, New Yonk, vumna
the blation of 1886 . By Fred Mathor.
the blation of 1886 . By Fred Mathor. 721 721
 Comabsion foll the yeal 1880-87. By Frank N. Chark.
729
729
XIII. Stome. lumomt of onehations at this United Statre finamon and thout iugaton Stone
737
737
גIV. Atkinn. IReront on till hroragation of Pexobscor barmon in 1880-87. By Charles G. Atkins 747
XV. Athinm. Ruport on thr hiolagation of Schoodic balmon at Grand Lake
Stillam, Maine, in 1886-'87. By Charlos G. Atkins
Stillam, Maine, in 1886-'87. By Charlos G. Atkins 751 751
XVI. Ravenel. Repolit of oderations at Battemy Staiton, Havie ne Ghact, Md.,
jon thie yeah ending Deckmberi 31, 1886. By W. do C. Ravonel
jon thie yeah ending Deckmberi 31, 1886. By W. do C. Ravonel 701 701

yoh the filar 1880. By W. de C. Ravenel.
yoh the filar 1880. By W. de C. Ravenel. 765 765
XVili. Crimwell. Reiont on thir abthicial phopagation of the codieit at Wood's
Holl, fass., yolt the beabon of 1885-'86. By Jamea Carawell
Holl, fass., yolt the beabon of 1885-'86. By Jamea Carawell 770 770
 Mass., for thi beabon or 1886-'87. By Charles G. Atkins.
783
783
XX. MeDomald. Repont of ohebations at the Wytimuidin btation, Vibonia, from Januaiky 1, 1685, to June 30, 1887. By Mirshall McDomatd. Six platos.
793
793
XXI. McDomind. Reiont of bhad instribution hon thir deason of 1880. By Mar-
shall McDonald .
shall McDonald 801 801
XXII. Grubill. Refont of oheleations at the bilad-hatchino atation on Batthig Island, neal Davri di Gracr, Md., nurino the bisabon of 1880. By L. Ir. Grabill. 807
Page.
 geagon or 1886. By Marshall McDonald 815
XXIV. Smith. Mfiolit on the bhad wohk of the steameh Fibir Hawk derma this season or 1886 . Dy Mato James A. Smith, U. S. Nayy, commanding 819
 stabon of 1886. By Mato James A. Smith, U. S. Navy, conmmnding 825
 By Fred Mather. 829
 mission fhom Janciaik 1, 188f, to June 30, 1887. 13y Marshall McDonald 833
 Special indox 843
E.-MISCELLANEOUS.
Xxix. Smith. Ihst of the dhemeg hiations of the U. S. Fibh Commigion, the U. S. Governmrat foneditions in the Athantic and Ahetic Ocease. By Sandergon Smith. Five charts. 871
XXX. Komtytncbeff. Chemical compobion of pibif rioducts, witi some remarkb os theme nethitive value. By Prof. P. Kostytschoff 1019
XXXI. Manrinc. Review of cases of pohoning calabi hy biondi codmbi, and the unnhchsam iromminon of the bale of rednened comidit. By Dr. E. Mauriac. 1027
XXXiI. Kiger. Notes os the Nomweghat mbhereg of 1885. By A. N. Kimer 1055
Generalimiex 1005

LIST OT ILLUSTRATIONS IN THE APPENDICES.

FLOUNDERS AND SOLES." Page.
Fig. 1.-Atheresthes stomias. The Arrow-toothed Malibut 336
2.--Platysomatichthys hipnoglossoides The Greeuland Halibut 336
3. - Hippoglessus hippoglossus. The Halibut 336
4.-Hippoglossoides platessoides. Tho Sand Dab 336
5.--Uippoglossoides olassodon. Tho Alaska saud Dab 336
0.-Psettichthys melnnostictus. Tho San Jirancisco Sole 336
7.-Paralichthys lothostigma. Tho Southern Flounder. 336
8.-Paralichthys oblongus. The Four-spotted Flounder 836
9, 10.-Plenronectua maximas. Tho Turbot 830
11.-Lepidopsetta bilineatta. Tho Califorula Solo 330
12.-Limanda ferruginea. The Rusty Dab 336
13.-Limanda aspera. The Alaska lusty Dab 336
14.- I'soudopleuronectes noericams. The Commou Flatfleh or Winter Flounder 330
15.- Platessa platessa. The Plaice 336
16.-Liopsetta putnami. Tho Eel-back Flounder 330
17.-Liopsotta glacialis. The Aluska Eel-back Flounder 336 336
18.-Platichthye stellatas. Tho California Flounter. 336
10.-Glyptocephalus cynoglossus. The Craig Fluko 336
20, 21.-Solea solen. The Common Sole 330
22, 23.-Achirus fasciatus. Tho American Solo, or Hog-choker 336
SCIANIDAE. (DRUMFISH.) \dagger
Fig. 1.-Cynoscion regale. The Wenkfikh, or Squeteague. 448
2.-Cynoscion nebulosum. The Spottod Wakish 446
3.-Ỉairdiolla chrysura. The Mademoiselle, or Yollow-tail 446
4.-Sciona ocellata. Tho Red Drum, or Channel Bass. 446
5.-Roncador atearngi. 'The Roncalor 446
G.-Lefostomus xunthurus. Tho Spot, Goody, Oldwife, or Lafayotte 440
7.-Micropogon undulatus. The Croaker 440
8.-Menticirrhus amoricauus. Tho Carolina Whiting 440
9.-Menticirrhus saxatilis. The Kinglish, or Son-mink 440
10, 11.-Pogonias cromis. The Drum 440
12.--A plodinotus grunnicus. 'The Fresh-water Drum, or Gaspergou 446
ENTOZOA. \ddagger
Plate I.-Dibothrium manubriforme, Dibothriun alaterie, and Echenoibothrium variable, detrile of 500
II.-Ibyllobothrium thysanocephalum, and Spongiohothrium variabile, details of 502
1LI.-Orygmatobotbriam avgrastra, and Crossoboturium lachintum, dotails of 004
IV.-Calliobothrium verticllatum, Rhynoinobothrium bisulcatum, nad Phorofoboth- rium losium, details of 500
V.-Echinorhynchas agilia, Lehinorhynchus ucus, Tænia dilatata, and Rhyucho- bothriam tenuicolle, detalls of 508
VI.-Echinorhynchus sagittifer, and Echinorhynchus proteus, details of 110

* In Jordan and Gobs's Reviow of the Flounders and Soles of America nud Europe.

\dagger In Jordan and Eigenmann's Review of the Scimaldan of America and Europe.

; In Linton's Notes on Eutozon ol Marine Fishes of New England.
MEDUSA."
Page. Fig. 1.-Viow of Pognntha from tho side. 534
2.-View of I'egrantha from the nboral region 534
FISH-CCLTURE. \ddagger
Fig. 1.-Mothod of applying hatchingrbeses with water at Neuhansen 546 547
2.-Mcthod of supplying hatching boxes with water at Iachson
2.-Mcthod of supplying hatching boxes with water at Iachson
3.-Zenk trough [152
4.-Section of Zenk trough. 659
5. - Modification of Califormial hatching-trough used at Seewiese, flat view.
553
553
6.-Modification of Califorsia hatching trourf used at Seewiese, upright view 553
7.-Contrivance for protectiog fish in tauks. sico
8.-Eel-way at Nouhausen 570
THE ALBATROSS. \ddagger
Plate I.- Plan of reported position of Hopo Bank 080
II.-Tho 'Ianner sounding-machine mounted on stean-cut:er 086
III.-Improvement in deep-sea sounding-machino
686
686
IV.-The Tanner improvel thermometer-caso ${ }^{080}$
V.-Counter-balance wheds.
V.-Counter-balance wheds.
686
686
VI.-Baird's pnenmatic indicator 680
Yit.-Blower for the laird pueumatic indicator. 080
VIII.-Baird's automatic atoam-trap
086
086
IX, X.-Proposed new boilers 088
THE GRAMPCS.§
plate I.-Tise U. S. Fish Commission achooner Grampus 701
WYTHEVILLE STATION. $\|$
Platis I.-Water bupply and ponds for brood fish
800
800
II.-Gencral view of buidiags and giounds 8:0
III.-Dlan of lutchery, first floor 800
IV.- Plan of hatchery, second floor 830
V.-Vicw of interior, showing details of equipment 8.10
VI.-Genoral riew of pouds 800
DREDGING STATIONS. Φ
Fo. 1. - Chart shoming the positions of tho drodgings mado by the L'. S. Fish Commis:ion in the Gulf of Maine, Massachusetts and Capo Cod Bays, and in Vinoyarll nud Nautucket sounds and adjacent waters from 1871 to 1887 1018
9.-Chart glowing the positions of the drelgings made by the U. S. Fish Comanssion in Lons: Ialand, Vineyard, aul Nantucket Sounds and adjacent wators from 1871 to 1887 1018
8.-CLart elsowing the positions of the atredgings mado by the U. S. Fish Commission in the Atlantio Ocean from 18 il to November, 1857 , including also the deop-sen ilredgingt of the U.S. Coast Survoy and the British steamer Ohallonger in tho region mappod 1018
4.-Chart showing positions of all tho dredgings mado by the U. S. Fish Comaision and tho U. S. Coast Survey in tho Gulf of Mexico and adjacont parts of th, Athantic Oco.n and Cariblean Sea from 1857 to Novernber, 1887 1018
5. -Chart ghoring tho positions of all the dredgings malls by the U. S. Fish Commission, U. S. Const Survey, and the lhritish steamor Challonger in tho Caribbean Sea and anjacout parts of tho Atlantic Ocean from 3867 to November, 1837 1018

[^0]
REPORT OF THE COMMISSIONER.

1.-INTRODUGTORY NOTE.

During the period of time covered by this report the work of the United States Fish Commission was under the direction of Prof. Spencer F. Baird. In cousequence of his declining health and the pressure of administrative duties as Secretary of the Smithsonian Institution, as well as Commissioner of Fisheries, the preparation of a report proper to accompany the various reports and papers constituting the appendix was prevented.

The following digest of the operations of the year, which has been prepared from data compiled maiuly by Mr. C. W. Smiley, editor, for the convenience of the Commissioner in the preparation of his annual report, aims to present briefly, from an impersonal standpoint, the principal features of interest in comnection with the work accomplished.

The personality of the distinguished naturalist who founded the United States Fish Commission, and under whose wise and broad ad. ministration it has grown to be the custodian and conservator of one of our most important food resources is, however, fitly represented by his important posthumous paper on the sea fisberies of eastern North America, which appears in the appendix. This monograph, after some introductory acconut of the fisheries, follows with a list of the food and hait fishes and invertebrates, together with biographical notices of the most important species. The food and the reproduction of the sea fishes, their migrations and movements, numbers and abundance, and the dangers aud fatalities to which they are subject from enemies in the sea, from man, and throngh physical causes or changes are discussed at length. The important fishing grounds are described in detail, as well as the apparatus of capture, from the primitice bow and arrow to the elaborate nets and pounds of the present time. The various kinds of bait, the methods of preserving fish and bait, aud the disposition of offal are considered. The statistics of the value of the Λ merican fisheries are giren, and followed by a review of tho economical applications of the products of the fisheries as food for man and animals, and for use in the arts and industries in the form of oils, fertilizers, medicines, etc. The maintenance and improvement of the fisheries by legislation, artificial propagation, and the transfer of spebies from one region to another are suljects which receive the attention warranted by their importance.
2.-INQUIRY RESPECTING FOOD-FISHES AND THE FISHING GROUNDS.
A.-Fheld-worl:.

In this branch of inquiry field-work was carried on in a thorough manner along the Eastern coast of North America from the Straits of Florida to Newfomdland. From February 20 to May 10 the steamer Albatross, Lieut. Commander Z. L. Tanner, U. S. Nary, commanding, was engaged in a survey of the regiou about the Bahama Islands, in the joint interests of the Fish Commission and the Navy Department, the expenses of the cruise being shared by the two. The purpose of the voyage, on the part of the Fish Commission, was to ascertain, if possible, the winter range and habits of certain important food-fishes, which resort to the Eastern coast of North America during the warmer months, but whose first appearance in the spring and whose abundance during the fishing season vary from year to year. The principal species concerning which information of this character was desirel were the mackerel, menhaden, and blnefish; butattention was also to be paid to other economic forms, such as the Spanish mackerel, sheepshead, and drum, if found to occur abundantly in those waters. On behalf of the Navy Department several lines of soundings were to be made to the northward and eastward of the islands and in the deeper channels which separate them, the hydrography of this important region being but little known. Mr. James E. Benedict was in charge of the civilian scientific staff, and was assisted by Mr. Thomas Lee, Mr. Charles II. Townsend, Mr. Willard Nye, jr., and Mr. F. L. Washburn, the two last mentioned being voluntecrs.

The work of sounding was begun to the north of Great Abaco Island, and was carried thence.southeastward along the Atlautic side of the islands as far as San Salvador or Watling's Island, and offshore in some places to a distance of over 100 miles. The greatest depth of water discovered was 3,196 fathoms, in latitude $28^{\circ} 34^{\prime} 42^{\prime \prime}$ north, longitude $76^{\circ} 10^{\prime} 25^{\prime \prime}$ west, or about 110 miles northeast of Great Abaco. Sereral lines were run between the five islands lying at the mouth of Exuma Sound, namely, Cat Island, Long Island, Watling's Island, Concepcion Island, and Rum Cay, showing that the intervening channels are of great depth, the depth in one place exceeding 2,400 fathoms. From this point the soundiugs were carried through Exuma Sound to its upper end, and thence by way of the open sea on the eastern side of Eleuthera Island to the town of Nassau, New Providence Island. Subsequently the work was coutinued through the Northeast and Northwest Providence channels and the Tongue of Ocean. On the homeward journey soundings were also made to the east and north of Great Abaco Island and Little Bahama Banls, and off the coast of the Southeru Atlantic States as far as Cape Hatteras. During these explora. tions one trip was made to Key West and Havana for tho purpose of
obtaining coal and other supplies, giving opportunity for a limited amount of work in the Straits of Florida. The customary physical observations were made at all of the sounding stations, in order to determine the currents, temperatures, and densities of the water and the character of the bottom. The dredge, beam trawl, and tangles were also occasionally employed to ascertaiu the abundance of bottom life, but generally with poor results, the white coral ooze which predominates in the deeper waters about the Bahama Islauds being comparatirely barren and the shallower spots generally too rough for the successful working of the dredging appliances. Surface collecting in the same region with the towing nets was equally unproductive, but by allowing the naturalists to land upon the islands and work along the shore very important results were obtained. The shore work was vigorously pushed at every place where the steamer made a harbor, and parties of two were occasionally left upon the islands while the steaner continued its sounding operations in the neighboring region. The fisheries which center at Nassau, including the important sponge fishery, were carefully studied, but no traces were found of the pelagic fishes, whose winter abode, it was thought, might be in this region. In the Straits of Florida and along the line of the Gulf Strean farther north the results of dredging were exceedingly rich.

From July 8 to October 98 the steamer Albatross was at work upon the offishore fishing grounds of Eastern North America, between New York and Newfoundland, with headquarters at Wood's ILoll, Mass. Mr. Benedict having resigued his position, Mr. Thomas Lee acted as chief naturalist during these explorations, and was assisted by Mr. Sanderson Smith. From July 15 to 18 a short trip was made to the outer edge of the submerged continental plateau south of Martha's Vineyard, where the tilefish was formerly abundant. On August 2 the Albatross started east on a second cruise to the great cod and halibut banks lying off the coasts of the British Provinces, the purpose of which was to study the character and resources of the banks in general, and of those areas specially which are but little known; to search for new or reported banks, the existence or location of which was uncertain; and, partly in the interests of the Navy Department, to investigate certain reported dangers lying in the track of ocean steamers and fishing vessels. Diligent search was made for the mythical Hope Bank, supposed to be located south of Halifas, some distance off Le Hare Bank; but although numerous soundings were made over a wide area inclosiug its reported position, aud thence to Sable Island Bank, no unusual inequalities iu the bottom were discovered. A line of soundings was ruu between Banquereau and the Grand Bank to develop the contour of the intervening gulley in which halibut abound. Trials were made for codfisil on the eastern part of Grand Bank, the eastern edge of which was found to be incorrectly represented on the published charts. Fruitless search was made for a reported bank of great promise
to the fishormen, which was supposed to be located about 200 miles east of the Grand Bank in about 45° north latitude. Soundings were made from this point to the Flemish Cap, which was partly explored, and thence to the northeastern edge of the Grand Bank. St. John's, Newfoundland, was then visited for supplies, giving the naturalists an opportunity to study some important salinon streams, the steamer starting homeward from this place on August 21. During the trip to the westward the explorations were continued off the southern end of Green and St. Pierre Banks, between the latter bank and Lanquereau, across Banquereau and Sable Island Bauls, past the reported position of Hope Bank, and thence along the edge of George's Bank to Vineyard Sound, the steamer arriving at Wood's Holl August 29. Subsequently two trips were made to the decp-water area lyiug between latitude $36^{\circ} 30^{\prime}$ and 39° north, and longitude 70° and $74^{\circ} 33^{\prime}$ west.

The steamer Fish Havoli was eugaged but little in this branch of inquiry during 1886. In August a few of the light-ships at which temperature observations are taken for the Commission were visited, and the keepers instructed as to the proper methods of immersing and reading the thermometers, especially during extremes of temperature. In October a few casts of the beam trawl were made in the region off Saudy Hook, N. J., where specimens of the English solo had been planted several years before, but without finding any trace of them.

The schooner Grampus, Capt. J. W. Collins commanding, made many important investigations respecting the fishing grounds and food-fishes off the New Eugland and adjacent coasts, but these were mostly undertaken in the interest of fish culture. In August, a cruise was made to the tilefish grounds south of Martha's Vineyard, and six days were spent in fishing with cod trawls and hand lines in depths of from 60 to 160 fathoms, over au area about 190 miles in length. Only a few fish, mostly hake, were captured. From September 22 to October 9 the Grampus was engaged in an attempt to carry living specimens of halibut from the fishing grounds to Wood's Holl, for the purpose of securing their spawn in suitable condition for hatching. Fishing for this species was mainly carried on off Le Have Bank, in depths of 200 to 300 fathoms. A number of halibut were taken and transferred to the schooner's well, apparently without receiving serious injury from the hooks or subsequent handling. None of them lived, however, more than thirtysix hours, and the conclusion was reached that the fish could not survive the great change of temperature and pressure incident to their transfer from deep water to the surface. As it was probable, however, that halibut taken in shallow water could be successfully transported, a search was made for them in other localities, but none were found. With other species less difgeulty was encountered. On this and the previous cruise, Mr. Raymond L. Newcomb acted as naturalist, and Mr. James Carswell accompanied the Grampus as fish culturist, in the search for halibut. During most of the remainder of the
year the Grampus continued her fishing trips in Massachusetts Bay and off Cape Am, enrrying several cargoes of live fish, principally cod, in good condition, to the Wood's Holl station.

In December, Mr. Charles A. Townsend, an assistant of the Com. mission, was sent to the western part of the Cuibbean Sea for the purpose of studying the fisheries of that region in the interests of the American fishermen. One of the oljects of his trip was to ascertain if that region was to any extent the winter home of pelagic fishes which resort to the eastern coast of the United States in summer. His worl extended into 1887. Free transportation as far as Swan Island was furnished by Mr. J. M. Glidden, president of the Pacific Guino Company.

The Wood's Holl station was occupied in the interests of scientific inquiry from early in July until the middle of October, becoming during this period the headquarters for the steamer Albatross. The Commissioner, Professor Baird, was in attendance during the entire season, and personally directed the work as in previous years. Prof. A. E. Verrill was in charge of the laboratory, assisted by Mr. Richard Rathbun. The regular force of workers in the biological laboratory was constituted as follows: Prof. S. I. Smith, of Yale College; Prof. John A. Ryder, of Washington; Mr. Sanderson Smith, of New York; Prof. Leslie Δ. Lee, of Bowdoin College; Prof. Edwin Linton, of Washington and Jefferson College; Prof. B. F. Koons, of the Storr's Agricultural School; Mr. J. II. Blake, of Cambridge, as artist; Mr. Peter Parker, jr., of Washington; Miss K. J. Bush, and Miss. C. E. Bush, assistants of Professor Verrrill; and Mr. A. II. Baldwin and Miss M.J. Rathbun, assistants in the National Museum. The chemical and physical laboratory was in charge of Dr. J. H. Kidder, and the aquaria were managed by Mr. William P. Seal, of Philadelphia. Tables in the biological laboratory were also occupied by the following college representatives: Prof. S. F. Clarke, of Williams College; Prof. E. B. Wilson, of Bryn Mawr College, and Dr. A. T. Bruce, of Johus Hopkins University. Mr. Vinal N. Edwards, a permanent observer and collector for the Fish Commission in the Vineyard Sound region, worked in conjunction with the summer party, and assisted it in various ways.

Although acting as superintendent of the station duriug the summer, Professor Ryder was able to devote much time to the problems of lobster and oyster culture, which were then being carried on, especially with reference to the care and rearing of the young. During the spring hatching season for cod and lobsters he also made elaborate studies of the development of those two species from their earliest stages. The other naturalists wero mostly engager in preserving, assorting, and stulying the large collections brought in by the steamer Albatross from its several cruises to the fishiug grounds. Much field work was also done in' the neighboring region, in continuance of the investigations of former years, for the purpose of obtaining informa.
tion respecting the times of occurence, the abundance, life histories, habits, diseases, parasites, etc., of the useful fishes and marine invertebrates. The Roosen process of preserving fresh fish, which has attracted much attention in Europe, was given several trials, with the expectation of finding it adapted to the preservation of bait for the offshore fishing vessels, a problem of unusual importance at the present time. It proved to be entirely unsuited to this purpose, howerer, the fish placed in it becoming too soft either for bait or for food, though generally free from the offensive odors of decomposition. Many large aquaria were added to the equipment of the lower floor of tho laboratory and fish-hatching building, and under Mr. Seals arrangements gave excellent opportunities to observe the habits of even large sized fishes, of which an abundant supply for that parpose was always kept on hand. During the hatching season it was intended that these aquaria should be used for the temporary storage of the fry.

13.-Srecial Investigations.

Temperatures and densities.-One of the most important scientific problems before the Fish Commission has been the determination of the temperature and density of the water along the sea-coasts and in all inland lakes and rivers which afford valuable fisheries, or might be suited to that purpose. The olyject in studying these physical characteristics is at least twofold: First, to ascertain the influence of temperature and density on the movements of those migratory fishes which form so large a proportion of the fishery production of the country, aud the appearance and abundance of which during any fishing season may possibly, in a measure, be predicted by a thorough knowledge of the physical conditions essential to their well-being; second, to furwish a guide in the transplanting of fishes and the stocking of any region with the species most likely to survive and propagate. General results are not so important or so applicable to this study as special series of observations continued from year to year. In the fintherance of this object, observations of temperature, and where expedient determinations of density, were made at all of the stations of the Commission during the entire year, or while operations were in progress. The same observations were made with great care by the vessels of the Commission, whether in port or cruising, and generally at intervals of one hodr. The bottom and serial temperatures, and other physical data obtained by the steamer Albatross, on the fishing banks and in deop water, are of special value in the same connection. The most important continuous series of surfaco temperatures, however, are those taken for the Commission by employés of the Light-IIouse Board and Signal Service along both sea-boards of the United States, at several stations on the Great Lakes, and upon some of the most important shad and salmon rivers on both sides of the continent. This co-operafion between the two bureaus just mentioned and the Fish Commission
has continued for many years, and has resulted in the accumulation of a large amount of valuable informatiou. During 1880, these observations were carried on at thirty-six light-ships and light-houses, and at forty-eight stations of the Signal Service.
Rusty mackerel.-The rusting of mackerel, which sometimes occurs when, through the leaking out of the brine in which they are preserved in barrels, they are left more or less exposel to the air, has been a source of frequent loss to the fish dealers. The character and precise cause of this peculiar change being unknown, specimens of rusty mackerel were obtained duriag the year aud submitted to Prof. W. O. Atwater, of Middletown, Conn., for oxamination. Ifis report upon the subject has not yet been received.
Disease among trout.-The investigations by Prof. S. A. Forbes, of Illinois, of specimens of trout from Baird Statiou, Cal., affected by a disease hitherto unknown in that region, proves that the disease is identical with that found among the herring in Madison Lakes, Wisconsin, where it was very wide spread aud destructive in 188.4. Mr. Forbes's report will be found in the account of McCloud River station, by Livingston Stone.

> C.-Prefaibation of Repoits, etc.

The study of materials and the reduction and compilation of observations made by the field parties, including the preparation of reports upon the same, was continued during the year at the Washington aud Wood's Holl stations of the Commission and at many college laboratories. . As heretofore this class of work was done mostly by volunteers, among whom are some of the most accomplishod naturalists of the country. Prof. A. E. Verrill has had general charge of the collections of marine invertebrates obtained along the Eastern coast, north of Cape Batteras, which he is studying in their relations to the fishing grounds. The fishes were being treated in a similar manuer by Prof. G. Brown Goode and Dr. T. H. Bean. Other special subjects were intrusted to the following persons: The crustacea to Prof. S. I. Smith; the bottom deposits to Prof. L. A. Lee; the intermal parasites of fishes to Prof. Edwin Linton and Prof. B. F. Koons; the crustacean parasites of fishes and the temperature results to Mr. R. Rathbun; spocial groups of the mollusea and the preparation of charts to illustrate the marine investigations of the Commission to Mr. Sauderson Smith; embryological work respecting the cod, lobster, and oyster and other economic species to Prof. Johu A. Ryder; the preservation of bait to Dr. J. H. Kidder and Mr. Rathbun.
D.-proposed extension of tine Inquiry to the pacific Coast.

The first extensive fishery invostigations made upon the Pacific coast of the Uuited States were undertaken by the U. S. Fish Commission in connection with the Tenth Census, beginning in 1879 and extending
through two or three years. Although these were mainly limited to a study of the history of the fisheries and of their condition at that time, large collections of fishes, containing many new and interesting species, were also obtained and described. An important result of these rescarches was to furnish conclusive proof of the value and extent of the fishery resources of the Western coast, which were then developed aud utilized only to a very limited extent in the vicinity of the large settlements, and especially about San Fraicisco. A few fishing vessels, however, were in the habit of visiting, each season, certain rich cod and halibut banks off the central and sonthern Alaskan coasts, but the extent aud character of these banks was unknown. The adrantages which the Eastern fisheries have derived from the investigations of the steamer Albatross seomed to warrant the extension of the surrey to the Pacific coast, and upon the solicitation of many persons interested in the matter the Commissioner decided to detail the Albatross for that purpose as soon as Congress could make provision for her voyage around and for the necessary alterations in her machinery. Appropriations for this purpose were passed in $\Delta u g u s t, 1856$, and before the close of the calendar year new boilcrs for the steamer were under construction. The plans for the Pacific work contemplated a thorongh survey of the entire coast from southern California to the upper limit of the extensive cod and halibut banks in Alaska, upon the basis of the East coast explorations; but considering how little has been done to make known the contour and character of the bottom in that region, except near the shore, it was expected that hydrographic work in laying out and defining the fishing banks would demated a larger share of attention than hitherto. The study of the dishery resources will, however, be kept up at the same time, with the view of completing results as the explorations continue.

3.-INQUIRY RESPECTING TIIE FISIIERIES.

Cousiderable progress was made during the year in the study of several of the more important fisheries, with respect both to their methods and their statistics. An event of more than usual interest was the completion of the fishing schocuer Grampus, which has been constructed upon an entirely new plan proposed by Capt. J. W. Collins. While intended to serve as the model of a type of off-shore fishing smack, which it is thought will insure greater speed and safety to this class of vessels, she has also been specially adapted to certain brauches of marine work for the prosecution of which no adequate meaus have hitherto been provided.

A.-Office and Field Wohis.

The office and field work in charge of Mr. R. E. Earll had reference mainly to the following subjects:
(1) The mackerel fishery.-The extent of the southern spring fishery and the condition of the tish, both fresh and salt, when placed upon the
market. The effect of the spring fishery upon the demand for and the average price of salted mackerel caught later in the seasou. As to whether the continuance of the spring fishery is tending seriously to affect the abundance of mackerel, or, as is often claimed, has any influence in breaking up or scattering the schooks of fish.
(2) The menhaden fishery.-The present extent and location of this fishery. As to whether the methods of the fishery are in any way connected with the continued absence or scarcity of meuhaden on the New England coast.
(3) The sardine industry.-The statistics of the industry, and the changes which have takeu place in the methods of capture and of preparation of the fish since the investigations of 1880 . The influence of the abrogation of the Treaty of Washington and of the proposed duties upon the supply of fish and upon the cost of producing the canned goods.
(4) The fisheries of the Great Lakes, respecting which a report, based upon the investigations of 1885 , has uearly been completed.
(õ) A general and statistical review of the vessel fisberies of the United States, material for which is being collected by means of circulars filled out at the custom-houses located at fishing ports.
${ }^{(6)}$ The compilation of national and State laws relating to the fisheries.
Mr. W. A. Wilcox was employed at Gloucester, Mass., during the entire year, as an agent of the Commission in collecting data relative to the statistics and methods of the Now Eugland fishories. He was assisted by Capt. S. J. Martin, and rendered monthly reports which have been published in the Fish Comuission Bulletin for 1886. During September and October the Senate Committee on Fisheries visited Gloucester for the purpose of giving personal consideration to the different phases of the industry, and also took testimony of the fishermen. The facilities of the station were placed at its disposal.
The sturgeon fisheries of Dclaware Bay and River were made the subject of an investigation by Mr. S. G. Worth, who reported over two hundred and fifty boats, carrying from 200 to 500 fathoms of net each, engaged in the industry. Mr. Worth's inquiries also had reference to the expediency of propagating sturgeon by artificial methods. The statistics of the salmon canning establishments of the Pacific coast, from 1883 to 1886, were collected by Mr. Loren W. Green, au assistant at the Califoruia stations of the Fish Commission. Mr. Green, in the course of this work, visited all of the canneries of fishon the Sacramento River. His report on the subject is contained in the Fish Commission Bulletin for 1886.

$$
\text { B.-The Mackerel Fisieny dubivg } 1886 .
$$

The following summary of the mackerel fishery for 1886 was prepared by Mr. W. A. Wilcox:

[^1]
XVIII REPORT OF COMMISSIONER OF FISH AND FISHERIES.

first mackerel wero soen and caught in latitade $37^{\circ} 30^{\prime}$, longitude $75^{\circ} 35^{\prime}$. An immense body of fish, in largo schools, was seen extending some 25 miles. The fish remained in this location up to April 20 . A small cateh wis made, 25 miles north of where they were first seen, up to May 15. For a week during the midde of May quite a large body of fish was seen, and some good fares were secured in latitude 38° 30^{\prime}, longitnde 740 , off Fenwick's Inlet. Tho weather was unfavorablo for fishing much of the time, the early catch small, and the fishing followed at a loss. May 15 , part of the fleet were off Block Island taking some mackerel, but no large body of fish was again seen off the Uvited States coast until fall. Tho carly catch was noticeable as being all large fish, and, as usual in the spring, of poor quality. 'Tho body of tish appear to havo crossed the soathern part of George's Jank, and rere next foumd off the Nova Scotia coast, between Capo Sable and Canso, mackerel having been canght there between May 25 and June 5, passing on into the Gulf of St. Lawrence, boing found June 15 off North Cape, I'rince Edward's Island. On July 8 they wrere found 15 miles N. by E. from North Cape, soon disappearing. From July 8 to August 1 was the only time mackerel were found in abundance in the Gulf of St. Lavrence, and not always during that time, yet vessels that wero on the grounds of Orphan and Bradey Banks, and off Escumenac Ioint, had a fair cateh. The fish wero mostly taken from 10 to 25 miles from shore.
The early catch came to a close abruptly. Only the first arrivals secured fares, later arrivals spent weeks aud months, takiug very few if any fish. Vessels with a fair catch came home, selling their catch at tho extremely low prico of $\$ 4.50$ a barrel, and at onco returned in hopes of securing another fare of better fish and roalizing more for them; in most cases they were disappointed, catching only a few barrels of fish.

Returning from the disastrous trips to tho Gulf of St. Lawsence, the fluet ernised off the home shore, from the Bay of Fundy to Cape Cod, adding a small amount to the catch which was continued up to tho middle of December. Quite a body of fino mackerel wero off 13lock Island, and in Barnstablo Bay as lato as December; they seldom schooled, yet quite an amount was taken by emall boats and wet fishermen. The work of the seasou is remarkable for the scatcity of fish, they having been soen only occasionally in any amome either in Anorican or provincial waters. The momit taken is tho smallost sinco 1843, and with threo exceptions, sinco 1818. Tho catch often shows great fluctuations, years of small production being followed by abundance. As late as 1883 , the catch of Massachusetts was ouly 154,140 barrels, followed the next year by 304,933 . The rapid and great advauco in prices is noticeable, yot under the circumstauces not remarkablo.

The American catch of mackerel for 1886.

Stato.	Apparatus.	Vestels,	Tomage.	Crowe.
Massachusutts...	Vessels..	220	10,350.60	3,313
Maine.....	Woirs and traps			, 24.18
Do	Weirs and traps	00	5, 344.36	1,377
Now Hampehire	Vensely	4	180.0i	co
Khode laland..	Weirs and traps			
Connecticut..	Vessels	12	88.13	10
New York...		1	77. 00	17
Poungylvania		1	70.15	17
Total		327	23, 726. 24	5,010

The American catch of mackerel for 1886-Continued.

C.-Tme Sgiooner Gramics.

In previous reports allusion has been made to the buildiug of a sailing ressel for the work of the Commission, which was to be named the Grampus. The ressel was completed and went into conmission on June 5th of the present year. Her operations are fully discussed in a report published in the appendix.

The purposes for which this vessel was constructed are varied and important. For some time the Commission has felt the necessity of having a suitable sailing vessel, provided with a well, in which marine fishes can be kept alive and transported from the fishing grounds to the hatehing stations on the const where the eggs may be obtained for the purpose of artificial propagation.

Such a ressel can also serve a useful purpose by bringing in alive marine species, not perhaps in a gravid condition, which cau be put into large aquaria and thus afford to biologists an opportunity to study the habits of our oceau fauna under conditions that can not possibly be otherwise afforded.

Another important duty which it is believed may bo performed by a welled vessel, that is scaworthy and swift, is to visit European waters and briug therefrom alive certain species of marine fishes which aro held in ligh reputo for food and do not occur in American waters. Among these may be mentioned the sole, turbot, plaice, and brill. The introduction and propagation of these species in our waters must be of great advantage to tho United States, not only in giving to our peoplo additional species of delicato food fishes, but in introducing for their capture the method of fishing with a beam trawl, which is not now in vogue here and might, perhaps, profitably employ many ressels and men.

The Grampus has been fitted for using a beam trawl to test its utility in American waters in a commercial way. Although we have not the species of Hat fishes which constitute the principal objects of the beam trawl fishery in Europe, there are several kinds in our waters
that are nearly as good, and it is possible that on the sandy and muddy bottoms frequented by these off our coast the beam trawl may be very effectivels used.

It is also of the highest importance that the movements of the migratory fishes sliould be followed in the spring and autumn, when they are approaching and leaving the feeding grounds which they frequent in summer.

Hitherto less has been done in this direction than is desirable, and a sailing vessel which is able to remain at sea in all weathers is especially well adapted to carrying on such investigation, since she is not dependent upou a supply of coal, and may, if necessary, cruise for weeks or months in succession. The Grampus being especially titted for carrying on fishing operations can use all the appliances and methods for the capture of fish much better than they can be used on larger and more expensive steam vessels. In comnction with these researches to ascertain the movements and habits of the migratory species, various forms of apparatus will be used to ascertain their presence, as well as the occurreuce of crustacca or other forms of miunte life that may constitute the food of fishes. Observations of the temperature, density of water, and the influence of winds and currents upon the movements of fish can also be studied.

She is especially adapted to making researches at sea for the discovery and investigation of fishing grounds, as well as for collecting the fauna of the localities visited, and thus determining the value of certain regions for the purposes of commercial fishing.

The Grampus is a two-masted, schooner-rigged ressel, 90 feet long, over all; 81 feet 6 inches on load-water line ; 22 feet 2 inches beam, and 10 feet depth of hold; ler registered tomage is 83.30 tons. In model and rig slie is a radical departure from the vessels commonly in use in the New England fisheries; and an additional important object sought in building her was to produce a type of fishing vessel which will be safer aud better adapted in varions ways to the exigencies required of a schooner employed in the ocean fisheries.

In the cruises mate the present year she has shown remarkable seagoing qualities, and has demonstrated the fact that in safety, speed, and " handiness" she is fir superior to the clipper fishing schooners of New England. Her influence is already being felt, and the principal features in her model and rig, which have been alluded to in a previous report, are being copied by the New England builders.

It is reasonable, therefore, to suppose that marked innovations may be caused by her advent, and that a few years will witness a change for the better in the form and rig of our fishing vessels. Such a change will result in the obtainment of greater safety and other scarcely less desirable qualities that must prove very beneficial to the fishing interests, and especially in prerenting the sacrifice of life and property which has heretofore seriously handicapped these industries.

4.-Fisimery relations of the united states with canada.

The treaty of Washiugton, defining the fishery relations between Canada and the United States, terminated July 1, 1886, but, by courtesy of the British Government, the privileges which it had granted to Americau fishermen were extended to the 1st of January following. In counection with the correspondence which ensued between the representatives of the tro Govermments relatire to this subject, the U. S. Fish Commissioner was occasionally called upon for infornation. In December, 1886, he made the following report to the honorable Secretary of the Treasury, in reply to several questions which the latter had presented for his consideration. This report is of special interest as giviag in concise form a comprehensive view of the fishery question based upon the evidence in the possession of the Fish Commission. The questions and replies are as follows:
Question 1. "What do you estimate to have been the valne of the products of the British North American fisheries for $188 \mathrm{E}^{9}$ "
The Canadiau fisheries in 1885 , as shown by tables compiled by the Canadian goverament, furnished occasional or continuous employment to 59,493 persons, with 1,175 vessels and 28,472 boats. The value of these, together with that of the other apparatus aud capital, including shoro properts, gives a total of $\$ 6,697,459$ employed in the fisheries industries, with a total value of products amounting to $\$ 17,722,973.18$. The tables from which the summary is obtained have been compiled from tho anmal roport of the Doparment of Fislicries, Dominion of Camada, for tho year 1385.
In using the figures, it should be remembered that the tables iuclude not ouly tho commorcial fisheries, but also the persous, apparatus, ant capital employed in fishing for local supply, and probably a large number who fish only to furnish food for thoir own familios. This class, owing to the lack of manufacturiag interests aud the character of the soil, composes in many localitios a harge part of the population.
Question 2. "What are the descriptions of the fish-in consequence of the present habits of the fish, the presont mothods of catching, drying, curing, and preserv-iug-American fishermen desire to tako either in the jurisdictional waters of British North America, or in the open sea or open bays near the British colonial possessions?"
Prior to, and during the first half of the present century, many of the Now Euglaud vessels engaged in the offshore conl fisheries, being of sinall size, found it desirable to fish in the vicinity of the shore, where they conld make a harbor in ense of sovere storms. Oring to their small tomage, they found it diffeult to carry sufficient quantities of codfial to make a trip to the moro distant fishivg grounds profitable, aud many of them found it desirablo to land and dry their fish upon the shores, thens euabling then to bring home a moch larger quantity as a result of the voyage. At that time the majority of tho fish were exported to Spain med the West Indios, and the methods which our fishermon found it necessary to adopt in drying their fish on the provincial shores made thom especially adaptod for these markets.
Since 18,50 the small vessels engaged in the offshore fisheries hive been gradually replaced by larger ones, and thus the privilege of lishing for coll in the vicinity of the shore has become less important, and as the codfish are more abundant on the oflishore banks, 20 to 200 miles from land, vessols eagnged in this fishery now prefer to visit these localities; and they have been doing so, with comparatiyoly fow exceptions, for the past fifteon or twenty yoars. The catch of those vossels, instead of boing exported, is now to a great oxtent consumed in this country, and our market at present calls for fish cured in a difforent way, so that the privilege of drying and curing fish
on Canadian soil, now that the vessels are large enough to realily cary the undried fish, is no longer of any advantage whatover to our fishermen.

Formerly vessels employed in the mackerol fisheries were provided only with bandlines, and the crews canght the fish from the vessel's deck. When fishing in this way they found it desirablo to grind up fish and clams, whicle they threw iu large quautities into the water to attract the mackerel and kecp them in the vicinity of the vessel. The best resints wero then obtained by fishing in shoal water, as tho bait thrown overboard could not sink to any great depth, and the entire body of fish were thes kept near the surface, where they were within reach of the hook and line. About 1,865 purse-seines were introduced for the capture of mackerel, and in a few years they came to bo generally adopted by vessels employed in the mackerel fisbery. These aro fished to best advantago at some distanco from the shore, and the fishermen usually avoid shoal water, as the seines are liable to bo ruined when set in depthe where the lead lines may chance to come in contact with the botton.

During earlier jears the halibut-fishery in the vicinity of Provincial shores was of some slight importance to the American fishermen, but this has been confined wholly to deep.water, many miles from land, since 1875.

The shore herring fisheries, aud the occasional capture of eortain species for bait, wore also at one time of valus to fishermen from the United States; but such a decided opposition on the part of the resident Provincial fishermen was mavifested to the exercise of the privilege of taking fish, accorded by the Treaty of Washington, - that the practice of catching their own supply was practically abavdoued, and the dishermen have ahnost without exception, since the well-known difficulty at Fortune Bay, Newfoundland, about ten years ago, purchased their cargocs of lerring fromotho local fishermen, and, where these had no suitable ipparatus for obtaining the same, have cardicd their own apparatus and hired the provincial fishermen to manipulate it.

The mackerel is, then, the only species of any importance visiting Provincial waters which American fishermen at present desire to eateh within 3 miles of the shore, or indeed within a nuch greater distance. This is practically the only Provincial shore fishery in which our fishermen have had any considerable interest sinco the ratification of the 'Treaty of Washington, as the great majority of our vessels cmployed in other fisheries on the banks off the Provincial coast seldom fish nearer than 25 or 30 miles from land, and a majority of them secure their cargoes from 100 to 200 miles from shore.

At the present time the advantage to be derived from any privilege of fishing within 3 miles of the Canadian coasts, even for mackerel, is comparatively insignificant, as the results of the seasou which has just closed show couchnsively that our vessels which have fished wholly outside of the 3 mile limit have done fully as well as the Canadian vessels which have had the opportunity of fishivg every where, without rostriction as to distance from shore.
Question 3. In the method of fishing on that open sea, or in those open hays, of
preserving the catch and sending it to our ports for a market now desirable for our
American fishermen, of what importance is the right to enter, in a commercial way,
British colonial ports in the neighborlood?
The nature of tho occupation of fishing, when the size of the vessel is considered, rendors it impossible for \mathfrak{a} fishing vessel to provide against all contingencies. On leaving the home ports the vessels are ordinarily provided with what is supposed to le a full ontfit of provisions and apparatus, but a scarcity of ish may render it desirable that it should remain on the fishing grounds longer than was expected, or it may be delayed by head-winds, storms, or floating ice, until the supply of provisions or water is exhansted. It thon bocomes conveniont, in order to prevont actual suffering, that the vessel should make a harbor and obtain additional quantities. Instances have occurred during the present year when vessels short of provisions have attompted to reach one of our own ports to obtain a supply rather than incur the risk of scizure by entering those of Cauada for that purpose.

Again, portions of the vessel's equipment, such as anchors, cables, fishing-boats, and apparatus of capture, are liable to be lost during stormy we.ther, and it is a great convenionce to be able to purchase now material in the yearest Provincial port rather than to incur the loss which mast be sustained, provided the vessel is obliged to return to American markets to purchase them. This is true both in the fisheries carried on near the land aud also in those on the more distant fishing grounds. This season much inconvenience was experienced by many of the vessels engaged in the mackerel fishery from the tearing of their seines and the loss of their seine-boats in heavy weather, owing to the refusal of certain Canadian officials to allow them to land their seines for purposes of repair or to buy new boats for continuing their fishing operations. Many of them were provided with two boats, and some carried two seines to guard against such contingencies, but in a number of cases vessels so equipped were equally inconvenienced with the others.
The only occasion that vessels would have for entering the larbor, due to the methods of preserving fish, would be for the purpose of obtaining either salt, barrels, or ice. It sometimes happeus that the salt is damaged by a leak in the vessel, or that a detention beyond the expected time causes the melting of the ice, and it is important that our fishermen should bo permitted to purelaso additional guautitics in Cauadian ports, rather than run the risk of losing the entire cargo of fish or of returning with only a partial trip. The present interpretation given to tho treaty of 1818 by the Canadian anthorities, while it might allow a leaking vessel to cnter a port for repairs, would not allow it to replace tho salt that might have been rendered worthless by the leak.
The privilege of landiug eargoes of fish at Provincial ports for shipment to the United States is of considerable importanco to vessels cugared in the mackerel fishery, but of little value to those employed in the capture of other epecies. Vessels are thats ennbled to land trips for shipment and to immediately resume their fishing operations, thus saving the two to four weeks necessary for making the bomeward and return passage; but with the privilege of transshipping cargoes should he conpled that of refitting at the port where the fish are landed, otherwise the vessel might be short of provisions or apparatus, which would render it impossible for it to continue its fishing operations.
Most of the vessels from Gloncester, Mass., engaged in the off:shore cod fisheries have made a practice of obtaining fresh bait in Proviucial ports; but a majority of vessels similarly emploged from other places carry salt bait, thus being entirely independent of the Cauadian supply. The chief difference betwoen the two classes is that the Gloucester vessels fish with trawls, while the crews of most of the other vesseld catch their fish with land-lines. It is claimed by certain of the Gloncester llest that they get more aud larger lish by the uso of fresh bait, but the fishormen from other ports have fonnd their own methode profitable and have not felt disposed to follow Gloucester's example oven when they had free access to Cauadian ports for the purpose of obtaining bait.
A fow of the vessel-owners in Gloncester havo long maintained that the time lost in going to and from Provincial ports to secure bait, and the temporary demoralization of the crews resulting from a visit to these ports more than offset any advautages that are to be derived by the use of fresh bait, and urge that salt bait would be found, on the whole, more profitable; but as a considerable percentage of the men employed on the vessels have families or relatives in the Provinces, they have continued to urge upon the owners the necessity of obtainiug bait in these localities, and it has been difficult to dissuade them. After the experience of thg present jear quite a number of other Gloucester ownors and fishermen as well are convinced that it is on the whole better to substitute salt bait than to continue the old practice of leaving the Banks in the midst of the fishing season to obtain other kindsin the Provinces. That this opinion is shared by the Nova Scotia fishermen is provou by the faot that for some years they have been in the habit of purchasing large quantities of salt
clams from dealers at Portland and othor towis in the Stato of Maine, to be used by them in the cod fisheries.

Since the introduction of the purse-seine the mackerel fishermen have required no bait.

In the halibut fishery it is only necessary to take a sufficient quantity to last one or two days, as the remaiuder of the catch can be obtained on refuse fish taken on the trawls with the halibut, or, if necessary, small halibut can be cut up and used for baiting the hooks.

In the past the cod-fishermen frequenting George's Banks lave at certain seasons of the year obtained their bait from Camadian ports, but the experience of tho present yoar has proven that they are not dependent upou them, as most of the vessels have obtained their supply on our own coast with comparatively littlo diffentty, and frequently with less loss of time than was customary whou visiting localitios in Now Brunswick and Nova Scotia.

It will thus be seen that though the privilege of obtaining bait and the ice necessary for preserving it in British North American ports las been in the past and may oven still be considered a convenience to certain classes of vessels, it is not of vital importance.

The agitation of the question of bait supply has had a very boneficial influence upon our own fishermen, and lias resulted in the development of extensive shore-bait fisheries along the coasto of Maine and Massuchusetts, which give promise of being able to supply in large part, if not wholly, the demands of our entipe tleot. During the past summer the experiment of shipping bait to Boston from the more remote localities on the coast of Maine has been made with success, and the cost of transportation is not high enongh to be a barrier to the continuance of the business. If this practice increases, as at present seems probable, it will doubtless result in a great saving of time to our neet, which has often in the past been seriously inconvenienced in its fishing operations, owing to the time consumed in sailing from port to port in search of n supply. The U. S. Fish Commission has recently begun a sorics of exporiments with a view to determining the praticalility of preserving fresh bait long enough to admit of its shipment from Now England ports to the fleet fishing on the more distant banks, but the rork is not yot sufficiently advauced to warraut an opinion as to the probable result.
Question 4. "The same question in regard to the fishing on the permitted coasts and the commercial entry in the prohibited bays and harbors, but not for fishing."
There is at prosant comparatively little fishing by American vessels on that portion of the coast to which free access is given by the treaty of 1818 ; but vessels fishing in that vicinity should have the same privileges in other ports as are accorded to other vessels, as it would seem unwise to discriminate, and it would, perhaps, owing to the few settlements of any importance on the permitted coast, be more convenient for the vessel to enter ports in the prohibited districts to purchase the necessary articles than to go out of their way in an opposite direction, where there might be any uncertainty of securing them.
Question \%. "What is your estimate of the total tonnage of the Anerican vessels, the number of fishermon thereon, engaged in tho Cauatian and North Atlantic fishories in 1886; and the total value of their catch p "
A careful cistimato of the extont and importance of our Now England vessel fisheries indicates that dnring the present jear there have been 1,956 vessels, aggregating 115,130 tons, with crews numbering 17,996 men, employed in the various sea tisheries. The fleot is estimated to liave been divided as follows: 1,530 vessels in the food-fish fisberies, 215 it the shell-fish and lobster fisheries, 177 in the capture of whales and seals, and 34 in the mevhaden fisbery.

The 1,530 fool-fish vessols aggregated 71,200 tons and furnished employment to $14,240 \mathrm{men}$. The vessels, with their equipment, were valued at nearly $\$ 5,000,000$, and their catch is estimated to have sold at prices to fishermon for $\$ 4,590,000$. Of this
fleet 350 sail were ongaged in the off-shore mackerel fishories, 200 in the cod fishories on Querean, Graud, aud Western Bauks, 195 others in the cod tisheries of George's and Brown's Banks, 65 in the off-shore hahbut fisherics, and tho remaining 750 in the miscellaneous shore and off-shore tisheries.
The off-shore mackerel vessels are the only ones that have engaged to any extent in cateling fish in tho vicinity of waters under British jurisdiction. Of this fleet about one-half, or possibly a slightly larger percentage, have fished in tho Gulf of St. Lawrence during a portion of the mackerel season, the remainder of these vessols having romained off our own coast.
Below are given two tables, showing in detail the extent and cbaractor of our New England vessel fisheries in 188\%. The figures as there explained aro estimated from partial statistics furnished by collectors of customs on Treasury circular No. 63, 13nreau of Navigation, and from special, but ay yot unfinishod, investigations by the U. S. Fish Commission. Tho statements in both tables aro therefore subject to revision; lut, as due allowance has been made for the statistics not yet received, it is believed the totals will not be materially changed by tho final compilatious.
Table estimating by fisheries the total number, tomnage, and value of Ner England ressels employed in the North fllantic food fish fisheries in 188ib, with the mumber of men and value of apparatus and outfit oit same, and the total value of their catch.
[These estimates aro based upon partial returns from collowtara of customs on Truagry Cirentar No. © 3 , curront series, and upon special investigations by tho U. S. Fish (iommisaion.]

Table estimating by fisheries the total number, tomnaye, and value of New England vessels, with the number of men thereon, employed in the werions fisheries in 1586.
[Based upon partinl returns from colloctors of' customs on 'jreasurs Circular No. cis, current aories, and information obtained from other sources.]

Stato.	No.	Tons.	Value.	No of men.	Stato.	No.	'lons.	Talue.	No. nf men. \qquad
Food-jish,					Loluster and shell. fish.				
Maino	595	18,060	\$900, 000	3,600	Maino	40	750	\$30, 000	100
Now Hampahito.	0	18,000 0	8300,000	120 !	New IIanmulito				40
Maskntehinetts...	850	50,010	2,500,000	10,000	Minsmachusetts..		850 100	8,000 7,000	$\underline{25}$
Rhonde Iskand	85	$\begin{array}{r}50,400 \\ \hline 200\end{array}$	- 210,000	- 80	IRholu Island . . .	10 150	- 2,600	200,000	400
Comecticut	100 :	2,200	110,000	$\left.-\frac{410}{} \right\rvert\,$	Connecticut....	215	-, 3,300	245,000	505
Total	1,530	71, 200	3, 560,000	14,240	Total				
Whale and scal.					Menhaden!		-		
Maina	2	100	\$10,000	20	Maino				
New IIampshiro	2	100	.10,000		Naw Hampshirs				
Massachmastts...	100	36,000	i, 5000,000	2,500	Massachntsetfa..				
Rhodo Ialand	100	\cdots	$1,500,000$		Khodo Imland ...	18. 15	960 570	66, 550	140
Connecticut.	15	2,000	100,000	240	Connecticut ...	15			431
Total	177	38,100	1,610,000	2,760	Total		1,530	297, 550	431

Table estimating by fisherics the total number, tonnage, and value of New Eingland vessels, with the number of men thereon, etc.-Continued.

SUMMARY.

State.	No.	Tons.	Value.	No. of inen.
Maine	507			
New Hampshire	± 0	18,850 000	\$940, 000	3, 720
Massachusotts...	1, 025	86, 800	30,100 $4,008,000$	
Jehoto Island. .	1,025	86,850 1,460	4, 008,000	12,540 386
Connecticut	280	7, 370	188, 47600	1,220
Total	1,950	115, 130	5, 642, 550	17, 006

Question 6. "What change has, in four view, come to American fisberies since the last full jear of the Washington treaty in regard to the character, quantity, and geueral features of that industry ${ }^{\prime \prime}$
There has been little change in the fisheries other than the nackerel fishery during the past year. In this fishery the searcity of mackerel has been very marked and the catch has been much below that of tho average year. The decreaso, however, can be in no way attributed to the abrogation of the Treaty of Washington, but must rather be accounted for by natural canses which have affected the abundance, movements, and locality of the species.
For several years prior to 1886 mackerel appeared in more than avorage quantitics, and for eight or ten years, ending with 1885 , they have been much more plentiful on our own coast than on any portion of that of British North America. For this reason the tleet of American inackerol vessels visiting waters in tho vicinity of British territory has of lato been very small. In 18ĉ⿹, out of a total of about 380,000 barrels caught by our fleot, only 26,000 barrels, or less than 7 per cent., were taken in the vicinity of Canada, the quantity obtained within the 3 -mile limit being only 3,564 barrels. The fact that, during a season when permission iad been given to allow Amorican vessels to fish anywhere in the waters of British North America without restriction as to distance from shore, less than 1 per cent. of the catch of our mackerel flect was secured within 3 miles of British territory, and that more than 93 per cent. of the total catch of mackerel was obtained in the vicinity of our own coast, is certainly significant.

During the present year mackerel bave been peculiarly scarce in all localities, though for the first time in eight or ten years they have been more abundant in the Gulf of St. Lawrence than off the New Eugland coast, aud a largo percentage of the Anerican vessels employed in the fishery have visited that locality. The catch bas, as a rule, been unusually small, but the price has increased in proportion, so that the season for some of the vessels has not been wholly unprofitable. The limited catch can not in any way be accounted for by the restrictions placed upou our vessels within the 3 -mile limit, for their catch, as proviously stated, has been equal to that of the Canadian vessels that fished without restriction as to distance from the shore.

The vessels engaged in the cod-fishery have met with more than average success. This is partially attributed to the fact that the squid, used for bait, have been very plenty during the summer and fall months on the fishing-grounds. It has not infrequently occurred that vessels have sailed without any bait, depending upon the supply that thoy could eatch on the Banks upwards of a hundred miles from shore.
Question 7. "Your Commission has, in its annual reports, alluded to the diminished necessity on the part of American fishermen to go to British North Americau ports or waters for bait. What are the now foatures of that necessity ${ }^{7}$
A few years ago the United States Fish Commission obtained from Norway a number of gill-nets suitable for catching codlish, and used them with success in the codfisheries about Gloncestor, Mass. Similar nets aro now made in this conntry, and are extensively employed by the shore cod-lishermen of that vicinity, who obtain large
eatches by their use. These fishermon formerly depended in large part for their bait upon frozen herrings, brought from Now Brunswick and Nowfoundlaud, but whero gillnets are used bait is no longer required. Thus far, however, gill-uets have not been oxtensively cmployed in the capture of colfish on the more distant fishing-bunks.
The dovelopment of our shore bait fisheries, reforred to in answor to a provious questiou, also reuders our people less dependent upon the Provincial supply, aud the growing sentiment upon the part of certain Glonegster ownors in favor of substituting salt clams purchased in American markety for fresh bait obtained in the Provinces, seems destined to decreaso still further onr dependence upou the Canadian supply. It can not be denied, however, that there aro still a large number of vessels that would consider it a convenienco to obtaiu bait in the Provinces, provided commercial privileges, under proper restrictions, aro accorded to our vessels.
Question 8. "Your Commission has also alluded to inquiries presented by it in rospoct to the genoral value of tho inshore Canadian waters to American fishermen, and the gearly valuo of tho libertios given to American fishermen by the Washingtou
treaty. Havo yon ascertained new facts of public interest in that regard which yon can conveniently commonicato to me?"
The decreased importance to Americ:un vessols of the inshore Canadian fisherios has resulted-
(1) From the increased sizo of our vessels, which did away with the necessity of fishing closo to land, where harbor conld be made in case of storms, and of landing in the vicinity of the fishing grounds to dry their fish beforo sailing for home;
(2) From the substitution of the parse-seine for the hand-lines in the capture of mackerel, which has necessitated tho fishing in deeper water and at a greater distance from shores and
(3) From the change in the loeation of the mackerel fisheries, which has for the past few years enabled our vessela to obtain fall cargoos in the vicinity of our own coast, iustoal of going to tho Gulf of St. Lawrence, where they formerly met with better success, but where of late years-prior to thos piresent season-they have found fishing unsatisfactory.

This recent return of the mackerel to the more northern waters should, however, not bo considered as indicating a permanent chango in the location of the fishery, for within a short time, and possibly next season, they may again appear in greater abundance on onr own coast; and, inded, the stady of the movements of other fishos renders it not wholly inprobable that mackerel may at no distaut day disappear eutirely from the Gulf of St. Lawreuce and from othor portions of the Provincial shores, where they are now abundant.

5.-propagation of food-fishes.

Distribution of Fisif and Eggs.

The cars of the Commission liave been extensively used in transportation. Some changes have been made in mothods of distribution. Carp and other fishes of the same family are shipped during the fall and early winter, and not in tho spring, which is the season of their greatest cmaciation. Eggs intended for slipment to foreign countries were packed at the stations for the entire trip, and not repacked in New York. The boxes containing them were transferred from the non-conducting matcrial surrounding them in the outer shipping cases to the refrigerating-rooms of ocean steamers.

Trout hare been shipped by express, without a messenger, from Washington to Ners Yorls and back, with no loss. A shipment to

Natural Bridge, Va., uuder less favorable conditions, was not so satisfactory; but these experiments indicate that it is possible to send trout moderate distances without atteudants.

Below is a summary of the distribution for eighteen months, including 1856 and one-half of 1887; it covers, also, the distribution of 18S5-'S6 from the McCloud River aud Cold Spring Harbor Stations not previously reported. The total number is somewhat too large, since the eggs of the Salmonida, after being counted as distributed from the station where they were obtained, were hatehed at other stations, and the fry produced wero sometimes again reported. The distribution of whitefish $(94,670,000)$ is the largest that has been made up to this time.

Summary of distribulion from Jammary 1, 1886, to June $30,18 \bar{z} \%$.

Kind of fisl.	Eggs.	Fry:	Large fish.	Miscellancous.
Whitefish	32,600,000	62, 070, 000		
Grayling.			2	
suibling.	18,000	2, 100, 100		
Brook tront	82, 000	7.488	1,7il	
Larko tront Allantic		155, 809	6,923	
Lathl-locked salmon	377, 500	416, 4488		
liainbow trout	420, 000	49, 930	10,48:	
Eels . . .	84,500	26,500		
Shad.	$10,718,000$	93, 75000		200
Tench				1,202
Brook piekorel		2, 805		
Rockfish...		75,000		14
White perch		\%3,000		$\stackrel{8}{8}$
Black bass. Snntel		48		0
Jichuya				125
Coultish		062, 000		
Sole......				18
		5,000		

The grand total of the distribution is $210,625,413$.

> Notes on the Speches lropagated and Distributed.
a. The Sole (Solea soleti).

During 1896 sereral consignments of soles were brought across from Liverpool in the White Star steamer Britannic. Early in the sear 24 were brought in one shipment without loss. From two later consignments 37 fish out of 49 sent were safely received at Wood's Holl, where they were kept with the hope of using them for breeding purposes.

The hanging fish-globes now employed for carrying soles across the Atlantic give better results than any other form of apparatus as yet devised for the purpose.
l. The Halibut (IIppoglassus kippoglossus).

As the fishing for this important species in moderate depths has become unprofitable because of the scarcity of the fish it was earnestly desired to begin its artificial propagation during the present year. The

Grampus was accordingly sent to the fishing.banks in the latter part of September in search of halibut. It was found that the spawning season was near at hand. The fish were caught in deep water, from 200 to 350 fathoms, and placed in the vessel's well apparently in good condition; but all of them died within twenty.four hours, probably on account of the difference in pressure and temperature. Attempts will be made to get halibut from shallow water in the Gulf of St . Lawrence or on the west coast of Newfoundland for future experiments, when it is expected that they will better endure tramsportation in the vessel.
c. The Codfish (Gadus morrhua).

The apparatus which proved most satisfactory for hatching the float. ing eggs of the cod was the tidal box devised by Colonel McDonald in 1881, modified by Capt. I. C. Chester's addition of inverted glass cylinders, having the mouth closed by cheeso cloth and the bottom perforated for ventilation.

During Janaary and February eggs were hatched easily in the apparatus above mentioned, but owing to tho severe weather it was very difficult to obtain spawning fish.
On the 25 th of January two acid carboys, each containing 40,000 codfish just hatched, were forwarded by express from Wood's Holl to Washington. After being forty-four hours in trausit, about 7 per cent. of them reached Washington alive. On the next.day 50,000 fish were sent in a carboy. After a journey of forty-four hours fally 50 per cent. of them reached the station in good condition. On January 28 a ship. ment of 500,000 fish in ten carboys was takeu from Wood's Holl by messengers. They reached Washington on the 29 th with a loss of less than 10 per cent., and were sent forward the same day to Peusacola, Fla., where they arrived shortly after midnight, February 1, with an additional loss of about 10 per cent. At Pensacola they were transferred to the revenue steamer Foricard, which had been placed at the service of the Commission by order of the Secretary of the Treasury, and carried to the place selected by Mr. Silas Stearns for their final destination in the Gulf of Mexico, southeast by east from Pensacola Bar, in 100 fathoms of water. This experiment was made to determine whether or not the cod can be successfully transferred to Southern waters and become the object of a profitable fishery there.
In February a shipment of 500,000 young cod was forwarded from Wood's Holl through Washington to Old Point, to bo deposited in Hampton Roads, with the hope of forming a celony in Chesapeake Bay.

Work of the Grampus.-During the winter of 1880-87 the Grampus was engaged in obtaining eggs of the codfish for hatching at the Wood's Holl Station. In many cases the fish were taken with the gear of the Grampus and carried alive in the well to the station. Between 600 and 700 live fish were thus' secured. Over $43,000,000$ eggs were obtained; $20,000,000$ were hatched and planted in the immediate vicinity of the station. Frequently eggs were obtained by sending men to collect
them on board fishing vessels on the grounds. Owing to the cold and inclement weather during much of the winter cod were unusually scarce and fishing, even under the most favorable circumstances, was poorly remunerated. The work of collecting, however, was continued whenever opportunity offered until the middle of March.

Worle of the Fish Hawk.-Early in January, 1887, the crew and some of the hatching apparatus of the vessel were utilized in the work at Wood's Holl. Late in February and till near the end of March the Fish Hawk was engaged in making short trips off Portsmouth and in Ipswich Bay, boarding fishing vessels to collect codith sparn for ship. ment to Wood's Holl.

d. The Mackerel (Scomber 8combrus).

In the month of May Captain Chester secured three gravid mackerel at Wood's Holl, and from them eggs were taken and placed in the apparatus which had been used for eggs of the cod. The fish commenced latching in ninety-four hours after the eggs had been placed in the jars. This adds another very important species to the list of fishes that may be propagated at the Wood's Holl Station.
e. The Black Bass (Micropterus dolomici).

11 breeders and 100 yearlings were collected during the summer at the Wytheville Station. 48 yearlings were sent away duriug the year.

f. The Red-eye (Ambloplites rupestris).

At the Wy theville Station, during the fiscal year 1886-'87, 77 breeders and 2,125 yearlings were obtained. 18 breeders were sent to the Central Station and 2,085 yearlings were distributed, including 586 in Cacapon River and 600 in Cowpasture River. On March 1, 1857, 25 redeyes, about au inch in length, were sent to Max von dem Borne, Berneuchen, Germany, 20 of which reached their destination in safety.

The redeye is a good pau fisl, gamey, and weighs a half pound on the average; it is likely to do well in pouds.
g. The Sunfish (Lepomis gillosus).

During the summer of 1886 , 125 sunfish, about 1 inch in length, were taken at Cold Spring Harbor and forwarded, thiough Mr. E. G. Blackford, to Max von dem Borne, Berneuchen, Germany, who was fully advised of their predatory character.

h. The White Perch (Roccus americanus).

Three shipments of the young of this fish were sent from the Cold Spring Harbor Station to Max vou dem Borue, in October and December, 1886 , aud March, 1887 , of which only three, from the last shipment, reached Germany alive.

[^2]hatched. 75,000 fry were successfully planted in Lake Ontario, near Oswego, N. Y.

j. The Smelt (Osmerus mordax).

Large numbers of smelts were hatched at the Cold Spring Harbor Station, the parent fish having been obtained on the south side of Long Island. The batching was reudered difficult by the glatinous nature of the eggs, but about one-half were developed. Over $2,000,000$ joung were planted in Cold Spring Harbor and 50,000 were deposited in Saranac Lake, in northeastern New York.

About the first of April a lot of egrs were sent to Northville Station, where they arrived in bad condition and apparently dead, but upon digging into the mass about 15 or 20 per cent. Were found to be good.

k. The Whitefish (Coreyonus clupeiformis).

Notwithstanding the stormy and very cold weather $129,400,000$ whitefish eggs were obtained during November and December for the hatching stations at Northville and Alpena, Mich. The first eggs were received from Lake Drie Novomber 7; the last from Lake Michigan December 13. On November 23 about 30,000 eggs were taken from two whitefish which had been hatched and reared at the Northville Station; this is believed to be the first record of their breeding in captivity. The hatching season at Northvillo lasted from March 11 to April 12 ; at Alpena, from April 22 to May 8.
$32,600,000$ eggs were distributed, mostly to neighboring state fish commissions; $62,070,000$ fry were planted in waters of Michigan, Ohio, Indiana, and New York; 2,500,000 eggs were sent to England, 1,000,000 to Germany, aud $1,500,000$ to New Zealaud ; $5,000,000$ were forwarded to the Central Station at Washington; $10,000,000$ each to the State hatcheries of Penusglvania and Minnesotil; $1,000,000$ to New York, and $1,600,000$ to Delawore. From the $1,000,000$ eggs sent to the Cold Spring Harbor Station nearly 950,000 joung were obtained, and these Were deposited in deep, cold lakes on Long Island.

l. The Dwarf White fish (Corcyonus allula).

In January, 1886, Max ron dem Borne sent 30,000 eggs of this species as a gift from the Deutsche Fischerei-Verein, by IHerr von Behr, to the United States Fish Commission. These were received at the Cold Spring Harbor Station, and Mr. Mather was directed by the Commissioner to forward 70,000 eggs to Bucksport and 10,000 to Northville. Mr. Atkins received his allotment February 1. The first fish hatched out March 24, and about 51,000 joung were obtained; these were planted April 21, 1886, in Heart Pond, a small lake near Backsport which empties into the Eastern River, a small tributary of the Penobscot. Some of the eggs sent to Northville were hatched March 7, but no healthy young were secured from them.

m. The Brook Trout (Salvelinus fontinalis).

The Northville Station.-At the Northville ponds 186,750 eggs were takeu. From December 28,1856 , to February $9,1887,82,000$ eggs were shipped away, 10,000 to England, the remainder to Minuesota, Delaware, and Pennsylvania, aud to the Central and Wytheville Stations. 527 young fish were sent away aud 4,000 fry were retained for breeding purposes.

The Wytheville Station.-In December, 1880, 193 breeders were received from the Northville Station. In April 5,000 fry came from the Central Station. In January, 1887, 20,j03 eggs were received from Northville and $\quad \%, 000$ from Mr. R. E. Follett, of Windham, Conn. During May and June, 1887, 750 yearlings and 2,488 fry were planted in suitable streams in Maryland and Virginia.

n. The Saibling (Salvelinus alpinus).

The Cold Spring IIarbor Station.-Iu February and March, 1887, three shipments, each containing about 20,000 eggs of the saibling, were received from Berneuchen, Germany. 3,000 eggs from the first lot were repacked and sent to the State hatchery at Plymouth, N. H., where they arrived in good condition. The sound eggs of the second shipment were mixed by mistake with eggs of the brown trout received from Germany at the same time, and were distributed in this state to the hateheries at Corry, Pa., Wytheville, Northville, and Cold Spring Harbor. 15,000 good eggs from the last shipment were sent safely to the Northville Station March 17, and Latched soon after; but the fry refused to eat, and most of them died of "blue sac" and starvation.

o. The Lake Trout (Salvelinus namaycush).

The Northville Station.-6, 150° lake trout, hatehed in January and February, 1886, were sent to Ohio, Indiana, Kentucky, and Tennessee. Owing to a lack of available funds no eggs were taken.

The Wytheville Station.-During the fiscal year 1S80-'87, 800 yearlings were sent to the Central Station, 50 to the Gasconade-River, Missouri, and 350 were planted in streams near the station.

The Cold Spring Harbor Station,-150,000 eggs were received from Northville December 19, 18S5. 80,000 fry were distributed to waters in and near the Adirondacks; 5,000 to Monroe, N. Y.; 5,000 to Gloucester, Mass.; and 20,000 to Long Island waters. An attempt to rear some of the fry at the hatchery was unsuccessful, on account of the high temperature of the water. In June, when it reached 60° Fahrenheit, the young began to die, and none lived until September.

The Bucksport Station. $-100,000$ fry were obtained from eggs received from Northville. Of this numbor 35,000 were kept for rearing ; 1,439 were placed in Craig's Pond June 17; and 2,113 in Pond B June 22. Upward of 31,000 were kept in the troughs and fed on liver, refuse meats, salt codfish, insects, and entomostraca.

p. The Rainbow Trout (Salmo irideus).

The McCloud River Station.--The first oggs for the season of 1S85-'S6 were taken on December 26, 1885, which was somewhat earlier thau usual. The species seem to spawn sooner than formerly. The spawning seasou closed May 10. 221,495 eggs were taken from 226 fish. 30,000 eggs wero lost because of high and muldy water; 15,000 were hatched for the trout ponds and the river, and 131,000 were distributed, chiefly to State fish commissions and to Central Station. During the spasming season of 1886 -'87, which lasted from Docember 26 to April 11, 268,400 eggs were takeu from 299 fish. 84,100 of these were lost from various causes; 39,300 wero liatchod and the firy plantod in the MeCloud River; the remaiuing 145,000 were sent to State commissions and to Central Station.

The Northville Station.-The spawning season in the ponds lasted from January 9 to April 25. 196,350 eggs were obtainod from 375 tish; 25,000 were sent to the Michigan Fish Commission; 25,000 to Mr. Blackford, for shipment to France; while 25,000 fry were hatched out and uearly all of them kept at the station. 4,920 young fish were shipped away from the station.

The Wytheville Station._-During April and May, 18s7, 8,000 fry were received from the Central Station, and 230,500 eggs were collected at Wytheville. During the fiscal year 1886-'87, 12,095 yearlings, 271 two years old or older, and 95,000 eggs were shipped away, 40,000 eggs were sent to Gerinany, 10,000 to Eugland, and 5,000 to France. The romaining eggs and fry were distributed to private applicants, to suitable streams for stocking, and to various hatcherios. Mr. Max von dem Borne, writing from Berneuchen, Germany, on April 11, 1887, stated that the fry hatched from the eggs received were in excellent condition.
q. The Brown Trout (Salmo fario).

The Cold Spring Harbor Station.-64,000 eggs were received in very bad condition from the Dentsche Fischerei-Verein March 1, 1886, and 40,000 came from the same sotrco, in good condition, March 20. On April 16, 00,000 ogers arrived in good order from Max vou dem Borne. 13,000 eggs were repacked and sent to the North ville Station, and 1,000 to the Wisconsin Fish Commission. During April aud May, 23,500 young trout were planted in suitable waters in New York.

In July a brown tront was caught in Allen's Creek, a tributary of the Genesee River, New York, which woighed 3 pounds. This must have been hatched from the first lot of eggs received in America. One of this first shipment, which was hatched and reared at' Cold Spring Harbor, weighed $3 \frac{1}{2}$ pounds in October, 1886, at the age of three and onehalf years.

During March, 1887, 108,000 brown trout eggs were received from Germany, but 60,000 of them were unfit to be doveloparl. The last shipment of 50,000 eggs contained 13,000 dead ones. The good eggs of this S. Mis. 90——III
lot wore mixed by mistake with 14,500 saibling eggs, which arrived the same day, aud 50,000 mixed eggs were sent to several State and National fish commission hatcheries. 10,000 eggs were received, also, on account of the New York Fish Commission, from Herr von Behr.

The Northville Station.- 20,000 eggs were received March 17 from the Cold Spring Harbor Station, having come originally from Germany. 2,500 of these were sent to the Michigan Fish Commission and 0,000 to the Wisconsin Commission. The remaining eggs yieided nearly 0,000 fry, which were kept at the station. During November and De. cember 9,400 eggs were taken from stock-fish in the Northville ponds, but only 1,500 fry were obtained from them.

The Wytheville Station.-2,165 brown trout eggs were received in March, 1886. They were hatched at a very unfavorable time, the water being muddy during incubation and remaining so until the surviving fish were several weeks old. 286 were reared, and in November they were between $2 \frac{1}{2}$ and 3 inches loug. In March, 1887, 9,100 eggs were received from Cold Spring Harbor, and in May, 3,000 fry arrived from the Central Station.
r. The Loch Leven Trout (Salmo levenensis).
On January 14, 1887, the Cold Spring Earbor Statiou received 48,000 eggs of the Loch Leven trout from the Howietoun fishery in Scotland, but nearly one half of them were dead. Strong and healthy fry were hatched from the remainder.
8. The Atlantic Salmon (Salmo salar).

The Bucksport Station.-205 salmon were purchased from the Peuob. scot River fishermen, from May 29 to June 8, and placed in the inclosure at Dead Brook. Only 147 of these lived through the summer. $1,158,776$ eggs were taken from 101 females, an average of 11,473 each. Of these eggs, $1,099,000$ were distributed, 320,000 being awarded to Massachusetts and 770,000 to the U. S. Fish Commission, the work having been conducted by these two commissious conjointly. 25,000 oggs were reserved for experiments at the station, and the fry were afterwards liberated in Craig's Pond. The remainiug eggs were sent during February, 1887, to the following places:

Cold Spring Harbor, 300,000; F. A. Walters, Bloomingdale, N. Y., 250,000 ; E. B. Modge, Pigmouth, N. H., 100,000; Grand Lake Strean, 104,000.

The Grand Lake Stream Station.-About the 1st of March, 1887, 104,000 eggs were received from Bucksport. These were hatched with a loss of only 255 eggs and young, and the fry were planted in tributaries of the St. Croix River about the middle of June.

The Cold Spring Harbor Station. $-240,000$ eggs were received from Bucksport January 7, 1880, and 260,000 on the 7 th. 446,573 fry were planted in tributaries of the Hudson and St. Lawrence Rivers and Lake Ontario. During 1886 small numbers of young salmou were takeu
in the streams in which they were planted in May, 1885. From infor. mation furnished by Mr. A. N. Cheney of Glens' Falls, N. Y., and from other sources, it appears that inore than 24 salmon were taken in the redson during 1886 .

t. The Landlocked Salmon (Sulmo salar, var. sebago).

The Grand Lake Stream Station.-The spawning season lasted from October 29 to November 18.752 fish were taken, the females yielding 942,500 eggs, or an averacre of 1,935 cach. 641,500 egres were distrll. uted and 214,000 were reserved for Grand Lake Stream. The distribution, according to the contributions for the expenses of tho year, was as follows :

The eggs allotted to the U. S. Fish Commission were distributed iu March, 1887, to various Stato comulissions, to England, France, aud Germauy, aud to the Wytheville aud Cold Spring Harbor Stations. The 214,000 reserved for Grand Lako Stream were hatched and planted with a very small loss.

On March 8, 1886, 19,000 egrgs were sent from the Grand Lake Stream Station to the Pennsylvania commission at Corry, Pa. Near the end of June about 12,000 fry developed from these eggs were planted in streams flowing into the lake of the South Fork Fishing and Munting Club, in Cambria County, Pa.

The Wytheville Station. $-50,000$ eggs were received on March 13, 1887, from Grand Lake Stream ; 12,997 yearlings were liberated in tributaries of the Shenaudoah River, in the hope that this would establish a run in the Potomac River.

The Northville Station.-29,000 eggs were received from Grand Lake Strean on March 19, 1856, and on April 14 they hatched, with a loss of only 575. On April 27, 10,000 fry were phated in a lake of Clare County, and 12,000 in Rapid River, in Kalkaskia and Autrim Connties, both places of doposit being in tho uortheru central portion of Michigan.

The Cold Spring Harbor Station.-34,000 eggs were received from Grand Lake Stream on March 1.S, 1886. After a small loss in shipping and latching, 31,020 fry were placed in two lakes of the Adirondack region. On April 1, 18\$7, 25,000 eggs received from the Grand Lake Strean Statiou were repacked and shipped to Leon d'Halloy, viee-president of the fish commission of the Lower Scine, France.
u. The Shad (Clupea sapidissima).

During the season of 1886 over $90,000,000$ shad fry were distributed. Now, as the number of shad taken for market was less than $6,000,000$ it will bo seen that for every adult shad captured 15 young shad, aftificially batched, were placed in the waters. As the cost of this production and distribution was less than $\$ 20,000$ the young fish were ob. tained and distributed all orer the United States at the rate of about $\$ 215$ for a million, or about 46 fry for a cent. In 1855 , which showed a great inprovement over previous years, the rate was about 30 fry for a cent. The total number of eggs collected aud fry planted have also greatly increased over the results of previons years, as from the beginning up to and including 1882 the total number of young shad obtained was only about $200,000,000$, while in 1885 less than $35,000,000$ fry were sent out from the stations.

Shad fry for distribution in 1886 were derived from tho following sources:

From Battery Station, Su	43,776,000
From Central Station, Po	28, 151,000
From stcauser I'ish Hawk	21,018,000
From steamer Halcyon	310,000
T tal.	93, 25, 000

The following statement shows the general plantiog summarized by the streams or drainage basins in which the fish were deposited :

The Fort Washington Station.-The first ripe shad was taken April 16. From that time until near the end of May the run of fish was abundant and reasonably steady. The maximum momber of eggs taken in one day was $3,503,000$, on A_{p} ril 22 ; the period of greatest activity, was from April 20 to 27 , inclusive, when $16,017,000$ were procured, being nearly one-half of the entire number obtained during the season. In all, 36,362,000 eggs were collected. 'The mumber hatched and planted from the station in waters near by, was $3,154,000$. The number forwarded to the Central Station was $33,208,000$.

The Central Station.-The number of eggs received alive from Fort Washington was $28,283,000$. Of these, $1,586,000$ were transferred to other stations, and the number of fry sent out to be planted was
$24,997,000$. The cost of collecting, developing, and transporting the eggs at this and the Fort Washington stations was $\$ 3,796.45$, which is at the rate of $\$ 127.66$ per million, or 78 shad for one cent. There has been a marked gradual increase in efficiency of the force in trausporting and latching eggs, the percentage of loss diminishing year by year from 1883 , when it was 29 per cent., to 1884 , when it was 26 per cent., to 1885, when it was 10 per cent., while in 1886 it was ouly 7 per cent.

The Battery Station.-The work of the shad season began April 18 and ended June 10. The first run of fish continued for a week. All the runs of the season were very large. The number of eggs collected was $60,766,000$. The supply of hatching apparatus was inadequate to meet the requirements. The number of fry hatehed was $45,231,000$, the percentage of hatching being $74.4 ; 43,776,000$ fry were shipped away and deposited mainly in the Susquehama River and other tributaries of the worthern part of Chesapeake Bay ; 1,000,000 fry were sent to Oregon, desides 585,000 egrs, resulting in a deposit of 850,000 fry in the Columbia River.

Work of the Fish Mark.-From April 20 to May 1 the Fish Hawk visited the fishing shores and gillers in the northern end of Chesapeake Bay, and obtained $2,192,500$ ergs for the Battery Station. During most of May the vessel was engaged on the Delaware in transporting spawntakers, and in collecting, transfurring, aud depositing eggs. $34,454,500$ eggs were obtained, from which $23,106,000$ firy were hatched on board and $21,018,000$ deposited in the Delaware River.

Work of the Haleyon. - From April 27 to May 23 the steamer Halcyon was occupied in Chesapeake Bay and in the Delaware River in gathering, transferring, and hatching eggs, and depositing the young shad. $4,501,000$ eggs wero taken; most of them were transferred to Battery Sfation or to the Fish Hawh; while some were hatched on board and cleposited. $3,000,000$ fry were received from Battery Station and deposited in the tributaties of the Upper Chesapeake.

The Cold Spring Harbor Station.-Late in April 1,796,000 shad eggs were received from the Central Station at Washington. Only 100,000 fry were obtained from these, and deposited in the Hudson Rivor, near Albany.

Experiments in planting shad.-Attempts have been continued to acclimate shad in the Oolorado River of the West, and thus to establish fisheries on the Colorado, Gila, and other tributaries of the Gulf of Califoruia. This experiment was begun in 1884 by the deposit of 983,000 fish, followed by 998,000 eggs in 1885 and 550,000 eggs in 1S86, making a total of $2,831,000$, all of which were planted at the Needles. If successful, the fry deposited in 1884 should return as mature fish in 1858.

The effort to transfer shad to the Columbia River basin was repeated also. $1,000,000 \mathrm{fry}, 200,000$ eggs on trays, and 335,000 eggs in hatching jars were sent out from Havre de Grace on May 9, 1886. The egers in jars gave the best results, and this may indicate the proper method of
shipping them across the Atlantic. 850,000 fry were deposited in the river basin.
Plantings have been made during the present season in streams of all the Atlantic coast States from Massachusetts to Florida. Particular localities selected for plauting are chosen with a view to the general distribution of shad in all waters of the Atlantic coast.
v. The Carp (Cyprinus carpio).

The total distribution for the season aggregated 133,769, of which 38,634 were delivered to State commissioners and 95,135 to individual applicants. 589 applications had to be carried over until another year, and the number of fisb given to each applicant was reduced from 12 to 15 , instead of 20 as in preceding years.

The Washington Station.-The yield of the ponds was small, possibly, in part, on account of the low temperature of the entire season. Inability to drain them in the spring, because of the filling in of the Potomac flats, had an injurious effect on the carp, as it was impossible to kill the cels, sunfish, perch, and other predaceous fish that prey upon them.
The Wytheville Station.-During the fiscal sear 1886-'S7, 452 scale carp and 3,017 leather carp were received from the Central Station. 450 scale carp were planted in south fork of Reed Creek, in $W_{y t h e}$ County, Va., and 1,925 leather carp were distributed to 91 applicants in southwestern Virginia and easteru Tenuessee.
w. The Gold-fish (Carassius auratus).

The Washington Station.-During the season 2,75: gold-fish were sent out, in lots of 4 to 10 each, to applicants in 22 States and 2 Territories. 260 of the Japauese fan-tail varicty, were issned in small lots in December, 1886.

The Wytheville Station.-During the fiscal year 1856-'S7, 50 gold•fish were distributed to 9 applicants in Virginia, North Carolina, Mississippi, and Texas
r. The Tench (Tinca tinca).

Less than 1,000 tench were reared at the Washington Station, their number being reduced by the rarages of eels. At the Wytheville Station 2 breeders and 450 yearlings were received from the Central Station, and the yearliugs were planted in the south fork of Reed Creek, in Wythe County, Va.
y. The Lobster (Homaris americamus).

The Wood's Holl Station.- During the season the experiments were contimed in the artificial propagation of the lobster. Esgs were ob. tained and placed in hatehing jurs, the number in the apparatus sometimes reaching nearly $1,000,000$, and the young were deposited in Vine. Fard Sound and adjacent waters. In April and May Capt. H. C. Ches.
ter made some experiments with a view to keeping lobsters alive with the use of a rery small quantity of sea water. These experiments seemed to demonstrate the feasibility of transporting the species across the continent. On May 29, 5,000 lobsters, 2 or 3 weeks old, were sent to the Cold Spring Harbor Station. These were planted off Rocky Point, in Cold Spring Harbor, June 5.

z. The Oyster (Ostrea virginica).

At the Saint Jerome Station experiments were continued in the artificial propagation of the oyster, according to the system devised by Prof. John A. Ryder, and by other methods. The work lasted from April to November $\AA 0$, and was in charge of Mr. W. de C. Ravenel. On June 23 ripe oysters were found in sufficient numbers to begin spawning regularly. Collectors were put out and afterwards placed in ponds. Spat first appeared July 29. Sand and slime wero deposited so rapidly and extensirely as to interfere with the success of the undertaking.
6.-THE STATIONS OF THE FISH commission.
A.-Marine Stations.

Gloucester, Mass.-This station was occupied mainly in the interests of the Gloucester fisheries and for the purpose of obtaining continuous and accurate returns of their statistics. It was in charge of Mr. W. Λ. Wilcox, a special agent of the Commission, assisted by Capt. S. J. Martin.

Wood's Holl, Mass.-Operations were carried on during the entire jear at this important station, which is located on Vineyard Sound, at the south western extremity of Cape Cod and opposite the northern end of the Elizabeth Islands. It is now thoroughly equipped both for the propagation of marine fishes and for the purposes of scientific inquiry. The hatching of colfish, begun in November, 1855, was continued through the winter and into the spring of 1856 , and was again taken up in November of the same year. The propagation of lobsters was carried on from May until July, and experiments with reference to tho planting aud breeding of ofsters were conducted during the spring and summer. From early in July until the middle of October the sta. tion was occupied in the interest of the sea-const investigations respecting food-fishes and the fishing grounds, under the immediate direction of the Commissioner, and during this period it was also the headquarters for the steamer Albatross.

Capt. H. C. Chester, who had served as superintendent of the station since its foundation, was obliged to rolinquish his position in June, on account of ill health, and was succeeded by Prof. John A. Ryder, as acting superintendent, until Uctober 1, when the station was placed in charge of Mr. Charles G. Atkins.

A frame store-house and a short section of wharf in front of the coal
shed were finished during the summer, completing the principal structures required at this locality for the purposes of the Fish Commission. The final work upon the stone pier was also completed duriug this year by the Engineer Corps of the Army, and an appropriation of $\$ 14,000$ was made by Congress to enable the Revenue Marine Burean to construct a coal shed and wharf adjacent to the buildings of the Commis. sion. This work, however, was not begun until the following year.

The system for supplying salt water to the laboratory building was entirely reorganized by the substitution of wooden and hard rubber pipes for the iron ones previously in use, thus obviating the meonveniences resulting from the accumulation of iron rust in the water. In the present arrangement wooden nains, having a 6 -inch bore, lead from the harbor to the water tower, and thence to the lower story of the laboratory, the distributing pipes from this point being entirely of hard rubber with brass fittings. A standard Garduer clock, connected by telegraph wire with the Naval Observatory at Washington, was placed in the headquarte as building for the convenience of Government vessels touching at the station, and a time ball, working in the same circuit, was arranged on top of the water tower where it could be seen by the many vessels passing through Viueyard Sound. Wood's Holl having been selected as one of the principal stations of the Signal Service, and the shore terminus of the Government cable conncting the main-land with the Elizabeth Islands, Martha's Vineyard, and Nantucket, the, necessary accommodations were furnished that Burean by the Commission. An office room in the laboratory building was assigned to their use, the exposed instruments were placed upon the roof of the storehouse, and permission was given to use the flag staff for displaying the usual weather signals.

Saint Jerome, Md.-This station is located on the west shore of Chesapeake Bay, abont 6 miles above the mouth of the Potomac River. The experiments in oyster culture, described in former reports, were continned here during a large part of the year, under the direction of Mr. W. de C. Ravenel, and upon a much larger scale than in previous years. Careful observations relative to the temperature and density of the water were made in connection with the work.
B.-Stations for Propagation of the Salmonide.

Maine.-The two stations located in this State, one at Bucksport, the other at Grand Lake Stream, are operated conjointly by the United States, the State of Maine; and one or two other of the New England States. They are both in charge of Mr. Charles G. Atkins as superinteudent. At the Grand Lake Stream Station, under the direction of Assistant Superintendent W. O. Buck, 855,500 schoodic or land-locked salmon eggs were obtained in good condition. Of this number 377,500 were allotted to the United States, and .were distributed in Marcb. 1887, while 214,000 , reserved by the State of Maine, were hatched and
plauted in Grand Lake Stream. Of sea salmon or Penobscot salmon eggs a net stock of $1,099,000$, resulting from the winter's work, were arailable for division anong the contributors to the fund. Of the assignment made to the United States, 779,000 , nearly all were distributen in February, 1887, 25,000, however, being retained at the station for hatching, in order to make experiments in the rearing and feeding of the young during the following spring and summer.
New York.-At the fish.cultural station located at Cold Spring Hiarbor, Loug Island, and owned and operated by the State of New York, certain privileges have beeu granted to the Uuited States Commission gratuitously from year to year. During 1836 considerable work was doue under this agreement by Mr. Fred Mather, superintendent, in hatching the eggs and distributing the fry of the following species to the rivers and lalkes of New York, namely: Lake whitefish, lake trout, brown trout, shad, and Penobscot and land-locked salmon. Experiments were also made in the hatching of smelt and tom-cod.

Virginia.-The Wytheville Station, located ou the summit of the AIleghany Mountains in southwestern Virginia, is leased from that State, and has been in charge of Col. Marshall MeDonald, with Mr. George A. Seagle as superintendent. Many improvements and additions made to the station in 1885 rendered it practically complete in all its appointments for the season of 1880, and more extensive operations were carried on this year thau hitherto. The following species were under cultiration: The rainbow, brook, and brown tront, land-locked salmon, red eye, black bass, carp, and tench.
Michigan.-The stations at Northville and Alpena, Mich., are operated mainly in the interests of the whitefish fisheries of the Great Lakes, but at the former station lake, brook, rainbow, and brown trout, and saibling were also propagated during 1886. Both stations are in charge of Mr. Frank N. Clark. Northville Station is the headquarters for the whitefish work and is kept opeu during the entire year, but the Alpena Station is closed during the summer. During the season of $1886,129,400,000$ eggs of the whitefish were obtained from the fisheries of Lakes Erie, Huron, and Michigan. Of this number $56,800,000$ were placed in the hatchery at Alpena, aud $72,600,000$ were sent directly to Northville; but subsequently $21,000,000$ rere transferred from Alpena to Northville. The collection of eggs continued from November 4 to December 2. Of the total number, $32,600,000$ eggs were distributed mainly to State hatcheries, and $62,070,000$ were hatched and the fry planted in Lakes Huron, Michigan, Erie, and Ontario, and two smaller lakes in the State of Michigan.
California.-The salmon station at Baird, Cal., on the McCloud River, was not operated during 1880, but the collection of eggs of the rainbow or California tront was continued as usual at the McCloud River Station, the season lasting from December, 1585 , until May, 1886. The total number of eggs taken was 221,425 , this lhaving been a smaller
yield than usual, due to the loss of many breeding tront by disease and from the effects of a severe storm. The following season, beginning December, 1S86, and ending May, 1887, 268,400 eggs were secured. Mr. Livingston Stone has continued in charge of the Calıfornia work, with Mr. Loren W. Green as superintendent of the McCloud River Station.

> C.-Stations for lmopagation of Shid.

Battery Island.-This station, located on Battery Island, near the moutb of the Susquehanna River, a few miles sonth of Havre de Grace, Md., was in charge of Mr. T. B. Ferguson, with Mr. L. J. Grabill as superintendent during the shad season, which continned from April 19 to June 10. The total number of shad eggs brought into this station was $\mathbf{6 0 , 7 6 6 , 0 0 0}$, of which $2,099,000$ were received from the steamer Fish Hack, and 2,433,000 from the steamer Maloyon, the remainder laving been obtained by a temporary force employed for the purpose. About $44,000,000$ eggs were hatched and the fry distributed. Experiments in the hatching of rock fish or striped bass met with partial success. Some improvements were made to the station during the jear.

Washington.-The shad eggs obtained on the Potomac River were transferred to the Central Station in Washington, where they were batched and the fry distributed. The total number of eggs thus received was $28,283,000$, of which $24,907,000$ were hatched and $1,586,000$ trausferred to other stations. The propagation of other species of tish was also carried on at this station, which is the headquarters for the cars and for the general distribution of young fish. It is in charge of Col. Marshall McDonald.

Fort Washington, Md.-'lhis station, situated on the Government reservation at Fort Washington, on the Potomac River, was ocenpied during the shad season as a receiving station for the eggs collected from the fishing shores and from the gillers along the river. A seine is also operated at this point by the Fish Commission. The egrgs are retained at Fort Washington until they are sufficiently hardened to permit of their being safely transported, when they are transferred to Central Station, Washington. Over $36,000,000$ eggs were received here during the season of 1886 , of which one-third were taken from the fish caught in the Fish Commission seine. About $3,000,000$ of the eggs were Latched at the station and the fry planted in the vicinity. Operations were in charge of Col. Marshall McDonald.

Delaware River.-Operations were carried on in the Delaware River, with headquarters at Gloucester City, N. J., by the steamer Fish Hawk. assisted part of the time by the steamer IIalcyon, from May 5 to June 3, The total number of shad ergs taken was $34,454,500$, of which $23,196,000$ were hatched on boarl the Fish Hawl, a part of the remainder having been transferred to Battery Island Station.

Washington. D. C.-Many improvements were made in the carp ponds on the Monument Lot, in Wrashirgton, and a new and more commodious office building was constructed. Congress directed the filling in of Babcock Lake as an additional precaution looking toward the safety of the Washington Monument; but as this work was ordered not to begin before December, it did not interfere with the year's operations. This lake was drained and the fish removed for the last time on November 11. The Monnment Lot ponds are chiefly used for the propagation of the sereral varicties of the German carp, but tench, golden-ide and gold-fish are also prodnced in linited numbers. They are in charge of Dr. Rudolph Hessel.

Two or three ponds on the Arsenal grounds in Washington are still used for the rearing of scale carp. 'They are cared for by an employo of the Arsenal.

E.-New hatching Stations Proposed.

Duluth, Minn.-The following petition from the fishermen of Dulath was forwarded, under date of April 18, 1856, to the Hon. Knute Nelson, member of Congress from Miunesota:
The fishermen of Lake Superior, whose market and shipping point is at Duluth, Minn., feel the need of nomo relief being obtained for them from the U. S. Fish Commission, and a careful consideration of the facts as presented to Prof. Spencer F. Baird, Commissioner, and do hereby petition you to use your influence in securing for them the favors herein set forth.
They have formed themselves into an association to promote their mutual interesta; thoir aims and oljects being a better understanding of the fishing laws of States; a miform action amongst the fishermen concerning the regulation of the sizes of mealos of all nets, and the onforcement of the laws concerning them.
To secure the artificial propagation of the egge of both whitefisi and lake trout by a fish hatchers.
To this end we have pledged ourselves to aid, hy manual labor and by the use of our fishing plants and men, to procure egge in tho season for such a fish hatchery.
Realizing that the capital invested in the fishing industry is not proving remunerative under existing circumstances, and reali\%ing from our past oxperience that the continnal diminished catches both of whitefish and lake tront are decreasing onothind of the previous yoar's eatch year by yoar, we therefore feel the necessity of providing for larger deposits of fry of these fishes, and assure you that a better seatiment is prevailing to-day amongst fishermen concerning the production of such fry.

While gratefully acknowledging the grod work dono by the Minnosota fish commission for us as fishermen, and the kindly interest evinced by Prof. Speucer F. Baird in the welfare of the fishermen of Lake Suporior, yot wo pray you to introduce a bill asking for an appropriation to establish a fish hatchery, under the instruction and charge of the U. S. Fish Commission, and have assured Professor Baird that wo will, by such manual labor as may seem fitting to the U. S. Fishl Commission or the assistants, place our apparatus and fishing phants to aid thom in collecting and procuring eggs for this hatchory; and your petitioners will over pray, ete.

This petition was accompanied by a letter from Mr. C. ח. Evans, of Suluth, in which it was stated that if the Government would build a
fish hatchery in that city, at a cost of $\$ 10,000$, and maintain it, the people would donate a suitable site with an ample supply of good water. The fishermen of the region, who employ several steaners to collect the fish for marketing at Duluth, also offered to save the spawn and deliver it at the latehery.

In response to inquiries by Mr. Nelson, the Commissioner replied tha the whitefish interest of Duluth had not been wholly neglected, as many millions of the fry of that species had been planted in Lake Superior from the Micligan stations at Northville and Alpena; but that if it was deemed desirable to increase the work, and Congress should provide the means, a batching station could be built at the proposed location. As a result of this correspondence, the following item was inserted in the sundry civil appropriation bill and became a law August 4, 1886:

Fish hatchery at Duluth, Minn.: For the establishment of a fish hatehery on Lake Superior at or near Duluth, Miun., $\$ 10,000$: Provided, That the city of Duluth shall furnisl, without charge, a suitable sito for the said fish hatchery.

A site offered by the Lake-Side Land Compans, of Dulnth, ati, the mouth of Lester River, on the northern outskirts of the city, was found, upon examination, to afford the requisite facilities for the purpose, and it was accordingly accepted. Jurisdiction to the land was ceded to the United States by an act of the legislature of Minnesota, ajproved March 2, 1887.

Clackamas River, Oregon.-In Febrnary of the present year the Commissioner received from the Hon. J. H. Reagan, chairman of the Committee on Commerce, House of Representatives, a "Memorial of the Oregon legislature, relative to the establishment of a fish hatehery on the Clackamas River, Oregon," with a request that it be given cousideration. The Commissioner, in reply, stated that the "salmon fisheries of that region could not be maintained in the fice of the adverse influences exerted by civilization without resorting to artificial propagation on a scale commensurate with the importauce of the fisheries, nor without such legislation as will give a reasonable measure of protection to the salmon during their spawning." He also explained that a reconnaissance of the Columbia River basin had been made, under the direction of the U. S. Fish Commissioner, by Mr. Livingston Stone, who reported favorably as to a location on the Clackamas River, as would be seen by reference to his account published in the Report of the U. S. Fish Commission for 1883.

The following amendment to the sundry civil appropriation bill was introduced in the United States Senate December 21, 1856, by Senator Dolph, but was not incorporated in the bill as passed :

[^3]
7.-Tile vessels of the fish commission.

A.-Tile Steameir Ahbatross.

The steamer Albatross, Lieut. Commander Z. L. Tanner, U. S. Nary, commanding, continued in active service during the greater part of the year. At the beginning of the year the steamer was at the Washing. ton navy-yard, making preparations for a cruise to the region of the Bahama Islands, for the purpose of investigating the winter range and habits of certain pelagic fishes, which, during the warmer months, are of great economic importance to the American fishermen; and of making a series of deep sea soundings for the benefit of the Navy Department. She was detained in the Potomac River by ice until February 17 , but left Norfolk on the 20th of that month and proceeded to sea. The cruise lasted until May 10, when the steamer returned to Washington. March 30 , while coaling at Key West, the officers and crew rendered effective service in fighting a disastrous fire which destroyed a large part of the town. From July 15 to October 28 the Albatross was surveying on the northern fishing grounds, from the latitude of Virginia to the Grand Bank of Nenfoundland and the Flemish Cap, with headquarters at Wool's Holl, Mass.

In proparation for the proposed trip to the Pacific coast oxtensive repairs to the steamer were necessary, and it was decirled that new boilers would be required to insure her safety for so long a cruise. The expenditures for this purpose were provided for by the following act of Congress, contained in the sundry civil appropriation bill, approred August 4, 1886 :

Steamor Albatross: For the construction and intronluction of now boilers for the steamer Albatross, and other necessary general repairs, \$20,000; for expenses of voyage from New York to San Francisco, including cost of eoak ant other necessary supplies, $\$ 7,500$; in all, $\$ 27,500$.

The plans for the new boilers were prepared by Passed Assistant Eugineer George W. Baird, U. S. Naws, of the steamer Albatross, and received the approval of Mr. C. W. Copeland, the desiguer of the vessel, and of Chief Engineer B. F. Isherwood, U. S. Naw, to whom they had been submitted for criticism. Proposals for constructing the boilers were received and opened December 21 , as follows:

The bid of the Columbian Iron Works and Dry Dock Company, of Baltimore, being the lowest, was accepted, and the construction of the boilers was immediately beguu.

> B.-Steamer Fisif Hawk.

The steamer Fish Hazoz was at Wood's Holl from Jaunary 1 to Felruary 21 , when she proceeded to the eastern part of the Gulf of Maine, for the purpose of collecting cod eggs for the Wood's Holl Station, generally making Portsmouth her headquarters. She remained in this region until April 12, when she returued to Wood's Holl, having obtained several million eags, which were shipped directly as thoy were taken. While at Portsmonth the last part of February the Fish Hawh encountered a severe gale, and slight damage was done to the steamer by two schooners fouling while at anchor. The steam-launch was also sunk and not recovered until the following September.

From April 26 to June 3 the Fish Hawk was engaged in shad propagation in the Delaware and Susquehanma Rivers, being stationed most of the time in the vicinity of Gloucester City, N. J. The total number of shad eggs obtained was $34,454,500$, of which $21,018,000$ were hatched on board. From early in July until August 28 she was engaged most of the time in freighting for the Saint Jerome and Battery Island Stations, and left the last of August for Wood's Holl, visiting on the way the light-ships at "Winter Quarter Shoal, Five Fathom Bank, and Sandy Irook, for the purpose of instructing the keepers in the meth. ods of maling temperature observations. Returning from Wood's Ifoll the latter part of October, an unsuccessful search was mate in the vicinity of Sandy Hook for the English sole, which had been planted there some years before. The balance of the year the steamer remained in Chesapeake Bay, serving as a freight boat, the crew also assistivg at times in the work at the stations. In July the command of the Fish Mauk was transferred from Ensign W. J. Maxwell, U. S. Navy, to Mate James A. Smith, who had previously commanded the Halcyon.

> C.-Steamer Halcyon.

This steamer, previously called the Lookout, was at Battery Station at the beginning of the year, where she remained until March 28, un. dergoing repairs. Subsequently she made an investigation of the pound aud gill-net fisheries in some of the tributaries of the Lower Chesapeake, and from April 27 to May 23 was employed in connection with the work of shad propagation in the Susquehanna and Delaware Rivers. From the close of the shad season until the last of July, and arain from the first of November until the end of the year, the Halcyon was mainly in Cliesapeake Bay, acting as a dispatch boat or freight boat in connection with the stations, or investigating the fishories. From August 9 to October 25 she was at Wood's Holl, Mass. Mate

James A. Smith, U. S. Navy, who commanded the Halcyon during the first balf of the year, was transferred to the steamer Fish Hawk in July, aud was succeeded on the Halcyon by Mr. William חamlen.

> D.-Schooner Grampus.

The dishing-schooner Grampus, which was under construction at Noank, Conn., at the begiming of the year, was completed June 5, and left for Wood's Holl the same day. She is the first of a new type of vessel, designed especially for the offshore fisheries by Capt. J. W. Collins, who superintended her construction and subsequent operations. Λ description of her principal features and of her merits is given elsewhere in this report. The sigual letters G. V. Q. F. were assigned to her by the Bureau of Navigation of the Treasury Department.

The Grampus made her first cruise August 12 to the offshore fishinggrounds south of Martha's Vineyard, where a week was spent in a fruitless search for the tilefish. Certain alterations in her fittings, shown to be uecessary by this trip, delayed the vessel in port until the last of September, when she began a cruise to the vicinity of Le Mave Bank, Roseway Bank, and Seal Islaud Ground, for the purpose of securing and bringing to the Wood's Holl Station, in her well, living specimens of halibut and other food-fishes, the spawn of which was desired for propagation. Returuing to Wood's Holl Octover 12, a short trip was made to the mackerel fleet operating at the western end of Viueyard Sound, and during most of the remainder of the year she was engaged in fishing for spawuing cod, which were carried to the Wood's Holl Station, and in investigating the fisheries of the western part of the Gulf of Maiue, Massachusetts Bay, aud the Vineyard Sound region.

Assignments of Naval Officers.

The following changes in the assiguments of naval officers to the service of the Fish Oommission were made during the year:
Lieut. Seaton Schroeder, executive oficer and navigator of the steamer Albatross, was detached Jauuary 2, and was succeeded by Lieut. E. S. Waring.
Ensign W. J. Maxwell assumed command of the steamer Fish Hawk January 10, relieving Lieut. L. W. Piepmeyer, but July 24 he was transferred to the steamer Albatross, from which he was finally detached August 28.
Ensign W. S. Benton joined tho Albatross January 13, and Eusign W. S. Hogg on the 10th of the same month.

Mate James A. Suith was detacherl from the steaner Halcyon and took command of the steamer Fish Hauk July 31, and Angust 3 Mate Hugh Kuhl joined the Fish Hawk as exccutive obifeer. Assistant En. ginear S. H. Leonarl was detached from the Fish Hawk December 18.
8.-COURTESIES AND asSISTANCE RECEIVED BY THE FISI COMMISSION.

A.-From the United States Government.

Treasury Depar'ment.-Secretary's Office.-In planting voung codfish at Pensacola it was very desirable to have the use of asteamer. The revenue cutter Forward, by direction of the honorable Assistant Secretars, C. S. Fairchild, transported the fish aud messenger in charge of the shipment to the point selected for depositing the fish.

Bureau of Statistics.-This Bureau lias issued circulars and letters of instruction to collectors of customs, at ports where fishing. vessels are documented, with the result of furnishing the Fish Commission much sta. tistical material.

Light-Ifouse Board.-The assistanco of this Board in securing ocean temperature observations at thirty-five of the principal light-houses and light-sbips upon the Atlantic coast has been continued.

Coast and Gcodetic Survey.-The Commissioner has received a large supply of maps and charts published by this Survey; especially upon the fitting out of the Grampus in May a complete set was furnished for her use.

Life-Saving Service.-The keepers and patrolmen of this service, by direction of Superintendent J. II. Kimball, continue to report the stranding of marine animals upon the sea-coast. Among the specimens thus obtained were the following:

In March Mr. D. M. Etheridge, keeper of the Currituck Inlet Station, forwarded a rare sbark, Hexanchus griseus, the first of this species'seen on the United States coast.

Mr. E. H. Bunkers, Fletcher's Neck Statiou, Biddeford Pool, Me., sent a specimen of Argentina silus, a fish which is extremely rare on our coast, although not uncommon in Norway.

On July 5 Captain Edwards, of the Amagansett Station, forwarded a torpedo, or cramp-fish, to be mounted for exhibition.

War Department.-Dermission for using the buildings and grounds at Fort Washington for tho pupose of hatching shad was continued.

Signal Office.-During the occupancy of the Wood's Holl Station in July, August, and September, the Signal Office furnished weather predictions and special warnings of approaching storms. Copies of temperature reports marle by observers at certain points of interest were also furnished as during preceding years.

Engineer Office.-Col. Peter C. Hains, engineer in charge of Potomac River tats improvements, gave authority to cut sods from the flats for turfiug about the carp ponds.

Navi Department.-The officers and crews of the Albatross, Fish Hawk, and Halcyon have been furnished by the Navy Department, and the facilities of various navy-yards, particularly those at Washington and Norfolk, have been extended to the Commission.

During the shad distribution in May and June the Department detailed Mr. H. E. Quinn to assist in the work.
Bureau of Construction and Repair.-The loan of two launches was continued during the present year.

Bureau of Steam Engineering.-By order of Mr. Cbarles H. Loring, Chief of the Bureau, a lot of engines, tools, etc., which were no longer required by the Department, were lent to.the Commission and prored very useful.
Bureau of Yards and Docks.-A dredge and some scows belonging to the Washington navy-fard were lent to the Commission in June.
Hydrographic O.fice.-Upon the fitting out of the Grampus the H_{5} drographic Office furnished a valuable set of charts for her use in navigation.
Bureau of Navigation.-Commodore J. G. Walker furnished the Gramp_{8} with the Nautical Almanac, azimuth tables, and other books. He assisted also in procuring her instruments.
Naval Observatory.-Allan D. Brown, Superiutendent of the U.S. Naval Observators, detailed Mr. W. F. Gardiner in July to oversee the work of erecting a time-ball at Wood's Holl Station.

State Department.-When it became desirable to have the Roosen apparatus for experiments upon the preservation of bait, the Secretary of State directed the United States consul at Leith, Scotland, to procure and forward a set to the Wood's Moll Station.
In June the Secretary furnished, upon application, a circular letter to all consular officers of the Uuited States in British North America, introducing Capt. J. W. Collins, commanding the schooner Grampus, and asking for him such official aid and facilities as might be required during a cruise in Canadian waters. The Secretary also addressed a letter to Sir Lionel Sackville West, requesting him to inform the Marquis of Lansdowne of the proposed scientific expedition of the vessel.
Interior Department.-Patent Office.-The Oticial Gazette of the Patent Office has been supplied as heretofore; also specifications and drawings of various patents relating to fish and fishing apparatus.
Geological Surveiy.-The Director of the Survey allowed Prof. W. J. MeGee to make a reconnaissance of Eattery Island, with a view to dotermining the feasibility of sinking wells at that station.
Government Printing Office.-The Government Priuter has rendered much aid in advancing the publications of the Cominission. Mr. James W. White, foreman of binding, wrapped the Commission's quota of its annual report.
Botanical Gardens.-Mr. William A. Smith, superintendent, at various times has furnished plants for the use of the Commission.

> B.-By Rallroad Companies of tite United States.

The distribution of fish and eggs is greatly facilitated by the courtesies of the railroad companies iu transporting the cars free or at a roS. Mis. $90 — \mathrm{IV}$
duced rate, in granting permission to carry fish and eggs in baggage cars, and to make repairs at their shops.

The Northern Pacific Railroad Company passed a car free from Saint Paul to the Pacific coast and back. The Atchison, Topeka and Santa Fe transported a car without charge with fish for the Southern Pacific region. During the whitefish distribution the Grand lRapids and Indiana Railroad lent the Commission a baggage car, which they trans. ported free.
C.-By Steam-ship Companies.

The foreign steam-ship companies, without exception, have coutiuued to transport free of charge the fish and eggs which are exchanged between the United States and foreign countries.

Messrs. Glidden and Curtis, of Boston, furnished transportation for a Fish Commission naturalist, Mr. Charles H. Townsend, from New York to Swan Island, on board the schooner Mosquito.

D.-Courtesies from Foreign Countries.

Australia.-Mr. F. Abbott, of the botanical gardens, Hobart, Tasmania, in September sent some seeds of hardy Eucalyptus, and offered to send those of Nymphaa gigantea, for the plant collections at the carp ponds.

England.-During the year, 61 soles were brought over alive from Liverpool in the White Star steamer Britannio and placed in large tanks at Wood's Holl, to be kept for breeding purposes.

Germany.-On January 28, were received from the German Fishery Association 50,000 eggs of a small whitefish (Coregonus albula); these were forwarded to Bucksport, for hatching and planting in Maine waters. On February 4, 50,000 additional eggs were received, and the good ones sent to Northville for lakes in Michigan and adjacent States.

During March, 1886, 104,000 eggs of the brown trout (Salmo fario). were received. The good ones, 35,000 in number, were sent to Northvillo, Wytheville, and Oold Spring Harbor. On April 16, 50,000 eggs were obtained from Max von dem Borne, of Berneuchen; these were forwarded to Northville, Mich.; Madison, Wis.; and Cold Spring Harbor, N. Y.

During March, 1887, 58,000 eggs of the brown trout were received from Max von dem Borne, and 50,000 from the German Fishery Association.

On February $9,1887,20,000$ eggs of the saibling (Salvelinus alpinus) were received from Bernouchen. On March 9 another consignment of 40,000 eggs arrived, one-half of them from Max von dem Borne, the other from the German Fishery Association.

Scotland.-On January 14, 1887, the Cold Spring Harbor Station receired 48,000 eggs of the Loch Leven trout (Salmo levenensis), from Sir J. R. Gibson Maitland, proprietor of the Howietoun Fishery at Stirling.
9.-COURTEsies and assis'cance rendered by the fish conemisSION.

England.-Shipments to England were made to the National Fish Culture Association, South Kensington, London. On January 15 and 29, 1880, two lots of whitefish eggs, each of $1,000,000$, were forwarded by the Cunard steamer Aurania. Ou Jannary 15, 1887, 1,500,000 eggs of the same species, followed on February 19 by 1,000,000, were shipped through Mr. E. G. Blackford, of New York. Few of these, however, arrived in good condition.
50,000 lake trout eggs were sent by the Aurania on January 15, 1886, and arrived in excellent order.
10,000 brook trout eggs were carried by the Cunarder Servia, January 29, 1880, aud 10,000 were forwarded through Mr. Blackford on January 15, 1887.
18,000 eggs of the landlocked salmon were taken March 16, 1886, by the White Star Line steamer Germanic. Un March 5, 1887, Mr. E. G. Blackford assisted in sending 25,000 eggs of the same species. Both of these shipments were successful.
10,000 eggs of the rainbow trout were sent from Wytheville during the fiscal year 1886-'87.
France.-During the fiscal year 1886-'s7, 5,000 eggs of the rainhow trout were sent to France from the Wytheville Station. On April 6, 1887, 25,000 eggs of this trout from the Northville Station were sent to Mr. L. G. Blackford for shipment to France.
25,000 eggs of the landlocked salmon, from Graud Lake Stream Station, were shipped on April 1, 1887, to Léou d'Halloy, vice-president of the Lower Seine Fish Commission.

Germany.-In April, 18s6, an unsuccessful attempt was mado to trausport shad to the Danube River.
On March 20,1880, 20,000 landlocked salmon eggs were sent to ron dem Borne for the Fischerei Verein. 30,000 eggs of this species were forwarded on March 5, 1887, through Mr. E. G. Blackford, to von Behr for the same association, and 10,000 to Max von dem Borne for his establishment at Berueuchen.
In Jauuary, 1886, two shipments of whitefish eggs, each containing 1,000,000, were made from Northville to the Deutsche Fischerei Verein, Germany. These were repacked at Cold Spring Harbor. A third consignment of $1,000,000$ from the same station was reshipped by Mr . Blackford March 10 in the original packages, modified only by replacing some of the packing with ice. On January 22, 1587, again 1,000,000 whitefish eggs were sent from Northville to Mr. Blackford, to be forwarded to Germany.

At Cold Spring Harbor 50,000 lake-trout eggs, which had come from Northville, were reshipped on January 18, 1886, per steamer Fulda, to the Fischerei Verein.

On February 22, 1896, 25,000 brook-trout eggs, from Nortliville, were repacked at Cold Spring Harbor, and sent to the Verein per steamer Eider.

On February 19, 1886, 25,000 rainbow-trout eggs, from Wytheville, were shipped to the Fisoherei Verein on the steamer Hermann. 10,000 eggs of this species were sent to Max von dem Borne on January 24, 1887. 30,000 eggs were sent from Wytheville February 7 and 14, 1887, to Herr von Behr.

Attempts to conrey sunfish, red-eje, and white perch in 1886 and 1887 to Max von dem Borne have been described in the systematic account of these species.

Mexico.-By request of the minister of Mexico, 25,000 lake-trout eggs were sent from Northville, January 18, 1886, to Estévan Cházari, of the City of Mexico.

New Zealand.-On February 5, 1886, there were sent from the Northville Station $1,000,000$ whitefish eggs to Mr. Charles B. Buckland, of San Francisco, destined for Sir Julius Vogel, Wellington, New Zealand. Owing to want of care in transportation this shipment was a failure.

On January 5, 1887, there were forwarded from Northville 1,500,000 whitefish eggs to Mr. Charles B. Buckland, acting resident agent for the New Zealand Government at San Francisco, to be forwarded to Now Zealand. These eggs were taken by the steamer Alameda and their sate arrical was acknowledged February 20 by Mr. W. J. M. Larnach, minister of marine. About one-half of the eggs were placed alive in the hatcheries.

Switzerland.-1,000,000 whitefish eggs and 50,000 eggs of the lako trout were sent to Switzerland January 13, 1886, per steamer Amerique, via Havre. On February 2, 10,000 brook-trout eggs were forwarded. On February 15 Col. Emil Frey an nounced the safo arrival of the whitefish and lake-trout eggs, and their distribution to the hatcheries at Zurich, Zug, Geneva, Locarno, Interlaken, Lucerne, Brassus, Saint Moritz, Stanz, aud Chur.

Assistance rendered by steamer Albatross.-Note has been mado, under the heading of the steamer Albatross, of the services rendered on March 30 by the officers and crew of that vessel in saving part of the town of Key West, Fla., from a destructive fire.

On the 19 th of July, as the steamer Albatross was returuing to Wood's Holl from a dredging trip, the steam-collier Panther, belonging to the Philadelphia and Reading Railroad Company, was discovered aground off Naushon, and was assisted from her perilous position.
10.-publid exhibitions of the methods \triangle ND Results of the COMMISSION.

At the exposition held at Louisville, Fy., during this year, a few of the appliances of the Fish Commission were displayed in connection
with the exhibit made by the National Museum. The Commission was also represented at the Nebraska State fair, in Lincoln, Nebr., by numerous articles of interest, furnished at the request of Mr. W. L. May, a member of the Nebraska State fish commission. The method of hatching whitefish eggs in the McDonald jars was exbibited, in April, at the exposition building in Chicago, under the direction of Mr. J. F. Ellis, $3,000,000$ eggs of the whiteflsh having been sent from the Northville Station for that purpose. A similar exhibition, with respect to both whitefish and brook-trout eggs, was made in Decembervat an industrial exposition held at Wilmington, Del., Dr. E. G. Shortlidge having charge of the apparatus.

11.-VISITS FROM REPRESENTATIVES OF FORELGN GOVERNMENTS.

A visit was received in September from Mr. Kadzutka Ito, commissioner of fisheries for the island of Yezzo, under the Japanese Government. Mr. Ito was commissioned by his Government to study the fishing industries of the United States and the methods and results of the U.S. Fish Commission. He is a graduate of the Imperial College of Agriculture at Sappora, and has been for several years chief of the bureau of fisheries in the Department of the Hokkaido; he is also an officer of the bureau of colonization. While in the United States he inspected nearly all of the stations of the Fish Commission and the principal fishery centers. He remained in this country nine months.
Dr. Filip Trybom, of the Swedish commission of fisheries, who arrived in the United States in 1885, continued his studies in this country until November; 1886, visifing the principal fishing ports and the hatching stations of both the Atlantic and Pacitic coasts and of the Great Lakes.

12.-DEATHS DURING THE YEAR.

Notice of Capt. Hubliard C. Chester.-During this year the Fish Com. mission lost one of its most valued members, Oapt. Hubbard C. Chester, who died July 19, at the age of fifty-two Jears. A native of the fishing town of Noank, near New London, Coun., Captain Chester, at an early age, entered the whaling service, in which he gained rapid promotion and received that thorough disciplining which, with his uatural tastes and great energy, specially fitted him as an associate of Captain Hall in his Arctic expedition. The sorvices which he rendered the unfortunate party which driftel to sea on the detached ice-floe, have gained him well-merited fame.

Captain Chester joined the Fish Commission in 1874, soon after his return from the Polaris expedition, and has taken part in nearly all of its branches of service. On the smaller steamers, before the Albatross was built, he was generally in charge of the dredging operations, and
also participated during two or three seasons in the shad operations on the Susquehanua and Potomac Rivers. He assisted in preparing and installing the exhibits of the Fish Commission and National Museum at the Centennial Exposition at Philadelphia in 1876, and in 1883 had charge of packing the large collections sent by the Fish Commission to the London Fisheries Exhibition and their subsequent installation. In 18 sio he was made the first superintendent of the Wood's Holl Station, which was then permanently organized, and continued to fill this position until Juue of this year, when his final illness unfitted him for active service. Captain Chester was a member of the party which couducted the experimental work of cod hatching at Gloucester, Mass.s during the winter of $1878-770$, when by unwise exposure he contracted a serious lung trouble, from which he never fully recovered. He also took part in the subsequent experiments of the same nature at Wood's Holl, and during the winter of $1885-96$ was in charge of the work. The Commission is iudebted to him for important improvements in the methods of hatching cod and lobster eggs and in the dredging appliances.

Notice of Capt. Nathanicl E. Atwood.-It is very appropriate that melltion should be made in this conncction of the important services rendered to science and to the fishery industries of New England by Captr N. E. Atwood, of Provincetown, Mass., who died November 7, 1886, is his eightieth year. His warm devotion to the interests of the Fish Commission, and his frequent contributions to its fund of information, made him an honored associate in its work, and his loss will be deeply felt by those who enjoyed his friendship. Starting life as a fisherman in 1816, when ouly nine years of age, he continued actively in this rocation for half a century, at the end of which time he turned his attention to the curing of fish in his native town. In 1857 he was elected to the State house of representatives, and subsequently to the State senate, in whicb he served as a member of the committee on fisheries. Captain Atwood was an accurate oloserver of natural phenomena, and possessed a won' derfully retentive memory, lacking only the necessary training to fit hipl as an accomplished naturalist. He gave valuable assistance to Dr. D. Humphreys Storer in the preparation of his monograph on the fishes of Massachusetts, begun in 1843, and was afterwards a constant helper of Prof. Louis Agassiz in his ichthyological studies. The Fish Commiso sion is indebted to Captain Atwood for most of its information respect ing the history of the important fisheries of Cape Cod, and in many other directions it has had the benefit of his varied experiences.

13.-PUblioations by the fish commission during 1886.

Annual Reports.-The annual report of the Commissioner for $1883_{\text {; }}$ of which only the press-work and binding remained to be done January 1, was not received from the Printing Office until August 11. Most of the report for 1884 was also in type at the beginning of the

Jear, and the bound volumes were ready for distribution by the milde of December.

Quarto Reports.-Considerable progress was made with the quarto reports relating to the fisheries and fishery industries of the United States, which were ordered printed by an act of Congress passed in 1882. These reports hare been prepared by Prof. G. Brown Goode and a staff of associates, under the joint co-operation of the Commissioner of Fisheries and the Superintendent of the Tenth Census. The "Geographical Review of the Fisheries," which, after being put in type, was transferred to the Department of the Interior, in 1885 , for publication as a rolume of the Census Report, was returned to the Commission during the current year, and will form Section Il of the Quarto series. Only the press-work and binding remain to be done. The account of the fishing grounds of North America and of the ocean temperatures of the Atlantic coast, now constituting Section inf, and the report upon the fishermen, forming Section IV, are also in type. Section v, in which the History and Methods of the Fisheries are discussed, was nearly ready for the Printer at the close of the year.

Bulletin.-The printing of the Bulletin for the current year (Volume VI) was begun early in Fobruary. Signatures were mailed to correspondents March 30, July 23, October 22, and December 20.
Pamphlets.-The following pablications, mostly extracted from the Annual Reports for 1883, 1884, and 1885, have been issued during the Jear for separate distribution:
96. Tanner, Z. L. Report on the work of the U. S. Fish Commission steamer allatrose for the year ending December 31, 1883. (From Report 1883, pp. 117-236.)
07. Stone, Livingston. Explorations on the Columbia River from the head of Clarke's Fork to the Pacific Ocean, made in the summer of 18e3, with reference to the selection of a suitable place for establishing a salmon-breeding station. (From Report 1883, pp. 237-258.)
98. Atwater, W. O. Contributions to the lnowledge of the chemical composition and nutritive values of American food-fishos and invertebrates. (From Roport 1883, pp. 433-499.)
99. Verrill, A. E. Resulte of the explorations made by the steamer Alluatross off the northern coast of the United States in 1883. (From Report 1883, pp. 503-699.)
100. Busif, Katifarine, J. List of deep-water mollusca dredged by the U. S. Fish Commission steamer Fish Hawh in 1880, 1881, and 1882, with their range in depth. (From Report 1883, pp. 701-727.)
101. Eisen Gustay Oport 1883, pp. 701-727.) 964.) Gustav. Oligochatological researches. (From Roport 1833, pp. bi9102. S

Re, Wiflifam P. The Aqua-vivarium as an aid to biological research. (From 103. Bevert 1883, pp. 965-969.) 1142.). B. Utilizing water by fish-cultare. (From Report 1883, pp. 1101104. 1142.) culture, Jons A. An oxposition of tho priciples of a rational system of ofater culture, together with an account of a new and practical method of oltaining oyster spat on a scale of commercial importance. (From Report 1885, pp. 381-423.)
105. Smith, Sidnex I. Report on the D
off the east coast of the Unisted S
(1885 pp. $605-705$.)
106. Ryder, Jonn A. On the development of Ossepis Fisbes, inoluding marine and
fresh-water forms. (From Report 1885, pp. 489-604.)
107. Tanner, Z. L. Report on the constrnction and outfit of the U. S. Fish Commission steamer Albatross. (From Report 1883, pp. 3-116.)
108. Baird, Spencer F. Report of the Commissioner for 1884. A. Inquiry into the decrease of food-fishes. B. The propagation of food-fishes in the waters of the United States. (From Report 1884, pp. xiii-l $x \times 1$.)
109. Baird, G. W. Specifications for bailding the new boilers, etc., of the steamer Albatross, 1886. (Printed by R. Beresford, Washington, D. C.)
110. Tanner, Z. I. Report on the work of the U. S. Fish Commission steamer Albatross for the year ending December 31, 1884. (From Report 1884, pp. 3-112.)
111. Nicklas, Carl. Pond culture. (From Report 1881, pp. 467-655.)
112. Smiley, Cianles W. Some results of carp culture in the United States. (From Roport 1884, pp. 657-890.)
113. Fewkes, J. Walter. Report on the medusw cullected by the U. S. Fish Commission steamer Albatross in the region of the Gulf Strean, 1883-'84. (From Report 1884, pp. 927-980.)
114. Ryder, Jonn A. On the origin of heterocercy and the evolution of the fins and fin-rays of fishes. (From Report 1884, pp. 981-1107.)
14.-DIGEST OF THE APPENDICES WHICH ACCOMPANY THIS REPORT.

The appendices which accompany this report consist of thirty-two papers, all of which have a more or less direct bearing upon the work of the Fish Commission. A large proportion, moreover, relate to the work accomplished at the stations of the Commission and by the vessels in its service during the current year. Several of the longer papers will be published in pamplet form for separate distribution. The arrangement of the appendices is as follows:

A.-Tue Fisheries.

This appendix consists of a comprebensive report by the Commissioner, Prof. Spencer F. Baird, upon the Sea Fisheries of Eastern North America. The paper was mostly prepared in 1877 and 1878 , but was withheld from year to year for revision and completion, until it becane evident that the author's declining bealth would prevent his giving the subject further attention. It is an important contribution to the literature of the American fisheries, and shows much careful research and thoughtful study.

B.-Scientific Investigation.

Four papers are included in this appendix, two relating to fishes and two to marine invertebrates. The first is by Prof. D. S. Jordan and Mr. D. K. Goss, his assistant, upon the flounders and soles of America and Europe; the second is by Professor Jordan and Mr. C. H. Eigenunann, upon the Sciænidæ (drum-fishes, etc.), of the same region. The former is illustrated by 23 figures the latter by 12 figures. Prof. Edwin Linton reports upon the Entozoa, or intestinal worms of the marine fishes of New England, and Mr. J. Walter Fewkes, upon the medusse collected by the steamer Albatross during its cruise to the Gulf Stream in the winter of 1885-986.
C.-Fisir Cultcre.

This appendix contains a single paper by Messrs. Bettoni and Vinciguerra, of Italy, upon the fish-cultural establishments of Central Europe.

> D.-Rhipoits of Vegsels and Stations.

This appendix cousists of twenty-two reports, covering the principal field operations of the Commission during the curront year. They relate to the steamers Albatross, Fish Hauk, and Halcyon; the schooner Grampus, and the fish-cultural stations at Bucksport and Grand Lake Stream, Me.; Wood's Holl, Mass.; Cold Spring Harbor, N. Y.; Battery Island, Saint Jerome, and Fort Washington, Md.; Washington, D. C.; Wstheville, Va.; Northville and A.lpena, Mich.; McCloud River, Cal.

> E.-Miscellaneous.

The first paper in this appendix is a compilation, by Mr. Sanderson Smith, of the data necessary for locating and defining all the dredging stations made in the North Atlantic Oceau, adjacent to the coasts of North America, by the vessels of the Fish Commission, the Coast and Geodetic Survey, and the various expeditions sent out by European goveruments. It is accompanied by several charts, showing the positions of the dredging statious. Following it are translations of two papers, one from the Russiau, by Professor Kostytscheff, on the chemical composition of fish products, the other from the French, by Dr. Mauriac, on cases of poisoning produced by spoiled codfish, and a compilation of the Norwegian fishery statistics for 1885.

APPENDIX A.

THE FISHERIES.

I.-THE SEA FISHERIES OF EASTERN NORTH AMERICA.

PREPARED FOR TIIE CONSIDERATION OF THE INTERNATIONAL COMMISSION HELD A'T HALIFAX IN 1877.*

By Spencer F. Baird.

ANALYSIS. \dagger

Paga.
Introductory 13
General considerations 17
Ocean fisheries inexhaustible 17
Advantages and ovile of the sea fisheries 19
Statistics of ecrtain fisheries 20
Meagerness of information 21
Improvements in the business 23
I.-Natural History.

* Fishes considercd separatcly or as species.
Gonoral considerations in regard to species of food fishes 24
A. Systematic lists of principal food and bait fishes and invertobrates of the eastern coast of the United States 25

1. List of principal food and bait fishes 25
2. List of invertebrates actually used for food and bait on a large scalo. 31
3. List of invertebratos capable of being used for food and bait 32
4. List of marine animals actually found in the stomachs of various fishos 34
List of mollusks, $\& c$. , from stomachs of codfish 36
List of mollusks, \&c., from stomachs of haddook 38
B. Biographical notices of the most important specios 45
"* Fizshes considered collcotively or by groups.
C. Rolationships and surroundings 46
(a) The inshoro fish 46
(b) The offshore iish 46
(c) Pelagic fish 47
(d) Deep-sea fish 47

[^4]C. Relationships and surroundings-Continued. Page.

1. To each other(a) During the breeding season(b) While feeding
(c) Under other circumstances
e. To the sea bottom and shores(a) According to depth or bathymetrical distribution(b) According to the shores or geographical distribution
2. To the tomperature
Migrations and movements 47
† Irregular.
(a) Occasional or at long intervals 48
The bluefish 48
Tho chul mackerol 48
T'he scad 48
The herring 48
\ddagger Regular.
(b) At well-defined intervals 49
3. Anadromous
4. Anadromous 49 49
The salmon 49
The smelt 49
Tho alewife 49
The tailor shad 49
The gizzard shad 49
The striped bass (in part) 49
Some Cyprinide 49 49
The lamprey 49 49
5. Catadromons 51 51
The eol 51 51
6. Inshore fish. (Coming from outside directly in to spawn) 51
Herring 52 52
Scup 52 52
Squotoague 52
Sea bass 52
Tautog 52
Mackerel (in part) 52
Various flat-fish 52
7. Offishore fish, deep-sea, bottom fish. (Mostly localized) 53
Cod 53
IIake 53
Halibut 53
Haddock 53
Ling and most othor Gadidus 53
8. Offshore, pelagic, or wide-sweoping fish. (Showing much at surfaco). 53
Herring 53
Menhaden 53
Mackerel 53
Chub mackerel 53
Spanish mackerel 53
Coro 53
Bonito 53
Horse mackerel 53
Little tunny 53
Sworlfish 53
Bluefish $E 3$
C. Relationships and surroundings-Continued. Page.
9. Deep-sea fish 53
Hibernation 54
Mackerel 54
Sturgeon 54
Carp 54
Migration of fishes: how influenced 55
(a) By plysical causes 55
Temperature of the waters 55
Currents 57
Deptlı 57
Clearness of water 57
Condition of air or sky 57
Winds 57
(b) Roproductive instinct 57
(c) By search for food 58
Relation of herring to copepods 58
Cod and halibut after capelin and herring 58
Offshore fish after anadromous fish 58 58
Bluefish, Sc 58
(d) Driven by enemies 58
Bluefish and monhadon and mackerel 59
Porpoises, salmon, bluefish 59
Extent of such action 59
(c) Human agencics (oxclusive of capture) 59
Obstructions:
Dams 59
Nots 59
Sounds and concussions 59
Steamers 59
Canuon 59
D. Numbers and abundance 61
10. In early days 61
Illustrations 61
From report of U. S. Fish Commission 61
From Mr. Martin's notos 6_{1}
11. At the present time 61
12. Variations in abundauce (on large scale, and permanent for a time) 61
(a) Natural or uncontrollable variatiousAntagonisms between fish: Bluofish, squeteague, scup, cod, had-dock, halibut, porpoises, sharks, silmon, wackerel, and lobstersin Provincetown
Climatic conditions
Causes unknown
(b) Human ageucies
Direct
OverfishingPollution of water
Indirect
Obstructions
Disturbance of balance of nature
Breaking up schools and iuterforing with spawning
62
E. Daugers and fatalitics
12
12
13. From fellow-inhabitants of the sea
14. From fellow-inhabitants of the sea 62
(a) Destruction of aggs and young fish
E. Dangers and fatalitios-Coutinued. Pago.
(b) Destruction of maturo fish 62 62
By fish 62
By porpoises 63
By whales 63
By seals and otters 63
By birds 63
Gannets and eormorants 63
Otber species 63
l3y roptiles. 64
Alligators, in Florida lagoons
Alligators, in Florida lagoons 64 64
By fishes 64
All fish predaceous 64 64
Driving of monliadon and mackerel by blucfish 64
Catfish, goosefish 65
Sharks, doglish 65
(c) Parasites: animal ; vegetable 66
Entozoa 66
Epizoa 66
(d) Epidemics. 66
Mortality in the Gulf of Mexico 66
15. From man 66
(a) Obstructions (seo above) 67
(b) Poisouing (refuso, \&c.) 68 68
(c) Capture aud incidental destruction 68 68
16. Natural canses or changes 68
(a) Volcanic eruptions 68
Hot water 68
Acid or poisonous emanations 68
Mud 68
(b) Storms 68
Mud and wind 68
Bay of Fundy
68
68
Tides and currents
Tides and currents
68
68
(c) Cold and heat
69
69
Anchor-ice
Anchor-ice
70
70
Northers
Northers
70
70
Gulf of Mexico
Gulf of Mexico
71
71
17. Causes of accumulation of fish in fossil state
72
72
Monte Bolca
Monte Bolca
72
72
18. Epidemic or other diseases
19. Epidemic or other diseases
72
72
F. Natural food
72
72
20. Vogetable
21. Vogetable
73
73
(a) Diatoms and desmids
(a) Diatoms and desmids
73
73
(b) Alga, turtles, sholls
(b) Alga, turtles, sholls
73
73
(c) Sea plants
(c) Sea plants
73
73
(d) Floating wood: Mangroves, posts, \&o
(d) Floating wood: Mangroves, posts, \&o
73
73
Consumed by Toredo
Consumed by Toredo
73
73
Limnoria
Limnoria
73
73
Mollusks
Mollusks
73
73
Echini
Echini 73
22. Organic mud 74
Menhaden 74
Gizzard shad 74
F. Natural food-Continued. Page.
23. Animal sabstances 75 75
(a) Dead 75 75
Carcasses and offal 75
By scavengers 75
Lobsters and other crustacea 75 75
Sharks and other fish 75
(b) Living 75
Eggs and ombryos of fish 75 75
Extensivo support of life in the sea 75 75
Adult fish 76 76
Invertebrates 76
Plant eating 76
Protozon (infusoria, sponges.) 76
Radiates (holothuria, acalophes, \&c.) 76
Carnivorous 76
Mollusks 76
Principal food of ground fish 76
Squid: larvx of herring and mackerel 76
Salpa 76
Articulates 76
Nereis, bluefish, Fire Island crabs, thysanopoda. 76
Protozoa and radiates 79
Jelly-fish and echinoidea 79
Mackerel 79
G. Reproduction 80
24. Fecundity 81
(a) Table of egge 82
25. Character of eggs 83 83
(a) Free swimming 83
Mackerel
Mackerel 84 84
Plaice
Plaice 84 84
84
84
(b) Adherent 84
26. Rate of growth of young 84
27. Peculiar habits or condition during spawning season
84
84
(a) Change of shape 84
Sea bass
Sea bass
84
84
(b) Change of color 85
28. Period of maturity 85
29. Duration of fortility
II.-Methods of Capture (Fisheries).
A. The fishing grounds 85
George's Bank 85
Brown's Bank 86
Jeffrey's Ledge 87
Cashe's Ledge 88
Jeffrey's Bank 88
German Bank 88
Marblehead Bank 89 89
Grand Manan Bank 89 89
Seal Island Ground 89
Roseway Bank 80 91Le Have Bank
Le Have Ridges91

8 REPORT OF COMMISSIONER OF FISH AND FISHERIES.

A. The fishing grounds-Continued. Page.
Sambro Bank 92
Western Bank 92
The Gully 93
Bankquereau 94
Causo Bank 95
Misaine Bank 95
Artimou Bank 95
St. Pierro Bank 95
Green Bank 96
Grand Bank 97
Flemish Cap 98
Cod grounds in Bay of St . Lawrenco 99
Magdalen Islauds 100
Cape North 100
Groonland Banks 101
Mackerel Grounds 102
B. The fishery marine 103

1. Vessels 104
2. Boats 107
3. Crew
108
108
C. Apparatus of capture
C. Apparatus of capture
108
108
4. Bow and arrow
5. Bow and arrow
109
109
6. Harpoon
7. Harpoon
109
109
8. Lauce and spear
9. Lauce and spear
109
109
10. Hook and line
11. Hook and line
109
109
(a) Hand-line
(a) Hand-line
110
110
(b) Long or trawl lino
(b) Long or trawl lino 111
Antiquity
111
111
Extent of modern use
111
111
Introduction into America
Introduction into America 111
Europe (Norway, England) 111
America 111
Bait employed 111
Fish, fresh or salt 111
Squid 111
Clams 111
Whelks 111
Mussels 111
Birds 111
Porpoises 111
Liver (Holland) 111
Catch or yiold 114
Norway 114
England 114
Antagonism in America 115
Alleged injuries 115
Advantages 115
12. The net 119
(a) Hand or scoop net 120
(b) Casting net 120
(c) The seine 120
Hanl-seine 120
Sweep-seine 120
Purse-seino 120
C. Apparatus of capture-Continued.
13. The net-Continued. Page.
(d) The trammel-nct 120
(c) The gill-net 121 121
(f) Bean-trawl 121
Condition of use 121
Not used in America 122
Best for flat-fish 123
14. The trap: Weir or pound 123
(a) Soconnet trap or madrague. 123 123
(b) Heart-net or pound 123 123
(c) Weir 123 123
(d) Stako-nct 124 124
(c) Frko and set-net 124 124
15. Explobives 124 124
D. Bait user in the sea fisheries 124 124
Baits and alluremonts 124
16. Red rags, eel-skin and other unedible covering 124
17. Metallic and otber alluroments, part of the book 124 124
Shining metal, spoons, artificial fish 124 124
18. Vegetablo substances 125 125
19. Animal substances 125 125
(a) Mammals 125
Flesh of porpoises 125 125
Salted livers for cod 12
(b) Birds 125
Hagdons, puffins, auks, \&c 125 125
Gannets, cormorants 125
(o) Fishes 126
Menliaden 126
Alewives 127
Capolin 128
Horring 128
Mackerel 128
Launce 128
Other fish 128
Portions of food-fish, offal 129
Fish-roe 129
(d) Mollusks 129
Squid 129
Ommastrophes 130
Loligo 130 130
Architenthis (found iloating on beach)
130
130
Whelks and winkles
131
131
Clams
Clams
131
131
Mya
Mya
131
131
Mactra
Mactra
131
131
Venus
Venus
131
131
Gnathodon
132
132
Mussels
Mussels
132
132
(e) Crustaceans
(e) Crustaceans
132
132
Lobsters
Lobsters
132
132
crabs
crabs 132
Shrimps
133
133
E. Methods and routine of flshing
133
133
F. Preservation of fish and bait
F. Preservation of fish and bait 133

10 REPORT OF COMMISSIONER OF FISH AND FISHERIES.

F. Preservation of fish and bait-Continued. Page.
2. In ice 134
(a) In contact with fish 134
Gloucester method 134 134
Noank method 134
(b) Dry air process 135
(c) Hard freeziug 135 135
(d) Advisablo methods for cod-fishing 135 135
3. By drying 136
(a) In air 136 136
(b) Desiccation
(b) Desiccation 130 130
4. By salting 137 137
(a) Dry-salting 137 137
(b) In picklo 137 137
(c) Corning and drying 137
(d) Use of other saline substances 137
Borax 137
(e) Use of acids 137
Citric acid 137
Acetic acid 137
5. By smoking 138 138
G. Disposition of offal or gurry 138 138

1. Great waste to throw away 139
(a) Utilization in Norway 139 139
2. Alleged evils of throwing overboard 139
(a) Destroy fishing-grounds 139 139
(b) Probably correct theory of action 140
Attract sharks, \&c 141 141
Destroyed by crustacea, echini, fishes 141 141
3. Inducements should be held out to fishormen to utilize 141
4. No complaint in Europe 142
II. Revien of the American fisheries 142 142
5. Yield of fisheries of all nations
6. Yield of American fisheries
(a) Amount of shore lino of United States
(b) Yield of fish, by kinds
(c) Combined tables.
(d) Number of towns, post-offices, and men
(e) Gloucester fishermen, 1874, '75, '76
7. Fishermen of other nations
(a) Canada(b) Nowfoundiand
(c) Norway
(d) Sweden
(e) France
(f) Great Britain
ili.-Economical applications of Products of the Fisheries.
A. Δs food 143
8. Fresh (in ice, see above) 144
9. Dried 146
10. Smoked 146
11. Salted: Pickled 146
12. Canned. 146
(a) In spices 146
(b) In oil 146
A. As food--Continued. Page.
13. Other proparations: Livers, sounds, fins 146
14. Extracts 146
15. Baits for fish 147
B. Applied in the arts and indnstries 148
16. Gelatine 148
(a) Sounds 148
(b) Skins 148
17. Oil 149
(a) Menhadon 149
(b) Capelin 149
(c) Herring 149
(d) Other fish 149
(c) Livers, expresse 149
18. Fertilizers 150
(a) Guano 150
(b) Offal 150
19. Clothing 150
(a) Skins of salmon, cod 150
(b) Eel-skins for pigtails 150
(c) Sturgeon 150
20. The industrial application 150
(a) Stomach membrances of halibut for windows
(b) Teeth of sharks for weapons(c) Shark skin for polishing150
(d) Shark skin for oroaments, covering, \&c 150
(c) Vertelrio for canes
(f) Scales of fish for ornaments
C. Medicines
(a) Cod-liver oil(b) Propylamine from fish pickle or brine(c) Intestines of grayling as renuot
IV.-Maintenance and Implovement of Fisimimis.
A. By legislation rogulating and prohibiting 151
21. Special regulations 151
(a) Places of fishing 152
(b) Soasons for fishing 155
(c) Time of day for fisling 155
(d) Size of mesh of nets 155
(e) Distance apart of nets 155
(f) Police regulations of boats and men 155
(g) Preparation of fish for market 155
22. Fow restrictions of sea fisheries by United States 156
(a) Difficulty of maintaining such regulations 156
(b) Other nations would not respect tham 157
23. Regulation of river and shore fisherios desirablo 157
(a) Enactments of some States 157
(b) Pollation of rivers 157
(o) Eroction of fishways 158
(d) Inspection in markets 158
24. Protection during spawning seabon 158
(a) Advantageous for both fish and fishermon 158
(b) Partial close time suggested 159
(c) Some fish unfit for food after spawning 160
(d) Alewife fishories in New England protected by towns 160
Page.
B. By increasing the number and variety of fishes 160
25. Transferring fisles from one region to another 161
(a) Scarus brought to Rome 161
(b) Desirability of importing turbots and soles to Uuited States 161
(o) Suggested adrantage of alewife to Europe 161
26. Artificially propagating fishes 162
(a) No experiments yet tried with sea.fishes 162
(b) Ratio of success in artificial impregnation 162
(c) Experiments easily tried in New England 163
(d) Hatching-boxes used and proposed 163
C. By loringing fish within reach of fishermen. 165
27. Mackerel attracted by chopped bait 165
28. Offal drawing fish to the fishing-grounds 165
29. Anadromous fish attract other species to the shores 166
(a) Loss to industry by destruction of anadromous fish 166
Illustration from former fisherios of Potomac 166
V.--Political Considerations.
A. Memorandun of points attempted to be established in the case for Great Britain 168
30. Statements of George McKenzio 168
(a) Mackerel 168
(b) Gurry 168
31. Statement of Thomas Bennett 168
(a) Codfish 168
Appendix 171
INDEX 217

THE SEA FISHERIES OF EASTERN NORTH AMERICA.

INTRODUCTORY.

In the present work I propose to give some account, as fiar as known, of the more important fishes of the Eastern United States north of Delaware Bay, together with an account of the methods by which they are pursued, captured, and utilized, as also of their application, with some statistical tables illustrating the results of the fisheries in the region referred to. For the better elucidation of the subject, I also propose to embrace a reference to corresponding fisheries in Europe and other parts of the world, so far as these throw light upon the American species.
A limitation of the subject to the region north of Delaware Bay is made, partly in view of the fact tliat the fisheries of that region are much more important in an economical point of vier, and can be better monographed at present, and partly because thes is the portion of Eastern North America which is embraced in the Washington treaty, and of which the information referred to is needed for the proper consideration of the interuational, political, aud cconomical treatment of the subject."

- In confining attention in the present article specially to the subject of the fisheries of the region covered by the treaty of Washington, it is not to be supposed that thore are no productive fisheries on a large scale further south, the contrary being quite the fact. No portion of the globe exceeds tho Southern and Gulf coasts of the United States in the number and variety of excellent food-fish, their waters teoming with them throughout the year and permitting their capture, especially in the cooler seasons, to almost auy imaginable extent. A fow hours' labor, either with the line, the cast-net, the gill-net, or the soine, suffices to supply the fishermun with food for days; and the introduction of the wholesale means of capture (pounds and traps not yot attempted) will probably protuce no approciable effect upon the supply.

Among the species which may be mentioned in this connection are the monhaden, bluefish, and mullet, all of which yield important fisheries in North Carolina, Virginia, and farther south. The menbaden is taken in great numbers and salted in barrels, being considered a very desirable article of food.

The bluefish spends several months on the Southern coast after leaving the Northern and Middlo States, and is found of very great size-from 12 to 16 pounds. During the late autumn and early winter vast numbers of these are shipped to the Northern markets, where they find a ready demand. I find a memorandum that on the 20th of November, 1872, threo thousand bluofish, averaging 12 pounds each, or 36,000 pounds altogether, were shipped from a single fishing station in North Carolina.

It is mach to be regretted that there is no machinery employed in the United States for securing the statistics of our fisheries, the example of Canada and of European nations not having jet been adopted. The only sources of knowledge at our command are the reports of the cod and mackerel landed at American seaport towns, as made by the Statistical Bureau of the Treasury Department, the reports of inspectious of mackerel by the States of Maine, New Hampshire, and Massachusetts, and other incidental mention of local yields, such as the annual prodnction at Gloucester, \&c., as can be picked up.

Of all these fish, however, the mullot is perhaps the most important, as being taken in larger quantities and occupying a greater numbor of persous in its manipulation. The ieh, however, aro almost exclusively consumed in the South, a very fow being sout to Baltimoro, Philadelphia, and Now York. At present it may bo considered as even more of a staple than the shad and alowife, which have been diminished very materially in later years; the supply of mullet, however, is apparently inexhaustible, and ia ropeated from year to yoar, though sometimes, owing to extreme woather and other conditions, the product is less, the conditiou of the lower classes being affected accordingly. Indeed, it may bo said to occupy the same position that the mackerel does in the North; and the increasing yield of this fishory has undoubtedly had much to do with the reduced domand for the mackerel. Although as a fresh fish it may be considered as inferior to the best quality of mackerel, it is by most persons considered superior to it when salted. At Cape Hatteras the mullot fishory is said to begin about the midille of July; about Fort Macon in Soptember, and later further south, coutinning for from one to two months at each station. The fish then come in from the sea for the purpose of sparning and outcr the fresh water, being similur in this respect to the shad and alowife, although not apparently ponetrating any considerable distance from the mouth. Like the herring and cod, they appoar to spawn on a falling temperature, or when the waters have acquired a certain minimum. There is but little system adopted in the fishery, several individuals combining for a particular occasion and selecting one of their number as chief. The outfit consists simply of two or three six-oared boats, a seine from 75 to 100 yards loug, several splitting tables, some barrels, and salt. The fish are split and cleaned, but without removal of the head, and are slashed in the thickest side for the better ponetration of the salt. The fish are all fat and plump, and are graded by size and not by quality. The lower grades are worth from $\$ 4$ to $\$ 5$ a barrel ; the higher sometimes bring from $\$ 8$ to $\$ 10$. Not more thau from seventy to a hundred can be packed in a barrel. As many as five hundred barrels of mullets are taken sometimes at a single hanl. The entire catch at Fort Micon alono is estimated by Dr. Yarrow at 12,000 burrels. The catch of a singlo county of North Carolina, Carteret, is given at 70,000 barrels. A. large portion of the fish are bartered in the seaboard comntios for agricultural products, 2 barrels being usually considered equivalent to 15 bushels of corn. Thoy are sent by the railway lines all through the interior of the State, where they meet with great demand. Mullot roes aro also considered a very great delicacy; a portion of them aro pickled and the others slightly salted and smoked. They usually bring from $2 \overline{5}$ to 40 cents a dozen.
With an increased dewand and improved mothods of capture and preparation, there is no reason why the yield of the mullet fishery should not be fully equaled in bulk and value to that of the mackerel, as the fish itself is in comntless abundanec and found for many hundreds of miles along the coast.
Dr. H. ©. Yarrow, U. S. A., from whose manuscript notes I have obtained the facts referred to above, states that two-thirds of the entire population of the coast of North Carolina is employed in this fishory.

Canada, on the other hand, has a special department of the fisheries, organized for obtaining the necessary data, and from which we cau learn with great precision the number of vessels and boats, their tonnage, the men employed, with the yield of the different kinds of fishing, in all the districts of the several provinces constituting the Dominion. The statistics of Newfoundland, which does not belong to the confederation, are scarcely more valuable or reliable than those of the United States. It is much to be hoped that both countries will, in time, initiate and carry on a system more like that of Canada, from which, year by year, tabulated and final results may be obtained.

Having been requested by the Secrotary of State to proceed to Halifax and be present during the International Jishery Conrention, I have been euabled, from the testimony adduced in regard to American fish and fisheries, and still more by personal inquiries of the witnesses, to obtain a great deal of information of much value, a portion of which will be embodied in the present report, and the remainder in an extension of the subject hereafter.*

The greater portion of the statistics employed in the present report is the result of special correspondence, initiated and maintained with

[^5]different parts of the country for the purpose, being partly the result of answers to a series of questions issued in printed circulars prepared for the purpose.

The reports of the Massachusetts commissioners of inland tisheries have furnished much valuable information, as well as the report of the commissioner of Maine.

Colonel Lyman, one of the Massachusetts commissioners, has also supplied some manuscript records of the weirs and pounds of Massachusetts, which have contributed greatly in making up these statistical tables. Especially important, too, hare been communications from Capt. N. E. Atwood, of Provincetown ; Capt. Prince Crowell, of East Dennis; Vinal N. Edwards, of Wood's Holl; Mr. Samuel Powel, of Newport, R. I.; Capt. Beuj. Ashby, jr., of Noank, Conn.; Captain Hurlbut, of Gloucester ; Captain Babson, collector of the port of Gloucester, and others hereafter euumerated.

To Mr. G. Brown Goode, assistant of the U. S. Fish Commission, I am indebted for very important service in collecting information and preparation of statistical tables, nearly all of which have been made up by him for the purpose. The primary divisions into which an article like the present will naturally fall are as follows:
I. The natural history or biology.-This considers the fishes and certain other marine animals as they occur in nature, and without particular reference to their relations to man, except incidentally, or as they existed in North America before its occupation by the white man. Under this head will be included, first, an account of the individual habits and general history of each species included in my subject, and next a general view of our marine fishes as a whole; e. g., their physical and mutual relationships; their migrations and movements; their abundance; their food; their diseases and fatalities; and finally, their reproduction and growth.
II. Methods of capture.-After consideration of the inhabitants of the sea, without any special relation to man, we naturally proceed to the history of the various methods by which they are pursued and captured; this involving the subject of fishing grounds, boats and vessels, men, the apparatus of capture, bait, manner of fishing, packing on shipboard, and disposition of offal. Results of the fisheries and their statistics will naturally fall under this head.
III. Utilization of the products of the fisheries.-As food, clothing, medicine, fertilizers, industrial applications, etc., or whatever applications are made of the fish after they have been caught. The general statistics of fishery products may come under this head.
IV. Maintenance and improvement of the fisherics.-This subject naturally follows those preceding, and does not usually come up for consideration among communities until real or imaginary scarcity or diffculties of capture, etc.; begin to press upon their members.
V. General political considerations.-Under this head are included the subject of the fisheries in relation to the State, bounties, inspection, international relations, \&c.

I propose to consider the subject of the fish aud fisheries of Eastern North America substantially as given above, although I shall not be able to follow the various subdivisions in equal detail, indeed omitting some of them entirely for the present. So much yet remaius to be known in regard to many of the topics enumerated that I cau ouly bope that the meageruess and incompleteness of what I may say of them will call attention to the fact and secure the co operation of others in a future more reliable rendering of the whole subject.

GENERAL CONSIDERATIONS IN REGARD TO THE SPECIAL MMPORtance and value of the sea fisheribs.

It way be safely stated that as a source of animal food to man the sea is the great fountain head, and that without this resource the supply of such food would be comparatively limited and far inferior to the demand of the various populations of the globe.
In the much greater proportion of ocean to land this reservoir of food is practically inexhaustible, and not only do the people living near its shores find a daily supply for consumption in a fresh state, but by proper methods of preparation and preservation the product of the sea can be fitted for long-continued keeping and for transportation to distant markets, where fishing is difficult, or into the interior, where it is impracticable. It is not a little remarkable that abundant as is the supply of fish in the warmer portions of the world it is impossible to preserve them there, and consequently, in Catholic countries especially, where the consumption of fisl on certain days is a necessity, the colder countries of the North are drawn upou to furnish cod, haddock, hake, horring, etc., to their own great proit. It is difficult to make a calculation as to the comparative amount of animal food derived from the ocean and the land, but it is stated (Report of the British Sea Fisherjes, 1866, I, p. xvi) that the weight of trawled fish supplied to tho Lonrlon market amounts to 300 tons daily, and is nearly equal to the total amount of beof, and that the price paid to the fishermen for this food is only one eighth of that paid to the first producer of the beef. It is also a gratifying and important consideration that the sources of food in the sea are very far from being all made use of, and that while in regard to the best known and most highly appreciated fish improved methods aro constantly being devised for successfully increasing the amount of the catch at less expense, there are a rast number of sea animals which, while highly prized iu some portions of the world, and really of sunerior excellence and wholesomeness as food, aro despised elsewhere. In time, however, such prejudices will be overcome and the various species referred to fully appreciated.
S. Mis. $90-2$

Numerous illustrations of the propositions here enunciated will be found in the portions of the present article devoted to the consideration of particular kinds of fish found in American waters. There is practically no diffculty in even a dense population finding its subsistence in the sea, both as regards the food necessary for daily consumption and for the means of securing either necessities or luxuries by means of a trade in the same commodity, this fish supply being furnished and maintained without the necessity of any previous cultivation or care, nature providing for the successions of the crop, and leaving it only to man to gather its full perfection. A spear, the bow and arrow, a hook aud line, a boat, even of the simplest and most primitive character, possibly even a floating log, will answer the necessary purpose; while the more extended investments of nets, weirs, and pounds, vessels for going a considerable distance to sea or even sailing to distant waters, are generally within the reach of the successful fisherman or a combination of several of them.
The case is very different on the land, where only a nomadic people can derive support from the wild game or fowl, and this scarcely more than sufficient for daily food and clothing, leaving but little for sale or export. As the population increases, this food becomes scarce and is either exterminated or driven aray, so that it offers but a scanty provision for the sustaining of life. It is then necessary to resort to the arts of the agriculturist; the land must be cleared and tilled, the seed sown, and a harrest obtained, sometimes after many months of waiting, aud with a chance, unfortunately too often realized, of a partial or total destruction of the whole by storm, rain, hail, drought, blight, or destructive insects. Even at best, too, only a small margin of annual profit is left after the interest on the investment and other deductions are made from the proceeds; and although the farmer who controls a large body of land and works it by labors saving machinery, or can gather in a large aggregate of the small proceeds of individual laborers, may acquire a competence and even wealth in time, set comparing the profits of a laborer who has but a small tract of land at his command with those of the fisherman who has the sea for many miles under his con. trol, we shall tind the actual results to be very different in the two cases.

Fishing, as an occupation, in fresh waters, is much less remunerative than the same business prosecuted in the sea, as by the limitation of area the supply becomes sooner exhausted, and is under the influence of cli. matic and physical conditions and the direct ageucies of man. So far as the rivers are concerned, it is only where they are in connection with large interior lakes, which take the place to them of oceans, that the most favorable conditions for the fresh-water fisheries are to be met with; and the great lakes themselves, such as those along the northern border of the United States, by their vast extent and great depth, are really, for all practical purposes, simply oceans, and furnish trout, white. fish, sturgeon, and other species in enormous numbers. Even bere,
however, the possibility of the exhaustion of the fisheries is to be considered and remedies applied in the way of protection, artificial propagation, \&c.

I do not refer in this to the proceeds of rivers connected with the occau and supplied with anadromous fish, such as salmon, shad, alewives, \&c. These are simply pathways for certain forms of sea fish, which enter them for the purpose of sparning and return to the sea again, thus coming within most convenient reach of human energy in their capture.

Apart from the illustrations already presented of such fisheries in the United States, I may refer to the fisheries of the Volga, which is connected with the Caspian Sea. Here, according to Von der Schulte, an enormous number of pounds are annually captured.
For the artificial culture of fish in fresh water it is probable that the carp and tench are most profitable, as furnishing the greatest yield in pounds, and even in values, for a given outlay; aud as these are herbirorous fish, thriving in waters not suited to most other species, there is reason to anticipate that a great advantage will result to the United States from the measures now in progress by the U.S. Fish Commission to multiply them, especially as the climate and waters of this country appear eminently adapted to their condition.
The agency of the sea fisheries is also of importance to the welfare of a nation otherwise than merely in the actual yield of food obtained, or of other articles of necessity or luxury. The influence of a sea-fishing life in rendering men bold, self-reliant, hardy adventurers is well known, and the infusion into the general population of such an element is of great importance. The pursuit of sea-fishing has an important and very valuable influence in training men for a sea-faring life generally, there being but little practical difference between the fitting out of a vessel for a distant sea fishery and taking the same or another ves. sel for au extended royage to various points of the globe in the inter. est of commerce. It is from the hardy population of the fishermen that the merchant marine derives essentially its material, while the armed vessels of governments depend more indirectly upon the same source for manning their ships. It is for this reason that in all maritime natious the fishing population is looked to as a source of strength and protection, supplying, as it does, an element absolutely necessary to the well-being of the country, and in many instances bounties and privileges have been extended to increase the inducements to enter upon and prosecute the sea-fisheries. The life of the fisherman is, of course, not one of case; he is oxposed to dangers and hardships which to a landsman would appear appalling, but which are taken by the fiskerman in the regular way of his duty. There is, however, no class ot community more liable to peril than the fishermen, their dangers being proportioned in a great degree to their enterprise. Of the fishing population of the Unitod States, that of Cape $\Delta n n$ may be considered as eminently typical of the bold and resolute sailor, and every year the

Cape has reason to deplore a large loss of life and property especially as the result of winter-fishing on the George's Bank not inaptly termed the "Gloucester grave-yard."

Proctor's "Fisherman's Memorial and Record Book" gives the names of 1,252 men and 280 vessels lost in the fisheries from the port of Gloucester between the jears 1830 and 1873, or during a period of nearly half a century. It is estimated that ten women and twenty children are annually deprived of husband and father by this service, the actual losses averaging twenty-eight lives and six ressels annually. The total amount of property lost in the period mentioned was $\$ 1,145,500$.

For the better illustration of the present article it would be desirable to present a statement of the product and values of the fisheries of the several maritime nations, so as to show the aggregate; and if reliable data were available for this purpose the result would bo an amazing one. Unfortunately, the statistics of most nations are so inaccurate or incompleto as to render such a comparison entirely impossible. We have, however, in an important roport from Mr. Richard D. Cutts, "The Fisheries and Fishermen of the North Pacific, and the Commerce in the Products of the Sea, Washington, 1s 72," a table of the products of certain portions of the fishorics of fifteen countries in the year 1865. They are as follows:

This, however, is merely a suggestion, and is probably far below the aggregate of that year, and much less than that at the present time.

The general facts in regard to these subjects may perhaps be best appreciated by some particular statistics in regard to certain countries, especially Norway, for which I give the figures for 1866.

Total product of Norwegian fisheries.

The following statistics of the average product of the Norwegian fishcries is given by Baars in 1866 (Les Pêches de la Norwége, p. 58) :

Summer herring, 220,000 barrels, at 20 france 800,000
Salted fish, $22,000,000$ kilograms, at 40 franes por 100 kilograms......... $1,760,000$
Dried fish, $12,000,000$ kilograms, ut 35 franes per 100 kilocrams.......... 850,000
Pickled fish, 60,000 barrels, at 20 francs..................................... 250,000
Cod-liver oil, 60,000 barrels, at 90 francs $1,080,000$
Cod rocs, 35,000 barrels, at 50 francs.. 350,000
Lobsters, $2,000,000$, at 6 cents each ... 120,000
Fish guano, 350,000 kilograms, at 30 fraucs 5,100,000
Total.
12, 710,000

According to Schultz (Rep. U. S. F. C.), the anumal catch of fish in the Caspian Sea and its tributaries amounts to $68,000,000$ pounds, worth about $\$ 10,500,000$.
The subject of the yield of the fisheries of the United States and the Dominion of Cauada is of more special interest in the present report. So far as Canada is concerned an excellent system of supervision by the Government enables us to gather, with more or less accuracy, the returns as to the number of ressels, of men, and the general yield for the different classes of objects in the various portions of the Dominion; and which, although these returns are probably considerably below the actual figures, still answer a useful purpose as a basis for comparison and for obtaining a general average.
Newfoundland, which is not a part of the Dominion, has uufortunately 10 corresponding record to which reference may bo made. The case is equally unsatisfactory in the United States. Here the General Government doesnot pretend to exercise any supervision in the collection of statistics of the sea fisheries, with the exception of such as are conducted by a certain class of vessels, occupied in foreign waters. Of the great local business of fishing, either by means of small boats that go out to a short distance from the land or the larger coasting vessels, we have. no reliable data. It is true that certain States, especially Maine, New Hampshire, and Massachusetts, provide for the iuspection of pickled fish, which is branded according to the several degrees of excellence; and this furnishes us, as far as that class of products is concerned, with tolerably reliable information. Other products, however, are unrecorded, and ouly an approximation to the amount cau be made. The State of Massachusetts has, however, lately undertaken to secure reliable facts under this head, and the commissioners of inland fisheries have been empowered to require, under suitable penalties, an annual return of the gield of evory weir, pound, and gill-net on the coast.
While it is probable that the supply of fish on the outer banks and in the deep sea, away from the immediate coast, is as great as that of former years, a lamentable falliug off is to be appreciated in the capture of anadromous fish, such as the shad, salmon, and the alewife, as woll as of many species belonging immediatoly to the coast, such as the striped bass, the scup, and other fish.

Fortunately, it is belioved they are capable of remedy by proper legislation and protection, artificial propagation, etc., and that wo may look forward in the distant future to a very considerable return to the former very desirable state and condition of the fisheries.

In proof of the abundance formerly existing I will only refer to the chapter under that head in the first report of the United States Fish Commission, in which the quotations are supplied from early historical records, extending back to the first peopling of the country by the whites. The capture of thousands of striped bass by meaus of nots stretched
across the mouths of tidal rivers, the schools of scup so thick that they crowded each other out of the water in their passage, single hauls of from three to five thousand shad, and of from one to nine hundred thousand alewives with the small nets used at that time, the taking of a hundred sturgeon with the hook and line in a day, and other similar facts all going to prove the general statement. A fisherman could, in a few hours and within a short distance from his home, fill his boat with cod, haddock, halibut, and other valuable species, and could take huvdreds of pounds where now from one to ten would be considered a satisfactory return under the same circumstances.

As already stated, however, we may look forward, if not to the former state of things, yet to a great improvement on the present condition, and to this the efforts of State governments as well as of the General Government and of the Dominion of Canada are being directed with the utmost zeal, seconded by a growing public sentiment.

It may be remarked that the number of shad and herring (alewives) barreled on the Potomac River as the result of six months' fishing is equal to the ontire yield of the Scottish fisheries for the ontire year of 1873, one of their most successful years.

In an appendix to the Documents and Proceodings of the Halifax Commission, pp. 3360 et seq., prepared by Mr. Goode, will be found a statement, as approximately accurate as possible, of the jield of the shore fisheries returned in the year 1876, wita partial returns for 1877. These, it will be understood, are entirely the results of the inshore fisheries, with scarcely an exception, the capture being made by pounds, traps, or gill-nets, set either on or close in shore, or by line-fishing from open boats, also close to the land.

I hare also compiled a table of the sea fisheries of Canada for the year 1876, rearranging the tables of the report of the minister of marine and fisheries, so as to show what are purely sea fisheries, what aro fresh water, and what are incidental products. In preparing this table I have converted the estimates of the weight of dry, smoked, and pickled fish into their estimated weight when fresh, so as to supply a more ready comparison. It is extromely difficult to obtain any estimate of the yield of the distant fisheries, prosecuted in vessels and from the ports of the United States. The report of the Washington Burean of Statistics for the fiscal year ending June 30, 1877, enumerates:

A secoud column gives the estimated weight of these fish when fresh, and is obtained in making up the table of Canadian statistics by multiplying the weight of the codfish by three; and adding one-fifth, or 20
per cent., to the weights of the herring and mackerel. We have thus an aggregate which we are sure is very far below the proper figures.

Within the last two years a very great increase in the demand for fish fresh from the sea has sprung up in the United States, most portions of the interior being now regularly supplied. To this end the improved methods of preservation and transportation have greatly conduced. The use of ice in its various applications,* the employment of refrigerating chests and refrigerator steamboats and cars and other devices, permits the trausportation of fish many miles in a brief space of time. During the present year salmon have been loaded in cars on the Restigouche River and delivered in New York in thirty hours. The fish are packed in boxes with snow and placed in a refrigerator car supplied with a quantity of ice, so that on arriving in New York the suow is generally entirely unmelted. Fish are packed in chests in Florida and delivered in New York by steamer in the same manner. Fish taken in pounds or gill-nets or with lines along the coast are concentrated at shipping points and forwarded by rail or in smacks, properly iced. They are then repacked and sent by various lines of conveyance to their distant markets.

Such is now the method and system adopted in this business that it becomes very difficult to obtain fresh fish in seaport towns, the machinery of collecting and transporting being so arranged as to prevent, to a very great extent, the diversion of any portion of the stock to the local consumption. Indeed, it is not at all uncommon for fish to be sent directly away from a village on or near the coast to New York or Boston in a general shipment to market, and afterwards returned to its starting point for consumption. One supposed evidence of an increasing scarcity of fish is the increase in price at such stations. This is, however, a fallacious argument, as the market is regulated by the rates obtainable in the centers of supply rather than elsewhere, and the local prices necessarily must correspond. The proprietor of a weir or pound generally has his entire catch pre-ongaged to the wholesale dealer in New York or Boston, and he cannot keep his accounts satisfactorily if he permits any portion to be diverted by the way. Formerly, before the introduction of the use of ice and the improved system of transportation, whenever a great catch of fish was made, the principal market would be found at a point on or near the landing, the fish being taken in wagons and peddled in the interior, but always over a limited area, the result being that prices were usually or frequently very low, and not remunerative, in cases of a glut in the market. -It is to the interest of fishermen, of course, that there should be no danger of such a glut, and that all the catch be disposed at a fair price.

[^6]
I.-NATURAL HISTORY.

GENERAL CONSIDERATIONS IN REGARD TO THE SPECIES OF FOODFISHES OF THE EASTERN COAST OF THE UNITED STATES AND OF THE DOMINION OF CANADA.

The peculiar difficulties of investigating the natural history and general character of the inhabitants of the sea, excepting so far as they can be observed in aquaria, have tended very greatly to prevent the acquisition of satisfactory information in relation to their labits and characteristics; and it is therefore not surprising that our knowledge of this portion of the animal kingdom is far inferior to that of species belouging to the land. This proposition applies almost equally to the fish of all countries, there being very fow species, even on the coast of Europe, the biology of which has been worked out in. a satisfactory manner. Of a few species we know more than we do of others, especially of the salmon, several kinds of herring, and the cod. All these, as constituting an important source of wealth, have been investigated by scientific commissions, organized by Governments, and embracing men trained to research, and competent to do the work assigued them.

With an enlightened appreciation of the importance of this subject, the Norwegian Government Las, for a number of years, employed some of its best naturalists, such as Professor Sars, Prof. A. Bock, Mr. Robert Collett, and others, in these inquiries, providing them with all the necessary facilities. The inherent difficulties in the way will be readily appreciated, in view of the fact that even under such circumstances the inres. tigators have not succeeded as yet in entirely working out the problems submitted to them for solution, but year by year further discoveries have been made, the sum of which constitutes the most if not the only reliable data at the service of inquirers elsewhere.

In view of these considerations, therefore, I trust that I shall be excused, if the accounts I give of the present state of our well-established knowledge of the habits and distribution of the American sea fish be more or less meager, especially as the limitation of the present report will forbid going into very minute detail. By distributing questions, as is now being done to a considerable extent, to the most intelligent observers throughout the country, and submitting particular questions and inquiries, and then by collating the results, it is hoped that a large body of facts will shortly be available.

The fishes of any region may be considered either in a purely zoolog. ical point of view, or as they would be treated in a natural history monograph, or in their relations to particular industries or to some special relation they may have to the land or water. For the purposes I have in view the subject of the biology or natural history of our fishes maj be treated under the following heads:
A. A systematic list of the species cmbraced in the subject, includ. ing also the fishes and marine invertebrates serving as food and bait.
B. Biographical notices of the most important species. After treating them separately they may be considered collectively, or at least by groups of species.
C. The relationships of fishes in general to each other and to the shores and sea-hottom, as also to physical condition, their migration and movements, and the induence of men upon the same.
1). Their numbers and abundance formerly and at the present time.
E. Their fatalities, diseases, and destruction by natmal canses and other than by ordinary human agency (which belong to the subject of the fisheries).
F. Their food, animal and vegetable.
G. Their reproduction, including their fecundity, their habits during that season, their rato of growth, and their conditions of maturity.
A.-LIST OF THE PRINCIPAL FOOD AND BAIT MATINE FISIIES OF THE eastern united states and biritisi phovincer.*

1. Pringipal food and bait fishes.

LOPIIIIDAS.

1. Lophius piscatorius (Linn.). Goosefish; Monkfish; Molligut. Nova Scotia and Chesapeake.

PLEURONECTIDAE.

2. Pseudopleuronectes americanus (Walb.) Gill. Common Flounder; Winter Flounder ; Mud Dab (Massachusetts 13ay); Sole (New York). Nova Scotia to Cape Eatteras.
3. Limanda forruginca (Storer) Goode \& Beall. Rusty Dal) ; Sand Dal) (Maine).
Nova Scotia to Liong Island.
4. Glyptocephalus cynoglossus (Linn.) Gill. Pole Flounder. North Atlantic, south to Block Island.
5. Pomatopsetta dentata (Storer) Gill. Smooth Plaice; Smooth-back. Massachusetts to Maine.
6. Hippoglossoides platessoides (Fabr.) Gill. Arctic Dab. Polar regions to Capo Cod.
7. Pseudorhombus dentatus (Limn.) Giiuther. Common Ilounder. Cape Ann to Brazil.
8. Hippoglossus vulgaris (Fleming). Halibut. Greenland and Nowfoundland to Cape Hatteras.
9. Platysomatichthys hippoglossoides (Walb.) Goodo \& Bean. Greenland Turbot. Greenland to Eastern Banks.
[^7]
GADID.A.

10. Pollachius carbonarius (Linn.) Bon. Pollock: Coal-fish (England). Greenland to Cape Hatteras.
11. Gadus morrhua Linn. Common Codfish; Sarandlik and Sarandlisksoak (Greeuland).
Polar regious to Cape Hatteras.
12. Microgadus tomcodus (Walb.) Gill. Tomcorl ; Frost-fish.

Newfoundland to Cape Hatteras.
13. Melanogrammus aglefinus (Limn.) Gill. Haddock.

Newfoundland to Cape Hatteras.
14. Phycis chuss (Walb.) Gill. Codling (New York); Ohl English Hake;

Squirrel Hake (Massachusetts); Ling; Chuss (formerly at New York); Codling (Newport) ; Fork-beard (England).
Newfoundlaud to Cape Hatteras.
15. Phycis tenuis (Mitch.) DeKay. Codling (New York); White Hake (Massachusetts) ; Squirrel Hake (Maine).
Newfoundland to Cape Hatteras.
16. Brosmius brosme (Miiller) White (d. © s.) Onsk (Massachusetts);

Torsk or Tusk.
North Atlantic, south to Cape Cod.

MERLUCIIDA.

17. Merlucius bilinearis (Mitch.) Gill. American Hake; Silver Hake (Maine); Whiting (Massachusetts); Stock-fish.
Nova Scotia to Cape Hatteras.

SCORPAENIDAE.

18. Sebastes marinus; Linn. (d. © s.). Norway Haddock; Hemdurgan; Redfish; Bream (Maine) ; Rose-fish; Suapper (Massachusetts Bay, Storer) ; Red Sea-perch (New York) ; Red Perch (Dastport). Polar regions to Block Island.

Lableid A.

19. Tautogu onitis (Limu.) Gthr. Black-fish; Tautog.

Bay of Fundy to South Carolina; New York.
20. Tautogolabrus adspersus (Walbaum) Gill. Burgall or Bergall (New York) ; Oumner or Conner ; Chogset (New England) ; Bluefish or Blue Perch.
Newfomdland to Cape Hatteras.

XIPHILD.

22. Xiphias gladius Linn. Common Swordfish.

Nova Scotia to West Indies.
23. Tetrapturus albidus Poey. Billfish; Spearfish.

Cape Cod to West Indies.
24. Histiophorus americanus Lac. Sailfish.

Cape Coll to West Iudies.

SCOMBRIDAS.

25. Scomber scombrus Linn. Mackerel ; Wawwhnnne-kesuog (Narragansett Indians, Trumbull); Caballa (Cuba). Greenland to Cape Hatteras.
26, Scomber grex Mitchell (- S. pncumatophorus De la Roche). Chub Mackerel. Nova Scotia to Cape Hatteras.
26. Sarda mediterranea (Schn.) Jordall. Bonito; Skip.jack (Boston market). Cape Cod to Mlorida.
27. Orcynus thynnus (Linn.) Goode (d. © s.). Horse-mackerel (Massachusetts, \&c.) ; Albicore (Rhode Island); American Tanny. Newfoundland to Florida.
28. Orcynus alliteratus (Raf.) Gill. Little Tunny ; Albicore; Alliterato; (Naples) ; Mackerel (Bermuda). Pelagic, occasional on coast (found in large numbers at Wood's Holl, Mass., August, 1871).
29. Scomberomorus maculatus (Mitch.) Jortan. Spanish Mackerel; Spotted Mackerel ; Bay Mackerel (ruro in Massachusetts Bay). Capo Cod to Florida.
30. Scomberomorus regalis (Bloch) Jordan. Cero; Black-spotted Spanish Mackerel; King-fish.
Cape Cod to Florida.
```
CAlrangidse.
```

32. Carangus hippos (Linn.) Gill. Horse-crevalle; Jiguagua (Cuba). Cape Cod to Florida.
33. Trachynotus carolinus (Liun.) Gill. Pompano (Southern coast); Cavallé or Crevalle (South Carolina); I'ompynose (New Orleans). Cape Cod to Florida.
34. Trachynotus ovatus (Linn.) Gthr. Short Pompano. Cape Cod southward.

STROMATEEDAE.

35. Porom tus triacanthus (Peck) Gill. Harvest-fish (New Jersey); Butter-fish (Massachusetts); Dollar-fish (Maine).
Maine to Cape Hatteras.

SCIAENIDAB.

36. Cynoscion carolinensis (Cuv. \& Val.) Gill. Salmon-trout; Spotted Sea-trout (South coast); Spotted Silversides (Scott).
Cape Hatteras to Florida.
37. Cynoscion regalis (Bloch) Gill. Squeteague or Squit (New Eugland); Shecutts or Checutts (Mohegan Indians); Chickwick (Connecticut); Weakfish (New York); Bluefish (Beesley's Point, New Jersey); Trout (Southeru coast); Salt-water Trout; Gray Trout (Southern coast). Cape Cod to Florida.
38. Pogonias chromis Lacépède. Drum.

Cape Cod to Florida.
39. Liostomus obliquas (Mitel.) DeKay. Lafayette (New York); Goody (Cape May) ; Chub (Norfolk); Roach (Northampton County, Virginia).
Cape Cod to Florida.
40. Scionops ocellatus (Limm.) Gill. Bass; Red Bass; Sea Bass; Spotted Bass (South Carolina) ; Redfish (Gulf of Mexico).
Cape Cod to Florida.
41. Menticirrus nebulosus (Mitch.) Gill. Kingfish; Whiting; Hake (New Jersey) ; Barb (New Jersey).
Cape Cod to Florida.
42. Micropogon undulatus (Limn.) Cur. \& Val. Croaker; Verrugato (Cuba).

SPARIDAS.

43. Archosaryus probatocophalus (Walb.) Gill. Sheepshead.

Cape Cod to Florida.
44. Stenotomus argyrops (Lim.) Gill. Scup (Vineyard Sound); Scuppaug ; Porgy (New York) ; Brean (Rhode Island, formerly) ; F'airmaid (East shore of Virginia).
Cape Cod to Florida.

PRIS'IL'OMLA'IDAE.

45. Hamulon arcuatum Cuv. \& Val. Grunt.

South Atlantic coast of United States.

SERRANIDAE.

46. Centropristis atrarius (Linn.) Barn. Black Sea Bass; Sea Bass (New York); Black Perch (Mass.); Black Bass; Blackfish (New Jersey); Bluefish (Newport); Black-harry; Hannahills (New York, DeKay); Black-will (Eastern shore of Virginia). Cape Cod to Florida.

LABRACID.

47. Roccus lïneatus (B1. Schu.) Gill. Striped Bass (Eastern States);

Rockfish (Pemsylvania, Se.); Missuckeke-kequock (Narragansett Indians).
Nova Scotia to Florida.
48. Morone americana (Gmelin) Gill. Whito Perch.

Nora Scotia to Florida.

EMIIPPIIDA.

49. Ephippus faber (Cur.). Moonfish; Angel fish (South Carolina); Three-banded Sheepslead; Three-tailed Porgy; Porgy (Chesapeako Bay).
Cape Cod to Florida.

Lobotide.

50. Lobotes surinamensis Cuv. Flasher (Now York market).

Cape Cod to Florida.

```
LOMATOMLDJE.
```

51. Pomatomus sallatrix (Linn.) Gill. Bluctish (New York and Now England, except Rhodo Island) ; Horse mackerel (Newport and Beesley's Point, N. J.) ; Skip.jack (North Carolina); Green-fish (Virginia, DeKay) ; Tailor (Marylaud and Virginia); Whitefish and Snap-mackerel (young).

wIACATIDAE.

52. Elacate canadus (Linn.) Gill. Crab-eater.

Cape Cod to West Indies.
ammodyidid.
53. Ammodytes americanus DeKay. Sand-launce; Sand-eel (New Eugland).
Newfoundland to Cape Hatteras.
MUGILIDAE.
54. Mugil allula Linn. .Striped mullet.

Cape Cod to Florida.
55. Mugil brasilicnsis Agassiz. White mullet.

atherinidas.

56. Chirostoma notata (Mitch.) Gill. Silversides; Friar (New England).

Maine to Florida.

BELONID A.

57. Belone longirostris (Mitch.) Gill. Silver gar ; Bill-fish. Cape Cod to Florida.

SCOMBELESOCLDA.

58. Scomberesox saurus (Walb.) Fleming. Skipper; Saury; Skip-jack. Nova Scotia to Florida.

CYPRINODONTIDAE.

59. Cyprinodon variegatus Lac.

Oape Cod to Florida.

MICROSTOMIDE.

60. Mallotus villosus (Müller) Cuv. Capclin.

Polar regious to Nova Scotia.
61. Osmerus mordax (Mitch.) Gill. Smelt.

Nova Scotia to Cape Hatteras.

SALMONADAS.

62. Salmo salar (Liun.) Giiuther. Salmon; Mishquammauqueck (Narragansett Indians).
Polar regious to Cape Cod.
ELOPIDK.
63. Megalops thrissoides (Bl. Sch.) Giinther. Jew-fish; Tarpum (Bermuda).
Cape Cod to Florida.

dussumieridac.

64. Etrumeus teres (DeKay) Brevoort. Round herring. Cape Cod to Cape Hatteras.

cluplide.

65. Brevoortia tyrannus (Latrobe) Goode \& Bean. Menhaden (Vineyard Sound); Munnawhatteaug (Narragansett Indians); Pogy, Poghaden (East coast of New England); Mossbunker (New York); Panhaden, Panhagen (New Lugland); Hard-head, Bony fish (Massachusetts Bay); Skippaug or Bunker (East end of Long Island); Bony fish (Saybrook); Whitefish (Saybrook to Milford, Connecticut); Fat-back and Yellow. tail (coast of North Carolina); Bug.fish (Carolima).
Nova Scotia to Brazil.
66. Alosa sapidissima (Wilson) Storer. Shad.

Newfoundland to Florida,
67. Opisthonema thrissa Gill. Thread-herring; Menhaden (Portland); Shad-herring (New York).
Newfoundland to Florida.
68. Pomolobus astivalis (Mitch.) Goode \& Bean; and Pomolobus vernalis (Mitchell) Goode \& Bean. Herriug (Southern States); Alewife (New England); Gaspereau (British Provinces) ; Spring-Lerring (New England); Aumsuog (Narragansett Indians); Kjack, Blueback, Alewife, Sawbelly, Cat-thresher (Portland, Me.). Newfoundland to Florida.
69. Pomolobus mediocris (Mitch.) Gill. Tailor-Lerring (Potomac) ; Fallshad.
Newfoundland to Florida.
70. Clupea harengus Linu. Euglish Herring.

Polar regions to Cape Cod.

DOROSOMID A.

71. Dorosoma Cepedianum (Lac.) Gill. Toothed Morring. Cape Cod to Cape Hattoras.
engraulidas.
72. Stolephorus vittatus (Mitch.) Jordan \& Gerard. Auchovy.

Cape Cod to Cape Hatteras.
anguillidse.
73. Anguilia bostoniensis (Les.) DeKay. Common Eel.

Newfoundlaud to Cape Eatteris.
ACIPENSLIRIDAE.
74. Aoipenser oxyrhynchus Mitch. (d.s.) Sharp-nosed Sturgeon. Cape Cod to Florida.
75. Acipenser brevirostris Lesueur. Short-nosed Sturgeon.

Cape Cod to Florida.

PETROMYZON'ALDAE.

76. Petromyzon americanus Lesueur (d. s.) Lamprey ; Lamper cel.

Cape Cod to Cape Hatteras.
2.-Invertebrates actualiy uised as food and bation on large scale.

MOLLUNOA.
Areliteuthis Harveyi Verrill.
The giant squid, and other species of giant squids when thes can be obtained.

Ommastreplcs illecebrosa Ver.
The squid generally north of Cape Cod, and the only squid of the Gulf of Maine, Bay of Fundy, \&c.
Loligo Pealii Lesueur. Squid.
South of Cape Cod, and also occurring in Massachusetts Bay.
Mya arcnaria Linu. Long Clam.
Ranging from South Carolina to the Arctic Ocean.
Venus mercenaria Linn. Round Clam; Quahog.
Massachusetts Bay to Florida ; Quahog Bay, Me.; Gulf of Saint Lawrence (Local).
Spisula solidissima Gray. Sea Clam ; Surf Clam.
Labrador to Gulf of Mexico.
Gnathodon cuncatus. Lonisiana.
Mytilus cdulis Limn. Common Mussel (or muscle).
Modiola plicatula Lamarck. Ribbed Mussel.
These two species are both said to be used as bait ofl Sandy Hook, N. Y. I know nothing very positive about them.

CRUSTACEA.

Panopeus Herbstii Edwards. A crab, but know of no common name. Range, Long Island Sound to Brazil; used for blackfisb, Southern States.
Crangon vulyaris Fabr. Sand Shrimp. North Carolina to Labrador.

Mysis, sp.

Used by bors in Eastport Harbor forcatching pollock aud red perch. Thysanopoda, sp.

Used by boys in Eastport Harbor for catching pollock and red perch. Homarus americanus Edw. Lobster.

Ranges from Labrador to New Jerses.
Callinectes hastatus Ordway. Common edible Crab, or Blue Crab.
Ranges from Cape Cod to Florida, and is occasionally found in Massachusetts Bay.
3.-Invertebrates which might possibly answer as bait.

It would seem as though nearly all the species of invertebrates which are found in the stomachs of fish, as food, might serve as bait for the same species at least ; and the character of the food of some fishes is very varicd. The following species are anong the more common ones on the New England coasts and are easily obtained and of about the right size for bait, or could be rendered so by very little cutting. Of course there is the question as to whether they would all or even many of them prove attractive to fish when on a hook, but forms closely re. lated to some of them are now standard articles of bait.

Gelasimus minax, pugnax, and pugilator.
The three species of Fiddler Crabs found on the Southern New England coast.
Cancer irroratus. Rock Cral).
Labrador to South Carolina.

Panopeus.

Several species of this genus are found ou the Southern New Eng. land coast and to the south of New lingland, one of which, Herbstii, is already used as bait for blackfish.
Carcinus manas. Gireen Crab.
Cape Cod to New Jersey.

Eupagurus.

There are several species of "Hermit Crabs" common to theNew Eng. land coasts, two or three of which, living not far from land, could easily be obtained as bait. One common species (pollicaris) is abundant on the oyster-beds of Southern New England (Long Island Sound) and could, therefore, be obtained of the oystermen.
Pandalus annulicornis. The Deep-water Prawn or Shrimp.
Common in the Gulf of Maine and Massachusetts Bay, in moderate to considerable depths, where it can be taken in large quantities by the beam-trawl.
Palcemonetes vulgaris. Common Prawn.
Massachusetts to South Carolina. Abundant in places, in shallow water.

ANNELIDA.

Nereis virens, and other "marine worms" which occur, buried in mudly and sandy beaches; nearly everywhere.

MOLLUSCA.
There are six species of Gasteropods of medium size which might possibly answer.
Buccinum undatum. Whelk.
Entire New England coast, but most aboudant north.
Urosalpinx cinerea. Drill.
Massachusetts Bay to Florida. Very thick shell, for which reason might not answer.
P'urpura lapillus. Purple.
Long Island to arctic. Also very thick shell.
Lunatia keros. Sea Suail.
Georgia to Gulf of Saint Lawrence.
Crepidula fornicata. Double-decker, Casco Bay, Me., to Florida.
S. Mis, $90-3$

Littorina littorea.
New Haven to Nova Scotia. Imported from Europe. Very abundant on the shores northward of Newport, R. I. Is very good eating for man.

Two other (rasteropods are common south of Cape Cod, but they are of large size.
Fulgur carica. Winkle.
Sycotypus canaliculatus. Winkle.
Of Lamellibranchs there are the following:
Mulinia lateralis. No common wame, but related to the Sea or Surf Clam, smaller size.
Massachusetts to Florida.
Callista convexa. Related to the Quahog, but of simaller size.
New Jersey to Gulf of Saint Lawrence.
Astarte undata.
Scapharea transversa. Bloody Clams.
Argina pexata. Bloody Clams.
Florida to Cape Cod.
Pecten irradians. Scallop.
Florida to Cape Cod.
If ascidians could be used as bait, the best three species would be the following, but I have not heard of their ever having been found in the stomachs of fish:
Molyula Manhattensis.
North Carolina to Maine; sometimes thrown up on the beaches in immense quantities; lives in shallow water.
Cynthia pyriformis. Sea Peach; abundant in Bay of Fundy, in moderate depths.
Boltenia Bolteni. Sea Lemon.
Cape Cod northward, with last above in Bay of Fundy.
RADIA'A.

Biittle-stars (Ophiurans) are often found in fishes' stomachs, and might answer as bait. The commonest species is-
Ophiopholis aculeata.
New Jersey to the Arctic Ocean; low water to 100 fathoms and deeper.

Some species of common startishes and sea-cucumbers might possibly also do.
4.-Lists of species, annual hetrmate for 1571--79, found in tide STOMACHS OF FISHES-FOOD OF FISHES.

In the following lists have been brought together the priticipal results of the various recorded examinations of stomachs of fishes in
this region up to the present time, whether done in connection with the U. S. Fish Commission or independently. The special dates and localities are given in each case.* Lophius Anericanus DeKay. Goosefish; Angler.
A specimen caught in Vineyard Sound, in June, contained crabs, Cancer irroratus; and squids, Loligo Pealii. Another contained a me-dium-sized skate. Still another a large common flounder; bluefish (Pomatomus saltatrix); fragments of clan shells (Mya arenaria); crabs; and eel-grass. Wood's Holl, 1871 ; E. Palmer.
Specimens taken in the rivers with herring had their stomachs filled with that fish. A. E. Verrill, Eastport, Me., 1871.
Alutera Schopfii. (Walb.) Goode \& Bean. File-fisl.
A specimen takeu at Wood's Holl, in August, contained a quantity of the finely-divided stems and branches of a Hydroid, Pennaria tiarella. $P_{\text {seudopleuronectes Americanus Gill. Winter Flounder. }}$
A specimen caught at Wood's Holf, in August, contained largenumbers of Bulla solitaria.
Specimens taken, in 1871, in the rivers about .Eastport, were filled with herring. A. I. Verrill, 1871.
Lophopsetta maculata Gill. Spotted Flounder.
Numerous specimens caught in seines at Great Egg Harbor, April, 1871, contained large quantities of shrimp, especially Mysis Americana and Crangon vulyaris; the prawn, Palcemonetes vulgaris; uumerous Amphipods, Gammarus mucronatus; one contained a Gcbia affinis.
Chernopsetta ocellaris Gill. Ocellated Flounder; Summer Flounder.
Soveral specimens takeu in the seines at Great Egg Harbor, Now Jersey, in April, coutained large quantities of shrimp, Crangon vulgaris and Mysis Americana; one coutained a full-grown Gelia affinis.
One caught at Wood's Holl, June 6, contained twenty-six specimens of Yoldia limatula; and numerous shells of Nucula proxima, Angulus tener, and Tritia trivittata; and Amphipod Crustacea belongiag to the genus Ampelisca.

Specimens caught at Wood's Holl, in July, contained rock crabs, Cancer irroratus; Pinnixa cylindrica; Crangon vulgaris; squids, Loligo Pealii; Angulus tener; Nucula proxima; and mauy "sand-dollars," Lechinarachnius parma.
August 16. One specimen contained a scup and one squid (Loligo); Sept. 1. Another specimen bad two small crabs and two minnows. Wood's Holl ; E. Palmer, 1871.

[^8]Gadus morrhua var. Cod.
The codishes devour a great variety of Crustaceans, Annelids, Mollusks, starfishes, \&c. They swallow large bivalve shells, and after digesting the contents spit out the shells, which are often almost uninjured. They are also very fond of shrimps, and of crabs, which they frequently swallow whole, even when of large size. The brittle-starfishes (Ophiurans) are also much relished by them. I have taken large masses of the Ophiopholis aculeata from their stomachs on the coasts of Maine and Labrador ; and in some cases the stomach would be distended with this one kind, unmixed with any other food.
In this region I have not been able to make any new observations on the food of the cod. This deficiency is partially supplied, howeror, by the observations made by me on the coast of Maine, \&c., coupled with the very numerous observations made at Stonington, Conn., mauy years ago, by Mr. J. H. Trumbull, who examined large numbers of the stomachs of cod and haddock, caughtwrithin a few miles of that place, for the sake of the rare shells that they contained. This collection of shells, thus made, was put into the hauds of the Rer. J. H. Linsley, who incorporated the results into his "Catalogue of the Shells of Connecticut," which was published after his death, iu a somewhat unfinished state, in the American Jourual of Scieuce, Series I, vol. xlviii, p. 271, 1845. In that list a large number of species are particularly mentioned as from the stomachs of cod and haddock, at Stonington, all of which were collected by Mr. Trumbull, as he has informed me, from fishes caught on the fishing.grounds near by, on the reefs off Watch Hill, \&c. Many other northern shells, recorded by Mr. Linsley as from Stonington, but without particulars, were doubtless also taken from the fish-stomachs by Mr. Trumbull. There was no record made of the Crustacea, \&c., found by him at the same time.
The following list includes the species mentioned by Mr. Yinsley as from the cod. For greater convenience the original names given by him are added in parentheses, when differing from those used in this report:

$$
\begin{gathered}
\text { - List of mollusks, \&c., obtained by Mr. J. H. Trumbull, from codjish caught } \\
\text { near Stonington, Conn. } \\
\text { GASTROPODs. }
\end{gathered}
$$

Sipho Islandicus (?), young, (Fusus corneus).
Ptychatractus ligatus (Fasciolaria ligata).
Turbonilla interrupta (Turritella interrupta).
Turritella erosa.
Rissoa exarata (\%) (Cingula arenaria).
Lunatia immaculata (Natica immaculata).
Amphisphyra pellucida (Bulla debilis).
Chiton marmoreus (?) (Chiton fulminatus).

LAMELLIBRANCHS.

Martesia cunciformis (Pholas cunciformis).
Periploma papyracea (Anatina papyracea).
Thracia truncata.
Tagelus divisus (Solecurtus fragilis).
Semele equalis (?) (Amphidesma aqualis).
Ceronia arctata (Mesodesma arctata).
Montacuta elevata (Montacuta lidentata).
Callista convexa, young, (Cytheroa morrhuana).
Cardium pinnulatum.
Cyprina Islandica.
Gouldia mactracea (Astarte mactracea).
Yoldia sapotilla (Nucula sapotilla).
Yoldia limatula (Nucula limatula).
Nucula proxima.
Nucula tenuis.
Modiolaria nigra (Modiola uexa).
Crenella glandula (Modiola glandula).
Pecten tenuicostatus, young, (Pecten fuscus).

ECHINODERMS.

Echinarachnins parma.
Microgadus tomcodus Gill. Tomcod; Frost-fisb.
Soveral specimens from New Haven Harbor, January 30, contained numerous Amphipods, among which were Mora levis; Gammarus, sp.; Ampelisca, sp.; an undetermined Macrouran; numerous Entomostraca; the larsa of Chironomus occanicus.

A lot taken in a small pond at Wood's Holl, in March, by Mr. Vinal N. Edwards, contained the common Shrimp, Crangon vulgaris; large numbers of the green Shrimp, Virlius zostericola; the Prawn, Palamonetes vulgaris; large quantities of Amphipods, especially of Gammarus annulatus, G. natator, Calliopiue laviuscula, and Microdeutopus minax; and smaller numbers of Gammarus ornatus and G. mucronatus.

Another lot of twelve, taken in April at the same place, contained most of the above, and in addition several other Amphipods, viz: : Mora levis, Pontogencia inermis, Ptilocheirus pinguis, and Caprella; also Nereis virens, and various small fishes.
Melanogirammus aglifinus Gill. Haddock.
The haddock is not much unlike the cod in the character of its food. It is, perhaps, still more omnivorons, or, at least, it generally contains a greater variety of species of shells, \&c.; many of the shells that it babitually feeds upou are burrowing species, aud it probably roots them out of the mud and sand.

A complete list of the auimals devoured by the haddock would doubtless include nearly all the species belonging to this fauna. We have
had few opportunities for making observations on the food of the haddock south of Cape Cod, but have examined many from farther north.

A specimen taken at Wood's Holl, November 6, 1872, contained a large quantity of Gammarus natator and a few specimens of Crangon vulgaris. Another from Nantucket contained the same species.

The following species of shells were mentioned by Mr. Linsley, in his catalogue, as from the haddock:
List of molluslis obtained from stomachs of haddock, at Stonington, Comn., by Mr. J. M. Trumbull.

Neptunea pygmæa (Fusus Trumbulli).
Astyris zonalis (Buccinum zonale).
Bulbus flavus (\%) (Natica flava).
Margarita obscura.
Actæon puncto striata (Tornatella puncto-striata).
Cylichna alba (Bulla triticea).
Serripeṡ Grœulandicus (?) (Cardium Grœnlandicum).
The above list doubtless contains only a small-portion of the species collected by Mr. Trumbull, but they are all that are specially recorded. As an illustration of the character and diversity of the haddock's food, I add a list of the species taken from the stomach of a single specimen, from the Boston market, and doubtless caught in Massachussetts Bay, September, 1871.

GASTROPODS.

Natica clausa.
Margarita Grœulandica.

LAMELLIBRANOHS.

Leda tenuisulcata. Nucula proxima. Nucula tenuis. Crenella glandula.

ECHINODERMS.

Psolus phantapus.
Lophothuria Fabricii.
In addition to these there were fragments of shrimp, probably Pandalus annulicornis, and numerous Annelids, too much digested for identification.
Pollachius carbonarius Bon. Pollock.
A species of Thysanapoda and one or two species of Mysis serve as food for the pollock about Nastport, Me. These crustaceans go under the general name of "shrimp" amoug the fishermen, and swim together in large schools. A. E. Verrill, 1871.

Phycis tenuis DeKay. Hake.
Feeds largely on worms, crustaceans (Pandali, \&c.), and mollusks, frequenting muddy bottoms. A. E. Verrill, Eastport, Me., 1871.
Anarrhichas lupus Linn. Wolf-fish.
This species is said to feed on the sea herring (Clupea elongata), but in two specimens examined at Eastport, Me., in 1871, no traces of herrings were found. The stomach of oue specimen contained about four quarts of sea-urchins (Strongylocentrotus Dröbachiensis), a part of them entire, and all with the spines on. The other contained a mixture of the same sea-urchin and Buccinum undatum. A. E. Verrill, 1871.
Batrachus tau Linn. Toadish.
Several specimens examined at Great Egg Harbor, New Jersey, April, 1871, contained joung edible crabs, Callinectes lastatus of various sizes up to those with the carapax two inches broad; shrimp, Crangon vulgaris; prawn, Palamonetes vulyaris; Ilyanassa obsoleta; various tiskes, especially the pipe-fish, Syngnathus Pcchianus ; and the anchovy, Engraulis vittatus.
A specimen caught at Wood's Foll, in July, contained the common rock-crab, Cancer irroratus.
Cyclopterus lumpus Limn. Lumptish.
In the rivers near Eastport, Me., specimens taken in connection with herring had been feeding upou the latter fish. A. E. Verrill, 18 in.
Prionotus Carolinus Cuv. \& Val. Sea Robin.
A specimen caught at Wood's Holl, May 27, contained shrimp, Cran. gon vulgaris; and a small flounder.

Another caught May 29, contained Amphipod Crustacea, Anonylx (?), sp.; and Crangon vulgaris.
Specimens dredged in Vineyard Sound, in August, coutained mudcrabs, Panopeus Sayi; rock-crabs, Cancer irroratus; and several small fishes.
Sebastes marinus Liitken. Redfish; Red Perch.
At Eastport, Me., the red perch feeds upon a species of I'hysanopoda, and one or two species of Mysis, which swim together in large schools, and are called "shrimp" by the fishermen. A. E. Verrill, 1871.
Tautoga onitis Gthr. Tautog; Blackfish.
Specimens caught at Wood's Holl, May 23, contained the common rock-crab, Cancer irroratus; Lermit-crabs, Dupagurus longicarpus; shells, Tritia trivittata, all crushed.
Others caught May 26 contained Eupagurus pollicaris; E. longicarpus; the barnaele, Balanus crenatus; the squid, Loligo Pealii; I'ritia trivittata. Others taken May 20 had Cancer irroratas; mud-crabs, Panopeus depressus; lady-erabs, Platyonichas ocellatus; shells, Tritia trivittata, Crepidula fornicata, Argina pexata, and the scollop, Pecten irradians; barnacles, Balanus crenatus, all well broken up.

Another taken Mayं 31 contained Platyonichus ocellatus; Tritia trivittata.

Others taken June 3 contained the mud-crab, Panopeus depressus; triangular crab, Pelia mutica; Crepidula unguiformis; Iriforis nigrocinctus ; the common mussel, Mytilus edulis; and the "horse-mussel," Modiola modiolus.

Another, on June 10, contained the common rock-crab, Cancer irroratus; mud-cral, Panopeus Sayi; Nucula proxima; several ascidians, Cynthia partita and Leptoclinum albidum.

Two caught July 8 and 15 contained small lobsters, Homarus Ameri. canus; Crepidula fornicata; Bittium nigrum ; a bryozoan, Crisia ebur. nea; sand-dollars, Echinarachnius parma.

A specimen caught in August contained long-clams, Mya arcnaria; muscles, Mytilus edulis; Petricola pholadiformis.
Xiphias gladius Linn. Swordfish.
One specimen contained mackerel (Scomber scombrus), and butterfish (Paronotus triacanthus). Wood's Holl, Mass., 1871 ; E. Palmer.
Sarda pelamys Cuv. Bonito.
Specimens taken at Wood's Holl, in August, contained an abundance of shrimp, Crangon vulgaris, scup, and occasionally fragments of fish and bones. Out of eighty-two individuals examined at one time, nearly overy one was empty. Shiners seemed to form their common food. Wood's Holl, 1871 ; E. Palmer.
Scomber scombrus Linu. Mackerel.
Specimens taken July 18, 20 miles south of No Man's Land, contained shrimps, Thysanopoda, sp.; larval crabs in the zoëa and megalops stages of development; young of hermit-crabs; young of lady-crabs, Platyonichus ocellatus; young of two undetermined Macroura; numerous small Copepod Crustacea; numerous shells of a Pteropod, Spirialis Gouldii.

Orcynus thunnina. Small Tunny.
One specimen caught at Wood's Holl, in August, contained elerensquids, Loligo Pealii.

Often contained small fragments of fish and sea-grass (Zostera). Wood's Holl, 1871; E. Palmer.
Cybium regale Cuv. \& Val. Ceró.
Stomachs often contained fine particles of fish. Wool's Holl, 1871; E. Palmer.

Palinurichthys perciformis Gill. Rudderfish.
A specimen caught at Wood's Holl, in August, contained a small Squilla empusa; Joung squids, Loligo Pealii; Butterfish, and several other joung slender fish. Wood's Holl, 1871 ; E. Palmer.
Cynoscion regalis Gill. Weakfish; Squeteague.
Several caught in seines at Great Egg Farbor, New Jersey, April, 1871, with menhaden, \&c., contained large quantities of shrimp, Crangon vulgaris, unmixed with other food.

Specimens taken at Wood's Holl, in July, often contained sand crabs, Platyonichus ocellatus; and very frequently squids, Loligo Pealii.

August 8.-Nearly every one of ten specimens opeued contained six seup (Stenotomus argyrops); one had a herring (Clupca elongata).

August 11.-Twenty specimens contained on an average about five scup each. Some were empty, while others had as many as nine. One or two squid were found.

August 12.-Twenty-five specimens examined contained on an average about four scup each; a few shiners, butterfish (Poronotus triacanthus), and squid were also found.

August 14.-Tweuty specimens opened; of these one or two were empty, and the remainder had on an average about three scup each, without other kinds of food.
August 10. -Of fifteen squeteague oxamined, three had empty stomachs, and the remainder were more or less full of scup; a butterfish was found in one stomach.
August 16 .-Out of ten specimens examined two were empty, and eight had a total of twenty-five scup.

August 19.-Ten squeteague opened contained a total of thirty-nine scup and six butterish. One had nine scup in his stomach.

August 21 .-Of forty specimens opened nearly all had more or less scup, with a few butteriish and squid.

September 2.-One squeteague had six butterfish; another a scup, with cel-grass (Zostera); another eel-grass only.

September 6..-Ono specimen contained three butterfish, two scup, and two dotted scad (Decapterus punctatus).

September 15.-One specimen contained a sand-crab and a bluefish (Pomatomus saltatrix).
September 18.-Ten stomachs opened contained three specimens of Tracurops crumenopthalmus, three butterfish, three scup, and one squid.

September 26.-One stomach contained three butterish, one herring, ${ }^{\text {One }}$ eel (Anguilla Bostoniensis), and three pisquetos (Paratraetus ${ }^{9}$).
Menticirrus nebulosrus Gill. Kingfish.
Four specimens taken in seines at Great Egg Harbor, April, 1871, contained only shrimp, Crangon vulgaris.

Others taken at Wood's Holl, May 29, were filled with Crangon vul. garis.

Specimens taken in July contained rock-crabs, Cancer irroratus; and squids, Loligo Pealii.
Stenotomus argyrops Gill. Scup ; Porgee.
Forty young specimens, oue year old, taken at Wood's Holl in August, contained large numbers of Amphipod Crustacea, among which were Unciola irrorata, Ampelisca, sp., \&c.; soveral small mud-crabs, Panopeus depressus; Idotea irrorata; Nercis virens, and numerous other Annelids of several species, too much digested for identification.

Other specimens, opened at various times, show that this fish is a very general feeder, eating all kinds of small Crustacea, Annelids, bivalve and univalve mollusks, \&c.
Centropristis fuscus. Black Bass; Sea Bass.
Specimens caught in Vineyard Sound, June 10, contained the common crab, Cancer irroratus; the mud-crab, Panopeus Sayi; three species of fishes.

Another, caught May 25, contained a squid, Loligo pallida.
July 27 .-Ten specimens were opened and found to contain scup (Stenotomus argyrops) and squeteague (Cynoscion regalis).

September 5.-One specimen contained two butterfish (Poronotus tria. cantlus) and two chogsets (Tautogolabrus adspersus).
Roccus lineatus Gill. Striped Bass; Rockfish, or "Rock."
At Great Egg Harbor, New Jersey, 1 pril, 1871, several specimens, freshly caught in seines, with menhaden, \&c., contained Crangon vulgaris (shrimp) in large quantities.

A specimen caught at Wood's Holl, July 22, 1872, contained a large mass of "sea-cabbage," Dlva latissima, and the remains of a small fish.

Specimens taken at Wood's Holl, August, 1871, contained crabs, Cancer irroratus; and lobsters, Homarus americanus.
Morone americana Gill. White Perch.
Numerous specimens caught with the preceding at Great Egg Harbor, New Jersey, contained Orangon vulgaris.
Pomatomus saltatrix Gill. Bluefish; Horse-mackerel.
Specimens caught at Wood's Holl, in August, frequently contained squids, Loligo Pealii; also various fishes.

Off Fire Island, Long Island, August, 1870, Mr. S. I. Smith saw bluefishes feeding eagerly on the free-swimming males (heteronereis) of Nereis limbata, (p. 318,) which was then very abundant.
Fundulus pisculentus Cuv. \& Val. Minnow.
Specimens caught in July, at Wood's Holl, contained large numbers of Melampus lidentatus, unmixed with other food.
Clupea elongata LeS. Sea Herring.
Specimens taken in Vineyard Sound, May 20, contained several shrimp, Crangon vulgaris, about 1.5 inches long; Mysis americana, and large numbers of an Amphipod, Gammarus natator; also small fishes.

At Eastport, Me., and Grand Manan, the principal, if not the only, food of the herring in summer is a species of Thysanopoda, and one or two species of Mysis. These species are assooiated together, and move in large schools; they are known among the fishermen as shrimp. The food of the herring caught out in the bay by. means of seines, and of those trapped in the weirs in the harbor, was of the same character for both. A. E. Verrill, 1871.

Alosa sapidissima Storer. Shad.
Several specimens taken in the seines, at Great Egg Harbor, April, 1871, contained finely-divided fragments of numerous Crustacea, among which were shrimp, Mysis americana.

Sereral from the mouth of the ConnecticutRiver, May, 1872, contained fragments of small Crustacea, (Mysis, \&c.).
Ponolobus mediocris Gill. Hickory Shad.
Sereral specimens taken in the seines at Great Egg Harbor, April, 1872, contained large quantities of fragmentary Orustacea; one contained recognizable fragments of shrimp, Crangon vulgaris.
Brevoortia tyrannus (Latrobe) Goode. Menhaden.
A large number of specimens freshly caught in seines at Great Egg Harbor, April, 1871, were examined, and all were found to bave their stomachs filled with large quantities of dark mud. They undoubtedly swallow this mud for the sake of the microscopic animal and vegetable organisms that it contains. Their complicated and capacious digestive apparatus seems woll adapted for this crude and bulky food.
Raia diaplıana Mitcl. Common Skate; "Summer Skate."
A specimen taken at Wood's Holl, May 14, contained rock-crabs, Cancer irroratus; a joung skate; a long slender fish (Ammodytes?). Another, caught in July, contained Cancer irroratus.
Raia lavis (\%) Mitch. Peaked-mose Skate.
Specimens caught in Vineyard Sound, May 14, contained numerous shrimps, Crangon vulgaris; soveral Conilera concharum; several Aunelids, among them Neplthys ingens; Meckelia ingens; two specimens of Phascolosoma Gouldii; razor-shells, Ensatella Americana (the "foot" only, of many specimens); a small fish, Ctenolalrus burgall. Specimens taken at Menemsha, in July, contained large numbers of crabs, Cancer irroratus; and of lobsters, Homarus americanus.
Trygon centrura Gill. Stiug-ray.
Specimens cauglat at Wood's Holl, in July and August, contained large numbers of crabs, Cancer irroratus; squids, Loligo Pealii; clams, Mya arenaria; Lunatia heros.
Myliobatis Freminvillei Les. Loug-tailed Sting-ray.
Specimens taken in Vineyard Sound, in July, contained an abundance of lobsters, Homarus americanus; crabs, Cancer irroratus; also clams, Mya arenaria; and Lunatia heros.
Pteroplatea maclura Miill. \& Henle. Buttertly Ray.
One specimen examined contained menhaden (Brevoortia tyrannus Goode). Wood's Holl, 1871. E. Palmer.
Eulamia obscura Gill. Dusky Shark.
Several specimens caught at Wood's Holl, in July and August, contained lobsters, Homarus americanus; rock-crabs, Cancer irroratus.

One specimen contained a flat.fish, in the stomach of which were starfish and clam-shells. The common ray is often the food of this species
as is also the bonito, as many as three of the latter being sometimes found in the stomach of a single individual. Other animals that serve as food are the herring, horse-mackerel, skate's eggs, crabs, and lobsters. Woód's Holl, Mass., 1871. E. Palmer.
Eulamia Milberti Gill. Blue Shark.
A large specimen caught at Wood's Holl, in August, contained a quantity of small bivalce shells, Yoldia sapotilla.

The common food of this species was the squeteague (Cynoscion regalis), and the bonito (Sarda pelamys). One individual contained a fivepound mackerel ; another had a large codfish hook and piece of line. Scup, the common skate, sea bass, aud a small shell (Yoldia sapotilla), also served as food. Three bonitos were often found in a single specimen. Wood's Holl, 1871. E. Palmer.
Galeocerdo tigrinus Müll. \& Henle. Tiger Shark.
Specimens caught at Wood's Holl, in August, contained large univalve shells, Buccinum undatum and Lunatia heros.

One contained a quantity of pork in large pieces, while others had fed upon sea turtle, the common ray, sting-ray, bluefish, dogfish; quantities of feathers and eel-grass were also found in the stomachs of this species. Wood's Holl, 1871. E. Palmer.
Mustelus canis De Kay. Dogfish.
Several specimens caught at Wood's Holl, in August, contained lobsters, Homarus americanus; spider-crabs, Libinia canaliculata; rockcrabs, Cancer irroratus; Tautog (Tautoga onitis) ; and butterfish (Poronotus triacanthus). Wood's Holl, 1871. E. Palmer.
Eugomphodus littoralis Gill. Sand Shark.
Many specimens taken at Wood's Holl, in July and August, contained lobsters, Homarus americanus, in abundance; Cancer irroratus; and squids, Loligo Pealii.

Also menhaden, Brevoortia tyrannus; eels; and common flounder. E. Palmer, 1871.
Squalus americanus.
Specimens taken in the rivers near Eastport, Me., in 1871, associated with herring, were full of the lattor fish. A. D. Verrill, 1871.

A Gephyrean worm is often used for bait by the fishermen on some parts of the coast of Maine. It has not been well described but it is apparently the Holothuria chrysacanthophora of Couthouy and the Echiurus chrysacanthophorus of Pourtales. It has been generally considered a rare species, and specimens of it are uncommon in museums. At Harps. well the fishermen sometimes dig it in immense quantities. It lives in the mud, just above the low-water mark, and is as readily obtained as clams. It is used in catching several species of fishes, but is specially desirable for hake. Its irregularity of occurrence seems to be the only reason why it should not be more extensively employed.
Δs already explained, our knowledge of the habits of the sea-fishes of America is very imperfect for various reasons, chief among which is, of course, their concealment from notice during the greater portion of their existeuce. We are even far from the knowledge of what species actually occur on our shores; many kinds coming to notice only at rare intervals, or under circumstances when the intelligent observer and naturalist fail to encounter them. Comparatively few species are readily, if ever, taken with the hook, or even the seine, and it is only since the more recent introduction of traps, pounds, and weirs, with their wholesale captures, that a fair idea of the geographical distribution of the sea-fishes along the coast has been attained. Even this apparatus fails to reacl the outlying deep-sea species; and the beam-trawl and long-line, while constantl δ adding to the list, will never in all probability entirely complete it. During the summer of 1837 the parties of the U. S. Fish Commission trawled up at various distances off the coast of Massachusetts several species, some new to science, never before known in American waters, and it is probable that additions will be made coutinually, without exhausting the list.

It is not a little remarkable that fishermen who are continually in contact with fish throughout the year know actually so little about them. To questions as to the food of the various species, the peculiarities of spawning, the size and character of the eggs, the period of development, the history of the young, \&c., a negative answer is usually roturned, and it is only occasionally that one more intelligent, or at least more observant, than the rest can be found from whom any satisfactory information can be obtained. It is, however, to be hoped, and indeed to be expected, that the publication of a résume of our actual knowledge of the habits and peculiarities of our fishes will call their attention to the subject, and secure their assistance in solving the many remaining problems.

As already explained, the facts, or probably it will be safer to call them statements until confirmed, here given are to a considerable degree the result of personal observation of members of the U.S. Fish Commission, supplemented and extended by the answers to questions distributed by the Commission. Personal inquiry of witnesses summoned before the Joint Fisheries Commission held at Halifax from June 15 to December 15, 1877, in addition to the testimony elicited on their examination by the counsel and printed with the other evidence, have also added not a little to the mass of facts. Great care, however, lequires to be exercised in admitting the statements made on this occasion, as one witness, apparently honest and claiming to have been a practical fisherman for many years, stated under oath, that the eggs of the mackerel were as large as pease or BB shot, and that they could be hauled up on a hook in large masses.

Not much information is to be found in the various publications hitherto made relative to the fish and fisheries of Eastern North America, although some facts of value are contained in the writings of Gilpin, Perley, Ambrose, Storer, and others.*

C.-Relationships and surroundings.

Fishes considered collectively or by grovips.-Although each species of fish on our coasts may be considered as possessing some peculiar habit or combination of habits by which it is distinguished from its fellows, they may be, for convenience of consideration, divided into groups, all the members of which possess certain common peculiarities, having an important bearing upon the methods and times of their pursuit and capture. These relationships are, to sowe extent interrupted by the reproductive instinct, which causes them to chauge their ordinary location and to assume now conditions. They are also affected by the exigencies of feeding, of pursuit by other animals or by man, or by the variations in their physical surroundings.

Deferring to a subsequent part of the chapter any consideration of the migrations and movements of the various species, we may arrange marine fish in certain groups, as follows:
a. The inshore fish, or those found within a short distance (sometimes miles) from the shores. These embrace a great variety of species, generally of small size and finding their harbor and shelter among rocks and stones, sea-weeds, eel-grass, \&c. They are fish that can be taken from beaches, rocks, and wharves, or small boats from the shore, and furnish more occupation and amusement than actual profit in their capture. They are also among those most frequently taken in weirs, pounds, and fykes. Among them may be mentioned various Cyprinodonts, the cunner, the spearing or friar, the young Clupeids, the sea bass, the tautog, the scup, and many other species of less note.

These fish furnish an important article of food, but obtainable only by considerable effort ; and being generally of small size, do not yield a very generous return. Some of the species, as the scup, in former years were, however, in such abundance on the south coast of New Eng. land that hundreds of pounds could easily be taken in a short time.
b. The offshore fish.-These are species which usually occupy greater depths, and are found at remoter distances from the shore than those first mentioned, being generally found on the banks or elevations in deeper water.

The greater portion of the Gadida or cod family, such as the cod, haddock, hake, \&c., belong here; as also the halibut. This group is the most important of our coast-fishes, being usually of large size and occur-

[^9]ring in great numbers, so that a few men, with proper apparatus, can capture a large number of pounds in a day. The salmon and shad may perhaps be included in this group.
c. Pelagic fish.-These consist largely of species belonging or allied to the mackerel family, and, next to the group just mentioned, furnish the most important supply of food. The prominent members of this group are the common mackerel, the bluefish, the menhaden, the swordfish, the bonito, and other kinds. Sometimes members of this group are found hundreds of miles from the land; at others they come close inshore, either in pursuit of food or for purposes of reproduction, when they can be taken from the shores or in nets. Tbey, however, appear to be continually on the move, showing more or less at the surface, remaining in proximity to the shore during the warm scason, then dis. appearing during the winter.
d. Deep-sea fish.-This constitutes a group, of which until within a few years very little was known, occasionally being found floating at the surface either dead or dying, or caught at great depth on cod or halibut lines. It is only within a few years, or since the labors of the Chal. lenger and other vessels, provided with apparatus for fishing at great depths, that the number of species has been realized. While some of the fishes belonging to the second section occur not unfrequently at depths of many hundreds of fathoms, such as the cod, halibut, hake, \&c., very few of this fourth group are taken in waters of less than 100 fathoms, and thence to 1,000 and even to 2,900 fathoms, by the Challenger. This group is of little ecomomical value, especially on account of their small size and apparently scaut numbers, even apart from the practical difficulty of their capture, although it is not at all impossible that there may be edible species sufficiently large and abundant to be Worth pursuing if they were more within reach.

The status of fish in the sea is very largely determined by the ques. tion of temperature. This, however, will be considered more definitely under the next head of the migrations and movements of fish as influenced by various causes.

MIGRATIONS AND MOVEMENIS.

The human race is more concerned in the movements and migrations of fish than in the question of their permanent abode. It is when they are aggregated in large bodies, and moving from place to place, either under the stimulus of search for food or other causes, that they furnish the best opportunity to man for their capture and utilization.

Little is known of the salmon, the shad, the herring, the meoliaden, the mackerel, and the bluefish during a large portion of the year; but at certain periods these species collect in large bodies, and by a change of place come within the reach of their relentless pursuer-man. On the other hand, the Gadide, the cod, especially, and the halibut, are within reach throughout the greater part of tho year, either on the offishore banks while feeding or iushore when spawniug.

The movements and migrations of fish are of two classes; the one irregular and occasional, the other regular. The irregular migrations are such as occur only at long intervals, sometimes altering very materially the industrial and social conditions of maritime countries.

Among the most notable illustrations of irregular migrations, we may cite the case of the bluefish, which during the past century was a wellknown inhabitant of the eastern coast of the United States, occurring in great abundance and of large size. This species appears regularly on our eastern coast in the spring and leaves in autumn; but some time after the middle of the last century it disappeared entirely, according to the histories of the time, and was not seen during the present century until much of it had passed by, having been absent for a period of about fifty years. Of course it is possible that it may have occurred in small numbers, but not sufficient to make any impression; at any rate, on its reappearance in 1825 or 1.830 it was entirely new to all the fishermen.

Another case is that of the chub mackerel (Scomber pneumatophorus). This, twenty years ago, was extremely abundant and was taken iup large numbers at the same time with the common mackerel; but of which in later years only occasionally individuals have been captured. I have succeeded in securing only one or two specimens since the commencement of the operations of the United States Fish Commission, although every effort has been made to obtain them.

- A European member of the mackerel family is extremely capricious in its movenents. It is the Caranx trachurus, or the scad, a well-known fish of the Mediterranean and of the European coast generalls. This sometimes sweeps down in immense numbers upon the shores of regions where it was previously unknown, or where it has not been seen for many years; a notable instance of this occurring in 1862 , when immense numbers made their appearance on the coast of Bergen and in the Shrange Fiord, furnishing occupation in their capture and preparation to a large population; but scarcely was it at all known except in straggling specimens before or since."

The causes of these rariations in distribution are entirely minown; whether the fish hare been exterminated by some disease or pestilenco (as suggested in the case of the bluefish), \&c., cannot be ascertained. Various changes in the number of herring on the coast of Northern Europe have been of a similar character. These have been more especially important as influencing the condition of the population of Norway and Sweden and other northern countries. On the coast of Sweden herring were formerly in enormous abundance, sustaining a large population along the shores, but have disappeared for decades. It is with the regular migrations of the fishes of our coast that we have at present most to do, and I shall proceed to consider them under soveral headings.

[^10]The regular migrations of fishes are for the most part dependent, 1st, on the instinct of reproduction which causes them to seek grounds and regions more suitable to tho purpose, especially so far as relates to a safe abode for the joung during the earlier months of their life; 2d, the search for food; 3d, the influence of temperature, a most potent factor. A foulth agency is the pursuit of predaceous fishes, although this is generally much more restricted in its operations than the others The pursuit of fish by man has doubtless some effect, but this is exhibited more in a reduction of numbers by actual destruction of parent fish or their eggs and young than by causiug a detinite change of place.

I have already grouped the marine tishes provisionally according to their relations to the shores and sea-bottom. Their migrations involve a temporary change in their relations, offishore fish coming in to the coast or even ascending rivers. We may, howerer, arrange fish by the migrations and movements into tho following groups :
(1) Anadromous fish.-Species passing most of their tine in the ocean, and when mature entering and ascending fresh-water rivers and lakes for the purpose of depositing their eggs; the young fish remaining for more or less time, and then descending to the ocean and there attaining their full growth, probably not going very far from the mouth of the river which they thus descend. The more important species in this connection are as follows:

The Sturgeon (in part).
The Salmon.
The smelt.
The Shad.
The Alewife.
-The Tailor Shad.
The Gizzard Shad (i).
The Striped Bass (iu part).
Various species of Cyprinidæ. The Lamprey Eel.

A somewhat similar condition occurs entirely in fresh-water, where certain species which spend most of their time in larger or smaller lakes pass at the breeding season into the streams empying therein, to lay their eggs on the gravelly ripples. This is the case with nearly all the Coregoni or whitefish, the landlocked salmon, and smelt, the Salmo oquassa, or Rangeley trout, the brook trout, \&c. Whether the fish ever descend into an outlet is an interesting problem.
Among the fish of this group we find species of great economical value, embracing as it does some of the finest table-fish, and sometimes in overwhelming abundance. They appear with great regularity in the mouths of rivers, ascending them to their very source, or at least until stopped by some inpassable obstruction. They present a great advantage over the sea fishes so far as man is concorned, in the greater facility of capture. This pursuit is prosecuted with little comparative risk and exposure, while any one with a line, or a net of simplest construction, and a small boat, or even from the shore, can secure an abundant supply of food.
S. Mis. $90 _$_ 4

It is among the anadromous fishes that man in a savage or semi-civilized state finds his most copious supply of food, depending sometimes almost entirely upon it for subsistence through the year, eating it fresh during the run and dried or smoked the rest of the time.

The most prominent fishes under this head belong more especially to groups of the salmon, the lerring, the shad, and the sturgeon. It is in the temperate regions of the northern hemisphere, so far as I am aware, that the anadromous habit is seen in its grand development.

No better illustration of the numbers in which anadromous fish enter the rivers can be given and the extent of dimiuntion of the supply from various causes, hereafter to be referred to, than a presentation of the case as it relates to the Potomac River in the short distance between its mouth and the Great Falls of the Potomac, only twelve miles abovo Washington. Although this stretch of water is even now very productive, and annually becoming more and more so, as the result of careful propagation, many years will elapse, if ever, before it gets up to the measure of yield mentioned by Martin in his History of Virginia, * a work published in 1835 . It is proper to say that some old fishermen along the river deny the accuracy of his statements in their detail, but admit that the numbers taken were enormously in excess of the present yield. I give, however, the statement, allowing it to speak for itself:
"As Alexandria is the shipping port of the District of Columbia, and one of the principal marts for the inmense fisheries of the Potomac, it may be well to mention that in the spring of the year quantities of shad and herrings are taken which may appear almost incredible. The number of shad frequently obtained at a haul is 4,000 and up)wards, and of herrings from 100,000 to 300,000 . In the spring of 183% there were taken in one seine at one draught a few more than 950,000 accurately counted. The prosecution of the ummerous tisheries gives employment to a large number of laborers, and affords an opportunity to the poor to lay in, at very reduced prices, food enough to last their families during the whole year. The shad and herrings of the Potomac are transported by land to all parts of the country to which there is a convenient access from the river, and they are also shipped to various ports in the United States and West Indies. The lowest prices at which these fish sell when just taken are 25 cents per thousand for herrings and $\$ 1.50$ per huudred for shad, but they generally bring higher prices, ofteu $\$ 1.50$ per thousand for the former and from $\$ 3$ to $\$ 4$ per hundred for

[^11]the latter; in the beight of the season a single shad weighing from 6 to 8 pounds is sold in the market of the District for 6 cents. Herrings, however, are sometimes taken so plentifully that they are given away or hauled on the land as manure for want of purchasers." Some idea may be formed of the importance of these fisheries from the following statement:
Number of fisheries on the Potomac, about...................................... 150
Number of laborers required at the landings..6,500
Number of vesscls employed...... .. . 450
Number of men to navigato these vessels... 1,350
Number of shad taken in good scason, which lasts only about six weeks. 22,500,000
Number of herrings unter similar circumstances $750,000,000$

In further illustration of the former extent of the fresh-water fisheries of the Potomac River, I give an extract from Buruaby's Travels in North America, referring more particularly to the sturgeon, although incidentally to the shad aud herring.* At the present day the yield of these fisheries has decreased enormously, although enough are left to encourage the hope of a great improvement whenerer the proper means for protection and the artificial propagation of fish are entered upon.

In the year 1873 the shad, herring, and bunch fish canght in the Potomac and sold in the Washington market amounted to $8,541,5 \bar{s}$ pounds; in 1874 the total sales at Alexandria, Washington, and Georgetown, from the same river, amounted to about 16,122,533 pounds, a by no means indifferent presentation.
(2) Catadromous fish.-Species of fish which aro born in the sea, ascend the rivers and reach their maturity in two to four years, and then, when mature, descend to the ocean to spawn, and possibly never leave it again.

The Eel is the only species to which we can at present assign this peculiar habit.
(3) Inshore fishes, more especially fishes found inshore duriug the summer season, coming in apparently to breed. They are more or less closely related to the bottom, seldom or never schooling at the

[^12]surface, and are generally most abundant within a few miles of the shore. These include a great variety of fishes on the American coast, confined for the most part to the United States and the region south of Cape Cod, which do not euter fresh waters, but are found, during the summer season at least, and are most abundant near the shore or on particular spots not far distant.

So far as we at present know, our information, however, being extremely imperfect, they come in reqularly from the deep waters of the ocean, probably from the western edge of the Gulf Stream, in the spring of the year to sparn, remaining until fall. A few, as cunner and tautog, can be fonnd at almost all seasons of the year. The rest, however, retrace their steps to spend the winters in the warmer depths outside, probably along the edges of the Gulf Stream.

The principal fish of this group are as fcllows:

Series 1.
The Scup or Porgy,
The Squeteague or Weakfish, The Sea Bass, The Sea Robin (Prionotus), The Tautog, The Canner, Certain flat-fish, The Dogfish and other Sharks.

Series 2.
The Sheepshead, The Lafagette, The Drum, The Whiting, The Kingfish, The Red Snapper, The Red Bass, The Pompano, The Mullet.

Of these the members of Series 1 are known to come in immense schools in the early spring on the south coast of New England, and are taken extensively in traps, pounds, and wiers. The movements of Series 2 are less well defined. They make their appearance on the coast in gradually increasing quautity, although farther south they are found in moderate numbers throughout the whole year.

There are two dogfish taken, one, the spinous dog (Acanthias americanus), coming first in enormous numbers, the lirers furnishing a large supply of oil; the other, the smooth dog, succeeding it in smaller num. bers. The spinous dog scarcely belongs to this soct ion, as it does not. remain inshore during the summer south of Capo Cod, although abundant north of it. It might be placed with the pelagic fishes but for not showing at the surface. It, howerer, appears more in enormous schools along the coast during spring and fall, and is very obnoxious to the fishermen, as all fishing becomes unproductive whenerer the dogfish make their appearance.

An analogous movement is seen in certain fishes of tho Great Lakes, as the salmon or lake tront, whitefish, \&c., which, while residing for the greater part of the yeir in the deep waters where they are more or less undisturbed, duriug the spawning season (in the autumn) come inshore, especially the whitefish, and are taken in immense numbers by
the traps and pounds. 'lhe white fish exhibit a very decided tendency to enter the mouths of rivers on this occasion, especially in Iake Superior and Hudson Bay. Detroit River is an especially favorite spawn-ing-ground. Indeed, the whitefish might with eminent propriety be classed among the anadromous fish of the fresh waters, like the landlocked salmon, the blue-back trout of Rangeley Lake, \&c. The spawning along the shores of lakes at all may be due to their being barred out from the rivers by artificial or other obstructions.

We may possibly place in this schedule the Capelin (Mallotus villo. sus), which is exclusively uorthern, and the Tomcod, although the latter sometimes enters fresh water to spawn, and may almost be entitled to a position in the first division, perhaps near the smelt.
(4) Offshore fish.-Not schooling at the surface; usually spawning in the deep seas, for the most part during the late autumu or winter, though generally resorting to rocks and banks, and sometimes near the shore for the purpose; never swimming at the surface, aud their presence only to be determined by actual capture. Duriug the winter they range considerably farther south than in summer. Of these way be mentioned the cod, the hake, the haddock, and most other Gadidet except the pollock. The pollock, belonging to the cod family, is more of a surface fish, and is very often seen swimming or schooling near the top of the water. In some respects the halibut belongs in this division.
(5) Pelagic or uandering fish.-Usually surface swimmers, and for the most part regular migrants in large bands or schools from north to south in autumn and from south to north in spring; not at all regular, however, in their movements, aud somotimes, for one cause or another, disappeariug gradually or siaddenly from a certain region, not to return again until the lapse of many years. Some, as the herring, the bluefish, and the meuhaden, are autumn and winter spawners; the others lay their eggs, as far as we know, in summer or spring. It is anong the fish of this group that we find, wit the exception of the Gadida, the most important of all the sea fish in the entire northern hemisphere, Whether we consider the number of fish taken, their excellence and high price, or the amount of capital and nuinber of hands employed in their capture. They belong almost exclusively to the clupcida (the herring family) or to the Scombridice (the mackerel family). Two species of the former group, the shad and the alewife, hare been fully considered under the first head, while no species of the second family belong elseWhere. The principal species are the following:

Tho Sea Herring.
The Menhaden or Pogy.
The Common Mackerei.
The Chub Mackerel.
The Spanish Mackerel.

The Cero.
The Bonito.
The Tunny or Horse Mackerel. The Swordish.
The Bluefish.
(6) Decp-sea fish.-We hare already referred to this group under the head of relationships. How far they can be considered as migrants is.
to be ascertained. It is probable that they change their locations but seldom, living as they do at great depth, where the prevailing low temperature (30° to perhaps 45°) is thought to vary but little.

Until within a few years little has been known of this group, the researches of the Clallenger having been principally instrumental in showing its extent, variety, and the remarkable peculiarities of its different members. Many species have also been revealed to us by the contributions of the Gloncester fishermen to the U.S. Fish Commission.

Probably the only important factor in influeucing the change of situation in this group of fishes is the search for food or the pursuit by fellow fish, cephalopods, \&c.

In addition to the regular, periodical, or occasional movoments of fish just referred to, there are cases in which the change of location is not so easily explained. Among these may be mentioned the selection of a fresh-water abode by species which are generally exclisively marine, and vice versa. Of course, the change in anad romous fishes is intelligible; but why such fishes as the sawfish, shark (Pristis), the sting-ray, and quite a number of other kinds should live and apparently thrive in fresh water, is not so easily understood. Other species aro found up rivers to a considerable distance from their mouths beyond the brackish portion.

Hibernation.-Another subject which may be considered in connection with that of migration aud movements is that of hibernation.

Many fresh-water fishes, such as carp and others, are known to bury themselves in the mud, either partially or entirely, during the cold weather, aud to remain there until the warm season of the year. This is also the case to a greater or less extent with the cels, both in fresh water and on the coast. To what exteut other kinds of strictly marine fish exhibit the same habit is at present difficult to determine. The disappearance from our coast daring the winter season of the mackerel, menhaden, and some other spies has given rise to the belief by some that they bury themselves in the mud at suitable places off the coast. Indeed, there are not wanting statements to the effect that mackerel have been speared in the mud by persons who were attempting to capture ecls in this well-known methed. Some of these instances appear to be fairly well substantiated; but whether they represent anything like a permanent condition it is now difficult to say. Those who believe in the hibernation of mackerel point to the existence of a film over the eye on the first appearance of this fish in the spring, which they suppose to be the result of the long exclusion of light or of contact with the mud, this film going away in the course of the summer.

The sturgeon is believed to be a hibernating fish to some extent.
Having thus considered the better marked movements of fishes undor their different heads, I now propose briefly to consider the causes of such movements so far as we can understand them.

Physical causes.-The more regular changes of position with the
seasons are caused by the reproductive instinct, by conditious of temperature, and by search for food. They are also to a less degree 'affected by the pursuit of predaceous fish and other fellow occupants of the ocean and by the action of man.

Temperature of the water.-The most important of these agencies is probably that of temperature; since while there are certain species that appear to be quite insensible to considerable variations in this respect, the distribution of others is largely dependent upon the degree of heat in the water. Certain fishes, such as the cod and herring, are to be taken only in cold water, the herring usually at a temperature not exceeding 50° to 55°; the cod at a still lower degree. This relationship has an important bearing upon the herring fisheries; since, when the heat of the surface water is above the degree indicated, herring are seldom seen; as this decreases they make their appearance. This is so well established that now the herring fishery on the coast of Scotland is largely regulated by the temperature observed, and when it is decidedly above 55° the herring are not looked for.

On the coast of the United States there are two well-defined regions, one bounded to the south by Cape Cod aud the other having this boundary as its northeastern limit. A few stragglers may be found occasionally on either side; but practically the cape constitutes the boundary line.

As a general rule the winter temperature of the ocean at different points along the New Eugland coast is about the same; the surface water as well as that at the bottom showing the minimum degree down to absolute freezing. During this season, therefore, all the more delicato fish leave either to go south or off the shore until they find the temperature they require; possibly, however, not until they reach the edge of the Gulf Stream. The summer temperatures, however, vary extremely, and these variations are accompanied by the presence or absence of fish of different kinds. On the south side of New England the warmest temperatures observed were in Peconic Bay, where, in August, 1874, the bottom temperature was from 71° to 721°, the surface temperature in one instance being as high as 74°. Here the same southern types of marine animals were predominant.

At Wood's Holl, in 1873, the mean temperature at the bottom in June was 61.7°, and in July 69.5°, and in August 70°, or an averago of 670 . The surface was sometimes a fow degrees higher.

Elsewhere on the south side of New England the bottom temperature ranged from 61° to 65° off the coast of Connecticut, in from 4 to 20 fathoms; in rather decper water from 58.5° to 64°. Off Cox's Ledge it was 50° at 52 fathoms in August, and off several miles northwest of Block Island it was 45.5° at 47 fathoms, this being accompanied by a somewhat different fauna. In general, we may say that south of Cape Cod, while the inshore surface. of the water during midsummer ranges from 62° to 70°, at a greater distance outward, up to perhaps fifteen or twenty miles, it ranges from 62° to $68 \circ$, and that at the bottom, inside
the northern current that sweeps around the outside of Cape Cod and No Man's Land and into Fisher's Sound, the temperature inshore ranges from 61° to 70°; more offshore, it ranges from 60° to 64°. But in the colder water about Oox's Ledge and off Block Island and in certain parts of Fisher's Sound, it ranges from 45° to about 50°.

At Portlaud there is quite a different condition. The maximum tem. perature was observed inside of Casco Bay, where the range was from 57° to 65°, and outside from 50° to 59°. The bottom temperatures during the summer inshore were frow 54° to 56°, and in the deeper waters of Casco Bay from 45° to 49°. Farther east and in the Bay of Fundy still lower degrees are shown.

The following table of temperatures actually observed along the coast at different times of year will be of interest. It is compiled from ob. servations made by the U. S. Signal Service as a matter of special cooperation with the work of the U. S. Fish Commission.

Absolutc highest and lowest temperature of water at the battom at $3 \boldsymbol{p}$. m. during the year ending February 28, 1877.

Place of obsorvation.	Spring.				- Summor.			
	Highest.		Lowost.		Highest.		Lowost.	
	Date.	Temp.	Date.	Temp.	Dato.	Tomp.	Date.	Tomp.
Indianola, Te	Apr. 23	78.0	Mar. 21	57.0				
Galvoston 'Te	Apr. 30	79.0	Apre ${ }^{\text {a }}$	62.0				
Mobile. Als.	May ${ }^{4}$	${ }_{8}^{08.0}$	Mar. 22	54.0	Jaly 20	88.0 830	Junc 19	79.0
Koy Werti Fila	May 3	84.8	Mar. 24	67.0	Juve 24	03.0 00.0	Jug. 22	76.0
Jacksonville, Fil	May 22	84.0	Mar.. 21	62.0	July 14	90.0	June 12	81.0
Sarannah, Ga	May 80	73.0	Mar. 22	53.0	Aug. 20	86.0	June 15	69.0
Charleston, S.	May 30	77.0	Mar. 22	54.0	Aus. 20	88.0	June 15	75.5
Wumington, N.	May 20	76.0	Mar. 3	51.0	July 10	87.0	Juno 10	74.0
Norfols, ${ }^{\text {a }}$	May 30	73.5	Mar. 4	44.0			Aug. 27	70.0
Baltimore, Md	May 28	71.0	Mar. 3	38.0	Jtuly 11	80.0	June 1	72.0
New York, N_{1}	May 29	58.0	Mar. 1	32.0	July 20	75.0	June 1	55.0
Now London, Co	May 30	57.0	Mar. 2	34.5	Aug. 13	76.0	June 1	54.0
Wood's Holl, M	May 28	57.0	Mar. 1	30.0	July 6	70.0	Juno 1	58.0
Yortland, Me	May 30	50.0	Mar. 1	31.5	Aug. 15	64.0	June 6	40.5
Ebatport, Mo	May 31	40.5	Mar. 18	31.0	Aug. 15	51.0	Juno 0	40.0
Place of obsorvation.	Autumn.				Wintor.			
	Highest.		Lowest.		Highest.		Lowest.	
	Dato.	Temp.	Date.	Temp.	Dato.	Tomp.	Date.	T'emp.
Indianola, Tex.								
Galveston Ter								
Mobile, Ala...	Sept. 5	88.0	Nov. 1	57.0	Dec. ${ }^{1}$	55.0	Jau. 9	40.0
Pusta Ras8a.	Sept 2	91.5 89.0	Nov. 26	68.0	Jan. 23	76. 5	Dac. 5	62.5
Koy West	Sept. ${ }_{\text {Sept. }}$	89.0 80.0	Nov. 11 Nov. 11	65.0 64.0	Dac. 24	88.8	Dec. 6	45.0
Savannab, Ga.	Sept. 2	87.0	Nov. 27	52.0		64.0 58.0	Dec. ${ }^{7}$	45.0 87.0
Charleston, S.	Sept. 3	84.0	Nor. 26	55.0	Feb. 3	55.0	Jnn. 1	42.5
Wilmington, N	Sept. 1	83.0	Nov. 20	51.0	Jan. 22	51.0	Jan. 4	85.0
Norfolk, Va.	Sept. 1	80.0	Nov. 20	46.5	Dec. 1	45.0		3. 0
Baltimore Md	Sopit. 1	78.0	Nov. 30	45.0	Doc. 1	45.0		
New York, N. Y .	Sopt. 1	72.0	Nor. 30	30.0	Dec. 1	38.0		
New London, Comm	Sopt. 1	72.0	Nov. 30	48.5	Doc. 1	45.0		33.5
Wood's Holl, Mass	sojet. 1	70.0	Nov. 30	30.0	Dcc. 1	38.0	Jan. : 1	20.0
Portland, Me	Sopt. ${ }^{2}$	58.0	Nov. 20 c	41.0	Dec. ${ }^{0}$	42.0	Jan. 16	290
Eastport, Me	Sopta 20	01.6	Nov. 26	43.5	Dec. ${ }^{1}$	43.5	Dec. 20	27.0

The capture during the summer and autumn of fishes of the southern coast as far east as Long Island Sound, Vineyard Sound, and Buzzard's Bay, is not a matter of surprise.

The influence of temperature upon the movements of fiskes, as already stated, is seen both in different parts of the coast and at different altitudes in the same region.
Oceanic currents also have more or less influence upon the distribution of fishes. This, however, depends more upon the pursuit by them of the less independent algw, jelly-fish, crustaceans, ascidians, \&c., that float hither and thither with the tide.

The apparent clearness of the water is also factor in this consideration, various species preferring one extreme or the other, and coming inshore or near the surface with this variation.

The temperature of the atmosphere probably influences the movements of fish only so far as it affects the temperature of the water itself, the surface strata being, of. course, heated or cooled very readily with variation of the air in this respect. The clearness of the sky and the consequent amount of light has a very decided influence on some fishes, especially the pelagic species, invertebrates too being affected in a similar manner. A bright sunny day will frequently call up forms that are never seen at any other time, while others again ouly approach the surface on cloudy days or even in the nightexclusively. The action of the winds of the ocean is also to be considered in tinis connection, although possibly more is due to local currents as affecting the water than anything else. It is not impossible that variation in temperature may have great influence upon some fishes provided with air-bladders, by which the depth of immersion can be conveniently graduated.

In what way the influeuce of aerial currents or winds are felt by fish is difficult to say. Von Frieden, however, as the result of a comparison between the actual catches of herring by the German fishermen and the records of the corresponding days and hours, has come to the conclusion (Circulaire des.Deutsehen Fischerei-Vereins, 1874, p. 200) that the best results always followed with the wind from the northwest, and that generally northern winds were better than southern, and western better than eastern.

The reproductive instinct.-It is under the stimulus of the reproductive instinct that many of the more uotable movements of fish take place, although by what prescience they are enabled to understand that the interests of their progeny require a change of abode, and especially from salt water to fresh, it is, of course, impossible to explain. The anadromous morements, or the ascent of rivers by salmon, shad, and fresh-water herring, \&c., all in countless myriads, and with almost unerring regularity, are notable examples. It was formerly supposed that these fish moved in great bodies aloug our coast, sending off detachments into the months of the rivers as they went by. The more rational hypothesis now is that they live in the deeper waters of the sea
in nearly the same latitude as the mouths of the rivers m which they were born, and return to them at the proper season. The young remain in the fresh water for a time, the period varying with the species, after which they also follow their parents in their returu to the sea.

The movements of what we had previously designated as inshore and pelagic fish are also largely connected with the same reproductive instinct, and even the fishes of the Banks illustrate it to a greater or less degree.

SEARCH FOR FOOD.-Next, perhaps, to the influence of reproduction comes the search for food as influencing the migration aud movements of fishes, certain species of fishes following up particular forms of other fishes, the attempts of which to escape fall under the same category; or of the lower animals, as they are carried almost unresistingly by winds and currents in various directions. A notable illustration of this is seeu in the herring.

Professor Möbius, in investigating the food of the herring in the German seas, found that a certain copepod shrimp, one of the Entomostraca (Temora longicornis), was more eagerly souglit after than angthing else; this being so minute, however, that 18,000 were taken from the stomach of one herring and 60,000 from that of another.*

Professor Möbius thinks that the comb-like fringes attached to the gills of the herring serve as tangles in capturing these shrimps, precisely as do the similar apparatus of the basking shark and the whalebone of the whale. These specimens were obtained in February of 1872, when both the shrimp and the herring were in exceptional abundance; and he subsequently observes that the same relatious were found continually, the abundance of the herring being in strict proportion to that of the shrimp. \dagger

The chain of connection does not cease in the relation between the Temora or shrimp and the herring. A great variety of sea birds, gulls, gaunets, \&c., follow up the herring, as also numerous mackerel, tunnies, blackfish, swordfish, aud even whales aud porpoises, which devour the herring in countless numbers. The movements of the capelin in the North Atlantic influence very largely those of the cod and other species, as when the former come into the shores of Newfoundland and elsewhere in immense numbers to deposit their eggs on the beach, the cod, \&c., follow, and are then captured within a very short distance of the shore.

Driven by enemies.-A notable instance of these relationships is seen in the menhaden and the bluefish. The menhaden, in its movements along the coast, is very frequently accompanied by vast schools of bluefish, which, as already explained in a previous report, probably destroy more menhaden in a day than are taken by man in a whole sea-

[^13]son's fishing. Jhis is not unfrequently illustrated in the driving ashore of the menhaden by the bluefish in immense masses, while the bluefish themselves in their ardent pursuit are stranded at the same time. A similar pursuit of the mackerel by the bluefish is often noticed. The bluefish themselves are, by an act of retributive justice, pursued and driven ashore by schools of porpoises and horse mackerel or tunnies.

Human agencies.-The influence exerted by man in determining the abundance or the movements of fishes, apart from their actual capture, is manifested in various ways, although more particularly in the case of the anadromous fishes than any other. Whenever any impassa. ble obstruction is laid across a river, ascended. by anadromons species, as shad, salmon, \&c., for the purpose of reproduction, the exclusion from their breeding grounds has very soon a marked effect. Usually, for the first two or three years not much difference is appreciable, as these species require three or four years to mature after passing down the river before they return to their starting point. There will therefore be three years of successive returns of schools, and after that there will be no young fish to keep up the supply, which will be confined to the older individuals retarming in the vain attempt to find spawning beds. At the expiration of six or eight years the supply will probably cease entirely, and there will be no further run in the river. In this event the remedy is the removal of the obstructions by taking down the dams or barriers, or introducing a fishway, and planting, the young fish above the former obstruction; at the end of three or four years the mature individuals will make their appearance again.

Nets constitute an obstruction of less moment than dams, since they are of temporary application and constantly liable to be torn or destroyed by the elements, or romoved by legal enactments.

The disappearance of fishes to a greater or less degree from certain localities has frequently been ascribed to such ageucies as the sound from the paddles of steamboats, the firing of cannon, \&c. How far this is of any moment remains to bo seen. A variation in abundance of fish is not unfrequently caused indirectly by man in destroying or fostering predaceous species. It has not unfrequently happened that one species of fish has greatly multiplied in consequence of the capture by man of some special enemy. There is no doubt whatever that the number of bluetish caught during the summer season for market purposes permits a rast increase in the number of menhaden, scup, sea bass, and other fishes which would otherwise bo devoured.

Many such cases could readily be adduced, and suggest extrome cairtion in the adoption of measures for protecting certain fishes from nataral enemies, without a careful inquiry as to the possibility of indirect results not anticipated. A noticeable instance has been furnished by Mr. Whitcher, the distinguished commissioner of fish and fisheries of the Dominion of Canada.

He states that the Beluga, or white whale, is a great consumer of fish of all kinds, but is especially destructive to the salmon and cod of the Lower Saint Lawrence, the former particularly. Some distance up the Saguenay River, where the salmon were supposed to have been much injured by the Beluga, a license was taken out in 1872 for their capture, and in 1873 a large number (some sixty) were secured at one haul. In this way a very great diminution was effected."

These have in turn reacted upon the fisheries, since the sharks, which had been kept down in point of numbers by the belngas, multiplied, or at least came in such numbers as, in their turn, to affect very seriously the fisheries, the fish being greatly diminished and those captured showing marks of laceration by the teeth of their new enemies. The increased abuudance of the sharks was also shown by the nuch larger number of them captured in the nets.

Another statement of Mr. Whitcher still further illustrates the relation between the white whales and the salmon. It is well known that within a few years the salmon fisheries within the Domiuion of Canada have been very greatly increased by the enforcement of legislation for the protection of fish during their spawning season, and for the increase of the supply by artificial propagation.

Another illustration of the same character, as also furnished by Mr. Whitcher, is to be found in the Bay of Chaleur. In former years the streams emptying into this bay abounded in saimon, but presented the usual appearance of salmon rivers in a marked decrease in numbers by overfishing and other agencies, and this continned for a period of a number of sears. More recently, however, as a result of the wise legislation on tho part of the Canadian Government of protection during spawning season, and the measures of artificial propagation, the fish are again found in rery great abundance. For twenty years the white whales were not known in the Bay of Chaleur, or only by stragglers, but latterly they have returned in large numbers. The first year of their occurrence they came after the salmon had entered the bay and drove them into the shores, where they were taken in very large numbers by the traps and nets that had got a small capture in the lower parts of the rivers. The next year the belugat, or porpoises, came early in the season, before the salmon, and apparently awaited their arrival. They committed great havoc among them and cut them off apparently from the immediate shores.

[^14]
D.-Numbers and abundange of fish.

That fisk of many varieties lave decreased greatly in abundance within the historic period in all parts of the world is rell established, the reduction in some cases being truly ejormous. This, however, applies only to certain varieties, especially of tho anadromous fish, or those ranuing up the rivers from the sea to spawn, and to the more inshore forms. The most indubitable cases of diminution are those of the shad, fresh-water herring, salmon, and striped bass. On the other hand, there is no reason to suppose that the cod, mackerel, bluefish, and the sea herring have been reduced essentialls, if at all, in numbers, the stock of these fishes being from year to year about the same, and an apparent diminution in one region being balanced by a groater supply in another.

In previous pages of this article, in illustrating another subject, I have referred to the differonce in the numbers of shad and herring in the Potomac at the present time and in the past, an experience which is shared to a greater or less extent by all the rivers of the Atlantic coast. Many streams which formerly furnished a vast quantity of food, within easy reach, have now become entirely unproductive, so that it is ouly by a combination of moasures of artificial propagation in the rivers and judicious legislative enactments that anything like the carlier experieuce can ever be again realized.
The causes of this variation in abundance, so far as they can be dotected, may be considered under two heads: first, the natural, or uncontrollable; and, second, the artificial, or those connected with the interference of man. Where the former alone are responsible there may be a hope of a return to original abundance; mau's influence acts persistently and with increasing effect throughout long continued years.
There are two classes of uatural causes of variation: first, those induced by physical conditions; and, secondly, the dependence of the fish upon, or the relations of fishes to, their fellow-inhabitants of the sea. The action of man is.either direct or indirect. The direct agencies are those of overfishing and the pollution of the water. The indirect consist of the obstructions to the movements of the ish, the disturbance of the balance of nature, by unduly fostering or destroying certain classes of auimals, and by broaking up the schools of fishes during a critical period, and preventing their spawning.

We have already considered under the heads of migrations and movements of fishes the subject of variations in abundance, depending upon migration, or change of place, where, although the fish may be scarce in one locality, they are proportioually more abundant in another, the actual number in the sea remaining the same. At present we are considering the subject of diminution in actual uumber of fish. It will be more convenient to consider this subject of variations in the abundance of marine fishes under the next head, of daugers and fatalities, where I propose to go into more details.

E.-Their dangers and fatalitles.

A general account of the fisheries of the North Atlantic coast of the United States is not to be completed without some mention of tho agencies by which they are affected and reduced in abundance other than as the result of age. The variety of such influences is very great; perhaps more than in the case of the terrestrial vertebrates, and comparable only to the affections and influences upon insects, which, like the fishes, occur in overwhelming abundance at one time to be more than decimated at another.

We may consider the subject of the dangers and fatalities under three heads: first, those brought about by their fellow-inhabitants of tho sea ; second, by man ; and, third, by natural or physical causes and changes.

1. Fhom other forms of marine life.

The injuries caused by their fellow-inhabitants are twofold in their action : first, upou the eggs and embryonic fish, and second, upon the more fully grown fish. The destruction of the eggs of fishes is something truly enormous, the percentage of the yield of even the youngest fish from a given number of eggs being extremely small. It lias been calculated, in the case of the salmon or shad, that not five eggs out of one thousand produce young fish, able to commence feeding, all the rest being destroyed in one way or ancther. It is quite likely thateven this ratio is too large. A part of this loss of eggs is due, howerer, to imperfect fertilization, and it is bere that artificial proparation has the adsantage in securing the contact of the milt with all the ripe eggs, leaving an insignificant fraction not fertilized. Probably not half, and sometimes even much less than half, the eggs discharged experience the same fortune in natural spawning. It. would seem as if the immense disproportion of eggs to the resulting fish was an intentional provision in nature, to furnish food to the small inhabitauts of the sea, especially to the young fish themselves, of various species, no other bait being so attractive to fish, even to those that have just laid the very eggs used for this purpose. The size of the eggs varies very greatly with the species, as will be seen in a subsequent chapter, some being adapted to the smallest mouth, others requiring one of considerable capacity to take them in. There is almost no season of the year when fish eggs cannot bo found in the water, either floating free or else adherent to some object, and the work of devouring them is carried on continually. Of course it is only the smaller fishes that piek up the small eggs; but the former, in turn, contribute to some of larger size, and those to larger again, until finally, in the sequence, the largest inhabitants of the sea obtain their proper food.

It is among the aquatic mammals that we find the most powerful destroyers of fish, these requiring a much larger amount in proportion
to sustain life, as they feed not merely for subsistence but for material to keep up the animal heat.

The cetaceans of various species are, of course, the most destructive by their much greater bulk, the larger of the porpoises being most notable in this respect. It is not unfrequently with feelings of satisfaction that the human spectator observes schools of bluefish that have devoured and driven on shore schools of mackerel and menhaden, themselves attacked and subjected to a similar treatmeut by troops of porpoises, forming a line outside of them and devouring them with extraordinary rapidity, frequently forcing them on the beach in large numbers. Whales, too, tako their part in this conflict, but probably contine themselves to smaller fishes, especially the herring, and possibly mackerel, capelin, or other species, of which large numbers, while schooling can be taken at a gulp.

The method of feeding of the whate is, of course, only appreciable when the operation is conducted at the surface. Here they may be often seen (the finback whales especially), with the mouth wide open and swimming with great velocity against large bodies of herring and floating invertebrates, such as pteropods, jelly-fishes, \&c. The greater the development of whalebone in the mouth, the less do the whales apparently feed on fish and the more on invertebrates. The fimback is characterized by the small amount of whalebone. I8 what extont the sperm whale, which is essentially a large porpoise, feeds upon fish is not known; its principal food, however, is believed to be the giant cuttlefish, which inhabits the depths of the ocean, with the largest of which it appears able to.cope. It is very seldom that a sperm whale is captured without having in its stomach some fragments of this large cephalopod, the beaks being almost always found in their intestines and excrement. Ambergris almost always contains such remains.

Seals come next to the cetaceans in voracity and destructiveness, and occupy only a second place, in view of their more limited distribution and their confinement to a certain proximity to the land. The numbers of fishes, especially of the Gadide, doubtless also of salmon, devoured by the seals in the North Atlantic must bo something almost beyoud calculation, and the destruction on the part of the much larger seals, sea-lions, fur-seals, \&c., of the Pacific is probably still greater.

How far the walrus is a destroyer of fish I am unable to say, although it is generally believed to depend, to a considerable extent at least, upon mollusea for food.

Otters are also worthy of mention in this connection, the sea-otter of the Pacific Ocean being very destructive in proportion to its size and numbers. The common otter also devours large numbers of fish in fresh water, levying tribute on many a fine salmon, shad, and other val. uable fish:

Although at first sight we may not be inclined to attach much importance to birds as destroyers of fish, yet it is found that they repre-
sent loy no means an insignificant factor in the casualties of the class. Every fish culturist is painfully aware of the destruction of his trout, carp, or other fresh-water species by herons and kingfishers. The fishhawls take their toll in the rivers and lakes, perhaps more rarely in the sea; but it is among aquatic birds, especially the gulls, the Pelecanida (including cormorants, pelicans, gaunets, \&c.), the Alcidce, or auks, and some of the duclis that we find the most active oceanic enemies of the finny tribe. In many parts of the ocean the number of birds belonging to these groups is enormous, and even supposing that each bird devours daily only half, or even a quarter, of its weight (a by no means difficult feat), the amount of destructiveness is something quite appalling. It has been estimated that the gannets alone, on the coast of Scotland, devour more herring than are taken by man, their voracity, like that of the cormorant, being very marked. The gulls are less destructive, as they must confine themselives more particularly to the smaller fish which come to the surface, either spontaneously or as driven by predaccous fishes.

The reptiles probably contribute but little to the mortality among fishes in the open sea; but in lagoons and along the shores of islands, especially in brackish water, as well as in fresh, they play their part in tho economy of nature. It is especially among the crocodiles, alligators, and caymans thatt this destructiveness is seen. The sea-snakes of the tropics and sub-tropics in all probability consume large numbers of fishes of such size as can be readily swallowed entirely. In fresh waters the various species of water-suakes also consume a considerable iumber. Some species of turtle are very destructive to fish, although it is more particularly in fresh water where such forms as the snapping-turtle of North America play well their part. The sea-turtles are said to be vegetable feeders rather than animal, sceking the eel-grass, algæ, and other plants. Probably, however, they do not disdain an occasional fish.

Frogs are also very destructive to fish in fresh water, and require a careful looking after by the fish-culturist. The salananders are too diminutive to devour large fish, but probably consume eggs and young on a large scale. The Menobranchus, or large salamander, in the Great Lakes, is said to commit great havoc on the whitefish spawning-grounds, gorging itself on the eggs, and by the aggregate of their numbers largely reducing the crop of young fish.

The destruction of fish in the sea, as might naturally bo expected, is greatest from fellow.fishes, the smallest being consumed by those a little larger, these again falling victims to the still more powerful, and so on until we reach such forms as the swordish, the tunny, the largest sharks, \&e., which apparently at least, when fully grown, are free from danger from their own kind. Here, however, there come in as antagonists and destroyers the larger cetaceans; possibly the giant cuttlefish, and man; although such insidious enemies as tho lamprey, the myxine, or hag, the pug-nosed cel, and other parasitic fish may even cause the very largest; to succumb.

In most cases the fish is destroyed by being takeo in at a gulp, by one of its fellows larger than itself, although there are certain forms, such as the Chiasmodes, the Sacoopharynx, \&c., which, in the possession of very wide jaws and a capacious stomach sac, can take in entire and digest fishes of twice their own size. Specimens illustrating this are to be found in the National Museum. In many cases, as with the sharks, bluefish, \&c., the victim is lacerated, either torn or bitten in two. Fish like the sand-lance (Ammodytes), wheu swallowed alive, often burrow through the stomach and produce death. It is not uncommon for codfish to be taken with the sand-lance in the abdominal cavity, encysted and mummified, several specimens of these having been obtained by Captain Atwood, of Provincetown. The lampreys and myxines, already mentioued as des troying the very large fish, frequently do this still more exteusively on the smaller ones. The so-called pug, nosed eel of the Gloncester fishermen (Simenchelys parasiticus) is not unfrequently found nestling along the backbone of the halibut and cod where they seem to have the power of abiding for some time without actually causing death. The eel is another of the fishes that destroy life in an unusual way. It is especially noterorthy in connection with gilling for shad, in view of its habit of fastening upon a ripe female, when meshed, and penetrating the abdowinal cavity and devouring theeggs in its progress. It is a very common experience for the gillers to find perfectly sound, plump shad, taken in the net, with one and sometimes two or three eels in the abdomen, their destruction having been effected within a period of a few minutes.

It may safely be said that of oceanic fish more or less predaceous, there are many forms that live on vegetable substances while young, but for the most part changing to a carnivo rous habit when old. How many species confine themselves exclusively to fish it is impossible to sas, as a careful examination of the stomachs of most forms shows at least the occasional presence of crabs, worms, radiates, \&e.

I hare already referred to the subject of the rapacity of fish, under the heads of migrations and movements, and variations in abundance, \&c. I would here simply call to mind the ravages of the bluefish in its attacks upon the mackerel, menhaden, and other species. Great as are these ravages, however, they are probably nothing in comparison with those of different species of the sharks. These, by their enormous size and immense abundance, must, of all oceanic forms, ve the most destructive of fish life and constitute the largest factor in the element of mutual injury. Neither is it the largest of the sharks that are the most dangerous. The smaller forms, which come in large schools, migrating with the season, are most effectual in their agency. Every fisherman on the New England coast is familiar with the so-called dogfish (Acanthias americanus), a species which rarely exceeds 3 feet in length, but which frequently comes in on the fishing.grounds in countlessuum-
B. Mis. $90-5$
bers and renders the fisherman's life a burden by tho destruction of his bait and the disturbance of the fish.

Hoidsworth (Deep-Sea Fishing) refers to the finding of twelve fullsized herring in the stomach of a pollock, and from thirty to thirty-five in the stomach of a codfish. I have taken forty-seven scup of quite considerable size from the belly of a bhefish of about 5 pounds weight. Instances of this kiud could be readily multiplicd.

To what extent dishes are destroyed by invertebrates it is difficult to decide, although probably this agency is oue of considerable moment. Many species are infested with entezoa or intestinal worms, which find a lodgment in the brain, in the muscles, or the viscera, and which must necessarily involve more or less of mortality. Others have external parasites adherent to them, consisting in larger part of crustaceans of greatly modified shapes. The frec-swimming crustacea, as lobsters, crabs, \&c., undonbtedly kill great quantities of fish. Their office seems to be more particularly that of scavengers to destroy the weakly or dead individuals. Certain of the jelly-fishes are known to feed on small fishes. It is quite probable that the squids and cuttle-fish live mainly upon fish. Enormons mimbers of squids are found at certain times in certain waters, and represent undoubtedly great destruction among fishes. Many illustrations of this relationship could be multiplied, but the subject need not bo continued, as I merely wish to show the gencral relationships.

How far fishes are affected by epidemies or other diseases it is diffcult to say, although there are wany instances on record in which this condition is assigned as the cause of their disappearance. It is said that the bluefish off the coast of New England were all exterminated by some disease shortly after the middle of the last century, their carcasses being found floating in enormous masses over the sea. Whatever may have been the canse of their absence it is very certain that the bluefish was not linown again until about 1820, when they made their appearance gradually, of small size, but for many years in nothing like their original abuudance. It is said that they were often known of such magnitude in the last century that fifteen would fill a barrel, representing a weight of 200 pounds when cleaned aud dressed. Comparatively fer such fish are now taken in Vineyard Sound.
Of late years there have been scasous, especially in the summer and antumn, ween fish in the Gulf of Mexico have been found dead in im. mense numbers. The cause of this has not been ascertained, some as. cribing it to actual disease, others considering it the result of some poisonous infusion or exlalations in the water.

2. The infludence of man.

A very large element in the agrgregate of destruction of fishes by the agency of other animals is furnished by the fishing and fisheries, man deriving, in all parts of the world, especially near the sea-shore, a large
part of his food from the sea, and drawing upon it for supplying distant localities, or laying up stores for scasons when fish could not be readily obtained. These fisheries in the northern hemisphere are particularly extensive, a large portion of the population of both shores of the Atlantie finding extended employment in this vocation. The herring fisheries of Scandinavia, Hollaud, aud Great Britain, and in less degree of British America and New England, the fisheries for cod and other Gadidce in the entire North Athantic, the capture of Lalibut, salmon, \&c., are all included in this list. In the North Pacific Ocean the salmon and cod represent for the most part this industry. In the warmer countries of the world, although fish are perhaps absolutely as abundant as in the north, they can be used only for daily consumption, it being found almost impossible to salt or dry them for future use; and hence the anomaly of vast importation of cod, herring, and other salted and dried fish into Cuba, the West Indies, and South America, when these regions can show much better food-fish in countless abundance.
Great, however, as is the destruction of fishes by man in his various fisheries, it cau easily be shown that it constitutes a very insignificant portion of the slaughter, when compared with what is effected by fishes themselves, and it may safely be said that the total of the tisheries of the North Atlantic and Pacific for the year does not equal the destruction, possibly in a single hour, by other causes.

We are apt to ascribe a very undue influence to human agencies in af. fecting the stipply of fish by positive diminution or by direct extermination. That man does influence the supply to some extent may readily be conceded, especially in the case of the anadromous fish. The obstructions of rivers by dams are among the most important. The other agencies of poisoning the water by refuse from factories have little weight excepting in rivers, scarcely attaching to bays and shores. It is even a question whether, in some instances, man does really increase the food supply by the destruction of cortain forms that are predaceous. Reference has already been made to the great problem whether the pursuit of the bluefish by the Gloucester fishermen on the eastern coast of the United States is attended by a further increase of the fish on which it especially preys, suich as the menhaden, scup, woalsfish, \&c., and whether every shark and every porpoise killed by man also gives a new leaso of life to a great number of tishes.

A movement now (1877) on foot promises to add another to the illus. trations of man's indirect influence upon the fisheries in the disturbance of the balance of power. It has been ascertained that by treating fish with bisulphide of carbon or benzine tho oil can be extracted much more casily than by the ordinary process, leaving, indeed, a residuum in the form of a dry powder. It is claimed that the by-product of oil is about 80 per cent. moro than by the kettle or presses, and the dried scrap instead of yielding 10.5 per cent. of ammonia produces 14.
Δ building is now being crected at Wood's. Moll (85 feet by 40, and

34 feet high) to practice the process, which will be in operation before the close of 1877 , with the special object of making artificial fish-flour and dried powders for fertilizing purposes. In this process they expect to work up a great number of refinso fish, which they promiso to purchase at the same price as menhaden and in the following order of preference: Bluefish, porpoises, sharks, dogfish, menhaden, aud skates. They propose to work up twenty tons of fish each day, and to employ from one to three steamers to cruise for these supplies, extending from Block Island to the coast of Maine, touching all intermediate points.

The extent of destruction to fish caused by the porpoises, skates, and dogfish is well known, and should the anticipated mauipulation of forty thousand pounds of refuse fish per day be accomplished, or say twelve millions per year (counting three hundred days to the year, and allowing ten millions of pounds for the destructive kinds), we slall have an enormous withdrawal of predatory fish from the scene of action. This aggregate might be considered as equivalent in destroying capacity to two millions of bluefish at five pounds each; and an estimate of the amount of fish that would be devoured by such a body has been given in my first report. If the success anticipated for this venture be reali\%ed, it is probable that other establishments of a similar lind will be started, constituting a still greater relaxation of the exhaustion of the yield of fish. A few years of such fishing should present a marked influence upon the supply of edible fishes aloug the middle and northern coast of the United States.

3. natural causes ol cilanges.

Fish as a class are quite subject to fatalities arising from natural causes, and which sometimes operate on a very large scale. Among these, volcanic eruptions are not the least momentous. It very frequently happens that such phenomena from volcanoes near to or in the sea are accompanied by discharges of boiling water or of poisonous gases, which contaminate the waters and cause great distruction to animal life therein. Many cases of this character are on record as incidents in the history of volcanic discharges. Not unfrequently mud is thrown out in vast masses, which fills lakes and streams, or invades the edges of the ocean with disastrous consequences to life. Violent storms and burricanes are also to be considered in this connection, fish being not unfrequently blown on the shores or taken upbodily and carried to a great distance inland. Sudden changes by winds and currents of the sea bottom not unfrequently cut off portions of the sea occupied by large bodies of fish, which, unable to get back to proper plysical surroundings, soon perish. Very often, too, this action of the winds and waves renders the waters very turbid and unfit for animal life in the sea, which is consequently speedily destroyed. - Of this, striking illustrations will be given in a succeeding chapter.

An excessive change of temperature, whether the change be to extreme heat or extreme cold, coustitutes an important member of the agencies injurious to fishes. The latter phase, however, is the more dangerous, as while the fishes that belong to the colder waters of the ocean are but seldom exposed to an unnatural degree of heat, those of the South Atlantic and the Gulf Coast of the United States are frequeutly killed at once by a severe turn of cold weather, hundreds of tons of fish frequently perishing within a limited district. This is quite a common accompaniment in the fall and winter of the severe northers on the Texas coast. Similar cases of death by cold or freezing are often observed on the shores of the New England and Middlo States, although usually not so marked in their presentation. It is, however, quite common to find in early winter munbers of scap, tautog, sea bass, and other species in a drying condition on the beach.

Fish killed by cold.-I find among some manuscript notes communicated to me by J. Carson Brevoort, esq., that in 1849 many fish were killed in Massachusetts by the cold, 60,000 pounds of striped bass hav. ing been taken from Polk pound, and 120,000 pounds from Newton pound, Martha's Vineyard, and sent to the New York market. He also records that on the 30 th of September, 1844, the shores of Jamaica poud were covered with young pompanos, from 1.2 to $\overline{5}$ iuches in length, supposed to hare been killed by the cold.

Dr. L. C. Yarrow reports that in the winter of $1870-1871$, in the latter part of December, great numbers of drum, flounders, small mullet, trout, and spots were frozen at New River (a prolific fishing ground), 45 miles from Fort Macon. The trout, mullet, and flounders were piled on the shore knee high, and were carted all over the comutry as manure, selling at $\$ 1$ per barrel.

The same thing happened a year or two later. Thousands of fish have been frozen at the samo place. Almost every winter during the last ten jears more or less of the food-fishes have been destroyed by cold.

In addition to the destruction of fish in large numbers by sudden chilling of the water, such as frequently takes place in the Gulf of Mexico and the eastern coast of Florida after a severe norther, many are killed by the action of anchor-ice. Thus, in the vicinity of Wood's Holl, Mass., young herring and other fish are often found in the winter timo floating in vast numbers, and also imbedded in the ice which forms at the bottom and floats to the top.

Other fatalities.-A further exampie of the method by which large numbers of fishes and other inhabitants of the waters may hare been destrofed simultaneously is given by Mr. Henry O. Forbes, of Δ berdeen, Scotland, in his account of a visit to tho Cocos or Keeling Islands in 1884 . In this region, immediately after a cyclone, which occurred January 28, 1876, the water on one side of an adjaceut lagoon was observed to be rising from a considerable depth and of a blackened color. It continued to flow for about fourteen days, had an inky
bue, and its smell was "like that of rotten eggs." This was diflused gradually around the lagoon, and passed into the ocean; and within twenty-four hours every fish, coral, and mollusk in the part impregnated with this discoloring substance died. So great was the number of fish thrown on the beach that it took three wedes of lard work to bury them in a rast trench dug in the sand.

It is supposed that this water was impregnated with hydro-sulphuric or carbonic acid. The statement is made that the corals and shelle were deeply corroded, the corals, especially, beis. in many places worn down to the solid base. For a long time after the eatastrophe there were no signs of life in the laroon.

Precisely to what cause we are to ascribe the destruction of fish in the summer season, in the Gulf of Mexico, it is impossible to say. Here, without any apparent reason because of change of temperature or other pliysical condition, for a period of weeks together, myriads of fish, of all species, are found dying or dead, so much so that they drift ashore in rast numbers, threatening to create a pestilence. It appears that the cause, whaterer it be, is disseminated in the water, as smacks loaded with living fish in their wells, inteuded for the markets of Ker West, Caba, or the north, when entering certain zones experience the loss of their entire cargo. It is possible that the fatality is caused by some algous or fungous plant, which exercises a deleterons effect upon animal life. The statement that the zones of dangerous water are differently colored from the main body, would strengthen this impression. One explanation is that the water from the Everglades, powing into the Gulf, in some way exercises a deleterious influence.

As a general rule, of the fishes which perish from one of these causes or another, no matter how great the mass, it floats at the surface of the sea until decomposed and wasted, leaving but little in the was of definite remains. .

In regard to the agency of physical causes in destroying immense numbers of fish simultaneously, under circumstanees to involve their being imbedded and their skeletons thereby preserved, numerous illustrations can be adduced in modern times, as we have already shown. The eruptions of volcanoes along the sea coast frequently discharge immense bodies of acid or heated waters into the sea that poison everything around them, the fish being imbedded in the mineral matter which accompanies the discharge, or corered up by the ordinary tides, or by the extraordinary currents produced by the same out. break.

A notbor very frequent and important natural source of destruction to which we have just referred is in tho sudden cooling of tropical waters by the "northers." These are frequently observed in the Gulf of Mexico, where, in the winter especially, the waters are frequently changed abruptly and to a very marked degree by the persistent blow. ing of an intensely cold and long continued wind from the north. This

In the regions west of the Gulf is ustally accompanied by blinding snow and involves the destruction of man and beast; and on the seacoast millions of fish of all kinds frequenting the shallower waters are killed. Not unfrequently these are blown ashore in great heaps, poisoning the atmosphere and sometimes constituting by their decomposition the alloged cause of the yellow fever and other serious diseases.

The most plausible explauation of the phenomena of the occurrence of fossil fishes in enormous numbers is suggested by Dr. A. Leith Adams, of the Brtish army,* as the result of personal observation in Nem Brunswick. The occurrence took phace at a small creek, called Auderson's Cove, a short distance to the east of the Magaguadaric River, which empties into the northwestern part of Passamaquoddy Bay, not very far from the town of Saint Andrews and from Saint Stephen. This cove is a lagoon of about 1,300 feet in circumference, into which a small stream enters and commmicates with the sea, at high tide only, by a narrow chamel. But in the vehement rush of the Bay of Fundy tides the water enters this lagoon with great force and stirs up the mud into a paste, which runs off slowly, at low tide. The incoming stream continually brings down a fresh supply of mud and slime.

On the 24th of September, 1867, a very heavy gale from the west blew directly into Anderson's Cove, disturbing the mud to an unusual degree. The same storm brouglt into the cove immense numbers of young herring, about six iuches in length, with a few other fish, as mackerel and flounders. These, after the storm, were found washed up on the beach in great numbers, whilo the mud, which by this time had settled, was completely filled with them. 'itho bottom of the lagoon was corered with a layer sereral feet in depth, tho total amount of destruction being almost fearful to contemplate.
There is no reason to doubt that similar conditions, in earlier times, have given rise to some of the fossil deposits referred to.

Another of the natural causes of the destruction of fish is found in the numbers of certain fishes which are stranded when seeking the stallow waters for the purpose of depositing theirspawn. Of these the capelin of Newfoundiand and Gulf of Saint Lawrence is a notable instance, as it comes in close to the edge of the water in enormous numbers to deposit its egras. Here the pressure of the continually succeeding schools is such as to foree the fish in a body on the beach, this action being sometimes aided by high winds or heary waves. Windrows of the fish are to be found on the beach, which are in large part carried away and used as manure on the fields. Many of these, of course, would becomo imbedded in the sand and mud, and constitute material for the investigation of the future geologist. It is in all probability to these circumstances that we owe the occurreuce of the capelin as a Tertiary

[^15]fossil of the valley of the Saint Lawrence and of certain portions of Northern Europe.

The occurrence of fossil fish in immense numbers in certain geological formations has been a subject of much interest to the geologist and naturalist, and many hypotheses have been promulgated in explanation thereof. It is not at all probable that the ordinary casualties happening to fish would produce anything like the phenomena in question. It is believed that very few fish die of old age, the incidents of life in the sea being such that whenever any animal loses the ability to care for itself some enemy is ready to devour it. The accumulations referred to, found at Monte Bolca in Sicily, in Syria, in many parts of the United States, and elsewhere, probably result either from some mysterious disease attacking the fish in large bodies, or from some physical cause. There is but little evidence to prove the existence of serious epidemics among fish in the sea, although such an occurrence is not at all improbable. Even here, however, it is likely that there would be enough scavengers to devour the dead and dying almost as rapidly as they succumbed to the baleful influence.

One of the methods by which fish are destroyed in great quantitios, and set kept in a condition favoring their ultimate preservation, as in rock strata, consists in the sweeping of large schools, during storms, into low, shallow basins at the edge of the sea, where, of course, death will very soon ensue. The gradual concentration, howe ver, of the water by subsequent evaporation, answers the purpose of a slow and careful salting of the fish, so that for a considerable time after the basin is dry the fish remain in a good state of preservation. If, as is probably often the case, saud and mud are swept in with the fisl, and this is repeated at short intervals, a succession of strata with skeletons of fish and other marine objects may result.

A case of this kind has been mentioned to me by Lieut. Z. L. Tanner, U. S. N., who noted the phenomena during the cruise of the United States steamer Narragansett in 1872, at Christmas Island. The surface of the shallow basin inside of the beach was occupied by many hundreds and even thousands of fish, varying in length from a few inches to three or four feet, and preserved in perfectly good condition, the thoroughly cured flesh being, however, too strongly salted to be palatable.

F.-The natural food of sea fish.

The vegetable kingdom at sea, as well as on land, constitutes the starting point of all animal life, and whatever may be the extent to which animals devour their fellows, whether as adults, embryos, or eggs, there is no doubt that without the presence of plants in some form or other and their assimilation, the existence of animal lifein the sea would be an impossibility. It is less easy, however, in the water than on the land to see the connection between the two kingdoms in this respect, especially as the most important element of the vegetable division is in
the extremely minute aud more or less microscopic form of diatoms. These, howerer, strarm in all portions of the ocean and extend into its uttermost ramifications, occurring at depths of three or four thousand fathoms, or at the surface, and equally abuudant in the middle of the ocean as on its shores.
There appears to be an immense variety of the lower order of animals, whose special function it is to assimilate these minute alge and convert them into animal matter. These, in turu, are devoured by animals of a higher organization or of largerdimensions, although still microscopic; aud after a time, by a succession of such transformations, the matter becomes a portion of the organism of the larger mollusks, crustaceaus, radiates, worms, or rertebrates.
The larger plant-growths in the sea also have similar relationships, the so-called sea-weeds, sea-mosses, kelp, \&c., furnishiug a rich rariety of food. Virious mollusks and crustaceans devour both the living seaweed and the dead with avidity. The Nereis and others anong the worms, too, will consume decaying vegetable matter.

The great sea-turtles are also belioved to depend very largely upon sea-weeds for food, and the mahatee or sea cow of tropical and sub-tropical regions also feeds upon sea-weeds and other submerged marine veg. etables.

There are comparatively few fishes within our knowledge that cortainly eat sea-weed as a portiou of their food, although it is said that the stomach of the striped bass frequently contaius such quantities of ulva and other succulent vegetation as to render it almost certain that it must have taken it as an article of food. Not unfrequently the regetable contents of the stomacbs of certain tishes may hare been taken in accidentally in connection with some strimp or mollusk which was resting upon it at the time of capture.

Of the higher order of plants very few species are known in the ocean (indeed the Zostera or eel-grass is said to be the only form), butimmense quantities of the trunks of trees, $\mathbb{\&}$., are constantly carried into the sea from the rivers, and are very speedily attacked by animals specially appointed for the purpose, the most familiar being the teredo or shipworm, and sometines certain shrimps or crustaceans, the best known of Which on our coast are species of Limnoria and Chelura. These very soon perforin their part in honeycombing and reducing to minute fragments vegetable matter of whatever magnitude, and the fragments, after being made too small to serve as burrows, become in this fnally divided state food for other marine objects.

The echini, so abundant on our coast, and especially in the northern waters, are quite omnivorous in their habits and consume both animal and vegetable substances, and are apparently especialy adapted for those of harder texture. They devour greedily the soft portions as well as the bones of fishes and possibly of other vertebrates, and have been known to eat off the bark from the stakes used in constructing the
weirs for herring at Graud Manau. Fastening ou the exterior, they eat off the bark in circular spots.

There is, therefore, no difficulty whatever in establishing the existence of regetable matter in the sea in sufficient quantity to serve as the basis for the stupendous mass of animal food derived from it.

Starting thus from the regetable lingdom the chain of succession of animal life furnishes in oue or other of its links food to all the ani. mals of the sea, in the process of such assimilation enormous numbers of distinct organisms being cousumed for the support of a single individual. Nor is there any definite ratio between the size of the food used and that of the animal raised upon it, since the baleen or bone whales are believed to live almost entirely upon shrimps, floating mollusks, and upon the smaller fish whenever they can be obtained in sufficiently large schools. It is well known that herring are devoured in multitudes by whales, such as the fimback, \&e.

Sixty thousand copepods (Temora longicornis), by actual count, have been taken from the stomach of a single herring, while many thousands of herring hare been taken from the similiar receptacle of the whale, which shows that this miscroscopic shrimp may be regarded as one chief source of the subsistence of the whale-another case of the relation between the infinitely small and the infinitely great.
Some fishes are believed to feed very largely upon the organic mud of the sea-bottom, this of course being rich in some of the smaller forms of animals and the diatoms. The examination of stomachs of large numbers of the common menhaten, by Professor Verrill, revealed no other substances than the mud in question; the fish being provided with very thick, mascular walls to its stomach, a so-called gizzard, for the special purpose of utilizing it. The Dorosoma, or gizzard shad, of the rivers of the Atlantic coast, has also a similar provision.
A farorite implement of the naturalist is that called the towing-net. This is simply a bag of gauze, the mouth of which is held open by a ring or brass frame, which is towed behind a boat or vessel so as to take a skimming of the surface of the water. This can never be used in any part of the ocean without very soon obtaining a greater or less number of the minute animal organisms, such as the adult slimimp, the larval stages of certain crabs, embryos of mussels and other mollusks, and small fishes.

Around floating sea-weed in mid-ocean are always congregated great swarms of minute animals. The presence of whales, dolphins, albicores, and other species of animals in mid-ocean also proves the occurrence of food in rast quantities; as althongh all these species may not themselves derour the lower order of animals, they yet feed upon fishes which do find their sustenance therein.

It is not probable that auy fish feed directly upon purely inorganic matter. It is through plants that minoral substances of any kind are introduced into the system, especially that which is required for the formation of bone.

Except in the carlier stages of life, as alroady explained, the chief sustenance of fishes in the sea consists of animal matter, either dead or living. While some kinds of fish are believed never to feed upon anything but living animals, others are, to a very great extent, scavengers, being especially appointed to devour dead or decaying substances, such as offal or the so-called gurry, \&c. The cyprinodonts of the-coast are particularly active in this direction. Sharks also exercise the same function in a very marked degree. There are probably but few of the bottom fish that will disdain such substances, cousuming living forms with the same readiuess. In the business of clearing out refuse fish they aro assisted largely by crustaceans, certain mollusks, echini, $\mathbb{E} e$.

The living food of fishes may be divided into two sections: first, eggs and embryos; second, fishes and marine invertebrates of more mature and advanced ages.

The earliest form in which the fish serves as food for its fellows in the sea is in that of the egg, and it is for this reason that with the enormous fecundity of certain tish there is so little apparent increase in their schools. It may safely be assumed that only a small fraction of 1 per cent. of the total number of eggs laid by fishes ever develop embryo fish, by far the greater part being devoured in a very short time. The joung fish, also, after lirth, is for a certain time immature and to a considerable degree belpless and only able to take food for itself after the absorption of its yolk-bag and the accompanying development of its fins. Before it assumes the shape of the perfect fish aud is able to care for itself, it becomes a prey to innumerablo encmies; and if of tho original deposit of eggs one fish becomes able to care for itself by feeding and hiding to every ten thousand eggs hatched, it may be considered a very satisfactory yield. The proportion, howover, doubtless varies with the species.

Under the rate of the fecundity of fishes will be found a table of the numbers of eggs laid by particular kinds of fishes, partly copied from Buckland and partly original, from which we understaud that even with this percentare of loss there is still a margin left for the maintenauce of the species.

Although the perceutage of loss after the embryonic development of the fish is complete is less than before, there is still a very great drain upon the numbers of the species, there being at every step an enemy larking in wait to devour.

To the large fishes of course there comes a time of comparative immuity, when nothing but the rarer and more powerful inhabitants of the sea can interfere. Even then, however, numbers of smaller enemies may combine together for tho overthrow of the monsters that would be more than a match singly for any antagonist, and thus while fish of the known voracity of the cod, haddock, \&e., may consume readily species of a smaller size, they have as their antagonists the sharks, the various porpoises, and other cetaceans, and the rarer
giants amoug the true fishes, such as the swordfish, the tumy or horsemackerel, Sc., which in turn have their antagonists as already mentioned.

The seals, too, devour the larger fish in great quautities; and in turn they are attacked by the cetaceans, such as the orca, or killer whales, and other kinds especially adapted for their destruction. Again, the whales are also antagonized by the killers and various species of swordfish; and, indeed, possibly with the exception of the sperm whale, there is no animal in the sea but what has its foe. Man, however, presents himself as the enemy and antagonist of all the species, aud is provided with means for their capture.

We have already referred to the abuudance of vegetable matter in the sea, and to the possibility of supplying it in sufficient quantity to serve as the basis of marine animal life, and the marine zoologist will have no difficulty in understanding low the countless numbers of fish in the ocean obtain their food, in view of the myriads of crustacea, of mollusks, of worms, \&c., which inhabit the waters.

It is not the species that remain in or near the bottom that are of the most importance, but the free swimming and floating forms that are most exteusively and readily devoured. While at no time does the apparatus of the zoologist fail to reveal the presence of animal life, even though of microscopic dimensions, at times this manifests itself in bodies, the masses of which almost stagger the ina gination, the sea for hundreds of miles in extent being an animated mush, what with shrimps and other crustaceans, salpa, and larva of mollusks, worms, \&c., a bucketful of water taken indiscriminately over the entire area seems filled with animal life. Nor are these organisms confined to tho surface, the evidence of the beam-trawl and the dredge revealing its existence in equal quantities below. Various species of minute crustacea are not uufrequently thrown in masses on the beach, so as to constitute wind. rows of many miles in extent, this of course being but a small percentage of what is left behind. Where these smaller animals are aggregated in unusual numbers are generally to be found great schools of mackerel, herring, whales, and other animals pursuing them, as though certain definite instincts of migration influence them, or they are driven in their season in a definite direction. Schools of fish follow, which are thus brought more nearly to the nets of the fishermen. Indeed, generally the movements of the fish are directel by the instinct of reproduction, in which they aim at finding a suitable locality for the deposit of their spawn, or in search of food, which they either follow or travel to meet.

Among the iubabitants of the deep sea which serve as food for the larger fishes and cetaceans are probably various forms of the cephalopods or cuttle-fish, of which the stomach of the sperm whale frequently contains large masses, proviug their occurrence of dimensions far beyond those of which actual critical observation has yet been made. It will, therefore, be readily understood, from what has already been
stated, that life in the sea is a perpetual contest, and that the problem of the survival of the fittest is there worked out to its extremest conclusion. As already shown, no form, however powerful, is free from danger of attack, the giant, whale or the enormous kraken being equally liable. Of course mayy of these species when in fullest vigor can protect themselves by superior flectness or strength, but with increasing years and infirmities they too must succumb. In this we see the wise provision of nature in securing the perfection of animal existence by providing for the reduction in the excessive abundance of cortain forms of animal life and in the removal from the sea of such as are not possessed of the highest bodily vigor.

Much outery is made not unfrequently as to the wastefulness of different modes of fishing, and legislation is in roked to protect fish, on the ground that tho stock will becomo reduced and the business of the fishermen destroyed. When, however, we fully appreciate the enormous fecundity of marine animals aud the immense mass of life that exists in the sea, we can readily understand that the destructiveness of what we are inclined to protect as food-fishes constitutes but a small fraction of the whole. Several calculations have been made by various persons in this regard. Thus, Professor Huxley, in considering the question of the destruction by the herring and cod fisheries on the British coast, calculated that the cod and ling alone actually caught in British waters would, if left undisturbed, have destroyed many more herring than the entire catch by tho fishermen, who numbered 15,000 in 1872 . Nearly a million barrels were cured, to say nothing of the vast numbers used fresh and for other purposes.

In tho first volume of the Reports of the United States Fish Commission, I endeavor to estimate tho amount of food devoured by a single species, the bluefish, which occurs in such overwhelming numbers on our coast. Here, taking $1,000,000$ fish as the annatal consumption in the New York market, and assuming the total number of these fish on our coast to be $1,000,000,000$, of 5 pounds each, which may be regarded as an exceedingly moderate calculation, we may consider the amount of other fish that this body of marine wolves will consume. Allowing ten fish per day, which is a moderate estimate, the total destruction daily would be $10,000,000,000$, which in the one hundred and twenty days of their abode on the eastern coast of the United States would give $1,200,000,000,000$ of fish taken in this part of the season alone. It is not at all an extravagant presumption that each bluefish consumes half its own weight of food per diem; and we should therefore have a total destruction of $2,500,000,000$ pounds daily, or $300,000,000,000$ pounds in the year. The food of the bluefish consists of menhaden, mackerel, herring, scup, and other species.

It will also be remembered that while the bluefish prey apon other fishes of proportionate size, for every one weighing 5 pounds we may estimate at least a huudred of a smaller sizo. These are equally voraci-
ous, destroying other fish in proportion, so that it will somewhat tax the human imagination to appreciate the total destructiveness of animal life, resulting from the action of this oue species alone.

Mr. Goode, in discussing the distribution and natural history statistics of the menhaden, attempts to make an estimate of the number of these fish devoured on the coast of New England in the summer months by bluefish and other species, and he comes to the conclusion that these may safely be given at three thousaud millions of millions. In comparison with this the $750,000,000$ captured by man during the same period sinks into utter insignificauce. This calculation might be pursued to any extent; but I have presented cuough to show that the question of human agencies in the way of affecting or influeucing the great ocean fisheries is scarcely worth considering. I by no means wish to be understood as deprecating any legislation iu regard to the fisheries, especially in respect to the spawning-grounds, as interference here, while not unnecessarily diminishing the supply to any appreciable extent, may tend to prevent their coming on particular parts of the coast, and thus within the reach of fishermen of a special neighborhood.

If it were in any way our duty to take measures for the precention of the destruction of life in the sea, and of maintaining the yield of fish generally at its largest figure, we could accomplish it in no better way than by increasing the extent and magnitude of certain of our fisheries. Thus I have shown that there may be a saving of herring by the capture of the cod and ling on the British coast. For every bluefish captured in the waters of the Uuited States many hundreds of other fish are left to enjoy their life, perhaps, however, in their turn to bo the means of au increased destructiveness in another series of animals. The capture of whales gives a respite to the schools of mackerel and menhaden, while the destruction of the herring and menhaden relieves, though in an almost infinitesimal degree, the drain upon the crustaceans and the smaller fish.
Another consideration must not be lost sight of, namely, that the adult and old fish, which constitute an object of pursuit on the part of man, are, in proportion to their numbers, much greater destroyers of other fish and the marine avimals generally than the younger. It is a well-established principle in the development of vertebrates that the earlier in life the greater the increase of the body resulting from the same amount of fool. Thus the new-born infant of 8 to 12 pounds will double his weight in a few months, and with increasing ratio the rate of growth diminishes until when maturity has been reached, unless under particular conditions of the system, the consumption of several pounds per diem does not produce the slightest appreciable increase, and, in deed, may be attended by an actual reduction in weight. The same principle applies to fishes, although, perhaps, to a less degree, and experiments have been carefully made in regard to trout, the culture of which bas been the source of greater care than that of anv other fish.

Here, according to some writers, it has been ascertained that, while it may require 1 pound of flesh to increase the weight of a trout from 3 ounces to 6 , the addition of the next 3 ounces to the weight requires at least 2 pounds of flesh; for the next 3 ounces, 3 pounds; for the next, 4 pounds, and so on in a constantly increasing ratio. Finally, when the fish has attained the maximum development possible in the given limits of the pond or stream, comparatively litte effect is produced by any amount of feeding.
In this point of view, therefore, and in reference to a future supply of food, the capture of all the old and fully matured fish is especially desirable, apart from their own greater commercial value.

Worms, mollusks, \&c., feed on the organic mud of the sea bottom, caused by the decomposition of sea-weeds, eel-grass, and land or fresh-water plants carried down. Other animals and fish feed on this. Infusoria eat diatoms; larger forms consume infusoria.

Apart from the consumption of shrimps and other crustaceans the stomachs of mackerel are not unfrequently found to contain small sandlance and what the fishermen call all-eyes. These are said by them to be the embryors, quite recently hatched, of fishes, in which the body is transparent and the eyes very conspicuous, indeed, almost the only portion visible. In summer, schools of all-eyes are found on our coast, sometimes in immense quantities. Captain Hulbert informs me that in July the stomachs of the mackerel were fou nd loaded with these fish which were seeu also on the surface of the water, forming extensive schools. On one occasion he went out seaward from Block Island for 25 miles without getting through the schools, and they were equally abundant to the right and left of him, so thick, indeed, that a dozen at a time could be scooped up in the palm of the hand.
To what species these belong is uncertain, although the fishermen surmise that they are young mackerel. It is, however, quite probable, after all, that they may bo the young or zoea-stage of crustaceans.*

Fishermen inform me that they frequently find mackeral apparently feeding on the jelly-fish, their method of attack being from below, coming upward and striking through the center and making a holo in it. It is very common to find the jelly-fish floating on the surface torn to pieces in this way.

[^16]J. W. COLLINS.

Whether they actually find nutriment in the jelly-fish itself, or whether they are in pursuit of young fish or crustacea that so often accompany the medusa, I am unable to say.

The habit of association between the jelly-fish and other species is a very curions one. In Norway the association of young cod and haddock with the Cyanea arctica is well linown, Professor Sars haring called attention to it, and having furnished specineus of fish taken under such circumstances to the National Museum at Washington.
It is a very common thing to find a number of young harvest-fish, dol-lar-fish, or butter-fish (Stromatens triacanthus), swimming near the jellyfishes, and rumning under them for protection on the approach of an enemy; indeed, I have seldom found very young butter-fish except in association with the medusa. Young lake are frequently found in a similar association.

G.-Reproduction.

The last division of our topic of the natural history of fishes relates to the subject of their reproduction, and I now proceed to give a brief statement of the more interesting facts of this character. The reproductioi of fishes is, for the most part, by means of eggs discharged from the body and hatched externally to it, these eggs when emitted being either adherent to each other and to whatever they touch, or free, Hoating near the surface of the water, or sinking to the bottom. Not unfrequently the parent covers up the eggs in furrows excavated by a rapid movement of the tail. Occasionally the eggs are discharged in large masses, notably so in the case of the Lophius, or fishing-frog, where they are imbedded in a shell of jelly, sometimes 50 feet or more in length and several feet wide. In come instances adkesive eggs are attached to the body of the parent, where they remain unitil the young are hatched out. At other times they are carried in a pouch under the abdomen, most frequently of the male, as in the pipe-fish (Syngnathus); sometimes of the female, as in the Solenostoma. Occasionally regular nests are prepared (again generally by the male) usually of vegetable substances, as in the case of the sticklebacks, in which case the eggs are hatched and the young cared for by the male. Numerous other varieties of presentation could be mentioned, but these are sufficient for my present purpose. In not a few instances the eggs are retained in the body of the parent until they are fully developed, although without placental adhesion, except in a modified degree in some of the sharks. In one family, that of the Embiotocoids, of the Pacific coast of California, not more than five to ten or fifteen young are produced at a birth, these sometimes being 3 or 4 inches in length, from a parent of not more than 8 or 10.

Certain species of sharks and sting-rays produce living young, some showing an indication of placental relation to the mother. In all cases
of this kind, where the young are hatched out within the body of the mother, the number is extremely small, compared to what is seen in the case of free eggs, and illustrates rery well the enormous waste of life. The different species of Embiotocoids are enormously abundant on the California coast, fully equal, if not surpassiug, iu numbers mauy kinds the females of which lay hundreds of thousands of eggs at a time. As, however, all the ova dercloped produce young, which are protected in the belly of the mother to a period far beyond even that at which the young feeds itself, the larger part of the dangers of infancy are guarded against, and a yield of five to twenty young, from each parent, keeps u_{1} the supply more efficiently and extensively than sometimes where ten thousand times that number of eggs is discharged.
The eggs themselves, as laid by the parent, are for the most part globular, and vary greatly in size, those of the eel being microscopically minute; of the cod, much larger, though still very diminutive; those of the salmon, on the other hand, being of the magnitude of a pea; eggs of the ocean catfish are of still greater bulk, being sometimes half an inch in diameterThe males of some, if not all, of the marine Siluride, or catfish, have the curious habit of carrsing the eggs either in the mouth or the cavity of the gills until they are hatched, half a dozen to a dozen eggs constituting a laying. One of the largest known eggs, with the exception of those of the Plagiostomi (slarks, skates, \&c.), is that of tho myxine, or hagr, a fish well known in the North Atlantic as a parasite, attacking fishes caught on the hook. Here the shape of the egg is ellipsoidal, much like that of an olive, and the greater diameter sometimes almost three quarters of an inch in lengtin.

A great variety in shape and size of eggs is found among sharks and skates, these sometimes having a horny shell, and looking as much like dried sea-weed as anything else. The egg of the cestracion shark, of the Pacific Ocean, resembles a bit of sea-weed, twisted up into a spiral shape. That of certain skates is familiar to most visitors to the seashore from its resemblance to a brown pillow-case, with the four corners extended into tendrils. These cases are from 2 to 10 inches in length, according to the species. By means of the tendrils they can be attached to sea-weeds and other objects at the bottom of the ocean, and held there until the young are hatched out and escape through the open end of the bag. Many rarieties of form of egg. cases exist among the skates, and furnish excellent specific characters.

In further reference to the number of eggs laid by fish I present herewith a table giving some computations, both original and selected, which will serve to illustrate better the variety in this respect:
S. Mis. $90-6$

Species.	$\begin{aligned} & \text { Number of } \\ & \text { egge. } \end{aligned}$	Weight of fish.	Weight of rob.	Authority.
Cod	6, 6677,000			Buckland, British Fishes. ${ }^{\text {Sertam, Marvost of the Sen, 1873, p. } 4 .}$
Turbot	14, 311, 200	23	5. 83	Buckland.
F'lounder	1,250.000			Bortram, Warvest of tho Sea, 1873, p. 4.
Sule	1, 000,000			Do.
Mackerel	500,000			Do.
Herring	35, 000			Duckland
Perch....	155,620 194,112	11.	11	Do.
Sinolt....	36, 000			Dertram, Harrest of the Sea, 1833, p. 4.
Carp.........	2, 059, 750	161	51	Buckland's Familiar History of British Fishes.
Goosefish	$1,050,100$ $2,592,000$	50 60		G. B. Goode. S. F. Baird.

As especial attention has been given by the U. S. Fish Commission to the numbers of eggs laid by the various species of sea-fishes and their average magnitude, I will not here pursue tho subject further, but merely insert some origiual measurements by the Commission of eggs of the herring, cod, and mackerel, showing their average size.

Kinds of fish.	Egigs.	Measure. ments.	Average.
Herring (Clupea vellgaris).		Inches.	Inches.
	${ }_{41}^{29}$	1. 09	.0372 .0380
	63	2.31	. 0366
Cod (Gadus morrhua).......................	43	1.43	.0332
	40	1.40	. 0304
	c2	1.70	. 0289
	39	0.48	. 0251
Mackerol (Scomber scombrus)	${ }_{7}^{29}$	0.72 1.93	.0248 .0251

The places of deposit of eggs by fish have already been referred to to some extent under the head of migrations and movements of fish as affected by the reproductive instinct. I shall therefore make only a brief recapitulation of some of the primary divisions.

The anadromous fish, as already explained, are those that run up from the ocean into the rivers and sometimes lakes in which to deposit their eggs, returning after a short time, and followed by the young after a period sometimes of months and sometimes of one or two years.

The catadromous fish, of which the eel is the only known instance, are those the eggs of which are laid in the sea, the young passing up the riners and remainiug in the fresh waters during the period of immature existence, after which they return to the ocean and probably never again leave it; others, coming from the depths of the ocean, come to the shore to spawn in the summer season, and sometimes even in the depth of winter; others, again, discharge their eggs freely in tho sea wherever they happen to be, these eggs, as already explained, floating or sinking to the bottom and being adherent or non-adherent."

[^17]In the investigations before the British Fishery Commission as to the injurious effects of the beam trawl-net, much stress was laid upon its destructiveness to the spawn of fish, notably that of the cod, mackerel, plaice, turbot, and other species. Ample evidence, however, was adduced, both within the knowledge of Professor Huxley and from reliable investigations by Sars and others, that the ova of most of the in. portant sea fishes are discharged in the open sea and float in it until the young fish escapes from the shell. Sars found this to be the case when visiting the Lofoden Islands for the purpose of this investigation, a conclusion absolutely contrary to his previous opinions. Nothing struck him with greater astonishment than the immenso number of eggs, either containing embryos or emptied of them, which were to be met with in every direction, these being thickly seattered in the waters over many square miles.
following list of what he calis pelagic spawners, or those the ergs of which are found floating freely in the sea:

The common Sea Perch.
Tho Tautog.
Five or six specios of Flounders.
The Silverside or Atherina.
The Butterfish.
The Menhaden.

Tho Mackerel. Tho Striped Bass. One species of Cottus. The Goosofish or Lophius. The Cod. The Hake or Plycis.

Most of these were observed by him in the vieinity of Nantucket and a fow at New-
lort. The time of the spawning of these fish, as noted by him, was as follows:
The Flounders, from June to early Scptember.
The Perch and Tautog, the last of Juno and early in July.
The Cod, in August.
Tho Hake (${ }^{\prime} h y c i s$), from June to Soptember ; tho young of all stages swizuming on tho surfaco.
The Sea Bass, recently hatehed young seen froun July to September.
Menkaden, August and Septomber.
Athorina, June avd July.
Cottus, July to September.
Butterfish, July to Soptomber.
Lophius, Juve and carly July.
The eggs of these several species vary in sizo from the .06 to the .03 of an inch in
diamoter. He finds the young are casily idontified by the pigment cells, the oil bub-
bles in the egg, the position of the yolk-bag, the extent of the dovelopment of the
eyes, and the character of the fins. The only sea fishes whoso oggs ho knows are de-
posited on the ground are tho Batrachus tan, or 'loadfish, and some of the Cottoids.
As the result of his extended inquiries on the subject, as secretary of the British commission, Holdsworthy thinks that the herring comes shoreyard to spawn, but that the egge may be ernitted at a considerablo distance from the coast. Tho ogrge are discharged near the bottom and cover the gravel or soa-wood with a lind of cako, which is then immediately milted by the male.
According to observers on our own const, horring, when spawning, are sometimes
in pairs; at others, a large number of both sexes appear to join together, the females discharging thoir eggs almost simultaneously and tho males their milt, in such quantity as to whiten the water.
The Pilcharl, a clupeoid fish, second in importanco in England according to Holdsworthy, certainly spawns in deep water, and then both the adults and the young approach the sbore.

Mackercl.-The matkerel, too, he found to have the same characteristic, the eggs of both species being found far ont at sea. In both cases the egg was provided with a small globule of oil, apparently for the express purpose of facilitating its suspension in the water, and which was contained in the abdominal sack of the yonng fish in latching, and constituted a large part of its embryonic nutriment.

Plaice.-The eggs of the plaice, too, one of the principal flat-fish of Europe, were found floating freely in the sea, and the inference was drawn that most of the flat-fish family, including the turbot, sole, \&e., possessed the same characteristics. An analogy in the habits and physiological condition of other species of the cod family, such as the haddock, the pollock, and the hake, also incluced Sars to include them in the same category.

As a general rule, the eggs of fish that float freely in the sea are single, and belong to the socalled dry egrgs, or lack the glutinons envelope which is found in the case of the herring and some less important fisl, which canses them to adhere to each other in masses and to any other object with which they may come in contact. The herring is almost the only sea fish of cconomical importance that exhibits the last mentioned characteristic. (Deep Sea Fishing, p. 42.)

Many forms of animal life, including fishes of the various Antennarius, Chironctes, \&c., live habitually in mid-ocean, especially among tho masses of floating sea-weeds, of which some species actually make nests in which their eggs aro introduced.

The rate of growth of the young fish varies with the group. In Crys. tallagobius, according to Collett, and perhaps in other forms, the capacity of reproduction is developed in a year's time. For the most part, however, it is thought that the ordinary fishes require a period of three or four years before they are able to propagate their kind. It is likely that the sharks require a still greater allowance, although nothing defivite is known on this subject.

The actual rate of growth of the individual varies with the species, and probably to a certain extent with the individual, and the average at maturity varies very much with different so-called schools. Thus among the codfish, a school of mature fish coming in to the coast of New Jersey and elsewhere on the south side of New England, may arerage not more than 5 to 10 pounds, while another school, which visits Cape Ann for the same purpose, averages a much greater weight, individuals of even 100 pounds not being extremely rare. The same difference in the size of cod occurs elsewhere, as also in that of other kinds of fish. What causes this difference it is, of course, impossible to say.

Many fishes experience curious changes of shape and color during the breeding season. These alterations are very much marked in the salmon, the male of which develops a lengthened, hooked jaw, in which formidable teeth make their appearance, A common alteratiou consists
in the development of a hump in the nape of the neck or in the back of the male, as in the sea bass.

A change of color is also a very common feature, the male generally assuming brilliant tints during the brief season which are not appreciable at other times.

It is difficult to say how long fish can maintain their ability of propagation or reproduction, some forms, in all probability, being more persistent in this respect than others.

In conclusion, a volume could readily be written in regard to the peculiarities of habit, condition, and relationship of fishes, but as the present essay is intended more particularly as an illustration of the fisheries of the North Atlantic, I shall now bring this portion of my subject to a conclusion, and proceed to a more important division, .that of the methods, processes, and results of the fisheries themselves.

II.-METHODS OF OAPTURE.

A.-The fishing grounds.

In the Western Atlantic there is a remarkable chain of submarine elevations situated between the Gulf Stream and the cast coast of North America, and extending from the vicinity of Cape Cod to a point far east of Newfoundland, a distance of wore than 1,100 miles. Many of these elevations are of large extent, and, together with others of a similar character but comparatively smaller size that are nearer the land, lying inside of the main range, they constitute what are known as the "banks" or the great fishing-grounds for cod (that is, the various species of the Gadide, of which the cod, Gadus morrhua, is by far the most abundant) and halibut.
For the better understanding of the relative position of the banks, their importance, de., the description will begin with the sonthwestern grounds and proceed to the north and east.

GEORGE'S BANK.

George's Bank is by far the largest and most important fishing. ground uear the const of the United States, and is second to none in the Western Atlantic except the Grand Bank of Newfoundland. It lies to the castward of Cape Cod and Nantucket Shoals, and is seemingly an extension of the latter, since the water is no deeper between the southern part of the shgals aad the western part of the bank than in many places on it. As laid down on the charts the southern limit is in $40040^{\prime} \mathrm{N}$. latitude, although 10 miles sonth of that the depth of water does not exceed 44 fathoms, and therefore the soathern boundary may be placed at $40^{\circ} 30^{\prime}$ and the northern at $42^{\circ} 05^{\prime} \mathrm{N}$. latitude. The eastern part is in $66^{\circ} 27^{\prime}$ and tho western in 69000^{\prime} W. longitude, making the greatest length about 130 miles from the northeast to the southWest extremity. and the greatest width 95 miles north and sonth. The
depth is from 2 to 50 fathoms. On the western part, between the parallels of $41^{\circ} 10^{\prime}$ and $41^{\circ} 53^{\prime} \mathrm{N}$. latitude, and the meridiaus of $65^{\circ} 20^{\prime}$ and $6 S^{\circ} 37^{\prime} \mathrm{W}$. longitude, are a number of shoals known as the East Shoal, the North Shoal, the Southwest Shoal, Cultivator Shoal, \&c. The Southwest Shoal is the largest, being 15 miles in length. There is from 2 to 15 fathoms of water on these shoals and between them from 12 to 30 fathoms. The tides sweep over these with great force, causing strong rips, and during rough weather the sea breaks heavily on them, rendering approach to their vicinity extremely hazardous. The bottom is chiefly sind, although patches of rough ground, gravel, pebbles, and rocks, of more or less extent, are found on some parts of it.

Its situation between the Bay of Fundy and the Gulf' Stream causes the tides to run swifter than on the other banks, and to swirl around instead of going directly back and forth in opposite directions. They run around the compass, from left to right, attaining the greatest strengti when at SE. aud NW., and the least in a south west and northeast direction. The first attempt at fishing on this bank of which there is any record was made in 1821 by three Gloucester vessels. But the George's cod and halibut fishery is of later date, as it did not become fully established as a permanent business enterprise until about 1835, although ressels went there for halibut in 1830. At first the catch was mostly halibut, but since 1850 it has been chiefly codfish, althougle more or less halibut are taken with them. During the months of February, March, aud April large schools of cod make their appearance on the bank. They are generally found on the "winter fishing-ground," a part of the bank lying to the eastward of the shoals, between $41^{\circ} 30^{\prime}$ and 42000^{\prime} N. latitude and $66^{\circ} 38^{\prime}$ to $67^{\circ} 30^{\prime} \mathrm{W}$. longitude. This is ossentially a spawning ground for the cod, which appear to come ou the bank from the southeast, as they almost invariably, after reaching the ground, move slowly to the north and west as spring approaches. This is in the direction of the shoals, and, as the pursuit of the fish brings the vessels near the latter, great loss of life and property sometimes occur in heary easterly gales and storms. As soon as the spawning season is over the schools of cod break up, but more or less fish are caught on different parts of the bank during the entire year, though rarely, if ever, are they found so plenty as when the winter school is on.

The codfish fleet, which numbers about oue hundred sail, is wholly from Gloncester, Mass. Besides these there are twenty five to thirty vessels from the same port that fish on George's for haddock in the winter, and a few others from New London, Conn, and other ports on Long Island Sonud engage in the cod and halibut fishery in spring and summer.
BROWN'S BANK.

Brown's Bank lies in a northeasterly direction from George's Bank, being separated from the latter by a gully. This bank is imperfectly
laid down on the charts, which therefore fail to give an adequate idea of its extent and importance as a fishing-ground. Its greatest length east and west is 53 miles, from $65^{\circ} 10^{\prime}$ to $\left(60^{\circ} 23^{\prime}\right.$ W. longitude, the greatest breadth 47 miles, from $42^{\circ} 15^{\prime}$ to $43^{\circ} 02^{\prime}$ N. latitude, and the depth varies from 20 to 55 fathoms. There is a small shoal on the northern part, the location of which has not been detinitely determined, where it is said there is not more than 9 to 15 fathoms. The bank slopes gradually from the shoal in a sontherly direction, but falls off steep on the northerı side. The bottom is mostly composed of gravel, pobbles, and rocks, the latter predominating near the shoal.

The tides are nearly as strong here as on George's Bank, but ruu more directly to and from the Bay of Fundy, the northeast and southwest set being generally much weaker than on the latter bank.

Cod, halibut, and haddock are the principal fish taken, although cusk, pollock, and hake aro found more or less. Cod are quite plenty in the winter and some good fares are obtained, although but comparatively few ressels fish there at that season, most of them being in the George's fleet. At other seasons, howerer, the fishing on Brown's Bank compares favorably with that on any of the banks in the vicinity, and quite a number of the so-called Georgesmen are engaged in fishing there. Tho cod is found the jear around. Halibut were formerly found very plenty, but at present occur in much less numbers. Sometimes the haddock fishormen make a trip to this bank during the winter and good catches are occasionally obtained.

JEFFREY'S LEDGE.

This may perhaps be considered one of the best shore flshing-grounds in the Gulf of Maine, although it is comparatively sinall. It is seemingly an extension of the shoal ground that makes off in a northeasterly direction from Cape Aun. It is about 20 miles long NE, aud SW. and from 2 to 4 miles wide. Its southern limit is $42^{\circ} 54^{\prime}$, and northern 43° 11^{\prime} N. latitude, aud the eastern and western boundaries may bo placed at $69^{\circ} 58^{\prime}$ and $70^{\circ} 18^{\prime} \mathrm{W}$. longitude. The bottom is rocky on the shoalest parts, with gravel and pebbles along the edges. The depth of water is from 27 to 35 fathoms on the bank, falling off to 40 and $\overline{0} 0$ fathoms on the borders. Usually there is little or no tide, though occasionally there is some current setting to the SW. Cod, cusk, and haddock are taken in the fall, winter, spring, and carly summer, with more or less hake or pollock mixed with them. For a number of years Jeffrey's Ledge was a favorite winter fishing-ground for haddock, which were very abundant, and even at the present timo many vessels resort therc ${ }^{\circ}$ in pursuit of haddock; but since the haddock fishermen have extended their cruises to the outer banks, a less number, of course, go to Jeffres's. Besides the haddock catchers, the vessels engaged in the shore fisheries resort to this ground in the spring and fall.

CASHE'S LEDGE.

This is not a very important fishing.ground at present except for a brief season in the spring, although it is resorted to somewhat by the shore fishermen in summer and fall, and sometimes good trips are obtained. It bears east from Cape Ann, from which the shoals are 76 miles distant. The bank is about 22 miles long, from $42^{\circ} 49^{\prime}$ to $43^{\circ} 11^{\prime}$ N. latitude, and about 17 miles wide, from $65^{\circ} 40^{\prime}$ to $69^{\circ} 3^{\prime} \mathrm{W}$. longitude. There. are three small shoals on the western part of the ground. The southern oue has 7 fathoms, the middle ono 4 fathoms and the northern one 11 fathoms of water. The position of the middle shoal is $42^{\circ} 50^{\prime} \mathrm{N}$. latitude and $68^{\circ} 52^{\prime}$ W. longitude. From this the south shoal bears S. by E. and the nortl shoal NNE., each being $3 \frac{1}{2}$ miles distant from it. These break in rough weather, and, though of small extent, are dangerous to passing vessels, especially as they are almost directly in the track of vessels bound to and from Cape Sable to Massachusetts Bay. With the exception of the shoals the depth of water ranges frem 15 to 60 fathoms. The ground is more or less broken, with bottom of sand, pebbles, and rocks. The greater part of the fish caught here are cod, hake, and cusk. Halibut are rarely seen, and liaddock and pollock are less plenty than the other linds. Good trips are often secured on the edge of tho ground in May and June, but the dogfish, which appear about the last of June or in July, usually drive everything before them and for a time stop the fishing. The class of vessels fishing on Cashe's range from 15 to 45 tons, and are what are known as shore trawlers.

JEFFREY'S BANK.
This bauk, which lies cast of Cashe's Ledge, is of comparative little importance as a fishing.ground. It is about 20 miles long SW. and NE., and 10 miles wide, the northern and sonthern limits being $43^{\circ} 15^{\prime}$ and $43^{\circ} 30^{\prime}$ N. latitude. 'The eastern edge is in 68025^{\prime} and the western in $68^{\circ} 46^{\prime}$ W. longitude. The bottom, which is somewhat broken, is composed of mud, sand, gravel, aud pebbles, with a depth varying from 35 to 70 fathoms. Cod, haddock, hake, and cusk are the fish most pleutiful; some pollock are caught, but halibut are rarely taken. The best season is in late spring and early summer, before the dogish schools strike, after which but few fish can be obtained. This bank is resorted to by the smaller-sized vessels of from 15 to 50 tons.

GERMAN BANK.

- Althougd this bank is not usually laid down on the charts it is one of the most important in the Bay of Fundy. It bears SE. from Baker's Island light (Mount Desert), from which the northwest part is about 53 miles distant. The length is abont 15 miles and the width 9 to 10 miles. It lies between $43^{\circ} 35^{\prime}$ and $43^{\circ} 53^{\prime} \mathrm{N}$. latitude, and $66^{\circ} 55^{\prime}$ to $67^{\circ} 15^{\prime}$ W. longitade. There is from 65 to 100 fathoms of water. The bottom is
mostly a tough red clay, but with spots of mud, sand, gravel, aud pebbles on some parts. The tide sets out and in the lay of Fundy about SW. and NE., but is not so strong as might be expected. Cod, hake, cusk, and haddock are the fish which are chietiy taken, but a few halibut and pollock aro occasionally caught. Tho fishing season is from April to October, althongh fish are usually the most abundant in the spring. This bank is resorted to chiefly by ressels from the coast of Maine, but is sometimes visited by the Massachusetts fishermen.

MARBLEHEAD BANK.

This fishiug. ground, which is quite an important one for the shore cod-fishermen, is not laid down on the charts. Therefore the fishermen who visit it are probably the only persons familiar with its location, or who are able to estimate its extent. The ground which they call Marblehead Bank is situated between Grand Mauan and German Banks, the shoal water bearing SSE. from Mooseabec light, a distance of 32 miles. It is about 12 to 15 miles long and 7 or 8 miles wide, aud lies be. tween $44^{\circ} 00^{\prime}$ and $44^{\circ} 10^{\prime} \mathrm{N}$. latitude and $66^{\circ} 58^{\prime}$ to $67^{\circ} 13^{\prime} \mathrm{W}$. longitude. There is from 35 to 70 fathoms of water, and the bottom is mostly clay and gravel. The fish that occur in the greatest numbers are cod, pollock, and haddock, but with these are more or less hake and cusk. The best fishing is generally in the spring and early summer. The same class of vessels-shore fishermen-as frequent (irand Manan and German Banks also resort to this, but occasionally those of a larger sizo make one or more trips cluring the sammer season.

GRAND MANAN BANK.

Graud Manan Bank lies at the entrance of the Bay of Fundy, and bears SW. $\frac{1}{2}$ S. from the southwest head of Graud Manan Island, from which the northern part of the bank is 15 miles distant. It is 10 miles long and 5 miles wide, and lies in a SW. and NI. direction. The bottom is mostly stones and gravel, and the depth of water varies from 24 to 45 fathoms. The tides aro quite strong, but not enough so to prevent trawling. Cod and pollock are tho principal fish, cusk, hate, haddock, and halibut being less plenty. The fishing seasou is from April to October, when the fisl come on the bank to feed. In the spring the fish are usually the most plentiful on the southwest part, but later in the season the best fishing is generally obtained on the other end of the ground. It is a favorite fishing-ground for the class of small vessels commonly known as shore-fishermen.

SEAL ISLAND GROUND.

Off the western part of Nova Scotia there is an important fishing locality known to the fishermen as the "Seal Islaud Ground," althongh no name is given on the charts. This may not, perbaps, be called a
bank, as it is shore soundings, which slope gradually from the land to the south and west, but continue in a northerly direction beyond what may properly be considered the limit of the ground. To the south it extends nearly to Brown's Bank, from which it is separated by a narrow gully; to the west 38 miles from Seal Island, the western land of Nova Scotia; and to the northwest abont 35 miles. The southern limit is in $43^{\circ} 00^{\prime}$, and the northern in $43^{\circ} 45^{\prime}$ N. latitude, while the western boundary may be placed at $66^{\circ} 40^{\prime} \mathrm{W}$. longitude.

There is a small shoul, the Pollock Lip, with a depth of 7 fathoms, which bears $S W$. from Seal Islaud, from which it is distant 9.2 miles, but with this exception, the ground slopes quite gradually, the depth varying from 15 to 70 fathoms. The bottom is principally composed of coarse gravel and pebbles, with occasional rocky spots of more or less extent. The tides sweep out and in the Bay of Fundy with considerable force, the courso changing with the direction of the land, so that while they run nearly uorth and south on the northern part of the ground, they swing around to northwest and southeast to the southward of Seal Island. The flood is much stronger than the ebb, and the fishermen estimate that one flood will carry a vessel nearly as far in a northerly direction as two ebbs will in the opposite way.

The fish that aro principally caught on this ground are cod, haddock, and pollock, although halibut, cusk, and hake are taken to a limited extent, and occasionally herring or mackerel are netted for bait. Cod are generally more pleutiful from spring to fall than during the winter, buthaddock and halibut are found all the jear. Fishing usually begin ${ }_{\mathbb{S}}$ in April or May, and continues until October. Halibut were formerly very abundant, but are now comparatively scarce.

This ground may be considered essentially a feeding-ground for the cod, which come here after the spawning seasou is over to fatten upou the crabs and mollusks on the bottom and the herring and otber species of small fish that are swept back and forth in the tide-rips. All parts of the Seal Island ground are fished on at the same time. This was formerly a farorite fishing-ground for vessels from the coast of Maine, but since trawling has come to be so universally adopted but few American vessels excopt "hand-liners" go there. The fleet engaged in fishing there now is principally composed of vessels belonging to the western part of Nova Scotia, which generally "fish at a drift," going back and forth over the ground with the wind and currents.

ROSEWAY BANK.

Roseway Bank lies in a northerly direction from Le Fave Bank and SE. from Shelburne light. It is oblong in shape and of small extent, the greatest length being only 19 miles, and breadth 12 miles. The limits are $43^{\circ} 13^{\prime}$ and $43^{\circ} 32^{\prime} \mathrm{N}$. latitude, and $64^{\circ} 30^{\prime}$ to $64^{\circ} 38^{\prime} \mathrm{W}$. longitude. Tho bottom is sand, gravel, and rocks, and there is a depth of from 33 to 48 fathoms. The current here is not nearly so strong as
in the vicinity of Cape Sable, or Brown's Bank. The general set is about WSW. and ENE., the westerly current usually being much the strongest, although both the force and direction is somewhatinfluenced by the winds.

The principal fish are cod, haddock, and cusk, but hake, pollock, and halibut are occasionally taken. The season is usually from May to October, during which time fishing is carried on principally by small-sized vessels from the western part of Nova Scotia, although a few American vessels occasionally go there: To the northwest of Roseway, and between it and the land, is "Cape Negro Mud," a good ground for cod at certain seasons. It is of small extent, with muddy bottom, and a depth varying from 60 to 80 fathoms.

LE HAVE BANK.

Le Have Bank is situated to the castward of Brown's and south and east of Rosemay Banks. It extends from 4505.53^{\prime} to $43^{\circ} 94^{\prime} \mathrm{N}$. latitude, a distance of 31 miles, and from $63^{\circ} 50^{\prime}$ to $64^{\circ} 47^{\prime}$ W. longitude, a distance of 41 miles. Much of this westerly extension is a long narrow prong that makes out from the main body of the bank. The bottom is largely composed of coarse gravel, pebbles, and rocks, with only here and there small spots of sand. The depth of water is from 40 to 50 fathoms. The general set of the current is mostly to the westward, but this, however, is influenced rery much by the direction and strength of the winds. The fish that are chiefly taken on this bank are cod and haddock, although the other species of bottom fish are found more or less plentiful. Cod are found at all seasons of the year, but are more abundant during the early winter than at auy other time, and good trips are frequently obtained by the Gloucester vessels, which are the only ones that go there at that season. The Gloucester winter haddockcatchers, who carry these fish fresh to Boston market, have extended their trips from George's and Brown's Banks to Le Have, and during the present winter (1SS0-'S1) have made some remarkably good catches.

LE IIAVE RIDGES.

The fishing.ground known as Le Have Ridges is simply a continuation of Lo Have Bank to the eastward in the direction of the Western Bank, a distance of about 45 miles. This makes the eastern limitio 62° 50^{\prime} W. longitude, while the northern and southern boundaries are about the same as those of Le Have Bauk. The bottom is a succession of ridges of gravel and pebbles, with occasional patches of rocks, and the depth varies from 55 to 80 fathoms. The current is weaker here than farther West on the bank, and, excopting with easterly winds, is but little noticed. The general set is westerly. The "Ridges" were for a number of years one of the favorite places of resort for the halibut catchers in the winter, and many good trips of cod have also been takeu at that
season. At present but few halibut are caught, except in the deep water along tho southern edge of this ground, where sometines they have been found quite plenty for nearly the eutire year. Hake are also found in large numbers in the deep water about the borders of the ground, and even on the ridges. As a general thing but few vessels besides those from Gloucester have made a practice of fishing on Le Have Ridges, though a few cod fisliermen from other phaces stop there now and then during the summer.

SAMBRO BANK.

This bank lies in a westerly direction from the Western Bank, but is so small that it is of little importance as a fishing.ground and is but little resorted to by American vessels. It lies between $43^{\circ} 36^{\prime}$ and 43° $47^{\prime} \mathrm{N}$. latitude and $65^{\circ} 40^{\prime}$ to $63^{\circ} 00^{\prime} \mathrm{W}$. longitude, the greatest length being 15 miles and width 11 miles. There is from 50 to 60 fathoms of water, and the bottom is mostly sand, gravel, and pebbles.

WES'IERN BANK.

The Western Bank is ono of tho most important fishing grounds in the Western Λ tlantic, considered either as to size or tho amount of fish taken on it. Lying off the eastern coast of Nova Scotia, it has Lo Havo Ridges on the west, and Bankquereau on the east, from both of which it is separated by gullies. The general direction of the bank is WSW. and ENE.; tho eastern limit is $59^{\circ} 07^{\prime}$, and the western $62^{\circ} 27^{\prime} \mathrm{W}$. longitude, making the extreme length 193 miles. The southern limit is in $42^{\circ} 51^{\prime}$, and the northern in $44^{\circ} 46^{\prime}$ N. latitude, the extreme width, therefore, being 95 miles.

On the eastern part of the bank is Sable Island. This is about 20 miles long and $1 \frac{1}{2}$ miles wide, and composed wholly of sand, which for nearly the entire length is in hummocks, caused probably by the action of the wind. Off either end of the island are long and dangerous sandbars. The general direction of the island and bars is east and west, although they take the form of a crescent with the concave side on the north. The depth on the bars for a distance of from 7 to 10 miles from the island does not exceed 2 fathoms, and even 10 miles farther out in an easterly and westerly direction there is not more than 10 or 11 fathoms. On the middle ground-a portion of the Western Bank which lies in a northerly direction from Sable Island about 25 miles distant-there are several shoal spots with from 10 to 19 fathoms on them.

As a general rule the bank slopes gradually from the island to the south and west, the depth ranging from 18 to 60 fathoms. The general character of the bottom is sandy, but there are patches of gravel and pebbles. The currents in the vicinity of Sable Island are occasionally quite sirong, and generally irregular, being very much intlueuced by the winds. On the greater part of the bank there is usually but
little current. The set of what there is, however, is mostly in a west. erly direction. Cod and halibut are the principal fish taken, though the other species of bottom fish are found in limited quantity. The former are generally the most abundant in the spring, from the first of March to June, although good fares are obtained throughout almost the ontire year. For more than twenty-five years the Western Bank has been a favorite resort of the halibut fishermen. Λ t first these fish wore found very plenty in from 45 to 60 fathoms, and since 1876 have been caught in great numbers aloug the edge on the south and east sides in from 100 to 300 fathoms. Like the cod, they are found during the entire year, the period of greatest abundance, however, being from the first of Jauuary to the first of 'Jetober. The Western Bank may be considered both as a feeding and spawning ground for the cod and halibut. It abounds with shell-fish and crustaceans, as well as with several species of small fish upon which the cod and halibut prey. Although the cod do not gather in such great schools in winter as they do on George's Bauk, it is nevertheless quite evident that they assemble at that season for the purpose of reproduction. Usually they are found the most plentiful on the western part of the bank in winter and early spring, but as the season advances they move into shoaler water in the vicinity of Sable Island, the "bend" of the island and about the bars being favorite grounds during the late spring and carly summer. Vessels from all along the New England coast and from the British Provinces resort to this bank to pursue the cod fishery, but fishing for halibut is almost ex. clusively carried on by the Gloucester fleet.

IHE GULLY.

Although the "Gully" cannot be called a bank, being just what its name suggests, a deep gully between two banks, it is nevertheless too important as a halibut fishing.ground to be omitted from a general description of the fishing banks. This lies between Bankquercau and the Western Bank, being bound on the north and east by the former, and on the south and west by the latter. The entire length of the gully is more than 60 miles, but the halibut ground is of less extent, and the limits, east and west, may be placed at the 59th and 60th meridians of west longitude. It is about 18 miles wide, on the eastern part, from $44^{\circ} 08^{\prime}$ to $44^{\circ} 26^{\prime} \mathrm{N}$. latitude, but narrower farther west. There aro several ridges with rocky and gravelly bottom and a depth of 75 to 125 fathoms, on which the lalibut are usually caught. On either side of these ridges the bottom is generally sand or mud, excepting in the eastern section, where it is composed mostly of pebbles and sharp rocks.
The current generally sets in a westerly direction, but is very irregular in strength; an easterly wind often causes it to increase very per. ceptibly, while at other times there may be but little or no tide. When the halibut fishing first began on this ground it was carried on chiefly
in the spring on the northern and western part, but in the spring of 1877 the fishermen made trials farther out, in deaper water, and excelleut fares were obtained as late as June and July. Since that time good fares have been taken during the winter seasou, and it appears that balibut come to this place especially to feed, as they generally move to other localities just previous to the spawning season. With a few exceptions the Gloucester halibut vessels are the only ones fishing on this ground.

BANKQUEREAU.

This may be considered anong the most important of the fishing banks lying between the 40 th and 48 th parallels of latitude. It lies in an easterly and northerly direction from the Western Bank, being separated from the latter by the "Gully." The former bank is long and comparatively narrow, and lies in an east and west direction. The extreme length is 118 miles, from $57^{\circ} 20^{\prime}$ to $60^{\circ} 04^{\prime} \mathrm{W}$. longitude. The southern limit is $44^{\circ} 05^{\prime}$ and the northern $45^{\circ} 01^{\prime}$, a difference of 56 miles, but the widest place, the eastern part, does not exceed 46 miles.

There is a shoal ground called the "Rocky Bottom," on the eastern part of the bank, which has a depth of 16 fathoms, while elsewhere there is from 18 to 50 fathoms. The Rocky Bottom is much frequented by the haud-line dory fishermen during the summer, and sometimes several luudred dories are fishing thene very close together.

The bottom is generally rocky, but there are patches of sand and gravel on some parts of the bank. The current from the Gulf of Saint Lawrence and the polar current meet here, but, though this causes considerable irregularity, the latter is usually the strongest, and the set is therefore chiefly in a westerly direction. The force is much influenced by the wind, so that there may be quite a strong tide for several days together and then but little or none.
But few kinds of fish, with the exception of cod and halibut, are taken ou Bankquereau; hake, haddock, and cusk being comparatively rare. Halibut are found throughout the entire year in the deep water along the edges of the bank, where, at a depth of from 100 to 400 fathoms, large numbers of them are often taken. These are apparently both feeding and breeding grounds for the halibut, and it is not unusual for a school of them to remain several weeks or even months in one locality, although it is probable that some of the schools that "strike" on the eastern part of the bauk in the spring are migrating farther north. The best season for cod is from May to November, when the schools gather on the bank to feed on the lant, squid, crustacea, and shell-fish that usually occur in great abundance. As a general thing cod are found the most plentiful on the eastern part of the bauk, although good catches are frequently obtained farther west. French, British, Provincial, and American fishing vessels resort to this bank for cod in summer, and the American (Gloucester) fresh halibut fleet visit it at all seasous.

CANEO BANK.

This bank lies to the south and east of Cape Canso, from which it derives its uame; it is unimportaut as a vossel fishing-ground, and is too distant from the land to be much resorted to by small boats. It lies between $45^{\circ} 00^{\prime}$ and $45^{\circ} 16^{\prime} \mathrm{N}$. latitude and $59^{\circ} 58^{\prime}$ to $60^{\circ} 49^{\prime} \mathrm{W}$. longitude; the greatest length, in an cast and west direction, being 30 miles, aud the width 16 miles. There is a depth of from 30 to 50 fathoms, and the general character of the bottom is sandy, with spots of gravel or pebbles.

MISAINE BANK.

Although Misaine Bank is quite large, it is but little resorted to by fishermen, and therefore it may bo said that as a fishing-ground it is unimportant. This fact seems quite remarkable, since it is not more than 30 miles distant in a northerly direction from Bankquereau, which is a good ground for cod and halibut. The extreme length is 61 miles, in an easterly and westerly direction, the limit being $55^{\circ} 08^{\prime}$ and $59^{\circ} 28^{\prime}$ W. longitude. The width is 41 miles, from $44^{\circ} 59^{\prime}$ to $45^{\circ} 40^{\prime} \mathrm{N}$. latitude. The depth of water varies from 40 to 60 fathoms, aud the bottom is generally broken and rocky. But little can be said concerning the abundance of fish ou this bank, since it is so rarely visited by fishing vessels that no reliable information can be obtained concerning this matter. The natural inference is, however, that the bank has been fished on more or less, and though cod and other bottom fish are found they are not so pleatiful as on other banks.

ARTIMON BANK.

Artimon Bank lies north from the eastern part of Bankquerean, being separated from it by a narrow gully. It is of such limited extent that, compared with the latter, it is of but little importance as a fishingground. The fishermen generally prefer to try on the larger bank, and therefore but comparatively little is known about the abundance of fish on Artimon Bank, although it is known that tho same linds may be taken on one as on the other. It is 17 miles loug and 10 miles wide, With a depth of 37 to 50 fathoms, and bottom of coarse gravel and rocks.

SAINT PIERRE BANK.

Until quite recently the bank of Saint Pierro was considered a very important fishing.ground for both cod and halibut, and was much rosorted to by American as well as French and British provincial fishermen. At present, however, fish are inuch less abundant than formerly, and it can scarcely be placed in the front rank of fishing banks. It is situated to the northwest of Grand Bank and Green Bank, and off the south coist of Newfoundland, the northern part being only 11 to 15 miles distant from the Fronch islands of Miquelon and Saint Pierre. It
is oblong in form, and extends in a northwest and southeast direction. The length is 110 miles, and width 60 miles, and it lies between the parallels of $45^{\circ} 15^{\prime}$ and $46^{\circ} 45^{\prime} \mathrm{N}$. latitude, and the meridiaus of $55^{\circ} 21^{\prime}$ and $56^{\circ} 21^{\prime} \mathrm{W}$. longitude. There is from 22 to 50 fathoms of water. The bottom is generally rocks and pebbles, covered with a growth of reddishcolored bryozoans, but on some parts there are places of cousiderable extent where it is composed of sand or gravel. Ordinarily there is not much current on this bank, although sometimes, when driven by strong winds, the polar current, which sweeps around the south coast of Newfoundland, is quite strong. Cod and halibut are the only foodfish that are found in any numbers, although a few cusk and haddock are sometimes taken. The season for both cod and halibut is from the 1st of April to November. The best season for cod is from the 1st of June to October, when they come here in pursuit of capelin and squid. Halibut were formerly taken on the sheal parts of this ground during the spring and summer, but at present are rarely found in any abundance except in the deep water along the edge, or on rocky spots, a distauce of 15 to 20 miles from the bank, where there are no soundings laid down on the charts. Some of the schools of halibut find their breeding grounds on these rocky patches, but the greater part pass along the edge in the spring on their way to the north. With the exception of the fresh halibut catchers, fow fishermen besides the French make an attempt to fish on Saint Pierre, as the other banks offer much greater inducement.

GREEN BANK.

Green Bank is one of the least important of its size in tho Western - Atlantic, if only that part laid down on the charts as such is considered. But it inay be said, however, that one of the best halibut grounds is in the deep, waters near its southern part, and as this is also called Green Bank by the fishermen, it may not be out of place to consider it in this connection. This bank is situated between Grand and Saint Pierre Banks, being 7 miles distant from the former and 13 miles from the latter. The extreme length is 54 miles north and south, between $45^{\circ} 15^{\prime}$ and $46^{\circ} 09^{\prime}$ N. latitude, and it is 33 miles wide, the meridians of $54^{\circ} 17^{\prime}$ and $55^{\circ} 03^{\prime} \mathrm{W}$. longitude bounding it on the east and west.

The depth varies from 40 to 60 fathoms, and the bottom is composed of sand, shells, pebbles, rocks, and corals. The ganeral direction of the polar current, which sets over this bank, is usually from northwest to southwest, its course, as well as force, being more or less influenced by the wind. But little is known of the abundance of the cod here, as the fishermen prefer to go to grounds that are better understood than to stop on this.

Siuce 1875 halibut have generally been found very abundant in the winter and spring and sometimes, even during the summer, in from 75 to 300 fathoms, along the edge of the ground between the Grand and

Saint Pierre Bauks, which is near the southern part of Green,Bank. This locality appears to be a feeding.ground in winter, and during the spring is in the direct line of the route followed by the halibut that are migrating from the Grand Bank to other places farther north, and at this season it is not uncommon for immense schools to make their appearance, moving leisurely along the edge, perhaps in some cases ouly a very little for several days at a time, and again more. rapidly. The only vessels fishing for halibut at this place are from Gloncester, Mass.

GRAND BANK.

Considered either as to area or witli regard to the extent of its fish eries, the Grand Banli is by far the most important fishing.ground in the Western A tlantic, if not in the world. It lies south and cast from Newfoundland, is triangular in form, with sides nearly equal, one of them facing the east, one the south and west, and the other to the north and west. The north and east sides are each about 264 miles in length, and the other is 225 miles from the southern to the northwestern limit. It extends over more than four degrees of latitude, from $42 \circ 57^{\prime}$ to 47° 02^{\prime} N., and nearly six degrees of longitude, from $45^{\circ} 22^{\prime}$ to $54^{\circ} 10^{\prime} \mathrm{W}$.

The most remarkable shoals are the Virgin Rocks and the Eastern Shoal Water. The former are a number of rocky hmmocks, severally known as the Main Shoal, Portugueso Shoal, the Haycocks, and the Easteru Shoals. On these the depth is from 4 to 25 fathoms, while between them it is from 40 to 50 fathoms. One or two of them break in rough weather, and though not very large, are at such times dangerous to passing ressels. They lie between $40^{\circ} 25^{\prime}$ and $46^{\circ} 30^{\prime} \mathrm{N}$. latitude and $50^{\circ} 31^{\prime}$ to $50^{\circ} 55^{\prime} \mathrm{W}$. longitude. The Eastern Shoal Water extends from about the fiftieth meridian nearly to the castern edge of the bank and from $43^{\circ} 50^{\prime}$ to $44^{\circ} 50^{\prime} \mathrm{N}$. latitude. The depth of water is from 22 to 30 fathoms and the bottom is chiefly sand, but with some patches of rocks or gravel. With the exception of the shoals already mentioned, the bottom is generally level, the depth being from 30 to 50 fathoms, excepting in the whales deep, near the western part of the bank, where there is from 52 to 67 fathoms on a muddy bottom. The Grand Bauk may be considered as a vast sandy plain in mid ocean, but notwithstanding this is the general character of the bottom, there are extensive tracts where it is either cpmosed chiefly of rocks and gravel or where these occur in patches of more or less extent.
There is perhaps less current here than on any other of the banks, and oftentimes for days and weeks together it may be scarcely perceptible. This is generally the case during moderate weather, but a continuance of strong winds usually makes some tide.
The principal food-fish taken here are the cod and halibut. Haddock, cusk, and hake are rare. There are a few cod ("ground keepers") in Winter, but the best season is between the first of April and the first of November. The Grand Bank is essentially a feeding.ground for the
S. M1s. $90-7$
cod, which find there not only an abundance of shell-fish and crustacea of various kinds, but mollusks and several varieties of small fish that they are especially fond of. The appearance of large schools of cod at the same time with certain kinds of bait, for instance the capelin and squid, has caused these to be known to the fishermen as the "capelin school" and the "squid school." The spring fish, which feed largely on the bottom, and to some extent on lant, are at first found the most abundant on the southern part of the bank, but later spread over a large area. The capelin school comes in May and June, and at that time fish are found more or less plentiful all over the bank, although the locality between the latitudes of $44^{\circ} 00^{\prime}$ and $45^{\circ} 15^{\prime}$ and that east of the Virgin Rocks north of the forty-sixth parallel are the most generally resorted to by trawl fishermen, while the dory hand-liners gather about the Virgin Rocks, which is a farorite place for them at that season. The squid school appears in July and is found on the same grounds as the capelin school. Indeed, it is quite probable that it is made up chiefly of the same fish, their numbers increased, perhaps, by some new accessions. For several years but comparatively few cod have been taken after September. Cod-fishing on the Grand Bank dates from the earliest settlement of America. The halibut fishery, howerer, is of comparatively recent date. This was begun in 1865, at which time, and for several subsequent years, halibut were found very numerous on the bank. At first they were taken almost wholly on the Eastern Shoal Water, later on other parts of the bank, and since 1875 principally in the deep water along the western edge, where immense schools have been found in the winter and spring, and, though less frequently, sometimes in summer. During the early part of the year the halibut usually do not remain long in one place, as many of the schools perform their migrations at that season. The summer schools, however, are generally spawn fish and move but little.

A large fleet of French vessels of various rigs, but mostly brigs and barks, resort to this bank to engage in the cod fishery. Besides these there is a flect from the British provinces and another from the United States, the whole aggregating several hundred sail, with crews numbering many thousands of men.

FLEMISH CAP.
Although the Flemish Cap is quite large, but comparatively little is known of it, and its boundaries are not fully defined on any of the charts. It is the most northern of the large fishing banlss in the Western Atlantic, being located between $46^{\circ} 36^{\prime}$ and $47^{\circ} 59^{\prime} \mathrm{N}$. latitude and the meridians of $44^{\circ} 06^{\prime}$ and $45^{\circ} 25^{\prime} \mathrm{W}$. longitude. The extreme length is therefore 83 miles and width 53 miles. The bottom is broken into patches of more or less extent of mud, rocks, pebbles, gravel, aud sand. A slaty rock is the most common on that part of tho bauk resorted to by fishing vessels. The depth varies from 73 to 155 fathoms.

Cod and halibut are the only fish taken as au object of pursuit. Owiug to the bank being situated so far to the north and east nothing is known about the abundance of fish in the winter season. Indeed, all that is known of them is in the period between the last of April and the first of August. In the spring and early summer cod and halibut have been found in great abundance. During the spring, however, the weather is often so rough that fishing can be carried on but a small part of thio time, and after June the ground is so much infested with ground-sharks that the trawls are soon destroyed. Besides this there is more or less danger from drifting icebergs, which are often seen in great numbers. All these causes combined have hindered most of the fishermen from making any attempt to fish there. Tho only vessels known to have visited this bank for cod and halibut are a fow from Gloucester, Mass., and this has never been done until within a few years.

COD FISHING-GROUNDS IN THE BAY SAINT LAWRENCE.

The cod fishing-grounds in the Bay Saint Lawrence are comparatively of little importance except to the fishermen of the British Provinces. But few American fishermen go there, as the ocean banks are generally preferred by them. There is little difference between the depth of water and character of the bottom of the banks and elsewhere, and therefore the whole bay may be considered as a cod fishing-ground, with from 10 to 60 fathoms of water, and bottom generally rocky but somewhat diversified with areas of greater or less extent of saud, gravel, or mud. The only places of which special mention need be made are Bradelle Bank, Orphan Bank, "Pigeon Hill Ground," and "Miscou Flat."
Bradelle Bank is in a northeasterly direction from the North Cape of Prince Edward Island, and in a direct line between that and the northern Magdalen Islands, the SW. edge being 22 miles from the former headland. It is 36 miles long and 24 miles wide.

Orphan Bank is north of Bradelle. The center bears ESE. from Point Miscou, from which it is 47 miles distant. It is 36 miles long NE. and SW., and 15 miles wide, with a depth of from 10 to 30 fathoms, and bottom of rocks, coral, and sand.
Pigeon Hill Ground is the shore soundings that lie southeasterly from Shippegan Island at a distance of 10 to 20 miles, and extends in the direction of the coast about 18 to 20 miles.
Miscou Flat is a stretch of rocky shoal ground that makes out from Point Miscou about ESE. nearly twenty miles. There is from 10 to 22 fathoms of water, the ground gradually sloping toward the outer part.

On all these grounds cod-fishing is pursued only during the warmor season, from May to October. The abundauce of cod, especially of the large fish, varies somowhat with different seasous, their presence in greater or less uumbers being governed to a great extent by the amount of bait-herring, mackerel, \&c., on the ground. The fishing is largely car-
ried on by the local residents in small boats, although some Nova Scotia vessels, and a limited number from the United States, sometimes engage in it.

fishing-grounds neale the magdalef islanis.

The cod and halibut grounds about the Magdalen Islands are at present of little importance to American tishermen. Since the iutroduction of trawl-fishing it has usually been found that better results could be obtained elsewhere. These grounds are rocky patches, and generally of limited extent, with comparatively shoal water and sharp, bottom. They occur all around the islands, but are not of sufficient importance to make a special description necessary. A few trips of halibut have been taken on the shoal about Byron Island, but the appearance of these fish is so uncertain in that locality that the halibut catchers rarely go there. The fishing is done almost wholly in the small boats of the resident fishermen, and by the small vessels belonging to the British possessions and at the Freuch jslands of Saint Pierre and Miquelon.

CAPE NOKTII FISHING•GROUND.

Around the northern part of Cape Breton Island, at a distance varying from 4 to 15 miles from the land, is a fishiug.ground that is of considerable importance for a few weeks in the spring and early summer. This lies between Cape North and Saint Paul Island, and extends westerly about 15 miles, and southwesterly along the coast as far as Limbo Cove. The land is bold and high, with steep shores, so that notwitustanding the close proximity of the lishing. ground the depth of water on it is from 65 to 100 fathoms. The bottom is mostly tough clay, but 10 or 15 miles from the land there are some rocky ridges. The current sets out of the Gulf of Saint Lawrence toward the southeast, although the direction in which it runs in the vicinity of Cape North changes more or less in conformity with the laud. The strength is increased by strong westerly winds, and after a loug contiuuance of these, the current sometimes runs 3 or 4 miles an hour. As a general thing, however, the tides run slowly About 1860 and 1861 cod and halibut were found in abundauce, but later the halibut seęmed to disappear, and for several years have been taken only occasionally. The cod are still found quite plenty in May and June, at which time they are moving slowly in by the headland on their way to the shoaler grounds in the bay of Saint Lawrenco. The fishing is often obstructed by floating field-ice, which sometimes prevents the vessels from reaching the ground until late in the season. This place is resorted to by provincial and American ressels, but owing to the difficulties that have been alluded to the fleet is usually small.

THE GREENLAND UALIBU'T BANKS.

Mr. N. P. Scudder makes the following statement about the grounds in Davis Strait which are resorted to by the halibut fishermen of Gloucester :
"The fishing banks are 15 to 40 miles from the coast, and, if we can rely upon the Dauish charts, extend from Disko Bay to within 30 of Cape Farewell ; for these charts give soundings all along the coast between theso two points. Lxtensive as the banks may be, only a small part of them, the part about Folsteinborg and Cape Amalia has been tried by Americau fishermen. That the fish are to be found throughout the whole extent is more than probable; for the species is identical with that taken on the Grand Banks, and we would naturally infer it would be found in all favorable situations within the limits of its distribution. It is also reported that Capt. Rasmus Madson, commonly Lnown as 'Captain Hamilton,' who has been to Greenland several times, set his trawls for these fish farther to the south (probably off of Godthaab) and found them very abundant, but was unable to secure many on accomnt of the numerous ground-sharks playing the mischief with his trawls.
"The depth of water on the banks is from 15 to 90 fathoms. * * * \quad t the inuer edge the banks have a sudden slope, leaving a long submarine valley, the depth of which I did not ascertain, between them and the mainland. The surface of the bauks is varied, though generally rocky, with here and there sandy and clayey spots. The character of the fauna varies considerably and often abruptly in places a little distance apart. * * * The balibut were also more plentiful upon the edge than any other part of the bank. * * * It will readily be seen from tho preceding remarks that a careful survey of the banks, with the riew of determiving their limits, character, and fauna, could not fail of being of great use to the fishing interest, to say nothing of its immense importance from a natural history and geolog. ical point of view." (Report U. S. F. C., 1880, pages 193-4.)
Besides the banks that have been described there are many small patches, generally some part of the shore soundings, along the coast from Florida to Maine which are resorted to by small boats and also by larger eraft. Although these fishing.grounds are important in the aggregate there are none of them sufficiently large to require a special deseription in this place.

Mention should also be made of some of the more noted inshore fishing-grounds of the north. Among these, perhaps the most important is the Strait of Belle Isle, though at present this locality is rarely visited by fishing vessels of the United States. The iushore halibut grounds, along the shores of Anticosti Island and the coast of Lower Labrador, were important for a few years, 1870 to 1874, but have seldom been visited since 1875 , the few trips that have been made to those loealities since that period being usually unremunerative. Other inshore
localities, which are no longer good grounds for halibut, might be mentioned, but it may suffice to say that at present the only place where halibut are found abundant near the shore is on the west coast of Newfoundland.

THE MACIEREL FISIIING-GROUNDS.

The principal fishing-grounds for mackerel (Ncomber scombrus) are along the coast of the United States north of Cape Hatteras and in the Bay and Gulf of Saint Lawrence. The ordinary range of the mackerel on the Americau coast is between the parallels of 35°, and $52^{\circ} \mathrm{N}$. latitude. Instances have been recorded of their appearance north and south of these limits, but all the evidence goes to show that their presence in those waters is exceptional. The extent of the fishing-grounds on which mackerel are commonly caught is considerably less than that first mentioned, since they are rarely taken south of the thirty-seventh or north of the fiftieth parallel of north latitude, and the best obtainable evidence shows that the average southern limit of the first catches in the spring is about $35^{\circ} 00^{\prime} \mathrm{N}$. latitude.*

The most northern localities where mackerel have been found abundant by fishermen who were seeking them (this is by no means a common occurrence) are the Seven Islands, $50^{\circ} 05^{\prime}$, and Mingan Islands, $50^{\circ} 14^{\prime} \mathrm{N}$. latitude, both of these groups of islands being situated near the coast of Lower Labrador.

Mackerel appear on the coast of the Cnited States early in Aprilrery rarely in March-and until the middle or last of May the fishing. ground for them is along the coast from off the capes of the Delaware to the South Shoal of Nantucket, advancing northwardly with the season and at varying distances, say from 3 to 60 miles, from the land. From Jue to September the best grounds for these fish are off the coast of Maine. Sometimes they are caught in the bays, some distance inside of the outer islands, but more generally from 5 to 70 miles offishore. Large schools of mackerel frequently appear on George's Bank in the summer, and it is not uncommon for that to be one of the favorite grounds for these fish during a large part of the season. When the autumn migration of the mackerel takes place, which is gencrally in October, and continues sometimes through November, they begin to more sonthward; the fishing-grounds, of course, change (the vessels follow-

[^18]ing the schools) from the coast of Maineto Massachusetts Bay and the waters off CapeCod. They have never been followed far south of Cape Cod when leaving the coast, the inclemency of the weather at that season generally preventing such an undertaking. It should, however, be said that mackerel have been found for the past few years quite abundant and of large size duriug the entire summer seasou and quite late in the fall, in the vicinity of Block Island.

We will now consider the more eastern or northern resorts of the mackerel. Toward the latter part of May, about the time when the southern wing of the great army of mackerel is approaching the waters of Cape Cod, another body, which may be called the northern wing, and which would appear to be distinct from the other, sweeps in past the island of Cape Breton and enters the Bay of Saint Lawrence. The mackerel make their appearance in those waters late in May or carly in Junc. These are, however, appareutly but the ranguard of the schools of fish that follow, and which are undoubtedly part of the same body of fish that first makes its appearance on the coast of the Middle States. During the month of June large quantities of mackerel are moving along the coast of Nova Scotia and passing through the Gut of Canso into the Bay of Saint Lawreuce. Many fish are caught in wets, seives, and pounds while these migrations are taking place, and also during the fall when the mackerel are returning over the same track on their way south, and therefore the coast of Nova Scotia for a brief season in the early summer and late autumn may be considered a fishing.ground for mackerel, although the fishery on that coast is carried on exclusively by residents of the Province. Of the Bay of Saint Lawrence it is only necessary to say that from early in June to October, seldom later, this is a well-known habitat of the mackerel, though since the universal adoption of the purse-seine by the mackerel catchers much better fares lave been obtained on the coast of the United States, and as a rule trips to the bay have resulted in loss. This is partly due to the mackerel being less abundant and of a poorer quality than formerly, but in a greater degree to the difficulties of seiuing on grounds where the water is generally shoal aud the bottom foul. In conclusion, mention should be made of the fishing-ground off the east side of Cape Breton Island, in the vicinity of Sidney, where mackerel have occasionally been found abundant; Sable Island, where they were found quite numerous and of large size for one or tro seasons, about 1853 and 1854; and the west coast of Newfoundland, where they have been known to occur at irregular intervals and where at least one trip has been obtained by an American schooner.

B.-The fisiery marine.

Important changes have been made in the models of fishing ressels during the last half century, and in the appliance of labor-saving apparatus to their rig and fittings. Although these improvements have
contributed much to the comfort and safety of the fishermen as well as to the success of the fisheries, it will, perhaps, suffice for the present purpose to allude very briefly to the vessels of former days, some of which may yet be occasionally seen, particularly in the shore fleet of Eastern Maine.

The "bankers" of the last century and the beginning of this were narrow, straight-sided, square-sterned schooners, with high quarterdecks, and very bluff-nearly square-bows. They were short-masted, consequeutly having but a small spread of canvas, and were extremely slow sailers. These vessels wero usually fiom 40 to 75 , tons, carpenters, measurement. The Chebacco boats, or "ram's-head boats," as they were sometimes called, which at that time were employed in the shore fisheries, were of small size, 10 to 20 tons, and were generally sharp aft, with two masts and no bowsprit. Next came the pinkie and the square-stern schooner with low quarter.* About 18tij the "Lalf sharp" schooner wade its appearauce, and from this date rapid changes were made, aud a few years later, about 1850, the "sharp-shooter" (as the clipper schooner was at first called) was introduced.

The fishing vessel of the present time is the embodimeut of the combined and intelligent efforts of fishermen and builders through a long period of years, and as a result we now have the schooner-rigged clipper, with broad beam, a large spread of cauvas, and possessing excellent sailing and sea-going qualities. Although there is a general resemblance to each other among the vessels composing the fishing tleet, certain changes in the rig and slight differences in the model are sometimes rendered necessary for their better adaptation to certain brauches of the fisheries. Nearly all of the larger class of vessels are, however, constructed on a model which is well adapted for any fishery, and it is only the so-called market boats, which are usually of smaller size, and a very fow vessels built for the mackerel fishery aloue that differ from the rest; these are usually very sharp, and sometimes not so deep as the others, large deck room and swift sailing being the qualities most desired. There are, however, considerable differences in the rig. These are rendered necessary by the changes in the scasous, it being evident that in some branches of the fishery where speed is a special object a larger number of sails can be carried in the summer, when light winds are prevalent, than during the winter months, when heavy galesare frequent. The winter rig of the vessels employed in the George's cod-fishery is the lightest of any. To fit them for a winter trip the maintopmast is sent down, and they then carry but three sails, namely, mainsail, foresail, and jib: In the spring, when there is no longer a probability of meeting heary gales, the topmast is replaced, and they then carry a staysail, and some have also a gaff-topsail.

[^19]The summer rig of the Georgesmen, that has just been described, is the same as the winter rig of the vessels that are employed in other branches of the fisheries; for instance, the bank halibut fishery, the haddock fishery, and the shore cod fishery. In summer nearly all of the bankers and mackerel catchers lave flying.jibs. Many of the latter class of vessels, and also a few of the halibut catchers, have a foretopmast, and carry, in addition to the sails that have already been mentioned, a fore gaff-topsail aud balloou-jib. A vessel rigged in this manuer has eight sails, and resembles a yachtin appearance; a schooner of 75 tons will spread nearly 1,300 yards of canvas. The necessity of making rapid passages to and from the fishing.grounds, and moving swiftly from place to place in pursuit of fish, renders it necessary to have a large amount of canvas to improve the prevailing light winds of summer.

The size of the vessels engaged in the fisineries varies from 5 to 193 tons, although there are but few that are more than 110 tons. The fleet engaged in shore fisberies is composed of vessels of the smallest class, from 5 to 50 tons, the average being about 20 tons. A portion of these, more particularly on the east coast of Maine, are old-fashioned vesselsa few of them are pinkies-and are not employed except during the season when fine weather may be expected. The greater part of the shore tleet, however, are the best class of small-sized vessels, and many of them are emploged in fishing at all seasons. Mavy of these pursuo the cod and haddock fisheries in winter. In summer the small vessels engage in many kinds of fishing, elianging from one to another, and following whatever promises the best results at the time.
Tho winter haddock catchers are usually all first-class vessels varying in size from 25 to 80 tons, averaging about 50 tons. Many of these ressels are among the finest in the fleet, and the majority of the larger ones. are generally employed in the mackerel fishery in summer. While the smaller haddock schooners do not go farther than 30 or 40 miles from the land, and usually a much shorter distance, the larger ones make trips to George's and Brown's Banks, and occasionally even farther east.*
The Georgesmen are all first-class vessels, averaging a little more than 60 tons, the extremes being from 40 to 85 tons. These vessels, like all others that are employed in the winter fisheries, are heavily ballasted with rocks or iron (generally with the former); the ballast is covered with planks, which are fastened down in the most secure manner. Above this platform the hold is divided by bulkheads and partitions into sections or pens, in which the fish are packed away in ice, or salted. Although the ressels undoubtedly fish ou George's Bank the greater

[^20]part of the time, they also make trips to Le Hare Bank, Brown's Bank, Seal' lsland Ground, German Bank, and occasionally to some other grounds. A fow trips have been made as far cast as the Western Bank (Western Bank and Le Have trips are usually made in December and January), and as far south as Block Island, but only at rare intervals.

The greater part of the vessels composing the mackerel fleet are clipper schooners, many of them being equal in appearauce and sailing qualities to first-class yachts. It has already been mentioned that some of them carry a great amount of light sail, but while this is true of the larger vessels and for some others, there are a few of the smaller ones that hare no flying-jibs. The average size of the mackerel catchers is about 60 tons, the extremes being from about 20 to 151 tons. There are few, however, over 100 tons; and the largest one is a three-masted schooner.

The bankers average largor than the vessels omployed in other fisheries. Few are less than 60 tons; the average size is about 75 tons; while a suall number are more than 100 , and the largest, a three-masted schooner, is 193 tons. The fleet is composed chiefly of the finest class of sea-going vessels, and this may especially be said of those employed in the bank halibut fishery. There are, however, a few old-fashioned schooners that male trips for cod in summer. The salt carried by the cod-fishermen serves for ballast, and this is stowed in "pens" or bins in the hold. The halibut catchers and a few other bankers are ballasted like the Georgesmen, though perhaps not so heavily, the ice and salt they carry making up the deficiency. The fishing-grounds visited by the bank fleet extend from Le Eave Bank to Davis Strait, although the Grand Bank, Banquerean, and Western Bank are the principal ones.

The vessels of the New York markot flect belong chiefly to the ports on Long Island Sound. They differ in some respects from the vessels of Northern New England, as they are, with the exception of the halibut catchers, nearly all welled smacks, and a considerable portion of them are sloops. The smacks take the greater part of their catch to market alive, preserving, however, the dead fish in ice. The vessels engaged in the halibut fishery are arranged somewhat similar to those already mentioned, and the fish are kept in the same manner, namely, by icing them. Although there is not so large a proportion of extremely sharp vessels in the Now York fleet as in the fishing fleet north of Cape Cod, there is, nevertheless, a general resemblance between the schoonerrigged vessels and those of Massachusetts. The arerage size of the market smacks is about 40 tons, the extremes being 20 and 65 tons. The smacks fish from Cape Henlopen to George's Bank, principally on some part of the shore soundiugs, catching cod, haddock, \&c., in the winter, and besides these several other varieties in summer. The halibut catchers go farther east on George's Bank aud adjace nt grounds. The few vessels employed in the southern coast fisheries belong to the same class as the sinacks that have been mentioned ; indeed the greater part of them were built in the ports of Tong Island Sound.

The next to be considered are the open boats, of which there are a great many kiuds, a few only of which, the more notable forms, can be mentioned here.
The sharp-stern fishing-boat is more universally used in the coast fisheries than any other, and to show how widely these are distributed along the coast it is only necessary to meution that the boats of Block Island and No Mau's Land, the "five-handed" boat of Cape Cod and the coast of Maine, and the "quoddy" boat of Eastport, belong to this class.

One of the most peculiar fishing-boats on the coast is the cutter-riggel sloop, used exclusively by the Irish fishermen of Boston. These are said to resemble the fishing-boats of Ireland, and are generally called "Dungarvan boats" by other fishermen. The length varies cousiderably, the average being about 30 feet on top. They hare a reasonably sharp but rounding bow, square stern, with the rudder hung outside; are deep in proportion to their length, with a wide stem and deep keel. They are said to be excellent sea-boats. The forward part is decked over; thus forming a cuddy where the crew eat and sleep. There is a cockpit aft, with a seat around it. The midship section is partially coyered on each side. In the bottom of this is placed the ballast, on top of which the fish, gear, \&cc., are stowed. The bowsprit is adjustable, and two jibs are carried, one being set on a stay, the lower end of which fastens to the stem. In other respects they do not differ materially in rig from other sloons. In spriug, summer, and fall these boats are employed in the cunver, haddock, and other fisheries for Boston market, the catch being chiefly sold fresh. In autumn most of them engage in the herring fishery with gill-nets at Cape Ann and other points in Massachusetts Bay.

The dory, which is so well adapted to the deep-sea fisheries, and is quite indispensable to our bank fishermen, originated during the latter part of the last century in Salisbury, Mass. This boat was originally designed for a lighter, and for many years was scarcely used for any purpose besides that of removing the cargocs from vessels at Newburyport. It was, however, employed to some extent in the fisheries early in the present centurr, and since the introduction of trawl fishing it has come into general use. The thwarts are adjustable, and, when these are removed, several dorios may be "nested" inside of each other, the whole occupying the same space as one boat, and for this reason they are much better adapted for stowage on the deck of a vessel than any other style of boat. In addition to this, they are exceileut boats in a rough sea, are capacions, light to handle, and also cheap; therefore it follows, as a matter of course, that they are extensively used in most of the important fisheries, among which may especially be mentioned the bank cod and halibut fishery and the mackerel fishery (each vessel with a purse-seine usually carries two dories). Large numbers are also employed on the haddock vessels, the shore fishing fleat, and in the boat
fisheries of the coast. These boats are flat-bottomed, with tlaring sides, sbarp bows, and V-shaped, oblique, projecting sterus. They are from 12 to 16 feet in length (bottom measurement), different sizes being required for the various kinds of fishing. There is but little variation in the models, although for certain purposes* they are built somewhat wider and deeper than the average.

The seine-boat that is used in the mackerel fishery is a modification of the whale-boat, and is sharp at both ends. It has been found admirably well adapted for purse-seining, as it moves easily through the water and at the same time has suflicient buoyancy to carry safely a large seine while being towed very swiftly by a vessel. The ordinary size of these is 36 feet in length, though a few larger and smaller ones are used.

In addition to the boats that lave been described, the following may be mentioned as being: perhaps, the most noticeable: (1) The squaresterned, sloop-rigged lobster-boat of Bristol, Maine; (2) the squaresterued "reach-boat"; (3) "donble-ender" (a canoc-shaped boat), both this and the preceding being common on the coast of Maine; (4) the "drag-boat" of Cape Cod; (5) the square-sterned, cat-rigged boat of Southern Massachusetts; (6) the sloop lobster-smack of Long Island Sound; and (7) the surf-boat of New Jersey.

The other forms of fishing-bonts are mostly modifications of those that have been noticed, and it is scarcely desirable to make further mention of them here.

C.-Methods of gapture of searishes, and the changes in this respect in latel years.

The different varieties of sea-fish aud their varying habits and modes of occurrence involve the necessity of special or peculiar methods for their capture ; and the great diversity of implements and processes in use in different parts of the world is therefore not a subject of wonder. For the most part, however, nearly all the methods will fall under the liead of the bow and arrow, the spear or lance, the line, the seine, the beam-trawl, the weir or trap; with some subsidiary means, such as the employment of narcotics or poisons, explosives, \&c. I suall consider these methods under the foregoing heads.

The bow and arrow.-It is probable that in the pursuit and capture of wild auimals our savage ancestry first made use of the hand or foot, the power of running, the strength of arm, and the acuteness of the perceptions, especially those of sight and smell, which in all probability were developed to a very high degree, and in this respect equaling, if even

[^21]they did not sometimes surpass, the most highly favored of the associated animals. Very soon, however, subsidiary apparatus would be called into play, either the throwing of stones or sticks, picked up at random, or the use of a specially fashioned club either for striking or throwing; aud ultimately the arming of the stick with animplement for piercing, constituting the spear or lanco, and, finally, the discharge of this spear, in a modified form, by means of a bow, constituting the bow and arrow.

It is, of course, diflicult to say how soon the arrow and the lance were brouglit into play. We only know that among the very earliest prehistoric implencents are the stone tips, undoubtedly used for this purpose and continued to be employed by the wild tribes down to the present day. The bone and wooden tips, which doubtless were called into play at about the same time, perished, as being coustructed of less durable material.
The spear and the bow and arrow constitute very efficient means for eapturing fish, in view of the closeness of approach to many species Which is possible. No more effective method could be devised for capturing such species as the salmon than the spear, with its modifications of the harpoon, the grains, \&e. In sea fishing it is especially such fish as the flounders, skates, eels, and other kinds that fall victions in large numbers to this method. The Esquimaux and the Indians of the northwest coast of America employ the bow and arrow very extensively for the capture of tish of various kinds. There are numerous aud varied illustrations of this fact among the collections of the National Musenm at Waskington.

The harpoon comes legitimately in this series of weapons and has jumerous applications. Tho head is placed at the end of a stiff handle, and sometimes when this is buried in the flesh it slips off, but remaius connected by a thong or cord either to the harpoou itself or to a buoy which is thrown overboard. The latter method is most generally emplayed in the capture of the swordfish. In the whale fishery the end of the line is attached to a boat, which thus serves as a buoy or float. The combiuation of a torpedo or an explosive with a lance, either kept in the hand or discharged from a grou, is a more recent and extromely efficient method of capture of the large animals of the sea.

The line.-This may be considered esseutially under the two divis. ions of the live held in the hands or at the end of a rod affised to some object on the shore or to a float of some kind, and having at the extreme opposite end one or more hooks baited, with or without floats, for buoying the hook to a certain height above the bottom, or for showing by its motion the attack of the fish. Here we have the first idea of the hook, either covered with some substance attractive to the fish that conceals its character or simulates small fishamb other objects that tend in attract its rictims. The use of the hook and line in combination for the capture of fish is of the utmost antiquity in this respect, perhaps little inferior to the bow and arrow. While, of course, the lines themselves

110 REPORT OF COMMISSIONER OF FISII AND FISHERIES.

have perished with time, we still have the hooks, sometimes of stone and sometimes of boue, of shell, or of metal, and usually constituting very attractive objects of archicological research. Usually the barb of the hook is on the inner or concave line. A curious anomaly, however, in this respect, is seen in the hooks of the prehistoric tribes of the coast of Lower California, which, whether made of bone or of shell (sometimes of extreme artistic beauty), in variably have the barb on the outer or convex outline. Sometimes the barb is dispensed with entirely, with or without some device to occupy its place and function.

The hook and line, whether in the hand or affixed to the end of a rod, is the simplest of all methods for capturing fish, and the one most universally employed. Where fish are abundant it will generally take a sufficiency for all ordinary purposes, although where a large market is to be supplied it is not wholesale enough for the requirement. It does not waste the fish as much as other mothods, and has especially the advantage of seldom taking those about to spawn, most species refusing, when in this condition, to be allured by the bait. There are some fish, indeed, which cannot be induced to take the hook at any time, and of course we have to depend on other inethods, especially the net, in one form or another, for capturing them.

The trawl-line.-Where fish are needed in larger number than they can be taken by the hand-line, with a given number of persous, and where distant markets, rather than the local consumption, are to be provided for, what is called the trawl-line comes efficiently into play. This term, however, is applied to it only in the United States, where it is sometimes called the "set-line." On the continent of Europe it is known as the "long-line," while in lingland it is called the " bultow," and one variety of it, the "spiller." It consists of a long line, laving fastened to it, at regular intervals, usually 6 feet, a succession of short lines, usually about 3 feet in length, aud having looks at the ends. The antiquity of the trawl or long-line is probably very great, the period of its first introduction into Europe not being anywhere a matter of record. It was first used in Nortl America on the bauks of Newfoundland for sea fishing by the French. Its introduction to the main land of the provinces and of the United States has been somewhat more recent, although now it is very generally made use of.

According to Captain Atwood,* the use of trawl-lines was first introduced into Massachusetts by a number of Irish fishermen of Galway, who settled on Cape Cod. Their success with this novel apparatus was so great as to induce its immediate adoption by the native population.

There has been a singular antagonism on the part of those who use

[^22]the havd-line, to the introduction of the trawl, and many accusationshave been brought against it, on the seore of its destruction of the fish and the injury to the fishing-gromens, in regard to which we suall inquire hereafter.
One proof of the antiquity of the long-line is the fact of its existeuce in almost the form used by civilized nations among the Indians of the northwest coast of America. It usually happens that aboriginal methods now employed by savage tribes have been handed down from a very high antiquity, and it is not at all improbable that the people of modern Europe simply developed an implenent made use of many thousands of years previonsly by their ancestors.

The tranl-line as mentioned consists essentially of a line of varying length, sometimes, as on the const of England, as much as 7 or 8 miles, more usually, however, from 100 yards upwards, with short lines of perhaps 3 feet in length attached at intervals of 32 to 6 feet, each with a hook, but commonly not provided with leads or simkers. To one end of this long line is attached a-weight, by means of which it is carried to the bottom. The line is then paid out at the side of the boat, the hooks being previously properly baited, and the other end is weighted aud dropped to the bottom also. At each end of the long line is an attached buoy, which, floating at the surface, indicates the location of the two ends. Sometimes, in the ease of very long lines, there may be intermediate weights and intermediate buoys, those at the extrome ends in such a case being differently marked for their proper designation.
The bait used on the long-lines varies with the country and the circamstances, the louger lines used in England for the capture of cod being baited alnost entirely with the whelk (Buccinum undatum), a mollusk or shell-fish very abumbaut in Eugland, and for the capture of Which numerous vessels of from 10 to 20 tons are employed.

The whelk is taken sometimes with the net, more usually by the use of some bait which attracts them into a basket or inclosure, in which they are then lifted out. The abundance of this object in the Europeau raters is rery great, as with all its consumption the numbers do not appear to decrease.

In the ordinary boat fishing the long-line is usually baited with the common muscle, the use of fish, such as fresh berring, \&c., being much less common than in Northern Europe and in America. The whels and species closely allied to it are abundant in the United States; but so fir comparatively little use is made of them. It is probable that in the search for improved qualities and increased quantities of bait for the capture of codtish this will soon come into play and constitute a very desirable and satisfactory substitute for the other rarieties. The elam anong the mollusks is more generally employed for this purpose, both the Mya arenaria, or soft clam, and the Venus mercenaria, or hard elam. There are several other species which are used in large numbers for this purpose, to which refereuce will be made in another

112 REpORT OF COMMISSIONER OF FISH AND FISHERIES.

place. Of course fish may be employed, either herring or mackerel, fresh or salted, as well as capelin, portions of the cod, the lamprey, and, indeed, tish generally; the most appetizing and attractive fish bait for this and other purposes is probably the monhaden or pogee.

The trawl-line reaches its maximum of application and of size in the cod and other white fisheries which are carried on in tho North Sea on a very large scale. At Great Grimsby, one of the principal centers of this kind of fishing, the long-lining is prosecuted by means of smacks of about the class and size of those employing the beam-trawl, from 40 to $\mathbf{6 0}$ tons, and even greater tounage. A crew of fiine to eleven hands is required to bait and work the lines; and the fish when caught are kept alive as long as possible, in wells. A complete set of long-lines, as used in all these vessels, consists of about 15 dozen, or 180 , lines, each of 40 fathoms in length, and carrying 26 hooks on smaller short lines, called snoods. These are placed about a fathom and a half apart, so as to prevent the snoods from becoming entangled with cach other. These 180 lines are united into one, forming a single line of 7,200 fathoms, or about 8 miles in length, and carrying 4,680 hooks. Coutrary to the practice in Norway, where the lines are set in the afternoon aind taken up the next morning, in Englaud the lines are always put down and taken up by daylight; they are "shot" at suarise or earlier, and taken up before night; sometimes, indeed, two casts can be made in oue day. The baiting is generally done at night. A small anchor holds the line steady at every 40 fathoms, with a buoy at cach end, and at each intermediato mile, as already explained.*
According to Mr. Holdsworth the use of wells in cod-fishing was first tried at Harwich, in 1712, and soon increased very rapidly, until now it is cery extensively emplosed by many nations. In the wor hof Holds. worth (Deep-Sea Fishing and Fishing Boats) will be found vory useful statements in regard to the use of the trawl in England.

As already stated, the whelk is used as bait on the largest long-lines, as any other would be too readily washed away by the rapid tide. The shorter lines, shot from boats, usually in quieter waters, are served by means of the softer muscle, a mollusk, also extremely abundant in the Uuited States. The fish are usually takeu alive, and after a puncturing

[^23]of the air bladder by a long needle, they are placed in wells in the vessel and carried alive to market when a cargo has been obtained.

According to Holdsworth (p. 148), there is no reasonable ground to believe that the eatch on the coast of England has been diminished in numbers in cousequence of the action of the loug or trawl lines, the principal means of capture. On the contrary, the same ground has, year by year, furnished an increasing abundance in proportion to the number and size of the vessels employed, the catch being uearly if not entirely as great on any given number of hooks as it was many years ago.

The capture of col on the Norwegian banks is also made principally by the trawl-line, although the hand-line and the gill-net are also brought into play.
For the purpose of ascertaining the present views of the Norwegian experts charged by the Government with the supervision of fishery operations, I addressed a letter to ono of their number, Mr. Robert Collett, of Christiania, Norway, and his reply is herewith presented:
"You ask me whether any question has arisen in Norway' as to the greater destrnctiveness to fish or to the fishing-gromuds in consequence of the use of the long-lines. Not at all. I am quite sure the long-line is just used in the 'great cod-fisheries,' particularly in Lofoden Islauds and along the coast of Aalesund, in the spawning scason, and it would be a very bad fishery if the fishermen had nothing but hand-lines.
"I never heard of any putrefaction of the grounds by the fishes breaking off from the hooks, and in the great depths, where the fishery is very good, nothing of that kind would be felt. I never heard of such a thing in Norway, and I could give you an example from the herring fisheries that proves there is nothing probably in this outery.
"In the year 1834 great herring flocks were caught in a little fiord, Oxlofiord, a branch of Stonfoldenfiord, in Nandalen. Hy an accident once, the masses could not be taken up from the nets, and several thousand barrels died before they could be used. All these dead fishes were thrown into the water on a very small area in a narrow fiord aud covered the bottom with a very thick layer. Notwithstanding, two years later the fiord was again full of fish, and thousands of barrels were caught just on the spot where the lishes had been thrown ont.
"As to the nature of the bait, it; is partly fish, greatly invertebrates. On the great cod-fisheries in Lofoden, where they are catching the fish from January to March (the spawning season), they use herring. In Finmark they use Mallotus villosus, the best bait that is known. (When this fish is in the fiord you cannot get col with any other lind of bait.)
"Here they also use cephalopods (Ommastrephes). In the southern part of Norway, where they cateh cod every season, they use Mytilus modiolus, Mytilus edulis, young Clupea harengus, Arenicola piscatorum, ind Palcmon squilla. I hare not heard of any other sort of bait. The bait is
always used fresh, and it is only in the case of extreme scarcity of fresh bait that salted herring are used.
"I remember now another fish which they use in the northwestern parts, viz, the Ammodytes lancea. These as well as the joung herring are used whole, i. e., the whole little fish on a hook.
" IROBEIRT COLLETT.
"Chbistiania, Norway, October 4, 1577."
The winter fishing on George's Bank is entirely by hand-lines, the weather being too inclement to permit the use of the trawl. At the Lofoden Islands, 24 lines, each with 120 hooks, are usually fastened together into one, thus carrying 2,880 hooks, although sometimes, in particular localities, where the nature of the bottom requires it, a much shorter length is omployed. As in Lingland, the short lines, or snoods, are between 6 and 7 feet apart. Here, however, the lines are shot in the afternoon, remaining down all night and taken up the next morning. No line can be put down before noon, nor can it remain down after midday.*

Very often a glass ball, the size and shape of an egg, is fastened about a foot from the hook, so as to buoy the bait a few feet from the bottom and make it more easily observed by the fish.

The usual yield of a long-line, with the number of hooks given above, is 240 to 360 fish per day, and it is readily managed by two persons, while a hand-line, worked by one person, rarely takes more than 50 per day, thus showing a marked difference in favor of the trawl. Very frequently the long-line, instead of being kept down for a period of twelve hours or longer, is overhauled much more frequently, especially in comparatively shoal water, where the line is no sooner fairly down than it is again overhauled and rebaited.

Various modifications as to the size and bait: of trawl-lines are found in other countries; but what we have already stated will furnish a sufficient idea of the general character and applications of this important item of fishing apparatus.

As already stated, very grare complaints have been made against the long or trawl line in the United States, and legislation or mutual consent invoked either for its entire abolishment or its restricted use under certain specitied conditions.

The advantages of this method will readily be understood, as consisting in the much greater efficiency aud the much larger yield of fish taken by the same force of men; as also in the fact of the more continued exposure of the bait, in consequence of which fish that are deterred from biting at the hand-line in its incessant motion, or only kept down during the convenience of the lisherman, are more tempted by the bait on the long-line, which is much more quiet and remains on the ground sometimes for a number of hours.

[^24]The disadvantages of the long-line, as alleged by those opposed to its use, may be formulated essentially as follows:
(1) It is more expensive, requiring a larger capital, and consequently reudering the poor fishermen unable to compete with the more wealthy in regard to its acquisition and employment. Objections of this kind generally come from the hand-line fishermen, who, however, when able to purchase the long-line, are very apt to forget their former scruples and to use it without hesitatiou. This change of policy, is excused on the score of self.protection and the necessity of emplosing methods similar to those of a rival fisherman for the purpose of making a living.
(2) It is sometimes objected that it requires two or more persons to use the trawl-lines instead of one. That a combination of persons should accomplish a much larger result than the aggregate of their separate endeavors is in accordance with the general principles of a sound political economy.
(3) It is asserted that the line is much more liable to be lost than the hand-line. This is said to be caused by the wearing of the line on rocks, although generally the buoys at each end enable the separate portions to be recovered. As a matter of actual experience, however, the expense of lines absolutely lost in this way amounts to a very small percentage of the original cost.
(4) The fish are brought up dead or not always perfectly fresh, and many of them are devoured by other fish, as eels, codfish, sharks, crabs, \&c., either while living or after death.
This objection is, of course, one that may be fairly put; but after all, the yield of sound, merchantable fish is sufficiently great to permit an average wastage; and if it be fish killed ou the hook and remaining in the water for some time, it is for the advantage of the consumer to have the services of these scavengers in assuring a supply of porfectly fresh fish for the market.

Although these objections will uot apply to so great an extent to the hand-line, yet they do attach to the use of the gill-net, and, in fact, to a still greater degree, in both methods a considerable loss taking place. This destruction, however, which has been claimed as involving a wastage of the fish in the sea, is not a question for the consideration of the owner of the line, as an equivalent in weight to the very fish thus consumed while attached to the hook would in all probability have been taken while swimming free in the sea by theso same enemies.
The practical experienoe in trawling, however, is that while some of the hooks are brought up entirely empty, very few hooks have mutilated fish upon them, a large proportion being alive and in good condition, and on being placed in the wells of the smacks are capable of being kept for a long time.

As a general rule codfish in Eugland are sent alive to the markets, and the euormous quantity cousumed there and elsewhere is taken for the most part by the long-line. If in consequence of a storm or some
special condition the line be necessarily left down longer than usual, a still larger percentage of fish will be found dead, possibly the entire number. But it must be remembered that this fishery is almost universally prosecuted in the colder waters of the ocean, frequently where the temperature varies from 35° to 42°, which of course serves to preserve the fish much longer than a warmer medium.
(5) The wastage of the fish by dropping off the hook before they can be taken into the boat. This accusation is based upon the alleged practice of using considerably smaller hooks than those required for the hand-lines; and while it is possible that this may happen occasionally, it is quite certain that the fishermen will graduate the size of the hook so as to obviate such a danger, and even if a considerable percentage be lost, as already explained, this is the concern of the fishermen and not of the general public, the fish thus slipping away being consumed by the scavengers in place of live fish in equal bulk.
(6) The capture of roe or spawning fish. It is difficult to know what weight to attach to this objection, although it is very generally asserted that a spawning fish will bite at a long-line when it will not do so at a hand-line, the fish at this time being much more cautious in its approaches. So far as the cod are concerned, however, and the Gadida generally, it is probable that the force of the objection is lessened by the fact that the long-line is used more especially at the time when the fish are not spawning. As a general rule the cod, haddock, and hake, \&c., are known to spawn in the winter months, usually in January, February, and March, sometimes a little earlier and sometimes a little later. It is precisely at this time, when, in consequence of the inclemency of the weather, in North America at least, this mode of fishing is more or less intermitted, consequently allowing the spawning fish a sufficient opportunity for discharging its roe undisturbed. This explanation applies more to the offshore fish, however, as the winter inshore tisheries of the New England coast are almost exclusively directed to outside fish that have come in to lay their eggs.

When we bear in mind the very small percentage of deep-sea fish that can be taken by man at all, and the immense yield of eggs of most of the species (amounting to several millions for each female cod, and others in proportion), we can casily believe that an objection of this kind can have but little weight, even if the fish were harried to the utmost during their spawning season. If, however, as is most probable, they are comparatively undisturbed on many fishing-grounds at that time, the objection falls essentially to the ground.

To the subject of the prolific character of the fish of the sea and the number of eggs laid by some of the more prominent species, reference has been made in another part of this report (page 82).

There is another consideration which may be borne in mind in regard to the so-called lazy or logy cod which caunot be caught with the hook and line. Many of these are in reality past the period of bearing, as
there is every reason to believe that, like other vertebrate animals, after a number of years of service in this respect, the fish, whether male or female, becomes sterile. Sometimes this is the result of sickness or disease; at others the fish is in its best condition for food. A codfish of 20 or 30 pounds is probably as efficient for reproduction as one of 50 pounds, and perhaps more likely to farnish a healthy progeny, able to meet the exposures of the sea.
(7) The long-line fishermen, in their wholesale method of capture, in America, at least, clean their fish at sea and throw the refuse, consisting of the heads, entrails, \&c., commonly called "gurry" in America, overboard. This pollutes the fishing.ground and drives away fish for a period of months or even years, and this.in connection wth the fish that break away from the line on being hauled up, or which are partly devoured at the bottom.

This, with the alleged destruction of fish by the use of the trawl-line, is the objection upon which the opponents rely as the most formidable and as carrying the greatest weight. This will be considered in considerable detail (in another place under the Lead of Disposal of Offal), as, if established, it would constitute a reasonable ground for regulating this fishery, even by its restriction, limitation, or total abolition.

Bearing now in mind that the objection to the trawl-line is based more exclusively on the injurious effect of throwing overboard the offal of the fish cleaned at sea; the matter of self-interest and the desire to economize waste products will doubtless in time regulate the subject. It is a very significant fact that in Europe, where the practice of trawling has been conducted for many ceuturies and on a scale greatly in excess of anything of the kind in the United States, and where the same ground has been fished over and over again by a much larger percentage of hooks than is ever seen off the coast of North America, there has uever yet been any suggestion of injury from this modo of fishing. The coptroversy there has not been on account of the interference of the long-line with the hand-line fishing; but it has been in opposition to the use of the beam-trawl, and it nerer, apparently, las come into the mind of the hand-line fishermen that there was any evil whatever resulting from the other mode of fishing besides the advantage given by the fact of a greater proportionate yield. The drift and purse seine interest, too, antagonizes the bean-trawl, but not the long-line, and it is not to be imagined that any real objection to the loug.line would have failed to be brought forward and to excite the animadversion of parties fishing in a different manner.

The largest lines used in America are far inferior to those used in' the British seas, where they are sometimes over 8 miles long and carry between 6,000 and 7,000 hooks.
The experiences recorded in such works as that of Holdsworth on deep-sea fishing, and of other writers, all teud to show that notwithstanding the ever-increasing number of long or trawl lines in certain
localities, there is no reason to believe that the fish have decreased in number in consequence, the captures always being proportionel to the increase in the length of the lines and the size of the vessels and their crews. In some cases it is alleged that the coll, in its well-known voracity, swallows the head and backbone of its fellow as it is thrown into the water, and is thereby rendered ill and sometimes even killed by the feast. This can only result from the laceration of the gullet and stomach by the bones, a condition which must ensue very rarely in a fish which fills its stomach with large sharp-edged shells without experiencing any evil effect.

The digestion of fish is very rapid, and it is not an uncommon thing to find that then a fish has been seized by another and is too long to be swallowed entire, the portion near the stomach is digested while the fragment projecting from the mouth is fresh and sound.

Upon the whole, therefore, I am inclined to conclude, from all the considerations and the testimony offered, that there is no actual proof that the use of the trawl or long line in itself is injurious to the fisheries, so far as relates to the driving of the fish away from the grounds. It may render the desirable fish less eager to take the hook, or it may attract-predaceous fishes, so as to frighten away the more noble for the time: but that any influences thus exerted can extend over a period of more than a few hours it is difficult to understand. If there be any evil effect, it is possibly from the gurry, but eten this I am not willing to admit. This evil, if it be one, will be remedied in our waters, as it. has been within a recent period in other cases, by a utilization of this material as a wasted product, the yield or profit therefrom and its conversion into oil or guano being greater than the cost of saving and delivering it on shore. At any rate, béfore any legislation is invoked, a more careful examination on the ground of the more important regions alleged to be affected should be made by scientific men. The question of refase matter on the bottom at depths of 15 to 30 fathoms cau easily be settled by the use of the water telescope, a well-known implement in scientific research.

In further illustration of the subject, I call attention to the fact that in the investigations in Norway as to the cause of the disappearance of the herring from accustoned grounds, it was maintained that the dead fisl, dropping from the gill-nets, or remaining in the meshes of the nets, that had become lost and entangled at the bottom, had produced this state of things. The water telescope was brought into use and it was ascertained that the number of such fish was much less than was alleged and that after being dead one day they had entirely disappeared, and furthermore it was found there had been an entire abandonment of certain localities where the gill-nets had not been used at all, and fish had previously been taken wholly by drawing seines from the shore.

Captain Nathaniel Atwood, of Provincetown, while earnestly combatting the assertions in regard to the iujurious effects of the trawlline upon the fisheries, admits that they do appear to have a positive action on the abundance of the halibut, or at least those of the large individuals which are specially sought after for the market. He thinks that these large halibut are quite likely each to occupy a considerable area of ground, to the exclusion of others of the same species, and that when they are caught, it takes a considerable time for their restoration. He mentions a curious relation in the co-existence of balibut and haddock, the result of the capture of the halibut in the grounds conjointly occupied by them, being a very marked increase of haddock, so much so as to reuder them almost a drug in the market and reducing the price very materially. This is due to the fact of haddock being devoured in immense numbers by the halibut while present, and their consequent increase when their enemies are captured.*

I have already adverted to the fact that in the course of an extended and exhaustive investigation by Professor Huxley and his associates into the subject of the British sea fisheries, contained in a Blue Book of 1400 pages and involving the answering of 61,830 questions, there were but six witnesses of the entire number examined who made any objections to trawl-lines. One fisherman alone (vol. 2, p. 5j4, question $24,996)$ considered it a destructive mode of fishing in itself, his objection being that by using very swall hooks they canght too many young fish, which, bad they been allowed to grow up, would have furnished a more profitable yield.

One fisherman, in auswer to questions 39,994 and 40,389 , said be fönd a difficulty in getting bait of the right kind with which to supply the hooks, although approving of their use.
To No. 40,976 , a fisherman replied that the trammel nets, such as be used, were liable to be torn by contact with the long-lines. Another trammel-net fisherman, in answer to question 41,023, maintained that the long.lines frightened the fish away from his net, so that he could not get all that he expected.

The net.-Having thus concluded the subject of line fishing, we come to the second of our principal divisions, namely, that of the use of nets. It is hardly necessary to go into any minute account of this mode of

[^25]capturing fish, as I have already treated it at great length in the first volume of the Reports of the U.S. Fish Commission. I may simply remark that the use of the net extends back to a very remote antiquity, possibly as great as that of the hook and line, if it be not still older. That the inhabitants of the pile dwellings of Switzerland and Central Europe used the net is shown by the finding of many specimens of the netting and the sinkers. The employment of the net by all civilized nations proves that it has been handed down to them from a high antiquity. The seine was used in the pre-Columbian epoch by the Indians of North America, as it is not unusual to find on the rivers and shores large numbers of sinall rounded stones, notched on two sides, to serve as weights, of precisely the same character as those in use at the present time by the Indians of the northwest coast of America.

The principal forms of the net are the hand or scoop-net, the dip-net, the casting-net, the seine, the trammel-net, the gill-net, the purse-net, and the stake-net.

The scoop-nct is familiar to every one. It has various shapes, and is used for landing fish caught with the hook, or capturing fish, particularly the small varieties, penned up in restricted localities.

The dip-net may be considered a modification of the scoop-net, being suspeuded at the end of a long handle.

The casting-net is largely in use by the Spaniards and Italians, both in Europe and America. This is circular, varying in diameter from 12 to 15 feet. It has leaden balls around the edge, and a long rope attached to the ceuter. This is thrown very skillfully to a considerable distance in such a way as to fall flat upon the water, and dropping rapidly to the bottom incloses any fish that may happen to be boneath it. When the rope is hauled on, the leaden balls at the edge come together at the bottom, so that the net is pursed up when drawn from the water, and the fish are found therein as in a pocket.

The seine is also familiar to all. This is a continuous net, with floats of cork, glass balls, or light wood along the upper margin, and weights of lead or stone along the lower or bottom. Sometimes it has a bag in the center, for the greater facility of holding the fish. This net is sometimes worked from the shore, one end being held on or near it, and the other carried around so as to form a sweep when the two ends are hauled in simultaneously. Sometimes this is dropped in the sea and mado to inclose a school of fish. This becomes a purse-net when there is some arrangement for bringing the lower edge of the net together, like the inclosure at the mouth of a purse, so that the fish find themselves closely confined, both laterally and below.

The trammel-net is a very efficient means for capturing fish in waters where dragging is not possible or convenient. This consists of three nets bound together at the edges, the outer ones on either side having a large mesh, and the central one a fine mesh and much fuller than the others. Fish swimming incautiously against this net pass through
the outer mesh and strike against the finer central net, carrying a fold of it through the large mesh of the net in the opposite side, and thus become pocketed.
The simplest of all nets, perhaps, is the gill-net, which is a webbing of usually very fine twine, made to float either from the surface or carried to the bottom. The fish, unaware of its presence, or careless in regard to it, in swimming against it pass the head and shoulders through the mesh and become entangled and held until removed, or until devoured by some predaceous tish or invertebrate. No mode of fishing is more economical than this, as the capital required is comparatively light. The nots cau be managed by a few persons, and it is ouly the large fisl that are taken, the smaller ones passing readily through the meshes.
The stake net will be found described in the report of the U. S. Fish Commission. It comes more properly under the head of weirs and pounds.

The beam-trawl.-The beam-trawl is not used in America for the capture of fish, although it has been a favorite piece of apparatus with the U. S. Fish Commission for capturing specimens of various kinds of fishes and other marine objects. It is, however, extremely probable that at no distant day it may come into use and our fisheries be prosecuted to a very considerable degree by its aid, although hardly to such an extent as it is employed around Great Britain and off the coasts of France, Holland, and Belgium.
It is essentially a large bag-net, the mouth of which is low and broad, and which is dragged along the bottom behind a vessel of suitable dimensions. This is kept in shape by meaus of a beam of wood resting at either end on iron runners, which hold it up at the proper distance from the ground and receire the friction of the bottom. As these runners are connected above to the beam, at the lower end they are united by a leaded rope, which constitutes the lower edge of the bag: This leaded line is very slack and forms a bend reaching nearly half way the length of the net, which is usually twice as long as it is broad and ends in a long, narrowapex. As it is drawn along the bottom with the tide, the fish, which usually arefound lying with their heads towards the tide, are first dislodged by the lead line, and whether they head upward or forward, are met by the upper side of the net, extending behind the beam. By the continual motion of the trawl they are ultimately carried back to the opposite cud of the net, and there, getting into the pockets, are prevented from returning.

The size of the bean varies considerably. By an old British enactment the beam was not to exceed 36 feet in length; butit is sometimes now made nearly 50. The length of the net for a 36 -foot beam would be about 70 feet, and one for a 50 -foot beam would be about 100 feet long. The net is male with meslies of suitable size, and is usually saved from abrasion on its under surface or postorior end by folds of old netting.

The beam-trawl is now used almost exclusively on the coast of Great Britain for the capture of the more important food-fishes, especially of the turbot and sole, few of which reach the warkets captured in any other way. About nine thousand tons of fish are fornished annually from this source alone to the London market; and it is not too much to say that without its use it would be impossible to furnish the Engrish markets with tish.

There are other modifications of the trawl in different countries, all, however, on the same general principle of the dragging of a bag of netting along the sea-bottom. Sometimes this is carried under the vessel, where it is used particularly for the capture of whitebait and other small fish. In other cases, as in Spain, two vessels are used. The simplest form, however, that in common use by the English, French, aud Dutch trawlers, is as described. This is dragged behind the vessel at the rate of one or two miles an hour, alwass with the current, and is sometimes kept down for sereral hours in succession.

Many objections have been brought to the use of the beam-trawl on the score of its exhausting the grounds, destroying the spawn of the fishes, killing great numbers of small fry, \&c. A royal commission was therefore ordered to investigate the whole subject of the methods of capturing fish in the British dominions, and to determine whether any of them were hurtful or not. This was composed of Professor Huxley, Mr. James Caird, and Mr. S. Le Ferre, who took up the subject, and after investigating it most thoroughly gave it as their opinion that, so far from being a destructive method of fishing, the use of the beam-trawl was one of the most commendable; that it involved no greater unfecessary waste to fish life than other methods, and less than most; that so far from destroying the spawn of fish, no one could show that an egg of a fish was ever taken in it, especially in view of the fact that cod, mackerel, the turbot, and the flat-fish generally, the eggs of which it was especially accused of destroying in great numbers, all spawn in the open sea, their eggs floating generally near the surface until hatched, and that, consequently, the beam-trawl could have no influence whatever upon them. It was also shown that the actual nesting-places of many of the fish; such as the herring, \&c., are among the rocky portions of the sea-bottom, where the beam-trawl could not be used, requiring, as it does, a perfectly smooth, level sea-bottom for its action.

The masses of socalled fish spawn taken up from the bottom by the beam-trawl, has proved, in all cases to belong to one of the lowest forms of sea animals, eithor the Alcyonum digitatum, or so-called dead man's fingers, on the English coast, or to the compound ascidian, very abundant in America.

The report of the commission states emphatically as the final result of its inquiries that this mode of fishing has been prosecuted in many localities from fifty to a hundred years, not only without diminishing the supply, but indeed showing increased captures, in consequence of the increased number and size of the vessels employed.

As the beam-trawl can only bo used to advantage in the capture of the flat-fish aud flounders, what it may take of cod and other fishes constituting but a small percentage of its catch, it is not likely that its use will be introduced into the United States until these fish assume a greater proportional value. With the great number of more or less desirable species of the flat fishes in our waters there is no doubt that immense catches could be made by this means, and the day is probably not very distant when we shall find trawlers at work along Vineyard Sound and off the coast of New York, New Jersey, and the States farther south. Here there are thousands of square miles of sea-bottom admirably adapted to its use, where a rich harvest awaits its introduction.

Weirs and pounds.-The various forms of this most wholesale mode of taking fish will be found fully figured and described in the first report of the U. S. Fish Commission. I may, however, brietly recapitulate some of the more prominent varieties. These are, the floating trap or madrague, the heart-net or pound, the stake-net, and the weir in its various forms.

These all depend upon the movement of the fish in bands, aud are sometimes worked in deep water, in which tho apparatus is constantly immersed, sometimes depending upon the retention of the fish which come in at high water until the water ruus out, leaving the fish high and dry, or else concentrated in small iuclosed pools.

The Seconnet (Rhode Island) trajes consist in a succession of inclosures held by anchors, and are similar in general character to the madrague of the Mediterranean. While in America the nets scarcely take anything else butscup, sea bass, tautog, and similar fish, those of the Mediterranean are especially used for the capture of tunnies or horsemackerel. A corresponding difference in the size of the net and in the thickness of the netting is to be found. The heart-nets, or pounds proper, are principally in use in Vineyard Sound and Buzzard's Bay. In these a wall of netting supported upon stakes extends perpendicularly from the shore and ends in a heart-shaped apartment, the pointed end of which passes into what is called the bowl. The fish, in their movements along the coast, come to the wall of netting and are arrested and turned seaward. Their course along the line of netting brings them to the main inclosure, which is so constructed that in circling round in schools they cannot readily find their way out, owing to their indisposition to turn an abrupt corner. Their only escape is into the bowl, which coustitutes a second apartment having a bottom of netting. Here they remain until the fishermen come on the sceue, aud closing up the narrow entrance to the bowl secure whatever it may contain. They proceed to lift the netting of the bowl in which are the living fish, and throwing away the refuse, the desirable varieties are put in a boat or smack, or else placed in what is called a pocket, another inclosure, in which they can be kopt until marketed. Of this apparatus there are many varieties.

The stake-nets are used more particularly in the waters of the Dominion for the capture of salmon. The weirs are more generally to be found on the north side of Cape Cod and on the coast of Maine and the Provinces. In these northern localities their use is principally confined to the capture of the herring. On Cape Cod, however, they take immense numbers of sea herring, alewives, and other species.

Many minor varieties, and some of considerable prominence of both pounds and weirs, are to be met with in different parts of the world. I have, however, mentioned those in more general use in the Dnited States.

Other methods.-The remaining methods of capturing fish most usually employed are narcotics, poisons, and explosives. The narcotics and poisons are essentially of a simple character, in some cases the fishes being merely stupefied, and in others actually killed. These are not used in sea fishing, but many an owner of a trout pond or stream has had reason to deplore the dishonesty of the age in the loss he has experienced in a single night by the poacher who has resorted to poisons for securing his bag of fish. Vegetable substances are generally used for this purpose, some of them of a character very easily obtained. It is not necessary for my present object to mention them.

Explosives as a means of capturing fish have come into use quite recently. The explosion of dynamite and other cartridges by means of a time fuse or a wire often results in benumbing or killing large numbers of fish. It is frequently employed by poachers upon tront or other ponds. In the mining regions of California very great destruction to trout and salmon in the rivers and pools has resulted from this practice. In the sea not unfrequently the involuntary result of submarine explosions, for the removal of sunkeu wrecks or rocks, is the destruction of great numbers of fish, which show themselves on the surface soon after the explosion. In some cases, as on the coast of California, where schools of fish have been thus exposed, great slaughter has been produced in this way. This method of destrofing fish is highly objectionable, on the ground that it kills many more fish than can be utilized, as they are washed away by the tides and lost.

D.-Batit ushed in the sea misheries of eastern north america.

Baits and allurements.-Maving thus presented an account of the more efiective apparatus br which fish are captured, I proceed to indicate the more common baits and allurements to the hook or the net employed by the American fisbermen. These are of various kinds, the simplest consisting of the naked hook, which by its rapid motion through the water induces many fish to suap at it, and to be caught thereby. The bluefish, bass, pickerel, and many other varieties are caught with ihook having some bright substance forming part of the shank. This may be a piece of bright pewter, tin, bone, iron, or other substance, and presented in the form of a plate, a cylinder, a spoon, or else a screw,
by which a rapid rotation or whirling motion is caused when drawn through the water. Not unfrequently an eel-skin or similar substance is stretched over the shank of the hook, and answers an excellent purpose. A bait of white cloth is sometimes quite sufficient in taking mackerel. The efficiency of a piece of red flannel fastened to three hooks, placed back to back, in taking frogs is well known to boys in the country.

Vegetable substances are not much used, as few fish are attracted by them. Bread crumbs, corn, cabbage leaves, \&c., may be employed in the capture of carp and other vegetable feeders.
Animal matter is generally employed as bait to attract fishes to the hook or into a net, other substances being cousidered of little account in comparison, almost every animal of any kind or deseription being available to a greater or less extent for the purpose. In sea fishing mammals are not used very extensively. Portions of meat of almost any kind are used by the fresh-water angler for the capture of catfish, eels, the percoids, \&e. At sea the flesh of the porpoise and other cetaceans is not unfrequently relied upon for the capture of cod and halibut when other bait fails.
Few persons realize the extent to which birds are sometimes employed as bait in the great offishore fisheries, the banker, when other bait fails, being able frequently to take large numbers of fish by the use as bait of the Procellaria, including petrels, fulmars, \&c., as also of gulls, murres, \&c. Most of these forms are casily caught on the hook, sometimes as many as a thousand birds, and especially of the petrol family generally (Pufinus major), have been taken and used for bait by a single vessel on the Grand Bank. The gannets, penguins, cormorants, \&e., are also taken in some parts of the world for a similar purpose.

On this subject, Capt. J. W. Collins says: "A few years ago, when many of the Grand Bankers went "shack fishing" and depended to a considerable extent on catching birds for bait, many thousands (mostly Puffinus major) were caught and used by the crew of each vessol on a single trip. As these trips were sometimes three or four months in length, and it was often possible for the crew to catch several hundreds in a single day-indeed I have known of one man taking nearly a hundred in a few hours-it will readily be seen that an enormous amount of these birds must have been utilized in a single summer for this purpose."

There is but little, if any, use of the reptiles in the sea fisheries of the United States, although the frog is called into play in certain forms of fresh-water fishing.

The various kinds of marine vertebrates constitute the chief portion of the sea-fisherman's bait, partly in consequence of their more ready arailability, and partly because the fishes sought for are more accustomed to fish as food, and are more readily attracted to it. The other kiuds of bait just mentioned come into play as substitutes, but can hardly be considered as representing the regular resources of the North At.
lantic fishermen, and I therefore proceed to a more detailed consideration of the standard articles of supply for bait, consisting especially of fishes, crustaceans, and mollusks.

In the portion of the report devoted to the methods and apparatus of fishing practiced in the Eastern United States and the British Provinces some allusion has been made to the subject of bait for the hand and long lines, but it may be well to review the subject in a more systematic manner, begiming with the euumeration of the following as the more prominent substances ased:

1. Menhaden.
2. Alewives.
3. Sca Herring.
4. Mackerel.
5. Capeliu.
6. Sundry species of less note.
s. Squid.
7. Whelks.
8. Clams.
9. Mussels, oysters, and scallops.
10. Lobsters, crabs, slurimps, and other crustaceans.
11. Roes of various fishes, especially of cod and mackerel.

Other varieties of animal substances are used as bait under particu: lar circumstances and in particular localities ; but those just mentioned are of most economical valne, and the possibility of obtaining one or other of them in greater or less abundance constitutes a very important factor to the fisheries of the mackerel, the cod, the halibut, and other species.

Of the species mentioned, the menhaden is at present peculiar to the shores of the Uvited States, while the fifth, or capelin, is found only about Newfoundland, on the coast and islands of the Bay of Saint Lawrence, and the coast of Labrador. Dr. Gilpiu refers to the occurrence of capelin in Halifax Harbor one season; but it is unknown as a regu. lar visitant there, nor has it ever been positively noticed even as an occasional visitant of the Bay of Fundy.

The special details in regard to the natural history and character of the fishes just enumerated belong in the chapter ou the natural history and economy of the several American species, and are merely alluded to briefly in this special conncetion as bait.

In the very great variety of fish bait, and its occurrence at the various seasons of the year at different points, all portions of the United States and the Provinces may be cousidered as equally well provided in this respect; and although circumstances may render the procuring of this bait in a particular locality a couvenience, yet it can be easily shown that whatever be the restrictions upon either country as to particular localities, there can be no question as to the possibility of securing an ample supply in some other, althougb possibly at somewhat greater trouble aud expense.
(1) Menhaden.-Of atl the specees mentioned as used for bait the menhaden is probably that of most importance, whether wo consider its wide extent of distribution, its overwhelning abuudance along the
coast at different times, or its attractiveness to other fish. Wherever it is met with, at different seasons of the year, from Florida to Penobscot Bay, it is always in request for bait. It is, however, only in the northern part of the United States that it is "slivered" and put up in large quantities either in ice or in salt and carried on distant voyages for the purpose of catching cod or mackerel. There is a peculiar toughness of the flesh and raukness of flaror which seem to coustitute an appetizing attraction, not to be resisted by fishes generally, and tho possessor of menhaden bait will be able to entice mackerel and cod, striped bass, sea bass, and other fishes, when a fellow-fisherman near by finds other bait valueless in comparison.

The earliest appearance of schools of menhaden off the coast of the Midde States is the signal for securing a quantity for the cod fishing banks; and until their disappearance from the North they are in constant request, this application of the fish, of course, being entirely independent of its use in the preparation of oil and guano.
(2) Alcwivcs.-The two species of alewives, taken together, have a still greater range than the inenhaden, being found from Florida to the coast of Labrador, and are, if anything, more abundant in the Middle aud Southern States than at points farther uorth. They enter the mouths of all the rivers from the sea in vast schools, beginning in the early spring in each latitude, and can be taken for a few weeks in any quantity. They can be obtained as early as January in the Saint John's leiver, Florida, and in March or April in the Potomac, and would, undoubtedly, if other fish were unprocurable, be used for the spring cod fishery, serving a very excellent purpose in this respect. It is probable that the numerons schools of adult fish, coming in from the depths of the ocean to the shores in the spring, and of the young that pass out seaward in the autumn draw the larger sea fish into the vicinity of the land, and there can be.no reasonable question that the great decrease in numbers of the latter, within the last fifty or one hundred years, has been caused, in large part, by humau agencies, which have rendered it necessary to change the location of the fishing-grounds and to greatly limit the capture in ordinary boats of cod, haddock, hake, and the like in the bays and on the shores of New Lugland, which was formerly so extensive and profitablo.

As will be shown elsowhere, it is entirely within the power of man to restore, in a great measure, the previous abundance and greatly to improve the general fisheries of the coast.

The attractions of the young shad and salmon are doubtless to be arded to those of the alewife and herring in drawing the larger fish towards the shore, but they are of less moment in this respect in view of their inferior abundauce.
(3) Sea Herring.-Next to the menhaden, and indeed in advance of itin some parts of British North America, is to be mentioned the sea herring, which is to be found in one locality or another throughout the entire
year, the fishes now spawning in one vicinity and then feeding in another. Without the sea herriug the fisheries of the northeastern coast of North America would be very indifferent, and it is a subject of great congratulation that it is to be had at nearly all seasons, especially when most needed as bait.

Both the menhaden and the herring are used either entire for baiting the hooks, or chopped up fine in a bait-mill as chnm for attracting the mackerel within reach of the hook and line or into the net. The sea bass of the New Eugland coast finds during the summer season the chum of the menhaden an irresistible attraction, bringing them within reach of the angler whenever its influence is experienced.

Menhaden and herring are usually cut in pieces for bait for cod and for many other varieties of fish; only the small herring, "spurling," are used whole.
(4) Mackerel.-The mackerel is used very frequently as bait, generally the smaller and inferior individuals, or those less valuable for salting being emploged. 'They are also sometimes chopped up as bait for mackerel when cheaper material is not to be had.
(5) Capelin.-Allied if not identical forms of eapelin oceur on both sides of the North A tlantic, and are everywhere eagerly soughtafter asbait for cod during the period of its presence. Unfortunately on the American coast it is found for only about six weeks. It is then in overwhelm. ing abundance, coming in for the purpose of spawning, the eggs being sometimes washed on the shore in great windrows, and frequently in the edges of the sea forming beds several inches deep. When perfectly fresh $n o$ fish can resist its attractions, and for shore cod-fishing during the season nothing better can bo had. It is, however, not considered especially advantageous for the bank fishing. The capelin is kept fresh in ice by the Δ merican bankers from S to 10 days, and occasionally a little longer. The French fishermen use immense quantities of salt capelin in the Grand Bauk cod-fishery, though by Anericans they are not considered good bait when salted.

In Norway the capelin is used very largely in the spring cod fisheries of Finmark, and its approach is hailed with the greatest satisfaction by the fishermen.
(6) Sundry fishes used as bait.-The sand-launce (Ammodytes) may also be referred to as specially useful as a bait, as it can be obtained in certain localities along the coast of the United States and the Provinces in vast numbers, and is frequently used as a substitute for other kinds of bait, and the correspouding European species is equally satisfactory, being used by the fishermen on a large scale. Although less in size than most of the species just enumerated, it can bo used entire and coustitutes quite a tough, desirable bait. This fish lives mostly in the sand, where it buries itself with great rapidity and is entirely concealed from view.

Other baits are frequently used both in tho large and small fisheries,
eels and lampreys, portions of the bollies of cod and mackerel, the eyes of these and other tishes, and indeed almost any form of refuse tish. Dead fish of any kind are also used to constitute bait for taking lobsters.
(i) The roe of fish.—There is no question but that the roe of fish constitutes a very large percentage of the food of the inhabitants of the sea, as it is only by the provision for the destruction of the large proportion that particular species are prevented from increasing in undue and overwhelming numbers. It is rarely that any fish can resist the attractiveness of fish roe, the eggs of trout and salmon being used largely in California for this purpose when nothing else has any attraction.
Besides the use of the roe of fishes as food for man it constitutes an important element on a large scale in the sardine fisheries of Europe. The salted roe of the cod and of the mackerel is prepared for this purpose and shipped, to the extent of many millions of pounds, about $9,000,000$ pounds of cod roe (worth 8600,000), and one or two millions of that of the mackerel, having been furnished in one year by Norway. Small shipments have been made from the United States to Europe for the same purpose.
'These eggs are used especially for attracting schools of sardines into the vicinity of the gill-nets, and for that they are considered almost indispeusable.* It is a question whether this same roe could not be ew. ployed advantageously in the mackerel fishery as a toling.bait of a more satisfactory character even than the finely-chopped flesh of fish It lseeps much more readily than any other, and its use, if not already attempted, should be experimented upon, as the roe both of the cod and the mackerel until recently has been a refuse product. It is worth considering whether it may not be prepared and used to advantage for the purpose in question. \dagger
(8) Squid.-The squid, one of the cephalopods, a group of the mol lusks, is also a highly important element in the question of bait for the capture of deep-sea fishes, especially the cod and its allies, and occurs in overwhelming numbers along the entire coast of the eastern United States and of the Dominion. Of this there are two principal forms

[^26]\$. Mis. $90-9$
equally attractive to the fish, aud occurring in very great numbers, the more northern, the Ommastrephes, being found about Newfoundland and other portions of the Dominion, and the Loligo in increasing numbers from Cape Cod south and westward. They are used either fresh, im. mediately after being caught, or sometimes kept in ice; being very largely salted, however, in which condition they maintain their attractiveness for about three weeks.* They are usually taken at sea by means of the jig, and inshore the weirs and pounds are sometimes found to contain them in immeuse numbers.
The squid, of one species or another, is found off the coast throughout the greater part of the year, in Newfoundland more especially in the spring and summer, and on the Massachusetts coast at almost all times. It occurs more rarely in winter, apparently passing off into the warmer waters. It is probable that by exposing the squid to the cold of a freezing misture and rendering them specially hard, they may be kept indefinitely or until wanted. Among other pounds where squid lạve been takeu in large numbers, that at Waquoit, Mass., captured more than 6,000 in a single day; and at the same pound, the captures for the first twenty-five days in May alone amounted to 35,000 . (Rep. U. S. F. C., 1871-'72, page 174.)
(9) Whelks.-As already mentioned when discussing the subject of the long or trawl line as used in Europe, the whelk or Buccinum undatum was referred to as the principal bait for that mode of fishing; and although captured every year in immense numbers for use by quite a large fleet of boats and vessels, it still appears to be as abundant as ever. Here we have another indirect illustration of the influence of man in producing a balance of power in the sea, the whelks being notorious onemies of the oyster and other mollusks and destroying them in great numbers. The drain, therefore, upon the increase of the whelk doubtless has a material effect on the supply of these other objects.

In England whelks are taken on long-lines, on the snoods of which the common shore crabs are fastened or threaded, no hooks being emplojed. When laid down, the whelks seize this bait and, tetaining their hold with great tenacity, are hauled up.

Another method of taking them is by means of baskets baited inside with pieces of fish, a net being stretched over the end, with the basket in the center. The whelks enter this, and when the baskets are drawn up, they remain in them.

Shallow hoop-nets, too, are baited with fish for this purpose, and the incidental advantage of their capture, as already stated, is in the diminution of an inveterate enemy of the oyster. Each smack requires

[^27]as bait for a voyage from fifteen to twenty-five bushels of whelks. These are preserved in bags made of netting and may be kept for a long time in the wells of the smacks. When wauted, the shells are broken and the animals extracted.

The whelk is especially common in the United States from Portland to the Bay of Fundy, and extends to the south of Cape Cod, although rarely. It is usually known in America as the winkle, and is so abundant on the coast of Maine that it could readily be used as bait for cod.

There are many other of the univalves that may be employed as bait, such as the Busycon and Pyrula, winich though seldom used are capable of the same application.
(10) Clams.-The clam in its various forms constitutes a very important portion of the bait used on a large scale in the United States and belongs especially to the following species:

The soft clam, Mya arenaria.
The common hard clam, Venus mercenaria.
The most important of these is perhaps the soft clam, Mya arenaria, Which occurs in immense numbers along the entire eastern coast of the United States, and is consumed both as food and as bait. For the latter purpose it is collected very largely on the clam flats of Massachusetts and Maine, in some localities the plow being used at low tide to turn up immense numbers. An especially favorito locality is near Ipswich, Mass., where the immense size of the aboriginal kitchen-middens attest the antiquity of the abundance of this species, these being rivaled, however, by the piles of recent shells heaped up by the clam. diggers. About forty barrols of salted clams constitute an average fare for a cod fishing-vessel, and there appears to bo no special difficulty in furnishing any number that may be called for, as notwithstanding the demand, the price at which they are sold now is little more than it has been for many years.

The so-called hard clam is more southern in its distribution than the Mya, and is less extensively used as bait, in view of the great demand for it as an article of food. On the sea coast, in a small way, however, it is used to a considorable extent.

The hen clam, or Mactra solidissima, is also a species which furnishes a valuable bait, and is especially abundant at present in the vicinity of Nantucket, Mass., where large numbers are taken out and used by the cod-fishermen.

In the Gulf of Mexico and the vicinity of Mobile and New Orleans the Gnathodon cuneatus, a so-called clam, is also omployed largely in the minor fisheries, but has no prominence at all as a bait for the more important enterprises.

According to Mr. N.B.Nutt, collector of customs at Eastport, clams are not collected to any great extent in that vicinity as bait, but they' are gathered along the shore from Machias to Mount Desert and sold by dealers at Deer Isle, Booth Bay, and Portland. Forty barrels rep-
resent the allowance for an ordinary voyage of a vessel of from 50 to 75 tons. Of late years clams have been less in demand for cod-fishing, fresh herring purchased near the grounds or pickled herring being more exteusively used.
(11) Mussels, Oysters, and Scallops.-Of the mussel there are two distinct species, both known under the same name, and, although generically distinct, haring a very close external resemblance which prevents their being distinguished by the ordinary observer. One of these is the Mytilus, the other the Modiola. These are well-known inhabitants of the waters, being found attached in great numbers to the piles of piers, and to rocks, gravel, mud, and any other object to which their byssus will adhere. They are a favorite article of food in some parts of the world, being used largely in Europe for this purpose; but they are less esteemed in the United States. Occasionally rery grave inconveniences result from poisoning, of greater or less intensity, being produced by them. In view of the well-known fecundity of the mussle, it may be imagined that the spat in regions where they abound constitutes a very important element in the food of young fish, and the contents of the towing net are very frequently composed largely of extremely minuto mussels, which are greedily devoured by a great variety of species.
The oyster is not often used as bait. . It is almost too valuable to be wasted in this way, and is of so soft and delicate a texture as to break a way from the hook with but a slight touch.
The common seallop, lecten irradiuns, which is extremely abundant of the coast of the Middle and Northern States, is largely utilized for food, and ouly occasionally used as bait for fish.
(12) Lobsters, Crabs, Shrimps, etc.-The lobster constitutes a very attractive bait in the small fisheries; but it is too valuable in itself as an article of commerce, to be employed to any great extent. Frequently, however, young lobsters, not marketable, or falling within prohibited limits of the legal enactments of certain States, are used for capturing shore fishes.

Along the coast of the South Atlantic and Middle States a very favorite bait for the ordinary shore fishes is the common blue crab (Cal. linectés hastatus) a species occurring in enormous abundance, and constituting a favorite article of food, whether as hard or soft shell. This is a great resource to the fishermen, few fish resisting its attractions, especially when the old shell has been thrown off, leaving only a soft skin behind. Diminishing in abundance towards Cape Cod, its place is supplied, thence northward, by what is there called the common crab (Carcinus mannas). This appears to constitute an especial attraction to the tautog, and doubtless constitutes its food in the sea in very great part.
Shrimps also are used all along the eastery coast of the United States in sea fishing.
E.-Methods and routine of fishery.

The necessary limitations of space in the present essay require me to defer the consideration of this subject to another occasion, especially as it will come naturally within the investigations of the forthcoming census of 1880 .

> F.-Preservation of fish and bait.

The subject of the preservation of the products of the fisheries is oue of very great importance, and is receiving more and more attention every day. In the earlier period of the American Republic the abundance of avimal life in the waters was so great that there was little difficulty in taking the needed supply of food whenever it was wanted. rendering the question of its preservation comparatively unimportant. Of course, the methods of salting and drying were in vogue, but the long-continued preservation of fish in a fresh state was of comparatively little consequence. The circumstances have changed very greatly in this respect. The abundance of fish, \&c., has diminished to a greater or less extent, while the population of the country has increased enormously. The lemand for fresh fish, too, has increased more than in proportion to the increase of population. The great extension of the syetein of communication with the seaports, both by steamboats and railroads, has been such as to render it practicable to carry the products of the sea fresh to a great distance. The same methods are available both for keeping bait for use in the fisheries as are employed in keeping the products of the fisheries themselves, and it will therefore not be necessary to discriminate between them.

We may consider this subject of preserration under several heads : (1) Δs fresh, without any special treatment; (2) as fresh, by means of ice ; (3) by drying; (4) by salting or the addition of some chemical substance; (5) by smoking ; (6) that of immersion in alcohol or some saline substance, for scientific purposes, which properly does not enter into the plan of this paper.

Fish may, of course, be preserved for a greater or less time for purposes of food or bait without any treatment whatever, this depeuding upon the amount of moisture in the atmosphere and the temperature. In the colder seasons of the year of any locality an object of this character can be kept for many days, especially if the entrails are removed, the adberent blood washed from the inside, and the inside surface allowed to dry in some way. In warmer latitudes and periods, however, the flesh corrupts rapidly. The diliculty is that in the tropical or sub-tropical latitudes a fish will acquire a taint of corruption or decomposition Within a very short time after the capture, so that even before the boat's load can be landed and subjected to the treatment of salt, or otherwise, it will bave passed beyond the stage when this cau be applied with any success.

Of course, when fish are taken in cold weather and frozen they will remain in good condition as long as the cold lasts; * aud the absence of a definite continuance of this condition suggested the use of ice in some form in the warmer season of the year. The simplest method of using ice is, of course, to lay the fish on it, and thus leeping down the temperature. The more common method of employing ice, however, is to pound it up and arrange it in layers with the fish, one alternating with the other until the given receptacle is filled. This, however, has the very serions disadvantage in the quantity of.moisture necessarily held in contact with the fish, the ice inelting very rapidly and the fish becoming saturated with the resultant water, from which in time comes an acidity or mustiness of the fish which is not at all palatable. In some cases, indeed, fish will keep better by being immersed in water kept cool by means of floating pieces of ice than when packed away in pounded ice itself. Fish thus treated become unpalatable when kept some time after removal from the ice. About two weeks represents the limit of time during which, under ordinary circumstances, fish may be kept by the method indicated. After that period the fisherman finds that his bait ceases to be attractive, and the necessity for a renewal occurs.

Icing of fish and bait.--The fishermen at New Loudon and Noank, who are almost exclusively occupied in furnishing fresh fish to the New York market, by the exercise of special precaution are able to keep their fish and bait fresh a much longer time than is the experience at Gloucester. They exercise very great care in the preparation of the bait, which is opened and thoroughly washed and cleaved, the adherent blood along the backbone being especially remored.

Their bait pens are in one large apartment instead of three or four smaller ones, as is the practice at Gloucester, and are carefully lined with some non-conducting substance. The bottom is paved continnously with ice, to the original thickness of the block, whatever that may be. On this is placed a lager of fish three or four inches thick, and above this a layer of equal thickness of finely-pounded ice, snow answering a very good purpose if this can be had. On this is another stratum of fish, and then pounded ice, and so on until the whole is filled. The atmospheric air is excluded very thoroughly in this way, and the amount of melting is comparatively triffing. The resultant water is immediately absorbed by the porous layers of pounded ice and held as by a sponge, so that the fish are kept comparatively dry.

In the other method of breaking up the ice with a hammer and sliding in layers over the fish there is much greater exposure to the air, and the water from the melting ice sinks to the bottom and keops the fish or bait saturated throughout. In this way two weeks is usually

[^28]the limit during which bait can be kept fresh, instead of six or eight weeks, as claimed by the New London fishermen, who see no difficulty whatever in carrying enough fresh bait for a long voyage to the banks, supplemented, should it be necessary, by soft clams, and thus obviating the necessity of going into Newfoundland or elsewhere for a fresh sup. ply.

Ice can be applied much more adrautageously for cooling fish (independently of freezing them) in specially constructed apparatus, known usually as refrigerators. The refrigerator, however, furnishes the most economical mode of applying cold to the fish. In some cases the function of the refrigerator is simply to prevent an unnecessary waste of ice by melting away, so that a given quantity will last a much longer time. Other forms of refrigerators have a very different function, the simplest of which cousist of an arrangement by which a current of cold, dry air is made to circulate through a provision chamber, taking off the excess of moisture and allowing it to be condensed upon the ice itself. This desiccation may be so rapid and excessive as to bring it under the head of "preservation by drying." It is not at present used to any greatextent in the sea-fisheries for the preservation, on a large scale, of fish for a long time. This is most effectively accomplished by the hard freezing process, which is destined to take the place of all others before long, as preserving the animal fiberindefinitely, or as loug as the freezing is maintained at the proper temperature, and with a comparatively small consumption of ice and salt.
According to Mr. E. G. Blackford, the eminent fish-dealer in Fulton Market, New York, a room, 10 feet each way, or of 1,000 cubic feet, with properly constructed non-conducting walls surrounding it, can be kept in effective operation in the summer weather of New York by the use of 2,000 pounds of ice and 2 bushels of salt per week, with less in colder weather. This would be, for a room of that size, $4 \frac{1}{2}$ tons of ice and 9 bushels of salt per month. As, however, all the bait necessary for a trawling expedition to the bauks for cod could be kept in a room of half that size, it is likely that three-fourths the amount of ice and salt would be sufficient, or about $3 \frac{1}{2}$ tons of ice and 7 bushels of salt per month. With all the fresh bait on board required for a voyage to the banks and the filling up of the vessel, the amount for two months should vot exceed at the outside 7 tons of ice. Allowing as much more for wastage, 14 tons would probably be an ample allowance. During 1877 ice cost $\$ 2 \mathrm{a}$ ton at Gloucester and $\$ 12$ a ton at Newfoundland.

A patent has been recently introduced to the notice of fish-dealers, by Which fish are arranged conveniently in vessels which are filled up with water, and the whole then frozen into a solid cake, and keptin this condition until used. This process is claimed by those interested to keep the fish perfectly fresh indefinitely without the evaporation and loss of savor so frequently found in the dry-hard method.

In freezing animals hard and stiff care must be taken to extract the
heat slowly in proportion to their size. It is a common occurrence for moose, reindeer, and other large mammals when killed in a very cold atmosphere to become putrid internally in a few hours, although the exterior may be frozen stiff. The remedy here is probably immediate disemboweling. It is said that halibut cannot be frozen stiff and dry to advantage from the tendency to spoiling in the interior.

It is not an uncommon thing for fishermen on the banks to renew their supply of ice for bait from the floating icebergs. They do not usually venture on a large berg for this purpose; but generally there are to be found in its vicinity fragments of greater or less size which have been broken off from the main mass and are easily secured. The supply of fresh water, too, is not unfrequently obtained in a similar manner.

Desiccation.-Desiccation, or drying, comes next to cold, either natural or artificial, as a method for preserving fish for food or bait, and, indeed, is sometimes more available. This consists, in the simplest form, in the exposure of the fish, usually split to some extent, to a dry atmosphere or the sun, causing the evaporation of the moisture to a greater or less degree. Sometimes this process is accelerated by the application of artificial heat, which causes a more speedy evaporation of the moisture. A current of air, either warm or cold, made to play over the fish, carries on the work very rapidly. Quite recently the production of this current of dry air by cold has been called into service, and with very excellent results, the flesh not being altered in any way, and the desiccation being rapid and thorough. Of late jears artificial processes of desiccation hare been multiplied, and are being applied to all forms of marine products, including oysters, clams, lobsters, shrimps, \&c., as well as fishes themselves. Of course the use of a similar method for preserving regetables and the flesh of land animals is familiar to every one. The preservation of bait by drying has not been very general; but it seems probable that when the application of the desiccating process comes to be more cconomically applied, it can be called into play to very great adrantage.

A writer in the Newfoundland Chronicle for September, 1877, speaking of squid bait, re marks that during the squid season, which usually lasts about six weeks, there is no other bait so attractive to codfish, and that even when salted it is preferred by the fish to fresh herring. He suggests that the proper method of preparing the squid so as to be available under all circumstances and at all seasons is to wash and dry it as soon as possible in the sun and without salt. He does not state, however, whether the experiment has actually been tried.

If the bait thus prepared proves to be attractive to the fish there will be no difficulty; if it cannot be readily dried in the atmosphere of New England, in doing this by means of some of the patent desiccating processes.

Consid erable quantities of squid are dried on the coast of Nowfound-
and, the bodies being first split open and the heads and entrails removed. I secured a few of thom in the fall of 1876 and tried them on the Grand Bank, but under such unfarorable circumstances that nothing definite could be learned as to the relative ralue of squid bait prepared in that manner. The Newfoundlaud fisher men, however, claim that, when soaked for several hours before it is used, it nearly equals for bait, the squid that are just caught.

The method of preserving fish and bait by salting is of course familiar to all, and need not be discussed here to any great length. It will be sufficient to mention that the principal subdivisions consist of salting by sprinkling salt on successive layers of tish, which are piled up in masses, known as kench curing; of immersion in a saline solution, known as pickling; and of salting for a certain length of time by either of these processes and then drying by exposure to the air and by smoking, all of which have their advantages under particular circumstauces.
Salting, etc.-The salt used in the preservation of fish in the methods indicated is, for the most part, the common chloride of sodium, or table salt. The quality of this, however, varies in different regions, some varieties being considered preferable for special applications, and others much less satisfactory.
A very troublesome affection of salted and dried fish is that known as "reddening," where patches of red color make their appearance on the surface of the fish, and rapidly extending, soon render it unfit for fool. This is usually met with in the foggy August or dog.day weather. A careful examination of this substance by Dr. Farlow has shown that this redness is clue to a minute algous plant abounding in the shallow sea-shores and not unfrequently included in the crystallized salt made by solar evaporation. Its presence is indicated by a slight pink or rosy tint in the salt, and at any rate it appears that fish treated with this salt is moro liable to the affection than where the salt is obtained from mineral deposits or else is perfectly white sea salt.
Other saline substances are used in some cases; and quite recently borax, in one form or auother, has been warmly recommended as securing the proper preservation of the flesh by the use of a much smaller quantity of mineral matter. A favorite Swedish preparation, called aseptin, used for lreeping milk and other animal substances without imparting a saline taste, consists essentially of borax.

Quite recently other chemical substances have been suggested, and among others is one lately communicated by D'A melio to the Academy of Sciences in Paris. For this purpose the meat, either raw or boiled, is cut into sections (if the action is to be very rapid) and immersed in a solution of citric acid in water in sufficient proportion to render it decidedly acid. After two or three hours the meat is withdrawn and subjected to Ω moderate degree of artificial heat, or exposed to the air until dry. With the artificial heat the result sbould be accomplished in an hour, and in the open air in five or six days. This meat can be kept for
years. To restore it to softness and flexibility it is only necessary to plunge it three or four days into fresh water. In time it acquires the hardness of wood, and the fatty portions have a tallowy odor.

Smoking.-A remaining method of presersing fish for food, if not for bait, is that of smoking, which has been used from time immemorial. This consists merely in exposing the flesh, either fresh or after being salted to some degree, to the smoke produced by burning bark or wood. This changes the texture of the fiber apparently by the action of pyroligneous acid or some creosote product, at the same time preserving it and giving it a very agreeable taste. The celebrated Finmark haddies consist of the haddock slightly smoked to a moderate degree, not enough to keep them for a long time, but involving a less amount of salt and of smoking than usual. Other fish, of course, are readily propared in the same way.

> G.-Disposition of offal or "gurry."

The question of a convenient or economical disposition of the offal of fish, especially of the heads and entrails, is a serious matter to the fisherman, especially when the cleaning or preparation for market is conducted at sea. This waste matter constitutes a large percentage of the entire mass (about a third), and what is thrown away every year by fishermen of any considerable fishing station may amount to hundreds of tons. Men fishing in small boats, however, usually have no other convenient alternative.

The objections made to this disposition of offal are of two classes, one on the score of waste, the other on the ground that the capture of fish in that locality is greatly interfered with. In the same connection I may refer to the question of waste of fish by means of the trawl-line, or the purse and gill net. As already mentioned, a severe complaint brought in North America against the apparatus referred to, is that large numbers of fish are lost from the trawl-line or from the nets in consequence of storms or otherwise; and that apart from the waste, these fish falling to the bottom, contaminate the fishing-grounds by their decomposition and drive other fish away, as shown by the inability to make successful catches until after a period sufficient to allow this matter to be decomposed or removed in some mauner.
The assertions of injury to the fishing-grounds in consequence of the gurry being thrown overboard or of the number of dead fish dropping from the lives or partly devoured by other fishes, apply most generally to the localities of the capture of the Gadide or members of the cod family, especially the true cod, haddock, hake. cusk, as well as of some other species, including also the halibut and others of the flat-fish family. It must be remembered, however, that these grounds are always in the colder portions of the sea, not unfrequently where the temperature of the water is but little above the freczing-point of fresh water, and always where it is as low as 50°. In regions where such temperatures prevail the year round, the cod and its allies are found
continuously. In others, as in the south side of New England, the fish come in as the waters at the bottom of the sea assume the temperature which they affect.

So far as the cleaning of fish at sea aud the throwing overboard of the offal or so-called gurry are concerned, the practice is highly reprehensible in an economical poiut of view ; aud as representing an enormous waste of material capable of being dovoted to useful purposes, the practice should be frowned down and prevented by legislation if possible.

On the coast of Norway all such materials, which formerly wero wasted, are now carefully husbanded and add very greatly to the percentage of the yield of any fishery. Somotimes this material is boiled and made to furnish a large amount of oil and scrap. At others the heads are assorted and dried as a special food for animals. The actual yield of guano alone from the Norwegian fisheries has in a single year amounted to $7,700,000$ pounds, a very notable element in the productive resources of the country. Whether this material be injurious to the fisheries or not, its preservation and utilization is too important to bo neglected; and for this, instead of enacting a prohibitory law, which could not be enforced, it might be better to offer a bounty or drawback of some kind, in proportion to the amount of this material delivered on shore. In this event, even if the fish were more conveniently cleaued at sea, the refuse might be saved in barrels and put on shore at a convenient point. If the solid parts were for the most part saved, the juices and small particles might bo poured into the sea without any detriment.

In regard to the allegation, however, that this offal or the dead fish falling from the hooks, in whatever quantity this may be present, affects the fishing-grourd, it is extremely difficult to comprehend how this cair have any serious effect. In the first place, the cold water in which the fishes of the cod family occur abound to an enormous degree with marine crustaceans, the self-appointed scaveugers of the ocean. These are largely a species of Gammarus and allied forms very varying in size and in overwhelming and almost incredible numbers, and their efficiency in their appointed task is so great that a large flsh placed in a box or suspended in a bag of netting, will frequently bo picked to a most perfect and complete skeleton in from twelve to twenty-four hours; indeed, not unfrequently the fish on the trawl-lines are brought up skeletonized in this way.

The same waters in which these shrimps are to be found abound very largely in lobsters, which are baited by precisely the same offal which is considered so detrimental to the fishing. There are also immense schools of small fish such as cunners, and more particularly the Oyprinodonts, which are as active and prompti in their attacks upon dead matter as the crustacea; as witness the experience of those who find a large and valued bait cleaned entirely from the hook by these smaller fish before it has been down more than a very few minutes. The wolffish or catfish (Anarriichas), the sculpins, the sea-ravens, the goosefish,
\&c., may also be mentioned among these scavengers, the latter especially finding no difficulty in swallowing entire the largest masses of offal that are likely to be thrown overboard. There is no doubt whatever that all such substances scattered in or floating through the water are promptly seized by the lobsters, dogfish, and other species of sharks, and numerous others of the finny tribe that are always on the watch for such material, and it is altogether incredible that with all these agencies working together there should be any appreciable quantity of dead fish or its refuse left at the end of twenty-four hours.

A large part of the gurry is probably carried off from the grounds by the tides and thus distributed over a wide extent of the sea, the chances of its reaching the bottom and remaining there for any time being still further diminished. Eren supposing the skeletons and bones to be thoroughly cleaned and left, and that by their whiteness or other quality they should terrify the fish, another sories of scavengers comes into play, namely, the sea-urchins, or sea-eggs. These, which swarm in enormous troops in the same waters, concentrate themselves in a very short time upon a bone and devour it as perfectly as the sea-lice do the flesh, leaving nothing whatever. It has been suggested that these sea-fleas and sea-urchins only carry on their operations in shallow water. This, however, is a great mistake, as the dredgings of scientific investigators in the vicinity of Grand Manan and elsewhere show that no portion of the sea-bottom, even to several hundred fathoms in dopth, is without them, and, indeed, if there is any difference it is probably in favor of the colder and deeper water.

The inquiry naturally arises, why, if the chopped fish, including entrails and roe, constitute an attractive bait to the mackerel sufficient to draw them many miles out of their intended course, and dead fish can be used to bait perch pots, should precisely the same material, in not quite so minute a state of division, terrify and drive away the inhabitants of the deep sea? It is, of course, possible that a great abundance of animal matter floating in the water, or for the moment lying on the bottom, may affect the actual fishery in consequence of the preference on the part of the fish to this matter over the more doubtful attractions of a baited hook. This, however, would be only temporary, and the interruption would soon cease. Possibly, too (and perhaps this is a powerful agency), the presence of this offal may attract the dogfish, sharks, and other predaceous species, so that they may drive away the weaker and comparatively defenseless cod.*

[^29]The fact that the throwing overboard of offal does not in itself drive away fish generally is illustrated in the fishery for the small dog shark about Proviucetown. Great numbers of these are taken annually for the livers, which are removed, and the rest of the fish throw: overboard. The result is apparently to increase the number of these fish, and make the catch of a larger number practicable.

The number of skates is greatly increased in any given locality, on the banks where they abound, by throwing overboard large quantities of gurry. This is especially noticcable to the trawl fishermen, who often find after remaining in one berth or position for several days, that the ends of the trawls next the vessel hare on them an increased number of skates.

In further reference to this subject of gurry ou fishing.grounds and to the alleged wastage of fish by dropping from trawls and gill-nets, it is not a littlo remarkable that the question of the injury of the use of the trawline to the fish and fisheries of the locality where practicell, should at the present time be for the most part confined to North America, while European writers now searcely refer to any inconvenience likely to result from this cause. The practice of line fishing is considered in its two divisions of hand-line and trawl, or long line, but this is merely a question of comparative expediency and the cost of the investment.
In the question at issue between the fishermen of Great Britain in 1860, the case lay for the most part between the trawls on the one side and the hand-line fishermen on the other, the latter making no charge of any injury to the fishing in the rejoinder against the long.lines.
It is perhaps less the practice in Earope than it is in America to clean the fish at sea, and to throw the refuse overboard, a wasteful practice, which of course is to be disconntenanced. In Norway, on the great fish-ing-grounds, the sale of the offal to companies organized for utilizing it is a matter of very great importance. It is sold at a fair price, the dried head of the cod being in part prepared as food for cattle, but for the most part converted into guano, which has an establisbed position in the European markets, as might be expected, allowing it to constitute one-third of the total weight of uearly $20,000,000$ codfish.

In England the codfish taken are for the most part sold entire or dressed in the fishmongers' establishments.
If a considerable percentage of the fish taken on the long-line or trawl is necessarily lost by dropping off from the hooks by their excessive weight on being hauled up, the injurs, if it be one, of their decay ou the sea-bottom would in all probability have impressed itself upou the minds of observers in England ; but the only allusions I have been able to fiud to this subject of dead fish on fishing.grounds is in connection with the herring fishery on the coast of Norway, where it was alleged that the dead fish which were lost from the gill-nets polluted the water and tended to drive the herring away.

According to Feddersen (Rep. U. S. F. C., 1873-5, p. 183), neither this nor the discharge of oil into the ocean from factories on shore prosed to have any deleterious ínfluence, the fish coming year after year even in increasing abundance to localities infected as mentioned, while they were just as likely to disappear capriciously and suddenly from waters where no such complaints conld be alleged; indeed, as stated on page 118, a careful examinatioin of the bottom of the sea, by meaus of the water telescope failed to reveal a persistence of dead fish, the appointed scavengers of the sea very soon removing them effectually. It was only occasionally in the crevices of the rocks and apparently sheltered from convenient approach that the dead herring or their skeletous were known to remain even for a few weeks, subsequent examinations failing to indicate the presence of any dead animal matter.

H.-Review of the american fisheries.

The time when a faithful presentation of this subject can be made has not yet arriced, and its discussion must be deferred until an exhaustive canvass of the country has been made. As a slight contribution to the sulbject the following tables are given :

Fishery products of Gloucester in 1876.
Cod, 425,000 quintals . $\$ 2,295,000$
Mackerel, 101,032 barrels.. 909,000
Herring, 30,000 barrels $127,5 c 0$
Dry-fish, othor than cod (pollock, cusk, haddock, and hake, about equal
proportions), 40,000 quintals. 120,000
Shell-fish 10,000
Fresh fish, 11,000,000 pounds.............. 745,000
Fish oil (cod-liver niue-tenths at least), 275,090 gallons.... 132, 000
Fish manure (herring), 8,000 tons.. . . 25,000
Miscellaдoоия... . . . 10,000
Smoked halibut (three-fourths made from catch of " fresh" vessels), 2,750,000 pounds

275, 000

4,648,500
40 per cent. of llitching from halibut.
405,000 quintals, pickle-cured.
The following table shows the value and extent of the fishing business of the port of Gloucester for the ycar 1875:
Bank codfisls, 177,473 quintals . 8998 , 628
Goorge's codfish, 185,758 quintals....... $1,021,669$
George's halibut, 2,462,364 pounds . 172,365
Bank halibut, 7,248,423 pounds 507,389
Haks, 4,257 quintal8 12,774
Cusk, 2,349 quintals..... 7,047
Pollocix, 9,417 quintaly 32,964

Shore fisheries, the work of dory fishermen :
Fresh fish....... 89,738

Oil
8,945
Mackerel:
18,172 barrels No. 1 \$327,112
7,065t barrels No. 2 184,780
21,763 barrels No. 3 174,104
4,0398 barrels No. 4 24, 205
Pickled fish, 31,750 horring 13,494
163 barrels cod, 401 barrols swordfish 1, 097
$410 \frac{8}{8}$ barrels trout, $75 \frac{2}{2}$ barrels fins and napes 4,042
217 barrels salmon, 205 barrols tongues and sounds. 2,282
Shell-fish, clams, de 10,000
6,500 tons manure 20,000
All othor fish 8, 000
Oil, other than above 100,000

III.-ECONOMICAL APPLICATIONS OF THE PRODUCTS OF THE FISHERIES.

The inhabitants of the sea which occupy a more or less direct relation to man in their economical application are usually classed by the common name of fish, the term fisherics being applied to the methods of their capture. This, however, is to a certain extent a misnomer, as in addition to what are properly known as fisb wo have to consider the cetaceans, such as the whales and porpoisos; the crustaceans, as the crabs, lobsters, and shrimps; the mollusks or shell-fish, such as the clams, ofsters, and the like; the corals, sponges, and many other forms of animal life.

The uses to which the various marine animals are put are very various, although by far the most important application is in the way of food for man, and to some extent for the lower animals.

The objects of the fisheries and the applications of the animals of the Sea when caught may bo considered under the following hoads:
(1) Food.-For the direct use by man himself; and, second, as bait for the prosecution of tho fisheries.
(2) Oil.-For food or medicine; for illumination; for use in the arts, as in the manufacture of soap, the dressing of leather, \&c.
(3) Manure-Applied in a fresh state directly to the soil; as dried and subjected to chemical manipulation and combination with other substances.
(4) Utility and ornament.- \mathbf{A} systematic account of all the uses in their minutest detail to which the inbabitants of the sea are put by man would go far beyond the limits of the present article, and it is possible but briefly to refer to some of the more important, concentrating atteution hereafter upon those which bear most closely upon the subject of the value of the fisheries in the United States and the Dominion of Canada.

For the present it is necessary to leave out tho consideration of the cotaceans and other marine mammals, as well as the corals and sponges,
and some of the applications eren of the fishes and crustaceaus; and to furthermore restrict our consideration to the fishes proper, introducing other forms only so far as they relate to the question of bait.

1. As food for man and animals.-By far the most important application of fish is as sustenance for man ; a large proportion of the population of the globe deriving its support more or less exclusively from this source.

Although the fresh-water fisheries in wany countries are of great importance, and supply a notable percentage of valuable food, it is from the sea that not only the great portion of the fish found in our markets is derived, but also the bulk of that which is preserved by various methods for a greater or less length of time, and for transportation to distant markets.

Fresh fish can, of course, be kept in a cool climate for a considerable time without any special preparation; but the simplest mode of treating it for preservation is that of drying, by exposure to the sun, either with or without a certain amount of salting.

Next to the drying we have the smoking either of the fresh meat or when it is more or less salted. The salt may be applied either dry or in solution, when the fish are to be used almost immediately (which process is known as corning), or else kept for a longer period. Salt, being a substance found universally, is the cheapest and most convenient medium. The use of borax has already been alluded to on page 137. Salicylic acid, too, in solution can be used to keep fish fresh for a considerable length of time.

Until quite recently the ice has been used by itself, without the addi. tion of any salt whereby to produce the so-called freezing mixture, the fish being kept in boxes or bius in the holds of vessels, in contact with ice, reduced to a greater or less degree of firmuess, and drainage being provided to carry away the water. Sometimes the fish aro packed with ice and a non-conducting substance like sawdust, which greatly retards the rapidity of melting and permits the shipment in large quantities.

A much better method of using ice alone consists of its application in some of the modern circulating refrigerators, in which it is placed above the receptacle containing the fish or other meats, and a circulation so established which, while keeping the temperature of the air surrounding the meats at a low point, extracts all the moisture from the atmosphere, leaving it perfoctly dry, and furuishing an atmosphere corresponding to that of an ordinary clear cold winter's day. The flesh of fish thus treated is rery much more palatable than where there is a direct contact with the ice itself; in the latter instance the fish, while not undergoing decomposition, becoming stale and sometimes more or less sour.

The greatest improvement, however, in the preservation of fish for food is by the use of freezing mixtures. Under no circumstances by the use of plain ice at melting temperatures, in an ordin ary summer's at,
mosphere, can the temperature be kept below 40°, and where tho fisk are not actually in contaict with the ice, possibly not below 50°. This iuvolves a tendency to become stale, as above referred to. If, however, the fish be frozen hard and stiff immediately after being caught it may be leept in this condition for an indefinite period of time, and when care: fully thawed out and used immediately after, will be very little if at all inferior to a fresh fish. For this purpose the fish are now exposed as soon as possible after being caught to the proximity of a freezing mixture of ice aud salt; aud as soon as well frozen they are transferred to a much larger chamber in which the temperature is kept by the same means at about 12° to 16°.

These apartments have double walls, with some non-conducting substance interposed, as charcoal or sawdust, and usually havo several iron cylinders passing through, which are kept filled with a mixture of ice and salt, provision beiug wade for their introduction above the chamber and for the drainage of the melted liquid below without the necessity of opening the room. Here immense quantities may be kept in a state of absolute unchangeableness as long as the condition of the market requires. This method is now employed in New York and elseWhere for the preservation of all kinds of fish, salmon, striped bass, cod, Spanish mackerel, bluetish, \&c., being piled up by the cord.

A very important result of these processes consists in equalizing the market, preventing aglut at one time and an excessive cost at another. Any one of the fish just mentioned, with numerous others, can now be obtained without any difficulty, at any season of the year, from suc̣ dealers as E. G. Blackiord, Middeton, Carman \& Co., and others, in Falton Market, New York.

There seems to be no reason why dry, hard freezing may not maintain animal matter in a sound and wholesome condition for any period during which it may bo applied without interruption; and as a case in point, I adduce certain well-substantiated facts in regard to the occurrence of a carcass of the mammoth in Siberia. It is well known that at one time, probably during the interglacial period, the mammoth, or fossil hairy elephant, was oxtremely abundint in arctic Asia and America, in the foimer especially, and that even now a large percentage of the ivory of commerce is derived from the tusks of these animals found in tho soil, in the river-beds, or dredged up in the Aretic Ocean off the mouths of the Siberian rivers. It is probable that herds of these animals, in crossing the rivors, were drowned and carried out to sea by the powerfnl current, when the meat soon decayed or was deroured, and the bones decomposing in time left only the tusks to reward the gathorer. Some years ago a merchant of St. Petersburg, in visiting Northern Siberia in the courso of his trade, came across the carcass of a mammoth that had been washed ont from a frozen gravel bank along ono of the rivers, aud lay on the beach, where it had been for many miontus the prey of dogs and of wolves and

[^30]other wild animals. At the time he found it a considerable portion was left, although most of the meat had been consumed. It was even then not offensive at all, and the dogs were devouring it with great eagerness. He obtained the skeleton and a portion of the skin, which are now to be seen in the Muscum of the Academy of Science of St. Petersburg. The natives assured him that the meat was fresh and fine, and in no way disagreeable. Here we have a case of meat preserved in a natural ice-house through a period, the autiquity of which we cannot readily measure, but certainly an estimate of many thousands of gears is entirely within the mark.

The animal was imbedded in the frozen soil below the point where the surface would thaw in the short summers of that country, and remained all that time, with all tendency to decay or deterioration absolutely suspended.

All these processes mentioned for the preservation of fish for food are applied to a greater or less degree in keeping fish to be used as bait in the fisheries, namely, salting, keeping in ice, and bard freezing; drying is less available. They have been disenssed under that heading at page 133 et seq.

Next in importance is the method of the preservation of tish in oil of one kind or another. Here the fish, after being treated properly, are sealed hermetically in metallic vessels of smaller or larger size. This method of preservation is applied more particularly to the sardines, but is also used in the case of the imitation of sardines, as the pilchards, menbaden, \&c. In France, Italy, Spain, and Portugal, however, where olive oil is inexpensive, nearly all kinds of fish are preserved, as the tunuy, bass, perch, mullet, Sce, and various mollusks. Specimens of such preparations were exhibited at Philadelphia in 1876 . In the United States, where olive oil must, for the most part, be imported at a heavy cost, other vegetable oils, especially that of cotton-sced, have been found very satisfactory substitutes.

A novel, and what promises in time to become an important, preparation of fool is the result of a process for obtaining the extract from the flesh of the menhaden, as invented and patented by Mr. S. I. Goodale, of Saco, Me. The value, both in a hygienic and dietetic point of view, of the beef extracts of Liebig and other inventors, is now well known aud established, and the fish extract of Mr. Goodale, strange to say, has no fishy taste whatever, and is scarcely distinguishable from the meat extract. He claims that au immenso amount of this substauce can be obtained duriug the ordinary process of utilizing the menhaden, adding greatly to the profits of the business and without interfering with the preparation of oil and scrap. Samples of this extract were presented at the Ihiladelphia Exhibition, which were considered very excellent, promising a satisfactory future. In his opinion at least $20,000,000$ pounds of this extract ean be obtained from tho menhaden annually without interfering with the yield of oil and serap, and possibly of nearly egual money value.

It was lirst brought to notice at the Centenuial Exhibition, and received the high commendations of the jury on the fisheries and foods. The fish are first thoroughly cleaned and washed, and then immersed in boiling water for a short time for the purpose of removing the skin. They are then subjected to a subsequent treatment by which 3 pounds of extract are obtained from each barrel of menhaden, or 4 pounds if the entire fish is manipulated without separation from the bones. This process does not in any way affect the value of the fish for the production of oil or manure, and therefore constitutes an important atilization of a waste product, the proceeds of which will probably in time much more than pay all the increased cost of treatment.
The same method can be applied to other fishes of sufficient size to warrant their evisceration, although it is hardly likely that any fish but the meubaden can be profitably treated in this manner, being actually shipped to Italy for the purpose of adulterating the genuine olive oil. There are other modes of preserving animal substances, especially fish, in use in various parts of the country, but those already given are the most important.
In addition to the consumption of the flesh of fish as food, other parts of the body are used for a similar purpose, the most important being the livers and the air-bladders. The livers of many tish, especially the Gadida, of some of the sharks and some other species, furnish oil in very great quantity ; and those of the cod especially, and other fish of the cod family generally, are used as food, particularly as nutriment for iuvalids affected by consumption or other wasting disease. The oil is also used for industrial purposes, which will be referred to hereafter.
The air-bladders or sounds of fish are very exteusively employed in the preparation of socalled isinglass, of which the most esteemed is that from the sturgeon and the hate.
Of late years an excellent glue is made from the skin as well as the air-bladder of fishes, but this has mostly technical applications. The isiuglass of fish when used as food is usually employed for the most part in the proparation of jellies, gum-drops, \&c., as well as in the refining of beer and other beverages.

Under the head of the application of fish as food must be included their use as bait for the fisheries, as also their destruction by their fellows for their sustenance. These subjects will be referred to heroafter.
Besides the use of the meat of the fish, either fresh, salted, dried, smoked, pickled, spiced; in oil, \&c., there are certain portions of the body which are considered more or less delicacies. Among these the heads of many species are preforred to the rest of the body. The boiled head and shoulders of the cod, the striped bass, and some other species are considered especially excellent, as are the fins of the halibit. Indeed, in the carlier history of the country the head and fins only of the halibut were utilized, the rest being thrown away. The tougues and
sounds, too, of the cod, hake, and other gadoid fishes are very highly valued for food, aud are usually put up salted separately. The airbladders or somads of fish have already been referred to as of special commercial value, those of the sturgeon furnishing the well-known Russian isinglass, and being utilized for the same purpose.

Of late years the air-bladders of the hake have been collected very assiduously, and are worth moro than all the rest of its body. They are gathered especially on the coast of Maine and in the Bay of Fundy, where vessels are in the habit of visiting the different fishing stations and buying these sounds for from 50 cents to $\$ 1.25$ a pound. The drum, squeteague, and, indeed, almost any other of our species in which the walls of the air-bladder are thickened, and that organ is of considerable size, are valued for the same purpose. Several fresh-water fish in South America are also utilized in the same direction. There are establishments in Massachusetts where the business of collecting the air-bladders of fishes of all kinds, and of working them up into marketable products, is carried on.

The skins of many fishes, too, are convertible into a coarse gelatine or tenacious glue. In Russia the cartilaginous backbone of the sturgeon is highly prized as an article of food, and is collected and sold in bundles like whips.

The roes of a great many fish are used as a special article of food, sometimes with the rest of the animal, as of the herring ; at others sej)arate from it. The roes of the mullet of the southern coast of the United States are salted and barreled and consumed largely throughout the interior of the adjacent States, the meat itself being less prized.

The caviare of the sturgeon is a well-known article of commerce, and is now being put up in the United States in large quantities, particu. larly for export to Europe.

I have already reforred to the extent to which the business of putting up fish in oil and spices and inclosing them in hermetically sealed tin cans is carried on abroad, particularly by the inbabitants of France, Spain, Italy, and Portugal, this process having been until recently scarcely known in the United States; but it now bids fair to become an important element of our industries. Few persons realize the extent to which the menhaden is utilized in this direction, several establishments in New Jersey finding it really difficult to secure a sufficient supply of fresh fish to meet their demands. Here they are put up in oil under name of American sardines, or spiced and known as ocean trout. The herring is also put up both in oil and spices in New York and at Lastport, in Maine. Mackerel are preserved to some extent in Oanada in pound cans, like the canned salmou, several thousand pounds being included in the retums of the proceeds of the Canadian fisheries for 1876.

There is no doubt but that there is a wille field in America for the utilization of fish in this way, and that a large market could soon be
built up, not only in this country but abroad. In 1576 the value of the sardines and anchovies, prepared in oil and imported from abroad, amounted to $\$ 595,901$, each year showing a considerablo increase. The only advautage that foreign countries have over us in this matter is in the price of oil; and if the cultivation of the olive in California proves to be a success this will furnish the finer material, although the best quality of purified cotton-seed oil is believed to be, equally wholesome and can be furnished at a very low figure.
2. As oil.-We have already referred to the use of the oil of the livers of fish as an article of food or medicine, but it is in its industrial applications that the oil of fishes merits the principal consideration. While there is a great difference in the amount of oil furnished by the livers in different species, almost any will yield it in greater or less abundance on being boiled and pressed, varying in amount with the species. The most of the fish-oil is, however, derived from the body generally. In one fish abounding on the northwest coast of America, known as the candle-fish (Thaleichthys marinus), closely allicd to the smelt and capelin, which, indeed, it resembles, the dried fish is used for the purpose of illumination, the amount of oil being such that it furnishes no mean substitute for a caudle, being capable of ignition and burning for a considerable time. As this fish is very abundant, it is not improbable that it will hereafter constitute an important source of oil, parties int British Columbia and Alaska being now engaged in the business on a small scale.
It is from the menhaden or pogy of the Atlantic coast of the United States, however, that the greatest quantity of oil is obtained.
Next to the menhaden or pogy the sea herring is probably the most extensive source of supply in the United States, the fish as caught in weirs in the Bay of Fundy and elsewhere being treated for this purpose. It is not improbable that the offal of cod and other fish will after a time be largely utilized in this direction, as it is on the coast of Norway, where very little is wasted.

A further extensive source of oil for technical purposes is found in the liver of the dog shark (Acanthias), a small species scarcely more than one or two feet in length, but occurring on the Λ merican coast in immense numbers.

As almost any fish will furnish oil when boiled or steamed and subjected to great pressure, other species are treated for this object from time to time, according to their abundance or the inmediate necessities, but those mentioned above are probably the most important. The capelin, it is true, furnishes an excellent source of supply, but it is found for so short a time on the coast of Newfoundland and the other regions inhabited by it, that it would hardly pay to put up permanent establishments for operating on a large scale.
The limitations of my subject exclude the consideration of oils as obtained from whales, porpoises, blackfish, grampuses, \&c., the supply of
which is of course rery great, although diminishing in quantity, while that from the true fishes appears to be increasiug.
The use of fish-oil as food or medicine is comparatively limited. Its application is more generally to the manufacture of soap, and in the dressing of leather, for purposes of illumination, and, to some extent, in painting. During the late ciril war in the United States, when the supply of turpentine was limited, the oil of the menhaden was employed as requiring less turpentine in its service.
3. As manures and fertilizers.-The refuse, or socalled "scrap," left after the expression of oil from boiled or steamed fish, is used very largely as a fertilizer, for which it is especially valuable in consequence of the large amount of phosphorus contained in the bones, and of the nitrogenous matters. This is used either directly or after being subjected to chemical treatment, and, for the most part, mixed with the phosphatic earths found on the coast of South Carolina and Georgia, with the mineralized guanos of the Sombrero Island of the West Indies, or with the well-known guano of Peru or of the islands of the Pacific.
4. Other purposes.-The remaining applications of fish are of much less moment than those to which we have already adverted, being usually exceptional and coufined to limited areas.

Although the skins of fishes have been utilized in various ways by different nations for a long period of time, within a few years this industry has become prominent, and will in time represent a vers important element in the total products of the sea. Although the skins of cod, salmon, and other fishes are not unfrequently used as clothing for both the feet and the body by the tribes of the northwest coast of America, it is ouly of late that such skins promise to come into use among civilized nations. A patent has been taken out in the United States for the manufacture of shoes from the skin of the cusk (Brosmius vulgaris). The skins of various species of sharks are now very carefully saved in the Red Sea, the Mediterranean, and the Indian Ocean, and constitute a considerable article of commerce, the best material being furnished by the genera Scyllium, Scymnus, Spruax, Acanthias, Sqatina, Squalus, \&c. These are used largely for polishing wood aud metal, for covering boxes, spectacle and spy-glass cases, \&c.

The skin of the burbot or ling (Lota) is employed in Russia and Siberia for trimmings of dresses and for the windows of dwellings, instead of glass. It is also made into bags for holding clothing, \&e.

The skins could be taken off from many fish which are now entirely wasted, and from others the meat could be employed in some form or other. When tanned or dressed the skins could be converted into articles of clothing or ornament, aud could be used in polishing wood or metal.

As already explained we are far from deriving all the benefit that we might from our sea fisheries, not only neglecting, as we do, a large part
of our actual catch, but failing to secure what is in other countrics considered a source of natioual wealth. Apart from the increase in quantity of the well-established preparations of fish by drying, salting, smok ing, \&c., there is a large field open in putting up fish in hermetically sealed cans, either in oil, pickle, or spices.
The Coutennial Exhibition of 1876 afforded an opportavity for the presentation of vast unmbers of preparations of fish, as made and consumed in large quantities in France, Italy, Spain, and Portugal, which could be readily imitated in the United States, and find a market either here or in foreign countries. Ludeed, almost overy fish of the Mediterranean in the various preparations, notably the mullet, the mackerel, the tumny, the perch, bass, \&c., and even squids or cuttle fish, were found to constitute no inconsiderable item.

Of herring there are many preparations greatly in demand in Europe, of which we know nothing. A reference to some of tinese will be fonad in the Report of the U. S. Fish Commission, Vol. III, page 183 (Widegren on the Herring and its Preparation as an A ricle of Trade).

The carcasses of sharks, skates, and other now refuse fish could be converted into food for dogs, poultry, and even used in feeding young trout or salmon, \&c., in piscicultural establishments. Even if they could be sold at from 1 to 3 cents a pound for the dried meat, in the large demand that could readily be developed for the various parposes mentioued, a satisfactory profit could be derived. The meat conld be chopped fine or converted into meal, as with the well known fish-meal of Norway.

IV.-maintenance and mprovement of hishmries.

Considerations rimative to the best mode of maintainteg and increasing the supply of the sba fisierdes.

This subject may be best treated muler the following leads: First, legislation in the way of regulation aud prohibition; second, the increase of the absolute number and variety of fish; third, equalizing the supply of fishes and bringing them from distant points within easy or convenient reach of the fishermen.

1.-Legislation.

The history of the fisheries for many centuries past has been largely a record of attempts either to give monopolies to favored individuals and companies, or well-meant, but in most cases ill-judged, endeavors to protect the fish from destruction and to secure the rights of the people in their capture. The tendency, however, of later years, has been materially to relax and in many cases to abolish these regulations, and it is now becoming generally conceded that, so far as the sea fisheries are concerned, the less the obstacles we place in the way of the prosecution of the fisheries the better. It very rarely happens that the enact-
ments for the protection and regulation of the isheries are based upon a thorough knowledge of the habits, migrations, and general relations of the fishes themselves, and even while removing or proventing a difficulty in one direction, they bring about a still greater one in another. In many cases action, when taken, is the result of the unfounded clamor or jealousy of fishermen using one kind of apparatas against those employing another, or, in some instances, it results from the influence of the wealthier classes, who wish to preserve the fishing as a sport and relaxation, as against the interest of those who depend upon it for a living. In considering the complaints, therefore, in regard to a particular mode of fishing, and the invocations for its restriction, due caution should beexercised in determining how far the persomal element comes into play and how far the interests of the great mass of the community and the world are at heart.

Legislation on this subject is usually included under the following heads: First, the places of fishing ; second, the season ; third, the time of day ; fourth, the size and length of the nets, and the size of the mesh; fifth, the distance apart of nets, weirs, pounds, de. ; sixth, the number of fish that may be taken ; seventh, the police and regration of the boats and men ; and, eighth, regulations in regard to the preparation of the fish, and for securing to the purchaser a proper knowledge of their character and quality.

It will, of course, be understood that legislation can be properly enforced against foreign nations at least only within the territorial limits of the country; and as the three-mile line is usually accepted as defining the boundary between the inshore and offshore fisheries, it is usually the space within that limit to which the local laws apply. In some nations the particular areas of the fishing grounds are assigned to the inhabitants of certain districts, those adjacent to it not being permitted to enter, and severe conflicts sometimes result from such an attempt.

How far one of the United States cau enforce any fishery regulations at sea, outside of the three-mile line, or indeed even within it, is a question not to be discussed here; that the United States can do so is perhaps more certain, the vessel being considered a part of the country and carrying into it the conditions of its shore.

In accordance with a convention consummated in August, 1843, between France and England, the exclusive right of fishing by the fishermen of either nation was given within 3 miles of its own coast, the intermediate space being common ground. A provision was made for the employment of cruisers by both nations, not only to protect the rights of their own fishermen, but to see that they obeyed the laws made for their regulation. Cases were specified in which the ressels of one nation might enter the territorial limits of the other, but in no part of the treaty was there any prohibition, when once within the limits, to purchasing bait, or supplies, or of deriving any other commercial advantage.

This treaty is referred to in the Report of the British Sea Fisheries Commission, where it is expressly stated that the vessels of Belgium, with which there was no such treaty, were not bound by it, and that there was nothing to prevent their fishing if they were so minded, indicating that the submission to a restriction must be a matter of joint agreement between two contracting parties (p. lxiv).

With reference to the difficulty of estimating the extent of the threemile limit, Prof. George F. Earker, writing from Brookieh Center, Conn., September 7, 1877, said:
"With reference to the question you propose, i.e., whether the probability of an accurate judgment of distance is greater when the estimate is made by an observer standing on shore or by a persou in the vessel, I would say that in my opinion the probability of a correct estimate of distauce is considerably greater in the latter case. Distance, according to the present theory of vision, is always estimated by the eye from the magnitude of the visual angle under which the distant object is seen. Now, since any given object, placed at a suitable distance, will subtend any angle whatever, it is obvious that size and distance are both variables in the calculation, and that if neither is given the problem is indeterminate. A man who does not know how large the object is which he sees, cannot, from this datum alone, form any accurate idea of its distance. Hence, to estimate the distance of any object accurately, the size of the object which subtends the given visual angle must be accurately known. A man of average height placed a mile offi will subtend an angle of about two minutes, and if two miles off, of about one minute. To tell that he is two miles off, and not one mile, the ese must accurately appreciate this slight difference of one minute of arc. The human height is so well known that persons are often introduced into art compositious to assist in judging of distances. But at three miles distance, a man is too small an object by which to estimate distance by the unaided eye, the limit of error being so large as to render the estimate of no value. Hence, other familiar objects larger in size must be chosen. If a person on the shore, accustomed to this kind of estimate, sees a vessel winich he is familiar with at the landing, he can tell approximately her distance, if she is not too far off. So a person sailing away from the shore may estimate quite accurately his distance from it, provided he be familiar with the size of the objects on shore. If neither person knows by personal inspection the size of the object looked at, the one in the vessel has the advantage, because the sizes of houses and their parts, windows, doors, \&c., aud also of well-known trees and animals, vary much less than the sizes of vessels. But there is another advantage on the side of the man in the vessel. He forms his judgment not by a comparison with a single object, but from a large numher of objects, whose sizes are well kuown; aud his estimate is, therefore, the mean of a large number of separate judgments, aud so more reliable than any single one. Moreover, if these objects are successively back
of each other in the line of sight, another advantage is gained, as any one must admit who notices how much larger, because apparently further off, the sun is when on the horizon, where there are objects of comparison, than in the zenith, when there are none. Moreorer, as a rule, seafaring men have trained their ejes to estimate distance from a vessel."

To the above may be added the views of C. P. Patterson, Superintendent of the U.S. Coast Survey, given under date of August 31, 1877, as follows :
"From my experience, I conclude, and have always safely acted upon that conclusion, that persons on board a vessel, with rare exceptions, judge the vessel to be nearer the land than she actually is, and this arises in a measure from the fact that the eye rarely recognizes the foreground, as it were, of the distances, but is apt, uncousciously, to begin estimating the distauce from an imaginary line at some distance from the vessel, the higher the eye above the water the greater being this distance, and the greater the real distance of the vessel from the shore than that estimated. This is particularly seen in handling a vessel in a harbor, or runuing close in along a shore.
"If the eje is placed at the mast-head of a vessel, the horizon rises, as it were, with the eye, the sensation created being that the ressel is at the bottom of a bowl and the eye on a level with the rim, and from this position estimated distances to objects are almost invariably too short. My own custom was to increase estimated distances accordingly. If a man at the mast-head estimated the distance to an object, unseen from the deck, to be 20 miles, I concluded at once that it was 24 or 25 miles.
"From the shore the eye recognizes a marked foreground (there always being a very decided one, even on a sand-beach of the edge of the breakers or water), which it cannot ignore, and from which it at once begins to estimate distances. The eye being filled with this 'foreground' takes cognizance but indifferently of the object itself, as well as tho distance intervening between the outer edge of the foreground and the object, as shown thus:

A being the elevation of eye above the water, D the edge of the breakers and foreground, B limit of foreground, and C the position of object. The augle which the eye instinctively measures is D A.B, and this is equal to DA C, be the object wherever it may on the horizon. Then the distance $B O$ is measured only by the greater or less distinctness of the object, there being nothing with which to compare it. From the want of a foreground, if A was the mast-head of a vessel tho distance the eye would endeavor to measure is BC , almost entirely ignoring A D B, and
in addition the shoro being much more prominent to the eye from the vessel, than the vessel from tho shore.
"If the eye on the shore is placed where it can take in a long stretch of coast, it will nearly always underestimate the distance of a vessel from it.
"Of course, the eupidity of commerce sways the judgments of the best people in the direction of their own interests, but Ig give the results of my own experience for what they are worth.
"Tho matters stated in your letter also have an effect in the general estimate of a distance over tho water from the land to a vessel or from a vessel to the land.
"My conclusion is that as a geveral rule the distances of the land from vessels and the distances of vessels from the land are usually uuderes. timated. In one case the eye ignores the noarer part of the distance, and in the other the more distant part.
"In this I am confirmed by the experience and opiniou of Commander L. P. Lall, U. S. N., Iydrographic Inspector, United States Coast Survey."

The season of fishing, too, is also a subject of legislation. The Government of Norway determines with great care the time when the nets and long-lines shall be set, the introduction of the latter into the water not being pormitted at the Lofoden lslands tisheries before 12 o'elock m ., their lifting being imperative before noon of the following day. France, England, and other nations have nade regulations in regard to the size of the mesh, specifying the minimum for the beam-trawl and for the drift-net, the object being to secure to tho young aud unmarketable fish a chanco to escape. This precaution, however, is of little value in the case of the beam-trawl, where many fish are taken which would have passed through the meshes of an ordinary net without difticulty.

The distance apart of nets, so as to prevent interference, has also been provided for ; as also the restriction of particular kinds of fishing to certain grounds, in Great Britain trawling being sometimes limited to certain areas, to prevent interference in the use of the long-lines.

Nearly all nations have regulations in regard to the boats and vessols to be used, among other's requiring them to be numbered in certain ways, so that they may be moro easily designated and identified in the event of their attempting to evade the law.

The preparation of fish for the market has also been the subject of legislation. Many nations which pay no particular regard to the times, places, and circumstances of the sea fisheries, have considered it expedient to secure the interest of the purchaser by regulating and restricting the mode of preparation and of packing, this being the case, perhaps, more especially in Holland and the Scandinavian countries than elsewhere. The herring fishery in Holland was formerly kept, in all of its stages, under the control of the Government, although of later years this is more particularly confined to the paciing and inspection. In

Norway, however, the Goverument requires that the herring which are found to have in their stomachs certain kinds of food shall be keptalive, inclosed in the nets until this food is absorbed, as otherwise the fish cannot be preserved for any length of time, thereby affecting their quality as food. Still more generally is there an inspection of fish by the State after they have been put up, the packages being marked by Government officials, who are supposed to be beyond danger of any corrupt influence in making the distinctions as to quality.

There is, perhaps, no nation in the world where there are fewer regulations and restrictions in regard to the sea fisheries than in the United States, no response haring been made either by the General Government or by the State to the numerous appeals to take the subject under their jurisdiction, and to prevent what is claimed to be improper methods, or unseasonable times of capturing fish, or undesirable modes of preserving them.

There are, however, in several of the States, especially of New Eng. land, State inspectors of fish who brand the packages, in accordance with the quality of the fish, these marks guiding the purchaser in his selection and in the price to be paid by him.

Although the propriety of maintaining such restrictions has been questioned, on the ground that all these matters should be subject to the general law of demand and supply, and to individual reputation, yet it is not likely that any change will be made. While it is comparatively easy in many cases to enforce regulations in regard to fishing and the treatment of fish near the shores and under the jurisdiction and supervision of officers, it becomes a much more diflicult matter when the fishing is presecuted at a distance, as in this country on the George's Bank, the Grand Bank, \&c. It is, of course, possible to send Government cruisers to accompany the fishing fleets, to see that the fishermen obey the laws in this matter, and this is done to some extent by the Norwegian, Dutch, English, and French Governments, the two latter maintaining a sea police, more to prevent encroachments by the opposite uation upon the fishing.grounds, or injury or outrage upon their own vessels. Great Britain, too, has during some years maintained a certain number of armed ressels within her dominions in North America to prevent the encroachments of the American and French fishermen. The United States, however, has never had any provision of this kind, but has allowed the sea fisheries to regulate themselves entirely. Some of the States supply armed protection to their oyster fisheries, both Maryland and Virginia having now, or until quite recently, such a provision.

The propriety of international agreement in regard to certain modes of fishing has not unfrequently been urged, and more particularly it has been proposed that the United States and Great Britain have an agreement to prohibit the use of the trawl or long-line on the Banks of Newfoundland and in other portions of the high seas. Apart, however, from
the questionable propriety of interfering with this mode of fishing, there would be the consideration of enforcing such rules, as it could ouly be done by means of a fleet of Government vessels of both nations, stationed in different portions of the high seas, involving, of course, the danger of irritation at any attempt at enforcement, especially by the vessel of the opposite nationality.

Again, even if this could be effected and enforced by the Livited States and Great Britain in respect to their own subjects, there is noprobability that other nations would enter the convention or consider themselves bound by its provisious; and without the co,operation of armed vessels of other nationalities, any attempt at regulating the fishermen of the same would be resented by their respective Governments, and danger of war ensue. If there were no interference with the subjects of other Governments, the effect would be simply to give them the monopoly of capture by the probibited apparatus, or during the prohibited season to other parties, and thus a season's loss would be inflicted upou the subjects of the consenting nations. It might also be a question how far any Government could pretend to interfere with the fishing operations of its own subjects on the high seas; provided, of course, these did not involve any crimiual action, or such as is, by common consent, allowed to be a matter of jurisdiction. Of course, the vessels and their catch might be coutrolled on their entering port; but there would seem to be nothing to prevent the taking of the tish to a foreign nation. It is for these and other reasons, that need not here be detailed, that most careful consideration should be given to any proposition looking towards the restriction or regulation in any way of the sea fisheries of the United States, whatever may be the practice and policy of other nations.

There is, however, a plea for the interference of the Government, in certain cases, in regard to the fisheries that belong to the rivers, or are near the shore, and thereby most specially related to the adjacent commonwealth. Nearly all civilized nations have looked with more or less care after their interior or river fisheries; and quite a number of the States of the American Union have their own special enactments on this subject. This refers more generally to the times when fishing may bo authorized; the character of the apparatus, whethor lines or nets; but more particularly to the protection of the fish during the spawning season, especially of the trout and salmon. In States possessing shad and alewife tisheries there is usually a definite date when the fish are supposed to have reached their spawning beds or the condition of spawning, and at that time all fishing is interrupted. This varies according to latitude, being earlier in the South aud later in the North.

Again, the question of the pollation of rivers is one that comes up for consideration, in many cases the introduction of sawdust or the refuse from gas or manufacturing establishments being prohibited or controlled. Other States, again, require from the proprietors of artifcial dams the introduction of sone device by which shad, saluon, aud
other fish may ascend, and thus be enabled to reach their spawninggrounds. There is also an inspection in the markets, in nearly all the larger cities, of the quality of fresh fish, so as to prevent the introduction for sale of any that are not considered wholesome and fit for food. All these provisionsare wise and beneticent, and tend, when judiciously and properly enforced, to protect the tish against decrease and to secure their multiplication, as well as to benefit the purchaser. If the anadromous fish are prevented from aceess to their spawning-beds, it is within the power of a single person to destroy fisheries of immense value and to deprive a large portion of the community of a wholesome food and an important means of support.

These conditions of protection and regulation, while they cannot be said to apply at all to the deep-sea fisheries, have comparatively litto reference to the inshore sea fisheries. But even here we readily imagine that State action, if not that of the General Govermmeut, is desirable. The most important point in this connection is the protection of the spawning-grounds (when they can be detinitely ascertained) from pollution by the introduction of noxions substances and from the disturbing intluences of fishing or other operations. A notable instance of the advantage of regulation in this case is to be found in the matter of the herring fisheries of the Bay of Fundy. The spawning-ground for this fish is remarkably limited in extont, being for the most part situated immediately around the southern extremity of Grand Manan, or what is known as the Southern Head. Here, during the months of June, July, and August the herring resortin immense numbers to deposit their eggs; and limited as they appear to be in distribution at that time, the great number of vessels that followed them to that region took immense quantities of spawning fish, and apparently broke up the sehools and prevented them from depositing their eggs under proper condjtions. The result appeared, at least, to be a very great diminution of the fish, and the threatening of their practical extermination. Under these circumstances the Province of New Brunswick passed a law estabLishing the months of June (?), July, and August as a close time, during which no fishing was to be allowed, and appointed an officer to enforce the regulation. For several years many attempts were made to violate the law, with more or less success; but gradually the power of the Government, and perhaps an improved public sentiment, succeeded in breaking up this encroachment, and of late years the protection of these spawning grounds has involved but little difficulty. It would appear, as the result of this action, that shortly after the enactment the fish began to increase in number, and they are now said to be as abundant in the Bay of Fundy and its viciuity as thoy were ever known to be since the endiest history of the conntry. It is of course barely possible that there is some fallacy in this conchasion, and that it was one of these alternations of decrease that invoked the legislation in question, and that the subsequent increase would have taken place, even if the practice of fishing duriug the spawning season had been continued.

All the Europaan herring fisheries, especially the most important, as those of Norway and Great Britain, are without restriction as to time of eatch, and indeed it is when the herring are fullest of ripe roe that they are the nost esteemed. At the Magdalen Islands the herring are taken principally during their spawuing season without any restriction or suggestion of diminution. The question, therefore, as to the actual importance of the measure referred to may be considered as unsettled, although I can hardly believe that the provision in regard to the herring fisheries at Grand Manan has not had a beneficial intluence. It will not, however, do to prohibit the catcl of herring when they are filled with roe, since it is when thoy are in this condition that they are most highly prized and most marketable, the roe of the sea herring being universally considered a very great delicacy.
There are, however, some tish on the coast of the United States for whose protection during the spawning season thave already urged in a previous report that some provision of legistation is desirable. I refer more particularly to certain fish on the south side of New England, especially the scup, sea bass, and the tantog. These lish appear to come to the const in well defined bands of immense numbers, at a particular season, following generally a definite line of migration and proceeding to their spawning-grounds, where the operation of reproductiou is conducted on an enormons scale, in this respect closely resembling the anadromous fish, such as the salmon, shad, and alewife, and apparently almost equally susceptible to any interference by hmman agencies. Legislation is expedient here, too, both for the protertion of the fish and of the ishermen themselves, since atter a few weoks' fishing the glut is so enormous as to bring down the price to a mere nothing, involing the necessity of wasting immense numbers of the catch, the best use to which they can be put being their couversion into manure.

In this case, however, I simply suggested an intermission of capture from Friday night until Monday morning, or if this be too long a period, from Saturday night until Monday morning, so as to secure the escape of a sutficient number of the school and an opportunity to deposit their oggs, this weekly intermission to be continued only for the limited period during which these particular fish are on the move. They move in so close and solid bodies and in so limited an extent that it is by no means impossible to imagine the capture of the greater part of the school and the cutting off of the rest of it from reaching a suitable Spawning gromed, or disturbing the individuals so that their eggs are not deposited at the proper time or under proper conditions.

The other fish taken during the same period, especially the mackerel and menhaden, are not affected, as it is only a portion of the migrating bands, aud that which happens to be nearest the shore, which is taken under such circumstances, enough possibly passing outside to maintain the supply" of eggs and young tish.

As to the conclusions att which 1 arrived in 1871 in regard to the pro-
priety of a partial close time, I still maintain the same opinion, and am fully satisfied that a fair trial for four years would show such a positive increase in the number of these most important and valuable fish as to satisfy the most skeptical. Unfortunately, in this particular case concurrent legislation of two States is considered desirable, since the migrations and spawning-grounds are partly in Rhode Island and partly in Massachusetts, tbe fish for the most part passing through the waters of the first-mentioned State before they reach those of the latter. So far, neither State has shown a willingness to legislate either separately or conjointly, and the abundance of the fish referred to will probably be determined by the number of the bluefish that visit the same waters. I think, however, that if protected in some way there would be a decided increase without reference to the presence of this wolf of the seas.

I have found a decided unanimity of opinion among fishermen as to the expediency of such a close time, even among those who do not consider it necessary, in order to maintain the supply of tish, the prevention of a glat of the market, and the securing of time for the proper repair of the nets, and for the needed attention to home business, being important and well-accepted arguments with all classes concerned for the proposed close time.

In many cases it would seem that fish, after they have deposited their eggs, become sickly and unfit for food, and no one cau examine a male salmon under these circumstances and appreciate the alteration in appearance and condition without realizing the impropriety of using it as an article of food. For this reason a close time is proper, not only to secure an opportunity for undisturbed spawning by the fish, but also to prevent the consumption of unsuitable fish.

In the New England States the alewife fisheries were formerly, and are still in some degree, takeu under the protection of the towas, the catch within the jurisdiction of each town being considered as belonging to its inhabitants, to be distribated pro rata amoug them, or else sold for the common benefit. Sometimes each individual was authorized to take a certain number of fish; at others othicers were ap. pointed to capture them and apportion them suitably. Regulations were made to secure free access from the sea of the fish to the pounds or other spawning grounds, and for the escape to the sea again of the fish, both young and old, during the summer.

How far it will be desirable, now or hereafter, to regulate the size of the meshes of nets used in our inshore fisheries it is hardly necessary to take into consideration at present, for the reasons already mentioned.

There aro two methods by which this can bo accomplished: (1) By the achual transfer of fishes from one region of the globe to another, or one part of the coast to another; (3) by the artificial proparation aud multiplication of tish tomed in a particulat region.

Many instances are on record of the successful transportation of fishes, both fresh and salt water species, to localities previously uninhabited by then, and very extended efforts are now being made, promising the fullest measure of success, to carry the shad and the eel of the Atlantic coast to the Mississippi Valley and the Pacific slope, as well as the tautog, the lobster, and the oyster, and to transfer the California salmon and trout to the Mississippi Valley and the eastern coast of the United States, the carp from Germany to America, \&c. Less has been done in this direction with the sea fishes, although even here there is something to record. It is said that the Scarus, a well-known labroid fish of the Agean Sea, was brought, in the time of the Emperor Claudins, to the coast of Italy and plauted near the mouth of the Tiber. They were protected from capture for five years, at the end of which time they swarmed in enormous abundance and constituted an important element in the Roman fisheries, being considered one of the greatest delicacies. (Roport U. S. F. C., III, p. 10). In the Uuited States the scup is said to have been carried in a smack from Vineyard Sound to Cape Cod Bay, and that a similar experiment was made in a trauster of the tantog both to Massachusetts Bay and the South Carolina coast.

The attention paid by the carly Romans to securing an ample supply of fisth is well understood, as also the enormous expense of their opera. tions in the construction and maintenance of fish ponds, \&c. Among the most highly esteemed species were the red mullet (mallus), and the sea eel, the latter being kept in tanks constructed for the purpose, and fed, in some cases, it is said, with the flesh of slaves, as imparting an added delicacy. The introduction of fish from distant points was there practiced to a greater or less extent.
The limitations of temperature, however, and appropriate food, will probably determine what may be accomplished in the way of exchanges between the northern and southern coasts of the United States; and there are a few species in European waters the introduction of which it will be well to attempt, especially if brought into waters of the same general physical conditions. Among such desiderata may be reckoned more especially the turbot aud sole, which constitute the most important element in the beam-trawl fisheries, and which, as already explained, always command a high price. Thero seems no good reason Why these fish might not become, in a few years, after a successful transfer of a few individuals, as abundant as they are on the European coasts. Au ample supply of suitable food and of the necessary external conditions could be assured to the new-comers. The experiment would perhaps succeed best on the eastern coast of Massachusetts, Where the conditions are quite similar to those of their native habitat. If they were found to thrive in the region south of Cape Cod, an enormous fishery might in time be assured in viow of the adaptation of the waters to successful beam-trawling.
As a return to Europe for the contribution of the turbot and sole
S. Mis. $90-11$
the alewife migit be offered, a fish which should thrive in all the rivers, ponds, and lagoons connected with the sea, whether in the warmer or colder portions; and as they move in well-defined bands of vast numbers of individuals, within narrow limits, it would add greatly to the food resources of the country. A very considerable expenditure of money on the part of European Governments, especially that of Germany, where the ordinary sea fisheries are restricted, would probably be amply justified in a few years, the fish being by far more valuable and worthy attention than the salmon and trout, and perhaps not excepting the shad.

From present information on the subject there are no other European sea fish, excepting the turbot and the sole, that would be especially important in America; possibly the fresh-water sterlet of Russia and the hucho salmon of the Danube might be introduced to adrantage. This last-mentioned species remains thronghout the year in the Danune River and its tributaries, and coustitutes and excellent article of food. It might, perhaps, be quite advantageously planted in the Mississippi, where it would find an ample supply of the poorer sorts of fish, for the most part not considered worth ansthing for market purposes.

The artificial propagation of sea fishes has not yet been attempted on any experimental seale, although there seems to be no particular reasou why a vast increase cannot be accomplished in this direction, as with tho anadromous or interior species. There is no question as to our ability to multiply salmon and shad to any desired extent, and the samo general treatment miglit readily be applied to many of our coast fishes. The principal difficulty in the way would be the construction of the proper establishments, although the recent experiments of the U.S. Fish Commission, and that of Maryland, point out a reasonable method of accomplishing this, as will be referred to hereafter. It would be quite impossible to undertake to feed the young fish when hatched, as is cone with trout; but the methods used for shad and in most cases for salmon batching, could be made use of, namely, that of introducing the young fish into the water and leaving them to their own resources so soon as the yolk-bag is absorbed and the fish is able to feed itself.

According to reliable estimates, not more than 1 egg in 200 hatched naturally in the waters produces a fish capable of feeding itself, this representing by far the greatest expectancy of destruction in the number of eggs laid by the female.

On the other hand; artificial impregnation and propagation should gire us not less than 175 , or even more jet, of the 200 , a vast difference, which could not fail to tell in the result. In other words, the proportional result of artificial hatching is 175 fold that by the natural spawning of the same number of fish. The young, when ready for introduction into the water, could readily be placed in sheltered bays and coves, and possibly fonced off for a time from the intrusion of larger fish, and kept there until they liad attained a sufficient sizo to protect themsel res to a considerable degree.

This experiment of artificial hatching could be adopted very readily on the south coast of New England, in connection with fisheries of scup, tautog, and sea bass, especially as all these fish are greatly in demand and are taken in great numbers in the fish pounds and traps of the southern coast during the months of April, May, June, aud July. Tho sea bass especially spawn very largely during the latter period. An ample supply of scup could easily be obtained during the spawning season, aud if necessary the tautog and sea bass could be kept in pens until ripe. These fish aro very frequently kept for weeks, or even months, waiting the call of the market, and as they are very hardy, it would not injure them at all for market purposes to strip them of their spawn at the proper time. The eggs of this fish probably hateh out very quickly; in the tautog, indeed, an embryonic development of the egg is said to take place before it is laid, so that not unfrequently some of the eggs squeezed out into a bucket of water will hatch out ahnost immediately. In an experiment of artiticial impregnation and hatching of the sea bass, prosecuted at Noank, Conn., in 1874, there was reason to conclude that the period of development did not exceed one week.

The pound-nets frequently take great numbers of spawning mackerel, which might also be manipulated; and there is no reason why the sheepshead might not bo treated in a similar manner, nor, indeed, why the provess might not be extended to such species as the cod. The striped bass is a.fish that promises amplo success in such an experimeut as soon as we can succeed in taling it iu sufficient numbers. At least some spawning fish are found in the rivers at the same time with the shad and herring; whether simply in pursuit of this prey or in search of a spawning.ground is not yet ascertained. In 1873 the parties of the U.S. Fish Commission engaged in hatching shad in the Roanoke Iiver succeeded in taking several ripe striped bass, from one of which 100,000 eggs were successfully taken and hatched. The eggs are sualler than those of the shad, althongh similar to them in being non-adhesive and in being hatched out in a short time.

The principal difficulty in regard to the multiplication of the sea fish by artificial neans is in the arrangements necessary for the care and preparation of the egg. The ordinary hatching establishments used for trout and salmon are not available since salt water is required for the purpose. It is true that this might be pumped up by means of a wind-mill or otherwise into tanks, and allowed to trickle into tho hatehing troughs, and thus produce the necessary current. Even if this could be done, however, the limits of space and the comparatively small number of fish that could be obtained will probably reuder it expedient to adopt some other method.

The first suggestion would bo the employment of the floating-box, as Constructed by Seth Green, E. A. Brackett, and others, and used in the hatching of shad. A sorious difficulty, however, is in the danger of

164

having them upset and the contents spilled out, or else greatly injared. by the action of the wares, experiments made in this direction nearly always resulting disastrously.

Much more wholesale and efficient methods of accomplishing this important object are, however, at our command, as suggested by the success of experiments prosecuted during the spring of 1877 at Havre de Grace in hatching eggs of shad on a large scale, in conncetion with the operations of the U.S. Fish Commission and of the Maryland commission. Mr. T. B. Ferguson, the efficient and accomplished Maryland commissioner of fisheries, has derised a method by which the hatel. ing of shad can be prosecuted in tidal waters and by which not only a great number of eggs can be hatehed in a very small space, but also the danger of losing the eggs in consequence of the upsetting of the lhatching boxes in stormy weather can be prevented. This device consists in a series of buckets, with wire gauze bottoms, which are alternately depressed and raised by means of anaxis rotated by steam-power. The buckets dip into the water, the eggs floating in them, and the gentle motion of elevation and depression through the space of five or ten inches, the extent and rapidity of which can be varied at pleasure, gives the eggs that agitation and the continual contact with a new supply of water necessary to their proper condition. Nine million eggs wero thus hatched with a much less expenditure of labor than heretofore; and instead of some hundreds of floating boxes being called into play, six to twelve buckets, worked along the edge of a lloating scow, answered all the purpose.

Still other methods can be used, possibly in some cases to even greater advantage, namely, the placing of the eggs in funnel-shaped vessels, with a stream of salt water pumped up through the bottom, giving the eggs a constant agitation. A wire-ganze screen prevents the eggs from dropping into the mouth of the funnel, and the constant overflow of the water carries off all the dead offal matter. It would, of course, require a considerable expenditure to start such an establishment. A sinall engine, of four or five horse-power, with the necessary accompaniments, however, would probably be large enough. With such an apparatas in conncetion with some of the great fisheries, like those in Seconnet River at Rhode Island, or at Menemsha Right on Martha's Vineyard, results of incalculable value might and probably would in time be obtained. Instead of counting the yield of the fisherios by the hundreds of thousands, millions could be estimated for, and it wonld not be difficult to guarantee the propagation of one huudred millions of joung fish as the result of a single season's work. These, when the yolk-bag was absorbed, could be seattered or sown along the coast in different localities so as to increase the opportunity of finding suitable food and of escaping the ravages of their enemies.
3.-Lequalizing the sulply on fisines.

A third subdivision of the subject of maintaining the supply of sea fish along the coast, and of increasing it, may now be considered. The connection between the fresh-water or rather the anadromous fisheries of our coast and the sea fisheries has been dwelt upon in previous re. ports, and while not assenting to the possibility of diminishing the supply of sea fish by ordinary human agencies, I have been satisfied of the disappearance of certain fish from our shores for the want of suitable food, and their migration elsewhere. Of the possibility of attracting fish from great distances by suitable food we have numerous instances. Thus the mackerel fishormen have been in the habit of throwing chopped bait overboard, which was carried a distance, possibly of miles, by the tide. When the school of mackerel strikes this stream of food it follows it up an indefinite distance and comes in immediate proximity of the source of supply, where the fishes can be captured by the look or the net. Where many vessels are engraged in this business, it is said that the schools of mackerel are brought from a distance of many miles and held in the vicinity, against their ordinary instinct of migration. On the occasion, some years ago, of the lamontable falling off in the autumn mackerel fishery on the coast of Nova Scotia, involving considerable destitution and distress among the fishermen, the cause was believed to be in the immense amount of mackerel bait thrown orerboard in the Bay of Saint Lawrence by the mackerel smacks, which kept the fish in the bay a long time beyond their usual period of learing it, so that when they once commenced their autumnal inigration they passed directly out to sea, without stopping, as was their custom, in the shores.

The effect of gurry, too, on fishing.grounds may probably be explained by the attractions of this stream of animal matter carried by the tide over a distance of many miles to the dogrish, sharks, and other predaceous species, these following it up and concentrating in the vicinity, where they drive away the food-fishes which form the more special subject of the attention of the fishermen. A similar instance is found in connection with the salmon in the Gulf of Saint Lawrence, where the fish are taken in quantities for salting, smoking, or otleer modes of preparation. Here immense quantities of offal are thrown into the water, where, however, instead of attracting the destructive fishes, has the effect to bring in such species as the cod and render them capable of capture. At one time this practice of throwing offal overboard was considered very objectionable, and an enactment was passed requiring it to be brought on shore and buried or utilized there in some manner. As the result of the diminution of this supply of animal matter tho fislues abandoned the ground entirely, and great complaint was made as to the absence of the food-fishes, even of the salmon itself; aud subsequently a compromise was effected by which this matter was placed in perforated boxes and the softer portion allowed to pass out and wash away. This, in connection with the great numbers of maggots of the blue-bottle fly
which also passed into the water, in a short time restored the previous ample abundance of the fishes. In view, therefore, of these circumstances we can readily understand how much the movements of the sea fish along the coast may be influenced by the enormous schools of salmon, mackerel, shad, and alewives, the adults coming in during spring and summer and returning with the young at other seasons of the year, and upon which they prey to a greater or less extent. It is now the general impression that the anadromous fishes just mentioned pass the period of their growtl in the sea at no great distance from the mouth of the river in which they were hatched, possibly extending their morements outward 5 to 50 or even 100 miles, but still occupying a certain relation to the rivers in question. A proof of this generalization is found in the fact that in a cruise made by Mr. G. Brown Goode in a mackerel vessel off the coast of Maine, in 1873 , Joung shad, probably one or two sears old, as well as alewises, were found in considerable proportion among the mackerel taken in nets 25 to 30 miles off the shore, and he was assured by the fishermen that this was a very common occurrence. Such fish are not brought in, as they are not considered inarketable, and are generally thrown into the water when taken from the nets, where they become the prey of other fishes.

It is only necessary to bear in mind the enormous mass of these anadromous fish one hundred years ago, and even later, to appreciate the influence they can exert in attracting fish from the outer waters to the shores and keeping them there for a considerable part of the year, and the lamentable result of the destruction of this source of supply, not only on its own account but also for its influence upon the sea fish. It is well known that while these anadromous fish were present there was an ample supply of cod, haddock, halibut, hake, and various other species close in to the shore. On the whole New England coast, as well as in many parts of the Dominion of Canada, the fisherman, in an ordinary open boat, could go out and catch a full fare at a short distance from the land, both for use as fresh fish and for purposes of commerce, and that it was not until this source of supply was cut off that it became necessary to resort, to so great an extent, to distant parts of the sea. We may thorefore hope, as the result of methods now being practiced and their future extension, that the old state of things will be renewed to our great advantage.

As an illiastration, both of the loss to our own industries by the destruction of the supply of anadromous fishes, and of the amount of attraction that would be furnished from a single river to the incoming fishes and the retention on the coast of the outside fishes, I may again refer to the quotation on page 50 from Martiu's Gazetteer of Virginia. Omitting here any considerations as to the enormous value of this fisbery, but bearing in mind that this was only one of at least forty rivers where an almost equal catch might be looked for, let us proceed to consider the amount of food and bait available for the sea fish, re-
sulting from the herring alone. For the $750,000,000$ actually captured we may suppose that this was not more than one-fourth of the total number in the river during the season, which would give $3,000,000,000$ for the Potomac River only. From Florida to the Bay of Fundy, without any reference to Dominion waters, we may safely assume the number to be atleast one hundred fold, a calculation probably far within bounds, five times that amount and more, possibly, being the more reasonable. We have, therefore, $300,000,000,000$, representing a weight of not less than $200,000,000,000$ pounds. The progeny of these herring in their various stages of growth from the first year to the fourth, may certainly be estimated at twice the aggregate weight of the parents, or $400,000,000,000$ pounds, giving us $600,000,000,000$ pounds of tish along our coast of this one species. It may safely bo assumed that at present not more than one-tenth of 1 per cent. of these fish now inhabit the waters specified, or only $600,000,000$.

I have made no reference to the adult and young of the shad, the tailor herring, the gizzard shad, the striped bass, the various Cyprinida, and other fishes running in from the sea at about the same time with the other fish, and tending to swell the aggregate in the waters. But I think it will be readily understood what a loss we havo experienced, not only in the way of direct food, but in the inducements to other fishes to come within our reach; and in the Dominion in the numbers of anadromous fish.

It is, therefore, very encouraging to believe that, even though from the changes in the physical condition of the land, water, artificial obstructions, Sic., we may not look for the old-time abundance, we mav yet hope for a very cousiderable incroase; even if we get back to onefourth the original supply, we may well bo satisfied.

A comparison of the statistics of the number of shand and alewives caught in the Potomac River in a single season of six weeks' time, and salted, to the extent of 995,00 barrels,* with those of the sea herring in any part of the world, will show the insignificance of the latter; while the fishery on the Potomac during the period referred to equaled the total yield of the Scottish salmon fisheries in 1873, prosecuted thronghout the year, and employing 15,000 boats and $45,59 \pm$ men, aud equaled nearly twice the entire number of birrels of the sea herring put up in the Dominion of Cauada in 1876.

[^31]
V.-POLITICAL CONSIDERATIONS.

MEMORANDUM OF POINTS ATTEMPTED TO BE ESTABLISHED IN THE CASE FOR GREAT BRITAIN, BY GEORGE M'KENZIE $\triangle N D$ OTHERS.

Mackerel.-Mackerel keep close to the shore. All mackerel fishing, therefore, must be near shore, within the three-mile line.

The proportion of mackerel taken outside this line, usually one-third or less of the catch.

The American average catch of fish, six or seven hundred barrels.
Shrimps and small fry are the food of the mackerel. Not found out at sea, but close inshore.

Americans pay no attention to the three-milo line, after the abroga. tion of the reciprocity treaty, keeping outside only when cruisers were in sight, and returning when they went away.

The universal testimony of the Americans is that unless permitted to fish within the three-mile line, it would not pay to come into the bay.

According to their own statements two-thirds and even more of their catch are always taken within the three-mile line.

Seining for mackerel will soon clean out the fislucries. of the Gulf of Saint Lawrence.

The presence of Δ mericans is injurious to the body of the fishermen of the Dominion.

Would be willing to pay the whole duty imposed by the United States, and even more, if Americans could be kept entirely outside of the threemile line; the Dominion catch would be much greater.

Gurry.-Chrowing gurry overboard drives the fish away. This prac. tice is exclusively American. Dominion fishermen clean their fish on shore.

Transhipping is a benefit to the Americans, euabling them to make more trips in the same time.

No Dominion fisherman ever goes to American waters in a British vessel to fish. Reason (according to McKenzie, p. 121), the Americans would run them off.

- Americans tranship at Charlottetown and the Gut of Canso.

Codjish (Thomas Bennet, Newfoundland, p. 134).-The cod fishery on the coast of Newfoundland is entirely inshere.

Americans obtained bait illegally on the coast of Newfoundland before the Washington treaty.

Newfoundland has reaped no benefit from the Washington treaty; the exports to the United States aro lower than when there was a heavy duty on Newfoandland products.

The annount exported to the United States is too trilling to have any appreciable effect on the commerce of Newfoundland.

Americans fishing off the Newfoundland banks derive a great profit by selling the small fish, under 22 inches, in the Newfoundland markets.

Thinks the remission of duty by Newfoundland on these far larger than the remission on all the products sent by Newfoundland to the United States. The remission of duties by the United States on Newfoundland products of late years is only $\$ 49,000$, while the amount remitted by Newfoundland is $\$ 75,000$.

Neverknew a Newfoundland fisherman to go to the coast of the United States to fish.

Blank page retained for pagination

$\triangle P P E N D I X$.

The foregoing paper having been prepared for use in presenting the case of the Uuited States beforo the Halifax Commission, it seems desirable to appond the testimony of the author as given before that Commission on October 18 and 19, 1877.
[Extractod from "Docnmonts and Droceedings of the Malifax Commission, 1877, undor the treaty of Washington of May 8,1871 ." 1 p . 2795-2816 and 2821-2849.]

Prof, Spencer F. Bamed, assistant secrotary of the Smithsonian Institution, Washington, and Unitod States Commissioner of Fish and Fishories, called on behalf of the Government of tho United States, sworn, and examined.

By Mr. Dana:

Question. It is not necessary, of courso, to ask this witnoss any duestions to show lis position or general aegnaintance with and knowledre of the subject. I would like, however, to have you stato, if you please, as I am going to give, by and by, some of the results of your inquiries-I would like to have you state particularly how you have obtained, aud from what sources you lave obtainod, information respecting the fishories of late, besides what you have stridied in books.-Answer. I have been in the habit for five years past of spending from two to three months on the sea-coast for the purpose of prosecuting inquiries into the condition of the fisheries, to determino whether, as alloged, the Anerican coast fisherios have boon decroasing, and to ascertain what steps, if any, might be adopted to remody the diffioulty, if found. I have, in pursuance of that work, established stations in successive yoars at Lastport, Portland, Salom, Wood's Moll, on the south coast of Now England, and at Noank. And I have had with me a force of experts, naturalists, and gentlemen iuterested in the biology of fishes, and hare endeavored to gathor such iuformation as I could from my own porsonal observation aud that of my colleagues, as woll as by inquiries from fishermen and others whom I have mot.
Q. How far have you prosecuted that personal incuiry of tho fishermon and porsons engaged in tho fisheries i-A. I havo, by the help of a phonographic socrotary, takonthe testimony of many hundrods of fishormon along the coast in reforence principally to questions in the natural history of fishes. The facts as to the statisties of the fieleries lave come ont incidontally, and wore not the original object of my inquiry. I was interested more in determining what kinds of fish wo had, what natural, physical, or moral causes influoncon them, and what would probably be the result of these causes, and how any evil influencos could bo remedied.
Q. Then have you employed fishermen to examine and make inquiries $:-\mathrm{A}$. Ihave had in my employ several men, some for the whole yoar, or several years in succession, and others for a part of tho jear, who havo takon a sories of printed questions that I prepared in regard to the natural history of fishes, and pursued these inquirios in rogions where I myself could not go conveniently, especially in the winter senson or in the early spring.
Q. Then you issued some printed ciroulars i-A. Yos; a great many thousand blanke, inviting responses, and I have had a reasonablo percentage of returns, of which I

172 . REPORT OF COMMISSIONER OF FISH AND FISHERIES.

consider a fair porcentage moro or less reliablis. But, as a genoral rule, as everybody knows, fishermen know less about fish than they do abont anything else. That is to say, they know how to catch fish and the practical details of their business, but of their natural history they know very little. About such questions as the time of their migration, the rate of their growth, their spawning scasons, and other matters only here and there will you find a man who has observed and noted tho facts closely enough to be able to answer your questions.
Q. You employod some such persons ?-A. I have ono man ospecially, a skilled fisherman, resident on the south coast of Now England, and whom I employ to visit the different fishing stations and gather statistics.
Q. Have you any of those circulars about youp-A. I have one. [Circular produced.
Q. [Readiug circular.] There are something like nearly ninoty differont questions. Under owe head you require the man's name, \&c. Then as to the distribution of fishes: what kind of fish ho has in his neighborhood, their abundance, migrations, movements, food, relationshins, reproduction, artificial culture, diseases, pursuits, capture, their economical value, application, \&c.-A. That circular was issued in 1871. I have issued a great many editions of it. Then I have another circular which refers more particularly to the coast and river fisheries. I have only issued this within the present year.

By Mon. Mr. KellogG:

Q. Was that about tho time, Professor $f-A$. Yes; the first thing I did was to distribute these questions in ordor to get as much information as I could. I have some eight or ten special circulars, but these are the ones I have most used. I have issued special circulars for the cod and mackerel and menhaden, but of these I have not copies with me.

By Mr. Dana:

Q. Here [referring to circular spoken of as issued during the present fear] you have the home fisheries, the river fisheries; they don't come directly under our cog-nizance.-A. These are the coast and river fisheries particularly.
Q. Not the deep sea $?-$ A. Only incidentally. They are sea-const fish, but not outside. There is a schedule of the principal fish marketed in the Boston markot. My object was to get the number of pounds of these fish taken in the vicinity of the porson to whom the circular was given.
Q. You think these have been pretty fully answered $9-A$. I have a great many answers.
Q. And from your information, which you gather as you go about, from what is sent to you by the return of these circulars, and from the persons employed by you, it has beon jour business to make yourself fully acquainted with the subject $9-\mathrm{A}$. Yes; I have, of course, used what published material I have fond. I found a great deal of value iu the reports of the Canadian fisheries. What littlo I know of the fisherics in Canada I have learned from these documents.
Q. Wherever there are documente published by the Uuited Staten you have them 9 A. Yes; I have them; aud I liave Europeau documents, English, Norwegian, \&c. i beliove I have overything.
Q. I will question you first about collish. I want you to state what is your opinion about the cod as a fisb for all sorts of commercial purposes, as compared with others.-A. I think the cod stands at the head of fish at the present day. There is no fish that furnishos food to so many people, the production of which is of so much importance, or which is applied to such a variety of purposes. The commercinl yield is very great, and its capture is the unain occupation of a large portion of the inlabitants of the sea-coast regiou of the Northern Hemisphere.
Q. Besides as an article of food, either fresh or salted, what other purposes does it serve i-A. Well, it is applied to a great many purposes by different pations. It is
used, of course, as food in the different modes of preparation. Particular parts are used as food, other than the muscles. The sounds are used as food, convorted into gelatine, and in the form of isinglass. They servo a groat variety of purposes. The roes are used as food, and bait for fish. The skin is tauned for loather and clothing. A great many nations dress very largely in the skins of cod and salmon. And the fish is dried and used as food for cattlo in Iceland and Norway. The bones are used as fuel in some places; and, of course, the oil is used for medicine, and for the varions purposes to which animal oils are applied. Thers is scarcoly aus part that is not valuable. The offal, in Norway, is converted into a valuable manure. Every part is called into play.
Q. The bones i-A. They are burned as fuel, as well as eaton by dogs, or converted into fertilizers.
Q. It is not, probably, applied in the United States to all the uses you have specified 9-A. No; I don't think the skin is used as clothing in the Unitod Statos, but it makes an adnirable leather for shoes, and makes very nice slippers. Wo have in Wabhington quite a large number of articles made from the skins, as usod in Alaska, the Aleutian Islands, and in Siberia.
Q. You think they can be used 1-A. I have no doubt in the course of yeare the skin will be utilized very largely. In fact, I may remark, that at the late exhibition at the Westminster Aquarium, among the special articles oxhibited were shoes mado from leather of the codfish, furnishod by an exhibitor from Christiauia.
Q. You think it is the foremost fish 9 -A. I think it is. There is nono that furnishes so important an industry or which is so alundantly or widely disseminated.
Q. What is the geographical distribution of the cod $9-A$. There are duite a mumber of species of the cod, some characterized by certain peculiarities and some by others. The cod in the North Pacific is different from that in the North Atlantic. Both are, however, codfish, and no one could mistake them for anything else but cod. In the Atlantic the cod are found on the American side from the Winter Quarter Shoals, on the coast of Virginia; that is the most southern point I have traced it to; from that indefinitely to the northward. It is found everywhero upon the coast, in the Bay of Fundy, the Bay of Saint Lawrence, off Labrador and Nowfoundland, on the Grand Bank, aud many other places. The European species, although by some considererd distinct from ours, probably have a geographical range equally extensive. I believe they are not in Spitzbergen.
Q. What is the most important locality 9 -A. Probably the most important single locality that furnishes the greatest ammunt of fish with the least possible labor in the shortest possible time is that in the vicinity of the Lofoden Islands, on tho northwest coast of Norway. That is a region where usually twenty-fivomillions of fishare takou in three monthe by some twenty-five thousand men. Tho Dogger Bank, in the North Sea, is another European locality. In America the most extensivo stores of cod are found, I suppose, on the Graud Bank and the George's. 'They are found, perhaps, also on the great banks of the coast of Labrador, 20 or 30 miles off the coast, extending for hundrods of miles.
Q. Now give the Commission some notion of the abundance of codfish.-A. Well, I have covered that point in my roply to the previous question. It is found in the greater part of those regious at some portion of the yenr. It is usually more abundant in the epring or summer, autumn or winter, in eack locality, in numbers only to be measured by the ability of man to capture.
Q. What do you say of their migrations i-A. Tho cod is a fish the migrations of which cannot be followed readily, because it is a deep-sea fish and does not show on the surface as the mackerel and herring; but so far as we can ascertain, there is a partial migration; at least some of the fish don't scem to romain in the samo localities the yoar round. They change their situation in search of food, or in consoquence of the variations in the temperature, the percontage of salt in the water, or some other cause. In the south of New England, south of Cape Cod, the fishing is Iargely off-
shore. That is to say, the fish are off the coast in the cooler water in the summer, and as the temperature falls approaching autamn, and the shores aro cooled down to a certain degree, they come in and are taken within a few miles of tho coast. In the northern waters, as far as I can understand from the writiugs of Professor Hind, the fish generally go off-bhore in the winter time, excepting on the south side of Newfoundland, where, I am informed, they maintain their stay, or elso come in in large abundance; but in tho Bay of Fundy, on the coast of Maine, and still furthernorth, they don't remain as close to the shore in winter as in other seasons.
Q. Take them as a whole, then, they are decp-sea fish? I don't mean the deep sea as distinguished from the banks. - A. An outside fisho Well, they are to a very cousiderable extent. The largest catches are taken off-shore, and what are taken inshore are in specially favored localitics, perhaps on the coast of Labrador, and possibly off Nowfoundland. They bear a small proportion gonerally to what is taken outside, where the conveniences of attack and approach are greater.
Q. Now, what is known about the apawining-grounds of codfish:-A. Wo lack positive information in regard to the spawning-grounds of this fish, except that wo know singlo localities. Wo know tho Lofoden Islands are great spawning-grounds. We know that the fish come there almost oxclusively for the parpose of spawning. They are not there in the ordinary times of the year. They oome in December and January, and spawn in February and March, and are thero in most overwhelming abundance.
Q. But on the coast of America ?-A. We know there is one large spawning-ground in Capo Cod Bay.
Q. You mean Massachusetts Bay inside $9-A$. Yes; there is said to be there a long reef about 4 miles wide and about 20 miles long, aud the cod go in there and firnish a very important winter fishery.
Q. Then I presumo there are similar apots along the whole American coast ? $-\Lambda$. Probably they spawn at tho Georges, and undonbtedly in a great many localities in the Bay of Saint Lawrence, and ou tho Banks, althongh I cannot speak of that, because I haven't had an opportunity of knowing.
Q. What are the relations of cod to other fish $\mathbf{7}-\mathrm{A}$. They aro friends and enemies. They are warriors and victims. Thoy are extremely voracious, and devour everything that is small enough, without any kind of consideration, and in turn are consumed in all their stages by such fish as can master them. The adult fish are principally interfered with by horse-mackerel, the bluefish, the porpoise, and by sharks, and anything else hig enough to swallow them, instoad of being swallowed by them. It is merely a question of size whether the codish is tho active or passive agent.
Q. Now what fish do they dovour mostly :-A. They eat overything, but they live very largely on herring or mackerel, or any of the small fish found on the sea bottoms. They devonr crabs and small lobsters. The stomach of the cod is one of the best dredges you can have. You find there sometimes rare specimens that are nover forad elsowhere.
Q. Do they digest the shells?-A. No; they digest the untriment and then throw out the shells. Sometimes you find the shells packed solid one inside of another like sancers in a pile. The wonder is how they empty them ont.
Q. But they do ?-A. I supposo they must.

13. IIon. Mr. Kellogg:

Q. They dovour them wholo aud then when thomeal is digested they cject the shells 9 - A. Tho mouth is quite large, and the shell goes ont as easily as it goes in.

By Mr. Dana:

Q. What do you think are the scasons for apawning on the American coast $3-A$. I presume that, like many other fish, they may spawn over quite a range of time. But, so far as our own observation on the American coast goos, their season is from November until March. In Capo Cod Bay they spawn about December and January.

I have no donbt, however, that farther north, where the changes of temperature are not so abrupt, they may spawn moro irregularls, and havo only an interval of a few montles when there is no spawning.
Q. Will you describe this spawn so as to show the prolific nature of the fish $\phi-\dot{\Lambda}$. The cod is one of the brag fish in regard to spawning. That is, we hear of ordinary multiplication of fish by that process, but the cod has been found to contain from three to seven'willion egge by actual count. Turbot, I think, are ono of the very fow fish that can beat it. They run up to tweive millions.
Q. We do not have the real turbot?-A. No; from thre to five million might be considered a fair annual estimate of the eagrs of the codfish. From three to tive millions of ripe cegrs have been found in the ovary of one single cod, and more.
Q. What lecomes of these eggs when discharged i-A. Tho question of the spawning places for codfisi has been ono that wasoriginally very uncertain. The rescarches of naturalists have shown that these eggs are discharged in the open sen on the Lofoden lanks. Some miles from the shore they can be found floating at the surface, and can be taken up by the bushel in towing nets. The eggs are very small, from onetrentieth to one-fiftieth of an inch in diameter, and they have a small globule of oil to make them flont.
Q. Now, do these egge all produce fish unless they are injured in some way ${ }^{\text {p }}-\mathrm{A}$. No; there are a great many coutingencies. It is not likely that a verg large percentago will be fertilized by tho male. There is always an uncertainty about that. Then, as they are floating in the water, every fish that may be fond of that lind of sustenance devours thom very greedily, and by the timo they are hatched out a large percontage is destroyed in this way. Then, the young fry, whilo in a helpless state, are devoured in largo numbers. I should think it extremely probable that not one lundred thousand out of the three millions-possibly not ten thousand-attain to a condition in which they are able to take care of themselves. It is entirely impossible to make any estimate. Wo know, however, from the analogy of other fish, from the facts in regard to salmon, shad, aud that kind of fish, wo can make au approximation.
Q. These egrgs rise to the surface $-A$. They float at various distances from the surface down. Some are a littlo heavior and some a little lighter. I mean that they are not attached to the bottom. Their specific gravity is very nearly that of the water. Of course when the water is cold they will float better, because the density is greater, but when the water is warm they will sink.

By Hon. Mr. Kililogg:

Q. Before you leavo this subject, I would like to ask whether the spawn are visible in the ocean, that is cod spawn. What is the color?-A. It is transparent, with a little spot of oil in one corner. You would not notice it under ordinary circumstances, but you might if you were looking for it.
Q. The ocean might be full and a common man wonld not see in i-A. Certainly.

3g Mr. Dana:

Q. Be kind cnough now to tell us what aro the principal modes of capturing cod i-h. The modes of capture vary with the region. For commercial purposes, the fish are canght with hand-lines and tho trawl-line, or long-line as it should be ealled. It is taken very largely in gill-nets on the coast of Norway, and in some other regions. I beliove it is so taken on the coast of Labrador, but I dou't think it is taken frequently on our own coast in nots.
Q. To what extent is tho trawl-line used q-A. It is used all over the world. It is one of the oldest methods of catching fish.
Q. From your investigation, do you think the capture of fish gonorally, or codfish, or other kinds, by some contrivance like the trawl, is as anciont as any other $9-1$. I know it is. The Indians, the Aleutian Islanders have used them.
Q. That was not derived from us?-A. No. Travelers have found them in use when the first whito men came among them. We have specimens in great nunber of the trawl of tho native savage. Ours have only been brought in within the last five or six years. I don't think it is possible to fix the date of the first use of the trawl. They have been traced back to such a period that there is no possibility of saying that it was introduced by this man or known to that one.
Q. What aro the advantages of the method of trawl-fishing for cod -A . The alleged advantages, as far as I have heard them spoken of, are the larger yield of the fishery. The same number of men in the safne time, and in the same locality, will catch a larger fare of fish with the trawl than with hand-lines. Then they require less exposure of the fishermen. They can be set over night and left down through the day at times when the weather would be too inclement for hand-line fishing. Then it requires much less skillful fishemen to use tho trawl than the hand-lines. It is merely a matter of putting on the bait and throwing it overboard, and it does not require the delicate manipulation and skill that the hand-line fishing does, and therefore does not call into play to the same extent the functions of the practiced fisherman.
Q. Now, are there any disalvantages connected with the use of the trawl, alleged or actnal?-A. There are a great many accusations brought against it. How far these are valid it is impossible for me to say. Tho principal objection I suppose is that it tempts all kinds of fish. One objection is that it takes fish that are too small size. They use a smaller hook tham the ordinary hand-lines, and they say it takes a great many unmarketable fish, which affects the supply. Then another complaint is that the fish being longer in the water are liable to bo destroyed by the depredations of sharks, dogrish, and fish of that class. Anotber objection is that after the fish aro caught the marketable fish, owing to their weight, slip off from the small hook and float away and are lost. Another oljection is that they catch what they call mother fish, that is the parent fish, which some dishermen think should be lel't to reproiluce their kind.
Q. If thes are taken after depositing their spawn you only lose one fish ?-A. Yes; but it is probable, judging from the testimony of fishermen, that the fish can be taken during their spawniug season with a trawl when they will not bito a hook. As a general thing very fow will bite on the ordinary line, but the trawl bait is said to be attractive to them, and the fish are believed to be more likely to take the bait at that time from a trawl than from a hook on an ordinary line.
Q. Well, taking the reasons given both ways, what conclusion have you como to abont the use of the trawl for cod-fishing?-A. Well, it is just one of the wholesale modes of capture, which it is difficult to avoid, because the tendency is to centralize, to accomplish the same work by less expenditure of money and of human force.
Q. Do you think it is a case for prohibition or regulation 9 - A. I don't see how it can be either prohibited or regulated. I hardly sec. Of courso I have had no practicalexperience. Imay eay that the trawl is used very much less on the coast of America than on the coast of England and of Europe generally, and I have failed to find anywhere in the English writers or in the testimony of the British Fishery Commission any complaint there such as occurs in America. There is a great complaint there against what is called the beam-trawl. When they speak of the trawl they don't mean what we mean. What they refer to is a trawl such as wo use in our steamer to capture flounders and such fish. Wherever you soe the word trawl used by an English or European writer you must apply it to that large net that is dragged leghind the vessel along the bottom of the sea. The word trawl is never applied in Europe to the line, and, therefore, there is a great doal of vagueness and error involved in the consideration of the subject unless you know what the particular speaker or witness moans by a trawl. But speaking of the long-line, which is the gencral term, or bultow, I have failod to find in the reports of the British Fishery Commission any complaint by anybody except three cases of complaint against the trawl-lide or long-line. One was that it
destroyed the young fish, and the others were that they interfered with the nets. They complainel that the trammel-not especially, which is a particular kind used in England, was fouled by these lines aud injured.
Q. On the other hand, the net was in tho way of the trawl:-A. No; the trawl was in the way of the uots. The trawlers didn't care about the net, but the net fish. ermon did complain of the trawl. But I have looked carefully to find whether there was auy complaint against that line, and I haven't found it. There may be, butt I am quite confident it has not assumed anything like the antagonistic features and inmpession of magnitude that it las in the United Statos and America generally.
Q. We mean by the trawl a long line weighted or anchored which sinks to the bottom and has -A. It las branches three feet long. That is called a loug-line or
bultow bultow.
Q. Then at intervals there aro buoysi-A. Yes.
Q. To show the position. They are usually in a straight line i-A. In Europo there are genorally sevoral shorter lines united in one long line, so much so that on the coast of Great Britain they have a line of trawls six or eight miles in length. In Anerica the trawling on the banks is generally by means of five shorter lines radiating from the vessel, but in England the trawling is done generally on a large scale, without rowboats, diroctly from a vessol of forty or sixty tons, and the entire serios of lines is united in one and sunk.
Q. They are hauled in from abourd the vessel, and not from a boat at all:-A. Yes. Q. Now, what do they call that which wo call a trawl, if it is used at all 8-A. They call it a long-line or bultow.
Q. What bait do you find to be the best for codfish :-A. Well, I can't say I find any bait to be the best, bocunse I nover canght many fish, but I lnow that everything of an animal naturo, and to some extent vegetalole, hats been used for the cod. Generally, in America, our bait consists of herring, monhaden, mackerol, a portion of the offul of the fish, sea-birils of varions kinds, clams, sinid, and tho various species of shells, and in fuct anything that can bo got hold of.
Q. Well, now, what aro the methods of preservation of this bait? Wo have heard of thoir using salt clams, \&c. Has much attention beon paid to tho possibility of greater preservation of the bait than we have ever yot had P-A. Yes; the science of preserving bait, as well as of the preservation of fish on shiphoard, is very low indecd, far below what can bo applied, and I have no doubt will bo applied, both in keoping fish for food and in keoping it for hait.
Q. Now, will you state what obser vation you have made respecting the method of preserving fresh bait from the start all the vogare throngh $9-\Lambda$. As a general rule it is now preserved either by salting or froozing. Of courso they keep it as loug as it will remain without spoiling, and when you have to carry it begond that time, either ice it or salt it. Salting, of courso, is a very simplo process, but it alters materially the texture and tasto to such a degren that fish or other bait that under certain circumstances is highly prized by the fish is looked upon with a great doal of indifferouce when salted. Now, there are special mothods of preserving the fish or bait by Thome chemical preparation, which preserves the fish withont giving the saline taste. There are preparation's by means of which oysters or clams or fish can be kept in solutions for six months without getting ang appreciable taste, and without involving the gighthest degree of deterioration or destruction. One process sinbmil ted to the glaced a judges, of whom I was chatman, was exhibited by an experimenter who placel a great jar of oysters in our room prepared in that way. I think about tho lat
of August thoso were placed in our room and they we Sef Aust thoso were placed in our room and they were kept there until the middle of September, for six weeks during the hottest portion of the centemial summer, and that washot enongh. At theond of that time wo mustered up comarae to passjudgment apon this preparation, and wo tastod these oystors aud could not find them affected. We would have prefirrea absolutely froshoysters, but thore was nothipr repugnant to the sensibilities, and I believe wo consumbl the outire jur. Aut we gave the oxhib-
itor, without any question, an award for an admirable new method. That man is now using that process on a very large scale in New York for the preservation of fish of all kinds, and he clains he can koep them any leugth of time and allow them to be used as fresh fish quite easily. I don't suppose any fisher man ever thought of using any presorvative except salt.
Q. That is ontirely experimental ?-A. It is oxperimental, but it promises very well. Now, borax is one of the substances that will preservo animal matt er a great deal better thas salt and without changing the texture. Acetic acid is another preparation, or citric acid will keep fish a long time without any change of the quality, and by soaking it in fresh water for a little while the slightly acidulated taste will be removed. I don't believe a corl will know the difference between a clam preserved in that way and a fresh clam.
Q. Now, about ice. Wo know a good deal has been done in the way of preserving bait in ice. How far has that got?-A. It is a very crude and clumsy contrivance. They generally breale up the ice into pioces about the size of pebble stones, or larger: then simply stratify the bait or fish with this ico, layer and layer about, until you fill up a certain depth or distance. The result is that if the bait can be kept two weeks in that method it is doing very well. They generally get a period of preservability of two weoks. The ice is continually melting and continually saturating the bait or fish with water, and a very slow process of decomposition or disorganization goes on until the fish becomes musty, flabbs, and tasteless, unfit for the food of man or beast.
Q. Well, there is a newer method of preservation, is there not 7 - A. There is a better method than using ice. The method described by tho Noank witness, by using what is equivalent to snow, allows the water to run off or to bo sucked up as by a sponge. The mass being porous preveuts the fish from locoming musty. But the coming methods of preserving bait are what are called the dry air process and the bard freezing process. In the dry air process you havo your ice in large solid cakes in the upper part of the refrigerator and your substauce to be preserved in the bottom. By a particular mode of adjusting the counection between the upper chamber and the lower there is a constant circulation of air by means of which all the moisture of the air is continually being condensod on the ico, leaving that which envelops the bait or fish perfectly dry. Fish or any other animal substance will keep almost indefinitely in perfoctly dry air about 40° or 45°, which can be attained very readily by means of this dry air apparatus. I had an instanco of that in the case of a refrigerator filled with peaches, grapes, salmon, a leg of watton, and some beefsteaks, with a groat variety of other substances. At the ond of four months in midsummer, in the Agricultaral Building, these were in a perfectly sound and prepossessing condition. No one would havo hesitated one moment to eat the beefsteaks, and one might be very glad of the chance at times to have it conked. This refrigerator has been used between San Francisco and Now York, aud between Chicago and Now York, where the trip has occupied a woek or ten days, and they aro now used on a very large seale, tons upon tons of grapes aud pears being sent from San Francisco by this means. I had a cargo of fish-eggs brought from California to Chicago in a perfect condition. Another method is the hard frozen process. You use a freezing mixture of salt and ice powdered fine, this mixture producing a temperature of twenty degrecs above zero, which can be kept up just as long as tho occasign requiros by keeping up the supply of ice and salt.
Q. How big is the refrigerator? $-\Lambda$. There is no limit to the size that may ite used. They are made of enormous size for the purpose of preserving salmon, and in New York they keep all kinds of fish. I have been in and seen a cord of codfish, a cord of salmon, a cord of Spanish mackerel, and other fish piled up just liko cord-wood, dry, haril, and firm, aud retaining its qualities for an indefinite time.
Q. Well, can fish or animals be kept for an unlimited period if frozen in that way ${ }^{\text {P }}$ A. You may heop fish or animals hard dried frozen for a thousand years or ten thousand years perfectly well, aud be assured thore will be no change.
Q. Have geologists or paleontologists satisfiod themselves of that by actual eases of the preservation of animal substances for a long periodil-A. Yes; we have perfectly satisfactory ovideuce of that. About fifty years aro the carcass of a mammoth, frozen, was washed out from the gravel of the river Lena, I think, one of the rivers of Siberia, and was in such perfoct preservation that the flosh was servod as food for the dogs of the natives for over six months. Mr. Adams, a St. Petersburg merchant, came along on a trading expedition, and found it nearly consumed, and bought what was left of it for the St. Petershurg Academy of Scienco-the skeleton and some portion of flesh-which were preserved first in salt and afterward in alcohol. Well we know the period of time that must have elapsed since the mammoth lived in the arotic circle must be very long. We know we can talk with perfect safety of ton thousand years. The goological estimate of it is any where from fifty to a bundrod thousand years; we cannot tell. Thero is no unit of measure; wo know it must have been some hundreds of thousands, and probably it would have remained in the same condition as much longer.
Q. Now, to come to a practical question, is this a mero matter of theory or of possible use 8 For instance, could this method be adapted to the preservation of bait for three or four months if necessary in - A. The ouly question, of course, is as to the ex- $^{\text {a }}$ penso. There is no question at all that bait of any kind can be kept indefinitely by that procoss. I do not think there would be the slightest difliculty in building a refrigerator on any ordinary fishing vossel, cod or halibut, or othor fishing vessel, that should keep with perfect oase all the bait nocessary for a long voyago. I have made some inquiries as to the amount of ice, and I am informed by Mr. Blackford, of New York, who is one of the largest operators of this mode, that to keep a room ton feet oach way, or a thousand cubic foet, at a teruperature of 20° above zero, would require about 2,000 pounds of ice and two bushels of salt per weok. With that he thinks it could be done without any diffeculty. Woll, an ordinary vessel would require about seventy-five barrels of bait-an ordinary trawling-vessel. That would occupy a bulk something less than 600 feet, so that probably $4 \frac{1}{2}$ tons of fee a month would keep that fish. And it must be remembered that his estimato was for keeping fish in midsummer in New York. The fishing-vessels would requiro a smallor expenditure of ice, as these vessols would be surroundod by a colder temperature. A stock of 10 to 20 tons would in all probability bo amply sufficiont both to replaco the waste by melting and to preservo the bait.
Q. Lave you any doubt that some mothod like that will be put into immediate and successful use, if there is sufficiont oall for it ${ }^{\text {- }}$ - . I have no doubt the experiment Will be tried within a trelvemonth. Another mothod of preserving is by drying. Squid, for iustance, and clams, and a great many other kinds of bait can be dried without using any appreciable chemical, and can be readily softened in water. I noticed lately in a Nowfoundlaud paper a paragraph rocommending that, in view of the fact that the squid are found there for a limited period of time, the people should go into the industry of drying squid for bait, so that it would always bo available for the purpose of cod-fishing. I think the suggostion is an excellent one, and I have no doult it will be carried out.
Q. Now, what is the supply of bait for codfish on the American coasti-A. Well, as the codfish eats everything, there is a pretty abundant stock to call upon. Of course, the bait-fish are abundant, the menhaden and horring. The ouly bait-fish that is not found is the caplin. The herring is very abund ant on the American coast, aud the alewives enormonsly abundant. Squid are very abundant of two or threo species, and, of course, clans of various kinds. Then we have one sholl-fish that wo possess. It is never used hero, although it is very abundaut; but it is almost exclusirely the bait for trawling on the coast of Great Britain. This shell-fish is known as the whelk, or winkle.
Q. Is it a kind of mussel?-A. No; it is a kind of univalve sholl [submits specimen], and is almost exclusively neod for the capture of cod in England on deep-wator trawl-liners. It is pot used here at all,

180 REPORT OF COMMISSIONER OF FISH AND FISHERIES.

Q. Why is it not used here:-A. I don't kuow except that thes have other bait that they get at more readily, and they have not learued how to use this.
Q. But it is very abundant?-A. Yes; quite as abundant as it is anywhore. This is a rather small specimen. The advantage of this kind of bait is that it can be kept alive for a long timo merely by moistening it or keeping it in water, so there is no question about salting it or usiug ieo or any other application.

By Sir Alexander Galt :
Q. Is there any particular locality for that?-A. It isextremely abundant all through the northern seas. I am a little surprised that I have not seeu more of them here. It is a northern shell. I presume it is very alsuadant in Newfondland, and to the north. At any rate it is in any desirec. abundanco in tho liay of Fundy, but not south of Cape Cod.
Q. From all you havo learned, have you any doubt that, supposing the fishermon of the United States were precluded from using any bait except what could be got upon their own coast, they could obtain a sumeient supply there?-A. Well, unless the American fishery shonld be expandod to very enormons limits, far in oxcess of what it is now, I can't seo that there would bo any dificulty. I may refer to one bait at our command, which is an oxcellent bait-salt liver. In some parts that is considered an excellent bait. Of course cach part of the world swears ly its own particular bait. While the Cape Cod man swears by menhaden, the Newfomullander by herring and caplin, and the Englishman by winkles, the Dutchman swears by salt liver.
Q. We could have that, of course.-A. Yes. Then the roes of cod are good for bait.
Q. What do yon say about gurry? We had a good deal about that in the early part of this inquiry. Be so good as to tell what opinion you have or what conclusion you have come to about its use and abuse. - A. It hardly applies to cod any more than to any other fish cleaned at sea. The gury is the offal, and that of course may be of salmon or cod or haddock or mackerel. Tho practice of throwing overboard garry is in many respects reprehensible, becanse in the first place it is a very great waste of animal matter. The applicability of this offal to commercial purposes is such that whenever it can bo lad in sufficient quantities it should bo utilized. It is so on the coast of Norway. An enormons nmmer of pounds of fertilizer are made ont of the gury, and the heads are dried and used for food for dogs and cattlo. I presume you refor, howover, to the supposed :ufluenco of the gurry on the dishing-grounds, more particularly. Well, in the first place, more of it can bo used now. In the process of hard freezing applied to cod it is brought; in more as a fresh fish. But a large proportion of what is thrown overboard can be atilized. It can all be utilized, and it would be very proper, I think, to impose somo penalty apon the wasto of the giary by throwing it overboard, in favor of securing its preservation and utilization. But of course the question is as to what influence the gurry can exercise unon the sea fishory, supposing it to bo abundant and to be thrown overboard. I have no practical experience in regard to that. I know a great many persons testify that it is very objectionable. The reason why I should to inclined to attributo very littos importance to the objection is tho readiness with which all such oflal is consumed in tho sea by the scavengers appointed by nature to destroy it. In the northern seas, where codfish are most abundant and this gurry is in the greatest abnulanco, tho waters abound with countless numbers of minute crustaceans whose business it is to destroy animal matter. The so-called sea leas are so active that if you tako a fish the size of a codfish and putit in a bag of net-work and put it overboard whero it will bo exposed for a tide in water of anywhere from five to ten or twenty fathoms, you will find, as a gencrai rule, that next day yon will have tho bones picked clean and a perfect skeleton without a singlo particlo of flesh. I have had thousands of skoletons (I may say literally so) of fishes and birds and small guadropeds pepared for moseum purposes by simply exposing them to the action of tho sca fleas. I have put them in bage perforated with holes and left them at the edre of low tide for a tide or two, and the skeleton would be perfectly complete without a bit of meat left.
Q. Well, these sea scavengers, are they usually at the bottome-A. Everywhore, at the bottom and the top. 'Then there are the dogfish, the small sharks, eatfish, goosefish, sculpins, and the codfish thomsolves, a varicty of lobsters, and other inhabitants of the sea, that are at work, always ready and eager to seize anything of this kind and consumo it. Then when the bones are exposed there are the sea-urchins, that make a specialty of devouring them. Now, I cannot say but that this material, undor certain circumstances, may lodge in the crevices of the rocks aud remain there and become an offense to the surrounding fish, but I rather suspect that the trouble about the gurry is that it attracts the predatory fish. Whore it is thrown overboard it tolls them from a long distance. Tho dogfish, tho slarls, and other fish areattracted and come to the place where this offal has been throw overboard, and after they have consumed all that, they turn their attention to the cod and other fish that may bo there and drive them off.
Q. So that even throwing overboard the gurry there is a danger of defeating your own purpose9-A. Yes; certainly. That is the hypothesis given as to the supposed evil effect of throwing overboard the offal in the Luropean wators. It prevents the fishing there as iong as this state of things lasty, but whother there is an actual injury otherwiso I cannot say. The general presumption is against the idea that these 8ubstances can have a lodrment for any longth of time to produce any offense. It - might do it in fresh water. In tho lakes jou maj havo such a condition where those seavengers are not provided. But it hardly scems to me that it can be in the seas, in the northern beas especially.
Q. What is the geographical distribution of mackerel ${ }^{7}-A$. The mackerel is a fish that has not so northerly a distribution as tho cod, and perhaps extends somowhat further south: otherwise it is found over, to a very considerable extent, the same range. It is found as far south as the Azores in European waters, and as far as Spitzlergen and Norway to the north. On our southern coast we find it very rarely, and pery fow individual specimens have been talion in tho vicinity of Charleston. It has never been taken in the West Iudics; never in Bermuda, I beliove; but it is found as far north as the Strait of Belle Isle, and how much further north I cannot say. The two specics (American aud European) aro belioved to bo identical, and although they are coustantly within a comparativoly suall number of jeaguos of each other, Jet thoy do not oncur all tho way across.
Q. What'is the season for mackerol?-A. In America tho mackorel season is in spring, sumper, and autumn. In winter they are not found on our coast, and we don't get them, but wo have them on our shoves as early as tho middle of April and as lato as November.
Q. Now, as to tho variation of ecasons. What do you say about that ?-A. It is very rarely they appear in the same abundance in two successive years, or, at least, it is rarely that the sum total of the exporience of the fishermen gives about the same aggregate. Sometimes they aro so scarco that the actual catch of one year will be much bolow that of other years, but wo cannot say thero are any fewer fish actually in the water. It may bo that they take a different line; thoy may keep in different Waters; they may show themselves less to fishermen; and may have othor modes of variation; lut wo only know by the practical results of fishing that the cateh in somo seasons is much greater than in others.
Q. What do you think is known or what do you think is the best conjocture as to thoir migrations :-A. There have been a great many hypotheses on the subject of the migration of mackerol. At one time mackerel, as was supposed to be tho case With cod and sea-herring, was belioved to have an oxtrome rauge, that a large echool traversed the const of America or Europe, and swept over a runge of thousands of miles, making a circuit that occupied one jear in its completion. But the evidence at the present time tends to show that the mackerel comes in on the American coast as a great army, broadside, and appears within a reasonable lougth of time, or very nearly the samo time, on all that extent of coast.
Q. Do you think it strikes the coast a little later to the north and a. little carlier to the south ? - A. The left wing of the armyं, as we migbt call it, strikes the American coast first, and the right wing strikes the Bay of St. Lawrence last; but it comes in with a broad sweep, not moving along the coast but coming in broadside. When the quickening influence of the spring sun is felt on this great body of fish somewhere outside, where I cannot say, they start, and the given temperature is reached sooner at Cape Hatteras than at Bay St. Lawrence; but I do not believe that the fish that enter the bay always skirt the American coust, nor do I believe that the American fish go into the bay. They come in a large number of schools, each school representing a family, that is, they spawn together, and they may have a short lateral movement, and they move a limited number of miles along the coast till they find a satis. factory spawning-ground; but, as a general rule, they aggregate in throe large bodies; one of those bodies is about Block Island and Nantucket shoals, anothor is in the Gulf of Maine and Bay of Fundy, and another in Bay St. Lawrence. There are connections between those three bodies. You find them all along the coast; there are a certain number which spawn and are taken all along the coast; they are caught in weirs and pounds in spring and fall within one hundred yards of the shore; but the mass, as far as I can learn from the testimony presented before the Commission, are aggregated in those three great bodies.
Q. Is anything known about their winter quarters:-A. Nothing definito. We miss them for several months, from the end of November until March and April, and we say, we guess, we suggest they go into the Gulf Stream. That they go somowhere where they can find a temperature that suits them and there they remain, is clear; but it is a little remarkable that they never have been seen schooling in the Gulf Stream, that they never have shown themselves, that no fisherman, mackereler, or steamboat captain has ever reported, so far as my information goes, a school of mackerel in the winter season. If they were free swimmers, one would suppose they would show themselves under such circumstances. There is a belief very generally entertained among fishermen that they go into the mud and hybernate. That is an hypothesis I have nothing to sas against. It scems a littlo remarkable that so free a swimmer as the mackerel should go into mud to spend its winter, but there is abuudance of analogy for it. Plenty of fish bury themselves in mud in the winter time and go down two or three feet deep. There are fish that are so ready to bury themselves in mud you cay dig them out of an almost dry patch as you could potatocs. The Earopean tench, the Australian mud-fiel, and dozens of species do that. There is nothing whatever in the economy of the mackerel or in the econony of fish generally against this idea, that it is an inhabitant of the mud. And the fishermen believe chat the scale, which grows over the eyes, according to their account, in winter, is intended to curb their natural impetuosity and make them more willing to go into mud and stay there in winter and not be schooling out on the surface of the water. There are well-authenticated cases of fish being taken from the mud between the pronge of the jig when spearing for cels. That this has occurred off the Nova Scotia coast, in St. Margaret's Bay, and Bras d'Or, Cape Breton, and parts of the Bay of St. Lawrence, I am assured is not at all doubtful.
Q. Do not fishermen mainly retain the old theory of the northern set of the whole body $9-A$. Very largels, but I think latterly they are changing their viows.

By Hon. Mr. Kellogg:

Q. The fish were mackerel that were brought out of the inud i-A. When after eols they brought up mackerel out of the mud, in several instances, in Janaary.

By Mr. Dana:
Q. What can you tell the Commission about the period of the spawning of mack-erel:-A. Mackerel spawn almost immediately after they visit our shores. The earliest fish taken in the weirs and pounds in Vineyard Sound and Buzzard's Bay are full of ripe spawn, so that when the fish are taken out of the pounds and put into boats to bring them to shore there are sometimes quarts and pecks of t e spawn in
the bottom of the boats. It runs out with the utmost freedom, as it does with any full-spawning fish. That period ranges from the middle of May on our coast, and from June and July in Bay St. Lawreuce. Mr. Whiteaves says they spawn in the Bay of Chalours in June. The season extends from the early part of May to the beginning of July.
Q. Where do the mackerel deposit the eggs?-A. The mackerel, like all sea fish, with the exception of the herring, the tomcod, and sculpin, has a free floating egg. The egg is discharged in the water wherever the fish happen to be, iushore or offshore, and it floats just under the same condition that the egg of the cod does. It has a sinall globule of oil as a buoy, and it tloats on the surface or anywhere from that to half way down, or perhaps almost to the bottom, depending on the gravity of the egg and the specific gravity of the water.
Q. Is the mackerel supposed to bo able to coutrol the time when it will spawn P A. When the egg is ripe it has to be discharged, whatever happens. The egg cannot be retained after it is overripe.
Q. How do the eggs of ench mackerel compare in numbers with those of the cod 9 A. The average of the mackerel spawn is about 500,000 . They are very small, as you can imagine, for mackerel is not a very large fish. The egrgs, when spawned, are only about one-fiftieth of an inch in diameter, abont half the size of that of the cod. They vary in size, some being smaller and others larger, but they only vary within modorate linits.
Q. You say they spawned all aloug the Aluerican coast -A. I presume they spawn in some numbers along the entire coast frow the sinore of Virginia to the coast of Labrador; formerly thoy spawned on the coast of Nowfoundland, when mackerel Were caught there, whore they were very abnonat a great many years ago, and also off the Bay of Fundy, when mackerel were abundant there.
Q. What is the food of the young mackerel f-A. The young mackerel, like the Foung of most other fish, feed on diatoms and other marine plants of low origin. They feed on the oggs of crabs and marine animals, probably on tho small eggs of fish themselves, and as they grow they eat anything small enough to be swallowed. They don't bite as bluefish do, but they take everything at one mouthful and swallow it whole.
Q. And what is the food of the adult fish ?-A. The adult fish foed vory largely upon young fish, sand lants aud young herring, and probably upon the young of their own kind. They are cannibals, as all fisk are. They feed very largoly upon what is called hay seed or cayeuno; that is a minnte kind of shrimp, which is so diminutive you requirea microscopo to separate it into its component parts. They feed also on large shrimps and ou the young of large crabs. Its favorite food in sunumer is what fishermen have described as all-eyos, that is, young fish which, so far as I can judge, must be young mackerel, becanse I do not know any other fish that conld be so abundant of that size at that season of the year. It is called all-cyes because its body is perfectly transparent, and whon you seo thom swimming in tho sunlight you can ouly see two eyes as two small dark specks. That occurs in almost incredible abundance, ${ }^{0} 0$ vering miles square and furnishing food for au enormons yiold of fish.
Q. With regard to its beariug upon the locations of mackerel, I will ask whether there is any particular place where the food of mackerel is to be found, or whether it is all along the coast where the mackerel come -A . The shrimp belongs to a class of crustaceans which inhabit the high soas overywhere. Wo took them this year in great quantities in coming across from Salem to Halifax, at George's, La Have, and Brown's Banks, and in Halifax Harber. We take then in Eastport, Salom, and Portland Harbors, and as far as I am advised by the specialists who are associated with me, there is no part of the ocean where theso small auimals are not to be found in ample abundanco, sometimes enormously aggregated and at othor timos less common. They aro found at all dopthe of water, from the surface to the bottom. We take them in our dredge and in our mid way aud surface nets. Those and the young of the largo crabs are found under all circumatances and oonditions.
Q. Then we take the common bait, pogies, or menhaden. They are mackerel bait, are they not $9-A$. Eaten by mackerol 9 I do not think thoy are, unless they eat them in the winter time. As to the spawning of pogies, we know nothing about it; we infer they spawn in winter off the southern coast.
Q. Are not meuhaden used as bait for mackerol by fishermen 8-A. The menhaden itself is takon all through the mackerel season at some part of the Amcrican coast.
Q. Is it abundant within your observation p-A. Yes; it is almost the most abundant of our fish; indeed, it is a question which is most abundant, sea herring or menhadeu.
Q. In regard to the catching of mackerel as affecting the supply and the probable diminution or increase of mackerel, what have you to tell the Commission about the mode of taking mackerel?-A. The mackorel is taken in a great variety of ways. At present it is taken by jig hook and by the net in some form. Formerly it was taken by means of hooks, as we do for bluefish, sailing backward and forward in a boat having a number of lines put frow the vessel, and taking them when the vessel is under full speed. That method is still practiced on the coast of Europe, where mackerel are still taken in that way. Then it was found that by keeping the vessel comparatively motionless and throwing chum or chopped meat overboard mackerel could be brought up to the ressel, and that proved a much more officient and thorough mode of capture. Nets were introduced, and many mackerel are now taken in gillnets. Scines which are hauled to the shore have been introduced at some places on the coast of Nova Scotia, and a good many mackerel are takeu in pounds and weirs, enormous quautitics being taken in spring and fall on tho New Englaud coast in that way. The purse-seine is perhaps the most efficient and comprehensive method, and it is u'sed by vessels.
Q. What is the proper depth of a purse-seine:-A. Twenty, twenty-five, or thirty fathoms deep.
Q. To be successful it has to have that depthi-A. It has to be deep, but it must be shallower than the water, or it will get entangled and torn.
Q. Do you know whether it is true that there must be that depth in order that the mackerel shall not discover it so quickly and escapo 7-A. I could not say ; that is a fisherman's theors, which I know nothing about.
Q. With regard to the preparation of mackerel, what have you to say?-A. Nothing, except that they aro nsed in increasing numbers fresh. The principal consumption in Europo is in fresh fish. The people there do not salt fish, or scarcely at all. They are pat up in Europe, and I behieve, to some extent, in Canada in cans; I do not think that is done in the United States.
Q. Of course, you have obtained information as to the manner in which the fish can be used by consumers; you have nothing to do with the mercantile side of the question $9-A$. No.
Q. You have had it presented to you. Do you find that the demand for fresh fish of all kinds is increasing?-A. I know the tendency at the present day is to substitute fresh fish for salt, in view of the improved methods of preparation and preservation, and the improved meaus of communication, railroads and steamboats coming to the shoros and carrying away the fish and distributing it over an extent of thousands of miles and more in the intorior, it bringing a much better price as fresh fish, and yielding a much better profit to the seller.
Q. Is that trade rapidly increasing \&-A. It is increasing with enormous rapidity. Every year witnesses a great extension of the methods and increased improvements in the mode of preparation and the size of the refrigerators and their uumber.
Q. In regard to herring, what have you to say ?-A. Herring is a fish of wide range. Though I cannot say it goes farther north than cod-perhaps it does not-it goes scarcely as far south on the American coast. I have not found any ovidence of its being taken south of Block Island. It is very abundant off Block Island and Narragansett Bay in winter, but whether it is fome farther south I am unable to say; it is found as far north as Labrador. and much farther.
Q. It is found from Block Island to the shores of Labrador in great abundance iA. Yes.
Q. It is pretty fairly distributed all along ?-A. Yes; in somo localities they are found in greater abundance at some poriols of the year; but there is no part of the American coast, from Labrador to Block Island, where they are not found during a certain number of months.
Q. What are the movements of this fish?-A. Ther prosent migrations not so extensiyo and demonstrative as that of mackerel, but more so than those of cod. They probably move from their ground from time to time in seareh of food, and generally have definito phaces for spawning, to which thoy resort at difforent seasons of the year at each particular coast. While the spawn is doposited, as at gevoral rule, in certain localities, it is sometimes a matter of uncertainity. The destraction of herring has been less in America than in Europe, where it has veen very marked. There are extensive regions where formerly the herring business was carried on, from which they have ontirely disappeared, so much so that they import herring from Scotland and Amorica.
Q. As to the egg of the herring $\mathrm{P}-\mathrm{A}$. The egg is largor than that of the cod, and is about one-t wenticth of an inch in diamoter.
Q. What is the number to each fish $9-$ A. About 30,000 .
Q. Do you think thoy have any particular apawning-ground :-A. They have definite localitios that are preferred by them. Thoy spawn round the Magrlalen Islands in great abundance, and in tho bays of Newfoundland. The most extensive epawningground on the southern coast is round the southern ead of Grand Manan, which is one of the most interesting and extensive spawning-grounds I know of. But they spawn also all along the reefs and rocky places of the Now England const as far as No Man's Land and Block Island.
Q. The yield of herring in Now England, is it and can it be made very large $9-\mathrm{A}$. I presume as many herriug could be takon in Now Eugland, in seasons when they are able to bo taken, as wight be called for, if the price of them warranted it.
Q. Herring does not bring much in the market $P-A$. I believe not; they are taken in both spring aud fall, but they are most abundant in the fall.
Q. I should like to put one or two questions to you bearing a good deal on this subjeet which the Commission has bofore it, respecting the linds of fish which can be and are used in tho United States. Leaving out cod, mackerel, and herring, will you tell the Conmission what has been discovered rogarding the kinds of fish that are used as a substitute for mackerel-salted fish, I mean ?-A. There is a great variety in vast abundauce of mauy linds of fish all along the coast of tho United States, from Saint volu's River, Florida, and farther south, to tho Bay of Fundy, aud many of those couil be utilized to very great advantage if there was a demand. They are taken in very darge quantities and consumed as fresh fish, but they are not prepared in large quantitues, with the exception of the Southern mullet.
Q. How far цorth \& mullet found $7-A$. It straggles as far as Cape Cod; it is quite abundant at some seasors as the south side of New England, but not sufficiently so for marketable purposes, but off the coast of Virginia and off the Carolinas, and all the way down to the extremity of Florida, the mullet is in quantities scarcely oredible. They are taken and sold in great numbers; many thousands of barrols are put u_{p}, and if there was any speedy call for them they could be furnished. I presume I am safe in sayiug that one million barrels of mullet could bo furnishod annually from the south shore of Chesapeake Bay to the southe end of Florida, if they were called
for.
Q. How far has the mullet come into the market now i-A. The mullet does not come into the Northern market at all, but in North Carolina, South Carolina, and Georgia it fills the markets at the present time, excludiug other kinds of imported fish. In former years there was a great demand for herring and mackerel, but the mallet is supplying the markots because thoy are sold fresher and suppliod at much

186 REPORT OF COMMISSIONER OF FISH AND FISHERIES.

lower price, and thes are considered by the Southern people a much superior artiole of food.
Q. Is it preferred to mackerel as a salted fish ? A. The persons familiar with mackerel and with mullet from whom I have made inquiries-I never tasted salt mulletgive the preferenco to mullet. It is a fatter, swecter, and better fisb, and of rather larger size. They grade up to 90 to a barrel of 200 pounds, and go down to threequarters of a poond, and as a salt fish the preference is given by all from whom I have inquired to the mullet.
Q. Do you think the failure of the mackerel market in the Southern and South western States is largely attributable to the introduction of mullet:-A. I cannot say that, but I imagine it must have a very decided influenco.
Q. Can the mullot be caught as easily as mackerel ?-A. More easily. It is entirely a shore fish, and is taken with seines hauled up on the banks by men who have no capital, but who are able to command a row-boat with which to lay out their seines, and they sometimes catch 100 barrels a day per man, and sometimes as many as 500 barrels have been taken at a siugle haul. The capital invested is onty the boat, the seine, perhaps 100 or 200 yards long, the salt necessary for preserving the fish, and splitting boards and barrels.
Q. Can pounds be used i-A. They have not been used, and I donbt whether they could be used. Pounds are not available in the sandy regions of the South.
Q. They are taken by seining? -A. Yes, seincs can be used. This work is entirely prosecuted by natives of the coast. and about two-thirds of the coast population are employed in the capture of these fish.
Q. Then the business has grown very much ?-A. It has grown very rapidly.
Q. When was it first known to you as a fish for the market? A. I never knew anything about it until 1872.
Q. Then it has becn known durivg only five years:-A. I canuot say; it has been known to me that length of time.
Q. During that time the business has very much increased:-A. I am so informed; I cannot speak personally. All my information of it is from reports made to me in replies to circulars issued in 1872 and 1873. I have not issued a mullet circular since that time, when I issued'a a special circular asking information regarding the mullet.
Q. Then it is your opinion that the mullot has become, to some extent, and will becones, an important source of food supply ${ }^{\text {q }}$-A. It is destined, I suppose, to be a very formidable rival and competitor of the mackerel. I know iu 1872 a single couvty in North Carolina put up 70,000 barrels of mullet, a single connty of five States covering the mullet region.
Q. Repeat that statement.-A. I say 70,000 barrels of mullet were packed in Carteret County, North Carolina, in 1872-one county in the States of Virginia, North Carolina, South Carolina, Georgia and Florida, where mullet comes in great abuudance during twoor three monthe of the year. It is during the spawning season of the mullet that it is taken in this quantity, and mullet roes form a special dolicacy over which every Southerner exults. It is a separate business, the roes boing smoked and salted and sold in largo quantities.
Q. Perhaps a reason-to get into the region of political economy-why mulletfishing was not prosecuted formerly, was that the Southern poople were not fishingpeople under the slave system:-A. Thoy probably had not a proper method of taking them. They used more casting nets than soines.
Q. State to the Commission what mode of fishing and what kinds of fish are caught on the south of the New England const, sonth of Cape Cod. Is it not a great region for fish :-A. The variety of fish taken on the shores south of Capo Cod is very great, and constitutes a very important element in the food resources of the country. Many of them are fish of very great value as food, some selling as high as one dollar per pound, every pound of that fish that cau be brought into market bringing never less than 60 cents aul up to one dollar per pound. Othor fish range from 20 cents, 35
cents, and 40 cents per pound. Others from 20 cents to 25 conts, very fow bringing less than 8 aud 10 cents a pound as fresh fish.
Q. What kinds of fish are thoy which bring the high price of a dollar a pound $9-$ A. The pompano, which is the highest-priced fish.

By Sir Alexander Galt:

Q. To what size does it grow? -A . Three pounds is the maximam. It is more generally one pound. The pompano brings one dollar per pound when it is freshly caught. Sometimos when it is brought to Now York and kept for a long time the price may come down. I know one occasion when it was sold at 10 cents a pound; but the fish was not marketable and should not have been sold. The next beist fish is Spanish mackerel, a fish of remarkable excellence.

By Mr. Dana:

Q. In New York market at the proper season what does it bring ${ }^{9}-A$. I don't suppose it is ever sold under 25 cents per pound, and from that to 40 conts.
Q. Is that a mackerel $9-A$. It belongs to the mackerel family, and weighs about 3 pounds. There is the cero, a kind of Spauish mackerel, which goes up to 15 pounds. Those are all found from Cape Cod to Florida along the entire coast. There is the scup, which occurs from Florida to Cape Cod in great abundance.
Q. The scup is found in great abundance off the south coast of Massachusetts and Rhode Island P-A. Yes. Thero is also sea bass, which is one of the finest of the American fish, and is worth from 18 conts to 25 cents per pound.
Q. How many ponnds do they average in weight P-A. From 1 to 4 pounds; 3 pounds is a large fish.
Q. They aro found in abundance on the south coast of New England \&-A. Yes; Very abundant. There is also the kingtish and the bonito, which is a very important fish.
Q. Thero is a fish of that character extending from Block Island away down to Cape Hatteras $\mathrm{P}-\mathrm{A}$. It is one of the same family. It weighs up to 5 pounds. I have seen five thousand of those fish taken at a single time in a fishing pound at Menemsha Bight. There is the blucfish, which is the piece de resistance. There is the squeteague; of that fish I have seen 25,000 pounds taken at a haul.
Q. The bluefish is a great fish in the market -A. It is the principal fresh fish during the summer season on the const of the United States from Cape Cod to North Carolina.
Q. Caught all along the shores p-A. All along the const, being most abundant in the summer seasou toward Cape Cod, and in winter in North Carolina.
Q. There is a great drift through Vinegard Sound P-A. There is a numerous oatch.
Q. Are not the people on the soutibern coast of Massachusetts, and on the coast of Rhode Island, now very nuch ougaged in catching fresh fishi-A. Very largely, takiug thom in pounds and gill-nots, and othor modes of capture.
Q. Is this a part of tho development of the fresh fish market $9-A$. Yes. Since bluefish has come back to the coast it has constituted an enormons elenent in the supply of fresh fish; it is not the controlling element, butit is the largest single element, although combining the stripod bass, squeteaguo, mullet, and scup, thoy considerably Outnumber the bluefish. [Photographs of the fish referred to were exhibited.]
Q. What about tautog ${ }^{\text {P-A. A. It is an important fish, but is not in such immense }}$ abundance. While jou talls of trutog being canght in thousands of pounds, you talk of others by hundreds of thousands or by millions.
Q. Pounds are very common on the American coast $P-A$. It coustitutes the principal mode of summer fishing from round Cape Cod as far west as Long Island. Nearly all the fish taken on that coast are caught in the ponuls. The small tunny is a fish Which of late years has come into notice, and it is believod to lave disturbed the mackerel and menbaden this year. It was never recordod till I found it in 1871 in Martha's Vinoyard, where it was in enornous numbers. It is a fish woighing about 25 pounds, and it is something like the horse mackerel, but they never grow more than

25 pounds. Not unfrequently 500 or 1,000 of them are taken in a single night in one of the pounds, but the people make no use of them and contider them valueless They sell the fish weighing 25 pounds for 25 cents. It is a coarse fish and very dark meat, but still it is a food resource when other fish are not taken. These fish are found in the Mediterranean, where they are very much looked after and bring very good prices, they being specially salted and put up in oil. Tho Americau tunny is undistinguishable from the European, though efforts havo been made to separate them.
Q. The pound-fishing which has cone into genoral use in the southern part of New England, what is its effect on the supply of fish p-A. That is a question which I think will require a longer period of years than we have had for its definite determination. In 1871 I mado my first inquiries into these pounds, and satisfied myself theu that they must have a positive intluence upon the abundanco of fish, in view of the concurrent enormous destruction of bluofish. I considered the blnefish was the greatest agency in the destruction of our food-fishes. Its relation to scup and squeteague has long been established-that when bluefish are abundant the other fish are rare, and the moment bluefish diminish the other ish become enormously common. The squeteaguc in 1862 was unkuown as a fish cast of the waters of Now Jersey except in small numbers, and was not found in Martha's Vineyard or Buzzard's Bay. In 187\%, ten years subsequently, so plentiful were they that I know myself of 5,000 fish being taken at a single haul, averaging five pounds each fish. The bluefish then began to diminish, and from that time wore much less abundant than in 1850 or 1860. Those pounds and the bluefish together I considered produced the decrease in the abundance of scup, sea bass, and tautor that has been so much complained of. I urged very strongly, and I still maintain my view, on the legislatures of Massachusetts and Rhode Island the propriety of exercising some sort of restriction upon the indiscriminate use of this apparatus. I recommend that one day and two nights, that is, from Saturday night, or, if possible, from Friday vight till Monday morning, should be established as a close time during which those fish should not be taken by any of those devices, thus giving the fish a chance to get into the spawning-grounds inshore, thereby securing their porpetuity.
I was quite satisfied in my own mivd that unless something of this kind was done very serious results would happen. Very much to my disgust, I must admit, the next year, even with all the abundauce of those engines, the young scup came in in quantities so great as to exceed anything the oldest fishermen remembered, and thousauds and tens of thousauds of barrels of what was called dollar scup were sold. They were so thick in the pounds and so mixed with the fish that the owners could scarcely pick out the marketable fish, and consequently had to let large portions of the contents of the pounds go away. Since thon scup has been very much more abundant than it was when I wrote my book and report.
Q. How do you account for this great increase :-A. I think those were scup, belonging to further south, which took a northern trip to northern wators and established themselves there. But I do urge in the most earnest mannor the propriety of some restriction being placed on the pounds. I have not changed my views, although the evil has not arrived as I thought it would, and there are indications of some othor agency; whether it be the diminution of the bluefish which permits the scup to increase or not I cannot say.
Q. Is ít true the bluefish is diminishing ?-A. It is not by any means so abundant as it was, very much to the regret of all people who catch them, either for market or for sport.
Q. Cau you remember the time when there was no bluefish on the American coast?A. I cannot. I know we have the record of the fact, and I know many persons who can remember it. Blucfish was abseut from the American coast for sixty yoars, during Which time there was not a single bluefish to be found on the coast.
Q. You think the pounds should be dealt with as a mattor for regulation and not for banishmenti-A. I don't think the market would be amply supplied without
them, and I don't think it would bo expedient to prohibit them. I think a certain amount of regulation, such as I have recommended, would bo a great deal better for the fish and the fishermen. The disadvantage of the pounds is that theg glat the market at times, so that there is no sale for the fist and fish are wasted, and by the adoption of a close time not only will it secure proper spawning of the fish, but also equalizo consumption.
Q. There were some matters with regard to herring, in regard to which I did not ask you fully yesterday. Will you state to tho Commission about the spawninggrounds of herring especially 9 I do not care for anything outside of the American coast. - A. The herring spawn along the whole coast of the United Statos, from the Bay of Fundy to No Man's Land, which is a small island Gotween Block Island and Martha's Vineyard. I bave specimens of spawn from almost all the localities between those two points, and I an informed they also spawn around Block Island; but I have never seen any evidenco myself.
Q. But you know as to tho fact i-A. I know it is so from testimony and reports.
Q. Do the eggs of the herring lodge on the bottom:-A. The herring is almost the one-is, I think, the ouly one-of our important sea fish the eggs of which are adheront; that is to say, when discharged, it falls to the bottom and adheres to the seaweod, gravel, aud rock. Gencrally it is scattered; but not unfrequeutly a great part of the spawn of the fish will be aggregated into a mass of the size of a waluat or hickory nut, but moro generally thoy are scatterod and attached singly or by twos and threes to sea-weed. I have here specimens of the egge in the adherent form, some of which I dragged up at the southern ond of Grand Manan.
Q. Aro the spawning-grounds extended along the coast all the way i-A. Yes; all the way.
Q. And are very inmerous p-A. There is no reason to suppose there is any part of the coast at which they are wanting. They are specially abundant about Cutler, in Maino, and about some of the islands off Penobscot Bay, about Cape Elizaboth, Portsmoath, off Newbursport, and particularly along the edgo of the coast from north and east of the entrance of Massachusetts Bay. They also eqpawn inside of Cape Cod Bay, and all along the south coast of this region to No Man's Land, as I have already mentioned. The spawning season is later and later as yon go sonth. On the coast of the Uuited States the herring spawns on the fall of the temperature, just as the salmon, cod, aud tront do-unlike the alad avd mackerel, which spawn at a rising temperature. The moment the water along our const gets to a certain degree of temperature, then the herring is incited to the act of eprewning. I might say in completion of this point that herring spawns in the spring in Bay St. Lawrence and Nowfoundlaud. It sparns in early summer at Grand Manan in Jnly, Angust, and September. It spawns at the end of Scptember in Eastern Maine, and it spawns in October off Boston, and does not spawn until Nove mber and sometimes December at No Man's Land.
Q. Making a difference of many months?-A. Yes; a difference of from six to eight monthis.
Q. Describe the modes by which lierring aro caught on the coast of the United States.-A. They are canght principally ly weirs, pounds, and gill-nets on our const. 'They are caught with seines largoly in Bay St. Lawrenco nad Nowfoundland; but the large, full-grown, spawning herring are usually taken in gill-nets on or near the spawning-ground. A very largo number aro taken on the whole coast of Maine and in the Bay of Fundy in weirs; but the great body of theso are smaller herring, and are not used as fresh fish.
Q. How is it with woir-fishing 8-A. The weir-fishing is genorally conductod in Maine, and to some extent inside of Cape Cod to the north. South of Cape Cod they aro more generally takon in pounds, but also in gill-nots.
Q. How are they taken along the Massachusetts const \& A. They are taken, generally, in gill-nets in the fall. The regulur pounds are usually not down as lato as the herring season, but in spring large numbers are taken in the pounds.
Q. How do you feel sure that this statement about spawning on the coast is correct - A. By actual capture of the fish in the spawning season, and by dredging up their eggs from the bottom with apparatus wo use for such purposes.
Q. Is herring a very common fish.on the linited States coast?-A. It is exceedingly abundant. It is not utilized at all to the extent of tho capacity. The herring is not a very favorito fish. It is a cheap fish; and as there are so many botter fish on the coast, it is not very marketable for food. It is sold in great quantities, but at very low prices, aud is used only by the poorer classes of the community. Of course. it is used for bait; but as fresh fish it is very seldom seen on the tables of the well-to-do people.
Q. Is it driod and pickled ?-A. They are pickled to some extent. Some are smoked. A great many are worked up in the form of bloaters, and in this form it is very much sought after.
Q. You have been at the places where the business is carried on $9-A$. I have seen 20 or 30 large boats, of a capacity of perhaps 500 barrels or more, fillet with horring, lying at the wharf at Boston at one time. They are boats probably from 4 to 10 tons.
Q. Market boatsi-A. They are open boats. linown as herring boats, and the const now is lined with the boats with gill-nets catching herring for the fall trade.
Q. Have you anything to say about the predaceons fish, such as the shark and dogfigh? Do you think they do a great deal of harm to the food-fish ? - . They constitute a very important factor in the question of the abundance of lish on our coast. They destroy enormous weights and quantities of all tho useful fish, and in proportion as they increase in numbers the food-fisl: diminish, and vice versa. They perform the same function as bluefish; they are constantly in the pursnit of other fish and destroying them.
Q. There is no probability of changing that relation which fish seem to bear to one another:-A. They all bave the relation of attack, defense, pursuit, and flight.
Q. But, notwithstanding that, I suppose they belong to what you call the balance of nature P-A. The balances of nature are such that it is extremely difficult to say what will be the effect on the fisheries of destroying or multiplying a particular stock of fish. The sharlss, for instance, are destroyiug groat quautities of food-fish. A now enterprise has just been started, and will be opencd in the course of a few weeks, to utilize the sharks, porpoises, dogfish, and tumbies. An establishment expects to work up twelve million ponuds annually of those fish, for which heretofore there has not been a market. They are canght in great quantities on the shores, but not utilized, and now there is to be a market for them, and the parties offer the same price for them as they do for menhaden.
Q. Where is the company started?-A. At Wood's Holl, Mass. Tha company expects to keep two or three steamers constantly traversing the coust from Block Island to Penobscot Bay, or Bay of Fundy, and the company advertises that it will take all dogfish, sharks, porpoises, blackfish, and other offal that may be offered to it, up to the amount, I think, of 20 or 25 tons a day. By a new process the oil will be extracted without heat, leaving the mat entirely free of grease, and, when it is dried, it will be ground up to make what they call fish flour, or meal which can be used for fertilizing purposes or food, as you please. The same substance is made from cod in Norway and is an article of food. It makes a nice form of food, and is used as fishcakes and othor preparations.
Q. It can be made up like flour $?-A$. Yes, and can be mixed up without any difficulty. The effect of the abstraction of twelvo million pounds of those preduceous fish will undoubtedly be very great. Whether, as those fish eat bluefish, it may not allow bluefish to multiply, and in that way restore tho balance again, it is impossiblo to say; but if it was to tako bluefish also, wo would relax very largely the pressure on eatable fish, and they would necessarily increase.
Q. Is the philosophy of that substantially that when one kind of prodaceous fish
becomes rery numerous, and is destroying useful fish, it either disappears in time, or by what we regard as the regular course of nature and the work of man, that fish diminishes, or is exterminated, and others take its place?-A. Aftor thoy have eaten up everything, they will start out and go somewhere olso. Whenever they have made their favorite food scarce they go somewhere elso. So it is a very serious question as to what had better be done, no matter what promise there may be in regard to altering the relations willfully and parposely between tho difforent forms of the animals of the sea. If you take them for food, you allow the consequences to come as they may, but any question of protectiug ono kind of fish, or dostroying or exterminating others, should always be considerod with a great deal of care, and from a great ruany points of view that do not strike the mind or attention at first thought.
Q. To undertake to regulate the relations of fish beyond shoal water where you oau fish with nets, soines, and pounds, would be impracticable 9-A. It would be very difficult, indeed, and the effoct would probably be very trifing.
Q. You spoke yesterday of the fish of the Southern States, the fisheries of which in the new order of thiugs are being rather more developed by greater diversity of industry, and so forth ; can you mention any other fish that are coming into use 9A. There are a great many species, probably not less than fifty, all baving a definite value as au article of food, and all caught aud consumed on the const, or sent in limited quantities either to the northern markets or to Cuba, that conld bo taken into consideration, but porhaps the capture of the fish that takes the rank of fisheries relates more particularly to the mullet, meuhaden, striped bass, and bluofish. There is a very extensive fishery of bluefish on the sonthern coast. The blucfish, after learing the northern waters, speuds a certain time on the coast of Virginia and North Carolina, and by the time it gets back there it bas attained enormous dimensione, the fishes being generally from 12 to 15 pounds, at which size they are found only casually and occasionally on the northern coast. It is not at all au uncownon thing for one fishery of a single locality to take 3,000 bluefish averaging 12 pounds each fish.
Q. What do you mean by one fishery 9 -A. A single station at one particular point, the fishing boing controlled by one man or firm. An enormous number of bluefish are sent late in fall and in early winter to the northern markcts.
Q. So that when bluefish leave the New Eugland coast they do not disappear altegether from the American coast ?-A. Not at all. It disappears some time in February, and where it goes we cannot tell.
Q. It disappears from the southern coast?-A. Fos; a small school of bluefish is found all the year south to Florida, but the large school of blucfish usually disappears in February, and, iudeed, I may say wo never seo it again. The fish, as they make their appearance in spring, are smaller fish.
Q. Do they first appear on the south coast of New England 9-A. On firsi appearing on the coast of Carolina and Virginia, they come in something like the mackerel, ouly they have a rather more coastwise travel because they do not spawn on the northern coast. Probably the big bluefish go out somewhere to spawn, butwhat becomes of them, whether they spawn thomselves out to a condition of nonentity I cannot say. We do not see them; they may go to Africa, or the Mauritius, for bluefish are found all the world over; but whether they go to any other portion of the world from the United States I cannot say.
Q. What have you to tell the Commission about menhaden at the South P-A. The monhaden is a very important fish on the south coast as an artiole of food. It is ounght, salted, and picklod, and to some extent used in the country. There is quite a large export of menhaden to the West Indies from the Southern States.
Q. Is it used fresh q-A. It is salted and pickled; it is also eaton fresh-vory largely, and considered a very capital article of food.
Q. You have eaten it yourself p-A. Yes; it is a sweet fish, quite as good as herring, but rathor more bony; the bones are, however, more adheront to the skeleton. Yon can prepare menhaden by maceration, so that the greater part of the boues will stick
to the vertebral column inst ead of being loose and lying about the muscular parts, as in herrings.
Q. It is also salted in the South ?-A. Yes.
Q. Is there now a large business in menhaden, or is there likely to be $:-A$. It is a business capable of almost any extension for which there is a demand. There is no limit apparently, speaking in reasonable terms, to the number that can be taken, any more than there is in the North. There is nothing like the same quantity taken in the Southern as in the Northeru waters. It is taken somewhat for the manufacture of oil, but the business is not fully doveloped.
Q. What other fish did you mention in the South? -A . The mullet, menbaden, bluefish, aud striped bass to some extent, but atriped hass is moro au estuary fish coming into brackish waters, aud can scarcely, with propricty, be mentioned in this connection.
Q. What have you to say about the drume-A. It is a fish that can be taker in almost any desired quantity. It is obtained weighing up to 100 to 120 pounds, but it generally weighs from 10 to 20 pounds. There is the channel bass, which can be also taken in any desired quantities. It is entirely a sea fish, and is caught in the rapid channel-ways between the shores and islands on the coast.
Q. Especially, perhaps, in South Carolina?-A. Only stragglers come on the east ern coast, but it is found in enormous abundance from North Carolina down to the southern extremity of Florida, and in the Gulf of Mexico.
Q. Can the fish we salted for the market:-A. I don't think it has ever been tried; it is worth almost too much ns fresh fish.
Q. Is the fish called red snapper there?-A. Yes; it is very abundant on the coast of Florida. It is a largo fish, of a blood-red color, as red as goldfish, and weighs from 5 to 20 pounds. It is canght in great numbers in tho winter season, and taken alive to Cuba. The Connecticut fishermen, after they have finished their halibut and cod summer and antumn fishing, go down to Florida, and spend two or three months catching red snappers and other fish and taking them to Cuba, selling them as fresh fish, alive. It is taken in the wells of vessels, and is sold at very high prices in Havana. Sometimes, on the return trip, they take a load to Now York, and sell them in that market alive.
Q. Iu regard to pounds, they must be constructed in muddy ground? - A. In almost any ground, except sand, becanse tho sand shifts.
Q. To coustruct a pound, you drive in piles or posts, and then make a straight line of net-work right up -A. Yes. [Diagram of a pond exlibiterl.] Tho stakes aro driven right down with a pile-driver, and from stake to stake is extended a wall of netting, which extends down to the bottom and makes a barrier for the fish. Thoy are held down by a chain. There is also the heart, bowl, and pocket. The fish coming along the coast strike the wall of netting, and very naturally, in ondeavoring to skirt it, they turn seaward and go along till thes get into this receptacle cither way. A fish never turns a corner, and when it gets within the netting it swims round and round, but never goes back again. Then gradually it is led into the mer inclosure, and the same process goes on; the fishswim round and round, but never find their way out back throngh tho opening. You may leave the pound for a week, and you will have there all the fish that have come in, except the striped bass, which is the ouly fish you cannot cheat in a pound; and you very rarely take them in that way. Then when they come to hanl the pounds, they throw a gate of netting across tho opening, and in the bowl the netting extends over the bottom and comes up the side. They gather up the end and hanl it over the boat, and gradually concentrate the fish in a corner, and turn them or throw them over into the permanent pocket, where the fish are kept until ready for market. Fish are kept thero sometimes two or tbree weeks or more for a demand in the market; if there is a glut in the market, they may keep perhaps $1,000,2,000$, or 3,000 fish in one of these inclosures.
Q. How is the pocket formed $\mathfrak{q}-\mathrm{A}$. It is a net-work, fastoned down to the bottom
by a chain, so that it will touch the bottom and not permit fish to go underit. [Diagram of trap exhibited.] The trap is only used in the waters of Rhode Island, and is used for scup, tautog, and sea-bass. There are no stakes used to the trap. It is a rectangular space of netting held at the corners by auchors. The fish go along the leaders and pass into the receptacle. The trap requires constant watching, or the fish could go in and out. The moment a school of fish enter, the vetiting at the end is raised. They pursue the same mode of emptying, and turn the fish into the pocket, as with pounds.
Q. The difierence is that in the case of pounde, it is not necossary that boats should be employed to visit them frequently $;-A$. In stormy weather you sometimes cannot get to a pound for a week. In the case of traps they are visited fliree or four or half a dozen times a day. Wheu the boats off shore see a school of fish onter the trap, they follow aud take it whether large or small. [Diagram of weir exhibited.] This weir consists of a small circle of brush or boards, with two winge and a spring. The fish come into tho weir at high tide, and as the water fulls they aro left in a cavity inside the weir, and are taken out in dip-nets. There are a dozen or twenty different forms of constructing weirs.
Q. What is the estimated cost of a pound ${ }^{\text {P }}-\mathrm{A}$. $\$ 1,000$ will pay for the construction of a vory good pound, including the entire equipment. A pound is managed by from two to four men, while a trap requires two boats and about soven men.
Q. The trap is more expensivo ${ }^{\text {P }}$ A. About the same cost as the pound, bocause, although it has no stakes, yot it reguires to be of very considorable size and needs anchors. I should presume that the first cost of the two would not be very different.
Q. And what is the cost of a weirp-A. It is a simple thing. The cost merely represents the lumber and labor.
Q. That is a pormanent erection $9-A$. Yes; the others are all taken up; the traps are only kept down six weeks in the sear; the pounds are down for from two monthe to five, and at the ond of the season they use an apparatas to pull the stakes out of the water, and then pack them on shore for next season.
Q. What are the kinds of fish taken in the great lakes:-A. There is a great variety of fish taken there, but the most important fish, as a mattor of business, are the whitefish, lake herring, lake trout, wall-eyed pike, muskalonge, sturgeon, and a variety of. others. The most important, however, are whitefish, herring, and trout.
Q. What are the methods of taking them 9 -A. They are taken very largely by pounds, which are constructed on a very largo scale, and much more elaborate and exponsive than on the coast. They are taken by gill-nets very largely, and by seines under certain circumstances. At a certain time of the year, whitefish can be taken in great quantities in seines, and kept in pounds until ready for market.
Q. Are those built and constructed to a great extent along both the Canadian and American shores P-A. I presume they are used in Canada, thongh I cannot suy. I know they are on our own consts. There is quite a number of these pounds worked by Canadians on the American coast.
Q. Have you auy statistics respecting the lake fishery for the years 1876 and 1877 A. I have only partial statistics for 1877 . I published the statistics in detail in my report for 1872, and I am now having statistics for 1877 collected, and will have them I suppose by the end of the season.
Q. 1872 represents but faintly the present state of things. Can you tell us how it Was in 18721-A. In 1872 the American production of fish in the great lakes was $32,250,000$ pounds. That quantity of fish was taken, but how much more I cannot say. Those were marketed at Buffalo, Cleveland, Chicago, and many other stations.
Q. Does that include the Canadian catch i-A. I presumo thero is no Canalian cateh in that amount. Those are the figures as they were obtained by my agents, from the fishermen and dealers.
Q. You obtained them from the dealers in the large cities $9-A$. Yes; and the fishS. Mis. $90-13$
ermen at the grounds. This jear I have had every station on the American side of the lakes visited and canvassed.
Q. You have steady communication with and reports from the dealers:-A. I have reports ouly when I send specially after them, as I did in 1872 and am doing this year.
Q. How far have you got in your inquiry this year $9-A$. I have only a partial return from Chicago.
Q. What does that show :-A. The total marketing of salted fish in Chicago up to the middle of October amounted to 100,000 half-barrels, with about 20,000 half-barrels expected for the rest of the season, or equal to 60,000 barrels of those fish for Chicago alone for the present year. The corresponding supply of barrels of fish in 1872 was 12,600 in Chicago, so that the Chicago trade hasincreased from 12,600 in 1872 to 60,000 in 1877, or almost fivefold- 4 fo . The total catch of fish in tho lakes in 187\% was $32,250,000$ pounds. If the total catch has increased in the same ratio as that market has done at Chicago, it will give $150,000,000$ pounds of fish taken on the American side of the lakes for the present year.
Q. That, of course, caunot be a matter of certainty i-A. No.
Q. What other large central markets for lake fish are there besides Chicago $9-A$. Chicago and Buffalo are the most important. Cleveland takes a large quantity, but Chicago and Buffalo control the market. Detroit takes the fish to some extent, bat it is not such a convenient shipping point.
Q. What proportion does that bear to the fish of Canada i-A. A. I cannotsay. I may $^{\text {. }}$ say, in regard to this point, that on the same ratio the total product of the salt fish from the lakes in the American market would be $48,546,000$ pounds. Of course, those figares are comparisons, and the estimates may be fallacious. Chicago may have a larger share of the lake trade in propertion, or may have a smaller share; other places may have crowded on it, or it may have gained on them.
Q. You expect to have full returns?-A. I shall have them probably in the course of oue month. I have notaheard from my agent who is visiting all the Canadian stations and fishing points on the American coasts.
Q. You expect to ascertain the whole catch of the lakes for 1877 1-A. Yes, with great precision. I have here an item which may perhaps be interesting in regard to the price of those fish. The ruling prices of fish on the 15th October in Chicago, were $\$ 7.50$ per barrol for whitefish, 85.50 for salmon trout, and $\$ 3.75$ for lake herring. Those are the prices paid to the captors for the fish by the merchants; that is, before they are haudled and any profit put upon them.
Q. In regard to the increase in the consumption of fish, are any as beneficial means being adopted in Canada to maintain the supply -A . Both Canada and the States bordering on the great lakes have striveu very efficiently to prevent what would otherwise have been Ω great danger to the supply of an enormous amonnt of fish. They are hatching whitefish by artificial means to the extent of a great many millions andually. The two countries are not co-operating but concurring in this business, and probably this year they may introduco as mauy as tweuty, thirty, or more millions of young fish into the waters, and that must necessarily have a very im. portant influence on the maintenance of the fisheries. They liave not done anything yet in regard to lake herring, but whitefish, which is a much more valuable fish, is being carefully guarded.
Q. What States of the Amorican Union are engaged in the breeding of whitefish $9-$ A. Ohio, Michigan, and Wiscunsin.
Q. What has been the success generally of the fish-breeding system by artificial means 9 -A. It is now being practiced to such an extent in Canada and the United States as to show it is a very efficient mode of preventing the diminution of fish, and even of increasing the supply. It has passed the region of experiment, and it is a poritive fact as shown by the large appropriations made on both sides of the border for this purpose. It commands the respect and consideration of men of all parties, and in our own conntry, at least, there is no diffioulty in getting all appropriations that can profitably be expended to secure the result.
Q. It extends not only to the fish of the great lakes, but to river fish p-A. To salmon, shad, striped bass, and ulewives.
Q. You find as the result that a much larger proportion of the ogge are turned into fish than when left to natural exposures and dangers i-A. An ordinary estimate in regard to shad is that under natural spawning 995 out of 1,000 eggs perish without producing a young fish able to feed for itself, and that jou get five young fish which reach the stage of ability to feed for themselves; that is, after their fins are properly formed, and the fieh is three-eighths of an inch in length. Thoy have then passed the ordinary perils of infancy, and are able to take care of themselves. With artificial spawning, a fish culturist who could not bring 950 out of 1,000 eggs to that state would be considered as ignorant of his business, except some unusual ćircumstance that could not be controlled should come in to interfere.
Q. Can you tell the Commission how many traps and pounds there aro in the southern part of New England, Connecticut, Rhode Island, and Massachusette, at Martha's Vineyard, and all along to Cape Codi-A. There are 22 traps on the south side of Cape Cod, in the bays and basins about Chatham ; 9 in Vineyard Sound; 30 at Buzzard's Bay; 3 at Block Island; 30 in Narragansett Bay. This year there have been 94 traps and pounds on the southern coast of Rhode Island and Massachusetts, exclusive of Connecticut. I have not the figares for Connecticuthore. This number represents the traps and pounds from Narragansett Bay to the eastern end of Cape Cod.
Q. Have they been increasing 9-A. Yes; they are very measurably greater in number than they were when I made my first census.
Q. Can you state the number of men who are employed on those traps:-A. The number of men required to man the traps is 436, the traps requiring seven men each, taking 301.
Q. Your agent would know each of those traps 9 - \mathbf{A}. I have the name of the owncr, and the catch of the greater portion of them.
Q. Can you tell the Commission the catch of those traps and poundsi-A. I have here a table of the yield of that number of pounds in 1876.
Q. Give the result.-A. For some of the species the figures are very accurate, and for others they are estimated to some extent, but this estimate is essentially a record of the year, so far as they have reported it themselves, corrected loy the persodal observation of one at least of my men, who has taken a standard pound, and meted it every day himself, and enumerated the catch and the kinds of fish. The total catch for 1876 included flounders, tautog, mackerel, Spanish mackerel, pompano, butterfish, squeteague, scup, sea-bass, striped bass, bluefish, menhadens, eels, cod, alewives, and herring. The total catoh for the year was $34,274,350$ pounds. That is from Narragansett Bay to the eastern end of Cape Cod, on the south coast of Massachusetts and Rhode Island only.
Q. Not the western part of Rhode Island 9-A. It includes the whole of Narragausett Bay. It does not include Long Island, where there are a great many pounds, or the most westerly part of Rhode Island.
Q. Are all these pounds of fish capable of being used, and are used for food $9-\mathrm{A}$. There is a large catch of menhaden in that fifteen millions.
Q. How many miles of coast-line does that catch represent $i \rightarrow$ A. About 250 miles of coast-lino.
Q. Have you made up a calculation of the ratio of the catch pormile 9-A. Ihavo the ratio of 137,097 pounds of fish to the line or mile.
Q. And to the men $1-A$. The ratio of the catol is 78,610 to each man. The totnl value of the weir catch at the lowest wholesale rate is $\$ 847,900$; at the lowest retail rate, $\$ 1,472,458$; at a mean rate between the two, which perhape more oxartly represents the value, $\$ 1,160,168$. That, bowever, is the catch of that region only with traps and pounds; there is also π very large catch with hand-lines, gill-mets, and seines. This is for but 94 weirs and traps. The aggregate catch of the entire fishery on the south coast of Rhode Island and Massachusette is $45,917,750$ pounds, of the
mean value of $\$ 1,875,840$, which gives a ratio of 133,671 pounds per linear mile, and equivalent to $\$ 7,504$ to the linear mile. The yield in the trap and pound fishery is over 78,610 pounds to the man, of a money value of $\$ 2,661$, boing the product of each man's labor for an average not exceeding four montbs. That sum, to bring it to the annual amount, will have to be multiplied by three; each man thus would produce $\$ 8,000$ worth a year by this mode of fisbing.
Q. You do not mean to say that each man makes that amounti-A. No; but that is the ratio of fish to the mau. Those pounds are generally owned by at least one of . the men who run them, who sometimes hire what additional assistance they require; perbaps, however, in half of the cases the owners manago the pounds and have no division of profits.
Q. Those statistice were prepared to show the amount of the fish, including the fresh fish as well as those salted ?-A. None of these are salted except such of the salted menhaden as is for food. They do not enter into the returns of pickled fish. These fresh fish go almost exclusively to New York, very fow to Boston.
Q. It soems strange that you should be able to know the amount of frosh fish that passes into the great city and what is caught every day. What method have you adopted to ascertain those facts $9-A$. The ontire fresh-fish trade of Now York is confined to nineteen firms which form the Wholesalo Dealers' Association, to whose books and figares I have had access through and by the assistance of the large wholesale and retail dealer in New York, Mr. Blackford, who has just taken great interest in my investigations and is a very hearty coadjutor. He has succeeded in interesting those dealers, and I have just prepared a series of blanks in which I hope to have tho dealers record all the catches of fish every day and give me the returne.
Q. You have no doubt from your relations with the dealers who control the market that you know substantially the catch ?-A. I cannot say that I know the maximum catch on the coast, bat I know I have reason to rely upon the figures of the fish that is actually marketed and comes into the hands of the wholesale men.
Q. A large amount escapes notice $9-A$. Yes; all the local catch, the catch of fishermen which goes for their own benefit and is consumed on the spot; the catch consumed in seaport towns and villages cannot be included in this enumeration.
Q. Are these caught within the treaty limits i-A. All those fish which I have mentioned are caught east of Cape May.
Q. Northeast -A. Yes; and all caught close to the shore, by traps or pounds, usually within 100 to 300 yards of the shore, or by gill-nets and hand-lines, used by men also from the shore.
Q. The whole fishery, with pounds and nets, that goes on from the shore, and with hook and line for market fish, all comes within the treaty limitsi-A. Yes, of course, the mullet and winter bluefish are south of the treaty limits; but all the fish are practically within the treaty limits.
Q. And in those fisheries the Canadians have the same rights as Americansi-A. The Canadians have the same rights there as we have. It does not include the fiehery, north of Cape Cod Bay and round to Eastport.
Q. Can youmakeany comparison of the corresponding ratio per mile, or otherwise, of the Canadian fisheries?-A. I do not think I could, because I believo the returns of the Canadian fisheries are not so large as they should be. I do not believe the Canadian returns are in proportion to the actual catch. I therefore think a comparative statement would be fallacious, and I would rather not make it.
Q. Some Canada tables have been publishod of the ftsheries of 1876, including, perhaps, cod and herring i-A. Those relate to all the fiskeries. This estimate I submit is for weir-fishing on a limited coast.
Q. The Canadian returns show a total amount of $\$ 11,000,000$ - A. I think the total estimate of the Canadian fisheries for 1876 is between $\$ 11,000,000$ and $\$ 12,000,000$.
Q. If yon pat that of the United States at $\$ 50,000,000$, would that be a low or high estimate f-A. I think we conld figure up over $\$ 40,000,000$ withont any diffeulty ; that is, for all tho fisheries.
Q. Including the lake fisheries i-A. Including hake, ring, and shell-fish. Our oyster fisheries are worth $\$ 30,000,000$ a yoar.
Q. That is nearly double the entire Canadian return 9-A. Perhaps. There are $\$ 3,000,000$ worth of oysters put in cans in Baltimore yearly.
Q. They are all included in the Canadian returns 9 -A. I think so. Those indus.tries with them are not so important as ours. Our off-shore codfish, lake and river shad, sulmon, herring, lobster, crab, ofster, and clam fisheries are included.

- Q. Now, with reasonable legislation to limit cortain methods of fishing, is there in your judgmant any danger to the existence of tho inshore, coast, and lake fisheries? -A. I think that the lake fisheries would have been exhausted and greatly destroyed in a comparatively limited number of yoars lut for the timely warining taken by Canada aud the United States and the measures initiated in both countries for increasing the supply.
Q. You yourself have been very much eugaged on the sulject of the propagation of fish $9-A$. Not so much in the lakes directly as in the rivers.
Q. You have shipped some of your fish by rail to California ?-A. Yes.
Q. I remember reading an aocount of one of your large collections for California beivg lodgod in one of the rivers by a bridge breaking down, for which collection the State has never paid -A. Yes, a car of live fish which was being sent to California.
Q. In order to get some idea of the manipulation practiced in the breeding estublishments, perhaps you will state whother steam machinery is not now used ?-A. That is a device we have adopted this year for the first time in hatching shad, in which, instead of depending on the natural current of the river usually employed, re make the trays filled with spawn move up and down in the water in a continuous alternation, and in that way hatching millions of eggs where formerly we could only hatoh thousands.
Q. You can state a case showing the result of one year's experiment.-A. Wo had eleven millions of shad in Susquehanna River in about throe weeks in May and June.
Q. Can you state to the Commission the result of some fish operations at Potomac River ?-A. The instance to which you refer is that of black bass. Tho black bass is not indigenous to the Potomac River, and none were in it. About two sears ago half a dozen adult fish were placed in the river, and it might now be eaid that the Potomnc, with the exception of St. John's River, Florida, is the wost prolific in black bass of any stream in the United States. Over an extent of one hundred miles, the fishing for black bass both for market and sport is unrivaled anywhore.
Q. Without claiming too much for our people, are not tho ingenuity aud industry of the American people in takiog fish for consumption and other uses on the one hand, and in propagating them on the other, very great and very remarkable f How is that:-A. The methods of fish-culture as practiced in the United States, and in Canada so far as ihey cover the same grunad, are, we thinls, better than thoso anywhere in the Old World, and woth countries hatch fish by millions where thousands are considered a large performance in Europe. The United States have a singlo establishment in California at which more eggs are obtained than are gathered by all European hatcheries put together. This jear we bave taken about six million egge; and we have takon as many as oight millions in a vear. We have an establishment now on Columbia River where we expect to hatel twenty millions of eggs. Three millions of eggs, I may say, in illustration of magnitude, wonld fill a hay-field cart to its utmost capacity.
Q. You have an estimate of the combined fishing of the United States for the year 1876, including the Bank fishing 9 -A. Yes. This is a table of the product of tho marine fishories of tho United States east of Cape May within the treaty linits. The total product of the inshore fisheries of that rango, the fish taken by boats from the shore, that taken by seines, by traps, pouuds, \&c., amounts to $319,579,950$ pounds, of a mean value of $\$ 4,064,484$. The total fishorios of tho United States, inshore and offshore within the limits, amount to $1,045,855,750$ pounds, of the value of $\$ 13,030,821$.

This is exclusive of any of the Southern fisheries, exclusive of the lake fishery, of tne whale, porpoise, and seal fishery, and of the salmon, shad, and herring fishery.

Ey Sir Alexander Galt:

Q. Does it include the Grand Bank fishery and that at George's i-A. Yes.

By Mr. Dava:
Q. It is exclnsive entirely of the fresh-water fish of the lakes and rivers, shad, herring, and salmon, of the whale and fur-seal, of the oysters, lobsters, and crabs. Tho. total coast-line on which the fisheries are pursued is 1,112 miles, from Cape May to Eastport, including the islands. The ratio to the mile is 940,510 pounds, the ratio of value is $\$ 11,718$.
Q. Will you state how the returns are obtained $9-A$. The figures in regard to the herring, cod, and mackerel are obtained from the reports of the Bureau of Statistics of the United States for 1876, the other figures are made up from a series of tables for each kind of fish. I had an estimate prepared of the production of each fishery, and those figures have been obtained partly from witnesses who have been here to testify, partly from the books of dealers in Gloucester, Boston, Newburyport, and elsewhere, partly and very largely from the returus I have gathered through agents I have sent out, and from circulars I have distributed. I have here an enumeration of all the different kinds of fish and quantity caught ; it is simply a combined table from a great many sub-tables.
Q. These tables you will put into the case $9-A$. The tables were not made up by me, but under my direction. They are put in by the compiler under an affidavit.
Q. An examination will show they are very much in detail $9-\mathrm{A}$. These tables, like all those of all nations, excepting, perhaps, those of France, are imperfect; and are short of the true figures. I have no doubt that a large percentage should be added to the tables of both nations in the New World. But they are accurate as far as they go; if they err, it is in the direction of deficiencr, not of ercess.
Q. It is so on both sides i-A. Yes.
Q. You are allowed a pretty large staff of persons to assist you as writers $9-A . I$ have all the clerks and assistants I require. But a great many of those returns have been made circulars I bave distributed through the Departments of the Treasury and Post-Office, and other functionaries.
Q. In view of those vast resources of the country, and the supply of sea-fish of all kiuds, the improved and increased methods of catching the fish, do you think there is any one kind of fish, the entire failure of which would prove a very serious matter, such, for instance, as the mackerel obtained in the Gulf of St. Lawrence 9-A. I do not think that the entire failure of any kind of fish would affect the supply ; but this would stimulate the fishermen to renewed efforts regarding some other fish. If all the mackerel disappeared, their places would be supplied by the Southern mullet, which are more abundant than the mackerel, and which could be taken in twice the quantity, if not more. If every mackerel was destroyed the mackerel fishermon would go down to the Southern coast, and take the mullet and pickle them.

- Q. Your last statement applies only to fish caught north of Cape May i-A. Yes; it does not include any Southern fisheries at all, or auy catch of the same fish in Sonthern waters, such as the blaefish or the mackerel.

By Mr. Foster:
Q. Is Cape May far north of the treaty line p-A. It is directly on the treaty line; this line cuts off Cape May and runs just at the north point of the coast there.
By Mr. Dava:
Q. So tha't these talles do not include the opening of Delaware Bay 9-A. No ; but only the fisheries on the coast of New Jersey-the outer coast of Now Jersey-and from that northward.

By Mr. Tromson :
Q. All this oridence which you have given, with reference to the mullet becoming
the fish of the future, is mere matter of speculation, is it not p-A. It is nothing more than what I judge from the excellence of this fish, the ease with which they are taken, and the oaso with which thoy are cured, and the extent to which it is practiced as a local fishery by the people of North Carolina and other Southern States.
Q. Has not that fishery been known for a great many yoars?-A. I canuot say. I have only known it since 1872 aud 1873. It probably has been kuown as a fishery for some years.

- Q. Persons lave eaten these mullet twenty or thirty years ago down South P-A. Yes.
Q. And it has not progressod at all as food for Northern consumption i-A. It is not now used as a food-fish in the North; but it is a fish which occúpies the place of Northern fish through a large portion of the Southern States.
Q. Do you know from definite personal knowledge of your own whether they would not rather have there one single salt mackerel than a whole barrel of mullet 9 -A. No, I cannot say anything about that-as to their preference.
Q. I was told that this was the case no longer ago than this morning by a lady who has lived there, and I wauted to know what your experience in this respect was.-A. I must to my shame confess that I lave never tasted a salt mullet; but I propose, as soon as I go home, to get a barrel of them and I will seud some to Halifax for the Commission. I hope they will make up their minds to try them; I will do it the very first thing after I reach home, and I hope you will all try them.
Q. Is it not a fact woll known to those who are ongaged in the sea-fisheries that Southorn fish, or, in other words, fish taken in warm waters, are fish that will not bear transportation to Northern climates i-A. I cannot say anything about that at all, but I know the only peculiarity about mullet is, that it is a fall and winter fishery. It is a cold-water fishery. It begins in September and lasts until Novew ber and December.
Q. You say it is a cold-water fishory, but the water is nothing like as cold there as it is in our waters during the same months :-A. No ; but the water there is about as cold in winter-if not then quite as cold-as it is here in the summer time.
Q. Could cod, from your knowledge, live in the waters which are frequented by the mullet $9-A$. No ; neither could the mullet live in the waters which are frequentedby the cod.
Q. Are not the mullet also a fat tieh p-A. Yes; they are very fat.
Q. Is not this fact also against transportation P-A. I do not know. I am not vorsed in the physies of transportation.
Q. How long ago is it since you first turned your attention to the fisheries at all qA. I have done so since 1871.
Q. Previous to that time your specialty lay in another dirsction 9-A. No; I have always been interested in fish as abranch of zoology for a great many years., I have been a specialist in ictlyologs, and I described, prior to that date, hundreds of now species.
Q. Speaking about the pounds establishod along the New Eagland shoro, how many of them did you any were there $9-A$. Ninety-four.
Q. In answer to Mr. Dana yon stated that this kind of fistiug was open under tho Washington treaty to Britisla fishermen; do you think that you are quite right in stating thati-A. Yes.
Q. Do you think that under this treaty we have a right to set down pounds upon American soil $9-A$. You can, subject to the conseut of the owners of the shore-just the same as with respect to any fishery so prosecuted in the Dominion.
Q. Is it possible for any person to carry on the business of pound fishing, exoept be is a resident on the coast $9-\Lambda$. I see no reason why any one from Canada could not go to Long Island Sound or to Vineyard Sound and prosecuto this fishery.
Q. Then such a person must reside there $1-A$. No ; very few of these pounds, and I think I may say that not ono-balf of the pound fishing in Buzzard's Bay and Vinepasd Sound, are prosecuted by oitisens of the State.
Q. A man mustreside or remain there for the purpose of attending these pounds 9 A. Yes, for two or three months in the year.
Q. He must be a resident of the shate for two or three months in order to attend to these pounds $;$-A. Certainly; he must be on the ground, as any fishermen must be when fishing, in his boat.
Q. Practically aud really this is a dishery which must be carried on by persons on the spot?-A. Of course; all fisheries must be carried on on the spot; but they need not necessarily be carried on by residents of that region or by citizens of the State. Most of these fisheries in Buzzard's Bay are carried on by people who dis not usually live on the spot.
Q. At all events, do you seriously state that under the provistons of the Washington treaty wo have a right to put down pounds on the American shore $:-$ A. I think so, with the consent of the owner of the shore.
Q. That is another question.-A. Will you kindly read the clause of the treaty of Washington in this rolation?
Q. It is as follows:
"It is agreed by the high contracting parties trat, in addition to the liberties secured to the Uuited States fishermen by the convention between Gireat Britaiu and the United States, signed at London on the 20th day of October, 1818, of taking, curing, and drying fish on certain coasts of the British North American colouies thercin defined, the inhabitants of the United States shall have, in common with the subjects of Her Britannic Majesty, the liberty for the term of years mentioned in Article XXXIII of this treaty, to take fish of every lind, except shell-fish, on the sea-consts and shores, and in the bays, harbors, and creeks of the provinces of Quebec, Nova Scotia, anch Now Brunswick, and the colony of Prince Edward Island, and of the several islands thereunto adjacent, without being restricted to any distance from the shore, with permission to land upon the said coasts and shores and islands, aud also upou the Magdulen Islands, for the purpose of drying their nets and curing their fish."
A. Yes; I do not understand that any mode of fishing is prohibited under this treaty, unless it is so mentioned in express terms, as is the case. with shad, salmon, and shell-fish. I do not understand that any mode of fishing is prohibited to the citizens of the opposite nation, except what conflicts with the local law of the comntry.
Q. Can these pounds be put down without landing to make preparations for that purpose:-A. Yes; perfectly well. It is not absolutely necessary to go on shore at all to do it; indoed I know of a great many pounds which do not touch the shore, but which are started 20,30 , or 50 yards from the shore.
Q. Do you seriously contend that there are territorial rights given us under the Washington treaty, because you recollect that the putting down of poles in the soil is a territorial righti-A. Yes.
Q. Do I seriousls understand you to contend that, under this treaty, rights are given either to the Americans on the one side or to the British ou the other, as to doing auything on the sbores of either country except landing to cure fish and dry ners 4-A. I understand that if you wish to atart a pound in Buzzard's Bay, you could go to Naushon Island, owned by John M. Forbes, an ominent citizen of the Cnited States, and with his permission you can do so ; and that you require no permission in this regard either from the State of Massachusetts or the Government of the United States; be has precisely the same right to give authority to put down a pound, I think, as has Ashby, who was a witness here and a native of Connecticut.
Q. That is to say that Mr. Forbos, who owns the land, could allow me to go and put down a pound thero?-A. There is not the slightest question aboutit.
Q. Could he not do that before this treaty was ratified $9-A$. I do not know whother he could do so or not; I cannot say anything about that; that is a legal question.
Q. He could have given me that right previous to the treaty just as well as since? -A. I do not know what exact right the treaty may give in this relation; but that is no reason why this might not be done. I consider that this fishery is now perfectly open to Canadians.
Q. Has not the mode in which the rivers on the coast of Maine have been treated for a number of years back depleted the waters on that const or on the New Englaud coast of col, for instance, which you say was once one of the most important fish fonnd there?-A. The destruction of river fiyh, in my opinion, has had more to do with the diminution of iushore fish, such as cod and haddock-
Q. And mackerel, too:-A. No, not mackerel; this has nothing to do with them. Mackerel caunot he considered in that connection, because they do not depend on the fish of those rivers for food; but I think that such destruction has more than anything else to do with the decreaso of these dish I have mentioned, inshore; and the result of the measures which are now being taken by the States of Maine and Massaclusetts, in restoriug the river fishories, will bring back tho original historical abundance of the sea-fish inshore.
Q. What this will do is as yet in the womb of the future; but at present are not those tisheries depleted:-A. The boat-fisheries for cod and haddock are now much inferior in yield ou most parts of that coast to what was the case 50 or 100 years ago.
Q. You now allude to the coast fisheries within the threo-mile limit i-A. Yes; the fishèries carried un in open boats, which go ont as far as a man can comfortubly go in a day and come back again.
Q. Do you wish the Commission to understand that this system of treating the rivers has destroyed the food of sea-fish, and therefore that the bait or food is not there to induce the cod to come inshore, but that this has had no offect on the fish outside of the three-mile limit:-A. I cannot say how far out the effect extends, becanse some distance outside of the limits there are other fishes, such as lerring and mackerel, aud food of various kinds which they can get at.
Q. Is it possible that the inshore fisheries can be either destroyed or very considerably depleted within the three-mile limit and yet leave the fisheries just outside of this limit as good as ever? $?$-A. 1 think so.
Q. And undiminished i-A. I think so, for the very reason that these fish naturally keep of from the shore. They ars off-shore fish, and wo find them largely inshore at certain seasons of the year because they then follow the fish that are coming inshorn; and if sou had an enormous number of shad and alewives and salmon, and especially of alowives and shad inshore, that involves their pursuit by an onormous number of predatory fish, such as cod and haddock and pollock, just exactly as the same fish follow the herring aud caplin on the coasts of the Dominion and Newfoundland.
Q. Then I understand yon to mean that, although the food which these fishes prey upon may be destroyed by reason of the depletion of the rivers, this will only affect the fishing within three miles of the shore and have no effect on the fishing beyond this limit $-A$. I cannot say how far it will have effect.
Q. Wild this effect stop short of the three-mile limit i-A. I think there are a great many concurrent agencies which affect the fish supply at different scasons on the different parts of the const, and that while the inshore fishing of herring and shad, or other incoming fish, regulates that to some extent, it does not cover the whole gronnd.
Q. I want a direct answer: Are you able to state that the destraction of bait, by reason of the bad treatment of these rivers, only affects the fishing along the coast to the oxtent of three miles from it i-A. I cannot any that; I cannot say how far such effect oxtends, and mobody can do so.
Q. It is reasonable to suppose that it extonds for a considerable distanco farther thau three miles from the coast i--A. That I cannot say.
Q. Would this not more likely drive the fish to other coasts where the rivers ure not so treatod $9-A$. Fish certainly have to go where trioy can get food, and if they eannot procure it on one spot they have to go to some other spot for it.
Q. Is it not probable that they win go where the rivers are not so badly treated $9-$ A. This depends on how far cod and haddock will migrate, under any circumstances. It they leave the shore, but can find an ample supply of food on George's Bank or on Nantucket Shonle, they will probably stay there.
Q. Do cod migrate at all Is this known for a cortainty to be the case 9-A. It is not certain that they have such migrations as we ascribe to the bluefish and mackerel; whether they traverse a mile of sea-bottom in search of food, or whether they go 100 miles for it, under any circumstances, I cannot say.
Q. I understood you to say yesterday that you could not trace their migrations at all 9-A. No, I cannot.
Q. And do you not pretend to say that they do migrate? I rather understood you to say also that mackerel do not migrate i-A. They migrate, but they do not swoep ulong the coast-at least I do not think they do so, as was formerly supposed, for very many miles; but rather come direct from their winter grounds inshore.
Q. I understood you to say your theory at prosent was that there was a vast body of mackerel which, forming one wing of their army, passed along the American coast; and that another wing directed their course into the gulfi-m. Yes.
Q. I see that in the answer of the United States, page 10, the following language is used:
"The migration of mackerel in the spring begins on the Atlantic coast from a point as far south as Cape Hatteras. The first-comers reach Provincetown, Mass., about May 10. Here they begin to scatter, and they are found during the entire season along the Now England coast.
"Whatever may be the theories of others on the subject," says Professor Baird "the American mackerel-fither knows perfectly well that in spring, about May, he will find the schools of mackerel off Cape Hatteras, and that he can follow them northward, day by day, as they move in countless myriads on to the coast of Maine, of Nova Scotia, and into the Gulf of St. Lawrence. They may be occasionally lost sight of by their sinking below the surface; but they are sure to present thomselves, shortly after, to those who look for them farther north and east."
Do you now adhere to that statement?-A. I think that was not the most philosophical expression on that subject. My views in regard to the proper theory concerning mackerel have been modified since then, to the extent I have alleged.
Q. In fact, if I correctly understood you yesterday, you rather inclined to the theory which has been started here, that mackerel are not a migratory fish at all, but hibernato in the mud?-A. I cannot precisely say; but the evidence is quite strong in favor of hibernation of some kind, though I do not consider the case proven in this respect; at the same time I do not consider it philosophical to refuse to countenance its possibility.
Q. Will you tell me how, if possible, it could be otherwise, if it is true that the mackerel have, in the spring, scales over their eyes, as has beon described by witnesses here, and, as I understand, you admit $9-A$. I cannot say that this is.the case ; I have never seen it.
Q. If these scales are on their eyes they could not possibly do otherwise than hibernate 1-A. I cannot say that; I am not a mackerel, and I could not tell what they do or what they do not do.
Q. Is it certain that any fish, that you are aware of, hibernate in the mud 9-A. That is not certain, bat it is believed to be the case.
Q. Do you know of any fish which certainly does hibernate $i-A$. The eel does.
Q. Is its eyes protected against the mud by scales i-A. This is not the case so far as I know. It has not been noted or reported.
Q. How has it become a theory if it has never been noted? Is it the want of experience with reference to mackerel that you do not know whether scales are found over its eyes or noti-A. I have never caught mackerel in the critioal period of tho year when they are said to have scales over their eyes; but a specimen which I have preserved in alcohol did have scales over its ejes, though the action of the alcohol on the cornea of the eye always tends to make it opaque and destroys its transparency.
Q. Is there any period of the year when mackerel must le prevented from seoing, as far as you can judge from the specimen which you possess?-A. No, I cannot say that.
Q. What are these senles for $\boldsymbol{P}-\mathrm{A}$. I cannot say. The theory of the fishermen, however, is that it is to curb the roving habits of the mackerel, and make it more ready to stay in the mud; and that otherwise they would not want to stay there; that is the hypothesis of the fishermen, and I give it for what it is worth.
Q. You do not assent to it $9-A$. No ; it is not proven to be true.
Q. And it is not disproven?-A. All that is proven in this respect is, that in winter We do not see the mackerel; they do not then school on the surface, nor do they go to the West Judies, or to Bermuda, or to Florida; nor do they then appear on the surfaco auy where as far as the tostimony has gone.
Q. With reference to the inshore fisheries in the State of Maine, and in the States of New England, generally, are they depleted or not P-A. The boat-flsheries there are not what they were difty or oue hundred years ago ; that, I think, I am perfectly safe in saying; but whether there has been auy decrease in them during the past few years I cannot say.
Q. I now quote from your own report, part secoud, for the jears 1872 and 1873, page xl ; it is headed "Conclusions as to decrease of cod-fisheries on the New England Coast," and it states:
"Of all the various fisheries formerly prosecuted directly off the coast of New Englaud, north of Cape Cod, the depreciation in that of the cod appears to be of the greatest economical importance. Formerly the watere abounded in this fish to such an extent that a large supply could be taken throughout almost tiue entire year along the banks, especially in the vicinity of the mouthe of the large rivers. At that time the tidal streams were almost chosed up with the alewives, shad, and salmon that Were struggling for entrance in the spring, and which filled the adjacent waters throughout a great part of the year.
"As is well known, the erection of impassable dams across the streams, by preventing the aseent of the species just mentioned to their spawning-grounds, produced a very great diminution, and almost the extermination, of their numbers, so that Whereas in former years a large trade could be carried on during the proper season, now nothing would be gained by the effort."

On page xii you say this:
"It would, therefore, appear that while the river-fisheries have been depreciated or destroyed by means of darns or by exhaustive fishing; the codfish have disappeared in equal ratio. This is not, however, for the same reason, as they are taken ouly with the line, at a rate more than compensated by the natural fecundity of the fieh. I am well satisfied, however, that there is a relation of cause and effect between the present and past condition of the two series of fish; and in this I am supported by the opinion of Capt. U. S. Treat, of Eastport, by whom, indeed, the idea was first suggested to me. Captain Treat is a successful fisherman, and dealer in fish on a very large scale, and at the same time a gentleman of very great intelligence and knowledge of the many details connected with the natural history of our coast-fishes, and in this respect worthily representing Captain Atwood, of Provincetown. It is to Captain 'Treat that we owe many experiments on the reproduction of alewives in pouds, and tho possibility of keeping salmon in frosh waters for a period of years. The general conclusions which have been reached, as the result of repeated conversations with Captain Treat and other fiskermen on the coast, incline me to believe that the reduction in the cod and other fisheries, so as to become practically a failure, is due to the decrease off our coast in the quantity, primarily, of alowives, and secondarily of shad and salnon, more than to any other cause.
"It is well known to the old residents of Eastport that from thirty to fifty years ago coll could be taken in abundance in Passamaquoddy Bay and off Eastport, whers ouly stragglers are now to be caught. The same is the ease at the mouth of the Penobscot River and at other points along the coast, where once the fishenme close in to the shore, and were readily eaptured with , the hook throughout the greater part of the year."
4. Yons
Q. Do yon dissent now from that opinion $9-A$. No; I used that as au impressive legson to the State legislature to induce them to pass the measures necessary to restore these river fisheries, which they are now doing very rapidly.
Q. Whero is Capt. U. S. Treat, of Eastport, now \&-A. In Japan, teaching the Japanese how to catch and cure fish.
Q. On page xiv of this report yon say:
"Whatever may be the importance of increasing the supply of salmon, it is trifling compared with the restoration of our exhansted cod-fisheries; and should these be hrought back to their original condition, we shall find within a short time an increase of wealth ou our shores, the anount of which it would be difticult to calculate. Not ouly wonld the general prosperity of the aljacent States be cuhancod, but in the increased number of vessels built, in the large number of men induced to devote themsel ves to maritime pursuits, and in the goneral stimulus to everything connected. with the business of the sea-faring profession, we should be recovering, in a.great. moasure, from that loss which has been the source of so much lamentation to political economists and well-wishers of the country."
That you still adhere to $1-A$. Certainly. I made that roport as impressive as I could in order to produco the offect desired, which was to cause the legislature to pase a law in this regard, and it has had that effect. They have passed such laws, and I hope that this evil will be remedied in a reasonable number of years.
Q. It is not remedied ret?-A. No.
Q. It takes a number of years to do that $i-$ A. I cau give an instance where it has had such effect, if you like to have it. In Massachusetts the most has veen done for the restoration of alewives and shad in the Merrimac River; and the shore fisheries there have now increased in a very marked degree. At the present time it is perfectly possible for a man to go out in a boat from the city of Newburyport and catch 4,000 pounds of codfish and bring them back the same night. This is the only river in Massachusetts in which very great efforts have been made to restore these river fisheries; and it is now possible to capture these fish in much greater quantities than was the case ten years ago; and this I ascribe to the action of the State government with regard to the restoration of river fish.
Q. How many pounds did you mention:-A. 4,000.
Q. Caught by a single man $\boldsymbol{q}-\mathrm{A}$. Two men will do it; a man with a trawl and an assistant will go out in an open boat in the morning from the city of Newburyport and come back at night, or go out at night and return in the moning, and in the mean time take 4,000 pounds of cod. That is the only point along thero at which, at that distance from the shore, I know that it is possible to catch cod in such numbers.
Q. Must not a great lapse of time, or at least a vers considerable lapse of time, occur before the fisheries destroyed, as you have here described, ean be rustored by the process you speak of?-A. I think that this depends on the amonnt of time necessary for the restoration of the fish, which run ont to sea from the rivers. . I think that if this year there are no such fish as alewives, \&c., to ran into these rivers, and that if next year a great army was to so run in, concurrent with that army, an army of cod and other fish would be there to prey upon them.
Q. I see that in your Report for 1872 and 1873, referring to the lake fish, jon say on page lxaxi:
"The restoration of food-fisues to localities originally tenanted by them, or their transfer to new waters, is, howover, a question of time; and in the immenso oxtent of our river and lake systems, many years must nocessarily elapse before the work can bo accomplished."
A. That is a great number of years, certainly; but that does not so much refur to ang particular river as to the aggregate rivers and lakos scattered over the whole body of the United Stater.
Q. You say here that "many years must necessarily elapse" i-A. Certainly.
Q. When did you commence this work 3 - A. The actual procesi of artificial propagation began, under my direction, in 187%.
Q. Do you refer to any term of years: I suppose that you mean a period of 10,12 or 14 years.-A. It might be more. The time of course depends on the expenditure involved, and the concurrence of suitable legislation to protect the fish, and mavy other points.
Q. How many fish-breeding establishments have you in the States:-A. Nearly overy State in the Union has now a series of fish commissioners, whose business it is to propagate fish within thoir bordors.
Q. There is only one in each State :-A. There is one State establishment; and Ω certain number of private establishments in each, founded for the purpose of gain.
Q. Do you know how many there are in Canada9-A. I know there are a great many. Canada is doing most admirably iu this respect.
Q. And very much more in proportion than the United States:-A. No; I think not. I think by far less in proportion.
Q. In proportion :-A. Yes.
Q. To population 9-A. I do not say according to population. I shall qualify that statement by saying that what is done in Cauada is done on a much less scale of magnitude than is the case in the United States. I mean that the aggregate of artificial propagation in the United Statos is much greator than the argregate in Canada; but I would not take a ratio. I think that both Canala and the Uniterl States are doing as much as they can in this regard, in the time that has been allowed for the purpose.
Q. I suppose that Canada is doing a very large work in this conncetion i-A. She is doing most admirably-yes.
Q. She is expending large sums of money on it ?-A. Certainly. She is doing most admirably. I am very happy to say that Canada and tho United States are working concurrently in a great many directions iu the line of artificial fish-culture.
Q. Do you know the Canadian establishment on Detroit River P-A. Yes.
Q. Is it doing a large business $9-\mathrm{A}$. I don't know what it is doing this year; but last year I understand that it did a very large business.
Q. It then hatched $10,000,000 \mathrm{eggs}$ P-A. Yes, very likely.
Q. You say that cod cannot live except in cold water f -A. The cod is au inhabitant of the colder waters.
Q. Are you aware whether or not the Gulf Stream during the summer monthe swings in at all more toward the American coast i-A. It docs.
Q. For how many miles i-A. I cannot say.
Q. Would that have any effect in driving the cod away from the Amorican shores? -A. No; not the slightost.
Q. You think not i-A. Yes; it has not the slightest effect on them. If you go down to a certain depth in the ocean, in the tropics or auywh ere clso, you will fiud the water cold enough for cod; and there is nothing to prevent the cod being as abundant in tropical waters-say off Brazil or the West Indies-as anywhers else; as far as temperature is concerned, it is cold enough there for thom at a certain depth.
Q. Have they ever been caught there 9-A. Not that I know of; but the water there is cold enough for them.
Q. Is it not very venturesome to state that there is nothing to prevent them staying therei-A. They may be there, but they have not been canght there. Nobody has flished at those great depths, for you have got to go down from 6,000 to 15,000 and 20,000 feet to find that temperature in tropical seas.
Q. Have you the slightest idea as to what sort of auimals reside down there i-A.

Yes. We have a very good knowledge of such species as can be taisen up by the trawling line and dredge from those depths; and we know that an ample supply of food suitable for cod is to be found there.
Q. Has any beam-trawl or dredge ever taken cod in those regions ${ }^{\text {P }}$-A. No; you do not oatch cod with small trawls any more than. you can so catch whales.

By Sir Alexander Galt:
Q. Woald not the temperature in those waters interfere with the spawn of the
cod, as this spawn fioats:-A. I think that the water there might be too warm for the development of codfish eggs in the abstract; but the offect would be to make them hatch out more rapidly than would be the case in cold water. Of course it is a very serious question to decide whether, with the present constitution of the cod, its eggs would develop in warm water, though whether it might not evol ute and developinto a warm-water cod I do not know.

By Mr. Thomson:

Q. On page lx of your Report for 1872 and 1873, you use the following language:
"It is in another still more important connection that we should consider the alewife. It is well known that within the last thirty or forty years the fisheries of cod, haddock, and hake along our coasts have measurably diminished, and in some places ceased entirely. Enough may be taken for local consumption, but localities which formerly furnished the material for an extensive commerce in dried fish have been entirely abandoned. Various causes lave been assigned for this condition of things, and, among others, the alleged diminution of the sea-herring. After a careful consideration of the subject, however, I am strongly inclined to believe that it is due to the diminution, and, in many instances, to the extermination of the alewives. As already remarked, before the construction of dams in the tidal rivers the alowife was found in incredible numbers along our coast, probably remaining not far from shore, excepting when moving up into the fresh water, and, at any rate, spending a considable interval off the mouths of the rivers either at the time of their journey upward or on their return. The young, too, after returning from the ocean, usually swarmed in the same localities, and thus furnished for the larger species a bait such as is not supplied at present by any other fish, the sea-herring not excepted. We know that the alewife is particularly attractive as a bait to other fishes, especially for cod and mackerel."
A. Do I say mackerel ${ }^{9}$
Q. Yes.-A. That is an inadvertence. I do not think that the alewife is a bait for mackerel.
Q. You say:
"We know that the alewife is particularly attractive as a bait to other fishes, especially for cod and mackerel."
A. Well, I should not have said that.
Q. The alewives are the same as the fish we call gaspereaux in Now Brunswick 9 A. Yes.
Q. You further say :
"Alewives enter the streams on the south coast of New England before the arrival of the bluefish; but the latter devote themselves with great assiduity to the capture of the young as they come out from their breeding-ponds. The outlet of an alewife pond is always a capital place for the bluefish, and as they come rery noar the shore in such localities, they can be caught there with the line by what is called 'heaving and hauling,' or throwing a squid from the shore, and hauling it in with the utmost rapidity.
"The coincidence, at least, in the erection of the dams, aud the onormous diminution in the number of the alerives, and the decadence of the inshore cod-fishery, is certainly very remarkable. It is probable, also, that the mackerel fisheries have suffered in the same way, as these fish find in the young menhadon and alewives an attractive bait."

You see you say that twice .-A. That is an inadvertence.
Q. You say:
"It is probable also that the mackerel fisheries have suffered in the same way, as these fish find in the young monhaden aud alewives an attractive bait."
A. This is the case on the northern coast probably.
Q. It is hardly an inadvertence?-A. It is an inadvertence. It is a conclusion that is not justified by the fact.
Q. Then you diesent from that opinion now $9-\mathrm{A}$. Yes; I do not consider that it has a bearing on the mackerel question.
Q. All that goes to show that all these speculative opinions aro entitled to little weight; you see that you have changed your opinion in this respect 9 -A. Certainly; as the data vary the conclusions also vary.
Q. I suppose you wiil admit that there is not the slightest reasou why within the next three years you may not have come back to the same opinion which you now repudiate, or have then formed opinions totally different from those which you now express before the Commiasion 9-A. I cannot say; that will depend entirely on the facts as they come.
Q. After all, this is all the purest theory P-A. It is an hypothesis; it is not a theory.
Q. Well, it is an hypothesis $9-\Lambda$. It is not a theory until it is absolutely certified by the facts.
Q. Then, of course, an hypothesis is more vague than a theory. You gave in a mass of figures just now, which you state were made up by your assistant, based upon information which you have got from some of the witnesses here, in answer to questions put them, aud what not-have I understood you rightly i-A. Partly.
Q. Aud your assistant has verified them by his affdavit-have I understood you rightly $1-\mathrm{A}$. Yes; they are verified by the affidavit of the assistant who made them up.
Q. What sort of an affidavit is it: Does he state that these figures are correct, or simply that they are there:-A. He certifies that he has compiled thom and what they represent.
Q. In point of fact yon cannot yourself swear that this statement is correct i-A. I cannot swear that; but it is made up from the statistics of the Fiskery Commission and invertigations.
Q. Even to that I do not think you can swear $9-A$. No more than Mr. Whitcher or Mr. Smith can swear to the correctuess of Caundian statistics.
Q. You directed it to be made up by one of your assistants i-A. Yes.
Q. And you do not know whether it has been made up correctly or noti-A. No more than any man can swear to the arcuracy of his assistant's work.
Q. As a fact, you have no personal knowledge as to its correctness i-A. Certainly not.
Q. You directed it to be done:-A. Precisely; itstands on the same footing asany table made up by a clerk.
Q. Did you directly take into consideration statements made ly witnesses here pA. I have very largely taken into consideration inquirios made by Mr. Goode, my assistant, of witnesses here, according to the same definite plan which I have adopted elsewhere.
Q. Inasmuch as we have not the results of what these inquiries were, and since the Commissioners have not them before them, none of these inquiries rhich you inade, and none of the information which you thus obtained, are before us, the papers being locked up in your desk.-A. They are in the archives of the Fishery Commission.
Q. Then we have no means of testing the accuracy of those figures $9-\mathrm{A}$. No; not the slightest. They are there for what they are worth. I present them with the affdavit which was made by my assistant.
Q. You admit that you have not furnished us with any means of attesting their accuracy i-A. You must take them for what they are worth. They ure of the same value as any table published by the Fishery Department of Canada or the Unitad States or auywhere else.
Q. If I rightly understood your answer to Mr. Dana yesterday, you rather think that the throwing over of offal amounts to nothing i-A. No ; I do not think that it does amount to anything.
Q. I thought you gave a rather interesting description of sea-lleas.-A. I merely say that it is a question whether it is or was injurious to the food of fisles on the coast, as has been maintained. It is a question as to which we have no definite proof that it injures the fishes; and I am inclined to believe that it has more of a local and immediate effect on the fish than it does injury to the fish.
Q. Would it not necessarily injure the spawn in its neighborhood ?-A. No.
Q. You think not -A. No.
Q. Not if thrown over on the top of sparn $9-A$. No; you might throw it over all day long and try to injure a load of floating spawn and you conld not do it. Nobody has ever suggested that gurry affects the spawn. By spawn I suppose gou mean egge
Q. Yes.-A. No; wothing of the kind is to be thought of.
Q. You quoted yesterday Mr. Whiteaves's report. He says on page 11:
"In case Americans are allowed to fish in Canadian wators, the custom (said to be practiced by them) of splitting the fish caught at sea, and throwing the offal overboard, on the fishing-ground, should not be permitted."
A. I do not think that I quoted Mr. Whiteaves on that point, but with regard to the spawaing-time of mackerel in the bay.
Q. In your report of 1872 and 1873 Mr . Milner is your assistant P-A. Yes.
Q. On page 19 I fiud this language used :
"Throwing offal on the fishing-grounds.-It is the uniform testimony of all fishormen that throwing offal or dead fish in the vicinity of the fishing-grounds is offensive to the whitefish, and drives him away. Tho whitetish is peculiarly cleanly in its instincts, and has au aversion for muddy or foul water of auy description. Most fishermen regard their own interest subiciently to be caroful in this particular, while many careless and shiftless men iujure themselves and others by dumping offal and dead fish anywhere in the lake where they find it conveuient, reduciug the catch in the vicinity for several months."
A. Yes.
Q. It is also stated:
"Unsalable fishes are generally thrown overboard in the vicinity of the nets."
You do not dissent from that opinion $p-A$. No ; not at all. The cases, however, are totally different. There are no scavengers in fresh water as there are in the sea; there are no sea-fleas, or sculpin, or lobsters, or anything of the kind, to clean up offal in fresh water, as is the case in the ocean.
Q. In your opinion, are purse-seiners proper or improper agents for taking fish iA. I have not formed any opinion on the subject; but I am inclined to think, however, that this is not a destructive mode of fishing. They destroy a good many fish, but I do not think that they diminish the absoluto number of fish in the sea.

- By Sir Alexander Galt:

Q. Will you repeat that $-A$. I say I do not think that they affect the total number of the fish in the sea materially, although they destroy aud wasto a great many fish. If you will permit me, I would state my reason for this viow; it is this: Every school of mackerel las a large body of predatory fish attendant upon it, such as dogfish, sbarks, and other species, which are boundi to have so mauy fish a day. They will eat their ono, two, or three fish a day, and if they cannot get them dead they will eat them alive; therefore, if a large body of young mackerel is thrown out of theso purseseincs, besides mackerel which are rejocted and worthless, the predatory fish that are attendant upon the mackerel will eat these dead fish; aud if thoy do not find them dead they will take them alive; so it does not affect the number of fish in the sea.

By Mr. Thomson :
Q. Are you positive about that 9 Do you undertake to say that the predaceous fishes will, in preference to oapturing live fish, which they can easily do, be content with dead ones :-A. I think that is very likely.
Q. There, there-you say "very likely" ${ }^{p}$-A. I cannot say. I am not a predaceous
fish; but I wonld prefer a live fisl. I am pretty sure, however, that these fish are quite ready to be savod the trouble of taking their prey. It is on precisely the same principle that bait-fish, such as capelin and herring, are placed on hooks and cast overboard to catch the same fish, which follow and eat them in the natural way. I think this may be inferred from that.
Q. You.have something to do with the Annual Record of Scieuce and Industry, I bolieve 1-A. Something-yes.
Q. Do you agree with the language used in an article containod on page 473 of this journal for 187% i-A. I did not writo that, but I published it.
Q. Have you in any article stated that you dissent from it?-A. No. It is not my bnsiness to do so. That article merely reffects the opinion of the writer. I would be very sorry to believe one-half of what I publish in that periodical; but it expreses the progress of belief and science, and I take it accordiugly.
Q. It is a matter of speculation whether dead fish are eaten, as you say, by predaceons fishes; this is mere theory ${ }^{9}-\mathrm{A}$. I have no doubt that they are so eateu.

By Mr. Whithway :
Q. You have stated that the largest quantity of codish taken in the shortest possible time was in the vicinity of the Lofoden Islands? A . Yes.
Q. You said that something like $25,000,000$ were taken by 12,000 people :-A. Yes.
Q. In a very sliort time-in the course of three monthe:-A. Yes; and in a very sinall space.
Q. Where did you get your statistics fromp-A. From a report of the Norwegian Government.
Q. For what year ${ }^{\text {P-A. }}$ 1868, I think.
Q. Whose report was it - A. It is an extremely hard jaw-breaking title; it is an abstract, prepared by Hormann Baars, of Bergen, Norway. It was an article propared by him for preseutation at the Paris Exhibition.
Q. You have not seen reports published since that time:-A. Oh, yes; il have them much later.
Q. Did these later statistics corrospond with tho former as regards tho quautity iA. I know that the capture of cod in Lofoden Islands in 1876 amounted to $21,000,000$ or $22,000,000$; I have the figures here.
Q. Are you awaro what quantity of codish is caught on the coast of Newfonudland $9-A$. No. I have been earnestly trying to get the statistics of Nowfoundland in this respect, but I have not been able to obtain them as yot. I hope you will send them to me.
Q. You are not aware whether it is an inshore or deep-sea fishery on that island pA. No. I know nothing aboutit.
Q. You say that fish are dried and used as food for cattle in these islauds and in Norway i-A. Yes.
Q. What sort of cattle use it i-A. Horses, oxen, and cows; they eat it with great avidity.
Q. What portion do they make use of \ddagger-A. Any part, but more generally the heads, Which are offal; they make most admirable nutriment.
Q. Yousay that a great many nations dress very largely in the skins of cod and salmoni- Λ. Yes.
Q. Will you kindly toll me what natious these are $:-\mathrm{A}$. They are Tchuktchi, the Aleutian Islanders, the Norton Sound Esquimaux, other natives of Alaska, and a few others.
Q. You say, further, that the most extensive resorts of cod aro the Grand Bank and George's Bank; can you tell me the quantity of fish taken on those lanksp-1. No; I have not made any. investigation or tabulation in this regard.
Q. Then jou really base that opinion upon no datap-A. I merely base it on my general impression on that subject. I merely spoak of these as being the most prominent particular banks and localities which the cod frequent. In apeakiog of the S. Mis. $90-14$
islands and other places in this connection, I mentioned banks off the coast of Labrador, but I did not refer to the great sweep of northern waters where the cod is found diffused. I referred more particularly to the places that are known and publicly mentioned. What is not published in this regard I know nothing about.
Q. With reference to Labrador, can you answer whether the fish are taken inshorethat is, within the three-mile rauge, or on the Banks off-shore :-A. I am told, but I cannot say with what certainty, that at cortain seasons of the year the cod are there taken in great quantitiesinshore from boats, but that the groat bodies of the fish are on the Banks at some distance from the shore.
Q. Are these Banks fished i-A. That I cannot tell.
Q. Where are these Banks :-A. $\Delta 8$ far as I can learn, they extend at a distance of some 15 or 25 miles, perhaps, along almost the entire length of the coast of Labrador.
Q. Will you pledge yourself to that statement $9-A$. No ; I know nothing aboutit.
Q. From whom did you get this information:-A. From the published writings of Professor Hind.
Q. I think he indicates in these writings the exact position of these Banksi-A. I think that probably he does. I may have located thom too near or too far from the shore. I speak merely in general terms.
Q. I think that this report only indicates the existence of banks on certain portions of the coast of Labrador :-A. Perhaps I may have made them too extensive.
Q. You have referred to a bank on which codfish are taken, off Cape Cod, about 20 miles, I think, in length; can you give mie any information as regards the annual product of this bank 9 -A. I think you will find that given in Captain Atwood's testimony.
Q. Can you give it - A. No; I know nothing of it, except from Captain Atwood.
Q. Is any report made in any public office in Massachusetts or the States, from which you can gather information as regards the exact quantity of fish takou outside of the three-mile limit, and inside of this limit 9 -A. No.
Q. In other words, is a report concerning the quantity of fish taken within and without this limit published $9-A$. No.
Q. Is nothing pablished in this relation $9-A$. It is my business, or my self-imposed mission to collect that information, and I am doing so as fast as I can. I hope that my next report will contain a great doal of this and other useful information.
Q. How many vessels are engaged in this fishery off Cape Codi-A. I cannot tell you; but I have a great deal of information on this subject in my records, which, however, I do not carry with me, and I do not trust my memory fur anything.
Q. I think you referred to the herring fiskery as yielding a very great quantity of fish on the American coast $\ddagger-A$. Yes.
Q. On the coast of the United States I-A. Yes.
Q. And the coast of Massachusetts i-A. Yes.
Q. Is that yield so great as you mention, during the winter $:-A$. It is during both fpring and fall. These fish are found all along the coast in the spring.
Q. During what months is this the case in the spring f-A. In April and May.
Q. And in winter 9 -A. I do not think that they arecaught in winter north of Cape Cod ; I do not think bo; bat so little is known of the biology and the natural history of herring that this might be the fact, and yet it be not known-I mean not known to the ordinary public. It was entirely new to me five jears ago that herring spawned on the Massachusetts coast at all.
Q. Then there is no winter herring-fishery there i-A. The winter fishery is a very small one; it is carried on around Block Island and Nurragansett Bay, but whether capabilities exist for prosecuting a winter fishery elsowhere on the coast I cannot say.
Q. How do you account then for tho fact that such a number of your vessels come to the sonthern coast of Newfoundland for herring, if they are so prolific on your own coast $9-A$. That I cannot say. Why trade follows ono lino or direction rather than
auother I do not know: They may not have appliances for catching them ou our coast, and they may not have the means of taking them in such quantities as is possible at Newfoundland; but it is certainly a notorious fact that herring are much more abundant on the coast of Newfoundland than they are on the coast of the United States; though whether the herring that are wanted on the United States coast could or could not be had in the United States, I cannot say ; but I do think that herring are vastly more abundant in Newfoundland aud the Bay of Fundy than they are farther south.
Q. That accounts, then, for the number of your vessels that come to Nowfoundland for them, no doubt. Give us the number of miles of United States coast along which fishing rights have beon conceded to British subjects under the Washington Treaty :A. 1,112 .
Q. Can you give the extent of the Dominion const, including that of Nowfoundland i-A. Yss; the coast line of the Province of Canada is 810 miles; of New Brunswick, 1,000 miles; of Nova Scotia, 390 miles; of Nowfoundland, 1,650 miles; of Grand Manan, 30 miles ; of Prince Edward Island, 285 miles; of the Magdalen Islands, 85 miles; and of Anticosti Island, 265 miles; the total length of the coast line of Eastern British North America is 4,515 miles, four times that of the United States east of Cape Cod.

By Mr. Dana:

Q. Following the bays i-A. Following the large bays, but omitting the smaller ones.

By Mr. Whiteway :

Q. In your atatement regarding the annual product of the Dominion fisheries, you have not included the Newfoundland fisheries i-A. No ; I have only that of the Dominion of Canada.
Q. Are you aware that something like $1,500,000$ or $1,600,000$ quintals of tisli are caught in Newfoundland alone ${ }^{9}-$ A. I think that is very probable, but I do not know.
Q. Besides the largo herring fishery $\boldsymbol{q}^{-A .}$. I am very anxious to know exactly what the Newfoundland catch is ; I have made inquiries respecting it ; but I lavenot been able to obtain any such publio data.
Q. You say that the depletion of the codfish on the coast has been the result of the depletion of the river fisheries on the coast of Massachusetts ?-A. I gave that as presumably one reason for it. It is probably a very important element in the fishery.
Q. Then any act which may prove injurious to the bay fieheries on the coast would seriously affect the inshore fisherios by removing that which induced the cod to go ou the coast $1-A$. Yes; it would have its effect, I think. Possibly a very decided effeot.
Q. As a naturalist I would ask you to answor one or two questions. What do you mean by the term "fish" $\boldsymbol{\eta}$ Can you give us a definition ?-A. Well, a fish is a coldblooded vertebrate, having a particular mode of respiration. It breathes throngh gills instead of lunge, and it has a heart of a particular oonstruction.
Q. I will read the dofinition from a book published in Now York by Harper Brothers, the Encyclopedia of Conmerce. I presume that is an authority that can be relied upon [reads definition]. I suppose that is a definition that can le relied uponi-A. No; I think it cannol be relied upon at all. That would make anything that floats in the water a fish. So that the seal would be a fish and the otter would be a fish.
Q. This is the Encyclopedia of Commerce. I suppose it is reliable. I mean as an encyclopedia of commercei-A. Well, I don't know. I don't think it is quoted very much. It is probably a very good compilation. There are a great many books of that class that one has occasion to look at without fooling that they are perfectly accurate.
Q. Do you consider the seala fish f-A. Notat all.
Q. Whyt-A. Becanse it is a wirm-blooderl mammal. It breathes by morns of lungs, \&e.
Q. Is not the whale the same i-A. The whale is no more a frah than the soal.
Q. It is a mammal ; it is a swimmer:-A. If you wore to fall overboard in midocean you would be a swimmer.
Q. How is it with the walrus q-A. It is a mammal, not a fish.
Q. So is the whale is it not q-A. Yes.
Q. How do you draw a distinction between the whale and the seal; the one you consider a fish and the other not q-A. I don't consider the seal a fish.
Q. I thought you did. Now, don't you consider it a very unr easonable action on the part of the United States, the refusal to admit seal-oil as fish-oil. Perhaps you don't care to answer $\ddagger-A$. I don't object to answor. I am not a politician. I am perfectly willing to answer the question. I know that the penguin is considered a fish, commercially-that is, that ponguin-oil is received in England as fish-oil.
Q. That is a very important matter. I should like very much to bave it taken down that, as a commercial oil, the penguin-oil is considered a fish-oil P-A. It is in London.
Q. Is it not in the United States $9-A$. No ; but as far as I am informed the oil is classified in the London custom-house and trade returns as a fish-oil.
Q. What is the quintal in weight:-A. 112 pounds in some localities, and in some 100 pounds.
Q. It was givan here as 114 pounds i-A. Well, it might be 114 pounds. It is simply my impression that the quintal is considered 112 pounds. I would not be positive. A practical fish-dealer would give more positive information than I could.

By Mr. Dana:
Q. Here, on the 148th page of British 'lestimony we have a letter from Governor Hill to the Earl of Kimberly, taken from the journals of the legislative council in Newfoundland. It appears here, in the evidence of Judge Benn etit, as follows :

Government House,
Nerofoundland, July 4, 1871.

My Lord : I have the honor to inform your lordship that on the 1st instant I sent a telegram to your lordship, as folloms, viz: "In reference to terms of Washington treaty, it is understood that fish-oil includes seal-oil. Explanation will oblige this Government." And on the 3d instant received the following reply, viz: "I am of opinion that fish-oil does not include seal-oil.-EARL Kimberdx."

I have, \&c.,
STEPHEN J. HILL.
The Right Honorable the Eard of Kimberly,

$$
\oint c ., \& c ., \& c .
$$

Now you were asked a question what you thought of the exclusion of that oil.
Mr. Whitewny. He didn't answer it.
Mr. Dana. You withdrew it, didn't you 9 Porhaps this lettor occurred to your mind.

The President. We suggested that the question had better be withdrawn.

By Sir Alexander Galt :

Q. Before you leave, there are one or two questions I would like to ask you. Wo liave been told by a witness-I think it was a pilot-that there was a difference in the appearance of the codfish that was caught in certain waters. I would like to ask if yon have noticed that yourselfi-A. Yes, there aro a great many varieties of cod. They are, as far as I believe, one species, but they assume peculinr varieties, depending upon the particular bottom they are found on and the food thoy consume. Experts will tell you from what Banks particular fish are taken. For instance, inshore cod are nearly all red, while outside cod are gray. . Some have larger heade, some smaller, some have stout shoulders, and some are slender, but all these differences are local aud do not involve a distinction of species.
Q. Would not that, in your opinion, contirm the theory that the cod is not really a migratory fish ?-A. It would. That is very good evidence that there is no great migration.
Q. There is anothor question I wished to ask you. You gave us a very interesting account of a company that has been formed for the purpose of catching these predaceous fish, and you seomed to think it would have the effoct of materially diminishing thoir numbers. Well, if human means can reduce the predaceous fisl, would you not think that the appliances that are being used by fishermen must be diminishing the edible fish $9-A$. I don't think that the amount captured by man has any appreciable iufluence upon the supply of fish in the sea.
Q. Well, that is what I understood you to say.-A. That whatever offect is profluced by waste or extravagance in the capture of the fish is itself so trifling, in proportion to the natural wear and tear of the fish, that it may bo thrown entirely out of account. The report of the British Fishery Commission is vers satisfactory on that point.
Q. 'The only reason why I asked the question was that jou seemod to think this company would succeed in reducing the number of predaceous fish.-A. Well, those are large and take a long time to get their growth. You can imagine a limit to the abundance of cortain fish like the shark, though you cannot to the other fish, such as the cod and the mackerel.
Q. You are United States Commissioner. Are you clothed with authority rospecting the several States of the Union 9-A. No.
Q. Well, have you any authority i-A. I have none, except that they are all perfectly willing to have me spend all the money I will in their ports, and that they are willing to have me put as many shad, salmon, and cod, and useful food-fishes as I think I can spare in their waters.
Q. Have the United Statos collectively or the individual States the constitutional control over their fisheries; that is, their inshore fisheries $9-A$. The river fisheries are under the control of the several States, and the question of the jurisdiotion of the sea fishories has not yot been sottled. For the present it lies in the States. The general Gevernment has exercised no control or authority on the iushore fisheries.

By Hon. Mr. Krllogg:
Q. Referring to your hypothesis about the waters of the world being supplied with one kind of fish as another leaves, what have you to say in regard to the whele fishery; what is going to supply that $9-A$. Well, a fishery diminishes to a certain extent until it does not pay, and then is albandoned. Atter being let alone it increases and again becomes a profitable enterprise.
Q. Have any of the specios of fish that were userl in ancient times disappared 9 They used fish in ancient times just as much as thoy do now. Do you know of any tribe having actually disappeared p-A. The only kind of fish that has goue entirely out, so far as I know, is a kind of mackerel that was formerly found, known as tho chub-mackerel or big-eye mackerel. It was formerly well known. Thirty years ago it was extremely common, a steady measurable articlo of the fish supply. I have been in search of specimens ever since I have been in my present line of inquiry, and have i_{6} standing offor of $\$ 25$ for a specimen, but it has not been produced. There are many instauces of the local abandonment of extensive shores. For instance, herring. was formerly albundant on the coast of Swedon.
Q. Do you refer to a distinct species of maokerel q-A. A totally distinct species. We had two species on our coast and now we have ouly one. I dare say there may be a few, but we don't find them as formerly.

The following statistics, prepared by Mr. G. Brown Goode, are quoted from pages 3357, 3360-3 of the documents and proceedings of the Halis fax Commission :

Estimated total of American fisheries for 1876.
Consolidated table of sea fisherics east of Cape May
\$13, 030, 821
Lake fisheries in 1872 (Milner) 1,600,000
Products of whale fishery 2,737,379

17, 368,200
This is exclusive of all river fisheries; of the river fisheries of salmon, shad, alewives, and striped bass; of the coast fisheries south of Delaware Bay (mullet, bluefish, menhaden, \&c.) ; of all the Pacific coast fisheries (salmon, cod, haddock, \&c.) ; of the shell-fish (oysters, clams, \&c.); of the Crustaceans (lobsters, crabs, \&c.); of sponges; of skins; of fur and other seals, and of their oil. For these, thirty millions of dollars ($\$ 30,000,000$) is considered to be a reasonable estimate.

Weirs and traps on the southern coast of New England.

Locality.	Weirs and traps.	Men.
South side of Cape Cod.	23	88
Martha's Vincyard Sound	$\stackrel{8}{8}$	38
Buzzard's Bay	30	90
Block Island	$\stackrel{3}{30}$	12
Narragansett Jay .	30	210
Total	95	438

In addition to the above there are one hundred fykes, managed by fourteen men.
Tubleshowing the statistics of the manufacture of menhaden oil and guano in the United States in the years 1873, 1874, 1875, 1876.

	1873.	1874.	1675.	1876.
Number of factories in operation	${ }^{62}$	64		
Number of sail-vessols einployed.................	383 20	283 25	304 39	4680
Number of men omployod in figheries		871		
Numbor of men ouplosed in factortes.	1,197	1,667		
Total number of nen emploged..	2,308	2,438	2,633	2,798
ount of capital inverted	8,000	- $2,500,000$	82, 650,000	82, 750, 000
mber of fish tak	, 700, 000	422, 788,000	563, 327,000	512, 1500,000
Number of tigh taken (eetimated	1, ${ }_{2}, 1143,800$	8, 1728.887	1, $1,8881,487$	
Number of pallong of oil made	${ }^{2}{ }_{88}{ }^{24,299}$	-50,878	53, 025	51, 245
Nimuber of gallons of oll held by manufacturers at tho end of the yoar.	484, 620	648, 000	125,000	264, 000
Number of tons of gaano held by manufactarers at the end of the year.		6,200	50	76
Value of til, at 37 centa...	\$810, 470	\$1,247, 950	8002, 140	\$1,107, 040
Vulue of guano, at st1..................		${ }_{81}^{1808,880}$	${ }^{\mathbf{8} 12882,815}$	

Total number of menhaden annually taken on the coast of the Onited States, estimate $750,000,000$.
In 1874 one company, on the coast of,"New Jersey, put up 30,000 dozen boxes of menhaden in oil, under tho name of "American sardines," the value of which was, at least, $\$ 00,000$.
On the coast of New England thirty'fre decked ressels and numerous small ones, engage in the bait lishery, the catch of which approximates 100,000 barrels annually, worth from $\$ 100,000$ to $\$ 130,000$.
In the following table the cured cod have been restored to their green weight, (three times as much). The salted mackerel have been restored to their green weight (one-sisth additional). By inshore fisheries is meant those conducted from shore, and by offshore fisheries those conducted ia large vessels, principally those having over 20 tons burden.

Products of marine fisheries of Northern Atlantic Status.

Products of marine fisherics of No：ther＂Allantic States－Coutinued．

－Kinds of fish．	Inshore fisheries．							Offshore fishories．							Aggregate of weights．	Argregate of valuces．
	Pounds．	官	Wholesale ralue．		Retail raloe．	总	Mean ralue．	Pounde．	$\underset{\sim}{\dot{Q}}$	Wholesale ralue．	守	Ketail value．		Mean value．		
Herring．．．．．．．．．．．．．．．．	1，604，800	2	\＄32，096	4	\＄64， 192	3	\＄48，144	4，000， 000							$\begin{array}{r} 5,604,800 \\ 22,328,7 c 0 \end{array}$	$\begin{gathered} \$ 48,144 \\ * \\ * \end{gathered}$
Total	319，579， 950		2，710，641		4，658， 864		4，064， 484								1，045，855， 750	13， 030,821
Hatio to mile of cuast line $(1,112) \ldots \ldots \ldots$.	287， 392					\cdots	3，655		．		．				940，510	11，718

INDEX.

Miars, Hornaann, cited......................20, 48, 209
Babson Fitz J

Bait for fishes..........................124, 120, 147, 130, 137, 179
Balanus crenatus 105
Bullast used on fahing vossels.............. 105
Banks for fishing, list of..... 58
Banquerent 153
Barker, Prof. Goo. F., oitod 33
Barnacles, fuod for tishes...................... ${ }^{2}$
.... 28
as food.. 58
deep-sor flsh................................... ${ }_{140}$
packod in oil... 30,83
Batrachus tua.................................. 39, 60
Bay of Chaleurs, abundunce of Bumon... 56
Bay of Fundy, tomperature $.83,121,121$
Beam-trawl, doscription and teo.........8, 121, 12
Belono lougirostris.............................. 30
Belugas, destruotive to salmon and cod.. 108
Benuet, Thomas, ntatements by............. 108
Bergne, J. H. G.. 82
Mertram, cited.. 27,30
Millfsh .. 45
Blology of fishes 16,24

Bittivu ni
13lack boss 28
food of.............................. 42
plantod in Potomao............ 197

Black 1 bh food of... 38
utiliziag 190
Black ford, Eugene G.................135, 145, 170, 106
Blanchèrs, de la, cited................................ 129
Block Ibland, tomperature.................... 55,60
Blue-backed tront 5_{20}^{53}
Bluofish a... 81,191
abundance of 0 , 188. 191
dectructivenuss of.42, 58, 59.03, 65, 66, 77,78
$100,174,188,100$
rood for fishen..................35, 41, 44, 50
methoil of captura184, 200
movements ut47, 53, 181, 215
ghatistica of.
187
values as food-tish..................... 187
utili\%..01 108
Boats nsed in fishertes 107
Butck, lrof. A.. ${ }_{34}$
Boltonin bolteni47, 53, 187
Bonitus food foil sinuris 44
tood for shath …................... 215
Dorax as apreswrэativo......................137, 144, 178
Buttom lishes \quad.................... 63
1sottom ice destinctive to firkes........... 60
Bow and arruw used in finhiug 183

Bradelle Bank..20.28

13rovoortia tyrunnus 30, 43, 44
Britulostart, foud for tishos................. 34,36
Brook trout. .. ${ }_{26}^{28}$
Brosmius brosme.. 150
Brown's Bank …................................... 40
Bryozoans, food for fishos............... 217

geographical diatribution46, 53, 173
inethods of capture................. 175
migrations of........................47, 173, 202
skins utilizod......................... 142, 200
spawning of............. 83, 116, 122, 174, 175,
statistics20, 22, 142, 215
172

vorscity of ... 75,118
decrease of 203, 208
of New foundland 105,108
versels used in 104,106

Cold fatal to fish... 68

Conilers concharum.............................. 43
Considoration of ifshes, by groups 40 . 24
Copepods, food for flshes....................... $40,58,74$
Cormorants, cating fish .. 64
Cotton-seed oil, substitute for olive oil.... 146
Cox's Ledge, temperaturo.............................. 55, 50

as scarongors............................ 60
food for thilles........35-37, 40-44, 00, 174, 183
Crangon vulgaris....... 32, 35, 37, 38, 39, $40,41,42,43$
Crenella glandula .. 37, 38
repldula formicata..................................33, 39, 40
Crevalle
40
Crisis eburnes .. 28,215
Crocodiles, destructiveness 64

as scavengers 139
Crystallagobius
84
Ctenolabrus burgall...................................... 43
Caltivator Shoal.. 88,215
Cured-flsh products of Gloucestor........ 142
Carrents as aflecting fisbos................. 57, 08
Cusk.
20
87
product of Gloncester 142
Cuttle-figh .. 60
Cutts, Richerd I
Cyanea arctica...................................... 80
Cyblum regale..................................... $\quad 40$

Cynoscion carolinensi8......................... 28
Cynthia partita... $40,42,44$
Csprina islandica 34
Cyprinida 40,167

Cytherea morrhuana.
37
D'Amélio, suggestion on preservatives.... 137
Dains obstructing fish.............................. 59,67
Dana, jr., Richard H........................... $15,171,212$

Dayis Strait, hallbut fishery................ 10$\}$

Potomac, black bass in the................ Page. 107
former abundance50, 51, 01, 160;' 167 hhad and herring barroled 22
Pound-flshiug, open to Cabalians 188,189
Pounds, construction of 192
used in flahorics...................123, 187, 188

Pravns.....................................3, $35,37,39$
Preparation for market, legislation on.... 155
Proserving fish and bait...23. 133, 134, $144,177,178$
Prionot.118 carolinus 30
Pristipomatilde................................... 28
Pristis .. 54
Procellaria....................................... 125
Irsoducts of fisherices, uitilizing 16, 143
Preudopleuronectes лmericanus............ 25,35
Psendorhombur dentatus 25
prolue phantapus 38
Ptoroplatea maclura.................................. 43
Pteropods, food for fislies........................ 40,63
Ptilocheirus pinguis
Ptychatractus ligatis......................... 30
Puftinus major............................... $\quad 125$
Pus.nosed eel destructive to fish........ 04,85
Pus.nosed ecl, destructive to fish......... 04, 85
Pute seines depth of
Purse-seincs, not injurious........................ 208
Pyrula.. 131
Quahogs .. 32,34
Quintal, weight of 212
Radiata 34
Raia diaphana ... 43 hevis. .

49, 53
Rangoley tront 49,53
Rathbuu, Richard
llays, food for fighes

perch
26,39
Red rage as balt
125

Reddening of salted ilsh....................... 137
1Redtsil 26, 28, 30
Refrigerntors for preserving flsh........135, 144, 178
Reproluction of fistios.......................57, 80, 85
Reptiles, destructive to fish.
not much usod as bait.............. 125
Rissos exarata 30
River fisheries, regulation clesirable...... 157
Roccus lineatus 29,42

Roes of fishes, utilizod.........126, 129, 148, 173, 180
Romans, fish-culture among.
101
Rose-tish
20
Roвөтяу Bank.................................. 90
Round horring 30
Ruddertish, food of 40
Rusty dab.........
Sable Islanil Bank 92
Sable lyland fishing.ground 103
Saccopharynx 05
Sailimh........
St. Pierro Bank
St. Lawrence, fishing-grounds in.........
Salamanders eating thil oggs 61
Salicylic acid used for preserving fish 144

Salman.......................................24, 30, 47

decrease of …....................21, 81, 203
fisherice of Canaia, legislation... 60
food for marive manmals $00,010,47$
movements of...........
number of fish from erge 0 .
product of Gloucestor............ 143

roce as bait \ldots... 81
skins utilizod 209
statistics of 215
transplanting........................... 101

APPENDIX B.

SCIENTIFIC INVESTIGATION.

II.-A REVIEW 0F THE FLOUNDERS AND SOLES (PLEURONECTIDE) OF AMERICA AND EUROPE.

By David Stalbi Jordax ani David Kop Goss.

In this paper we have tried to givo the synonymy of all the genera and species of flounders and soles (Pleuronectida) found in the waters of America and Europe, together with analytical keys by which the groups may be distinguished.

The material we have examined includes (1) all the flounders in the museum of the Indiana University, which contains a large representation of the species found on our Pacific ccast, in the Gulf of Mexico, and in the Mediterranean; (2) much, but not all, of the material contained in the United States National Museum, more especially the specimens collected by Dr. Jordan and by Dr. Gilbert; and (3) all the flounders contained in the Muscum of Comparative Zoology, at Cambridge, Mass. This museum is rich in South American forms, the collections made by Professor Agassiz, Dr. Steindachner, and others for this museum being very extensive. Only the collections in the Indiana University have been studied by the junior author; for all statements regarding other specimens, and, in goneral, for everything said regarding the South American species, the senior author is responsible. We are under special obligations to Prof. Alexander Agassiz, director of the Museum of Comparative Zoology, and to Mr. Samuel Garman, curator of the fishes, for many courtesies in connection with our studies in that museum.
We regard the order of Heterosomata ("flat-fishes," with both eyes Ou the same side of the head) as constituting a single family, Pleuronectide. We find ourselves unable to separate the soles as a distinct family from the flounders. The characters which mark them as a group Stem no more important than those which set off one subfamily of flounders from another.
The group of "Bibroniida" recently recognized by some of the Italian ichthyologists as a separate family ("Bibronidi") is composed entirely of larval forms in the early stages of their development. In this condition the ejes are symmotrical and the body translucent. Several generic names have been giveu to these peculiar forms (Peloria, Bibronia, Ooccolus, Charybdia, Bascanius, Delothyris), but, of course, these genera can have no permanent place in the system. Peloria has been shown by Dr. Emery to be the young of Platophrys (Rhomboidichthys). The others seem to belong to the Cynoglossince or to some allied group, but We are not yet certain as to the correct identification of any of them.
S. Mis. $90-15$

We recognize amoug the Pleuronectida seven subfamilies-Hippoglossince, Pleuronectince, Samarince, Platessince, Oncopterince, Soleince, and Cynoglossince. The Samarina and Oncopterince are all of recent discorv. ery. 'The other groups correspond exactly to the five "subgenera" (Hippoglossus, Rhombus, Platessa, Solea, and Plagusia) recognized by Cuvier. These subfamilies are natural groups and are in most cases easily distinguished, although some few aberrant genera exist which serve as links joining one group to another. Thus Isopsetta of the Platessince is certainly a near ally of Psettichthys, Which is as certainly a genuine member of the Hippoglossince.

The Hippoglossince and the Platessince are largely arctic in their distribution, few of the former group and none of the latter extending into the tropics. The Oncopterince seem to take the place of the Platessince in antarctic waters, but the species of this group are few in number. The Pleuronectince and the soles are, on the other hand, essentially warm-water fishes, their representatives in the north being comparatively few. The Samarince are few in number and belong to the East Ivdian fauna.
As the tropical Hippoglossince and all the Pleuronectino are sinistral species, the eyes and color being on the left side of the body, it follows that the tropical flounders are nearly all left-sided species, while those of arctic and antarctic waters are chiefly dextral species, the eyes aud color on the right.
Still more curious is the relation between the number of vertebre and the geographical distribution of the various species.

It has beeu already noticed by Dr. Giinther and others that in some groups of fishes northeru representatives have the number of vertebro increased. In no group is this more striking than in the flonnders, as the following table showing the numbers of the vertebre in various species will clearly show. The numbers inclosed in brackets are copied from Dr. Günther; the others represent our own count of specimens contained in the museum of the Indiana University.

> Numbers of vertebra in flounders.
> I.-Hippoglossins.

Hippoglossus lippoglossus	$16+34=50$
Atheresthes stomias	$12+37=49$
- Hippoglossoiden platessoides	$13+32=45$
L.yopsetta exilis.	$11+34=45$
Lopsetta jordani	$11+32=43$
Psettichthys melanostictus	$11+29=40$
Paralichthys oblongus	$11+30=41$
Paralichtlys dentatus.	$10+30=40$
Paralichthys lethostigma	$10+27=37$
Paralichthys albigutta	$10+27=37$
Paralichthys calfornicus	$10+25=35$
Xystreurys liolepis	$12+25=37$
Ancylopsettr quadrocellat:	$9+26=35$

LI.-Pleuronectina.

Monolene sessilicatuad [43]
Lepidorhombus whiff-iagonis $[11+30=41]$
Citharichthys sordidus $11+29=40$
Platophrye lunatus $9+30=39$
Arnoglossus laterna $10+28=38$
Araoglossus grohmanni $10+28=38$
Zeugopterus punctatus $[12+25=37]$
Platophrys ocellatus $10+27=37$
Pleuronectes maculatus $11+25=36$
Pleuronectes rhombus $12+24=36$
Syacium papillosum $11+25=36$
Citharichthys aretifrons $10+26=36$
Syacium micrurnm $10+25=35$
Phrynorhombus regius $10+25=35$
Citharichthys spilopterus $10+24=34$
Citharichthys macrops $10+24=34$
Etropus microstomus $10+24=34$
Etropus crossotus $10+24=34$
Azevia panamensis. 33
Pleuronectes maximus $12+19=31$
.ili.-Platessine.
Glyptocephalus zachirus $13+52=65$ Glyptocephalus cynoglossus [58]
Microstomus pacificus
Microstomus pacificus $12+40=52$ $12+40=52$
Mjerostomus kitt $[13+35=48]$
Parophrys vetulus $11+33=44$
Platessa platessa $[14+29=43]$
Isopsetta isolepis $10+32=42$
Lepidopsetta bilineata $11+29=40$
Limanda limanda [40]
Liopsotta glacialis.
$13+27=40$
$13+27=40$
Pleurouichthys decurrens
$14+26=40$
$14+26=40$
Pleuronichthys verticalis
$13+25=38$
$13+25=38$
Platessa glabra
$11+26=37$
$11+26=37$
Platessa flesus
$[12+24=36]$
$[12+24=36]$
Peudopleuronectes americanus
$10+26=36$
$10+26=36$ $\mathrm{H}_{\text {ypsopsetta }}$ guttulata
$11+24=35$
$11+24=35$
Platichthys stellatus $12+23=35$
IV.-Soleinas.

Brach	IV.-Solleinat.	
Solea solea		$[8+41=49]$
Solea solea.		$9+40$ $10+37$
Solea aurantiaca		10+37 $=$ - 47
Monochirus ocella		$9+28=37$
Monochirus luteus		$9+28=37$ $8+29=37$
Monochirus hispidus		$9+25=34$
Achirus inseriptus		$8+20=28$

V.-Crnoglossine. Symphurus atricauda
$10+42=52$
$10+42=52$
Symphurus nigrescens
Symphurus nigrescens $9+40=49$
Sympharus plagiusa $9+38=47$

The subdivision of the flounders into genera loaves room for considerable variety of opinion. Most of the species are well detined and easily recognized, but they do not fall readily into geveric groups unless we regard almost every well-marked species as the type of a distinct genus. A natural result of an attempt at sharply defining the genera. is to reach what seems au extreme degree of generic subdivision. On the other hand, attempts to unite these smaller groups to form larger ones often leave these larger oues at once unnatural and ill-defined.

It will probably appear to some that the process of generic subdivision has been in this paper carried too far. It is possible that this is true, but the arrangement which wo have adopted seems to bring out the relations of the different forms better than can be done by a more "conservative" view of the genera. For those who would reduce the number of groups we suggest the following list of genera as representing a not unnatural mode of arrangement.

> I.-Hippoglossinis.

Atherefthes.

Platysomatichthyb.
Hiproglosses.
Hippoclossombs $\left\{\begin{array}{l}\text { Lyopsetta. } \\ \text { Eopsetta. } \\ \text { Hippoglossoides. }\end{array}\right.$
Pbettichthys.
Hippoglossina $\left\{\begin{array}{l}\text { Hippoglossina. } \\ \text { Xystreurys. }\end{array}\right.$
Paralicitives $\left\{\begin{array}{l}\text { Paralichthys. } \\ \text { Ancylopsetta. }\end{array}\right.$
il.-Pleunonectidn.
Phrynorhombus.
Zevgotterus.
Leplooriombus.
Citharus.
Pleunonectes $\left\{\begin{array}{l}\text { Bothus. } \\ \text { Pleuronectes. }\end{array}\right.$
Arnoglobsus.
Platopifrys.
Citharicitriys $\left\{\begin{array}{l}\text { Syacium. } \\ \text { Orthopsetia. } \\ \text { Citharich hhys. } \\ \text { Azevia. } \\ \text { Ltropas. } \\ \text { Thysanopsetta. }\end{array}\right.$
Monolene.

> MII.-Platessinae.

Pleuronicitioys $\left\{\begin{array}{l}\text { Plewronichthys. } \\ \text { Hypsopsetta: }\end{array}\right.$
Isopsetta.
Platiessa $\left\{\begin{array}{l}\text { Paroplerys. } \\ \text { Inopsetta. } \\ \text { Lepidopsetta. } \\ \text { Limanda. } \\ \text { Pseudopleuronectes. } \\ \text { Platessa. } \\ \text { Flesus. } \\ \text { Liopsetta. } \\ \text { Platiehthys. }\end{array}\right.$

Microstomus.
Cynicoglossus.
IV.-Oncopterine.

Oncopterius.
V.-Soleind.

Apionichtiys $\left\{\begin{array}{l}\text { Apionichthys. } \\ \text { dohiropsis. }\end{array}\right.$
Gymnachirus.
Achirls $\left\{\begin{array}{l}\text { Achirus. } \\ \text { Baiobtoma. }\end{array}\right.$
Monochinus $\left\{\begin{array}{l}\text { Monochirus. } \\ \text { Microchirus. } \\ \text { Quenselia. }\end{array}\right.$
Solea.
Brachirus.
VI.-Cynoglossine.

Sxuphunus $\left\{\begin{array}{l}\text { Symphurus. } \\ \text { Bascanius. } \\ \text { Delothyris. } \\ \text { Charybdia. } \\ \text { Bibronia. } \\ \text { Acedia. }\end{array}\right\}$ Larval forms.
analysis of subfamililes of plidionectida.
a. Flounders: Edge of preopercle free; mouth with developed teeth; pectoral and veutrals well developed (one pectoral" or one ventral oceasionally absent).
l. Mouth uearly symmetrical, the dentition nearly equally developed ou both sides, the gape usually, but not always, wide.
c. Ventral fins symmetrical, similar in position and in forn of base, the ventral fin of the eyed side not boing extended along the ridge of the abdomen. Hippoglossin ei.
oc. Ventral fins unsymmetrical, dissimilar in position and usually also in form, the ventral fin of the eyed sido boing extender along the ridge of the abdomen. Eyes and color on the loft side

Pleuronectina Il. \dagger

[^32]ul. Mouth unsymmetrical, the jaws on the eyed side with nearly straight outline, the bones on the blind side strongly curved; teeth chiefly on the blind side.
a. Ventral fins unsymmetrical, that of the eyed side extended along the ridge of the abdomen, snout with a free ray or other appendage in connection with the first ray of the dorsal. Eyes and color on the right side.

Oncoptyuinte III.
$d d$. Veutral fins nearly or quite symmetrical, that of the eyed side with short base; eyes and color on the right side (with occasional exceptions).

Platessine IV.
aa. Soles. Edge of preopercle adnate, usually obscured by the scales; mouth very small, much twisted toward the bliud side, and with rudimentary teeth; pectoral and ventral fins generally small, occasionally obsolote.
e. Eyes on the right side, separatod by a bony ridge Soritine V . ee. 'Eyes on the left side, not separated by a bony ridge....Cenoglossines VI.

ANALYSIS OF GENERA OF PLEURONECTIDAE FOUND IN AMERICA AND EUROPE.

Subfamily I.-HIPPOGLOSSIN ${ }^{\text {E. }}$.

(Large-mouthed flounders with the ventral fins symmetrical.)
Mouth symmetrical, the jaws and the dentition nearly equally developed on both sides; gape μ sually wide, the maxillary more than onethird length of head. Lower pharyngeals narrow, usually with but one or two rows of sharp teeth; teeth in jaws usually acute. Eyes large; edge of preopercle free. Pectoral and ventral fins well developed, the ventral fins similar in position aud in form of base, the ventral fin of the eyed side not being attached along the ridge of the abdomen. Septum of gill cavity without foramen.
a. Vertelre and fin-rays muchi increased in number (the vertebrw about 50 , tho dorsal rays about 100 , the anal rays about 85) ; body comparatively olongate ; caudal in lunate; lateral line simple; anal spine mostly obsolete. Dextral species, Arctic in distribution. (Genera allied to Hippoglos8us.)
c. Large teeth in both jaws arrow-shaped, biscrial, some of them depressible; upper eye with vertical range ; gill-rakers short; scales deciduous, ciliated ; lateral line without arch; flesh suft. Vertebre (stomias)

cc. Large teeth not arrow-shaped, biserial above, uniserial below; scales very small, cycloid; gill-rakers long and slender; eyes strictly lateral.
d. Lateral line without auterior arch; lower pharyngeal teoth uniserinl.

Platysomaticithys, 2.
dd. Lateral line with an interior arch; lower phargngeal teeth bisorial ; vertebriu (hippoglos8u8) $16+34=50$.......................... Hippoglossus, 3.
aa. Vertebre and fin-rays in moderate number (vortebre less than 46, dorsal rays less than 95, anal rays less than 75); caudal tin double truncate or rounded, the median rays longest.
f. Latoral line without distinct auterior arch; vertebre, 40 to 46 ; body normally destral;* caudal peduncle distinct; scales ciliated ; aual spine usually strong. Species of subarctic distribution. (Gonera allied to Hippoglossoides.)

[^33]g. Lateral line simple (without accessory dorsal branch); teeth sharp, those of lower jaw uniserial; dorsal beginning above ejo.
h. Teeth in the upper jaw biserial.
i. Scales comparatively large, thin, and deciduous (lateral line 70); body slender, the flesh soft; vertcbrio (exilis) $11+34=45$.

Lyopsetta, 4.
ii. Scales small and adherent (lateral line 96); body robust, the flush firm; vertebre (jordani) $11+32=43$. Eorsetta, 5 .
hh. Teeth in the upper jaw uniserial ; scales small and fosh firm; vertebro (platessoides) $13+32=45 \ldots \ldots$.
gg. Lateral line with an accossory dorsal branch; vertebrie 40 to 42 ; scales small, firm, ctenoid; dorsal fin beginning before the eye; teeth sharp, unequal, some of them canine-like; mouth not large; lower pharyngeal teeth sharp, unisorial; vertobre (melanostiotus) $11+29=40$.Psettichthys, 7.
ff. Lateral line with a strong arch in front; no accessory brauch; vertebre in smaller number (35 to 41); tecth uniserial; anal spine usually obsolete; body normally sinistral." (Species chiefly of the temperate or sub-tropical seas, none of them Arctic and none European.) (Genera allied to Paralichthys.)
k. Dorsal fin beginning above the pupil; gill-rakers short and thiok; teeth rather small; no canines; body indifferently destral or sinistral (in some species at least).
l. Scales ctenoid

Hippoglossina, 8.
71. Scales cycloid; candal fin subsessile, the caudal peduncle extremely short; skin of shoulder-girdle with patches of cup-shaped ucales; vertebrat (liolepid) $12+25=37$

Xyatrauryb, 9.
$k k$. Dorsal fin beginning in advance of oye.
m. Scales weakly ciliated; candal fin with a distinct peduncle; teeth unequal, some of the auterior canine-like; gill-rakers rather long and slender ; vertebrw, 35 to 41

Paralichthys, 10.
$m m$. Scales very strongly ctenoid on both sides of body; mouth smallish, with small, sharp teeth; anterior rays of dorsal notably exserted, the rays of the anterior part of the fin longer than some of those further back, thus forming a more or less distinct lobe; gill membranes considerably united; gill-rakers short aud broad; caudal peduncle short; left ventral produced; vertebras (quadrocellata) $9+26=35$
ancylopsetta, 11.

Subfamily II.-PLEURONECTIN画.

(Large-mouthed flounders, with the ventral fins unsymmetrical.)
Mouth symmetrical, the dentition nearly equally developed on both sides; gape usually wide (narrow in Platophrys, Etropus, etc.), the maxillary commonly more than one-third length of head. Lower pharyngeals narrow, each with one or more rows or a narrow band of small, sharp teeth; teeth in jaws acute. Eyes not minute; pectorals and ventrals usually well dereloped. Edge of preopercle free. Ventral fius dissimilar in form or in position, that of the left or eyed side inserted on the ridge of the abdomen, its base extended along this ridge, its rays more or less wide apart. Caudal fin rounded or subtruncate; no ac-

[^34]cessory lateral line ; anal spine usually weak or obsolete; a pelvic spine sometimes developed. Vertebræ in moderate or small number, 31 to 40 (except in Monolene). Body sinistral. Species chiefly tropical or subtropical in distribution.
a. Pectoral tin of benth sides present; dorsal rays less than 100.
b. Septum of gill cavity betwcen gill arches and the terminetion of the shouldergirdle with a large foramen; the emargination below the shoulder-girdle near the isthmus not deep; lateral line with astrong arch in front; last rays of dorsal and aual inserted more or less on the right side of the median line; teeth subequal, in bands.
c. Vomer toothless; ventral fins free from the anal ; caudal fin subsessile ; scales small, each with very long spinules; vertebris (regius)

cc. Vomerewith teeth.
d. Ventral of eyed side united to the unal; scales small, very rough; body ovate ; vertebric (punctatus) $12+25=37$.

Zecgopterus, 13.
da. Ventral fins free from the anal; scales ciliated, deciduous; body oblong, much compressed; vertebre (whiff-iagonis) $11+30=41$. Lepidorhombub, 14.
bb. Septum of gill cavity below gill arches, without foramen ; a deep emargination near the isthmus; ventral firs free from aual.
e. Vomer with tecth; lateral line with a strong arch in front.
f. Tecth unequal, those of the upper jaw biserial, some of them caninelike; scales weakly ciliated; body elongate; mouth very large.. Citharus, 15.
ff. Teeth subequal, in villiform bands; body broadly ovate ; caudal fiu subsessile; interorbital area broad; scales small, cycloid, or wanting ; vertebra 31 to $36 \ldots . .$. Plevronectes, 16.
ee. Vomer toothless; ventral fins free from anal; caudal fin subsessile.
h. Lateral line with a distinct arch in front; teeth small, uniserial, or iuperfectly bisorial.
i. Iuterorbital area a uarrow ridge, sometimes with a median groove.
j. Scales cycloid or weakly ciliated, deciduous ; vertebra $10+28=$ 38... Ainoglossus, 17.
ii. Interorbital space pure or less broad, deeply concave; scalos small, ctenoid, adherent ; body ovate (pectoral of left side usually filamentous in the male); vertebre (lunatus)

lh. Lateral line without arch in front; scales ciliated.
k. Teoth in upper jaw biscrial, in the lower uniserial, the frout teeth of upper jaw oularged; vertebra 35 or 36.

Syacium, 19.
$k k$. Teeth in both jaws uniserial ; interorbital space very nariow, the ridges coalescing between the eyes.
i. Mouth not very small, the maxillary more than one-third - Jengtl of head.
m. Gill-rakers very short and thick, tubercle-like; senles small, firm, ctenoidAzevia, 20.
$m m$. Gill-rakers slender, of moderate length ; scales thin, decid-* uous, ciliated; vertebra 34 to $40 \ldots$...Citrarichthyb, 21.
ll．Mouth very small，the teeth subequal，the maxillary less than one－third length of head．
n．Teeth uniserial；vertebro $9+2 \pi=34 \ldots$ ．Erropus， 22.
nn．Tooth in villiform bands ．．．．．．．．．Thysanorbetta， 23.
$a a$ ．Pectoral Hn of blind side wanting ；eyes very close together；caudal fin subses－ sile；teeth small，uniserial；mouth moderate；lateral line of eyed side arched，that of right side nearly straight； dorsal fin beginning on snont，its anterior rays not ex－ serted，its rays all simple＇and very numerous：scales small；body thin，very olongate ；vertebra（sessilicauda） 43；（deop－sea flouncers，of uncertain relatiouship）．

Monolene， 24.

－Subfamily III：－0NCOPTERIN压．

（Small－mouthed Hounders，with the right ventral fin extending along the ridge of the abdomen，dorsal beginning at the snout，a bony promi－ nence of some sort connected with its first ray；eyes and color on the right side．）
a．Left side of suout with a horizontal slit－like cavity，into which a curved，bony， ray－like appendage is depressible；lateral line with an anterior arch and with numerous accessory branchos nearly at right angles withit；scales cycloid；right ventral tin free from the anal 6 n ；left ventral fin present；gill－rakers short and

Subfamily IV．－PLATESSIN压．

Mouth small，unsymmetrical，the jaws on the eyed side with nearly straight outline，the bones on the blind side strongly curved；dentition chiefly developed on the blind side；eyes large；edge of preopercle not hidden by the scales ；pectoral fins well developed；vertical fins well separated；ventral fins nearly or quite symmetrical ；anal spine usually strong（obsolete in Microstomus）．Body dextral（except frequently in Platichthys stellatus）．Species arctic or subarctic in distribution．
a．Vertebræ in moderate number（from $10+26=36$ to $11+33=44$ ）；dorsal rays 65 to 80 ；anal rays 45 to 60 ．
b．Toeth small，acuto，in s6veral series；lateral line nearly straight，with an acces－ sory dorsal branch；lower pharyngeals narrow，with small biserial teeth；scales cycloid．（Genera allied to Pleuroniohthys）．
o．Lips thick－each with soveral longitudinal folds；dorsal fin beginning on the blind side；vertebrie 38 to 40. ．Pleuronichthys， 26.
cc．Lips simple；dorsal fin beginning on the median line；vertebre（guttulatus） $11+24=35$
．Hypsopsetta， 27.
bb．Tecth chiefly uniserial，all more or less blunt，conioal•or incisor－like．（Genera． allied to Platessa）．
d．Lateral line with an accessory dorsal branch．
e．Lateral line without distinct arch in front．
f ．Teeth compressed，incisor－like，clone－set．
g．Scales closely imbricated，mostly cycloid；upper eye on mediau line；

gg．Scales scarcely imbricated；all very strongly ctenoid；eyes both lateral．．Inopsetti， 29.
ff. Teeth conical, separated, not incisor-like; scales closely imbricated, all strongly ctenoid; mouth comparatively large (approaching that of Psettichthys); vertelore (isolepis) $10+32=$ 42..
ee. Lateral line with a distinct arch in front; scules imbricated, roughctenoid; vertebre (bilineata) $11+29=40$. Lepidopsetta, 31 . dd. Lateral line without accessory dorsal branch.
h. Lateral line with a distinct arch in front; scales inbricated, rough-ctenoid; vertebræ (limanda) 40............Imanda, 32.
ini. Lateral line without distinct arch in front.
i. Scales regularly imbricate, all (on cyed side) ctenoid in both sexps; no stellate tubercles on hoad nor ou bases of dorsal and anal fins; teeth, incisor-like, close-set; lower pharyugeals very narrow, each with two rows of separate, conical teeth; fin rays scaly

Psecdorleuronectes, 33.
ii. Scales iuperfectly imbricated, or else not all ctenoid.
j. Scales chiefly cycloid in both sexes; lower pharyngeals small and narrow, separate, each with 1 to 4 rows of small, bluntish teeth

Platessa, 34.
$i j$. Scales rough-ctenoid in the male, more or less cycloid in the female (fin raysscaly in the male, naked in the female); lower pharyngeals very large, more or less united in the alult, their surface somewhat concave, the tecth in five or six rows, large, blunt, close-set; teeth in jaws incisor-like; fin-rays of dorsal, and anal without tubercles at baseLiorsetta, 35.
ijj. Scales all in both sexes and on both sides of the body represented by coarse scattored stellate tubercles; similar tubercles between bases of dorsal and anal rass; lateral line without scales; lower pharyngeals broad, each with three rows of blunt, coarse tecth; teoth incisor-like................ Platicuthys, 36.
an. Vertebro in iucroased number (varyiug from $13+35=48$ to $13+52=65$); dorsal rays 90 to 120 ; anal rays 70 to 100 ; tecth broad, incisor-like; scales small, all cycloid. (Genera allied to Glyptocephalus).
k. Left side of skull normal ; anal epino obsolete; vertebras 48 to 52
2..
ki. Left side of skull, with large mucous cavities; anal spine strong; vertebr:e 58 to 65..................Glyptocephalits, 38.

Subfamily V.-SOLEIN尼.

(Soles with the eyes on the right side, and separated by a bony ridge.)

Body oblong or elongate, with the eyes and color on the right side; eyes inoderate or small, separated by a distinct bony ridge, the upper eye usnally more or less in advance of the lower; mouth small, more or less twisted towards the blind side; teeth little developed, in villiform bands; edge of preopercle adnate, usually concealed by the scales; gill openings more or less narrowed, the gill membranes adnate to the shouldergirdle above; blind side of head usually with fringes; pectoral fins small, sometimes wanting; ventral fins developed, one or both of them sometimes obsolete; scales usually ctenoid, rarely wanting ; lateral line straight, usually single.
a. Gill openings very small, separate, each reduced to a slight slit below angle of opercle; right ventral beginning at the chin, confluent with the anal; pectoral fins wanting or very small; lateral line present, straight; cyes snall; smout dilated, the dorsal beginning upon it.
b. Scales present, ctenoid ; caudal fin somewhat confluent with dorsal.
c. Left ventral rudimentary, with two rays Arionicntiys, 39.
cc. Left ventral well developed, with five rags...................... Achirorsis, 40.
ub. Scales none ; caudal fin not confluent with dorsal and anal. Gyminachirus, 41. aa. Gill openings of moderate extent, confluent below.
d. Vertical fins well separated.
e. Right ventral fin with extended lase, confluent with the anal fin; vertebre alout 28 ; body ovate in outline, the depth nearly half the length; pectoral fius rudimentary or wanting; lateral line straight; scales well developed, ctenoid, those on the head more or less enlarged, those of the blind side of the head with fringes.............................. Acmirus, 42. ee. Right ventral fin with short base, free from the aual ; vertebr:e 34 to 50 ; body elliptical or elongate, the depth one-third to two-fifths the length; lateral line single" on both sides.
f. Vertebra 34 to 40 ; body oblong ; pectoral fins usually small, sometimes wanting on the blind side.................................. Monocninus, 43.
fl. Vertebra 47 to 50 ; body elongate; pectoral fins subequal, present on both sides Solea, 44.
ad. Vertical fius fully confluent around the short tail, body oblong ; seales very small, cteuoid; vertobre ($z=b$ ra) $z+41=49$ Brachirus, 45.

Subfamily VI.-CYNOGLOSSIN Æ.

(Soles with the eyes on the left side, not scparated by a bony ridye.)
Body elongate, more or less lanceolate in outline, with the eyes and color on the left side; eyes small, very close together, with no distinct interorbital ridge between them ; mouth small, twisted toward the blind side; teeth little developed, in villiform bands; edge of preopercle covered by the scales; gill openings narrow, the gill membranes adnate to the shoulder girdle above, joined together and free from the isthmus below; pectoral fins wauting (in the adult); ventral fins small, that of the blind side often wanting; vertical fins more or less canfluent; scales etenoid; lateral line sometimes wanting, sometimes duplicated.
a. Ventral fin of eyed side only present, free from the aual ; no pectoral fins; no lateral line; head withont friuges.................................. Sympiudrus, 46.

- Subfamily I.-HIPPOGLOSSIN生.

Genus I.-ATHERESTHES.
Atheresthes Jordan \mathbb{E} Gilbert, Proc. U. S. Nat. Mus., 1880, 51 (siomias).
Type: Platysomatichthys stomias Jordan \& Gilbert.
The single species which constitutes this genust is one of the most

[^35]remarkable of the flounders. Of all the group, it approaches in form and general characters most nearly to the Gadoid fishes, from which we may presume the flounders to be descended, although Dr. Gill has sug. gested the possibility of their descent from Trachypteroid fishes.

ANALYSIS OF SPECIES OF ATIIERFSTHES.

a. Head about 3 3 in length; dopth, $3 \frac{1}{2}$; D. 103, A. 86 ; Lat.1. 135. Gill-rakers about $4+12$, long and slender ; interorbital ridge broad, scaly; eyes large ; vertebra, $12+37=49$. Color olive brown, the margins of the scales darker; blind side dusted with dark points; inside of mouth and gill-cavity black.

Stomias, 1.

1. ATHERESTHES STOMIAS.

(The Ahrow-tootiled Halibut.)
[Plate I.]
Platy8omatichthys stomias Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, 51, 301, (San Francisco).
Atheresthes stomias Jordau and Gilbert, Proc. U. S. Nat. Mus., 1880, 57, 454 (off San Francisco). Bean, Proc. U. S. Nat. Mas., 1881, 242 (San Francisco, Port Etches, Afognak Island, Popoff Island, Shumagins). Jordan and Gilbert, Proc. U.S. Nat. Mus., 1881, 66 (Point Reyes to Farallones). Jordan and Gilbert, Syn. Fish. N. A., 820, 1882. Bean, Proc. U. S. Nat. Mus., 1883, 354 (Wrangel and Nabu Bay, Alaska). Jordan, Nat. Hist. Aquat. Anim., 1884, 188, plate 53 (Point Royes).
Habitat.-Coast of Alaska, southward in deep water to near San Francisco.

This species is not uncommon in the deep water off San Francisco, and is brought in in cousiderable numbers from the sweep-nets (parrax. zelle) used in this region. Farther northward it is taken on the coast of Alaska, and it is properly a member of the Alaskan fauna.

Genus II.-PLATYSOMATICHTHYS.

Reinhardtius Gill, Cat. Fishes East. Coast N. A., 1861, 50 . (Vomen nudum.)
Platysomatiohthys Bleeker, Comptes Rendus, Acad. Sci. Amsterdam, xiii, 1862, 426. (pinguis $=$ hippoglos8oides.)
Reinhardtius Gill, Proc. Ac. Nat. Sci. Phila., 1864, 218. (hippoglos8oidce.)

Type: Pleuronectes pinguis Fabricius $=$ Pleuronectes lippoglossoides Walbaum.

But a single species of this genus is known, an Arctic flsh, in some degree intermediate between the true halibut and Atherestles.

We continue to use the name Platysomatichthys for this genus, as the earlier name Reinhardtius was introduced without explanation or special designation of a type, although there is no question as to what species the author would have included in the group if he had taken the trouble to define it.
a. Head, 38 in length; depth, nearly 3 ; D. 100, A. 75 ; Lat. l. 160 ; interorbital spaco, broad, flat, scaly; color brown, nearly plain . Hippoglossoides, 2.

2. PLATYSOMATICHTHYS HIPPOGLOSSOIDES.

(The Greenland Halibut.)
[Plate II.]
Pleuronectes cynoglossus Fabricius, Fauna Gramlandica, 1780, 163 (Greenland, not of Linn:cus).
Pleuronectes hippoglossoides Walbaum, Artedi Piscium, 115, 1792 (based on Fabricius).
Reinhardtius hippoglossoides Gill, Cat. Fish. E. Coast N. A., 1861, 50 (name onls). Gill, Proc. Ac. Nat. Sci. Phila., 1864, 218.
Platysonatichthys hippoglossoides Goode \& Bean, Bull. Essex Inst., ii, 7, 1879 (coast of Massachusetts and northward in deep water). Collett, Norske Nord Hars Exped., 1880, 142 (Finmark, Hammerfest). Jordan \& Gilbert, Syn. Fish. N. A., 1882, 819. Goode, Nat. Hist. Aquat. Anim., 1884, 197, pl. 56 (George's Bank and northward), aud of late American writers generally.
Pleuroneotes pinguis Fubricius, Zoologiske Bidrag., 1824, 43 (Greenland).
Hippoglossus pinguis Roinhardt, "Kyl. Dansk. Vidensk. Selsk., 116, 1838."
Platysomatichthys pinguis Bleeker, I. c., 426, 1862.
Hippoglossus grenlandicus Günther, iv, 404, 1862 (Greonland).
Habitat.-Arctic parts of the Atlantic, south to Finland and the Grand Banks.

Genus III.-HIPPOGLOSSUS.
Hippoglossus Cuvier, Règne Animal, ii, 1817 (hippoglossus).
Type: Pleuronectes hippoglossus L.
This genus contains but one species, the well-known halibut, abundant on both coasts of the North Atlantic and of the North Pacific.
analisis of species of mippoglossus.
a. Head, $3 \frac{8}{4}$; depth, about 3; D. 105, A. 78; Lat. 1.150 or more; interorbital space, broad, Hat, scaly ; gill-rakers, few, short, compressed, wide-set; color, dark

3. HIPPOGLOSSUS HIPPOGLOSSUS.

(Tine Halibut.)
[Plato III.]
Pleuronectes hippoglossus Linnaus, Systema Naturio, cd. x, 269, 1758 (European Ocean) (of Gmelin, Bloch, aud aarly writers generally).
Hippoylossus hippoglossus Jordan, Cat. Fisit. N. A., 188i, 133.
Hippoglosaus vulgaris Floming, British Auimals, 1828, 197. Giinther, iv, 403, 1862. Day, Fishes Great Britaiu, ii, 5, pl. xciv, and of European writers generally.

[^36]Hippoglossus culyaris Storer, Fish. Mass., 145, 1839. DeKay, New York Fauna, Fishes, 1842, 294, pl. 49, f. 157. Storer, Synopsis Fish. N. A., 1847, 475. Lockington, Rep. Con. Fisheries, C'alifornia, 1878-79, 39 (Farallone Islands). Lockington, Proc. U. S. Nat. Mus., 1879, 71 (San Francisco). Bean, Proc. U. S. Nat. Mus., 1879, 63 (Unalashka and St. Michael's, Alaska, Eastport, Maine). Jordau \& Gilbert, Proc. U. S. Nat. Mus., 1880, 454 (Puget Sound, San Francisco). Goode, Proc. U. S. Nat. Mus., 1880, 471 (Fisher's Island, Connecticut, \&c.) ; Jordan \& Gilbert, Proc. U. S. Nat. Mns., 1881, 66 (San Francisco, Capu Flattery). Bean, Proc. U. S. Nat. Mus., 1881, 242 (San Francisco, Puget Sound, Port Althorp, Chugachik Bay, St. Panl, Unalashka, St. Michuel's. Jordan \mathcal{A} Gilbert, Syn. Fish. N. A., 1882, 819. Bean, Cat.Col. Fish. U. S. Nat. Mus., 1883, 20 (Port Althorp, Alaska). Drescl, Proc. U. S. Nat. Mus., 1884, 244, (Davis Straits, Greenlaud). Goode, Nat. Hist. Aquatic Anim., 1884, 189, plate 54 (Sandy Hook, Montauk Point, Block Island, and nortliward), and of American writers generally.
Hippoglossus maximus "Gottsche, Wiogmann's Archiv, 1835, 164."
Hippoglossua gigas Swainson, Nat. Hist. Class'n Anim., ii, 1839.
Hippoglosaus ponticus Bonaparte, Catalogo Metodico, 1846, 47 (Black Sea, after Pallas).
Hipyoglossus americanus Gill, Proc. Acad. Nat. Sci. Phila., 1864, 220.
Habitat.-All northern seas, southward in deep water to France, Sandy Hook, and San Francisco.

The halibut, the largest and most widely distributed of all the Pleuronectida, is too well known to require discussiou here.

Genus IV.-LYOPSETTA.

Lyopsetta Jordan and Goss, Cat. Fish. N. A., 1885, 135 (exilis).

Type: Hippoglossoides exilis Jordan \& Gilbert.
This genus contains but a single species, a small, soft-bodied flounder, of the waters of the North Pacific: In its technical characters Lyop. setta is very close to Hippoglossoides, of which it might well be regarded a subgenus. The introduction of the name Lyopsetta is to be regretted from its close resemblance to Liopsetta, a word of similar sound, but very different meaning. At the time of the introduchion of Lyopsetta, Liopsetta was regarded as an obsolete synonym.

ANALYSIS OF SPECIES OF LyOPSETTA.

a. Body rather slender, the flesh soft; mouth rathor small, the maxillary 22 in head; tecth small, slender, close-set, nearly uniform. Eyes very large, $3 \frac{1}{s}$ in head, separated by a slrarp, scaly ridge. Scales rathor large, thin, dociduous, weakly ctenoid; poctorals small, the right pectoral nearly 2 iin head. Gill-rakers short, slender, $x+9$. Head, 4 ; depth, 34 ; D. 78 , A. 62, Lat. 1., 71. Vertebro $11+34=$ 45. Pale brown, with dark points; bronze spots sometimes present; fins dusky ; dorsal, anal, and ventrals edged with yellow Exilis, 4.

4. LYOPSETTA EXILIS.

Hippoglossoides cxilib Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 154 (off San Francisco). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 454 (Puget Sound, Sau Francisco, Monterey Bay). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1881, 67 (San Francisco, Point Rejes, Seattle, Pugot Sound). Jordau \& Gilbert. Syn. Fish. N. A., 1882, 827.

Habitat.-North Pacific, in rather deep water. San Francisco to Puget Sound, and probably northward.
This small flounder is brought in in large quantities by the sweepuets off San Francisco. It is of little value as a food-fish.

Genus V.-EOPSETTA.
Eopsetta Jordan \& Goss, Cat. Fish. N. A., 1885, 135 (jordani).
Type: Hippoglossoides jordani Lockington.
This genus contains but a single species, a large flounder which is abundant on the coast of California. It is very close to the genus Hippoglossoides, and its separation as a distinct genus is perhaps hardly justified.

ANALYSIS OF SPECIES OF EOPSETYA.

a. Body broadly ovato; maxillary 2 in head; teeth in two series above, the inner series much smaller, the outer canino-like in front, gill membraves somewhat united; gill-rakers strong, $x+15$; cyes large, $3 \frac{1}{2}$ in head, separated by a uarrow, blunt, scaly ridge; scales spuall, firm, strongly ciliaterl, smooth on blind side; anal spine strong; head 38; dopth 2ł. D. 94, A. 72, Lat. 1. 96. Vertebre $11+32$ $=43$. Color, olive-brown, nearly uniform......................................

5. EOPSETTA JORDANI.

(The "California Sole.")

Hippoglossoides jordani Lockington, Proc. U. S. Nat. Mus., 1879, 73 (San Francisco). Lockington, Rep. Com. Fisheries, California, 1878-'79, 40 (San Francisco, Farallone Islands). Lockington, Scientific Press Supploment, April, 1879, 120. Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 454 (Puget Sound, San Francisco, Monteroy lay). Jordan \& Gilbort, Proc. U. S. Nat. Mus., 1881, 67 (Monterey, Puget Somnd, San Francisco). Jordau \& Gilbort, Syn. Fish. N. A., 1882, p. $8^{26} 6$. Jordan, Nat. Hist. Aquat. Anim., 1884, 187.
Habitat.-Coast of California, Puget Sound to Monterey.
This is ove of the commonest flat-fishes of the California coast, being found in abundance in shallow water from Monterey northward. It is a good food-fish, and large numbers are dried each jear by the Ohinese.

Genus VI.-HIPPOGLOSSOIDES.

Hippoglossoides Gottsche, Wieguanu's Archiv, 1835, 164 (" limanda" =plate8soidcs).
Drepanopsetta Gill, Cat. Fish. East Coast N. Am., 1861, 50 (platessoides).
Pomatopsetta Gill, Proc. Ac. Nat. Sci. Plila., 1864, 217 ("dentata "=plates8oides).
TYPe: Pleuroncetes platessoides Fabricius.
This genus, as here restricted, contains two closely related species, the one of the North Pacific, the other of the North Atlantic. Both are essentially Arctic species, inhabiting shallow waters in the regions where they are most abundant.
a. Teeth small, unequal, the anterior largest ; gill-rakers short, $\mathrm{X}+10$ in nuruber ; maxillary $2 \frac{2}{3}$ in head ; eyo $5 \frac{1}{2}$ in hoad ; interorbital space with an obtuso, prominent ridge, with usually abont six series of scales; head, 34 ; depth, 24 ; D. 88 (80 to 93) ; A. 70 (64 to 75) ; Lat. l. 90 ; vertebree $13+32=45$; color nearly plain brown. Platessoides, 6.
aa. Teeth small, subequal; gill-rakers slender, $\mathrm{X}+16$; maxillary $2 \frac{1}{3}$ in head; eye large, 4 in head ; interorbital space a narrow, knifo-like ridge with usually a single sories of scales; head, 3t ; depth, $2 \frac{1}{2}$; D. 80 (77 to 84) ; A. 61 (59 to 64) ; Lat. 1. 100 ; color brown, sometimes mottled with darker. Elassodon, 7.

6. HIPPOGLOSSOIDES PLATESSOIDES.

(Tile Sand Dab.)

[Plate IV.]
Pleuronectes linguatula Miillor, Zool. Dan. Prodromus, 45, 1776 (not of Linnæus).
Pleuronectes platessoides Fabricius, Fauna Gromlandica, 1780, 164 (Greonland), and of numerous copyists.
Citharus platessoides Reinhardt, Kongl. Dausk. Vid. Selsk, 116, 1838.
Drepanopsetta platessoides Gill, Cat. Fish. East Coant N. Am., 1861, 50 (name only).
Hippoglossoides platessoides Gill, Proc. Acad. Nat. Sci. Phila., 1864; p. 217. . Collett, Norske Nord-Havs. Exped., 1880, 144 (Norway to Spitzbergen). Goode, Proc. U. S. Nat. Mus., 1880, 471. Jordan and Gilbert, Syn. Fish. N. A., 1882, 826. Stearns, Proc. U. S. Nat. Mus., 1883, 125 (Labrador). Goode, Nat. Hist. Aquatic Anim., 1884, 197, pl. 55 (Wood's Holl and northward), and of recent American writers generally.
Pleuronectes limandoides Bloch, Ausl. Fische, iii., 24 tab. 186, 1787 (Europe), and of various copyists.
Hippoglossoides limandoides Giinther, Cat. Fish., iv, 405, 1862. Day, Fishes Great Britain and Ireland, vol. ii, p. 9, pl. xcv.
Hippoglossoides limanda Gottsche, Wiegm. Archiv, 1835, 168 (not Pl. limanda L.).
Pleuronectes limandanus Parnell, Edinbargh New Phil. Jonrn., 1835, 210.
Platessa dentata Storer, Fish. Mass., 143, 1839. (Boston and Provincetown; not Pl. dentatus Linnæus.) DeKay, N. Y. Fauna, Fish, p. 298, 1842. Storer, Syn. Fish. N. A., 1846, p. 476.
Hippoglossoides dentatus Gïnther, Cat. Fish., iv.; 406, 1862. Günther, Voy. Challenger, Fishes, 1880, 3. (Station 49, south of Halifax.)
Pomatopsetta dentata Gill, Proc. Acad. Nat. Sci, Phila., 1864, p. 217.
Habitat.-North Atlantic, south to Cape Cod, and the coasts of Eug. land and Scandinavia.

The identity of the American and European representatives of this species (platessoides and limandoides) is now conceded by all writers. A little difference is recognized between Arctic and subarctic examples, the former having a somewhat greater number of fin-rays.

Thus, Greenland specimens, according to Collett, have D. 88, A. 69, specimens from Finmark have 1. 92, A. 72; these representing the var. platessoides. Specimens from England (var. limandoides) have D. 80, A. 66, while those from intermediate localities present in general fin formulæ likewise intermediate, showing that no sharp division is possible.

This is a rather common food-fish of the deeper waters northward, on both sides of the ocean.

7. HIPPOGLOSSOIDES ELASSODON.

> [Plate V.]
> Mippoglossoides elashodon Jordan and Gilbert, Proc. U.S. Nat. Mus., 1880, 278 (Seattle, Tacoma, Washington Torritory). Jordan \& Gilbert, Proc. U. S. Nit. Mus., 1880, 454 (Puget Sound) and elsewhero. Bean, Proc. U. S. Nat. Mus., 1881, 242 (Puget Sound, St. Panl, IHumboldt Harbor, Shumagins, Iliulink, Uualashka, St. Micbael's). Jordan and Gilbert, Syn. Fish. N. A., 1. 826, 1882. Bean, Proc. U. S. Nat. Mus., 1883, p. 20 (Unalashki). Jordan, Nat. Hist. Aquat. Anim., 1884, 188, pl. 52.

Habitat.-North Pacific, south to Puget Sound.
This is a rather abundant shore fish in Puget Sound, and it seems to be still more common northward, being, in Alaska, a food•fish of some importance.

Genus VII.-IPSETTICHTHYS.

Psettichthys Girard, Proc. Ac. Nat. Sci. Phila., 1854, 140 (melanostictus).
Type: Psettichthys melanostictus Girard.
This genus contains but a single species, found on the coast of Califoruia. It is nearly related to Hippoglossoides, but possesses the peculiar accessory dorsal branch to the lateral line, characteristic of so many of the Pacific coast flounders.

ANALYSIS OF SIECLES OV PSETTICHTHYS.

a. Body elliptical; mouth rather small; maxillury 28 in head; teoth largo, slarp, uniserial; eyes very small, 5 in head, separated by a broad, fat, sealy interspace; gill-rakers slender, X - 1 -14; scales very small, etenoid, adherent; accessory lateral line long; first rays of dorsal oxserted, the lougest 3 in head; head 4 ; depth $2 甘$; D. 8is, $\Lambda .60$, Lat. l. 112 ; vertebra $11+20=40$; color dark grayish brown, overywhere finely speckled with darker .. Melanostictus, 8.

8. PSETTICHTHYS MELANOSTICTUS.

[Plate VI.]

${ }^{1}$ 'setichthys melanosticlus Girard, Proc. Acad. Nat. Sci. Phila., 1854, p. 140 (San Francisco ; Astoria, Oregon). Girard, U.S. Pacif. R. R. Exped., Fishes, p. 154, 1859. Giinther, Cat. Fish., iv, 420, 186\% (copicd). Lockiugton, Rop: Com. Fisheries Cal. Ie7c-79, p. 40 (San Prancisco; Farallone Islands). Lockington, Proc. U. S. Nat. Mus., 1579, p. 76 (San Franciseo). Jordan and Gilbert, Proc. U. S. Nat. Mins. 1880, p. 453 (Puget Sound, San Francisco, Monteroy Baj). Jordan \& (iilbert, Proc. U. S. Nat. Mus., 1881, p. G7 (Monterey; Puget Souud). Jordan, Nat. Hist. Aquatic Animals, 1884, 186, pl. 51 (Monterey to Wrangel, Alaska).
Ilippoglossoides metanostictus, Jortan and Gilbert, Syn. Fish. N. A., 1882, p. 828.
Halitat.—Pacific coast of North America, from Alaska south to Montery.

This is one of the commoner flounders of the Pacific coast, being everywhere known by the name of "Sole." - It lives near the shore, and reaches a length of about twenty inches.

In color this species is quite unliko the species of Hippoglossoides, but in most other respects the two groups are closoly allied.
S. Mis, $90-16$

Genus VIII.-HIPPOGLOSSINA.

Hippoglossina Steindachuer, Ichth. Beitriige, v, 13, 1876 (macrops).

TYPE: Hippoglossina macrops Steiudachner.
This genus is intermediate between Hippoglossoides and Paralichthys, agreeing with the former in the insertiou of the dorsal and in generai appearance, aud with the latter in the dircetion of the lateral line. Twg species, the one from Japan, the other from Patagonia, have been lately referred to Hippoglossina. A fourth species, apparently still undescribed, is in the museum at Cambridge, from Japan. Some of these species are dextral, and perhaps all of them are normally so, or perhaps, as in the case of Xystreurys liolepis, all are indifferently dextral or sinistral.

ANALYSIS OF AMERICAN SI'ECIES OF IHPIMOGLOSSINA.

a. [Eye very large, $3 \frac{1}{2}$ in head; body clliptical; dorsal begimuing over middle of oye; pectoral of left side half head, much longer than maxillary, whioh is $2 z^{2}$ in head and reaches middle of eje ; intororbital epace a narrow ridge; teeth very small, sharp, uniserial ; scales of left side all strongly ctenoid, those of blind side ciliated ouly on posterior third of body; head 23 ; depth $2 f$ to $2 \frac{1}{3}, \mathrm{D}$. 66 or 67 ; A. 52 ; Lat. 1.75 to 80 ; no anal spine. Color, brownish, with obscure darker blotehes; body sinistral (in the only specimen known)] (Steindachner).

Macrope, 9.
au. [Eye small, $4 \frac{1}{\frac{1}{2}}$ or more times in head; upper eye slightly before lower; snout $4 \frac{1}{2}$ in head; intororbital space flat, with miunte scales, half vertical diameter of oye; dorsal beginning ahove cye, of moderato beight; month wide, maxillary extending beyond middle of orbit; lateral line with a semicircular curve; pectoral in in head; ventrals well developed, symmetrical. Grayish, minutely mottled with brown. Head 3t ; depth, 2t ; D. 72; A. 56.] (Giinther)Microps, 10.

9. HIPPOGLOSSINA MACROPG.

Hippoglossina macrops Steindachner, Ichth. Beitr., v, 13, pl. iii, 1876 (Mazatlan).
Habitat.--Pacific coast of Mexico, Mazatlan.
We know this species from the description and excellent figare published by Dr. Steindachner.

10. HIPPOGLOSSINA MICROPS.

Hippoglobsina microps Guinther, Voyage, II. M. S. Alert. Jin. 4, 1881 (Patagonia).
Habitat.-West coast of Patagonia.
This specimen is known only from Giinther's short description of a specimen four inches in length.

Genus. IX.--XYSTREURYS.

Xystreurys Jordan \& Gilbort, Proc. U. S. Nat. Mus., 1880, 34 (liolepis).
Type: Xystreurys liolepis Jordau \& Gilbert.
This genus is very close to Hippoglossina, differing chiefly in the subsessile caudal fin and the smooth scales. In its peculiar gill-rakers it agrees with those of a Japanese species of Hippoglossina examined by us. The typical species, like some other Paciic coast flounders, is al-
most indifferently dextral or sinistral. The lately-described Hippoglos. sina punctatissima Steindachner, from Japan, seems to belong to Xystreurys.

ANALYSIS OF BPECIES OV XYSTRLURYS.

a. Body broadly elliptical ; mouth small; maxillary reaching pupil, $2 \frac{2}{8}$ in head; eyes large, $4 \frac{1}{2}$ in head, soparated by a very narrow, blunt, scaly ridge; teeth small, conical, blunt, uniserial, those below subequal, those abovo larger in front. Gillrakere very short, broad, weak, $2+7$. Scales small, cycloid, with many accessory scales. Skin of shoulder girdle and gill arches with cup-shaped, tuborcular soales. Dorsal inserted abovo pupil; no anal spine. Pectoral of eyed side falcate, varying much in longth, usually much longer than head; anterior nostril of blind side with at short flap. Head $3 f$, depth 18 ; D. 80 ; A. 62 ; Lat. 1.123 ; vortebra $12+25=37$. Olivo-brown, mottled with darker, sometimes with very distinct ronad black blotches or ocelli; poctoral of colored side barred............................ Lroleris. 11.

11. XYGTREURYS LIOLEPIS.

$X_{y s t r e u r y s ~ l i o l c p i s ~ J o r d a n ~ a n d ~ G i l b e r t, ~ P r o c . ~ U . ~ S . ~ N a t . ~ M u s ., ~ 1880, ~ p . ~}^{34}$ (Santa
Barbara). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, p. 454 (Santa Barbara;
San Pedro). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1881, p. 66 (Santa Barbara).
Paralichthys liolepis Jordan and Gilbert, Syn. Fish. N. A., p. 825, 1882.
This species is rather common on the coast of California, from Point Concepcion southward. It is a very variable species, the coloration and the length of the pectoral tins having a wide range of variation.

Geuus X.-PARALICBTHYS.

Paralichthys Girard, U. S. Pac. R. R. Surv., Fish., 1859, 146 (maoulosus $=$ californicu8).
Pseudorhombus Blecker, Comptes Rendus, Acad. Sci. Amsterd., xiii, 1862, notice sur quelques geures do la famille des Plouxonectido, 5 (polyspilos).
Oropsetta Gill, Proc. Ac. Nat. Sci. Plila., 1862, 330 (californious= maculosus).
Chanopsetta Gill, Proc. Ac. Nat. Sci. Phila., 18G4, 218 (ocellaris = dentatus).
TYPE: Plcuronectes maculosus Girard=Hippoglossus califormi,us Ayres.
This genus, as now restricted, contains a considerable number of species, inlabiting both coasts of America and the eastern and southern coasts of A sia. As indicated by the reduced number of vertebra, the species rauge further southiward than do those of the type of Hip. poglossoides.

The name Pseudorlombus has been often used for this genus by European writers, but the preferable name of Paralichthys has clear priority.

> analygis of sipecies of paralichtiys.
> a. Gill-rakors in large number, about $9+\dot{20}$, as long as the eye and vory slender;body olongate, rather robust ; head small, 3 妾 to $4 t$ in length; maxillary about as long as pectoral and about balf length of head; depth of body $2 \frac{2}{2}$ to $2 f$ in length; caudal peduncle vory long; interorbital space flattish, its width less than vertical diameter of eye; scales moderate, somowhat ciliated, about 100 pores in the laterul line; aroh of lateral lme $3 \frac{1}{2}$ in straight part; clorsal rays 67 to 71 ; anal rays 51 to 57 ; vertolors $10+25=35$; color grayish brown, uniform, or mot-
tled with blackish and pale, the head sometimes sprinkled with black dots; young brownish, with spots of light bluish. (Eyes and color normally sinistral, but roversed examples alnost equally common.)... Californicus, 12. aa. Gill-rakers in moderate number $(6+13$ to $5+16)$, rather long and slonder.
b. Dorsal rays 70 to 75 ; anal rays 54 to 60.
c. Scales not very small, about 100 in the course of the lateral line; head small, 48 in length; depth, 2f; interorbital space rather broad and flattish, $\frac{8}{8}$ diameter of cye ; eyes small, $5 \frac{g}{g}$ in head; gill-rakers ratber short, $4+15$, the longest about $\frac{8}{6}$ eye ; pectoral $1 \frac{1}{8}$ in head ; curve of lateral line high and short, 4 in straight part, its height $1 \frac{8}{4}$ in its length; mouth moderate, the maxillary $2 f$ in hoad ; teeth rather few, the anterior canines large ; color dark brown, more or less mottled and spotted with paler Brasiliensis, 13.
co. Scales very small, about 120 in the lateral line; head $3 \frac{1}{2}$ in length; depth, $2 t$; ejes small, wide apart ; gill-rakers $\mathrm{X}+17$; curve of lateral line nearly 5 in straight part, barely twice as long as high ; maxillary 26 in head; color brownish-gray, thickly mottled with many larger and amaller spots, points and rings; side with three or four larger spots of irregular form and ocellated with palor........................ Adspersus, 14.
bb. Dorsal rays, 85 to 93 in number ; anal rays, 67 to 73 ; gill-rakers, $5+15$ or 16 in number, long and slender, the longest $\frac{g}{g}$ length of eye; body ovate, the depth about $2 f$ in length; head about $3 f$; candal peduncle long; maxillary about half head, reaching past posterior margin of oye; mouth large, oblique, the gape curved; canines large, conical, wideset ; interorbital area a rather flattish ridge, in the adult about equal to vertical dianeter of eje, narrower in the young, forming a bony ridge; scales cycloid, each with numerous smill, accessory scales; lateral line with about 95 pores, its arch 4 times in straight part; color brownish olive, always with numerous paler and darker spots of various sizes and with obscure ocelli; vertobrex $11+30=41$. Dentatus, 15. aaa. Gill-rakers few, shortish, wide set, the numbers $2+8$ to $3+10$.
d. Body ovate, more or less compressed, and opaque; the dopth about $2 \frac{1}{8}$ in length ; no distinct, definitely-placed ocelli; scales cycloid.
c. Dorsal raye in large number (85 to 92 , as in P. dentatus) ; anal rays 65 to 73 ; pores of the lateral line about 100 ; accessory scalos few ; gill-rakers $2+10$, lanceolate, dentate, wide-set, and much shorter than the eye; eyes small; interorbital space in adult broad, flattish, and scaly, as wide as length of eyo; caudal peduncle rather long; depth about 2 g in length; head about $3 \frac{8}{8}$; length of arch of lateral line noarly onethird that of straight part; color dusky olive, darker than in P. dentatus, and with very few darker mottlings or spots. . Lethenostigma, 16. cc. Dorsal rays in moderate number (70 to 80) ; anal rays 54 to 61.
f. Scales very small, about 120 in the lateral line; dopth of body about half length; head 38 in length ; gill-rakers roughly toothed, $3+9$ in number; arch of lateral line $4 \frac{1}{8}$ in straight portion; mouth vory large, oblique, the broad maxillary more than half head, and reaching past oye; D. 78, A. 59; coloration brownish, the body and fins spotted with

ff. Scales moderate, 90 to 100 pores in the lateral line.
g. Interorbital width about equal to length of eye; dorsal rays 75 to 81 ; anal rays 59 to 61 ; gill-rakers 2 or $3+9$ or 10 ; coloration grayishbrown, with numerous (more or less distinct) whitish blotches, which are rarely obsolete; vertebras $10+27=37 \ldots \ldots . . .$. . Albigutta, 18.
gg. Interorbital width not half the length of the eye; dorsal rays 76 ; anal rays tio; form of P. albigutta; ere large (4 in in head); maxillary
2δ in head (as long as pectoral); teeth rather small; arch of lateral line a little longer than high, its length bats in the straight part; gillrakers $3+11$, shorter and thicker than in P. brasiliensis, the longest about half eye; color brown, the body and fins irregularly blotehed and with obscuro ocelli; pectorals barred; eyes speckled.

Patagonicus, 19.
dd. Body oblong, strongly compressed, semi- translucont; scales weakly ciliated; about 93 pores in lateral line; curve of lateral line about 3 ? times in straight part; month large, obliquo; maxillary narrow, its lengtl $2 t$ iu head; interorbital area a very narrow, bony, scaleless ridge; head 3 星 to 4 in length; depth $2 t$; gill-rakers $2+8$ in number, about half as loug as oye; D. 47, A. 62; coloration light grayish, thickly mottled with darker; four largo horizontally oblong, black ocelli, each surronnded by a piukish aren; one just behind middle of the body, below the dorsal ; one opposite this, above aual ; two similar smaller spots below last rays of dorsal and above last of anal ; vertebra, $11+30=41$...Oblongus, 20.

12. PARALICHTHYS CALIFORNICUS.

(Bastard Halibut; Montemey Halibut.)

Pleuronectes maculosus Girard, Proc. Acad. Nat. Sci. Phila., 1854, 155 (young, San Diego).
Paralichthys maculosus Girard, U. S. Pacif. R. R. Exped., Fishos, p. 147, 1859 (not Rhombus maculosus Cuvier, alsoa species of Paralichthys). Giinther. Cat. Fish., iv, 431, 1862 (copied). Gill, Proc. Acad. Nat. Sci., Phila., 1864, p. 197. Lockington, Rep. Com. Fisheries, Californin, 1878-79, p. 41 (Monterey; Tomalem Bay). Lockingtou, Proc. U. S. Nat. Mus., 1879, p. 79 (San Francisco). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, 454. (San Fraucisco, Monteroy Bay, San Luis Olispo, Santa Barbura, San Pedro, San Diego.) Jordan and Gilbert, Proc. U. S. Nat. Mas., 1881, 66 (Tomales Bay; Monterey; San Diego). Jordav, Nat. His. Aquat. Auim., 1884, 182.
Hippoglossus californicus Ayres, Proc. Cal. Acad. Nat. Sci., 1859, p. 29, and 1860, fig. 10 (adult, San Francisco).
$P_{\text {seudorhombua californicus Gunthor, Cat. Fish., iv, 420, } 1862 \text { (copied). }}^{\text {G }}$.
Uropsetiá californica Gill, Proc. Acad. Nat. Sci. Phila., 1862, 330. Gill, Proc. Acad. Nat. Sci. Phila., 1864, 198.
Paralichthys californicus Jordan and Gilbert, Syn. Fish. N. A. 1882, 821.
Habitat.-Coast of California; Tomales Bay to San Diego..
This large flounder is one of the common food-fishes of the Pacific coast, Where it takes the place occupied on the Atlantic side by Paralichthys dentatus. It reaches a length of three feet and a weight of sixty pounds. From its resemblance to the halibut, it usually goes by the name of bastard hatibut. It is readily distinguished from the Atlantic members of the same genus by its fewer fin.rass and by its more numerous gill-rakers.

The specific name culifornicus must be used for this fish, the earlier name, maculosus, being preoccupied in the genus Paralichthys. As was first shown by Mr. Lockington, the small fish, called Paralichthiys macu$l^{\text {losus, }}$ is simply the young of the larger fish, then called Uropsetta californica. Unlike other species of the genus, Paralichthys californious is almost as frequently dextral as sinistral.

13. PARALICETEYS BRASILIENSIS.

Hippoglossus brasiliensis Ranzaui, Nov. Spec. Pisc.; 10, tab. iii, 1840 (13razil).
Preudorhombus brasiliensis Guinther, Fishes Contr. Amer, 473, 1869 (Brazil, Guatemala).
Platessa orbignyana Valencieunes, D'Orbigny Voy. S. Amer. Mérid. Poiss., pt. 5, pl. 16, f. ${ }^{7} 1,1847$.
IRhombus aramaca Castelnau, Anim. nouv. ou rares, Poiss., 78, pl. 40, f. 3 (not of Cuvier).
Psoudorhombus vorax Giinther, Cat. Fish. Brit. Mus., iv, 1862, 429 ("South America").
Habitat.-South America, said to range northward to Guatemala. This species is known to us from numerous specimens from Rio Janeiro and from Maldonado, in the Museum of Comparative Zoology.
The locality "Guatemala" given by Günther seems to be somewhat doubtful, and the species may not occur in West Indian waters at all.

14. PARALICETHYS ADSPERSUS.

9 Hippoglossus Kingi Jenyns, Voyage Beagle, Fishes, 1842, 128, pl. 26. (Valparaiso: from a drawing only.)
Preudorhomlus adspersus Stoindachner, Ichthyol. Notizen, v, 1867, 9, Plato II. (Chinchas Islands.)
Paralichthys adspersus Jordan and Gilbert, Proc. U. S. Nat. Mus., 188i2, p. 370. (Capo San Lucas.) Jordan and Gilbert, Bull. Fish. Com., 1882, pp. 108 and 111. (Mazatlan, Panama.) Jordan, Cat. Fish. N. A., 188i, 133.
Halitat.-Pacitc coast of tropical America. Cape San Lucas to Peru.
Numerous specimens of this species were obtained by Professor Gilbert at Mazatlan and Panama. As all theso have been destroyed by fire, we have taken our description from Callao specimens in the Museum of Comparative Zoology. The species is very close to P. brasili. ensis, differing chiefly in the smaller scales. This may prove identical with the remarkable H. lingi of Jenyns, in which case it must stand as Paralichthys lingi.

15. PARALICETHYS DENTATUS.

(The Summer Fiounder.)
Pleuronectes dentatus Linusus, Syst. Nat., 1, 458, 1766, and of mumerous copyists. Mitchill, Trans. Lit. \& Phil. Soc. N. Y., p. 390, 1815 (Now York).
Platessa dentata Storer, Hist. Fish. Mass., p. 143, 1839.
Pseudorhombus dentatus Goodo and Bean, Proc. U. S. Nat. Mus., 1879, 123.
''uralichthys dentatus Goode, Nat. Hist. Aquat. Anim., 1884, 178. (Detailed account; includes P. lethostigma.) Jordan, Cat. Fish. N. A., 1885, 134.
Pleuronectes melanogaster Mitchill, Trans. Lit. and Phil. Soc. N. Y., p. 390, 1815. (Doubled example.)
Platessa ocellaris DeKay, N. Y. Fauna, Fishes, 1842, 300, Pl. 47, fig. 152.
P8eudorhombus ocellaris Gunther, iv, 430, 1862 (copied). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1878, 370 (Beanfort).

Chænopsetta ocellaris Gill, Proc. Ac. Nat. Sci., 1864, 218.
Paralichthys ocellaris Jordan and Gilbert, Proc. U. S. Nat. Mus., 1882, p. 617 (Charleston).
Paralichthys ophryas Jordan and Gilluert, Syn. Fish N. A., p. 822, 1882 (Charleston).

Habitat.-Atlantic coast of United States from Cape Cod to Florida.
This species is the common flounder of the coasts of the Northern States, its range apparently not extending much south of Charleston. Of the species found in that region it is the most important from a commercial point of view. It reaches a length of about 3 feet and a weight of about 15 pounds.

It has been confounded by nearly all writers with the more southern species now called lethostigma, from which it is best distinguished by its much greater number of gill-rakers and by its mottled coloration. On account of this coufusion it is impossible wholly to disentangle its synonsmy from that of P. lethostigma.

So far as the proper nomenclature of the two is concerned, this confusion makes little difference. There is no doubt that this is the original Pleuronectes dentatus of Linnæus, as the original Linnæan type is still preserved in London. This has been examined by Dr. Bean and its identity with the present species fully established.

It seems also certain that this is the Platessa ocellaris of DoKay, who properly distinguishes his ocellaris from his oblonga, the latter being P. lethostigma.
Λ little doubt must be attached to the melanogaster of Mitchill, very scantily described from a doubled (black-bellied) example of this species or of P. lethostigma. As the former species is much more common about ${ }^{-}$ New York than the latter it is probable that Mitchill's fish belonged to it. We have also received a doubled example from New York corresponding exactly to Mitchill's description. We may therefore regard the name melanogaster as a synonym of dentatus.

The diffrrences in the gill-rakers of these species was first noticed by Jordan and Gilbert in 1883. These authors erroneously referred all these synonyms to the species with the fow gill-rakers and described the present one as new under the name of Paralichtlys ophryas. The discovery of the Linnean type of Pleuronectes dentatus has rendered a reconsideration of this matter necessary, and it is evident that to the "P. ophryas" belong also the prior names of dentatus, melanogaster, and ocellaris.
The name Platessa orbignyana Valenciennes, applied to a South American example and doubtfully referred by Dr. Günther to his Pseudorhombus dentatus, belongs to Paralichthys brasiliensis.

16. PARALICHTHYS LETHOSTIGMA.

(The Southern Flounder.)
[Plate VII.]

[^37]P'aralichthys dentatus Jordan aud Gilbert, Proc. U. S. Nat. Mus., 1882, p. 302. (Galveston, New Orleans, Pensacola.) Jordan and Gilbert, Proc. U. S. Nat. Mus., 1882, p. 617. (Charleston.) Bean, Cat. Col. Fish, U. S. Nat. Mus., 1883, p. 45 (Galveston).

Paralichthys dentatus Jordan and Gilbert, Synopsis Fish. N. A., 1882, 822.
P'aralichthys lethostigmaa Jordan and Gilbert, Proc. U. S. Nat. Mus., 1884, 237 (Jacksonville, Florida).
Habitat.-WSouth Atlantic and Gulf coast of United States, north to New York.

This species is the common large flounder of the South Atlantic and Gulf coasts of the United States, ranging as far north as New York. It very closely resembles Paralichthys dentatus, with which it has been repeatedly confounded. It is, however, sharply distinguished by, the character of the gill-rakers. It is also always darker in color, and almost uniform, while the dentatus is usually profasely spotted. Its only tenable name is the very recent one of Paralichthys lethostigma.

17. PARALICHTHYS SQUAMILENTUS.

Paralichthys squamilentus Jordan aud Gilbert, Proc. U. S. Nat. Mus., 1882, p. 303 (Pen. sacola). Jordan and Gilbert, Syn. Fish. N. A., p. 823, 1882 (Pensacola, Gharleston). Bean, Cat. Coll. Fish, U.S. Nat. Mus., 1883, p. 45 (Ponsacola).

Habitat.-South Atlantic and Gulf coasts of United States.
This species is very close to Paralichthys alligutta, from which it dif. fers chiefly in the small scales. It seems to be rather rare. Besides the original types from Pensacola another referred to the same species is in the National Museum from Charleston.

18. PARALICETHYS ALBIGUTTA.

P'seudorhombus dentatue Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1878, 370 (Beaufort). Paralichthys alligutta Jordan and Gilbert, Proc. U. S. Nat. Mus., 1882, j1. 302 (Ponsacola; Bequfort). Jordan and Gilbert, Syn. Fish. N. A., 1882, p. $823 . \quad$ Jordan and Swain, Proc. U. S. Nat. Mus., 1884, p. 233 (Cedar Keys).

Halitat.--South Δ tlautic and Gulf coast of the United States.
This species is common on the South Atlantic aud Gulf coasts. It has the few gill-rakers of Paralichthys lethostigma, the mottled coloration of Paralichthys dentatus, while from both it is distinguished by its smaller number of dorsal and anal rays. In the number of its vertebre it agrees with P. lethostigma. It seems to reach a smaller size tham either of these species.

19. PARALICHTHYS PATAGONICUS.

Preudorhombus dentatus Güuther, Cat. Fish. Brit. Mus., iv, 425, 1862 (Port Famine). Paralichthys patagonicus Jordan, sp. nov. (east coast of Patagonia).

This species is extremely close to P. albigutta, from which it is separated only by characters of slight importance. The locality inhabited by it is, bowever, widely distant. The types of the species are in the Museum of Comparative Zoology. There are three specimens, the largest about 8 inches long, No. 11309, from the cast coast of Patagonia.
20. PARALICHTHYS OBLONGUB.
(The Four-Spotted Flounder.)
[Plate VIII.]
Pleuronectes oblongus Mitchill, Trans. Lit. and Phil. Soc., 1, 391, 1815 (New York). Cheanopretta oblonga Gill, Proc. Acad. Nat. Sci. Phila., 1864, p. 218.
Paralichthys oblongus Goodo, Proc. U. S. Nat. Mus., 1880, p. 472 (Southorn Now England). Jordan and Gilbert, Syn. Fish. N. A., 1882, p. $8 \geqslant 4$ (specimens from Wood's Holl, Mabs.).
Platessa quadrocellata Storer, Proc. Boston Soc. Nat. Hist., 1847, p. 242. Storer, Hist. Fish. Mass., p. 397, pl. 31, ig. 3 (Provincotown).
Habitat.-Coasts of New England and New York.
This species is rather common on the coast of Cape Cod and the neighboring islands, but it has been rarely noticed elsewhere. The limits of its range are not yet definitely known.

It is a very strongly marked species. Its translucency of coloration indicates that it lives in deeper water than the other species of the genus.

Genus XI.-ANCYLOPSETTA.

Ancylopsetta Gill, Proc. Acad. Nat. Sci. Phil., 1864, 2244^{\prime} (quadrocellata).
Notosema Goode \& Bean, Bull. Mus. Comp. Zool., XIX, 193, 1883 (dilecta).
Type: Ancylopsetta quadrocellata Gill.
This genus is also very close to Paralichthys, differing in the subsessile caudal fin, the short gill-rakers, the rough scales, and in the prolongation of the anterior rays of the dorsal fin. These characters are found in quadrocellata as well as in dilecta, the distinctions of the supposed genus, Notosema, being chiefly of degree. Besides the two species here mentioned, a third as yet undescribed, the types having been accidentally destroyed, was obtained by Professor Gilbert at Panama.

ANALYEIS OF SPECIES OF ANCYLOPSETTA.

a. Anterior (produced) rays of dorsal shorter than head; pectoral of eyed side about two-thirds length of head. Body oval, very doep. Depth of caudal peduncle half length of head; head 4 in length; depth, 1t. Gill-rakers very short, $2+6$ or 7. Mouth small; maxillary reaching midale of eye, $2 \frac{1}{8}$ to 28 in head; teeth manall, the canines scarcely differentiated; eyes moderate, separated by a vory narrow, sharp, scaly ridge ; scales of both sides ctenoid; ventral of eyed sido produced, about half as long as head; no anal spine; color dark olive, with four large oblong ocellated blackish spots, the first above the arch of the lateral line, the three posterior forming an isosceles triangle, the hindmost being on the lateral lino. 1 . 70 ; A. 55 ; Lat. $1.85-58$ pores in straight part ; vertebroo, $9+26=35$.

Quadrocellata, 21.
aa. [Anterior (produced) rays of dorsal longer than the head, the longest lalf depth of body, pectoral of eyed side nearly as long as head; body elliptical; hoad 3y in length, depth 2; gill-rakers sultriangular, moderately numerous; mouth moderate, the maxillary 2 t in head; teeth unequal, those in front much largest; eyes large, 3 in hoad, the interorbital space very narrow; scales highly otenoid; ventral of eyed side produced, more than three times length of right ventral; color dark brown, speckled with darker, three large subcircular ocollatod spots nearly as
large as oye, with white center, dark iris, narcow, dark margin, and a brown encircling outline, these arranged in an isoscelos trianglo, the apex on the lateral line, the others before it and distant from tho lateral line a distanco equal to their own dimmeter. D. G9, $\Lambda .5 G$, Lat. 1 , with 48 pores in straight part.] (Goode of Bean)

Dilecta, 22.

21. ANCYLOPSETTA QUADROCELLATA.

Ancylopsctta quadrocellata Gill, Proc. Acad. Nat. Sci. Phil., 18i4, p. 2e4 (Pensacola). (Not I'latessa quadroccllata Storer).
Pscudorhombus quadrocellatus Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1878́, p. 370 (Beaufort).
Paralichthys ommatus Jordan \& Gilbort, Proc. U. S. Nat. Mus., 1882, p. 616 (Chirleston). Jordan \& Gilbert, Syn. Fish. N. A., p. 824, 1892. Jordan \& Swain, Proc. U. S. Nat. Mus., 1884, p. 234 (Codar Keys).

Habitat.-South Atlantic and Gulf coasts of the United States.
This species is not rare along the South Atlantic and Gulf coasts of the United States. On referring the species to the gemus Paralichthys it became necessary to change the specific name quadrocellatus, preoccupied in the latter genus. We, however, now consider it best to retain Ancylopsetta as a group distinct from Paralichthys.

22. ANCYLOPSETTA DILECTA.

Notosema dilecta Goode \& Bean, Bull. Mus. Comp. Zool., xix, 193, 1883 (Gull Stream, off the coast of South Carolina).
Ancylopsetta dilecta Jordan, Cat. Fish. N. A., 188\%, 134.
Paralichthys stigmatias Goode, Nat. Hist. Aquat. Anim., 1884, 18 (name only, by inadvertence for dilectus).
Habitat.-Gulf Stream.
This species is known from the original types obtained in the deep waters (75) fathoms) of the Gulf Stream, off the Carolina const.

Genus XII.-PHIRYNORHOMBUS.

Phrynorhombus Günther, Catal. Fishes 13rit. Mus., iv, 414, 1862 (unimaculatus).
Type: Rhombus unimaculatus Risso $=$ Pleuronectes regius Bonnaterre.
This genus is allied to Zeugopterus, from which it differs chiefly in the separation of the ventral and anal fins. It is, in our opinion, worthy of separation. But a single species is known. The peculiar flannel-like character of the scales is similar to that of Monochirus hispidus.

ANALYSIS OF BPECIES OF PIIRYNORHOMBUS.
a. First ray of dorsal produced in a filament, about one-third as long as hoad; first ray of pectoral sometimes filamentous; scales small, each with about four long spinules; eyes moderato, separated by a high, narrow scaly ridge; snontshort, abruptly projectiog ; gill-rakers short, about $X+10$; month curved, the maxillary not quite half head. Depth, 2 in length; head $3 t$; D. 78 to 79, A. 67, Lat.]. 70; vertobro 10+25 $=35$; color, dark gray, with dusty marblings and black spots, one at the end of tho curve of the lateral line; a roddish ocellus edged with black on middle of tail ; fins much blotched

Regius, 23.

23. PHRYNORFOMBUS REGIUS.

(The Top-Knot.)
La Petite Limandolle, Duhamol, "Trait6 sur la Pesche, iii, soct. 9, p. 270, pl. 6, f. 5.N I'leuonectes regius, "la Calimaude royale" Bonnaterre, Encyclopodie Móthodiquo, 1788 (after Duhamel).
Pleuronectes calimanda Lacépde, Hist. Nat. Poiss., iv, 1803 (after Duhamel). Pleuronectes punctatus "Fleming. Werner, Mem., ii, 941 " (not of Bloch.) Rhombus unimaculatus Iieso, Europe Méridionale, iii, 2.52, f. 35, 18:26 (Nice). Phrynorhombus unimaculatus Giinther, iv, 414, 1862 (Dilmatia; Plymouth). Scophthalmus unimaculatus Steindachner, Ichth. Bericht., vi, 1868, 49 (Barcolona). Zeugopterus unimaculatus Day, rish. Great Britain, ii, 17, pl. xcix (Belfast). Rhombus unioccllatus Nardo, Prodr. 1ehth. Adriat., 135, 1827.

Habitat.-Coasts of Southern Europe, north to England.
This small flounder reaches a length of 5 or 6 inches. Our specimens are from Venice. Wo adopt tho earliest name, regius, for this species, as it seems to belong to this fish without doubt.

Genus XIII.-ZEUGOPTERUS.

Zeugopterus Gottscho, Wiegmaun's Archiv, 1835, 1 z8 (hirtus).
Scophthalmus Bonaparte, Catologo Motodico doi Pesci Europei, 1840, 49 (hirtus). (Not of Rafinesque.)
Zeugopterus Steenstrup, Oefvers. Dansk. Vidensk. Selsk. Forlandl., 1865, 95-112.

TyPe: Pleuroncctes hirtus Abilgaard=Pleuronectes punctatus Bloch.
This genus is distinguished from Pleuronectes both by the union of the ventral and anal fins, and by the perforation instead of emargination of the septum of the gill-cavity. This latter character was first noticed by Professor Steenstrup, who used it to define his genus Zeugopterus, which is equivalent to Lepidorhombus, Zeugopterus, and Phrynorhombus of the present paper. But one species is known, widely diffused in Northern Europe.

ANALYEIS OF SPICCIES OF ZEUGOPTERUS.

a. Body ovate, covered with small but very rough shagreen-like scales; blind side smooth; caudal peduncle very short, the last rays of dorsal and anal inserted on the left side of it almost meoting across the base of the caudal fin; none of the dorsal rays exserted; lateral line indistinct; oyes large, separated by a very narrow, scaly ridge; snout very short; gill-rakers short, thickish; lips thick; maxillary half as long as head. Left ventral inserted at chin, fully confluent with anal; right ventral long. Brown, with round black spots, one behind the curve of the lateral line, and one behind this on the straight portion; one near upper edge of gill opening, and one above upper eye; an oblique band from lower eye to subopercle. Depth 2 in longth; head $3 ; \mathrm{D} .93$ to $99 ;$ A. 70 to 80 . Vertebra $12+25=37$. Punctatus, 24.

24. ZEUGOPTERUB PUNCTATUS.

(The Black Fluire.)

Pleuronectes punctatus Bloch, Auslindische Fische, iii, 31, tafel 189, 1787. Gmelin, Syst. Natura, p. 1235, 1788. Bloch \& Schnoider, Systema Ichth., 1801, p. 155.
Zeugopterus punotatus Collett, Norges Fiske, 1875, 139. Day, Fishes Grent Britain, vol. ii, p. 18, plate 6.

Pleuronectes hirtus Abildgaard, Muller, Zö̈l. Danica, 1788, III, 36, taf. 103.
Ihombus hirtus Yarrell, Brit. Fish., ed. 2, ii, 334. Günther, iv, 413, 1862, and of several authors.
I'leuronectes kitl Blocls \& Schneider, Systoma Ichtlyologiw, 1801, 162.
Habitat.-Coasts of Northern Europe, south to France.
The specimens of this species which we have examined are from the North Sea.

Genus XIV.-LEPIDORHOMBUS.

Lepidorhombus Günther, Catal. Fishes, iv, 411, 1862 (megastoma).
Type: Pleuronectes megastoma Douovau $=$ Pleuronectes whiff-iagonis Walbaum.
This genus contains one or two Europeau species, related to Zeugopterus, but in general appearance resembling the species of Arnoglossus.

ANALYSIS OF SPECIES OE LFPIDORHOMBU8.

a. Dorsal rays, 85 to 87 ; anal rays, 67 to 69 ; depth, $2 \frac{1}{2}$ in longth; hend, $3 \frac{1}{8}$; interorbital space a very narrow scaly ridge; mouth very large, the maxillary $2 \frac{1}{4}$ in head; the antorior teeth hooked backwards, about 4 in head; oyes very large, the lower somewhat before the other; anterior rays of dorisal short, but considerably exserted; scales sinall, very deciduous. Lat. l. about 100. Vertebra $11+30=41$. Color, yellowish brown, dorsal and anal with some dark blotohes...... Whiff-Iagonis, 25.
aa. Dorsal rays, 78 to 80 ; anal rays, 58 to 64 ; depth, $2 \frac{1}{2}$ in length; otherwise essentially as in the preceding, of which it is probably a varioty....... Norvegicus, 26.

25. LEPIDOREOMBUS WHIFF-IAGONIG.

(Tue Wihff, Meriry Sole, or Sail Feuke.)
Passer Cornubicnsis, "Jago in Ray, Syn. Pisc., 163, f. 2," 1713.
Whiff Ponnant, "British Zoology, iii, 238, 1776."
Pleuronectes whiff-iagonis Walbaum, Artedi Piscium, iii, 120, 1792 (after Pennant).
Pleuroneotes megastoma Donovan, "Brit. Fish., iii, pl.41, 1802," and of many authors.
Rhomius megastoma Günther, iv, 411, and of numerous authors.
Zeugopterus megastoma Collott, Norges Fiske, 138, 1875.
Arnoglossus megastoma Day, British Fishes, iv, 21.
Pleuronctes bosci Risso, Ichth. Nice, 1810, 319, pl. vii, f. 33 (Nice).
Arnoglossus bosci Günther, iv, 416.
Pleuronectes pseudopolus "Ponnant, British Zool., iii, 324, pl. 411, ed. of 1812."
Rhombur cardina Cuvior, Règne Animal, ed. 2, 1828 (excl. syn. pars), based on the Whiff of Ray and la Petite Limandelle of Duhamel.
Zeugopterus velivolans (Richardson) "Yarrell, Brit. Fish., ed. 3, 1, 65G," 1859.
Zeugopterus gottache "Winther, Ichth. Dan. Mar., 38."
Habitat.-Coasts of Europe, most abundant northward.
This species is not uncommon in Northern Europe, where it is held in slight esteem as a food-fish, being thin, dry, and bony. It reaches a length of probably less than 2 feet.
Its names, " whiff," "merry sole," and "sail-flukee," are said to be derived from its habit of frequently swimming at the surface of the water " with its tail erected above the water. like a boat under sail."

Dr. Day has adopted Giglioli's determination of the identity of this species with the Arnoglossus bosci. The descriptions of the latter species certainly agree closely with our specimen of Lepidorhombus. We have therefore placed bosci in the synonymy of Whiffiagonis. Vinciguerra apparently regards losci as specifically distinct from the others, although he places both in the genus Arnoglossus. The appropriate specific name of megastoma has been usually taken for this species, but the unmusical name of whiffiagonis applied to it by Walbaum has ten years' priority. This name is given in honor of the "Rererend George Jago, of Loo."

Our specimen is from the coast of France.

26. LEPIDORHOMBUS NORVEGICUS.

Pleuroncetes cardina Fries, Vot. Akad. Haudl., 1838, 181 (not of Cuvier).
Rhombus norvegicus Giinther, Cat. Fish. Brit. Mus., iv, 1862, 139 (after Fries). Collett, Norges Fiske, 18i5, 139. (Christiania; Borgen; Bodü.)
Habitat.-South coast of Norway to the Arctic circle.
This species is known to us from descriptions ouly. According to Professor Collett, '" it is distributed, although in scanty numbers, from the south coasts up to the polar circle." It would appear to be very close to the preceding species, differing somowhat in the numbers of the fin-rays.

Genus XV.-CITHARUS.

Pleuronecteb Bonaparte, Catalogo Metodico dei Pesci Europei, 1846 (linguatula, the only Linnæan specios mentioned).
Citharus Bleeker, Comptes Rondus Acad. Sci. Amsterdam, xiii, Pleuronect., 6, 1862 (linguatula).

Type: Pleuroncetes linguatula L.

This well-marked genus, an ally of Lepidorhombus and of Arnoglossus contains but a single species-a rather rare inhabitant of the Mediterranean.

ANALYSIS OF THE SPECLES OF CITHARUS.
a. Body elongate, with soft flesh and large caducous scales. Mouth very large, oblique; the maxillary 2 in head; lower jaw projecting; some canine teeth, especially in front of upper jaw; two or three rather large teeth on vomer; ejes large, close together; loft ventral on the abdominal ridge, a little in advance of right; ite base scarcoly lengthened; gill-rakers slouder, of moderate length, $\mathrm{X}+9$; no foramen in gill septum; dorsal beginuing before the eye ou right side; caudal pointed; fins all high, but fragile; head, 34 in length; depth, 2_{5}^{2}; D. about 65 ; anal, 45 ; lat. l., 37 ; color, grayish, translucent
. Linguatula, 27.

27. CITHARUS LINGUATULA.

Meuroncotes linguatula Limmens, Syst. Nat., ed. x, p. 270, 1758 (after Artedi), and of oarly authors.
Citharus linguatula Giintier, Cat. Fish., iv, 418, 1862. Stcindachner, Ichthyol. Berichte 1868, Sechste Fortsetzing, p. 51 (Barcelona, Alicunte, Cadiz), and of most recent anthors.

Pleuronectes citharus Spinola, "Ann. Mus., x, 166," 1807.
Pleuronectes macrolepidotus Delaroche, "Anu. Mus., xiii, 353," 1809 (aud of other Luropeau writers, probably not of Bloch).
Solea limanda Rafinesque, Indice, 1810, 14 (after Linnwus).
Solea cithara Rafinesque, Indico, 1810, 52 (based on Citharus of Rondelet). Pleuronectes solea var. pataracchia, "Naccari, Ichth. Adriat., 11."

Habitat.-Mediterrauean Sea.
This species is known to us from specimens in the Museum of Comparative Zoology, from Cette (Theodore Lymau), and from Cadiz (Dr. Steindachner). It does not scem to be very common anywhere.

Genus XVI.—PLeURONECTES.
Pleuronectes Artedi, Genera Piscium, 1738 (includes all flounders).
Rhombus Klein, Pisc. Missus, IV, 34, 1740 (rhombus; pre-Linnæan).
Pleuronectes (Artedi) Linnaus, Syst. Nat., ed. 5 , 1758, 271 (includes all Roundery then known).
Rhombus (Klein) Walbamu, Artedi Piscium, 1792 (rhombus; non-binomial).
Bothus Rafinesque, C'aratteri di Alcuni Nuovi Generi, otc., 1810, 23 (rumola=rhombus), ctc.
Scophthalmus Rafivosciue, Indice di Ittiologia Siciliana, 1810, 53 (rhomuns; maximus).
Rhombus Cuvier, Regne Animal, 1817, and of most writers (not of Lacépede) (first subdivision of Plcuronectes).
Pleuronectes Floming, British Animals, 1828 , 196 (first rostriction of Plcuronccte8, in which the name Pleuronectes is retained; maximus).
Psetta Swainson, Nat. Hist. Classif. Avim., ii, 302, 1839 (maximus) (not Psettus Cuvier).
Pleuronectes DeKay, New York Fauna, Fishes, 1842, 301 (maximus).
Psetta Bonaparte, Catologo Motodico dei Pesci Europei, 1846, 49 (rhombus; maximus).
Passer Valencionnes, Voyago do la Venus, 1855, 341 (substituto for Rhombus, preoccupied; tispe "lo turbot;" not Passer Brisson, a genus of birds).
Lophopsetta Gill, Proc. Ac. Nat. Sci. Phila., 1862, 216 (maculatus).
Bothus Jordan \& Gilbort, Synopsis Fish. N. A., 1882, 815, and in Proc. U. S. Nat. Mus . $188^{\circ} 2,577$ (rhombus).
Psetta Jordan \& Gilbort, Proc. U. S. Nat. Mus. 1882, 577 (maximus).

Type: Plouronectes maximus Linnæus.

We here include in the genus Pleuronectes three species, the Turbot, the Brill, and the "Window-Pane." The Tarbot and the WindowPane are both ovidently very closely related to the Brill, although in size and appearance they are quite uulike each other. The Turbot differs strikingly from the other two in a single character, the reduced or rudimentary condition of the scales. This character, however, shows a considerable range of variation in the same species, some turbots being distinctly scaly and others wholly naked, and it is apparently a character which the species has acquired comparatively recently. Wo have therefore regarded it as of subgeneric value only. We, however, place the two scaly species in a distinct subgenus, Bothus, and in the view of a genus taken by many recent authors, Bothus and Pleuronectes should be regarded as sufficiently distinct. If the non-binomial nanes of Klein, as reprinted or revived by Walbaum in 1792, be admitted,

Rhombus would take the place of Bothus as the name of this subgenus. Our reasons for considering the Turbot as the type of the geuus Pleuronectes may be briefly stated:

In the earliest restriction of the Linnæan genus, Pleuronectes, in which the latter name is retained for one of the subdivisions, the Turbot has been retained as the type. We therefore find ourselves compelled to transfer the name Pleuronectes from the small-mouthed flounders to the present group.

The genus Pleuronectes, as it appears in the teuth edition of the Sys. tema Naturæ, is intended to contain all flat-fishes, 18 of which are characterized and named.

Omitting foreign species, the following tablo shows the European species included by Linnæus, and the generic names which have since his time been specially based on each of these species:

Hippoglossus. Hippoglossus Cuvior, 1817.
Cynoglossus. Glyptocephalus Gottsche, 1836.
Platessa. . I'latessa Cuvier, 1817 ; Pleuronectes Swainson, 1839; Pleuronectes Hleeker, 1862.
Flesus
. Flesus Moreau, 1871.
Limanda. ... Limanda Gottsche, 1835.
Solea. Solea Quensel, 1806.
Linguatula....................... Pleuroncotes Bonaparto, 1846; Citharus Bleeker, 1862; Bothus Rafinesque, 1810; Scophthalmus Rafinesque, 1810.
Rhombus \qquad lhombus Cuvier, 1817 (prooccupied).
Maximus Pleuronectes Fleming, 1828; Pretta Swainson, 1839; Passer Valouciounes, 1855 (preoccupied).
Passer.. (An abnormal specimen of Flesu8.)
The first subdivision of the geuus Pleuronectes, after the removal of the soles, seems to have been that of Cuvier. Cuvier subdivides the group into three subgenera, Hippoglossus, Rhombus, and Platessa, retaining the name Pieuronectes for the group as a whole, but for none of his subdivisions.

Fleming, next after him, malies use of these subdivisions, but rejecting the name of Rhombus, he distinctly adopts tho generic namo Pleuronectes for the "Turbot" group. His genera are, therefore, Pleuronectes the "Turbot," Solea the "Sole," Platessa the "Fluke," and Hippoglossus the "Halibut." Pleuronectes maximus, the "Oommon Turbot," is evidently intended as the type of Pleuronectes, as understood by him. This is, so far as we have ascertained, the first restriction of the namo Pleu. roncctes, to any group of flounders, and if it be so the name Pleuronectes must go with the Turbot and its relatives. In that case it would take the place of the preoccupied name Rhombus, and of the prior but almost forgotten name of Bothus, unless we see fit to place the Turbot and the Brill in different genera, in which case Bothus should be used for the Brill.
The next restriction seems to bo that of Swainsou, in 1839, who indicates Pl. platessa as the type of Pleuronectes.

Next is the restriction made by DeKar, 1842, who again makes the Tur-
bot the type of Pleuronectes by adopting the theu nearly obsolete name of Pleuronectes in place of Rhombus. In 1846 Bonaparte retained the name Pleuronectes for a group composed of Citharus, Arnoglossus, \&c. The only Linnæan species mentioned by him, linguatula, may be regarded as his type.
In 1862 Bleeker, and following him Giinther and nearly all modern nuthors, have regarded Pleuronectes platessa as the type of Pleuronectes.
The reason for this view lies apparently in the fact that Artedi before Linnæus had mentioned the species later called platessa first in his list of species of Pleuronectes. This reason is now regarded as an insufficient one, and the name Pleuronectes must retain the signification given it by the first author, who has properly restricted it. We must therefore follow Fleming* in regarding Pleuronectes maximus as the proper "y.ye of Pleuronectes.

ANALYSIS OF THE SPECIES OF PLEURONECTES.

n. Scales wanting or rudimentary, the blind side nearly or quite naked; eyed side covered with scattcred bony tubercles or warts. Vertebrio, 31. (1'louroncetes.)
3. Body broadly ovate, thick, and opaque, the depth about $1 \frac{1}{2}$ in the length; hoad 3 in longth, its tubercles much smaller than those on tho body; interorbital space flattish, about as wide as cye; anal spine inconspicaous; none of the dorsal rays exserted; gill-rakers rather strong, not as long as oje, abont $5+13$ in number; lower pharyngoals small, narrow, each with a band of swall pointed teeth. D, 62 to $69 ; A, 45$ to 50 ; vertebræ $12+19=31$. Color, grayish or brownish, usually sprinkled with small dark spots................. Maximus, 26.
x. Scales obsolete... var. maximus, 28, (a).
x. Scales rudimentary...var. maoticus, 28, (b).
aa. Scales cycloid, imbricate, well developed on both sides of the body; no bopy tubercles. Vertelora 36. (Bothus.)
c. Anterior rays of dorsal little exserted, tho longest about 4 in hoad; body elliptical ovate, nearly opaque; scales very small; blind sido well scaled; no bony tuberclos; interobital space flattieh, nearly as wide as eye; gill-rakers modorate, $4+12$ in number; lower pharyngeals small, narrow, each with a band of pointed teoth. Head 3 in length; depth 18. D. 72 to 83 ; A. 53 to 61 ;Lat. 1. about 130. Vertelrise $12+24=36$. Grayish brown, with darker spots and mottlings

Ryombus, 29.
cc. Anterior rays of dorsal much exserted, free for more than half their length, their length nearly half head; body broadly ovate, subtranslucent; interorbital space flattish; gill-rakers long and slender, ajout $8+22$; blind side of body well scaled; no bony tubercles; head 3 ; depth 1 3. D. 65; A. 52; Lat. 1. about 120. Vertebre $11+25=36$. Color light olive grayish, everywhere ou the left side closely spotted with paler and with blackish, the dark spots of various sizes.
. Maculatus, 30 .

[^38]
28. PLEURONECTES MAXIMUE.

(Tue Turbot.)
[Plates IX and X.]
a. Var. maximus.

Rhombus aculcatus Rondelet, De Piscibus, and of early pre-Linncan writers.
Pleuronectes maxinus Linnæus, Syst. Nat., ed. x, 271, 1758, and od.`xii, 459 (and of early writers generally).
Scophthalmus maximus Rafinesque, Indice, 14.
Rhombus maximus Guinther, iv, 407, 1862. Steindachuer, Ichthyol. Berichte, vi, 1868, 48 (Lishon, Vigo, Trieste, Constantinople, Odessa, Cadiz). Diy, Fishes Great Britain and Ireland, vol. ii, p. 11, plate xevi.
$P_{s e t t a}$ maxima Swainson, Nat. Hist. Fish., ii, 302, 1839.
Pleuroncetes cyclops "Donovan, British Fishes, iv, pl. 90," 1801.
Pleuronectes tuberculatus Shaw, Gen'l Zool., iv, 312, 1803.
Rhombus aculeatus Gottsche, Wiegm. Archiv, 1835, 172.

b. Var. macoticus.

P'louronectes maoticus Pallas, Zoogr. Ross. As., iii, 419, 1811.
Rhombus mooticus Guinther, iv, 409, 1862 (Erzeroum).
Rhombus stellosus Bonuett, "Proc. Zool. Soc., 1835, 92" (Erzeroum).
Rhombus torosus Rathke, Fauna der Krym., 349, 1837 (Crimea).
Rhombus rhombitis Ratlike, Fauna der Krym., 351, 1837 (Crimea).
Habitat.-All coasts of Europe except the extreme north. Variety meoticus in the Black Sea and extending into the Mediterranean.
This species is the famous turbot of Europe, a broad, thick flounder, reaching a large size, its surface nearly scaleless and covered with rough warts. In spite of numerous statements to the contrary, the turbot has never been found in American waters. The fish so called by the Bahama and Key West fishermen, and which they ofton maintain is the turbot of Europe, is a trigger-fish, Balistes carolinensis Gmelin.

The turbot is an excellent food-fiah, generally common on the coasts of Europe, and everywhere highly prized. It is the most valuable of the European flounders.

According to Dr. Steindachuer, there is a complete gradation between the ordinary turbot in which the scales are obsolete and concealed, and the scaly turbot (var. mocoticus), which is more or less completely scaly, at least on the left side. Seindachner observes (Ichth. Berichte, ii, 48, 1868) :
"Completely sealed on the sides of the body and the he ad (in part also on the blind side) is a very large individual from Lisbon and two smaller ones from Vigo, and from the Baltic Sea; for the greater part scaly on four examples from Trieste; only hereand thereon two examples from Odessa and Constantinople, and finally naked on numerous examples from Trieste, Cadiz, and the German Ucean."

The turbot reaches a weight of 40 to 50 pounds or more.
Rhombus torosus Rathke, described from the Crimen, is apparently a local variety of $P l$. maximus, having the warts on the body elliptical S. Mis. 90-17
and the blind side wholly smooth, which is said not to be the case in var. mooticus. Rhombus rhombitis is much the same, but sparsely covered with conoid warts.

We find also references to Rhombus hybridus Malm (Goteborg, Mus. Arsskr., iii, 1881, 24). We have not seen the original description.

29. PLEURONECTES RHOMBUS.

(Thf Brill.)
Khombus lavis Rondelet, De liscibus, and of many early non-binomial writers.
Pleuronectes thombus Linnæus, Systema Naturm, ed. x, 271,1758 (after Artedi), and of early writers generally.
Scophthalmus rhombus Rafuesque, Iudice di Ittiologia Siciliana, 1810, 53.
Psetta rhombus Bonaparte, Pesc. Europ., 49.
Plcuronectes cristatus Lichtenstein, in Bloch \& Schneider, Syst. Ichth., 1801, 153 (European Ocoan).
Bothus rumolo Rafinesquo, Caratteri di Alcuni Nuovi Goneri, de., 1810, 23 (Sicily).
Rhombusvulgaris Cuvier, Regno Animal, 1817 (and of varions authors).
Ileuronectes hoderma Nardo, Ichth. Adriat. No. 132 (Venice).
Rhombus barbatus Risso, Eur. Merid., iii, 251, 1826 (Nice).
ILhombus laris Gottsche, Wiogno. Archiv, 1835, 175. Giinther, iv, 410, 1862. Steindachner, Iehthyol. Berichto, vi, 1868, 48 (Bilbao, Corunna, Vigo, Lîbbón, Cadiz, Malaga). Day, Fishes Great Britain, ii, 14, jl. xcvii, and of most recent authors.
Pleuronectes passer Gronow, Syst. ed. Gray, 1854, 90.
Rhombus linnci Dalu, J3ohusliins Fauna, 513 (Sweden).
Habitat.-All coasts of Europe, except the very extrome north.
The brill is a common food-fish of Europe, especially southwards. It is less estemed than the turbot and reaches a very much smaller size. It rarely exceeds 8 or 10 pounds in weight.
30. PLEURONECTES MACUIATUS.
(The Window-Pane.)
Pleuronectos maculatus Mitchill, Rept. in Part. Fisb. N. Y., 1814, 9 (Now York). De Kay, New York Fauma, Fishes, p. 301, tal. 47, Lig. 151, 1842. Storer, Syn. Fish. N. A., 1846, [. 4i9. Storor, Hist. Fish. Nat. Mase., 186\%, 204 (Provincetorn, Holmes' Hole).
Lophopsctta maculata Gill, Proc. Acad. Nat. Sci. Philad., 1862, 216, and 1864, p. 220. Jordan \& Gilbert, Proe. U. S. Nat. Mus., 1878 , p. 371 (Beaufort).
Bothus maculatus Jordan \& Gilbert, Syn. Fish. N. A., 1882, p. 815.
Pleuronectes aquosus Mitchill, Trans. Lit. and Plil. Soc., 1, 389, pl. 2, fig. 3, 1815 (New York).
Rhombus aquosus Cuvior, Regne Animal. Giinthor, Cat. Fish., iv, 411, 1862 (Now York).
Habitat.-Atlantic coast of United States, from Cape Cod to South Carolina.

This small flounder much resembles the European Brill, but is smallor, thinner, and more translucent in body. Its weight rarely exceeds a pound or two, and its value as a fool-fish is but slight; nevertheless, it is a near ally of the Europem Turbot, and in its technical character it very closely agrees with the latter species.

Genus XVII.-ARNOGLOSSUS.

Arnoglossus Bloeker, Comptes Rendus Acad. Sci. Amsterd., xiii, 186: 6 (Arnoglossus laterna).

Type: Pleuronectes arnoglogsus Bloch \& Schneider=Pleuronectes la. terna Walbaum.
This genus is composed of several species of small trayslucent flounders, found in the Mediterranean and the East Indies. They much resemble the species of Citharichthys, which they represent in the Old World fauna, the arch of the lateral line in Arnoglossus constituting the chiet difference. The characters of the different European species have not been well set forth by authors, and possibly all the nominal species aro reducible to two or three.
We find also in the Zoological Record a reference to Arnoglossus soleiformis Malm, Goteborg. Mus., Arsskr., iii,1881, 24. We have not seen the original description of the fish briefly noticed in this paper, and know nothing of the species thus named. We have also provisionally placed in Arnoglossus two American species which wo have not seen. These have been referred by their describers to other genera, Hemirhombus and Citharichthys; but as both have uniserial teeth and an arched lateral line, they would belong technically to Arnoglossus rather than to either of these groups. But the one (fimbriatus) differs from Arnoglossus in the small scales and tubercular gill-rakers, while the other has small, firm, strongly ctenoid scales, nothing being said of its gill-rakers. Possibly the two should constitute one or two additional genera between Arnoglossus and Azevia; but we do not wish to attempt to define these groups without having seen any of their species.

Bleeker has questioned the propriety of distinguishing Arnoglossus from Platophrys, as the broad interorbital characteristic of Platophrys is subject to much variation. As the two genera differ also in various other respects of form, dentition, squamation, \&c., we think it best to lseep them separate.

ANALYSIS OF SPICCIES OF ARNOGLOSSUR.

a. Mouth small, the maxillary roaching front of pupil, its longth about 3 in head; scales rather large, thin, and caducous, woilly chomid; 40 to 60 in the lateral lino; gill-rakers slender. (Arnoglossus.)
b. [Dorsal fin with four anterior rays producel. D. 95, A. 77 , lat. 1. 60. Maxillary $3 \frac{1}{6}$ in head; interorbital space a vory narrow, sharp ridge. Dopth $2 \frac{g}{8}$ in length. Color uniform grayish.] (Günther)................................ Lorhotes, 31.
bb. Dorsal fin with its second ray much prorlucen, neanly as long as head; body rather deep, the depth $2 t$ in lengtis; maxillary about roaching frout of pupil, 3 in head; eyo large, 4 in head; interorbital spaco not very nurrow, with a median groave; D. 80 to 90 (83 in specimens examinod), A. 60 to 67 (63 in our spocimens) ; lat. 1. about 55. Curve of literal lino 3f in stribight part; gill-rakors slendor and weak, $\mathrm{X}+6$. Vertebrie $10+68=3 k$. Color dark brown,

aa. Mouth larger, the maxillary reaching middle of eyo, its length $2 \frac{1}{2}$ to $2 \frac{4}{4}$ in head; none of the dorsal rays much produced; lody more elongato, the depth 28 in length. Dorsal rays 86 to 90 ; aual rays 67 to 70 ; Lat. l. about 50 . c. [Maxillary nearly 3 in hoad; color grayish, dottod with brown.]

Conspersus, 33.
cc. Maxillary $2 t$ in hoad ; eye large, 4 in hoad, the interorbital space very narnow, without median groovo ; curve of lateral line $3 \frac{\pi}{4}$ in straight part; gillrakers slender and weak, about X+7 in number; vortebres $10+28=38$; color nearly uniform translucent grayish.

Laterna, 34.
aaa. Mouth very large, the maxillary about half leugth of lead: scales small, 65 to 70 in the lateral line; species of uncertain position.
d. [Scales cycloid; mouth very large, the maxillary half length of bead; teeth uniserial, those in front of jaws larger, those bclow largest; some of the teeth depressible; eye 5 in head, the interorbital ridge low, about one-fourth width of oye; gill-rakers tubercular, $\mathrm{X}+9$; anterior nostril with a filamont one-third length of snout; first ray of dorsal longer than second; lateral line with a slight arch, its leugth $3 \frac{1}{8}$ in the straight portion, none of the dorsal rays produced ; hearl $3 \frac{1}{2}$; depth nearly 2 ;D. 80 ; A. 60 ; Lat.l. 70; color grayisl2-brown; the dorsal and anal fins each with two roundish dark blotches on their posterior half, each larger than the eye; a similar dark wlotch on base of caudal; pectoral with a dark band at base, its outer half marked with a dark blotch, which is reticulated and mottled with lighter; the interreaing part of the fin pearly white, with dark specks on the rays] (Goode \mathcal{f} Bean)...Fimbriatus, 35.
$d d$. [Scales strongly ctenoid, firmly fixed; lateral line with the "curved portion bold and sharply defined"; oye large, $3 \frac{z}{z}$ in head, about eight times the diameter of the interorbital space, which is very narrow and scaleless; maxillary nearly half length of head; dorsal fiu beginning on tho blind side, before the eyes; pectoral about as long as head; caudal fin subsossile; veutral of oyod side enlarged in the male, its length 3 in body, about three times length of right ventral; head 4; depth 21 ; D. 93; A. 73; Lat. 1.66 ($20+46$); color light brownish-gray; a dark blotch as long as eye on anterior rays of anal; another paler at ond of curve of lateral line; a fow obscure dusky blotehes elsewhere on body] (Goode \& Bcan)...............................Ventralis, 36.

31. ARNOGLOSSUS LOPHOTES.

$?$ Bothus imperialis Ratinesque, Caratteri, 1810, 23 (Palermo).
Arnoglossus lophotes Günther, iv, 417, 1862 (European, probably British).

Habitat.-Mediterrancan Sca.

We do not know the species called Arnoglossus lophotes. In fact only the original types, dried skins from unknown locality, seem to be known as yet. Among tho Mediterranean fishes, this one approaches most nearly to the description given by Ratinesque of his Bothus imperialis. The name imperialis should therefore perhaps be adopted in place of lophotes. According to Doderlein, the "Tappa or Linguata Impiriali" of the Sicilian fishermen is Arnoglossus bosci. This, according to Day, would be Lepidorhombus whid-iagonis, but-Rafinesque's description cannot well be applied to the latter species. The following is a translation of Rafinesque's description :
"Bothus imperialis.-Almost three times longer than broad, dorsal fin boginning before the eyes; lateral line arched at the base; left side smooth olive, clouded with rlusky ; right side white; tail oven. It is
called Tappa Impiriali or Linguata Impiriali. It is still bettor than the Linguata to eat. It is rarely taken, because it lives ou the sandy or muddy bottoms of the sea, where it creeps under the sand or the mud. It is very distinct from the preceding (B. tappa) being larger; it has the following numbers of fin-rays, that is, dorsal nearly 100 ; anal nearly S0; ventrals 8 ; pectorals 12 ; caudal 15."

According to Day, Proc. Zool. Soc. Lond., 1882, 748, pl. 53, as quoted in the Zoological Record for 1882, this Arnoglossus lophotes is identical with Arnoglossus grohmanni. If so the latter species may hare been the original Arnoglossus imperialis.

32. ARNOGLOSSUS GROHMANNI.

if Bothur inperialis Rafinesque, Caratteri di alcuni nuovi generi o specie, 1810, 23 (Palermo).
Pleuroncotes grohmanni Bonaparte, Fauna Ital., Pesci, 1837.
Arnoglossus grohmanni Giiuther, Cat. Fish., iv, 417, 1862. (Mediterrancan.) Steiudachner, Ichthyol. Bericht. Akad. Wisson. Wien, 1868, Sochste Fortzotzung, p. 50. (Barcelona, Cadiz, Malaga.)

This small flounder seems to be rather common in the Mediterranean. It reaches a larger size than A. laterna, and it is less transparent than the latter. The numerous specimens examined by us wore collected by Dr. Jordau at Venice.

33. ARNOGLOSSUS CONSPERSUS.

Arnoglossus conspersus Canestrini, "Archiv Zool., i, 10, tav. 1, f. 2, 1861." Günther, iv, 410 (copied). Steindachner, Ichthyol. Boricht. Akad. Wissen. Wien, 1868, Sechste Fortzetzung, p. 50 (Malaga). Vinciguerra, Risultate Ittiol. del Violante, 1883, 104 (Genoa).
Habitat.-Mediterranean Sea.
We have not seen this species, and regard it as distinct from Arnoglossus laterna, chiefly because it is so considered by Dr. Steindachner. Dr. Vinciguerra gives a comparisou of the two species, thinking them very doubtfully distinct, but without reaching a positive conclusion.

34. ARNOGLOSSUS LATERNA.

- (The Scald-Fisif.)

[^39]Solca arnoglossa Ralinesque, Indice, 1810, 52 (after Perpeire of Rundelet). Khombus nudus Risso, Lur. Mórid., iii, $251,1826$. Pleuronectes pellucidus Nardo, Ichth. Adriat., 134, 1824.

Habitat.-Coasts of Southeru Europe, north to England.
This small flounder reaches a length of about six inches. It is common in the Mediterranean and as far north as the linglish coast. Our specimens were collected by Dr. Jordan in Veuice.

35. ARNOGLOSSUS (?) FIMBRIATUS.

Hemirhombus fimbriatus Goode \& Beau, Proc. U. S. Nat. Mus., 1885, 591. (Deep waters of the Gulf of Mexico.)
Habitat.-Deep waters of the Gulf of Mexico.
We know this species from the original description only. As the authors of the species say that "the teeth are uniserial in both jaws" we are unable to see why they have placed it in Hemirlombus. So far as the description goes it agrees better with Arnoglossus, in which genus we have provisionally placed it. But the gill-rakers in fimbriatus are said to be tubercular, as in Azevia, while those of Arnoglossus are slender. The proper position of the species is therefore uncertain.

36. ARNOGLOSSUS (?) VENTRALIS.

Citharichthys ventralis Goode \& Bean, Proc. U. S. Nat. Mus., 1885, 592. (Deep waters of Gulf of Mexico.)
Habitat.-Deep waters of Gulf of Mexico.
We know this species from the original description only. It is certainly not a Citharichthys. Amoug the known genera it seems to come nearest Arnoglossus or to Lepidorhombus, but the latter genus has a pedunculate caudal and teeth on the romer, while the former has cycloid or scarcely ctenoid deciduous scales.

Genus XVIII.-PLATOPHRYS.

Solea Rafinesque, Indice di Ittiologia Siciliana, 1810, 5! (rhomboide) (not of Quensel, 1806).

Platophrys Swainson, Nat. Hist. Class'n Fishes, ii, 1839, 302 (ocellatus).
Peloria Cocco, Intorno ad Alcuni Pesci del mar di Messina, Giorn. del Gabin., 1844, pp. 21-30, Lettere di Messina (heckeli, a larval form of P. podas) (not Pelorus of Montfort, 1808).
? Coccolus" (Bonaparte) Cocco, l. c. (annectens: larval form-probably of P. podas, with the right eye in transitu to the left side).
Bothus Bonaparte, Catologo Metodico, 1846, 49 (podas) (not of Rafinesquo).
Rhomboldichthys Bleeker, Act. Soc. Sci. Indo-Nederl. Manad. \& Makassar, 67 (myriastor), 1857-'8.
Platophrys Bleoker, Comptes Rendus Acad. Sci. Amsterd., 1862, xiii Pleuron, 5 (ocellatus).

* "Parvus mole et pleuronectiformis, medius inter Pleuronectidas et Bibroniinos hic piscis videtur! Attamen dum illi oculos unilaterales habeant, isto vero bilaterales; in hoc novo genere oculi, alter a latere, altere in vertice vix ad appositum latus convenus positi sunt." (Bonaparte: quotod by Facciold, Su di Alcuni Rari Pleuronettidi.)

Type: Rhombus ocellatus Δ gassiz.
This woll-marked genus is widely diffiused in the warm seas. The sexual differences are groater than usual among flounders, and the different sexes have often been taken for different species. As a rule, in the males the pectoral fin of the left side is much prolonged, the interorbital area is much widened aud very concave, and there are some tubercles about the snout and lower efe. The young fishes, as is usually the case, resemble the adult females. This gemus has been generally called Rhomboidichthys, but the appropriate name, Platophrys, is earlier, as Bleeker bas already noticed.
Lately Dr. Emery has shown that the larval flounder, known as Peloria heckeli, is in all probability the young of Plearonectes podas.

The generic name Coccolus, based on forms slightly more mature than those called Peloria, probably belongs here also.

We have seen no larval forms so young as those which have been described as Peloria heckeli. We have, however, examined small trans. parent flounders, oue with the eses quito symmetrical, taken in the Gulf Stream, and another with the eyes on the left side, taken at Key West. Both these may be larvo of Platophrys ocellatus. The figures published by Emery seem to make it almost certain that the corresponding European forms belong to P. podas, although some doubt as to this is expressed by Facciola.
The species of Platophrys are widely distribated through the warm seas, no tropical waters being wholly without them. The group called Engyprosopon seems to be worthy of generic distiuction from Platophrys, as its scales are large and rough ctenoid. All the known species of ${ }^{\prime}$ Engyprosopon are Asiatic.
All the species of Platophrys are extremely closely related and can be distinguished with dificulty. On the other hand the variations due to differences of age and sex are greater than in any other of our genera.

A species apparently belonging to Platophrys has been scantily described by Schneider (Systema Ichthyologia, 1801, 156) under the name of Pleuroneotes surinamensis. His types were small, smooth individuals ("exampla satis parva et glabra"), with the fins scaly, the mouth small, the lateral liue arched in frout, and the dorsal rays 96, the anal rays 55 . These may be the young of any of the West Iudian species, possibly of P. lunatus or ocellatus.
The following analysis of the species of Platophrys will doubtless be found to be very unsatisfactory. There are certainly three species (podas, maculifer, and lunatus) which are known to be distinct in their adult state. The young forms of maculifer and lunatus are not well known, nor is it known how they differ from ocellatus, spinosus, and other species which presnmably reach a smaller size. Only a thorough study of the species, in all stages of development, in their native waters can give us the characters by which the species can be really discriminated.

ANALYSIS OW SPECILS OH PLATOPIRYK.
a. Anal rays-at least auteriorly-each with a spinule at base (these are formed by a slight widening of the tip of the interhamal spines, each being covored ly a littlo rough scale); front of dorsal with similar projoctions.
b. Color brownish, more or less marked with spots of light blue and brownish, which are usually odged with darker, these usually arranged in rings; a large black bloteh on the lateral line; mouth small, the maxillary 4 in bead ; interorbital width rangiug with age and sex from $2 \frac{1}{2}$ to $4 \frac{1}{2}$ in head; snout short, scarcely forining Ω re-entrant angle at its base; au angle opposite upper eye; depth 1 名 in length, D. 85 to 91, A. 70. Podas, 37.
bu. Color brown, covered with pale rounded spots; fins dotted with brown; a faint dark spot at first third of lateral line; snout with horny points; mouth small, the maxillary reaching front of eye. Eyes very wide apart, $2 \frac{8}{8}$ in head ; the interorbital space 14 in head; peotoral fin short; curve of lateral line 5 in straight part. Depth $1 \frac{8}{8}$ in length. D. about 74; anal about 57. Scales about 80. (Described from specimens $4 \frac{1}{4}$ inches loug, which have been partly dried before being placed in alcohol)

Spinosue, 38.
aa. Anal rays without spinules at their base.
c. Anterior profile of head convex before the interorbital area, the very short snout scarcely forming a re-entrant angle at its base; form ellipticovate, the outlines more regular than in Pl. lunatus.
d. Dorsal rays 85 to 95 .
e. Scales not very small, about 75 pores in the lateral line. (No blue markings, at least in young specimens.)
f. Mouth small, the maxillary 3 in head; no spines about the snout; eye $3 \frac{1}{y}$ in length; interorbital width 3 in head (in types); pectoral short; curve of lateral line 6 timos in straight part; color dark brown, with numerons stellate white spots, the most distinct of them with darker edgings; these genorally acattered over the body, but some of thom on sides of body are gathered together in little rings. (Perbaps these spots are blue rather than white in life.) Fins mottled with dark brown, the pectoral finely barred. Head 4 iu length; depth $1 \frac{1}{2} ;$ D. 89, A. 6ĩ, scales 75. Specimens examined, $3 \frac{1}{2}$ inches long.. Constellatus, 39.
ff. Mouth smaller, the maxillary 38 in head; cye 3_{8}^{\prime} in head ; interorbital space 24 ; teeth small, bisorial above; arch of lateral line 2 in head. Head 4 in length ; depth $1 \frac{1}{2}$. D. 85 to 90 . A. 64 to 67. Lat. 1.72 to 78. Color light grayish, tingod with reddish, with small round spots of darker gray, and with lighter rings inclosing spaces of the ground color; vertical fins, similarly colored, with a small black spot at base of each 9th or 10th ray; two black spots on lateral line; some other black spots ou body and on caudal fin. Vertebre, 37 Ocrmlatus, 40.
ee. Scales smaller, 90 to 95 pores in the lateral line. Mouth small, oblique, the maxillary 35 in head; teoth in both jaws in two irregular series; areh of lateral line 28 in head. Head 4; depth 15. D. 90 to 95 . A. 70. Lat. 1. 90 to 95 . Color of adult reddish gray, the body everywhere covered with rings formed of round, sky-blue spots, which are not coulluent and are not edged with black; besides these, very few detached spots or other blue markings; head with similar blue spots, lout no rings; area inclosed in the blue rings not different from the ground color; caudal with blue spots, other fins with none; dorsal and anal moitled; a large, diffiuse, duslry spot at frout of straight part of lateral line, one better defined on middlo of lateral line; a faint one farther back; pectorala grayish, with dark bars.... Macenifme, 41.
da. Dorsal rays, 105; anal rays, s0; pectoral shorld interorbital space 2 ? in head; depth $1 \frac{3}{3}$ in length; scales 91 ; body deep; color (specimen 43 inches long) grayish, much spotted and mottlod with whitish; no bluo (in young example).
.Ellipticus, 42.
cc. Anterior profile of head strongly concave before interorbital arca, the projecting snout leaving a marked re-cutrant angle above it.
g. Mouth not very small; tho maxillary 3 in head; head $3 \frac{3}{3}$ in length; dopth 2; D. 95 ; A. 70 ; lat. 1.90 . Tecth smadl, in an irregular donblo series in cach jaw; color dark olive, with many rings, curvod spots, and small round dots of sky-blue edged with darker on bools, these largest near middle of sides, where some are as large as the cye; three obscure dark blotches on straight part of lateral line; licad and vertical fins with sharply defined blue spots, which are mostly round; spots on opercles, larger and curved; pectorals with dark bass; vertebro $9+30=39$.
linatus, 43.
 A. 62 to 67 ; lat. l. 80 ; tenth very small, biserial abovo; color highly varigated with different shades of gray, the pale blotches rounded, very irregular in sizo and posiliou; no bluo spots; no black spots ulong lateral line; a large whitish cloud between the oyes.

Lhopalidinus, 44.

37. PLATOPHRYS PODAS.

Rhomboides Rondelet, De Piscibus, 1554.

Pleuronectes polas Delarocho, "Ann. Mus., xiii, 334, tab. 24, iig. 14, 1809."
Rhomboidichthys podas Güntleer, Cat. Fish., iv, 432, 1862 . (Sicily.) Vinciguerra, liisultati Ittiologici del Violante, 1883, 106. Emery, Contribuzioni all' Ittiologi, 405. (Interesting discussion of larval forms.)

Bothus podas Steindachner, Ichthyol. Bericht., 1868, Scelhsto Fortsetzung, p. 51. (Barcolona, Cadiz, Gibraltar, Santa Cruz de Teneriffe.)
Solea rhomboide Rafinesque, Indice, 1810, 52 (after Rondelet).
Bothus rhomboides Bonaparte, Catologo Metodico, 1е36, 49.
Pleuroncctes argus Risso, Ichth. Nice, 1810, 317 (not of Gmelin).
Pleuroncctes mancus Risso, Iehth. Nice, 1810, 317 (not of Bronssonet, whoso apecies was from the Pacific Ocean = Platoplys mancus).
Rhomboidichthys mancus Giunther, iv, 432, and of many Luropean writors.
Rhombus diaphanus Rafinesque, 1814 (larval form). Ricchiardi, "Soc. Toscaua Sci. Nat., 1881."
Rhombus candidissimus Risso, Europe M6ridionale, iii, 253,1826 (larval form).
Rhombus gesneri Risso, Europe Mérid., 1826, iii, 254.
Rhombus heterophthalmus Bennetit, "Proc. Comm. Zool. Soc., 1831, 147."
Rhombus madeirensis Lowe, "Proc. Zool. Soc., 1833, 143." (Madeira.)
Peloria heclieli Cocco, "Alcuni Pesci dol mar di Messina," 1844, 20 (larval form).
\% Coccolus anncetens (Bonaparte) Cocco, 1. c. (larva).
Rhombus serratus Valenciennes, "Welb \& Berthelot, Iles Cimar. Poiss., 82, pl. 18, fig. $1, " 1835-50$.
I'leuronectes cuspidatus "Machado, Catalogo, 26 " (fide Steindnchmer).

Habitat.-Mediterranean fauna.

This species is not rare in the Mediterrancan and adjacent islands. The specimens examined by us are from Genoa and Fayal. The two species mentioned by numerous authors under the names of podas and mancus have been shown by Dr. Steindachner to be the two sexes of the saue fish, while Dr. Emery has shown that the translucent fish,

Peloria heckeli $=$ Rhombus candidissimus $=$ Rhombus diaphanus, is the larva of the same form, as is probably also the Coccolus annectens of Bonaparte.

38. PLATOPERYS SPINOSUS.

Khomboidilithys spinosus Po8y,Synopsis, p. 409, 1868. Pooy, Enum. Pis. Cub., p. 139, 1875.

Habitat.-West Indian fauna.
The original description of this species is a very scanty one. In all respects, unless it be the color, it agrees with the European Pl. podas.

We have found two small specinens sent by Professor Pocy to the Museum of Comparative Zoology, which may be the types of this species. They are 44 inches long, and have been partly dried in the sun. A result of this has been to increase the prominence of the interhæmal spines. Whether these be the original types or not, the species is an extremely doubtful one. The eyes are farther apart in these specimens than in any of P. ocellata which we have examined. They agree in this respect with Agassiz's figure of Rhombus ocellatus.

39. PLATOPERYS CONSTELLATUS.

Platophrys constellatus Jordan, sp. nov.
Habitat.-Galapagos Archipelago.
This species is described from three specimens, the largest $3 \frac{1}{2}$ inches long, numbered 11146 on the register of the Museum of Comparative Zoology. They are from James Island, in the Galapagos. The species is closely related to P. ocellatus and others, but in color, at least, it is different, and its habitat is remote.

40. PLATOPHRTS OCELLATUS.

Rhombus ocellatus Agassiz, Spix Pisc. Brasil., 1829.
Platophrys ocellatus Swainson, Nat. Hist. Class'n Fishes, ii, 1839. (Name only.)
Rhomboidichthys ocellatus Giintbor, Cat. Fish. Brit. Mus., 1862, iv. (Bahia, Caba.)
Poey, Synopsis, 1868, 408. (Havana.)
Rhombus bahianue Castelnau, Anim. nouv. rares Amérique du Sud, 1855. (Bahia.)
Platophrys nebularis Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1884, 31, 143. (Koy West.)
Habitat.-Tropical America; sandy shores from Long Island to Rio Janeiro.

We know this species from the numerous small specimens taken by Dr. Jordan at Key West, which have been describod as Platophrys nebularis. A specimen similar to these has been taken by Dr. Bean on the south coast of Long Island.

This seems to be the same as the Cuban species called Rhomboidichthys occllatus by Poey, and some of the specimens sent by Poey to the Museum of Comparative Zoology are apparently identical with the types of nebularis.

In the Museum of Comparative Zoology we have compared speci-
mens of the real Platophrys ocellatios (No. 11423, Rio Janeiro, Agassiz), with a representative specimen of P. nebularis (No. 26147, from the Tortugas, Florida), and are unable to find any differeuces.

We adopt, therefore, the name Platophrys ocellatus for all, and regard it as one of the widels-distributed flounders, like Etropus crossotus and Citharichthys spilopterus.

41. PLATOPHRYS MACULIFER.

PPleuronectes maculiferus Poey, Mom., ii, p. 316, 1860. (Cionfuegos.)
\& Rhomboidichthys maculiferus Poos, Synopsis, p. 408, 18G². P'oey, Enum. Pis.Cub., p. 139, 1875.
Platophrys ellipticus Jordan, Proc. U. S. Nat. Mns., 1886, 51 (Havana) (not of Poey 9).
We identify specimens taken by Dr. Jordan at Havana and by him described as Platophrys ellipticus, with this species simply because we cannot place them anywhere elso. In the Musoum of Comparative Zoology are other specimens similar to these, sent to Cambridge by Poey.

In several respects these species agreo fairly with Poey's ellipticus, but that species is said to have 104 dorsal rays.

42. PLATOPHRYS ELLIPTICUS.

P Pleuronectes ellipticus Pooy, Momorias, ii, 315, 1860. (Cuba.)
Phomboidichthys ellipticus Giinther, iv, 434, 1862 (copied). Poey, Synopsis,408, 1868. Poey, Enumeratio, 139, 1875.
Habitat.-West Indian fauna.
Poey describes his Pl. ellipticus as having 104 dorsal rays. In none of our other species does the number of these rays reach 100. Among the specimens sent by Poey to the museum at Cambridge is one, 43 inches long, which has 105 dorsal rays. We hare therefore assumed that the species to which this specimen belongs is the real ellipticus, and that the one heretofore called ellipticus is Poey's maculifer. Both these assumptions are open to considerable doubt.

43. PLATOPHRYS LUNATUS.

Solea lunata et punctata (The Sole) Catesby, Nat. Hist. Carolina, tab. 27, 1725 (Bahamas).
Pleuronectes lunatua Linm., Syat. Nat., ed. x, 269, 1758 (based on Catesby), and of the various copyists.
Rhomboidichthys lunatus Günther, Cat. Fish., vol. iv, p. 433 (Jamaica). Poey, Synopsis, p. 408, 1868.
Rhomboidichthys lunulatus Poey, Enum. Pis. Cub., p. 138, 1875.
Platophrys lunatus Jotrlan, Proc. U. S. Nat. Mus., 1886, 51 (Havana).
Pleuronectes aryus Bloch, Ichthyol., tab. 48, 1783.
i Pleuronectes surinamensis Bloch \& Schnoidor, Syst. Ichth., 1801, 156 (Surinam); and of copyists.
Habitat.-West Indian fauna.
This handsome and curiously colored species is not rare in the waters of the West Indies. The specimens examined by us are from Cuba, Sombrero, St. Thomas, and other localities in the West Indien. The
original figure of this species published by Caresby is a very good one and leaves no room for doubt as to the species intended. The figure of Bloch, called Pleuronectes argus, is also fairly accurate, and can refer to no other species.
This species reaches a length of some 18 inches, and is the largest in size of the American spectes of Platophrys. We have never seen any young examples which certainly belong to it, and till its derelopment is traced some of the species known from small examples only must be doubtful.

44. PLATOPERYS LEOPARDINUS.

Rhomboidichthys leopardinus Guinther, Cat. Fish., iv, 1862, 434 (locality unknown).
Platophrys leopardinus Jordan, Proc. U. S. Nat. Mus., 1884, p. 260 (Guaymas).
Habitat.-Gulf of California.
This species is known only from the orignal type from tanknown locality, and from a single specimen in the U. S. National Museum, taken by Mr. H. F. Emeric, at Guaymas.

Genus XIX.-SYACIUM.

Syacium Ranzaui, Novis Speciebus Piscium, Diss. Sec., 1840, 20 (micrurum,
Hemirhombus Bleekcr, Comptes Rendus Acad. Sci. Amsterd., xiii, Pleuron, 4 (1862), (guineënsi8).
Aramaca Jordau \& Goss, Cat. Fish. N. A., 1885, 133 (patula).
Type: Syacium micrurum Ranzani.
This genus contains a considerable number of species, mostly American and African, which form a transition from Platophrys to Citharichthys. They fall readily into two groups or subgenera, distinguished by the width of the interorbital space. As this width is dependent on age and as it is subject to various intergradations, the group Aramaca founded on it cannot be admitted as a distinct genus.

The name Syacium, based especially on Syacium micrurum, must take the place of Hemirlombus.

ANALYSIS OF SPECIES OF SYACIUM.
a. [Snout before upper orbit with threo conspicuous spinous processes; maxiliary reaching beyond eje, $2 \frac{1}{2}$ in head; interorbital spaco scaly, concavo, 2 in oje (in specimens of $3 \frac{1}{2}$ inches); eye $2 \frac{t}{2}$ in head; spines on snout about 3 in oje; no produced fin rays; pectoral as long as head without snout; head blunt, higher than long, the profilo straight; lateral lino without arch; head 3 ; dopth 2 ; D. 78, A. 62 ; scales 48 ; color gragish, with large distant black blotches on dorsal and anal; one or two on basal half of caudaliand on end of caudal peduncle; pectoral with dark bands.] (Günther) Cornutum, 45.
aa. Snout and orbits without spines or spinous processes.
b. Scales larger, 50 to 57 in the lateral lino; intororbital space very broad, greater than the long diameter of the eye in the males, about equal to the vertical diamoter in the females; accessory scales very numerous; maxillary $2 \frac{1}{2}$ in head; its tip scaly; anterior teeth canine-liko: gill-rakers short, strong, not one-third
length of eye; first rays of dorsal nearly on median line, their tips much exsorted; pectoral fiu in males $1 \frac{1}{6}$ to 2 times length of hoad ; eye largo, $4 \frac{\mathrm{~g}}{\mathrm{~g}}$ in head; head 37 ; dopth $2 \frac{2}{6}$; D. 81 to 88, A. 63 to 70 ; vertebro $10+26=36$; color nearly plain brown, with darker dots or mottlings, no ring-like spots or ocelli; fins mottled; left pectoral barred; blind side somotimes wholly or partly dusky, especially in Northern specimens

Papillosum, 46.
$b b$. Scales rather small, 60 to 70 in the lateral line.
c. Color dark brown, with many riugs and spots of light gray and blackish, somo of the dark rings with a black central spot; a diffase dusky blotch on latoral line above pectoral, and one noar base of candal peduncle; fins with mumorous inky spots and dark markings; blind sido pale; scales swall, fixm, moderately ctenoid; ejee large, 4 in head, nearly even in front, the malo with tho interorbital space deeply coucave; its width two-thirds the vertical depth of the eye; femalo with interorbitul aroa much narrower, with a more or less perfect median groove; its width abont oqual to depth of pupil; maxillary 2 z to 3 in head; the outer teeth canino-like; gill-rakers very short and thick, about $\mathrm{X}+7$ in number; head 38 in length; depth, 27 ; D. 87 to 92 A. 54 to 68; seales 65 to 70 pores; vertebra $9+24=33$; pectoral $1 \frac{1}{3}$ in hoad in the femalo, reaching nearly to base of caudal in the male. Mrcrurum, 47.
cc. Color light brown, with grayish and light bluish dots, some darkor areas and a fow round brown spots ocellated with lighter; interorbital space with a vertical brown bar bordered by lighter ; fins mottled and spotted; interorbital space in adult male broader than eye ; insertion of dorsal ou blind side of head ; pectoral fins in males about 3 in body; head, 4 in length; depth, 23 ; D. 92 , A. 72, Lat. 1. 60; gill-rakers short aud broad, $\mathrm{X}+7$; maxillary $2 \frac{1}{2}$ in head, its tip scaly.

Latifions, 48.
oce. Color light olive-brown, uearly uniform, the vertical fins with olongate dark spots; oyes $4 \frac{3}{2}$ in hoad, the lower slightly adwanced; interorbital space very narrow, as broad as pupil (in both sexes 9), somewhat concave; maxillary $2 f$ in head; pectoral $1 \frac{1}{f}$ in hoad ; hoad $3 \frac{1}{6}$ in length; depth $2 \frac{1}{8}$; D. 86, A. 69, Lat. 1. 58 .Ovale, 49.

45. SYACIUM CORNUTUM.

Rhomboidichthys cornutus Gilnther, Shore Fishos Challonger, 1880, 7, pl.
Habitat.-Coast of Brazil, in deep water.
This species is known from Guinther's description and figure. In very young examples the conspicuous processes about the head are undeveloped.

46. SYACIUM PAPILLOSUM.

Aramaca Marcgrave, Hist. Brasil., 1648, 181.
Pleuronectes papillosus Linuwus, Syst. Nat., s, 271, 1758 (based on Marcgrave), and of the earlier copyists.
Aramaca papilloba Jordau, Proc. U. S. Nat. Mus., 188̣6, 002 (bynonymy confused with S. micrurum).

Plenroneotes macrolepidotus Blooh, Ausläudische Fische, vi, 25, tab. 190, 1787 (and of sone conyists) (apparontly based on Marcgrave).
Pleuronectes aramaca Donndorf, Beytriige zur xiii Ausgabe des Linnaischen Natursystems, 1798, 386 (aftor Marcgrave).
Rhombus aramaoa Cuvier, Regne Animal, od. ii, 1827 (aftor Marcriave).
Citharichthys aramaca Jordan and Gilbert, Synopsis lish., N.A., 1852, 816. (Pensacola.)
Rhombus soleaformis Agassiz, Spix Pisc. Brasil., 86, tab. 47, 1829. (Ablantic Occau.)
Hemirhombus soleafornis Gunthor, Cat. Fish., iv, 423, 1862. (Copied.)
Aramaca boleceformis Jordan, Proc. U. S. Nat. Mus., 1886.

Hippogloseus intermedius Ranzani, Noris Speciebus Piscinm Dissertatio Secundo, 1840, 14, pl. 4. (Brazil.)
Hemirhombus patulus Bean MSS, Jordan and Gilbert, Proc. U. S. Nat. Mus., 1882, p. 304. (Pensacola.) Goode and Bean, Proc. U. S. Nat. Mus., 1882, p. 414. (Pensacola.) Bean, Cat. Col. Fish U. S. Nat. Mus., 1883, p. 45. (Pensacola.)
Citharichthys patulus Jordan and Gilbert, Syu. Fish. N. A., p. 964, 1882, addenda. Jordan, Proc. U. S. Nat. Mus., 1884, p. 38. (Pensacola.)
Hubitat.-West Indian fauna. Oharleston to Rio Janeiro.
Of the species found in the deep waters about Pensacola and called by Dr. Bean Hemirhombus pactulus wo have numerous specimens. Lately we Lave received from Mr. Charles C. Leslie, of Charleston, a specimen which shows its presence also in Carolina waters. It has not yet been recorded from Cuba, but in the Museum of Comparative Zoology is a specimen (20104) taken by Mr. Samuel Garman at Kingston, Saint Vincent. But its range extends much farther to the southward, for among the collections made by Professor Agassiz at Rio Janeiro there are many specimens (11375, 4666), the largest about a foot long. These seom to be completely identical with Florida examples, differing onls in having the blind side pale, it being usually partly blackish in northern examples.

These Brazilian specimens agroe very closely with the figuro of Rhombus soleceformis, except that Agassiz has represented that species as having a dusky blotch at the shoulder. No such marking is apparent in any of our specimens. The coloration and the breadth of the interorbital both render it unlikely that Agassiz's soleceformis could have been micrurum.

The Aramaca of Marcgrave, which is the solo basis of Pleuronectes papillosus, Pleuronectes macrolepidotus, and Rhombus aramaca, cannot well be any known species other than the present one.

According to Marcgrave's rude figure and his description, this species has the form of a sole, the ejes wide apart, the left pectoral produced, the mouth very large, the body oblong, and the coloration stone-like (sand-color) on the left side and white on the oyed side. Micrurum is not colored in that way, and its eyes are not noticeably far apart.

We therefore adopt for this species the oldest name of Syacium papillosum.

The species is common in the deep waters of the Gulf of Mexico, and reaches a length of more than a foot.

47. SYACIUM MICRUROM.

Syacium micrurum Ranzani, Nov. Spec. Pisc. Diss. Sec., 1840, 20, pl. 5. (Brazil.)
Hippoglos8u8 occllatus Pooy, Memorias, ii, 314, 1860. (Cuba.)
Hemirhumbus ocellatus Poey, Synopsis, 407, 1868. Poey, Enumeratio, 138, 1875.
Citharichlthys occllatus Jordan and Gilbert, Syn. Fish. N. A., 964, 1882. (Koy West.) Jordan, 1'roc. U. S. Nat. Mus., 1884, 143. (Key West.)
Hemirhombus aramaca Guinther, iv, 42, 1862. (Cuba; Janaica.) (Not Rhombus aramaca Cuvier.)
Citharichthys ethalion Jordan, Mroc. V̌. S. Nat. Mus., 1Esij, 5\%. (Havana.)
Homirhombus athalion Jordan, Proc. U. S. Nat. Mus., 1886, 602.

Habitat.-West Indian fauna. Key West to Rio Janeiro.
We have found in the Museum of Comparative Zoology specimens purporting to be the types of Hemirhombus ocellatus Poey (No. 11144; Poey's number, 88). These are female specimens, and they differ from the types of Hemirhombus cethalion, also from Cuba, only in their greater size.

Numerous specimens (11373) from Rio Janeiro belong to the same species. Among these are males, which have the interorbital space much broader than in the types of ocellatus and athalion. Bosides these specimens, we have examined others from Hayti, Cuba, and Key West, and there can be no reasonable doubt of their identity, and that all are identical with Guinther's Hemirhombus aramaca.
This fish is described and fairly well figured by Ranzani under the uame of Syacium micrurum. It is the type of his genus Syacium, a generic name which, strangely enough, has received no notice from subsequent authors until the present time.

48. SYACIUM LATIFRONS.

Citharichthys latifrons Jordan and Gilbort, Bull. U. S. Fish Coumn., 1881, 334. (Panama.)
Habitat.-Pacific coast of tropical America. Panama.
This species is known only from the original types, taken by Profossor Gilbert at Pauama. The several variations in this species have not been studied.

49. SYACIUM OVALE.

Hemirhombus ovalis Guinther, Proc. Zool. Soc., 1864, p. 154. Giinther, Fish. Central America, p. 472, 1869, plate lixa, fig. 1. (Pamama.) Jordan \& Gilbert, Bull. U. S. Fish Com., 1882, 1. 108-111. (Mazatlan; Panama.)
(itharichthys ovalis Jordan, Proc. U. S. Nat. Mus., 1885; 391. (Mazatlan; Panama.)
Habitat.-Pacific coast of tropical America: Mazatlan to Panama.
This well-marked species has been woll figured by Dr. Günther, from whose account our analysis has been taken. Nuncrous specimens have been collected at Mazatlan and Panama by Dr. Gilbert. The sexual changes in this species have not been reported.

Genus XX.-AZEVIA.

Azevia Jordan (genus novum). (Panamensis.)
TYPE: Oitharichthys panamensis Steindachner.
This genus is proposed to include a single species hitherto referred to Oitharichthys, but distinguished by its tubercular gill-rakers, as also by its small, firm scales, and other characters of minor importance.

A second species of this genus was obtained by Professor Gilbert at Mazatlan, and at first recorded by us under the name of Citharicthys panamensis. The specimens have, however, all been destroyed by fire.

The name Azevia is a Portuguese name for the sole, used at Lisbon, according to Brito Capello. It probably corresponds to the Cuban name Acedia.
a. Scales quite small, about 75 in the lateral lino, ctenoid, and adherent. Body rathor elongate. Mouth large, the maxillary about half length of head, the upper jaw somewhat booked over the lower; ahout three front teeth in upper jaw, enlarged aud hook-shaped ; canines strong. Antorior profile gently and evenly convex. Eyes large. Pectoral $1 \frac{1}{2}$ in hoad. Head 4 in longth; depth $\mathbb{D O}_{5}^{2}$. D. 95 or 96 . A. 76 to 78. Scales 73 to 78. Vortebria 33. Gill-rakers tulberele-like, broader than high. Color brownish, spriukled with dark dots, and with somo whitish rings; large vaguely-defined oval spots on hond and body ; dorsal with five or six, anal with three dark spots

Panamensis, 50.

50. AZEVIA PANAMENSIS.

Citharichthys panamensis Steindachner, Ichith. Beitr., iii, 62, 1875. (Panama.) Jordan \& Gilbert, Bull. U. S. Fish Com., 1882,108 and 111. (Panama.) Gilbert, Bull. U. S. Fish Com., 1832, p. 112. (Punta Arenas.)
Habitat.-Pacific coast of Central America.
Our description of this species is taken from the specimens from Panama in the muscum at Cambridge, a part of the series of Dr. Steindachner's original types. The species is apparently not uncommon on the west coast of Central America.

Genus XXI.-OITHARICHTHYS.

Citharichthys Bleeker, Comptes Rendus Acad. Sci. Amsterd., siii, Plewron, 6, 1862. $($ Cayennensis $=$ Spilopterus. $)$
Orthopsetta Gill, Proc. Ace. Nat. Sci. Philat, 1862, 330. (Sordilus.)
Metoponops Gill, Proc. Ac. Nat. Sci. Philit., 1864, 198. (Cooperi=Sordidus.)
TyPE: Citharichthys .cayemnensis Bleeker=Citharichthys spilopterus Gïnther.
This genus includes small flounders of weak organization, especialiy characteristic of the sandy shores of tropical America. The subgenus Orthopsetta includes species of more northern range and somewhat different in form, and especially uoteworthy as having an increased num. ber of vertebre.

We are not certain that Citharichthys has priority over Orthopsetta, the two having the same ostensible date.

ANALYSLS UF BPECLES OF CITHARICHIIYS.
a. Vertebro about 40 ; interorbital ridge sharply elevated; the head not elosely compressed; eyes large. (Orthopsetta Gill.)
b. Dursal rays 95 ; anal rays 77 ; lateral line 65 to 70 ; hoad 36 in Iength; depth $2 \frac{1}{3}$; cyes large, $3 \frac{1}{4}$ in head, the interocular space scaly, concave, 4 in oye; a sharp elovatod ridge bounding tho lowereye; mouth not large; the maxillary 3 in head; toeth sbarp, subequal anteriorly, smaller behind; lower pharyngeals narrow, each with a row of sleuder teeth; gill-rakers slender, close-set, $7+14$; scales large, thin, deciduons, slightly ciliate; numerons accessony scales present; pectorals long, $1 \frac{1}{2}$ in hoad ; flesh soft. Color dull olivebrownish, the males with spots and blotches of dult crange, the dorsal and anal blackish, similarly mottled with dull orange; females paler, ncarly plain. Vertebree, $11+29=40 \ldots . .$. . Sordións, 51 .
bb. Dorsal rays 85 to 90 ; anal 68 to 72 ; lat. 1. 55 to 60 ; hoad 3 if length; depth $2 \frac{1}{5}$; eyes large, separatod by a sharp, scaleless ridge; maxillary 24 in head; toeth slender, rather long; gill-rakers short, rather slender; pectoral $1 \frac{1}{5}$ in head; color olivaceous, the scales edged with darker; fins dusky; a small ink-like spot on the middle of each seventh to teuth ray of each of the vertical fins. STIgmand, 52.
aa. Vertobre 33 to 36 ; interorbital ridge low and narrow, the head closely comprossed (Citharichthys).
c. Dyes large, 3 to $4 \frac{1}{2}$ times in the hoad.
d. [Head large, $3 \frac{1}{s}$ in length; pectoral of left side olougate, one-third longer than head; maxillary $2 t$ in head; "lateral line slightly curved over the pectoral"; scales thin, deciduous, cycloid; eje $3 \frac{1}{8}$ in head, five times interorbital space, which is a rather prominent narrow sharp ridge; a strong spiue on the suout over the uppor lip, above this another shorter spine; caudal fin subsessile; head, $3 \frac{1}{8}$; depth, 21 ; D. 91 ; A. 73 ; Lat.l. 48. Color grayish-brown.] (Goode f Bean).
. Dinoceros, 53.
dd. Iluad smaller, about 4 in length.
e. Body comparatively elougate, the dopth about $2 \frac{1}{2}$ in length; mouth very small; the maxillary $3 \frac{1}{2}$ in head; teeth very small, the anterior scarcely enlarged; eyes large, 4 in head, separated by a very narrow, sharp scaleless ridge, one-sixth diameter of tho eye; snout with a small llunt spine; rays of vertical fins all exserted; left pectoral twice length of right. Head, 4 in length; depth, $2 \frac{1}{2} ; \mathbf{D}$. 83; A. 67 ; Lat. 1. 40. Color light brownArctifrons, 54. ce. Body comparatively broad, the depth about half the length; mouth larger. f. [Suout with a strong sharp spine on eyed side, above upper lip. Eyes large, 3 in head ; greatest depth of borly over the pectorals; interorbital space with a wide ridge, about half diamoter of eje; teeth miuute, close-set, strouger on blind side; body extremely thin; D. 73 to 75, A. 60, Lat. 1. 40. Ashy gray, with dark lateral line. Deep-water spucies with loose scales.] (Goode).... Unicornsis, 55.
ff. Snout without distinct spinc. Eyes moderate, $3 \frac{1}{2}$ to $4 \frac{1}{2}$ in head; groatost depth of body under midde of dorsal ; intororbital space a narrow, scaly ridge with a slight median groove; maxillary $2 \underset{3}{ }$ in head; teeth small, those in front slightly onlarged; body not very thin; gill-rakere inodorate, $6+13$.
g. Dorsal rays 80 ; anal 56 ; scules large, cycloid; no accossory scales; head 4 in longth; depth $2 ;$ D. 80, A. 56, Lat. l. 41. Vertobre 9+ $25=34$. Eye 3 各 in head. Color linht olive-brown, with sone 20 dark brown spots, the largest about as large as eyo ; four of these spots arranged at equal intervals along the lateral line, the second being mast prominent; dorsal and auml with round dark spots, one. on the middle of each sixth to seventh ray, besides smaller, irregular spots and mottlings; caudal spotted; two brown spots, one above the other, at base of caudal; shallow-wator species.

Macholes, 56.
9g. Dersal rays 68 ; anal 52 ; scales smaller, the lateral line with about 53 pores; outline regularly oval, without angle; eyes moderate, $4 \frac{1}{2}$ iu head, close together, the orbital ridges coalescent, the lower larger. Teeth small, uniserial; maxillary 2 f in head : gill-rakers short and vory slendor, $X+1 \%$. Color dark brown, with whitish blotehes, the fing mottlerd Vinleri, 57.
S. Mis. $90-18$
cc. Eyes quite small, 5 to 6 in head; suout short, forming an angle with the profile ; mouth moderate, oblique, the maxillary $2 \downarrow$ to $2 \frac{8}{2}$ in head ; teeth sinall, the antorior somewhat enlarged.
h. Scales not very large, 45 to 48 in the lateralline ; interorbital area a low narrow ridge which is divided only anteriorly (in Atlantic specirnens, usually grooved for its whole leugth in Pacific coast examples); gill-rakers short and strong, $X+13$; pectorals about half head ; no distinct spine on snont; head $3 \frac{1}{\frac{1}{2}}$; depth $2 \frac{1}{8} ;$ D. 75 to 80; A. 58 to 61; vertebre, 34 ; color olive-brownish, somewhat translucent, with darker dots and blotches; a series of distant obs. scure blotches along bases of dorsal and anal Spiloptenus, fee.
$h h$. Scales large, 40 to 42 in the lateral line; interorbital area? diameter of eye, which is 5 in head; gill-rakers sbort and slender, abont equal to pupil ; teeth rather smaller than in C. spilopterus; maxillary 2 告 in head ; head 3 ; depth 2 to $2 \frac{1}{6}$; D. 77 to 82 ; A. 59 to 61 ; color light gray, everywhere soiled and freckled, peppered with black specks; pectoral fin much mottled, the caudal less so.

Sumichrasti, iJ.

51. CITHARICHTHYS SORDIDUS.

P'settichthys sordidus Girard, Proc. Acad. Nat. Sci. Phila., vii, 1854, 142. Girard, Proc. U. S. Pacif. R. R. Exped., Fishes, 18:9, 155. (San Francisco ; Tomales Bay.) Orthopsetta sordida Gill, Proc. Ac. Nat. Sci. Phila., 1862, 330.
Citharichthys sordidus Lockington, Rep. Com. Fisheries of California, 1878-79, 42. Lockington, Proc. U. S. Nat. Mus. 1879, 83 (San Francisco). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 453 (Puget Sound, San Francisco, Monterey Bay, San Luis Obispo, Santa Barbara, San Pedro, San Diego). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 67. Jordan \& Gilbert, Synopsis Fish. N. A., p. 817, 1982. Bean, Proc. U. S. Nat. Mus., 1883, p. 353 (Johnston Strait, Safety Cove, Britioll Columbia.)
Metoponops cooperi Gill, Proc. Acad. Nat. Sci. Phila., 1864, 198 (Santa Barbara).
Habitat.-Pacific coast of North America, in water of moderate depth; British Columbia to Lower California.

This small flounder is one of the commonest species on the Pacific. coast, being found in water of ten fathoms or more depth, in all localities from the Mexican boundary to British Columbia. It rarely exceeds two pounds in weight. In its deciduous scales and soft flesh it much resembles Lyopsetta exilis and Atheresthes stomias, two species of which aro often taken in company with it. Of all the species allied to Citharichthys, this one has the most extended range to the northward.

52. CITHARICHTHYS STIGMAUS.

Citharichthys stigmeus Jordan and Gilbert, Proc. U. S. Nat. Mus., 188:2, 410, 411 (Santa Barbara). Jordan \& Gilbert, Syn. Fish. N. A., 188:2, 965.
Habitat.-Coast of Southern California.
The original type of this species is a young example, taken near Santa
Barbara by Capt. Andrea Larco. In the Museum of Comparative Zoology are other specimens collected by Mr. Cary at San Francisco. These have 72 anal rays, while the original type had but 68 . In this and other ways they approach C. sordidus. Were it not that some of'
these are full of spawn at a length of five inches, we should regard them without much hesitation as the joung of C. sordidus. As it is, it is not uulikely that C. stigmeeus will prove to be simply the young of the latter species.
53. CITHARICHTHYS DINOCEROS.

Cilharichthys dinoccros Goode \& Boan, Bull. Mus. Comp. Zool., xxviii, 1886, 156 (off Martinique, St. Lucie, and Barbadoes).
Habitat.-Deep waters of Gulf of Mexico.
This species is known to us from the original description only.

54. CITHARICHTHYS ARCTIFRONS.

Citharichthys arctifions Goodo, Proc. U. S. Nat. Mus., 1830, 341, 472 (Gulf Stream off Southern Now England coist). Goode \& Bean, Bull. Mus. Comp. Zoology, xix, p. 194 (stations 313, 314, 313, and 336). Jordan \& Gilbert, Syd. Fish. N. A., 818, 1882.

Habitat.-Deep waters of the Gulf Stream.
This species is known to us from a small specimen obtained in the Gulf Stream southeast of Martha's Vineyard, and from the descriptions published by Goode \& Bean.
55. CITHARICHTHYS UNICORNIS.
C.tharichthys unicornis Goodo, Proc. U. S. Nat. Mus., 1880, 342 (Gulf Stream southeast of Now England). Jordan and Gilbort, Syn. Fish. N. A., p. 818,1882. Mabitat.-Deep waters of the Gulf Stream.
This species is known to us from descriptions only.
56. CITHARICHTHY'S MACROPS.

Citharichthys macrops Dresel, Proc. U. S. Nat. Mus., 1884, p. 539 (Ponsacolu). Jordan, Proc. U. S. Nat. Mus., 1886, 29 (Beaufort, N. C.).
Habitat.-South Atlantic and Gulf coasts of the United States.
This species is known to us from several specimens dredged in the harbor of Beaufort, N. C., by Prof. Oliver P. Jenkins.

57. CITHARICHTHYS UHLERI.

Citharichthys uhleri Jordan, sp. nov.
Habitat.-West Indian fauna.
This species is based on a single specimen in tho Muscum of Comparative Zoology. It is $4 \frac{1}{2}$ inches in length, and was brought from Hayti by Mr. P. R. Uhler, the well-known entomologist, for whom we have named the species.

The species is close to Citharichthys macrops, but its fiu-rays and scales are considerably more numerous than in the latter.
58. CITHARICHTEYS SPILOPTERUS.

Citharichthys spilopterus Guinther, iv, 1862, 421 (New Orleans, San Domingo, Jamaica). Günther, Fish. Central America, p. 471, 1869, pl. lsxx, tig. 2, (Chiapam). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1882, p. 382 (Panama). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1882, p. 618 (Charleston). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1882, p. 630 (Panama). Jordan and Gilbert, 13nll. U.S. Fish Com., 1882, p. 108-111 (Mazatlan and Panana). Jordan and Gilbert, Syn. Fisl. N. A., 1882, p. 817. Jordan, Proc. U. S. Nat. Mus. 1886, 53 (Havana).
Citharichthys cayennensis Bleeker, Comptes Rendus Acad. Sci. Amsterd., xiii, 1862, 6 (Cayenne) (name only).
Citharichthys guatenalensis Bloeker, Noder. Tydschr. Dierk, 1864, 73 (Guatemala). Günther, Fish. Central Amorica, 472, 1869 (copied).
Lemirhombus fuscus Poey, Synopsis, 406, 1808. Poey, Enumoratio, 1875, 138.
Mabitat.-Both coasts of tropical America, north to New Jorsey and Mazatlan.

This little Hounder is almostevery where abundanton the sandy shores of tropical Δ merica, in shallow water. Careful comparison of specimers from South Carolina, Brazil, Mazatlau, and Panama shows no tangible difference, and we are compelied to regard all as forming a.single species.

It rarely exceeds 5 or 6 inches in leugth. It usually comes into the markets mixed with other shore-fishes and it nowhere receives any notice as a food-tish.

This species is common in the markets of Mavana, and it is evidently the original of Poey's Hemirhombus fuscus, although in Poey's description there seems to be some confusion, because the teeth are said to be biserial above, and 60 scales are counted in the lateral line.

A specimen from Poeg in the museum at Cambridge is labeled "Hemirhombus fuscus type." Collector's number, 87. This belongs to C. spilopterus, and it has 48 scales in the lateral line.

Bleeker's Citharichthys guatemalensis agrees in all respects with Citharichthys spilopterus. We are unable to find any description of Citharichthys cayennensis, if, indeed, the species has ever been described.

Specimeus of Citharichthys spilopterus are in the museum at Cambridge from Panama, Cuba, Para, Sanbaia, Peruambuco, Canaru, Rio das Velhas, Rio Janeiro, aud San Matheo.

59. CITHARICHTHYS SUMICHRASTI.

Citharichlthys sumichrasti Jordan, sp, nov.
Habitat. - Pacific coast of tropical America.
This species is close to C. spilopterus, differing chicfly in the larger scales and in the different coloration. The type, No. 25209 , in the Museum of Comparative Zoology, was collected in Rio Zanateuco, Chiapas, by Prof. Francis E. Sumichrast. Another specimen is in the museum labeled Panama: Pitkins.

Genus XXII.-ETROPUS.

Etropus Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 364. (Crossotus.)
Type: Etropus crossotus Jordan \& Gilbert.
This genus is very close to Citharichthys, from which it differs only in the rery small size of the mouth, and in the correspondingly weak dentition. The three known species are similar in appearance to the species of Citharichthys, and they inhabit the same waters. Another genus extremely close to Etropus and Citharichthys is Thysanopsetta. The teeth in Thysanopsetta are, however, arranged in a band.

ANALYSIS OF BPECIRS OF ETHODUS.

a. Body comparatively elongate, the head anteriorly acute; dorsal rays 01 ; anal rays 73 ; scales in the lateral line 54 ; back loss elovated than in other species; head small, the profile forming an angle at the posterior part of upper eye, the snout being abruptly pointed; eyeslarge, $4 \hat{f}$ in head, the lower being before the upper; interorbital space elevated, with two prominent ridges, the space between them concave ; ridge above lower eyo higher thau upper and joining the latter bohind upper eye, to form a sharp ridge; upper cye with some vertical range; mouth very small, tho maxillary 4 in head, not roaching front of pupil; teeth bluatish, close-set, in one row, chielly on the blind side; scales aud fins much as in E. crossotus; the edge of the subopercle on the blind side fringed with white cirri, as in the latter species; scales large, loose, little ciliate ; gill-rakers very short and slonder; gill mombraaesiuroadls united ; caudal fin rhombic, rather pointed; pectoral $1 \frac{1}{4}$ in head; fin rays scaly; head 5 in length; depth $2 \frac{1}{5}$; color light olive-brown, with vague spots and darker markings; fins similarly marked.

Ectenes, 60.
aa. Body decper, the head not acute in profile; dorsal rays 76 to 85; anal 56 to 67 ; scales 38 to 48 ; teeth sharp, close-set, uniserial.
b. Body somewhat elongato, pear-shaped, the depth not more than half the length, the body thinuer and noore compressed than in E. crossotus; mouth very small, the maxillary $4 \frac{1}{2}$ in head ; eyo 3 to $3 \frac{1}{2}$ in head; interorbital epace a narrow, sharp ridge; cirri on subopercle rather fow and long; D. 77 to 73 ; A. 57 to 61 ; lat. 1. 38 to 41 . Ifead 4 in length; dopth $2 \neq$ to 2 . Vurtebras $9+2 \overline{3}=34$. Color grayish, with a few irregular vague dark blotches, none of them larger than the eye; fins speckled; two dark spots at base of caudal.............. Microstomus, 61. bl. Body very deep, the depth rather more than half the leugth ; eyo 38 in hend; interorbital space a narrow, sharp ridge, divided anteriorly; masillary about 4 in hoad ; head $4 \frac{4}{8}$; depth 1 fo to 2 (1 if in Atlantic specimons). D. 76 to 85 ; A. 56 to 67 ; lat. 1.48 (42 to 45 in Atlantic specimens). Vertebrio $9+25=34$; cirri on subopercle of blind side numerous, white; color light olive-brown, with some darker blotches; vertical fins fiuely mottled and speckled with black and gray. Crossotus, 62.

60. ETROPUS ECTENES.

[^40]The species is very readily distinguished from A. crossotus by its elongate form, acute head, aud by the larger numbers of its fin-rays and scales.

61. ETROPUS MICROSTOMUS.

Citharichthys microstomus Gill, Proc. Ac. Nat. Sci. Phila., 1864, 22;. (Boesley's Point, N Jerses.)
Etropus rimosus Goode \& Boan, Proc. U. S. Nat. Mus., i885, 593. (Coast of Florida, botween Pensacola and Cedar Keys, drodged at the depth of 21 fathoms.)
Etropus crossotu8 Jordan \& Evermanu, Proc. U. S. Nat. Mus., 1836. (Pensacola.)
Habitat.-Gulf of Mesico.
On re-examining our specimens of Etropus, we find that those obtained by Jordan \& Evermann from Pensacola differ from the others in the greater elongation of the body aud in the somewhat grayer coloration. These correspond fairly to the description of Etropus rimosus. All other specimens from the United States coast collected by Dr. Jordan and his associates, are, in our opinion, referable to Etropus crossotus.
The original description of Citharichtlhys microstomus Gill, fits this species better than any otber known. The tish in question is much too elongate for Etropus crossotus (depth 2 ? in total length), and the mouth is too small for any of the known species of Citharichthys (maxillary 4 in head; mandible $2 \frac{1}{2}$).

In the Museum of Comparative Zoology are numerous young specimens collected at Somers Point, New Jersey, Dy Dr. Stimpson. These seem to belong to the genus Etropus. The teeth are equal ; the scales are 44 , and the depth of the body is $2 \frac{1}{6}$ in its leagth. The eye is 4 in head, the dorsal rays 75 to 80 , and the anal rays 50 or 57 . The color is light brown, mottled and spotted with darker.

These certainly represent the Citharichthys microstomus of Gill, collected in the same neighborhood by the same naturalist. We are unable to distinguish them from Etropus rimosus.

62. ETROPUS CROSSOTUS.

Etropus crossotus Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 364 (Mazatlan). Jordan \& Gilbert, Proc. U.S. Nat. Mus., 1882, 305 (Lako Pontchattrain; Mazatlan ; Panama; Galveston). Jorilan aud Gilbert, Proc. U. S. Nat. Mus., 18*2, 618 (Charleston). Jordan \& Gilbert, 13ull. U. S. Fish Comm., 1882, 103-111 (Mazatlan ; Panaina). Jordan \& Gilbert, Syn. Fish. N. A., 1882, 839. Bean, Cat. Fish. Intern. Exh., 1883, 44 (St. Joha's River). Jordan \& Swain, Proc. 1J. S. Nat. Mus., 1884, 234 (Cedar Kogs).
Etropus microstomuз Jordan, Proc. U. S. Nat. Mus., 1836, 29. (Beaufort, N. C.) (Not Citharichthys microstomus Gill.)
Halitat.-Both coasts of tropical America, north to North Carolina.
This little fish seems to be abundaut in all warm and sandy shores of tropical America. It is the sinallest and feeblest of all our flounders, and has therefore been generally overlooked by collectors. Its range will doubtless prove to be coextensive with that of its near ally, $C i$. tharichthys spilopterus.

In the Museum of Comparative Zoology are specimens of this species from Rio Janeiro, Santos, Victoria, Para, and Sambaia, in Brazil. The largest of these is 6 inches in length. Head 5 in length, depth, $1 \frac{9}{10}$; scales, 44 ; D. 85 ; A. 67.

A re-examination of the specimens collected by Prof. O. P. Jenkins at Beaufort, N. C., and described by Dr. Jordan under the name of Etropus microstomus, shows that these are identical with the specimens of Etropus fram Charleston, Cedar Keys, New Orleans, and Galveston. These differ from the types of Etropus crossotus only in the slightly greater depth of the body, and in the slightly larger size of the scales. We now refer them to the latter species without much hesitation, hardly regarding them worthy of oven subspecific distinction.

Geuus XXIII.-THYSANOPSETTA.

Thysanopsetta Günther, Voyage Challenger, Shore Fishes, 1880, 2: (naresi).
Type: Thys anopsetta naresi Günther.
We have not seen the typical species of Thysanopsetta. From the figure and description it would seem that the genus differs from Etropus ouly in having the teeth in villiform bands.

ANALYEIS OF BPECIES OF THYSANOPSETTA.

a. [Body oblong ; head small ; eyes $3 \frac{1}{2}$ in head, well separated, the interorbital spaco being flat and scaly; mouth moderate, the maxillary more than one-third head; teeth in villiform bands; scales adherent, ctenoid; a lleshy lobe behind ventrals; lateral line straight; head, 5 ; depth, $2 \frac{1}{2}$; D. 87 ; A. 59 ; lat. 1.76 (in plate); color, nearly uniform brownish, the body and fins mottled.] (Günther) Naressi, 63.

63. THYSANOPSETYA NARESI.

Thysanopsetta naresi Guinther, Voyage Challenger, Shoro Fishes, 1880, 22. (Cape Virgin, Straits of Magellan.)
Habitat.-Straits of Magellan.
We know this species from the original figure and description only.

Genus XXIV.-MONOLENE.

Monoleue Goode, Proc. U. S. Nat. Mus., 1880, 337 (8688 ilicauda).
Type: Monolene sessilicauda Goode.
This peculiar genus of deep-sea flounders is probably allied to Arnoglossus and Citharichthys. Of this we cannot speak with certainty, not having examined any members of the group, and the insertion of the ventral fins has not been described in either of the two known species.

ANALYSIS OF SPECIICS OF MONOLENE

a. [Dorsal rays, 99 to 103 ; anal rays, 79 to 84 ; scales of blind side ctenoid, 23-92-20゙; head overywhere closely scaly, even to the lips and front of snout; mouth oblique, the maxillary less than one-third length of head; teoth, uniserial, subequal; eyes very close together, the interorbital space a very narrow ridge; arch of lateral line very peculiar, the curve having two angles; hoad 5 in longth; depth, $2 \frac{z}{z}$; ashy brown, with spots of darker brown; pectoral barred; vertebre 43.] (Goode)
aa. [Dorsal rays, 124; anal rays, 100 ; seales of blind side scarcely ctenoid, 30-105-32; snout and lips not scaly; maxillary 3 in head; eyes, large, 28 in head, separated by a very narrow ridge; hoad 41 in length ; depth about 3 ; light brownish gray, the

64. MONOLENE SESSILICAUDA.

Monolene sessilicauda Goode, Proc. U. S. Nat Mus., 1830, pp. 337, 333 (deep sea south of New Luglibid). Goode, Proc. U. S. Nat. Mus., 1830, 472 (deep sea southorn coast of New England, stations 870, 871, 876, 87\%). Jordan \& Gilbert, Syu. Fish. N. A., 1882, p. 841. Goodo and Bean, Bull. Mus. of Comp. Zoology, xix, p. 184 (station 314 ; South Carolina).
Habitat.-Deep waters of the Gulf Stream.
This species is kuown to us from the accounts of Goode $\&$ Beau.

65. MONOLENE ATRIMANA.

Monolene atrimana Goodo \& Bean, Bull. Mus. Comp. Zool., xii, 155, 1986 (deop waters off Barbadoes).
Habitat.-Deep waters of the Caribbean Sea. This species is known to us from the original description.

Genus XXV.-ONCOPTERUS.

Oncopterus Steindacher, Ueber cine weue Gattung und Art ans der Fanilio der Plonronectoiden, 18̣74, 1 (darwini).
Type: Oncopterus darwini Steindachner.
This singular genus is based on a single species found on the shores of East Patagonia. It has no near allies among the American flounders, but it has several points of resemblance to the genera Rhombosolea, Ammotre. tis, and Peltorhamphes of the Australian fauna, and we have ventured to associate the four in a subfamily, which may be called Oncopterince. The Oncopterince agree in having some sort of peculiar appeudage on or near the snout, apparently connected with the firstinterspinal. They agree with the Platessince in the general form, the dextral portion of the eyes, and in the structure of the moutl. Their nearest ally in this group is Pleuronichthys. In the insertion of the ventrals, they agree with the Pleuronectince and with the genus Achirus of the Soleince. In both Peltorhamphus and Rhombosolea, the ventral is continuous with the anal as in Zeugopterus and Achirus, but in Oncopterus the two fins are saparate. In Peltorhamphus and Rhombosolea, the bone connected with the the first interspinal extends forward as a sort of nose, meeting the chin (much as in Aohiropsis and Apionichthys). In Oncopterus this bone is twisted to tho blind side, and has a very peculiar position, described helow. The scales are smooth and cycloid in Oncopterus and Rhombosolea, ctenoid in Peltorhamphus. In Peltorhamphus and Oncopterís the left ventral is present. It is wanting in Rhombosolea. Ammotretis we have been uable to examiue. In Oncopterus the lateral line has an anterior arch and many accessory branches. It is straight and simple in the other genera. In all the teeth are sharp, close set, in a band, and chiefly on the blind side.

ANALYELS OF RPECLES OF ONCOPTERUS.

a. Body broadly ovate, with rogular outlines; month small, twisted toward the blind side; its teeth small and in bands; maxillary 3 多 in head; eye 5t, twice the coucave interorbital area; gill-rakers short and slender; left side above eye with a deep horizoutal groove, in which lies a dopressible curved bono as long as the maxillary. This seems to be attached to the first internoural, and is probably a modified fin-ray. On its upper edge ou either side is a fringe of short tleshy projectious resembling the gill fringes, but much shorter. Scales small, mostly swoothLateral line with a long, low arch, from which four accessory branches extend vertically upward. Another branch behind curvo, and about 6 on head; blind side similar; no anal spine. Right ventral of six rays, placed wide apart along the ridge of the abdomen, but not joising the anal aud not extending forward of the isthmus. Left ventral latoral, with narrow base. Color dark brown, everywhere covered with whitish stellate spots. Head 3 zin lengill. Depth, 2. D., 61. A., 45. V., 6. Scalos, 115

Darwint, 66.

66. ONCOPTERUS DARWINI.

Rhombus sp. Darwin, Jengns, Vogage of the Beagle, Fishes, 1842 (enst coast of Patagonia).
Oncopterus darwini Steindachuer, Ueber Eine neue Gattung; etc, Plemonectoiden, 1874, 1 (San Mathias Bay, Eastorn Patagonia).
Habitat.-Eastern coast of Patagonia.
Of this species we have examined numerous specimens in the Museum of Comparative Zoology. Nos. 11397 and 11398 are adult examples from San Mathias Bay. 'To buis lot beloug Dr. Steindachner's original types. There is also a bottle of foung examples (11311, M. C. Z.) from Rio Grande do Sul.

Genus XXVI.—PLEURONICGTGXS.

Pleuronichthys Girard, Proc. Ac. Nat. Sci. Phila., 1851, 139 (conobus).
Heteroprosopon Bleoker, Comptos Rondus Acal. Amstordam, xiii, 1862, 8 (cornutu8). Parophrys Giinther, Cat. Fishes, iv, 454, 1862 (not of Girard).

Type: Pleuronichthys coonosus Girard.
This well-marked genns coutains three Anerican species, which are very closely related to each other. The Asiatic species, Platessa cornuta Schlegel, of the coasts of China and Japan, is also a member of this group, having au accessory branch to the lateral line as in the American spocies. This species bears some resemblance to Pl. verti. calis.
The species of Pleuronichthys are herbivorous. They spawn in the spring, and live in comparatively deep water.

ANALXBIS OF BPECIES OF PLEURONICIITIIYS.
a. Dorsal fin beginning on the level of the lower lip, its first nine rays on the blind side; a blunt tubercle at front of upper eye, another at bach end of the narrow interorbital ridge, the posterior largest but usually not spine-like; two or three above the latt r, behind the upper eje; some prominonces above the opercle; head $3 \frac{8}{8}$; depth $1 \frac{1}{6}$; D. 72; A. 40 ; vertoluras $14+26=40$; color brownish, usually much mottled with brown and gray, often finely speokled on body and fins

Decuriens, 67.
aa. Dorsal fin beginning on level of upper lip, about five rays beiug on the blind side.
b. Interorbital ridge posteriorly with a very stroug, backward directed spine; some tubercles on interorbital ridge; head 4; depth $17 \times$ D. 65 to 72, A. 45 to 48; vertebrae $13+2 \overline{5}=38$; color dark olive brown, muck mottled and sometimes with grayish spots; middle of sides often with dark ocellus.. Verticalis, 68.
bb. Interorbital ridge prominent, but without spines or conspicuous tubercles; right side of lower jaw with a narrow band of teeth; head 4t ; depth 18; D. 68 , A. 48 to 50 ; color light brown, usually profusely mottled, the colors variable

Cenosus, 69.

67. PLEURONICHTHYS DECURRENS.

Pleuronichthys canoвus Lockington, Proc. U. S. Nat. Mus., 1879, 97 (San Francisco) (not Plewronichthys conosus Girard).
Plewromichthys quadrituberculatus Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, 50 (not of Pallus). Jordan, Nat. Hist. Aquat. Anim., 1884, 189 (Monterey, Point Reyes, larallones).
P'icuronichthys decurrens Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, p. 453 (San Francisco ; Monterey Bay). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, p. 69 (Monterey, San Francisco, Farallones). Jordan and Gilbert, Syn. Fish. N. A., 1882, p. 829.

Balitat.-Pacific coast of Uuited States, south to Mouterey.
This species is rather scarce along the California coast, being taken chiefly in deep water. It reaches a larger size than either P. verticalis or P. connosus.

68. PLEURONICHTHYS VERTICALIS.

Pleuronichthys verticalis Jordan \& Gilbert, Proc. U. S. Nat. Mns., 1880, 49 (San Francisco). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 169. Jordan \& Gilbert, Synopsis Fish. N. A., 1882, 829 . Jordan, Nat. Hist. Aquat. Auim., 1884, 189 (Monterey, Point Rejes, Farallones).
Babitat.-Coast of California, in deep water.
This species agrees in habits and general characters with Pleuronichthys accurrens.

69. PLEURONICHTEYS CGEOSUS.

Pleuronichthys canosus Girard, Proc. Phil. Acad. Sci., 1854, 139 (San Francisco). Girard, U. S. Pacif. R. R. Exped., Fish., 1859, 151 (San Francisco). Lockington, Rep. Con. Fisheries California, 1878-79, 45 (Farallones). Lockington, Proc. U. S. Nat. Mus., 1879, 97 (San Franciseo). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, 50 (Santa Cataliua Island, Sau Luis Obispo). Jordan and Gilbert, Proc. U.S. Nat. Mus., 1880, 453 (Puget Sound, San Francisco, Monterey Bay). Jordan und Gilbert, Proc. U. S. Nat. Mus., 1881, 68 (San Diego, Puget Sound). Jordan and Gilbert, Syn. Fish. N. A., 1882, 830. Jordan, Nat. Hist. Aquat. Auim., 1884, 189 (San Diego to Aleutian Islands). Parophrys connosa Günther, iv, 456, 1862.

Habitat.-Pacific coast of America, from the Aleutian Islands to San Diego.

This species is comparatively common in rather deep water and about rocks from Alaska southward, being most common about Puget Sound.

Its apparent abundauce as compared with the other species of the genus is doublless due to its inhabiting shallower waters than they.

Genus XXVII.-HYPSOPSETTA.

Hypsopsetta Gill, Proc. Ac. Nat. Sci. Phila., 1864, 195 (guttulatus).
Type: Illeuronichthys guttulatus Girard.
This genus consists of a single species, abundant on the coast of California. It is very close to Pleuronichthys, from which it differs only in a few characters of comparatively minor importance. Its range is in shallower and warmer water than that of the species of Pleuronichthys, and, in accordance with this fact, its flesh is firmer and its number of vertebro less than in the latter genus.

ANALYSIS OF SPECIES OF HYPSOPSETTA.
a. Head without spines or tabercles; accessory lateral line half length of body; outline of body very broadly rhombic ; head, 34 ; depth, 1 \% ; D. 68, A. 50, lat. 1.95. Vertebrio, $11+24=35$. Brown, with numorous pale bluish blotches, fading in spirits; blind side largely yellow in life................................ Guttulata, 70.

70. HYPSOPSETTA GUTTULATA.

(Tue Dinmond Flounder.)
Pleuronichthys guttulatus Girard, Proc. Acad. Nat. Sci. Phila., 1856, p. 137. Girard, Jour. 13oston Soc. Nat. Hist., 1857, pl. 25, ligs. 1-4. Girard, U. S. Pacif. R. R. Exped., Fishos, p. 152, 1859 (Tomales Bay). Lockington, Rep. Com. Fisheries California, 1878-79, p. 44. Lockington, Proc. U. S. Nat. Mus., 1870, p. 94 (San Fransisco).

Pleuroncotes guttulatus Günther, Cat. Fish., iv, 445, 1862 (copied).
Hypsopsetta guttulata Gill, Proc. Ac. Nat. Sci. Phila., 1864, 195. Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, 453 (San Fraucisco, San Luis Obispo, Santa Barbara, San Pedro, San Diego). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1881, 68 (Tomales, San Diego). Jordan and Gilbert, Syn. Fish. N. A., 1882, 830. Jordan, Nat. Hist. Aquat. Anim., 1884, 185.

Parophrys ayresi Guiuther, Cat. Fish. Brit. Mus., iv, 1862, 457 (San Francisco).
Habitat.-Coast of California; Cape Mendocino to Magdalena Bay.
This species is one of the most abundant in the shore waters of the California coast. It is a food-fish of fair quality.

Genus XXVIII.-PAROPHRYS.

Parophrys Girard, Proc. Ac. Nat. Sci. Pbila., 1854, 139 (vetulus).
Type: Parophrys vetulus Girard.
This genus consists of a single species, common on the Pacific coast of the United States.
The narrow interorbital space and the vertical range of the upper eye give it a peculiar physiognomy, but in most regards it is not very different from some of the species of Platessa.

ANAIXSIS OF SPECIES OF PAROPHRYS.

a. Body elongate-elliptical; snout very prominent, forming an abrupt angle with the descending profile; eges large, $4 \frac{1}{2}$ in head, separated by a very narrow, high ridge, the upper eye encroaching on the dorsal outline; tecth small,trenchant, widened at tip; fin-rays scaleless; scales cycloid, those on cheeks usually ciliated, especially in northern specimens; head 31 ; depth 24 ; D. 74 to 86; A. 54 to 68 ; lat. 1. 105; vertebre $11+33=44$; uniform light olive-brown; the young sometimes spotted with blackish
. Vetclus, 71.

71. PAROPHRYS VETULUS.

Parophrys vetulus Girard, Proc. Acad. Nat. Sci. Phila., 1854, p. 140 (California). Günther, Cat. Fish., iv, 455 (copied). Lockington, Rep. Com. Fish. Cal., 1878-9, p. 45. Lockington, Proc. U. S. Nat. Mus., 1879, p. 100 (San Francisco). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, p. 453 (Puget Sound, San Francisco, Montercy Bay, Santa Barbara). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 68 (Sauta Barbara, Monterey, Puget Sound). Jordan, Nat. Hist. Aquat. Anim., 1884, 185 (Santa Barbara to Alaska).
Pleuronectes vetulus Jordau and Gilbert, Synopsis Fish. N. A., 1882, 831.
Pleuronectes digrammus Günther, Cat. Fish., iv, 445, 1862 (Victoria).
Parophrys hubbardi Gill, Proc. Ac. Nat. Sci. Phila., 1862, 281 (Sau Francisco).
Halitat.-Pacific coast of North America, Alaska to Santa Barbara.
This small flounder lives in waters of moderate depth. It is, next to
Platichthys stellatus, probably the most abundant of the flounders of the California coast.

Genus XXIX.-INOPSETTA.

Inopsetta Jordan \& Goss, Cat. Fish. N. A., 1885, 136 (ischyrus).
'Type: Parophrys ischyrus Jordan \& Gilbert.
This genus contains a single species, closely allied to Platichthys stellatus, but separated from it by the curious character common to many of our Pacific coast flounders, of having an accessory branch to the lateral line. In technical characters there is not very much to separate Inopsetta from Parophrys, though the resemblance between I. ischyra and P. vetulus is not very close.

ANALYSIS OF BPECIES OF INOPSETTA.

a. Body oblong, robust; snout projecting, forming an angle with the profile; teeth narrow incisors; interorbital space rather broad, scaly; eyes large; lower pharyngeals each with two rows of coarse, blunt teeth; scales thick, firm, adherent, loosely imbricated, all ctenoid on both sides of body, those on head roughest ; accessory lateral line slort. Head 3t ; depth 2. D. 70 to 76; A. 52 to 57 ; lat.l. 85 . Light olive-brown, with dusky blotches, blind side more or less spotted or tinged with rusty ... Ischyra, 72.

72. INOPGETTA ISCEYRA.

Parophrys isclyrus Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, 276 and 453 (Puget Sound). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1881, 67 (Seattle). Jordan, Aquat. Anim., 1884, 185 (Seattle).
Pleuronectes ischyrus Jordan and Gilbert, Syn. Fish. N. A., 1882, 831.
Isopsetta isohyra Jordan, Cat. Fish. N. A., 1885, 136.

Habitat.-Puget Sound (probably northward to Alaska).
This species is known only from four specimens taken by Dr. Jorḍan at Seattle in 1880. It is a large rough flounder, with firm white flesh.

Genus XXX.—ISOPSETTA.

Isopsetta Lockington, MSS., Jordan \& Gilbert, Synopsis Fish. N. A., 1883, 832 (iso lepis).
Type: Lepidopsetta isolepis Lockington.
This genus consists of a single species found on the coast of California. It approaches in many respects very close to the large-mouthed flounders of the type of Hippoglossoides, and it may fairly be said to be intermediate between Psettichthys and Lepidopsetta. Its affinities on the whole seem to be nearest the latter.

ANALYSIS OF SPECIES OF ISOPSETTA.

a. Body elliptical, much compressed, its outlines very regular; e yes rathor large, the upper $4 \frac{1}{2}$ in head, tho interorbital space broad, thattish, and scaly. Scales rather large, ctouoid, closely imbricated ; maxillary 3 g in head ; teeth bluntish, conical, close-set, but not forming a outting edge. Lower pharyngeals each with two rows of bluntish tooth ; lateral line with a slight arch in frout, and an accessory branch nearly as long as head. Head 4; depth 24. D. 88 ; A. 65 ; lat. 1.88. Color $_{\text {r }}$ dark-brown, mottled and blotched with darkor. Vertebrie $10+32=42$.

Isolepis, 73.

73. ISOPEETTA ISOLEPIS.

Lepidopsetta umbrosa Lockingtou, Proc. U. S. Nat. Mus., 1879, 106; (Sau Francisco; not of Girard.)
Lepidopsetta isolepis Lockington, Proc. U.S. Nat. Mus., 1880, 325. (San Francisco.)
Parophrys isolcpis Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 453, 1881, 67 (Puget Sound, San Franoisco). Jordan \& Gilbert, Syn. Fish. N. A., 18\&2, 832. Jordan, Nat. Hist. Aquat. Anim., 1884, 186 (Monterey to Puget Sound).
Isopsetta isolepis Jordan, Cat. Fish. N. A., 1885, 136.
Habitat.-Maget Sound to Point Concepcion, in rather doep water.
This small flounder is rather common off the coast of California, where it reaches a length of about 15 inches. It much resembles Psettichthys melanostictus, but its small mouth and blunt dentition indicates a real affinity with the small-mouthed flounders, among which it is here placed. Its nearest relative among our species is doubtless Lepidop. setta bilineata.

Genus XXXI.-LEPIDOPSETIA.

Lepidopsetta Gill, Proc. Ac. Nat. Sci. Phil., 1864, 195 (umbrosus).
Type : Platichthys umbrosus Girard=Platessa bilineata Ayres.
This genus probably contains but a single species, abundant on the Pacific coasts of North America. It is close to Inopsetta, from which it is separated by the arcb of the lateral line, aud still closer to Limanda, from which the accessory branch of the lateral line alone separates it.

Pleuronectos variegatus Schlegel, from Japan, may belong to Lepidopsetta.
The same name, Lepidopsetta, has been Jately given by Dr. Güuther to a very different genus of flounders. For the group so-called the name Mancopsetta of Gill should be used.

ANALYSIS OF SPECIES OF LEPIDOISETTA.

a. Body broadly ovate, thickish; teoth lluntish, subconical: lower pharyngeals with two rows of blunt teoth. Suout projecting, forming an augle; cyes large, separated by a prominent scaly ridge. Scales sinall, mostly ctenoid, those on the head very rough, especially in northern specimens (var. umbrosa); scales of the blind side smooth; accessory lateral line half length of head. Anal spine present. Head $3 \frac{3}{5}$; depth 21 . D. 80 ; A. 60 ; lat. l. 65 . Vertebre, $11+29=40$. Yellowish brown, with numerous round pale blotches Bilineata, 74.

74. LEPIDOPSETTA BILINEATA

[Plato XI.]

Platessa bilincata Ayres, Proc. Acad. Nat: Sci. Cal., 1855, p. 40 (Sau Francisco). Pleuronectcs bilineatus Giinther, Cat. Fish.; 444, 1862 (copied). Jordan \& Gilbert, Syn. Fish. N. A., 1太82, 833.
Lepidopsetta bilineata Gill, Proc. Ac. Nat. Sci. Pliila., 1864, 195. Lockington, Proc. U. S. Nat. Mus., 1879, p. 103 (San Francisco). Lockington, Rep. Com. Fisheries Californa, 1878-79, p. 46 (Farallono Islands). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, p. 453 (Puget Sound, San Franciseo, Monterey Bay). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 63 (Monterey, Puget Sound). Bean, Proc. U. S. Nat. Mus., 1881, p. 241 (Monterey Bay, San Prancisco, Puget Sound). Bean, Cat. Col. Fish. U. S. Nat. Mus., p. 19, 1883 (Port Chathim, Cook's Inlet). Bean, Proc. U. S. Nat. Mus., 1883, p. 353 (Carter Jay, British Columbia). Jordan, Nat. Mist. Aquat. Anim., 184, pl. 50 (Monterey to Alaska).
Platichthys umbrosus Girard, Proc. Ac. Nat. Sci. Phila., 1856, 136. (Puget Sound.)
Pleuronectes umbrosus Günther, iv, 1862, 454. (Esquimault Harbor.)
I'leuronectes perarouatus Cope, Proc. Ac. Nat. Sci. Philia., 1873. (Alaska.)
Haditat.-Pacific coast of North America, Alaskil to Monterey.
This species is one of the commonest of the flounders of the Pacific coast, its abundance apparently increasing towards the northward. It reaches a weight of five or six pounds and is an inhabitant of slallow waters. Specimens from Puget Sound and northward are rougher than Southern specimens and constitute a slight geographical variety, for which the name of Lepidopsetta bilineata umbrosa may be used. Th's is the same as the perarcuatus of Cope.

Genus XXXII.-LIMANDA.

Limanda Gottsche, Wiegmann's Archiv, 1835, 100 (limanda).
Myzopsetta Gill, Proc. Ac. Nat. Sci. Phila., 1864, 217 (ferruginea.)
Type: Pleuronectes limanda Limnæus.
This genus is closely allied to Psoudopleuronectes, from which it differs only in the presence of an arch on the anterior part of the lateral line. Four species of Limanda are now recognized.
a. Head comparatively large, $3 \ddagger$ to $4 \frac{1}{2}$ in length.
b. Scules rather small, 90 to 100 in the course of the lateral line; scales of right side ctenoid, closely imbricated; those of blind side mostly smooth.
c. Teeth conical, close-set, furming a continuous series, abont $11+30$ in the lower jaw; suout abruptly projecting, forming in front of upper eye a sharp augle with the descending protile; head rather long; eyes large, separated by a high and very narrow ridge, which is continned in long rugose prominences above the opercle. Head 4; depth 28 ; D. 85 ; A. 62 ; lat. 1.100 ; color brownish olive, with numerous irrogular reddish spots; fins similurly marked; blind side largely lemon-yellow Ferruginea, 75.
c. Teeth less conical, less closely set, in an irregular series, about $10+20$ in lower jaw; suout less prominent, forming a slight angle with the profile; bead rather smaller; eyes separated by a moderate ridge, broader and lower than in L. ferruginea; no rugose prominences above opercle. Head 4it ; depth $2 \ddagger$; D. 65 to 78; A. 50 to 62; scales 86 to 96 ; vertebrio 40; color brownish, with some cloudy markings or dusky spots

Limanda, 76.
bb. Scales larger, wide apart, about 80 in the courso of the lateral line, each scale with 1 to 4 spinules, those mostly erect; scales of blind side more or less rough; lower pharyngeals narrow, with bhuntish teeth; interorbital space narrow, scaly ; head large; snout not forming a distinct angle with the profile; teeth small, subconical. Head, 34; depth 2; D. 69 to 74 ; A. 53 or 54 ; lat. 1. about 80 . Color brown, uearly plain, the blind side with tinges of yollow.

Asplera, 77.
$a a$. [Ifead very short, $5 \frac{1}{2}$ in length ; snont very short ; interorbital space very narrow; teeth small, apparently biserial, chicfly on the blind side; curve of lateral line half as deep as long, as long as head; scales strongly ctenoid, those on blind sido smaller and cycloid. Head, $5 \frac{1}{2}$; depth, 23 ; D. 64 ; A. 63 ; lat. 1.88 $=(27+61)$. Color grayish, mottled with darker, a conspicuous black bloteh on outer rays of caudal on each side.] (Goode)......................................

75. LIMANDA FERRUGINEA.

(Tha Rusty Dab.)

[Plato NII.]

Platesa ferruginea D. II. Storer, Fish. Mass., 1839, 141, pl. 2 (Capo Anu). DeKay, Now York Fauna, Fislues, 1842, 297, pl. 48, f. 155 (New York). Sturer, Syn. Fisl. N. A., $1346,476$.

Pleuronectes forrugineus Giluther, iv, 447, 1862 (Boston). Jordan \& Gilbert, Syn. Fish. N. A., $1822,834$.
$M_{y z o p s e t t a ~ f e r r a g i n e a ~ G i l l, ~ P r o c . ~ A c . ~ N a t . ~ S c i . ~ P h i l a ., ~ 1864, ~}^{217}$.
Limanda ferruginea Goode, Proc. U. S. Nat. Mus., 1880, 472 (New England). Goode, Hist. Aquat. Anim., 1884, pl. 49.
Platessa rostrata II. R. Storer, Bost. Journal Nat. Hist., vi, 268, 1850 (Labrador),
Limanda robtrata Gill, Proc. Ac. Nat. Sci. Phila., 18i4, 217.
Habitat.-Atlantic coast of North America, Labrador to New York. This species is rather common northward on our Atlantic coast. In is allied to the European Dab, but has smailer scales and a more prominent snout. Our specimens are from the cast coast of Massachusetts.

76. LIMANDA IIMANDA.

(Tile Dab.)
I'lewronctes limanda Linuwus, Syst. Nat., ed. x, p. 270, 1758 (after Artedi) (aud of the early copyists). Giinther, Cat. Fish., iv, 44t; 1862 (Firth of Forth; Plymouth). Day, Brit. Fishes, vol. ii, p. 31, plato civ.
Pleuroncctes limandula Lacépèle, Hist. Nat., Poiss., iv, 1803 (after "la Limandelle".
Duhamel, ix, ch. 1, p. 268, pl. 6, f. 3, 4.)
Linanda vulgaris Gottsche, "Wiermann's Archiv, 1e35, 100."
Limanda oceanica Bonaparte, Catologo, 48, 1846. (Platessa limauda L.)
9 Limanda pontica Bonaparte, l. c., 48, 1846 (Black Sea, after Pallas).
I'leuronectes linguatula Gronow, Syst., ed. Gray, 185̄4, 88 (not of L.).
Habitat.-Northern coasts of Europe, south to France.
This small flounder is abundant on the coasts of Northern Europe and southward to the coasts of France. Our specimens are from the market at Paris.
Günther speaks of other specimens, more elongate, the depth being but two-fifths the length withont caudal. The synonym Pleuronectes limandula would appear to belong to this latter type.

77. LIMANDA ASPERA.

[Plato XIII.]

Pieuronectes asper Pallas, Zoogr. Rosso.-Asiat., 1811, iii, 425 (cast coast of Siberia). Giunther, iv, 454, 1862 (copied). Steiadachner, Pleuronoctiden, etc., aus Decastris Bay, 1870-5 (Decastris Bay). Jordan and Gilbert, Synopsis Fidh. N. A., 1882, 835 . (Description from Alaskan specimens collected by Dr. Bean.) Limanda aqpera Beau, Proc. U. S. Nat. Mus., 1881, p. 242 (Sitka, St. Paul, Humboldt Harbor, Shumagins, Port Clarence, Plover Bay, Siberia; Indian Point, Siberia). Bean, Cat. Col. Fish, U. S. Nat. Mus., 1883, p. 20. (Sitka, Alaska.) Bean, Proc. U. S., Nat. Mas., 1883, p. 354 (Port Simpson, Cardenas Bay, British Columbia). Bean, Hist. Aquat. Anim., 1884, 184, pl. 48. (Gulf of Alaska, Unalashka, Sitka, Wrangel.)

Habitat.-Coasts of Alaṣa and Kamtschatka.
This species is chielly known from the accounts given by Dr. Bean, who has collected it in various localities in Alaska. Its scales are larger and rougher than in L. ferruginea which, in many respects, it resembles. A specimen from the island of Saghalien is in the museum at Cambridge.

78. LIMANDA BEANI.

Limanda beani Goode, Proc. U. S. Nat. Mus., 1880, 473 (southern coast Now Eugland, decp-sea stations, 875, 876).
Pleuronectes beani Jordan and Gilbert, Syn. Fish. N. A., p. 835, 1882.
Habitat.-Deep water off the coasts of New Englaud.
We know this species only from the accounts given by-Professor Goode.

Genus XXXIII.-PSECDOPLEURONECTES.
Pseudopleuronectes Bleeker, Comptes Rendus Acad. Amst., Pleuron., 7, 1862 (planus).
Type: Pleuronectes planus Mitchill=Pleuronectes americanus Walbauin.

This genus is distinguished from Platessa chiefly by the well-imbricated ctenoid scales, and from Limanda, wbich it more closely resembles, by the want of arch to the lateral line. Besides the typical species, we refer to this genus a second from the North Pacific.

ANALYSIS OF SPECLIES GF PSEUDOPLELTRONECTES.
a. Dorsal rays 65 ; aual rays 48. Body regularly elliptical; a very slight angle above cye ; interorbital space rather broad, convex, half as wide as eye, and entirely scaly; a low granular ridge above opercle. Head 4 ; depth 2t; lat. 1. 83. Vertebres $10+26=36$. Color dark rusty brown, plain or mottled with darker; fins nearly plain
aa. [Dorsal rays 58; anal 38. Body snbelliptical, the suout rather pointed, and not forming an angle above eye; interorbital space rather broad, half width of eye; a rather prominent rugose ridge above opercle, with a smaller similar ridge behind it; both sides of jaws with teoth. Head $3 \frac{9}{4}$; depth 26 ; lat. 1. 70. Color brown, with vaguedusky spots; six or seven blackish vertical bars on dorsal and anal ; similar lengthwiso blotches on caudal.] (Steindachner). Pinnifasciatus,80.

79. PGEUDOPLEURONECTES AMERICANUS.

(The Common Flat-fisil or Winter Flounder.)

> [Plato XIV.]

Flounder, Schöpf, "Schrift. Gesellschaft Naturforschender Freunde, viii, 1788, 148." (Now York.)
Pleuronectes americanus Walbaum, Artedi, Piscimn, 1792, 113 (based on the "Flounder" of Schöpf). Bloch \& Schneider, Syst. Iohth., 1801, 150 (copied). Gilnther, iv, 443, 1862 (Now York). Jordau \& Gilbert, Synopsis, 1882, 837. Stearns, Proc. U. S. Nat. Mus., 1883, 125 (Labrador).
Preudopleuronectes americanus Gill, Proc. Ac. Nat. Sci. Phila., 1864, 216. Goode, Nat. Hist. Aquat. Auim., 1884, 182, pl. 44 (Chesapeake Bay to Bay of Chaleur).
Platessa plana Storer, Fishes Mass., 18:39, 140. DoKay, New York Fauna, Fishes, 295, pl. 49, f. 158, 1842 (New Yorl). Storer, Synopsis, 1846, 476.
Psendopleuronectes planus Bleeker, Comptes Rendus Amstord., xiii, 1862, 7.
Platessa pusilla DoKay, Now York Fauna, Fishes, 1842, 2106, pl. 47, f. 153 (Now York). 'Storer, Syuopsis, 1846, 477.
Habitat.-Atlantic coast of North America from Labrador to Chesapeake Bay.

This small flounder is one of the most abundant of the group on ourAtlantic coast. It reaches a length of about 15 inches and a weight of less than two pounds. It is a very good food-fish and sells readily in the markets. Along the south coast of Massachusetts this species is more abuudant than any other of the flat-fishes.
The specimens examined by.us are from Labrador, Cape Breton, Anticosti, Grand Menan, Boston, Provincetown, Wood's Holl, New Bedford, and Somers Point, New Jersey.

$$
\text { S. Mis. } 00-19
$$

80. PEEUDOPLEURONECTES PINNIFASCIATUS.

Pleuroncetes pinnifasciatus (Kner) Steindachner, Ueber cinige Pleuroncctiden, etc., aus Decastris Bay, 1870, 2, pl. 1, f. 1 (Decastris Bay).
Habitat.-Sea of Kamtschatka, Decastris Bay.
This species is known to us only from Dr. Steindachner's description and excellent figure. From this we conclude that it belongs to the group called Pseudopleuronectes, although its pharyngeals have not been described. It seems to us nearer to P. americanus than to Liopsetta glacialis.

Geuns XXXIV.-DLATESSA.

Pleuronectes Artedi, Genera, etc., in part.
Pleuronectes Linnwus, Syst. Nat., ed. \times, 268,1758 (includes all known I'lewronectida).
Platessa Cuvier, Regne Animal, ii, 1817 (platessa), (first subdivision of Pleuronectes L.).

Platessa Fleming, Brit. Auim., 1828, 198 (vulgaris=1lates8a), (first restriction of Pleuronectes L. to Pl. maximus and relatives).
Pleuronectes Swainson, Nat. Hist. Class'n Anim., ii, 1839 (platessa), (second restriction of Pleuronectes).
Platessa DoKay, New York Fauma, Fishes, 1842 (platc88a).
Pleuronectes Bleoker, Comptes Rendus Acad. Amsterd., xiii, 186:2 (platessa), (and of most recent authors).
Flesus Morean, Poissons de France, 1831, 299 (flesus).
Type: Pleuronectes platessa Linnæus.
The reasons for retaining for this genus the name Platessa instead of Pleuronectes have been given under the head of the latter genus.

It is possible that the numerous related groups or genera, Pseudopleu. ronectes, Platichthys, and Liopsetta, should not be separated from Platessa. Convenience in definition of the groups seems, however, best served by regarding each of these types as forming a distinct genus, though whetber they are called genera or subgenera is a matter of minor importance. The group Flesus is fairly well defined, and may, perhaps, also merit generic rauk.

ANAIMSIS GH SHECIEA OH PLATESAA.

a. Teeth incisor-like, comprossed, close set, forming a continuous cutting odge; no stellate scales at bases of dorsal and anal rays; lower pharyngeals narrow, the teeth almost uniserial. (Platessa.)
b. Snout projecting, forming a distinct angle above cye.

Platebsa, 81.
x. Scales all cycloid, no ciliated scales anywhere; a series of about six small, bony tabercles on ridge above opercles; a small tubercle bohind upper oye, and one before lower; interorbital space narrow, smooth. Head, 3y; depth, 2. D. 67 to 77. A. 50 to 57. Vertebre, $14+29=43$. Color, brownish or dusky, with rather large, roind yellowish spots, which fade in spirits. (These spots rarely black, anil persistent.)...Var. platessa, 81 (a).
$x x$. Scales not all cycloid, some of those along lateral line, along the base of dorsal and anal and on sides of head and abdomen ciliated, otherwise as in the preceding. D. 62 to 66 . A. 46 to 48. Light brownish, with yellow spots. (Gottsche).....................................Var. pseudoflesus, 81 (b).
bb. Snout not projecting, not forming a distinct angle above eyo; tubercles on ridge above opercle at base of lateral line, coarser than in Pl. platessa, and about five in number; a swall tubercle behind upper eye ; scales small, cycloid in all specimens examined. Head, 3 g ; depth, 2. D.6s. A.50. Lat. 1. 78. Color, grayish, mottled with paler and with round black spots; fins very dark ..Quadimtcberculata, 82.
aa. Teeth in jaws small, conical, well-separated, not forming a continuous cutting edge; a stellate scale or tubercle at the base of each ray of dorsal and anal; lower pharyngeals rather narrow, each with four or five rows of teeth. (Flesus Moreau.)
o. Body oblong-elliptical, a small angle above ege. Head, $3 \frac{1}{2}$ in length; depth, 24; vertobric $12+24=36$

Flesus, 83.
y. Sides of head and anterior portion of lateral line with coarse stellate scales or tubercles; smaller ones on sides of abdomen, the scales otherwise cycloid; granular ridge above opercle usually without tubercles. D. 60 to 62 . A. 39 to 45 . Color brownish, irregularly mottled, the blind side rarely spotted with darker Var. flesus, 83 (a). $y y$. Sides of head and lateral line nearly or quite destitute of tubercles, the scales all cycloid except those at the bases of the fin-rays and a few about the eyes; ridge above opercle usually with one or two rugose prominoncos. D. 62 to 64 . A. 41 to 48 . Color, darls-brown, often marbled with darker, the blind side usually with irregular dark spots......... Var. glabra, 83 (b).

81. PLATESSA PLATESSA.

(The Plaice.)

[Plato XV.]

a. Var. platesba.

Pleuroncetes No. 1, Artedi, Genera, etc.
Pleuronectes plate88a Liunnus, Syst. Nat., ed. x, 1758, 269 (after Artedi) (and of the early copyists). Giiuther, iv, 440 (Firth of Forth; Brighton; Bohuslian). Day, Fish. Great Britain, ii, 25, pl. ci (and of rocent writers gonerally).
Scophthalmus diurus Rafinesque, Indice di Ittiologia Siciliaua, 1810, 53 (based on the Quarrelet of Roudelet).
Platessa vulgaris Fleming, British Auim., 198, 1828 (and of numerons authors). Pleuronectes latus Cuvier, Regno Animal, od. ii, $18: 8$ (doformed example, Franco). Pleuronectes borealis "Faber, Isis, 1828, 863 " (Iceland).
b. Var. pecudoflesu8 (variety i).

Platessa pseudoflesus Gottscho, Wiegmann's Archiv, 1835, 143 (German Ocean). Plouronectes pseudoflesus Gunther, iv, 441 (copied).

Habitat.-Coasts of northern Europe, south to Italy.

This is one of the most common of the flat-fishes of Europe, and is, next to the halibut and the turbot, the one of most importance as a foodfish. It reaches usually a weight of five or six pounds, although speci-
mens of 15 pounds have been recorded. It is rather more northerly in its range than the mud-flounder, it being a comparatively rare species in the Mediterranean.

Our specimens of this species are from the narkets of Paris. We have examined others in the Museum at Cambridge, from various localities in France, England, Holland, and Scandinavia. There are also a number of specimens from Trieste (Coll. Salmin). In one lot of these there are large black rounded blotches, inky in color, and permanent in alcohol. These take the place of the usual orange spots, which are evanescent in alcohol. Others from the same locality have the usual coloration.

We know nothing of the species called, "pseudoflesus." It seems to us likely that it is a variety, or perhaps accidental variation, of Platessa platessa, the chief difference consisting in the presence of ciliated scales on the head and other parts of the body. It must be regarded as a very doubtful species at the best.

The alleged species Platessa borealis is also unknown to us. It is said to differ in having smaller teeth-31 on the blind side of the premaxillary.

82. PLATESSA QUADRITUBERCULATA.

I'leurouectes quadrituberoulatus Pallas, Zoogr. Fiosso-Asiat., iii, 423, 1811 (sea between Kamtschatka aud Alaska). Bean, Proc. U. S. Nat. Mns., 1881, 241 (Kodiak). Jordan \& Gjlbort, Syn. Fish. N. A., 1802, 8:36 (from specimens collected by Dr. W. J. Fisher).
Parophrys quadrituberculatus Giinther, iv, 456 (copicd).
Pleuronectes pallasi Steindachner, Ichth. Beitr., viii, 45, 1879, plate (Kantschatka).
Habitat.-Behring Sea.
This small flounder is known to us only from descriptions and from a specimen (28025) collected by Mr. W. J. Fisher at, Kodiak, described by Jordan and Gilbert. It seems to be a rare species even in the remote regions it inhabits. Although its pharyngeal teeth have not been examined, there can be little dount that it will prove a near ally of Platessa platessa.

83. PLATESSA FLESUS.

('Fue Mud-F'ouniber on F'luke.)

a. Var. flesus.

Pleuronectes flesus Linnaus, Syst. Nat., ed. x, 2~0, 1758 (after Artedi, and of copyists). Giinther, iv, 450, 1862. Steindachner, Ichthyol. Boricht., Sechste Fortsotzung, 53, 1863 (Bilbon, Coruña, Vigo, Barcelona, Cadi\%, Gibraltar, Rio Mino, Pomerania, Kattegat; unites flesus and glabra; Spanish localities belong to the latter). Day, Fish. Great Britain, vol. ii, 3:3, pl. cv, and of recent authors generally.
Platessa flesus Fleming, British Auim., 182%, 198, and of mmmerous writers.
Pleuroncetes passcr Linnicus, Syst. Nat., ed. x, 2z1, 17玉s (reversed example).
P'leuronectes flesoides Jontoppidan, " II ist. Nat. Dania, lire, tab. 15," 1705 (reverged example).
P'leuronectes roseus Slaw, "Nat. Misc., vii, $238, " 1800$ (albino example).

Pleuronctes luscus Pallas, Zeogr. Rosso-Asiat., iii, 427, 1811 (Black Sea). "Nordmam, in Domidofi, Voy. Russ. Mérid., iii, 532, Pisc., tab. 27 " (Black Sea). Günther, iv, 452 (copied).
Pleuroncotes carnaria Brown, "Edinburgh Journal, Nat. and Geol., ii, 99, t. ii" (albino example), 1830.
Platessa melanogaster Higgins, "Zoologist, xiii, 1855, 4596 " (doubled example).
Pleuronectes bogdanovi Sandeborg, Bull. Sci. Mosc., lii, pt. 2, p. 236, 1878 (White Sea). Flesur vulgaris Moreau, Poiss. de France, 1881, iii, 299.

b. Var. glabra.

Platessa glabra Rathke, Fanua der Krym., 352, 1837 (Crimea).
I'latessa passer Bonaparte, Fauna Italica, Pesci, 1838-1840.
Plearonectes italieus Günther, Cat. Fish. Brit. Mus., iv, 1862, 452 (Dalmatia).
Halitat.-All coasts of Europe, ascending the streams; the typical form in northern Europe; var. glabra in the Mediterranean,

This small species is the common "flounder" or "fluke" of Europe. It is almost every where very abundant, but it is held in low esteom as a food-fish. It reaches a length of less than a foot. Our specimens of the typical form, flesus, are from the markets of Paris, but wo have examined others from various localities in northern Europe. The form called lusca, from the Black Sea, we have not seen, and do not know whether it differs at all from the typical fesus or not.

The common Mediterrancan form called glabra (italica) differs a good deal in appearance from the ordinary flesus, unt this difference lies mainly in the greater smoothness of the scales about the head.
The numerous specimens before us from Venico and Trieste differ from those of flesus only in the entire absence of the stellate tabercles which cover the head and the neighborhood of the lateral live in that species. Steindachner regards the two as unquestionably identical. Still it seems best to regard them as distinct subspecies, especially as no intermediate specimens have cone to our notice. Rathke's description of Platessa glabra evidently belongs to the form called italicus by Dr. Günther. Ratlke's lusca agrees with the typical flesus. The Pleuronectes bogdanovi of Sandeberg from the White Sea seems to be nearly the same as the typical flesus. It is said to be deeper (depth 2 in length),smoother, with shorter pectorals (2 in head). Teeth truncate, close set. Body smooth, except for a row of tubercles on ejed side on bases of dorsal and anal, and two or three similar rows on front of lateral line. $\mathrm{D}, 53$ to $50 ; \Lambda, 37$ or 38 .

Genus XXXV.-LIOPSETTA.

Liopsetta Gill, Proc. Ac. Nat. Sci. Phila., 1864, 217 (glaber) (fomales).
 Euchalarodus Gill, Proc. Ac. Nat. Sci. Philu., 1864, 222 (putnami) (nales).

Type: Platessa glabra Storer $=$ Euchalarodus putnami Gill.
This genus comprises one, two, or three species of small flounders of the Arctic seas. The genus is distinguished by the large, half-united pharyogeals, as also by the peculiar squamation, the scales in the males being very rough, ill the fomales smooth. This difference has given rise
to the nominal genus Euchalarodus based on the males, while Liopsetta was based on the smoother females, which were erroneously supposed to be scaleless.

The following analysis gives the supposed differential characters of these species, but these characters are of very slight importance, and it is probable that the three nominal species are all varieties of Liopsetta glacialis.

ANALYSIS OF SPECIES OF LIOPSETTA.

a. [Ridge above opercle ending in two obtuse tubercles; scales of blind side smooth, those of the cyed side ciliated (probably in males only); interorbital ridge prominent, acute ; head, $4 \frac{1}{8}$ in total with caudal ; depth, 2 g. D., 50 to 57 ; A., 36 to 41.] (Lilljeborg).
.Dvinensis, 84.
aa. Ridge above opercle coarsely rugose, divided toward its end, but without distinct tubercles; scales ctenoid on both sides in males, those of the blind side smoother.
b. Pectoral fin long, about half length of head in the females. two-thirds head in the males. Head, $3 \frac{1}{2}$; depth, 2. D., 55 ; A., 40 ; Lat. 1., 70 . Color, grayish brown, mottled with darker; tins with blackish spots. (Probally jdentical with the next)

Putnami, 85.
bb. Pectoral fin short, barely half leugth of head oven in the males; head, 4 ; depth, 2; D., 56 ; A., 37 to 42 . Vertebra, $13+27=40$. Color, dark brown, the fins spotted.

Glaclalis,* 86.

84. LIOPGETTA DVINENSIS.

Platessa dvinensis "Lilljoborg, Vet.-Akad. Handl., 1850, p. 360, tab. 20" (mouth of River Dwina). Nilsson, "Skand. Fauna, iv, 617."
Pleuronectes (lvinensis Güntlier, iv, 442 (copied).
Habitat.-Arctic coasts of Russia.
This species is known to us only from the description copied by Giinther from Lilljeborg. It is apparently a species very closely related to Liopsetta glacialis, and it is most likely identical with the latter.

85. LIOPGETTA PUTNAMI.

(The Eel-back Flounder.)

[Plate XVI.]
Platessa glabra Storer, Proc. Boston Soc. Nat. Hist., p. 130, 1843 (female). Storer, Syn. Fish. N. A., p. 477, 1846. Storer, Hist. Fish. Mass., 1867, p. 190, pl. xxxi, fig. 1. Putnam, Bull. Eseex Inst., vi, 1874, p. 12 (not of RatLke, 1837).
Liopetta g!abra Gill, Proc. Acad. Nat. Sci. Pbila., 1864, p. 217.
Pleuroneoter glaber Gill, in Report U. S. Com. Fish and Fisheries, 1873, p. 794. Goodo aud Bean, Amer. Jour. Sci. aud Arts, xiv, 1877, p. 476 ; xvii, 1879, p, 40. Goode and Bean, Proc.U.S. Nat. Mus., 1878, 347 (Casco Bay, Beverly Bridgo, Salem, Bucksport, Me.). Jordan and Gilbert, Syn. Fish. N. A., 1882, p. 836. Goode, Nat. Hist. Aquat. Anim., 1884, p. 183, pl. 45.
Euehalarodus putnami Gill, Proc. Acad. Nat. Sci. Phil., 1864, p. 216-221 (Salem, Mass.) male. Gill, Roport U.S. Com. Fish and Fisheries, 1873, p. 794. Goode and Bean, Amer. Jour. Arts and Sci., xiv, 1877.
Habitat.—Atlantic coast of North America, from Cape Cod northward to Labrador and beyond.

[^41]This species is rather common along the coast of Northern Massachusetts aud northward to Labrador. Specimens are frequently found in the markets, mixed with those of Pseudopleuronectes americanus. The numerous specimens in our possession were found in the markets of Indianapolis, having been sent thither from Bostou.

The remarkable sexual differences in the species have been fully discussed by Dr. Bean (Proc. U. S. Nat. Mus., 1878, 345), the form formerly called Euchalarodus putnami being the male, and that called Pleuronectes glaber being the female of the same species. These conclusions of Dr. Bean are fully corroborated by our series of specimens in which both sexes are fully represented.

As the name Platessa glabra is preoccupied by Rathke (1837), we must adopt the specific name putnami for this species if it be regarded as dis. tinct from Liopsetta glacialis. Taking our own notes and the published plate of the latter species as a guide, we can see no difference whatever by which Liopsetta putnami may be separated from it. It is possible, however, that differences would appear on actual comparison of specimens: In view of the wide distance between the habitats of the two species, we here leave them separate for the present. Although Liop. setta putnami is abundant where found, its ascertained range is somewhat limited. The specimens in the U. S. National Museum represent localities from Salem, Mass., to Belfast, Me. In the Museum of Comparative Zoology the localities represented are Providence, Boston, Salem, Grand Manan, and Labrador.

86. LIOPSETTA GLACIALIS.

[Plate XVII.]

Pleuronectes glacialis Pallas, "Itiu., iii, App., 706" (mouth of river Obi). Bloch and Schneider, Syst. Ichtl., 1801, p. 150 (copied). Pallas, Zoogr. Ross.-Asiat., iii, 424, 1811 (mouth river Obi). Richardson, Fauna Bor. Amer., Fish., 258, 1836 (copied). DeKay, N. Y. Fauna, Fishes, p. 302, 1842 (copiod). Storer, Syn. Fish. N. A., 1846, p. 479 (copied). Bean, Proc. U. S. Nat. Mus., 1881, p. 241 (Kotzelue Sound, Northern Alaska). Jordan and Gilbort, Syn. Fish. N. A., 1882, 837 (from specimens taken by Dr. Bean). Bean, Cat. Col. Fish U. S. Nat. Mus., 1883, p. 20 (Kotzebue Sound, Alaska). Bean, Nat. Hist. Aquat. Anmm., 1884, 184, pl. 47 (Saint Michael's).
Pleuronectes cicatricosus Pallas, Zoogr. Ross.-Asiat., iii, 424, 1811 (male) (sea between Kamtschatka and Alaska).
Pleuronectes franklinii Gunthor, Cat. Fish., iv, 442, 1862 (Arctic seas of America) (female). Bean, Proc. U. S. Nat. Mus., 1881, p. 241.
Habitat.-Arctic Ocean south to Saint Michael's.
This small flounder is known to us only from the specimens taken by Dr. Bean. It is said to be abundant in the Arctic Ocean, and as far south as Saint Michael's, "although small, its great abundance and fine flavor make it important as an article of food."

The male is the rough fish described by Pallas as P. cicatricosus. The smoother female is Dr. Giunther's. Pleuronectes franklinii, the sexual differences being much as in Liopsetta putnami.

Indeed, as already intimated, we have little doubt that the Liopsetta putnami of the Atlantic is wholly identical with Liopsetta glacialis of the Arctic Occan, and with Liopsetta dvinensis of the northern coasts of Russia.

Genus XXXVI.-PLATICBTHYS.

Platichthys Girard, Proc. Ac. Nat. Sci. Phila., 1854, 136 (rugosus =stellatus).
Type: Platichthys rugosus Girard=Pleuronectes stellatus Pallas.
This genus is composed of a single species, the largest of the smallmouthed flounders, and distinguished from related forms chiefly by the development of coarse stellate tubercles instead of scales.

ANALYSIS OF EPECIES OF PlATICHTIIYB.
a. Body broad and short, very robust, the snout forming a slight angle with the profile; interocular space lroad, with very rough scales; tuborcles or scales coarsest on head and along bases of fin-rays; lateral line without scales; ridge above opercle rough; head 3 ; depth, 2 ; D. 58; A. 42; vertebre 34 ; color dark brown, with lighter markings; fins reddish-brown, dorsal and anal each with four or five black vertical bands; caudal with three or four black lougitudinal bands.. Stellatus, 87.

87. PLATICETHYS GTELLATUS.

(The California Flounder.)

[Plate XVIII.]

Pleuronectés atellatus Pallas, Zoographia Rosso-Asiatica, iii, 1811, 416 (Alaska). Günther, Cat. Fish., iv, 443, 1862 (Vancouver Islauls, Behring Strait, Fraser River, Coronation Gulf). Steindachner, Pleur. von Decastris Bay, 1870, 1, (Decastris Bay). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, p. 453 (San Francisco, Puget Sound, Columbia River, Monterey Bay, San Luis Oḷispo). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 68 (San Luis Obispo). Beau, Proc. U. S. Nat. Mus., 1881, 240 (San Luis Obispo, Monterey, San Francisco, Columbia River, Puget Sound). Jordan and Gilbert, Syn. Fisll. N. A., 188%. Bean, Proc. U.S. Nat. Mus., 1883, y. 353 (Port Simpson, Brit. Col.). Bean, Cat. Col. Fish. U. S. Nat. Mas., 1883, p. 20 (Yakutat Bar, Alaska). Jordau, Nat. Hist. Aquat. Anim., 1884, 184, pl. 46 (San Luis Obispo to Kamtschatka).
Flatessa stellata DeKay, N. Y. Fauna, Fishes, p. 301, 1812 (copied). Storer, Syn. Fish. N. A., 1846, p. 478 (copied).

Platichthys stellatus Lockington, Rep. Com. Fish. Cal., 1878-79, p. 43 (San Francisco Bay, Humboldt Bay). Lackington, Proc. U. S. Nat. Mus., 1879, p. 91 (San Francisco).
Platichthys rugosus Girard, Proc. Acad. Nat. Sci. Phila., 1854, pp. 139, 155. Girard, U. S. Pacif. R. R. Sur., Fish., 148, 1859 (San Francisco, Presidio, Petaluma).

Habitat.-Pacific coast of America, from Point Concepcion to the Arctic Ocean and south to Saghalien.

This is one of the largest of the Americau Hounders, reaching a weight of 15 to 20 pounds. Of the small-mouthed flounders, it is considerably the largest species known. It is an excellent food-fish, and from its size and abundance it is one of the most important of the group in the region where it is found, constituting balf the total catch of flomnders on our Pacific coast. It lives in shallow water and sometimes ascends the larger rivers. It is one of the most widely distributed of all the flounders, its range extending from San Luis Obispo, where it was obtained by Jordan and Gilbert, to the mouth of the Anderson and Colville Riv. ers on the Arctic coast, where it was observed by Dr. Bean. A specimen from the island of Saghalien in Asia is in the museum at Cambridge.

Genus XXXVII.-MICROSTOMUS.

Microstomus Gottsche, Wiegmann's Archiv, 1835, 150 (latidens) (not Microstoma Ris8o, 1826).
Cynicoglossus Bonaparte, Fauna Italica, 1837, fasc., xix (oynoglossus Nilsson, not of L).
Cynoglossa Bonaparto, Catalogo Metodico Pesci Europei, 1846, 48 (microcephalus), not Cynoglossu8 Hamilton, 1822).
Brachyprosopon IBleekor, Comptes Rendus Acad. Sci. Austerd., xiii, Plourou, 7, 1862 (nicrocephalus).
Cynicoglossus Jordan and Gilbert, Syı. Fish. N. A., 1882, 460 (nicrocephalus).
Type : Microstomus latidens Gottsche $=$ Pleuronectes kitt Walbaum.
This genus is widely separated from Platessa and its allies by its greatly increased number of vertebre, a claracter accompanied by a similar increase in the number of fin-rays. It is close to Glyptocephalus, but the lack of the cavernous structure of the bones of the head, a structure peculiar to the specios of that genus, sufficient distinguishes it. Two species are known, small flounders of the Arctic seas, iuhabiting considerable depths.

We here retain the gencric name Microstomus, although in accordance with recent usage of most ornithologists and ichthyologists, it should be suppressed, as identical with Mierostoma. The two words are from the same root and differ ouly in the termination. But is not this difference enough? The code of nomenclature of the American Oruithologists' Union very properly declares that "a name is only a name and has no necessary meaning," and, therefore, no necessarily correct spelling, except the spelling selected by the writer from whom it dates its origin. As a result of this, the origiual spelling of each generic nane is (undoubted misprints aside) the orthography to be adopted, regardless of all questions as to the correct etymology of the word. As a necessary sequence, it seems to us that all generic names, not actually preoccupiod by names spelled in the same way, should be tenable. There is no other certain boundary line between names tenable and names untenable. We propose therefore to regard all generic names as available unless used in zoology earlier and in exactly the same or-
thography. Among Americau genera of fishes we may therefore use the following, notwithstanding their carlier analogues:

Microstomus for	Cynicoglossus not	r Microstoma.
Heterodontus	Cestracion	Heterodon.
Lucania		гисапия.
Thymallus	-	Thymalus.
Nelris		Nebria.
Cestreus (кєбтреvs)	Cynoscion	
Xiphidion	Xiphister	Xiplidium.
Amitra	Monomitra	Amitrus.
Soytalina	Scytaliscus	Scytalinus.
Lagochila	Quabsilalia	Lagocheilus.
Auchenopterus	Cremnobates	Auchenipterus.
Ophisoma	Congromurana	Ophiosomus.
Leucos	Myloleucus	Leucus.
Pterophryue	P'tcrophrynoides	Pterophrynus.
Scaphirhynchus	Scaphirhynchops	Scaphorhynchus.
Braohirus	Synaptura	Brachyrus.

If Microstomus be discarded, the name next in order of date is Cynicoglossus.

The following is Bonaparte's definition of Cynicoglossus as quoted by Gill (Proc. Ac. Nat. Sci. Plila., 1864, 222) :
"Secondo a Cynicoglossus nob. che come il Pl. cynoglossus L. ha la linea laterale retta, la bocea piccola, i denti come quello di sopra [Platessa] ma la mascelle iguale, con labbra turgide, e l'ano senza spina."

Later, in his Catalogo Metodico dei Pesci Europei, Bonaparto changes this name from Cynicoglossus to Cynoglossa, giving the sole species as Cynoglossa microcephala, aud quoting as its synonym "Pleuronectes cynoglossus L. Nilss." showing that his identification of the Linuæan species coincided with that of Nilsson, who at first used the name "Pleuronectes cynoglossus" for the present species instead of the species of Glyptocephalus. In Bonaparte's Catalogo, Glyptocephalus Gottsche is regarded by Bonaparte as synonymous with Platessa.

It is thus evident, as Dr. Gill has suggested, that Bonaparte meant to refer to the Pleuronectes microcephalus instead of Pl. cynoglossus, he "having followed Nilsson in his erroneous identification" of the latter with the former. In farther evidence of this we have the fact that Cynicoglossus microcephalus (litt) has no anal spine, while such a spine is present in the species of Glyptocephalus. We would be, therefore, jus. tified in the use of Cynicoglossus instead of the later Brachyprosopon, if Microstomus should be regarded as ineligible on account of the prior name Microstoma.
analysts of species of microstomus.
a. Dorsal rays 85 to 93 ; anal rays 70 to $\boldsymbol{7} 6$. Head very smill, $4 \frac{9}{8}$ to $5 f$ in length; dopth about 2t ; eyes moderate, about 4 in head; pectorals 18 in lead; lat. 1., 130 ; vertebra $13+35=48$. Color dull yellowish-brown, body and fins clouded with Llackish,
. KItT, 88.
aa. Dorsal rays 102 ; anal rays 8 J . Head larger, $4 \frac{1}{4}$ in longth; depth nearly 3 in longth; eyes large, 3 in . head, opercle above angle, adnate to the shoulder girdle; pectoral short, $1 \frac{1}{2}$ in head ; lat. l. 140 ; vertebræ $12+40=52$. Olive-brown, blotehed on body and fins with darker

Pacificus, 89.

88. MICROSTOMUS KITT.

(Tile Smeale Dab.)
Rhombus lavis cornubiensis Jago in Ray, "Syn. Pisc., 162, tab. 1, f. 1."
The Sinear Dab Ponnant, British Zoology, iii, p. 930, p]. 41, 1776."
I'leuronectes hitt Walbaum, Artedi Piscium, iii, 1792, 120 (after Ray; the deseription in part confused with that of Lepidorhombus).
Pleuroncctes kitt Bloch \& Schneidar, Systema Ichthyologia, 1801, 162 (after Ray).
Pleuroneotes microcephalus Donovan, "British Fishes, ii, pl. 42, 1801." Giinther, iv, 447. Steindachner, Ichth. Beitr., viii, 47 (Edinburgh). Day, Fishes Great Britain, ii, 28, 11. 102. Collett, Norges Fiske, 145, and of recent European writers generally.
Platessa microcephala Flomingr, British Anim., 198, 1828, and of numorous writers.
Cynoglossa microoephalob Bonaparte, Catalogro Motodico Pesci Eur., 1845, 48.
Pleuronectes lavis Shaw, Gen'l Zool., iv, 299, 1803.
Pleuronectes quenseli Hölbüll, " Bohuslïns Fiske, iv, 59."
Pleuronectes quadridens Fabricius, "Kougl. Dansk. Vid. Solsk. Mfhandl., i, 39."
Pleuronectes nicrostonus "Faber, Isis, 1828, 886."
Microstomus latidens Gottsche, Wiegmann's Archiv, 1835, 150.
Pleuronectes gilli Steiodachmer, Ichth. Notizen, 1868, vii, 40. (Polar Sea, north of Iceland.)
Habitat.-Seas of the north of Europe in rather deep water, south to Cornwall.

This small flounder is rather common in the waters of Northern Europe. It reaches the length of a foot or more, and is said to be oxcellent as food. We have no specimens at hand, and have therefore relied chiefly on the figure and description given by Dr. Day, in our comparison of this species with M. pacificus. Like its congener, M. pacificus, this species is often very slimy in life.

This species is recorded by Day, on the authority of Dr. Steindachner, as occurring in Kamtschatka. This reference probably belongs to M. pacificus.

The specific name "kitt," given by Walbaum on the authority of Jago's description, seems to be the owe which should be adopted for this species. According to Day, the species is still called "kitt" on the coast of Cornwall.

Pleuronectes gilli, as described by Dr. Steindachner, seems to differ from Microstomus kitt only in the larger head, which is but 4_{5}^{2} in the length to base of caudal. It is probably not specifically distinct from the latter. Only a single specimen 102 inches long is known.

89. MICROSTOMUS PACIFICUS.

(The Slipprey Sole.)
Glyptocephalus pacificus Lockington, Rep. Com. Fisheries, 1878-79, p. 43 (off Point Rejes). Lockington, Proc. U.S. Nat. Mus., 1879, p. 86 (San Francisco). Jordan, Nat. Hist. Aquat. Anim., 1884, 188.
Cynicoglossus pacificus Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, p. 453 (Puget Sound, Sun Francisco, Monterey Bay). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1881, p. 68 (Seattle). Jordan and Gilbort, Synopsis Fish. N. A., 1882, 838.
Halitat.-Pacific coast of North America, Monterey to Vancouver's Island, and probably northward.

This small flounder abounds in decp water about San Fraucisco, but comes near the shore farther north. It is exceedingly slimy when first taken. The large specimens are considered excellent as food, the smaller are thrown away. It rarely reaches the weight of a pound.

Genus XXXVIII.-GLYPTOCEPHALUS.

Glyptocephalus Gottache, Wiogmann's Archiv, 18:35, 150 (saxicola $=$ cynoglossus).
TYPE: Glyptocephalus saxicola Gottsche=Pleuronectes cynoglossus L.
This genus is one of the most strongly marked in the family, being distinguished from most of the genera by the greatly increased number of vertebra, and from all of them by the remarkable cavernous structure of the bones of the head.

There are two species known, found in the deep waters of the northern seas, the one in the Pacitic, the other in the Atlantic.

ANALYSIS OF SPECIES OF GLYPTOCEIHALUS.

a. Pectoral fins very short, not falcate, that of right side about half lougth of head. Eyes large, about 3 in head, close togethor. Head 5 in length, dopth 28 ($2 \frac{2}{2}$ to 3). D. 101 to 11.. A. 87 to 99. Lat. 1.125. Vertebre 58. Color grayish-brown; fine with durk spots; tip of pectoral dusky above \qquad aa. Pectoral fin of colored side falcate, longer than head. Lyes large, 3 in head, closo together. Head 43 in length, dopth 3. D. 94 to 106 ; A. 79 to 89 ; Lat. 1.138. Vertebro $13+52=65$. Color uniform brown, the fins darker, the blind side dusted with dark points

Zachirub, 91.

90. GLYPTOCEPHALUS CYNOGLOSSUS.

(The Craig Fluke.)

[Plate XIX.]
Pleuronectes, sp., Gronow, Museum Ichthyol., 1, iv, 39, \&c. (Belgitm.)
Pleuronectes cynoglossus Linnmus, Syst. Nat., ed. x, 1758, 269 (after Gronow). Guinther, iv, 449. Day, Fishes Great Britain, ii, 30, pl. 103. (Lofoten, Finmark) (and of European writers genorally.)
Gilyptocephalus cynoglos8us Gill, Proc. Acad. Nat. Sci. Phila., 360, 1873. Goode \& lean, Proc. U. S. Nat. Mus., 1878, p. 21. (Salem, Mass.; Halifax: La Have Bank; Bedford Basin, Halifax; Lastport, Mo.) Goode, Proc. U. S. Nat. Mus., 1880, 337. (Deep sea, south coast New England.) Goodo, Proc. U. S. Nat. Mus., 1880, p. 475. (Deep sea, New England coast.) Collett, Norske Nord-Havs Espd., 1880, p. 150. (Lofoton; Tana Fjord, Finmark.) Goode \& Bean, Bull. Mus. Comp. Zoology, xix, 1883, 195. (Station 343.) Jordan \& Gilbert, Syn. Fish. N. A., 1882, 838. Goode, Nat. Hist. Aquat. Anim., 1884.
Solea cynoglossa Rafnesque, Indice di Ittiologia Siciliana, 1810, 53 (based on the l'ole or Cynoglosbum of Rondelet).
p'latessa pola Cuvier (Rògne Animal, 1817). Lacépède, Hist. Nat., Poiss., edition of 1832, vi, 50 , and of several authors.
Pleuronectes saxicola Faber, "Tidsskr. f. Naturv., 5 B., 244, 18:28."
Glyptocephalus saxicola Gottsche, Wiegmann's Archiv, 1835, 156.
Plates8a saxicola Kröger, " Danmark's Fiske, 1843, 338."

Pleuronectes nigromanus Nilsson, " Prodr. Ichth. Scand., 1832, 55."
Platebsa elongata Yarrell, "Supplement Brit. Fish., 1839."
Pleuroneotes elongatus Glinther, iv, 450 (copied).
Glyptocephalus clongatus Gill, Proc. Acad. Nat. Sci. Phila., 1873, 362.
Glyptocephalus acadianus Gill, Proc. Acad. Nat. Sci. Phila., 1873, 360 (Nova Scotia).
Habitat.-North Atlantic, chiefly in deej, water, south to Cape Cod and France.

This species is found in rather deep water on sandy bottoms. It reaches a length of 12 to 18 inches. It is cousittered a fair food-fish.

The nominal species, acadianus and elongatus, have been shown by Goode and Bean to be identical with cynoglossus. Beyond this the synonymy needs no special remarks.

This flounder has been taken in groat numbers with the beam trawl in deep water off our New England coast. It is pronounced by the U.
S. Fish Commission to be not inferior as a food-fish to the European sole.

91. GLYPTOCEPHALUS ZACHIRUS.

Glyptocephalus zachirus Lockington; Proc. U. S. Nat. Mus., 1879, p. 88 (San Francisco). Lockington, Rep. Com. Fisheries California, 1878-79, p. 42 (off Point Reyes). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, p. 453 (San Francisco; Montorey Bay). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, p. 68 (San Francisco ; Monterey). Jordan \& Gilbert, Syn. Fish. N. A., 1882, p. 836. Jordan, Nat. Hist. Aquat. Anim., 1884, 18 (deep waters about San Francisco).
Babitat.-Deep waters of the Northern Pacific; thus far known only from about San Francisco.
This species is a thin, dry flounder, reaching a dength of something over a foot. It is taken in the sweep-nets in deep water about Sau Francisco, and thus far has been known from no other locality. It is readily known by its long pectoral fin.

Genus XXXIX.-SOLEA.

Solea Klein, Pisces (nou-hinomial).
Solea Quensel, Vot. Akad. Handl., 1806, 230 (bolea).
Pegusa Günther, Cat. Fish. Brit. Mus., 1862. iv, 462 (aurantiaca).
Type: Solea vulgaris Quensel=Pleuronectes solea L .
As now understood by us, this geuus includes some six or seven species of soles, most of them belonging to the European fauna. The genus is distinguished especially in the group to which it belongs by the elongate body, this elongation being connected with it much increased number of vertebro. The soles of this genus are the only ones having much value as food. They reach a considerably larger size than any others of the species found in America or Europe, and as food-fishes they are especially excellent. The Duropean sole (Nolea solea) is the most highly esteemed of them all.
The subgenus Pegusa cannot well be separated from the true soler, as Solca lileini is intermediate between the two groups.
In the waters of the East Indies the related gonus Pardachirus Güuther ($=$ Achirus Kaup, not Cuvier) takos the place of Solea. Its 'specios
are destitute of pectoral fins. There is a conspicuous pore at the base of each ray of the dorsal and anal, and on the blind side there is an accessory half lateral line.

ANALYSIS OF SPECIES OF sOLITA.

a. Nostril of bliud side simple, not forming a distinct tube, its edge scantily friuged; black spot on pectoral fin at its tip. (Solea.)
b. Pectoral of eyed side about one-third length of hoad, that of blind side a very little shorter; eyes well separated, the upper considerably in advance of lower; scales small, ctenoid on both sides; those of blind side of head with fow fringes ; color dark brown, with darker mottlings, rarely plain brown, immaculate (var. cinerea); vertical fins with darker edgings; tip of pectoral jet black. D. 73 to 80 ; A. 61 to 69 ; lat. I. 140 to 150 . Vertebræ $9+40=49$.

bb. [Pectoral of eyed side less than one-third length of head, that of bliud side similar; eyes well separated; scales small, ctenoid on both sides; color clear brown, thickly covered with pale aud dark brown spota and dots; fins similarly spotted ; vertical fins without dark edgings; tip of pectoral black. D. 80 to 92 ; A. 75 to 76; lat. l. 128 to 150 . Hoad, $4 \frac{1}{2}$ in lengtlı; depth, 2\&.] (Steindachncr)Capellonis, 93.
hbl. [Pectoral of eyed sido as long as snout to cye. Form elongate; lower jaw included; teeth sharp, in three rows. Posterior nostril concealed; antorior in a short tube ; color uniform blackish. D. 84. A. 65. P. 8. V. 4. C.21.] (Kaup) .. Brasilibnsis," 94.
aa. Nostril of blind side with its margin produced icto a tube, which is moro or less conspicuously fringed. (Pegusa Günther.)
c. Scales of blind side cycloid; nasal tube moderate, its fringes fow and short; scales of blind side of head with few fringes; pectoral fin with its black ocellus near the base, the fin short, that of the eyed side not one-third leugth of head. Eye rather large, the interorbital space moderate ; scales ratker small, those on the blind side cycloid. Pectoral fin black at base, its tip and margin whitish; coloration of body subject to many variations, usually gray, profusely dotted and speckled with black and whitish, sometimes very finoly mottled and sometimes nearly plain; vertical lins broadly edgod with black. Head, $4 \frac{8}{4}$; depth, $3 t$. D. 74 to 82 ; A. 59 to 64 ;
 co. Scales of left side of body ctenoid; nasal tube broad, well fringed, scales of cyed side with fringes; black ocellns on pectoral near the tip of the fin.
d. [Fringes of left nostril comparatively fow, the margin of the nostril very broad; pectoral fin comparatively long, about $2 f$ in head, the black ocollus on ite posterior balf; eye small, its diameter equal to the interorbital space; scales small; color yellowish, marbled with round brownish blotches, and speckled with black. Head 5i ; depth 28 . Dorsal 81 to 89 ; anal 66 to 68. Lat. 1. 117. Vertebre 46.] (Günther: Steindachner)......Aunantiaca, 90.
dd. Fringes of loft nostril very numerous; longer than the diameter of the nasal tube.
c. Scales of lateral line 110 to 140.
f. [Dorsal rays 80 to 89 ; anal rays 61 to 68. Lat. l. 120 to 140. Pectoral fin 2 to $2 \frac{1}{3}$ in head. Depth 3 in length. Head 5 . Color ashy gray with a dark brown point at tho base of each scale; vertical fins with dark dots; pectoral with a large round black spot near its tip, this spot edged with paler anteriorly.] (Steindachner)... Lasçaris, 97.

* D. 96 ; A. 84. Head 6 in length; depth 3 ; middle of pectoral and end of candal black, according to Agassiz. Possibly two species are confounded undor this namo.
ff. [Dorsal rays 75 to 76; anal rays 59 to 61. Lat. 1.112 to 118; pectoral fins about $2 \frac{1}{2}$ in head; depth 2 象. Head $4 \frac{1}{4}$ in length; color brown, with numerous obscure dusky cloudings; pectoral with a black ocellus in the middle of its posterior half.] (Steindachucr: Günther)Tmeormila, 98. ee. [Scales in lateral line 90 to 95 ; D. 83 or 84 . A. 湤. Head $5 \frac{1}{8}$ in length; depth 3. Eye 5 in head, equal to interorbital width; uasal tube of left side long and much friuged; lips not fringed; blind side of head with many fringes; right pectoral 3 in head. Colur grayish, very much mottied and spotted on body and fins; base of caudal darls; pectoral black, edged with palor.] (Kner) ... Variolosa, 90.

92. SOLEA SOLEA.

(The Common Solnt.)
[Plates XX and XXI.]
Pleuroneotes solca Linntens, Systoma Natura, ed. $x, 1758,270$ (and of tho carlier copyists).
Solea vulyaris Quensel, Vet. Akad. Handl., 1806, 230, and of nearly all later writors. Solea buglos8a Rafinesque, Indice, 1810, 45.
Solea cinerca Guichenot, Lisplor. Alger., Poiss., 1850, 106 (plain brown varicty).
Solca angulosa Kaup, Wiegmann's Archiv, 1858, 05 . (Algiors; Rochelle) ($=$ P.angulata, MSS. Paris Museum.)
Solea azevia Capello, Journ. Acad. Sci., Lisboa, i, 1867, 16f, fig. 2 (plain brown variety).
Solea vulgaris var. azevia Steindachner, Ichthyol. Berichte, vi, 1868, 54, with plate. Solea linnai Malm, Bohuslïns Fauna, 532 (about 1860).
Habitat-All coasts of Europe, except the extreme north.
This species is the famous sole of Europe, one of the most prized of all food-iishes. It abounds on almost all coasts of central and southern Europe, preferring sandy or gravelly shores, and it is usually captured, according to Dr. Day, with the trawl. It usually reaches a length of 12. to 18 inches.

No spucimens of the European sole have yet been taken on the American coasts. Several attempts lhave been made by the United States Fish Commission to introduce the species into our waters, but thus far without evident success.

The Solea azevia of Capello is considered by Steindachner to be an unspotted variety of the common sole. The Solea cinerea, scautily described by Guichenot, seems to be the same form.

Solea angulosa Kaup is said to have D. 84; A. 71; P. 7; V.7-6; C. 19; the pectoral as long as the distance from its root to the lower eye. It may be a common sole, with the number of fin-rays slightly increased.

93. SOLEA CAPELLONIS.

Solea capellonis Steindaehner, Iohthyol. Borichte, vi, 56, 1868 (with plate) (Gibraltar; Nalmatia).
Habitat:-Mediterranean Sea.
This species is evidently very closely related to the common sole, of which, it scems to us, it may be a mere local variety, with unusually
varlegated coloration. Steindachner, howerer, compares it with Solea kleini, which it much resembles in color, but from which it differs in numerous respects. We have not seeu the species.

94. SOLEA BRASILIENSIS.

Solea brasilicusis (Cuvier Mss.) Agassiz, Spix Pisc. Brasil., 1829, 87 (13razil). Kaup, Wiegmann's Archiv, 1858, 95 (Montovideo).
Hàbitat.-Coast of Brazil.
We know this species ouly from the descriptions of Agassizand Kaup. These two accounts do not agree very well and may refer to different fishes. It would appear to be very close to the European sole. None of the collections from Brazil in the museum at Cambridge contain any species of Solea.

95. BOLEA KLEINI.

Rhomlus kleinii Risso, "Europo Méridionalo, iii, 1826, 255." Solea kleinii Giinther, Cat. Fish. Brit. Mus., 186i, iv, 464, and of numerons writers. Solea luctuosa Guichenot, Explor. Algoric, Poissons, 1850, 107.
Habitat.-Mediterraneau Sea.
This species is subject to great variations in color, some of our specimens being excessively spotted, others almost plain. In all cases, however, the coloration of the pectoral is distinctive. Our specimens are from Venice and from Palermo.
96. SOLEA AURANTIACA.
(The Lemon Sole.)
Solca aurantiaca Günther, Cat. Fish. Brit. Mus., iv, 1862, 467.
Halitat.-Coasts of Europe, north to England.
We have not seen this species. According to Dr. Day it is identical with Pleuronectes nasutus Pallas, and he regards both as the same as the original Pleuronectes lascaris Risso. Day therefore adopts for the Lemon Sole the name of Solea lascaris. Knowing none of these fishes from autopsy we can have no opinion of value in this matter, but it would seem to us that the Solea aurantiaca of Giinther and also the Pl. lascaris of Risso correspond better to the species called lascaris in the present paper than to the Pleuronectes nasutus of Pallas, which is the Solea theophila of this paper.

97. SOLEA LASCARIS.

P'leuronectcs lascaris Risso, Ichth. Nice, 1810, p. 311, tab. 7, f. 32.
Solea lascaris Günther, iv, 467. Steindachner, Ichth. Berichte, vi, 1868, 5!.
Rhombus polus Risso, "Europo M6́ridionale, iii, 249," 1826 (not Plcuronectes polus Cuvier).
Solea scriba Valenciomes, Webb \& Herthelot, Iles Canaries, Poiesons, 84, pl. 18, f. 3.
Habitat.-Mediterranean Sea.

We have not seen this specics, and we take the above synonymy from Günther. According to Dr. Day the name lascaris belongs to Solea aurantiaca. This species should stand in that case, perhaps, as Solea scriba.

98. SOLEA TEEOPEILA.

Pleuronectes nasutus Pallas, Zoogr. Rosso-Asiatica, iii, 1811, 427.
Solea nasuta Steindachuer, l. c., 58.
Solca impar Benuett, "Proc. Comm. Soc. Zool., i, 147," 1831. Günther, iv, 468.
Habitat.-Mediterraneau Sea.
We do not kuow this species. According to Dr. Day it is identical with Solea aurantiaca, and should receive the name of Solea lasearis. Notwithstanding the close relation of S. theophila and S. aurantiaca, it would seem that the two are different, as the number of fin-rays is considerably smaller in the present species than in S. aurantiaca, or than in the species called by us S. lascaris.

The Italian naturalists should be able to settle these questions of syoonymy. Judging from the literature alone, these three species would appear to be valid. S. aurantiaca would seem to be distinguished by the little development of its nasal fringes, its fin-rays being "D. S1 to 89 ; A. 66 to $68 . "$ S. lascaris has the nostril with a mreath of fringes and the fin-rays substantially similar, and S. theophila (=nasuta=impar) has the nostril well fringed and the fin-rays fewer; "D. 75 to 76 ; A. 59 to $61 . "$
Risso says of his Solea lascaris that its dorsal rays are 85, anal 68. This agrees with our S. lascaris, which is that of Guinther, and differs from our theophila, the impar of Günther, with which Day has identified Risso's lascaris.

Risso further says that his Solea theophila (named for M. Theophile Rainaut, of Sospello) has 75 dorsal aud 64 aual rays. This corresponds with the Solea impar of Günther, and as the name theophila has priority over impar we have adopted it. Possibly all three are forms of a single species, Solea lascaris Risso.

99. SOLEA VARIOLOSA.

Solca variolosa Kuer, Novara Fische, 1869, 289 (Rio Janoiro).
Habitat.-Coast of Brazil.
This species is known to us from the account given by Professor Kner.

> Genus XL.-MONOCHIRUS.

Monoohirus Ratinosque, "Précis des Déconvertes Somiologiques, 1814" (hispidue) (fide Bonaparto).
Monochlrus Cuvier, Raguo Animal, ed. i, 1817 (microchirus.) (Not of Rafinesquo.)
Monochir Cuvior, Ragne Animal, ed. ii, 1828 (microchir.) (Modifiod orthography of Monochirus.)
S. Mis. $90-20$

Monochirus Swainson, Nat. Hist. Class'n Fishes, ii, 1839, 303 (linguatula). Microchirus Bonaparto, Catalogo Metodico dei Pesci Europei, 1845-50 (after Swainson: lingula).
Buglossus Giunther, Cat. Fish. Brit. Mus., iv, 1862, 462 (varicgata).
Monochir Günthor, Cat. Fish. Brit. Mus., iv, 1862, 462 (monochir).
Quenselia Jordan, Subgenus novum (ocellata).

Type: Monochirus hispidus Rafinesque.

This small group of European soles seems to be worthy of generic distinction from Solea, not so much from the reduction of the pectoral fins as on account of the reduced number of vertebræ, which forms a step in the direction of the geuus Achirus.

The species are, however, much more nearly related to Solea than to Achirus. Three subgeneric groups are included under the head of Monochirus as understood by us, and these might perhaps with no great impropriety be taken as distinct genera. We think it better, however, to place all together in one group, for which the name of Monochirus has priority. We have not seen the paper of Rafinesque in which this name is said to occur, but have taken our quotation from Bonaparte.

For the second subgeuus, the same name, Monochirus, was proposed by Cuvier, but this is antedated by Monochirus of Rafinesque. The name Microchirus given by.Bonaparte to the same group has priority over Guinther's name Buglossus. For the third group, we have suggested the new name Quenselia in honor of the Swedish naturalist who first sep. arated the soles generically from the flounders.

analysis of species of monochirus.

a. Veriebra 37 to 40 ; scales normal, strougly ctenoid.
b. Pectoral of both sides well developed, that of the eyed side not quite half head, that of blind side not quite a third; vertebre 37. (Quenselia Jordan.)
c. Interorbital space very narrow, the eyelids thick, covered with rough scalos; blind side of head with conspicuons fringes; scales sub-villous, the spinules conspicuous, though less so than in Monochirus hispidus; color dark gray, with some vague dusky blotches bohind the gill opening; 4 round jot-black spots ocellated with white and about as large as eye disposed in a quadrangle behind the middle of the body; a black bar across base of caudal ; fins dusky ; pectoral mostly blackish. Vartebra $9+28=37$. Head 4 in length; depth $2 \frac{1}{2}$; D. 66 to 67. A. 52 to 54. P. 5-5. Lat. 1. 70 to 7i . Ocellatus, 100.
bb. Pectoral fin of blind side minute, that of eyed side small, not twice as long as eye. (Microchirus Bonaparte.)
d. Scales in the lateral line 55 to. 60 . Dapth $2 \frac{1}{3}$ in length; head 48 ; color nearly uniform brownish, sometimes spotted with darker; a fow dark spots on doreal aud anal fins, each involving part or all of the membrane of about every fourth ray ; pectoral mostly black, its length not quite half more than that of eye.
.Luteus, 101.
dd. Scales in the lateral line 75 to 80. D. 63 to 73. A. 53 to 57. P. 5-3. Vortebrop, $10+30=40$. Depth 3 in length; head 4 ; color brownish gray, with broad irregular dark cross-bands which are darkest on the dorsal and aual fins: pectoral partly dusky, jts length not greater than that of oye.
ddd. [Scales very small, 112 to 118 ; D. 72 to 79 ; A. 56 to 62. Depti., 2f ; head, $4 \frac{1}{\frac{1}{3}}$ in length; colors of Monoohirus luteus, each sixch or seventh ray of dorsal and anal blackish brown; caudai with brown spots; posterior half of dorsal and anal with narrow, dark brown cross-spots.] (Steindachner)

Minutus, 103.
aa. Vertebrm 34 ; pectoral fin of eyed side more than half length of head, that of blind side wanting ; scales sub-concave, elongate, and with the free margin somewhat erected; ench scale with several long spinules, giving the body a villous appearance (as in Phrynorhombus); (Monochirus).
e. Scales of blind side with shorter spinules; scales on head slightly reduced; eyes rather large, with thick scaly oyolids; head $4 \frac{1}{4}$ in length; depth 2ł ; D. 52 (" 56 to 61," Günther). A. 41 (44 to 49 , Günther). P. abont 7; lat. I. 54 ($63, G \ddot{n}$ ther). Vertebra $9+25=34$. Color, brown with irregular dark marblings on body and fins; dorsal and anal mostly dark ; caudal abruptly pale, with light brownish cross-stroaks.

Hispidus, 104.

100. MONOCHIRUS OCELLATUS.

Pleuronectes ocollatus Linnæus, Syst. Nat., ed. x, 1758, 269 ("Surinam").
Solea ocellata Günther, ir, 465.
Quenselia ocellata Jordan, MSS.
Pleuronectes pegusa Lać́pòde, Hist. Nat., Poiss., iv, 639, 1803:
Pleuronectes rondeleti Shaw, Gen'l Zool., iv, 307, 1803.
Solea aculata Risso, Europe Moridionale, iii, 248, 1826, and of numerous writers.
Habitat.-Mediterranean Sea; Madeira Islands.
Our specimens of this pretty species are from Palermo, where they were collected by Professor Doderlein.

This species, with some other African and Asiatic species, marks a transition between the typical forms of Monochirus to those of Solea. It may be regarded as forming the type of a new subgenus for which the name Quenselia is suggested.

101. MONOCEIRUS LUTEUS.

Plouronectes luteus Risso, Ichth. Nice, 1810, 312.
Mfonoohirus lutous Costa, "Fauns Napoli, ii, 49."
Solea lutea Günther, iv, 469, 1862, and of most roceut writers.

Habitat.-Mediterranean Sea.

Our numerous specimens of this species were collected by Professor Doderlein at Palermo, and by Professor Jordan at Venice.

102. MONOCEIRUS VARIEGATUS.

Pleuroneotes variegatus Donovan, British Fishes, 1801, pl. 117.
Solea variegata Guinther, iv, 469.
Pleuronectes miorochirus Dolaroche, Ann. Mus., xiii, 35i, f. 2, 1809.
Pleuronectes mangili Risso, Ichth. Nice, 1810, 255.
Pleuroneotes lingula " Hamner in Ponuant, Brit. Zool., ed, of 1812, iii, 313, pl. 48."
Pleuronectes fasciatus Naccari, "Giornalo Fis. Pav., iii, Actr. Ittiol., 9, 1822."
Habitat.-Mediterranean Sea.
Our specimens of this species wore collocted at Palermo by Professor Doderlein. Most of the synonymy given above is copied from Günther and Bonaparte, and has not been verified by us.

103. MONOCEIROS MINUTUS.

Monochizus minutus Parvell, Mag. Zool. and Bot., i, 527, 1837. Solea minuta Giinther, iv, 470. Steindachner, Ichth. Berichte, vi, 1868, 61.

Habitat.-Mediterranean Sea.
We know nothing of this species. According to Dr. Day, it is identical with Monochirus luteeus. Steindachner, however, regards the two as distinct, and describes M. minutus as having 112 to 118 scales in the lateral line--a number nearly double that found in his specimens as well as in our specimens of M. luteus. If this count is correct, the two species must be different.

104. MONOCHIRUS HISPIDUS.

Pleuronectes pegusa Risso, Ichth. Nice, 1810, 310 (not of Lacépède).
Monochirus hispidus Rafinesque, "Précis des Découvertes 1814 " (fide Bonaparte, Catalogo Metodico, 1845, 50).
Solea monochir Bonaparte, "Fauna Italica," about 1840. Günther, iv, 470, 1862.
Habitat.-Meditorranean Sea.
Oar specimens of this curious species are from Palermo and from Venice, the former collected by Professor Doderlein, the latter by Dr. Jordan.

Genus XLI.-ACHIRUS.

Achirus Lacépède, Hist. Nat., Poiss., iv, 659, 1803 (fasciatur, etc.).
Achirus Cuvier, Regnne Animal, 1828, (restriction to fasciatu8, etc.).
Trinectes Rafinesque, Atlantic Journal and Friend of Knowledge, i, 1832 (scabra).
Grammichthys Kaup, Wiegmann's Archiv, 1898, 94 (linentus, fasoiatus) (Achirus being restricted to Pardachirus barbatus, otc.).
Monochirus Kaup, l. c. (maculipinnis).
?Aseraggodes Kaup, l. c., 1858, 103 (guttulata).
Baiostoma Bean, Proc. U. S. Nat. Mus., 1882, 413 (brachiale).
Bæostoma Jordan \& Gilbert, Syn. Fish. N. A., 1882, 965 (amonded orthography).
Type: Achirus fasciatus Lacépède.
This strongly-marked genus contains numerous species, all very closely related, and nearly all American. It has been united by Dr. Guinther with Solea, but apparently for no good reason, as the number of vertebre is very much less than in the European soles, and the right ventral fin is decurrent along the abdomen and united with the anal in the Δ merican soles, while it is short and wholly free in all the European forms. It is also worth noticing that the name Achirus is prior in date to that of Solea. The species with rudimentary pectoral fins have been set apart by Dr. Bean to form the genus Baiostoma, but the very slight development of these organs in some of the species, and the evideutly very close relationship. of them all, leads us to regard Baios. toma as a subgenus ouly. If we follow Kaup in restricting the name Achirus to the Asiatic group callod Pardachirus, the present genus would receive the name of Trinectes. It seems to us that both Lacépède
and Cuvier regarded the species called by us fasciatus as the type of their genus Achirus.

ANALYSIS OF SPECLES OF ACUIRCS.*

a. Pectoral fins small; present at least on the right side. (Baiostoma Beau.)
b. Pectoral fin present on both sides, that of the left side rudimentary, of a single ray; that of the eyed side with about 3.
c. [Dorsal rays 60 to 67 ; anal rays about 48 ; lat. 1.80 ; dopth 1 8 in lougth; color brownish, irregularly spotted with darker, and with about 10 black vertical lines crossing the lateral line.] (Günther)
.Aceirus, 105.
co. Dorsal rays 53 to 57 ; anal rays 40 to 42 ; lat. 1.75 to 80 ; depth $1 \frac{3}{8}$ in length; scales smaller and less rough than usual in this genus, those of nape scarcely eularged on eyed side, those of blind side much fringed; scales of colored side with scattered, hair-like appendages, some black, others pale; color olivaceous; head, body, dorsal, and anal fins covered with a network of dark lines; traces of about 8 dark cross-streaks sometimes present; caudal fin yellowish, wearly plain, or with a fow dark dots or reticulations; its base dusky. Vertebræ $8+20=28 \ldots \ldots \ldots \ldots . .$.
bb. Pectoral of right side only present.
d. Dorsal rays 65 to 66 ; anal rays 48 to 51 .
e. Pectoral well developed, with about 6 rays. Scales of eyed side without hair-like filaments; scales of lateral line 77 to 80 ; chin little prominent ; dorsal rays 65 ; anal rays 51 ; depth 18 in length; lead $3 \frac{8}{8}$; right lower lip fringed. Color brownish, with 9 or 10 narrow blackish cross-lines; small rounded blackish spote on the membranes of each of the vertical fins, much as in A. lineatus.... Klunzingeri, 107.
ee. Poctoral fin small, its rays about 2 in number; scales of eyod side with numerous hair-like filaments; scales of lateral line about 70 ; chin prominent, protruding beyond upper jaw ; D. 66, A. 48 to 50 ; depth $1 \frac{2}{8}$ in length; pectoral black, not much longer than eje; eyes rather large, the upper not in advance of lower; color brown, with traces of dark crossbands; numerous irregular blackish cloudsand blotchos on the body and fins; no smull spots.......... Mentalis, 108.

dd. Dorsal rays, 50 to 58 ; anal rays, 35 to 47.

f. Pectoral fin of 4 to 6 rays, considorably longor than eye; body with 8 to 10 narrow vertical dark bars, these sometimes obsoleto with age.
g. Vertical fins, all with round dark spots, these usually especially distinct on the caudal fin; some of the scales of eyed side with black, hair-like appendages; pectoral fin with 5 or brays, about 3 in head; its length equal to that from outer edge of one eje to outer edge of another; head $3 \frac{1}{2}$ in length; depth about $1 \frac{1}{\frac{1}{2}}$; color brown, the young spotted with whitish, the adult sometimes with darker; body with about 8 narrow vertical cross-streaks of blackish.Linifatus, 109.
x. Dorsal rays 49 to 58 ; anal rays 38 to 44 ; scales 70 to 85.
Var. lincatus, 109 (a).

[^42]$x x$. Dorsal rays 50 to 51 ; aual rays 35 to 37 .
y. Scales 75 to 77 Var. brachialis, 109 (b). y!!. Scales 55 to 67 Var. comifer, 109 (c). gg. Vertical fins dark, without distinct markings. Body brond, ovate, the depth about $1 \frac{1}{3}$ in length; pectoral fin with 4 rays; scales of right side with numerous black hair-like appendages; color brownish, with 8 or 9 narrow vertical black bars; fins dark, without distinct markings; D. 56, A. 42, lat. 1. 70... MazatLanub, 110.
ff. Pectoral fins of 2 or 3 rays, about as long as eyo.
h. Body with 6 to 12 narrow dark bands; these sometimes obsolete.
i. [Body rather narrowly ovate, its depth 18 in length; pectoral fin very small, of about 2 rays, not much longer than cye; color brownish olive, with six pairs of deep brown vertical lines extending on the dorsal and anal fins. 11.58, A. 44, lat.1.85.] (Günther) Fonsecensis, 111.
ii. Body broadly ovate; the depth $1 \frac{1}{8}$ in length; yectoral as long as eye; fringes on lip of right side, few and small, inconspicuons; scales on blind side moderately onlarged; hairlike appendages on scales few or none; D. 56 . A. about 39. Scales about 76; color brown, finely mottled and speckled with darker, and with about a dozen narrow, very faint cross-streaks; fins with similar dark spots; scales all finely dotted under the lens \qquad Punctifer, 112. $h h$. Body with very numerous (20 to 40) black cross-bands, which are as broad as the interspaces.
j. [Blind side of snout with few fringes; pectoral rays 3 ; depth $1 \frac{1}{2}$ in length; D. 55, A. 48, lat. 1. 80. Color grayish; hoad, body, and fins with numerous blackish, irregular wavj bands, broader than the interspaces; caudal fin with doep black spots.] (Günther)...........................SCDTUM, 113.
$j j$. Blind side of head profusely covered with fringes; scales on body very rough, those of the eyed side of head enlarged and with long spinules; numerous patches on body covered with appendages like short, coarse black hairs; lower lip with fringes on eyed side nearly half as long as eye; pectoral amall, not longer than eye, which is rather large, about 5 in head; lower jaw included; upper eye largest and much advanced; anterior rays of dorsal, with fringes of cirri. Head 38 in length; depth $1 \frac{1}{4}$; D. 55, A. 47. Scales 77 to 80. Color dark-brown, with numerous (abont 40) close-set, straight, black cross-bars, each about as wide as the interspaces; vertical fins, with about three elongate black spots on the membrane between each pair of rays.

Garmani, 114.
aa. Pectoral fins wholly wanting. (Aohirus.)
k. [Dorsal rays 46 ; anal rays 33 ; right lower lip with serrated fringes; nostril in a fringed tube; dopth $1 \frac{1}{2}$ in length; head 3; color brown, head and body with numerous large, rounded, or kidney-shaped whito spots, edged with dark brown. Lat. 1. 70.] (Günther)Fimbiriatus, 115.
$k k$. Dorsal rays 50 to 55 ; anal rays 37 to 46 ; right lower lip fringed; left nostril with some fringes; depth $1 \frac{1}{8}$ in length; head 4; none of the scales of eyed side with hair-like appendages; color dusky olive, more or less mottled and with about eight dark vertical stripes, these varying very much
in width and in number; vertical fins with the membrane of every second or third pair of rays blackish, besides dark cloudings at base of fin; caudal with numerous lougjtudiually oblong spots; bliud side often with round, dark spots, especially in northorn specimens, usually immaculate in southern ones (var. browni). Lat.1. 66 to 75 ; ver-

$k k k$. Dorsal rays 59 or 60 ; anal rays 41 to 45.
l. [Snout and chin without evident fringe or barbel ; right lower lip fringed; head 4 in length; dopth $1 \frac{18}{8}$; D. 59, A. 45; scales 63 to 65 ; color brown; about 12 dark cross-bands on head and body; between these faint, paler cross-bands, which fortn spots on dorsal and anal; candal similarly spotted, the spots forming obscure cross-bands. (Steindachner)

Panamensis, 117.
$l l$. Snout witl a fringe-like barbel near its tipl, as long as eye; a shortor one on the chin; eyed side with some patches of black hairs; scales of blind side of head scarcely enlarged or fringed; scales sruall, not very rough; head $3 t$ in length; depth $1 \frac{1}{2}$. D. 60, A. 41 ; scales 80 ; color pale, the eyed side with small scattered black points and blotches of varying size; a fow narrow obscure dark crose-streaks; blind side immanculato...

105. ACHIRUS ACEIRUS.

Pleuronectes ocalis dextris, corpore glabro, pinnis pectoralibus nullis Growow, Museum, \mathbf{i}, No. 42. (Surinam.)
. Pleuronectes achirus Linnæus, Syst. Nat., ed. x, 1758, 268 (based or Gronow).
Solea !ronovii Günther, Cat. Fish. Brit. Mus., iv, 1862, 472 (Surinam).
Achirus gronovii Jordan, Proc. U. S. Nat. Mus., 1836, 602. (Name only.)
Habitat.—Coasts of Guiana.
We know this species only from Dr. Guinther's description. We place Achirus gronovii in the synonymy of the Linnæan species Pleuronectes achirus. Pleuronectes achirus is based on a description by Gronow of some Achirus from Surinam. Gronow's fish agrees with the present species in haring 00 dorsal rays and 48 anal rays, in being brown, with transverse black bauds, with dark spots on the fius, as well as in coming from Surinam. But Gronow explicitly denies the presence of pectorals, and the present species has rudimentary pectoral fins on both sides. Probably these were overlooked by Gronow, and as no other species found in the same region has so large a number of rays, we feel justified in the use of the name Achirus achirus for this species.

106. ACHIRUS INSCRIPTUS.

Aohirus inseriptus Gosse, Nat. Sojourn Jamaica, 52, pl. 1, f. 4, 1851 (Jamaica). Jordan, Proc. U. S. Nit. Mus., 1884, 143 (Key West).
Solea ingeripta Giunthor, iv, 1862, 473 (Jamaien).
Monochir reticulatus Poey, Memorias, ii, 1861, 317 (Cula): Synopsis, 409; Enmmeratio, 139.

Solea reticulata Ginther, iv, 472 (copiod).
Beostoma retioulatum Boan \& Dresol, Proc. U. S. Nat. Mus., 18e4, 1.52 (Jamaica).
Habitat.-West Indian fanna, north to Key West.

This species is known to us from numerous specimens taken by Dr. Jordan at Key West, and from specimens from Hayti, in the museum at Cambridge. These specimens belong undoubtedly to the species called reticulatus by Poes, and this is appareutly not different from the inscriptus of Gosse, as the agrecment with the latter is even closer than with the former description.

107. ACHIRUS KLUNZINGERI.

Solea klunzingeri Steindachnor, Zur Fische des Canca und dor Flüsse bei Guayaquil, 1879, 44 (Guayaquil).
Achirus klunzingeri Jordan, Proc. U. S. Nat. Mus., 1885, 391 (Panama).
Habitat.-Pacific coast of tropical America. Panama to Guayaquil.
This species is known from Dr. Steindachner's description. A specimen, since destroyed, was obtained by Professor Gilbert at Panama.
108. ACHIRTS MENTALIS.

Solea mentalis Günther, Cat. Fish. Brit. Mus., iv, 475, 1862 (Para).
Haditat-Coast of Brazil.
This species is known to us from a specimen, 3 inches long (No. 11449, Mus. Comp. Zool.). It was obtained at Para.

109. ACHIRUS LINEATUS.

a. Var. lineatus.

Pleuronectcs fuscus subrotundus glaber "Brown, Jamaica, 445" (Jamaica).
Passer lincis transversis notatus Sloane, Jamaica, 2, 77, pl. 246, f. 2 (Jamaica).
Pleuronectes lineatus Linncus, Syst. Nat., ed, $x, 1758,968$ (basod on Brown and Sloane; not of ed. xii, which is Achirus fasciatus).
Monochir lincatus Quoy \& Gaimard, Voy. Uranie, Zool., 238, 1824 (Rio Jameiro, D. 斤2, A. 42).

Achirus lincatus D’Orbiguy, Voyarge Amer. Merid. Poiss., pl, 16, f. 2, 1847 (Cayonno). Monochir maculipinnis Agassiz, Spix Pisc. Brasil., 88, pl. 49, 1829 (Brazil). Pooy, Syuopsis, 1868, 409 (Cuba).
Solea maculipinnis Giinther, iv, 473 (Cuba, Jamaica, Brazil). Kner, Novara Fisele, iii, 289 (Rio Janciro).
Achirus maculipinnis Jordan, Proc. U.S. Nat. Mus., 1886, 602 (namo only).
b. Var. brachialis.

Baiostoma brachialis Bean, Proc. U. S. Nat. Mus., 1882, 413 (Sonth Florida).
Baostoma braohiale Jordan \& Gilbort, Synopsis Fish. N. A., 1882, 965 (copiod).
Achirus brachialis Jordan, Proc. Ac. Nat. Sci. Phila., 188:3. (Iegmont Koy.) Jordan, Proc. U. S. Nat. Mus., 1884, 149.
c. Var. comifer.

Achirus comifer Jordan \& Gilbert, Proc. U. S. Nat. Mud., 1834, 31, 143 (Key West).
Habitat.-West Indian fauna-Key West, avd Egmont Key to Uruguay.

The Ileuronectes lineatus of the tenth edition of the Systema Natura is based wholly on the description of Brown and the figure and descrip-
tion of Sloane in their works on Jamaica. It is very evident from Sloane's figure that the species he had in view was the Achirus maculipinnis. So far as we know, but two species of Achirus (inscriptus and maculipinnis) are found in the waters of the Antilles. There seems to be, then, no doubt that the maculipinnis of Agassiz is the original Pleuronectes lineatus of Linuæus. If it be so, it must stand as Achirus lineatus.

The Pleuronectes lineatus of the twelfth edition of the Systoma Natura is described from a tish sent from Charleston by Dr. Garden. This is Achirus fasciatus.

We have placed the Florida species, comifer and brachialis, in the synonymy of lineatus. They differ from the latter only in the slightly smaller numbers of the scales and fin-rays.
The following table shows our count of a number of specimens from different localities :

	Looality.	D.	A.	Scales.
Key Weat.	(comifer)..	50	35	55 to 67
Pensacola. (brachialis)..	51	37	76 to 77
Cionfuegos (lineatus)..	54	43	85
Hio Janeiro (maculpinnis)..	57	42	85
Rio Do (maculipinnis)..	54	44	72
Rio Grando do Sul. (maculipinnis)..	49	38	70
Coary.......... maculipinnis)..	53	40	68
Manacapura. (naculipinnis)..	65	49	75

It is evident from this table that neither the fin-rays nor the scales form characters by which the subspecies can be absolutely distinguished. It is evident also, from the examination of large series of specimeus, that the coloration is subject to very great variations-as great as in Achirus fasciatus. In some of these the caudal is dark and immaculate, in others pale and usually profusely spotted. In some the ground color is nearly plain blackish, in others it is pale, usually with narrow dark cross-bands, but sometimes closely spotted everywhere.

The specimens examined by us are from Pensacola and Egmont Key (brachialis), Key West (comifer), Cienfuegos (Ouba, Poey), Coary, Teffy, Tapajos, Porto Alegre, Peruambuco, Cannarivieras, Manacapuru, Porto do Moz, Rio Grande do Sul, Rio Janeiro, San Matheo, Rosario, Itabapuana, Obidos, Xingu, Gurupa, Jutaby, Curuça, Pari, Bahia, Santarem, If̧a, Fonteboa, San Paolo, Rio Trompetas, Sambaia, Manes, Javars, and Tabatinga.
The species would appear to be one of the commonest in Brazil.

110. ACEIRUS MAZATLANUS.

(Mexican Sole; Teipalcate.)
Solea mazatlana Stoindachner, Ichth. Notizon, is, 23, 1869 (Mazatian). Jorlan \& Gilbert, Bull. U. S. Fish Comm., 1882, 108 (Mazatlan).
Achirus mazatlanus Jordan, Proc. U. S. Nat. Mus., 1885, 391 (Mazatlan).
Solea pilosa Petors, 13erliner Monatsber., 1860, 709 (Mazatlan).
Mabitat.-Pacific coast of tropical America.

This species is not rare on the west coast of Mexico. We have examined numerous specimens collected by Professor Gilbert at Mazatlan. The Solea pilosa of Peters, as Dr. Steindachner has already indicated, is the same fish. The date of Steindachner's paper is said to be a little earlier than that of Professor Peters.

A specimen of this species is in the museum at Cambridge, collected by Professor Sumichrast at Chiapas.

111. ACEIRUS FONSECENSIS.

Solea fonseceusis Giunther, Cat. Fish. Brit. Mus., iv, 1862, 475 (Gulf of Fonseca).
Habitat.-Pacific coast of tropical America (Gulf of Fonseca).
Only the original type of this species, obtained by Sir John Richardson, is yet known.

112. ACHIRUS PUNCTIFER.

Monochir punctifer Castelnan, Aninanx Nouv. ou Rares, Amérique du Sud, 1855, 80, pl. 41, f. 3 (Rio Janciro).
Habitat.-Coast of Brazil.
We refer a sole (11436, M. C. Z.) from Itabapuana to Monochir punctifer Castelnau, although the figure published by this author does not represent it very well. The black pepper-like spots are much smaller in nature than in the picture. The following is Castelnau's description: "Longueur totale, 12 centimètres; plus grande largeur sausles nageoires, 7 centimètres; avec les nageoires, 9 centimètres. Nageoire dorsale de 48 rayous; anale de 42 rayons; caudale de 16 rayons. Les écailles sont fines et âpres, surtout celles de la tête. Le poisson est entièrement d'un bran vert et couvert, ainsi que les nageoires, de points noirs nombreux et assez rapprochés les uns des autres; en dessous il est d'un brun rougeâtre. J'ai trouvé une seule fois ce Monochir au marché de Rio."

113. ACEIRUS SCUTUM.

Solea 8cutum Günther, Cat. Fish. Brit. Mus., iv, 1862, 475 (Gulf of Fonseca, Panama).
Habitat.-Pacific coast of tropical America.
All that we know of this species is included in the description of Dr. Giinther.

114. ACEIRUS GARMANI.

Achirus garmani Jordan, sp. nov. (Rio Grande do Sul).
Habitat.-Coast of Brazil.
The type of this species is an example in -good condition, 6 inches long (11246, M. C. Z.), from "the Rio Grande in South America." I have taken pleasure in naming it for my friend Mr. Samuel Garman, curator of ichthyology in the Museum of Comparative Zoology, to whose kindly aid I have been much indebted in my studies of the South American fishes. (D. S. J.)

115. ACHIRUS FIMBRIATUS.

Solea fimbriata Guinther, Cat. Fish. Brit. Mus., iv, 1862, 477 (Gulf of Fonseca).
Habitat.-Pacific coast of tropical America (Gulf of Fonseca).
This species is known from Guinther's description of a specimen taken by Sir John Richardson.

116. ACHIRUS FASCIATUS.

(The American Sole; Hog-Chokrr.)

(Plates XXII and XXIII.)
Pleuronectes lineatus Liumxus, Syst. Nat., ed. sii, 458 (on a specimen from Charleston, recoived from Dr. Gardon), (not Plenronectes lineatus of edition x). Gronow, Systema, ed. Gray, 1854, 90 (in part, chiefly lased on Linnarns).
dchirus lineatus Cuvier, Regue Animal, 1828. Gill, Cat. Fishes East Coast N. Am., Rept. U. S. F. C., 1872-73. Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1878, 368 (Beaufort; Nouse R.). Goode, op . cit., 1879, 110 (St. Johu's R.). Goode \& Boan, op. c., 1879, 123 (Pensacola, Potomac R.). Bean, op. c., 1880, 77 (Potomac R., New Bedford, Tompkinsville, N. Y., Nowport, Chesapeake Bay, Providence). Jordan \& Gilbert, op. cit., 1882, 618 (Charleston). Bean, op. cit., 1883, 365 (Havre de Grace).
Grammichtlyys lineatus Kaup, Wiegmann's Archiv, 1858, 101.
Achirus fasciatus Lacépède, Hist. Nat., Poiss., iv, 659, 662, 1803 (bxcl. syn. ; description based entirely on the Linnwan account of the fish sent by Garden).
Plearonectea mollis Mitchill, Traus. Lit. and Phil. Soc. N. Y., i, 1815, 388, pl. 2, f. 4 (New York).
Achirus mollis Storęr, Synopsis, 1846, 228. Storer, Hist. Fish. Mass., 1867, 206, pl. 32 (Charles River, Holmes' Holo, Mass.). DeKay, Now York Fauna, Fishes, 1842, 303, pl. 49, f. 159 (New York, ascending the Hudson River to Peekskill).
Aohirus achirus mollis Jordan, Cat. Fish. N. A., 1885, 137.
Pleuronectes apoda Mitchill, Amer. Monthly Mag. and Crit. Rev., Feb'y, 1818, 244 (Straits of Bahama), (perhaps A. lineatus).
Trinectes scabra Rafinesque, "Atlantic Jourual and Friend of Knowledge, i, 1832 (Peunsylvania, in fresh water)."
Solea achirus Günther, iv, 476, 1862 (New York) (not Pleuronectes achirus L.).
Achirus achirus Jordan, Proc. U. S. Nat. Mus., 1885, 19. Jordan, Cat. Fish. N. A., 1885, 137.

Solea browni Giinther, iv, 477, 1862 (New Orleans, Texas).
Achirus lineatus var. browni Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 305 (Pensacola, Galveston).
Habitat.-Atlantic coast of the United States, from Cape Cod to Texas, often ascending streams.

This species is the best known of the American soles, and it is common along our coast from Cape Cod to Texas, often ascending the rivers for a considerable distance above tide-water. It seldom exceeds 5 or 6 inches in length, and is of but little value as food on account of its small size. It was first described in the twelfth edition of the Systema Naturæ from a specimen sent to Linnæus by Dr. Garden. This specimen received the name of Pleuronectes lineatus, but the Pleuronectes lineatus of the tenth edition was a different fish, the name being originally based on a description of an Achirus found by Brown
and Sloane in Jamaica, a region in which the present species does not occur.

The specific name next in date to lineatus is that of Achirus fasciatus Lacépède. Lacépède quotes in his synonymy only the Pleuronectes achirus of the tenth edition of the Systema, which is a species from Surinam. His description of Achirus fasciatus is however wholly taken from the account given by Linnæus of the fish sent by Garden. It therefore belongs to the present species, for which fasciatus seems to be the oldest tenable name.

The Pleuronectes apoda of Mitchill seems to be this species, as Mitchill expressly states that it has no pectoral fins. DeKay, however, speaks of it as a species of Monochirus. If DeKay examined Mitchill's specimen we may infer that the latter belonged to A. lineatus rather than to A. fasciatus.

This species has not yet been recorded from the West Indies. The form found along the Gulf coast has been described as a distinct species under the name of Solea browni. The differences are not very evident. We have compared a number of specimens from Boston (fasciatus) with others from Pensacola, and find the following difforences, none of which are constant: In the Gulf variety (browni) the blind side is always immaculate, while in almost all Atlantic examples (fasciatus) the blind side is profusely covered with round dark spots. In one specimen, however (11360 , Boston), the blind side is immaculate. The darker cross-streaks on the eyed side are usually broader and more numerous in southern specimens, and the scales on the blind side of the head rougher. There are no constant differences either in the fin-rays or in the scales.

We have examined specimens of this species from Boston, Chestertown, Tarrytown, New York, Port Monmouth, Harre de Grace, Potomac River, Neuse River, Beaufort, Charleston, Pensacola, Mobile, and Galveston. In one large specimen from Pensacola (11482 M. C. Z.) there is a rudiment of a pectoral fin on the eyed side. It consists of a single ray two-thirds as long as the eye.

117. ACHIRUS PANAMENSIS.

Solea panamensis Steindachner, Ichthyol. Beitriage, v, 10, 1876, Taf. ii (Panama).
Habitat.-Pacific coast of tropical America, Panama.
Our knowledge of this species is derived from the description and excellent figure of Dr. Steindachner. The species is evidently very closely related to Achirus fasciatus, which it closely resembles in form and color.

118. ACHIRUS JENYNSI.

Achirus lineatuy Jenyns, Voyage Beagle, Fishes, 1842, 139 (Rio de la Plata) (not P. lineatus L.).
Solea jenynsi Günther, Cat. Fish. Brit. Mus., iv, 476, 1862 (after Jenyns).
Habitat.-Region about Rio de la Plata.

The Museum of Comparative Zoology contains a single specimen (11425, 3 inches long) of this species. It was obtained in the Uruguay River by Prof. Jeffries Wyman. It is near A. fasciatus, from which species it differs mainly in having fewer fringes on the scales of the left side of head, and in having rather couspicuous cirri on the snout and chin.

Genus XLII.-GYMNACHIRUS.

Gymnachirus Kaup, Uebersicht der Soleinæ, Wiegmaun's Archiv, 1858, 101 (nudus).
Type: Gymnachirus nudus Kaup.
We have examined none of the species of this singular genus. All that we know of it is drawn from the descriptions of Kaup and Guinther. Two species have been described.
analysis of species of gymnadindus.
a. [Pectoral fin of right side present, very small, of two rays only, one-third as long as eyo; jaws hiddon in thick skin; lips slightly fringed; left side of hoad with a network of fringes; gill openiug not reaching upward as far as pectoral; vertical fins covered with thick skin; caudal as long as head; head $5 \frac{1}{2}$ (with caudal); dopth 2; D. 68, A. 50 ; color yellowish olive, with 14 brown bands, as broad as the interspaces, which again are crossed by narrower bauds, all these bands extending over the dorsal aud anal, the first crossing the snout, the second and third the eje; caudal with three brown bands.] (Günther).............. Fasciatus, 119.
aa. [Pectoral fins both wanting. Body somewhat longer than high. D. 51; A. 42. Body with 14 black cross-bands; concentric rings about eyes; caudal with two black bands aud a pale margin.] (Kaup) Nudus, 120.

119. GYMNACHIRUS FASCIATUS.

Gymnaclivus fasciatus Güuther, Cat. Fish. Brit. Mus., iv, 488, 1862 (locnlity unknown). IIabitat.-Unknown, probably Brazil.
We know this species from Dr. Günther's description ouly. Possibly Gymnachirus nudus may be the same species carelessly described by Dr. Kaup.

120. GYMNACHIRUS NUDUS.

Gymnachirus nudus Kaup, Wiegmann's Archiv, 1858, 101 (Bahia). Günther, iv, 488 (copiod).
Havitat.-Coast of Brazil.
The scanty description of Kaup gives all that is known of this species.

Genus XLIII-ACHIROPSIS.

Achiropsis Steindachner, Ichth. Beitriago, v, 110, 1876 (nattcrevi).
TyPE: Solea nattereri Steindachner.
This is another of the remarkable genera found in the fresh waters of South Amorica. Although its species bear a strong general resentblance to the species of Achirus, they differ remarkably from the latter
in some details of structure, and their real relations are with Apion. ichthys. Achiropsis differs from Apionichthys chiefly in the development of the left ventral fin. This is rudimentary in Apionichthys and perfect in Achiropsis.

ANALYSIS OF SPECIES OF ACHIROPSIS.

a. [Gill-opening on both sides present, but reduced to a short slit as loug as eye next to the upper end of the opercular margin ; eye very small; snout with a proboscislike prolongation beyond the month; blind side anteriorly covered with fringes, but without true scales; scales on body ctenoid; fins scaly. Dorsal and anal fins slightly joined to the caudal; ventral of rigbt side continuous with the anal. Body obloug. Color grayish brown. Head 5 in length; depth 24. D. 82. A. 61. V. 5-5. P. 0., 37 to 40 scales in an oblique series above lateral line.] (Steindachner) ...
aa. Gill-opening of eyed side wanting, the gill-membrane being throughout adnate to the shoulder-girdle; gill-opening of blind side an oblique slit just below posterior angle of opercle, its length $4 \frac{1}{3}$ in head. Eyes small, close together, the upper considerably in advance of lower, their diameter equal to the interorbital width; snout protruding over the mouth, proboscis fashion, making the anterior profile à regular curve. Snout 28 in head. Scales small (larger than in A.nattereri), not as rough as in Achiruz, those on the blind side of the head wanting anteriorly, their place taken by cirri and fringes of moderate length; lateral line distinct, straight; fin-rays scaly; lower lip slightly fringed on eyed side, not on blind side. Nostril as in Achirus, a round foramen in front of interorlital space, not produced into a tube. Dorsal beginning on the snout, the dorsal and anal slightly joined to the caudal; ventral fid beginning at the ohin, in front of the isthmus, the tip of the snout being in contact with its first ray; ventral of right side with extended base, wholly contiuuous with the anal; left ventral lateral, normally placed, ite five rays opposite the 3d, 4th, and 5th rays of the right ventral; no pectoral fins. Body oblong, less deep than in Achirus. Color sand-color, with faint traces of about 8 narrow cross-bands; body and fins profusely and finely mottled and speckled with darker. Head, 4t; depth, 2 t . D. 60. A. 44. V. 5-5. P. O. Scales 70, about 28 in an oblique series above lateral line.

Asphyxiatus, 122.

121. ACHIROPSIS NATTERERI.

Solea (Achiropsis) nattereri Steindachuer, Ichtl. Beitrigo, v, 110, 1876 (Rio Negro).
Habitat.-Rivers of Northern Brazil.
We know this species from Steindachner's description only.

122. ACHIROPSIS ASPHYXIATUS.

Achiropsis asphyxiatus Jordan, sp. nov. (Goyaz, Brazil).
Habitat.-Rivers of Brazil.
The type of this species is a female specimen in good condition, $4 \frac{2}{3}$ inches long (11106 M.C. Z.), from Goyaz, Brazil. It differs from all other Hounders in having but a single gill-opening. Possibly this character is only accidental in the individual, and that a small gill-opening may normally be present on both sides. It is certainly not present on the eyed side in the typical example.

Genus XLIV.-APIONICHTHYS.

Apionichthys Kaup, Wiegmann's Arohiv, 1858, 104 (dumerili).
Soleotalpa Günther, Cat. Fish. Brit. Mus., iv, 489, 1862, (unicolor).
TYPE : Soleotalpa unicolör Günther = Apionichthys dumerili Kaup.
Besides the species here mentioned, we find in the Zoological Record a reference to Apionichthys bleekcri Horst, Nederl. Tijdschr. Dierk. Verh., iv, 30,1878 . It is decribod from a specimen from unknown local. ity in the museum at Utrecht.

This genus is a near ally of Achiropsis, from which it is only to be separated by the rudimentary character of the left ventral fin. Although it bears some external resemblance to Symphurus, its affinities are with Achirus. The species, if more than one really exists, have yet to be exactly defined.

ANALYSIS OF SPECIES OF APIONICHTHYB.

Abstract

a. Left ventral reduced to two minute rays; body ovate-lanceolate, slender, and thinuer than in Achiropsis, the oyes much smaller, reduced to mere points; scales very sinall, rough, those on head enlarged a little and friuged; upper eye in advance of lower, almost in the middle of the length of the head; gill-openings small, about equal on the two sides; right ventral beginning at the chin, and extending along the abdomiual ridge so that it is continuous with the anal (left ventral destroyed in specimen oxamined); dorsal and anal slightly connected with caudal; color brown, rather pule, the body and fins profusely covered with round, dark spots of varying sizes, the largest as wide as from eye to eyo. Head $4 \frac{1}{6}$; depth $2 \overline{8}$. * D. 78. A. 56 . Scalos about 100 .Unicolor, 123. aa. [Left ventral wholly obsolete; scales ctenoid, cycloid on blind side; fin-rays scaly; depth, 2 ; ; head, 4 I. D. 70 to 73. A. 52 to 54. V. 5-0. Lat. 1. 87 to 90 . Color clear brownish yellow.] (Steindachner).................................... Ottonis, 124

123. APIONICETHYS UNICOLOR.

Apioniohthys dunterili Kaup, Wiegmann's Archiv, 1858, 104. (No locality; no description.)
Soleotalpa unioolor Guinther, Cat. Fish. Brit. Mus., iv, 1862, 489. (West Indies.) (1)
Spionichthys unicolor Jordan, Proc. U. S. Nat. Mus., 1886, 603. (Name only.)
Apioniolthys dumerili Bleeker, Nederl. Tydschr. voor Dierkunde, ii, 1865, 305. Steindachner, Ichth. Beitr., viii, 1878, 48. (Surinam.)
Apioniohthys nelulosus Petors, Berliner Mouatsberichte, 1860, 709. (Surinam.)
Habitat.-Brazilian fauna.
We have examined a single specimen of this species (4677 M. C. Z.) $2 \frac{1}{2}$ inches long, from Obydos, in Brazil. It evidently corresponds to the Apionichthys dumerili of Bleeker and Steindachner, and apparently also to the Apionichthys nebulosus of Peters, although Peters failed to find the rudimentary left ventral fin. This fiu, in fact, is not present in the specimen examined by us, it having been destroyed in attaching the metallic tag.

Günther's Soleotalpa unicolor may be the same, but the account of the coloratiou does not accord with the specimen examined by us, nor

[^43]with the statements of other authors. Perhaps the plain coloration may be due to age, or to the poor condition of the typical specimen.

Kaup's Apionichthys dumerili has not been described at all, but simply mentioned as the type of the genus. As his species cannot be identified, its name should not be used.

124. APIONICETHYS OTTONIS.

Apionichthys ottonis Steindachner, Ichth. Notizen, vii, 41, 1868 (Sicily).
Hubitat.-Mediterranean Sea.
This species is unknown to us. Judging from the published descriptions, it must be very close to Apionichthys unicolor, and ouly the different locality would appear to indicate specific distinction.

Genus XLV.-BRACHIRUS.

Brachirus Swainsou, Nat. Hist. Class'n Fisìes, 1839, ii, 303 (orientalis, zebra, commersniana, etc.) (not Brachyrus Swainson, nor Brachyurus Fischor, voth prior names).
Synaptura Cantor, Catal. Malayan Fishos, 1850, 232 (commer8oniana, zehra) (uame a substitute for Brachirus, preoccupied by Brachyurus, which is regarded as the correct orthography).
Solenoides Bleeker (fide Kaup).
? Euryglossa Kaup, Wiegmann's Archiv, 1858, 99 (orientalis).
? Eurypleura Kaup, l. c. (substitute for Achiroides).
? Achiroides Bleoker, Verh. Bataav. Gonootsch., xxiv, Pleuron., 6, 1862 (nelanorhynchus).
? Anisochirus Günther, Cat. Fish. Brit. Mus., iv, 1862, 486 (panoidos).
TyPE : Pleuronectes zebra Bloch (as restricted by Swain., Proc. Ac. Nat. Sci. Phila., 1883).

We have had opportunity to study but fow of the numerous species referred to this genus, and have no opinion as to the proper limitation of the group. Possibly neither of the European species should be referred to it.

We retain the name Brachirus (i.e., Brachychirus), notwithstanding the priority of the name Brachyrus, which seems to have the same meaning. If, however, this name of Swainson be rejected, that next in order of date is Synaptura, which has now the advantage of general usage.

analysis of the species of bibachirus. *

a. [Pectoral fins subequal; one of the nostrils of the blind side large, round, much dilated ; depth, 3 in length, with caudal; head, 5 ; upper jaw overhanging; pectorals both present, equal in length, their length equal to their distance from the eye; color greenish brown, marbled with darker. ${ }^{-}$D. 72 ; A. 58 to 60 ; P. 8. (Kaup)

Savigatyi, 125.
aa. [Pectoral fins unequal, the right pectoral $\frac{1}{8}$ its distance from the eye; nostril on each side dilated, trumpet-like; lateral line straight; ventral not inserted at chin; body rather elongato, denth 31 to 4 . D. 72 to $76 ; \Lambda .58$ to 60 . Color chestuut, much spotted and variegated ; three rows of pale ocelli bordered with dark along side of body.] (Capello).

125. BRACHIRUS SAVIGNYI.

Synaptura savignyi Kaup, Wiogmanu's Archiv, 1858, 97 (Naples). Günther, iv, 480. 1862 (copied).
Habitat.-Mediterranean Sea.
We know nothing of this species, except what is contained in the scanty description of Kaup. According to Professor Giglioli, none of the Italian naturalists have seen this species.

126. BRACHIRUS LUSITANICUS.

Synaptura lusitanica Capello, Jorn. Ac. Sci. Lisl., v, 1868, 92, and vi, 1869, 153, tab. 9, f. 1 (Lisbon).

Habitat.-Coast of Portugal.

We have not examined this species, and know it from Capello's description only.

Geuus XLVI.-SYMPEURUS.

Symphurus Rafinesque, Indice all' Ittiologia Siciliaua, 1810, 52 (nigresocns).
Bibronia Cocco, Alcuni Pesci del mare di Messina, 1844, 15 (ligulata; larval form).
Plagusia Cuvier, Règne Animal, ed. ii, 1828 (based on Plagusia of Brown; name preoccupied in Crustaceans, Latroille, 1806).
Plagiusa Bonaparte, Catalogo Metodico, 1846, 51 (lactca; substitute for Plagusia preocoupied).
Aphoristia Kaup, Wiegmann's Archiv, 1858, 106 (ornata).
Glossichthys Gill, Cat. lish. E. Coast N. A., 51, 1861 (nomen nudum: plagiusa). Ammopleurops Günther, Cat. Fish. Brit. Mus., iv, 1862, 490 (lacteus $=$ nigrescens). ? Bascanius Schiödto, "Naturhist. Tydsskr., v, 269, 1867" (tadifer; larval form).
Acedia Jordan, subgenus novum (nebulosus).
Type: Symphurus nigrescens Rafinesque.
We have adopted for this genus the name Symplurus instead of Aphoristia, as the so-called Ammopleurops lacteus is a genuine member of the latter genus, and as it seems to be evident that the latter species is the original of the Symplurus nigrescens of Ratinesque.

The following is Rafinesque's description :
"III. Gen. Symphurus. Ala caudale acuta, e riunita all' ale dorsali, ed anali, occbj alla sinistra. Osserv. Si dovrauno ragguagliare in questo genere due specie del genere Achirus di Lacepede, cioò gli A. bilineatus, © A. ornatus. "Sp. no. 44. Symphurus nigrescens. Nerastro senza fascie, allungato, una sola linea laterale da ogni lato."

This single lateral line assumed to distinguish Ammopleurops from Aphoristia is not a real lateral line, but a depression along the median line produced by the juuction of the muscles.

The species of Symphurus are somowhat numerous and very closely allied. With the exception of the European Symphurus nigrescens, all of them aro American.

The development of the species is imperfectly known. According to Giglioli, the larvo called Bibronia, may belong to this genus, and so possibly may Delothyris aud Charybdia.
S. Mis. $90-21$

The name Plagusia belongs properly to the present genus rather than to the type of Plagusia bilineata, to which it has been restricted by Kaup and Günther. It is, however, preoccupied in crustaceans, and in any case, both Plagusia and the substitute name Plagiusa are antedated by the name Symphurus.

One of the American species referred to Symphurus, nebulosus, seems to differ widely from the others and is probably the type of a distinct genus, or subgenus, for which we have suggested the name Acedia. This name is applied by the Cuban fishermen to Symphurus plagusia.

ANAIYSIS OF SPECIES OF SYMPIIURUS.
a. Scales ctenoid, not keeled. (Symphurus.)
b. Scales suiall, moderately ctenoid; the number in a longitudinal series from 75 to 105.
o. Dorsal and anal fins chiely black anteriorly and posteriorly, with paler edgings ; body moderately elongate, the dopth 38 in length; the head $4 \frac{1}{2}$. Scales rather small, not very rough, about 80 in a longitudinal series. D. 90 ; A. 73 to 75 . Color rather pale, plain or more or less mottled with darker, but without cross-bars; fins chiefly black with paler edgings
.Nigrescens, 127.
cc. Dorsal and anal pale anteriorly, becoming more or less abruptly black posteriorly.
d. [Caudal fin abruptly pale; dopth $4 \frac{1}{2}$ in length; head, 52. D. 96 to 100; A 86 to 87 . Scales, 88 to 90 . Color, grayish, speckled with brown; dorsal and anal fins black on last tenth, the candal abruptly pale; tips of fin-rays vermilion.] (Goode \mathcal{f} Bean) Marginatus, 128.
dd. Caudal fin black, as is a large part of the dorsal and anal; the black either continuous or in the form of large spots. Color, brownish, often mottled, usually with more or less distinet darker crose-bands, and with longitudinal streaks along the rows of scales, sometimes nearly plain brown.
6. Scales quite small, 98 to 105.
f. Body decidedly olongato, the depth about 4 多 in longth; D. 97; A. 82 ;

ff. Jody less elongate, the depth $3 \frac{1}{3}$ in longth; head, $5 \frac{1}{3}$; longitudinal stroaks very distinct; D. $100 ;$ A. 80 ; scales about 105.... Atricauda, 130.
ee. Scales somewhat largor, 75 to 85 ; bod, rather olongate, the depth $3{ }_{10}^{1}$ tu $3 \frac{2}{8}$ in length; the head $5 \frac{1}{8}$ to $5 \frac{2}{d}$; D. 90 to 95 ; A. 75 to 80.

Plagusia, 131.
ccc. Dorsal and anal palo throughont, or more or less motuled or spotted with darker ; the caudal similarly colored, not distinctly black; body not very elongate, the depth 3 to 38 in length. (Probably all va-

x. Body with dark cross-bands more or less distinct; the fins mottled or spockled; upper oye slightly in advance of lower.
\%. Dornal rays 86 to 95 ; anal raye 75 to 80 ; head 5 in length ; depth 34 ; scales 85 to 93 ; cross-bands moro distinet than in related species. Var. plagiusa, 132 (a).
yy. Dorsal rajs 78 to 85 ; anal rays 70 to 72; head 5 in longth; deptlı 32 ; scales 80 to 90 ; color light brown, with darkor cross-bars, which become obsolete with age. Var. puвillus, 132 (b).
$x x$. [Body uniform frayish, without cross-bands; last part of dorsal and aual with 3 or 4 oblong black blotehes, each somewhat larger than the oye; upper eye directly above lower; head, 5 \& in length; scalos, 85 ; D. 92; A.75.] (Goode f Bean)

Var. diomedeanus 132 (c).
bl. [Scales rather large, vory rough-ctenoid, about 65-34; depth, $3 f$ in length; head, $4 \frac{1}{8}$; D. 90 ; A. 69 to 75 ; color clouded brown, somewhat blotehed.] (Goode f. Bean)... Pigerı, 133.
aa. [Scales very small, ctenoid, each with a mediau keel, which is dark and prominent; snout and jaws nuked; fin-raysin incroased numbor.] (Subgenus Acedia Jordan.)
h. Head, 5 导; dopth, 4 ; D. 119 ; A. 107 ; scales, 120; grayish, everywhere mottled with brown.] (Goode \mathcal{f} Bean).... Nebulusus, 134.

127. SYMPHURUS NIGRESCENS.

Synphurus nigrescens Ratinesque, Indico all' Ittiologia Siciliana, 1810, 52 (Palormo).
Plagusia lactea Bonaparte, Fauna Ital. Pesci, about 1840.
Ammopleurops laoteus Giinther, iv, 490 (copied).
Plagusia picta Cocco (fide Giglioli).
Bibronia ligulata Cocco, "Alcuni Pesci dol maro di Mossina, 1844,300" (Messina) (larva).
PBascanius tadifer Schiödte, Natur. Tydsskr., v, 269, 1867 (froo-swimming oceanic larvis).

Habitat.-Meditorranean Sea.

We have examined three specimens of this rare species, obtained at Palermo by Professor Doderlein. As already noticed, this is a genuine member of tho genus usually called A phoristia, having no lateral line. These three specimeus have the body nearly uniform in color. They correspond to the Ammopleurops lacteus of European authors. A specimen in the museum at Cambridge from Naples is somewhat mottled and represents the nominal species Ammopleurops pictus.

128. SYMPHURUS MARGINATUS.

Aphoristia marginata Goode \& Bean, Bull. Mus. Comp. Zool., xii, 153. (OII St. Vincent, etc.)
Habitat.-West Indies.
This species is known only from the original types, taken in deep water (94 to 324 fathoms) in the West Indies.

129. SYMPHUROS ELONGATUS.

Aphoristia ornata var. elongata Guinther, Fishes Contr. Amer., 1869, 473. (Puaama.) Aphoristia elongata Jordan \& Gilbert, Bull. U. S. Fisl Comm., 188i, 111. (Panama.)
Habitat.—Pacific coast of tropical America.
This species is not uncommon on the Pacific coast of Central America, where it represents the closely related Symphurus plagusia. Its relatious with Symphurus atricauda are still closer.

130. SYMPHURUS ATRICAUDA.

Aphoristia atricauda Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 23 (San Diego). Jordan \& Gilbert, Synopsis Fish. N. A., 1882, 842. Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1802, 380. (San Jobó, Lower California.) Jordan, Proc. U. S. Nat. Mus., 1886, 54.
Habitat.-Lower California, north to San Diego.
This species is common in the bay of San Diego, in which locality the numerous specimens before us were taken. A small specimen $1 \frac{1}{2}$ inches long, with light spots on the colored side and a pale ocellation on the black of the tail, taken by Mr. L. Belding near Cape San Lucas, probably belongs to the same species.

Symphurus atricauda is very close to S. elongatus, and both might well be regarded as geographical varieties of S. plagusia.

131. SYMPEURUS PLAGUSIA.

(ACEDIA.)

Plagusia Brown, Jamaica, 445, No. 1. (Jamaica.)
Pleuronectes plagusia Bloch \& Schncider, Syst. Ichth., 1801, 162 (aftor Brown).
Achirus ornatus Lać pède, Hist. Nat. Poiss., iv, 659, 1803 (on a specimen " presented by Eolland to France").
Plagusia ornata Cuvier, Règne Animal, ed. ii.
Aphoristia ornata Kanp, Wiegmann's Archiv, 1858, 106. Guinther, iv, 490 (San Domingo, Jamaica). Poey, Synopsis, 1868, 409. Poey, Enumeratio, 1875, 140 (Havana). Kner, Novara Fische, iii, 292. (D. 90; A. 75; depth $3 \neq$ in length; Rio Janeiro.)
Plagusia te8scllata Quoy \& Gaimard, Voyage Uranie, Zoologie, 240, 18 id (Rio Janeiro).
Plagusia brasiliensis Agassiz, Spix Pisc. Brasil., 1827, p. 89, tab. 50. (Brazil.)
Aphoristia plagiusa Jordan, Proc. U.S. Nat. Mus., 1886, 53. (Havana.) (Not S. plagiasa of this paper.)
Habitat.-West Indian fauna (south to Rio Janeiro).
The numerous specimens of this species examined by us are from Ha vana, Pernambuco, Santos, Rio Janciro, Curuça, and Victoria.

The synonymy of this species is somewhat doubtful. The original type of Pleuronectes plagiusa was sent to Linnæas by Dr. Garden, of Charleston. It would therefore appear probable that this specimen represented the species of this genus which is found on the Carolina coast. But this typical specimen is still preserved in the rooms of the Linnæan Society in London, where it has beeu examined by Goodo and Bean.

From their notes (Proc. U. S. Nat. Mus., 18S5̃, 196) we quote: "The type of this species may have come from Africa or India. There is considerable doubt as to its origin. (See Garden's Correspondence with Linné, page 314.) D. ca 92, A. ca 80. Scales 77. The species is more elongate than our specimens of Aphoristia plagiusa, so called, the depth being contained in the total longth withont candial $4 f$ times and the head 6 times."

As, howevor, no species of this gemus are yet known from Africa or India, it is rather probable that Garden's fish actually came from

Charleston. The greater slenderness of the original tspe is perhaps due to distortion, and the smaller number than usual of the scales does not afford a marked distinction.

On account of the fact that the West Indian species as a rule is a little slenderer than the northern oue and has a little larger scales, Dr. Jordan has elsewhere adopted for the former the Linnaau name, but, on the whole, it seems more probable that the original plagiusa was the northern fish.

The name ornotus is also doubtful in its proper application. The only thing distinctive in the description of Lacopede is that the typical specimen was "given by Holland to Frauce." Many of the species in this Dutch collection seem to have come from Surinam, and this is probably no excoption. But Lacépede's description might apply as well to any other species of Symphurus as to this.

The name Pleuronectes plagusia, given by Schueider to the species doscribed by Brown, seems to admit of no doubt, as this is the only one of the group yet known from Jamaica. If, therefore, the name plagiusa be used for the northern species, or dropped altogether as not identified, the present species will stand as Symphurus plagusia.

We have compared numerous specimeus from Rio Janeiro (representing the nominal species tessellatus or brasiliensis) with others (plagusia $=$ ornata) from Havana. There is certainly no permanent difference. The Brazilian specimens are a little more slender on an average, but there are numerous exceptions, and all variations in color are found in both.

132. SYMPHURUS PLAGIUSA.

(Tongue-fish.)
a. Var. plagiusa.

Pleuronectes plagiusa Liunœus, Syst. Nat., ed. xii, 1766, 455 (on a specimen from Dr. Garden, probably from Charleston, but the locality not quite certain; and of rarious copyists).
Glossichthys plagiuba Gill, Cat. Fish. E. Coast N. Am., 1801, 51 (name only).
Plaguria plagiusa Gill, Cat. Fish. East Coast N. Am., 1872-'3, 794 (uamo only).
Aphoristia plagiusa Jordan \& Gilbert, Proo. U. S. Nat. Mas., 1878, 368 (Beaufort). Jordan, op. cit., 1880, 22 (St. John's River). Jordau \& Gilbert, op. cit., 1882, 305 (Pensacola) ; 1882, 618 (Charleston). Jordan \& Gilbort, Synopsis Fish. N. A., 1882, 842. Jordan, Proc. U. S. Nat. Mus., 1884, 144 (Key West).
Plagusia fasciata Holbrook, MSS. De Kay, New York Fauna; 「ishes, 1842, 304 (Charleston).
Aphoristia fasciata Jurdau, Proc. U. S. Nat. Mus., 1886, 53.
b. Var. pusillus.

Aphoristia puzilla Goode \& Boan, Proc. U. S. N. Mus., 1885, 590 (Gulf Stroam; lat. 40°).
c. Var. diomedeanus.

Aphoristia diomedeana Proc. U. S. Nat. Mus., 1835, 589 (Gulf of Mexico; 24 fathoms).
Habitat.-South Atlantic and Gulf coasts of the United States.

This species is very common on the sandy shores of our South Atlantic and Gulf States. Our numerous specimens are from Beaufort, Charles. ton, Pensacola, and Key West.

The reasons for continuing to regard this species as the original Pleuronectes plagiusa of Tinumus, are given under the head of Symphurus plagusia.

If however, the name plagiusa be referred to the West Indian form or dropped as unidentifiable, the name fasciatus would theu hold for this species.

The characters distinguishing elongatus, atricauda, plagusia, plagiusa, pusillus, and diomedeanus are of slight value, aud doubtless all will ultimately prove to be varicties of a single one, the coloration of the fins being more marked in southern specimens.

A specimen nearly six inches long collected at Beaufort, N. C., by Prof. O. P. Jenkins seems referable to pusillus rather than to the typical plagiusa. It is highly mottled in coloration, the body and tins being profusely speckled aud blotched with blackish besides 9 or 10 rather distinct cross-bands. 1). 85, A. 72. Scales about S0. Depth 3: in length.

Another large specimen 7 inches long from the Florida Keys is in the museum at Cambridge. This has: D. 82, A. 72, lat. 1. 76. Depth 3 in length. Color brown almost plain, except that the fins are mottled, especially posteriorly; candal fin not black.

If these two specimens are really typical of Symphurus pusillus, it probably cannot be separated as a species from S. plagiusa.

The form called diomedeanus is known to us from the description only. It is certainly very similar to S. plagiusa. Perhaps it is identical with our Key West specimens of the latter. These are very pale, and nearly plain gray, as would be expected in fishes taken from the coral sands.

133. SYMPHURUS PIGER.

Aphoristia pigra Goodo \& Bean, Bull. Mus. Comp. Zool., xiii, 5, 1886, 154 (St. Kitts, Key West, Cedar Keys, in about 250 fathoms).

Habitat.-West Indies and Gulf of Mexico, in deep water.
This species is known to us from the original description. It is evidently a better defined species than are most of the others.

134. SYMPHURUS NEBULOSUS.

Aphoristia nebulosa Goode \& Bean, Bull. Mus. Comp. Zool., xix, 1883, 192 (Gulf Stream, off the coast of Carolina). Acedia nebulosa Jordan, MSS.

Habitat.-Gulf Stream.
This species is known from the original account only. The description would indicate a species considerably unlike those forming the rest
of the geuus. If its scales are really keeled it may form the type of a distinct genus. The increased number of fin-rays also indicates a probability that the number of vertebre will be found to be similarly increased. For the subgenus of which this is the type, we hare sug. gested the name of Acedia.

LARVAL FORMS.

(Bibronife.)
The very young of all the Plewronectida so far as known are transparent and with the eyes symuntrical. At a length of from one-fourth of an inch to an inch the eje of one side moves by degrees to the other side, where it becomes the upper cye. The question has been much discussed as to how this change comes about-whether by a twisting of the head so that the eye moves over the line of the protile, whether by passing from side to side beneath the frontal bone, or by passing between the frontal bone and the bases of the dorsal rays, or whether by each of these methods in different genera. The present writers have had no opportunity to make any observations on this point, the statements which follow being entirely drawn from others, chiefly from the papers of Dr. Luigi Facciola.*

According to Prof. Japetus Steenstrup, tho has examined some " plagusiiform" specimens (Symphurus?) about 25 millimeters in leugth, the eye, by a combined movement of rotation and translation, goes from its original position to the other side by passing under the frontal bone.

In other flounders-examined by Prof. Alexander Agassiz the eye is said to have crossed from side to side above the frontal bone, penetrating the space between this bone and the dorsal fin by sinking into the tissues of the head. In the species examined by Dr. Facciolia the eye was found to pass between the frontal bone and the dorsal rays, but without penetrating any tissues. During the passage of the eye the first dorsal ray formed a projection detached from the cranium, and in the notch between this and the head the eye has passed from one side to the other.

It has not been easy to determine with cortainty the species to which these larval forms belong. The first of these which were known were described by Cocco as distinct genera, allied to the flounders, but distinguished from them by the symmetrical arrangement of the eyes. For the group thus defined Bonaparte has proposed the family name of Bibronidi (Bibroniida), and this name has beon adopted by some of the Italiau ichthyologists.

[^44]Lately the relations of these forms have been made the subject of careful study by Dr. Carlo Emery, Dr. Luigi Facciola, and others of the Italian naturalists, and no doubt remains that the "Bibroniida" are larval flounders and soles.

For the sake of completeness, we give the following analysis of the nominal genera and the synonymy of the species:

ANALYEIS OF THE NOMINAI, GENERA OF BIBIRONIN OR LARVAL FLOUNDERS AND SOLEG.
a. Eyes wholly sinistral ; mouth toothless, shaped as in the soles; uppor jaw hookshaped; head very small; caudal fin subsessile, free from the dorsal and anal; scales small, caducous, cycloid; eyes small; pectoral fins both present, the right pectoral small; ventral fins both present, free from anal; dorsal fin of long, simple rays, their tips much exserted; body moderately elongate ; the depth 3 in length; dorsal rays 100; anal rays 80. P. 12-4.

Delothyris, A.
aa. Eyes partly sinistral, the one on the left side, the other on the vertex (in the act of transition) ; form pleuronectoid............................Coccolus, B.
aaa. Eyes, one on either side of the head; strictly symmetrical (or with the right eye somewhat higher than the other), and with a notch before it, between the cranium and the dorsal fin.
b. Vertical fins scarcely or not confluent; left ventral largest, on abdominal ridge. c. Body excessively compressed, broadly ovate, its depth 1 if in its length; both profiles very convex; the, snout not forming an angle; no scales; none of the dorsal rays prolonged; ventral fin single (Facciola); pectoral fineshort, rounded, with fleshy base and fringe-like rays; D. 85 ; A. 65 . Jaws equal, with small, acute teeth

Peloria, C.
cc. Body more elongate; seales present or alssent; pectorals adipose, with fringelike rays.
d. Ventral fin single; first four rays of the dorsat well separated and with much exserted tips; dorsal and anal slightly joined to caudal; dopth about $4 \frac{1}{\frac{1}{2}}$ in length ; D. 4, 106; A. 100. (Émery) ? Cluarybdia, D. $d d$. Ventral fins both prosent, the left ventral with more prolonged base; dorsal with ouly the tirst ray (if any) prolonged; dorsal and anal free from caudal ; depth 24 to 2 in length (Facciola)....................Charybida, D. bb. Vertical fins fully confluout; form lanceolate.
e. Body linguiform, the depth 6 in length; no teeth; snout oltuse; eyes minute ; ventral fine two; four or five of the dorsal rays produced; pectorals pedunculate. D. $90 ;$ A. 80 \qquad . Bibronia, E.
ee. Body plagusiiform; perfectly trausparont.
Bascanius, F.

Synonymy of genera of larval Pleuronectida or Bibronia.

Bibronia Cocco, "Intorno ad alcuni Pesci dol mare di Messina. Lettera al Sig. Augusto Krohn da Livonia. In Giornale del Gabinetto \& Lettere di Messina. Ann. iii, tom. v, fasc. xxv. Gennaio e febbraio 1844, pag. 21-30, tav. 2" (fide Facciola) (ligulata).
Peloria Cocco, l. c. (hacckeli).
Coccolus (Bouaparte) Cocco, I. c. (annectens).
Bascanius Schiödte, Naturhist. Tidsskr., v, 269, 1867 (todifer).
Thyris Goode, Proc. U. S. Nat. Mus., 1880, 344 (pellucidus: name preoccupied).
Delothyris Goode, Proc. U. S. Nat. Mus., 1883, 110 (pellucidus).
Charybdia Facciola, Nataralista Siciliano, iv, 265, 1885 (rüppclli).

1. DELOTHYRIS PELLUCIDUS.

Thyris pellucidus Goonle, 1'roc. U. S. Nat. Mus., 1880, 337, 344, 475. (Gulf Stream, off
Rbode Island). Jordan \& Gilbert, Synopsis Fish. N. A. 1REP, 8.10 (copied). Delothyris pellucidus Goode, Proc. U. S. Nat. Mus., 1883, 110.

This fish is unquestionably a larval form, but probably tho adult is not yet known. In some respects it resembles Monolene, in others it seems allied to tho Cynoglossince. Tho type was nearly three inches in length.

2. COCCOLUS ANNECTENS

Coccolus annectens (Bonaparto) Cocco, l. c., 1844 (Mossina).
This species has not yot been described in detail, but from the form of the body it would seem to resemble most closely the young of Platophrys podas.

3. PELORIA HACKELI.

Peloria hackeli Cocco, 1. c., 1844 (Messina). Emery, Contribuzione all' Ittiologia, 405 (Naples). Faccioli, Nut. Sicil., $1885,5$.
The specimens of this species described by Facciold are 20 to 36 mm in lengtl. According to Facciold,* it can be confounded with no known species of Pleuronectoid. Dr. Emery has maintained that it is the young of Platophrys podas, and his figure and description seem to render this determination almost certain.

4. CHARYBDIA. (Species.)

Peloria rüppelli Emery, Contribuziono all' Ittiologia (Naples).
The description given by Dr. Emery of P. riuppelli diverges so widely from that given by Dr. Facciola, that the identity of the two may be questioned. If, as is possible, the pectorals in the achirous forms disappear with age, this species may belong to the Cynoglossincc. More likely, it is a relative of Arnoglossus, or of Monolene.

5. CHARYBDIA RÜPPELLI.

Peloria rüppelli Cocco, l. c., 1844 (Messina).
Charybdia riuppelli Facciola, Nat. Sicil., 1885, 5 (Mossina).
This is probably the young of some species as jet unknown in the adult condition. Some of its characters suggest Arnoglossus ventralis.

According to Facciola, the body is naked; the form oval; the month as long as the eye; right eye higher than left; first dorsal ray only prolonged; no scales; left ventral with its base longer than the right; length 30 to 40 mm . D. 113, A. 91 .

[^45]
6. CHARYBDIA RHOMBOIDICETEYS.

Charybdia rhomboidichthys Facciolia, Nat. Sicil., 1885, 6 (Messina).
Form, oval; the two outlines similar; snout, obtase, somewhat prominent; teeth, insensible; eye, $4 \frac{1}{2}$ in head, the right a little above the left; noue of the dorsal rays prolonged; scales, cycloid, thin; lateral line without arch; length 40 mm . D. 99 , A. 74, V. 6.

This form seems to be allied to Syacium and Arnoglossus.

7. BIBRONIA LIGULATA.

Bibronia ligulata Cocco, l. c., 1844 (Messina). Facciela, Nat. Sicil., 1885, 4 (Mensina).
This form is known from specimens one-third of an inch in length. If we suppose that in Symphurus the pectoral fins become atrophied with age, this may well be the larva of Symphurus nigrescens.

8. BASCANIUS TADIEER.

Bascanius tedifer Schiörlte," Naturhist. Tydsskrift, v, 269, 1867" (Oceanic).
We have not seen the original description of this form, but from the references made to it by other authors it would appear to be a larval Symphurus.

RECAPITULATION.
The following is the list of the genera and species of flounders now recognized by us as occurring in the waters of North America and Europe:

The general distribution of each may be indicated by the following letters:
E. Europe (North of Spain).
M. Mediterranean Sea.
B. Bassalian or deep-sen fauna of the Atlantic.
G. Greenland fauna.
N. East coast of United States; Cape Cod to Capo Hattoras.
S. South Atlantic and Gulf coast.
W. West India fauna.
R. Brazilian fauna (Rio).
T. Patagonian fauna (Terra del Fuego).
P. Panama fauna.
V. Chilian fauna (Valparaiso)
C. Californian fauna.
A. Alaskan fauna.

1. Atheresthes (Jordan \& Gilbert).
2. Atheresthes stomias (Jordan \& Gilbert). A.
3. Platysomatichthys Bleoker.
4. Platysomatichthys hippoglossoides (Walbaum). G.
5. Hippoglossus Cuvier.
6. Hippoglossus hippoglossus (Linnæus). E. G. A.
7. Lyopsetta Jordan \& Goss.
8. Lyopsetia exilis (Jordin \& Gilbert). A.
9. Eopsetta Jordan \& Goss.
10. Lopretta jordani (Lockington). C.
11. Hippoglossoides Gottschs.
12. Hippoglossoides platessoides (Fabricius). E. G.
$6(b)$.———— var. limandoides Bloch. E. G.
13. Hippoglos8oides elassodon Jordan \& Gilhert. A.
14. Psettinhthys Girard.
15. Psettichthys melanostietus Girard. C. A.
16. Hippoglossina Steiudachner.
17. Hippoglossina macrops Steindachuer. P.
18. Hippoglossina microps (jiinther. V.
19. Xystreurys Jordan and Gilbert.
20. Xystreurys liolcpis Jordan \& Gilbert. C.
21. Paralichthys Girard.
22. Paralichthys californicus (Ayres). C.
23. Paralichthys brasiliensis (Ran\%ani). R. W.
24. I'aralichthys adspersus (Steindachner). P. V. (l'ossibly to be called P. kingi.)*
25. Pavalichthys dentatus (Linnous). N. S.
26. l'aralichthys lethostigma Jordan \& Gillert. N. S.
27. J'aralichthys squamilentus Jordan \& Gilbert. S.
28. Paralichthys albigutta Jordnu \& Gilbert. S.
29. Paralichthys patagonicus Jordan. T.
30. Paralichthys oblongus Mitchill. N.
31. Ancylopsetta Gill.
32. Ancylopsetta quadrocellaia Gill. S.
33. Ancylopsetfa lilecta (Goodo \& Bean). 13 .

Subfamily II.-PLEURONECTIN开.

12. Phrynorhombus Günther.
13. Pluynorhombuy regins Bonnaterre. M. E.
14. Zeugopterus Gottscho.
15. Yengopterus punctatus (Bloch). E.
16. Lepidorhombus Guinther.
17. Lepillorhombus whiffiagonis (Walbaum). Iis.
18. Lejidorhombus norvegicus (Giinthor). E. (Doubtfal species.)
19. Citharus Bleeker.
20. Citharus linguatula (Linnaus). M.
21. Pleuronectes (Linmons) Floming.
§ Pleuronectes.
22. Fleuroneotes maximus Limmous. E. M.

28 (b). ——— var meoticus (Pallas). M. § Bothus Ratinesque.
29. Pleuronectes thombus Linnaus. E. M.
30. Pleuroncotes maculatus Mitchill. N.

[^46]17. Arroglossus Mleeker.

8 Arnoglos8us.
31. Arnoglossus lophotes Günther. M. (Doulttful species; perhaps identical with A. grohmanni-perhaps with Bothus imperialis Ratinesquo.)
32. Arnoglessus grohmanni (Bonaparte). M.
33. Arnoglossus conspersus (Canestrini). M. (Donbtinl species; probably same as the next.)
34. Arnoglossus laterna (Walbaum). M. E.

$$
\$ \longrightarrow
$$

35. Arnoglossus \ddagger fimbiatus (Goode \& Bean). B. (Probably type of a distinct gonus.)

$$
s .
$$

36. Arnoglossus ? rentralis (Goode \& Jean). 13. (Perhaps type of a distinet genus.)
37. Platophrys Swainson.
38. Platophrys podas (Delaroche). M.
39. P'latophrys spinosus (Poey). W. (Doubtful spocics.)
40. Platophrys constellatus Jordan. Y.
41. Platophrys ocellatus (Agassiz). S. W. IR.
42. Platophrys maculifer (Pooy). W. (Synouyny doubtful.)
43. Platophrys ellipticus (Poey). W. (Doulstfinl species.)
44. Platophrys lunatus (Linusus). W. R.
45. Platophrys leopardinus (Günther). P.
46. Syacium Ranzani.
47. Syacium cornutum (Ginther). R.
48. Syacium papillosum (Linnwus). S. W.R.
49. Syacium micrurum (Ranzani). S. W.R.
50. Syacium latifrons (Jordan \& Gilbert). P.
51. Syacium ovale (Giinther). P.
52. Azevia Jordan.
53. Azevia panamensis Steindachner. P.
54. Citharichthys Bleeker.
\oint Orthopsctta Gill.
55. Citharichthys sordidus (Girard). C.
56. Citharichthys stigmeu8 Jordan \& Gilbert. C. (Doubtful specio8.)
§ Citharichthys.
57. Citharichthys dinoceros Goode \& Beau. B.
58. Citharichthys arctifrons Goode. B.
59. Citharichthys unicornis Goode. B.
60. Citharichthys macrops Dresel. S.
61. Cithariolthys uhleri Jordan. W.
62. Citharichthys spiloplerus Giinther. S. W.P. R.
63. Citharichthys sumichrasti Jordan. P.

59 (b). "Citharichthys microstomus Gill. S.
22. Etropus Jordan \& Gilbert.
60. Etropus ectenes Jordan. V.
61. Etropus rimosus" Goode \& Boan. S.
62. Etropu8 crossotus Jordan \& Gilbort. S. W.P.R.

[^47]23. Thysanopsetta Giunther.
63. Thysanopsetta naresi Günther. T.
24. Monolene Goode. (Genus of uncertain rolationships.)
64. Monolene sessilicauda Goode. 1 B.
65. Monolene atrimana Goode \& Beav. 1 .

Subfamily III.-0NCOPTERIN屈.

25. Oncopterus Steindachner.
26. Oncopterus darwini Steindachner. ' $Г$.

Subfamily IV.-PLATESSIN屈.

26. Pleuronichthys Girard.
27. Pleuronichthys decurrens Jordan \& Gilbert. C. A.
28. Pleuroniohthys verticalis Jordan \& Gilbert. C. A.
29. Pleuronichlthys ceenosus Girard, C. A.
30. Hypsopsetta Gill.
31. Hypbopeetta guttulata (Girard). C.
32. Parophrys Girard.
33. Parophrys vetulus Girard. C. A.
34. Inopsetta Jordan \& Goss.
35. Inopsetta isohyra (Jordan \& Gilbert). A.
36. Isopsetta Lockiugton.
37. Isopsetta isolepis (Lockington). A. C.
38. Lepidopsetta Gill.
39. Lepidopsetta bilincata (Ayres). C.

74 (b). unlrosa (Girard). A.
32. Limanda Gottsele.
75. Limanda ferruginea (Storer). G.
76. Limanda limanda (Linnwus). E.
77. Limanda aspera (Pallas). A.
78. Limanda beani Goode. 13.
33. Pseudopleuronectes Bleeker.
79. Pseudopleuronectes antericanus (Walbaum). N.
80. Pseudopl curonectes pinnifasciatus (Kner). A. (Gencric relations uncer tain.)
34. Platessa Cuvier.

§ Platessa.

81. Platessa plate88a (Limame). E. M.

81 (b). ——— preudoflesus (Gottsoho). E.
82. Platessa quadrituberculata (Pallab). A.
§ Flesus Moreau.
83. L'latersa flesus Limmens. E. M.
$8: 3$ (b). ———— glabra (Rathke). M.
35. Liopsetta Gill.
84. Liopsetta duinensis (Lilljoborg). E. (Donltful specios, probably identical with L. !lacializ.)
89. Liopsetta pulumini (Gill). N. (Probably illoutical with tho noxt.)
86. Liopsella glacialis (Pallas). A.
36. Platichthys Girarid.
87. Platichthys stellatus (Pallas). A. C.
37. Microstomus Gottsche. (To be called C!yicoglossus if Microstomus be deemed prooceupied.)
88. Microstomus kitt (Walbaum). E.
89. Microstomus pacificus (Lockington). A.
38. Glyptocephalus Gottsche.
90. Glyptocephalus cynoylossus (Linnuns). E. G.
91. Glyptocephalus $\approx a c h i r u s$ (Lockington). A.

Subfamily V.-SOLEIN屈

39. Solea Quourel.

> Solca.
52. Solea bolea (Limmens). E. M.
93. Solea capellonis (Steindachner). M. (Doubtful species.)
94. Solea brasilicnsis (Cuvior). R. (Species unknown to recont writers.)
. § Pegusa Giinther.
95. Solea kleini (Risso). M.
96. Solea aurantiaca (Giinther). E. (Doubtful specios.)
97. Solea lascaris (Risso). M. (Synonymy doubtful; perlaps to be called S. scriba.)
98. Solca theophila ($\dot{R} i s s o$). M. (Symonymy somewhat donbtful.)
99. Solea variolosa (Kner). R.
40. Monochirus Rafinesque.
§ Quenselia Jordan.
100. Monochirus ocellatus (Linusous). M.
$\$$ Microchirus Bonaparto.
101. Monochirus luteus (Risso). M.
102. Monochirus variegatus (Donovan). M. E.
103. Monochirus minutus (Parnell). M. (Doubtfal spocios.)
§ Monochirus.
104. Monochirus lispidus Ratinestue.
41. Achirus Lacépède.
§Baiostoma l3oan.
105. Achirus achirus (limmens). W. R. (Possibly to be cailud A.gronovii.)
106. Achirus inscriptus (Giosse). W.S.
107. Achirus klunzingeri (Steindachnor). P. V.
108. Achirus mentalis (Günthor). IR.
109. Achirus lineatus (Linnsous). S. W. R.

109 (b). —————brachialis (Bean). S.
109 (o). ———memifer (Jordan \& Gilbort). S.
110. Achirus mazallanus (Steivilachner). P.
111. Auhirus fonsecensis (Giinther). I.
112. Achirus punctifer (Castelnau). R.
113. Achirus scutum (Xiinther). P.
114. Aohirue !armani (Jordan). l2.
\oint Achirns.
115. Achirus fmbrialun (Giinther). P.
116. Achirus fasciatus (Lacepede). N. S.
117. dohirus pamamensis (Steindachmor). P'.
118. Aohirus jenynsi (Gïnther). I2.

118 (b). Achirus lorentzi (Weyenborgh). R. (Spocies unknown to us.)
22. Gymuachirus Kallp.

1!9. Gymnachiruy fascialus (Giinther). R.
120. Gymnachirus nudus (Kaup). R.
43. Achiropais Stcindachner.
121. Achiropsis nattereri (Stoindachner). R.
122. Achiropsis asphyxiatus (Jordan). 1s.
44. Apionichthys Kaup.
123. Apionichthys unicolor (Giinther). W. R. (Synonymy a little nucortain.)
124. Apionichthys ottonis (Stoindachner). M. (Doubtful species.)
45. Brachirus Swainson. (To be called Synaptura if Brachirue be regarded as preoc cupied.)
125. Brachirus savignyi (Kaup). M.
120. Brachirus lusitanicus (Capello). M. (Species unknown to us.)

46. Symphurus Rafinesque.
§Synzphurus.
47. Symphurus uigrescens (Rafinesque). M.
48. Symphurus, marginatus (Goode \& Bean). W.
49. Symphurus clongatus (Giinther). P.
50. Symphurus atrioauda (Jordan \& Gilbort). C.
51. Symphurus plaguzia (Bloch \& Sclueider). W. R.

13\%. Symphurus plagiusa (Linnzay). S.
132 (b). ———putillus (Goode \& Bean). S.
132 (o). ———diomeditanus (Goode \& Bean). S.
133. Symphurut piger (Goode \& Beau). W.
§ Acedia Jordan. (Probably a distinct genus.)
134. Symphurus ucbulosus (Goodo \& Bean). W.

LARVAL FORMS. (Bibrotia.)
A. Delothyris Goodo.

1. Delothyris pellucidus (Goodo). \mathbf{B}.
2. Coccolus Bonaparto.
3. Coccolus anncetens (Bomaparte). M.
C. Prioria Cocco.
4. Peloria hackeli (Coceo). M.

D. Charyinda Facciola.

4. Charybdia sy. (Lmery). M.
5. Charybdia riippelli (Cocco). M.
(6. Charybdia rhomboidichthys (l'accioli). M.
e. Bibronia Cocco.
6. Bibronia ligulata (Coceo), M.
li. Bascanics Schioudte.

ษ. Rascamiax fedifu (schiödte). IB.
Indiana Univiersity,
Bloomington, Ind., July 10, 1887.

LIST OF PLA'TES.

Plate I.
Page.
Fig. 1.-Atheresthes stomias Jordan \& Gilbert. The Arrow-toothed Halibut.... 12
2.-Platysomatichthys hippoglossoides Walbaum. The Greenland Halibut.. 13
3.-Hippoglossus hippoglossus Linnaeus. The Halibut........................... 13

Plate if.
4.-Hippoglossoides platessoides Fabricius. The Sand Dab.................... 16
5.-Hippoglos8oides classodon Jordan \& Gilbert. 'The Alaska Saud Dab. 17
6.-I'settichthys melanostictus Girard. The San Fraucisco "Sole"............ 17

Plate ili.
7.-Paralichthys lethostigma Jordan \& Gilbert. The Sonthern Flounder.. 23
8.-Paralichthys oblongus Mitchill. The Four-spotted Flounder 25
12.-Limanda ferratinea Storer. The Rusty Dal.................................. 63

Plate IV.
9.-Pleuroncctes maximus Linuaus. The Turbet (left side)................... 33
10.-Pleuronectes maximuts Linnæus. The Turbot (right side)................ 33

Plate V.
11.-Lepidopsetta bilineala Ayres. Var. umbrosa Girard. The California
"Sole"..
68
13.-Limanda aspera Pallas. The Alaska Rusty Dab............................ 64

Plate VI.

Plate Vil.
16.-Liopsetta putnami Gill. The Eel-back Flounder (malo)................... 70
17.-Liopsctla glacialis Pallas. The Alaska Lel-back Flounder (female).... 71

Plati: Vili.
18.-Platichthys stellatus Pallas. Tho Great California Founder............. 72
19.--Glyptocephalus cynoglossus Limmeus. The Pole Flounder 76
20.-Solea solea Linueus. The Sole (right side) 79
leate IX.
21.-Solea solen Limatus. The Solo (left side).................................... 79
$22 .-A c h i r u s$ fasciatus Lacépidc. The American-Sole, or "ILog-chokor"
(right side).. 91

FIG. 1.-ATHERESTHES STOMIAS Jordan \& Gilbert. The Arrow-toothed Halibut. (From No. 27186 : Point Reyes, California.)

Fig. 2.-Platysomatichthys hippoglossoides (Walbaum). The Greenland Halibut.

FIG. 3.-HIPPOGLOSSUS HIPPOGLOSSUS (Linnæus). The Halibut.
(No. 10439: Eastport, Maine.)

FIG. 4.-HIPPOGLOSSOIDES PLATESSOIDES (Fabricius). The Sand Dab.. (No. 21002: Le Have Bank.)

FIG. 5.-HIPPOGLOSSOIDES ELASSODON Jordan \& Gilbert. The Alaska Sand Dab.
(No. 27938: Humboldt Harbor, Shumagins, Alaska.)

FIG. 6.-PSETTICHTHYS MELANOSTICTUS Girard. The San Francisco "Sole."
(No. 27602: San Francisco, California.)

Fig. 7.-Paralichthys Lethostigma Jordan \& Gilbert. The Southern Flounder. (No. 21279: Saint John's River, Florida.)

Fig. 8.-Paralichthys oblongus (Mitchill). The Four-spotted Flounder.
(No. 10730: Wood's Holl, Massachusetts.)

Fig. 12.-Limanda ferruginea (Storer). The Rusty Dab.
(No. 21020: Halifax, Nova Scotia.)

Fig. 9.-Pleuronectes maximus Linnæus. The Turbot.
(From No. 36902 : Europe.)

Fig. 10.-Pleuronectes maximus Linnæus. The Turbot. (From No. 36902 : Europe.)

FIG. 11.-LEPIDOPSETTA BILINEATA (Ayres.) The California "Sole."
(Var. umbrosa Girard.)
(No. 27602: Saint Paul, Kodiak.)

Fig. 13.-LImANDA ASPERA (Pallas). The Alaska Rusty Dab.
(No. 27944 : Sitka, Alaska.)

Fig. 14.-PSEUDOPLEURONECTES AMERICANUS (Walbaum). The Flat Fish, or Winter Flounder.

Fig. 15.-PLATESSA PLATESSA Linnæus. The Plaice. (From No. 21175 : France.)

FIG. 16.-LIOPSETTA PUTNAMI (Gill). The Eel-back Flounder (male). (No. 5368: Salem, Massachusetts.)

FIG. 17.-LIOPSETTA GLACIALIS (Pallas). The Alaska Eel-back Flounder (female).
(No. 27497 : Kotzebue Sound.)

Fig. 18.-PLATICHTHYS STELLATUS (Pallas). The Great Californa Flounder.
(From a reversed example.)
(No. 24164 : San Francisco, California.)

'FIG. 19.-GLYPTOCEPHALUS CYNOGLOSSUS (Linnæus.) The Pole Flounder. (Atlantic.)

FIG. 20.-SOLEA SOLEA Linnæus. The Sole. (From No. 17324: Helsinburg, Sweden.)

Fig. 21.-Solea solea Linnæus. The Sole.
(From No. 17324: Helsinburg, Sweden.)

Fig. 22.-Achirus fasciatus Lacépede. The American Sole, or "Hog Choker." (No. 12985: Wood's Holl, Massachusetts.)

FIG. 23.-Achirus fasciatus Lacépède. The American Sole, or "Hog Choker." (No. 12985 : Wood's Holl, Massachusetts.)

INDEX.

[Notr.-Tho reforences are to page-tigures in brackets.]

Etropus 4, 9, 53, 54, 55, 108
crossotus................. 3, 43, 53, 54, 55, 108
ectones....................................53, 108
microstomus. 3, 53, 54, 55
rimosus54, 108
Eucbalarodus 67, 70
putnami 69, 71
Euryglossa... 06
Euryploura ... $\boldsymbol{\theta}_{6}$
Flевия 5, 31, 66, 67, 109
vulgaris...
Glossichthys................................... 07
plagiuвa.......................... 101
Glyptocephalus....................10, 31, 73, 74, 76, 110
acadianụs 77
cynoglossus3, 76, 110
elongatus 77
pacificus..................... 75
saxicola....................... 76
zạchirus3, 76, 77, 110
Grammichthys.................................. 84
lineatus 01
Gymnachirus5, 11, 03, 111
fasciatus:03,111
nudus............................. 93,111
Hemirbombus...................................35, 38, 44
athalion....................... 46, 47
aramaca 46, 47
fimbriatus...................... 38
fuscus........................... 52
guineӥ̆sis. 44
ocellatus 46, 47
ovalis 47
paitulus 46
soleaformı 45
Hetorodon .. 74
Heterodontus................................... 74
Hetoroprosopon 57
coruutus.... 57
Heterosomats. 1
Ifppoglosвіда4, 7, 18, 107
macrops18, 107
microps.........................18, 107
punctatissima................. 10
Hippogloвsinя.........................2. 4, 5, 0, 11, 100
Hippoglossoides4, 6, 7, 14, 15, 17, 18, 19, 61, 107
dentatus.................... 16
olassodon $6,16,17,107$
exilis......................... 14
jordani 15
limanda..................... 18
limandoides 10
molanostictus.............. 17
platessoides...............2, 10, 107
limandoides.. 16, 107
IIippoglossus
2, 4, 6, 13, 31, 100
anericanus 14
brasiliensis 22
cnlifornious 19, 21
gigre............................... 14
gronlandicus..................: 13
hippoglossus.................2, 13, 106
intermedius.................... 46
kingi22, 107

Page.
Pesudorhombus adspersus 22
brasiliensis 22
californicus 21
dentatus 20, 23, 24
oblongus 23
ocellaris 22
quadrocellatus 26
vorax 22
Pterophryne 74
Pterophrynoides 74
Pterophrynus. 74
Quassilabia 74
Quenselia 110
ocollata 83
Roinhardtius 12
hippoglossoides 13
Rhomboides. 41
Rhomboidichthys $1,38,39$
cornutus 45
ellipticus 43
loopardinus 44
lunatus 43
lunulatus 43
maculiferus 43
sameus 41, 103
nuyriaster 38
ocollatus 42
podas 41
spinosus 42
Rhomhosoles $\llbracket 6$
Rhombuy 5
aculeatus 33
aquospıs 34
aramaca. $22,45,40$
bahianus 43
barbatus 34
candidissimus 41, 42
cardina 28
diaphanus 41, 42
gesueri 41
hetorophthalmus 41
hirtus 28
hybridus 34
kleinii 80
lavis 34
coruubiensis 75
linnal 34
maculosus 21
madoirensis 41
mueoticus 33
maximus 33
megastoma 28
norvagicus 29
nudus 38
ocellatus 30, 42
polus 80
rhomhitis 33, 34
serratus 41
solerbformis. 45, 40
stellosus 33
torosus 83
unimaculatus. 26, 27
uniocellatus 27
vulgaris 2,5

III.-A REVIEW Of THE SCIANIDA OF america and Europe.

By David Starr Jordan and Cali M. Eigenmann.

In the present paper we have attempted to give the synonymy of the species of Scicnide found in the waters of North and South America and of Europe, together with analytical keys by which the genera and species may be distinguished. The paper is based on the collections in the museum of the University of Indiana, ou a large series belonging to the Natioual Museum, the most valuable part of this series being the collections made by Professor Gilbert at Mazatlan and Panama, and on the collections in the Museum of Comparative Zoology at Cambridge, Mass. This collection is especially rich in South American forms, and nearly all of our information regarding the South American species has been drawn from it. All the representatives of this family in the museum at Cambridge have been examined by the senior author of this paper, and for all statements regarding the South American species he is responsible.

We wish to express our special obligations to Prof. Alexander Agassiz, Director of the Museum of Comparative Zoology, and to Mr. Samuel Garman, curator of the fishes, for the free use of the material in the museum, and to Dr. Tarleton H. Bean for a loan of special desiderata from the United States National Museum. Through the aid of these two great museums we have been enabled to examine nearly all the species included in the present paper. The only species not seen by us are the following: Cestrous obliquatus, Larimus stahli, Scianna gilli, Sciœna heterolepis, Pachyurus francisci, Pachyurus schomburgki, Pachypops trifilis, Umbrina reedi, Lonchurus lanccolatus, and Eques pulcher, ten of the 113 species recognized.

There is room for much difference of opinion as to the proper subdivision of the Scionide into genera. There are few families in which the various types are more definitely joined together by intermediate forms than in the present oue. The subdivisions must be more or less arbitrary, or else the great bulk of all the species must be thrown into two genera, Scianna and Otolithus. Such an arrangement, however, tends to obscure the inter-relations of the species, and so we have adopted as distinct genera all the scibordinate groups which we are able to restrict and define by structural characters of some importance.

It is but fair to say, however, that the arrangement adopted is not entirely satisfactory to us. The genera recognized are not equivalent in value, and no subdivision is possible in which they can be made so. The species of Scianinae with long gill-rakers (Stelliferus, \&c.), and those with short ones (Sciena, \&c.) form together an almost perfect series. The characters on which the first of these groups is by us subdivided into distinct genera (dentition, armature of the preopercle, \&c.) cannot apparently be used for this purpose among the Scicana, as the gradation there is more perfect and the extremes less marked. It is quite true that a character may have a generic value in one section of a family and not in another, yet such generic characters of partial application should always be looked upon with question.

The Scicenida fall naturally into two suborders, which are well distinguished from each other, and, so far as we know, not connected by intermediate forms. These are the Otolithince and the Scionina. The extremes of the former group (Seriphus, Archoscion) have been of late usually set off as a distinct subfamily-Isopisthince. Dr. Bleoker has even removed this group, Isopisthinco, from the family of Scionidac altogether. There is no warrant for this arrangement. While Seriphus seems quite different from the other Otolithince, Arehoscion is intermediate between Seriphus and Cestreus, and from the latter it is scarcely to be distingaished generically, so perfect is the gradation in the series of species. At the opposite end of the series the genus Eques represents an aberrant form of the Scicenince, and another is represented by Aplodinotus and Pogonias. The differences existing do not apparently require the recognition of either of these groups as subfamilies, and we refer all to the Scianince.
The Scicenince constitute an irregularly graduated series, the characters changing by small and often scarcely perceptible gradations from the forms allied to Cestreus on the oue hand to those approaching Eques on the other.

We begin our series with the genus Seriphus, which is perhaps most nearly related to the other percoid forms, aud we close it with Eques, which stands at the opposite extreme from Seriphus. In passing down the series from Nebris and Odontoscion, the most Otolithus-like of the Scianince, to Scicna, Menticirrhus, Eques, and the other extreme forms, we find, as has been already stated, no very sharp line of division. The middle line, if we may so speak, lies between Bairdiella chrysoleuca and Scixena sciera, two species closely allied to each other.
Nothing could be more unnatural or more ineffective than the subdivision adopted by Cuvier, whereby the Scicnince without barbels are divided into three groups, Corvina, Jolnius, and Scicona, solely on the strength of the second anal spine. This is large in Corvina, very feeble in Scicona, and intermediate in Johnius. Günther's arrangement, by which the species referred to Johnius are divided between Corvina and

Scionn, is no better, as very many of the species have this spine neither large nor small, and could as well be placed in the one group as the other. Bleeker divides this group into Pseudoscicna, species with the mouth oblique and the jaws subequal, the lower jaw with the teeth of the inner row enlarged, and Jolnius with the mouth horizontal and the lower jaw included, the teeth of the lower jaw being in villiform bands. This arrangement is better than the other only in theory. The characters chosen are of more value as indicating relationship, but they cannot be applied in practice, as there are intermediate gradations of all sorts. The type of Pscudoscionn (Scicona aquila) is in fact much more nearly related to the type of Johnius than to most of the species associated with it in Pseudosciona.
Λs we proceed along the series of Scianince from Larimus towards Menticirrhus, the following changes are notable: In the Larimus type the pores on the snout are small and few, and there are no distinct slits or lobes oa the snout above the upper jaw; in the other type the pores become large and conspicuous, 4 to 6 in number, and the thickened snont above the upper jaw has two slits on each side, bounding two dermallobes. The mouth becomes smaller, narrower, more horizontal as we proceed towards Menticirrlus, the lower jaw shorter, and the bands of teeth in both jaws more and more broad, those in the lower more decidedly villiform ; the pores on the chin become larger and more numeroas, the number rising from 2 to 5 ; the lower pharyugeals become larger, and their teeth larger and less acute; the preorbital becomes wider and more gibbous, the gill-rakers shorter, fewer, and more like tubercles; the aual fin is placed farther forward, and the spines of the fins generally are less slender; the scales, as a rule, become rougher, and the rows of scales less regular in their direction. The flesh, as a rule, becomes firmer, coarser, less agreeable in flavor, and of less value as food, but this, like some of the other characters mentioued above, is subject to much variation.
It may be noted that in some Scicnidac the middle rays of the caudal are more produced in young specimens. In some also the serrations on the preopercle become weaker or even obsolete with age.

The two subfamilies recognized by us may be thus distinguished:

> ANALYSIS OF TIIE SUBFAMILIES OF SCIENID.EE.
a. Vertebre typically $14+10$, the number in the abdominal region always greater than that of the caudal ; lower jaw prominent; teeth not villiform; edge of preopercle ontire ; second aual spine weak and adnate to the first ray; the first spine minute and often obsolete ... OtoLithine, I.
$a a$. Vertebre typically $10+14$, the number in the caudal region always greater than that in the abdominal; second anal spine usually woll developed and usually joined to the first soft ray by a distinct membrane

Sclenine, II.

Subfamily I．－0TOLITHIN圧．

（Scicenida with the vertebre 14 or $15+10$ or 11 ，the abdominal por－ tion of the spinal column having always more vertebre than the caudal portion，the anal fin being posterior in its insertion；body wore or less elongate，the mouth large，the lower jaw projecting，the preopercle with a crenulate，membranaceous border；snout without distinct pores or slits；preorbital narrow；gill－rakers slender，moderate，or rather long； anal fin with one or two very weak spines，the second closely connected with the first soft ray；scales small，smoothish．）
a．Anal fin long，of 15 to 21 soft rays，its length more than lialf that of soft dorsal； dorsal fins more or less separated（soft dorsal and anal fins closely scaled）．
b．Teeth small，sharp，subequal，uniscrial below，in a narrow band above；no ca－ nines；anal and soft dorsal with 20 to 22 rays each，the former but little shorter thau the latter；dorsal fins woll separated；body compressed；scales large，ctenoid；gill－rakers long and slonder；caudal fin lunato．Seniphus， 1.
bb．Teeth larger，very unequal，tip of upper jaw with one or two stroug canines； enlarged teeth or canines on sides of lower jaw ；anal fin shorter than soft， dorsal，with 15 to 18 soft rays；dorsal fins more or less separated；body com－ pressed；scales rather smail，cycloid．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Arciroscion， 2.
aa．Anal fin moderate，or short，of 7 to 13 soft rays； 1 ts length less than half that of second dorsal ；dorsal fine coutiguous．
o．Canjne teeth，if present，not lance－shaped，tapering from base to tip．
d．Lower jaw without canines at its tip；some of its lateral teeth sometimes onlarged ；tip of upper jaw usually with canines．．．．．．．．．．．．．．．．．．．．．Cestrinus， 3.
dd．Lower jaw with a pair of very strong canines at its tip，larger than the canines at tip of upper jaw ；lateral tecth small ；body very slender ；anal fin small ；gill－rakers short．（Contains only Asiatic species．）．．．．．．．OTolithes．\dagger
cc．Caninc tecth lance－shaped，widoned toward the tip，thon abruptly pointed； canines of front of premaxillary largest ；about two canines on front of lower jaw on each side；outer teeth of upper jaw eularged，somewhat lance－ shaped；outer teeth of lowor jaw compressed ；air－bladder with two horn－ like processes；gill－rakers moderate，sleuder；（soft dorsal and anal fins scaly）．．Ancylovon， 4.

Subfamily II．－SCI正NIN尼．

（Sciounidee with the dorsal tins contiguous，the soft dorsal being long， much longer thau the anal；vertebræ 9 to $12+13$ to 20 ，typically $10+$ 14，the number of vertebra in the abdominal part of the body being always less than in the caudal part．）

[^48]a. Dorsal spiues well separated, the first dorsal spine *attached to the third or fourth interneural, not wore than two * of the spine-bearing interneurals being placed between the same pair of vertebre; soft rays of dorsal tin 17 to 32 (37 to 40 in Lonchurus, 45 to 50 in Sciunoides); occipital crest not greatly
b. Lower pharyngeals separate. elevated.
c. Lower jaw without barbels.
a. Caudal fin moderately scaly, its distal portion usually more or less naked, the scales not numerous enough to give a thickened appearance to the fin.
e. Teeth woll developed, permanent in both jaws.
f. Lower pharyngeals rather narrow ; their teoth covic and mostly sharp ; none of thom molar; outer teeth of upper jaw more or less enlarged.
g. Gill-rakers comparatively long and slender; mouth more or less oblique, anal fin usually (but not always) inserted posteriorly; preorbital usually varrow, flat; edge of snout above upper jaw with the pores and slits little conspicuous or obsolete.
h. Preopercle without bong teeth or serrations, its membrauaceous margin entire, crenulato or ciliate (two or three slonder spinules present in Collichthys); teeth of lower jaw in few series.
i. Skull excessively cavernous, soft and spongy to the touch, the interorbital space very broad; oye very small; mouth large, oblique; preopercle with a broad membranaceus border, which is striatod and fringed; scales small; spinous dorsal short aud weak; anal spines weak; oaudal fin pointed.
j. Pseudobranchim wanting; air-bladder with a lateral horn-like process on each side, this dividing into many brauches in the skin of a peritoneal membrane; both jaws with emall, unequal, canine-like teeth, those of tho upper jaw in the outer, of the lower jaw in the inner series; forehead very convex; soft dorsal very long, of 27 to 50 rays; anal fin small; pectoral finlong; gill-rakers $(\mathrm{X}+14)$ slender but rather short; lower jaw included; "vertebros $14+10$ " (Bleeker) ; "vertebras 12 $+12 "$ (Cuv. § Fal.). (Asiatic species.)

SCLENOIDES. \dagger

[^49]ji. Psendobranchix small ; air-bladder with a very complex structure, having many forking lranches on each side, these extending in a peritoneal membrane which surroands the viscera; no canine teeth; dorsal rays IX-I, 25 to 30 ; anal rays II, 8 to II, 11 ; the spine small; pectoral shortish; gill-rakers slender, not very long; preopercle with two or three stiff, slender spinules near its angle; top of head very convex in all directions; occipital crest high, its edge dontate; caudal finlanccolate. (Asiaticspecies.) Vertebræ $11+18 \ldots . . .$. Collicathys.*
$i j j$. Psendobranchiæ present; teeth subequal, all villiform, in narrow bands; soft dorsal long, of 30 to 35 rays ; anal fin rather long; soft dorsal and anal scaly; lower jaw projecting; vertebro $10+14$; gill-rakers long and slonder; air-bladder with two hornsNebris, 5.
ii. Skull firm, not excessively cavernous, interorbital space not very broad; preorbital not turgid.
k. Teetl minute, equal, chiofly uniserial or partly biserial above; snout very short ; cleft of mouth very oblique or even vertical, the lower jaw projecting.................. Lammus, 6.
$k k$. Tooth larger, more or less unequal, those in lower jaw mostly biserial, those of the inner series usually onlarged ; cleft of month more or less oblique but not vertical.
7. Scales of the lateral line similar to the others, not concealed by smaller ones; anal fin inserted more or less posteriorly, its first spine usually nearer caudal than ventrals, the tip of the last ray when depressed extending beyond base of last ray of dorsal; caudal peduncle rather short; pseudobranchia well developed.
m. Upper jaw with a single row of teeth, some of them enlarged, forming long canines; some canines in lower jaw; lower jaw projecting \qquad Odontoscion, 7.
nm. Upper jaw with a narrow band of teeth, those of the outer row more or less enlarged; no distinct canincsCorvula, 8.
ll. Scales of the lateral line considorably enlarged, almost entirely concealed by smaller ones; anal fin small, inserted well forward; its first spine usually as near ventrale as

[^50]caudal; caudal fin pointed, its podunclo long and slonder; soft dorsal and anal scaly; scales small ; psoudobranchise small, often obsolete on one side. (Fluviatile species.)

Plagioscion, 9.
hh. Preopercle with its bony margin armed with sharp teeth or sorre.
n. Head not very broad, the interorbital space convex, scarcely spongy.
o. Proopercle with its margin simply serrate; the lower spine not oularged; anal fin inserted well forward; caudal peduncle siender. (Species chielly African.) Pseddotolithus.*
oo. Preoporcle with its lowermost spine largest, directed abruptly downward. (Soft dorsal and anal fin morlerately scaly.)

Baindielea, 10.
nn. Head very broad above, the interorbital space flattish, excessively cavernous, the septa reduced to thin partitions; soft dorsal and anal fin usually densely scaly. second spine of dorsal usually thick; oned Stelliferus, 11. gg. Gill-rakers comparatively short and thick, usually not longer than posterior nostril; anal fin inserted farther forward; snout above lower jaw with large pores, and with two more or less distinct slits on its edge; these sometimes obsolete; preorbital more or less luroad; mouth more or less inferior.................. Sciana, 12. ff. Lower pharyngeals very broad, with coarse blunt molar teeth; tecth in both jaws subequal, in broad bands; preopercle with its bony margin coarsely serrate ; lower jaw included; snout with pores and slits as in Sciena; gill-rakers rather short and slender Roncador, 13.
ce. Teeth very small, suboqual, those in the lowerjaw wanting or deciduous; lower pharyngeals rather broad, with paved teeth; mouth small, inferjor; snout as in Soiana; preoperclo entire; anal fin long, with about 12 soft rays; gill-rakers shortish, rather slender Lieiostomus, 14.
dd. Caudal fin very densely scaly, the scalos so closely set and so numerons as to hide the rays and to give a thickened appearance to the fin; mouth small, with vory small, equal teeth in villiform bauds; proorbital broad, more or less turgid; preoperclo

[^51]sharply but finely serrate; gill-rakers very small, thickish; pores and slits on suout obsolete. (Fluviatile species.)................... Pachyurus, 15.
cc. Lowerjaw with one or more barbels, either at the sympbysis or on the rami ; snout with slits and pores as in Sciana; lower jaw included; preorbital broad; lower teeth in villiform bands; gill-rakers more or less short.
p. I'scadabranchio well develoned; pectoral fin not clongrate.
q. Lower jaw with slender luarbels, usually soveral in number.
r. Barbels mostly in a tuft at the symphysis of lower jaw; mouth very small, inferior; gill-rakers minuto, thickish; dorsal spines 10 or 11.
8. Preopercle sharply but finely sorrate ; preorbital turgid and cavernous, more or less translucent; caudal fin rhom. bic. (Fluviatile species.)

Pachypors, 16.
88. Preopercle without bony serro; preorbital very broad, but less distinctly cavernous Polycirrhus, 17.
rr. Batbols chielly lateral, along the rami of the lower jaw, usually none at the symphysis; lower pharyugeals narrow with sharp tecth.
t. Preopercle without bony serrse; dorsal spines 14 ; gill-rakers short, but rather slender Gin yonnmus, 18.
th. Preopercle with its bony margin armed with strong teeth ; dorsal spines 10 or-11; gill-rakers short, thickish. Microrogon, 19. qq. Lower jaw with a aingle thickish barbel at its tip. u. Air-bladder large; anal spinestwo; back more or less elevated; preopercle with its bony margin cronate or serrato; pectorals short, shorter than vontrals. (Free-swimming spocies.)

Umbrina, 20.
uu. Air-bladder none; anal spine single, weak; back not elovated ; proopercle with ite membranaceous edge crenulate; pectoral fins long, longer than ventrals. (Bottom fishes.)

Menticirrius, $2 l$.
pp. Pseudobranchice obsolvte; body long and low; caudal pointed; pectoral fin clongate: preoperclo without bony serratures.
u. Chin without barbels; a row of slonder barbols along innor odge of inandible; soft dorsal with about 30 rays.

Paralonchumus, 22.
vv. Chin with two short barbels, none on sides of mandible; soft dorsal with 37 to 40 raysLonchurus, 23.
bl. Lower pharyngoals very large, completely united, coverod with coarse blunt paved teeth; lower jaw included; snout with slits aud pores, as in Soirena; gill-rakers rather short.
w. Lower jaw with numerous barbels along the inner edge of the rami; preopercle nearly entire. (Marine species.) Pogonias, 24. wiv. Lowor jaw without barbels; preopercle obscurely serrate. (Fluviatile specios.) Aplodinotus, 25.
aa. Dorsal spines close together, the first spiue attached to the first interneural, and from 5 to 12 of the spine-bearing interneurals wodged in between the high occipital crest and the neural spine of the second vertebra on the one hand, and that of the third vertebra on the other; occipital crest much elevated. Vortebræ $10+14$.
x. Month small, low, included, the teoth subequal, in villiforin bands; air-bladdar simple ; preoperclo with ito mombranous edge serrulate; gill-rakersshort; snout above promaxillary with slit and pores essentially as in Sciona; anal fiu small; soft dorsal very long, of 36 to 55 raysEQues, 26.

Genus 1.-SERIPHUS.

Seriphus Ayres, Proc. Cal. Acad. Nat. Sci., ii, 80, 1861 (politus).
Type: Seriphus politus Ayres.
This genus consists of a single species, abundant on the California coast.

It is one of the most aberrant geuera in the fanily-as compared with the typical scianoid forms, standing at the farthest possible extreme from Eques, Pogonias, and Menticirrhus.

ANALYBIS OF BPLCIES OF SERIPHUS.
a. Body moderately olongate, comprossed ; profile slightly depressed over the oyes; oyes large, $4 \frac{1}{f}$ in haud; saout projecting, $3 \frac{y}{f}$ in heud; mouth large and narrow, the lowor jaw more or less projecting in the adnlt; premaxillary antoriorly about on the lovel of the lower margin of the pupil ; maxillary 2 in head, reaching to below posterior margin of eye; lower jaw with a knob at its symphysie which fits in a noteh in the upper jaw ; toeth all small, subequal ; those of the lower jaw in a single series, excopt at the aymphysis, where there are two or threeseries; those of the upper jaw in two series, the inuer oues much recurvod; gill-rakers long and slouder, 省 longth of eye, $7+16$; lower pharyngeals nartow, linear, fragile; scales modorate, weakly ctonoid, those abont the head oycloid; lateral line straight ; dorsal spines weak, the highest 3 in head ; soft dorsal falcate, the anterior rays much the longer; anal similar, its buse
at least as long as that of the soft dorsal ; interspace between dorsall $2 \frac{1}{j}$ in head; ventrals 2 in head ; poctorals $1 \frac{1}{8}$; caudal lunate. Color bluish above, sides and belly bright silvery, fively punctate; vertical fins all pale yellow; base of pectorals blackish. Head 34 in length; depth 4; D. VIII-I, 20 ; A. II, 21 or 22 ; scales 7-65-9 Polidus,

1. SERIPHUS POLITUS.

(The Quenen-fisif.)

Seriphus politus Ayres, Proc. Cal. Acad. Nat. Sci., ii, 80, 1861. Giz, Proc. Acad. Nat. Sci. Phila., 1862, 18 (name only). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 456 (San Fraveisco, Monterey Bay, San Pedro, San Diego). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 48 (San Francisco southwards). Jordan \& Gilbert, Syn. Fish. North Am., 582, 1882. Rosa Smith, West American Scientist, 1885, 47 (San Diego).
Habitat.-Coast of Southeru Califoruia, north to San Diego.
The Queen-fish is common on the coast of Southern Califoruia. It reaches the length of about a foot, and is an excellent pan fish.

Genus II.-AROBOSCION.

drchoscion Gill, Proc. Ac. Nat. Sci. Phila., 1862, 17 (analis).
Isopisthus Gill, Proc. Ac. Nat. Sci. Phila., 1862, 18 (parvipinnis).
TyPE: Otolithus analis Jenyns.
This genus as understood by us consists of two very closely related species (Isopisthus), and a third species (Archoscion) which is almost exactly intermediate between the typical Isopis thus and Cestreus.

The resemblance between Archoscion remifer and A. analis is so very close that the two cannot consistently be placed in separate genera. On the otherhand, the affinities of Archoscion analis with certain species of Cestreus (as O. bairdi) are scarcely less definite. The separation of Archoscion from Cestreus and of the latter from Otolithus are justified chiefly by convenience.

ANALYSIS OF SIPECIES OI ARCHOSCION,

a. Distance betweon dorsal fins about equal to diameter of eye; soft dorsal with 21 rays, its base about $1 \frac{1}{t}$ times that of anal (Isopisthus Gill).
b. Anal rays II, 19; depth 4 in length; pectorals rather long, tho middle rays longest, $1 \frac{1}{3}$ in length of head; 75 series of scales between opercle and the tail; back not elevated; head compressed; snout not prominent, searcely longer than the eye, which is $4 \frac{1}{4}$ in head; mouth large, very oblique; maxillary extending slightly beyond middle of eye, 2 in head; lower jaw strongly projecting, no pores about the chin; front of premaxillaries with two (or one) strong, recurved, movable canines; sides of upper jaw with two series of minute teeth, the outer series the larger; lower jaw with one or two series of minute teeth in front, and with a single series of larger tegeth and 3 to 6 moderate canines on the sides; gill-rakers $4+9$, those near the angle rather long and slender ; dorsal and anal densely covered with small scales; base of anal, 1_{6} in head. Color in life: bluish gray above, grayish silvory below, top of suout and tip of lower jaw blackish; iuside of mouth yollow, with black on lower lip within; lining of opercles black, bordered with palo orauge; dorsals, caudal, and pectorals yellowish with tine black punctulations; axil
brownish, the color extending on pecturals; anal white, the auterior part and the tips of most of the rays yellowish, puuctate with black; a dark blotch behind the orbit and another on upper part of opercle. D.VIII-I, 20 or 21 ; 4 .

lb. Aual rays II, 16 or 17; depth $3 \frac{f}{6}$ in length; head $3 \frac{7}{3}$; poctorals shortish, the uppor rays longest, $1 \frac{1}{2}$ in head; at least 100 series of scales from operclo to the caudal; boily much compressed; upper canines very long, recurved; three canines on tho sides of the lower jaw; caudal fin subtruncato; color dark plumbeons above, rest of body yellowish whito; no axillary spot; au indistinct olongato dark bloteh from lechind the cye to middle of operclo. D. VILI-I, 21; Λ. II, 16 or 17 ; scales in the lateral line 52 to $54 \ldots$. Parvipinnis, 3.
aa. Distance between dorsals about equal to diameter of pupil; soft dorsal with about 24 raye, its base about 14 times that of the anal (4 rechoscion).
c. Body more elongate than in the other species, with longer and sharper suout; base of anal fin $2 \ddagger$ in head; eyo rather smaller than in A. remifer, $5 \downarrow$ in head; suout $4 \frac{1}{2}$; masillary 24 , reaching middlo of eyo ; gill-rakers rather long, $\mathrm{X}+12$; upper jaw with a darge canine in front; two to four small canines on each side of lower jaw ; dorsal and anal soaly ; pectoral long, 13 in head; longest dorsal spine $2 \frac{1}{2}$; caudal fin slightly lunate. Head $3 \frac{1}{8}$ in length; depth 49. D.IX-I, 24 ; A. I, 15 ; scales 64 ; color bluish, the sides and belly silvery; axil dark; operclo dusky within...

2. ARCHOSCION REMIFER.

Jsopistlus remifer Jordan \& Gillert, Bull. U. S. Fish Com., 1881, 320 (Pauama).
Halitat.-Pacific coast of tropical America, Panama.
This species is oxtremely close to Archoscion parvipinnis, differing only in the characters mentioned in our aualysis. It may perhaps prove a geographical variety of the other.

3. ARCHOSCION PARVIPINNIS.

dncylodon parvipinnis Cuv. \& Val., Hist. Nat. Poiss., v, 84, 1830 (Cayenne). Gunther, Cat. Fish. Brit. Mus., ii, 31?, 1860 (copicd).
Isopisthus parvipinnis Jordan, Proc. Acad. Nat. Sci. Phila., 1883, 289 (Cayenne, re.examination of type).: Jordan, Proc. U. S. Nat. Mus., 1886, 583 (name ouly).
Isopisthus afinis Steiudachner, Deuksch. Mat. Nat. Kitis. A cad. Wiss., 1879, 43, plate 2, fig. 2 (Porto Alegre).
Habitat.-Coasts of Brazil, north to Cayenne.
Only the original type of this species in the Museum of Paris has been examined by us. This seems to be identical with the species well tigured by Steindachuer under the name of Isopisthus affinis, and from Steindachuer's description and figure our account has been chiefly drawn.

4. ARCHOSCION ANALIS.

Otoliihus analis Jenyns, Zool. Beagle, Fishes, 164, 1842 (Pern). Giinthor, Cat. Fish. Brit. Mus., ii, 307, 1860 (copiod).
Otolithus peruanus Tschudi, Fauna Poruana Ichthyol., 10, 1844 (Poru).
Ancylodon altipinnis Stoindachnor, Iohthyol. Notizen, iii, e, plate 1, fig. 2, 1860 (Wost coast.Sonth America).

> Habitat.-Coast of Peru.
> S. Mis. 90

We have examined many specimens of this species from Callao, Peru, in the museum at Cambridge. There seems no room for doubt as to the identity of the nominal species analis, peruanus, and altipinnis.
The species is about as near Cestreus as Isopisthus, and its existence renders the separation of Archoscion as a gemus from the former a matter of questionable propriety.

Genus III.-CESTREUS.

Cestreus Gronow, Cat. Jish., ed. Gray, 49, 1854 (carolinensis = nebulosus).
Cynoscion Gill, Proc. Acal. Nat. Sci. Phil., 1862, 18 (regalis).
Apseudobranchus Gill, loc.cit. (toeroc $=$ acoupa).
Atractoscion Gill, loc. cit. (aquidens).
Otolithus species; Cuvier, Günther, \&c.
Type: Cestreus carolinensis Grouow $=$ Otolithus nebulosus Cuvier.
This genus is closely related to the old world genus Otolithus, from which it differs chiefly in the absence of canine tecth in the lower jaw. Nearly all the species referable to Cestreus are American.
Oynoscion, notwithstanding the existence of a prior name Cestraus
 ($\varkappa \varepsilon \sigma \tau \rho a i o s$), also applied to a genus of fishes (Mfugilida).
The reasons for regarding the two words as different have been already given in full by Dr. Jordan in a recent review of the Pleuronectida, and need not be repeated hero. (See page 297 of this Report.)

ANALYSIS OF AMERICAN SPIECIEB ON CESTREUS.
a. Scales not very small, the lateral lino having 55 to 75 pores, the number of transverse series ranging from 55 to 75 , being not much in excess of the number of pores; head compressed, not truly conical; upper jaw with distinct canines, the band of teeth in the upper jaw rather narrow, the lower teeth small and in fow sorios in front, larger and uniserial on the sides.
l. Soft rays of the dorsal and anal more or less closely scaled ; gill-rakers comparatively long and slender, 9 to 12 on the lower part of the arch, the longest at least half the diameter of the eyc."
c. Soft dorsal of 19 to 23 rays.
d. Gandal fin rhombic, the middle rays considerably produced.
e. Mouth largo, extremoly oblique, tho maxillary reaching considerably boyond cye, ite longth $2 f$ in head; body robust, deeper, heavier, and with the back more elevated than in any othor of our species; anterior profile depressed alove the oje, so that the snout projects; snout short, not very acute, $4 \frac{3}{8}$ in head; head thicker than in other species, the interorbital space equal to length of

[^52]snout; eye $7 \frac{1}{2}$ in hoad; maxillary vory broad, its tip 6 in head; canines two, short and stout; lateral teeth of lower jaw moderate; gill-rakers $\mathrm{X}+10$, rather long and slender, the longest of eye; preudobranchim often obsolete on one side; dorsal spines high, the longest $2_{1}^{1} \frac{1}{5}$ in head; soft dorsal moderately scaly, the distal half of the rays largely naked; middle rays of caudal produced; P. $1 \frac{1}{2}$ in head; ventrals a trifle shorter; color pale, bluish above, silvery below, axil and insido of opercle a little dusky; head 37 ; depth 4. D. IX-I, 19 ; A. I, 9 ; scales about 65 Pracdatorius, 5.
ec. Mouth moderate, not very oblique; the maxillary extending little beyoud ege, its length about $2 t$ in head.
f. Snout short, lluntish, 48 in head; mouth smaller and less oblique than in most of the species, the canines quite small; the lateral teeth of lower jaw smaller and more nearly equal than in others; lower jaw a little protruding; maxillary extending to postorior margin of eye, $2 t$ in head; gill-rakers $3+10$, those near the angle rather long, of eye, the others rapidly shortened; eyo large, 5z in head; soft dorsal and anal scantily scaled, the distal half largely naked, the lins rather high, the longest soft rays 21 in head; caudal pointed; pectorals $1 \frac{1}{2}$ in head, not reaching tips of ventrals; color pale, with faint darker stroaks along sidos of back; axil pale; opercle dusky within; head $3 \frac{7}{8}$; dopth 4. D. XI, 20 ; A.I, 8 ; scales 66...... Acoupa, 6.
07. Suout long, about $3 \frac{1}{2}$ in head; maxillary reaching a little beyond eye; pectoral shortish, $1 \frac{8}{8}$ in head; lower jaw very prominent; lateral line becoming straight opposite front of anal ; dorsal spines weak, the longest $2 \frac{1}{y}$ in head; color uniform silvery, sides minutely punctulate; axillorown, ventrale yellowish ; head $3 \frac{1}{2}$ in length ; dopth 4. D. VIIII, 21 or 22 ; 4 . II, 10 ; scales 10-70-23.

Squamipinnis, 7.
dd. Candnl fin lunate or subtruncate, the midde rays shorter than the upper ones.
g. Colcration nearly plain, bluish abovo, silvery below ; anal rays II, 10, maxillary reaching a little beyond oyo, $2 t$ in lead; lody rather elongate, the back somewhat elevated; head compressed, pointed, not conical ; oye moderate, 6 g in hoad, its width a little more than interorbital space; gill-rakers long aud strong, nearly as long as eye; lateral line bucoming straight under soft dorsal;
soft fins all densely covered with swall scales; dorsal spines stiffish, the longest $2 \frac{1}{2}$ in head; anal spines small ; ventrale 2 in head; caudal fin deeply lunate; the middle rays 24 in head; pectoral fins 18 in head, raching boyond tips of ventrals; color slaty bluish above, silvery below; body and fins everywhere with dark punctulations; tip of chin dark; fins yellowish, tho upper all with dark edging; pectorals blackish on the posterior side ; axil dusky; lining of opercle dark; head $3{ }_{3}^{1}$ to in length; depth 4. D. IX-I, 23 ; A. II, 10 ; pores in lateral line 60 ; the series of scales 66 .

Otionopterus, 8. gg. Coloration not uniform, the back and sides with conspicuous continuous brown streaks along the rows of scales, those above lateral line running upward and backward, those below horizontal; belly silvery; fins plain; anal rays I, 8; body rather robust, compressed; head compressed ; cye Jarge, $5 \frac{1}{2}$ in head; mouth moderate, somewh at oblique, the maxillary $2 f$ in head, not quite reaching line of posterior margin of eye; snout moderately pointed, 4 in head; canines moderate; lateral teeth of lower jaw moderate in size, rather numorous; chin projecting; interorbital space rather flattened and depressed, $5 \frac{1}{2}$ in head; gill. rakers long and slender, the longestit cye, $4+13$ in number; scales large; lateral line becoming straight undor front of soft dorsal; soft dorsal and anal low, densely scalod; longest doreal spine $2 \frac{1}{\delta}$ in head ; caudal subtruncate ; pectoraly longer tian ventrals, 18 in loead; aual small; head $3 \frac{1}{8}$ in length; dopth 4 f . D. X-I, 19; A. I, 8; scales 54 (pores) (52 scries)Striatus, 9.
co. Soft dorsal of 27 to 29 rays; candal fin subtruncate, or double truncate, tho midule rays but slightly produced.
h. Coloration nearly uniform silvery, somewhat darker above; snout short, scarcely lougor than oye.
i. [Candal truncate ; hody rather slender; eye 5 in head, the suout but little longer; maxillary reaching posterior third of eye; pectoral aslong as ventral ; coloration miform silvery; head 3 Is in rength; denth 5t. D. X-I, 27; A. J, 11; scales 60, scales of fins undoscribed.] (Salvage.). Obliquatus, 10
ii. Caudal weakly double concave; body rather deep; eye very largo 4 in head, as long as snout, equal to interorbital width; body more compressed than in other species; the back
somewhat elevated; snout rather short, not vory acute, $4 \frac{1}{y}$ in head; month smaller than in related species; maxillary $2 f$ in head, reaching to below pobterior margin of pupil; gill-rakers long and slender, $4+9$, the longest half eje; lower pharyngeals very slonder; dorsal fins contiguous; membrane of soft dorsal scaled to its tips; scales weakly ctenoid; lateral line much curred anteriorly, becoming straight under seventh dorsal spine ; color grayish silvery, thickly punctulate abovo and on sides to level of nectorals, then abruptly silvery, a row of dark points marking the line of division; snout and tip of lower jaw blackish; mouth whito within; lower fius white, upper dusky; head $3 \frac{1}{2}$ in length; depth 3 es. D. X-I, 27 to 29 ; A. II, 9 or 10 ; scales 6-58 to 62-7. Notinus, 11. hh. Coloratiou brownish silvery above, with many dark-lbrown spots, arranged in undulating streaks; body more or less confpressed; eye moderate, 5 to 7 in head; maxillary extending to below posterior margin of eye, $2 \frac{1}{6}$ in head; canines large; color brownish silvery, with iridescent reflections, and marked with many small, rather irregular dark-brown spote, some of which form undulating lines running upward and backward; upper fins dusky, lower yellowish....................REGALIs, 12.
x. Snout not very sharp, about $4 t$ (4 to $4 \frac{1}{8}$) in head; gill-rakers long and slender, usaally $5+10$ to 12 in number; membranes of soft dorsal and anal more or less closely scaly, the scales readily dociduous; head $3 \frac{1}{5}$; deptle about 4z. D. X-I, 26 to 29 ; A. II, 11 to 13 ; soalos 6-56-11............... Var. $\mathrm{reg} \mathrm{alis}, 12$ (a). $x x$. Snout vory sharp, 34 to 38 in length of hoad; gill-rakers shorter, rather slender, $4+8$ or 9 in number; membrane of soft dorsal and anal with very few scales, these readily deciduous; head $3 \frac{1}{2}$ in length; depth 48. D. X-I, 24 or 25 ; A. II, 10 or 11 ; scales 5-52-8.

Var. thalassinus, 12 (b).
ub. Soft rays of tho dorsal and anal scaleless; gill-raleers comparatively short and thickish, usually not longer than pupil, and but 6 to 8 on lower himb of the arch.
j. Coloration not uniform, grayish and silvery, the back with distinct darker spots, linos, or reticulations; caudal fin truncate, or slightly double concave.
k. Caudal and dorsal fins immaculate.
l. Back and sides covered with dark-brown streaks and reticulations, which obscure the ground color, especially above the lateral line; lateral lino in a palo streak, bordered above and below by a darker one; lower parts silvery; finsunspotted. Body comparatively deep and compressed; head somewhat conical, the snout not very sharp, $3 \frac{2}{3}$ in head; maxillary oxtending to below margin of pupil, 28 in head; eyo 7 in head; gill-rakers shortish, $3+7$; ventrals $1 \frac{1}{6}$ in pectorals; pectorals about $1 \frac{2}{3}$ in longth of head; highest dorsal spine about $2 f$ in head; caudal double truncate. Head $3 \frac{1}{3}$ in length ; dopth 4i . D. X-I, 28; A. II, 9 ; scalos 9 -60-15.

Reticulatus, 13.
$k k$. Caudal and soft dorsal fins with conspicuous round black spots; back and sides covered with similar spots smaller than the pupil, larger than those on the fins; anal fin dusky. Body moderately elongate, compressed; snout rather long and acato, $3 \frac{8}{4}$ in head; oyo small, 6 to 7 in head; maxillary $2 \frac{1}{8}$ in head; cauines strong; gill-rakers shortish, $3+3$; lower pharyngeals narrow, with seven or eight serios of sharp teeth, those of the inner serics enlarged; pectorals $1_{6}^{\frac{1}{6} \text { in ventrals, } 2 f \text { in head. Head }}$ $3 \neq$ in length; depth 4. D. X-I, 25 to 27. A. II, 10; scales $10-70$ to $75-11$.

Nebulosus, 14.
$i j$. Coloration noarly miform bluish gray above, silvery below; no distinct spots on body or fins.
m. Caudal fin somowhat lunate in the adult, the middle rays shortest, although more or less produced in young specimens; pectoral fin short, not reaching tips of ventrals; maxillary extendiug beyoud pupil, $2 f$ in head; canine large, usually but one present; snout rather sharp, 4 in head; gillrakers shortish, $4+7$; pharyngeals narrow, their teeth small, cardiform, the inner oues somewhat enlarged; color, clear stecl-blue above, without stripes orspots; silvery below; a narrow dusky shade along the sides below the lateral line; axil dusky ; lower fins yellowish, with dusky shading; upper fins dark; second dorsal dark edged. Head 3it in length ; depth 4t. D. X-I, 22 or 23; A. II, 10. Scales 13-75 (pores)-14, about 95 in afongitudinal series. Parvipinnis, 15. $m m$. Caudal fin always double truncate or double concave, the middle rays somewhat produced.
n. Pectoral fins reaching nearly or quite to the tips of ventrals, their length more than half head.
o. Scales small ($12-86-\mathrm{X}$), the number of pores in tho lateral line about 70 ; head rather long, compressed aud pointed; maxillary a little more than half head, reachingjust past 8 ye ; lateral line becoming straight opposite the vent; body rather slender, compressed ; eye large, 6 in head ; premaxillaries in front, entirely bolow eje; canines small, two usually present; longest dorsal spino 2 in head; longest soft ray 2 ? middle rays of caudal considerably produced, $1 \frac{1}{2}$ in hoad; anal spine rathor small and stout; ventrals little more than 2 in head; pectorals 18. Color bluish above, silvery below, uppor parts and especially the middle of the sides punctate with dark points; upper fins darls, their margins dusky, lining of opercle black ; inside of mouth bright yollow in lifo. Head $3 \frac{1}{8}$ in longth; dopth 4\%. D. IX-I, 20 ; A. II, 8. Scales 12-66 (pores)-X; 86 rows of scales.

Xantilulum, 16.
00. Scales moderate (8-60-18), the pores in the lateral line about 63 ; head large, bluntish; the snout shorter than in Cestreus stolzmanni, the snout 4 to $4 \frac{1}{3}$ in head; eye $6 t$ in head; maxillary nearly lialf hoad, reaching well past oje; body rather robust; lateral line becoming straight at a point well in advance of vent; dorsal spinos slondor, tho longest 24 in head; caudal double truncate, the middlerays longer than the head without snout; pectorals nearly reaching tips of ventrals, more than half longth of head; second anal spine evident. Color white, somewhat bluish above. Head 3 in longth; depth 4. D. X-I, 21 ; A. II, 9 ; scales 8 -63 (pores)-18; (6i) series of scales ALbus, 17. $\boldsymbol{n n}$. Pectoral fins short, reaching littlo past middle of vontrals, their longth not more than half head; body elongate, somewhat compressed; mouth oblique; maxillary 2 t in head, oxtending to posterior margin of pupil; snout rathor sharp, 4 in head; canines rather small; gill-rakers shortish, $4+7$; body comparatively slender and elongate; scales rather large, all strongly ctenoid; lateral line becoming straight just bofore front of second dorsal; longost dorsal spines $2 f$ in head; soft dorsal slightly falcato, tho first rays
about 2 in head; candal large and broad, double truncate; ventrals $1 \frac{8}{8}$ in head. Color steel bluish above, lower parts silvery; no distinct markings. Head 3g in length; depth 45. D. IX-I, 21; A. II, 9 ; scales 10-60 (pores)-10.

Stolzmanni, 18.
aa. Scales very small; the number of pores in the lateral line 70 to 90 , and very much less than the aumber of transverse rowe, which is from 85 to 150 ; teeth of upper jaw in arather broad band, one to four of them usually more or less canine-like, the canines generally small,* and sometimes wholly disappearing with age; lateral teeth of lower jaw not much onlarged; gill-rakers usually small and short. \dagger
p. Caudal fin lunato or subtruncato; scales not very small ; head more or less distinctly conical, not flattened above; soft dorsal with 21 to 23 rays.
q. Soft dorsal and anal fins wholly scaleloss.
r. Pectoral fin rather long, more than half head; flesh firm ; scales of sides of head not silvery ; head pointed, subconical, little compressed; profile rather steep; snont sharp, rather long, 3\% in liead; maxillary extending boyond pupil; anteriorly on a level with the lower margin of the pupil, $2 \frac{1}{8}$ is head; cauines small, becoming obsoleto; pharyngeals long and slender, with four series of teoth, the inner series several times larger than the rest; gill-rakers short, $2+7$; scalos very small, those on head little imbedded and less silvery than in related species; caudal lunate, its middle rays less than half leagth of head ; both anal spines evident, the second abont half length of the rays; color bluish, littlo silvery; everywhere punctulate; young with three or four distinct dusky cross-bars; axil and fius dusky; a dusky blotch at base of pectoral, extouding on whole inner face of the fin. Head $3 ;$ in longth; depth 4. D. X-I, 21 to 23; A. II, 9 ; scales 12-88-14 .Nomilis, 19.
rr. Pectoral fins short, not more than half length of head; flesh rather soft ; sides of head brightly silvery; head very regularly couical, pointed, tapering, scarcoly compressed; suout vory acute; 34 in hearl; canines quite small, usually but one pres-

[^53]ont aud this disappearing with age; oyo small, $\frac{1}{t}$ in head; masillary extending to behind pupil, $2 \frac{1}{8}$ in head; body slondor; subfusiform, moderately compreseed; gill-rakers very short, 3+6. Scales small, all cycloid, those on head iubedded aud brightly silvery; highest dorsal spine $2 \frac{1}{2}$ in head ; pectorals and ventrals about equal, 2 in head; caudal lunate. Color grayish above, with bright reflections; silvery below; lower part of tail golden; ruiddle of sides with dark punctulatious; inside of mouth deep orange-yellow ; lining of opercle black; caudal tins dusky whitish, with more or less of dark edging ; lower rays of caudal yellowish; fins otherwise translucent, ummarked; axil light brownish. Head 3 f in lengtli ; depth 4fy. D. IX-I, 21 ; A. II, 10. Scales 17-90-15; about 80 distinct pores in the lateral line.

Phoxocepialus, 20.
qq. Soft dorsal fin with its lower portion covered with small, caducons scales. Body compressed; head conic, more compressed thau in Cestreus phoxocephalus; eyo moderate, 5 to 6 in head; maxillary reach. ing nearly to posterior margin of orbit, $2 \ddagger$ in head ; lower jaw much projecting; uppor tceth mostly biserial; canines small, both of them present; lateral teeth of lower jaw small; gill-rakors short and slonder, $2+7$; scales small, chiofly cycloid, those on sides of hoad bright silvery; lateral line becoming straight above front of anal; caudal fin subtruncate; pectoral fins moderate, 2 in head; caudal weakly donble truncate; head $3 \frac{1}{2}$ iv length ; depth $4 \frac{1}{8}$; D. IX-I, 21 to 23 ; Λ. If, 10 ; scales 13-90-13, about 80 distinct pores.. Leiarcius, 21.
$p p$. Caudal fin rhombic or S-shaped, the middle rays produced, the upper lobe usually pointed; soft dorsal with 23 to 28 rays.
s. Soft dorsal entirely naked; anal with a fow scales; body long and low, spindloshaped, the head sleuder, subterote, and depressed above (suggesting the form of blacate); probile from suout to dorsal weakly concave; snout long, rather pointed, 4 in head; mouth large, littlo oblique, the lower jaw strongly projecting, the maxillary $2 f$ in head; canine teeth 2, short and thick; lateral tooth close-set, of moderate size ; nye small, $8 \frac{1}{y}$
in head; interorbital spaco llattish, 48 in head; gill-rakors rather short, $\mathrm{X}+8$, the lougest about half eye; scales on head very small and silvery; caudal S-shaped, the middle rays longest ; pectoral if in head. Color plain, rather dusky, silvery below ; insido of gill carity dusky ; head $3 \frac{1}{2}$ in length ; depth 5 to $5 \frac{1}{2}$; D. X-I, 28; A. I, 8 . Scales 80 (pores), 195 to 130 cross-series.

Vibescens, 22.
88. Soft dorsal and anal fins donsely scaly throughout.
t. Sides of lower jaw withont canines, tho teeth all comparatively small.
u. [Scales extromely small, about 150 in a longitudiual series above the lateral line, 40 in a vertical series; snout 4 in head; oye large, $4 \frac{f}{8}$; interorbital area $5 \frac{y}{y}$. in head; maxillary extending beyond oge; lower jaw projecting ; upper jaw with 3 sories of teeth; canincs rather strong; lateral teeth of lower jaw not canine-like; dorsal spines slender, the longest $2+$ in head; caudal fin S-shaped; pectoral slightly louger than ventral, which is slightly more than half head; lateral line becoming straight above anal; color greenish, silvery below; head 33^{2} in length ; denth 4t; D. XI-I, 23 ; A. II, 9 ; scales 155 to $160 ; 70$ pores in tho lateral line.] (Steindaehner.)

Microlepidotus, 23.
uu. Scales not very small, about 85 to 90 in a longitudinal series above the lateral line; body rather robust, the head small and tapering; profile of head nearly straight and rapidly descending ; mouth rather small, oblique, the maxillary $2 \frac{1}{8}$ in head; chin prominent; snout short, rather pointed, 6 in head; oye large, $5 \frac{1}{2}$ in head; tecth all comparatively small, the bands rather broad; no distinct canines in upper jaw, the usual canino scarcely lovger than the teeth aronnd it ; lateral teeth of lower jaw small ; seales small, those of lateral line little enlarged ; lateral line less conspicuous than in C. virescens or C. bairdi, becoming straight under front of soft dorsal; gill-rakers rather long, $4+9$, the longest $\frac{7}{6}$ eje ; pectorals quite short, shorter than ventrals, $2 \frac{1}{2}$ in head, their tips notreaching tips of vontrals; caudal rhombic, the uppor angle pointed; color
silvery, darker above; faint streaks
along the rows of scales on tho back;
head $3 f$ in length ; depth 4 ; D. X-I, 21
to 23 ; A. I, 9 ; scales 70 (pores); about
86 series............Steindachneri, 24.
tt. Sides of lower jaw each with 4 or 5 mod-
erato caniues (the lateral teeth being
larger than in any of the othor species,
much as in Isopisthus); cauines of upper
jaw strong; body slender, not specially
compressed; head rathor slender, little
compressed; the upper profile straight;
the interorbital area moderato (as lupoad
as oye) and little convex ; eye large, $4 \frac{1}{b}$
in head; snout short, sharp, 4t in head;
mouth moderate, not very oblique, the
maxillary 24 in hoad and extending to
beyond pupil; preorbital very narrow,
not as broad as pupil; gill-rakers slon-
der, very short and small, $X+G$, the
the longest half as long as pupil; dorsal
spines slonder, the longest $2 t$ in hoad;
soft dorsal and anal densely scaled ; cau-
dal fin rhombic; pectoral fins longer
than ventrals, $1 \frac{1}{5}$ in head; scales of lat-
oral line enlarged, somewhat covered by
smaller scales; lateral line becoming
straight just before anal ; color plain
silvery, darker above; hoad 3z; depth
$4 t$; D. X-I, 25 ; A. I, 10 ; scales 70 pores;
150 sorios Barndi, 25.

5. CESTREUS PRIFDATORIUS.

(Boccone.)
Cesireus prodatorius Jordan \& Gilbert, sp. nọv. (Panama).
Habitat.—Pacific coast of tropical America, Panama.
This strougly marked species was obtained by Dr. Gilbert at Panama in 1883, and by us described in MS. at the time. Our specimens were destroyed by fire, and the species has remained unnoticed. The types of the present description are three specimens, the largest nearly 2 feet in length, obtained by Professor Agassiz at Panama. These aro numbered 10901 and 1090^{2} on the register of the Musenm of Comparative Zoology. The species is known to the Janama fishormen as "Boccone."

6. CESTREUS ACOUPA.

Cheilodipterus acoupa Lacópède, Hist. Nat. Poiss., iii, 546, 1802 (Caycnue). Cynoscion acoupa Jordan, Proc. U. S. Nat. Mus., 1886, 588 (name only). Lutjanus cayonnensis Lacopedo, Hist. Nat. Poiss., iv, 196 and 245, 1802 (Cayoune) Otolithus oayennensis Günther, Cat. Fish. Brit. Mus., ii, 309, 1860 (West Indies)

Otolithus rhomboidalis Cuvier, Regae Animal, od. 2, 1829 ($\mathbf{B a s o d}$ on Lutjanus caycnnensis Lacépède).
Otolithus toeroe Cuv. \& Val., Mist. Nat. Poiss., v, 72, plate 103, 1830, Cayonme (same type as L. cayennensis Lac., Surinam, Brazil, Lake Maracaibo), ibid., ix, 478 (Cayeano).
Apscudobranchus tocroc Gill, Proc. Acad. Nat. Sci. Phila., 1862, 18 (name only).
Habitat.-Surinam, Brazil.
There seems to be no reason to doubt that this is the Otolithus tocroe of Cuvier \& Valenciennes, and this toeroe is based on the same typical examples as the prior names rhomboidalis and cayennensis.

As to the still earlier name acoupa, it seems to us that Cuvier and Valenciennes are right in referring it to a species of this group, as the caudal is rounded, the lower jaw projecting, the teeth unequal, and the second dorsal with 18 rays. As, according to the statements of these authors, the fish called "Toeroe" by the Dutch in Guiana is known as "Acoupa" by the Portuguese, this identification is highly probable. The specific name acoupa should then supersede coyennensis.

Our description of this species is taken chiefly from a specimen 14 inches long from Cachiura, Brazil (10s92, M. C. Z.). Numerous other specimens are in the museum from Surinam, San Matheo, Curuça, Cachiura, and Rio Janeiro.
The statement is made by Dr. Günther that this species lacks pseudobrauchia, and on this statement Dr. Gill has proposed for it the generic name of Apseudobranchus.
It is true in this as in other species of Cestreus that the pseudobranchise become smaller with age. Usually they become (in old specimens) obsolete on one side while they are perfectly evident on the other. This is the case with all the old specimens of this species which we hare examined, and it is true also in several others of the larger species. The genus Apseudobranchus is therefore strictly synonymous with Cestreus and Cynoscion.

7. CESTREUS SQUAMIPINNIS.

Otolithus squamipinnis Günther, Fishes Central America, 387 and 420, 1869 (Panama). Steindachner, Neuc und Soltene Fische k. k. Zool. Mus. Wien, 37, 1879 (Panama).
Cynoscion squamipinne Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 232 (La Union, Sau Salvador). Jordan \& Gilbort, Bull. U. S. Fish Com., 1831, 320 (La Union).
Babitat.-Pacific coast of tropical America.
This species is known from a few specimens taken at Lia Uuion and Pauama. Specimens obtained by Prof. Alexander Agassiz at Panama are in the museum at Cambridge.

8. CESTREUS OTHONOPTERUS.

Cynobcion squamipinuis Strects, Bull. U. S. Nat. Mus., vii, 49, 1877 (oll' Sau Yguacto River, Gulf of California) (not Ololithus squamipinnis Guinther).
Cynoscion othonopterum Jordan \&E Gilbert, Proc. U. S. Nat. Mus., 1881, 274 (Punta San
Felipe, Mexico). Jordan \& Gilbert, Bull. U. S. Fislı Com., 1881. 320 (copicd).
Habitat.-Gulf of California.

This species is known to us from its type, a large specimen taken in the Gulf of California. The specimen-also from the Gulf-recorded by Dr. Streets under the name squamipinnis, seems to belong to C. othonopterus. The species is closely related to C. squamipinnis, but we believe it to be distinct.

9. CESTREUS STRIATUS.

Guatucupa Marcgrave, Hist. Brazil, 1648.
Otolithus striatus Cuvior, Regno Animal, ed. 2, 1829 (based on Guatucupa of Maregravo).
Otolithus guatucupa Cuv. \& Val., Hist. Nat. Poiss., v, 75, plato 104 (Montevideo). Günther, Cat. Fish. Brit. Mus., ii, 309 (copied). Günther, Shore Fishes, 13, 1880 (mouth of the Rio de la Plata). Jenyns, Lool. Beagle, Fishes, 41, 1842 (Maldonado Bay).
Habitat.-Coasts of Brazil and Argentine Republic.
This strongly marked species much resembles the northern weakfish in coloration, but it is readily distinguished by the small number of its dorsal rays.
Our description is mainly taken from a specimen 18 inches long from Buenos Ayres (434, M. C. Z.). Other specimens aro in the museum from Montevideo, Maldonado, and Buenos Ayres.

10. CESTREUS OBLIQUATUS.

Otolithus obliquatus (Valenciennes MSS.) Sauvage, IBull. Soc. Philom. Paris, iii, 209, 1879 (Martiniquc).
Cynobcion obliquatum Jordan, Proc. J. S. Nat. Mus., 1886, 588 (name only).

Habitat.-Martinique.

This species is unknown to us. The increased number of dorsal rays leads us to place'it in the weighborhood of Cestreus nothus, with which species the scanty description agrees in most respects. C. nothus has, however, not been recordod from the West Indies.
The following is the account published by Dr. Sauvage:
"Un Otolithe б́tiqueté dans lia collection du Muscum Otolithus olliquatus do la main de Valonciennos, y'est pas décrit dans l'Histoiro des Poissons. Voisine de l'Otolithus thalabsinus, Holbr., cetto espèco en differo par lo moins. grand nombre d'écuilles à la ligne latérale et l'oil plus grand; la forme do la caudale la sóparo do l'Otolithus nothus, Holbr., des menes parages. Voiri la diagnose des deux exemplaires recueillis a la Martiniquo par M. Pléo:
"D. X, 28; A. I, 11; L. lat. (i0.
"Hautour da corps contenno cing fois un tiers, longuour de la tête trois fois et trois quarts dans la löngueur totale du corps; musouu un peu plus long que lo diamdtre de l'wil, quiest contemuo cinq fois dans la longueur de la tete; machoiro inforioure plus longue que la supórieure; des canines assez fortes à la machoire supórieure seulement; maxillaire arrivant au niveau du tiers postériour de l'mil ; angle du próopercule arrondi et un peu rejeto en arriere; dentelures du próperculo bion visibles, plus fortes a l'anglo. Caudale tronquóo ; pectorales de même longueur que les ventrales. Ligne latorale assez incurvó vers le miliou do sa longueur. Coloration uniformo. Longueur du corps 0,200 ."

11. CESTREUS NOTHUS.

(Bastard Sea Thout.)
Otolithus nothus Holbrook, Iehthyol. S. Cavolina, 134, plate 19, fig. 1, 1860 (South Carolina). Gututher, Cat. Fish. Brit. Mus., ii, 303, 1860 (Jamaica). Cymosrion nothus Goode \& Bean, Proc. U. S. Nat. Mus., 1879, 131 (Pensacola). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 607 (Charleston). Jordan \& Gilbert, Syn. Fish. North Ain., i80, 1882. Goode, Proc. U. S. Nat. Mus., 1884, 212 (St. John's River, Fla.).
Mabitat.—South Atlantic and Gulf coasts of United States.
This species is rather rare at Charleston and elsewhere along our Southern coast.

It is a very well marked species, differing in numerous respects from the others, regalis, thalassinus, nebulosus, found in the same waters. The specimens examined by us are from Charleston.

12. CESTREUS REGALIS.

(Tie Weak-fisif, on Squetiague; "Sea Trout.")
[Plate I.]
a. Var. regalis.

Johnius ragalis Bloch \& Schnoider, Syst. Ichthyol., 7is, 1801. Holbrook, Ichthyol. S. Carolina, 127, plate 18, fig. 1 (South Carolina).
Otolithus regalis Cuv. \& Val., Hist. Nat. Poiss., v, 67 (Now York, Now Orleans). Richardson, Faun. Bor. Amer. Fish., 68, 1836. Storer, Report Fishes Massachusetts, 33, 1839 ("no louger found on the coast"). Storer, Hist. Fish. Mass., 122, plato 9, fig. 1 (Provincetown). Ayres, Fishes of Broolshaven, L. I., 259, 1842. Do Kay, New York Fauna, Fishes, 71, plate 8, fig. 24, 1842 (New York). Storer, Syn. Fish. North Am., 118, 1816 (Massachusetts). Giinther, Cat. Fisu. Brit. Mus., ii, 307, 1860.
Cynoscion regale Gill, Proc. Acad. Nat. Sci. Phila., 1862, 18, Uhler \& Luggor, Fishes of Maryland, 98, 1876 (Chesapeake Bay). Goodo \& Bean, Fishes of Essex County aud Massachusetts Bay, 17, 1879 (Mills Island, Cape Ann). Bean, Proc. U. S. Nat. Mus., 1880, 90 (Norfolk, Va.; Wood's Holl, Mass.). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 607 (Charleston). Jordan \& Gilbert, Syn. Fish. North An., 581, 1882. Goode, Hist. Aquat. Anim., 362, plate 120, 1884 (Wood's Holl, Mass.).
Rocens comes Mitchill, Report in part Fishes New York, 26, 1814 (New York).
Labrus squeteaguc Mitchill, Trans. Lit. and Phil. Soc. New York, 396, plato 2, fig. 1, 1815 (Now York).
b. Var. thalassinus.

Otolithus thalassinus Holbrook, Ichth. South Carolina, 132, plate 18, fig. 2 (Sonth Carolina). Gunther, Cat. Fish. Brit. Mus., ii, 308, 1860 (Gulf of Mexico).
Cynoscion thalassinus Jordan \& Gilbert, Syn. Fislh. North America, 581, 1882 (copied).
Mabitat.-Atlantic and Gulf coast of the United States; var. thalas. sinus from Virginia to Louisiana.

The Weak-fish is one of the most valuable food-fishes of our Λ t. lantic coast. It is caught in large numbers, and its flesh is very oxcellent for the table. Its flesh, like that of most species of the genus, is very tender and easily torn, hence the common name of Weak-fish.

On the Carolina coast it has received the very inappropriate name of "Sea Trout."

Specimens of the typical regalis are in the museum at Cambridge from various localities on the Atlantic coast, and from Mobile and "Florida Kers," on the Gulf const. Its occurrence in the Gulf must be infrequent, as no specimens have been obtained by Dr. Jordan at Galveston, Now Orleans, Pensacola, Cedar Keys, or Key West.

The form called Otolithus thalassinus by Holbrook has not been recoguized by later collectors, and it has usually been considered identical with O. regalis.
A specimen lately sout to us by Mr. Silas Stearns from Pensacola seems to answer to Holbrook's description, and we have found two similar specimens in the museum at Cambridge, one (No. 43s, M. C. Z.) from Pass Christian, Mississippi, the other from Hampton Roads, Virginia. The only differential characters which we have noted are given in the analysis of species. Δs C. regalis is subject to considerable variation, we have regarded C. thalassinus as an extreme form or variety rather than as a distinet species. It may, perhaps, be found to inhabit a different depth of water than that which the common Weak-fish frequents.
The following is a description of our specinem from Pensacola: Depth, $4 \frac{2}{3}$ in length ; head, $3 \frac{1}{2}$; D. X-I, 24 ; A. II, 11; lateral line, 56 ; length, 12 inches.

Body compressed; not especially elevated; of about the same depth everywhere betwen the ventrals and the vent; caudal peduncle rather loug and stout.
Head pointed, subcouical ; profile straight, scarcely descending; eye rather large, $1 \frac{2}{5}$ in suout, $5 \frac{1}{3}$ in head; mouth large, oblique; premaxillary auteriorly ou a level with the upper margin of the pupil; maxillary extending beyond the pupil; lower jaw strongly projecting, its tip entering the profile.
Teeth of the lower jaw in two series, anteriorly in a single series; those in front small and subequal; the inner ones recurved; those of the side much larger. Teeth of the upper jaw in two series; those of the outer series scarcely decreasiug in size towards the angle; those of the inuer series becoming minute on the sides; canines moderate, $\$$ the diameter of the eye.
Preopercle with a striated and dentated dermal margin; gill-rakers sleuder; those near the angle half the length of the eye.

Lower phargngeals weak and long, grooved below; teeth at the angle several times as large as the rest, all more or less recurved; the anterior ones specially so; teeth of the upper pharyugeats unequal.

First dorsal spine inserted above the end of the first fourth of the ventrals; the spines slender; the third highest; reaching to the ninth spine, $\frac{2}{2}$ in head; second anal spive about twice as large as tho first, 2 in in length of eye; anal rays 2 ? in head; pectorals broken; ventrals
slightly less than 2 in head; soft dorsal apparently not scaly, but so mutilated that we cannot be certain of this.

Scales very weakly ctenoid; lateral line somewhat wary anteriorly, becoming straight under the fourth or fifth dorsal ray.
Color, brownish above, lighter below; middle of sides with many dark dots; a dark blotch on upper corners of opercle and cheek; axil and inner margin of pectoral, black; spinous dorsal, black; soft dorsal and caudal, dusky ; the rest of the fins pale.

The specimen from Pass Christian has no scales on dorsal or anal at present, but the marks showing their former presence on the basal parts of the fin are evident. Gill-rakers, $\mathrm{X}+8$, the longest $\frac{2}{3}$ eye; snout 3 ? in head; D. X-I, 25; A. I, 10.

In the specimen from Hampton Roads the gill-rakers are $X+9$; snout 3_{5}^{4} in head; D. $\mathrm{X}-\mathrm{I}, 25$. The coloration is essentially as in regalis, but in all these specimens it is more silvery, the dark markings less distinct.

13. CESTREUS RETICULATUS.

Otolithus reticulatus Günther, Proc. Zool. Soc. London, 1864, 149 (San Jos6 de Guatemala, Chiapam). Günther, Fishes Central America, 387, 388, and 430, 1869 (San José, Chiapam).
Cynoscion reticulatum Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 232 (Acapulco, Mexico). Jordan \& Gilbert, Bull. U. S. Nat. Mus., 1881, 319 (Mazatlan; Panama).
Habitat.-Pacific coast of tropical America, Mazatlan to Panama.
This is a common food-fish of the west coast of Mexico. It consiterably resembles Cestreus nebulosus, and is similar in size, habits, and value to the latter.

14. CESTREUS NEBOLOSUS.

(The Spotrid Weak-fisil, on Spotted "Sea 'Trout.")
[Plate II.]
Labrus squctcaguc var. maculatus Mitchill, Trans. Lit. \& Phil. Soc., 396, 1815 (Now York) (not Labrus maculatus Bloch).
Cynoscion maculatum Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 285 (Pensacola, Galveston). Jordan \& Gilluert, Proc. U. S. Nat. Mus.. 18®2, 607 (Charleston). Jordan \& Gilbert, Syu. Fish. North Am., 581, 1883. Bean, Internat. Fishery Exhib. Berlin, 55, 1883 (Pensacola, Florida). Jordan \& Swain, Proc. U. S. Nat. Mus., 1884, 233 (Cedar Key, Florida). Goode, Hist. Aquat. Anim., 362, plate 120, 1884 (Norfolk, Va.).
Dtolithus ncbulosus Cuv. \& Val., Hist. Nat. Poiss., v, 79, 1830 (locality unknown). Jordan, Proc. U. S. Nat. Mus., 1886, 540 (note on type of Cuvier \& Valencionves).
Otolithus carolinensis Cuv. \& Val., Hist. Nat. Poiss., ix, 475, 1833 (South Carolina). Dekay, Now York Fanna, Fishes, 72, 1842 (Now York). Storcr, Syn. Fish. North Am., 318, 1846 (copied). Holbrook, "Iehthyol. S. Carolina, 133, pl. 19, fig. 2 " (S. Carolina). Gfather, Cat. Fish. Brit. Mus., ii, 306, 1860 (Now York, Lake Pontchartrain).
Cestreus carolinemsis Gronow, Cat. Fiwh., el. Gray, 49, 1854 (Carolina).

Cynobcion oarolinensis Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1878, 377 (Beaufort). Goodo, Proc. U. S. Nat. Mus., 1879, 112 (St. John's Rivor, Floridia). Goodo \& Bean, Proc. U. S. Nat. Mus., 1879, 131 (Pensacola). L3ean, Proc. U. S. Nat. Mus., 1880, 92 (St. Johu's River, Florida; Norfolk, Virginia; Boaufort, N. C.; Fort Macon, N. C.).
OteTithus drummondi Richardson, Faun. Bor. Am. Fish., 70, 1836 (Now Orleans). Storer, Syn. Fish. North Ain., 318, 1846 (copied). Girard, U. S. \& Mex. Bound. Survey, 12, plate vi, 1859 (Now Orleans, 1 Brazos Santiago, Iudianola). Guinther, Cat. Fisl. Brit. Mus., ii, 307, 1860 (copied).
Halitat.—South Atlantic and Gulf Coast of the United States; New Yorls to Texas.

This excellent food-fish is everywhere common on our Southern coast. The northernmost locality from"which we have examined specimens is Beesley's Point, New Jerscy.
The oldest specific name of the species is that of Labrus squeteague var. maculatus Mitchill. This name seems, homever, to be ineligible, as there was already a Labrus maculatus Bloch. Next in order comes the Otolithus nebulosus of Cuvier \& Valenciennes. This name apparently is the one which should be retained, although the later name carolinensis has been generally in use.

15. CESTREUS PARVIPINNIS.
 (Califormia "Blun-fisir.")

Cynoscion parvipimis Ayros, Proc. Cal. Ac. Nat. Sci., 1861, 156 (coast of Lowor California).
Cynoscion parvipinne Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 450 (San Pedro, San Diogo). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 48 (San Pedro southward). Jordan \& Gilbort, Proc. U.S. Nat. Mus., 1881, 274 (Guaymas, Mesico). Jordan \& Gilbort, Bull. U. S. Fish. Com., 1881, 320 (San Pedro, San Diogo, Gulf of California). Jordan \& Gilbert, Syn. Fish. North Am., 580, 1882. Rosa Smith, Proc. U. S. Nat. Mus., 1883, 234 (Todos Santos l3ay, Lower California). Rosa Smith, West American Scientist, 188., 47 (San Diogo).
Otolithus magdalena Steindachnor, Ichtliyol. Beit., iii, 18~T) (Magdalena Bay, Lower California).
Habitat.-Coasts of Lower California; Guaymas to the Santa Barbara Islands.

This species is common along the coasts of Southern California, as far north as San Pedro. It is an excellent food-fish, not inferior to its relative, the weal-fish of the Atlantic coast. As in the case of the latter species, the flesh of Cestrcus parvipinnis is soft, and the fish does not bear transportation well.

Types of Otolithus magdalcinc, from Magdalena Bay, are preserved in the museum at Cambridge.

16. CESTREUS XANTHULUM.

[^54]This species is not rare about Mazatlan. The specific name ($\xi \alpha v \theta \sigma^{\prime}$; $o v^{3} \lambda o v$) is intended to allude to the yellow color of its lips and gums. It is closely related to Cestreus allus, a species which seems to replace it farther south.

17. CESTREUS ALBUS.

Otolithus albus Günther, Proc. Zool. Soc. Lond., 1864, 149 (Chiapam; Pavama). Günther, Fishes Central America, 387 and 429, 1869 (Chiapam). Steindachmer, Neue u. Seltene lische k. k. Zool. Mus. Wien, 36, 1379 (Panama).
Cynoscion album Jordan \& Gilbert, Bull. U. S. Fish. Com., 1881, 319 (Panama).
Habitat.—Pacific coast of tropical America; Panama.
This species is not rare at Panama. Like the others of the genus, it is a food-fish of importance. Specimens from Pauama are in the moseum at Cambridge.

18. CESTREUS STOLZMANNI.

Otolithue stolzmanni Steindachner, Nene u. Seltene Fische k. k. Zool. Mus. Wien, 1879, 35, plate ii, fig. 1 (Tumbez, Peru).
Cynoscion stolzmanni Jordan \& Gilbert, Bull. U. S. Fish. Com., 1881, 320 (Panama).
Habitat.-Pacific coast of tropical America; Panama to Peru.
This species is not rare about l'anama, where specimens were obtained by Professor Gilbert. A specimen collected by Prof. Alexander Agassiz, at Panama, is in the museum at Cambridge.
19. CESTREUS NOBILIS.
(The "White Sea Bass" of Califorina.)
Johnins nobilis Ayres, Proc. Cal. Acal. Nat. Sci., 1860, 78 (San Francisco).
Atractoscion nobilis Gill, Proc. Aced. Nat. Sci. Philn. 1862, 17 (name only). Jordan \& Gibbert, Proc. U. S. Nat. Mus., 1881, 48 (San Francisco sonthward). Jordan \& Gilluert, Syn. Fish. North Am., 570 ami 933, 18id.
Cynoscion nobilis Jordan \& Gilbert, I'roc. U. S. Nat. Mus., 18s0, 45% (Sim Praucisco, Monterey lhay, Santa Barbara, San Pedro, San Diego). Jordan \& Gilbert, Bull. U. S. Fish Com., 1881, 320 (copicil). Rosa Smith, West Aucrican Scientist, 1885, 47 (San Diego).
Otolithus californiensis Steindachmer, Ichtlyol. Meitr., iii, 31, 1875 (Lower California).
Habitat.-Coast of California, north to San Prancisco.
This species is one of the largest in size of the Scianoid fishes, reaching a weight of 60 to 70 pounds. Its flesh is more firm than that of most of the other species of Cestrous, but its quality is scarcely less delicate than that of the weak-fish.

The young fishes are somewhat different in color from the adult, being marked by two or three distinct dusky cross-bars on the back and sides. These young fishes are often taken by fishermen to be a distinct species, and called sea-trout. Such specimens have been described by Dr. Steindachner under the name of Otolithus californiensis. Typical examples of this nominal species, from San Diego, are in the muscum at Cambridge.

20. CESTREUS PHOXOCEPHALUS.

Cynoscion phoxocephalum Jorlan \& Gilbert, Bull. U. S. Fish Con., 1831, 318 (Panama).
ITabitat.-Pacific coast of tropical America; Panama.
This species is not uncommon about Panama. It somewhat resembles Cestrens nolilis, but it is not known to reach the large size of the latter. The tapering form of the head reaches an extreme in this species, and the silvery lustor of the scales is brighter than in any other.

A specimen of this species from Panama is in the museum at Cambridge.

21. CESTREUS LEMARCHUS.

Otolithus leiarchus Cuv. \& Val., Hist. Nat. Poiss., v, 78,1830 (Brazil; Caycmeno. Guiuther, Cat. Fish. Brit. Mus., ii, 308, 1860 (Bahia). Jordan, Proc. U. S. Nat. Mus., 1886, 540 (note on type of Cuvior \& Valenciennes).
Halitat.-Coasts of Brazil and Guiaua.
This species is known to us from the examination of the type, a dried skin of a young example in the museum at Paris. The absence of the anal spine (" leiarchus") is due to its being covered by varnish.

The description given in our analgsis is taken from an example (34500, U. S. Nat. Mus.) from unknown locality (Brevoort Coll.) and from specimens from Rio Janeiro, Porto Alegre, Babia, and Santos, in the museum at Cambridge. C. leiarchus is closely related to Cestreus phoxocephalus, but it more strongly resembles the typical Cestrei than the latter species does.

22. CESTREUS VIRESCENS.

Otolithus virescens Cuv. \& Val., Hist. Nat. 1'oiss., v, 72, 1830 (Surinam). Cynoscion virescens Jordan, Proc. U. S. Nat. Mus., $18=6,588$ (namo only).
Otolithus microps Steindachner, Neue Fisch-Arten k. k. Museen Wien, Stuttgart, und Warschan, 38 , plato viii, fig. 2,1879 (1'orto Alegre, Brazil).
Habitat.-Coasts of Guiaua and Brazil.
We know this species from a specimen (4584, M. O. Z.) 18 inches long from Victoria, Brazil.

This specimen agrees well with Steindachuer's description of Otolithus microps. The scanty account given by Cuvier and Valenciennes of Otolithus virescens agrees, so far as it goes, with 0 . microps, and with no other South American species known. We lave been unable to find the type of virescens in the museum at Paris. There seems to be little reason for doubting the identity of the two. We have therefore taken the older name instead of microps.

23. CESTREUS MICROLEPIDOTUS.

Ototilhus mierolcpidotus Cuv. \& Val., Hist. Natv Poiss., v, 79, 1830 (Surinam). Günther, Cat. Fish. Brit. Mus., ii, 911, 1860 (copied). Steindachmer, Nene und Seltone lische k. k. Zool. Mus. Wien, 39, 1879 (Maranhĩo).
Cynoscion microlcpidotum Jordan, Proc. U. S. Nat. Mus.; 1886, 588 (name only).
Habitat.-Coasts of Surinam and Brazil.

This species is known from the original discription of Cuvier and Valenciennes and from a more detailed account given by Dr. Steindachner. It would appear to be well distinguished from all the others mentioned in this paper.

24. CESTREUS STEINDACHNERI.

Cestreus steindachueri Jordan, sp. nov. (Curuça, Brazil).
Habitat.-Coasts of Brazil.
The type of this species is a specimen (10922, M. O. Z.) collected at Curuça by Professor Louis Agassiz. We have taken pleasure in naming the species for our friend, Dr. Franz Steindachner, of Vienna, who has contributed more than any one else to our knowledge of the fishes of South America.

Cestrous steindachneri seems to be allied to C. microlepidotus, but it is readily distinguished from that species by numerous characters. It somewhat resembles C. acoupa, but its scales are not half as large as in that species.

25. CESTREUS BAIRDI.

Otolithus (9) bairdi Stoindachner, Neue Fisch-Arten K. k. Museen Wien, Stnttgart, und Warschau, 40, plate i, fig. 2, 1879 (Sautos, Brazil).
Habitat.-Coast of Brazil.
We have examined a single specimen of Cestreus bairdi, a young example (10887, M. C. Z.) 9 inches long, from Para.

This species has almost exactly the dentition of the species of Ar choscion. It cannot, however, bo referred to that genus, as it has the fins as in the ordinary species of Cestreus. The difference in the dentition is one of degree only, the lateral tecth being a little larger and more unequal than usual, and cannot be used to separate this species from the genus Cestreus.

Genus IV.-ANCYLODON.

Ancylodon Cuvier, Règno Animal, ed. 1, 1817 (juculidens = ancylodon).
Type: Lonchurus ancylodon Bloch \& Schneider.
This genus contains a single species, remarkable for the large size and peculiar form of its canine tecth.

ANALYSIS OF SLIECIES OE ANCYLODON.
a. Body oblong, moderately compressed, the general form about as usual in Ccritrens: mouth obliquo, the lowor jaw projecting; maxillary moderate, $2 \frac{1}{8}$ in head; snont rather pointed, $4 f$ in head; preorbital narrow; ego $6 \frac{1}{2}$ in head; large canine of upper jaw very long, lance-shaped, i.e., widened toward the tip aud then abruptly pointed; about two canines in front of lower jaw on each side, also lanee-shaped, but much emaller; onter tecth of upper jaw enlarged and showing something of tho same form; enlarged lateral teeth of lower jaw comprossed; gill-rakers moderate, slonder, $3+8$, the longest of eje; candal in rhombic; ;pinone dorsal very weak; soft dorsal and anal scaly; pectoral if in lead; lateral line becoming straight before vent ; color bluish above, silvery below ; candal lobe darker; hend 3 in length; depth 4; D. IX-I, 28; A. II, 10; scales 75 (pores), 8.5 rows.

26. ANCYHODON ANCYLODON.

Lonchurus ancylodon Bloch \& Schneider, Syst. Ichth., 102, plato 25, 1801 (Surinam). dnoglodon jaculidens Cuv. \& Val., Hist. Nat. Poiss., v, 81, 1830 (Cayonno). Günthor, Cat. Wish. Brit. Mus., ii, 311, 1860 (Surinam ; West Indies). Jordan \& Gilbert, Bull. U. S. Nat. Mus., 1882, 111 (Panama).
Ancylodon atricauda Giunther, Shore Fishes of the Challenger Exp., 1880, 12 (Mouth of Rio do la Plata).
Habitat.-Both coasts of tropical America; Surinam ; Panama.
We lave not been able to comparo any specimens of this species in good condition, from Surinam, with specimens from Panama. The original types in the museum at Paris are in poor condition, but we did not see, when examining them, any characters by which we could soparate them from the specimens collected by Professor Gilbert at Panama.

Our description is taken chiefly from a specimen in the museum at Cambridge from Rio Grando do Sul. Others from Guiana, Moutevideo, and Rio Janeiro aro in the same collection.
The specimen described by Dr. Giinther as Ancylodon, atricauda differs from our account only in having the head 3 iu length and 31 rays in the soft dorsal. It is probably identical with A. ancylodon.

Genus V.-NEBRIS.

Nebris Cuvier \& Valonciounes, Hist. Nat. Poiss., v, 149, 1830 (microps).
Type: Nebris microps Cuv. \& Val.
This genus is one of the most peculiar in the family. The cavernons structure of the head reaches in this genus its extremo of development, the head boing more spongy to the touch than in Stelliferus, Collichthys, or Pachypops. But one species is known.

We retain the name Nebris, notwithstanding the prior Nebria, as we rogard the two names as sufficiently distinct. The number of vertebro i_{n} Nebris is $10+14$. The genus, therefore, belongs to the Seianina and not to the Otolithince.

ANALYSIS OW EPIECIES OF NEBRIS.
a. Body phump, anteriorly tapering to the slender caudal peduncle; profile straight head broad, heavy, extromely spongy abovo, oye minute, $9 \frac{1}{2}$ in head, $2 \frac{1}{y}$ in suont, 4 in interorbital area; $1 \frac{1}{4}$ in width of maxillary, which is very brond; mouth very large, oblique: lower jaw projecting, premaxillary anteriorly on a level with the midelle of the eyo ; maxilhary extending to below posterior margin of orbit, $2 \frac{1}{8}$ in head; tecth all minute, those of the lower jaw in a singlo series; those in upper jiuw in a band which widons backwards; tongue largo and uhick; head entirely scaly; margin of the preopercle indistinct, with a very wide membranous edge, which is uearly covered with scales; gill-rakers long and sleuder, $5+15$; scales suall, cycloid; lateral line littlo arched; the bases, at least of all the soft fins, densely covered with suall scales; dorsal spines feoble, shorter than the dorsal rays; caudal lanceolate; pectorals if in head; ventrals 1 ; color silvery, darker above; pectorals dusky on their innor margin; head 3 in longth; depth 43. D. VIII-I, 31; A. II-13. Scales 18-50 (pores)-18

27. NEBRIS MICROPS.

Nebris microps Cuv. \& Val., Hist. Nat. Poiss., v, 149, plato 112, 1830 (Surinam). Günther, Cat. Fish, Brit. Mus., ii, 316, 1860 (copioni). Steindachner, Ichthyol. Beitr., iv, 10, 1875 (Bay of Panama). Jordan \& Gilbert, 13nll. U. S. Fish Com., 1882, 111 (Panama).
Habitat.-Both coasts of Central America, Surinam, Pauama.
The specimen from which our description is taken was obtained by Professor Gilbert at Panama, where the species is not rare.

The original type of the species, from Surinam, has been examined by us, but it is not in very good conditiou, and no characters distinguishing it from the Panama form were noted. No direct comparison of Atlantic and Pacific specimens has yet been made. Numerous specimens from Panama are in the museum at Cambridge.

Genus VI.-LARIMUS.

Larimus Cuvior \& Valenciounes, Hist. Nat. Poiss., v, 145, 1830 (brcviceps).
Amblyscion Gill, Proc. Acad. Nat. Sci. Phila., 186:3, 165 (argenteus).
Monosira Poey, Anales do Fist. Nat. Esp., 1881, 326 (stalli).
Type: Larimus breviceps Cuvier \& Valenciennes.
This genus seems to be a very natural one, and well worthy of distiuction, although it is very closely related to Bairdiella and other more typical Sciænoids. The short snout and oblique mouth reach an extremo iil Larimus argenteus, but no definite generic line can be drawn between that species aud the others. Besides the following, one other species, Larimus peli Bleeker, is known, from Guinea. The species called Larimus auritus (Brachydeuterus auritus Gill) is not a Sciænoid fish at all, but allied to Pomadasis.

ANALYSIS OW SIECLES OF LARIMUS.

a. Dorsal with 27 to 30 soft rays; mouth extremely obliquo or vertical.
b. Mouth large, the cleft vertical; protile slightly convex, nearly horizontal; no traces of dark stripes along the rows of scales; snout vory short, $5 \frac{1}{4}$ in head; eyo large, $4 \frac{2}{5}$; profile slightly convex, little oblique; snout very short, $5 \frac{1}{2}$ in bead ; maxillary not extending beyond anterior margin of pupil, 2 in hoad; teeth all minute; preopercle with a striated and ciliated mombranaceous border; gill-rakers of length of oye, $7+16$; seales on head all cycloid; highest dorsal spine $2{ }^{3}$ in head; ventrals a littlo shorter than pectorals, which are about as loug as head ; color plumbeous above, golden below and on sides; a black axillary spot; a large steel-blue opercular spot. Ifead $3 \frac{1}{6}$ in length; depth 3 3. D. X-I, 27 ; A. II, 0. Scales 6-49-6 Angrnteus, 28.
bb. Mouth not quito vertical; upper parts with dark strgaks along the rows of scales; profle slightly couvex, a little oblique; siout very short, 6 in hadd ; oge 4 ; maxillary extending to below front of orbit, 2 in lroad ; toeth in lower jaw uniserial, in upper uniserial in front, in about two series laterally; preopercle with a ciliated, membranons border; gill-rakers slender and long, $10+21$; dorsal spines weak, the highest $1 \frac{8}{6}$ in head; ventrals a littlo shorter than pectorals, which are as long as head; scales large, those on hoad chiefly cycloid; color plumbeous-silvery, with more or loss conspicuous oblique blackish strealsy
following the rows of scales abovo; a black'axillary spot; region about pseudobrunchias dusky. Load 38; dopth 3. D. X-I, 23 ; A. II, 6. Scales 6-487
 the profile dosconding forwards.
c. [Color white, with faint streaks and without vertical dark bars; second anal spine long, nearly 2 in hearl; body deep; snout short, 5 in head; eyo $3 \frac{1}{2}$ in head; month large, maxillary 2 in head, lower mandiblo produced and curved; a poro on each side of the symphysis; gill-rakers long and slender; teoth unisorial, numerons, and very small, those of the lower jaw slightly larger ; pectorals lauceolate, reaching beyond veat, slightly longer than head. Head 3 it in length; depth 3 . D. X-I, 20; A. II, 5.] (Pocy.)

Staili, 30.
ce. Color grayish, silvery below, with about sovon darls vertical cross-bars; second anal spino short, 34 in head. Body heavy forwards, much compressed, tho back somewhat elovated ; profile convox; snout very sloort and blant, 5t in head; oye 4, abont equal to tho dattish interorbital aren; month largo, less obligno than in other species; tip of premaxillary on lovel of middle of pupil; maxillary 2 in head reaching to bolow posterior third of oyo; lower mandiblo with a slight knol, at its symphysis, a small poroon each side of it; teoth minute, firm, in a singlo sorics in oach jaw ; pharyngeal teoth all long and Hender; the pharyngeal boues small and narrow, sub-triangular ; gill-rakors oxtromely clon gate, as long as oye, $12+24$; preoporclo with minato cilia; third and fourth dorsal spines about $2 \frac{1}{2}$ in head ; secoud anal spine short, one-fourth shorter than the first anal ray; se:cles largo, ctonoid ; anal and soft dorsal with a scaly shoath at base; color in lifo grayish olive aloove, with somo silvery; below, cloar silvor white, back with 7 to 9 rather conspicuous darker vertical bars extending to below middlo of sides; fins dusky-olive; anal fin and lower rays of candal yellow, ventrals orange yellow, dusky towards tip; lower side of hoal very hright silvery; inside of month and lining of gill cavity, cheoks and opercles, with somo light yollow. Head $3 \pm$ in length, dopth 3 . D. X-I, 24 to 26 . Λ. II, 5 to 6 . Scalos $5-49-9$ to $11 \ldots . .$.

28. LARIMUS ARGENTEUS.

Amblybcion argentens Gill, Proc. Acad. Nat. Sci. Phila., 186:', 165 (West const Contral America).
Larimus aryentens Jordan \& Gilbort, Bull. U. S. lish Com., 1882, 110 (lamama).
IIabitat.-Pacific coast of tropical America; Panama.
This singular fish is not uncommon about Panama, where several specinens were obtained by Profossor Gilbert. Of all the known species of Scicmide this one has the moutle most nearly vertical. There is, bowever, it its structure nothing to warrant its separation as a distinct genus, Amblyscion. Many specimens from Panama are in tho museum at Cambridge.

29. IARIMUS BREVICEPS.

Larimus lreviceps Cuv. © Val., IIst. Nat. Poiss., v, 14(i, pl, exl, 1030 (Brazil, San Domingo). Storer, Syn. l'ish. North Am., 321, 1 edi (copied). Ginther, Cht. lish. Brit. Mus., it, 208, 1860 (San Domingo). Gianther, Fishes Contral America, 387 aud 425, 1869. Jordan \& Gilbort, Bull. U. S. Fish Com, 188:2, 107 (Mazatlan). Gilbert, loc. cit., 112 (Punta Arenas). Bean di Dresel, Proc. U. S. Nat. Mas., 1834, 158 (Jamaica).
IIabitat.-Both coasts of tropical America, north to Mazatian aud San Domingo.

We have not been able to compare directly Atlantic and Pacific examples of this species, so that we cannot be quite sure as to their identity. The specimen now before us from Jamaica has the dark streaks on the scales much less sharply defined than Mazatlan examples, but we have no other evidence of difference. Specimens entirely similar to this are in the museum at Cambridge from Brazil, Porto Rico, aud from Jérémie, Hayti.

30. LARIMUS STAHLI.

Monosira slahli Pocy, Fauna Puerto•Riqueña, 326, plato vi, 1881 (Porto Rico).
Habitat.-West Indian Iauna, Porto Rico.
This species is known from Pooj's description and figure only. The nominal genus, Monosira, supposed to be distinguished by the uniserial teeth, is strictly synonymous with Larimus, and the species is evidently very close to Larimus brcviceps.

A specimen of Larimus in the muscum at Cambridge (Panama, Dr. Jones) agrees better with L. stahli than with L. breviccps. It has the mouth less oblique than in the latter, and but 24 soft rays in the clorsal fin.

31. LARIMUS FASCIATUS.

Larimus fasciatu8 Holbrook, Iehthyology S. Carolina, 153, plate 22, fig. 1, 1860 (Charleston). Günther, Cat. Fish. Brit. Mus., ii, 260, 1860 (copied). Uhler \& Luggor, Fishes of Maryland, 102, 1876. Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 606 (Charlestod). Jordan \& Gilbert, Syn. Fish. North Am., 578, 1883.

Habitat.-South Atlantic coast of the United States.
Our specimens of this species were procured at Charloston by Mr. Charles C. Leslie. Specimens are in the museum at Cambridge, from Charleston and from Florida.

Genus VII.-ODONTOSCION.

Odontoscion Gill, Proc. Acad. Nat. Sci. Phila., 1862, 18 (dentex).
Type: Corvina dentex Cuv. \& Val.
As here understood, this genus consists of a single species, whicn may be described as a Larimus armed with canine teeth. It also approaches closely to Bairdiella, one of the species of which genus (Bairdi. clla archidium) would be placed in Odontoscion were it not for the plectroid spine on the preopercle.

ANALYSIS OF SPECIES OF ODONTOSCION.

a. Teoth in both jaws in a single series; the two front teoth in lower jaw large canines, some of the teeth on the side of the lower jaw also onlarged, canine-like; tecth of the upper jaw Jitrest forward, smaller than those in the lower jaw ; body oblong, compressed, the profile straight and rathor steep; snout short, blunt, 4 in head; eye large, B_{j} to 4 in heat ; preoperclo rounlod withont any distinct spines, with crounlated membranaceons margin ; highest dorsal spine 2 in head ; distance from first aual apino to middle of base of saudal 3 tin length ; distavce from vent to first anal
spino $1 \frac{1}{3}$ in baso of anal; mouth large, oblique, maxillary reaching beyond middlo of orbit, 2 in head; proorbital very narrow, about 4 in oye; gill-rakers long and stiff, $5+14$; lower phargngeals small, with conical teoth; scales thin, ctenoid; soft dorsal and anal scaly; scalos below lateral line in uearly horizoutal series; dorsal spinos long and slender, soparated from soft dorsal; tho spine of soft dorsal short aud stout; caudal subtruncate, uppor lobe longer; anal short and high, second anal epine $2 \frac{1}{2}$ in head; ventrals half way to anal, pectorals 1_{3}^{2} in head; color dusky silvery, everywhere soiled with durk points, which form faint streaks along tho series of scales; snout and anterior part of the chin black; upper part of base of poctoral and axil black. Hoad 3 to $3 \frac{1}{8}$ in longth; depth $3 \frac{1}{4}$. D. XI or XIL-I, 23 ; A. II, 8. Scalos 7-49 to 52-10.. Dentex, 32.

32. ODONTOSCION DENTEX.

(Corvina.)

Corvina dentex Cuv. \& Val., List. Nat. Poiss., v, 139, plate 109, 1830 (Sau Domingo). Storer, Syn. Fish. North Am., 320, 1846 (copied).
Larimus dentex Günthor, Cat. Fish. Brit. Mus., ii, 269, 1860 (Jamaica, Trinidad). Odontoscion dentex Gill, Proc. Acad. Nat. Sci. Phila., 1862, 18 (namejonly). Pocy, Synopsis, 325, 1863 (Cuba) ; Enumoratio, 49, 1875 (Cuba). Jordan, Proc. U. S. Nit. Mus., 1886, 44 (IIavana).

Habitat.-West Indiau fauna.

This small species is generally common in the West Indies, where it is a food-fish of some importance. The numerous specimens before us are from Havana, where the species is known to the fishermen as Corvina.

Genus VIII.-COIRVULA.

Corvula Jordan \& Ligonmanu, genus novam.
Type: Johnius batabanus Poey.
We propose the above name for four species of Amorican Sciænoids, allied to Bairdiella in nearly all respects, but having the preopercleunarmed asin Larimus. The typical species is remarliable in form and coloration, but it is probably congeneric with the others with which we bere associate it.

ANALYBIS OF SPECIES OF CORYULA.

a. Body rather short and deep; depth 2t to $3 \frac{1}{2}$ in length; distanco from insertion of ventrals to first aual spino about equal to depth of body; color silvery, usually with faint dusky strealss along the rows of scales.
b. [Dorsal rays XI-I, 26 ; postorior dorsal rays much shortert hau the antoriorones; oye vory large, $3 t$ in hoad ; dorsal outline strongly courex, somewhat elevated anteriorly; ventral outlino considerably, strongly convox; snout short, 5 in hoad; mouth moderate, somewhat obliquo, reaching to below hinder marfin of pupil; tip of promaxillary littlo abovo lower margin of orbit ; maxillary $2 \frac{1}{8}$ in head; teoth in narrow bauds, the outer series of tho uppor jaw onlarged; longest dorsal spine $1 \frac{7}{6}$ in head; tho highest (third or fourth) dorsal ray 2 in head; baso of anal and soft dorsal with a scaly sheath, tho mombranes with minuto scales; second anal spine small, 2t in head; color brownish, paler below; upper two-thirds of body with dark streaks along the rows of scales; pectoral and especially anal with clark points; base of spinous dorsal light yellow; wumerous dark dots on bolly, lower part of sides, and under side of head. Head 3 in lougth; dopth $2 \frac{1}{2} ; \mathrm{D} . \mathrm{XI}-\mathrm{I}, 26 ;$ A. II, 10 ;

bu. Dorsal rays $\mathrm{X}-1,28$; depth, $2 ?$ in length; posterior rayy of soft dorsal rays higher than the antorior ones; cye small, 5 in head; dorsal outline strongly and regularly convex and elevated; ventral outline straight; snout acute, not rounded, 3ı in head ; month moderate, oblique, maxillary extending beyond pupil; its length $2 f$ in head; teeth of the lower jaw bluntisb, in two serices anteriorly, in a single series laterally; those of the inner serics largest; teeth of the upper jaw in a narrow band, the outer series enlarged; preoperclo with a crenulate membranons margin; gill-rakers slender, about half as long as the oyo, $7+13$; dorsal spines slender, the longest $1 \frac{1}{2}$ in head ; soft dorsal rounded posteriorly; 1604 dorsal ray highest, 2 in head ; catdal convex; second anal ray 2f in head; pectoral short and broad, slightly shorter than ventrals which are 1 g in head; scales large, those about the head, napo, and anterior part of breast cycloid, the remainder ctonoid; color, silvery white, darker above; sides aud back with rather distinct dark lines along the scales; spinous dorsal, tips of ventrals and anal dusky; upper part of head brownish; lower part of head, cheek, and breast with numerous rusty dots, base of soft dorsal mid anal rusty ; bead 38 in leugth; depth 28. D. X-I, 28; A. II, 8 ; scales 7-52-8.

Sislis, 34.
ulb. Dorsal rays X to XIr-I, 23 to 25 ; depth of borly about $3 \frac{1}{3}$ in leugth; form of C. sialis, but the body more elongate; jaws equal; outer tecth above oularged lower teeth nearly uniserial; eyo large, $4 \frac{1}{2}$ in head; suont blmitish, $4 ;$; maxillary $2 t$ in head, oxteuding to middlo of pupil; preopercle with flexible sorroo; second anal spine, $3 \frac{8}{8}$ in head ; caudal fiu subtrancate. Head 3f in length; depth about 34 . D. XII-I, 22 to 24 ; A. II, 9 ; scales abont 46; color silvery; with faint streaks along the rows of scales abovo..........Subsequalis,* 35.
aa. Body rather clongato aud compressed, the depth 3 it in length; distance from insertion of ventrals to first amal spino half greater than depth of body; coloration dueky, with conspicuous dark streaks along the rows of scales.
c. Body oblong, compressed, tho depth nearly miform from ventrals to vent; profile nearly straight aud horizontal ; mouth rather wide; maxillary $2 \frac{1}{8}$ in hoad, roaching middle of eyo ; upper jaw with several sorics of minuto teeth and an onter somewhat enlarged serics; lower jaw with a single series of rather strong tecth, a pair of minuto camine-like teeth at the symphysis; snout short, without pores, 3 f in head ; chin with 5 large pores; preopercle with a crenulato, dermal border; gill-rakers slightly longer thanpupil, $5-13$; lower pharyngeals with many small tecth, some of the inner oncs much elongato ; eso slightly shorter than mout, $4 \frac{1}{2}$ in head, about equal to tho interorbital area; scales large, their exposed edges much striated, the strix onding in cilia; scales bolow lateral line in undulate, sub-horizontal sorios; lateral line slightly curved, becoming straight above anal; soft portions of vertical fins densely covered with scales; soft dorsal and aual with asenly sheath at their base; dorsal caudal and anal rounded bohind; ventrals slightly longer than pectorals, if in head. Color coppery-grayish, with many minute brown pointa; seales of back and sides ench with a dark spot, these forming very distinct dusky stripesalong the series of scales; stripes bolow the lateral line mostly of continuous spots, thoso abovo broken aid irregular ; upper part of head and fins uniform brownish with many misuto points. Ilead 38 in length ; depth 3z. D. XI-I, 26 ; Λ. II, 8 ; ecales 6-50-7.... Batabava, 36.

* The following is the substance of Pocy's account of his Corvina suluqualis: Boily rather clongato ; eyo 3 th in head ; snont short, rounded; month moderato; maxillary extending to below anterior margin of pupil, the jaws suberual; tecth in fino bands, the outer series longor, aud larger above than below; symplysis with four pores; preopercle finoly dentate; dorsal fins separated ; second dorsal spine stout; caudal with a salient angle; base of anal scaly; anal spine rather strong, its insertion rather posterior; color silvery; dopth 3 (with cantal) ; head 3 3. D. X-1, 25 ; A. II, 7.

33. CORVULA MACROPS.

Corvina macrops Stoindachuer, Iehthyol. Beitr., iii, 24, fig. 9, $187 \overline{5}$ (P'intuat).
Sciana macrops Jordan \& Gilbert, Ball. U. S. Fish. Com., 1831, 316 (coplied). Jordan, Proc. U. S. Nat. Mus., 1835, 3S2 (Pauama).
Habitat.-Pacific coast of tropical America, Panama.
This species is apparently rare at Pamma. Specimens were obtained there by Dr. Gilbert, but as these hive been destroyed we have copied our diagnosis from Steindacher. We do not find the species in the muscum at Cambridge.

34. CORVULA SIALIS.

Corvula sialis Jordau \& Eigommann, sp. nov. (Koy West).
Mabitat.-Morida Keys.
The ouly specimen of this species, as yot known (No. 20575, U. S. Nat. Mus.), was collected by Mr. Silas Stearns at Koy West, Fla., in 18S0. We give here a detailed description of this specimen:
Depth, 23 ($3 \frac{7}{7}$ in total); hoad, 3_{7}^{1} (37 in total); D. X-I, $28 ; ~ \Lambda .1 I, ~ 8$. Length, $6 \frac{1}{2}$ inches.
Body compressed; the back olevated, regularly ronnded from snout to posterior margin of soft dorsal; vental outline almost straight from chin to tirst anal spine; base of anal oblique ; caudal pedmele short and thick.

Profile slightly convex postoriorly, somewhat depressed over the eyes; suout rather acute, slightly longer than eye; gye $4 \frac{4}{4}$ in head, 13 in interorbital area; preorbital one-half as wide as eye; month moderate ; maxillary extending past pupil, its length $2 \frac{1}{5}$ in heal ; premaxillary anterionly on level with the lower border of the orbit; lower jaw included ; maxillary broad, not entirely concealed by the preorbital when the mouth is shat. Teoth of the lower jaw blunt, conical, in two series, those of the imer series mach larger than those of the outer serios; upper jaw with a narrow band of villiform teeth and an outer series of larger teeth, which aro romoto from oach other and decrease in size towards the angle of the mouth.
Chin with five small pores; suout with six pores, arranged in a $-\because$ shaped figure.
Preopercle with a narrow, crenulate, membranous border; operclo with two scarcely distinguishable spines; scapular scale entire.

Gill-rakers moderately developed, about half as long as the eye, $5+12$; pseudobranchix large.

Scales about the head in front of dorsal and on anterior part of breast eycloid, marked with concentric stries; those on top of the heal im. bedded, indistinct; scales of the body all ctenoid; membrancs of candal, anal, and soft dorsal densely covered with minute scales nearly to their tips.

First dorsal spine short, inserted over the base of the pectoral; fourth dorsal spine highest, reaching to soft dorsal, $1+$ in head; anterior
dorsal rays shorter than the middle and posterior ones; the eleventh longer than the fourth by an eye's diameter, little more than half the length of the head ; soft dorsal very broadly rounded posteriorly ; caudal short, broad, rounded behind; anal inserted posteriorly, the tips of the aual extending nearly as far as the tips of the dorsal; second aual spine moderate, scarcely more than two-thirds the length of the rays, littlo less thau 3 in head; ventrals lanceolate, slightly longer than the rounded pectorals, $1 \frac{1}{3}$ in head.

Color (in spirits), light brownish above, silvery on sides and below; the centers of the scales with many dark dots, these forming horizontal lines along the series of scales below the lateral line and oblique, irregular, often interrupted, lines above the lateral line; all the fins with dark dots; spinous dorsal dusky; soft dorsal brownish for twofifths of its height; the other three-fifths pale; anal and tips of ventrals dusky; pectoral pale; head with mans minute rusty dots; these aggregated, and forming brownish spots on the maxillary and lower part of the head.

35. CORVULA SUB届QUALIS.

Corvina bubaqualis Pooy, Aun. Lyc. Nat. Hist., Now York, 1875, 58 (Cuba). Pooy, Enumeratio, 48, 1875 (.Cuba).
Hubitat.-West Indian fauna.
We refer two specimens from Saint Thomas to this species, although they differ in some respects from Poej's description of Corvina subaqualis. The specimens are in the museum at Cambridge, and are in rather poor condition. The more elongato body and the smaller number of dorsal rays distinguish subaqualis readily from sialis.

36. CORVULA BATABANA.

Jolnius batabanus Pooy, Memorias, ii, 184, 1860 (Batabano, Cuba); Synopsis, 324, 1868 (Cuba); Enumoratio, 49, 1875 (Cuba) ; Fauna Puerto-Riqueria, 327, 1881 (Porto Rico).
Larimus batabanus Jordan, Proc. U. S. Nat. Mus., 1836, 43 (Havana).
Halitat.-West Iudian fauna.
This rare species is known to us from a single specimen, obtained by Dr. Jordan in Mavana, and from several specimens sent by Professor Poey to the museum at Cambridge. Its strongly marked coloration is a very unusual trait in this family. It diverges in several ways from the other species referred by us to Corvala, but we think that all should be placed in one genus.

Genus IX.-PLAGIOSCION.

Plagioscion Gill, Proc. Acad. Nat. Sci. Phila., 1861, 82 (a genoric description only no species or typo being indicated).
Diplolepis Steindachmer, Beitriige zur Kenntniss der Scionoiden Brasilions, 1863, 2 (squamosissinus; namo preoccupisd in Дymenoptera).
Plagioscion Jordan \& Eigenmann (squamosissima).
Type: Scicena squamossissima Heckel.

This genus consists of fresh-water Sciænoids, inhabiting the rivers of South America. The genus seems to us a valid one, although closely allied to Corvula and Pseudotolithus, from both of which it is well distinguished by the peculiar squamation of the lateral line. This character suggested to Dr. Steindachner the name Diplolepis, a name which is, unfortunately, preoccupied. As no species of Plagioscion was named by the describer of that genus, we have hesitated as to the propriety of making use of that name. The original description of Plagioscion must, however, certainly have been based on some species of the present genus, as it agrees with no other American form. We have therefore retained the name given by Dr. Gill in preference to coining some new one for the group.

Like most fresh-water fishes, the species of Plagioscion are subject to many variations, especially in regard to the size of the second aual spine. But three of the numerous nominal species seem to us valid.

ANALYSIS OF SPECIES OF PLAGIOSCION.

a. Second anal spine small, scarcely longer than eye, its length 4 to $5 \frac{d}{\frac{1}{2}}$ head; teeth of lower jaw with the innor sorios considerably enlarged; snout of moderate length, 5 in head; eye, $5 \frac{1}{2}$; maxillary, $2 t$ in head; gill-rakers rathor long, $X+12$; pseudobranchix usually small on one side and obsolete on the other; upper part of the preopercle crenulate on its bony margin; pectoral fiu short, 18 in head anal spino, $4 \frac{1}{2}$ to $5 \frac{1}{3}$, its length subject to much variation; caudal convex; vontrals filamentons at tip. Color, silvery; darker above, the axil with a large black spot. Head $3 \frac{1}{8}$ in length; dopth 3f. D. X-I, 31 or 32 . A. II, 7. Scales (large ones or pores) 49 to 53 . Lowor pharyngeals narrow, armed with villiform teeth. Squamosissimus, 37.
aa. Second aual spine largo and strong, its length 2 to 3 in hoad.
u. ['Teeth of lower jaw with the inuer sorics considorably onlarged; inout vory short, blunt, $5 \frac{1}{2}$ in head; head depressed above the oyes; mouth large, rathor obliquo, subinferior, the maxillary $2 \frac{1}{8}$ in hoad, roaching past oye; back olovatod; veutral outline nearly straight; caudal peduncle slonder ; preorbital broad, a little narrower than eyo, which is $5 \frac{1}{2}$ in head; preopercle roundod, noarly or quito outire ; teeth of outer sories in upper jaw and innor serios of lower notably onlarged; dorsal spines slondor, the highest $2 z^{3}$ in head; pectoral 18 in hoad; ventrals 18; scales all ctenoid; liead 3 ; depth 38 ; D. X-Y, 31 to 33. A. II, 6. Enlarged scales in lateral line about 50 ; about 100 in a longitudinal sories above it. Colorgrayish above, silvery below; uppor vertical fins punctate; lower fins yellowish; axil dark.] (Steindachner.)Sulinaminnsis, 38.
bb. Teeth of lower jaw suboqual, those of the inner row scarcely enlarged; hoad very convex above, notepongy ; proopercle with a broad membranous margin, which is slightly creuulate; preorbital broad, as broad as oye; mouth large, oblique, the lower jaw slightly included, the maxillary $2 f$ in head; suout bluntish, $3 f$ in heal; eje 6 in head; gill-rakers $X+13$, slondor and moderately long, the longest abont $\frac{2}{5}$ diamoter of eye; outer tecth above somowhat oularged ; pootorals long, $1 \frac{1}{3}$ in head, shorter than the ventrals, which have filamontons tips; second nual spine $2 \frac{1}{3}$ to $2 \frac{3}{3}$ in hoad ; dorsals convected, the soft dorsal largely scaly at base ; caudal rhombic, the middle rays produced. Color plain silvery, the axil dusky. Head 3f; depth 31. D. X-I, 34 to 36. A. II, 7. Scalos 49 (pores); 80 cross-serics. Auratus, 39.

37. PLAGIOSCION SQUAMOSISSIMUS.

Sciena squamosissima Heckel, Amnalen des Wioucr Muscum, ii, 438, 1840. Reinhardt, Videnskab. Medd. Naturhist. Forening Kjöbenhavn, 108, 1854. Steindachuer, Beitr, zur Kenntniss der Fisch-Fama Siid-America's, 1879, 3 (Amazon, Orinoco, Rio Negro).
Pachyurus squamosissimus Günther, Cat. Fish. Brit. Mus., ii, 526, 1860 (copied).
Diplolepis squamosissimus Stcindachuer, Scisu. Brasil., 2, 1863 (Brazil).
P Scicna rubella Schomburgk, Naturalists' Library, Fishos of Guiana, ii, 133, 1843 (Rivers of Guiana). (D. IX, 34 ; A. II, 6 ; anal spincs presumably small.)
Johnius crouvina Castelnau, Anim. Nonv. ou Rares de l'Amer. du Sud, Poissons, 11, plate r, fig. 1, about $18 \pi^{2}$ (Rio Crinas, Rio Araguay).
Scianna crouvina Günther, Cat. Fisl. Brit. Mus., ii, 287, 1860 (copied).
Johnius amazonicus Castelnau, Auim. Nouv. on Rares de l'Amór. du Sul, Poiss., 12, plate iv, fig. 1, about 1850 (Amatzon).
Sciana amazonica Günther, Cat. Fish. Brit. Mus., ii, 284, 1860 (River Chapin, Para).
PCorvina monacantha Cope,* Trans. Am. Phil. Soc., 1866, 402 (near Parimaribo, Dutch Guiana.
© Sciana monacantha Jordan, Proc. U. S. Nat. Mas., 18S6, 587 (name only).
Halitat.-_Rivers of Guiana and Brazil.
We hare examined specimens of this species from Obidos, Avary, IRio Puty, Tajaparı, Iça, Coary, Rio Trombetas, and Lake Hyanuary in Brazil. Our description is chiefly taken from 10S67, M. C. Z., from Obidos, and 1.0857 from Coary.

We regard the Johnius amazonicus and Johnius crouvina of Castelnau as identical, and wo follow Dr. Steindachner in placing both in the synouymy of the carlier Sciona squamosissima of Heckel. We have seen no specimens of this species from Guiana. It seems to us, however, that. the scanty descriptions published of Scicena rubella and Corvina monacantha resemble this species more than any other, although it is not impossible that both should be referred to Plagioscion surinamensis. If the latter should be found to be the only species of the genus in Guiana, it should stand as Plagioscion rubellus.

83. PLAGIOSCION SURINAMENSIS.

Pseudosciana surinamensis Bleeker, Arch. Nsorl. Sci. Exact. et Nat., viii, 458, 1873 (Surinam).
Soiana surinamensis Stciudachner, Fiseh-Fauna des Cauc a, 1880, 4 (Rio Cauca). Jordan, Proc. U. S. Nat. Mus., 1886, 587 (namo only).
Soiena magdalenc: Steindachuer, Zur Fiscl-Fanna des Magdalenen-Stromes, C, 18:8 (Rio Magdalena).
Sciana magdalence Jordan, Proc. U. S. Nat. Mus., 1886, 58\% (name only).
Habitat.-Rivers of the northern part of South America.

[^55]This species is known to us from descriptions only. We cau see no evident difference between the magdalence and the surinamensis as described by Steindachner aud Bleeker. We therefore refer the former to the synonymy of the latter. As already stated, this may be the original Sciena rubella of Schomburgk.

39. PLAGIOSCION AURATUS.

Johnius auratus Castolnau, Auim. Nouv, on Rares do l'Amor. du Sud, 12, plato iv, fig. 2, 1855 (Rio Ucayala).
Sciena aurata Guinther, Cat. Fish. Brit. Mus., ii, 287 , 1860 (copied).

Habitat.-Rivers of Brazil.

This species seems to be very abundant in the rivers of Brazil. We have examined specimens, old and soung, from Tajapuru, Cachiura, Caneta, Pari, Rio Sao Francisco, Avary, Oloidos, lio Puty, and Teffy. \quad a specimen (10855, M. C. Z.) from Tajapuru has especially served as the type of our description.

> Genus X.-BAIRDIELLA.

Bairdiella Gill, Cat. Fish. Jast Coast North Ameriea, 33, 1801 (aryyroleuca=chrysura).
Type: Bodianus argyroleucus Nitchill = Dipterodon chrysurus Lace. pède.

This genus is characterized by the oblique mouth, little cavernous skull, few rows of teeth, slender gill-rakers, and the preopercle armed with a plectroid spine. It seems to us a natural group, and perbaps worthy of recognition as a distinct genus, although its relationships with Ophioscion and especially with Stelliferus are very close. The numerous species are all American, and some of them are remarkable for the great size of the second anal spine. In others, this spine is quite sinall. These variations among species unquestionably elosely allied shows how slight is the systematic value to be attached to the size of this spine.

ANADMSIS OF SPECLES OF BAIRDIELLA.

> a. Teeth of lower jaw mequal, mostly biserial, some of those of the imer series vory slender, caninc-liks; two small canines on front of lowor jaw, inserted on a symphyseal lnob ; second anal spino very small, 3 in head (species approaching Odontoscion).
> b. Body moderately compressed, the back little elevated; profile somewhat comcavo anteriorly; snout acute, slightly longer than eyo; eye 4t to 5 in head; month large, torminal, very oblique; maxillary extending to below posterior margin of pupil, et in head; teoth of the uper jaw long and mlender, in 3 to 4 sories, tho inner ones dopressilho backward, the onter ones enlarged and fixed; 5 or 6 distinct serve near tho nugle of preopercle, the lowest a robnst flatish spine directed downwards; gill-rakers alender, $6+15$; longest dorsal spino $2 f$ in head; anal fin small, its base slightly obligue; second anal mpine shorter than tho first rays, 3 in head; pectorals about as long as ventrals, $1 \pm$ in head; seales abouk tho head eychoid, the rest all cte-
noid; mombranes of soft dorsal and anal scaled for nearly half their lieight ; color lustrous bluish gray above, silvery bolow; widdle of sides with indistinct lengthwiso streaks formed by clusters of dark dots in the centers of the scales; snont and tip of lower jaw blackish; a dark l,loteh on opercle above; sides of head bright silvery; fins light straw color; upper half of pectorals dusky: spinous dorsal finely speckled with black; axil brown above; lining of npercle black above; iris bright yellow ; head 3 in length ; deptli $3 \frac{1}{2}$; D. X-I, 24 or 25 ; A. II, 8. Scales 9-52-7 .. Anchidium, 40.
aa. Teeth of the lower jaw unequal, chiefly biserial, those of the inner series somewhat enlarged ; no distinct c anines; second anal spine moderate or large; preorbital narrow (Bairdiella).
c. Second anal spine moderate, $2 \frac{t}{8}$ in head, not as long as the soft rays, not reaching to tip of last ray when depressed; mouth large, somewhat oblique, the premaxillary on tho level of lower part of the eye; maxillary reaching middle of cyo, 2_{δ}^{2} in head; body ollong, compressed, the back a little elevated, the profile depressed over the cyes; suout prominent, bluutish, as long as eye, which is $4 \frac{1}{\text { in head ; upper teeth in two series, }}$ the outer row slender, enlarged; lower teoth in two series, the inner larger, similar to the outer in upper jaw ; preopercle serrate, the teeth near tho angle larger; the lowest and largest directed downward; gillrakers sleuder, rather long, $8+16$; scalcs on head cycloid; base of anal little oblique; ventral outline rather regularly rounded; dorsal spines slonder, the highest 21 in head ; caudal long, double truncate; pectorals about as long as the ventrals, 18 in head; soft dorsal and anal scaled at least half thoir hoight. Color greenish above, silvery below; back and sides more or less densely punctato with dark dots (especially in northern specimens), these forming narrow, somewhat irregular streaks along the sides; fins plain, mostly yellow in life. Head 3 in length; depth 3. D. XI-I, 22; A. II, 10. Scales 8-52-8. Chimsula, 41. cc. Second anal spine very loug, nearly or quite of length of hoad, reaching when depressed beyond the tip of the last soft ray; base of anal fin very obliquo, making an abrupt auglo with tho straightish ventral outlino.
d. Mouth torminal, very obliquo, the premaxillary anteriorly on the levol of the middle of the oye; body subrhomboidal and angular in outline; profilo steep, slightly convex; snoutshort, 5 in head ; mouth moderate, the maxillary reaching middle of eye, 2_{σ}^{2} in head; tecth in upper jaw in two or threoseries, tho outer considorably enlarged, all of them more or less dopressiblo; gill-rakers long, $8+16$; dorsal spinces stout, the highest abont 2 in head ; sccond anal spino cnormsus, larger than in any other species, $1 \frac{1}{7}$ in head; longer than any of the rays; second anal spino aud the anterior rays extending beyond the tips of the last rays; the margin of the fin concave, ventrals slightly longer than pectorals, $1 \frac{1}{6}$ in head; opercular scales and some of the scales of the cheek and top of the head ctenoid, those of the interorbital space and a fow on the lowor parts of the check and opercle cycloid; color bluish-gray above and on sides, silvery below; a dark, ill-defined bluish-gray blotch on opercle; mouth yellow within ; black towarde the tip of the lowor jaw ; spinous dorsal with black punctulations and a-black margin, soft dorsal dusky yollow; caudal and antorior rays of the anal brighter yollow ; caudal and mombrane betweon anal spine and first ray with black dots; axil of pectorals and inner mombrane of the upper rays of the pectoral brownish. Head 31 in Iength ; dopth 3 3. D. X-I, 23; A. II, 8. Soales 8-40-9..Ensmprbs, 42.
dd. Mouth not quite terminal, the premaxillary anteriorly scarcely on level of lower margin of orbit; preorbital narrow, but broader than in the preceding specice.
e. Dorsal rays X-I, 28; dorsal spines very elender, the highest $1 \frac{1}{8}$ in head; dorsal outline couvex, espocially anteriorly ; ventraloutline straightish; profile straightish anteriony; eye moderate, as long as snout, $4 \frac{1}{8}$ in head; maxillary $2 \frac{1}{8}$ in head, reaching much boyond middle of eye; tecth in the apper jaw in a narrow band, the onter series enlarged; gill-rakers $8+19$; basal half of soft dorsal scaly ; aual spine very strong, its tip roaching past tip of lastanal ray; pectorals about equal the ventrals, $1 \frac{1}{8}$ in head; color grayish silvery above, silvery on sides and below; dorsal region with faint streaks produced by the darker centers of the scales; sides without dots; spinous dorsal blackish; ventrals and pectorals palo; a dark axillary spot; lining of gill cavity with dusky blotchos. Head 31 in longth ; depth 3i. D. X-I, 28: A. II, 8. Scales 8-51-10
icistia, 43.
ee. Dorsal rays X-I, 23; dorsal spiues rather stiff; the highest 2 in head; second anal spiee rather strong, curved, 18 in head, as long as first soft ray, and reaching boyond tips of othor rays; body oblong, compressed, scarcely angular in outline; profile straight, rather steep, the suout short and raiber acute; oye as long as snout, 4it in head; mouth moderate, nearly horizontal ; premaxillary on level of lower part of orbit; maxillary reaching beyond middle of eye, 23 in head; teeth as in B. icistia; preopercle strougly serrate; gill-rakers $9+18$. Ventrals slightly longer thau pectorals, which are $1 \frac{18}{8}$ in head; caudal truncate; color soiled grayish above, silvery bolow; faint, dark streaks along the rows of scales; spinous dorsal and anterior part of anal donsely covered with dark dots; herd 37 in length; depth 34 . D. X-I, 23 ; A. II, 8. Scales 7-50-8 ... zaa. Teeth of the lower jaw subequal in a rather narrow villiform band; mouth inferior or subiuferior, little oblique; preorbital broader, gill-rakers shorter, and pores and slits on suout more conspicuous than in other species. (Spocies appronohing Ophioscion.)
f. Snout sharp, the head slender, narrow above, the interorbital space not broader than eye; anal spine very loug and strong, $1 \frac{g}{s}$ in head; pectoral fin short, $1 \frac{1}{1}$ in hoad ; form of body irregularly rhomboidal, the base of the anal fin being oblique; profile almost straight anteriorly; eye moderate, slightly shorter than snout, $4 \frac{1}{8}$ in head ; snout $4 \frac{1}{\frac{1}{2}}$ in head; mouth large, inforior, alinost horizontal, maxillary reaching beyond pupil, 28 in head ; uppor jaw with a band of villiform teoth and au outer serios of eularged teeth; lower teeth in a moderate band, the inner soriesslightly enlargod, especially in young examples; gill-rakers comparatively short, $8+15$; dorsal spines short and stout, slightly more than 2 in head; caudal rounded; aual spine $1 \frac{1}{3}$ in head; busal half of the soft dorgal and anal covered with scales; color, bluish above, silvery below, a rather broad area from suout to caudal covered with brownish dots; uppor fins and anterior half of anal with many dots. Hoad 3 in length; dopth 3; D. XI-I, 21; A. II, 8. Scales 7-51-8.

Armata, 40.
Jf. Snout bluntish; the hoad rather stout and broad above; the interorbital space more or less broader than oye; second anal spine stout, shortish, about half length of hoad.
g. Dorsal rays X-I, 18; srales large, about 44 in the lateral line; pectoral not longer than caudal, whioh is $1 f$ in hoal ; body rather elongate ; back a little elevatod and comprossed; profile somewhat depressed
S. Mis. $90-25$
over eges; snout rather trnncate, abont 4 in lead; eje about 4 in bead; lower jaw much shorter than upper; wouth horizontal, maxillary extending scarcely beyoud middle of eye; tonth in upper jaw in a villiform baud, the outor series somewhat enlarged; gill-rakors about as long as pupil ; longest dorsal spine littlo more than half longth of head; second anal spine about 2 in bead, 㫗 the beight of the soft rays; caudal fin long, double truncate, the middle rays produced; ventrals reaching vent; color light reddish-brown, with dark punctulations; caudal sollow; aual almost black; lining of gill-cavity dusky ; head 3 fin length; deptla 34. D. X-I, 18; A. II, 8 ; scales 5-44-X.

Aluta, 46.
gg. Dorsal rays X-I, 21 or $\mathfrak{g 2}$; scales moderate, 50 to 5 F in the lateral line; pectoral $1 \frac{1}{f}$ in head ; crudal 18 in head ; back somowhat olevated, the form of the body nuch as in Sciana sciera and reluted species; preorbital broader thau in other species of Lairdiella, \& width of eye; ege 5 in head; snont blentish 48 ; interorbital spaco 3 ; head thick, somewhat more caveruous than in related forms ; promaxillary entirely bolow level of eye; maxillary 93 in bead; teoth of outer series of upper jaw enlarged ; lowest servo on preopercle smaller and less turned forward than in the other species; dorsal spines rather stout, the second strong, the third longest, 1 in head; second anal spine shorter than the soft rays, $2 t$ in head; tho form and size of thesespines very variable; gill-rakers short aud slender, $\mathrm{X}+15$, the longest not as long as pupil; caudal fin double truucate; color soiled brassy, irregularly mottled, with large patches of shining golden brown ; faint dark stripes along the rows of scales ahovo, those bolow lateral line nearly horizontal, those above oblique; head $3 \frac{1}{6}$ in length ; depth 3.

40. BAIRDIELLA ARCHIDIUM.

Odontoscion archidiun Jordan \& Gilbert, Bull. U. S. Fish Com., 1881, 317 (Panama). Jordan \& Gilbert, Bull. U. S. Fish Con., 188:, 111 (Pinama).
Habitat.-Pacific coast of tropical America, Panama.
This species is not very common about Pamama, where three specimens were taken by Dr. Gilbert. Although it bears a very strong resemblauce to Odontoscion dentex, it should, we think, rather be placed in Bairdiella thau in Odontossion. It has the very small anal of Odontoscion and the spur-like preopercular spine of Bairdiella, while in its dentition it is intermediate.

41. BAIRDIELLA CERYSURA.

(The Mademoiselle; Yiellow-tail.)
[Plate III.]
Perca punctata Linnequs, Syst. Nat., ed. xii, 48:, 1766, in part (South Carolina) (not Perca punctatus of ed. \mathbf{x}, which is Linneacentris fulvus). Bonnaterre, Enoyel. Móth., 17e8, 1:2. Goode \& Bean, Proc. U. S. Nat. Mus., 1885, 201 (notes on Linnwan Fishes).
Bairdiclla punctata Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1878, 377 (Beaufort).
Sciana punctata Jordan \& Gilbert, Proc. U. S. Nat. Mus., 188:2, 280 (Ponsacola; Galveston). Jordan \& Gilbert, Syn. Fish. North Am., 570, 1883.

Dipterodon chaysurus Lacepète, Hist. Niat. Poiss., iii, 64, 1802 (after Linnæus).
Sciana chrysura Jordan \& Gilbert, Droc. U.S. Nat. Mus., 1882, 606 (Charleston). Jordau \& Gilbert, Syn. Fish. Nortl America, 933, 188.3. Swain, Proc. U. S. Nat. Mus., 1884, 2:33 (Cerlar Key, llorida).
Bairdiella chrysura Goode, Hist. Aquat. Animı, 375, plate 126, 1884.
Bodianus argyroleucus Mitchill, Trans. Lit. \& Phil. Soc. New York, 417, plate 6, fig. 3, 1815 (Now York).
 States). Dekay, Now York Fauma, lishos, 74, plato 18, fig. 51, 1842 (New York). Storer, Syn. Fish. North Ain., 319, 1846 (copied). Guinther, Cat. Fish. Brit. Mus., ii, 999,1860 (copied).
Bairdiella argyrolcuca Goole, Proc. U. S. Nat. Mus., 1879, 113 (St. Johu's River, Florida). Goode \& Bean, Proc. U. S. Nat. Mas., 1879, 131 (Pensacola). Bean, Proc. U. S. Nat. Mus., 1880, 93 (Branawick, Gab. ; St. John's River, Florida).
Bodianus pallidne Mitchill, Traus. Lit. \& Phil. Soc., 1, 490, 1815 (Now Yoris).
IIomomion xanthuriis Holbrook, Ich. S. Car., ed. 1, 1856, 170, pl. 24 (not Leiostomus xanthurus Lacбjode.
Homo in'ion subtruncatus Gill, Cat. Fish. E. Coast, 18is1, 33 (after Holbrook).
Mabitat.-South Atlantic and Gulf coasts of tho United States, north to New York.

This species is very abundant on our sandy shores from Long Island to Texas. It reaches but a small size, heuce, although au excellent pan fish, it has vo great economic value.

Unlike most of the other species of the renus, its second anal spine is little enlarged.

The oldest name of this species, Perca punctata L., is not arailable, as there was at that time already another Perca punctata, also named by Liunieus. The appropriate name, chrysura, being next in order of date, must, therefore, be adopted.

42. BAIRDIELEA ENSIFERA.

Corvina armata Steinduchner, Leh. Beitr., iii, 28, 1875 (Punama) (not of Gill).
Sciana ensifera Jordan \& Gilhert, Bull. U. S. Pish Com., 1881, 313 (13ay of Panamia). Gilbert, Bull. U. S. Fish Com., 1882, 112 (Punti Aronas).
Corvina fulgens Vaillant, Miss. Sci, au Moxique, $104,188: 3$ (Pacific coast of Mexico).
Halitat.-Pacific coast of tropical America.
This species is not uncommon about Panama. Of all the American
Scimenoids this species has the largest anal spine in proportion to the size of the body. The Corvina fulgens, lately described by Dr. Vaillant, seems to be identical with Bairniella ensifera.

Numerous specimens of this species from Panama aro in tho museum at Cambridge. They had been wrongly ideutified as "Corvina armata" by Dr. Steindachner.

43. BAIRDIELLA ICISTIA.

(Corbinieta.)

Sciana icistia Jordan \& Gilbort, l’roc. U. S. Nat. Mus., 1881, 37C (Mazatlan). Jordan \& Gilbert, Bull. U. S. Fish Com., 1881, 316 (Mazatlan). Jordan \& Gilbert, Bull. U. S. Pish. Com., 188:, 107 (Mazatlan).
Halitat.-Pacific coast of Mexico, Mazatlan.

This species is rather common about Mazatlan, where numerons specimens were taken by Dr. Gilbert. It is readily distinguished from other species by the weakness of its dorsal spines, as well as by the large number of the anal rays.

44. BAIRDIELLA RONCHUS.

(Ronco; Corvina.)
Corvina ronchus Cuv. \& Val., Ilist. Nat. Poiss., v, 107, 1830 (Maracaibo; Surinam). Storer, Syn. Fish. North Am., Bi20, 1846 (copicd). Günther, Cat. Fish. Brit. Mus., ii, 299, 1860 (San Domingo, Jamaica, Bahia). Giinther, Fishes Central America, 387, 1869 (Atlautic coast Central America). Cope, Ichthyol. Losser Antilles, 471, 1870 (St. Martin).
Bairdiella ronchus Pocy, Synopsis, 324, 1868 (Cuba). Poey, Eunmeratio, 48, 1875 (Cuba). Pocy, Fauna Puerto-liqueña, 320, 1881 (Porto Rico).
Sciona ronchus Jorlan, Proc. U. S. Nat. Mus., 1886, 44 (Havana).
Habitat.- Δ tlautic coasts of tropical Δ merica.
This species seems to be generally common in the West Indies and along the coast of Brazil.

The numerous specimens before us are from Havana. The species is called Corvina in the Havana markets, where it is a food-fish of some importance.
Many specimens from Liso Janciro and from Havana are in the museum at Cambridge. There is considerable individual variation, but there seems to be no specific difference between Cuban and Brazilian examples.
A number of specimens in poor condition are also in the museum, supposed to have been obtained by Captain Perry at Vera Cruz. These bave the snout longer, the eye smaller, and the fins higher than usual in ronchus, and they may represent a different species. In these the snout is 4 in head, the eyc $4 \frac{1}{2}$, the longest dorsal spines $1 \frac{3}{4}$, the second anal spine $1 \frac{3}{7}$. D. X-I, 24.

45. BAIRDIELIA ARMATA.

Bairdiella armata Gill, Proc. Acad. Nat. Sci. Phila., 1863, 164 (west coast Central Anerica). Bean \& Dresel, Proc. U. S. Nat. Mus., 1884, 156 (Jamaica).
Corvina armata Giluther, Fishes Central America, 387 and 468, 1869 (Pacific coast of Contral America).
Sciana armata Jordan \& Gilbert, Bull. U. S. Fish Com., 1881, 316 (Panama). Gilbort, Jull. U. S. Fish Com., 1882, 112 (Punta Arenas). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1889, 276 (Panama).

Cornina acutirostris Steindachner, Ichthvol. Boitr., iii, 28, 1875, plate 4 (Panama). Corvina (IIomoprion) aoutirostris Stoindachner, Zur Fisch-Fauna des MagdalenenStromes, 9, 1878 (Caiman on Rio Magdalena):
Malitat.-Both coasts of tropical America.
This species is not uncommon on the Pacific coast about Panama, and it is equally abundant on the Atlautic coast, where it seems to ascend the rivers.

There is no doubt of the identity of Corvina acutirostris with Bairdiella armata, the type of the latter having been examined by Dr. Gilbert.

Bairdiella armata is close to B. ronchus, and the character of the dentition of the lower jaw, which we have used to divide Bairdiella into minor groups, becomes here of slight importance.

We have examinet specimens of this species from lanama, Rio Mag. dalena, San Mathen, Camiru, Camnarivieras, Curuça, Bahia, Pernannbuco, Maranhano, and Itabapuana. The specimen from the latter locality (10837, M. C. Z.) is nearly a foot long, and has the spines a little shorter and stouter tham in Panama examples.

46. BAIRDIELLA ALUTA.

Soiena aluta Jordan \& Gllbert, Proc. U. S. Nat. Mus., 18s1, 232 (La Union, San Salvador.
Habitat.-Paciice coast of Central Δ merica.
This species is known only from the original type collected by Captain Nichols at La Union.
This specimen strongly resembles Bairdiella chrysoleuca, apparently differing only in the larger scales, fever dorsal rays, longer caudal fin, and larger oyes. The two characters last mentionod may be due to youth, the type of aluta being smaller than any chrysoleuca examined by us. The other characters are possibly results of extreme rariation. It is, therefore, probable that the two nominal species will prove to be identical.

47. BAIRDIELLA CHRYSOLEUCA.

Corvina chrysoleuca Giuther, Fish. Central Anerica, 387 aud 427, plate 67, fig. 1, 1869 (Ралама).
Sciana chrysoleuca Jordan \& Gilbert, Bull. U. S. Fish. Com., 1831, 316 (Pauama).
© Sciouna aluta Jordan \& Gilbort, Proc. U. S. Nat. Mus., 1881, 232 (La Union).
Habitat.-Pacific coast of tropical America.
A few specimens of this species were obtained at Panama by Professor Gilbert. Two others are in the museum at Cambridge (No. 108:26, from Panama). The species is quite variable, especially in the arma. ture of its preopercle.
This species, although technically a Bairdiella, shows numerous affinities with Sciana sciera and other species of Ophioscion. It marks the transition from one group of Scienoids to the other, from those related to Larimus to those allied to Sciona, Pogonias, and Eques.

Genus XI.-STELLIFERUS.

Les Stelliferes Cuvier, Règno Animal, ed. i, 1817, 283 (stellifer).
Stelliferus Stark, "Elements Nat. Hist., i, 459, 1828" (stellifer) (fido Gill).
Homoprion Itolbrook, Ichth. S. Carol., Ist ed., 18in6, 163 (lanceolata).
Type: Bodianus stellifer Bloch.

This group is composed of small species, all American, allied to Bairdiella and Ophioscion, but distinguished by the remarkably spongy and cavernons structure of the boucs of the stull. The septa are reduced to the thimess of the walls of honeycomb. The skull is also very broad and much depressed between the eyes.
The generic name Homoprion was based on a species cach of Stelliferus and Bairdiella. It was restrictel by Gill to the former group, and should therefore be regarded as a synonym of Stelliferus. We have not examined the paper of Stark, but we understand that Stelliferus is a latinization of Cuvier's "Les Stellifères," based on Bodianus stellifer.

ANALYSIS OF SPECIES OF STELLIFERUS.

a. Preopercle with two spines only, the upper directed backward, the lower more or less downward.
b. Jaws subequal, the month very oblique; teeth of lower jaw unequal, not villiform, those of the inuer series enlarged; mouth very large, oblique, tho jaws equal, the suout not projecting beyond the promaxillaries, which are on the level of the oye; maxillary 2 in head, oxtending beyond eye; interorbital width nearly half head; proopercle with two spines ouly, the upper directed backward, the lower downward; body robust, subrhomboidal ; profile steep, straightish; snout short, prominent, as long as eye, $4 \frac{2}{8}$ in head; teoth of the upper jaw anteriorly in two separated series, the outer of which is composed of enlarged tectla posteriorly in a broad baud of villiform teeth; gillrakers long and slender, scarcely shorter than eye, $21+27$; dorsal spines low, the first two and last two somewhat thickened, the rest slender ; highest spine 2 in head; caudal rounded, shorter than
 poctorals, which aro slightly longer than the head; scales about head, on breast, antedorsal region, and several series along the base of the dorsule cycloid, the rest ctenoid; bases of aual and soft dorsal densely scaly; a series of scales ou membrane of each spine in the dorsal fin. Color dusky abova, pale below, with some silvery luster; middle of sides conspicuously punctulate; upper fins all brownish, punctulate with darker; 'ventrals, anal, aud pectoral pale, the anal and pectoral dusted with dark points; opercle blackish within; head 38 in longth; depth 4k. J. XI-I, 24 ; A. II, 8; scalo si-48-6....... Oscitans, 48.
bb. Jaws not equal, the lowor jaw included; roouth less oblique; teeth of lower jaw subequal, in a narrow, villiform band.
c. Mouth large, maxillary 2 in head ; lower preoporcular spine directed downward and backward; body moderately deep, the anterior profile straightish aud steop, a little dopressed over the oyes; eye rather large, $4 \frac{1}{4}$ in hoad; snont $4 \frac{18}{}$; interorbital area broad and flattish, its width 28 in head; head narrower aud less depressed than in S. fïrlhi; mouth oblique, the lower jaw included, the premaxillary in front a little above lower edge of pupil; maxillary 2 in head, reaching to posterior margin of eye; tecth of lower jaw in a narrow band of about 3 series, those of the inner serice very slightly enlarged; gillrakers oxtremely long and slender, about $X+30$, the longest slightly' less than oye; preopercle strongly rounded, the lowor spinule directed backward and downward; scales large; lateral line becoming straight over the anal spine; caudal pointed; longest dorsal
spine $1 \frac{1}{6}$ in head; socond anul spine $2 t$; pectoral $1 \frac{1}{8}$; hoad $3 \frac{1}{8}$ in length; depth $3 \frac{1}{8}$; D. XI-I, 21 ; A. II, 9 ; scales 48 (pores); color rather pale, the pectoral with dark points; gill cavity dark within... Rasthifir, 49.
cc. Mouth moderate, the maxillary reaching to behind pupil, 2 z in head ; lower spine of preopercle directed downward and forward; bones of side of head little cavernous; interorbital width more than $\frac{1}{8}$ head; mouth low, litule obliquo, the masillary reaching to behind pupil, $2 \frac{1}{2}$ in head ; eye $4 \frac{18}{g}$ in head; gill-rakers shorter and fower than in S. rastrifer ; smout short, thick, aud blunt, protruding boyoud the premaxillaries which are on the devel of the oye; protile steep; body rather short and deep, the back olevated ; highest dorsal spine $1 z$ in head; second anal spine swall, $2 t$ in head, shorter than soft ratys; ventrals $2 \frac{1}{2}$ in head; pectornals scarcely shorter than head; color dull silvery, darker above; lower fins pale; head 3 in leagth; dopth 2 学 to 3 ; D. XI-I, 23 ; A. II, 9 ; scalos $6-46-10 \ldots$......... VÜrin, 50 -
aa. Preopercle with munerous (6 to 20) sorre, those near the angle moro or less onlarged; Inwer teeth subequal, in a narrow band.
d. Lowermost spinule of proopercle enlargod, directed downward (as in Bairdiella) ; candal fin subtrancate; body deop, robust, modorately compressed; nuchal region compressed; profile steop, dopressed over the eye, the suout projecting; head broal, flattish, aud soft above, but less cavernous than in the other species; interorbital space 3 in hend; a sharp ridgo above orbits as in other species; suont very blunt, short, and thick, $4 \frac{1}{8}$ in head ; mouth oblique, tho lower jaw included; maxillary reaching middle of papil, $2 \frac{1}{2}$ in head ; eyo $4 \frac{j}{j}$ in head; gill-rakers long and slender, $\mathrm{X}+21$, the longest, foye; preopercle with 6 or 7 sharp teeth above, the one at tho angle enlarged and turned downward; dorsal spines moderato; second anal spine short, stoutish, ? length of first soft ray, 3 in hoad ; caudal subtruu. cate, the upper lobe slightly producel; pectorals rathor loug, $1_{1}{ }_{2}$ in head, reaching beyoud tips of ventrals; color soiled silvery, with faint darker streaks along the rows of scales; dorsal with dark points; other fins pale; head 34 ; depth 3; D. XIII-1, 22 ; A. II, 11;

$d d$. Lowermost spinule of properele not directed downwards; caudal fin pointed.
e. Mouth large, oblique, the maxillary 9 to $2 \frac{f}{f}$ in length of head ; suout very short, littlo projecting.
f. Preoperele with three or four spines next the angle, divergent, considerable larger than the others.
g. Pectoral tin long, 1 it in hend; body deep, compressed; head short, deep, more compressed than in related specics, the iuterorbital space less depressed, ite width $3 f$ in head, the supraocular ridges less prominent; anterior profile evenly convex; eye rather large, $4 \frac{1}{8}$ in hoad; suout very shart and blunt, $4 \frac{f}{6}$; mouth oblique, large, the maxillary $\cdot 2$ in head, reaching posterior burder of eye; the premaxiliary on the level of lower part of efe ; prooperclo very convex, forming an are of a circho; gill-rakers long and slendor, $\mathrm{X}+18$, the longest $\frac{8}{8}$ eye; dorsal spines sleuder, rather low, the longest $1 \frac{1}{2}$ in head; second aual spine long and rather stout, $1_{8}^{\frac{8}{8}}$ in head; color dull silvery, the fins wot very dark; head 3f in length; depth 318; D. XI-I, 19; A. I1, 8 ; scules 48 ..Stellifer, 52. gg. Pectoral fin short, about $1 \frac{1}{4}$ in head; interorbital space 3 in head; second anal spiue $2 t$; body rather slender ; suout as long as eye, $4 \frac{1}{8}$
in head; mouth moderato, oblique, the maxillary not quite half length of head, extending just past pupil ; premaxillary in front on level of lower margin of pupii; tecth divove in bruati Dands, tho outer row onlarged; gill-rakery $13+22$, about tength of ege; scales on head cycloid; dorsat spines slender, the lirst two somewhat stronger, tho highest about 2 in head; candallong, lanceolate, 14 in heat; second anal spinu little shorter than the hirhest dorsal spine; first veutral ray filiform; pectoral about as long as ventral, $1 \frac{1}{8}$ in lead; color grayish olive above, silvery below; fins all nearly uniform dusky; the ventrals margined with white; many black dots along the sides; base of anal fin aud iuner lining of opercle dusky; head.3t in length; depth 3 ; D. XI-I, 20 to 23; A. II, 7 or 8 ; scales $5-47$

.f. Preoporcle with numerous short, straight spinules, which decreaso in size regularly from anglo upwards; eye small; month terminal, modorate, the maxillary exteuding past the pupil, its length 28 in head; promaxillarios anteriorly opposito lowor margin of orbit, the snout scarcely projecting beyond them; head extremely spongy and cavernons; interorbital width less than $\frac{1}{8}$ head ; profile straight; suout short, blunt, 5 in head, equal to diameter of eye; upper jaw with a band of villiforin teeth, the outer series enlarged; margin of preopercle rounded, its spines all small ; gill-rakers $\frac{8}{8}$ length of eye, $11+18$ in number ; first two dorsal spines stout, the highest i in head ; second anal spine 2 in head ; poctorals as long as ventrals, 17 in head; scales on cheeks mostly ctenoid, on top of head cycloid ; color dark brownish above, evorywhere soiled with dark points; a dark temporal blotch; lower jaw black within, bohind the front teeth; lower fins dusky; head $3 \frac{1}{8}$ in length; depth 3\% ; D. XII-I, 23 ; A. II, 7 or 8 ; scales $5-$ 48-7... Eiкicymba, 54. ce. Mouth small, inferior, noarly horizontal ; the maxillary 3 to $3 \frac{1}{2}$ in head; tho snout thick, blunt, and protuberant, the premaxillaries entirely below the lovel of the eye ; lower jaw cavernous.
h. Eye large, 3t in head; lowor teeth ou preopercle enlarged; preorbital moderate; its width about hialf diameter of eye; body moderately elongato; anterior profilu straight and rather steep; interorbital area flattish, very spongy, narrower than in S. microps; its width $3 \underset{3}{ }$ in head; snout thick, blunt, protruding, $4 \frac{1}{2}$ in head; eyo vory large; mouth small, inferior, horizontal, the maxillary extending to posterior border of pupil, 3 . in head; teeth as in related species, in moderate bands, those above slightly enlarged; preopercle rounded, sharply serrate, the serric lurgest noar the angle, some 12 of them present; gill-rakers rather long, very slonder, about $\mathbf{X}+18$; dorsal spines slender, the longest $1 \frac{1}{3}$ in head; soft dorsal less scaly than in other species, lowor than in S. micrope, the longest ray $2 \frac{1}{4}$ in head; second anal spine 2 in head; pectoral $1 \ddagger$; color soiled gragish abore, with faint darkstreaks along the rows of scales ; silvery below; fins sonuewhat punctulate; hoad 33 ; depth 32 ; D. XI-I, 20 ; A. III, 7 ; scales 48. . Naso, 55.
$h h$. Eye small, 5 to G in head; tecth on preoperclo subequal; preorbital thick and swollen, much broader. than eye; body modarately olongate; snout thick, blunt, convex, and protuberant; houd above less cavernous than usual in the genus, more so below; preopercle (as usual in this genus) forming the arc of a circle; mouth rather small, the maxillary 3 in head; suont 4 ; gill-rakers about $X+16$, shorter than in S. rastrijer, about $\frac{1}{2}$ diameter of eye; no pores or
slits at ond of snout; interorbital space $2 \frac{2}{8}$ in hoad; dorsal spines low, the longest 1 is in head; soft dorsal high, the lougest ray $2 \frac{1}{6}$ in head; socond anal spine rather large, $1 \frac{1}{3}$ in head ; poctoral 1_{6}^{1}. Color pale, nearly plain ; faint oblique streaks along the rows of scalos, those below lateral line running obliquoly upward and backward; scales of sides with many brown dots. Head $3 \frac{1}{3}$; depth $3 \frac{1}{2}$. D. X-I, 19; A. II, 8. Scales 51 Microl's, 56.

48. STELLIFERUS OSCITANS.

Sciœna oscitans Jordau \& Gilbert, Bull. U. S. Fish. Com., 1881, 312 (Bay of Panama); 188:, 111 (Pauama); Proc. U. S. Nat. Mus., 1882, 376 (Panama).
Habitat.-Pacific coast of tropical America; Panama.
This species is not uncommon about Panama; numerous specimens from that locality are in the museum at Canbridge. In the dentition and form of its mouth it differs from the other species, approaching the genus Bairdiella.

49. STELLIFERUS RASTRIFER.

Stelliferus rastrifer Jordau, sil. nov.
Habitat.—Coast of Brazil.
This specios seems to be generally common on the coast of Brazil. Specinens are in the museum at Cambridge from Rio Janeiro, Santos, Maranhão, Bahia, Oachitra, aud Abrolhos Islands. The specimen specially described (10815, M. C. Z.) is $5 \frac{1}{2}$ inches in length and was obtained at Santos.
The species is allied to Stelliferus fiirthi, from which it is distinguished, among othor things, by tho long and mumerons gill-rakers (hence the name-rastrum, a rake).

50. STELLIFERUS FƯRTHI.

Corvina (Homoprion) fiirthi Stoindachuer, Ichthyol. Boitr., iii, 26, fig. 3, 1875 (Pauama).
Sciana fïrthi Jordan \& Gilbert, Bull. U. S. Fish Com., 1881, 315 (Panama).
Babitat.-Pacific coast of tropical America; Pamama.
One specimen of this species was taken by Professor Gilbert at Panana. Several others from the same locality are in the museum at Cambridge.

51. BTELLIFERUS MINOR.

Corvina minor Techudi, Fanna Peruana, Ichthyol., 8, 1844 (Poru).
Sciana minor Giinthor, Cat. Fish. Brit. Mus., ii, 295, 1860 (copied).
Corvina (Homoprion) agassizi Steindachner, Ichthyol. Beitrüge, ii, 26, 1875 (Caldera, Callāo, Payta).
Halitat.-Pacific coast of South America.
The specimens of this species in the museum at Cambridge are from Callâo, in Peru. There seems to be no doubt of the identity of Corvina
agassizi with the Corvina minor of Tschudi. The name minor was given to indicate the small size of the species as compared with Corvina deli. ciosa. The name seems a little unfortunate, as this species reacbes a larger size than any other in the genus Stelliforus. It bears a considerable resemblance to the species of Bairdiella, but its nearest atiinities are with Stelliferus stellifer.

52. STELLIFERUS STELLIFER.

Bodianus stellifer Bloch, Iehthyologita, plate 231, 1790 ("Cape of Good Hope"). Bloch \& Schncider, Syst. Ichth., $3: 31,1801$ (copied).
Sciena (Stelliferus) stellifera Jurdan, Proc. U. S. Nat. M us., 1886, 540 (notes ou type of trispinoza).
Corvina trispinosa, Cuv. \& Val., Hist. Nat. Poiss., v, 109 (Brazil; Cayenue). Steindachnor, Scianoiden Brasilions, 14, 1863 (Parii).
Habitat.-Consts of Guiana and Brazil. Our descriptiou of this species is taken from specimens in the museum at Cambridge, from Bahia.

We bave also examined the original type of Corvina trispinosa in the museum at Paris. It is donbtless true that Bloch's type of Bodianus stellifer came from Surinam rather than from Africa. His figure represents some species of Stelliferus, and Cuvier aud Giinther are probably right in identifying this figure with Corvina trispinosa. Still this identification is not free from doubt, and it may be better to call the species Stelliferus trispinosus.

53. STELLIFERUS LANCEOLATUS.

Homoprion lanceolatus Holbrook, Ichthyol. S. Carolina, ed. 1. 168, plate 23, 1856 (Port Royal Sound). Girard, U. S. and Mox. Bonnd. Survey, 11, 1859 (Saint Joseph's Island, Texas).
Sciona lanceolata Giinther, Cat. Fish. Brit. Mus., ii, 2e9, 18ti0 (copied). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 605 (Charleston). Jordan \& Gilbert, Syn. Fish. North Am., $931,1883$.
Stelliferus lanceolatus Goode, Proc. U. S. Nat. Mus., 1881, 113 (Saint John's River, Florida). Bean, Iuternat. Fishery Exhib. Berlin, 55, 1883 (Matanzas River Inlet, Florida).
Sciana stellifera Jordan \& Gilbert, Syn. Fish. North Anorica, 569, $188: 3$ (Pensacola).
Habitat.-South Atlantic and Gulf Coast of the United States, Charleston to Texas.
This small fish is rather rare ou our coast, the specimens seen by us being few and all from rather deep water ; the oue here described was obtained at Charleston by Dr. Gilbert.
54. STELLIFERUS ERICYMBA.

Sciena ericymba Jordan \& Gilbert, Bull. U. S. Fish. Com., 1881, 311 (Bay of Panama).
Habitat.-Pacific coast of tropical America; Panama.
This small species is rather common about Panama. The cavernous character of the head is more marked in this species than in any other.

55. STELLIFERUS NASO.

Stelliferus naso Jordan, MSS.

Habitat.-Coast of Brazil.

This species is represented in the museum at Cambridge by many young specimens from Cachiura, the longest about 4 inches in leugth. The label of the bottle, in Dr. Steindachner's handwriting, indicates that he has regrarded it as a species distinct from S. microps, although he has published no description of the species.

56. STELMIFERUS MICROPS.

Corrina stellifera Giinthor, Cat. Fish. Brit. Mas., ii, 293, 1830 (West Indies). (Not Bodiantes stellifer Bloch.)
Corcina mierops Steindachuer, Ichthyol. Not., i, 6, plate ii, fig. 1, 1864 (Guiana).
Habitet.-Const of Brazil and Guiana.
The specimens of this species (4581 , M. C. Z.) eximmed by us, were collected at l'aráby Dr. Steindachner. The largest is $3 \nrightarrow$ inchesin length.

Genus XII.-SCIENA.

Sciæna part Artedi, Gencra Piscimm, 1738. (Includes umbra and cirrosa.)
Sciæna Linnaus, Systema Nature, ed. x, 289, 1758 (umbra; cirrosa).
Johnius Bloch, Ichthyologia, x, 107, 1793 (carutta, Ne., later restricted by Gill to Johnius carutta).
Sciæna Cuvier, Kignes Animal, ed. i, 297, 1817 (restricted to Sciona umbra, a Linnossn species, and to Sciana aquila, a non-Linman ono) (not of Rerno Animal, ed. ii, which is P'seudosciama).
Bola Francis Hamilton, Fishes of the (fanges, 1822 (ooitor chaptis, \& $\mathbf{\&}$.).
Sciæna Cuvier, Rigroo Animal, ed. ii, 18\&4 ("umbra" = aquila; and of all subsequeut anthors except Bleeker; not of Linnenus, nor of Artedi, to both of whom Sciana aquila was unknown; not of tho first odition of the Regne Animal).
Corvina Cuvior, lRarno Animal, el. ii, 1829 (nigra $=u m b r a$).
Cheilotrema Techudi, Fauna Pernaua, Fische, 1845, 13 (fusciatum).
Rhinoscion Gill, Proc. Ac. Nat. Sci. Phila., 1861, 85 (saturnus).
Pseudoscizena Bleoker, Nederland. Tydsskr. f. Dierkunde, i, 1863 (aquila).
Scizenops Gill, Proc. Ac. Nat. Sci. Phila., 1863, 30 (ocellata).
Ophioscion Gill, Proc. Ac. Nat. Sci. Phila., 186i3, 164 (typicus).
Callaus Jordan, subgenus novam (de'iciosus).
Type: Scicena umbra Linmeus.
We are compelled to place in a single genus the great bulk of those Scienida which have short gill-rakers, inferior month, and no barbels on the lower jaw. In spite of the marked differences between the ex. tremes of the series, the intergradation in characters is so perfect that we are unable to draw any sharp distinctive lines amoug them. This is especially true when the Asiatic species, forming the groups called Bola and Johnius, are taken into account. It is also true that one of the species of Buirdiclla (chrysoleuca) is very close to somo of the members of the present group. In this case, however, there is really one
difference-the length of the gill-rakers, which, though small, is constant, and holds good in all the known species.

With a view to the discosery of a basis for geueric subdivision, we have especially compared the following species: Sciena (Scienops) ocelluta, Sciana (1'seudosciena) aquila, Scienn (Bola) diacantha, and Sciena (Callaus) deliciosa. If these species could be satisfactorily arranged in different genera, it would be comparatively easy to find characters on which to detach the rather more aberrant types of Sciena (umbra), Cheilotrema (saturna and fasciate), Ophioscion, and Johnius.
The four species first mentioned agree in the position of the anal fin. Its second spine is very weak in aquila and adnate to the first ray. It is somewhat so in the others and it is not large in any. In Johnius (dussumieri) it is also small, but in Sciena, Cheilotrema, and Ophioscion it is considerably enlarged.

The scales are smallest in aquila, largest in ocellata, but the difference is not sharp enough to warrant generic division. In all four of the species first mentioned the preorbital is flat and rather broad, broadest in deliciosa (7 in head) and narrowest in aquild-10 ${ }_{2}$. In the other forms it is generally still broader and more gibbous.
The slits and pores about the snout are distinct in ocellata and deliciosa, little marked in diacantlia and nearly or quite obsolete in aquila. In Johnius, Sciona, Cheilotrema, and Ophioscion these are more or less distinct.

In all the four species the mouth is of moderate size, slightly oblique, with the lower jaw included, the maxillary reaching to opposite the posterior border of the eye. The mouth is largest in ocellata, smallest in aquila. In all the others (Ophioscion, \&ce.) the mouth is still smaller. The upper teeth are nearly alike in all of these; of the four mentioned they are largest in diacantha, smallest in deliciosa. In some East Indian species (referable to Bola?) these teeth are still larger, some of them almost caniue-like.
The lower tecth are rather large, and chiefly uniserial in diacantha and other species of Bola; in two or three rows, the inner eularged in deliciosa and aquila; in a broad band, some of the inner eularged in ocel. lata. In Johnius, Cheilotrema, Sciwna, and most of the species of Ophioscion, the lower tecth are in a broad band and equal.

The preopercle is sharply serrate in youth, becoming entire with age in ocellata. In aquila it is vaguely creunlate in youth, becoming finally entire. In diacantha it remains more or less cremulate. In deliciosa the preopercle is edged by fine flexible serra. In Ophioscion the preopercle is always sharply serrate. In Sciena, Cheilotrema, and Johnius it is always entire or at least without bony serratures.
Among the four species first mentioned, the gill-rakers are smallest in diactuthen ($\mathrm{X}+7$), when they are short and thick, the longest not halt the pupil. They are longest in deliciosa; when they are slender $(X+12)$ as long as pupil. In cquila and occllata they are $X+8$ or 9 ,
rather slender and short, about $\frac{2}{3}$ length of pupil. In most of the species of the other groups (Ophioscion, \&c.) they are very fer, short and thickish, usually not more than half the length of the pupil. The form of the body offers nothing which can be used for generic distinction, as the intergradations are very perfect. Tho same can be said of the form and the squamation of the fins.

We mas, however, recoguize for convenience' sake a number of subgenera, all but one (Bola) of them being represented by species occurring within our limits.

We think that there is no doubt that the generic name, Scirena, should go with Sciana umbra (the type of Corvina Cuvier), if the laws of nomen. clature followed by us be admitted.

There are three members of the present family found in European waters. Two of these, cirrosa and umbra, were known to Linureus and to Artedi, and on these the genus was primarily based. The third, aquila, was unknown to these authors, and could not therefore with any sort of propriety be taken as the type of a Limenean genus. The group was first knowingly subdivided by Cuvier in 1817. First separating cirrosa as the type of the genus Umbrina, he retains in Sciana proper ("les Scienes proprement dites") two species ("Sciana umbra L." and "Sciana aquila nobis"). This is a perfectly proper arrangement, and of this genus, Scicenc, as thus restricted by Cuvier, Sciana umbra must be regarded as the type.

Later, in 1829, this Scicena umbra was made the type of the new genus Corvina, as Corvina nigra Cuvier, while the non-Linuran species "aquila" was lelt as the type of Sciana. This arrangement has been followed by nearly all recent writers, but it is manifestly inadmissible, excopt to authors to whom, as to Cuvier, all laws of nomenclature are subordinato to personal caprice or convenience.

Recently Dr. Bloeker has proposed to take, as the type of Sciana, the Umbrina cirrosa, because this is the species mentioned first by Artedi. In the rules now generally followed, this watter of being placed first in the genus is not regarded as an element of any importance. The restriction proposed by Blcoker must therefore give way to the earlier one of Cuvier, and the name Sciana must be regarded as synonymons with Corvina. There is the less to be regretted from the fact that Corvina has usually been regarded as a generic name for all Scionoids with conspicuous anal spines, and members of a dozen different genera have been from time to time referred to it.

ANALYEIS OF SPECLES OF SCIFNA.

a. Preoporcle, with its bony margin armed with strong porsistont spines, which do not disappear with age ; (caudal fin not lunate ; antt dorsal and anal scaly; species of small size). (Ophioscion Gill.)
b. Caudal fin convex or lanceolate, the middle rays longest, often nearly as long as head; soft dorsal with 16 to 23 rays; head low, the suout somewhat projecting.
c. Anterior protile of head nearly straiglt; maxillary about 3 in head.
d. [Maxillary not extending to frout of eye; depth of body $4{ }_{1}{ }^{1} 2$ in total (with candal) ; head $4 \frac{2}{8}$; eye 4 in head; suout 3 ; preoperclo with larger teeth at the anglo; mouth longer than broad ; month inferior, the snout extonding beyond the premaxillary; teeth all alike and minnte; maxillary extending to below posterior nasal oponing; profile ascending uniformly to first dorsal, convex at the snout and nape ; highest dorsal spine 1 知 in hearl; highest dorsal rays not half head; second aunl spine robust, scarcely half as long as head; first anal ray 1 in head ; caudal rhomboidal ${ }^{9} \mathrm{r}$ in head; soft dorsal scaly for half its height; pectoral equals ventral, $1 \frac{1}{2}$ in head ; membranes of fins with numerous dark points; D. X-I, 16; A. II, 7; scales 11-52-16.] (Steindachner.) Ginhi, 57.
$d d$. Maxillary extending to opposite posterior edge of pupil; its length $3 t$ in head; bods compressed, moderately deep, the head low, subconic, acutish but blunted at tip; snout projecting, the usual slits and pores well developed; its length $4 \frac{1}{2}$ in head ; eyo small, $4 \frac{8}{8}$ in head ; month small, iuferior, horizontal ; teeth in lower jitw equal, in the upper nearly so, the outer row a little enlarged; preopercle with a vertical limb and rounded augle, the latter with about 8 rather strong teoth on it ; interorbital space $3 \frac{1}{3}$ in head ; preorbital wide, about as broad as eye; gill-rakers very short, thicker than high; scales regularly arranged, those below lateral line in horizontal series; lateral line becoming straight before anal; dorsal spines rather stout, the lougest if in head; second anal spine shortish and very atont, 2 in head; longest soft ray of dorsal 3 in head; caudal rounded, shortor than head; pectoral $1 \frac{1}{\text { in }}$ in head. Color, soiled brassy; a faiut small dark spot on each scalo of back and sides, these forming dusky streaks aloug the rows of scales; fins all dark with dark points. Head 3 in length; depth 38; D. X-I, 22 to XI-I, 23; A. II, 7; scales 51.

AdUsta, 58.
cc. Anterior profile more or less concave, especially in old examples, the head being very low and slende:; caudal fin lanceolate, almost as long as head; snout short and bluntish, projecting a little beyond the premaxillaries, about as long as eye; eye 38 iu head; month small, low, maxillary not extending to below middle of cyo, $2 \frac{1}{2}$ in head; toeth in both jaws in moderate bands, the outer series of the upper jaw enlarged; highest dorsal spine $1 \frac{6}{6}$ in head; anal spine very thick, strong ; as long as the rays, 14 in head; pectorals about as long as ventrals; first ventral ray filiform. Color, grayish; anal and ventral fins largely black. Head 34 in length ; depth $3 \frac{1}{5}$; D. X-I, 22 ; A. II. 7 ; scales 5-50-7....................Tyrice, 59.
bb. Candal fin irregularly donble troneate or f shaped, mach shorter than the head ; soft dorsal with 24 or 25 rays.
e. Teeth in the lower jaw oqual, in a broad villiform band.
f. Snont much projecting beyond the premaxillaries; head low, slender, blunt, somowhat spongy ; body rather deep, compressed; the back consideratbly olevated; profile steep, concave over the head; suont shorter than the eye, which is $4 \frac{1}{8}$ in bead; month small, maxillary reaching to below middle of eye, 3 in head; outer series of teeth in tho upper jaw slightly enlarged ; lighest dorsal spine slightly more than half length of head; anal pine morlerate, shorter than the rays, $2 t$ in had; fist vental ray filamentous pectorals much longer than the ventrals, scarcely shorter than the head. Color, dull brown above, lighter below; upper fins brown; spinous dorsal dasky at tip; anal black; ventrals aud pectorals chasky. Hoad 3ł in length; dopth 3; D. XI-I, 25 ; Λ. II, 8 ; scales 5-51-9......................... mincers, (ie.
If. Snout scarcely projecting beyond the premaxillaries; head not very slender; body robust; profile steep; suout rather acute, somewhat longer than eye, which is about 5 d in head; month moderato; maxillary 3 in hoad, reaching beyond middlo of orlit; teeth in broad villiform bands, the outer series in upher jaw larger; lighest dorsal spines, \mathscr{C} in head; caudul irregularly donble truncate, the median rays longest, i^{3} in head; the upper angle not produced; second anal spine stout, searcely sloorter than the rays, 2 in head; pectorals as loug as the ventrals, $1 \frac{1}{4}$ in head. Color, stcel gray above, dull silvery below, everywhere densely covered with brown points, these becoming more numerous and larger bolow; narrow, very distinct dark lines following the series of scales, those below the lateral line horizontal, those above oxtending obligucly upward aud backward; fius plain; edge of the spinous dorsal and the whole of the anals and veutrals blackish. Head 3 3 in leugth; depth $3 \ddagger$; D. X-I, 24 ; A. II, 7 ; scales 6-50-9....................................... Scierta, 61.
ee. Teoth in lower jaw unequal, a sories of larger ones being presont besides those of the rilliform band ; upper lobe of caudal produced, acuto, the lower lobe romeded ; form of S. sciera; [head somewhat comprossed, the snont obtuse, a littlo longor than ogo, which is about 5 in heal; premaxillaries lielow level of oye, the snout projecting beyond them; margin of preopercle with wide-set spinous teeth; proorbital nearly as wide as eyo; maxillary ronching begond middle of eyo 33 in head; third dorsal spine $1 \frac{1}{2}$ in hoad ; socoud anal spine very strong. 2 in head. Color, dusky silvery, with distinct purplish brown streaks along the series of scales; fins, brown. Head 3 if in length;
 ther.)................................. Vhmmiculamis, 62.
aa. Preoporcle, with its bony margin sharply sorrate in young examples, becoming entire with age: body rather elongate, not much compressed. (Sciannops Gill.)
i. Caudal fin slightly concavo, about half as long as hoad; a large black ocellus at its base above. Body clongate, rathor robust, back sowewhat arched; profile rather steep, somewhat convex; head long, rather low; eye small, 7 in hoad; snout bluntish, rathor long, 4 in head; mouth large, nearly horizontal; maxillary not quite reaching posterior border of orbit, $2 \frac{2}{2}$ in head; teeth iu both jaws in villiform bands, the outer series of the upper jaw much enlarged; lower teeth subequal ; gill-rakers $5+7$, shorter than the dianeter of the pupil ; longest dorsal spine $2 \frac{1}{8}$ in head; second aual spine $1 f$ in the longest ray, $3{ }^{\circ}$ in head; pectorals as long as ventrals, 2 in head; scalos of the breast imbedded, cycloid ; soft dorsal scaleloss; color grayish-silvery, iridescont ; each scale with a center of dark points, these forming rathor obscure, irregular, undulating brown stripes along the rows of scales; a jet black ccellated spot about as large as eye at base of caudal above; this sometimes duplicated; tho body occasionally coverod with ocelli. Head 3 in in length; depth 31. D. X-I, 24 ; A. II, 8. Scales 4-50-7 Ocellata, 63. aaa. Preopercle, with its bony margin entire or irregularly crenulate or ciliate, never distinctly sorrato.
j. Second anal spine small and slender, $3 t$ to $4 \frac{1}{2}$ in heal ; mouth small, the back not greatly clevated.
k. Body more or less elongate, little compressed, formed as in ophioscion; teoth of lower jaw equal (Johnius Bloch).
l. [Caudal rhombic, its length $\frac{8}{8}$ that of head ; no black ocellus at its base. Body rather eloggatod, the form much as in Sciana (Ophioscion) typica, lut the head less depressed; profile, depreased above eyo; eye 4 in head, as long as the suout, which is rather long, bluntish at tip; preorbital, o length of eyo; mouth modorate, horizontal ; maxillary extending to bolow middle of oyo, $2 \frac{1}{2}$ in head; tecth in many series; outer series of the upper jaw somewhat louger, those of the lower jaw all subequal ; preopercle entire (in the tigure); scales of the cheek cycloid; those of the opercle and body ctenoid; 46 series of scales above the lateral line; 40 bolow it ; spinous dorsal little longer than high, the spiues slender, scarcely flexible, the third longest, 2 in head; soft dorsal densely scaly, tho longest ray $2 \frac{2}{2}$ in hoad; socond anal spine small, little longer than the eye, $3 \frac{1}{2}$ in hoad; pectorals $1 \frac{{ }^{2}}{8}$ in head. Color, greenish or hluish gray above, silvery below ; fins yellowish: Head $3 \frac{1}{2}$ to $3 \frac{1}{\frac{1}{2}}$; dopth $3 \frac{1}{2}$ to 38 ; D. X-I, 28 or 29 ; A. II, 7 ; lateral line, 45.] (Bleehier.).............................. Hetrinolepis, 64.
kk. Body rather elongate, considerably compressed; tecth in lower jaw unequal, those of tho iuner series more or less enlarged; mouth rather large; preopercle with flexible serrm.
m. Slits and pores of snout anteriorly obsolete, or nearly so (Pseudosoiana Bleeker).
n. Candal peduncle long, the caudal fin subtruncate; profile rather steep, the snout pointed, 4 in head; eye small, 5 to 6 ; preorbital narrow, about $2 \frac{1}{2}$ in eye; mouth rather large, little oblique, the maxillary reaching begond pupil, $2 \frac{1}{\frac{1}{2}}$ in head; teeth above in a narrow band, the outer enlarged; teeth in lower jaw in few series, some of those in the inner considerably larger; lower jaw included ; snout 3 年 in head; preopercle serrulate, the teeth all membranaceous, becoming obsolete with age; gill-rakers $4+8$, short and slender; scales small, those below lateral line in oblique series, as well as those above; dorsal spines weak, the longest $2 \frac{7}{\delta}$ in head; pactoral short, $1{ }^{3}$ in head; second anal spine very small, 4 it in head, about half as long as soft rays, the insertion well forward; caudal subtruncate; soft dorsal scaleless. Color grayish, darker above ; a gray blotch on opercle; fins reddish. Head 4 in length; depth $4 \frac{1}{2} ; \mathrm{D}$. X-I, 26 to 29 ; A. II, 7. Scales 8-52 to 55-18.
aquila, 65.
$m m$, Slits and pores on snout anteriorly well developed (Callaus Jordan).
o. Head and body compressed, the back arched, the outline oblong-elliptical ; profile straightish, rather steep; head bluntish, the snont 4$\}$ in head; eye rather large, $5 \frac{2}{4}$ in head, as wide as the broad preorbital; maxillary extending to middle of pupil, $3 \frac{1}{6}$ in head; mouth rather large, a little oblique, the lower jaw slightly included; preoperole finely and evenly serrate, the serro flexible and not bony; gill-rakers slender and very short, scarcely as long as pupil, X+ 12 in number; teeth in moderate bands, some of the outer moderately enlarged above, some of the inner ones below, these smaller than those of the upper jaw; suft dorsal and anal scaled at base only; dorsal spines moderate; second anal spine small, $4 \frac{1}{5}$ in head; caudal lunate, its upper lobo the longer; pectoral long, $1 \frac{1}{6}$ in head; color bluish above with faint dark horizontal streaks, following the rows of scales; axil dark; fins pale; head 3 in length; depth $3 \frac{1}{1}$; D. X-I, 23 ; A. II, 9 . Scales 50..... Deliciosa, 66.
$j j$. Second anal spine long and stout, its length 2 to 3 in head; back elevated; mouth small, inferior; snout with conspiouous slits and pores.
p. Vertical fins high ; membranes of dorsal and anal scaleless; caudal fin subtruncate, its middle rays the longest (Soiana).
q. Dorsal spines slender and weak, the 4th to 6th subequal, $1 \frac{1}{z}$ in length of head; ventrals long and lanceolate, the outer rays reaching almost to vent, scarcely shorter than head; body rather short and deep, the back elevated, profile steep, depressed above the eye; ventral outline slightly arched; snout blunt,
searcely longer than eye, $4 \frac{2}{5}$ in head; eye 58 in head; preorbital broad, nearly as wide as eye; mouth rather small, inferior, maxillary reaching middle of eye, 27 in head; teeth in both jaws in broad, villiform bands, the outer series above somewhat enlarged; pharyngeal teeth all more or less conical, the inner series somewhat roundod and molar-like; gill-rakers short, flattened, $5+8$; preopercle with an irregular ontire border; dorsal spines all thin and slender; middle rays of soft dorsal highest 18 in head ; caudal subtruncate, the middle rays longest ; second anal spine stout and long, about 2 in head, reaching when depressed beyond the last ray; first and second soft rays elongate 18 in head, the rest rapidly decreasing in length; pectorals $1 \frac{1}{f}$ in head; scales strongly ctenoid, those about the head cycloid; a scaly sheath at base of anal and soft dorsal. Color dark golden, each scale with many blackish dots, these forming stripes along the rows of scales; rows of scales below lateral line undulating; membranes of dorsal spines blackish; anal black, the last two rays pale; ventrals black, their first rays with the outer border white, caudal edged with dusky below and behind. Hoad $3 \frac{1}{\frac{1}{2}}$ in length ; depth 3. D. X-I, 23 ; A. II, 7. Scales 8-60-17 Umbra, 67.
$p p$. Vertical fins low, the membranes of the dorsal and anal closely scaled; caudal fin lunate, the upper lobe the longer. (Cheilotrema Tschudi.)
r. Dorsal rays X-I, 27 or $2 E$; suout moderately blunt; second anal spine $2 \frac{1}{8}$ in head; dorsal spines gradually shortened behind the third, which is $2 \frac{1}{8}$ in head; ventrals short, $1 \frac{1}{3}$ in head; body oblong, the back considerably elevated; profile steep, the nape convex; snout short and blunt, but less so than in S. fasciata, $3 \frac{1}{4}$ in head; eye. 5 ; preorbital broad, nearly as wide as eye; teeth as in Sciana umbra, the bands broader; pharyngeal teoth all conic, the inner series enlarged; gill-rakers short, thick, $6+9$; middle rays of soft dorsal longest, 2 ? in head; second anal spine long and stout, $2 \frac{1}{8}$ in head, not reaching nearly to tip of last ray ; first anal rays scarcely elongate, about 2 in head; pectorals broad, $1 \frac{1}{8}$ in head; all scales of of head strongly ctenoid; a scaly sheath at base of anal and soft dorsal. Color blackish, with coppery Iuster, each scale with a cluster of dark points, an obscure, broad, pale cross-band extending downward from front of soft dorsal to tips of ventrals; fins rather dark, belly silvery, dusted with dark specks; suborbital region coppery, with round, dark dots; membrane about angle of opercle jet black; tips of ventral and anal black; young ("Corvina jaoohi") with three broad longitudinal dark bands. Head 3 \% in length; depth 2 §. D. X-I, 27 ; A. II, 7. Scales, 10-55 to 60-17..................................

Fabclata, 69.

57. BCITNA GHLI.

Corvina gilli Steindachner, Ichthyol. Notizen, vi, 29, 1867 (Rio de Ia Plata).
Habitat.-Atlantic coast of South America.
We know this species from the account given by Dr. Steindachner. It is very close to Sciana adusta, and may prove to be the same, but the description seems to indicate some differences.

58. BCLIANA ADUSTA.

Sciosna (Corvina) adusta Agassiz, Spix Pisc. Bras., 126, plate 70, 1829 (Montevideo). Jenyns, Zool. Beagle, Fishes, 42, 1842 (Maldonado; Montevideo). Günther, Cat. Fish. Brit. Mns., ii, 289, 1860 (South America).
Habitat.-Coast of Brazil and the West Indies.
We refer to this species several specimens in the museum at Cam. bridge from Pernambuco, Fonteboa, and Jérémie, Hayti. Our description is drawn chiefly from the largest example (22417 , M. C. Z., 7 inches long) collected at Pernambuco by Rev. J. C. Fletcher. These specimens agree almost perfectly with the figure of Sciana adusta, given by Agassiz, the only discrepancy being that the second anal spine is a littlo longer than is shown in the figure. They agree fairly with the descriptions of Jenvus and Giunther, excopt in the number of rays in the soft dorsal. In Agassiz's text, as woll as by Jenyns and Günther, 28 soft rays are enumerated. We count 22 aud 23 in different specimens. But in Agassiz's plate but 19 or 20 are shown, and it has occurred to us that the number 28 in the description was a misprint for 18 or for 20 , and that possibly this number, 28, may have been copied withoui verification by Jenyns and by Guinthor. If this is not so Agassiz's description must refer to one species, the one examined by Günther and Jenyns, and his figure to another, the one examined by us. In that case our species must receive a new name. But we regard this as highly im. probable, and refer all these accounts to the synonymy of Soicena adusta.

59. BCIIANA TYPICA.

Ophioscion typious Gill, Proc. Acad. Nat. Sci. Phila., 1863, 165 (west coast Central America).
Corvina ophiosoion Günther, Fish. Central America, 387 and 428, 1866 (Panama).
Sciena ophioscion Jordan \& Gilbert, Bull. U. S. Fish Com., 1881, 315 (Panama).
Habitat.-Pacific coast of tropical America; Panama.
This species is not uncommon about Panama. In its slender lead and lanceolate caudal fin it would seem to differ widely from most of tine related forms. Its relations with S. sciera are, however, close, and S. imiceps is evidently intermediate.

The undesirability of such words as "typicus" as specific names is very evident in this case. If we follow the law of priority we have a name which is self-contradictory, as this is one of the species most unlike the real type of Scicena.
60. SCIZNA IMICEPS.

Soicena imioepa Jordan \& Gilbort, Bull, U. S. Fish Com., 1881, 309 (Bay of Panama).
Habitat.-Pacific coast of tropical America; Panama.
This small species is not rare at Panama. It resembles the species of Stelliferus, and it has real affinities with the latter group. The head is, however, different, being low and narrow, and little cavernous, while the gill-rakers are very short, as in the other species referred to Ophiosoion.

61. SCIFINA SCIERA.

(Corbineta.)
Soicna.vermicularis Jordan \& Gidbert, Bull. U. S. Fish Com., 1851, 315 (Mazatlan; Panama) (not Corvina vermioularis Giinther). Gilbert, l. c., 1882, 112 (Panta Arenas).
Soiona sciera Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1884, 480 (Panama).
Habitat.-Pacific coast of tropical America.
This species is one of the most abundant of the Sciænoid fishes on the Pacific coast of Mexico. It was at first taken by Jordan and Gilbert for the Corvina vermicularis of Günther, but the latter species is well distinguished by the enlarged tecth * of the lower jaw and by the sharp upper lobe of the caudal.

62. SCLIANA VERMICULARIS.

Corvina vermboslaris Günther, Fish. Central America, 387 and 427, plate 67, fig. 2, 1869 (Panama).
Sciana vormioularis Jordan, Proc. U. S. Nat. Mas., 1885, 381 (Panama).
Habitat.-Pacific coast of tropical America; Panama.
This species is rare about Panama. One specimen was obtained by Dr. Gilbert in 1883. Besides this, only Dr. Günther's original type is on record.

[^56]
63. SCLAENA OCELLATA.

(The Red Drum, or Channel Bass; "Red-mibh.")

[Plate IV.]
Perca ocellata Linnæns, Syst. Nat., ed. xii, 483, 1766 (South Carolina). Goode \& Bean, Proc. U. S. Nat. Mus., 1835, 202 (examination of Linnæan typos).
Centropomus ocellatus Lacépede, Hist. Nat. Poiss., iv, 257, 279, 1802.
Corvina ocellata Cuvier \& Val., Hist. Nat. Poiss., 134, plate 108, 1830 (New Orleans). DeKay, New Yorls Fauna, Fiehes, 75, plate 21, fig. 61, 1842 (New York). Storer, Syn. Fish. North Am., 319, 1846 (copied). Holbrook, Ichthyol. S. Carolina, ed. 1, 149, plate 21, fig. 2, 1855 (South Carolina).
Johnius ocellatus Girard, U. S. \& Mex. Bound. Survey, 14, plate viii, fig. 1-4, 1859 (Indianola, 'Tex.).
Sciana ocellata Giinther, Cat. Fish. Brit. Mus., ii, 289, 1860 (America). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 280 (Pensacola, Galveston). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 606 (Charleston). Jordan \& Gilbert, Syn. Fish. North Am., 571, 1833. Jordan \& Swain, Proc. U. S. Nat. Mus., 1884, 233 (Cedar Key, Florida). Goode, Hist. Aquat. Anim., 371, plate 125, 1884.
Scicnops ocellatus Gill, Proc. Acad. Nat. Sci. Phila., 1863,30 (name ouly). Uhler \& Lugger, Fishes of Maryland, 100, 1876 (southern part Chesapeake Bay). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1878, 378 (Beaufort). Goode \& Bean, Proc. U. S. Nat. Mus., 1879, 113 (St. John's River, Florida). Goode \& Bean, Pric. U. S. Nat. Mus., 1879, 132 (Pensacola). Beau, Proc. U. S. Nat. Mus., 1880, 93 (St. John's River, Florida; Beaufort, N. C.; Fort Macon, N.C.).

Lutjanus triangulum Laçpede, Hist. Nat.Poiss., iv, 181 and 217, plate 24, fig. 3, 1802.
Sciana imberbis Mitchill, Trans. Lit. \& Plil. Soc., New York, 411, 1815 (New York).
Habitat.—South Atlantic and Gulf coasts of the United States, New York to Texas.

This species is common along our coast, especially to the southward, where it one of the largest and most important of the food-fishes. On the Texas coast, where it is known as "Red-fish," or "Pescado Colorado," it exceeds in economic value all other fishes found there.

64. SCIENA HETEROLEPIS.

Johnius heterolepis Bleeker, Archives Noerlandaises, viii, 1873, with plate (Surinam).
Habitat.-Surinam.
We know this species solely from Dr. Bleeker's account of it. It much resembles the species of Ophiosoion, but from these it is apparently separated by the entire preopercle, which, in the figure, is represented much as in Scicena and Johnius.

65. SCIIENA AQUILA.

(The.Magrre.)

[^57]'Soicena oapensis Smith, "Ill. S. Afr. Fishes, plate 15."

Habitat.-Coasts of Southern Europe (said to range southward to the Cape of Good Hope).

Our description of this species is taken from specimens in the miseum at Cambridge from Cadiz, Spain.

If the accepted synonymy be correct, and the species found at the Cape of Good Hope be identical with the Maigre of Europe, the species should staud as Scicena hololepidota. But this identity seems rather assumed than proved. The Australian "Jew-fish," until lately also identified with Scicena aquila, is now recognized as a distinct species (Sciena neglecta Ramsay). It is, therefore, not improbable that the form found at the Cape is also different.

This species reaches a large size. It is in many respects analogous to Scicena ocellata, which species is perhaps its nearest relative among the American forms.

66. SCI TANA DELICIOSA.

Corvina deliciosa Tscbudi, Faun. Peru. Īchthyol., 8, 1845 (Peru). Sciana deliciosa Günther, Cat. Fish. Brit. Mus., ii, 295, 1860 (copied).

Habitat.-Pacific coast of South America, north to Panama:
This species is said to be one of the most abundant food-fishes on the coast of Peru. A great number of specimens are in the museum at Cambridge. Most of them are from Callao, but a few from Panama.

This is a strongly marked species, having no very near relatives anywhere, and, if the other subgenera are to be noticed, this must form an additional one, for which we have suggested the name of Callaus (from Callao). It resembles Genyonemus lineatus as much as any of our species, but it reaches a much larger size and it has no barbels.

67. SCIANA UMBRA.

Sciena No. 2 Artedi, Genera, 39 ; Syn., 65, 1734 (Venice; Rome).
Sciœna umbra Linnæus, Syst. Nat., ed. x, 289, $175 \otimes$ (based on Artedi).
Sciona nigra Bloch, Iethyologia, vi, 35, taf. 297, 1792.
Johnius niger Bloch \& Schneider, Syst. Ichth., 76, 1801.
Corvina nigra Cuv. \& Val., and of most recent authors.
Coracinus chalcis Pallas, Zoographia Rosso-Asiatica, iii, 256, 1811.
Corvina canariensis Cuv. \& Val., Hist. Nat. Poiss., v, 93, 1830 (Canaries).
Habitat.-Coasts of Southern Europe.
This species is generally common in the Mediterrancan. The speci mens examined by us are from Venice.

As there cau be no possible doubt that this is the original Scicena umbra of Linnæus, we have adopted the name umbra instead of the more frequently used name nigra.

68. SCIANA SATURNA.

(Red Roncador, Biack Roncador.)

Amblodon saturnus Girard, U. S. Pac. R. R. Survey, 98, 1859 (San Diego, California). Corvina saturna Giinther, Cat. Fish. Brit. Mus., ii, 288, 1860 (Sau Diego). Jordan \&e Gilbert, Proc. U. S. Nat. Mus., 1880, 456 (Santa Barbara, San Pedro, San Diego). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 49 (Sauta Barbara southward). Rosa Smith, West Amorican Scientist, 188ジ, 47 (San Diego).

Rhinoscion saiurnus Gill, Proc. Acad. Nat. Sci. Phil., 1862, 17 (California).
Sciana sahurna Jordan \& Gilbert, Syu. Fish. North America, 57\%, 1883.
Johnius saturmus Jordan, Cat. Fish. North America, 93, 1885 (name only).
Corvina (Johnius) jacobi Steindachner, Ichthyol. Beitr., viii, 3, 1879 (San Diego), based on young specimens.
Sciana jacobi Jordan \& Gilbert, Syn. Fish. North America, 571, 1883 (copied). Rose Smith, West American Scientist, 1885, 47 (San Diego).
Habitat.-Coast of Southern California, north to Santa Barbara.
This species is common on the coast of Southern California, where it
is a food-fish of some importance, and is usually known as the Ied Ron-
cador or Black Roncador. It reaches a length of something more than a foot.

The nominal species, called Corvina jacobi, lescribed from young specimens taken at San Diego, is doubtless identical with Corvina sa. turna. The only difference indicated by Steindachner which could havo any serious importance is in the coloration. In the species of Hamu. lon, Anisotremus, and other analogous groups the young often have exactly the coloration assigned to C. jacobi, while the adult may be very differently marked. We have not seen the very young of saturna, but have no doubt that it passes through the "jacobi" coloration in the course of its development.

69. SCIFNA FASCIATA.

Cheilotrema fasciatum Thehudi, Faun. Peru. Ichthyol., 13, plate i, 1845 (Peru). Corvina fabciata Ginther, Cat. Fish. Brit. Mus., i, 305, 1860 (copied). Comina fasoiata Steindachner, Ichthyol. Not., vii, 21, 1868 (Chili).

Habitat.-Pacific coast of South America.
Our account of this species is taken from a large specimen (10838, M. C. Z.) from Payta, Peru.

The species is closely related to Sciena saturna, but it is a more robust fish with heavier head. The geuus Rhinoscion, based on S. saturna, is perfectly identical with Cheilotroma. The name fasciata is not a fortunate one, as the dark bands are not conspicuous and not perma nent.

Genus XIII.-RONCADOR.

Roncador Jordan \& Gilbert, Proc. U. S. Nat: Mus., 1880, 28 (steamai).
Type: Corvina stearnsi Steindachner.
This genus contains, so far as kuown, a single species, a large Sciænoid of the Califoruia coast, much resembling Aplodinotus grunniens and having similar teeth, except that the lower pharyngeals in Roncador are separate. The Spanish name, Roncador (grunter), is one of general ap. plication to these fishes, but on the California coast it is used most particularly for the present one.

ANALYSIS OF BPECIES OF RONCADOR.

a. Body oblong, heavy forward; the back elevated and compressed; depth 3 in length; head $3 \frac{1}{2}$ to 3 ; profile long, steep, and convex, abruptly rounded at the snout; snout very blunt, $3 \frac{1}{2}$ in head, about equal to the intororbital space; eye 5
in head; mouth moderate, low, subinforior, the lower jaw included; maxillary 24 in head, reaching at least to below middle of eye; preorbital nearly as broad as eye; teeth in both jaws in broad villiform bands, noneof them enlarged; lower pharyngeals large, with many rounded molars, the outer series and a patch at the outer corner, composed of villiform teeth; gill-rakers slender, rather short, $7+15$; posterior margin of preopercle with short, stout teeth; dorsal spines strong, the longest 2 in head; caudal lunate, the upper lobe the longer; second anal spine stout, $3 \frac{1}{5}$ in head; pectorals much longer than ventrals, about as long as head; scales below lateralline in slightly oblique series. Color grayish silvery, with bluish luster, some streaks of dark points along the rows of scales; breast and belly with two dusky longitudinal streaks; a very conspicuous jet black spot as large as eje at base of pectoral ; axil and lining of gill cavity black. D. X-I, 24 ; A. II, 8; scales 0-60-9.. Stearnsi, 70.

70. RONCADOR STEARNSI.

(The Roncador.)
[Plate V.]
Corvina 8 tearnsi Steindachner, Ichthyol. Beitr., iii, 22, 1875 (San Diego).
Roncador stearnsi Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 28 (San Diego) (gen. nov.). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 456 (Santa Barbara, Sau Pedro, San Diego). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 49 (Santa Barlbara, southward). Jordan \& Gilbert, Syn. Fish. North Am., 572, 1883. Rosa Smith, Proc. U. S. Nat. Mus., 1883, 234 (Todos Sautos Bay, Lower California). Goode, Hist. Aquat. Anim., 379, plate 129, 1884 (Santa Barbara, Cal.). Rosa Smith, West American Soientist, 1885, 47 (San Diego). Jordan, Cat. Fish. North America, 93, 1885 (name only).
Habitat.-Coast of Southern California, north to Santa Barbara.
This species is rather common on the coast of Southern California, where it is a food-fish of some importance. It reaches a weight of 5 or 6 pounds.

The black ocellus on the base of the pectoral fin in this species is as characteristic as that at the base of the caudal in Scicena ocellata.

Genus XIV.-LEIOSTOMUS.

Leiostomus Lacépède, Hist. Nat. Poiss., iv; 439, 1802 (xanthurus).
Liostomus Gill, Proc. Ac. Nat. Sci., 1863, 63 (corrected orthography).
Type: Leiostomus xanthurus Liacépède.
This genus, as now understood, contains but a single species. It is distinguished from Scicena chiefly by the obsolescence of the teeth in the lower jaw, and by the more paved teeth of the pharyngeals. The soft rays of the dorsal fin and especially of the anal are more numerous than in related groups.

ANALYBIS OF SPECIYS OF LELOSTOMUS.
a. Body short, doep, much compressed; back in front of dorsal compressed to a sharp edge; profile steep, convex, depressed over the eyes; dorsal outline convex, highest at front of dorsal; depth 3 in length; head $3 \frac{1}{8}$ to $3 \frac{1}{y}$; snout very blunt, as
long as eye, $3 \frac{1}{8}$ to $3 \frac{1}{2}$ in head; mouth small, inferior, horizontal; maxillary 3 in head, extending to below pupil; no teeth in lower jaw, in the adult; upper jaw with a narrow series of minute teeth; gill-rakers short, slender, $8+22$; lower pharyngeals small, with three series of molars posteriorly and many villiform teeth anteriorly; preopercle entire ; preorbital broad, $1 \frac{1}{2}$ in eye; third dorsal spine highest, $1 \frac{1}{\frac{1}{2}}$ in head ; soft dorsal with the sheath at its base, formed by a single series of scales; caudal long and forked, as long as head; anal loug and slightly falcate; second anal spine, $2 \frac{1}{8}$ in the longest ray, 4 in head; ventrals $\frac{1}{8}$ shorter than pectorals which are as long as the head; scales small, strongly otenoid, extending on caudal and base of pectorals but not on other fins; lateral line little curved anteriorly ; scales below lateral line in oblique series. Color bluish above, silvery below; about 15 narrow dark wavy bands extending from the dorsal downward and forward to below lateral line; a round black himeral spot rather amaller than eje ; fins plain olivaceous, the caudal not yellow. D. X-I, 31; A. II, 12 ; scales $9-60$ to 70-12

Xanthurus, 71.

71. LEIOSTOMUS XANTHURUS.

(The Spot; Goody ; Post-croaker; Oldwife; Lafayette.)

[Plate VI.]
Leiostomus xanthurus Lacépède, Hist. Nat. Poiss., iv, 439, plate 10, fig. 1, 1802 (Carolina). Cuv. \& Val., Hist. Nat. Poise., v, 142, 1830 (Martinique). DeKay, New York Fauna, Fishes, 70, 1842 (New York). Storer, Syu. Fish. North Am., 321, 1846 (copied). Gill, Proc. Acad. Nat. Sci. Phila., 1863, 63 (N. Y. to S. C.). Uhler \& Lugger, Fishes of Maryland, 99, 1876 (Lower Potomac, Chosapeake Bay, Sinepuxent Bay). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1878, 377 (Beaufort). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 281 (Pensacola, Galveston). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 606 (Charleston). Jordan \& Gilbert, Syn. Fish. North Am., 574, 1883. Bean, Internat. Fishery Exhib. Berlin, 55, 1883 (Brazos Santiago, Tex.: Pensacola, Fla.). Jordan \& Swain, Proc. U. S. Nat. Mus.; 1834, 233 (Cedar Key, Florida). Jordan \& Meek, Proc. U. S. Nat. Mus., 1884, 237 (St. Joln's River, Florida). Goode, Hist. Aquat. Anim., 370, plate 124, 1884 (Newport, R. I., and southward). Jordan, Cat. Fish. North America, 94, 1885 (name only).
Homoprion xanthurus Holbrook, Ichthyol. S. Carolina, ed. 1, 170, 1856 (South Carolina). Girard, U. S. and Mex. Bound. Survey, 11, 1859 (Brazos Santiago, St. Joseph's, Texas).
Seicena santhurus Guinther, Cat. Fish. Brit. Mus., ii, 288, 1860 (Now York).
Mugil obliquus Mitchill, Trans. Lit. and Phil. Soc., New York, 405, 1815 (New York).
Leiostomus obliquus DeKay, New York Fauna, Fishes, 69, plate 60, fig. 195, 1842 (Now York). Storer, Syn. Fisl. North Am., 321, 1846 (copiod). Holbrook, Ichthyol. S. Carolina, ed. 1, 164, plate 24 , fig. 2, 1856 (South Carolina). Girard, U. S. and Mex. Bound. Survey, 11, 1859 (Brazos Santiago, Tex. ; Indianola). Gill, Proc. Acad. Nat. Sci. Phila., 1863, 32 (north to Mass.). Jordan \& Gilbert, Proc. U. S. Nat. Mas., 1878, 377 (Beaufort). Bean, Proc. U. S. Nat. Mus., 1880, 93 (St. John's River, Floridia; Wood's Holl).
Sciena obliqua Günther, Cat. Fish. Brit. Mus., ii, 288, 1860 (North America).
Sciana multifasciuta Lesueur, Journ. Ac. Nat. Ṣci. Phila., ii, 225, 1821.
Leiostomus humeralis Cuv. \& Val., Hist. Nat. Poiss., v, 141, plate 110, 1830 (New York).
 \& Bean, l. c., 1879, 131 (Pensacola) (not Perca philaidelplioa L.).
Habitat.-South Atlantic and Gulf coasts of United States; Cape
Cod to Texas; Martinique (i).

This species is one of the most common food fishes of our southern coast, being an excellent pan-fish. Notwithstanding the numerous nominal species which authors have recognized, there is no evidence whatever of the existence of more than one species of Leiostomus on our coasts.

The name xanthurus is an unfortunate one, as in this species the caudal fin is never yellow. This name came about through confusion with Bairdiella chrysura, in which species the caudal fin is bright yellow.

Genus XV.-PACHYUPUS.

Pachyurus Agassiz, Spix Pisces Brasiliens., 1829, 123 (squamipennis).
Lepipterus Cuvier \& Valenciennes, Histoire Naturelle des Poissons, $\vee, 151,1830$ (francisci).
Type: Pachyurus squamipennis Agassiz.
This genus is composed of fresh-water Sciænoids inhabiting the rivers of Brazil. It is well separated from Sciana (Ophioscion) by the weak dentition. Two groups or subgenera are readily distinguished by the form of the mouth, the group called Lepipterus agreeing in this respect very closely with the species called Pachypops, from which Lepipterus can only be separated by the absence of the small barbels at the chin, which are usually present in the species of Pachypops. As these barbels are quite small, and in individuals even occasionally absent, Dr. Steindachner has proposed to unite Pachypops with Lepipterus as a subgenus under Pachyurus. There is no doubt that Pachypops, Lepipterus, and Pachyurus together constitute a single natural group. The characters drawn from the form of the mouth and of the preorbital are subject to intergradation. Unless the presence of the barbel can here, as elsewhere, be used as a mark of generic distinction, all the species must be placed in Pachyurus. It seems to us, however, that convenieuce is but served by placing all the species in which barbels are habitually developed in one genus (Pachypops), and those which never have them in another (Pachyurus).

ANALYSIS OF SPECIES OF PACIIYURUS.
a. Mouth terminal, oblique, small, but larger than in other species; the maxillary reaching front of pupil, its length about 2 in head ; jaws subequal ; caudal fin densely covered with scales, so that it is thick to the touch; preorbital scarcely turgid (Pachyurus).
b. Body compressed; the back elevated, the nape especially compressed; head low and narrow ; profile depressed above the eyes, so that the sharp, projecting snout leaves a considerahle concavity in the line of the profile; teeth in broad bands, all equally minute in both jaws; preorbital broad, broader than eye; skull not specially cavernous; pores and slits on snont obsolete; preopercle sharply but rather finely serrate ou the bony border ; eye large, $5 \frac{1}{8}$ in head; snont $3 \frac{1}{8}$; interorbital width $5 \frac{1}{2}$; gill-rakers almost obsolete, $2+4$ in number, not higher than wide; pseudobranchio small; caudal fin rhombic, much thickened; soft dorsal scaly, but not thiokened; longest
dorsal spine $2 \frac{1}{2}$ in head; anal scaleless, its second epine very strong, 18 in head; pectoral $1 \frac{8}{4}$ in head; color silvery, with narrow dark streaks above the lateral line; both dorsals profusely covered with fine darls spots; head 31; depth 3! . D. X-I, 35; A. II, 7; scales 67 to 68 ; those in the lateral line scarcely larger

SQUAMIPINNIS, 72.
aa. Mouth small, inferior, the maxillary barely reaching front of eye, about 34 in head; lower jaw included ; caudal fin less thickened; preorbital more or less caveruous and turgid (Lepipterus Cuv. \& Val.).
c. [Dorsal rays X-I, 33; body elongate; head long and depressed over the ejes; depth 6 in length; head 4 ; maxillary concealed under proorbital; teeth in five bands; month emall, maxillary not reaching to front of eje; preopercle serrato; dorsal spines feoble, flexible, and little elevated; dorsal rays subequal; caudal rounded; dorsal and caudal completely scaled; second anal spine curved and compressed, larger and stronger than in related species; color entirely silvery, with uumerons darker lines along the back; brown spots on secoud dorsal. D. X-I, 33; A. II, 7.] (Cuv. \&\& Val.)...Franciscr, 73.

cc. Dorsal rays $\mathrm{X}-1,26$ to 29 .

d. Second anal apine very long, 2 in head; anterior profile more or less concare, rather steep posteriorly; profile of snout convex; snout 3 in head; mouth small, with very small tecth overlapped by the turgid and translucent preorbital ; oye large, $4 \frac{1}{2}$ in head; maxillary $3 f$; caudalfiu rhombio, densely scaled, but less thickened thau in P. squamipinnis; soft dorsal much scaly: anal naked; dorsal spines sleuder, the longest 2 in head, about as long as second anal spine; preopercle strongly serrato; gill-rakers very suall; pectoral $1 \frac{1}{s}$ in head; color brownish, silvary below; traces of 2 or 3 faint dark streaks on posterior part of body above; spinous dorsal mostly black; soft dorsal with some dark spots; hend 34 to $3 \frac{2}{8}$ in length; dopth 3$\}$ to. $3 \frac{1}{2}$. D. X-I, 26 to 29 ; A. II, 6 to 8 ; scales 65 (pores) to 70 (series) . . Bonarimnsis, 74.
dd. [Second anal spine shorter, 3 in hoad; body slightly compressed and somewhat elongate; head conical, elongate; snout produced and somewhat pointed, $2 \frac{\%}{5}$ in head; oye 4 in hoad; proorbital much swollen, concealing the maxillary ; mouth inferior, small; maxillay not reaching to below eyo; preopercle with moderate spinous teeth; longest dorsal spines 3 of depth of body ; all the spines slender ; soft dorsal scaly $\frac{z}{z}$ of its height; caudal pointed; second aual epine 3 in inead; anal rays maked, sborter than dorsal rays; scales small, finely ciliated; teeth minute, scarcely perceptible in upper jaw, in a fine villiform band bolow; body and second dorsal with blackish spots; head 4 in length; depth $4 \frac{1}{2}$. D. X-I, 26 ; A.II, 7; scales

72. PACHYURUS BQUAMIPINNIS.

Paohyurus squanipinnis (misprinted "squamipennis") Agassiz, Spix. Pisc. Bras., 123, plate 71, 1829 (Brazil). Giinther, Cat. Fish. Brit. Mus., ii, 281, 1860 (Atlantic Ocean). Stoindachuer, Ichthyol. Beitr., viii, 13, 1879 (Rio São Francisco; Rio das Volhas).
Pachyurıt lundii (Reinhardt, MS.). Lätken, Velhas-Flodens Fiske, xx, 1875 (Rio das Velhas).
Habitat.-Rivers of Brazil.
The numerous specimens of this species which we have examined are from the Rio das Velhats, in Brazil. The largest of these (8634, M. C. Z.) is about 15 inches long.

73. PACHYURUS FRANCISCI.

```
Lepipterus francisci Cur. \& Val., Hist. Nat., v, 152, plate 113, 1830 (Rio Sĩo Fran- cisco).
Pachyurus francisci Guinther, Cat. Pish. Brit. Mus., ii, 281, 1860 (copied).
Pachyurus corvina (Reinhardt MS.), Lütken, Velhas-Flodens Fiske, xx, 1875 (Rio das Velhas).
Habitat.-Rivers of Brazil.
We know this species from descriptions only.
```


74. PACHYURUS BONARIENSIS.

Pachyurus bonariensis Steindachner, Ichthyol. Beitr., viii, 8, 1879 (Rio de la Plata).
Habitat.-Basin of the Rio de la Plata.
We have examined three specimens of this species in the Museum of Comparative Zoology. Two of them, each about a foot in length, are from Buenos Ayres, the other from Rosario.

75. PACHYURUS SCHOMBURGKI.

Pachyurus schomburglci Günther, Cat. Fish. Brit. Mus., ii, 282, 1860 (Rio Capin; Carife; Para). Steindachner, Ichthyol. Beiträge, viii, 11, 1879 (Para; Cameta; - Olidos; Lake Saraca; Rio Negro; Rio Branco).

Pachyurus nattereri Steindachner, Beitr, zur Kenntn. der Sciæn. Brasil., 10, plate iii, 1863 (Rio Branco; Rio Negro).
Habitat.-Rivers of Brazil.
This species is known to us from descriptions only. We have failed to recognize it in the collections at Cambridge. We follow Steindachuer in regarding his Pachyurus nattereri as a synonym of schomburgki.

Genus XVI.-PACHYPOPS.

Pachypops Gill, Proc. Ac. Nat. Sci. Phila., 1861, 87 (triflis).
Type: Micropogon trifilis Müller \& Troschel.
This genus, like Pachyurus, is composed entirely of fresh-water species, inhabiting the Amazon region. It differs from Pachyurus only in the presence of small barbels at the chin, and in some individuals these appendages may be rudimentary or even wanting. For this reason Dr. Steindachner has proposed to regard this character as of no systematic importance, and to place these species in the subgenus Lepipterus under Pachyurus. But unless it can be shown that the Pachyuri sometimes possess barbels, it seems to us better to retain the two groups as distinct genera.

```
ANALYSIS OF SPECIES OF PACHYPOMS.
```

a. Dorsal rays X-I, 25 to 27 ; body without conspicuous dark brown spots; caudal rhombic; teeth all equally small.
b. Maxillary scarcely reaching front of eye, its length 4 to $4 \frac{1}{2}$ in bead; barbels 3, minute (sometimes obsolete); snout prominent, blunt, 24 in head; eye very large, 3 in head ; mouth vety small, overlapped by the turgid preorbital ; teeth small, equal ; gill-rakers very small ; soft dorsal and anal completely scaled; pectorals $1 \frac{1}{f}$ in liead ; caudal rhombic, $1 \frac{1}{2}$ in head; secoud anal spine $2 \frac{1}{6}$ in head;
longest dorsal spine $1 \$$. Color uniform dusky, paler below; dorsals punotate with black. Hoad 3y ; depth 4. D. X-I, 25 to 27 ; A. II, 6 . Scales 68.

Furcrefus, 76.
bb. [Maxillary reaching line of front of eye, ite length $3 \frac{1}{y}$ in head ; barbels 3, well developed; body oblong, comprossed; eye not vory large, 3 to 3 in head; snout prominent, rounded, 3 in head; preorbital broad; teeth equal; preopercle rather finely serrate ; soft dorsal closely scaled; aual scaly at base only ; pectoral, $1 \frac{18}{8}$ in head ; caudal rhombic, $1 \frac{1}{\frac{1}{2}}$ in head ; secoud anal spine, $2 \frac{1}{6}$; third dorsal spine, $1 \frac{1}{4}$. Color silvery, with 5 dusky longitudinal bauds; dorsals edged with black, the membranes of the spinous part with longitudinal series of dark dots. Head $3 \frac{1}{k}$; depth $3 \frac{1}{3}$. D. X-I, 26 ; A. II, 6. Scales 50 to 55.] (Steindachner.)

Trifilis, 77.
aa. Dorsal rays X-I, 31 or 32 ; back and dorsal fins sprinkled with round dark spots; caudal fin not rhombic; outer teoth above slightly enlarged. Body rather elongato, the back elevated; head rather slender, depressed above the eye; snout rathor long, bluntish at tip, 3 in head; eye large, 5 in head; mouth small, low, inferior, scarcely overtipped by the snout, the maxillary reaching front of eye, $3 \frac{1}{8}$ in hoad; teeth in broad bands, the outer toeth of upper jaw somowhat enlarged; barbels at chin 3, minute, not longer than nostril; preopercle sharply serrate. Gill-rakers slender, very short; preopercle and especially proorbital much swollen, cavernous, and translucent; mandible not cavernous; dorsal spines strong, tho longest 2 in head, as long as the large anal spine; pectoral $1 \frac{8}{8}$ in head; caudal fin f-shaped, the upper lobe pointed. Color brown, with round dark-brown spots scattored over the back and sides, these forming streaks along the rows of scales, which are more or loss irregular or interrupted, the spots not being confluent ; both dorsals with rows of similar spots; ventrals dusky. Head $3 \frac{y}{y}$ in length; depth 38. D. X-I, 31 or 32 ; A. II. 6 to 8. Scales 75 ($8-67-13$).................. Adspersut, 78.

76. PACHYPOPG FURCRAUS.

Peroa furcraia Lacépède, Hist. Nat. Poiss., iv, 398, 424, 1802 (${ }^{\text {S Surinam). }}$
Corvina furoraa Cuv. \& Val., Hist. Nat. Poiss., v, 111, 1830 (same type).
Paohypops furcraus Steindachner, Beitr. zur Keuntuiss Scionoiden Brasiliens, 7, plate 1, 1863 (Rio Negro).
Pachyurus furcraus Steindachner; Ichthyol. Beitr., viii, 12, 1879 (Surinam; Rio Trombetas; Rio Negro; Amazon, near Cameta).
Corvina biloba Cuv. \& Val., Hist. Nat. Poiss., v, 112, 1830 (habitat not known).
Pachypops biloba Steindachner, Ichth. Notiz., 206, 1864 (Surinam).
Habitat.-Rivers of Brazil and Guiana.
Specimens of this species are in the museum at Cambridge from Rio Trombetas, Rio Negro, Obidos, and Cameta. The specimen here described was obtained in Rio Negro by Rer. J. C. Fletcher.

This species was named in honor of a French chemist, Fourcroi.

77. PACHYPOPS TRIFILIS.

Micropogon trifilis Miller and Troschol, Schomburg Keiso, iii, 622, 1848 (Guiana). Günther, Cat. Fish. Brit. Mus., ii, 273, 1860 (copied).
Paohypops trifilis Gill, Proc. Acad. Nat. Sci. Philn., 1861, 87 (copied). Steindachner, Beitr. zur Kenntnisa Sciwnoiden Brasiliens, 7, plate ii, figs. 1-3, 1863 (Rio Guapore; Rio Negro).
Pachyurus trifilis Steindachner, Ichthyol. Beitr., viii, 12, 1879 (syuonymy).
Habitat.-Rivers of Brazil and Surinam.
This species is known to us from Dr. Steindachner's descriptions and
figure only.

78. PACHYPOPS ADSPERSUS.

PCorvina grunniens Schomburgk, Nat. Libr. Fish. Guiana, 1843, 136 (Rio Essequibo). Pachyurus (Lepipterus) adspersus Steindachner, Ichthyol. Beitr., viii, 5, 1879 (Rio Parahyba, Rio Doce, Rio Sau Antonio, Mucuri).
Habitat.-Rivers of Brazil.
We have examined numerous specimens of this species in the museum at Cambridge from Rio Doce, Santa Clara, Rio San Antunio, and Menchez. The specimen described, 15 inches in length, is from the Rio Doce.

The scanty description of Corvina grunniens indicates some river Sciænoid, with distinctly spotted dorsal and aual fins, and with the fin rays D. IX, 32 ; A.II, 7. The account comes nearestamong kuown species to Pachypops adspersus, and if this species occurs in the Essequibo it should probably stand as Pachypops grunniens. But without a better knowledge of the local fauna of Guiana, such an identification would be premature.

Genus XVII.-POLYCIRRHUS.

Polycirrhus Bocourt, Nouv. Arch. Mus. d'Hist. Nat., iv, 22, 1868 (llumerili).
TyPE: Polycirrhus dumerili Bocourt.
This genus is composed of three species of Sciænoid fishes, distinguished from Micropogon chiefly by the absence of serra on the preopercle, and from Genyonemus by having the normal number of dorsal spines. All the known species are marked by well-defined dark crossbands, and all belong to the fauna of South America.

ANALYSIS OF SPECIES OF POLYCIRIRIUS.
a. Dorsal rays about IX-I, 22 ; caudal fin double trancate; body rather elongate, the back some what elevated, the head low and small; profile steep; ventral outline straigbtish; snout not very short, somewhat acute, $3 \frac{1}{2}$ in head ; interorbital area broad, convex, 3 in head; eye $5 \frac{1}{2}$; mouth small, entirely inferior, maxillary oxtending past middle of eye, $2 \frac{\%}{8}$ in head; teeth small, villiform, the outer scarcely lorger; preopercle rounded, its edge with soft cilia; third dorsal spine 3 in head; soft dorsal with a scaly sheath, its membranes with small scales; ventrals filiform at tip, $1 \frac{1}{\frac{1}{2}}$ in head; anal inserted well forward, its second spine 24 in head; caudal double truncate; lateral line much arohed anteriorly. Color, bluish-gray, silvery below; 6 rather broad distinct crossbars extending down to edge of belly; two inconspicuous dark cross-bars on head; lower fins pale. Head $3 \frac{z}{f}$ to $3 \frac{z}{f}$ in length; depth $3 z$ to $3 t$. D. IX-I, 22 to 25 ; A. II, 7 or 8; вcales 6-47 to 52-9 Dumerilu, 79. aa. Dorsal raye X-I, 26 to 32 .
b. Caudal fin obliquely truncate, or somewhat pointed. Dorsal rays X-I, 29 to 31; snout short, 3 to $4 \frac{1}{t}$ in head ; body more elongate than in P. dumerili, the snont lower, shorter, and more pointed; maxillary $3 \dot{f}$ to $3 t$ in head; gill-rakers minute ; fins scaly; soft dorsal rays 3 in head ; eye $4 \frac{1}{8}$ to 6 ; longest dorsal spine $2 \frac{1}{6}$; caudal 11_{1}^{2} in head; second anal spine very small, $4 \frac{1}{8}$ in head ; pectoral 1才; preopercle ciliated on its membranous border. Coloration less marked than in P. dumerili, tho darker cross-bands narrower, more numerous (about 8), and less sharply defined; the anterior band somotimes reduced to a large round black blotch above base of pectoral; pectoral mostly dusky. Head 4; depth 31. D. X-I, 29 to 31; A. II, 8 ; scales about 7-58-11 .. Brasiliensis, 80.
bb. Caudal fin slightly lunate or \mathbf{S}-shaped; body compressed, rather robust; heal low, little compressed, the snout extremely short and blunt, $4 \boldsymbol{i}$ in head ; gillrakers small and slender; barbols well developed, about as in the other species; eye 4\% in head; mouth larger and more oblique than in the other species; the maxillary $3 f$ in hoad; pectoral $1 \frac{1}{}$ in head; longest dorsal spine 2; secoud anal spine 3 3. Color soiled, hardly silvery; about eight short, rather faint, dark cross-bands, as wide as the interspaces; fins all dusky. Head $3 \frac{3}{8}$ in length ; depth 3z. D. X-I, 26; A. II, 9 ; scales 55....... Peruanus, 81.

79. POLYCIRRHUS DUMERILI.

Polyoirrhus dumerili Booourt, Nouv. Aroh. Mus. d'Hist. Natur., iv, 22, 1868 (La Uniou). Jordan, Proc. Acad. Nat. Sci. Phila., 1883, 288 (La Union) (note on Bocourt's type).
Genyonemus fasoiatus Steindachner, Ichthyol. Beitr., ii, 31, 1875 (Panama). Jordan \& Gilbert, Bull. U. S. Fish Com., 1882, 111 (Panama).
Habitat.—Pacific coast of Oentral America; Panama.
This small species is rather abuudant about Panama. An examination of Bocourt's tyne of Polycirrhus dunerili has shown its identity with the Genyonemus fasciatus of Steindachner. The specimens in the museum at Cambridge are from Panama.

80. POUYCIRRHUS BRASILIENSIS.

Genyonemus brasiliensis Steindachner, Ichthyol. Beitr., ii, 34, 1875 (Para, 'Santos). Aricropogon ornatus Gilither, Shore Fishes Challenger, 13, plate vii, fig. A, 1830 (mouth of Rio de la Plata).
Habitat.-Coast of Brazil.
The specimens of this species iu the Museum of Comparative Zoology are from Rio Janciro and Santos. The identity of ornatus with brasiliensis has been claimed by Dr. Steindachner. Günther's description does not agree very well with the specimens examined by us, which are a part of the number of Dr. Steindachner's original types. It is not likely, however, that they belong to a different species.

81. POLYCIRRHUS PERUANUS.

Genyonemus peruanus Stcindachnor, Ichthyol. Beitriige, ii, 27, 1879 (Callao; Payta).
Habitat.-Coast of Peru.
The specimens of this species in the museum at Cambridge are from Oallao and Payta. They are among the original types of Dr. Steindachner.

Genus XVIII.-GENYONEMUS.

Genyonemus Gill, Proc. Acad. Nat. Sci. Phila., 1861, 87 (lineatus).
Type : Leiostomus lineatus Ayres.
This genus contains but a single species, abundant along the coast of California.
, Although in a general way allied to Polycirrhus and Micropogon, it has some points of resemblance to Corvula and Bairdiella, and especially to Soioena deliciosa.

ANALYSIS OF SPECIES OF GENYONEMUS.

a. Body oblong, somewhat compressed, the back little elevated; depth $3 \frac{1}{8}$ to $3 \frac{3}{8}$ in length ; bead $3 \frac{1}{f}$ to $3 \frac{1}{2}$; profile little convex, rather abruptly decurved at the snout; snout $4 \frac{1}{8}$ in head; mouth subinferior, some what oblique; maxillary 3 in head, reaching posterior margin of pupil, lower jaw included; teeth in villiform hands, the outer series above slightly enlarged; chin with five small pores and two sories of minute barbels; preorbital two-thirds width of eye, which is $5 \frac{1}{8}$ in head; preopercle with a crenulate nembranous border; opercle with radiating strise; gillrakers short and slender, $7+19$; third dorsal spine highest, $1 \frac{1}{2}$ in head; first soft rays of dorsal highest, decreasing in height to the last ; caudal lunate ; first ventral ray produced as a filament, $1 \frac{1}{\frac{1}{2}}$ in head; pectoral slightly longer than ventrals; scales large, strongly ctonoid, those below lateral line in horizoutal series; color silvery with brassy luster and black punctulations, these forming faint, oblique dark lines along the rows of scales; fins yellowish; axil black. D. XIII-I, 21 or

82. GENYONEMOS LINEATUB.

Leiostomus lineatus Ayres, Proc. Cal. Acad. Nat. Sci., 1855, 25. (San Francisco). Girard, Proc. Acad. Nat. Sci. Phila., 1856, 1.35 (San Francisco). U. S. Pac. R. R. Survey, 99, plate 22 B, fig. 1-4, 1859 (San Francisco).

Seicena lineata Gunther, Cat. Fisb. Brit. Mus., ii, 288, 1860 (copied).
Genyonemus lincatus Gill, Proe. Acad, Nat. Sci. Phila., 1861, 89 (name only). Gill, Proc. Acad. Nat. Sci. Phila., 1862, 17 (name only). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 456 (San Francisco, Monterey Bay, San Lais Obispo, Santa Barbara, San Pedro, San Diego). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 49 (San Francisco, southward). Jordan \& Gilbert, Syn. Fish. North America, 574, 1883. Jordan, Cat. Fish. North America, 94, 1885 (name only).
Habitat.-Coast of Southern California, north to San Francisco.
This little fish is generally common along the coast of Southern California, where it is a food-fish of some importance and is usually known as the "Little Roncador."

Genus XIX.-MICROPOGON.

Micropogon Cuvier \& Valenciennes, Hist. Nat. Poiss., v, 213, 1830 (lineatus= furnieri.)
Type: Micropogon lineatus Cuv. \& Val. = Umbrina furnieri Desmarest.
The species of this well-marked genus are very closely related and are all American.

ANALYSIS OF SPECLES OF MICROPOGON.
a. Dorsal rays X-I, 28 to 30 .
b. Scales comparatively small, about 9 in a vertical series between front of dorsal and lateral line, 12 in an oblique series; outer tecth of upper jaw evidently enlarged; dark spots on scales above lateral line not forming continuous stripes; 16 scales in an oblique series from venit apward aud forward to lateral line. Body rather robust, the back elevated; profile regularly rounded, scarcely depressed above eyes; snout 3 in head; oye 5 in head; preorbital broader than eye; preopercle strongly serrate along its whole posterior margin; waxillary reaching front of pupil, 3 in head; gill-rakers slender, very short, numerous, about $7+16$; third dorsal spine 2 in head; pectoral 1% in
head; caudal double truncato, 18 in head; second anal spine 3 in head. Color brassy, paler below ; middle part of body with short, irregular dusky vertical bars orossing the lateral line; many dark-brown spots on sides of back, irregularly placed, and not forming continuous streaks along the rows of scales; usually some of these coalesce to forin two dark streaks concurrent with the back. Head 3 in length ; depth 38. D. X-I, 28 or 29 ; A. II, 7; lat. l. 54

Undelates, 83.
bb. Scales larger, 7 in a vertical series frou frout of dorsal to lateral line, 9 or 10 in an oblique series; teeth of outer series in upper jaw scarcely enlarged; dark spote on back forming continuous dark streaks nearly as wide as the pale interspaces; body a little more sleader than in M. undulatus; profile almost straight, a little depressed above the eje; snont long, 3 in head ; eye small, 6 in head, $1 \frac{1}{2}$ in intororbital area; preorbital wider than eye; maxillary 3 in head, reaching front of pupil ; teeth in broad, villiform bands; preopercle less strougly serrate than in M. undulatus; third dorsal spine highost, 18 in head ; dorsals connected by a low membrane ; dorsal with a sheath at its base formed by a single sories of scales; soft dorsal naked ; sucond aual spine 5 in head; scales of the breast and head oycloid; a dark spot on oporcle; axil dusky; short vortical bars oxtending across lateral line; many oblique lines above these ; markings more regular, though less sharply defined than in M. undulatus. Head $3{ }^{3}$ in leugth; depth $3 \dot{t}$ to 33 . D. X-I, 30 ; A. II, 7; lateral line 54

Furnieri, 84.
aa. Dorsal rays X-I, 24 to 26 ; onter tecth of uppor jaw searcely enlarged; scales rather large; snout little projecting; lateral line 48 (oblique series, 53 pores); scales between frout of dorsal and lateral line, vertically 6 or 7 ; obliquely $8 ; 16$ in an oblique sories from vent; profile gibbous above the eyes, depressed at the nape; eye 18 in snout, 6 in head; month broad, inforior, slightly oblique ; maxillary ontirely concealod by the broad preorbital, which is wider than the eye; masillary extending to below antorior margin of the orbit; teeth in both jaws in villifurm bands, those of the outer series of the upper jaw somewhat enlarged; proopercle with two strong spines at the angle and many smaller ones above these ; gill-rakers little developed, not half the length of the pupil, $7+12$; third dorsal spine highest, reaching to first soft ray, 18 in head; soft rays of dorsal subequal; caudal double truncate; anal spine modorate, $1 \frac{1}{3}$ iu the rays, 34 in head ; pectorals $\frac{1}{6}$ longer than ventrals, slightly less than $1 \frac{1}{3}$ in head; scales on cheek, opercle, and breast cycloid, the rest ctenoid; soft dorsal with a woak scaly sheath anteriorly; soft dorsal and annl naked; lateral line arched anteriorly, becoming straight slightly in front of anal fin. Color, grayish ailvery ; dorsal region and sides above lower edge of pectorals marked with dark streaks extending obliquely upward and backward along the series of scales; about ten short oblique bars extending downward and forward across the arehed portion of the laterial line; lining of gill cavity blackish; fins all yellowish; tip of spinous dorsal blackish; upper elgo of pectoral and border of soft dorsal dusky. Head 38 in length ; depth $3 z_{6}$ D. X-I, 24 to 26 ; A. II, 7; scales 7-53-10 ... Ectenes, 85.
aaa. Dorsal rays X-I, 20 to 22 ; outer tenth of upper jaw scarcely enlarged; snout somewhat projecting; scales still Jarger; lateral line 42 (49 pores); scales above the lateral line, vertically, 5 or 6 ; obliquely, 8 ; 12 in an oblique series from vent; maxillary extending scarcely beyond the vertical from the anterlor margin of the oye; body less elongate than in Micopogon ectenes; highest dorsal spines $\frac{18}{\frac{1}{2}}$ in head ; anal spine about 4 in head; coloration essentially as in Micropogon eotenes. Head 3$\}$ in length; depth 3 ĝ. D. X-I, 20 to 22 ; A. II, 7. Scales 7-48-15..
S. Mis, $90-27$

83. MICROPOGON UNDUI.ATUS.

(The Choaklis.)
[Plate VII.]
Peroa undulata Linnæns, Syst. Nat., ed. xii, 483, 1766 (South Carolina). Bloch \& Schneider, Syst. Ichth., 87, 1801.
Micropogon undulatus Cuv. \& Val., Hist. Nat. Poiss., v, 219, 1830 (Now Orleans). Storer, Syu. Fish. North Am., 325, 1846 (copied). Holbrook, Ichth. S. Carolina, 145, plate 21, fig. 2, 1856 (South Carolina). Girard, U. S. \& Mex. Bound. Survey, 13, plate xii, 1859 (mouth Rio Grande, Indianola, Galveston, Suint Joseph's Island, Texas). Guinther, Cat. Fish. Brit. Mus., ii, 271, 1860 (in part) (New York). DeKay, New York Fanna, Fishes, 84, 1862 (Now York). Uhler \& Lugger, Fishes of Maryland, 102, 1876 (sonthern part Chesapeake Bay). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1878, 378 (Beaufort). Goode, Proc. U. S. Nat. Mus., 1879, 113 (Saint John's River, Florida). Goode \& Bean, Proc. U. S. Nat. Mus., 1879, 132 (Pensacola). Bean, Proc. U. S. Nat. Mas., 1880, 94 (Sitint John's River, Florida). Jorian \& Gilbert, Proc. U. S. Nat. Mus., 1882, 282 (Pensacola; Galveston). Jordan \& Gilbert, Proc. U.S. Nat. Mus., 188:, 606 (Charleston). Beau, Iuternat. Fishery Exhib. Berliu, 56, 1883 (Arlington, Florida). Jordan \& Gilbert, Syn. Fish. North Ain., 575, 1883. Jordau, Proc. U. S. Nat. Mus., 1884, 36 (Pensacola). Goore, Mist. Aquat. Anim., 378, plate 198, 1884 (Newport, R. I., and nouthward). Guode d Bean, Proc. U.S. Nat. Mus., 1885, 202, Linnean types (South Carolina).
Sciana croker Lacépedo, Hist. Nat. Poiss., iv, 309, 31.1, 316, 1802 (Carolina).
Bodianus costatus Mitchill, Trans. Lit. and Phil. Soc. Now York, 417, 1815 (Now York).
Micropogore costatus DeKay, New York Fuuna, Fishes, 83, plate 72, fig. 830, 1842 (Now York). Storor, Syu. Fish. North Am., 325, 1846 (copied).
Habitat.-South Allantic and Gulf coasts of the United States, Cape Cod to Texas.
This species is generally common along our Atlantic coast, becoming very abundant south ward, but not extending into the West Indies. It is a food-fish of some importance.

84. MICROPOGCN FURNIERI.

(Vermugato.)

Umbrina furnieri* Desmarest, Première Déoad̉e Ichthjol., 22, plate ii, fig. 3, 1823 (Cuba).
Micropogon furnieri Jordan, Proc. U. S. Nat. Mus., 1884, 37 (Havaua). Bean \& Dresel, Proc. U. S. Nat. Mus., 1884, 157 (Jamaica). Jordan, Proc. U. S. Nat. Mus., 1886, 44 (Havana).
Scigna opercularis Quoy \& Gaimard, Voy. Uran., Zool., 347, 1824 (Rio Janeiro).
Micropogon lineatus Cuv. \& Val., Hist. Nat. Poiss., v, 215, plate 119 (Brazil; Porto Rico; Havana).
Micropogon argenteua Cuv. \& Val., Hist. Nat. Poiss., v, 218 (Surinam).
Micropogon undulatus Güntber, Cat. Pish. Brit. Mus., ii, 271, 1860 (in part; not Perca undulata L.) (Surinam; Bahia; Guntemala; Cuba; Jamaica). Gilnther, Fishes Contral America, 387, 1869 (Atlantic coast of Contral America). Poey, Syíppsis, 325, 1868 (Cnba). Poey, Eummeratio, 48,1875 (Cuba). Ginther, Au. \& Mag. Nat. Hist., JuIy, 1880 (Rio Plata). Poey, Fanna Pucrto-Riqueũa, 325. 1881 (Porto Rico).

[^58]Habitat.-West Indies aud coasts of South America.
This species is generally common in the West Indies and southward along the coast of Brazil. It is very close to the uorthern Micropogon undulatus, and for this reason its real distinction from the latter has been generally overlooked until quite lately. We have examined numerous specimens from Cuba and from Rio Janeiro.

85. MICROPOGON ECTENES.

Micropogon cetencs Jordan \& Gilbert, Proc. U. S. Nat. Mns., 1881, 355 (Mazatlan); Bull. U. S. Fish Com., 1882, 107 (Mazatlau).
Habitat.-_Pacific coast of Mexico ; Mazatlau.
This species was found by Professor Gilbert in moderate abundance at Mazatlan, where it seems to take the place of the closely allied Micropogon altipinnis.

86. MICROPOGON ALTIPINNIS.

Micropogon altipinnis Guinther, Proc. Zool. Soc., 1864, 149 (San Jose; Panama; Chiapam). Günther, Fish. Contral America, 387 and 425, 1869 (Chiapam; San Job6; Panama). Jordan \& Gilbert, Bull. U. S. Fish Com., 1882, 111 (Panana).
Habitat.-Pacific coast of Central America.
This syecies is closely related to the others of the geuus. It was found by Dr. Gilbert at Panama. Specimeus from Panama are also in the museum at Cambridge.

Genus XX.—UMBRINA:

Scirna (part) Artodi, 1738 (includes Corvina).
Sclæna (part) Linneus, Systema Naturıo, ed. x, 289, 1758 (umbra; cirrosa).
Umbrina Cuvier, Règue Animal, ed. i, 297, 1817 (cirrosa; Soiana L. being restricted to Scicna umbra, a Linnean, and Sciana.aquila, a non-Linuwan species).
Sciæna Bleeker," Poissons de la Coto de Guinoo, 1862, 66 (cirrosa; not the carliest restriction to a Linnwan type).
Umbrina Gunther, Gill, Jordan \& Gilbert, and of authors generally.
Type: Sciana cirrosa Linnæus.
This genus contains a considerable number of species, most of them being American. It agrees with Scice na in nearly all respects, excepting the presence at the chin of a short, thick barbel. A similar barbel is found in the geuns Menticirrhus, but notwithstanding the fact that all European writers have confounded Menticirrhus with Umbrina, the two genera are not among the most closely related in this family.

[^59]We find ourselves unable to follow Bleeker in using the name Soicena for the group usaally called Umbrina, for reasons which may be again brielly stated. Scicna was originally (Artedi, 1738; Linnæus, 1758) founded on the typical species of the two modern genera Umbrina and Corvina. In 1817, Umbrina was set off from this group and Sciena was made to apply to the group later called Corvina, a third speçies (aquila) being added to Scianna. Later (1829) Corvina was separated by Cuvier. This gave Umbrina, Corvina, and Scicona, the latter name then standing for aquila. In 1862, Bleeker proposed to use Scicena for the type of Umbrina, because in enumerating his species of Scicana, Artedi had made the Umbrina "No. 1 " and the Corvina "No. 2." This is, however, a matter of no significance. In our view but oije arrangement of these names is allowable. Umbrina must stand, Scicna must take the place of Corvina, and the third species (aquita) must take a new name-Pseudoscicena Bleeker.

ANALYSIS OF SPECIES OF UMBRINA.

a. Dorsal rays X-I, 22 to 24 .
b. Snout moderate, 3 in head; stripes on body yellowish, bordered with ateol blue; preopercle with its bony margin distinctly serrate, the teeth at the angle

- broad and flattish. Body rather decp, the back elevated, the dorsal outline regularly rounded, highest at first dorsal spines; profile stecp; snout low, bluntish, $3 \frac{1}{8}$ in head ; eye small, $1 \frac{1}{8}$ in snout, $1 \frac{1}{8}$ in interorbital area, about $5 \frac{1}{2}$ in head; mouth moderate, inferior ; maxillary reaching front of eye, $3 \frac{1}{8}$ in head; preorbital one-third broader than eye; teeth villiform, in broad bands, the outer above little enlarged; lower pharyngeal teeth stout, conical, the in uer posterior serics slender. Spinous dorsal high the third spine $1 \frac{1}{2}$ in head; soft dorsal scaleless; socond anal spine small, $1 \frac{3}{8}$ in soft rays, $2 \frac{2}{3}$ in head; pectorals little shorter than ventrals, which are $1 \frac{18}{}$ in head ; caudal slightly lunate, the uppor love the longer. Color olivaceous, silvery below; upper parts with many wary lines, yellowish in color, and each bordered on each side by a distinot streak of steel blue; the lines partly following the rows of scales, running nearly straight upward and backwards at the shoulders, more nearly horizontal, more irregular and more or less broken posteriorly; free membrane of opercle jetblack within and without; gill cavity pale. Head $3 \boldsymbol{q}$ in length; dopth $3 \frac{1}{6}$ to $3 \frac{1}{2}$. D. X-I, 22 to 24 ; A. II, 7 ; scales $9-51$ (pores)-12; about 65 transverse series of scales.. 87.
bb. [Snout very slort, $4 \frac{1}{\frac{1}{2}}$ in head ; stripes on body dusky. Body somewhat elongate; the ventral outline straightish, dorsal outline elevated and much convex ; profile steep and convex, slightly depressed over the eyes; snout bluntish, $4 \frac{1}{2}$ in head; eye 6 in head, about equal to the broad preorbital; mouth subinforior, horizontal; maxillary reaching past middle of eye, 31 in head; barbol very short; dorsal -spines rather strong, the longest $2 t$ in head; anterior dorsal rays highest; base of membrane scaly; caudal slightly lunate; aual spine very strong, 3 in head; ventrals slorter than pectorals, which are $1 \frac{1}{2}$ in head; scales very thin, covered with minute scales on their base ; scales below the lateral line in horizontal series; lateralline regularly arched to above posterior margin of anal. Coloration much as in Mioropogon undulatus; conspicuous undulating black lines follow the series of scales on whole of boby above the pectoral; pectoral, ventrai, and anal blackish, with broad whitish margin. Head $3 \frac{1}{\frac{1}{2}}$ in length; depth 3. D. IX-I, 24 ; A. II, 9 ; soales 6-60 (aboat)-10.] (Günthor.) Reedi, 88.
aa. Dorsal rays X-I, 26 to 28 ; serres of preopercle slender, not notably flatteued.
c. Body with about nine dark vertical cross-bands, besides narrow undulating streaks along the rows of scales. Body rather stout, the back somewhat arched; eye $3 \frac{1}{y}$ in head; preopercle finely denticulate; mouth modorate, the maxillary reaching to below middle of eye; teeth subequal, villiform, in broad bauds; gill-rakers minute, slender, $5+9$; second dorsal spine highest, 18 in head; second anal spine about 2 f ; pectorals short, $1 \frac{8}{8}$ in head; veutrals $1 \frac{1}{2}$; lateral line little arched. Head 38; depth 3. D. X-I, 26 to 28 ; A.s II, 6 or 7; scales 5-48-10............. Broussoneti, 89.
co. Body without dark cross-bands, the rows of scales above with distinct undulating streaks.
d. Snout bluntish, short, $4 \frac{1}{2}$ in head ; serre of preopercle comparatively numerous and strong, subterete. Body not very deep, the profile somewhat depressed over the eyes; eye it in snout, $1 \frac{1}{8}$ in interorbital space, 5 in head; preorbital not quite so broad as eye; mouth inferior, the maxillary reaching to middle of eye, 28 if in head; teeth in broad bands, the outer series above little enlarged ; gill-rakers shortish, rather stout, shorter than pupil, 6+9; pharyngeal teeth longer and more numerous than in cirrosa; highest dorsal spine $1 \frac{1}{6}$ in head ; caudal slightly lunato ; second anal spine strong, $2 t$ in head; color bluish above, silvery below; a dusky bloteh on center of opercle; back and sides with distinct streaks of deep olive following the centers of the rows of scales, these lines regular and not interrupted; they run obliquely upward and backward bolow as woll as above the lateral line, those bolow being more nearly horizontal; fins chielly bright yellow; membrane of opercle pale; lining of gill cavity dusky. Head 34 in length; depth $3 \frac{1}{8}$. D. X-I, 27 ; A. II, 6 or 7; lat. l. with about 50 pores; about 60 transverse rows of scales...................Roncador, 90.
$d d$. Suout longer than eye, 3 to $3 \frac{1}{1}$ in hoad; preopercle distinctly serrate.
e. Second anal spine large, 2 in head; profile straight, moderately ateep; snout rather aoute; ofe $4 \frac{1}{8}$ in head ; mouth small, inferior, the maxillary nearly reaching middle of orbit, its length 2 it in head; teeth subequal; gill-rakers scarcely developed, $4+9$; third dorsal spine highest, $1 \frac{1}{8}$ in head; anterior dorsal rays muoh longer than posterior oves; anal fin pointed, the second soft ray longest, the second spine very strong, 2 in head; ventrals slightly longer than pectorals, $1 \frac{1}{f}$ in head; lateral line moderately arched anteriorly; color bluish, silvery below; conspicuous dark lines following the rows of scales, those below lateral line oblique as well as those above; spinous dorsal dusky. Head 3 in length; depth 3f. D. X-I, 26 ; A. II, 6; scales 5-48-8 Xanti, 91.
ee. Second anal spine short and thickish, 3 in head. Back elevated, the anterior profile steep and rather couvex ; snout blunt, mach protruding; mouth small, horizontal ; the maxiflary reaching just past pupil, 3 in head; eje 5 in head; preopercle finely and sharply serrate; gill-rakers very small; pectoral short, $1 \frac{1}{2}$ in head; longest dorsal spine 2; caudal fin slightly lunate, the upper love the longer ; scales above lateral line in very oblique seriog, in oblique seribs below lateral line anteriorly; color, grayish, yellow below; faint dark lines along the acales on the upper half of the body, golden lines on scales below; dorsals finely punctulato; fins pale; gill cavity pale within. Hoad 38 to 3 ; depth 38 to 34 . D. X-I, 28 or 29 ; A. II, 6 ; lat. 1 . 50 to 53. . Galapagorum, 9.
aaa. Dorsal rays X-I, 31 to 33 ; preopercle with its edge weakly crenulate; suout very blunt, not longer than eye, 4 in head; back elovated; profile depressed posteriorly, anteriorly gibbous; month rather large, subterminal ; maxillary reaohing postorior lorder of pupil, $2 \pm$ in head; gili.
rakers short and slender, $5+9$; second dorsal spino highest, 2 in head; soft rays high; second anal spine $2 \frac{1}{8}$ iu bead; pectorals slightly shortor than ventrals, which are 18 in head. Color bluish, silvery below, dark streaks aloug the rows of scales very faint, broader than the pale interspaces. Head $3 \frac{1}{6}$ in length ; depth 3. D. X-I, 33 ; A. II, 7 ; scales 8-53-9.

Dorsalis. 93.

87. UMBRINA CIRROSA.

Soirena No. 1. Artedi, Genera 38, 1734 (Mediterranean).
Scicna cirroba Linnæus, Syst. Nat., ed. x, 280, 1758 (Mediterranean ; after Artedi).
Johnius cirrhosus Bloch \& Schneider, Syst. Ichth., 72, 1801.
Umbrina cirrhosa of recent writors generally.
Perca umbra Lacépède, Hist. Nat. Poise., iii, 16, 1802 (not Sciona umbra Linnæus).
Clilodipterus oyanopterus Lacépède, Hist. Nat. Poiss., iii, 546, plate 6, fig. 3, 1802 (on a painting by Plumier).
Coracinus boops Pallas, Zoographia Rosso-Asiat., iii, 259, 1811.
Umbrina vulgaris Guichenot, Expl. de l'Algerie, 43, 1850 (coast of Algeria).
Soicna cestrcus Gronow, Cat. Fish., ed. Gray, 52, 1854 (Mediterranean).

Habitat.—Mediterrauean Ṡea.

This handsome species is rather common in the waters of Southern Europe. Our specimens are from Venice and Palermo.

88. UMBRINA REEDI.

Umbrina reedi Günther, Shore Fishes, Challenger, 2j, plate xiii, fig. B, 1880 (Juan Feruandez).
Habitat.-Coast of Chili.
We know this species from Guinther's description only.

89. UMBRINA BROUSSONETI.

Umbrina broussoneti Cuv. \& Val., Hist. Nat. Poiss., v, 187, 1830 (Jamaica). Storer, Syn. Fish. North Am.; 324, 1846 (copied). Günther, Cat. Fish. Brit. Mus., ii, 277, 1860 (San Domingo, Jamaica). Cope, Ichthyol. Lesser Antilles, 471, 1870 (St. Martin). Jordan \& Gilbert. Syn. Fish. N. Am., 576, 1883 (specimens described from Indian River, Florida).
Umbrina coroides Cuv. \& Val., Hist. Nat. Poiss., v, 187, 1830 (Brazil). Storer, Syn. Fish. North Am., 323, 1846 (copied). Poey, Enumoratio, 48, 1875 (Cnba).
Habitat.—West Indian Fauna; Florida to Brazil.
This species is known to us from two specimens taken by Dr. J. A.
Henshall in the Indian River, Florida. These agree ou the whole better with Umbrina coroides C. \& V., than with Umbrina lroussoneti; bat we think that Dr. Guiuther is probably right in regarding the two nominal species as identical.

We have also examined specimens from Jeremie, Hayti, and from Pernambuco in the inuseum at Cambridge.

90. UMBRINA RONCADOR.

(The Yellow-finned Roncador.)
Umbrina undulata Steindachner, Ichthyol. Boitr., iii, 21, 1875 (San Diggo) (not of Girard).
Umbrina xanti Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 48 (Santa Barbara southward). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 456 (Santa Barbara, San Pedro, San Diego) (not of Gill).

Umbrina roncador Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 277 (wost coast Lower California). Jordan \& Gilbert, Syu. Fish. North Am., 576, 1883. Rosa Smith, West Amorican Scientist, 1885, 47 (San Diego).
Habitat.-Coast of Southern California; north to Santa Barbara.
This species is rather common along the coast of Southern California from Santa Barbara as far south as Cerros Island. It is a haudsome species, brightly colored in life, and of some value as food.
91. UMBRINA XANTI.

Cmbrina xanti Gill, Proc. Acad. Nat. Sci. Phila., 1862, 256 (Cape San Lucas). Jor̈dan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 363 (Cape San Lucay). Jordan \& Gilbert, Bull. U. S. Fish Com., 1822, 107 (Mazatlan) and 111 (Panama). Gilbert, Bull. U. S. Nat. Mus., 1882, 112 (Punta Arenas).
Ombrina analis Günther, Fishes Central America, 387 and 426, 1869 (Panama).
Habitat.-Pacific coast of tropical America, Cape San Lucas to Pan. ama.

This species is rather common along the west coast of Mexico, specimens having been taken by Dr. Gilbert, at Mazatian, Punta Arenas, and Panama. These are identical with Gill's types of $U_{,}$, $x a n t i$ and with Günther's U. analis, both of which have been examined by us.

92. UMBRINA GALAPAGORUM.

Umbrina galapagorum Steindachuer, Ichthyol. Beitr., vii, 20, 1878 (James Island, Galapagos).
Habitat.-Galapagos Archipelago.
This species is kuown from Dr. Steindachner's original types, most of which are still in the Museum of Comparative Zoology.

93. UMBRINA DORSALIS.

Ombrina dorsalis Gill, Proc. Acad. Nat. Sci. Phila., 1862, 257 (Cape Sau Lucas). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 363 (Cape Sau Lucas). Jordau \& Gilbert, Bull. U. S. Fieh Com., 1882, 107 (Mazatlau).
Habitat.-Pacific coast of Mexico.
This species seems to be rather rare. A large example was taken by Dr. Gilbert at Mazatlan, and this has been compared by us with the types of \dot{U}. dorsalis, young examples taken at Cape San Lucas by Mr. Xantus.

Genus XXI.-MENTICIRREUS.

Menticirrhus Gill, Proc. Acad. Nat. Sci. Phila., 1861, 86 (alburnus). Cirrimens Gill, Proc. Acad. Nat. Sci. Phila., 186:, 17 (ophicephalus). Umbrula Jordan \& Eigenmann, tubgenus nov. (littoralis).

Type: Perca alburnus Linnæus= Cyprinus americanus Linnæus. This genus is one of the most strongly marked in the family. It has been confounded by all European writers with Unbrina, witli which it has not very much in common except the presence of the barbel at the chin. All the species aro Americau, and most of them are closely re-
lated to each other. Two of them, however (littoralis, elongatus), while retaining the external form and appearance of the others, differ from them widely in the form of the lower pharyngeal teeth and in the pres. ence of gill-rakers. These we have placed in a distinct subgenus, which we have called Umbrula. Another species (ophicephalus) is also somewhat aberrant and represents a third subgenus (Cirrimens).

The species of Menticirrhus are all bottom fishes. The low, elongate body, the large pectorals, and the obsolete air-bladder are all characters related to this peculiarity of habit.

ANALYSIS OF SPIECIES OF MENTICIRIRIUS.
a. Dorsal spines about 13 ; head very low, thick, sub-terete, the snout blunt and very prominent; lower pharyngeals with acute teeth; gill-rakers obsolete. (Cirrimens Gill.)
b. Body formed as usual in Menticirrhus; long and low, little compressed; head with very convex cross-outlines, high in front, gibbous above the nostrils; profile depressed above eye; snout $3 \frac{1}{2}$ in head ; projecting for oue-third its length; eye small, 5 or 6 ; mouth very small, inferior, the outer teeth in the upper jaw modcrately enlarged; maxillary reaching to opposite middle of ege, 3^{2} in head; gill-rakers minute, reduced to little fleshy projections; gill openings contracted, the membranes more united below than in other species; preopercle with flexible cilin; lower pharyugeals amall, the toeth mostly pointed; epinous dorsal ligh, the longest spines 13 in head; pectorals short, 1_{1} in head, not reaching tips of ventrals; caudal Sslaped, the lower lobo the longer. Color, dark gray; pectorals dusky. Head 4; depth 4. D. XII-I, 23; A. I, 8; scales 74 (pores) Ophicephalus, 94.
aa. Dorsal spines usually eleven; hoad not terete, more depressed, with lower suout. c. Gill-rakers obsolete, reduced to tubercular prominences, covered with teeth similar to those on the otber gill arches; lower pharyngeals narrow, the teeth villiform or cardiform, all of them acute or conical, none with rounded heads (molar); teeth in the outer scries of upper jaw more or less enlarged; scales on breant large. (Menticirvhze.)
d. Soft dorsal rather short, its rays 1,18 to $I, 22$; snout prominent.
\therefore Snont very promineut, $3 \frac{1}{2}$ in head, its tip slightly turned upward, projecting beyond the premaxillaries for a distance about iwo-thirds diameter of the eye; spinous dorsal clevated, its longest spines 1 it in hoad, reaching beyond front of solt dorsal; eye large, but considerably smaller than in M. nasus, $5 \frac{1}{\frac{1}{2}}$ in head; mouth comparatively small, inferior, the maxillary reaching middle of eye, $3 \frac{1}{3}$ in head ; posterior margin of spinous dorsal deeply concave ; rays of soft dorsal low, subequal; candal decply f-shaped, the upper lobe much the louger, $1 f$ in head; ventrals short, $1 \frac{2}{8}$ in pectorals; pectorals it in head; lateral line concurrent with the back. Color, bluish above, silvery below; spinous dorsal dusky; lining of gill cavity and inner side of pectorals dusky. Head $3 \frac{1}{2}$ in length ; depth 4. D. X-I, 22 ; A. I, 8 ; вcales 6-50-10 . Simus, 95.
ee. Snout less prominent, about 4 in head, its tip not recurved; dorsal spines not elevater, the longest barely reaching soft dorsal, it in head.
f. Dorsal rays X-I, 22 ; eye very large, $4 \frac{1}{1}$ in head; snout projecting beyond lower jaw for a distance about equel to half the diameter of the eye; mouth small, inferior, the maxillary reaching to below middle of eye, 3 in head; pectoral $1 \frac{1}{8}$ in head, candal fin f-shaped, the upper love pointed, the lower rounded. Color, silvery ; fios blackish. Head $3 \nmid$ in length ; depth 4. D. X-I, 22; A. I, 8; scales (i-54-14Nısus, 96.
ff. Dorsal rays $\mathrm{X}-\mathrm{I}, 19$ or 20.
g. Snout low and pointed, 3 in in head, projecting much beyond the premaxillaries; eyo rather large, ift in head; body long and low, with rather depressed profile, and low, sharp snout; maxillary extending beyoud pupil, 3 in head; preopercular serre somewhat bony, stiffer, aud more distinct than in any other species, rather small and distant; gill-rakers minute, about half length of nostril; outer teeth of upper jaw much enlarged, as in M. alburnus; scalos on breast large; dorsal spines high, the longest reaching boyond front of soft dorsal, $1 \frac{1}{1}$ in head ; pectorals rather short, $1 \frac{1}{8}$. Color, plain, dark gray above, paler below; gill cavity dusky; lower fins all dark. Head 3 ; depth 4. D. IX-I, 20 ; A. I, 9 ; scales 55 (pores).

Agassizi, 97.
gg. Snout rather short and blunt, 4 in head, projecting beyond premaxillaries for about half a diameter of the oye; eye small, 7 iu head; maxillary reaching nearly to posterior margin of eye, 3 in head; outer teeth of upper jaw much onlarged; pectoral long, $1 \frac{1}{8}$ in head; ventral 2 in head; longest dorsal spine as long as pectoral, anal spine half as long as the rays; upper lobe of caudal not produced. Color, plumbeous, bright silvery below ; lower fins mostly black. Head 3 in length; depth 4. D. X-I, 18 to 20; A. I, 9 ; scales 6-50-14.

Panamensis, 98.
$d d$. Soft dorsal longer, its rays $\mathrm{I}, 23$ to $\mathrm{I}, \mathrm{m}_{\mathrm{i}}$.
h. Mouth comparatively large, the maxillary reaching to below middle of eye, 28 to $3 t$ in head; teeth on lower pharyngoals acute; back and sides usually with oblique dusky bars; lower love of caudal longest.
i. Outer teeth of upper jaw decidedly enlarged; dorsal spines not much elevated, the longest usually not reaching front of soft dorsal, $1 \frac{1}{2}$ to $1 \frac{1}{8}$ in head. Coloration, grayish silvery, the dark markinge not pronounced and often obsolete.
j. Dorsal rays X-I, 22 or 23 ; suout rather shorter and less pointed than in M. americanus, $3 \frac{1}{1}$ in head; mouth smaller, the maxillary 3 in head. Coloration usually plain, sometimes very dark, otherwise as in Menticirrhus americanus. Head 3p; depth 43. D. X-I, 22 or 23 (rarely 24); A. I, 7; scales 55 ($6-52-10$) Martinicensis, 99.
jj. Dorsal rays X-I, 24 or 25 ; snout longer, $3 \frac{1}{1}$ in head; maxillary reaching nearly to middle of eye, 24 to 3 in head; eye small, 2 in snout ; teeth villiform, in broad bands, the outer series of the upper jaw vory much enlarged, larger than in the other species; ventrals short, $1 \frac{1}{y}$ in pectorals; pectorals 1 i in head; caudal f-shaped, the broad rounded lower lobe louger than the acute upper; scales all ctenoid, those of the breast larger and regularly placed. Color, grayish silvers, with obscure darker clouds along the lack and sides; these marks
forming dusky bars, running obliquely forward and downward to considerably below the lateral line, these often obsolete; the bar at the vape saddle-like; lining of gill cavity dusky; pectoral yellowish, dusky at tip; an obscuro dusky streak along lower parts of sides ruming into lower lobe of caudal. Head 31 ; depth 4 to 5. D. X-I, 24 or 25 ; A. I, 7; acales 6-55 (pores)-12................. Americanus, 100. ii. Outer teeth of upper jaw less onlarged ; spinons dorsal elevated, the longest spine reaching past front of soft dorsal, its length $1 \frac{1}{2}$ in head; coloration strongly marked, lody scarcely silvery. Profile slightly depressed above the eyes; eyes small, $2 \frac{1}{3}$ in snout, 2 in interorbital area, about 7 in head; snout long. bluntish, $3 f$ in head; mouth large; maxillary reaching middle of eye, $2 t$ in head; ventrals $1 \frac{1}{2}$ in pectorals, which are $1 \frac{1}{f}$ in head ; scales all ctenoid. Color dusky gray above, sometimes blackish, the back and sides with distiuct dark oblique cross-bands runuing downwards and forwards, the anterior one at the nape extending downward, meeting the second and thus forming a \mathbf{V}-shaped blotch on each side; a dark lateral streak bounding the pale color of the belly, most distinct posteriorly, and extending on lower lobe of caudal ; inside of gill-cavity scarcely dusky ; pectorals dark. Head 34 to 4 in leugth ; depth $4 \frac{1}{2}$ to $4 \frac{2}{g}$. D. X-I, 26 or 27 ; A. I, 8 ; scales 7-53 (pores)-14.................................. Saxatilis, 101.
! h. Mouth smaller, the maxillary reaching scarcely to front of oye, 3 子 in head; teeth on lower pharyngeals blurtish; coloration grayish, with dark streaks along the rows of scales. Snout long, little projecting, $3 f$ in head; oyesmall, 7 in head, $2 t$ in snout, 18 in interorbital area; outer teeth in upper jaw moderateiy enlarged, about as in M. saxatilis; lower pharyngeals a little broader than in M. americanus, the teeth coarser, and many of them bluntish, none of them really molar, those of the inner posterior corner of the bone much eularged; ventrals $1 \frac{1}{2}$ in pectorals, which are $1 \frac{1}{3}$ in head; scales all ctenoid. Color sooty-grayish, with bright reflections; the lack, all the fins, and under side of head dusky; undulating lines along sides running upward and backward, made of dark points in center of each scale; back often with very faint dark cross-bars; edge of opercle dusky; lining of gillcavity slightly dusky. Head 4 in length; depth 4 to 5 . D. X-I, 25 or 26 ; A. I, 8 ; scales 7-60-11 Undulatub, 102. cc. Gill-rakers present, very short and somewhat slender; lower pharyngeals rather broad; some or nearly all of the teeth molar, i. e., enlarged, with thickened, rounded heads, the molar teeth covering at least the anterior portion of the bone; teetl in the outer series of upper jaw scarcely larger than the others; scales on breast small. (Umbrula Jordan \& Eigenmann.)
k. Upper love of caudal longer than lower; scales rather small, about 25 in an oblique series from vent forward to lateral line; axillary scale one-third length of pectoral; snout very little projecting ; gill-rakers very short, $3+5$, the longest about one-third diameter of pupil ; lower pharyngeal bones narrower than in littoralis, the molar teeth smaller, covering the whole anterior part of the bone; conical teeth on poste-. rior part of the bone, the outermost row enlarged ; body
more elungate than in other species; profle low, little convex; ofe small, $2 \frac{1}{8}$ in suout, 7 in head; suout long, 3 in head; mouth small, the maxillary scarcely reaching front of eye, 3 in head; second dorsal spine 18 in head; anterior soit rays of dorsal almost twice as long as the posterior ones, caudal with an f-shaped margin; ventrals 18 in pectorals; pectorals $1 \frac{8}{s}$ in head. Color bluish on sides and back, silvery below, withont stripes or bands. Head 3혛 in length; depth 4魚. D. X-I, 22 to 24; A. I, 7; scales 5-53-13. .Elongatus, 103.
$k k$. Upper lobe of caudal not longer than lower; scales rather large, 15 to 18 in an oblique series from vent upward and forward to lateral line; axillary scale not one-fourth length of pectoral; snout distinctly projecting beyond mouth, $3 \frac{1}{2}$ in head; gill-rakers larger than in other species, the longest about $\frac{1}{2}$ length of pupil, the number $\boldsymbol{X}+7$; lower pharyngeal bones broad, most of the tecth developed as coarse molars, ouly those along the posterior margin conical; maxillary reaching past front of orbit, $3 \frac{1}{2}$ in head; outer teeth of uppor jaw scarcely eularge. ; longest dorsal spines reaching past front of soft dorsal, the free margin of the fin concave; caudal rather deeply lunate, the lower lobe rounded, the upper pointed; ventrals 18 in pectorals, which are 1t in head. Color silvery gray above, with bluish and bronze reflections, immaculate; a dark-bronze shade along sides on level of pectorals, extending to tail and along cheeks; belly below this abruptly white; dorsals light brown, spinous dorsal black at lip, the base narrowly white; caudal pale, its tip usually black; inuer lining of pectoral aud ventrals blackish; gill cavity pale. IIead $3 \frac{1}{2}$ in length; depth 4 fis. D. X-I, 23 to 25 ; A. I, 7 ; scales 6-53 (pores)-12........Lintoralis, 104.

94. MENTICIRRHUS OPHICEPHALUS.

Vmbrina ophioephalus Jengns, Zool. Boagle, Fish, 45, 1842 (Coquimbo, Chili). Günther, Cat. Fish. Brit. Mus., ii, 277, 1860 (copied).
Cirrimens ophicephalus Gill, Proc. Accul. Nat. Sci. Phila., 17, 1862.
Habitat.-Coast of Chili and Peru.
This singular species is represented by numerous specimens large and small in the Museum of Comparative Zoology. These are from Caldera, Chili (8603, M. C. Z.), and from Callao, Pern. It seems to us that the name Cirrimens proposed for this species can be used for a subgenus only.

95. MENTICIRRHUS SIMUS.

Menticirrhus nasus Jordan \& Gilbert, Bull. U. S. Fish Com., 1882, 107 and 111 (Mazatlan and Panama) (not Umbrina nasus Glinthor). Jordan, Cat. Fish. North America, 94, 1885 (name ouly).
Monticirrhus simus Jordan \& Eigenmann, sp. nov.
Habitat.-Pacific coast of tropical America; Mazatlan to Pauama.
This species is known to us from the specimeus collected by Dr. O. H. Gilbert at Mazatlan and Pauama.

It was at first identifled somewhat doubtfully with Menticirrhus nasus by Jordan and Gilbert. The examination of the original type of Um-
brina nasus has convinced Dr. Jordan that this is a different species. We here describe in detail the typical specimen under the name of Menticirrhus simus.

Menticirrhus simus sp. nov. Type No. 28292, U. S. Nat. Mus.
Depth 4 in length (5 in total); head $3 \frac{1}{2}\left(4 \frac{1}{3}\right)$. D. X-I, 22 ; A. I, 8 ; scales 6-52-10.
Body robust; back somewhat compressed and regularly arched; depth about uniform between the first dorsal spine and the first soft ray; caudal peduncle rather heavy ; distance from last dorsal ray to beginning of middle caudal ray slightly more than 2 in head.

Head subconical; profile steep, slightly depressed over the posterior part of eyes; snout abruptly blunted, turned up anteriorly, suggesting the form of suout in the genus Heterodon; five large incisions in the upper lip, three large oval and three small round pores above them, as in other species of Menticirrhus; snout $3 \frac{1}{2}$ in head ; eye $5 \frac{2}{2}$ in head; mouth horizontal, inferior, the snout extending 4 of its length beyond the premaxillary; maxillary extending past middle of eye, slightly more than 3 in head.
Teeth in lower jaw villiform in rather broad bands; upper jaw with a band of small teeth aud an outer series of enlarged ones; largest teeth of the outer series slightly longer than the anterior nostril ; preopercle with fine widely placed teeth on its membranous border ; gill-rakers obsolete; pseudobranchiæ very large; lower pharyugeal teeth villiform, those of the inner series much enlarged ; first dorsal beginning behind base of pectoral; the first spine minute; the second spine lighest, reaching to third dorsal ray, $1 \frac{1}{3}$ in head; posterior margin of spinous dorsal deeply concave; dorsal soft rays low, subequal ; caudal unequally lunate, the upper lobe much the longer, $1 \frac{1}{5}$ in head; anal inserted under fifth dorsal ray; its spine weak, 5 in head; the auterior anal rays much the longer, but not extending to tip of last rays; ventrals $1 \frac{3}{5}$ in pectorals; pectorals $1 \frac{1}{6}$ in head.
Scales large; all strongly ctenoid; those in the lateral line and those above it more or less covered with smaller ones. Soft dorsal, with a very narrow scaly sheath. Bases of pectorals and caudal densely scaly, the rest of the fins naked. Color, grayish above, lighter below; lower parts of sides with numerous dark points; faint lines following the rows of scales above; spinous dorsal dusky, anal with dark specks; axil and inuer margin of pectoral dusky; other fins plain ; lining of gill cavity dusky.

This species differs from Menticirrhus nasus (Günther) in the size of the eye, the size of the teeth, and the size and shape of the snout. Dr. Jordan has examined the type of M. nasus and verified the description of Günther. The large size of the eye in M. nasus is not due to the im. maturity of the typical example.

96. MENTICIRRHUS NASUS.

Umbrina nasus Günther, Fishes Central America, 387 and 426, 1869 (Panama). Jordan, Proc. Acad. Nat. Soi. Phila., 1883, 289 (Central America).
Habitat.-Pacific coast of tropical America, Mazatlan to Panama.
This species is known to us from Dr. Giinther's original type. No others have since been taken, if, as we suppose, our Menticirrhus simus is really a distinct species.

97. MENTICIRREUS AGASEIZI.

Mentioirihus agassizi Jordan, sp. nov. (Caldera).
Habitat. -Coast of Chili.
This species is known from a single specimen, $6 \frac{1}{2}$ inches long, in the Museum of Comparative Zoology, from Caldera, Chili. It was found mixed with specimens of Menticirrhus ophicephalus, in bottle 8603.

This species is named in honor of Professor Louis Agassiz.

98. MENTICIRRHOS PANAMENSIS.

Umbrina panamensis Steindachner, Ichthyol. Beitr., iv, 9, 1875 (Panana).
Menticirrhus panamensis Jordan \& Gilbert, Bull. U. S. Fish Com., 1882, 107 (Mazatlan); l. c., 111 (Pauama). Jordan, Cat. Fish. North America, 94, 1885 (name only).

Habitat.-Pacific coast of tropical America, Mazatlan to Panama.
This species is known to us from specimens taken by Dr. Gilbert at Panama and Mazatlau.

99. MENTICIRRHUS MARTINICENSIS.

Umbrina mariinicensis Cuv. \& Val., Hist. Nat. Poiss., v, 186, 1830 (Martinique). Storer, Syn. Fish. North Am., 323, 1846 (copied). Günthor, Cat. Fish. Brit. Mus., ii, 277, 1860 (copied). Jordan, Proc. U. S. Nat. Mus., 1886, 539 (note on type of Cuvior \& Valencienues).
Umtrina gracilis Cuv. \& Val., Hist. Nat. Poiss., v, 189, 1830 (Brazil). Gilnther, Cat. Fish. Brit. Mus., ii, 277, 1860 (copied). Jordan, Proc. U. S. Nat. Mus., 1886, 539 (note on type of Cuvier \& Valenciennes).
Umbrina arenata Cuv. \& Val.,Hist. Nat. Poiss., v, 190 (Brazil). Jenyns, Zool. Boagle, Fishes, 44, 1842 (Bahia Blanoa; Maldonado). Glintber, Cat. Fish. Brit. Mus., ii, 276, 1860 (Jamaica).
Cmbrina phalana Steindachuer, Ichth. Notizen, ix, 20, 1869 (Santos, Brazil).
Dmbrina januaria Steindachnex, Iehthyol. Beitr., v, 122, 1876 (Rio Janeiro).
Habitat.-West Indies to Patagonia.
We have examined the types of Umbrina martinicensis and U. gracilis in the museum at Paris. We have also examined numerous specimens in the museum at Cambridge, apparently identical with these, from Rio Janeiro, Rio Grande do Sul, Victoria, Bahia, and Montevideo. The species seems to be as common in South America as its analogue M. americanus is in North America. The two are exceedingly alike, and martinicensis is probably a geographical variety of the other, distinguished perhaps by a slightly smaller number of rays in the dorsal fin.

Were it not that the Sciænoid fauna of South America is chiefly different from that of North America, we should scarcely hesitate to place martinicensis in the synonymy of americanus. Umbrina januaria is apparently based on the specimens from Rio Janeiro examined by us. Umbrina gracilis was based on the dried skin of a young example, distorted and varnished.

Ombrina arenata, as described by Cuvier \& Valenciennes, does not differ at all from M. inartinicensis. As described by Dr. Günther, the scales are 72 to 78 in arcnata. It is evident, however, that Günther has counted not the pores, but the number of vertical series of scales, and these range from 70 to 80 in nearly all of our species, the number exceeding the number of pores by about 20 , aud similarly exceeding the number of oblique series. We see no reason, therefore, for not placing arenata in the synonymy of martinicensis.

100. MENTICIRRHUS AMERICANUS.

(The Carolina Whiting.)
[Plate VIII.]
Alburnus americanus (the Whitidg) Catesby, Nat. Hist. Carolinas, etc., pl. 12, f. 2 (Jordan, Proc. U. S. Nat. Mus., 1884, 195).
Cyprinus americanus Linnæus, Syst. Nat., ed. x, 321, 1758 (based on the Whiting of Catesby) (not Cyprinus americanus of the twelfth edition, which is a Cyprinoid, Notemigonus bosci Cuv. \& Val.).
Perca alburnus Linnæus, Syst. Nat., ed. xii, 482, 1886 (on specimens sent from Charleston by Dr. Garden). Schöpf, Schrift. Naturf. Freunde Berlin, viii, 162, 1788. IBloch \& Schneider, Syst. Ichth., 87, 1801.

Cenitropomus alburnus Lacépède, Hist. Nat. Poiss., iv, 249, 257, 264, 1802.
Sciona alburnus Gronow, Cat. Fish., ed. Gray, 51, 1854 (South Carolina).
Umbrina alburnus Cuvier \& Valenciennes, v, 180, 1830 (in part). Holbrook, Ichtbyol. S. Carolina, 136, plate 20, Gg. 2, 1856 (South Carolina). Gtinther, Cat. Fish. Brit. Mus., ii, 275, 1860.
Menticirrhus alburnus Uhler \& Lugger, Fishes of Mary Iand, 101, 1876 (Chesapeake Bay). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1878, 378 (Beaufort). Goode, Proc. U. S. Nat. Mus., 1879, 113 (Saint John's River, Florida). Goode \& Bean, Proc. U. S. Nat. Mus., 1879, 132 (Pensacola). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 282 (Galveston). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 606 (Charleston). Jordan \& Gilbert, Syn. Fish. North Am., 577, 1883; Goode, Hist. Aquat. Anim., 376, plate 127 b, 1884. Goode \& Bean, Proc. U. S. Nat. Mus., 1885, 202 (Linnæau types). Jordan, Cat. Fish. North America, 94, 1885 (name only).
Umbrina phalena Girard, Proc. Acad. Nat. Sci. Phila., 1858, 167 (Indianola, Brazos

- Santiago). Girard, U. S. and Mex. Bound. Survey, 13, 1859.

Habitat.-South Atlantic and Gulf coasts of the United States, Chesapeake Bay to Texas.

This species is very common on the saudy coasts of our Southern States, where it is a food-fish of some importance.

As elsewhere stated, this may be identical with the South American Menticirrhus martinicensis.

This species has generally received the specific name of alburnus given to it by Linnæus in the twelfth edition of the Systema Naturæ. In the tenth edition of the Systema, Linnæus had already given the specific name of americanus to the Whiting of Catesby. There is no doubt that Catesby had this common species in mind, although his rude figure resembles the Surf Whiting (littoralis) fully as much as it does the common Whiting.

101. MENTICIRRHUS SAXATILIS.

(The King-fisil ; Sea Mink.)

[Plate IX.]

Johnius saxatilis Bloch \& Schneider, Syst. Ichth., 75, 1801 (New York).
Menticirrhus saxatilis Jordan, Proc. Acad. Nat. Sci. Phila., 288, 1883 (note on type of Bloch \& Schneider). Jordan, Proc. U. S. Nat. Mus., 1884, lizy (Key Wost). Jordan, Cat. Fish. North America, 94, 1885 (name only).
Umbrina alburnus DeKay, New York Fauna, Fishes, 78, plate 7, fig. 20, 1842 (New York). Storer, Syu. Fish. North Am., 323, 1846 (Massachusetts) (not Perca alburnue L.).
Soiana nebulosa Mitchill, Trans. Lit. \& Phil. Soc. New York, 406, plate 3, fig. 5, 1815 (New York) (not of Gmelin).
Umbrina nebuloga Storer, Fishes Massachusetts, 35, 1839 (near Boston light house). Ayres, Fishes of Brookhaven, L. I., 259, 1842. Storer, Hist. Fish. Mass., 124, plate ix, fig. 4, 1867 (Bostou light-house; Lynn; Provincetown). Gunther, Cat. Kish. Brit. Mus., ii, 275, 1860 (New York).
Menticirrhus nebulosus Goode \& Boan, Fish. Essex Co. and Mass. Bay, 17, 1879 (Danvers; Spite Bridge ; Marblehead light-houre). Bean, Proc. U. S. Nat. Mus., 1880, 93 (Wood's Holl, Mass; Noank, Conn.; Cohasset Narrows, Mass). Goode, Proc. U. S. Nat. Mus., 1881, 113 (St. John's River, Florida). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 232 (Pensacole). Jordan \& Gilbert, Syu. Fish. North America, 577, 1883. Goodo, Hist. Aquat. Anim., 375, plate 127a, 1884.

Habitat.-Atlantic and Gulf coasts of the United States, Boston to Key West and Peusacola, most common northward.

This species is generally common along the coasts of our Northern States, its greatest abundance being north of the limit of M. americanus, a species which it very closely resembles, the differences being of comparatively little importance. Southward its distribution seems to be peculiar. A large specimen was obtained by Dr. Jordan at Pensacola and several small ones at Key West. All these are very dark in color, but not otherwise evidently different from the common northern form. The name saxatilis should be used for this species. The original type of Johnius saxatilis, sent by Schöpf (?) to Bloch, is still in the museum at Berlin, where it has been examined by us. The name saxatilis for the Whiting, like that of regalis for the Weak-fish, came about through a confusion of the vernacular names, the supposed "King-fish" being named "Johnius regalis" by Bloch, and the supposed "Rock•fish," "Johnius saxatilis."

102. MENTICIRREUS UNDULATUS.

(Tte California Whiting or "Sucker.")
Cmbrina undulata Girard, Proc. Acad. Nat. Sci. Phila., 1854, 148 (San Diego, Cal.). Girard, U. S. Pacif. R. R. Survey, 121, 1859 (San Diego, Cal.).
Menticirrhus undulatus Gill, Proc. Acad. Nat. Sci. Phila., 1862, 17 (name only). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 450 (Santa Burbara, San Pedro, San Diego). Jordan \& Gilbert, Proc. I. S. Nat. Mus., 1881, 48 (Santa Barbara, southward). Jordan \& Gilbert, Syu. Fish. North Am., 578 and 933, 1883. Rosa Smith, West Americau Scientist, 18R5, 47 (San Diego). Jordan, Cat. Fish. North America, 94, 1885 (name ouly).
Habitat.-Coast of Southern California, north to Santa Barbara.
This species is rather common along the sandy coasts of Southern California, where it is a food-fish of moderate importance. Girard's type of Dmbrina undulata has been examined by us. It is a young example of this species.

103. MENTICIRRHUS ELONGATUS.

Lembrina elongata Günther, Proc. Zool. Soc. Loud., 1864, 148 (Chiapain). Günther, Fishes Central America, 387 and 425, plate 64, fig. 2, 1869 (Chiapam). Steindachner, Ichthyol. Beitr., iv, 9, 1875 (Panama north to "San Diego," confounded with M. undulatur).
Menticirrhus elongatus Jordan \& Gilbert, Bull. U. S. Fish Com., 1882, 107 (Mazatlan).
Jordan, Cat. Fish. North America, 94, 1885 (name only).
Umbrula elongata Jordan \& Eigenaann.
Habitat.-Pacific coast of tropical America, Mazatlan to Panama.
This species is rather common on the west coast of Mexico. Its relations are evidently with M. littoralis, but in several respects it represents a transition towards Menticirrlus undulatus, its nearest relative among the typical Menticirrhi.

104. MENTICIRREOS LITTORALIS.

(The Surf Whiting; Silver Whiting.)
Onbrina littoralis Holbrook, Ichthyol. S. Carolina (first edition), 142, plate 20, fig 1, 1856 (South Carolina). Guinther, Cat. Fish. Brit. Mus., ii, 276, 1860 (copied). Menticirrhus littoralis Jordan \& Girbert, Proc. J. S. Nat. Mus., 1878, 378 (Beaufort). Bean, Proc. U. S. Nat. Mus., 1880, 93 (Flörida). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 283 (Pensacola, Galveston). Jordan \& Gilbort, Proc. U. S. Nat. Mus., 1882, 606 (Charleston). Jordan \& Gilbert, Synopsis Fish. North Ana., 933, 1883. Benn, Internat. Fishery Exhib., 56, 1883 (Matanzas River Inlet, Florida). Jordan, Cat. Fish. North America, 94, 1885 (name only).
Ombrula littoralis Jordan \& Eigenmanu.
Habitat.—South Atlantic and Gulf coasts of the United States, North Carolina to Texas.

This species is generally common in the surf along the sandy shores of the Southern States. It resembles M. americanus somewhat in external characters so that it has often been confounded with it by careless observers. Its technical distinctions are, however, numerous, and in the
form of its pharyngeal teeth it differs in a marked degree from all the other species of Menticirrhus except M. clongatus. Were it not that M. elongatus and M. undulatus are both in several respects intermediate between M. littoralis and the typical forms of Menticirrhus, we should re. gard the subgenus Umbrula, based on M. littoralis, as certainly worthy of full generic rank.

Gemus XXII.-PARALONCHURUS.

Paralonchurus Bocourt, Nouv. Areh. Mus., iv, 21, 1869 (petersi).

Type: Paralonchurus petersi Bocourt.
This genus seems to be most nearly related to Lonchurus, being in some respects intermediate hetween that and ordinary Scirenoids. But one species has been described.

a. Body long and low ; head slender, flattish, somowhat spongy alove, with protnberant smout; eye sif in hoal; snont 3 ; interorbital area $3 f$; momh horizontal; maxillary $\boldsymbol{q}_{5}^{\circ}$ in head ; teeth in villiform bande; uper jaw with a conspicnous onter row of larger ones; chin with 5 proses, a multifd harbel at the symphysis; rami with a row of slender barbels along inner edge ; dorsal low, highest behind; soft dorsal sealed at base only; caudal pointed, as long as head; anal spinessmall; second spine as long as snont; pectorals very large, es in body; scules rather large, cycloid; color light olivo with faint stripes on rows of scales; pectoral dusky; other fins plain. Head $3 t$ in longth; depth 4. Э. X-I, 30 ; A. II, 9 ; seales $8-$ 50-16 Petersi, 105.

105. PARALONCETURUS PETERSI.

Paralonchurus petersi Bocourt, Nouv. Archives du Museutn, iv, 1869, 2.2 (San Salvador). Jordan, Proc. V. S. Nat. Mus., 1886 (Panama).
Mabitat--Pacific coast of tropical America, Panama.
This rare species is now known to us from the origibal account of Dr. Bocourt and from Dr. Jordan's notes on the original type in the musenm at Paris. Specimens were later taken by Dr. Gilbert at Panama, but all of these hare been destroyed by fire.

A second species of Paralonchurus was obtained by Dr. Gilbert, but the typical specimens were destroyed by tire and no deseription has been published.

The following is Bocourt's description:
 "Caracterdes.-Corps allongé comprimé ; la plas grando hauteur, prise a la uaissance des pectorales, est conteme quatro fois dans la longueur (la candalo nou comprise), la têto y entrant trois fois et demic. Museau déprimé, percé en avant d'un gros pore; deux lobes arrondis au-devant do la bouche, an-dessus de chacun desquels se trouvo un autre pore. Diamètre horizontal do l'wil, compris trois fois et demie dans la largeur de l'espace interorbitaire, ot press de dix fois dans la S. Mis. 00 -_ 88
longueur de la tête. Bouche placee sous le museau, l'extrémité du maxillaire ne dépassant pas verticalement le bord posterieur de l'orbite. Quatre pores sous la mâchoire intérieure; entre les deux premiers on aperçoit un petit barbillon maltifide touchant a la symphyse, et il y en a dix d'une grande ténuité placés sur chacune des branches de la mâchoire inférieure. Preopercule arrondi; une crénelure membraneuse existe sur son bord postérieur. Ligne latérale infléchie au-dessus de l’anale. Pectorales très développées. Dorsale profondément échancréo et à rayons épineux faibles; le premier, très court, prend maissance audessus de l'origine des pectorales; le quatrième, le plus long, egale la largeur de l'espace interorbitaire. Ventrales attachées au même uiveau que les précédentes. Avale petite, et à épines médiocres. Caudale pointue, sa longueur égale celle de la tête. Anus phus eloigné, de l'extrémité de liu queue que du bout du museau. Vessie aérienne épaisse, argentée et prolongée en une pointo très déliée. Ecailles cycloïdes.
"Un senl exemplaire a été rapporté de La Uniou, République du Salvador.
"Longueur totale, $0^{m} 256 . "$

Genus XXIII.-LONCIIURUS.

Lonohurus Bloch, Syst. Ichth., plate 360, 1793 (burbatus = lanecolatus).
Type: Lonchurus barbatus Bloch.
This genus contains apparently but a single species, a rather rare inhabitant of the Caribbean waters. This species we have not been able to examine.
The genus seems to be one of the most remarkable of the family. Except its analogue, Paralonchurus, it seems to have no very near relatives.

ANALYSIS OF SPECIICS OF LONCHULES.
a. [Body long and low ; the protile straightish, depressed over the eyes; interorbital area as broad as cye, which is as long as snout; snont small, 10 in head; snout soft, depressed, with couspicuons poro at tip; month oblique, subinferior; maxillary raching a littlo beyond eye ; teeth in fine bands; barbels 2 , not longor than eyo ; preoperclo with cronulato, membranaccous margin; upper ray of pectoral nuch elongate, 2.2 in body ; caudal elongate lanceolate, 4 in body; first ray of ventral reaching front of anal; anal short and high, its spincs weak, inserted beforemiddle of soft dorsal; seales mostly eycloid ; latoral line becominer atraight above anal; color brownish; pectoral and eandal fins black, other fins dusky. Dopth 4 in longth. D. X or XI-I, 38 to 40 ; A. JI, 7 or 8 ; lateral line 60 to 70.] (Cuvicr \& Valenciennes.)

106. LONCHURUS LAANCEIOLATUS.

Perca lanccoluta Bloch, Nov. Act. Sc. Copenh., iii, 383.
Louchurus lanceolatus Guinther, Cat. Fish. Brit. Mus., ii, 317, 1860 (copied).
Lonchurus burbatus Bloch, Ichthyol., pato 360, 1793. Bloch \& Schneider, Syst. Ichthyol., 102, 1801 (Surinain). Cuv. \&. Val., Hist. Nat. Poiss., v, 193, 1830 (dor seribed from Bloch's type).

Lonchurus demessas Bloch \& Schmeider, Syst. Ichthyol., 102, 1801 (Surinan). Cuv. \& Val., Hist. Nat. Poiss., v, 195, 1830 (copiod). Günthor, Cat. Fish. Brit. Mus., ii, 317, 1860 (West Indies).
Habitat.-Coast of Guiana.
This remarkable species wo have had no opportunity to examine. We follow the suggestion of Dr. Giinther, in regarding the nominal species, Lonchurus depressus, as a synonym of L. lanceolatus.

Genus XXIV.-POGONIAS.

Pogonias Lacépede, Hist. Nat. Poiss., iii, 138, 1802 (fasciatus = cromis).
Pogonathus Laḉpedo, Hist. Nat. Poiss., v, 191, 1803 (courbina $=$ cromis).
Type: Pogonias fasciatus Lacépède.
This geuus contains, so far as known, but a single species, a large coarse fish of our A tlantic coasts.

ANAIMSIS OF SDECIES OF POGONIAS.

a. Body oblong, the back much elevated, ventral outlive almost straight, the depth rapidly diminishing from the first dorsal spine backwards; depth $2 \frac{1}{2}$ to 3 in leugth; head $3 \frac{1}{8}$; profile rathor stoep and alightly convex ; month moderato, inferior, the maxillary not reaching middle of oye, $3 \frac{1}{8}$ in head; teeth in broad bands, the outer series above soarcely enlarged ; suout blunt, 1 onger than eye, 37 to 4 in head ; lower pharyngeals large, completely united, covered with many blunt molars and a small pateh of conical teoth at the outer posterior comer ; gill-rakors $4+12$, very short, slemder ; dorsal spinos high but slender, the 4th highest, 2 in head; caudal subtruncato; second anal spine very large, about 2 in head; pectorals about as long as head; scales large, those on breast small ; color grayish silvery, with 4 or 5 broad dark vertical bars, these disappearing with age; fins blackish. D. X-I, 19 to 21 ; A. II, 5 ог 6 ; нсаles $5-47$ to $50-9$.................................... Cromis, 107. x. Body deep, the depth about $2 f$ in length; swout blunt, 38 in head. D. $\mathrm{X}-1$, $21 ;$ scales 47 ; back usually without distinct obliquestreaks . Var. cronis, 107 (a).
$x x$. Body more olougate, the depth about 3 in length; snout moro acute, 3 in head. D. X-I, 19; scales 50 ; color more silvery, with oblique faint dark streaks along the rows of scales above.................. Var. courbina, 107 (b).

107. POGONIAS CROMIS.

(The Drum.)
[Plates X and XI.]
a. Var. cromis.

Labrus cromis Linnous, Syst. Nat., ed. xii, 479, 1766 (Carolina). Gmelin, Syst. Nat., 1292, 1788 (Carolina).
Pogonias cromis Goode \& Bean, lishos of Essox County and Massnchusetts Bay, 17, 1879 (Provincotown). Goode \& Bean, Proc. U. S. Nat. Mus., 1879, 131 (Peusacolia). Bean, Proc. U. S. Nat. Mus., 1880, 93 (St. Johu's River, Florida;'near Charleston, S. C.). Jordan, Cat. Fish. North America, 03, 1885 (uame ouly). Labrus chromis Schöpf, Schrift. Naturforsch. Frounde Berlid, viii, 158, 1783 (New York). Sciana chromis Bloch \& Sclmeider, Syst. Ichth., 82, 1801 (Carolina). Lacópède, Hist. Nat. Poiss., iv, 314, 1802.

Pogonias chromis Cuvier, Ragre Animal, plate 29 , fig. 1, 1829. Cav. \& Val., Hist. Nat. Poiss., v , 206, 1800 (New York; Montevideo). DeKay, New York Fauna, Fishes, 80,1842 (Now York). Storer, Syn. Fish. North Am., 324, 1846 (copied). Holbrook, Ithth. S. Cirolina, od. 1, 112, plate 16, fig. 2 (South Carolina). Günther, Cat. Fish. Brit. Mas., ii, 270,1860 (Lako Poutchartrain). Uhler \& Lugger, Fishes of Maryland, 98,1876 (Eastern Shore, Maryland). Jordan \& Gilbert, Proc. U. S. Niat. Mns., 1878, 3 ;7 (Beaufort). Jordan \& Gilbert, ProcU. S. Nat. Mus., 1882, 980 (Pensacola; Galveston). Jordau \& Gilbert, Proc. U. S. Nat. Mus., 1882, 605 (Charleston). Jordan \& Gilbert, Syn. Fish. North Am., 568, 1sヶ3. Jordan \& Swain, Proc. U. S. Nat. Mns., 1884, 233 (Cedar Key). Jordan \& Meek, l'roc. U. S. Nat. Mus., 1884, 237 (St. John's River, Florida). Goode, Hist. Aquat. Anim., 367, phates 121 and 122, 188:4.
Pogonias fasciatus Lacépède, Hist. Nat. Poiss., iii, 137, 1802. Cuv. \& Val., Hist. Nat. Poiss., v, 210, pl. 118, 1830 (New York). DeKay, New York Fanna, Nishes, 81 , pl. 14, fig. 40, 1842 (אew York). Storer, Syn. Fish. North Am., 324, 1846 (copied). Girard, U. S. \& Mex. Bound. Survey, 11, 1859 (Brazos Santiago). Holbrook, Lehthyol. S. Carolina, 118, pl. 16, fig. 1, 1860 (South Carolina). Giinther, Cat. Fish. Brit. Mus., ii, 270, 1860 (copied). Günther, Ann. and Mag. Nat. Hist., July, 1830 (Rio Plata).
Mugil grumiens Mitchill, Report in part Fishes Now York, 16, 1814 (New York).
Labrus grunniens Mitchill, Trans. Lit. aud l'bil. Soc., 405, 1815 (New York).
Mugil gigas Mitchill, Report in part Fishes Now York, 16, 1814 (Now York).
Sciena gigas Mitchill, Traus. Lit. and I'hil. Soc., 413, 1815 (New York).
Pogonias gigas Ayres, Fishes of Brookhaven, L. I., 2i0, 1842 (Brookhaven, L. I.).
Sciana fusca Mitchill, Trans. Lit. and Phil. Soc., 409, 1815, (Now York).

b. Var. courbina.

Pogonathus courbina Lacopede, Hist. Nat. Poiss., r, 1:1, 1803 (Rio Plata).
Habitat.-Atlantic coasts of America; Long Island to Montevideo.
This species is common on the sandy coasts of the United States, where it reaches a very large size. It is probably the largest of all the Scionide. It is a rather coarse fish, of no great value as food.

There is no doubt that all the North American names belong to a single species, the form called fasciatus being simply the young.

The South American form (courbina) is scarcely dilferent from the Northern. We have examined specimens in the moseum at Cambridge from Rio Grande do Sul and other localities in Brazil. We have found ouly the slight differences noticed in the analysis above.

Gemus XXV.-APLODINOTUS.

Aplodinotus Rafinesque, Jonrn. de Phys., 1819, 418 (grunnicns).
Amblodon Riafinesque, Journ. de Phys., 1819, 418 (based on the pharyngeal teeth of A. grunnicns, supposed to belong to Ω epecies of Bufitalo-fish).

Haploidonotus Gill, Proc. Acad. Nat. Sci. Phil., 1861, 102 (grunniens) (amended orthography).
Eutychelithus Jordan, Man. Vert., ed. i, 242, 1876 (richardsoni=yrumiens).
Type: Aplodinotus grunniens Rafinesque.
This genus contains a single species, a large coarse fish, confined to the fresh waters of the United States. The gemus differs from Roncador chiefly in the complete union of the very large lower pharyngeal bones.

ANALYSIS OF SPLCCIES OF APLODINOTUS.

a. Body oblong; back much clevated and compressed; dopth 24 in lengith; head 31 ; profile long and stecp, straightish; head slightly compressed; mouth moderate, subinferior, low; the maxillary reaching past middle of eyo, 3 in head; teeth in villiform bands, tho outer above searecly enlarged ; lower pharyngeals completely united; the teeth less blunt than in Pogonias; gill-rakers short, thickish, $6+14$; preopercle obscurely serrated; snont blantish, longer than oye, $4 \frac{1}{8}$ in head; dorsal spines strong and high; second spine highest, $2 \frac{1}{8}$ in head; a sealy sheath at the base of spines; the two dorsals connected; second anal spine very large, more than half the length of the head; caudal double truncate ; scales rather thin and deop, the series somewhat oblique; scalos on breast rathor largo; color grayish silvery, dusky above, sometimes very dark; back sometimes with oblique dusky streaks along the rows of scales. D. X, 30; A. II, 7; scales 9-55-13.

Grunniens, 108.

108. APLODINOTUS GRUNNIENS.

(The Fresif water Drum, Gaspergoy, Thunder-pumper, Sheersiead, Croaker, hebheler, White lerch.)

[Plato XII.]

Aplouinotus grunniens Rafinesque, Journ. do Plys., 1819, 88 (Ohio R.). Grabam, Preliminary List Kanaas Fishes, 77, 1884 (Kausas River). Jordan, Cat. Fish. North America, 93,1885 (name only).
Amblodongrumiens Rafinesque, Ichth. Ohiensis, 24, 1820 (Ohio R.). Agassiz, Am. Journ. Sci. and Arts, $18 \overline{y y}^{4}$ ('C'ennessee R.). Girard, U. S. Pac. R. R. Survey, 96, plate 23, 1859 (St. Lonis; Arkansas R. ; Potean R. ; Milk R.).
Haploidonotus grunniens Gill, Proc. Acad. Nat. Sci. Phila., 1861, 104. Jordan, Fishes of Upper Georgia, 319, 1876 (French Broad R.; Cumberlaud R.). Jordau, Man. Vert., ed. i, 241, 1876. Nelson, Fishes Illinois, 44, 1876 (Lako Michigan). Jordan, Cat. Fish. Illinois, 50,1878 (La Salle ; Peoria). Bean, Proc. U. S. Nat. Mus., 1880, 94 (Sandukly, O.; Cincinnati, O. ; Detroit, Mich. ; Au Sable Riv., Mich.). Jordin \& Gilbert, Syn. Fish. North America, 507, 1833. Jordan, Ohio Geol. Survey, ir, 983, 1883 (Ohio IR. ; Great Lakes). Forbes, Catalogue Fibl. Illinois, 62, 1884 (Lake Michigan; Hlinois R., Ohio R.). Goode, Hist. Aquat. Anim., 370, plate 123, 1884.
Sciena o8cula Lesueur, Journ. Acad. Nat. Sci. Phila., 1822, 2is2, plate 13. Kirtland, Rept. Zool. Ohio, 168, 192, 1838 (Ohio).
Corvina oscula Cuv. \& Val, Mist. Nat. Poiss.; v, 98, 1836 (copied). Richardson, Faun. Bor. Amer., iii, 68, 1836 . Kirtland, Bost. Jouru. Nat. Hist., iii, 350, plate 6, fig. 3, 1840. DeKay, Now York Fauna, Fislees, 73, plate 21, fig. 63, 1842 (New York). Storor, Syn. Fish. North Am., 319, 1846 (copied). Giinther, Cat. Fish. Brit. Mus., ii, 297, i860 (Ohio Canal; Lake Pontchartrain).

Corvina grisca DoKay, Now York Fauna, Fishes, 76, 1842 (Now York).
Corvina richardroni Cav. \& Val., Hist. Nat. Poiss., v, 100 (Lake Huron). Richardson, Faun. Bor. Amer., 64, 77, 1836. DoKay, Now York Fanna, Fishes, 76, plate 20, fig. 55, 1842. Storer, Syn. Fish. North Am., 320,1846 (copied). Guinther, Cat. Fish. Brit. Mus., ii, 298, 1860 (copied).
Haploidonotus richardsoni Gill, Proc. Acad. Nat. Sci. Phila:, 1861, 105 (name only).
Euitychelithus richardsoni Jordan, Man. Vort., ert. i, 242, 1876 (copied).
Amblodon concinuut Agassiz, Amer. Jour. Sci. Arts, 1854, 307 (Tennessee R.).
Haploillonotus concinnas Gill, Proc. Acad. Nat. Sci. Pliila., 1861, 104 (name only). Jordan, Mau. Vort., od. i, 242, 1876 (copied).

Amblodon lineatus Agassiz, Am. Jour. Sci. Arts, 1855, 307 (Osage Rivor).
Haploidonotus lineatus Gill, Proc. Acad. Nat. Sci. Phila., 1861, 105 (namo only). Jordau, Man. Vert., ed. i, 242, 1876 (copied).
Amblokon neglectus Girard, Proc. Acad. Nat. Sci. Phila., 1858, 167 (Rio Ġrande). Girard, U. S. and Mex. Bound. Survey, 12, plate v, fig. 6-10, 1859 (Rio Grande, Matamoras).
Haploidonotus neglectus Gill, Proc. Acad. Nat. Sci. Phila., 1861, 105 (nanin ouly).
Corvina (Anblodon) neglecta Steindachner, Ichth. Notizeu, vi, 1867, 38 ("southern part of the west coast of the United States" \rangle.
Habitat.-Fresh waters of the Dastern United States, chiefly west of the Alleghanies; Great Lakes to Dakota, and Texas.

This species is one of the common inhabitants of our deep and slug. gish rivers and of our lakes. Under favorable circumstances it reaches a large size, and a weight of 40 to 00 pounds. It is held in rather low esteem as a food-fish, its flesh being rather coarse and flavorless. In the lake region, as the "Sheepshead," it is altogether worthless, but farther south it holds a higher rank, the "White Perch" of the Ohio being regarded as a tolerable food-fish. In Texas the same species, as the "Gaspergou," is regarded as one of the best of the river fish.
There is no doubt that all of the nominal species above enumerated should be referred to a single one, A. gramiens.

Genus XXVI.-EQUES.

Eques Bloch, Iehthyolorin, 1793 (americanus=lanceolatus).
Equietus Rafinesque, Analyse de la Nature, 1815, 86 (nubstituto for Equcs, the latter name being considered too short).
Pareques (Gill Mss.) Goodo, Bull. U. S. Nat. Mus., v, 50, 1875 (acuminatus).
Type: Eques americanus Bloch=Chotodon lanceolatus L.
This genus is one of the most remarkable in the family in respect to its osteology, as well as to the coloration of some of its species: One of the four known species, Eques acuminatus, resembles considerably Sciona and other typical members of the family, while the bizarre form and coloration of Eques lanccolatus gives it some resemblance to the Chatodonts. The two other species are, however, intermediate, and we know of no sufficient character on which Pareques cau be maintained as a distinct genus.

ANAIYSIS OF SPECIES OF EQUES.

a. Dorsal rays X to XII-I, 36 to 46 ; first five or six of the interneurals* wedged in between the neurals of the second and third vertebre, tho rest between third and fourth. (Pareques Gill.)
b. Profilo elongate, rather steep, but not wearly vertical ; distance from suout to first dorsal spine about equal to depth of body (form approaching that of Sciana umbra).
c. Dorsal spiues little elovated, the longest about $5 \frac{f}{3}$ in length of body; verticafins unspotted; body oblong, compressed, the back somewhat elevated; eye about equal to snout, 4 in head; interorbital area not quite as broad as eye; preorbital $1 \frac{1}{8}$ in eye; month larger than in Eques punctatur, max.

* Not examined iu Eques pulcher.
illary reaching past middle of orbit; teeth of upper jaw slightly enlarged; gill-rakers short, rather slouder, $6+9$; caudal peduncle and tin less deep than in Eques punetatus; socond anal spine slightly sloorter than soft rays, $2 \frac{1}{8}$ in head; soft dorsal scaly; scales large, the series below lateral line slightly oblique; lougitudinal streaks on body not following the rows of scales Acuminatcs, 109.
x. Color nearly black, with longitudinal whitish stripes on the body, not on the fins; one stripe from upper edge of eye straight to uppor odge of caudal peduncle, one just above this to last rays of soft dorsal, two confluent behind from nape to middle of soft dorsal, two below the first from pectoral to base of caudal, the lowest to edge of candal pedunclo; fins dasky. Head 3; depth 23. D. X-I, 38 to 40 ; A. II, 7 ; wales 50 ; eyo 4 in head; snout 38 ; maxillary 3 ; sccoud anal spine 2 ; longest dorsal spine 18 ; pectoral 14. (West Iudian specimens.).......... Var. acuminatus, 109 (a).
$x x$. Coloration dark smutty brown, with traces only of seven paler streaks; region at base of soft dorsal darker; spinous dorsal, tips of ventrals, and inside of gill cavity black; fins otherwise smutty. Hoad 3f in leugth; depth 2ģ. D. X-I, 40; A. II, 7; seales 6-51-10; second anal spine 27; oye 4 ; snout 4 ; maxillary $2 \frac{1}{8}$. (Specimene from Charleston.)

Var. umbrosus, 109 (b).
cc. Dorsal spinos elongate, the louget 24 in length of body ; soft parts of vertical fins with white spots; body robust, the back much compressed, the gonoral form much as in Eques acuminatus, but the candal peduncle deoper and more comprossod ; profile rather steep, deprossed over the eve; snout slightly longer than eye, $3 t$ in head; eye as wide as interorbital region; preorbital broad, as wido as eyo; mouth small, sub-inforior; maxillary almost entirely concealed below the preorbital, $2 \frac{1}{3}$ in head, reaching to below middle of oyo; teeth in both jaws in broud bands, the outer series of the upper jaw oularged; prooporde entire, the mombrane with slight cilia; gill-rakers small, slender, $6+11$; lower pharyageals small; the teeth all conical, those of the posterior angle and innor series somowhat oularged ; anterior dorsal spines as high as body ; membranes of the soft, portions of the vertical fius closely scaled to the tip; caudal broadly rounced; anal short and high; second spine about ${ }_{3}$ of longost ray, 3 in hoad; anal spine placed midway between base of pectoral and base of caudal; pectorals and ventrals short and oqual, $1 \nmid$ in head. Color, dark brown, a light bar in front of eye oxtending around the chin, a second palo bar extending around the head immediately bohind the eyes, a third extonding from in front of dorsal over buse of pectorals; a light bar along baso of soft dorsal; a light lair extending from bohind the elevated portion of the spinous dorsal downwards, dividing into two, the bravehes running atraight back, the upper branch to beginning of last fourth of soft dorenal, the lower branch to base of caudal; 2 or 3light, undulating longitudinal bare below theso; fins all dark brown, the soft portions of the vertical fins with many whitish stellato spots. Hoad 39 in length; depth 3. D. XI or XII-I, 46 ; A. II, 6 or 7 ; scales $8-55$ to $59-11$ or $12 \ldots$... Puxctatus, 110 .
bb. [Profle vory steep, "steoper than in Eques lanceolatus." Budy deopest bolow first dorsal spine, thence rapidly tapering to the narrow caudal peduncle; eyo 3 in head; snout $1 \frac{1}{2}$ in eyo; mouth subinforior, the thick convex snout projocting boyond it ; first ventral ray filiform, 37 in body; longest dorsal spines $1 \begin{aligned} & \text { en } \\ & \text { to } \\ & 8\end{aligned}$ in leugth of body, their height nearly twice that of the body below them; color olivaccous, threo dark-brown longitudinal bands along the sides, the middle ono from eye back wards reaching tips of the middle caudal rays; the upper from occiput backward to end of beft dorsel; the lower from lower corner of eye to behind anal; two very
faint broad cross-bars, the anterior from loase of first dorsal to ventrals, the next from midde of soft dorsal to anal ; tip of suont and chin black; an oblique har below ege; spinous dorsal, poctoral, and ventral black, edged with white; edges of caudal yellowish; anal with brown points anteriorly. Head $3 \frac{9}{8}$ to $3 \frac{1}{2}$ in total length; depth the same. D. X-I, 37 or 38 ; A. II, 7 ; lat. 1. 50.] (Steindachner.).................Pulcurr, 111.
aa. Dorsal rays XIV or XV-I, 53 ; about twelve of the auterior interneurals wedged in between the occiput and the nenral spine of the third vertebra; profile almost vertical, the distance from tip of snout to first dorsal spino much less than depth of body. (Eques.)
d. Body deepest below first dorsal epine, rapidly tapering to the narrow candal peduncle; profilo very steep, little convex ; ose littlo longer than suout, about 4 in head ; preorbital broad, searly as wide as oge; mouth small, slightly oblique; maxillary reaching to below anterior fourth of oye; teeth all villiform in broad bands, the outer scarcely enlarged; preopercle with a fringed membranous border; gill-rakers very short and slender, $6+9$; anterior dorsal spines much elongate, $1 \frac{3}{4}$ in body; soft rays low, the membranes scaled to the tips; anal small; its second spine 3 in head; ventrals $1 \frac{1}{5}$ in head; pectorals scarcely shorter; color, light yellowish; a narrow brownish band from the corner of the mouth up across the middle of the eyc, and meeting its fellow on top of head; another broader baud edged witin a uarrow white line on each side from the nape down and back over operclo, meeting its fellow between the ventral fins and extending to the tips of their outer rays; a third and still broader band, also burdered ly white, extending from the tips of the dorsal spines to their base, then downward and backward to the tips of the middle caudal rays; borly below this band silvery white; above it somewhat darker. Head 4 in length; depth $2 \frac{8}{8}$. D. XIV to XVI-I, 53; A. 1I, 5 ; scales irregular, with smaller ones intermised.

Lanceolatus, 112.

109. EQUES ACUMINATUS.

a. Var. acuminatus.

Grammistes acuminatus Bloch \& Schnoider, Syst. Ichth., 184, 1301.
Eques acıminatus Casténan, Anim. Nouv. on Rares de l'Amér. du Sud, 10, 1855. Guinther, Cat. Fish. Brit. Mins., ii, 280, 1860 (Cuba). Pooy, Memorias, ii, 370, 1861 (Cnbia); Syuopsis, 325, 1863 (Cubia). Cope, Ichthyol. Lesser Antilles, 471, 1870 (St. Croix). Poey, Eummerativ, 49, 1875 (Cuba). Jo:dau, Cut. Fisl. North America, 94, 188: (name only).
Pareques acuminatus Goode, Bull. U. S. Nat. Mus., v, 50, 1876 (Bermudas). Bean, Internat. Fish. Exhib. Berlin, 54, 188×3 (Key West).
Eques lineatus Cuv. \&. Val., Hist. Nat. Poiss., v, 1830, 169 (Brazil).
b. Var. umbrosus.

Sciana acuminala Jordan de Gilbert, Syn. Fish. North Am., 573, 1.883 (Ponsacola). Eques acuminatus ambroses Jorlan \& Eigenmanu, var. nov. (Charleston; Pensacola).

Habitat.-West Iudian fikuna, South Carolina to Brazil ; var. umbrosus on the United States coast.

This species is not uncommon in the West Indies. In several rospects it differs widely from the type of the genus Eiques, in all theso respects approaching the type of the genus Seicena. It however seems impossible to regard Pareques as a genus distinct from Eques, as in several
regards Eques punctatus is intermediate betreen Eques acuminatus and Eques lanceolatus.

A third species of the subgenus Parcques was obtained by Professor Gilbert at Panama, but the types were destroyed by fire before a description could be published.

Northern specimens of this species (Charleston, Pensacola, Key West) are much more plainly colored than the ordinary West Indian form. We propose for such the varietal name of Eques acuminatus umbrosus, taking as our type a specimen from Charleston sent us by Mr. CLarles C. Leslie.
Of the ordinary striped form we have examined specimens in the museum at Cambridge from Rio Janciro, Porto Rico, St. Thomas, and Sombrero. Our deseription of var. acuminatus is especially drawn from No. 563, M. C. Z., from the island of Sombrero.

110. EQUES PUNCTATUS.

(Sembana.)
Serrana hispanis Parra, Piezas de Hist. Nat. de Cuba, 2, plate 2, lower figure, 1787 (Cuba).
Eques punctatus Bloch \& Sclneider, Syst. Ichth., 106, 1801 (based on Parra, 2, plato 2, fig. 2). Desmarest, Premiero Déade Ichthyol., 40, plate iii, fig. 2, 1823 (Cuba). Cuv. \& Val., Hist. Nat. Poiss., v, 167, plate 116, 1830 (Cuba, Martinique). Storer, Syn. Fish. North Am., 322, 1816 (copicd). Giinther, Cat. Fish. Brit. Mus., ii, 281, 1860 (Jamaica). Pooy, Proc. Acad. Nat. Sci. Phila., 1863, 176 (Parra, plato 2, lower figure). Poey, Synopsis, 325, 1868 (Cuba). Copo, Ichthyol. Lesser Autilles, 471, 1870 (St. Croix). Poey, Enimeratio, 49, 1875 (Cuba). Jordan, Proc. U. S. Nat. Mir., 1886, 43 (Cuba).
Habitat.-West Indian fanna.
This handsomely colored species is not uncommon in the West Indies, The specimen here described was obtained by Dr. Jordau at Havana. Others are in the museum at Cambridge, from Cuba and from Jérémie. Hayti.

111. EQUES PULCHER.

Eques pulcher Steindachner, Iehth. Notizen, vi, 43, 1867 (Barbadoes).
Habitat.-West Indian fauna; Barbadoes.
This species is known from Steindachner's description only.

112. EQUES LANCEOLATUS.

(Sembana.)
Guapena, Edrards, "Gleanings, plate 210" ("Caraibes islands").
Chertodon lanccolatus Linnaus, Syst. Nat., ed. $x, 277,1758$ (based on Edwards, plate 210). Linumus, Syst. Nat., ed. xii, 466, 1766. Gmelin, Syst. Nat., 1254, 1788 (copiod).
Soicna lanceolata Castelnan, Anim. Nonv. ou Rares do l'Amér. du Sud, 10, 1855.
Eques lanceolatus Guinther, Cat. Fish. Brit. Mus., ii, 279, 1860 (West Indies). Pooy, Enumoratio, 49, 1875 (Cuba). Poey, Synopsis, 325, 1863 (Cubit). Poey, Proc. Acad. Nat. Sci. Phila., 1863, 177 (Parra, plate 2). Copo, Ichth. Leseer Autilles, 471,1870 (St. Croix ; St. Martin). Jordan de Gilbert, Syn. Fish. North Am., 932, 1883 (Ponsacola). Jordan, Cat. Fish. Nurth Anerioa, 94, 1885 (name only).

Serrana Parra, Piezas de Hist. Nit. de Caba, plate 2, uppor figure, 1787 (Cuba).
Eques americanns Bloch, Ichthyol., plato 347, 1793. Bhoch \& Schucider, Syst. Ichth., 10; 1801.
Eques punctatus var. Bloch \& Schneider, Syst. Ichth., 106, 1801 (based on Parra, plate 2, fig. 1).
Eques balteatus Cuvier, Rirgue Animal, plate 29, fig. 2, 1829. Cuv. d Val., Inst. Nat. Poiss., v, 165, 1830 (Mirtinique). Storer, Syn. Fish. North Am., 322, 1846 (copied).
Scimna eduardi Gronow, Cat. Fish., ed. Gray, 5:3, 18:4.
Habitat.-West Indian fama, rauging northward to Pensacola.
This interesting fish is widely distributed in the West Indian waters. The specimen described by us is in the National Museum, haviug been taken near Pensacola.

RECAPITULATION.

The following is a list of the species of Sticenide recognized by, us as occurring in the waters of America and Europe. The distribution in general of each species is indicated by the use of the following letters:
E. Furope.
N. Atlantic coast, north of Cape Mattoras.
S. South Atlantic and Gulf coast.
W. West Iudies.
C. California.
P. Pacific coast of Mexico and Central America.
F. Rivers of North Americal.
13. Coasts of I3razil.
A. Rivers of South America (Amazon).
V. Pacific coast of South America.

Subfamily I.-OTOLITHIN宅.

1. Seriphus Ajres.
2. Seriphus polltus Ayres. C.
3. Archoscion Gill.
§ Isopisthas Gill.
4. Archoscion remifer (Jordan $\&$ Gilbert). P.
5. Arohoscion parvipianis (Cav. \& Val.). W., B. §Archoscion.
6. Archoscion analis (Jenyns). V.
7. Cestreus Gronow. ('Гo be called Cynoscion, if Cestreus bo regarded as preoccupied by Cestraus.)
8. Cestreus pradatorius Jordan \& Gilbert. P.
(j. Cestreus acoupa (Lacepede). J.
9. Cestreus squamipimais (Giinther). P.
10. Cestrens othonopterus (Jordan \& Gilbort). P.
11. Cestrcus striatus (Clivier). IS.
12. Cestrens olliquaths (Valemeienmes). W. (Dontofful species; unknown to us.)
13. Cestrens nothus (Holbrook). S.
14. Cestreus regalis (Iloch \& Schmeider). N., S.

12 (b). —— thatassinus (IIolbrook). S.
13. Cestremr rehemhaths (Giinthar). P.
14. Ccatreus nclulosms (Cuv. \& Val.). S.
15. Cestreus parvipinnis (Ayres). C.
16. Cestreus xanthulum (Jordan \& Gilhert). P.
17. Cestreus albus (Giiuthor). P.
18. Cestreus stolzmanni (Steindachuer). 1'.
19. Cestreus nohilis (Agros). C.
20. Cestrens phoxocephalus (Jordan \& Gilbert). P.
21. Cestrous leiarchus (Cuv. \& Val.). W., B.
22. Cestreus rirescens (Cuv. \& Val.). B.
23. Cestreus microlepidotus (Cuv. \& Val.). B.
24. Cestrcus stcindachneri Jordan. B.
25. Cecstreus bairdi (Stominachner). 13.

4 Ancylodon Cuvier.
20. Ancylodon ancylodon (Bloch \& Schneider). B., P.

Subfamily II.-SCIÆNINÆ.

5. Nebris Cuv. \& Val.
6. Nebris microps Cuv. \& Val. B., P.
7. Larimus Cuv. \& Vil.
8. Larimus argenteus (Gill). r .
9. Larimus brevierps (Cuv. \& Val.). W., B., P. (Perhape more than one species included in tho synonymy.)
10. Larimus stahli (Poey). W.
11. Larimus fasciatus Holbrook. S.
12. Odontoscion Gill.
13. Odontoscion dentex (Cuv. \& Val.). W.
14. Corvula Jordan \& Eigenmann.
15. Corvala macrops (Steindachner). P.
16. Corvala sialis Jordan \& Eigenmann. S.
17. Corvnla subaqualis (Poey). W.
18. Corvnla batabana (Poey). W.
19. Plagioscion Gill.
20. I'lagioscion squamosissimus (Heckel). A.
21. Playioscion surinamensis (Blecker). A.
22. Plagioscion auratus (Castelnau). "A.
23. Bairdiella Gill.
24. Bairdiclla archidium (Jordan \& Gilbert). P.
25. Bairdiella chrysura (Lacópèle). S.
26. Bairdiclla ensifora (Jordan \& (Gilbert). P.
27. Bairdiclla icistia (Jordau \& (illbert). I.
28. Bairdiella ronchus (Cuv. \& Val.). W., B.
29. Bairdiclla armata Gill. 1'., W., B3.
30. Bairdiella aluta (Jordan \& Gilbert). P. (Doubtful specios.)
31. Bairdiclla chrysoleura (Gianther). P.
32. Stelliferus Stark.
33. Stelliferus oscitans (Jordan \& Gilderi). P.
34. Stelliferus rastrifor Jordun. IB:
35. Stclliforus fïrthi (Steindachancr). 1 .
36. Stelliferus minor (Tsehudi). V.
37. Stelliferus stellifer (I3loeh). B.
38. Stelliferus lanecolatus (Holbrook). S.
39. Stelliforus ericymbn (Jordan \& Gilbert). P.
40. Stelliferus naso Jorilan. B.
41. Stelliferus microps (Steindachner). B.
42. Sciæna (Artedi) Linnams.
§Ophiostion Gill.
43. Sciwna gilli (Steindachnor). B.
44. Sciena aduria Agrassiz. B., W.
45. Sciena typica (Gill). P. (Jomen ineptum; perhaps to be called Sciana ophioscion.)
46. Sciena imiceps (Jordan \& Giltert). P'
47. Sciema всіera Jordan \& Gilbert. P.
48. Sciena cermicularis Günther. 1’.
§ Scianar, (iill.
49. Soiona ocellata Limneus. S.
§Johniax Blach.
50. Sciena heterolepis Bleeker. 13. (Spocies minnown to us.)
§ P'sendosciana Bleeker:
6̄5. Sciena aquila (Lacepède). E. (Perhaps to be called Sciena hololopidota.) 5 Callaus Jorilan.
51. Sciana deliciosa Tsehndi. V. §Sciena (= Corvina Cuvior).
52. Sciena umbra Linnans. 1:. §Cheilotrema Tschadi.
53. Sciana saturna (Girard). C.
54. Sciena fasciata (Tschudi). V.
55. Roncador Jordan \& Gilbert.
56. Rioncador stearuxi (Steindachner). C.
57. Leiostomus Latépide.
58. Leiostomus xanthurex Latequede. S. (W. ?)
59. Paclyyurus Agassiz.

S I'achyurus.
72. Pachyurus squamipinnis Agassiz. A. -
§ Lepipterus Cuv. \& Val.
73. Pachyarus firancinci (Cinv. \& Vial.). Λ.
74. Pachyarus bonaricusis Steimizehner. A.
75. P'achywrex schumburghi Giinther. A.
16. Pachypops Gill. (Perhaps as subgenus under Pachyurus.)
76. P'achypopss furereus (Lacépìme). A.
77. Pachypops triflias (Miiller \& Trosehel). A.
78. I'achypops adspersus' (Steintachner). A. (I'erhaps to be called I^{\prime}. granиіенв.)
17. Polycirrhns Bocourt.
79. I'olycirthes dumerili Bocourt. 1 .
80. Polycirthus brasiliensis (Steindachner). B.

ع1. P'olycirvhus pertanus (Stcindachner). V.
18. Genyonenus Gill.
s2. Genyontmus lineatus (Ayres). ©.
19. Micropogon Cuvier \& Vallenciennes.
83. Micropogon undulatus (Limmaus). s.
84. Micropogon farnieri (Desmarest). W., B.
85. Micropogon ectenes Jordan \& Gilbert. 1'.
86. Micronogon altipinnis Giinther. P.
20. Umbrina Cuvier.
87. Umbrina cirrosa (Linneus). E.
88. Umbrina reedi Giinther. V.
80. Umbrina broussoneti Cuv. \& Val. S., W., 13.
90. Umbrina roncador Jordan \& Gilbert. C.
91. Umhrina aanti Gill. P'.
92. Umbrina galapayorum Steindachnor. V.
93. Umbrina dorsalis Gill. P'.

21. Menticirrhus Gill.

() Cirrimens Gill.

94. Menlicirrhus ophice:)halues (Jenyns). V.
§Menticiryhus.
95. Menticirrhus simes Jordan \& Eigounanu. P.
96. Menticirrhus nasus (Giiather). P.
97. Menticirrhus agassizi Jordan. V.
98. Menticirrhus panamensis (Steindachuer). I'.
99. Menticirrhus martiaicensis (Cuv, \& Vill.). W., 13. (D)mbutulspecios; prob. ably a variety of the next.)
100. Menticirrhus americamus (Limnatus). S.
101. Menticirvhus saxatilis (Bloch \& Schneider). N., S.
102. Menticirrhus undulatus (Girard). (\%.
§ Umbrula Jordan \& Eigronmann.
103. Menticirrhus elongatus (Giinther). I'.
104. Menticirrhus littoralis (Holbrook). S.
105. Paralonchurus Bocourt.
106. I'aralonchurus petersi Bocourt. P.
107. Lonchurus Bloch.
108. Lonchurus lanccolatus (Bloch). B.
109. Pogonias Laçpède.
110. Pogonias cromis (Linneus). S.

107(b). - - courbina (Lacépede). B.
25. Aplodinotus Rafitersque.
108. Aplodinotus gruniens Ratinesque. F.
26. Eques Bloch.
\$ Pareques Giil.
109. Eques acuminatus (Bloch \& Schmeider). W.

109(b). - umbrosus Jordan \& Eigenmann. S.
110. Eques punclatus (Bloch \& Schmoider). W.
111. Eques pulcher (Steindachner). W. § Еques.
112. Eques lanceolatus (Livnmus). W., S.

Indiana University,
Bloomington, Ind., July 25, 1887.

Note on Cestreus and Cynoscion.

The generic vame Cynoscion Gill must be used instead of Cestreue for the Weakfithes. Professor Gill calls my attention to the prior use of Cestreus by MeClelland (Jonrn. Nat. Hist., v. 2, p. 151) in 1842, for a genus of gobies ($=$ Prionobutis Bleeker). The typo, Cestreus minimus McClelland $=$ Eleotris amboinensis Day. For the Scienoid genus, Cestreus (1854), must give place to Cynobcion.

LIST OF PLATES.

Plate I.

Pidge.Fig. 1.-Cynoscion regale Bloch \& Schmeider. The Weak-fish, or Squetergo... 242.-Cynoscion nebuloam Cuvier \& Valenciennes. The Spottod Weak-1ish. dij3.-Bairdiclla chrysura Laçpde. Tho Mademoiselle, or Yellow-tail..... 4.t
plate II.
4.-Sciana ocellata Limmeus. The Red Drmm, or Chamel Bass 63
5.-Roncador stearnsi Steindachner. The Roncador. 66
6.-Leiostomus xanthurus LacGpede. The Spot 67
Prate III.
7.-Micropogon undulatus Limmas. The Croaker 76
8.-Menticirrhus americamus Linumus. The Carolina Whiting. 48
9.-Menticirrhus saxatilis Bloch \& Schueider. The King-Gish 89
Plate IV.
10.-Pogonias cromis Linnsus. The Drum (roung) 93
11.-Pogonias cromis Linurus. The Drum (adult) 93
12.-Aplodinotus grimniens Rafiucsque. The Fresh-water Drum, or Gaspergon 95

Fig. 1.-CYNOSCION REGALE (Bloch \& Schneider). The Weak-fish, or Squeteague, (No. 10421, U. S. N. M., from Wood's Holl, Massachusetts.)

Fig. 2.-Cynoscion nebulosum (Cuvier \& Valenciennes̀). The Spotted Weak-fish. (No. 15000, U. S. N. M., from Norfolk, Virginia.)

Fig. 3.-Bairdiella chrysura (Lacépède). The Mademoiselle, or Yellow-tail. (No. 771, U S. N. M., from Beesley's Point, New Jersey.)

Fig. 4.-SCIÆNA OCELLATA Linnæus. The Red Drum, or Channel Bass.
(No. 622, U. S. N. M., from Indianola, Texas.)

Fig. 5.-Roncador stearnsi (Steindachner). The Roncador. (No. 26864, U. S. N. M., from Santa Barbara, California.)

Fig. 6.-Leiostomus xanthurus Lacépède. The Spot.
(No. 20222, U. S. N. M., from Newport, Rhode Island.)

Fig. 7.-MICROPOGON UNDULATUS (Linnæus). The Croaker. (No. 20742, U. S. N. M., from Newport, Rhode Island.)

Fig. 8.-MENTICIRRHUS americanus (Linnæus). The Carolina Whiting. (No. 22832, U. S. N. M., from Pensacola, Florida.)

Fig. 9.-MENTICIRRHUS SAXATILIS (Bloch \& Schneider). The King-fish. (No. 25403, U. S. N. M., from Charleston, South Carolina.

Fig. 10.--Pogonias cromis Linnæus. The Drum (young).
(No. 18036, U. S. N. M., from Matanzas River Inlet, Florida.)

FIG. 11.-Pogonias cromis Linnæus. The Drum (adult).
(No. 22936, U. S. N. M.)

Fig. 12.-Aplodinotus grunniens Rafinesque. The Fresh-water Drum, or Gaspergou. (No, 10542, U. S, N. M., from Ecorse, Michigan.)

INDEX.

[NOTS.-The rofredces aro to pare-figures in brackute.]

	Page.	Page.
Albarnus americanus		Callaus 53, 59, 64, 102
Amblodon	94	deliciosr 54
concinuus	95	Carolina Whiting 88
grunniens	95	Centropomus alburnus 88
lineatur	98	ocullatus 63
neglectas	96	Centriun....................................12, 100
maturnus	64	Cestreus $2,4,10,12,22,28,30,100$
Amblyacion.	32, 33	асоира33, 21, 30, 100
argentisus	33	allus............................17, 28, 101
Ancylodou	.4,30, 101	buirdi.................... $10,20,21,30,101$
altipinuis	11	carolinensis........................ 12, 26
ancylodon	.30, 31. 101	leiarohne........................19, 29, 101
atricauda	31	microlopidotus........... 18, 20, $20,30,101$
jaculidena	31	nebulosus . 16, 26. 100
parvipinnis	. 11	nobilis 18, 28, 29, 101
Anfortremus	65	nothus...................... 15, $23,24,100$
Aplodinotue	.2,9,94, 108	obliquatus1, 12, 14, 33, 100
grummiona.	..65, 94, 05, 80, 103	othonopterus 14, 24, 23, 100
A preudobranchus	$\ldots . .12,22$	parvipinuls10, 27, 100
to $\quad 2 \geq$	phoxncophalus.................15, 29, 101
Arehoscion	..2, 4, 10, 11, 12, 30, 100	predaturius....................13,21,100
analis	10, 11, 100	doscribed 13.21
parvipinnis.	..11,100	refralis15, 24, 25, 100
remifor	.10, 11, 100	
Atractoscion.	. 120	reticulatan......................10, 26, 100
nobilis	$\because 8$	squamipinuis 13, 22,100
Bairdiella	$\begin{array}{r} .7,32,34,35,41,42,44,47, \\ 48,49,51,52,73,101 \end{array}$	stoindachueri $\ldots \ldots18,21,30,101$ describod21,30
aluts	...44, 47, 101	8tolzmanul................. 17, 18, 24, 101
archidium	.34, 42, 44, 101	striatus 14, 23, 100
argyrolence	45	thalassinus 25
armatas	..46, 46, 47, 101	rirescens20, 20, 101
chrysoleuca	.2, 44, 47, 53, 101	xanthalum 17, 27, 101
chrysura	.42, 44, 45, 08, 101	Chretodon lanceolatus...................... 06,19
ensifera	.42, 45, 101	Channel Bass 03
icistia	..43, 45, 101	Cheilodipterus acoupa 21
juuctata	44	aquila................. 63
rouchus	43, 46, 47, 101	cranoptetus............... 80
Black Ronead	04	Cheilntrema53, 54, 60, 65, 102
Buecono.	21	fuвcialum 54, 65
Bodiunus costatu	76	saturnum 54
argyroleucus	41,45	Clrtimens............................ 81, 82, 85, 103
pullidus	45	ophicephulus 85
stellifer	.47, 48, 52, 53	Collichthys4, 5, 6, 31
Bola	. $53,54,55$	lucidus......................... 0
diacantha	54	Coracinus bооря . 80
Bruchydeuteras ausit	32	chalris is $^{\text {a }}$
Bubbler	9	Corbinetat 45, 62
California Blaofieh	27	Corvina................. 2, 35, 40, 53, 55, 77, 78, 102
Whiting	80	acutirostris........................ 40, 47

Corvina adusta 61
ugassizi51
argyrolouca 45
armata 45, 46 45, 46
biloba 71
cnnariensis B4
chrybolonca ,
delicions. 52, 64
lentox 34, 35
fusciata. 65
fulgens 45
furerma 71
fïrthi 51
gilli 61
grisea 65
grunnicus
60, 6.)
jacobi.
macrops 37
taicrops
31, 5
minor
nomacratha 40
noglecta 91
nicra 55, 14
ocellata 63
ophiostion 62
oscula 95
richatrdsoni 05
ronehus 64
saturina 34, 95
stearnsi 65, 66
stellifera. 53
subrequalis 36, 38
trispinora 52
vermicalaris 62
Corvula $6,35,38,30,73,101$
described 35
batabana 36, 38, 101
unsorops 35, 37, 101
sialis 36, 37, 101
described 36,37
subwqublis 36, 38, 101
Crosker. 70
Cynoscion $12,22,100$
acoupa 21
album 28
carolinensis. 27
macalatum -6
microlepidotum. 2
nobilis 28, 29
notbus 24
obliquatum 23
othonopterum 22
parvipinno. 27
parvipinnis 27
phoxocephalum. 29
rogalo 24
reticulatum. 20
squamipinnis 22,23
stolzmauni. 28
thalassinus 24
virescens 29
canthulum 27
Coprinus americanus 81, 88
Diplolepis 38, 39
squamosissimus 40
I'age. Page.
Dipterodon chryburus
Drum 41, 45
03Elacato10
Enneacentius fulvis. 44
Eques , 5, 9, 47, 96, 08, 103acaminatua..................... $08,07,08,00,103$
umbrosus 97, 08, 00, 103
aритісания 06,100
balteatus 100
lanccolatus. $96,97,98,89,103$
limertus 08
pullelsor 1, 96, 98, 90, 103
pinctatus 96, 97, 90, 100, 103
Equitetus 96
Eutychelithan 04
richardsoni 05
Freshtwatur Drum 95
G:aspergou 95
Gonyonemus. 102
brasilionsis 73
fasciatus 73
liveatus 102
peruatur. 73
Gouly 67
Gramnistes acuminatus 98
Guapena 09
Giartucupa 23
Ha:mulon 05
Haploidonotus 04
concinnus 95
grumuious 95
lineatus 96
neglectus 96
richardsoni 05
Hemisciama 6
lucida 6
Hetrodon 86
Homoprion 47,48
acutirostria 46
agasmizi 51
fürthi 51
lanccolatus. 52
sublruncatus 45
xanthurus 45,67
Inopisthins 2
Isopisthus 00
affinis 11
parvipinnis 11
romifer 11
Tohuius $2,3,53,54,58,63,102$
amazonicus 40
auratus 41
batabanus 35, 38
caratita 53
cirrhosus. 80
erouvina. 40
dussumieri 54
hoterolepis 63
jacobi 65
niger. 64
nobilis 28
ocollatus 63
regalis 24, 89
ruber 65

S. Mis. $90-29$

T’age.
Scimna deliciosa $54,50,64,73,102$
diacantha.................................... 54
edwardi....................................... 100
ensifera...................................... 45
ericymba.. 5
fasciata . 60, 61, 65, 102
turthi .. 51
fısca... 04
қigas... $0 t$
gilli 1, 56,61, 102
grisea.. 05
hotorolopis........................... 1, 58, 03, 10:
hololepidota. (i4, 102
icistia.. 45
imborbis 0 .
imicops . 57, 65, 108
jacobi 65
Ianceolata 52, 09
lineata...................................... 74
lucida.. 0
mactops................................. . . . 37
magdaleva. 40
minor 51
monacantha 40
multifasciata................................ \quad. 7
nobulosa 80
neglocia...................................... 64
nigra.. 0 .
obliqu\&... 07
ocellata.54, 58, 03, 04, 06, 102
opercularis.. 70
ophioscion2, 102
oscitrns.................................... 51
oscula... 05
punctata..................................... 44
ronchus.. $\$ 6$
rubella.. 40, 41
saturna60, 64, 05, 102
sciera $2,44,47,57,04,102$
8quanıossissima........................... 38,40
ntollifera.. 50
surinamensis................................ 40
typica.................................56, 58, 62, 102
umbra.... .53, 54, 55, 60, 63, 64,77, 80, 90, 10\%
vermicularis 57, 01,102
xauthurus $0 \hat{i}$
Scianideo 1, 2, 3, 4, 33, 53, 94, 100
Sciænina2, 3, 4, 6, 31, 101
Sciwnoides
4,5,0
рแна 5
Seimиорв .. 53, 58, 102
ocellatus................................... 54, 03
Sica nink
80
Sou trout . 24
Soriphus... $2,4,0,100$
politus $.9,10,100$

Sheepbhead ..
Silver whiting 01
Spot . 28 . 28
Spotted sta tront ... 20
Spotted weaktish .. 24

Blank page retained for pagination

IV.-NOTES 0n entozon of marine fisies of new engLand, WITH DESCRIP'TIONS 0f SEVERAL NEW SPECLES.

bì Edwin Linton.

In the sammers of 1854-'S5 I collected Entozoa from several of the commoner species of food-tishes and Selachians at the summer station of the U. S. Fish Commission, Wood's Holl, Mass.
Cestoid entozoa in the adult or strobile condition were found in great numbers in the alimentary tracts of all the Selachians examined. Eneysted forms of the Cestoidea are for the most part confined to the Teleostei and are found in greatest abundance in the submucous coat of the stomach and intestine, although not infrequently met with in the peritoneum, liver, spleen, ovaries, \&c. In every specimen of such fishes, as the Bluefish (Pomatomus saltatrix), Squeteague (Cynoscion reyale), Striped Bass (Roccus lineatus), 太e., examined, the walls of the alimentary tract were spotted thickly with minute cysts, which, when opened, were found to contain larvie of some Cestods, most of them of the genus Rhynchobothriam. Some from the submucous coat of the Squeteague (C.regalc) seem to be larra of the species which I have named R. bisulcatum.
In the gall-bladder of nearly every specimen of Squeteague (Cynoscion regale) that I have examined, I found hundreds of larval Tctrabothria. They are usually attached to the walls of the cystic duct in clusters of such size as to obstruct the passage: (Plate VI, Figs. 6 and 7.) They are easily dislodged and often may be seen in vast numbers in the ambercolored contents of the gall-bladder. These larve, when placed in seawater, are quite active. Each moves by alternately thrusting forward a pair of bothria and by alternate contraction and extension of the body. While this is in progress the body is constantly changing its form. At times it is long and filiform, at others short and broad. At rest it is commonly thickened or obtuse in front, tapering posteriorly. The body of the larra consists of a thin limiting membrane abont $0.05^{\text {mun }}$ thick, inside of which is a granular parenchyma, the latter a clear fluid filled with highly refractile globular masses averaging $0.01^{m m}$ in diameter. The bothria are four in number, without hooks, and in the majority of those examined, without costa. In some specimens there seems to be the beginning of an auxiliary acetabulum at the apex of cach bothrium.

The apex of the head, at times obtuse or even retuse, is frequently elevated into a terminal papilla, disclosing a conical proboscis and terminal os like that of Echencibothrium. The entire head is sometimes invaginated. The length is difficuli to determine, on account of the extreme variability of form, but the average length when at rest is not far from 2.5^{mm}. When placed in fresh water they are apt to assume a filiform shape, with a length of from 4 to 0^{mmn}. When disturbed they coutract to 1.5^{mm} or less. Many of these larve have two small red blotches immediately behind the bothria. A water vascular system cau be distinguished in most of them. This consists of a convoluted tube on each margin, becoming evidently double near the head and forming a loop in front of the bothria and giving off brauches to the bothria. Larve resembling those from the gall-bladder, but smaller, were also found in the intestine of the Squeteague (Cynoscion regale) and of the Angler (Lophins piscatorius). These, wherever noticed, were in myriads, floating free in the chyle. (Plate VI, Figs. \& and 0.)

Elongated cysts were found in the liver, or peritoneam, of most of the Teleostei that were examined. These when opened set free an eudocyst which is contractile and has the power of locomotion to some extent. Wheu subjected to the action of the compressor, lateral vessels can be discerned which are evidently parts of a water rascular system. When one of these endocysts (blastocysts Diesing), that is suffcently developed, is opened, it will be found that an embryo has been developed within. In some, this embrgo seems to be free in the parenchyma, and when the wall of the blastocyst is ruptured, it is at once freed from its living enrelope. The development in this case secms to be analogous to the derelopment of Cercarice in a Sporocyst.

In other cases the ueck of the embryo is protruded from the side of the blastocyst in the form of a loop. When further pressure is applied the head is released, while the blastocyst remains attached to the scolex much like the bladder of a Cystocercus. The embryo, however, it will be observed, is not released by evagination, as in Tania.

Nematods were found in most of the fish that were examined, both free in the alimentary canal and eucapsuled in the peritonemm, gastric exea, liver, \&c. They were found in the greatest numbers in the peritoneum of the Angler (Lophius piscatorius), from a single specimen of which hundreds of the Nematoid, Agamonema capsularia Dies., were obtained.
Several Trematods were met with, most of them free in the stomach of their host, but not so abundant as either the Cestoidea, Nematoidea, or Acanthocephala. These will be described in a subsequent paper.

The only fishes that were found comparatively free from intostinal parasites were the Sca-Robins (Prinnotus), while a Sturgeou (Acipenser sturio) yiclded but oue specimen, a Nematod from the alimentary canal, and a few Trematods from the gills.

In the descriptive part of this paper I have confined iny attention to the Cestoidea and the Acanthocephala, and with two exceptions, viz, Dibothrium alutero and Echinorhynchus sagittifer, to adult forms.

In the determination of genera I have been guided principally by Diesing's Revisions. Accepting the characters there enumerated, I Lave been compelled to create three new generic names, viz: Spongiobothrium, Crossobothrium, and I'horciobothrium.

For the determination of species I have made use of the publications of Rudolphi, Diesiug, P. J. Van Beneden, Dujardin, Von Linstow, Wagener, Krabbe, Olsson, Eschricht, Leuckart, Küchenmeister, Zürn, Von Siebold, Leidy, Cobbold, and others.

Systematic work on the Lintozoa is attended with much difficulty on account of the confusion in which the earlier literature is involved. In this connection I tako the liberty of quoting a brief passage from Vou Linstow's "Compendium der Helminthologie," Hannover, 1878:
"The number of well-founded species is indeed not quite so great as the list indicates, for a host of older names, especially originating with Rudolphi, figure in it, of which typical examples are no longer in existence, and which have been described imperfectly or not at all, so that they must remain forever an unsolved riddle. For exanple, many rudiments of Tanice discovered by this author, whose enumeration has been of not the least advantage to science, and many descriptions of older date have not since been recognized. One comes from their contemplation often in great perplexity of mind, and does not really know how they ought to be represented. Moreover, to make tho entire literature effective was impossible, since too many species are described in such a way that it is not possible to recognize them again, and other specifieatious are so improbable that for this reason they must remain unconsidered ; * * * when further the description of a new species is disposed of with an enumeration of the length and breadth, when, finally, for now species ouly the place where they are found is given, together with or without an accompanying description, as is to be found in many works, then I think I am not at fault in citing such publications only in limited amount."

It has been my endearor to give as full a description of each species cousidered as the material at hand would justify. When only alcoholic specimens were accessible I have mentioned tho fact in the proper place.

As the derelopment of many of the Cestoidea seems to be quite different, even in closely related forms, it is very important that the sys. tematic work which is done on them be so done as to leave no doubt in the uind of the investigator what species is being described, whether the name adopted for it holds or not. Appreciating the value of figures in establishing the identity of species, I have therefore not included in this paper descriptions of any forms unless accompanied with sufficient figures to make future identification reasonably certain.

In giving the specific names of fishes mentioned in this paper, I hare ased the nomenclature adopted by Prof. George Brown Goode in "The Fisheries and Fishery Industries of the United States, Section I." Washington, 1884.

The illustrations which accompany this paper are the work of my wife, Margaret D. Linton.

Order Cestomen.

Family Dibothrided Diesing.

Diboterium Radolphi.

Trnim spec. of Authors.
Rhyteminthus, Dhytis, Alyseininthus, and Holsys Zedor. Bothriorrphalus (Dibothriag) Rudolphi. Diphyllobothriam Cobhold. Dibothrium Diesing.

Dibothrium manubriforme, sp. nov.

[Plate I, Figs. 1-4.]
Head cuncato, tetrangular, truncate in front, tapering postoriorly, coustricted into a cylindrical neck-like part near posterior, then expanding so that the posterior end of the head resembles one of the anterior segments of the body. The general appearance of the head when viewed laterally is therefore somewhat like a ball-bat, the constricted part representing the handle. Two longitudinal fosse (bothria), laterallyplaced, extend from the anterior part of the head to the constricted part. Each of the marginal lobes thas formed is indented at the anterior extremity by a skort but deep secondary fossa, which, together with the tiwo lateral fosse, give the head when viewed in front a four-lobed appearance. The edges of the loles bordering the lateral fosse are thin-lipped and flexible; anteriorly there is a transverse elevation forming both a lateral and a marginal rim and making an obtuse angle between the front and the side of the head. The marginal lobes, when at rest, have a rounded outline, fullest in the middle, tapering posteriorly, appressed slightly anteriorly, and raised into two small eminences on cach side of the secondary fosse. The head in a marginal view is somewhat flaskshaped. Seen from the front the head is squarish, with the angles rounded and the sides deeply cleft, the clefts romnded, the lateral elefts decper than the marginal. Immediately back of the head the segments are very narrow, and for a greater or less distance, depending on the state of contraction, maintain about the same width as the base of the head. In some individuals the small anterior segments coutinue much farther back from the head than in the one figured (Plate I, Fig. 1). The segments are alternately short and long. This characteristic is quite plainly marked in those segments which immediately follow the
head, is still noticcable on the median segments and also on the posterior ones, but is not so plainly marked on the latter as on the two former. In one specimen examined the first six segments did not show this alternation in size. In the next fourtcen segments, howerer, the alternation was quite evident. The small anterior segments are terete, subtriangular in outline, narrow in front, wide behind, the length nearly equal to the greatest breadth. The succeeding segments are much broader than long. At the widest part the ratio of the breadth to the length is as mach as fourteen to one. Λ s the segments increase in width they become much crowded together and thickened. In one specimen, measuring 140 ${ }^{m 110}$, the segments increased in width uniformly for about $100^{m m}$ from the head; from that point they remained about the same size until near the posterior end, where they began to be elongated and at the same time became narrower and much thinner. The crowding together of the median segments is not due to contraction, but seems to be a permanent characteristic of the species. In some very young specimens the same character was observed. The general form of these worms, both young and adult, was persistent. Although kept for some time in water they were not observed to change their form in any essential particular from that given in the sketches.

In alcoholic specimens a dark median line will be noticed extending from the posterior end to the middle or anterior third of the strobile. This is due to the centrally situated ovaries, which are crowded with eggs. The genital apertures are lateral and may be traced in an irreg. ular zigzag line on one side from about the anterior third of the body. In the mature segments they are rendered obscure, if not wholly oblitcrated, by the mass of eggs with which the center of the segment is filled. The eggs are white, opaque, oval ; length, . $045^{\text {nown }}$; breadth, .03 mu. . ssociated with these perfect eggs are masses of others which become transparent when treated with oil of cloves or other strougly refracting media. These seem to be imperfect eggs which have not become invested with the thick hard shell which covers the perfect eggs.
An adult specimen gives the following measurements:
Lengtle of strobilo
1333.00
Length of first sorics of segments 17.00
Length of hoad 3.50
Ihreadth of head in front, widest part 1.00
A veraro lengrth of sogments in tirst sories 0.50
Breadth of widest sogments, median 6. 50
Length of widest sogments, median 0.25
Length of postorior, mature segments 1.00
Breadth of posterior, mature segments 2.50
In another specimen the head and first segments give the followingmeasurements:
Length of strobile Millimeters
Longth of head and first series of sogmonts 140.00
Length of hearl 3.00
Millimeters.
Breadth of head in front, widest part.. 0.90
Breadth of head just behind the front rim.. 0.80
Breadth of marginal lobe, about the middle ... 0.00
Breadth of head, narrowest part.. 0.21
Breadth of first segment, widest (posterior) part................................... 0.80
Breadth of first segment, narrowest (anterior) part 0.42
Length of Jonger alternate segments, first series 0.40
Length of shorter alternate segmonts, first serics.................................... 0.24
The segments of the first series are sometimes notehed or creuulated on the postero-lateral margin, with a single median indentation; in others the edge is but slightly waving; in others it is nearly entire.
The following measurements are from a young specimen :
Millimetors.
Length of strobile 20.00
Length of head.. 2.10
Breadth of head, anterior .. 0.80
Breadth of head just back of anterior rim.. 0.60
Breadth of head, narrowest (constricted) part...................................... 0.31
Breadth of first segments, widest (posterior) part ... 0.50
Breadth of first segments, narrowest (anterior) part................................. 0.28
Average length of segments, longer alternates 0.35
Average leugth of sogments, shorter alternates... 0.24
Breadth of widest segments... 0.90
Average length of widest segments .. 0.12
Width of posterior segments.. 0.35
Length of posterior segments.. 0.30
Habitat.-Both Joung and adult, one specimen of the former aud six of the latter, were taken from the intestine of a spear-fish (Tetrapturus albidus Pocy), August 8, 1885̃, at Wood's Holl, Mass.

Dibothrium alutcra, sp. nov.
[Plato I, Figs. 5-8.]
Near Dibothrium microcejhalum Rudolphi, Diesing, Systema Helminth., i, 592. Ibid., Sitzungsle, xiii, 578, Revis. Ceph., Par. 941 . Wagener, Nov, Act. Nat. Cur., xniv, Suppl., 16, 69, tab. vir, 77. Van Beweden, in Bullet. Acad. Belgique, xxii, ii, 521.
Bothriocephalus microcephalus Bellingham, Anu. Nat. Hist., xiv, 253. (Habitat, Orthayorisens mola.)
Hearl subsagittate with rounded apex ; bothria oblong, lateral; neck, none; first joints distinct, about as long as wide, becoming much shorter and crowled together, much wider than long; genital apertures unknown.

Habitat.--File Fish (Alutera Schocofii), Wood's Holl, Mass., August, 1854; 104 specimens from intestines of a single fish.

These specimens were all immature, none of them had the genital apertures developed. They ranged in length from 20^{m+h} to $94^{m m}$. The bothria in the smaller specimens are convex (Fig. 5), the central con. vex portions thin and transparent. A lateral view shows the bothria
to be much narrower than the first joint, with curved regrlar outlines, except at the posterior edge, where there is a shallow notch. The front of the head is bluntly conical, expranding quickly, then moderately cortracted, making a kind of knob or button at the aper; this knob is nearly circular. Measurements showed that the lateral diameter was but little greater than the marginal. In the larger specimens this convexity of the bothria had entirely disappeared, the thin membrane having collapsed and the typical fosse of the Dibothrie make their appearance. In the larger specimens, also, the bothria are muci shorter in proportion to their width thau in the smaller specimens (Fig. 7). The first segments are distiuct, length as great or even greater than the width, triangular. The mediau and posterior segments are much crowded, width as much as or even more than ten times the length, alternately long and short, sometimes roughened by transrerse wrinkles toward the posterior end. Posterior end bluntly rounded (Fig. S).

The following measurements are from alcoholic specimens:

It will be seen upon comparing Figs. 6 and 7 that there is great variety of form to be found in the bothria of these worms. Other forms could be given, but it is believed that those chosen for illustration are sufficiently typical to prevent mistakes in identification. In many specimens the convex outline of the bothria is lost, while the other proportions of Figs. 5 and 6 are preserved. In cases where care is not taken the preserving fluid may distort the bothria.

I did not observe any indication of the hooks on the head, mentioned by Wagener for D. microcephalum (Entwickelnag der Cestoden, p. 69, tab. vii, figs. 77 and $7 \pi a$). The resemblance of this worm to Wagener's figure is suffiently close to indicate a probable identity. The close relationship of the hosts, Orthagoriscus mola and Alutera Schoppfi, does not lessen this probability:

In the absence of positive proof of such identity, which can bo obtained only by observing some other stages of development, I think it best to classify this worm as a new species with the provisioual name D. alutera.

Family TETRABOTERIIDAE.

Echeneibotirilm Van Beneden.

Echencilothrium varialile Van Bencuien.
[Plate I, Figs. 0-13.]
Lichencilothrium rariahile Van Beneden, Mem. Acad. Belgique, xxv, 117, tab. iii, 1-1, (i-15. G. R. Wagener, Nov. Aet. Nat. Cur., xxiv, Suppl., 85, tab. xxii, 280-28\%. Van Benedon, Mém. Vers Intest., 122 and 366 , tal. xv, ©-8. Diesing, Revis, der Coph. Ab. I'ar., 2if. Olsson, Lunds Linivers Arssk., tom. iii, 38, 40, tal. i, 15, 16.
Tetrabothrium (Wchencibothrinme) rariabile Diesing, in Sitzangslb., xiii, 1854, 581.

Larval statc, Van Beneden, Mom. Acad. Belgique, xxv, tab. iii, 5. liesing, Sitzungsl. der kais. Akad., siii, 18if, 56id. (G. R. Wagenor, l.c., \&5, tall. xxii, 279. Van Beneden, Mém. Vers Intest., $12 \mathscr{2}$, tab, xv, 5.
Bothriocephalus sph croccphalus?' Deslongchamps, Encycl. Máth., ii, 150.
Echencibothrium spharoccphahem Diesing, Revis. der Ceph. Par., 207.
The characters given for this apecies by Diesiag, following Van Beneden, are:

Botbria four, pedicellate aud highly rersatile, at times linear or oval, at others cochleariform or calyciform, with a few transverse coste, and divided into several loculi by a longitudinal partition. Muscular proboscis (myzorlynchus) large, subglobose, retractile, with a circular aperture (os) in the apex. Neck long. Anterior segments of body broader than long, median quadrate, ultimate oval. Genital apertures marginal, alternate. Penis armed with spines, scarcely bristly at base. Length as much as 100^{mm}.

In the latter part of August, 1884, I obtained several specimens of Echencibothria from the spiral valve of the common Skate (Raia erinacea) which I have for the present referred to E. variabile Vau Beneden. Some of the specimens possess characters which are given by Diesing as belonging to E. spherocephalum Dies. (Revis. der. Ceph. Par., 267). It is probable, however, that these two species are identical, as indicated by Diesing: "Species laxc (E. variabile) cum pracedente (E. sphurocoph. alum) fortasse identica."

A few sketches and measurements were made of tho specimens while they were still alive, but a pressure of other duties prevented a careful study of then then. When I found time to study them carefully they had lain for some time in alcohol and many of the segments had separated. There aro two distinct types of head, one represented in Fig. 9, made from the living specimen; the other represented in Fig. 13, made from an alcoholic specinen. Other alcoholic specimens are identical in form with that shown in Fig. 9. In the first mentioned the bothria are somewhat oral; pedicels moderately extended; the border of the sucking disks thickened, marked with radiating lines, and gathered or puckered into a few large folds. The proboscis is globose, re-
tractile. When the living specimen was viewed from the apex the aperture (os) could be seen surrounded by many radiating lines like the radiating muscles of the iris. In a side view of a mounted specimen a globular body about 0.2^{mm} in diameter can be seen lying in the center of the probos. cis and about 0.1^{min} from the apex. This globular mass has an aperture which lies opposite the aperture of the proboscis. It probably represents the true apex of the myzorhynchus retracted. The head behind the bothria is elongated into a neck-like part, which joins the true neek or jointless portion of the body by a definite articulation, which bears a faint resemblance to a ball-and-socket joint, in which the anterior part of the neck represents the "ball." There is also a difference in tissue, the neck having, besides longitudinal fibers, transverse fibers and many granular cells, while the neck-like portion of the head appears to bo composed almost entirely of fibrous tissue arranged longitudinally.

In the other type the pedicels of the bothria are intlated and somewhat globose; the thickened border of the disk is not so much folded as in the first. The head behind the bothria is short and turgid. These differences, although striking when extreme cases are considered, are none of them so profound but that they may be accounted for by supposing them to represent different degrees of contraction. The bothria in the living worm are susceptible of great variety of form.

The segments begin from 1 to $2^{\text {min }}$ back of the liead. At first they are much broader than long, sulbequently they become quadrate, then longer than broad. As the segments begin to mature they show a tendency to become narrowed anteriorly, with convex margins. A few of the extreme posterior segments are four times as loug as broad, ob-tuso-pointed in front, posteriorly attenuate, with a truncate termination. The genital apertures are marginal, opening a littlo behind the middle. In some they are not exactly on the margin, but may be seen, in a lateral view, to be situated near the margin and rumning obliquely toward the center of the segment. The penis was retracted in all the specimens examined. It could be seen lying coiled up in the angle formed by the vagina where the latter turus abruptly from the middle of the segment towards the margin. The vagina could be traced from the ovaries in the posterior part of the segment along the median line until it reaches a point nearly opposite the marginal openiug, where it turns abruptly towards the margin and opens immediately in front of the penis. The vas deferens is represented by a convoluted mass of tubes in the center of the segment. Tho anterior part of the sogment is filled with large globular masses (ova). These are surrounded by a thick transparent membrane, and have a granular interior. A layer of oblong granular masses, smaller than the interior globular masses, surrounds the latter. This layer is adjacent to the marginal wall of the segment and the masses are at right angles to it.

In some specimens the median and posterior sogments are very irregular in shape. This irregularity is sometimes produced by the appar-
ent occurrence of an imperfect segment of triangular shapo interjected between two others which are but slightly irregular; in other cases it has the appearance of two segments, one lying diagonally across the other and the two, as it were, welded together. Measurements of the head are not satisfactory on account of the extreme contractility of that part.
The following measurements were made from a mounted specimen corresponding in position and appearance with Fig. 9 :
From tip to tip of extended bothria .. 1.48
From apex of proboseis (retracted) to neck... 0.96
Breadth of neck.. 0.20
Breadth of first segment... 0.20
Length of first segment.. 0.04
Distance from head to first segment.. 1.40
Length of a mature segment. ... 2.60
Breadth of a mature segment ... 0.60
Length of segment near posterior ... 1.20
Bruadth of segment near postorior ... 0.50
Length of longest living strobile.. 103. 00
Mabitat added: Common Skate (Raia crinacea), spiral intestine. Wood's Holl, Mass., August 25, 1884.

Spongiobotmrium,* gen. not.
Body articulate, temiseform. Head separated from the body by a neck. Bothria four, opposite, pediceled, broken up into locinio-crispate folds, which are transversely costate. Uuarmed; auxiliary acetabulum none; terminal papilla none. Genital apertures marginal.

This genus combines many of the characters of Echeneibothrium Van Beneden and P'hyllobothrium Van Beneden. It differs from the former in the lacinise of the bothria and in the absence of a terminal haustellum; from the latter in haring pediceled instead of sessile bothria, and in the transverse costa on the bothria.

> Spongiobothrium rariabile, gen. et sp. nov.

> [Plate II, Figs. 13-19.]

Body articulate, trenixform. Bead separated from the body by a short neek, subquadrangular, tapering posteriorly, continuing at the anterior angles into four bothria. The bothrin aro pediceled and on their outer faces and borders are broken up into a number of delicate frill-like lacinise, which are sometimes gathered into a more or less compact mass of crisp, puckered, or purse-like folds (Fig. 15) and sometimes expanded into long, curved, auriculate, or leaf-like flaps (Fig. 16). These are marked by transverse, parallel coste which originate from a middle portion like the midrib of a leaf. There is no trace of either a
terminal papilla or anxiliary acetabulum. The neck, or unjointed part of the body, is short. In some the transrerse strie, which indicate the beginning of segments, were discernible almost immediately back of the head. The first segments are usually crowded, broader than long; subsequently they increase in length and become considerably longer; than broad. In some of the ultimate segments the length is four or five times that of the breadth. The shape of the thature and nearly mature proglottides is very various.

This irregularity of shape is to be found in the living specimens as much as in those which have been preserved in alcohol. The most usual shape for the mature segments to assume is subquadrangular, somewhat contracted about the posterior third in the vicinity of the genital openings, expanding in front of this; the anterior ond contracted into a short constricted neck where it joins the preceding segment. Sometimes this constriction occurs at the posterior instead of the anterior end of the segment. The ovaries are two sets of radiating tubes situated in the posterior end of the segment. The anterior half of the mature segments is crowded with globular masses (testes). These masses fill at least the anterior tro-thirds of the adolescent segments. In the mature segments of all the specimens I have yet examined the center is filled with a concoluted mass, consisting of the retracted penis and the vas deferens, with perhaps the vagina and a portion of the oriduct. The extremely long and convoluted vas deferens is found protruding from the ruptured side of some of the segments which have been preserved in alcohol. This worm is remarkable for the slight change which it experiences when preserved in alcohol. Even the extremely delicate leaf-like folds of the bothria were not observed to curl up or shrivel When subjected to moderately strong alcohol. Fig. 15, Plate II, is a sketch made of a living specimen. I have since mounted the same individuals for permanent preservation. In the rarious processes of dehydrating with alcolol, staining with eosin, reudering trausparent with oil of cloves, and afterwards mounting in Canada balsam, there has not been any shrinking or change of form, at least to any appreciablo extent.

The water-vascular system is plainly indicated by two rather large tubes, which in the neck and anterior part of the body are sinuous, and each situated about as far from the other as it is from the nearest edge of the strobile. In subsequent segments they become widely separated from each other on account of the interposed ova and genital organs.

The substance of the head aud pedicels of the bothria is for the most part fibrous tissue. The conical portion of the head is thus sharply marked off from the so-called neck. While the former is made up largely of fibrous tissue, the latter is granular, with but few longitudinal fibers. This feature can be easily brought out in preserved specimens by simple staining.

The following measurements were taken from mounted specimens:

Dimensions.	No. 1.\| No.2. ${ }_{\text {I }}$ No. 3.			No. 4.
	mm.	$m \mathrm{~m}$.	inm.	mm.
Lengtl of specimen	37.00	21.00	23.00	74.00
Length of bothria	0.96	0. 90		
Broudth of head-side	1.35	1.60		
licadth of heard across the top,			1.40	2.00
Length of ono bothrium, oxpanded			3.00	
Brearth of neek.	0.20	0.16	0.20	0. 9
Distauce from head to first atrie		1.50	J. 60
Distanco from head to first distinct segh	1. 80	1.40	2.00	2. 60
Length of first sogment	0.10	0.08	0.16	0.14
Breaulth of first negment.	0.20)	0.26	0. 24	0.32
Length of maturing segment	1.60	0.54	(')	2.40
dreadth of maturing segment	1. 32	0.211		0.42
Lencth of posterior serment	0.74	0. 80		1. 56
Brealth of posterior segment	(1. 50)	0.46		0. 86

- Maturing negments vory irregular, somo long and antrow, othors thick aud short with rounded corners. † Variablo.

Additional measurements of No. 4.

Phyllojootiridui Van Beneden.
 Thyllobothrium thysanoccphalum,* sp. nov.

[Plato II, Figs. 1-12.]
In its sexually mature or strobile condition, this Cestode varies in length from $300^{m m}$ to $1^{1 \mathrm{~m}}$. The head, as best seen in young specimens, has four bothria, which are quite early lobed and erisped and folded at the edges. In the adult these bothria are deeply lobed, so that even in a cross-section (Fig. 10) it is extremely diflicult to make out the four primary lobes. The frilled, erisjed, or rufled structure of the bothria gives to the head, when at rest, a siugularly striking resemblance to tho short, imperfect branches which form the head in the cauliflower. The neck, or jointless part of the body, is very long. In one specimen, which measures 840^{mm} in length, the first joints appear about $360^{\text {man }}$ back of the head. Immediately back of the bothria the head is slightly swollen aud subeylindrical, and in alcoholic specimens nearly as wide as the bothria; in the living worm about three-fifths the width of the bothria.

* Gúgur ó= a tassed.

The neek is continuous with the head, slightly flattened, and tapers away from the head very gradually iu fully grown specimens, so gradually, that its progress cannot be noted, except by comparing the width of the proglottides with that of the neck. The neck is marked with longitudinal ruga, which continue well back on the forming proglottides (Figs. 1, 2). Where the transverse strix, which mark the forming proglottides, begin, the surface of the body presents a rough, checkered appearance, due to these two systems of grooves, which is quite characteristic, and may serve to ideutify a fragment of oue of these worms when neither head nor mature proglottis is present.
Proglottides, before they become free, are much broader than long, aud each has a short, free posterior border, which becomes the rim or border mentioned in the deseription of the free proglottis. Peuis very long, with a bulbous enlargemeut at the base. Near the posterior end the segments become rounded at the corners and somewhat elongated, until they graduate into the shape which is characteristic of the mature free joints.
Free proglottides (Figs. 4, 5) about twice as long as broad, very changeable in form, but in geueral rounded anteriorly; the extreme anterior end prolonged into a contractile papilla, which acts somewhat as a sucking-disk in aid of locomotion; posterior end truncate, with a narrow rim or border marked off from the basal edge by the transverse water-vessel. Sexual apertures marginal, openiug a little back of the middle point. Penis very long; when erected, longer than the proglottis. Vagina opening immediately in front of the penis, flaring slightly at the mouth, quickly contracted into a short cylindrical tube, then expanding, finally roluced to a narrow tube, which runs anteriorly along. side a central clear space, enters the latter, and near its anterior cond turns sharply, and runs back aloug the middle of the clear space until it unites with the ovaries in the posterior part of the proglottis.

Good preparations of the mature proglottides were obtained by subjecting them to slight pressure between tro cover.glasses held in place by a spring wire-clip and hardened while in this position. When segments so prepared were afterwards stained, made trausparent, and mounted, they were free from wrinkles or distortions, and showed the internal anatony as well, indeed better, for topographical purposes, than could be shown with thin sections.

The chyle in the spiral intestine of the host, Tiger Shark (Galcocerdo tigrinus), swarmed with free proglottides, which were quite active. They had powers of independent movement and locomotion which gave them much the appearance of Trematods.

About twenty specimens in tho strobile condition, but representing three stages of development, together with great uumbers of free proglottides were found in the spiral intestine of a Tiger Shark (G. tigrinus). The larger adult specimens varied in leugth from one Lalf to one meter.
S. Mis. $90=30$

Measurements made on the largest specimen were as follows:
Total length of strobile.. 1

Thickness of head, margimal.. ${ }^{6}$
Brvadth of ucck.. 9
Breadth of posterior segment 5
Length of posterior segment .. is
In this specimen all the mature proglottides had evidently become separated from the strobile. On another specimen, measuring $580^{\text {mun }}$ in length, the posterior proglottides were mature, and measured $5^{\text {mun }}$ in length and $22^{\prime \prime \prime \prime \prime}$ in breadth.

Measurements of free living segments give the following proportions: Length, $\mathrm{S}^{\text {m" }}$; breadth, 4 to $4.5^{\text {"m" }}$; length of penis, $4^{\text {m"w }}+$.

A second and younger stage was represented by specinens ranging in length from $190^{\text {mun }}$ to $230^{1 " 11}$. These differed from the next stage, deseribed below, in size and in having a more or less evident beginning of a jointed condition. This, in the smaller forms of this second group, was indicated by tolerably distinct waving transverse lines. The largest specimen of this gromp, $230^{m u}$ in length, although tapering to a point at the posterior end like the others, had distinct segments for the last 30^{mm}.

A nother group, consisting of guite young specimens, ranging in lengeth from $31^{\text {mun }}$ to $57^{m \prime \prime \prime}$, represented a third stage in the development of this worm (Figs. 7, 8). These are evidently the young of this species.
Measurements of one of them give the following dimensions:
Millimeters.
Length of specimen.. 41.00
Length of head.. 1.50
Breadth of head .. 2.25
Length of rostellum .. 00
Breadth of neek just back of head .. 1.00
Breadth of posterior extremity.. 0
The neck increases slightly for a short distance back of the head. The body theu tapers gradually and uniformly to the posterior end. Iu this group there is no sign of joints. Most of the specimens, particularly after they have been preserved in alcohol, have a much more compact arrangement of the folds of the bothria than appears in Fig. 7, which was sketched from a living specimen, one of the smallest of the lot. In larger specimens of this group the head is subglobose, with the edges of the bothria in crisp, closely lying folds, so that it is very difficult to make out the number of lobes of the bothria or to determine whether the latter are pediceled or sessile. The bothria are marginal, sessile, or on very short pedicels, each divided into at least two secondary lobes, which ultimately become a mass of crisp folds. In the center of the head, placed anteriorly, is a short chitinous rostellum on a pedicol of soft connection tissue (Figs. 7, 7a, 7b). Seon from the front this rostellum is quadrate, and presents to view four crescent-shaped bodies (Fig. $7 a$) with their convexities turued inward and inclosing a clear
space, in the center of which is a gramular clevation. The tips of the horns of these crescents are sharp-pointed, and form a circle of cight hooks, whieh surrounds the tip of the rostellum. When this rostellum is viewed from the side, each crescent is seen to be the recurved anterior border of an oblong or triangular trough-like plate. These four triangular plates ocenpy much the same relative position with respect to each other as tho jaws in Lechinus, and suggest the "lantern" of that animal. This proboscis was observed in all of the smaller specimens and in some of the half-grown ones, but had been lost by all of the lareer specimens. It seems to have but a feoble attachment to the hoad, and became detached from several specimens while they wero being examined. The length of this rostellum in the half-grown specimens was about the same as that found in the smaller specimens, vir, about 0.5^{mm}.

In a series of transperse sections made of a head of one of the larger specimens, it was noticed that there was a circular aperture in the seetions of the anterior part of the head, which doubtless marks the place where the fleshy pedicel of the rostellum was inserted. The primary lobes of the bothria spring from a central muscular portion of the head (Figs. 9, 10), and consist of faseicles of muscular fibers which extend into the secondary and tertiary divisions. The crisped appearance of the head is due to minute erimped or frilled divisions of tho lobes, and not to the crisping or curliug of the free borders of the lobes, as in P láctuca Van Beneden. Tho solid, central part of the head which serves as a support for the so-called bothria, is pointel auteriorly, where the lobes, in transverse section, appear to radiato from a common point. It is on this extremity of the head that the base of the rostellum is situated. This central portion or core of the head increases in size until at the base of tho head it has the dimensions given in tho measurements as tho thickness and width of tho neck. A transverso section of the basal part of the head or of the neck, in the smaller specimens, is rhomboidal (fig. 12). In the limger specimons the breadth of the neck is greater in proportion to the thickness than is the case in the smaller specinens. In Fig. 10 a transverse section is shown of the head of an adult at about the anterior third. The central core of the head at this point is quadrate, and but two of the vessels of the watervascular system appear. Sections mado transversely through the midule of the head show the central core to be oblong (Fig. 9). The central part of such a section is a clear spaco with a few eonnectivo tissue fibers and granular masses in it. Both fibers and gramules become more crowded in the vicinity of the longitudinal vessels which are sharply defined in cross-section. A transverse vessel was observed in a section through the head, which connected tho two inner longitudinal vessels. The central clear space is limited by a dense layer of muscular and connective tissue fibers, which make a circular layer of tissue that can be traced back into the neck where it bocomes much
elongated and is surrounded by a layer of longitudinal fibers. In the head, outside of the riug of tissue which limits the central space, there may be seen in the sections both the cut ends of longitudinal fibers and. also the beginning of transverso fibers, which extend out into the lobes of the head in dense fascicles.

The color of living specimens is translucent white, with sometimes a filint bluish tint. Alcoholic specimens are opaque, white, faintly yellowish, or cream-tinted.

This worm is near P'. lactuca Van Beneden (Les Vers Cestoides, Pl. IV, Figs. 1-7), bat differs from it in the following characters:

The neck and anterior mjointed part of the body are broader than the posterior mature segments. They are not so represented by Van Beneden for Pl.lactuca. The genital apertures instead of opening opposite the anterior third of the borly of the proglottis, as in P^{\prime}. lactuca, open nearly opposite the posterior thirl. No mention is made of a rostollum in P. lactuca, but this difference alone would not justify the creation of a new specific name, since the rostellam could be easily overlooked, or if only mature strobiles were found, it is very probable that the rostella would have been lost.

Mabitat.-Liger Shark (Galcocerdo tigrimus), adult, half grown, and young specimens together in spiral intestine. July 23, 1885, Wood's Holl, Mass.

Orygmatobotmrium Diesiug.

> Bothriorcphati spee. Sicbold. Anthobothrii spee. Van Bencden.
> Jethabothrii (Anthobothrii) spec. Molin.

Orygmatobothriun angustum, sp. nov.

[Plate III, Figs. 1-3.]
Head round-pointed in front with fonr bothria, which are unarmed, hollowed out or boat-shaped when at rest, with anterior extremities, round-pointed, slightly appressed and projecting in front and surmounted at the apex by a supplemental disk (anxiliary acetabulum). A second, larger disk lies in the center of the hollow of each bothrium. The posterior end of each is rounded, broader than anterior end, usually flar. ing away from the neek. IBorder of bothria raised, somewhat thickened with entire ontline. Pedicels short, neck long, narrow, marked with transverse, closely parallel, slightly notched or crenulate rings, which give a serrate outline to the edge. Segments long and narrow, mature segments five times as long as wide. Genital apertures marginal. This worm is near O. versatile Dies. (Revis. (ler Cepl. Ab. Par., 276.)*

[^60]It differs from O. versatile, howerer, in being much smaller, and in the proportions of the segments. In O. versatile the segments are square, while in O. anyustum all the segments are loug and narrow.
The following measurements were made from mounted specimens:

Dimonsions.	No. 1.	No. 2.	No. 3.
	mm.	$3 n 3 n$.	mm.
Lengtle of etrobile	17. 10	18.00	20.00
Length of botbritur.	0. Gt		
Breadth of bothrimm, widgest part	0.38		
Length of nerek.	5. 00		
length of posterior gogmont	2.20	200	2. 46
Breadth of posterior segmeut	0.44	0.28	0. 54

The anterior supplemental disk (auxiliary acetabulum) is swall and circular and is quite manifest. I must confess, however, that the identification of the other was not wholly satisfactory. An oval disk was distinguished in a few. In some heads stained with carmine, cosin, and hematoxylon, respectively, they camot be distinguished. At about the anterior third the face of each bothrium, in the stained specimens, is crossed by a curved fibrous band which is concave in front. This band lies in the tissue of the bothrium and is not raised on the surface. It scems to be comnected with another band lying farther back in the bothrium and deeper in its substance. If they are comected they probably make the oval border of the second disk. If one is to jutge from the specimens in this lot-about fifteen in number--the secondary disk in the center of the bothria is an extreme doubtful character. It is phainly different in its nature from the anterior disk which was differentiated from the adjacent tissue clearly, both in unstained and stained specimens. The fine transverse stria on the neck, which may bedistinguished also on the mature proglottides, are a more characteristic feature of this worm than the secoud disk (auxiliary acetabulum).
The genital organs open nearly opposite the anterior fourth of the proglottis, on the margin.
The vagina can be traced from the posterior end of the segment, Where it originates as a coiled tube, lying between the two marginally placed ovaries. It lies along the centrall lime of the segment, until a short distance in front of a point opposite the vaginal opening, where it turns, forming a crook-shaped curve, and opens in front of the penis. The latter organ and the testis lie in the curve of the crook.
Habitat.-Dusky Shark (Carcharias obsewrus), in spiral intestine. Wood's Holl, Mass., August, 1 SS4.

> Crossobóminriva,* gen. nov.

Body articulated, slender, flattened, subquadrate; neck short or none; bothria four, opposite, pediceled, unarmeal, each provided with
one auxiliary acetabulum on the anterior border. Faces of bothria with a raised rim or border, which becomes more or less free, cut, or frilled as the worm grows weak, or when phaced in fresb water or aleohol.

Genital apertures, both male and female, marginal. Derelopment not known.

This genus is closely allied to Phyllobothrium Van Beneden, but differs from it in having the bothria pediceled instead of sessile, and in tho absence of a distinct neck.

Crossobothrium laciniatum bears some resemblance to Authobothrium cornucopia Van Ben., particularly in the shape of the segments, but differs from it in laving distinct auxiliary acetabula, and in having the segments begin immediately behind the head. The bothria are not so long pediceled as in A. cornucopia. The bothria, especially in living specimens in sea-water, bear a superficial resemblance to Ory!gatobothrium versatile Dies. (Anthobothrium musteli Van Ben.), but there is no trace of a second auxiliary aceuabulum on the face of the bothria. The habit of the strobile is, furthermore, quite different from 0 . versatile Dies.

Crossobothrium laciniatum, gen. et sp. nor.

> [Plate III, lijgs. 4-18.]

Body articulated, slightly flattened ; cross-section of segments near hearl quadrangular; ratio of thickness to breadth about 1 to 2 . The segments begin immediately behind the head, each is characterized by having four marginal llaps on the posterior border. The anterior segments in the larger specimens, for a distance of 20 or 30 mon back of the head, are about as bioad as long, the posterior angles projecting into prominent triangular flaps, which, in a few cases, stand out almost at right angles to the face of the segments, but are usually appressed. The bodies of the segments are translucent, the posterior borders and projecting flaps opaque and ivory white in color. This feature is especially noticeable in specimens which have lain a few minutes in fresh water. Jehind these slender anterior segments the remaining segments increase in breadth without increasing in length. Near the midde of the strobile the ratio of length to breadth is about 2 to 9 . The median serments are flat and the triangular fiaps develop into broad, rounded lobes. These lobes form a free border, which is sometimes reflexed and usually emarginate on the lateral edge.

The posterior segments are considerably lengthened; length about $1.5^{\text {mun }}$; breadth about $2^{m m}$, flattened; outline usually rounded or waving, narrower in front than behind, emarginate on lateral edge. (Plate III, Figs. 7, 8.) The shape of the free proglottides varies greatly while they are living, but at rest or in alcoholie specimens it is quite uniform.

The postero-lateral border is profoumdly emarerinate; the outline of the margin concave bohind, then comvex throughout the greater part of the length, concare argin near the anterior end, which is extended into
a roundel knob. (Plate III, Fig. 12.) In some free segments with a less rounded ontline the shape is much like that of a stecple-crown hat with a drooping, flexible rin. Length of a mature free proglotis 2.8^{mm}; brealth of posterior edge, measured from tip to tip of the reflexed border, $2.1^{\text {mun }}$; breadth of posterior, exclusive of reflexed border, 1.7^{mm}, tapering to an obtuse point in front. The bothria are four in number, marginal, short-peliceled, unarmed, each provided with a single supplemental disk (auxiliary acetabuium Diesing) on the anterior border.
The bothria of living, active specimens undergo such profound changes upon beiug transferred from sea-water to fresh water that it is necessary, in order to.guard against mistakes, to give separate descriptions for each condition.

If allowed to lie in sea-water, these worms continue active for severai hours. Some, after lying for twenty-four hours in sea-water, were still quite active, moving their bothria incessantly and alternately contracting and elongating the body and throwing it into irregular kinks and folds. The bothria are extremely mobile. They are usually hollowed out or boat-shaped on the face, bounded by a thickened rim or border which merges into the auxiliary acetabulum in front. In a resting position they are oval in shape, more or less narrowed in front and rounded posteriorly. Locomotiou is effected by thrusting the bothria forward and attaching the face as a sucking disk to the surface over which the worm is moving, and thus dragging the body along. The bothria are usually thrust forward in pairs, the two which would stand diagonally opposite in a cross-section constituting a pair. They are thrust forward bodily and at the same time become greatly elongated in front. This attenuated part of each is frequently bent outward at right angles, so that the two stand apart like a pair of recurved horns. (Plate III, Fig. 11.) The remaining pair of bothria mean while is some distance back of the forward pair and much contracted longitudinally, the apex of each being a short distance behind the rounded papillary apex of the head. Each bothrium when thrust forward and attenuated is tipped by the ansiliary acetabulum, which forms a sort of sucker. Each individual bothrium, while active, resembles in its motions the movements of a common leech. The resemblance is heightened by the auxiliary acetabulum, which has much the appearance and is used in the same manner as the anterior sucker of some leeches. Often the posterior ends of the bothria bend outward and forward until they almost meet the recurved anterior ends. The under bothrium was noticed sometimes adhering to the bottom of the wateh-glass in which the specimen was lying and spread out into a broad, thin, circular disk. In this case all appearance of a thickened border to the face of the bothrium was obliterated. Behind the bothria the head contracts suddenly into a short, neek-like part, which is about the same size and shape as tho first segments, and, like them, is terminated by four triangular lappets at each of the four angles. This latter feature
is unchanged cither by fresh water or alcohol. When placed in fresh water the bothria become profoundly modified. Two distinct forms were observed; in one lot the specimons measuring from 112 to 124^{mm} in leugth, the breadth of the head is $3.5^{m m}$, its length is $1.5^{m m}$. The bothria are trumpet-shaped, very trausparent and delicate, the outer face convex and surrounded by a delicate, narrow, raised border. It is circular except at the auterior edge, where it is broadly indented and interrupted by a circular, opaque disk (the auxiliary acetabulum). (Plate III, Fig. 6.)

In a second lot, the individuals of which measure from 95 to $250^{1 m}$ in length; the breadth of the head is about $2^{\text {min }}$, its length $1 . \tilde{o}^{m \mathrm{~mm}}$. (In an active specimen in sea-water the length of the head is about onehalf of the breadth.) The rim or border of the bothria is irregular, broken, or ragged in outline, which gives to the head a crisped appearance, so as to suggest upon superficial examination the genus Phyllo. bothrium (Plato III, Fig. 5). The auxiliary acetabula are often concealed by the ragged edges of the bothria, but they can be plainly seen in a top view of the head (Plate III, Fig. 15).

Both the male and female apertures are marginal. It is often very difficult to make out the course of the vagina. By compressing a free proglottis, or better by flatteniug a proglottis between two glass slips and hardening it while in that position, and afterwards staining and trausferring to glycerine or oil of cloves, the topography of the genital apparatus cau be mado out. At first I was wholly at fault with regard to the position of the vaginal opening, having been misled by the lateral aperture which is usually to bo seen in the mature segments and from which the ova are discharged. This aperture resembles the varinal opening in many of the Dibothric. It is found only in the posterior sogments of the largest specimens and in the freo proglottides. It is not always present even in these, as it is not unusual to find a free proglottis without the lateral aperture. When such a proglottis is examined its central part will be found to be filled with ova, often to such an extent that the lateral face of the proglottis is swollen in the midde so as to have a convex outline. In this case the lateral aperture may be seen already outlined but closed by a thin membrane, upon the rupture of which the eggs make their escape. The ovary is a lobed, glandular body lying near the posterior end of the proglottis. The vagina after leaving the ovary follows the median line but a short distance. It bends in a uniform curve towards the margin, and in its outer part lies immediately in front of the penis and very close to it. In the specimens which I have examined the course of the vagina as it approached the margin could not be made out until after it was differentiated by staining with carmine. The marginal aperture of the vagina is very small and is situated immediately in front of the penis. When the lat. ter is retracted the two genital apertures seem to have the same marginal opening. The penis is long and slender. In some cases it was
found protruding as much as $0 . \tilde{v}^{m \cdots}$. It is covered with minute spines whose length is about one eighth the breadth of the penis. The vas deferens is a long convoluted tube lying for the most part a little in front of the center of the proglottis. The central part of the proglottis around the ova is filled with the large glandular masses of the testes. The longitudinal vessels of the water-vascular system can usually be distinguished and between them and the margin, on each side, a series of graunlar masses, more opaque and smaller than the masses which make up the testes, extending to the ovary and widening in the vicinity of that organ. The lateral aperature for the discharge of eggs is situated a little way back of the middle and is surrounded by a low border or lip. It is oval in outline, the longer axis coinciding with the longitudinal axis of the segment and equal to abont one-eighth the length of the segment. Its posterior edge is at about the posterior third of the segment and nearly opposite the marginal opening of the generative organs.

The following measurements were made upon liviug specimens which had lain for a few hours in fresh water:

Dimensions.	No. 1.	No. 2.	No. 3.	No. 4.
	$m m$.	$m m$.	mint.	7 mm .
I, ength of strolito	100. 00	14:.00	195. 00	$\because 12.00$
Breadth of ligad...	1.7	1.00	1. 80	1.8
I ongrth of head.	1.4	1.50	1.45	1.5
Breadelt of sogments near luend, oxcludio	0. 6		0.70	0.7
Lendrth of segmentis near lieadl	0. 7	0. 35	0. 50	0.7 1.8
Bruarth of postarior sergments	1.7 1.2	1.26 1.20	1.90 1.60	1.8
Length of pusturiof megments	1. 2	1. 20	1. 60	1.4

The following measurements are from a segment which became detached from a strobile while still living and active in sea-water :

Millimoters.
Length.. 3. 10
Breadth in front
1.05

Breadth, middle 2.45
Broalth, posterior end ... 2.10
Length of penis... 0.35
Breadth of peuis... 0.0875
Length of вріненои penis............. 0.0100
Dianueter of ova .. 0.0254
The breadth given above is approximate, as the segment was constantly changing its shape; the penis was only partly everted.
The following measurements are from a young specimen, in fresh water:

Entiro length.. 20.00
length of head ... 1.20
Breadth of head 1.80
Lemgth of anterior sogments. 0.10
Breadth of antorior segments . 0.30
Jongth of median segments . 0.07
Jreadth of median segments . 0.00
Posterior segments but littlo larger than antorior.

Several young specimens were obtained, measuring from 5 to 20^{mm} in length. In these the bothria were identical in shape and habit with those of the adnlt. In the younger specimens, however, the part of the head to which tho bothria are attached was proportionally larger than it is in the adult. In the larger specimens of young the laciniate segments occurred throughout the entire length ; in smaller specimens they occurred only near the head and at the posterior end, while the intermediato parts of the strobile were unsegmented or marked with faint transverse lines. In many of the smallest forms there were no laciniate segments, while the posterior end of the strobile carried a number of elongated segment-like bodies, totally unlike the segments of the adult. These pseudo-segments are evidently evanescent. (I'late III, Fig. 17.)

Habitat.-Sand Shark (Odontaspis littoralis), in spiral intestine, young and adult together, abundant, elyle swarming with free proglotides. July and August, Wood's Iloll, Mass.

Phoreiobotifliun,* gen. hov.

> Noar Cylintrophorus Diesing. Tetrabothrii Spec. Wagoner. Cylindrophorus typicus Diesing, Reris. d. Ceph. Ab. Par., p. 264.
> Telrabothrium Carchariae Rondolettii Wagener, Nov. Act. Niat. Cur., xxiv, Suppl. 4 and 84, tab. xxii, 270-273; Statu larvat Wagrencr, l. c. 4 and 84, tab. xxi, 266-268, tab. xxii, 260.
> "Genus hoe iusufficienter cognitum provisorio modo nomino Cylindrophori notavi" Diesing.

Body elongated, articulate. Head separated from the body by a neek. Bothria four, opposite, tubnlar, parallel, entire, each armed with compound hooks and provided with one supplemental disk (ausiliary acetabulum) in front. Minute spines on neck, or on neck and body. Geuital apertures marginal.

Phoreiobothrium lasium, \dagger gen. et spec. nor.
[1Pate IV, Figs. 24-20.]
Head separated from the body by a neck. Bothria four, marginal, flat-tubular, subrectangular in outline, each with two compound hooks placed anteriorly, and one auxiliary acetabulum in front of hooks near the lateral edge of the bothrium. Face of the bothria hollowed ont, with a thickened or raised border, so that each bothrium resembles a shallow tray. Inner edges of bothria united by a thin membrane, in which lio bands of fibrous tissue. Posterior end of tho bothria ellijtical, with a thickened ring or border, and markod with strise parallel with the smaller diameter. These strise, when highly magnified, provo to be low ridges, which give to the end of a bothrium the appearance of a coarso rasp. These strice or ridges are not seen plainly unless the
bothria are reflexed. Neek flattened, rather slender, increasing uniformly backwards and merging imperceptibly into the jointed body, covered, sometimes sparsely, sometimes thickls, with very small, straight, sharp, bristle-liko spines. The body has at first an unbroken outline, the square segments being indicated simply by fine, transverse lines. Farther back the segments become clongated, with the corners slightly rounded. Genital apertures marginal, opening abont the middie line.
The compound hooks of the head have three recurved prongs each, the middle oue slightly longer than the others, the inner one the shortest. These prongs rise from a common horizontal part, which is itself supported by a flattened or spatulate process, which lies immediately under the middle prong, is about the same leugth and parallel with it.
The following measuremonts were made from a mounted specimen:

A few specimens in the lot differed from the prevailing type in being much more irregular in outline and having in gencral a more fragite structure. The neck is mueh distorted by contraction and minch broader than in the prevailing type; the first segments, on the contrary, are longer and more slender. The posterior segments are elliptical, oblong, flatter, and more fragile in appearance.

In one specimen I found what seemed to be a transverse costa on the face of a bothrium. I looised in rain for a similar characteristic in the other specimens of the lot. If such costa could be proved to be characteristic of this worm it would indicate a very close relationship with Calliobothrium.
In some the bristly spines were found on the neck and not on the body, in others sparsely on the body and not on the nock, in others thickly on both neck and body. They are, without doubt, the remnant of a bristly outer covering of the body, which is characteristic of the young and larval conditions of this genus.

The genus Cylindrophorus is a provisional one made by Diesing to include a single species which is not well known. He, however, inchudes it among those Tetrabothrie, which are characterized by having no anxiliar acetabula on the bothria. The presence of a well-defined auxiliary
acetabulum in this worm is therefore sufficient reason for not including it in the genus Cylindrophorus. The almost invariable occurrence of spines on the neck or body, or both, together with the shape of the bothria and hooks, present so many points of resemblance to Wagener's figures, from which Diesing created the generic nane Cylindrophorus, that I do not feel justified in adding a new generic term to the already burdened nomenclature of Helminthology without at the same time admitting Diesing's Cylindrophorus in the probable synonymy of the geuus.

The oraries occupy nearly the posterior fourth of the proglottis. The vagina extends, from its origin in the ovaries, as a sinuous duct along the median line of the proglottis mutil it reaches the middle point, where it turns nearly at right angles and opens in front of and immediately aljoining the penis. The latter organ is retracted and lies coiled up in the angle of the vagina, but scems to be connected with a convoluted mass, which is situated centrally in the proglottis. A median tube can we traced from near the anterior end of the proglottis to the angle of the vagina and seems to lie parallel with that duct for some distauce. Its union with the latter could not be made out. The greater part of the interior of the proglottis is filled with irregular gramular masses, each of which is composed of several irregular or disk-shaped pieces, which are rather loosely joined together.
In a specimen which had been subjected to double staining in green and red analine colors, the ovaries in the base of the proglottis and what appeared to be their continuation into a donble row of coarse grannlar masses lging along each margin, lad a strong affinity for the blat staining. On the margins, outside of the coarse granular layer, a fine granular layer, and outside of that a transparent, structureless, epidermal layer, were differentiated. The vagina and anterio-median tube were also slightly stained with the green. The interior compound granular masses, the penis, and the convoluted mass of tubes (vas deferens) were unaffected by the greeu coloring matter. They were clearly differentiated, though not deeply staiued, by the red analine, nearly all the red stain having disappeared when the specimen was washed in alcohol.

Habitat.-Dasky Shark (Carcharias obscurus), in spiral intestine. August, 18S4, Wood's Holl, Mass.

Calliobothrium Vau Beneden.
Calliobothrium verticillatum Rudolphi.

> [Plato IV, Fig४. 1-8.]

Onchobothriam rerticillatum Rnd., Diesing, Syst. Molm., i, 606.
Callivbothriam rerticillatum Van Benoden, Dies., Revis. d. Ceph. Ab. Par., p. a80-281. Van Boneden, in Mem . Acad. Belgigue, xxv, las and 19:, tah, xii.
Fothriocephalus verticillatus Rual., Synops., 142 inil 48.4. Jenckiart, Zool. l3ruehst., i, 50, tab. ii, 41, fragm. Nitısch., lirsch., and Grub., Encyol., xii, 09. Dujardin, IIst. Nat. des Melminth.; ©21. Crephin, Truschel's Arch., 1849, i, 73.

Acanthobothrium verticillatum Van Bencden, Bullot. Acal. Belgique, xvi, ii, 79. Onchobothrium (Calliobothrium) verticillatum Diesing, Sitaumgs. der Kais. Akad., xiii (1854), 585. Molin, l. c., xxx (1858), 135, xxxiii (1358), 292, and xxaviii (1859), 10; Idem, Deukschr., xix, 239, tab. v, 3.
Tetrabothrium verticillatum Wagener, Nov. Act. Nat. Cur., xxiv, Suppl. 83, tab. xxii, 274 and 275.
Head contimous, with the subquadrangular body. Bothria four, augular, subelliptical, unequally divided into three loculi by two traus. verse ribs; each bothrimu armed with four simple hooks, and provided, in front of hooks, with a trilocular, auxiliary acetabulum, tho loculi of the litter arranged in a triangle. Hooks equal and arranged in pairs. Body filiform anteriorly, increasing posteriorly; anterior segments provided with four triangular, laciniato processes on the postero-lateral margin, followed by other segments bearing one, and still others bearing two, additional flaps on each postero-lateral margin, subsequent segments with tro rounded daps near posterior, nearly circular in outline; ultimate seginents considerably elongated. Geuital apertures marginal. Length $75^{1 \times n}$ to $100^{m \times n}$.

Habitat.-Found at Wood's Moll, Mass., August, 1884, in spiral intestine of Smooth Dogfish (Mustelus canis).

In this species there is so much difference between sogments occurring in different parts of the strobile, that some additional notes are necessary in order to make trustworthy identifications in cases where only fragments are found. The head is so small that it may be easily orerlooked by the collector; moreover the anterior segments are so delicate that, as is often the case, they break and leave the head imbedded in the mucous membrane of the intestines of their host. The anterior portion of a living specimen, when isolated from its nataral surroundings and placed in clear water, resembles a very delicato whito hair. It may therefore easily escape any but the most careful search. Tho head itself is only about one-eighth as broad as the head of a common piu, while the breadth of the segments immediately behind the head is about the same as that of a human hair, and the thickness is only about one-third the breatlth. The first segments are vearly twice as long as broad, flat and thin, somewhat distinctly four-angled, so that a crosssection is rectangular. The segments are continued at the postero-lateral corners into four triaugular flaps, which are about ono-fourth the length of the segment proper. The posterior margins of the segments, includiug the flaps, aro thick, white, and opaquo in life, while the bodies lof tho segments aro translucent.

A few segments back from the head the middle of the postero-lateral margin of the segment begins to rise, and soon assumes the form of a third flap. In one specinen, which measured 63^{n+m} in length, this third flap begins about the 3 Sth segment. This character continmes for sereral joints until about the 70th segment, when the median flap becomes bitid; at tho soth sogment it has becomo decided,; two-notehod, and at the 120th it is divided into two lobes, so that in this part of the body
the postero lateral edges of the segments are each distiuctly four-lobod. The two original flaps, those near the margins, continne, however, to be a little longer and sharper-pointed than the two median ones. At the 150th segment the two imiddle flaps or lobes become iudistinct, and are represented only by gentle flexures of the posterior margin ; the notch between them is at this point broad aud shallow. From the 160th or 164th to the 192d segment the median notel deepens gradually, and the secondary or median lobes disappear, leaving the postero-lateral margin two-lobed, the inner margin of each lobe with a slightly waving convex outline. The segments thus far are short and somewhat crowded, the length, in the specimen measured, after mounting in Canada balsam, unifornly abont $0.14^{\text {man }}$ to $0.16^{\text {mum. }}$. At the point where the segments become two-lobed the margins become rounded, convex, the segments lengthen to about 0.20 .me . At the 200 th segment the proglottides are nearly circular in outline, globose in living specimens. At this point the segments begin to lengthen abruptly. The average length of the last four segments, with circular outline, being $0.6 .4^{\prime \prime \prime \prime \prime}$, while the average length of the next four segments is 1.02 mm . The last segment the 212th in the specimen from which the above measurements were taken, measured $1.90^{\text {min }}$ in length and $0.54^{\text {man }}$ in breadtl.
The following measurements are intended to show the proportions at different points on the strobile. They were made from monnted specimens, and consequently may be a little less than they would be if taken from living specimens:

Milimeters.

Length of specimen ... 60. 00
Breadth of head, in front... 0. 23

Broadth of bothria, front and middlo ... 0.10

Spread of hooks, tip to tip.. 16

Breadth of serments just back of head... 0.076
Breadth of segment $1^{1 \text { min }}$ back of head .. 0.09
Length of segments withont flaps.. 0.127

Breadth of segments ? $^{m m}$ back of head.. 0.16
Thickncss...... .-... 0.02
Length ... 0.14
Length, including ilaps... 0.16
Breadth of semments $11^{\text {min back of heath... } 0.30} 0$

Thickness, includingr thaps ... 0.16
Breadth of segments 18 min back of heat, four lobes. 0.46
Length .. 0.10
Thickness.. 0.10

Breadth of segments $33^{\text {min }}$ back of heat, two lobes................................... 0. . 60
Length, including liaps 0.16
Breadth of segmonts $45^{m m}$ back of head, round segmonts............................ 0.78

	Millimeters.
Longth	0.74
Length of posterior sogments	1.90
Breadth of posterior segriments	0.84
In another specimen:	
Length of posterior segments..	2.20
Breadth of posterior segments	0.73

Number of joints in one specimen about 342, the last 11 of which were mature.

There was one prominent, transverse rib at about the posterior third of each bothrium ; another, much less prominent, about the middle, at the extremities of the imner pair of recurved hooks, and two other faint, transverse lines, parallel with the ribs and apparently homologous with them, between this and the base of the hooks. The trilocular auxiliary acetabula skowed but faintly in most of the specimens.

There is considerable difference between the anterior segments of the specimens examined and those figured by Van Beneden (Vers Cestoïdes, tab. xii). In Van Beneden's figures the anterior segments are represented as being several times as long as broad, and with the flaps rudimentary and rounded. The sketches of the head and anterior segments (Figs. 1, 2) were made from a mounted specimen. The proportions are identical with those of the living specimens, as is proved by comparing these sketches with some memorandum sketches wade at the time of collecting. Among all the specimens, eiglit or teu in all, not one was noticed in which the segments differed materially from those represented in the figures. In Wagener's figures (Entwick. d. Cestoden, tab. xxii, fig. 274) the proportions of the anterior segments are about the same as I have found them. The transverse coste of the bothria do not agree exactly with the figures of Van Beneden and Wagener, but the differences are so slight, that I have no hesitation in pronouncing the specimens which I have examined identical with those figured by Van Beneden and Wagener.

Family DIBOTHRIOREYNCHDDA Dicsing.

Rhynchobothrium Rudolphi.

Tamia spoc. Fabricins.
Bothriocephali (Rhynchobothrii) and Tctrarhynchi spec. Rudolphi. Bothriorhynchus Van Lidth.

Rhynchobothrium bisulcatum, sp. nov.
[Plate IV, Figs. 0-23.]
Head subconical, bluntly rounded in front. Bothria tivo, lateral, separating slightly at posterior corners, coalescing in front, each divided into two distinct lobes by a median sulcus, which extends from the posterior border about oue-fourth the !ength of the bothrium, where it divides into two less distinct but clearly marked sulci, which diverge
and inclose two sides of a triangular space. At the extreme anterior end of each of these secondary sulci is situated one of the four proboscides. Each bothrium is broadly convex on the posterior border, with often a slight emargination on the posterior elge of each lobe. Each lobe is triangular, the posterior side being the posterior edge of the bothrium, the outer side being the marginal edge of the bothrium, and the inner side being bounded by the median sulens and one of its branches. The central portion or face of each lobe is sometimes depressed, which gives rise to the appearance of a double furrow on each side of the median triangular piece. Posterior edges of bothria thick and fleshy, overlapping the neck. Neck tubular, conical, sometimes slightly swollen back of the head, a little shorter than the botbria, the posterior fourth prolonged into a collar, which incloses the anterior part of the body and its articulation with the neck. Proboscides (trypanorynchi Dies.) four, a little shorter than head, armed with numerous hooks arranged in spirals, about eight visible in each spiral; spirals about $0.02^{m m}$ apart. Hooks recurred, pointed, broad at base in an anteroposterior direction, very thin from side to side, those near the base of the proboscis shor ter-curved and blunter than the others. Proboseis sheaths straight in front, but with a single short spiral curve at the posterior end where they join the contractile bulbs, with oue of which each is connected. The four contractile bulbs, which lie side by side in the ueck, are about twice as long as broad and about one-Lalf the length of the neck. The distance between the point of articulation ietween the neck and the body aud the posterior end of the contractile bulbs is normally about one-third the length of the latter.

So far as examined the heads presented the same general outline, with one exception. In the exceptional case noted there is a slight constriction of the bothria where they overlap the neck, at the point which marks the greatest diameter of the head in all the other specimens. This imparts to the head a more rounded ontline in front than in the others, and a less diameter proportionally at the base of the bothria.

The body, usually very much attenuated anteriorly, is mujointed for a short distance back of the head. Fine transverse lines soon make their appearance, and shortly afterwards the first segments are formed. The latter are usually much broader than long, and rectangular in outline. Although they sometimes are lengthenel with rounded corners, so as to give to the series of segments a beaded appearance.

The mature proglottides are always squarish, or rectangular, sometimes longer than broad, sometimes broader than long. The male genital openings are marginal, irregularly alternate, always near the anterior edre of the proglottis. Female genital openiugs lateral, median dehiscent, apparently not appearing until tho proglottides are almost ready to separate.

Length of strobiles with mature proglottices from $40^{\text {mum }}$ to 230^{mm}.

The following measurements of head and neck give proportions which hold good for all:

Millimoters.
Length of proboscis. 0.840
Breadth of proboscis, oxclusive of projecting hooks. 0.043
Breadth of proboscis, inclusive of projecting hooks 0.078
Length of anterior hooks 0.023
Broadth of lose of anterior hooks 0.013
Length of hooks on base of proboscis 0.014
Breadth of base of hooks on base of proboscis 0.011

In the summer of 1884 I obtained two lots of these worms from the alimentary tract of the Dusky Shark (Carcharias obscurus).

The first lot, containing approximately 200 individuals, was lodged in the pyloric portion of the stomach, where the worms were so massed together as to make a swelling in the pylorus which was discernible before opening.

These specimens were not studied closely while they were alive. Upon examining them subsequently as alcoholic specimens, it was found that there was a very considerable variation in the leugth of the strobiles, and to some extent in the proportions of the segments. In the foregoing description I have enumerated those characters which belong to all; but inasmuch as there are some more or less clearly marked groups among them I shall add some further observations. I deom this of importance, for the reason that, if it were not for the great number of intermediate forms which these two lots furnish, one might be justified in making two, if not three, distinct species instead of one. The second lot came from the pylorus and spiral intestine of the same species of shark (C. obscurus).
Three groups were observed in the first lot. Theso differ from each other principally in the shape and proportions of the segments, the distance from the head at which mature proglottides occur, and in the total length of the strobile.

In the first group, which, for the sake of clearness, I shall nawe var. a (Plate IV, Figs. 9-12), the mature proglottides are flat and thin, square, or the posterior ones a little broader than long. When there are but few mature proglottides they increase in breadth rather abruptly, so that the strobile has a somewhat club-shaped or linear-oborate outline.
S. Mis. $90-31$

Generative organs: male not conspicuous, smooth, marginal, near anterior edge of proglottis as in all; female lateral, median, dehiscent, in mature proglottides easily recognized as a clear central spot; length of strobile as short as 36^{mm}; average, perhaps, about 45^{mm}, although it seems to graduate into var. β, which is much longer. In one specimen measuring 48^{mm}, the last twelve proglottides were mature and had an average length of 1^{mm}.

Measurements of a specimen, var. α, made from a mounted specimen, and hence probably a little distorted :

Millimoters.

Length of bothria .. 0.80
Breadth of head .. 0.90

Breadth of neck in front.... 0.60
Breadth of neck, posterior end... 0.30
Length of proboscis... . . 0.70
Length of proboscis sheath 0.76
Length of contractile bulb 0.3
Breadth of contractile bulb......... .. 0.14
Length of posterior proglottis 0.80
Breadth of postorior proglottis ... 1.30
The second group I shall also, for convenience, designate as a variety, calling it var. β (Plate IV, Figs. 17-20). The strobile, like that of var. α, is flat and thin, but is much longer. The mature proglottides do not make their appearance until 100^{mm}, or even 200^{mm}, back of the head. The first segments are short and broad; the succeeding segments increase in length until they become longer than broad. The median aud postero-median segments are frequently rounded at the corners, giving to the strobile a beaded appearance. This character is usually present in those segments which immediately precede the mature proglottides. Usually about three longitudinal striæ can be traced on the median segments (Figs. 18-19). The posterior segments are rectangular, longer than broad. The following measurements were made on a mounted specimen, var. β.

Length of strobile. .. 230.00

Breadth of head ... 0.94

Breadth of neck in front .. 0.70
Breadth of neck, posterior ond 0.40
Length of proboscis. 0.60
Length of proboscis sheath ... 0.64
Length of contractile bulb ... 0.36
Breadth of contractile bulb... 0.10
Breadth of strobile back of neck 0. . 26
Longth of posterior proglottis...................... 1.54
Breadth of posterior proglottis. ... 1.20
A third group, which comprises individuals that have certain characteristics separating them from the two preceding groups, I have distin-
guished as var. γ (Plate 1V, Figs. 13-16). These are all immature strobiles, but are much louger than var. α, and in some cases as long as var. β. The strobile is much thicker and rather wider than those of varieties α and β. The posterior segments, although not mature in auy of the specimens, have a conspicuous male generative organ. The female generatire opening is represented by a lateral, median, slightly raised piapillifor:n eminence. Length about $100^{\text {mam }}$; averago length of last 30 segments 0.6^{mm}. The posterior segments are $2 \not 2 \mathrm{t}$) 3 times as broad as loug.

Measurments made from two mounted specimens.

* In nil musumbonts of tho mock the distance from tho postoro latoral or postoro-marginal edge of the bothtin to tho posterior eilige of the collur is tha ono given.

In the second lot containing about fifty specimens, the strobiles are not so mature as those of the first lot. The three varieties noted in the first lot are not so distinctly marked off. There are, however, two distinct kinds in this lot, which may possibly be due to the effect of the preservatives, but which aro sufliciently noteworthy to be mentioned here. In the first the lobes of the bothria are smooth and bounded by regular carved liues as in the first lot, but with the centers of the faces of the lobes slightly hollowed out or depressed, so as to produce the effect of a raised border, and double furrows on the lateral face of the bothrium.

In the second the bothria are irregularly furrowed or wrinkled. The bothria are shorter than the neck. The neck is also wrinkled. These differences, although sufficiently marked to attract attention, do not oceasion much perplexity where one remembers the wonderful porters of contractility possessed by the Cestoidea. They might, however, lead to confusion of species in cases where only a few specimens are at hand.

In describing new species of the Cestoidea, I am satisfied that, where it is possible, a great many specimens should be examined before final conclusions are reached. If this rule had been adopted by former workers in this field of Systematic Zoology the older literature of Helminthology would not be in its present state of confusion.

Attachment to the host.-Those found in the pylorus were not firmly attached, but would release their hold when the point of a scalpel was
applied to their heads. This was characteristic of those of the first lot. With those found in the spiral valve, however, the case was quite different. In it these parasites were found to be firmly attached to the wall of the intestine. Many of them had tunneled holes in the mucous and submucous coats. In somo cases these tunnels cut through the muscular coats of the intestine and opened into the interior body cavity. In some instances several heads were found occupying the same cavity. One of these pockets was 6.5^{mm} deep. In it were imbedded three heads belonging to three strobiles $20^{m m}, 32^{m m}$, and $55^{m m}$ long, respectively. The heads were so tightly fastened in their fleshy cavern that they had to be cut out before they could be removed. A peculiarity of the indiriduals of this second lot is a tendency to contract the anterior seg. ments, so that instead of being attenuated as in most of those of the first lot, the anterior segments are at first nearly as broad as the neck, and immediately widen until they are as broad or even broader than the head. This gives the worm the appearance of being constricted just back of the head. This habit of tunneling into the flesh of its host must make this parasite a very umpleasant guest. Usually in the case of those Cestoidea which infest the alimentary canal of their host, their presence cannot give rise to much pain, unless they are present in numbers sufficient to occasion obstruction. But with this worm it is quite otherwise. Wherever tunuels in the walls of the intestine caused by this worm were observed, it ras noticed that there was much irritation of the mucous membrane. Not only was the mucous coat highly inflamed, but the inflammation often extended into the submucous and muscular coats. The whole interior of the spiral valve was blotehed with angry looking sores. If this is at all common, then wo find in this worm an enemy of the Dusky Shark, small but not insignificant. It is certainly encouraging to find in nature, in the too small army of enemies which are arrayed in warfare against the Selachians, these humble sappers and miners lending their aid towards keeping down the numbers of these Ishmaelites of the sea.

Abnormal forms.-In the second lot a few monstrosities wero observed, two of which are figured (Plate IV, Figs. 21. and 22). The first example, Fig. 22, is a strobile 13^{mm} in length, which, at about 2^{mm} from the posterior end, gives off from the postero-marginal edge a secondary strobile, in which there aro about four joints faintly marked. The dimensions of the segment which sends off this budding part are: Length, 0.1^{mm}; brealth, $0.7^{2 \mathrm{~mm}}$; of the succeeding segment, length, 0.1^{mm}; breadth, $0.62^{m m}$; of the budding portion, length, $1.0 \mathrm{~S}^{\mathrm{mm}}$; breadth, 0.06^{mm}. The second example, Fig. 21 , is a fragment; length of strobile not known. The segments havo the beginnings of the male grenital organs. A secoudary strobile is giren off from the margin of the primary strobile in a somewhat different manner from the one just described. A teadency towards a marginal thickening can bo seen on the third segment in front of the one from which the secondary strobile becomes free. In the succeeding segments this marginal thickening,
or rather widening, is more pronounced, and there is the beginning of an independent alar margin. On the next segment the alary margin is onefourth the breadth of the segmentitself, and from it springs the secondary series of segments. The breadth of the three segments mentioned is $0.82^{\mathrm{mma}}, 0.86^{\mathrm{mm}}, 0.90^{\mathrm{mm}}$, respectively, or of the latter, exclusive of the alary margin, 0.72^{mm}. The breadth of the succeeding segment is 0.72^{mm}. The length of each of these segments is 0.26^{mm}. Length of secondary strobile, 2.46^{mm}; number of segments, 21 ; breadth, 0.20^{mm} to 0.24^{mm}; average length, $0.12^{\text {win }}$.

Eversion and inversion of proboscis.-The proboscides do not play backwards and forwards in their sheaths like a piston-rod in its barrel, but each folds in upon itself from the outer extremity like the finger of a glove. When a proboscis is fully extended it has the appearance of a slender, solid cylinder, covered with recurved hooks. If, however, one which is not fully extended be examined, it will be found to be folded in upon itself from the outer end. As the hooks point backwards When the proboscis is extended, it can be easily seen that it is impossible to retract that organ by pulling it in bodily. When the proboscis is entirely retracted it forms a hollow tube, whose outer covering is the inside wall of the extended proboscis, and whose inner coat carries the hooks which now point forward. The whole tabe lies in the proboscis sheath.
The manuer of everting and inverting the proboscis seems to be identical in all the Trypanorhynchi, both in the mature and later larval stages. The contractile bulbs and proboscis sheaths contain a transpareut liquid, in which float a few granules. The contractile bulbs act on the contained fluid exactly as the bulb of a syringe. The thick walls of the bulbs are composed of diagonal, interlacing fibers, whose contraction compresses the bulb and forces the fluid out into the proboscis sheath. The result of this action is to make the proboscis begin to unroll from the anterior end of the sheatb. This will continue as long as the walls of the contractile bulbs continue to exert pressure on the fluid contents, or until the proboscis is entirely everted. When the proboscis is fully extended the granular liquid can be seen filling the interior of both proboscis sheath and proboscis. To the interior of the proboscis, at the anterior end, is attached a tubular cord of very contractile tissue, which lies in the hollow of the proboscis, extends back through the sheath, and isiuserted at one side on theinner wall of the contractile bulb. The proboscis is inverted by the contraction of this cord. When the proboscis is inverted this cord lies in kinks and irregular coils in the contractile bulb and posterior end of the sheath. This morement is made rather quickly by the living worm. Upou removing some specimens from the pylorus of a Dusky Shark, it was noticed that when the heads were touched by the point of a scalpel or needle, even when the head was partly imbedded in the mucous membrane, the proboscides would be suddenly retracted and the worm detached.

Larval state.-Great numbers of encysted Rhynchobothria were found, mostly in capsules, between the mucous and submucous coats of the stomach of the Squeteague (Cynoscion regale) and the Bluefish (Pomatomus saltatrix), which appear to be the young form of this species. The proboscides and their hooks agree. The bothria and their lobes seem to be identical. The sequence from these fishes to the Dusky Shark is a natural one, and in the absence of any evidence to the contrary it may be fairly assumed that they are the encysted larva of R. bisulcatum. It is the purpose of the author to publish figures and a fuller description of these in a subsequent paper.

Halitat.—Strobile: Dusky Shark (Carcharias obsourus); pylorus and intestine; very abundant.

Scolex encysted: Squeteague (Cynoscion regule), Bluefish (Pomatomus saltatrix); submucons coat of stomach and peritoneum; very abundant. Wood's Holl, Mass., August.

This worm resembles \boldsymbol{R}. paleaceum Rudolphi and Van Beneden. (Dies., Reris. cl. Ceph. Ab. Par., p. 294.)
Tetrarhynchus lingualis Van Beneden (Les Vers Cestoides, p. 151, tab. x vii, $4,6-9)$. It presents many differences from Vim Beneden's figures and descriptions, however, among which-may be mentioned Lere, as of most importance, the number and form of the hooks, the articulation of the neck with the body, and the position of the male genital opening. Vin Beneden represents the latter in R. paleaceum as always opening at the posterior third of the segments. In all of the different forms of R. bisulcatum they opon uniformly near or in front of the anterior third.

Rhynchobothrium tenuicolle Rudolphi.

[Plate V, Figs. 17, 18.]
Tetrarhynchus tenuicollis Rud., Synops., 130 and 451. Creplin, Ersch. and Grulb. Encycl., axxii, 295, note 34, and Erichson's Arch., 1846, 149. Dujardin, Hist. Nat. dos Helminth., 551.
Rhynchobothrium tenuicolle Diesing, Sitzungsb., siii, 1854, 595; and Revis. der Ceph. Ab. Par., 299.
Tetrarhynchus corollatus Siebold, Zoitsch. fïr Wissensch. Zoül., ii, 241 (in part).
The characters given for this species by Diesing are the following: Head with suborbiculate lateral bothria, converging at the apex and with an elevated border; neck very long, subcylindrical, slender, rounded at the base; segments of the body bacilliform, ultimate ones contracted, casily falling off. Length of head and neek, 5.3^{mm} to 6.5^{mm}; length of body, 15^{mm} to 17^{mm}; breadth, 0.56^{mm}.

The proboscides for the larval condition are described as filiform, very slender, and armed with a long series of ternately verticillate and recurved hooks.

The published descriptions of this species are meager ind unaccom. panied with figures. It is with some hesitation, therefore, that I refer a few Rhynchobothria from the spiral valve of the Smooth Dogtish (Mustelus canis) to this species.

The head of the living worm is rery variable in shape. The bothria are lateral and are united at the apex by their margins; usually broader than long, slightly emarginate on the posterior edge, with a raised and thickened border. The neck is long, cylindrical, the narrowest part about half way between the head and the contractile bulbs. There is a constriction immediately behind the contractile bulbs, back of which the neck swells into a nearly globular base. This rounded basal part of the neck is sharply marked off from the body by a short, narrow constriction. The body is without segments or transverse markings of any kind for a distance equal to as much as six times the leugth of the head and neck. Strix then begin, which outline squarish segments. The first segments are a little longer than broad; subsequently they become much longer than broad, crowded with ova, and with the genital apertures marginal. The four proboscis sheaths are long and thrown into spirals, the coils of the spirals being dense or loose, as the neck is contracted or not. The proboscides when everted are seen to be very long and slender. They are closely beset with small hooks, which, when highly magnified, are seen to be of several distinct shapes. The prevailing shape of those near the end of the proboscis is slender, tapering, somewhat irregular in outline, with an abruptly recurved short point. Others have the same length, but differ in being broader, and in laving a curved, convex outline on the posterior edge. Others have the same outline, but are very shori. Others are slender, curred slightly and pointed, but are without the abruptly recurved point. Some are straight, others nearly straight, but bent slightly about the middle. The hooks on the proboscides, moreover, are arranged in distinct series of ternate gromps. This arrangement could be plainly distinguished in some places, while in others it was but faintly indicated, and, owing to the extreme sinallness of the hooks and their peculiar shape, it was impossible, from the specimens at my disposal, to determine the exact number of series, or whether, indeed, all the hooks were arranged in these ternate groups or not. Where most distinct there seem to be four series of ternate hooks. The longer hooks stand nearly at right angles to the axis of the proboscis, and are equal in length to about one-thitd of the diameter of the proboscis.

The following measurements are from an alcoholic specimen :
Length of strobilo 31.00
Length of bothria. 0.42 0.42
Breadth of bothria 0.34
Length of head and nock 2.00
Length of proboscis sheath 1. 40
Length of contractile buibs 0.29
Breadth of contractile loulbs 0.10
I Breadth of neck near head (lateral) 0.24
Broadth of neck near middle (latoral) 0.20
Broadth of veck iu front of basal lualb 0.34
Millimeters.
Breadth of basal bulb of neek 0.39
Breadth of constriction between neck and body 0.20.
Breadth of body just behind basal bulb of neck 0.28
Breadth of body 7.4^{mnn} from neck ... 0.28
Distanco from neck to first stris. ... 11.20
Distance from neek to first segment ... 14. 60
Length of first segments indicated by strix 0.40
lireadth of first segments indicated by strise 0.44
Length of first distinct segments .. 0.94
Breadth of first distinct segments.. 0.44
Leugth of last sergments ... 3. 30
Broadth of last segments.. 0.80
Breadth of proboscis... 0.33
Length of hooks .. 0.0075
Leugth of longest hooks ... 0.009

These worms are actirely locomotile while living. The two bothria aet as sucking disks and change their shape continuously. As the head progresses the anterior ends of the proboscis sheaths separate slightly, when the soft tissue which forms the anterior end of the head is then drawn in so as to give to the front of the head the shape of a bollow cup; the anterior ends of the sheaths then approach each other and the hollow cup disappears, the tissue which forms it being thrust out into a short, blunt eminence (myzorhynchus).

Habitat.-Smooth Dogish (Mustelus canis), in spiral intestine. Wood's Holl, Mass., August, 1884.

Family TLTRACOTYLEA Diesing.

Tania Linu.

Tomin dilatata, sl. nor.
[Plate V, Figs. 14-16.]
Head small, truncate, or, in living specimens, slightly prominent in front. Acetabula nearly circular, directed a little forwards. Neck rugose, very long, very contractile and dilatable, narrow in frout, tapering toward tho head; a short distance back of the head expanding into a number of irregular, transparent, dilated folds, which border both sides of an opaque central portion, in which two longitudinal canals are faintly outlined. First segments about three times as broad as long; median segments square, or broader than long; ultimate segments nearly square, sometimes broader than long, sometimes longer than broad. Genital apertures marginal, opening a very little in front of the middle.

A single specimen of this species of Temia was obtained from the intestine of the Common Eel (Auguilla vulgaris) August 26, 1885. The
length of the specimen, when stretched ont by fastening one end with a needle to the bottom of the dissecting dish and removing all kinks and curves with a fine brush, was 170^{mm}. The length of the same specimen, after having been preserved in alcohol, is less than 90^{mm}. The specimen when first obtained and placed in sea-water was quite active. The body was coustantly throwing itself into sinuous curves, while the head and neck were jerked from side to side with a moderately rapid motion. In addition to these movements the neck and anterior portions of the body constantly changed their shape by the inflation or dilatation of the investing membranes into wide transparent folds, constricted at irregular intervals by uarrow transverse bands. The neck, meanwhile, was alternately stretched out and contracted like the body of a Nemerteau. The anterior end of the head protruded into a pro-boscis-like papilla. The breadth of the head itself varicd from 0.17^{mm} to 0.3$)^{112}$.

In the alcoholic specimen the dilatable folds of the neek are much contracted and brokeu. They lio in rough, ragged frills along each side of the dark central part of the strobile. The head is truncate or blunt in front. The neck immediately behind the sucking-disks is almost as wide as the head, flat, thin, and little, if at all, tapering.

The following measurements were made on the living specimen. The head and neek changed their position and shape so rapidly that it was with the greatest difficulty that trustworthy measurements could be made:

[^61]
Order acanthocephala Rudolphi.

Echinorhynghus Zoega.
Echinorhynchus agilis Rudolphi.
[Plato V, Figs. 1-6.]
E. agilis Rudolphi, Synopsis, 67 and 316. Westrumb, Acanthoceph., 17, tab.
i, 1. Bremser, Icon. Helminth., tal. vi, $9-10$. Dujardin, Hist. Nat. des
Helminth., 535. Diesing, Syst. Helminth., ii, 35, and Revis. der Rhyngod.,
746. Molin, in Sitzungsb. d. Kais. Akad. d. Wissensch., xxx, 142.

Color white. Proboscis clavate, very short, nearly globose, armed with three, sometimes apparently only two, series of books, about six in each series. Hooks in front row three or four times as long as those in second and third rows, each with a long, that basal support. Front hooks sharply recurved, with recurved part long, pointed, and often slightly concare on the outer edge. Remaining hooks very small, slender, slightly bent, sometimes standing out nearly at right angles to the axis of the proboscis, when the latter is exserted. Anterior part of the body slightly contracted and capable of introversion along with the proboscis, thus forming a short, transversely plicate neck. Body arcuate, club-shaped, cylindrical, trausversely rugose, widest a little in front of the anterior third, narrowing rapidly in front and diminishing uniformly but very gradually to the posterior end, which is truncate. Proboscis sheath rather short, manubriform; proboscis and sheath often found retracted by an invagination of the anterior body wall. Lemnisci usually long, slender, attenuate posteriorly, longer proportionally in male than in female. Testes three lobed, followed by an oval opaque mass. Male genitalia posteriorly continued into a cup-shaped copulatory organ, which is capable of epersion and inversion.

Females 9^{mm} to 12^{mm} in length ; males 4.6^{mm} to 6.44^{mmu}.
When subjected to the action of the compressor a series of oval and circular carities becomes visible in the inner cont of the body wall. These are evidently the channels of the vascular system seen in section. At intervals, however, there are large circular spaces in this vascular layer clearly defined by a circular thickened ring of connective tissue. These become so much enlarged in some as to be visible with a comparatively low magnifying power, and give rise to small mammillary elevations in the superficial layer of the body wall. These are evidently the "pores" or "orbicular disks" given as specific characters of E. tuberosus (Dujardin, Nat. Hist. Helminth., p. 538). They are described as usually numbering five or six on the convex side and a single one on the concave side. In the specimens which I lave examined there does not appear to be either this regularity or proportion in their arrangement, e. g., one specimen had four on the concave side and two on the
convex. In others they conld not all be made out definitely, but enough could be made out to show that they were irregularly placed.

Habitat.-Common Eel (Anguilla vulgaris); intestine; 12 specimens, of and 9 ; September 2, 1885. Dusky Shark (Carcharias obsourus); 1 specimen, of August, 1884. Wood's Holl, Mass.
Of the following specimens of which measurements were made, No, 1 is a female, Nos. 2 and 3 are males. No. 3 is the specimen obtained from the spiral intestine of C. obscurus:

Dlmensions.	No. 1,9	No. 2, ${ }^{\circ}$	No. 3, ${ }^{\circ}$
	mm.	min.	m.
Length of spocimen.	9. 50		4.60
Length of proboscls.	0.17	0.105 0.14	0.10 0.102
Breadth of proboscis, ajox	0.15	0.13	0.132
lisradth of proboscis, base.	0.48	0.13	0. 30
Length of probosois sheath	0.40		0.12
Breaulth of prolnselis mheath	1.50	1. 50	1. 40
3roudth of body, anterior			0.19
Breadth of body, greatest.			0.60 0.16
Breadth of body posterior on			0.16

I confess no small degree of perplexity in identifying this species as E. agilis. The arrangement and character of the hooks of the proboscis ally it closely with this species and a little less closely with E. claviceps Zeder. The lemnisci are not so long in proportion to the length of the animal as in either of the above-named spocies. This is about the only character that hints at a probable specific difference which is sufficient to justify the separation of the specimens under consideration from either of the above species. The presence or absence of the so-called neek is rather a doubtful feature at best.

While there are no distinctive characters which seem to my mind to be importaut enough to justify the erection of a new species, there are certaiuly stroug reasons afforded for uniting E. claviceps and E. tuberosus, which is, indecd, proposed by Dujardin (op. cit., p. 538) and accepted by Diesing, who does not mention El. claviceps in his revision, and including both under E. agilis Rndolphi.
In the absence of figures of these species I muist content myself at present with referring these specimens to E. agilis.

With regard to the single specimen found in the spiral valvo of Car. charias obscurus, it may be well to observe that its presence there may be accounted for by supposing it to have been introduced in the adult
coudition along with some more usual host which had been eaten by the shark a short time before the latter was examined. However interesting this supposition may be, it is hardly necessary, as there is no reason why C. obscurus shonld not be a proper host of E. agilis.

Echinorhynchus acus Rudolphi.

[Plato V, Figs. 7-13.]

Radolphi, Wiedmann's Archiv., ii, 2, 51 ; Entoz. Hist., ii, 279 ; Synops., 71 and 324. Zeder, Naturg., 150. Westrumb, Acanthoceph., 24. Siobold, in Burdach's Pbysiol., 2, Auth., ii, 196 (ovulau). Drummond, Charlsworth's Mag. of Nat. Hist., ii, 516. Bellingham, in Annals of Nat. Hist., xiii, 2\%G. Dujardin, Hist. Nat. des Helmintl., 540. Cropliv, Nov. Obs., 43, and in Frsch. and Grub. Encyelop., xxxii, 284. Leidy, in Proceod. Acad. Phila., viii, 48. Van Beneden, Mem. Vers. Intest., 279-287 (development).

For detailed synonymy and babitats, see Diesing, Syst. ILelm., ii, 39-40, and Rovin. d. Rhyugrodeen, 747.

Proboscis linear with about twenty series of hooks; neck none; body long, greatest width a short distance back of proboscis, subattenuate posteriorly, bluntly rounded at posterior ead. Length 27 to $81^{\text {min }}$ (Dujardin), breadth $2^{\text {mm }}$; males balf as long as females; color usually white.
"The color is very varions bnt generally white when distended, though frequently accompanied at the same time by a tinge of orange, pink, or cincreous. Sometimes the whole animal is reddish orange (especially the male), and sometimes the whole is ivory white with a solitary minute crimson dot here and there" (Drummond).
Some specimens flat, thin, with regular outline, others cylindrical with irregular transverse ruga. All the specimens noted by me were white or faintly tinged with yellow.
The following measurements were made on alcoholic specimens:

Length of longest living specimen, 60 mm .

Leugth of hooks, $0.064^{\text {min }}$; breadth of same at base, 0.02^{mm}.
The proboscis, wheu fully extended, stands a little obliquely to the axis of the body. In all the specimens that I have seen the proboscis was either wholly extended or partly withdrawn bodily. In no case was the proboscis inverted. These worms are able not only to withdraw and to protrude the proboscis as a whole, but also to invert and evert it. When the proboscis is retracted in mass the walls of the body at the base of the proboscis are invaginated by the action of retractor muscles, which are attached to the base of the sheath and inserted on the median parietes of the body. When thas retracted the proboscis lies as a rigid cylindrical rod inclosed in a pouch made by the invaginated anterior end of the body (Fig. 12).

The protrusion of the proboscis seems to be effected by the propulsive force exerted by the fluid contents of the body cavity when forced forward by muscular contraction of the body-wall. A retractor muscle, or ligament, was traced from the interior of the proboscis sheath to the apex of the proboscis. Inversion of the proboscis itself is effected by this ligament, while eversion is produced by the action of the thick, muscular walls of the sheath upon a granular fluid which it contains. The hooks of the proboseis are arranged in quincunx order, thus giving rise to rows parallel with the long axis of the proboscis, and also to spiral rows. The body cavities of the females were crowded with myriads of eggs. These were long-oval and each contained a fusiform einbryo. The outer covering of the ova is a delicate but rather thick, transparent membrane. Within this and immediately surrounding the embryo is a thin but dense coat, which is much compressed at one end so as to look like a loop, slightly compressed at the other. The embryo in most of the ova had not developed sufficiently to indicate more than a fusiform, granular mass lying within the dense hyaline inner coat of the orum.
The spherical ovarian masses were in different stages of progress, some haring simple granular contents, others haring secondary masses within them, while in others oblong bodies, apparently joung embryos or the begiunings of ova, could be distinctly seen.

Haditat.-Flat Fish (Pseudopleuronectes americanus), in intestine; eight specimens. Wood's Holl, Mass., September, 1884.

Lehinorlynchus sagittifer, sp. nov.
[Plato VI, Fige. 1-2.]
This worm was found in the peritoneum of several species of fish. Although no adult specimens were found, the form of the immature specimens is so different from that of any adult Acanthocephala with which I am acquainted, and the structure and arrangement of the spines are so remarkable, that I propose the name E. sagittifer for it. Of course it is possible that it may subsequently be identified as the young
of some form already described, as the spines of the body are probably shed in the course of its further derelopment.
The proboscis is clavate, bluntly rounded in front, increasing slightly for a short distance back, and then narrowing gradually to the base, thickly beset with recurved hooks, of which there are about twenty series, counting from base to apex, and about fifteen visible in the longest spiral; proboscis eversible; neck short, unarmed; body always curved, anteriorly armed with sagittate spines, thus for ming an armed collar back of the neck, the spines of which are arranged in about eight trausverse rows, but placed a little irregularly. A short distance back of this spiny collar is a transverse row of sagittate spines, which are placed on the inuer (ventral) part of the curve, and extend up each side nearly to the outer (dorsal) edge. Following this row are about twenty other rows of similar spines, similarly placed, except that none of them contains as many spines, and hence is not as long as the first row. The first eight or ten rows do not differ much in length nor in the number of spines; posteriorly the rows become shorter and shorter until the last, in which the spines are few and hard to distinguish. The body increases in size for some distance back of the neck, attains its greatest dimensions about the anterior third, aud diminishes uniformly to the posterior end, which is in some slightly enlarged, ending ing with a bluntly rounded point.

These worms were all found in the body cavity of their host, coiled up and lodged in the serous coat of the intestine or stomach, or in the mesentery. When found they usually had the proboscis inverted, but ererted it, in whole or in part, when immersed in alcolol or when placed under the compressor. They were surrounded by a thin investing membrane, which was of the nature of a cyst, while at the same time it appeared to belong to the worm. They were uniforinly coiled in a curved or lu nate shape, with the rows of spines on the concare side. The body is much roughened by transverse wrinkles or creases, especially towards the posterior end.
The branching vascular system characteristic of this order is clearly defined. If the plane in which the curved animal lies be called a dorsoventral one, then the principal vessels of the vascular system are lateral.
The sexual characters were already plainly distinguishable. In one specimen two oval masses suspended from the base of the proboscis sheath were identified as the beginning testes. These were oval, granular bodies, the first 1.16 mm back of the proboscis sheath, and the second 0.34^{mm} farther back; length of each 0.164^{mm}; breadth 0.127^{mm}. They lay in the ribbon-like band or tube which in all the specimens depended from the base of the sheath, and which doubtless represents the suspensory ligament. Behind the anterior oval body lay a cluster of spherical nucleated cells. The genitalia, in this specimen, onded in a campanulate expansion, at the base of which a small pointed body was
recognized, which was probably the spiculum. This enlargement of the genital apparatus opened into a larger oval cavity in the extreme posterior end of the body. This was evidently the male bursa, but was still closed by the investing body-membrane.
In some specimens which had been stained and mounted in glycerine, bodies which looked like the lemuisci were discovered. These were paired organs, very long and slender, tapering gradually to near the posterior end, which was bluntly rounded. Their attachment was at the base of the proboscis sheath. In oue specimen the attachment was by a short ligament. The geveral appearance of these organs was much like that of the lemnisci of \mathbf{E}. agilis, but their attachment at the base of the sheath, instead of near the base of the proboscis, makes their indentification as lemnisci doubtful.

In a series of thin longitudinal sections made from one of these worms a cluster of spherical, grauular masses was found lying just back of the base of the proboscis sheath and apparently supported by the suspensory ligament. These masses were each about $0.02 \overline{5}^{\mathrm{mm}}$ in diameter, and each contained a number of smaller cells. It is probable that these represent the early stages of the ovarian masses peculiar to this order.

The proboscis sheath is thick-walled and made up of two layers, the outer dense, about 0.03^{mmm} thick; the inner lonse in testure and 0.032^{mmm} thick. From the base to about the middle of the sheath these layers are close together; from that point to the base of the proboscis they separate slightly, but unite again at the base of the proboscis. A retractile ligament extends from the proboscis back through the neck, where it divides into two branches, which continue to the base of the sheath, where they are attached. The sheath extends to the third or fourth row of rentral spines.

An oblong granular mass was noted about the middle of the proboscis, seen in a thin section, and on its inner wall. A round grauular mass about 0.07^{mun} in dianeter was seen near the base of the neek in one section. I could find no indication of a ganglion in the base of the proboscis sheath.

Measurements of mounted specimcus.

Nos. 1 and 2 were from Cynoscion regalc, No. 3 from Pomatomus saltatrix, and No. 4 from Paralichthys dentatus.

The length of the larger hooks on the proboscis is about 0.08^{man}; of the spines on the collar from 0.00^{mm} to 0.06^{mm}; of the spines in the ventral rows from $0.06^{m+\prime}$ to 0.07^{mmu}.

In specimen No. 1, of which measurements are giren above, the number of spines visible on side in the first ventral row was 24 ; the number visible on one side in the second to the twenty-first rows, respectively: $16,13,13,16,17,13,13,12,12,10,11,12,11,9,9,9,8,7,10,6$.

Habitat.-Common Flonnder (I'aralichthys dentatus), Squeteague (Cynoscion regale), Bluefish (Pomatomus saltatrix). In peritoneum and mesentery. Wood's Holl, Mass., July and August, 1884-'85.

Echinorhynchus proteus Westrumb.

[Plate VI, Figs. 3-5.]

Dujardin, Hist. Nat. des Helminth.,p. 529. Molin, in Sitzungsb. d. Kais. Akad. d. Wissensch., xxx, 143, and xxxiii, 295. Leidy, Proceed. Acad. Phila., v, 208, and viii, 48. Greef, Wiegmanu's Archiv, i, 361-375, tab. vi. Pagenstechor, Z. f. w. Z., siii, 413, tab. xxiii-xxiv. Leuckart, Menseh. Paras., ii, 785-817. Moliu, Denksch. d. K. Akad., xix, 279-3, tab. ix, fig. 2-3.

For detailed synonymy and habitats sue Diesing, Systoma ILelnninth., ii, 51-53, and Revis. der Rbyngo., 754.

Proboscis cylindrical or often subclavate, with about 6 to 8 longitudinal series of recurved hooks visible on one side, 12 to 20 in each series. Median and anterior hooks flat and thin, postero median and posterior, slender. A thin-walled, spherical bull a immediately back of the proboscis, followed by a long, slender, cylindrical neck. Body fusiform, slightly swollen and rounded anteriorly, obtusely rounded posteriorly; color varying from light lemon-yellow to orauge. Leugth, $15^{\text {mum }}$ to 23^{mm}.

> Measurcments of a living specimen.

Diarneter of proboscis, median .. 0.31
These parasites were found in great numbers attached to the inner wall of the large intestine of the Striped Bass (Roccus lineatus). They differ from most intestinal parasites in being highly colored. While the prevailing color is orauge of different shades, many were observed which were a light lemon-yellow, and others intermediate between these colors.

The presence of these parasites in cousiderable numbers must be injurious to the host, since they aro always firmly attached and usually cause much local inflammation. In many cases the proboscis was found to have penetrated the walls of the intestine and to be protruding into the body cavity. In most instances of this kind it was surrounded by an abuorl.al secretion from the tissues of its host. This secretion is of a dark-brown, cinuamou-brown, or amber color. In many cases the proboscides were found to have become nuclei, around which were formed, in concentric layers, calculi of this abnormal deposition. The whole is further inclosed in a thickened eyst composed of two or three layers of connective tissue over which is thrown a thin outer covering of peritoneum. A cluster of these encysted calculi, lying in the peritoneum of the large intestine of a specimen of Striped Bass (Roccus lincatus), is shown in Fig. 5; one of the cysts opened, in Fig. 5a; and a cross-section of a calculus removed from its eyst in Fig. 50 . The diameter of one of the largest cysts was 18 mu. In the calculus figured the diameter is $15^{\text {mum. }}$. The color on the surface is, when the calculus is placed in alcohol, a beautiful rich golden-brown with a silky iuster. The surface is uneven, with little irregular rounded or mammillary eminences. The nucleus is irrecrularly linear, $1 \frac{1}{2}$ to $2^{m m i n}$ in length. The inner layers are thin, irregularly concentric and darker in color than the outer layers. Outside of this central, dark portion is a lighter ring about 2? man thick and made up of a great many thin, concentric layers. This lighter portiou is shatrply marked off from the remaining outer part of the calculus, separates from it casily, and can bo removed from the half-calculas, as one cupel can be taken out of a nest made up of graded sizes. The outer ring is about $3^{\prime \prime \prime \prime}$ thick, is a little darker than the middle ring, but, like it, is made up of a number of thin, concentric layers. The layers of the two outer rings are more regularly concentric than those of the imer portion. The color of the cut part of the calculus is a little darker than that of the surface, and the luster is waxy. A piece of one of these secretions burned readily and left a suall quantity of ash which was composed largely of calcium carbonato. In one, from which the alcohol had evaporated, erystals wero noticed which had the general liabit and appearance of those of oxalate of urea.

Alcoholic specimens are uniformly white in color.
Halitat.-Striped llass (Roccus lincatus); largo intestine; Wood's Holl, Mass., August and September, 1884-'sj.
S. Mis. $00-32$

List of Lintozoa described in this paper, with their hosts.

Entozoa.	Host.		$\xrightarrow[\text { ¢ }]{\text { ¢ }}$	欴
1. Dibothrium manubriforme sp. vov	Spoar Fish (TCtrapturus allidus).	4	I	
2. Dithathrium aluteree sp nor.................	Filo Fish (Aluterat Schoppfii).....)	8	1	5-8
3. Echeneibothrium variabile Van benoden.......	Common Skato (Raia erinacea).	10	I	${ }_{\text {c-13 }}^{0-13}$
5. Phyjlobothrium thysanocephalum sp. nov.....	Tigor SLark (Galeocerdo tigrinus).	12	If	1-12
0. Orygmatobothrium angustums sp. nov	Dusky Shark (Oarcharias obscurus).	10	III	1-3
7. Crossobothrium laciniatum gon. et sp. nov ...	Sund Shark (Odontaspis litto. ralis).	18	III	4-18
8. Pharciobothrium lasium geu. et ap. nov......	Dunky Slark (Carcharize obscu-	22	IV	24-29
9. Calliobothrium verticillatum Radolphi	Smooth Dogfish (Mustelus canis).	24	IV	1-8
10. Mhynchovothrium bisulcatum sp. nov	Dusky Shark (Oarcharias obsearus.)	27	1 V	0-23
11. Mhynchobothrium tonuicolls Rudolphi	Smooth Dogfish (Mustelus canis).	34	V	17-18
12. Itenia dilatata sp. nov	Common Eel (Anguilla vulfaris).	36	V	
13. Echinorhynchus agilis Rudolphi	Anquilla vulgaris and Carehariag odscuruf.	38	v	1-6
14. Echinorhynchus acus Rudolphi	Flat Fish (Pscudopleuroncetes americanus).	40	V	7-13
15. Wchinorhynchus sagittifer sp. nov	Common Flonnder (Paralichthys dentatus). Squateague (Oynoscion regale), and Blacish (Po matomus saltatrix).	41	VI	1-2
16. Echinorhynchus protcus Westrumb	Striped Bass (Roccus lincatus)..	44	VI	3-5
17. Eabryo Tetrabochria.	Squetoague (Oynoscion regale) ..	1	VI	6-9

Washington and Jefferson College, Washington, Pa., June 1, 1886.

Blank page retained for pagination

EXPLANATION OF I'LATE I.

Fig. 1. Ditothrium manubriforme sp. nov. Adult strobile, natural stzo.
Fig. 1a. Median segmente of samo, enlarged 3 diameters.
l'ig. 1b. The shme, opposito side, showing genital openings, entarged 3 diamotort.
Fig. 2. Head and anterior segments of young specimen, onlarged 12 diamedors.
Fig. 3. Posterior segments of adult, cularged 10 diamoters.
Fig. 4. Ova. a, ova with whito opaque shell; b, ova with thin tramparent, shall, onlarged 150 diamoters.
Fig. 5. Dibothrium alutcio sp. nov. INead and antorior sergments, marginal view, enlarged 4 diamoters.
Fig. 6. Lateral viow of samo specimen, enlargod 4 diamotery; lengrth of mecimen $27^{m i n}$.
Hig, 7. Latoral view of head of another specimen, emarged 4 diamoters; bothria contracted and concave.
Fig. 8 . l'osterior ond of namo specimon, emlarged 4 dianetors; lengrth of specimon $7 \mathrm{~g}^{\mathrm{mm}}$.
Fig. 9. Leheneibothritm rariahte Van Boneden. Front viow of hoad as seen in liviner specimons, whon tho sucking disks aro appliod to tho under surface of the cover-glass, onlarged 36 diamotors.
Fig. 10. Ontline of molian, irrognlar segmonte, enlarged 10 diameters.
Figi. 11. Outline of other segmente farthor back, showing position of genital aperture, enlarged 10 diameters.
Fig, 19 . Ono of tho nime, compreased, showing the genitalia, onlargod 20 dianchors.
l'ic. 13, Lateral viow of head, alcoholic specimen, enlared 20 diametors.
Figuros 1,2, and 9 from lifo; others from aleoholic and mounted specimons. All figures mado by Mrs. Edwin Linton.

Blank page retained for pagination

EXPLANATION OF PLATE II.

Fig. 1. Phyllolothriam thysanocephtidumpp. nov. Head and part of neck of adult, natural size, lenerth of specimen 1 meter.
Fig. 2. Part of body of same, showing the beginning segments, enlarged 2 diam. eters.
Fig. 3. Segmonte near posterior ond of adult, enlarged 2 diameters.
Fig. 4. Maturo fre proglotis, cnlarged 2 diamoters.
Fig. 5. Mature free proglotis, flattened under compressor, enjarged 4 diamoters.
Fig. 6. Posterior segments of a specimen measuring 290 m in length, enlarged 2 diamoters.
Fig. F. Head and neck of young specimon, enlarged 12 dianoters.
Fig. Fa. Front view of rostollnm, enlarged 18 diameters.
Fig. 7b. Sido view of same, enlarged 18 diamoters.
Fig. 8. Young specimen, natural size.
Fig. 9. Transverse section through middlo of head of a young specimen, length 58 mm, enlarged 9 diameters.
Fig. 10. Transverse nection throngh anterior third of head of adult, onlarged 9 diameters.
Fig. 11. Transverso section through neek a short distanco baek ef head, adult, enlarged 6 diamoters.
Fig. 12. Transverse nection throngh neck of yonng, near the head, eularged 9 diameters.
Fig. 13. Spongiobothriom variabile gen, et sp. nov., outlino of strobile with regular slender segurents, enlarged 5 diameters.
Fig. 14. Outline of another specimen with aloorter and more irregular segments, onlarged 6 diameters.
Fig. 15. Side view of hoad, neck, and anterior sogments, edges of bothria contracted, enlarged 10 diameters.
Fig. 16. Front view of head of anothor specimen, with two bothria expanded, enlarged 10 diameters.
Fig. 17. Three mature segmentis, enlarged 5 dianoters.
Fig. 18. Median segment, enlarged 20 diameters.
Fig. 19. Mature bermont, enlargod 20 diameters.
Figures $3,4,6,7,8$, and 15 from lifo ; othors from alcoholic and mounted specimens. All figures inade by Mrs. Edwin Linton.

2216

826

2227

explanation of plate ili.

Fig. 1. Orygmatobothrium angustum sp. nov., outline of strobile, oularged 8 diamoters.
Fig. 2. Ifead and part of neck of same, calargol 20 diameters.
Fig. 3. Posterior segment of samo, onlarged 20 diameters.
Fig. 4. Crossobothrium laciniatum gen. ot sp. nov., adult strobilo, in fresh wator, natural size.
Fig. 5. Head and first segments of same specimen, onlarged 12 diameters.
Frg. G. Head and first segmonts of a specimen after lying for a fow minntos in fresh water, enlarged 8 diametors.
Fig. 7. Posterior segments of samo, enlarged 6 diameters.
Fig. 8. Posterior segments of another specimen, showing lateral openings for tho discharge of ova, enlarged 6 diameters.
Fig. 9. Head and first segments of adnlt, showing one position of bothria whilo in motion. The bothrium in front view and tho one opposito (not shown in sketch) aro thrust forward, enlarged 10 diameters.
Fig. 10. Tho same, with ono bothrinm fattened out and applied to the bottom of the wateh-glass, onlarged 10 diameters.
Fig. 11. The same with two bothria pushed forward, tho ends entonded and curled ontward, enlarged 10 diameters.
Fig. 19. Freo proglotis showing lateral opening for dischargo of ova, enlarged 6 diameters.
Fig. 13. Frea prorgotis before the ova aro dineharged, flatened under the compressor, enlarged 10 diameters.
Fig. 14. Another after most of the ova bave been diselarged from the lateral opening, also dattencel under compressor, enlarged 10 diameters.
Fig. 15. Front view of head of specimen transfered from fresh water to alcohol, en larged 10 diameters.
Fig. 16. Transverse section through another npecimen, enlarged 10 diameters.
Fig. 17. Yonng strobile hefore segments have mado their apparance near the head. Thojoints at tho posterior end are psendosegments ; flatened under compressor, enlarged 12 diamoters.
Fig. 18. Head and anterior part of a young specimon in fresh wator, onlarged 12 diameters.
Fig. 1Ra. Anterior serments of samo, enlarged 12 diamotors.
Fig. 18b. Posterior segments of mamo, enlarged 12 diameters.
Figures 9, 10, 11, 13, 14, and 17, from living apecimons in soa-wator ; firures 4, 5 , 6 , $7,8,18,18 a$, and 187 , from living npecimens in fresh water; othors from alcoholic and mounted specimons.
All figures made by Mrs. Edwin Linton.

explanation of plate IV.

Fig. 1. Calliobothriumverticillatum Rudolphi. Head and first segmonts turned so that both a marginal and a latoral viow may bo obtained, enlarged 20 diameters.
Fig. 2. Transition segments near head, showing the formation of secondary lateral faps, enlarged 20 diameters.
Fig. 3. Segments farther back, showing transition from threo lacinies to four, onlarged 20 diamotors.
Fig. 4. Sogments still fartleer back. The two median lacinia lave become of equal length and mearly as long as the primary faps; enlarged 20 diameters.
Fig. 5. Segments still farther towarils posterior ond, showing incipient obliteration of the two median lateral lacinia, enlarged 20 diameters.
Fig. 6. Sogments appronching posterior ond, showing further modification of posterior margin, enlarged 20 diamoters.
Fig. 7. Sogments near postorior ond of strobile, enlarged 20 difmeters.
Fig. 8. Posterior mature segment, enlarged 20 diameters.
Fig. 9. Rhynchobothrium bisulcatum ble. nov. Head and veck, lateral viow, var, a (soo description), enlarged 15 diamoters.
Fig. 10. Anterior segments of same specimen, enlarged 9 diameters.
Fug. 11. Antero-median segments of same, onlarged 9 diameters.
FIG. 12. Posterior segments of same; length of strobilo $4 \mathrm{~g}_{\mathrm{man}}$; eularged 0 dianetors.
Fig. 13. Head and neok, marginal viow, var. γ (nee doscription); leligth of strobile 92"m; enlarged 15 diameters.
Fig. 14. Antoro-median segments of same, enlarged 9 diameters.
Fig. 15. Median segments of samo, cularged 9 diameters.
Fig. 16. Posterior segments of same, enlarged 9 diameters.
Fig. 17 Auterior segments of :another specimen, var. β (seo deseription); Jength of stroluilo $230^{m m}$; enlargod 9 diameters.
Fig. 18. Median segments of same, enlarged 9 diameters.
Fig. 19. Postero-median segments of same, enlarged 9 diameters.
Fig. 20. Ontline of posterior segmonty of same, enlarged 9 diambers.
Fig. 21. Alonormal form, secoudary chain of segments, orfyinating from tho margins of two primary segments, enlarged 10 diameters.
Fig. ©2. Anothor secondary chain from the pontero-marginal border of a primary seg. ment, enlarged 10 diametors.
Fig. 23. Apex of proboscis, enlarged 150 diametors.
Fig. 23a. Baso of same, enlarged 150 diamoters.
Fig. 24. Phoreiobothriam lusium gen. st sp. nov. Outline of strobile, enlargod 6 diamcters.
Frg. Wr). Front view of Lead, enlarged 20 diameters.
Fig. 26. Lateral view of head of anothor specimen, onlarged 40 diameters.
Fig. 26a. Spines from neck of same, onlarged 350 diameters.
Fig. 27. Compound hooks from one bothrium, enlarged 175 diameters.
Fig. 28. Another specimen with many spines on the neck, and showing stria on bothria somewhat flatitened undor comproasor ; enlarged 20 diamotors.
Fig. 29. Posterior mature segmont, onlarged 20 diametors.
All the figures in this plato mado from alcoholic or mountod specimons, by Mrs. Edwin Linton.

EXPLANATION OF PLATE V.

Fig. 1. Echinorhynchus agilis Rudolphi. Sketch of living spocimon, malo, flattoned under compressor, onlarged 10 diametors.
Fig. Ia. Auother specimen, malo, natural sizo.
Frg. 2. Sketch of living spocimen, fomale, flattoned under comprossor, onlarged 10 diameters.
Fig. 2a. Another spocimen, female, natural sizo.
Fig. 2b. Ova, onlarged 200 diamoters.
Fig. 3. Outlino of spocimen with proboscis rotracted, onlargod 25 diametors.
Fig. 4. Outline of male, from C. obsourus, onlarged 15 diamoters.
Fig. 5. Posterior extromity of another malo, showing bursa evorted, onlarged 15 diamoters.
Fig. 6. Hooks of proboscis ; a, from first row ; b, from sccond row; c, from third row; .. onlarged 150 diamotors.
Fig. 7. Fchinorhynchus acus Rudolphi ; outlino of malo, cnlarged 20 diamotors.
Fig. 8. Malo and female alcoliolic specimons, natural sizo.
Figs. 9 \& 10. Specimens in sea-wator, enlarged 2 diamoters.
Fig. 11. Specimen shown in Fig. 10, aftor lying somo timo in frosh water, onlarged 2 diamoters.
Fig. 12. Outlino showing proboscis partly retracted, retractor museles and lemnisci, enlargod 15 diamoters.
Fig. 13. Auterior end of fumale, sinowing protrnded proboscis and ova, Bulargod 15 diamoters.
Fig. 14. Tania dilatata sp. nov. Moad and anterior part of neck, onlarged 18 diameters.
Fig. 15. Portion of neck, showing dilatod folds, onlargod 18 diameters.
Fig. 16. Outline of posterior segments, onlarged 4 dimnoters.
Fig. 17. Rhymchobothrium tenuicollc Rulolphi. Outline of strobilo, enlarged 2 diameters.
Fig. 18. Hend and nock of samo, onlarged 30 diameters.
Fig. 18a. Portion of proboscis, enlarged 350 diameters.
Fig. 18b. Hooks near apox of proboscia, enlarged 350 diametors.
Figures $1,1 a, 2,2 a, 2 b, 7,9,10,11,14,15,16$ from lifo; othors from alcololic and mounted specimons.

All figures mado by Mrs. Edwin Linton.

Blank page retained for pagination

EXPLANATION OF l'LATE VI.

Fig. 1. Echinorhynchas sagittifer sp. nov. Ontline sketeh of young, showing pro truded proboscis, neck, collar armed with sarithato mpinos, transverses rows of sagittato spines on tho body, and, interiorly, tho proboscis shoath, retractor muscles of same, tho genitalia deponding from sheath of proboscis, oularged 20 diameters.
Fig. 1a. Hooks of proboscis, ventral side, oularged alout 150 diameters.
Fig. 1b. Hooks of proboscis, dorsal side, enlarged about 150 diameters.
Fig. Ic. Sagittato spines from collar, enlargod about 160 diameters.
Fig. 1al. Sargittato spiucs from one of the transvorse ventral rows on body, enlarged about 150 diameters.
Fig. 1e. Fivo contighous hooks in one of the spiral series on the proboseis, enlarged abont 150 diameters.
Fig. 2. Sketch of live spocimen, somowhat flattoned by the compressor, enlarged 12 diameters.
Fig. 3. Eedinorhynches potens Westrumb. Portion of rectum of Roccus lincatus (Striped Bass) with parasites attached, natural sizo.
Fig. 4. Outlino of an individual removed from its placo of attachment, enlarged 2 diametors.
Fic. 5. Abnormal secretions in peritoncal covering of lapgo intestine of lioceus lineatns, to tho inner coat of which numbers of these parasites wero attachod, as shown in lig. 3, natural size.
Fig. Fa. Ono of the cysts shown in Fig. E, cut open, exposing tho calculus within, natural size.
Fig. 5b. Transverse soction through ono of the abnormal secretions, showing its concontric etructure, natural size.
Fig. 6. Portion of cystic duct of Cynoscion regale with young Tetrabothria attached to mucous liningr, enlarged 3 diameters.
Fig. 7. Ono of the spocimens romoved from its placo of attachment, enlarged 12 diameters.
Fig. 8. ${ }^{\circ}$ y young Tetrabothrium from intestino of namo host, onlarged 12 diamoters.
F'r. 9. Another from sime habitat, fattoned undor compressor, oularged 12 diameters.
Figures $2,3,4,6,7,8$, and 9 from lifo; others from alcoholic or monuted specimons. All figures made by Mrs. Edwin Linton.

INDEX.

[NOTR.-The reforences are to page-Igures in brackets.]

Blank page retained for pagination

V.-REPORT ON THE MEDUS® COLLECTED BY THE U. S. FISH COMMISSION STEAMER albatross in the region of the GULF STREAM, IN 1885->86.

By J. Walter Frwkes.

The following paper considers the Medusw collected in the summers of the years 1885 and 1886 . of the eastern coasts of the United States, in the region of the Gulf Stream. In this collection there are many genera which have already been described from this locality, and others which are believed to be new to science. Many belong to the so-called deep-sea fauna, and some, formerly supposed to be limited to great depths, are recorded by the collector from the surface waters.
Among Siphonophores, some of the most interesting are new specimens of the gigantic physophore, Pterophysa. One specimen in the collection of these animals reaches the great length of 23 feet in alcohol. Next to certain recorded specimens of the genus Apolemia, this is one of the largest Physophores yet described; and is the largest yet reported from the waters of the Gulf Stream contiguous to our coast. The new genus Pleurophysa is interesting in its relationship to the Rhizophysidæ, and the somewhat peculiar characters of the polypites.

Stomatoca periphylla is recorded for the first time from the western waters of the Atlantic.

A new Pegantha, a genus which has never before been found in the Galf Stream, is described. As more and more specimens of the iuteresting genus Atolla, ascribed by Hæckel to the deep-sea fauna, are collected, the number of specimens from the surface water is increased. In the present collection we have three more examples of this medusa from the surface. This fact would seem to indicate that the genus is not necessarily confined to the great depth at which it was collected by the Ohallenger.

Halicreas and Solmaris incisa are found in the collection, and new facts for the acceptance of the deductions made from previously known specimens recorded.

Ephyroides rotaformis is represented by several specimens.
A new Ctenophore, of the known genus Callianira, is recorded for the first time from the waters of the Gulf Stream.
S. Mis. $90-33$

As more and more is known of the medusan life of the Gulf Stream, we see how rich in new genera the waters of this current are, and what a good collecting locality it presents for a discovery of new genera, species, and even families of these pelagic organisms.

This paper, like those with a similar title which have preceded it, is preliminary to a final report on North American Hydrozoa, which the author has in preparation.

SIPHONOPHORA.

Pneumatophoral.

Family RHIZOPHYSID压.

Pterophysa, Fewkes.

In the collection of 1883 a Siphonophore was recorded, to which, from the peculiar wings or ptera on the polypites, the name Pterophysa was given.

The stem of this specimen is very much twisted, and the float and other portions so contracted that it was impossible for me to make out the anatomy of any part except polypites. The wings of the polypites are, however, so exceptional, that it seemed justifiable to refer this specimen on this ground to a new genus.

Pterophysa differs from any Rhizophysid in this and certain other features of the anatomy, which are well marked in the new specimens recently collected. In the collection of 1883 a giant float was found, which, although at that time not recognized as belonging to Pterophysa, after study of new material is thought to belong to this genus.

Among the collections made by Mr. A. Agassiz, in the Blake, there is also a huge Siphonophore, which has ptera on the polypites, and seems to belong to the same genus. These are the physophores ("Rhizophigsa") mentioned by A. Agassiz in a letter to the Superintendent of the Coast. Survey.*

In the collections of the Albatross, in 1885, there are fresh specimens of Pterophysa, which throw light on some points in the anatomy of this curious Rhizophysid. The specimens are as follows:

Of the new specimens, No. 1 is the best preserved and the largest. Both were found twisted on the dredge wire or rope. Neither of the

[^62]specimens have the body complete, but from the fragments of both several common details can be made out. No. 1 is destitute of a float; No. 2 has the float well developed.

Pterophysa grandis, Fewkes.

[No. 1.]
The stem of this specimen is approximately 20 feet in length in alcohol. It is ribbon-shaped, about $3^{\text {mm }}$ broad. Not twisted. Color in alcohol, white. No float present, but this striucture is ruptured from its connection.

The terminal polypite is 40^{mm} in length, elongated, finger-shaped, With dark color near its distal end. On the proximal third of its length it bears tro well-marked lateral bands or ptera, which are placed opposite cach other on the polypite. The terminal polypite arises from a point on the axis where the stem is somewhat thickened. The surface of the thickened stem is nodose, probably from contraction. A short fragment of a tentacle springs from its base of attachment to the stem. The stem narrows above the nodose enlargement, becomes again thickened as it recedes from the polypite, and then diminishes in size to the flat, ribbon-like shape of the stem.

The penultimate polypite is elongated, finger-like, $50^{m m}$ in length, enlarged into a knob at the distal or oral end. In the proximal region, on each side, there are two marked ptera. The penultimate polypite is similar to the terminal, and arises from the stem by a long thread similar to but smaller than the peduncle. The filamentary union of the polypite to the stem arises from a tangled cluster of thread-like bodies on the stem. These bodies possibly correspond to the immature lateral branches of the tentacle.

Between the region of the stem from which the tangled lateral bodies arise and the other (opposite) end of the stem there are several polypites, all of which liare similar filamentous attachments to the flat (in alcohol) axis, as the ultimate and penultimate. Many small clusters of sexual bodies, confined as a general thing to the Hat axis, are noticed. These bodies hare, like the sexual glands of Rhizophysa, the form of botryoidal clusters.

> [No. 2.]

In this specimen a float and the proximal end of the axis are well preserved. The whole axis is 1.9^{m} long.

The float is large, $15^{m m}$ in length, and appears to be carried upright, as in R. eysenthardtii, Geg. It has an apical opening. This opening is surrounded by a zone of reddish pigment. From the pneumatophore hang digitiform appendages into the cavity of the pueumatocyst, as in the genus Rhizophysa. The walls of both pneumatocyst and pneus matophore are thin. At the base of the pneumatocyst the stem becomes
thick and swollen, while lower down, more distally from the float, it tapers gradually and becomes flat, as in the first specimen. On the one side of the thickened region of the stem there arises a small cluster of flask-shaped bodies, in the form of elongated, digitiform structures, which may be undeveloped polypites. Below (more distally from the float) the latter structures we find a number of polypites, more or less thickened by contraction, which are arranged in clusters. No tentacles observed attached to them. Nine polypites (one broken in examination) were counted in the largest cluster.

The distal end of the stem now (distally from the float) diminisbes in diameter, and a second cluster of flask-shaped bodies is seen. When this second cluster is closely examined it is found to be composed of four polypites, brought together by a contraction of the stem. These polypites have ptera, but no tentacles. The last of the second cluster of polypites, the most distant from the float of any yet considered, is 60^{mm} from the apex of the float. The stem, between the first and second clusters of polypites, is muscular, more or less folded and nodose by contraction. It sometimes shows an infolded groove on one side.

The diameter of the stem distally from the secoud cluster of polypites diminishes very considerably, and after the addition to the number of existing polypites of two more, we find a long bare interval of the axis.

In addition to the long fragment of Pterophysa in No. 2, there are two other fragments of large size, which seem to belong to the same animal. Both of these fragments have a nodose stem, which appears much twisted and contorted. The first fragment is about 250^{mma} long, and at oue end is Hat, and seems to be broken from the axis of the larger specimen in the same bottle. It is enlarged about midway in its length, and at one end bears a swollen nodose body, from which arises a polypite. This polypite has a tentacle, which arises from one side.*

If we compare this fragment and its polypite with the terminal polypite of the specimen already described (No. 2), we find a close resemblance in mauy particulars. A swollen nodose body is present in both. Tentacles existin both. The fragment is therefore regarded a torminal polypite.

In another fragment of No. 2 we have a long undivided part, which bifurcates and becomes nodose at the free euds, while a botryoidal body, homologous with a sexual gland, arises from one of the bifurcations.

Pterophysa, sp. incog.
In the collection made by Mr. Agassiz in the Caribbean Sea there are a few mutilated specimens of a Pterophysa, the polypites of which have

[^63]a close likeness to the above, although I have not been able to satisfactorily study the other organs. These specimens, in one or two instances, are destitute of a float, but when that organ is present it has the same cluster of flask-shaped immature polypites below it as in Pterophysa. The polypites themselves have the lateral wings.

Speoimens of Pterophysa collected by the Blake.

Station.	Localits.
205	Off Martiniquo.
110	
108	Off Nuevitag.

gen. incog.
Among the Siphonophores collected by the Blake is one from St. Kitt's, which I have not been able to identify on account of its frag. mentary nature. The fragments consist of large numbers of polypites. The stem, float, and other organs are wanting. One or both ends of the polypite has a very dark red or purple (red) color. There are no lateral ptera. The polypites are about 40^{mm} in leugth.

> Pleurophysa, gen. nov.
> P. insignis, sp. nov.

Among the new Rhizophysidæ are many specimens of a genus which is different from any jet described, and which probably is a new genus as well as species. The specimens are very numerous and come from the following localities:

Catalogue number.	Station.	North latitude.	West longitude.
12100	$\begin{aligned} & 2543 \\ & 2585 \\ & 2584 \end{aligned}$	$\begin{array}{ccc} \circ & \prime & \prime \prime \\ 39 & 58 & 15 \end{array}$	$\begin{array}{ccc} \circ & 1 & \prime \prime \\ 70 & 42 & 30 \end{array}$

Pleurophysa is destitute of nectocalices and hydrophyllia. The axis is thick (in alcohol), and all the appendages arise from one side of the stem.
Float small, pyriform, pigmented at the apex, with thin walls. Just below the float there is a small cluster of stylated spherical bodies, which occupy the same position as the undereloped nectocalices in other physophores.
The region of the stem below the claster of stylated bodies is thickened, and bears on one side a row of knobs. These were at flrst thought
to be the line of attachment of nectocalices. In a large number of specimens, however, no sign of a nectocalyx was discovered.
The distal end of the anterior stem (portion from which the knobs arise) is marked by a cluster of splèrical or club-shaped bodies, which in some of the specimens have a reddish color even in alcohol. These botryoidal clusters resemble sexual bodies. The distal region of the stem from the cluster of bodies last mentioned is much longer than the anterior, and bears on one side a double row of flask-shaped bodies closely crowded together. These bodies are fimbriated on one side by small lateral appendages, and are thought to be polypites. Noteutacles were observed, and no clusters of sexual bodies or immature tentacular knobs at the bases of the polypites. No clusters of sexual bodies on the axis between the union of the supposed polypites and the axis.
The polyp stem is spirally coiled in many of the specimens. No hydrophyllia. Tasters, unknown.

It must be said that the interpretation given to the different organs which has been given above is somewhat conjectural. Of the float, stem, and polypites there can be little doubt. It seems probable that the cluster of bodies which separate the anterior stem from the polyp stem are sexual bodies.

The nectocalices and hydrophyllia are easily ruptured from the stem, and their absence may simply be due to this fact. It seems strange that among so many specimeus not even a fragment of these bodies is found, while in specimens of Agalma, collected by the same collectors, these gelatinous structures are well preserved. We shall, therefore, look with interest to a new collection of Pleurophysa and a study of better-preserved specimens for anatomical details, which this account necessarily leaves in great imperfection.

Family PHYSALIADÆ.

Physalia arethusa, Tilesius.

This physophore is one of the most commonly collected of all the siphonophores of the Gulf Stream. In the collections of 1885-'86 it is recorded from the following localities:

Catalogue number.	Station.	North latitude.	West longitude.		
		- 11.	\bigcirc	,	"
11837	2566	$37 \quad 23 \quad 00$	68	08	00
11630	2507	$\begin{array}{lll}37 & 45 & 00\end{array}$	06	50	00
15233	2711	$38 \quad 59 \quad 00$	70	07	00
15255	2712	$38 \quad 20 \quad 00$	70	05	80
15754	2723	$80 \quad 4700$	73	09	30
15755	2725	363400	73	48	00
15762	2727	$30 \quad 35 \quad 00$	74	03	30

Physophore.

Family AGALMIDÆ.

\{ Agalma okenir, Esch. \{Crystallodes rigidum, Hæck.

Hippopodie.
Family HIPPOPODIDÆ.
Gleba hippopus, Forskal.

Catalogue	Station.	North latitude.			Wrot longitudo.		
		-	,		\bigcirc	1	"
11070	2506		23		68	08	00
11684	2569	39	20		08	03	
12111	2500	37	23		08	08	
11683	2506	37	23		08		

Diphys (Calycophores).

Family ABYLAIDAE.
Abyla trigona, Quoy \& Gaimard.

Catalogue	Stalion.	North latitude.	West longltude.
		-	, "
11070	2566	$37 \quad 2300$	$68 \quad 08 \quad 00$

This is the first mention of A. trigona from the Gulf Stream, although I have seeu specimens from the Caribbean Sea.

A fragment of the posterior Nectocalyx. Family DIPHYID.Æ.

Epibulia aurantiaca, Voge.

Catalogne	Station.	North latitude.	Weat longitudo.
		- , "	- ' 1
11830	Hyd. 753	$40 \quad 18 \quad 30$	$\begin{array}{llll}63 & 39 & 30\end{array}$
12109	2545	$\begin{array}{llll}39 & 58 & 15\end{array}$	$70 \quad 42 \quad 30$

Diphyes, sp.

Catalogue number.	Station.	North latitude.	West longitude.
11836	Hyd. 753	$\begin{array}{ccc}\circ & \prime & \prime \prime \\ 40 & 18 & 30\end{array}$	$\begin{array}{lll}\circ & \prime \prime \\ 53 & 39 & 30\end{array}$

Muggiea, sp. $\%$
Among the Diphyid-like Medusa are many specimens which have the anterior nectocalyx only. All of these I have placed in the genus Muggisea, following Chun* in his limitation of the generic name Muggiac to Diphyids with one nectocalyx, which resembles the anterior nectocalyx of the genus Diphyes. Our Atlantic species somewhat resembles M. kochii, but differs from it in several particulars. In the absence of more knowledge of the live animal, I will provisionally refer this to an unknown species of Muggica.

Catalogue	Station.	North latitude.	Webt longitude.
		- . ${ }^{\circ}$	- " "
15227	2711	$38 \quad 59 \quad 00$	$\begin{array}{lll}70 & 07 & 00\end{array}$
15254	2715	$\begin{array}{llll}88 & 29 & 30\end{array}$	70
15755	2725	$\begin{array}{lll}30 & 34 & 00\end{array}$	$73 \quad 48 \quad 00$

[^64]
Discoidea.

Family VELELLID \neq.

Velella mutica, Bosc.

Family PORPITIDA.
Porpita linnatana.

Catalogue number.	Station.	North latitude.			Weat longitude.		
			1		-	1	
11640	2536		56		70	47	
11641	2537		50	45		50	
11642	2538		Б7	30	70	51	15
11043	2560		23			08	

Craspedota.

Family $\not \subset Q U O R I D \nsubseteq, ~ E s c h s c h o l t z$.

Polycanna, Hæckel.

It is rery difficult to distinguish the genera and species of the above family, especially the American representatives.
A. Agassiz describes three species of Zygodactyla from our coast: Z. gronlandica Ag., Z. crassa A. Ag., and Z. cyanea, A. Ag. Hackel places Z. gronlandica, Z. crassa, and Cremastoma flava, A. Ag., in the geuus Polycanna, Hackel, while Z. cyanca A. Ag. is referred to his genus Mesonema as M. cyaneim. According to A. Agassiz, the tentacles in Z. granlandica, Z. crassa, and C. fava are more uumerous than the chymiforous tubes. This is true also, according to Hteckel, of P. vitrina, Hæck. In P. germanica and P. italioa, Hæck., the tubes and tentacles correspond in number, while in P. fungina, Hæck., the radial tubes are more numerous than the tentacles. These characters form the thres subgenera:

1. Rhacostoma. Radial tubes more numerous than tentacles.
2. Cremastoma. Radial tubes equal in number to the tentacles.
3. Zygodactyla. Tentacles more numerous than the radial tubes.

It is evident from what we know of the development of the Medusa (gonophore) of Z. granlandica (9) that the relative number of tentacles and radial tubes varies with age, and consequently the three subgenera are difficult to separate on this feature alone: There are specimens of Polycanna in the collection with characters of the first subgenus Rha. costoma, to which I have already given the name P. americana. It is beliered that we have at least two species of Polycanna on our New England coast, and provisionally these may be known as P. granlandica and P. americana. The basis of the separation of the two is the existence in the former of rows of subumbral knobs between the chymiferous tubes and the absence of these knobs in the latter. It happens that in the latter the number of tentacles is less than the number of chymiferous tubes, while in the former, according to A. Agassiz, the number of tentacles is greater than that of the radial tubes.*
It seems to me that the presence or absence of the subumbral knobs is a much safer character to rely upon in the separation of our species of Polycanna than any which has yet been suggested. If new investigation shall show that true specimens of gronlandica do not have subumbral knobs, our New England species is possibly new. From the fact that a supposed type specimen of Polycanna, labeled Z. grcenlandica, in the collection of the Museum of Comparative Zoology, has these tubercles, the name groenlandica is retained for this species.

There is another Zygodactyla-like Medusa in which I have not been able to find these gelatinous knobs, either in a live animal or in alcoholic representatives. As this species also differs from the species crassa and cyanea in the relative number of tentacles and chymiferous tabes, it is supposed to be the new species, americana.

Unlike all other American Zygodactyla, as described by A. Agassiz, this species has a smaller number of tentacles than of radial tubes, and at the same time none of the alcoholic specimens have subumbral tubercles. It is possible that the former feature indicates an immature Medusa, bat not so the latter; for, as has been already shown, the subumbral tubercles are present in the Medusa when very small.

Specimens referred to P. americana were collected in the following localities:

Catalogue	Station.	North latitude.			Weat longitude.		
		-	,		-	,	"
11650	2503	39	18	30	71	23	30
11665	2507	37	45	00	68	58	00
11873	2560			00	68	08	00
11674	2563 ?	39	18	30	71	23	30
11677	2580		23	00	68	08	00
111049	2539	39	59	45	70	53	00

[^65]
Pólycanna americana,* Fewkes.

Of all the specimens of the species examined in the collection of 1885 , No. 11674, station 2563 , is the best preserved. A diagnosis of the species is made from this specimen.

Disk flat, with a slight apical protuberance. Roof of the stomach convex, thicker thau the margin. Diameter of the roof of the stomach, 28 mm . Diameter of the disk, $70^{\text {nim }}$. Stomach wide, lips open. The stomach wall is formed by papillate folds, the number of which is equal to the tubes. These tubes fall down below the velum. Numerous (107) chymiferous tubes, each of which bears a folded sexual gland, reaching from the vicinity of the stomach to the marginal ressel.

Tentacles, 29-32? in number, long, base inflated. Between each pair of tentacles there are five or more small protuberances on the bell margin. These are either otocysts or immature tentacles. No subumbral tubercles on the umbrella, between the chymiferous tubes.

Of the other recorded Polycannce, P. grcenlandica, P. flava, and P. crassa have more tentacles than chymiferous tubes. No tubercles are recorded in P. flava. In an alcoholic specimen of Zygodactyla, with tubercles, now in the collection of the Museum of Oomparative Zoology, the tentacles are missing. I cannot, therefore, say at present whether the specimens with tubercles have the same number of tentacles as tabes or not. If the Zygodactyla, with tubercles, last mentioned, has more tentacles than tubes it may be gronlandica; if less, it is doubtful whether it is the same as the species (granlandica) which is recorded by A. Agassiz as possessed of more tentacles than tubes.

Family AMPHINEMID AE, Hæckel.

Stomatoca \dagger Periphylla, Hæckel.

Catalogne number.	Station.	North latitude.	West longitude.
		- ' "	- , "
15220	2711	$\begin{array}{llll}38 & 59 & 00\end{array}$	$70 \quad 0700$
15253	2713	$38 \quad 20 \quad 00$	$70 \quad 0830$

Two well-preserved specimens of this species were found by the Albatross in the summer of 1880.

We have in our waters two very beautiful genera of the family of Tiaride, with two opposite tentacles. One of these is the well known

[^66]S. apicata (Amphinema apicatum, Hæckel); the other, the IDinematella, Fewkes. Both of these have in the adult condition an apical prominence on the bell, which in the former is without internal cavity, and in the latter with a cavity. Stomatoca periphylla, Hæckel, is destitute of this prominence, is much larger, and the stomach is situated ou an especial "Magenstiel." In this species the mouth lappets, stomach with sexual bodies, lie outside the bell carity. The specimens agree substantially with Hæckel's description, except that the tentacular bulbs at the base of the tentacles are more swollen than he represents in his figure (Pl. iv, fig. 10, Das System der Medusen). It is probable from the studies of Hincks, Allman, and Hxekel that the young of this species has for its hydroid a genus related to or ideutical with Perigonimus. This notice is the first record of S.periphylla, from the Western Atlantic.

Family GERYONIDE, Eschscholtz.
Liriope scutigera, McCr.

Catalogue	Statiou.	North latitude.	West longitude.
		- ' "	- " "
15229	2711	$38 \quad 59 \quad 00$	$\begin{array}{llll}70 & 07 & 00\end{array}$
15253	2713	$38 \quad 2000$	$70 \quad 08 \quad 30$

Family CUNANTHIDAE, Hæckel.

Cunina?

Among the Narcomedusx there are a few specimens of a Cunina-like medusa which is temporarily referred to this genus. The specimen was so mutilated that it was impossible to tell whether it was a Cunina or a Solmaris, although from the character of the festoon canal and the existence of gastral pouches, it seems more closely allied to the former genus. It was not possible to see the gastral pouches, one of the main characters of the Cuninidæ, in several of the specimens, although they are well seen in one of the same.

Specimens cxamined.

Catalogue number.	Station.	North latitude.	Weat longitude.
	$2585{ }^{\text {* }}$	- ' 1	
11087	2509	$39 \quad 20 \quad 00$	680880

The collar lobes of these specimens are girt by a horseshoe-shaped festoon canal, as in the Peganthidæ, but the bell is more flexible and not crossed by the radial elevations and depressions upon the exumbrella.*

Umbrella flat, discoid, with a ring of sexual bodies divided into as many lobes as tentacles and alternating with them. In each marginal lobe there is a genital sac, which is free from the wall of the lobes on the floor of the gastral pouches.

Tentacles numerous, 20 to 22 or more in number, springing from the sides of the body or the peripheral border of the umbrella. Tentacles longer than the diameter of the bell. The marginal collar is composed of as many lobes as there are tentacles, and each has a festoon canal. Peroniæ wanting. $\%$

The following notes were made from a specimen with 22 tentacles: Umbrella flat, lens-shaped or discoidal. Color, transparent, white in alcohol, flabby, gelatinous. Outer surface (exumbrella) smooth. The body divided into a central region and a peripheral collar.

Central region plano-convex or double convex. The greater convex. ity is below. Diameter in alcohol, 20^{mmm}.

Upper surface flat. No coronal fossa or annular indentation at the rim near the origin of the tentacles.

The marginal collar is composed of twenty-two marginal lappets joined laterally by a thin membrane. The festoon canal broad, extending from tentacle to tentacle in well-marked horseshoe shaped-loops. No sense bodies were seen, on account of the poor preservation of the specimen.

The festoon canal seems to open on each side of the tentacle into the central stomach cavity. The edge of the marginal lappets is girt by a thin velum. The tentacles are long (longer than the diameter of the bell) and are iuserted into the gelatinous substance of the bell by a conical root extending radially. No peronia and no marked marginal canal besides the festoon canal. Twenty-two gastral pouches. The stomach is a dish-shaped cavity bounded abore by the under surface of the central region of the disk and below by the wall of the stomach. Well-marked gastral pouches. The mouth has a broad opening without protruding lips.

The sexual bodies lie in a ring on the peripheral region of the lower stomach walls in the gastral pouches. In the specimen with twentytwo tentacles these organs were not scen.

In other and larger specimens in which, however, in one instance at least, there are not as many tentacies, the sexual bodies take the form of sacs hanging in the lower wall of the stomach between the radii of the tentacles. In one case these glands are very much inflated; in another they have the form of a simple band. Of the species of Cunina

[^67]from the Atlantic,* C. campanulata, Esch. has ten gastral pouches, C. oligotis, Hreckel, has sixteen. Of Mediterranean Ounince, C. vitrea, Gegenbaur, has ten to twelve gastral pouches; C. lativentris, Gegenbaur, the same number; and C. prolifera, Gegenbaur, sixteen. C. rhododactyla, Hæckel, has ten to fifteen gastral pouches, aud C. rubiginosa ten to twelve. A species from the Pacific Ocean, C. mucilaginosa, Blain., and one from the Indian Occan, C. multifida, Hæckel, have respectively twenty to twenty-four and thirty two stomach pouches. These latter, however, appear to differ from my Cunina in the leugth of the tentacles and other structural details. Our specimens therefore way be looked upon either as of a new species or more mature adults of species already described.
These specimens were at first referred to Solmissus in a provisional examination of them. The structures which I have interpreted as the festoon canals would throw them out of the genus Solmissus. S. faberi Hæckel, has twenty-four gastral pouches, aud S. bleekii thirty-two.

> Subfamily Tamoyide, Hæckel.

Carybdea (Tamoya) haplonema, F. Müller.
Specimens of this medusa were taken at the following localities:

Catalog 10 number.	Station.	North latituda.	Weat longitude.
		- ' "	- , 1.
11079	2500	$37 \quad 2300$	$68 \quad 08 \quad 00$
11686	2560	$37 \quad 2300$	$08 \quad 0800$

Claus \dagger considers Tamoya the old genus, Carybdea, Peron et Leseuer. Hæckel \ddagger describes a medusa, which the above specimens closely resemble as Carybdea pyramis, Hxckel. The latter author separates Carybdea from Tamoya. My snecimens resemble more closely his Carybdea than Tamoya. They are larger than C. pyramis and smaller than T. haplonema. If the two genera are separated our medusx more closely resembles Carybdea, but I have followed Claus in regarding them as the same. This medusa appears to be the same as that which is mentioned as Tamoya in the collection of 1883-'84. §

[^68]
Family HALICREASIDÆ, Fewkes.

Halicreas minimum, Fewkes.

Specimens of Halicreas were taken from the following locality:

This genus is recognized by the eight tuberculated projections on the exumbral margin of the bell. From these projections there extend to the vicinity of the center of the bell eight ribs or radial depressions, which appear on the subumbral surface as radial depressions between which the octants of the subumbrella are somewhat swollen. Near the center of the subumbrella is a ring of eight knobs which lie one in each octant betweeu the abore-mentioned depressions.
There is a well marked vellum below the marginal projections. The radial projections appear as elevations on the exumbral side of the bell in alcoholic specimens.
In my former paper* I referred this genus to the Narcomedusm of Hæckel. There is no reason from a study of new material to change that opinion of the affinities of the family of Halicreasidæ.

Family PEGANTHID无, Hæckel.

Among the families of Narcomedusw described by Hæckel is the Peganthidx, a family without radial canals and gastric pouches in the subumbrella but with a festoon canal. The sexual bodies are either lobed or form a non-continuous band on the under floor of the stomach.

Among the meduse collected by the Albatross is one which has a close likeness to the geuus Pegantha of the Peganthidæ but which differs from the known species of this genus so widely that it may be uecessary later to call it a new species.
This Pegantla somewhat rescmbles P. quadriloba, although the genital sacs are not as markedly four-lobed as Hæckel's description of this species would seem to indicate. It has marked lobes in the sexual glands, but the poor condition of preservation and the rupture in one or two instances of the gland from its attachment rendered it impossible for me to tell to what species this Pegantha belougs.

[^69]
Pegantea, sp.

[Plate 1.]
The sexual bodies divided into a number of separate sacs pendant from the abaxial lower wall of the stomach. The sexual glands do not enter the umbrella lobes but alternate with the attachments of the teutacles, which they equal in number. No coronal fossa.*

Specimen examined.

Catalozue number.	Station.	North latitude.	West longitude.
		- 11	- 1.11
11654	2550	$39 \quad 48 \quad 00$	$71 \quad 48 \quad 30$

Bell, crown-shaped, twice as broad as high, with stiff gelatinous walls. The bell is thick, biconvex, firm. The marginal lobes folded inward on the oral side so that they are with difficulty bent back to normal position without rupture. Exumbrella crossed by strongly-marked, promineut radial ridges, separated by radial furrows. These ridges and furrows arise from the center of the exumbrella in the radii of the marginal lappets and divide, sending off lateral branches which pass into the marginal lappets.

The collar of the umbrella, or the peripheral portion of the bell, is made up of thirteen horseshoe-shaped marginal lobes with festoon canals. These lobes are connected by a thin membrane which unites contiguous lobes and skirts their borders. The specimen was not well enough preserved to observe the sense-bodies.

The subumbrella is divided into two regions, one corresponding with the central disk and marked by the lower stomach wall; the other with the collar region formed by the horseshoe lappets. The mouth opening is simple. The lower stomach wall thick, well marked. The sexual sacs form a number of pouches upon the outer rim of the lower stomach wall. They appear as folds or separated sacs, the exact number of which could not be determined in the single specimen studied. Thero are thirteen sexual glands, each of which lies in an internemal radins. An open niche is formed in each marginal lappet, as described by Hæckel, in which the sexual organs are forced when the medusa bends inward the lobes of the collar. There are thirteen tentacles, each of which arises in the incisions formed by the horse-shoe-shaped festoon canal. They are long and slender, apparently hollow, and have the same color as the bell.

[^70]
Farnily SOLMARID IE, Hæckel.

Solmaris incisa, Fewkes.

Cataloguo	Station.	Nortli latitude.	West longitudo.
		- ' 1	- "
11667	2429	$4255 \quad 30$	$50 \quad 51 \quad 00$

Several large specimens of this giant Narcomedusa occur in the collections; in one of these the form of the bell is unmutilated and the subumbral elevations and depressions well shown. The velarium is undivided into marginal lappets, showing that my conjecture of the non-existence of separate lappets in the jelly-fish is borne out by a study of fresh ma. terial. There are in the largest specimen (entire) thirty subumbral depressions. There are thirty tentacles and the same number of peronio. No festoon canal.

Many of the "marginal lappets" in other specimens are united, indicating, as already suggested, the existence of connections along the peronix, which are split in most of the specimens. studied. The vela. rium is formed by a union of all the marginal lappets, and recalls that of other Solmaridx.
The feature upon which the species is built is the radial grooves on the under side of the umbrella, as already elsewhere described. These "radial-furchen" resemble structures in Cunina campanulata, where, according to Hockel, they are on the "untere magenwand." In S. incisa these furrows are on the upper wall of the stomach or the under wall of the disk.

A new examination of S. incisa to determine, if possible, whether 1 might not be mistaken in my identification, and whether my specimen does not belong to C. campanulata has conrinced me that my specimens have no festoon canals, and differ in many other ways from Cunina. S. incisa is more disk.like than campanulate, is larger than Campanulata and has more tentacles. Iustead of gastral pouches in the pernemal radii there are prominent umbral elerations. The furrows are internemal. In one specinen the edges of the gastral furrows were lined with a white structure which may be the remnants of the attachment of the orarics. The species differs so greatly from other Solmares that it may probably be found to be a new genus.

This animal is a giant among the Narcomedusm. The only genus of the group which approaches it in size is Polyxenia, of which P. cyanostylis, Esch., according to Eschscholtz is 80^{mm} in diameter. According to Hreckel a species found by him was one-third smaller than that of
S. Mis. $90-34$

Eschscholtz. The largest of the other generit of Narcomedusso are 50^{mm} in diameter, one-half the size of large specimeas of S. incisa.

In all specimens of S. incisa found, the under wall of a stomach is supposed to be ruptured and absent. The liability of this to occur in Solmaridx has led me to suppose the same thing possible in my new species.

Acraspeda.

Family COLLASPIDA, Hrekel.

Atolla bairdii, Fewkes.

Atolla verrillif, Fewkes.

No.	Catalogho nimbor.	Station.	Nortillatitude.	Weat longi. tude.	Depth.	Number of
			\bigcirc	\bigcirc		
${ }^{9}$	11672	2560	$30 \quad 2000$	$68 \quad 3 \quad 30$	1872	1
113	15236	2717	$38 \quad 2400$	$\begin{array}{lll}71 & 13 & 00\end{array}$	Surfaco.	3

No.	Tentacles.	Magimallappets.	Senso bodies.
0	20	52	20
10	28	50	28
11	28	50	28
12	22	44	22

The two species of American Atolla, A. bairdii and A. verriliii, can be readily distinguished by the size of the marginal sense bodies, which in the latter are larger, longer, and narrower than in the former. The number of tentacles in bairdii is generally twenty-two, while in
verrillii wo find several specimens with twonty-eight. Why Hackel has assigued from sixteen to thirty-two tentacles to the Collaspidio does not appear from what we already know of the genera (Collaspis and Atolla) which compose the family. The least uumber of tentacles observed in any of ms Atolle is twenty-two. Mackel records an Atolla with nineteen tentacles. The greatest number of tentacles observed iu any Atolla is twenty eight in my species verrillii. It is not denied that it is possible that Atolla with less than nineteen or more than twentyeight tentacles may be later observed, but until these are found it is well to include the limits in the number observed (nineteen, teste Hæckel), twenty-two to twenty eight.

The deepest limit in the ocean at which Atolla has been recorded is 2,360 fathoms. Many specimens are recorded from the surface. Atolla has been found by the Albatross within the following geographical limits: Lat. $38^{\circ} 19^{\prime} 26^{\prime \prime}$ to $42^{\circ} 46^{\prime}$, long. $50^{\circ} 55^{\prime} 30^{\prime \prime}$ to $71^{\circ} 58^{\prime}$. The Albatross has collected thirteen specimens of the genus.

The genus Collaspis, Hreck., of which several drawings are published by Hackel (System der Medusen, Pl. xxviii), was collected "by Smith" between Kerguelen and Crozet Islands in "about 1,000 fathoms," according to Hrekel. The expedition upon which this specimen was collected is not mentioned, but tho great depth from which it is said to have been taken excites more than usual interest in it. Very few, if any, other hauls besides those of the Challenger have been made at this dopth in this remote locality, and this seems to be the only medusa ascribed to "Smith" from this locality. Hæckel's description of Collaspis was made from a very much mutilated specimen, which he reconstructed from his knowledge of 4 tolla, and allowed a drawing of the medusa thus reconstructed to be published. On account of what might be regarded as suspicious circumstances, under which Mackel's description of Collaspis was made, the genus is not recognized.

According to Filhol (La Vio au Fond des Mers, p. 244) Atolla is found "dans l'Atlantique sud et dans l'Atantique nord au nivean du canal des Faröer." The species of the Atolla, from the latter locality, is not mentioned by Filhol, and it is probably the same as one of mine, A. bairdii or A. verrillii.

The increase in number of specimens from the surface would indicate that Atolla is found on the surface of the ocean as well as at great depths. The data for this statement are those of the collector. I have already discussed the limitations which necessarily exist to a rigid acceptance of the recorded depths ascribed to this and other so-called deep-sea medusæ.

Family PERIPHYLLIDE, Hæckel.

Peripifylla ifyacintiina,* Steen.

Family EPHYRIDE, Hæckel.

Epiyroides rotaformis, Fewkes.

Several more specimens of this remarkable genus and species were collected by the Albatross in 1886. Although all were in good condition as far as the bell and subumbral radial clevations are concerned, the fiver anatomy could not be made out.

Catalouno number.	Station.	North latitude.			Wout longitude.		
			,	"	\bigcirc	1	"
15236	2717					13	00
15249	2710		29	30	71	58	110
15250	2717		24	00	71	13	
15260	2712		20	00	70	05	30

Ephyroides is characterized as follows: On the subumbral surface of a thick umbrella there are radial elevations (in one specimen 32 in number) which alternate with the marginal lappets. These elevations are half eylindrical, sausage-shaped, radially situated, extending from the margin of the umbrella at its junction with the marginal lappets towards the center of the bell. They resemble on the subumbral side of the umbrella the socles of the exumbral side, and lio in the radii be-

[^71]tween those which pass through the middle line of each marginal lappet. The best preserved of all the specimens is from Station 2717. In this specimen the stumps of certain of the tentacles are present. They lie, as stated above, on the notches between the marginal lappets. The form of the abaxial rim of the marginal lappets in this specimen is bifid, recalling the appearance in the marginal lappets of Atolla. The exumbral surface of the marginal lappet is rough, with slight projections. Its rim is thin, the attachment and body of the lappet thick and gelatinous. The whole marginal lappet recalls those of the species verrillii of the genus Atolla. No sense bodies were seen in the alcoholic material at my control.
It is desirable that the live medusa of Ephyroides be studied, as the features presented ly the alcoholic material are of great morphological interest. It has not seemed to me best to say anything about these questions until more is known of the anatomy of the extraordinary genus.

Family CYANEIDAE, L. A gassiz.

Cyanes, sp.

A specimen of Cyanea from the Gulf Stream diffors in certain respects from the Cyanea arctica, Per. ot L., of the New England coast. It also differs from other species of this genus which have been described. With the imperfect knowledge derived from a single specimen, I hesitate to introduce a new name into the nomenclature of this genus, although there is little doubt that the specimen referred to is not the common C. arctica.*

Cataloguo number.	Station.	North latitudo.	Wost longitade.	
		0	,	$\prime \prime$
11068	2542	40	00	15
11600	2542	40	00	15

A much larger specimen than either of those mentioned above was collected in 1879, Station 378, No. 5124, off Cape Cod. This specimen resembles more closely than the others the common C. arctica, Per. et Les., but the mouth appendage and tentacles are missing. The forms of the marginal lappets are like those of C. arctica.

[^72]
Family PELAGIDA, Gegenbaur.

Pelagia cyanella, P. and Les.

Ctenophora.

Berofi ovata? Br.

Callianira, sp. q
Station 2585.
This is the first record of this genus from the Gulf Stream. Cambridge, Mass., May 27, 1887.

EXPLANATION OE THE PLATE.
Prgantila, sp. incog.
Fig. 1. View of Pegantha from the side.
Fig. 2. Viow of Pegantha from aboral region.

Fig. 1.

Fig. 2.

INDEX.

[Notr.-The rofurences are to page.tigures in braokets.]

Page.			Page.
Abyla trigona.	7	Diphyes..	
Abylaidm	7	Diphyidm	- 8
Acraspeda	. 18	Diacoidea	-
Equorida.	. 9	Epleyrida	20
Agalma...	. 0	Ephyroides	21
okenii	7	rotaformis.	1,20
Agalmidas.	7	Epibulia aurantiaca.	
Agasaiz, A	2, 9, 10, 11	Fowres, J. Walter	
L	11	Geryonidm	12
Albatross, atoamer	.2, 4, 11, 20	Gleba hippopus	- 7
A mplininenar apieatum	.- 12	Hackel, Prof. Etnst	1,11
Amphinemido 11	Halicreas.	15
A polomia 1	minimum.	15
Atolla...	.1, 10, 21	Halicroasidio.	15
bairdil	18	Hippopodio	7
verrillii.	.. 18, 10	Hippopodida.	- 7
Beroü ovata	22	Mydrozoa	2
Blake, steamor	.. 2,5	Líriopo acutigorn.	12
Bull. Mus. Comp. Zool.	.. 2,15	Medurso.	1
Callianira	.. 1,22	Mosonema	- 9
Calycophorio.	. 7	cyaneum	- 9
Caribbean Sea	. 4,7	Muggiaua	8
Carybdar marsupialis	14	kochii.	.- 8
haplonema.	14	Narcomedusas.	2, 15, 17
pyramis.	. 14	Nauphanta.	20
Challenger, H. M. S., v	.. 1,10	polaris.	20
Chun, Dr. Carl.......	.. 8	Poganthr	1, 15, 16
Collasplda	.. 18, 19	pantheon.	10
Collaspis	. 10	quadriloba	15
Craspedota.	0	Pegranthidw ..	- 13, 15
Cremastoma.	. 0	Polagia cyanellu.	22
Hava	0	Pelagidas.	22
Crystallodes rigidum.	7	Poriphylar.	20
Ctenophora	1,22	hyacinthiua	. 20
Cunanthidx.	12	Peripbyllidxo.	20
Cunlna.	12	Physalia arethusa.	0
campanulata.	. 14, 17	Plyysalladie	- 6
discoides	. 13, 14	Physophorio	7
lativentris	14	Pleurophysa, gen. nov	1,5
mucilaginosa.	14	insignia,	5
multifida...	14	Proumatophores	2
oligots	14	Polycanua	0,11
prolifers	14	amorlcana	.. 10, 11
rhododactyla	14	crass	11
rubiginosa	14	Hava	11
vitros.	14	fungina	9
Cyanar...	21	germanica	.. 9
arctica	21	groulandioa	.. 10, 11
Cyanolda	21	italica.	9
Diphyre.	... 7	vituina	0
[23]			

Page.		
Polyxonia.. 17	Solmissus	
cyanostylis...................... 17	bloekii	
Porpita linnæana 0	fabori	
Porpitidu.......................................-- 9	Stomatoca npicata.	
Pterophyвa.....................................1, 2, 4, 5	peripliyla	
prandis 3	Tamoya...	
Rhacostoma.................................... 9,10	haplonoma.	
Rhizophysя оувonliardtil...................... 3	Tamoyilio	
Rhizophysidx................................... 1,5	Velolla mutica	
Slphonophora................................... 1,2	Volollidio	
Solmarida 17	Zygodactyla	
Solmaris .. . 12	crussa.	
coronnntha............................ 13,14	cyamar.	
incisa.................................. . 1,17	groenladi	

APPENDIX C.

FISH CULTURE.

Blank page retained for pagination

VI.-0N THE FISH-CULTURAL ESTABLISHMENTS 0F CENTRAL EUROPE.*

By Dr. Eugenio bettoni and Dr. Decio Vinciquirra.

A.-NOTES ON FISH.CULTURAL ESTAIBLISIIMENTS VISITED BY DR. BETTONI.

List of the establishments visited.

I.-Salmon and trout oulture.

The water in general.-In consulting various treatises on the subject I have found that, in founding a fish-cultural establishment, it is necessary to take into account the origin of the water to be employed, so that it may be used for that branch of fish-culture to which it is best adapted. In fact the water of springs, brooks, and rivers may all be employed in the incubation and raising of salmonoids, provided, of

[^73]course, that it meets all the necessary requirements of purity, nutritive substances, sufficient aeration, and suitable temperature.

Spring water, which does not contain mineral substances, is to be specially recommended for hatching, provided it is not so warm as to excced 10° C. [50° Fahr.] ; as owing to its even temperature it appears cool in summer and warm in winter.

On the other hand, brook water commends itself, because generally it is casy to obtain, and contains a good deal of air, in which latter respect it is excelled bs river water, which is well adapted to the purpose, if it does not carry too much mud. In northern eountries, however, this water is apt to frecze.

In view of the above it will not seem strange that the first request which I made of the directors of the establishments visited by me was to inform me in relation to the quality of the water employed by them. I have below tabulated their statements regarding the quality and temperature of the water employed in their hatcheries.

Lstablishments in which only sprin! water is used, which rises in close proximity to the hatching chambers.

Eataldishmenta.	Number of springs and their course.	Temporature.		
		--. - --		
		In winter.	In summer.	
Dachash	'Two springs, choso to the hatching rhamber.	$\stackrel{\circ}{\circ} \mathrm{C} . \quad \underset{40}{\circ \mathrm{~F}} .$	${ }_{10}{ }^{\text {c }}$	Or ${ }_{\text {O }}$
Neulnusen	Ono sprive, at a distanco of nlout two feat from the hatching chamber, and led to it by undorgronnd pipes.	9 48	10	50

Sstablishments in which apring vater, brook water, or vicer water, cither cach by itself or mixcd, is used.

*In the officinl report, "Notice historique sur l' Etabliskement de -Iuninguc,', Strasharg, 18A2, it in atated that the temperauto of the bprings is oven, but during the winter $1884-8$-is very noticoable variations of tamperature were obsorvod. Tho only mention mado of anch variatione in said roport is that of 1850 , duriag tho wintor of which yonr the tomperataro fell to zero.

Establishments supplied from springs led to tho hatching house through long open courses, or through ponds and cunals.

Temperature of the water favorable to latcining.-It is at present almost impossible to say which of the various temperatures under the influence of which the hatching process is accomplished is absolutely preferable; but in general it may be stated that, in the cold of winter, a temperature which does not rise much above $10^{\circ} \mathrm{C} .\left[50^{\circ} \mathrm{F}.\right]$ is favorable for salmonoids; uevertheless there are facts to show that salmonoids have been successfully hatched both at a much lower and at a much higher temperature (at Torbole in water of $11^{\circ} \mathrm{C}$. [$\mathbf{3 1 . 8 ^ { \circ }} \mathrm{F}$.], and at Garda in water of $\left.14^{\circ} \mathrm{C} .\left[57.2^{\circ} \mathrm{F}.\right]\right)$. But it is certain that the development of the embryo succeeds better if the hatching water has an even tomperature than if it exceeds certain limits of heat or cold; and this condition is more generally found in spring water than in other water. It should be understood, however, that favorable conditions of temperature may also be found in other than spring water; and if these conditions do not exist, we have seen fish-culturists endeavor to obtain them by mixing waters of different origin, as is done or can be dove at Hüningen, Selzenhof, and Seewiese; or by having recourse to a stove, which in several places I have seen in the hatching rooms, as an indispensable article of furniture. The objection might be raised that the mixing of spring water with other water, or the substitution of other water, the placing of the hatching chambers in the ground, as is done in some northern countries, and the stoves, have no other object than to ward off the dangers of freezing; but we may be allowed to suspect that practice emploss all these means in order to ovtain or to approximate that evenness of temperature which otherwise could not be obtained.

As it is necessary, therefore, to know whether sudden changes of temperature during the hatehing period can be averted and whether they are hurtful, and to find out what are the final consequences of accelerated and of retarded hatching* on the life of the young fish which have been hatched from eggs treated in different ways, it follows that fish-culture is, strictly speaking, experimental. The answers of theoretical fish-culture on these points cannot be entirely evasive and categorical. Meanwhile, however, by carefully interpreting all that practice teaches, and by applyiug physiological analogies, we find that the changes from a relatively high to a relatively low temperature are to be feared, while there is not so much danger in changes from a low to a high temperature, because if there is a certain given degree of warmth care can be taken to maintain it.
Fish-culturists distrust hatching at a relatively ligh temperature, not because they think that it may unfavorably affect the development of the embryo, but because, as Max von dem Borne states, the young fish which have been batched before their proper time are in need of food earlier than they would have been otherwise, and nature, still wrapped in its winter sleep, may not yet be able to furnish the food.

Hermann Haack also verbally stated the same, relative to hatching accelerated by comparatively too hot water, as, in his opinion, the young fish hatched too soon and placed in a lake immediately after the absorption of the umbilical sac, would miss the food furnished by the eggs of insects which can not be obtained until mild weather sets in. In view of this circumstance, he is inclined to prefer slow hatching in river water, which is generally colder in spring than spring water, or in brook water coming from springs, which, however, during a long course has had time to lose some of its original warmth. It appears to me, however, tbat Mr. Haack's suggestion does not yet furnish a complete remedy. He proposes to plant the young fish later, which may become possible by feeding them for some time artificially in the same water in which they have been hatched.
But is it really true that young fish placed in a lake too early must necessarily die? Fish, like most other animals having blood of a variable temperature, can, as is well known, remain without food for a long time; but we desire to know, as regards salmonoids, and for purposes of fish-culture, which are the extreme limits of the period of fasting which the young fish can reach, and whother this will not more or less exercise an influence on their bodily development, on their health, and on the condition of their offispring. And this is a question which can only be solved by experimenting.

Filtration of the water.-It is well known that water conducted in opeu canals through a country covered with regetation carries with it leaves and other regetable matter, which has either fallen into it or

[^74]which has been brought there by winds and showers; it is therefore a common practice to keep these objects out of the water by means of gratings and chains, or similar contrivances, eveu in casos where the water is not to be used for such delicate objects as the hatching of fish. But water invariably contains other particles, principally belonging to the mineral kingdom, which remain floating, as their weight is very light, and which are sometimes so diminutive that they can not be discerned with the naked ese, the water being to all appearances perfectly clear; and it is these particles which, if allowed to romain in the water for any length of time, cover any objects submerged in it with a sediment.
The best authors on the subject of fish-culture state that this sediment is injurious to the eggs of fish. Max von dem Borne does not hesitate to say that, next to mold, this sediment is the most dangerous enemy of fish; and Benecke, not satisfied to call attention to the dangers of this sediment, accurately describes the means by which it can be removed, and states that even the clearest water will always contain some of it.* Hence filters are used, which I do not deem it necessary to describe here, as they are well known, and have been described in many treatises on the subject, the object of which filters being to remove by mechanical means many of the small impurities, sediment, and diminutive animals. Prof. P. Pavesi also attributes the mortality which several times made sad ravages in the hatching-houses of the fish-cultural establishment of Torbole to the lack of filtration. \dagger

The theoretical knowledge which I possessed, and the practical knowledge derived from experiments made at Torbole and Garda, caused me to start on my trip to foreign countries with the firm expectation that I would find filters universally adopted. But my surprise was great to find their use not near so geueral as I had supposed, and that they were entirely wanting even in establishments where the quantity of sediment had for a long time formed the cause of serious complaints, as, for instance, at Hüningen. In consulting the historical notice of this establishment I found that the turbid character of the water of the Rhine was deplored, and the wish expressed (in 1862) that filtering apparatus might be introduced, which was entirely wauting; and that then, as now, the water from some neighboring ponds was used for the hatcheries, because the Rhine water contained so much sediment.
In only five of the fourteen fish-cultural establishments which I visited did I see filtration properly practiced, namely, at Seewiese, Berneachen, Wilthen, Michaelstein, and Velp, and a rudimentary filtration at Dachsen and Selzeuhof. At Zurich the water of the lake is led into reservoirs for public use, and is sufficiently filtered for that pur-

[^75]pose; but the process of filtering should be repeated near the fish-cultural establishment.

Mr. Haack justifies the absence of filtering apparatus by saying that practice has shown the sediment to be harmless, and I can state from personal observation that fish eggs have been successfully hatched at Huiningen even in hatchiug-boxes and in California apparatus, supplied with water directly from ditches without any grating at the entrance.

At Max von dem Borne's establishment I saw in operation the filter with several chambers, terminating with the so called American filter (of ilannel), but in answer to my inquiries he stated that for filtration there inight be suivstituted the washing of the eggs by letting water fall on them from a certain height from the pierced spout of a simple water-ing-can. This proves at any rate that this eminent fish-culturist has not abaudoned the idea above referred to, that the sediment is hurtful, as long as he tries to remove it in some way or other.

Those who maintain that filtration is useless can not say that they follow the example of nature, because if it is true that the trout cover the eggs which they lay in brooks, they do it with small stones and not with mud; and the sediment cannot adhere to the eggs, because they are continually kept floating by little currents passing through the crevices between these stones.

I am not able to explain the difference of opinion in this respect among such competent persons; but I have no doubt that in every case the opinion is based on experience drawn from the peculiar practice prevailing in the different localities. It is generally agreed that if the quantity of the sediment exceeds certain limits it becomes hurtful to the oggs, preventing free respiration. But as regards allowing a small quantity of sediment, people should be guided by its quality, which in one place may be such as to render its removal necessary, while in others it may be left without running any risk.

Of whatever description the filtering apparatus may be, the filtering should be done through thick or relatively indestructible matter, sand, or fine gravel, alternating with layers of charcoal, sponges, \&c. Even then it may not be entirely efficacious in directly preventing the development of the minute spores, which are among the most dangerous enemies of pisciculture. But if sediments of a mineral nature are combined with organic matter, which may sometimes happen (although the combination may greatly vary in its charaeter), I think a mechanical process of filtration may indirectly be successful by keeping the parasites away, or at least diminish their spreading, since only organic matter contains the conditions favorable to their growth. There is no doubt, however, that the antiseptic property of coal, which is largely employed as a means of filtration, is lostafter a short time, so that after a certain time the filters will only act in a mechanical way. For this reason I would like to know whether any experiments have been made in pisciculture with filtration by "carferal" (carferal, or iron sponge,
is a compound of aluminium, iron, and carbon, the preparation of which is kept a secret: it is used largely in the British navy), which, eren after having served for a long time, will not leave in the water which passes through it any traces of ammonia or any spores, which does not happen when charcoal is employed. In my opinion the use of carferal for filtering the water to be employed in hatching fish eggs would at least keep away the mold; and perhaps it would be possible to use water containing a large quantity of organic suobstance of another nature.

To reach a conclusion in this matter I should say that under certain circumstances filtration may be unnecessary, especially if the sediment is so light that it remains floating in the water; but it will bo necessary, if the sediment forms deposits on any bodies submerged in the water, or if, owing to its peculiar nature, it possesses injurious qualities. But filtration may be recommended under all circumstances, if for no other reason, because one would rather see the eggs clean, and also because inspection would become easier.
Aeration of the water.-A defect which is sometimes found in spring water, especially if it flows into the hatching-box after haring for some time passed through closed canals, is the scarcity of air, which is not the case in brook or river water which has for a long distance passed through the open air, and which through its constant contact with it has retained a large supply of this vivifying agent.
Some fish-culturists, as, for instance, Mr. Schuster, consider the aeration of the water of such importance as to favor it and to increase it artificially, when there does not seem to be a sufficient quantity of air in the water. I cannot but think that artificial deration of the water is absolutely necessary in cases where the air is lacking, and is a laudable precaution when such lack of air is suspected, though there may be no meaus of proving it, and superfluous when water is usod which contains a superabundance of air; but under no circumstances will aeration prove hurtful. Moreover, the different kinds of apparatus used for artificially aerating water are so simple and so little expensive that economical reasons should never prevent people from using them.

I am sorry that I have lost the design of the air-iujector of Mr. Schuster which I saw in position at the month of the outlow of the water into the hatching troughs, but I will give a description of the principle on which it is based. It simply consists of two concentric metal vessels, into the lower one of which the water flows from the other through holes in the bottom. The water in forcing itself through these holes produces air, which enters at the upper part of the central tube and mingles with the water.

At Neuhausen the water destined for Latching is aerated by means of pipes which carry it underneath the hatching-house. Theso pipes are placed near the surface of the water in distributing canals, and are of
S. Mis, $90-35$
such a diameter that the water rising above the outer edge does not completely fill them.
The water descends like a long veil along the inside of the pipe, producing a strong current of air, which rushes down with the water. I do not think that these pipes are constructed for the express purpose of acting as air-injectors; but, howsocver this may be, it is none the less true that they serve this purpose in a very efficacious manner.

The manner in thich the water enters the individual hatching-boxes may also be a means of introducing air into the water. I refer particulanly to the practice which I observed in the establishment of Neuhausen and also in that of Dachisen. In the Nemhausen establishment the water, which from the general distributing reservoir is made to gush through a pipe at same height above two troughs, first enters a square box, whence it descends aloug the short sides like a waterfall, as shown in Fig. 1.

At Dachseu the water flows through stop-cocks into common terracotta flower-pots, the bottom hole of which is purposely somewhat enlarged. The pot rests on a piece of metal sheet, on which are placed a number of small pebbles. As the distance between the mouth of the stop.cock and the pebbles in the flower-pot is sufficient to allow the stream of water to spread out somewhat, and to break itself on the pebbles with a certain force, the water comes in constant contact with the air, as shown in Fig, 2,

I must also state that the water may receice some air in the open canals through which it is led into the hatehing-houses at Hüningen, Selzenhof, Neuhausen, Dachsen, Zurich, Berneuchen, Michaelstein, Velp, and Apeldoorn. This small quantity of air is, however, eutirely lacking at Cosmaudort, Wilthen, and Seewiese, where the distributiug canals are entirely closed. This remark should not be misunderstood, since the object in riew may be fully attained, as the water contains a sufficient quantity of air, either owing to the fact that it is either river or spring water, or by flowing open for a considerable distance after it has left the spring.

Hatching apparatus.-The character of the hatching apparatus which I saw in operation to some extent partakes of the nature of the period in which the establishments to which they belong were founded; but they also reflect the special views and the degree of technical education of their directors.
It is certain that among the very large number of models of hatehing apparatus which I have seen there is not ono which could bo said to answer the purpose better than the others; but if we take into consideration the requisites which they must possess, it will casily be understood that these requisites may be obtained in many different ways, and by different means. For the sake of clearness I will enumerate the principal requisites which the hatching apparatus must possess, as follows:

1. They must furnish a suitable, continuous, regular, and uniform supply of acrated water.
2. They should economize space as much as is compatible with the proper performance of the hatching operation and with the least possible hinderance to the renewal of the water.
3. They should be constructed of impervious, durable, and clean materials.
4. They should be placed in such a manner as to facilitate the operations which should be carried on during the hatching process, especially the separation of the spoiled eggs from the healthy ones.
According to their typical character I may classify the hatching apparatus which I have seen in operation as follows:
5. Coste's system: (1) Stairs of troughs; (2) hatching tables; (3) subterranean canals.
6. Simple troughs: (1) Troughs of carbonized wood; (2) troughs of cement or zinc.
7. Hatching tables : (1) Williamson tables; (2) Zenk tables.
8. Holton's system: Holton hatching apparatus.
9. California troughs: (1) Eckardt troughs; (2) California boxes; (3) funnel-shaped troughs; (4) automatic selectors.
10. Ice boxcs: The Haack box.

The defects of the Coste troughs are well known, and have been clearly shown as fish-culture has further advanced. It is, therefore, not astouishing that they have been everywhere abandoned, even at Hüningen, where the present director of the establishment does not use them at all. I saw a Coste stairway in white enameled clay at Neuhauseu, but it was not in use. Hatching tables (Coste's system) I saw, however, at Hüningen, where they are still used, and form part of the material which the imperial German Government acquired with the establishment. These tables are about a meter long, with a somewhat deep edge, and are placed on an incline; the first receives the water direct from a spout in the short side of the table. A perforated parti: tion of zinc plate, running parallel with the lower edge, lets the water pass, which then flows from this edge through small leaden pipes upon the table placed below. Some of these pipes are kept closed with a stopper, while others are left entirely open, so as to maintain the desired level. The large compartment (lined on the inside with zinc) is placed between the edge and the partition running parallel with the lower edge, and is destined for the eggs, which are placed on a soft bed supported by the well-knowu uetwork of glass stems, for which, in some cases, a more economical construction of metal wire is substituted.

Similar to the Coste tables are the large troughs in cement, placed on an incline, which fill the large hatching-hall of the Velp establishment. They are placed in a row of five double compartments having a common edge, and leading to a compartment which is double the size of the others, and which is the last of the row. Some troughs intended for hatching are 86 centimeters [about 34 inches] broad and 2 meters [about 70 inches] long: Here likewise the eggs ars plaged on Ooste frames,
many of which aro set in terra-cotta, and have, in phace of the glass beams, beams of chall. In these tables the water flows over the eggs more easily, and does not flow among them; the aeration, however, is not and can not be so defective as in the Coste stairway, since the water flowing through pipes from the front edge on to the table below rushes down upon it, and rises again a little, and in every compartment spreads advantageously over a large surface. But it is certain that the rouewal of the water must form the proper test, whether apparatus can, in the establishment which possesses it, be used to advantage or not. The Coste tables at Ifiuingen show, by their state of preservation and bs their dimensions, that they are not so expensive as those found at Velp.
The spring water at Huuingen is in part made to tlow through canals of cemented brick-work which are laid in the ground under the hatching hall. They may be compared to veritable brooks, while by their bottom, arranged in long steps ending in perforated cross partitions, they resemble the Coste tables.
This system of subterranean cauals has one great inconvenience, as it compels the person who places the frames for the eggs in position, or who has anything to do about them, to work kneeling on the pavement. This inconvenience is not found in the batching tables at Hüningen aud at Velp, as they are placed at a convenient height. The simplest apparatus, however, is the large wooden troughs which I saw at Neuhausen and Dachsen. The first of these were constructed according to two identical models, but differing in size. Two and two are placed lengthwise by the side of each other; their edges are abont 20 centimeters [8 inches] high; their shape is that of a parallelopiped; they have a partition 25 centimeters from the short edge, opposite to which the water enters if their length is 2.68 metors aud their breadth 43 centimeters [106 by 17 inches]; and at a distance of 8 centimeters, if their total length is 68 centimeters and their breadth ouly 22 centimeters [27 by 9 inches.] The eggs are spread on frames of iron and wire, the water, which is kept at a height of 8 centimeters, flows into the space between the partition and the outer edge through closed pipes, at the end of which there is a metal grating.

The Dachsen troughs resemble those which I have just described, but here the eggs are placed on a layer of very fine gravel 2 centimeters [3 inch] bigh, above which there are 3 centineters of water. This sys. tem of hatching in wooden troughs, the eggs being placed on very fine gravel, is practiced a good deal in America; and I have also seen it employed at Zurich, but the same result is said to be obtained by placing the eggs on the carbonized bottom of the trough, or on frames of metal wire, of switches, or glass reeds. I would, howerer, observo in this connection that, the general conditions of hatching being the same, which it seems to me is hard to prove, the frames represent an expensive but durable material, and the gravel a comparatively small expense, all the work required being to get it all of a suitable size, and to wash it in a dilution of mineral acids before using it. If, therefore, it was not more
to the parpose to keep the eggs ou frames, it would be tine most economical way to place them directly on the bottom of the boxes.

At Radolfszell, likewise, there are some wooden troughs constructed in this simple and primitive plan. I saw at Mr. Schuster's establishment, at Selzenhof, similar troughs, but constructed in cement, and therefore of more solid material, more durable, and neater in their appearance. Their length varies from 4.8 to 3 meters [16 to 10 feet]. As they have a partition of wire in the usual place, with the well-known canal which carries the water to the pavement, they do not need any special description. I will only state that those which are placed in the room to the right of the entrance have auexcavation immediately underneath the place where the water rushes out for the purpose of regulating. its movement and preventing it from springing up with too great force.
Δ portion of the very large hatching-room at Apeldoorn contains trougbs in cement, placed in pairs. Each trough is supplied with water from a separate spout, and therefore there is not the least trouble to keep the water aerated. Some of the tronglis are of wood, but it is intended to substitute for them, at no distant time, troughs made of the material referred to above.

The hatching.tables according to the Williamson system are well known and have often been described. They have the advantage of causing the current of water to pass below the frames containing the eggs, these frames being, in order to economize space, placed in this hatching apparatus one above the other. I have seen these tables at Radolfszell and Michaelstein. In the last-mentioned establishment they are placed over cemented tanks, which serve for fish, and are used only in case of necessity.
The Zenk talles, which are an iuvention of the owner of the Seowiese estahlishment, Mr. Frederick Zenk, although not in every respect liko the Williamson hatching apparatus, still resemble it somewhat. They are troughs 2 meters long and 60^{cm} broad [$6 \underline{2} \mathrm{by} 2$ feet], wade of pine wood, tarred on the outside and carbonized on the inside,* and their edges are 20^{cm} [uearly 8 inches] ligh. The water flows from two stop-cocks at the head of the trough against a partition of wood, which touches the bottom of the trough, but which is 4 centimeters lower than the edge; thence it passes into another compartment, whose partition rises to the same height as the edge, but docs not touch the bottom. The water, therefore, flows over the first partition, as in the Williamson system, and passes underneath the second. A zine pipe, starting from the distrib-uting-pipe, is laid diagonally on the bottom nearly the entire length of the trough. This pipe passes over the first and below the second partition, and has all aloug its sides holes, from which small currents of water tlow, which is said to exercise a very beneficial influence on the hatching process. At the distance of 9 centimeters from the ond wall

[^76]of the trough there is a partition which has nine holes, in three perpendicular rows, which can be closed by means of small cork stoppers, with the view to regulate the depth of water in the trough. If all the nine holes are open the water in the hatching apparatus keeps at a height of 5 centimeters; if the lower holes aro closed the water rises to the height of 10 centimeters; if those in the iniddle are closed the water rises to a level of 15 centimeters; while if the upper holes are closed the water may-rise to 20^{cm}. (See Figs. 3 and 4.)
Into the troughs placed underneath the first the water flows in the following manuer: The water, which reaches these troughs from those above, has already served, but fresh water is led into them through the diagonal pipe at the bottom, which receives it direct from the distrib-uting-pipe.
The eggs are placed on rectangular frames measuring $50 \times 25^{\mathrm{em}}$ [22 by 10 inches.] They are made of galvanized-iron wire and have perforated edges. If these frames, as is sometimes done, are not placed parallel with the edges of the trough, this is done to avoid too uniform a current. On every one of these frames there can be placed 10,000 trout eggs, and as six frames can be placed on the bottom of the trough and over each one of these three, these troughs have each a total capacity of 60,000 eggs.

The hydraulic movement of this trough is in most respects like that of the Williamson trough, only with this difference in favor of the latter, that the movement is repeated at each row of frames, partitions being interposed, which are wanting in the Zenk trough and which, in my opinion, do not present the same adrantage as the pipe in the bottom of the Seewiese trough. Both models, however, have the inconvenience that it is difficult to pick out the good from the spoiled eggs, for which purpose it is always necessary to change the place of the frames so that the one which is to be operated on is always at the top.
I saw the Holton apparatus at Radolfszell and Cosmandorf, but they were not in operation.

As a matter of course, Mr. Eckardt, at Liibbinchen, employs the troughs of his own invention, which, according to the movement of the water, must be classed anong the California apparatus. It is not necessary to describe them Lere, as Professor Pavesi has already given a full description of them in his report above referred to.
The California trough is used very much, but not so extensively as might be supposed from the favor which it has found with many fishculturists. Still, I hare found establishments in which it is the only hatching apparatus in use; and many in which it is used in additiou to other hatching apparatus, for the reason that owing to lack of space the number of these apparatus could not easily be increased.
The location of Hianingen is not favorable to the use of this apparatus on a large seale, but owing to the faror which it has found with the distinguished director of the Hüningen establishment (who himself had
introduced some modifications in it), it forms part of the apparatus which has been acquired during his directorship. At Hiiuingen I have also seeu California troughs in use in the open air.

As reserve or supernamerary apparatus I have seen these troughs employed at Selzeuhof, Zurich, and Seewiese.

In the last-mentioned establishnent I hare seen it with such singular modifications that I deem it proper to give an idea of the same.

One of these models represents a small box with a rectangular base (see Figs. 5 and 6) whinch serves to receive the water directly from the distributing cock. Along a line in the middle of the longer side of this box there is joined to it a receptacle of oval shape, in which the box with the eggs is placed. A small pipe placed below the upper edge of the box pours the water into a second pipe which is lower, broader, and longer, which takes the water which camot all come out through the smaller pipe and which also flows between the two partitions, the inside and lower of which supports the frame for the eggs, while the upper limits the external surface of the apparatus. The capacity of this box is 6,000 trout eggs, the exact quantity which a Califoruia trough of the normal type and dimensions can hold.

I do not consider it necessary to describe another modified type of the California box, capable of holding 7,000 trout eggs, lower than the
regular California box, but with cross-sections and rectangular sides, which I saw at Seewiese, and which, like the first mentioned, is made by Ignaz Walther, of Marktreit. At Cosmandorf, however, the California trough ouly is used (Max von dem Borne type) without a third box, and with the addition of the "catch-box," as also with von dem Borne at Berneuchen, and to a great extent at Michaelstein.

In the last-mentioned place some of the California troughs are of the Schuster model-that is to say, with a fixed perforated partition; but some have a movable partition. The boxes are arranged on an incline in such a manner that each incline has seven steps, so that the water flowing from one spout passes from one box to the other, from the first to the seventh in the row.

At first sight this arrangement shows the same defects which have been noted in the Coste stairway; but the better distribution of the water, the large pipe which serves for its outflow (which causes it to fall below in the shape of a thin veil), and the quicker renewal of the same, makes up in the California troughs for the scarcity of air, which in the Coste trougles is remedied by the presence of small faucets, which distribute the water in the shane of small springs.

The best way of utilizing the California boxes, economizing space as much as is compatible with the proper dispatch of the hatching process, I have seen employed at Berneuchen. Here each spring supplies only two troughs in succession, a box being placed between each couple. Three models of Califoruia troughs are employed here, namely, Max von dem Borne, normal type; funnel-sbaped troughs (Bell); and automatic selectors.

The troughs are placed in cemented tanks, which successively are used for various operations connected with fish-culture; for keeping the spawners and milters which are to furnish eggs for artificial fecundation, for hatching, and finally for the young fish. These tanks are 2 meters long, 50 ceutimeters broad, and 30 centimeters deep [about 79 by 20 by 12 incles].

By keeping the California boxes in tanks the water is prevented from flowing on the pavement, and another useful object is reached by an arrangement for regulating the depth of water in these tanks by means of a pipe with an elbow, attached ou the inside to the mouth of the discharge pipe and terminating in a box of tin or perforated zinc. This pipe may be more or less inclined by the operator, and allows him to obtain the needed depth of water, as by increasing or decreasing the contact of the water and the box he cau raise or lower the level of the water in the tank.

The addition of a woodeu box into which the discharge pipe passes from the tanks will not in any noticeable way influence the result of fish cultural operations; but it will serve as an illustration of the exemplary order and cleanliness which reigu in Max ron dem Borne's establishment. I can not imagine anything more convenient and cleanly,
as well as healthy, than his establishment, where you can approach the tanks containing the apparatus through which the water runs on any side without wetting your feet.

I may pass in silence the Lavallette troughs (which I suw at Seewiese), and the Zug apparatus (which I saw at Zurich); the first, because made of porcelain, has a surface perforated by only a few and large holes; and for the second autonatic selectors have been substituted to advantage.
To some extent ice boxes may be cousidered as belonging to the hatching apparatus. They consist of prismatic or cubic boxes with thick walls of wood, sometimes lined on the outside with zinc. In these boses, which may have a double lid, aro placed, at a suitable distance, one above the other, several frames with a perforated wooden or wire bottom. On these the eggs are placed on moist cloths. On the top frame ice is placed which lets its cold drippings pass through the perforated bottom. In this manner eggs have been shipped a long distance, and the embryonal development has been delayed.
In reviewing the character of the hatching apparatus which I saw in operation, I would say :

1. That on account of their convenience (suitable height of the apparatus) trougles of any kind of material, and hatching tables of the height of an ordinary table, are equally to be recommended.
2. Troughs of cement and metal are preferable on account of the durability of the material, and because they can easily be kept clean.
3. On account of the proper hydraulic movement all those apparatus are to be preferred in which the water runs among the eggs placed at its bottom.
4. An arraugement by which the eggs are more scattered is not to be recominended, unless the abundant and rapid renewal of the --ater fulfills the third condition.
5. Owing to the greater facility with which the spoiled eggs can be picked out from among the sound ones, those methods are to be preferred, by which the eggs are placed in a single layer.
6. I consider it better to place the eggs on frames of netting in preference to placing them on fine gravel, or directly at the bottom of the trough ; the best kind of frame is that which allows the water to pass through easily (wire netting), and which has perforated edges.
7. All the hatching apparatus which I have seen answers the purpose more or less, but the ordinary Califorvia trough excels them all, because it meets all the desired requirements.
8. Automatic selectors are particularly suited for the hatching of eggs of Coregoni ; while the ordinary California trough is specially adapted to the hatching of the eggs of salmonoids.
At Hüningen I saw in operation the Haack apparatus. It was there employed for Coregonus eggs from the Lake of Constance, which were hatched at the expense of the Italian Government. The eggs remained
in the box containing fine ice until it was time to separate the fecundated eggs from those which had not been fecundated, and which were opaque, and from those which through contact with moss and alga had assumed a bright blue color, so as to make them resemble colored crystals.* The eggs were gradually hatched on Coste tables. \dagger

Hatching-houses.-It is my opinion that he who travels for the purpose of obtaining a practical knowledge of the various aids employed in an industry like fish-culture should pay more attention to a critical examination of the apparatus seen in operation in the various establishments than to the extent to which this apparatus is employed, because this will necessarily vary according to the funds at the disposal of the establishment and the importance of the operations to be performed. I shall therefore not speak of the size of the various hatching-houses, but pass in quick review the characteristic features which they must possess.

The object of these houses is to protect both the hatching apparatus and the persons who work them against the inclemencies of the weather. If in case of necessity any kind of house or shed with windows suitably placed may be couverted into a hatching-house, it is nove the less true that buildiugs erected for the purpose, in a suitable position and furnished with all the necessary requisites, will answer the purpose better. Any one constructing such buildings should have due regard to the severity of the weather, and provide them with sufficiently thick walls. Thus at Cosmandorf the hatcling-house has double walls of wood with compressed straw between. them.
At Cosmandorf, Dachsen, and Apeldoorn the hatching-chambers are also of wood. The large hatching-room at Berneuchen has three walls of wood, the fourth being of brick, formed by the same canal which carries the water into the establishment. The roof is formed of wooden slats, covered both on the inside and outside with tarred pasteboard. The placing of the hatching chamber in the ground made necessary by the hydraulic movement also serves the economical purpose of affording protection to the water and the apparatus against the excessive cold of the winter.

I have already referred to the hatching.canals at Hüningeu, which run in the pavement, as being made necessary by the circumstance that the water has to be brought from a spring which rises at too low a level; but they may also serve to keep the water from freezing. Whenever

[^77]the climate makes it necessary (as at Berneuchen, Lübbinchen, Seewiese, \&c.), stoves are employed.*
The hatching-chambers at Hüningen, Selzenhof, Radolfszell, Wilthen, Lübbinchen, Michaelstein, Velp, Zurich, and Neuhausen are of masonry.

The rooms where the hatching apparatus is kept should be suffciently lighted by windows placed in suitable position, so as to facilitate the inspection of the eggs and the separation of the spoiled eggs from the good, \&c. It is also asserted that a violet or blue light is most favorable to the embryonal derelopment of the eggs and fish. I accordingly expected to see colored glass employed in some establishments, but my expectations were disappointed.

I confess that, with Professor Verson, among others, I am somewhat skeptical as regards the influence of monochromatic (violet) light to the exclusion of the white (composed of various rays of the luminous spectrum) on animal organisms, since, as Verson thinks, the same number of rays of a given color on which it is intended to experiment, to the exclusion of others, pass through a colorless giass.

But, to return to the subject to which I referred, it is easy to guess the reason for the absence of colored glass from the hatching-houses, because according to the advanced opinion of our time the eggs will develop better in complete darkness. \dagger Moreover, it is of little importance in industrial establishments whether some think favorably of violet and blue rays, while others have their doubts on the subject, as experiments in this matter would seem more appropriate in a zoological laboratory. Complete darkness has also its dangers, as it favors the development of mold, while light favors the generation of green alge.
Eren a simple parement of beaten clay (at Dachsen) may suffice for a hatching room, and it is certainly preferable to some other parement made of or covered with cement (Selzenhof, Hüningen, Berneuchen, \&c..); and in this connection I cannot speak too highly of the Berneuchen establishment for the ingenious way of preventing a light and continuous movement which, if not hurtful to fish-culture, may injure the building aud interfere with the work of the operator.

As regards the filtration of the water it may be stated that the filter may either be placed in a room immediately adjoining the hatching room or in that room. The selection of a place for the filter will depend on topographical circumstances and on the desire to aroid any unnecessary enlargement of the building. It is certain, however, that if the filter is placed in the latching room itself or in one immediately adjoin. ing it, this will be found more convenient, as it affords a better chance to watch this useful apparatus without having regard to the state of the weather.

[^78]It is also useful to have in the hatching-rooms a place for tanks where, during the proper season, and separated by sexes, the spawning fish destined for artificial fecundation may be kept. This is done on a large scale at Hüningen, where there are great tanks in the ground constructed of concrete. It has already been said that at Berneuchen every provision in this respect has been carefully made by Max vou dem Borne. It is not necessary to speak of the size of these tanks, as they will have to be in proportion to the number of spawning fish kept on hand in each establishment.
Artificial fecundation of salmonoids.-After it has been ascertained that the spawning fish have reached sexual maturity artificial fecundation may commence. This may be done either by one person alone or with the aid of an assistant.*
In the first case the female fish is taken from the water and held with the right hand over the basin destined to recoive the eggs. If the fish is large it is held inclined at a sharp angle. The belly of the fish is then pressed with the thumb of the left hand, the movement being in a downward direction.

If another person assists in the operation he must hold the fish by the tail by means of a cloth. The two operators hold the fish almost vertically over the basin, the first one holding it by the head with the hand and in the manner indicated, and the second by the tail. The first has to go through the mánipulation described above to cause the eggs to come forth. The male fish is subjected to exactly the same operation.
The amount of pressure should correspond with the greater or less degree of maturity of the female, without, however, passing certain limits, as excessive pressure would injure the fish without reaching the object iu view. In some cases the eggs have reached such a state of maturity that they will come out of themselves when the fish is examined to ascertain whether the genital gland has swelled enough to be operated on.
In natural spawning the salmonoids will deposit their eggs at different, more or less short, intervals; while where the process is artificial they all come out at one and the same time with a certain violent movement, which, however, does not interfere with their successful embryonation. The milt of one male fish is used for the eggs of two or three female fish.

In primitive fish-culture the eggs were kept under the water to be fecundated, as people believed that in doing so they followed the teachings of nature. But it frequently happened that many eggs were not

[^79]fecundated, and were thus lost. In nature the male fish closely follows the female, and it may be said that the laying of the eggs and their fecundation are simultaneous. But in spite of the action of the water which kills the enemies of the eggs, and the aikaline sliminess of the eggs which favors their movements, it is a fact that many eggs do not undergo the process of fecundation which necessarily takes place under the water. At the present time, therefore, nature is no longer imitated in a servile manner, and it is the general practice to employ dry fecundation, which assures better and more general success. When as many eggs have been obtained as are deemed sufficient, and artificial fecundation has been reached by mixing at proper and regular intervals the milt with the spawn, the eggs are washed and then placed in the troughs.
The possibility of fecundating eggs on the shore of the waters from which the fish have been taken is proved by the circumstance that the oggs immediately after fecundation are so elastic as to allow of their being packed and shipped to the places where they are to be hatched. As soon as incubation has commenced this is no longer possible, even if managed in the most delicate manner, as the eggs when exposed to any pressure will ineritably be lost. But transportation again becomes possible when the eggs are near being hatched; that is to say, when the eyes of the embryo can easily be distinguished through the shell. From a practical point of view it is, therefore, important to know whether fresh eggs contained in a dead female fish can bo fecundated.
If it is desired to know how many eggs have been obtained, the object can be reached by measuring them in small cylinders of a known capacity, having perforated sides and bottom, and, the kind of fish from which the eggs have come of course being known, to count the eggs in one cylinder* and multiply by the number of cylinders.
Pauking and shipping embryonated eggs.-T have witnessed the packing of embryonated eggs, to be sent a considerable distance, at Hïningen and at Selzenhof. The eggs were placed on a bed of moistened wadding, gathering them in a piece of cloth folded in such a manner as to prevent the eggs from touching the sides, and keeping them covered. Tie layer of eggs was placed on the perforated bottom of a small wooden box. The next box is exactly like the first, and the last box of the pile contains the small pieces of ice, the cool dripping of which keeps the eggs below alive. The pile of boxes has on the top a stick of the samolength as the boxes, and rests on a similar stick at the bottom. The whole is kept in position by a cord placed crosswise, and is then put in a larger box, the spaces between its inuer sides and the pile of boxes containing the eggs being filled with sawdust, hay, or compressed moss.

From Pavesi's report the labels are known which are attached to the outside of the package, and which contain the address of the persons

[^80]to whom they are sent, and generally some directions for their treatment by the railroad employés.

In Germany packages of eggs are received in the mails as postal parcels, and the administration of posts is directed to treat the package with the greatest care, in compliance with the request "urgent" written on a piece of red card-board attached to the usual label.

Tanks and ponds for salmonoids.-My report would not be complete as regards salmou culture if I did not mention the open tanks and ponds which in many establishments are used for keeping the stock of salmonoids.

The tanks are laid in cement, and covered with an iron grating, and the salmonoids are kept in them, separated according to age. They are so arranged that the fish in them can easily be fed artificially. As regards the matter of artificial feeding, tanks are perhaps better than pouds, as a possible excess of food* can more casily be removed in the former, and as it is also easier to prevent any injurious pollution of the water.

Special mention should be made of a simple contrivance adopted at Hüningen to protect the fish kept in certain provisional tanks, with wooden sides, especially agaiust rats, which, if they have once got into them, find no way to get ont. For this purpose boards are placed atright angles with the vertical sides of the tank, and projecting a little over the water. How this contrivance may serve as a trap will be understood without any further explanation by a glance at Fig. 7.

Fig. 7

Trout which have reached a certain age are generally placed in ponds, in company with other noncarnivorous fish, which rid the water from any superfluous vegetation (especially alga), and thus enable the sal-

[^81]monoids to have more ready access to small crustaceans and mollusks, which form an important part of their food.
Mr. Haack considers it also necessary to place in ponds those trout which have been deprived of their eggs by an artificial process, because here they will find more favorable conditions for gaining flesh and for recovering from the sudden exertion incidental to forced spawning.

Although on general principles it is preferable that the water in ponds destined for salmonoids should during summer be kept cool, and that its temperature shonld in no case exceed $31^{\circ} \mathrm{C}$. [85 $5^{\circ} \mathrm{F}$.] (according to my observations the temperature did not exceed this limit in any of the establishments which I visited), it will be well to note that aeration, an abuudance of water, frequent agitation of the same, and a just proportion between the capacity of the water and the number of fish to be kept in it, will allow the fish to do well even if the summer temperature of the ponds should not altogether come up to the conditions as mentioned above.
It would be useless to describe the arrangements for obtaining the best hydraulic movement in the ponds and to provide for their draining without losing the tish. This is done by putting partitions in suitable places; perforated zine plates being at present preferred for that purpose. More or less ingenious apparatus is employed in this connection, as well as sewers and pipes; but as they are known from models, it will not be necessary for me to describe them.
In constructing the bottom of the conduits, cement or stone is at preseat preferred to wood, which is only seemingly more economical.

Planting young salmonoids.-When should the young salmonoids be planted? The answers to this question differ somewhat, and reflect the individual opinions of various fish-culturists.

Mr. Haack prefers to plant them when tho umbilical bag has begun to disappear, stating that as soon as they are placed in the water they will hide under stones as long as they do not feel the desire to seek food, and during this time they become acclimatized in the new element.
In the Netherlands the young salmon are not plauted until they have lost the umbilical bag, and after they have been kept and fed artificially for an entire year.

At Wilthen the young trout are not placed in brooks until they have been kept for a certain time in the apparatus where they were born, where they have lost the umbilical bag, and where they have been fed. After they hare passed the fine season of the year in the brook they are in autumn placed in ponds, where they remain about a year; and after that they are sold, if they hare reached the weight of at least lalf a pound.
It is not customary to place in open waters embryonated eggs of salmonoids which are near being hatched, for fear of some voracious fish, especially the Chondrostoma nasus and the Barbus fluviaitits. Although S. Mis. 90- 36

Mr. Haack declares that it not advisable to plant eggs in large lakes and rivers, he states that he has made some experiments in small streams and lakes.

In Italy (at least in many parts of it) the Squalius cavedanus would have to be feared particularly; but I take the liberty to state that, when some years ago I planted eggs during spring in some large lakes of upper Italy, I invariably found the water in which I plauted the eggs free from fish. Moreover, if it is logical to presume that young fish freed from the umbilical bag, lively and well able to swim, will be better prepared to escape their voracious enemies than the sluggisle eggs, it will not be ontirely unreasonable to suppose that young fish which are still impeded in swimming by the umbilical bag will not be particularly active, and able to escape from their enemies creu if they should hide in the maze of the gravelly bottom.

Species of salmonoids which are cultivated in the fish-cultural establishments visited by me. -The post of honor among the salmonoids which form the object of artificial fish-culture in Switzerland, Germany, and the Netherlands is hold by the salmon, Sulmo salar, a veritable gastronomic delicacy, which gives rise to a considerable trade.
The variety which enters during the spawning season the large rivers of Central Europe from the North Sea and the Baltic is in German called "Lachs," while the barren variety which lives in fresh water and does not go into the sea is called "Winter Salm."
All public administrations prohibit salnou fishing during the period when these fish go up the rivers to spamin; and no fish of this kindare allowed to be sold until it has been officially ascertained that the eggs destined for artificial fecundation have beeu laid.

Artificial fecundation is 1 racticed, for instance, at Basel by Mr. Glaser, at Lauffenburg by the agents of the Fishery Company, which for this privilege pays a considerable sum to the Governments of Baden and Aargau. It is also practiced at Neuhausen, in the cantoual establishments of Zurich, aud at Dachsen. Mr. Glaser also furnished salmon eggs to the Hüniugen establishment before Mr. Haack taught fecundation according to the most approved modern method. I have also witnessed the incubation of salmon eggs in the establishments of Neuhausen, Selzenhof, Seewiese, Cosmandorf, Velp, and Apeldoorn.
The young fish are mostly intended for open rivers, and are therefore sold to the various governments. Salmon eggs fecundated at Selzenhof have been bought by the Goverument of Saxony; and have been hatched at Cosmaudorf, to be placed eventually in the river Wesenitz, a tributary of the Elbe. The establishment at Cosmandorf has also rendered this service to the Academy of Forestry at Tharand, in Saxony, where Professor Nitsche does his share in aiding the diffusion of fish-culture. The Saxoin Government pays the Cosmandorf establishment 1 mark 30 pfenuige [about 31] cents for every thousand young salmon hatched.

The Velp estallishment hatches salmon for the river Yssel, aud receives from the Netherlands Government 2 cents (Dutch) [about 1 cent American money] for cach young salmon, and receives in all a sum amounting to 25,000 lire [84,825], which the Netherlands Government pays to the rarious fish-cultural establishments in the Netherlands, which are charged with restocking the rivers.
At Velp about 500,000 salmen eggs can be hatched, 300,000 of which are obtained from fish in the Netherlands waters, whilo 200,000 are received from the Upper Rhine. Besides young fry, salmon one year old are also placed in the rivers; and the Government pays at the rate of 50 centesimi [about 10 conts) per fish. Another half million salmon eggs can be hateled at a peldoorn.

At Apeldoorn the California salmon is also hateled, which develops quicker than the Rhine salmon. It is this salmon which the eminent fisl-culturist, Mr. von Baer,' president of the German Fishery Association, considers (as he informed me) as peculiarly adapted to the rivers flowing into the Mediterranean, owing to the fact that there is much greater analogy between that sea and the Pacific than between the North Sea and the Pacific. Mr. von Baer has, during the years 1877 to 1880, planted in the Danube, which flows into the Black Sea, 670,000 eggs of the California salmon.
The eggs of the Salmo sebago, another fish of Δ merican origin, also develop very rapidly; and large numbers of these fish are now found at Seewiese, where during the time of my visit 2,000 eggs were hatched, and where some tolerably large specimens were found in ponds. ${ }^{\prime}$
Trout culture is carried on still more extensively, and I have seen it in operation in all the establishments which I visited. Fecundation of Salmo fario (the common European river or brook trout) is everywhere practiced with spawning fish taken in the immediate neighborhood. It is not so common to find establishments which devote themselves to the Salmo or Trutta lacustris, and the only ones where I have seen this done are Büningen and Selzenhof.
In some cases the indigenous species do not satisfy the fish-culturists, and they have commenced to introduce some forcigu varictics of the trout; among the rest the Salmo irideus, or the Trutta iridea, from California. The oldest specimens of Trutta iridea are found at Hiiningen, where they were obtained from eggs which came direct from America in 1882, and whicl have already propagated their species in their new home. The value of this trout, according to Mr. Haack, is in the fact that it is an unusually hardy fish, and is therefore sure to thrive in Germany.

I have also seen some Trutta iridca (one year old) at Lübbinchen, and some (two years old) at Michaelstein. Mr. Schuster also has some Salmo carpio from the Garda lake, which he keeps in cemented tanks at Radolfszell, and which he obtained from eggs furnished to him from Torbole Trentino.

At the present time two varieties of the Salvelinus are cultivated, namely, the Salmo (or Salvelinus) umbla, and the Salmo (or Salvelinus) fontinalis. The second variety may now be considered acelimatized at Hüningen, Apeldoorn, Berneuchen, and in many other establishments. The Salmo fontinalis is a great favorite, not only on account of its rapid development, but also on account of the extraordinary beanty of its coloring.
The spawning season of the Thymallus vexillifer had not yet begun, and I could not, thercfore, witness the hatching of the eggs of this fish; which, howerer, is raised in many establishments. Mr. Eckardt, for instance, keeps them in a special paved pond.

The alimentary value of the Corcgoni is sufficiently known; and I therefore deem it proper to derote a few lines to this fish, all the more as experiments are being made to introduce it in Italy, where it is not found. But also in countries where this fish is found attempts are made to introduce new varieties, such as the American Coregonus allus, which is cultivated at Zurich, Liibbinchen, and Bemeuchen.
The Radolfszell establishment, situated on the shores of the Lake of Constance, gives special attention to the Blaufectehen or Corcyonas wartmanni. There are several varieties of this fish; and the Radolfszell establishment knows of at least three, differing from each other not only by bodily characteristics, but also by their geographical distribution. These are the Blaufclehen, found in the Lake of Constance proper ; the Silberfelchen, in the Untersee (connected with the Lake of Constance), and the Ganfisch, found only in a certain limited portion of the lake. The Coregoni at Selzenbof come, as may be supposed, from the Lake of Constance. From this same lake came the Coregoni, hatehed at Hiiningen, which have been sent to the Italian Gorernment for the Lake of Como, where they find the required food, as that lake contains the pelagic crustaceans, which, as Dr. Asper, of Zurich, has already declared, are an indispensable article of food for this fish.
Mr. Eckardt does not think that there is any specific difference between the Coregonus marcona and the Coregonus weartmanni, and bases this opinion on the reciprocal fecundation of the sexual products of these two varieties. Notwithstanding the fact that such fecundation has actually been observed-proving that even cross-breeds may possess the faculty of fecundation-this would not form a very strong proof in faror of Mr. Eckardt's opiniou.

Two conditions are essential to the existence of Coregoni, namely, great depth of water and suitable food (insects). Nevertheless it is possible, according to Mr. Schuster's statenient, to introduce the Coregonus fera also in shallow water, proviled it contains suitable food.

The production of hybrids of salmonoids also forms part of the work of fish culture, and has been done on a sufficiently large scale. The salmon, the Salvelinus umbla, and the American trout will interbreed with the trout.

I think that the attempt to fecuudate, for instance, salmon eggs with milt of the trout, should not remain the only one, and that, besides endeavoring to find out whether the mixing of the sexual products of these tro kinds of fish will result in successful fecundation, fish-culturists should also endeavor to utilize in some way eggs, which through the possible failure of the male fish, would run the risk of being lost.

It is said that the hybrid of the salmon and the trout does not migrate to the sea; and in this respect it resembles the "Winter Salm," with which it also shares the physiological characteristics of being barren. Haack, however, asserts that the barrenuess of the hybrid of the Salve. linus umbla (male) and the trout (female) can not be proved. At Berneuchen hybrids were obtained from the Salmo fontinalis and the trout. Dr. Asper, of Zurich, has no very high opinion of these hybrids, which generally have a small head, an irregular dorsal profile and ovary. At Dachsen a great mortality has been observed among the young bastards of the salmon and trout, whose umbilical bag has the bluish color of algæ.

In the following table are given the kinds of salmon cultivated in the various establishments:

II. - Cyprinus culture.

Carp.-The principal object of cyprinus culture is the carp, Cyprinus carpio, which in Central Europe has from time inmemorial given rise to a very lucrative trade. The great ease with which it is multiplied, raised, and protected against its enemies, its prolific nature, the preference which it shows for vegotable food, and its rapid growth, explain the great favor which this fish has found with fish-culturists, and may oven justify the expectation that its cultivation may also be extended to Italy, although we are not inclined to consider the carp a remark. able delicacs.

Carp are raised in ponds, where they are kept either by themselves or in company with other fish. Different kinds of ponds are used in carp culture, namely, spawning ponds, raising ponds, growing ponds, and winter ponds.

The water of the spawning ponds should be somewhat warm. This condition is obtained by haring these ponds exposed to the sun, by changing the water slowly, and by selecting such as are not very deep, the average depth of water not being more than one meter [$3 \frac{1}{4}$ feet]. Vegatation should be abundant, but not excessive. Reeds and grasses which soon cover a pond, should be checked in their growth. If possible, Mr. Haack would remove all the phragmites from the numerous ponds at Hüsingen. Among aquatic plants the Glyceria fluitans is useful, and much sought after by the carp, which deposits its eggs on it.

To regulate the spawning of carp, Mr. Haack advises to place the fish intended for that purpose in comparatively cold water, and thence take them at the proper time to the spawning pouds, where, stimulated by the higher temperature of the water, they will soon deposit their eggs. Benecke, on the other hand, advises to place the carp in the spawning ponds when their water still has tho winter temperature.

The number of spawning fish to be placed in a spawning pond covering an area of from ouetenth to half an acre should, according to Max von dem Borne, not excced two females and ono male, each weighing 8 pounds, from which in a few days two to three thousand young. fish will be obtained. A single carp weighing 8 pounds is, therefore, capable of producing enough young to stock 500 hectares [about 1,235 acres] of ponds. Mr. von dem Borne has had serenteen successive spawnings in water having a temperature of $31^{\circ} \mathrm{C}$. [about 88° Fahr.]. It is therefore not at all surprising, if Mr. Haack states that he has realized from the above-mentioned number of carp in one pond, which costs hardly $\$ 10$ to keep up, tho sum of $\$ 300$.

Mr. Haack informed mo that, in order to preserve all the good qualities of the carp which he cultivates, he is very careful in selecting his sparning fish from among those which from time to time are furnished him for the purpose, selecting those which are not oply sufficiently robust, but which also possess all the other requisites of form and color which make them desirable spawners. He therefore applies the true principles of rational selection also to these animals.

The artificial fecundation of the carp is possible, but it is very little practiced. The fish-culturist is contented in most cases to leare to the carp the care of laying its eggs. Some people inclose the spawning fish in non-floating and perforated boxes containing branches and awlsliaped leaves (juniper branches in Mr. Eckardt's establishment), which, as soon as they are covered with eggs, aro placed in more suitable water. Professor Nitsche advises experiments with the artificial fecundation of carp, using frames corered with some silk stuff, like those used by Möbius for herring. Fecandation should of course be accom-
plished under the water, as with other kiods of fish that lay adhesive egres, in recoguition of the fact that the spawn of fish which spawn in summer matures less rapidly when brought in contact with water chan the spawn of fish whose fecundation takes place in cold water.

I regret very inuch that the season was not fivorable for seeing in full operation the Liibbinchen ponds described by Max von dem Borne, and arranged in such a manner as to insure the greatest possible result from the spawuing of carp, aud the keeping of many other kinds of fish. As it is not my inteution to give a detailed description, I shall merely give the general plan on which ther are constructed. The ponds are deep in the center, have flat shores, and are connected by uumerous openings with canals which are much lower. . Ou the bottom near the shores the collectors (bushes or branches) are placed, and are soon corered with the egrs of the spawning carp. Δ fter the eggs havo been laid, these collectors are placed in other ponds, or in the canals surrounding the ponds, care being talsen to prevent the spawning fish from entering these canals. It is necessary to remove the eggs from the spawning fish, as the grown carp will injure them and devour the young fry. The sparrning ponds should be allowed to lie dry during winter, so as to kill the small animals which are enemies of the carp, and especially the pike which may have got into the ponds. The young fish would soon suffer from want of food if this contingency was not provided for by distributing them in suitable guantities in the growing ponds.

Mr. Max von dem borne has even the smallest carp taken out of the pond by a man who stands in the water and uses for this purpose a muslin dipper. All the fish which ho catches in this way he throws into floating barrels with a botcom of very fine wire. After he has gathered a sufficient quantity, ho transfers them, by means of a zinc basin with a spont, to the tin cans in which they are convered to tho ponds for which they are intended.

The growing ponds should be proportioned to the number of fish which it is intended to raise in them, due rogard being taken to the amount of food which they contain. The fish aro distributed according to age; for which reason rational carp-culture requires many of these pouds.

In the growing ponds other fish may be kept with the carp; for instance, pike and bass. These fish should, however, be very small, so as not to proy upon the carp. The principal object of laving these fish in the ponds is to prevent the carp from spawning, as spawning would make them lean. In these ponds artificial food is also used, consisting of four-balls, vegetables, potatoes, bran, dung (firom cattle), larvo of Hies, \&c.

If the conditions are farorable, the carp can winter in the pouds; but in some establishments, as, for instance, at Hüningen, there are special winter ponds, in which the carp aro kept during the cold season. For these ponds spring water is used if it is somewhat warm. To prevent
the carp from being frozen, special excavations are made in the bottom of these ponds, where the carp crowd together in a semi-lethargic state. The water of these winter ponds should be deep. But if the water should freeze, it becomes necessary to make holes in the ice, so as to introduce air into the water below. These holes are covered with sheaves of reeds, having a broad base and forming a kind of roof over the holes, thus preventing further freezing. It is necessary, however, that these holes be frequently examined, so as to keep them always open.

Tillage of carp ponds.-Mr. Haack recommends the custom which has been introduced, of using the carp ponds also for agricultural purposes. After they have served as ponds for two or three years, they are drained, and then plowed for the cultivation of grain and potatoes. According to the director of the Huiningen establishment, a pond which has undergone dry cultivation is richer in small crustaceans which form a favorite food of fish. For instance, the eggs of the Phyllopoda will develop better during a dry season.

It will easily be understood why it is useful and profitable to use the bottom of the ponds after a certain period for agricultural purposes, thas utilizing the large quantity of fertilizing matter, consisting of leaves, aquatic plants, animal matter, and excrements of ish, which has accumulated in the pond; while on the other hand it is difficult to explain why ponds used in this manner should be richer in fish. Mr. Haack believes that this is owing to the greater development of small crustaceans; but the greater abundance of these crustaceans has not been sufficiently explained by science. We are, however, allowed to suppose that the greater number of fish is caused not only by the increase of small crustaceans, but also by the more luxuriant aquatic regetation which will derelop in soil, which after lying dry, has been plowed and cultivated, and before being again submerged has changed chemically by the inflaence of the air and sun. Whether this explanation is correct or not the fact remains and deserves to be taken into account.*

Other liinds of cyprinoids which arc cultivated.-As secondary objects of cyprinus culture we may mention the cracian carp (Carassius vulgaris), the Chinese goldish, the Iaus melanotus, and the tench.

As regards the crucian carp (Carassius vulgaris Nilsson), I would state that, compared with the common carp, it presents a great rarioty of forms, and will interbreed with the Idus melanotus, but its flesh bas not so delicate a flavor as that of the carp; nor is its culture so profitable, as its growth is much slower.

The goldfish (Carassius auratus), owing to its beautiful color, is much sought after as an ornament for ponds, artificial lakes, aquariums, \&c., and it is thercfore cultivated to advantage.

The Idus melanotus, especially its small variety, rivals and perhaps excels the goldfish in brilliancy of color, which changes with its different ages.
The tencl (Tinca vulgaris) is another cyprinoid which is cultivated to advantage, especially its golden variety, which is kept in aquariums. The manner of raising this fish differs but little from that of the carp, as it is quite customary to stock ponds both with tench and carp.

> III.-Other hinds of fish.

Pike.-At Radolfszell, Mr. Dietrich, the manager of Mr. Schuster's establishment, has been successful with the artificial fecundation of pike (Esox lucius). The eggs of the pike are very small, the embryo develops very rapidls, and the young are hatched in about twelse days. They were placed in as small lake, where they did well but did not prove anadvantage to the other fish. Mr. Max von dem Borne has also been successful in fecundating pike eggs. As far as I know, fecundation of pike eggs has not been attempted at Lübbinchen, where these voracious fish are kept only in the growing ponds, to keep the carp from spawning. Here they are kept in company with the Lucioperca sandra and the perch (Perca vulgaris), which last-mentioved fish is considered to diminish any excess of small fish, as thes tako away the food from fish which are the proper object of fish-culture.
Black bass.-Successful experiments in acclimatizing this Awerican fish (Huro nigricans Cuv. \& Val., Micropterus salmoides Lacep.) hava been made at Berneuchen. The number of individuals of the first importation which survived the long journey was very small; but from the 3 which survived, Mr. Max yon dom Borne obtained about 1,300 young fish. I have mentioned this new branch of fish culture, because Mr. v. d. Borno thinks that it is adapted to the rivers of southeru Italy; ant I must confess that I have great faith in the opinion of this distinguished fishculturist. But before introducing this tish, the question should be thoroughly considered, whether it would be expedient to increase the number of voracious fish. The black bass likes to spawn on a bed of large stones. I have seen some very large specimens of this fish which are considered the oldest now in Germany.

Eels.-All the eels found in the waters of Continental Europe caime from the sea as young eels, forming what is called the "mounting" of the cels. The attempt to conver these young eels to places where they will break their journey, or to guide them to such places if they do not go there of their own accord, to some extent resembles the mothod pursued at Comacchio and Polesine, where from time immemorial the cels have been guided into the basins destined for them. The most enthusiastic adrocate of the introduction of these young eels into German waters is Mr. Haack, who once procured them from France, but now obtains them direct from Pisa, Italy, where they are brought into the market in enormous quantities.

The following is the method employed by Mr. Haack for packing them and transporting them from Pisa to Hiuningen. He employs large, square baskets lined with coarso cloth (jute), the inside being divided into several horizontal compartments, which are produced by pieces of cloth being sewed to one side of the cloth which forms the living. In each compartment are placed branches of Potamogeton pectinatum or Potamoyeton orispum, which afford hiding-places to the young eels, aud which, owing to their peculiar elasticity, protect them from the danger of being crushed. Layers of Potumogeton and cels alternate, until the compartment is comfortably filled, when another clotb is drawn out, which receives other alternate layers of Potamogeton and young eels. If the plants are sprinkled a little they will supply enough moisture to keep the young eels alive. These packages are sent from Pisa to Basel by way of the St. Gothard tumel, special directions being given the employés of the railroad to forward them promptly. From Basel they are conveged to the imperial fish-cultural establishment of Muiningen on wagons.
As soon as the eels arrive at their destination they are, together with the plants which have protected them during their journey, placed in water on the hatching-tables or in open tanks, where they move about very nimbly, trying to avoid the light. The dead oues are picked out when the plants are taken away, and afterwards during the daily visits.

Fish-cultural establishments or private individuals in Germany who wish to obtain young eels get them from Hiningen. This has already been done by the Radolfszell establishment, which has placed them in the Lake of Constance, in the hope that after some time they will again make their appearance when they have reached a greater size. Although in Italy we are more farorably situated in this respect than Mr. Haach as we have plenty of young eels, we should nevertheless follow his example and increase this useful species of fish in our waters.

At Neuhausen I saw an apparatus (eel-way) intended to favor the

retention of the young eels which have reached the water above the famous falls of the Rhine. (See Fig. 8.)

It is a wooden canal with a smooth bottom, with wooden partitions (not shown in the figure) placed at regular intervals; the entire leugth is 5.07 meters [10_{3}^{2} feet]; it is divided in two arms (A, B) of nearly equal length, and connected by a horizontal arm (C); the first in the beginning runs horizontal, and afterwards slopes towards the arm C; and from this again slopes the arm B, which widens at its end. It is clear that this canal will conduct a current of water from a higher to a lower level.
I am not able, however, to understand what benefit can be derived from the use of this apparatus, which will not increase the "mounting" of the eds (which in my opinion cannot be accomplished by any contriv. ance whatever); but which will draw some of them away into water. courses, which, owing to the lack of communication with the streams by which the soung eels usually ascend, would under ordinary circumstances not have them.

The following table will show what fish, not belonging to the salmonoids, are cultivated in the establishments which I visited:

Name.	Locality of establishuent.
Aciponser rathenus.	Juhbinchen.
Haro nigricans....	Iubbinchen and Bernouchen,
Lucioperca sandra.	Scowiege, Lübbinchen, and bornouchen.
Silurus planis......	
Carassius vulgnris.	Ituningen, Inbbinchenand apeddoner.
Carassius auritur.	
Tdus melanotus	
Emox vucius....	Lubbinchou rud Borneuchen.

Spparatus, arrangement, and products

Place.	Kind of water nsed.	Hatching rooms.	Hatching apparatus.
Zurich.................	Lake...............	1 chamber of masonry	8 wooden troughs; zino trouzhe: 2 Zenk apparatus: California boses.
Dachsen..............	Spring............	1 chamber of wood.	24 wooden troughs
Neuhausen	do	1 chamber of masonry	20 wooden troughs; Costo
Hüningen	Rhine water and soveral springs.	2 halls of masonry; with area of $165 \mathrm{sq} . \mathrm{m}$. each. 1 hall with area of 540 hq. m. Totalaroa of 870 sq. m. [aboat 1,040 sq. yde.].	Costo tables; hatohing boxes; California troughe; Coste troughs; wooden troughe.
Selzonhof..	Spring and brook.	3 chambers of masonry...	Cement troughs; California boxes.
Radol [azell	Drinking water...	1 chamber of masonry....	4 wooden trourbs; 3 Willlameson troughe ; 1 Holten incubator.
Scowicso..............	Spring and brook.	1 wooden houso and 1 of masonty.	40 Zenk troughs; Californin boxes; 10 Lavalotte appa. ratus.
Cosmandorf...........	River..............	1 small house of wood.	12 Califomin boxes; 1 Holtou's прррагатия.
Wilthen	Spriug	do	4 California boxes; 3 wooden troughs.
Lübbinchen.	.do	1 small room of masoary, with area of 4 8q. n. [about 43 sq . ft.].	Eckardt troughe.............
Bornouchen...........	River..............	Several large hourea; boms of masonry, somo of wood.	California boxes; funnolshaped troughs; automatic selectors.
Michaelstain..........	Pond.	1 large chamber of mansoary, with aroa of 81.7 sq. m. [about 879 sq. ft.].	112 California boxes; 8 Williamson tables.
Velp..................	Spring.............	1 larcolonso of masonry, with area of $150 \mathrm{sq} . \mathrm{m}$. [abont $1,014 \mathrm{sq} . \mathrm{ft}$.$] .$	40 Coste tables.
Apeldoorn	. 10.	1 largo houso with area of 185 gq . m. [about 1,000 sq. ft.].	41 cement troughs; 31 wooden troughe.

of fourteen European hatcheries.

Capacity of apparatus.	Ponds, tanks, etc.	Kind of wator in ponde and tanke.	Kinds of fish cultivated.
$\begin{aligned} & \text { 500,000 } \begin{array}{l} \text { eggs. } \end{array} \text { Bulmou } \\ & \hline \end{aligned}$			Salmon, trout, grayling, sevoral Coregoni.
	2 ponds for malo trout......	Spriug.	Salmon, trout, grayling, sal-mon-trout.*
....do.		...do	Salmon, trout, grayling, sal-non-trout.*
12,000 oggs of Salmondaz per year.	Large tanks in a great hall; soveral open tanks in coment ; 50 ponda for salmod, trout, etc.; 1 large pond for bummer tish, and 1 pond fir carp; numerous ponds for goldifish, spawn-	Rline water, springe, waste from the hatching Lall, a ditel, otc.; flltored water for sovoral pouds.	Salmon, trout, Salmo irideus. S. fontinalis, Salvolinus, Thy: mallus vexillifer, several Corogoni, carp, crucian, goldfish, goldion orf, teuch, Salve-linus-trout.*
$8,000,000$ egge of Salmonidd.	0 ponds tor Salmonidx.	Brook	Salmou, tront, Salvelinus, grayling, several Corogoni.
	Tadks in cemant indoors	Drinkiug wator...	Salvolimus, carp, grayling, several Coregoni.
$7,000,000$ trout ogge.	12 ponds for Salmonidso ; 11 ponds for cithor Salmoniduo or Cyprinida; soveral tanks.	Spring and brook.	Sulmo scbago, S. foutibalis, trout, Thymallus vexillifer, bass, carp, orucinn goldon orf, tench, trout-8alwon,* Salvolinus-tront.*
120,000 egge of Salmonider	Wooden tanks for spawners.	Rivor..	Salmon, trout, trout-salmon.*
60,000 egge........	18 pouds, covoring 10¢ acres.		Trout, Salvelinus.
	Over 100 ponds ; 1 special pond for Thymallus; 24 concrete basins, each of 50 89. m. [538 sq. ft.] ; wooden tanke.	Spring	Salmo irideus, Salvelinue, aororal Coregoni, Osmerus eperJamms, bterlet, bass, Silurus, carp, crucian, goldtish, golden orf, touch, piko.
Vory large number	22 ponds; basine with fllters for young carp.	River	Trout, Salrelinus, Salmo fontinalis, Coregoni, peroh, bass, carp, tonch, pike, trout-S. fontinalis.*
$\begin{gathered} 1,120,000 \text { trout. } \\ \text { egge. } \end{gathered}$	4 tanks in cemont; 27 ponds, 4 of then for Salmonida.	Spring and wrook.	Trout, Salmo irtdous, Salvolinus, carp, tonoh.
000,000 вalmon eggs.	7 ponds for trout; 0 for sal-	Spring............	Salmon, trout, Salmo fontinalis, goldfish.
. do ..	88 round ponds or tanks; 64 mall brooks for joung trout.	...do.	Salmon, Salmo quiunat, S. fontinalis, trout lake trout, carp, crucian, goldfish.

[^82]IV.-Sone of the causes of the general diffusion of fishculiture in the countries visited, espiecially in Germany.

The process of artificial fecuudation of fish is said to have been a secret possessed by some French monks towards the end of the fifteenth century. It was also discovered by the Hanoverian Jacobi (1758), and again fell into oblivion, but when it was again discovered in 1849 by two fishermen, Remy and Gehin, due publicity was given to it by Professor Coste. No practical anplication, however, was made of it until, at Professor Coste's suggestion, the Hianingen establishment was founded, to which Enrope is certainly indebted for the modern impulse given to fish-culture, because its influence made itself felt not only in France, to which it formerly belouged, but also to foreign countries, including Germany. The new industry soon spread rapidly and made constant progress, numerous societies and jouruals promptly diffusing its knowledge.

But Hiuingen, during the last years of the French regime, did not keep up with the progress made in fish-culture, both in. Europe and America, and lost its importance, until it passed into the hands of the German Government, and Mr. Haack became its director, when it again began to improve.*
The interest taken in fish-culture by the Governments of Germany, Switzerland, and the Netherlands, which in a large measure have contributed to the restocking of public waters, and which have also furnished the necessary material for private establishments, has greatly aided the diffusion of artificial fish-culture ; its further progress is assured, as the results of its operations are no longer uncertain, and as the pecuniary benefit derived therefrom becomes greater.
This industry has been made popular to no small degree by the public exhibition of fislecultural apparatus in full operation in zoological gardens (as at Dresden, Amsterdam, Frankfort-on-the-Main), aud in aquariums (Berlin), which, as is yell known, are visited by large numbers of people.

In Saxony fish-culture is popularized by courses of lectures given by Professor Nitsche, of the Academy of Forestry, at Tharand. As this is the only course of instruction on fish-culture of which I have any precise knowledge, it will not be out of place to give a more detaijed doscription of the same. At certain convenient scasons Professor Nitscho gives free lectures on fish-culture at the Academy of Forestry. He has published a large wall diagram, giving illustrations of the fish in ques. tion (trout); the distinctive characteristics of sex ; the eggs, both sound and spoiled by mold ; the phases of their embryonal development; the young fish with and without the umbilical sac; a figure showing artificial spawning; the grarel-filter of Mr. Ryfsell, pincers', glass pipes,
*Mr. Hanck has introduced at Hüningen new apparatus; has had cemont tanks constructed; has improved the distribution of the wator, and the arrangement of the ponds.

Vessels for measuring the eggs; Caifornia boxes, whole and in sections, cans for transporting eggs, etc.

In these short courses apparatus, fish, and eggs are shown, while in a small room of the academy, which has been transformed into a hatching chamber, the California apparatus is shown in full operation with trout eggs.

Analysis of lectures on tho artificial raising of trout

A.

I.-Introduction, lroiagation of thout in oiden waters.

1. Waters in which trout and thoir kind live.
2. Tho spawning of trout in open waters:
a. The spawniug season (winter), aud the spawning places.
b. Fecundation of the egge laid by the female by means of milt ejecterl by the male.
c. Dangers to which tho eggs aro exposed during their doveloment and duriug the hatching.
3. Showing that in open waters only a small percentago of the eggs is hatehed. Can this bo remedied by artificial raising?
II.-The amtimichal raisiag of thoct.
4. Idea of artificial trout raising, i. e., an artificial way of depositiner, lieoping, and hatching the eggs and pretocting them against dangerous infuences.
5. Mothod of artificial fecundation :
a. The procuring of spawning fish.
6. Separation and distinction of the sexes. -
c. Indicatione of sexnal maturity.
d. The spawning of the ripe female.
c. Dry fecuudation of tho tages by means of tho mitt.
f. Counting tho egrgs by means of a measuring entass, and thoir introduction in to the hatehing troughis.
7. Necessary conditions for the dovelopment of fecundated crys. Precantions to provent any animals from destroying the oges. Puro water neoded incossantly :
a. Hy chemical processes the water should bo kept freo from injurious matter.
b. And by inechanical procusses from mud.
c. Its temperature should not be too high (0.5° to $8.6 \circ \mathrm{C}$.) [330 to $47.5^{\circ} \mathrm{F}$.].
a. The largest possible quantity of ajr shond pass throngin the water.
e. During tho hatching time it should noither ceaso to rinn nor freozo.
8. The California box, the apparatus best adapted to raising a small puantity of trout:
a. Description aud comonstration of the California box and its accessory apparatus.
b. Instructions for placing it in position.
c. Demonstration of the advantage of the California boxes, as compared with other apparatus, where the eggs are placed on abed of sand. The adyantagos consist in a saving of space, and in the greater ease with which the eggs and young fish are kept cleau.
9. Care of tho ergs duriug tho hatehing timo:
a. They should bo left entirsly undisturbed during the first week.
b. Dead eggs should be removed every day to prevent the formation of fungus.
c. All sedimont should bo removad.
10. Young fish, and their care:
a. Tho approach of the liatching is indicated by tho visibility of tho oyes of the embryos.
b. The youncr trout is hatched with an umbilical sac.
c. Change of the young fry to a small fish.
d. Keoping the soung Ifsh clean, and rogularly removine tho dead.
11. Placing of the young fish in water adapted to their raising :
a. The proper time for placing tho fisf in wator.
b. Hatching brooks and hatching pouds.
c. Transportation of the young Gish to tho wator; cans omployod for trausporting thom.

III.-Conclusion. .

Facility with which brooks can bo stocked with trout; given the possibility of receiving from a distance, by mail, embryonated egge:
a. Selection of a good apring, even if it should be small.
b. Treatment of the fish after their arrival.

Exhortation to make oxperiments on a small scule.

B.

I.-Introduction.

1. The growing depopulation of our waters, and the causes of this phenomenon: a. Voracions fish.
b. Many streans have become unable to maintain fish alive, owing to industrial and mercantile establishments, and to the lack of spawning places, and of suitable places where the dish can live.
2. Desirability of using for tho raising of fish any waters which may still be adapted to the purpose.
3. Trout are lest adapted to this purpose.
4. Artificial raising is the best moans.
5. The artiticial raising of iish is a German invoution (invented by the Hanoverian Jacoli in 1758; first publighed, 17(33-'64). Aftor it had fallon into oblivion it was inverted anew by a disherman of the Vosges, Remy, in 1849, and practiced on a large scale at the establishment of Hiiningen, in Alsace, which passed into the hands of Germany in 1871.
II.-Lime and phopagation of trout in open wateres.
6. Waters in which trout aud their kind live; the idea that trout confine themselves to mountain streams is erroneous.
7. Spawning place and season of the trout.
8. The ovaries of the fomalo empty their contents into the abdominal cavity.
9. Structure of the egg:
a. The yelk.
b. Tho germ.
c. The shell of the egg and the microngle.
10. The testicles of the malo have ducts carrying:
11. The sperm:
a. The liquid of the sperm.
b. Spermatic filaments.
12. Depositing the eggs; their fecundation by means of the male semen.
13. Fecundation is accomplisled by the entrance into the micropyle of at least one spermatic filament.
14. The development of the young fish:
a. Point from which the formation of the boty of the young fish starts.
l. Extension of the same and formation of tho back of the young fish.
c. Growth of the yelk rouvd the germinal spot.
d. Formation of the shape of the body of the young fish.
e. Visibility of the oyes by the formation of pirment in the oyes.
f. The little fish with its umbilical sac, and its hatching from tho egg.
g. The change of the embryo, which does not need any food, to a perfect little fish.
15. Conditions favorable to the normal developmont of the embryo:
a. The oggs should bo fecundated.
b. The egge should be daily moistened with water not chemically pure.
c. Tho water should bo furnished with a constant supply of fresh air.
d. Mud, which hinders the access of air, should be romoved.
e. The temperature of the water should not bo too high (0.5° to $8^{\circ} \mathrm{C}$.) [330$46.5^{\circ}$ F.]. Too high temperature accelerates development, while too low tomperaturo delays it.
f. Safoty from mechanical dangers. If the eygs are bruised, malformation is caused. Safety of the fish against enomies belonging to the animal kingdom.
16. Which conditions of success are not all found in open spawning places; and how a large part of the eggs run a great risk.
iII.-The raising of trout.
17. The nature of trout raising.
18. Procoring fish for artificial fecundation:
a. Obtaining spawning fish.
b. Distinguishing the male from the fomale fish.
c. Indications of the maturity of the spawn.
d. The spawning of the mature female.
e. The spawning of the mature male.
iII.-The raising of trout-Coutinued.
19. Procuring fish for artificial fecundation-Continued.
f. Different mothods of fecundation (dry and moist).
20. Counting the ogrs by means of measuring glasses; and placiur them in the hatching troughs.
21. Necessary conditious for placing a hatching trongh:
a. A hatching trough may bo placed any where where thoro is is current of not too warm water, which mar bo conducted to a placo secure against freezing.
b. Water of ponids, rivors, aud epringe may be used, each having its peculiar advantage.
c. Chemical purification of the water, and frecing it from iujurious matter, is indispensablé.
d. Cleaning the water from mud may be effected by means of elearing basins or loy filtration. Arrangement of a small sand-filter.
c. It is desirable that the water slonld fall into the hatching troughs from a cortain leight, thes producing air.
f. Λ space protected agaiust frost may be arranged by means of a very simple apparatus, as a sunall wooden shed covered with substances which are nonconductors of heat, such as reeds, struw, sawdust, etc.
g. The pipes through which tho wator is conveyed slould bo so arranged that thoy can easily be cloaned.
22. A good hatching trough sloould bo:
a. Of durablo material.
b. Easy to liandlo.
c. Easy to clean.
d. Well protected agalnst the enemies of fish.
e. Should have rooni for a suitable quantity of orgy on a small bottom.
f. Should be so arranged as to render easy the caro and management of the eggs.
23. All these requisites are possessed by Max von dem Borno's California trough :
a. A description and domonstration of tho trough and its accessory apparatus.
b. Showing the disadvantago of placing the egrgs on a bed of sand.
(6. Care of the eggs and the young fry:
a. Necessity ot daily visits to the apparatus; special attontion during rain-storms and snow-fall.
b. 'reatruent of the egge during the first stago.
o. Removing every day the dead fish, to prevent the formation of fungus. .
d. Removing all sediment.
e. How to recornizo the approach of the hatching by means of the points of the eyes which becomo visible.
f. Keeping the hatched ombryos clean.
24. Placing the young fry in the waters, where they are to be raised:
a. Proper time for transporting the fry.
b. The brook for the young fry, and its claracter.
c. 'Iransporting the young fry to the places where they are to be raised.
d. Cans for trausporting thom.
25. Somo brief hints as to tho management of trout ponds.
26. Stocking with trout such waters as are adapted to the purpose, but where no tront are found:
a. Various methods of stooking with grown fish, young fry, aud with cygs; batcling of the same near the waters which are to be stocked.
b. The last-mentioned mothod to be preferred; accustoming the fish to the water in which they are to live.
e. Choice of a good spring for embryonated egrs; a spring which has been tried and found to unswer the purpose, oven if far away, is to be preferred to one which has not been tried.
d. Facility of sendiug egrss by mail.
e. Treatnont of the ogga, when they lave arrived at dostination, ia the hatehing troughs.
27. Mauagoment of trout ponds; their character:
a. If thore is only oue pond, it can be used ouly as a growing pond.
b. If thore are at least three ponds, young fish may bo raised in them.
c. Hatching ponds, raising ponds, growing ponds.
d. The food of trout in ponds.
28. Growth of the trout:
a. The growth of trout is possiblo wherever there is suitable food.
b. Growing basius for trout; conditions of soil, almudant supply of suitable water; the proper control of this supply.
c. The growth of the tront depends on ample food, and a limited space for moving about.
S. Mis. $90-37$
```
iII.-The raising of trout-Continued.
    12. More extensive arrangements for raising trout:
        a. Circumstances under which they aro made; if the object is to stock a largo
                area of water, or if a large salo of eggs is looked for.
            b. Principal ideas which should guide persous in arranging a largo ostablish-
                ment.
            c. The hatching house; conditions of soil and abundant supply of water, with a
                good fall. Lissential characteristics of tho hatehing louso: Protection against
                frost, sufficient light, so the eggs can be properly taken care of, closo prox-
                imity to the dwelling of the inspector.
            a. Samples of hatching troughs adapted to largo establishmente; Williamson
                troughs.
            c. Apparatus for filtration and aeration.
            f. Packing and shipping of embryonated tront gegs.
    13. Hiats on tho raising of other species of salmonoids; where are such fish raised f
            a. Raising of Thymallus cexillifer.
            2. Raising of Saluclinus.
            c.. Raising of salmon.
IV. -Conclevion.
    a. Brief review of legislation rolative to the lish in question.
    b. Adyantages of largo ishery associations.
    c. Exhortation to found nimall fishery associations.
    d. The German Fishery Association, and its intuence.
```

V.-Minancial s'tatement of the IIÜningen mstablismment from april 1, 1884, to March 31, 188 .
NCOME.
From the German ministry of agriculturo for placing young salmon (ono million) in the Rhine $\$ 5,497.80$
Sale of embryonated eggs of salmonoids:
(a) To Gcrmans 1,904.00
(b) To foreigners 357.00
Sale of embryonated eggs of Coregoui 71.40
Sale of carp 714.00
Sale of ice and reods 238.00
Reimbursements for yacking 2.8. 00
9,020.20
rexpenses.
Salary of director, besidos lodging 856.80
'Two keepers, besides lodging 456.96
Sucrotary and treasurer 471.24
Wages of workmen 714.00
Traveling expenses of director 380.80
Rent (ground rent) 499.80
Purchase of ogrs of salmonoids aud fish 2,380.00
Food of fish 476.00
l'acking eggs 238.00
Library and experimonts 142.80
Maintaining and improving ponds, \&e 952.00
Maintaining and improving buildingrs. 357.00
Unfurcseen expenses 142.80
For now coustructious 952.00

B.-NOTES ON FISH.CULTURE IN GERMANY, SWITZERLAND, AND THE NETHERLANDS, BY DR. VINCIGUERRA.

I.-Germany.

1. Hüningen.-The imperial establishment of fish-culture at Hüningen is situated in Alsace, at a short distance from the Swiss boundary, and only 8 kilometers from Basel. Founded in 1854 by Professor Coste and two engineers, Berthot and Detzem, it passed through different phases and finally into the possession of the German Government; and since that time Mr. Hermann Haack has been its director.

The establishment has no fixed allowance from the Government, because it should, if possible, be self-supporting, but the expenses have, so far, always considerably exceeded the income; and the deficiency has been made up by the German Government, in the shape of a compensation paid for young salmon placed in the Rhine every year.
The ground on which the establishment stands belongs to the village of Blotsheim, covers an area of 39.56 hectares [$97 \frac{3}{4}$ acres], and is rented for an annual sum of $\$ 465.22$.
The water of the establishment is supplied by copious springs, of which there is a sufficient number in the neighborhood, from a small brook called the Augraben, and from the canal connecting the Rhone and the Rhine. For the hatching of the eggs Director Haack prefers this water to brook and spring water, because it seems that thelatter contains larger quantities of the germs of the much-dreaded mold; moreover, it is too warm, having a constant temperature of $10^{\circ} \mathrm{R}$. [54.50 F.$\left.\right]$, while the temperature of the brook and canal water falls even to the freezing.point. The water is no longer filtered in the true sense of the term; but before being distributed through the establishment, it passes through grates and fascines, in order to keep out any large forcign bodies.

The ground floor of the principal building and that of the left wing are devoted to the hatching of the eggs of salmonoids. The eggs of the common trout are gathered and fecundated in the establishment from fish raised there; the eggs of lake trout, salmon, Nalvelinus, Thymallus, coregonus, \&c., are received from abroad. Of the five kinds of American salmonoids introduced into Europe a few years ago through the efforts of the German Fishery Association, two are raised in the establistment. These are the Δ merican trout, or "Bachsaibling "(Salvelinus fontinalis), and the California trout, or rainbow trout (Salmo irideus), both distinguished by their beautiful color and their fine shape. The former has already been sufficiently spread by fish-culturists; whilo the latter is not yet found so generally ; although Mr. Haack thinks, if specially cultivated, it will yield very fine results.
The Hüningen establishment carries on an active trade in the eggs of salmonoids, $\$ 2,332.40$ worth of these eggs having been sold during the
season of 1884-85; live fish are also sold, especially carp, and also trout, after they have for two or three years furnished sexual products for reproduction. Every year young salmon are placed in the Rhine to the number of from 500,000 to $1,000,000$, and in return the establishinent receives from the German Government a sum sufficient to cover the annual deficiency, provided it does not exceed $\$ 5,950$.

The hatching apparatus used in the large halls of the Hüningen establishment are still substantially those inveuted by Coste, having frames with a bottom of glass stems, although for these there have been substituted, to a large extent, other frames with a bottom of metal stares, or a network of metal wire, used particularly when eggs of the finer kinds of fish, such as Coregoni, are to be hatched. Generally the eggs which aro to be hatched in the establishment are, when near being hatched, placed in troughs made of pine-wood, about 3 meters long, 40 to 50 centimeters broad, and 15 to 20 centimeters deop [about $10 \times 1 \frac{1}{2}$ $\times \frac{1}{2}$ feet], at the lower end of which there is a metal grating to prevent the escape of the young fish. They are covered with a strong wooden lid to prevent mice and rats from getting in, and to have the development of the eggs carried on in darkness, which greatly favors such development. Theso troughs are then placed in the open air, and after the eggs hare been hatched the joung tish are fed until they are near losing their umbilical sacs, when they are immediately placed in some river or lake, it being considered better to place them in open waters a few dafs before they have entirely lost the umbilical sac. When the number of eggs to bo hatched is very large, Mr. Laack also uses California apparatus, more or less modified; especially thoso recently constructed by Professor Benseke on the principle of the La Vallette apparatus.

The joung fish clestined to be raised in the establishment are placed in small basins laid in cement, into which water runs continually. Here they are raised and fed artificially, and are not taken out, except in very cold winters, when for some days they are placed in basins in the small wing on the right. There are also ponds for carp and for some other cyprinoids (Tinca, Idus, \&c.), some small for winter, and others large for summer; these ponds are used for roproduction and the development, of the young fish. The largest of theso ponds covers an area of 1 hectare [about $2 \frac{1}{2}$ acres]. The ground where it was excavated was rented for the sum of $\$ 9.65$ per annum, and the annual income from carp raising amounts to $\$ 289.50$.

After several experiments Mr. Haack has succeeded in transporting from Pisa to Hüningen livo joung eels, known by the name of "blind eels." He keeps them for a certain time in cemented basins, and then ships them to other parts, some as far as the most remote portion of the province of Pomerauia.

The imperial establishment of Hüningen is the one which has given the greatest impetus to the spread of the indastry of fish-culture; bat
at the present time this industry has made such rapid strides in Germany, that Mr. Haack deems it proper and advisable that the Government should cease to carry it on exclusively, but let private euterprise talie hold of it.
2. Selzenhof.-The fish-cultural establishment of Selzeulof is situated about an hour and a half's journey from the city of Freiburg in the Grand Duchy of Baden. It belongs to Mr. Schuster, the mayor of Freiburg; who founded it in 1865, and enlarged it in 1872. It does not receive any fixed subsidy; but the Baden Govervment pays it for the Young salmon placed in the Jhine and for the Coregoni placed in the Lake of Constance, on the shores of which Mr. Schuster has another establishment, Radolfszell.

It furnishes embryonated eggs to the German Fishery Association, and to many public and private fish-cultural establishments.

The eggs are hatched in a small one-story building, divided into three rooms, two large and one small. The water comes from a brook running at a short distance from the house, but as in winter this water is too cold, it is then mixed with spring water, which is warmer, so that in the hatching-room its temperature is not lower than $2^{\circ} \mathrm{R}$. [36.5 $5^{\circ} \mathrm{F}$.]. The water passes through. a sand-filter, which need not always be employed, as the water is very pure. The hatching-rooms are somewhat lower than the filter, and tho water which enters through two pipes, one for each of the large rooms, circulates in an open canal, constructed of masonry, placed at a certain height along the walls, whence it falls into the troughs below. To each of the openings perforated metal tubes are attached, for the purpose of aerating the water, which process Mr. Schuster considers very important, and endeavors to further it by every possible means.

The kinds of fish on which Mr. Schuster operates all belong to the family of the salmonoids, and are especially the Rhine salmon, river trout, lake trout, Salvelinus, Thymallus, and Coregonus. A trade is also carried on in trout eggs fecundated by salmon milt, which are much sought after by fish-culturists, because the luybrids obtained by this process develop very rapidly and do not go into the sea. He has also undertaken the culture of Salmo fontinalis and Salmo irideus from North America.

The troughs which serve for hatching the eggs are cemented and 22 in number. Their length varies from 360 to 480 centimeters, and their breadth is 45 , and their depth 18 centimeters. [Each trough is therefore about 14 feet long, 18 inches wide, and 7 inches deep.] They are covered with wooden lids, having some openings provided with grating. The eggs are placed on wire frames, which can be placed one above the other. There are also employed some California boxes, according to a model prepared by Mr. Schuster.

There are 9 ponds, which are used for raising young fish and for keeping the spawning fish. Two of these ponds are for carp. The ponds are arranged one above the other, so that the water passing from one pond
to the next forms a littlo waterfall, and is therefore always properly aerated. The Selzenhof establishment can hatch about $3,000,000$ eggs at the same time.
3. Radol/szell.-This establishment is situated in the little town of Radolfszell on the "Unterseé," a branch of the Lake of Constance, aud like the preceding one it is the property of Mr. Schuster. It was founded in 1877, principally for the purpose of reproducing Coregoni. It consists of one large hall, which formerly served as a public bath. The water used in it is the common drinking water of the place, and is not filtered. In summer its temperature is about $8^{\circ} 12 .\left[50^{\circ} \mathrm{F}.\right]$, and in winter it sometimes falls to $1^{\circ} \mathrm{R}$ [$34^{\circ} \mathrm{F}$.] Tho water is contained in a reservoir placed in the highest part of the hall, and thence it is by wooden conduits led into the troughs, of which there are 7 , some without divisious, and with several compartments, on the Williamson system. The troughs are at some height above the ground, resting on wooden supports. For the hatching of Coregoni a Holton apparatus is principally employed. It consists of a kind of wooden box into which the water enters through a hole in the bottom, and gradually passes throngh 15 frames made of iron wire, placed one above the other. Nach of these frames can hold about 20,000 eggs. The water finally flows over the upper edge of the apparatus.

Although the principal fish raised in this establishment are Coregoni, some other fish are also cultivated, as the lake trout (among them the famous trout from Libe Garda, some young specimens of which I saw, which had been raised in the establishment), Salvelinus, and Thymallus. They are placed in the upper course of the Rhine, and some in the lake, where formerly they were not found. After the river and lake had been stocked, people soon began to catch these fish. The German Fishery Association pays a reward of $\$ 1.19$ to every fisherman who can prove that he has caught one.
4. Seeviese.-The establishment of Seewiese near Geminden in Franconia (Bavaria) belongs to Mr. Frederick Zenk, of Wüzzburg, who founded it in 1881 on ground belonging to lim, and entirely at his own expense. The establishment does not receive subsidies of any kind, and has no other income except from the sale of eggs and fish.

The hatching room is 20 meters long, 9 broad, and $3 \frac{1}{2}$ ligh [about 6 6ht $\times 29 \frac{1}{2} \times 11 \frac{1}{2}$ feet]. The water rises to a height of 2 meters [about 6.1 feet] above the fioor, and runs along the uorthern wall in a pipe having a diameter of 8 centimeters [about 3t inches.] It generally comes from a brook in the neighborhood, which contains a great many lish, and is therefore called the "Fischbach." The temperature raries from a maximum of $10^{\circ} \mathrm{R}$. [$54.5^{\circ} \mathrm{F}$.] in summer, to a minimum of $1^{\circ} \mathrm{R}$. [$34^{\circ} \mathrm{F}$.] in winter.

If the water flows too warm or too cold, it can be mixed by a small lydraulic pump; or there may be substituted for it spring water, having a constant temperature of about $5^{\circ} \mathrm{R}$. [430 F .] The water of the brook is filtered through an apparatus containing sponges and sand.

The hatching troughs are of wood carbonized on the insido; their number is 20 , and they are arranged in groups of 4 each. The frames used are those of Coste, and others having a network of metal wire. Some California boxes of varions systems are also used.

The fisb raised in this establishment are river trout, lake trout, Thymallus, Salvelinus, and cross-breeds of Salvelinus (©) and trout (9); also some American species, as Salmo sebago and Salvelinus fontinalis.
Besides the above-mentioned hatching-house, there is another smaller one, fed exclusively by spring water, where, besides ordinary troughs, circular porcelain apparatus (according to the La Vallette system) are used.

There are also 20 ponds of different size for young Salmo selago and American Salvelinus, from which, though only two jears old and not more than 15 centimeters [6 inches] long, Mr. Zenk has already obtained eggs. In these ponds there are also carp, bass, tench, and golden ort (Idus melanotus var. aureus).

In the large hatching.room there can be kept and developed about 6,000,000 trout eggs.
5. Cosmandorf.-Near the village of Cosmandorf, between Dresden and Tharand, in Saxony, a short distance from the confluence of the "red" Wreisseritz and the "wild" Weisseritz, there is a small fish-cultural establishment belonging to Mr. Mittag, one of the proprietors of the fisheries in the Weisseritz and the Wesenitz, who, among other economical enterprises has undertaken to restock these waters by means of artificial tish-culture. He does not receive any direct subsidy from the Government, but it furnishes him gratuitously the embryonated salmon eggs, which are to be placed in the Weisseritz; and also pays him 31 cents for every thousand young salmon which have been hatcbed in his establishment. Mr. Mittag is, however, obliged to farnish the necessary material for Prof. Nitsche's fish-cultural courso at the Tharand Acadomy of Forestry. The establishment has heen in existeuce about six years. Some time before this another much larger establishment was founded, but proved an entire failure.

The water is supplied by a mill canal which comes from the "red" Weisseritz, and also furnishes the water-power for a manufactory of wood material (pasteboard). The water is not filtered, although this wonld be beneficial on account of the sediment from the manufacture referred to above. The temperature, during the hatching season, varies from 1° to $6^{\circ} \mathrm{C}$. [340 to $43^{\circ} \mathrm{F}$.].
The hatching-house is small; it has double wooden walls with a layer of hay between them. The water runs along one of the walls in a wooden canal. It should be noted that the faucets of the pipes through which the water flows into the hatching apparatus are not, as is generally the case, on the sides of the pipes, but at the very end of the pipe, in order to make it more difficult for the sediment to gather. The hatching apparatus which I saw consisted of twelve California boxes,
on the vou dem Borne plan, but without the third inside box. I also saw a Holton apparatus, but it was not in use. Outside the batchinghouse there is a wooden tank containing trout of both sexes destined to serve as propagators.
The establishment does not have a commercial object, and only serves to stock the neighboring waters. Only trout and salmon are raised. An attempt was made some time ago to introduce Salvelinus in some of the ponds, but they were soon devoured by the tront.
6. Tharand (Academy of Forestry).-There is not a geuuine fish-cultural establishment, with a practical object, vear the Tharand Academy of Forestry ; but it possesses only a small room for the various hatching apparatus used by Professor Nitsclre in his fish-cultural course. He showed me all the material used by him in this course, which never lasts longer than a week, and which has already been followed by good results.
7. Wilthen.-This establishment is located near Schirgiswalde, in Saxony. Its foundation is due to the above-mentioned course of fislculture by Professor Nitsche at Tharand. The gromed belongs to the Catholic church at Bautzen, and the establishment is managed by Mr. Waurick, superiutendent of forestry, who deserves credit for having founded it. But here, as in other places, the monks had in olden times already coustructed somo carp ponds. At preseut only trout are raised for the market. The establishment does not receivo any subsidy.

The water comes from a spring at a distance of about one kilometer [nearly two-thirds of a mile] and is led through a conduit into a receiving reservoir, whence it passes into the hatching-house. The temperature of the water, at the time of my visit, was 20 R . [$36.5^{\circ} \mathrm{F}$.]; but it may fall to the freezing.point, and rise a great deal in summer. The water is filtered through two flaunel filters, which are in the hatchingroom. It flows through a wooden conduit, which can be opened in order to be cleaned. This conduit, outside the house, and the tank, are covered with straw to prevent the water from freezing.

For hatching, California boxes are used (Nitsche system), and wooden. troughs, about $1 \frac{1}{2}$ meters [5 feet] long. In each of these there are two wooden frames with a wire bottom, on which the eggs are placed. After the eggs are hatched, the frames are removed, and the young fish are left free in the troughs until they have lost the umbilical sac, or even some time longer, feeding them artificially with meat chopped fine. They are then taken to the brook, fed from the receiving reservoir with spring water, where they remain till autumn, when they are caught and conveyed to the ponds, where they stay at least a year, until they have reached a weight of at least 250 grams [83 oz .]. Above the place where the fish are the brook is closed by a sluice, and below by a metal grating, so that the fish cannot escape.
There are a great many ponds, some of them very large; they are connected with the brook which passes through them in the shape of
small waterfalls, which serve to aerate the water and prevent the escape of the fish. In summer the temperature of the water may rise to 25° or 30° C. [77° or $86^{\circ} \mathrm{F}$.] without injuring the tront contained in it.

The fish in the ponds are fed artificially with meat-ground meat (which generally serves as a fertilizer)-and with the larve of flies. To obtain these, poles are rammed into the bottom of the ponds, and the carcass of some animal is placed on them. The fles deposit their eggs on the earcass, and the larva which develop from them gradually fall into the water and serve as food for the young trout.
8. Luibbinchen.-'This model establishment is located near the city of Guben, in the Prussian province of Brandenburg, and belongs to Mr. Eckardt, one of the men to whom the industry of fish-culture is deeply indebted. Although it may be said that there is hardly any kind of fish, to which fish-culture is applied, which he has not cultivated, there are two to which he has specially devoted his efforts, namely, Coregoni and carp.

The Lübbinchen property covers an area of 10 hectares fwearly 25 acres], 9 of which are occupied by ponds, but at some distance Mr. Eckardt owns 400 hectares [9882 acres], with some lakes containing a great many fish.

The water comes from two springs, distant about 1 kilometer [nearly ${ }_{3}^{2}$ mile] from Mr. Eckardt's house. It passes underneath an open vault, in order to get some air, and is then conveged about 200 meters [210 yards]. It feeds the ponds and the basins, and is again collected in a small lake. It also forms a small brook destined for young trout, aud from this brook comes the little stream which enters the hatching-house. The water is not filtered.

The hatching-house covers an area of hardly 4 square meters [43 square feet]. The water runs in an open conduit of wood, bitummated. The apparatus used for latching are the boxes invented by Mr. Eckardt, each of which can hold as many as 20,000 Coregonus eggs, and have the advantage that they can be placed one above the other. There are raised artificially Coregonus, trout, European and American Salvelinus, \&c.

The ponds and basins are more than 100 in number, and, as has already been stated, occupying an area of 9 hectares [224 acres]. The largest poud covers more than 1 hectare [about $2 \frac{1}{2}$ acres]. The first ponds, in the immediate neighborhood of the honse, are about $1 \frac{1}{2}$ moters [5 feet] deop, and bave some small canals through which the water runs all the year round, so as to keep them clear. The oxygenation of the water is kept up by reeds and water lenti's, which frow in the ponds in great abundance. Beyond these ponds there is a large pond, about 4 metors [13 feet] deep, and some smaller pouds.

There are also some wooden and cemented tanks, containing pike, Silurus, tench, crucians, golden orf, Sc. There are carp weighing as much as 14 pounds. There are 24 cemented basius, covering each an area of about 50 square meters [538 square feet]. In these there are
sterlets from the Volga, Corcyoni from the Madue lake and from the Lake of Constance, American Coregoni, Salvelinus, Salmo irideus, \&c.

The temperature of the water in the pond does not differ much from that of the air; in summer it may get as high as $20 \circ$ to $25^{\circ} \mathrm{R}$. [77° to $58 \circ \mathrm{~F}$.], and in winter the ponds are apt to freeze. Mr. Eekardt deserves special credit for having succeeded in hatching the eggs of the delicious Coregoni of the Madue lake, and artificially raising these fish, which are greatly esteemed by Germans; but still more for the impetus he has given to the industry of carp cultivation. He succeeded in transporting the eggs a cousiderable distance by causing the carp to spawn on juniper branches placed in the ponds, these eggs being glutinous and therefore adhering to the branches. After these branches have been in the water some time they are taken out covered with eggs, which, even when transported some distance, will, under favorable couditions, develop normally. In special and very simple apparatus he ships live carp to a great distance, even as far as North America.
9. Berneuchen.-The most important fish-cultural establishment visited by me is without doubt the one belonging to the distinguished fishculturist, Max von dem Borne, located on his estate of Berneuchen, at a short distance from the city of Kiistrin, in that part of the province of Brandenburg called the "Neumark." Mr. von dem Borne founded this establishment in 1876, entirely at his own expense, and he does not receive any subsidy whatever. As a gencral rule lhe does not carry on the business of selling eggs or fish, and merely labors in the public interest for the German Fishery Association.
The water of the Berneucheu establishment is brought from a stream called the "Mietzel," by means of a canal, which also furnishes the waterpower for some mills. Its temperature varies very cousiderably; in winter it falls as low as zero (when I visited Berneuchen its temperature was $2 \circ \mathrm{R}$. [$\left.36.5^{\circ} \mathrm{F}.\right]$), and in summer it may get as high as 20° R. [77 F.$\left.\right]$. The roof of the hatching.house is covered with tarred pasteboard, under which there are two thicknesses of boards, to which recently one of pasteboard has been added; one of the walls runs along the canal and is of masonry, while the othersare of wood. Inside, the house is divided into 2 rooms; in the first there are 4 basins, 1 large and 3 small ones, intended for young carp; and the filtering apparatus. The water is made to pass throngh four compartments filled with sand, and through a flamel filter. From these filters the water passes into the second room, in the middle of which it runs in an open conduit of cement, from which by means of common faucets it is distributed to the right and the left. On both sides, and a little lower than the central conduit, there are cement lasins, 7 on each side, about 2 meters long [$6 \frac{1}{2}$ feet]. Each of these basins contain 4 California boxes, the 2 upper ones large, and the lower ones somewhat smaller, which serve for hatching salmon aud trout eggs. For hatching Coregonus eggs a special apparatus is used, invented by von dem Borne, and called the "automatic selector." To
each of these hatching apparatus there is attached a small box, inteuded to gather the young fry after they have slipped out of the egg. When this has taken place, the young Coregoni fall into the basins below, which have about 3 centimeters [$1 \frac{1}{5}$ inches] of water, while the young salmon and trout are left in the hatching-boxes. The hatching apparatus have covers, because otherwise one rat could in one night destroy the entire coutents. The room can be heated artificially. Besides eggs of various German salmonoids, I saw in process of hatching eggs of American Coregoni and Salvelinus.
Mr. on dem Borne also Las 22 ponds, the largest covering an area of $11 \frac{1}{2}$ hectares [about $28 \frac{1}{2}$ acres]. In these there live and are raised fish of many different kinds-salmonoids, cyprinoids, \&c. In the majority of the ponds, however, there are carp, the pouds being arranged according to the Dubitsch system, already described by me in another report. Among the foreigu linds the black bass (Huro nigricans) from Florida deserves special mention, as Mr. von dem Borne has succeeded in propagating this fish in his pouds. This lind, like the bass and some. other fish, deposits its eggs amoug stoues; and it is therefore necessary to prepare a bed of small stoves in the place where it is intended they shall spawn.
10. Michaelstein.-In 1880, by in agreement between the Governments of Prussia, Brunswick, and Auhalt, for the purpose of stocking the publie waters of the Harz Mountains, a fish-cultural establishment was founded in Michaelstein, near Blankenburg, with Mr. Dreckmann, superintendent of forests, as director. After his death Mr. Wegener became its director. As far back as the Middlo Ages there were in this neighborhood carp ponds, constructed by the monks.

The water comes from one of the ponds close to the establishment and passes through a small grating; thence it passes into a filter composed of six boxes, the first containing pieces of sponge, the second sand, the third again sponges, and so on, alternating. In winter the temperature of the water falls to the freezing-point. After the water has reached the hatching-room it is, by menns of faucets, to which small flannel bags are sometimes attached with the view to better filtration, distributed through the apparatus, which are California boxes modified according to the Schuster system. These boxes aro arranged on 9 wooden staircases, each of the 14 steps containing two boxes; therefore in all 252 boxes. Each box may contain about 10,000 trout eggs. There are also 4 large cemented tanks for grown trout, aud some wooden troughs, which are only used in case of absolute necessity. Besides river trout, Salvelinus and American trout are raised in this establishment. Some of tbese, two years old and weighing about 3 pounds, have already propagated the species under artificial cultivation.
There are a great many ponds, some of which might possibly be used for trout, and others for salmonoids, while in others carp alone can be raised, because the bottom is too muddy for others. In these ponds are
kept the fish which are to serve as propagators, and they are caught when the time for fecundation has come.

II.-Switzerland.

11. Neuhausen.-This establishment is located about 300 meters [328 . yards] from the celebrated falls of the Rhine. It belongs to the canton of Schaffigausen, which founded it in 1877. It is under the superintendence of Mr. Moser.Ott.
The water comes from a spring about 200 paces from the establishment, and is carried through a conduit about a meter and a half [5 feet] below the level of the floor. The temperature is not very high, nearly always $7^{\circ} \mathrm{R}$. [about $48^{\circ} \mathrm{F}$.]. It is not filtered. It rises to the ceiling of the latching-house, whence it falls into a long, rectangular wooden basin, from which through vertical pipes it descends in to the hatching. room below. To each pipe there are two troughs. These are of wood, about $2 \frac{1}{2}$ meters long, 40 centimeters broad, and 20 centimeters deop $\cdot[$ about $98 \times 16 \times 8$ inches]. They are arranged in couples, each couple having one pipe through which the water flows into the troughs, and one common outlet pipe. The number of tronghs is 16 . The water inside the troughs reaches a height of about 6 centimeters [2f inches] during the hatching of the eggs, which are placed on frames of varnished iron wire, but after the eggs have been hatched the height of the water is reduced to 3 centimeters [$1 \frac{1}{5}$ inches]. There are also in use small wooden troughs 80 centimeters long [$31 \frac{1}{2}$ inches]. In the hated-ing-room, 10 meters long and $7 \frac{1}{2}$ meters broad [about 33×25 feet], thero is also a large tank for live fish.

The only kinds of fish raised at Neubausen are trout, salmon, and Thymallus, with the view to placing them in the Rhine, on the account of the canton; but a small trade is also carried on, principally in fecundated salmon eggs which have not yet become embryonated.

There are two small ponds for keeping trout, especially males, which are to furnish the material for reproduction.

In the Neuhausen establishment about 500,000 eggs can be lateled at one time.
12. Dachsen.-On the opposite bank of the Rhine, a little farther distant from the falls, there is the establishment of Dachsen, on territory belouging to the canton of Zurich, which founded it in 1875, but reduced it to its present condition in 1881.
It is undor the management of Director Asper, of Zurich. The water comes from springs close to the establislment and is collected in a reservoir, whence through a pipe it flows into the hatching-house. It is not filtered, but the end of this pipe has a grating to prevent any mud, leaves, \&c., from entering. In winter its temperature is 5° to $6^{\circ} \mathrm{ll}$. [434° to $453^{\circ} \mathrm{F}$.], and is somewhat higher in summer. Inside the room the pipe conveying the water rises vertically from the floor and flows into a canal in the center, constructed of masonry, and raised about 2
weters [6 d fect] above the pavement. From this central canal the water flows into troughs, arranged perpendicularly on either side of the same, through pipes about 20 centimeters [$\dot{8}$ inches] loug, which empty into a Hower-pot without bottom filled one-third with sand, resting ou the network of metal wire, which covers the upper part of the trough. Thus the stream of water is broken in its fall, and is aerated. The troughs are of wood, 24 in number, and of the same dimensions as those used at Neubausen. No frames are used, but the eggs, as well as the young fry, rest on a bed of sand and very fine gravel, at least 4 centimeters [$1 \frac{1}{2}$ inches] high. Each trough may contain about 20,000 eggs.
As at Neubausen, there are two ponds for trout, especially formales, selected as reproducers. The kinds of fish raised are salmon, trout, and Thymallus, for stocking the Rhine. No trade, properly so-called, is carried on; but exchanges are inade with other establishments, for instauce, with Hüningen.
13. Zurich.-The Zurich establishment is located at the place where the river Limmat flows out of the lake, and is under the immediate supervision of Dr. Asper. Like the Neuhauson establishment it belongs to the canton of Zurich.
The water comes from the Lake of Zurich. It is brought into the city by pumps, and is used by the people of Zurich as drinking water. Before being used it undergoes a thorough process of filtration. In winter its temperature is generally 30 to ${ }^{\circ} \mathrm{C}$. [37.4° to $39.2^{\circ} \mathrm{F}$.], while in summer it can reach and exceed $20^{\circ} \mathrm{C}$. [$\left.68{ }^{\circ} \mathrm{F}.\right]$. It circulates iriside the hatching-room by means of a pipe suspended from the ceiling.
The establishment is provided with hatching apparatus of different kinds: Wooden and zinc troughs, California boxes of various systems, small troughs of cement, \&c. In the troughs the eggs are at first laid on frames of metal wire, but when they are near to being hatched they are placed directly on the bottom covered with grarel or sand. Salmon and trout eggs are hatched for the Limmat and the Rhine, and Coregonus eggs for the Lake of Zurich.
For the latter kiud of fish the American method auswers well; it consists in keeping the eggs in a kind of large cylindrical bottle of glass, with a large mouth, closed by a perforated tin lid, pierced in the center by a pipe through which the water passes, and again flows out through the holes in the lid. In this manner the development of the much-dreaded parasitical fuugi is prevented, especially during the first period of the development of the eggs. When the eyos become yisible the eggs aro placed iu an ordinary California box.
At Geneva, Zug, and in some other places another apparatus was used with considerable success, cousisting of a large glass funnel, 30 to 40 contimeters [about 14 inches] high, which is filled with eggs till within a short distance from the top, and into which the water enters throngh the lower aperture, keeping the eggs in motion and carrying away the dead and spoiled oues, which are lighter than the others.

Dr. Asper has also been successfui in hatching eggs of the American Coregonus, and has placed some young ones in the lake.
14. Geneva.-In the quarter of Geneva known as "Sous Saint Jean," is located the fish-cultural establishmeut belonging to the canton of Geneva, which at present is under the direction of Mr. Covelle.
The water comes from the Lake of Geueva, and is the same which is used as drinking water in the city. In winter its temperature is $6^{\circ} \mathrm{C}$. [$42.8^{\circ} \mathrm{F}$.] and sometimes it falls to $4^{\circ} \mathrm{C}$. [30.2 F .]; in summer it is very warm, but during that season no operations are carried on in the establishment. Generally it is not filtered, but when a north wind (the so called "bise") prevails, it becomes turbid, and at that time it is, when coming out of the faucets, made to pass through a zine box divided into two compartments, half filled with gravel. Mr. Covelle, however, proposes to substitute for these apparatus a large filter, to be placed outside the building.

The water runs along the walls of the hatching-room, which is 13 me ters long and 12 broad [nearly 43×40 feet], in iron pipes; which are preferable to wooden ones, because parasitical fungi are not so apt to form in them.

In the batching-room there are 28 troughs, placed in two double rows, each containing 7 ; they are cemented, $2 \frac{1}{2}$ meters long and 70 centimeters broad [about 98×28 inches] on the inside. The one standing agaiust the wall is 20 centimeters [tearly 8 inches] higher than the outer one. For each trough there is a faucet, to which is attached a wiuding appendage of brass, with a small hole at the end ; so the water does not How out more than at the rate of 6 liters [about $6 \frac{1}{3}$ quarts] per minute. Insido this tube is placed is small grating, which prevents all matter from stopping up the hole. The water flows from the upper trough into the lower one tirough a zine pipe, to which is attached a distributing apparatus, which may also be attached to the upper faucet. The lower troughs have as an outflow a straight iron pipe, terminating at the top in a small grate.
These pipes, joined two and two, lead to a conduit under the pavement, which ends in a large basin placed at the end of the room, which serves for keeping, separately, the male and female propagating fish.

For hatching Coregonus eggs the funnel-shaped apparatus already referred to is used. It is provided with a metal edge with a vertical grate, which ruus along a peripheric caual, whose opening communicates with the conduit of the edge, from which the young fish and the spoiled egge fall, while the good oues remain at the bottom.

The hatching frames which Mr. Covelle places in the large troughs have a bottom of metal wire with very narrow interstices. I think, however, that a network with larger openings is preferable, which would allow the young fish to pass through soon after they are hatched. The bottom of the troughs is generally covered with very fine gravel.

The Genera establishment lutches eggs of the Swiss and American Coregonus, Thymalles, and Salvelinus, but principally eggs of lake trout, of which about 500,000 are raised per amum. The attempt has been made to introduce salmon in the lake, but it has not proved successful.

III.-NETHERLANDS.

15. Velp.-The Velp establishment is near Arnhem, at a short distance from the castle of Billiom, on the river Yssel. Its director is Mr. H. F. Bontjes. It was founded in 1871, with a view to placing young salnon in the Yssel; but now it distributes them in nearly all the rivers of the Netherlands. The Dutch Government pays abont 1 cent for every young salmon, and about 10 cents for every one-year-old salmon placed in publie waters, expending for this purpose a total sum of nearly $\$ 5,000$. The establishment consists of a large and very high hall, 15 meters long and 10 meters broad [about 49×33 feet].

The water used is spring water. It comes in an open caual, a distance of 4 to 5 kilometers [about 3 miles]. In winter its temperature sometimes falls to $1^{\circ} \mathrm{C} .\left[34^{\circ} \mathrm{F}.\right]$, and even lower, while in summer it rises to $20{ }^{\circ}$ [$\left.77^{\circ} \mathrm{F}.\right]$. Near the establishment it is collected in galvanized-iron pipes, through which it flows into a basin placed in front of the house, whence it passes into another basin inside. The water first goes into a little room, and is gathered in a cask, through a metal grating intended to reep out all impurities; thence it passes, through a funnel filled with small sponges, into a large vat, half filled with gravel, and from this it goes into the hatching-room. In this room there are four rons of double troughs, in cement, arrauged on six steps. The lower trough, however, is not divided, aud each row therefore consists of ten vessels, each 2 meters long and 86 centimeters broad [about 79×34 inches], and of a last one twice as broad. In these troughs the salmon eggs are placed on Coste frames, which often have a network of clay pipe-stems. Abovo the cement troughs others, made of wood, can be placed. The water flows under the pavement of the hall, wheuce it rises vertically in pipes, through which it flows into the troughs.

Besides the two basins referred to for trout and one-year-old salmon, there are five basins for salmon, six for trout, and two for Chinese goldfish. During the first state the young fish are fell with brains chopped fine, then with heart, \&c.

The establishment makes a specialty of hatching salmon eggs, of Which it can hold 500,000 . The eggs are mostly obtained froin fish caught in the Netherlands, and in that case from dead females and from fish from the Upper Rhine. Besiles salmon I have se eu the eggs of trout and the American Salvelinus hatched in this establishment.
16. Apeldoorn.-The establishment of Apeldoorn, fonu ded in 1850 by Mr. J. Noordhoek Ifegt, is 4 Dutch miles from Apeldoorn. It receivesits water from a spring at a distance of about 3 kilometers [nearly 2 miles],
which yields 10,000 cubic meters [about 350,000 cubic feet] of water por day. Close to the hatching house it falls about 4 meters [13 feet], and is partly gathered in an opeu wooden canal, which serves to bring it into the hatching house. It is not filtered. Its temperature, even in very cold winters, is 2° to $3^{\circ} \mathrm{C}$. [35.6° to $37.4^{\circ} \mathrm{F}$.].

There are in all seventy-two troughs, generally double, arranged in three rows. Some of them are still of wood, but they will soon be replaced by others of cement.
There are many ponds and basins for fish of different kinds, intended for raising fish and for selling them. The principal object of thisestablishment is to raise young salmon for the Rhine, but it also hatches eggs of common trout, lake trout, American tront, American Salvelinus, and California salmou; likewise crucians, carp, gold tench, and other cyprinoids.

IV.-Fisir-Culitural Methods.

There are two methods in use for increasing the number of different kiuds of fish : The first, iu which human influence is reduced to its minimam, consists in placug the fish under the most favorable conditions for spawning. This may be called protective fish-culture, and is known by the name of "pond-culture;" it is particularly adapted to the cyprinoids, and among these specially to the carp.

By the second method the eggs are taken from the fish, mixed with the milt, and hatched, and the young fish are cared for and fed, until the suitable time has arrived for placing them in the water; natural processes are followed as closely as possible, and all hurtful influences kept away. This last is genuine artificial fish-cnlture, and is especially applicable to fish which, like the salmonoids, spawn in winter, and consequently do not develop too rapidly.

Protective fish-culture does not demand so much care as artificial fish-culture, and can easily be carried on even on a large scale. In following the protective method the fish-culturist should confine himself to providing favorable conditions for the fish which ho iutends to raise, learing all the rest of the work to nature. If carp are to be raised, there are placed (in the spawning-season) in a small pond, corering an area of 1,000 square meters [10,764 square feet], which has been kept perfectly dry until a few days beforehand, two male and one female fish, which have been carefully selected. These tish will spawn in a few days, and the young fry will develop very rapidly. After they have lost the umbilical sac they should be placed in a larger pond, covering an area of at least 1 hectare $\left[2 \frac{1}{2}\right.$ acres], or in the waters for which they are intended. The bottom of the pond used for reproducing carp and other cyprinoids should be muddy; while for bass, American perch, and other fish it should be gravelly. By allowing the carp to spawn on juniper branches Mr. Eckardt has succeeded in conveying thie eggs from one pond to the other, and he ships them by railroad in the same manner in which the
eggs of salmonoids are usually shipped. An important condition for raising carp is that the ponds can be laid entirely dry.
The rules to be observed in artificial fish-culture are, however, much more numerous. According to Benecke they may be classed under the following categories: Obtaining and fecundating the eggs in an artificial manuer, hatching them, raising the young fish until they have lost their umbilical sac, shipping them, and placing them in suitable waters.

The artificial fecundation of fish eggs is, at present, generally practiced according to the dry method, the liussian method of Wraskij. By a gentle pressure on the abdomen the mature eggs are extracted from the body of the female, and allowed to drop into a dry vessel; ovor the eggs is poured the seminal liquid obtained in the same manner from the male; the mixture is gently stirred with the hand, gradually adding a little water. Eggs have cven been successfuily fecundated which had been taken from female fish which had been dead several hours.

The best fish for propaga tors are those which are not too old; this applies particularly to the male fish. It is advisable not to use the same fish as propagators for several years if succession, with the viow to avoid the evil consequences of the fatty degeneration of the genital organs, advanced age, and consanguinity. If the fish selected for the purpose of reproduction are healthy and fine, their products will bo so likewise. It is possible to produce hybrids; but these, besides being barren, show a very high rate of mortality, aud in my opinion their raising can not be recommended.

The eggs, after having become fecundated, are subjected to the hatching process. In a temperate climate this process may be effected in the open air and in open waters, in apparatus either floating or placed ou the bottom of a brook or some other waterecourse; but it is always safer, and in most cases absolutely necessary, that the hatching should be done in covered and inclosed places, which are called hatch-ing-houses. These should be constructed in such a manner that the water inside is not liable to freeze ; they should have sufficient light, so that there is no difficulty in selecting the eggs; but the light should not be too strong, because this favors the development of algie and parasitical fungi.

The principal question which should engage the attention of fisheenlturists, is the selection of the water destined for the hatehing-house. It should be clear, free from impurities, have a low and even temperature (possibly from 2° to $5^{\circ} \mathrm{C}$. [35.6° to $\left.41^{\circ} \mathrm{F}.\right]$), and, what is still moro important, should bo abundantly aerated. These conditions are found particularly in brook water, which has only one fault, namely, that it is frequently muddy. Spring water is generally too warm aud too little aerated, but both those defects may be remedied by letting it, before entering the hatching-house, run for some distauce through a covered canal over a bed of gravel, and forming some little falls. Wherever
these two kinds of water are found in the same neighborhood, it will be best either to use only one or to mix the two. Whenever brook water, and even when spring water is used, one should not fail to let it pass, before being used, through a filtering apparatus, which usually consists of one or more vats or basius half filled with gravel, through which the water is made to flow. Small pieces of sponge may also be used, and the American filters of flannel have also been found to answer the purpose very well. The moderu hatching apparatus, in which the eggs can be stirred and washed without difticulty, render it less necessary to filter the water.
In cold countries all possible precautions should be taken to prevent the freezing of the water, by placing the pipes throngh which it flows before entering the hatching-house at a certain depth below the ground, and by enveloping them in straw or other non-conductors of heat.

Inside the hatching-house the water should be gathered in a reservoir, or should run in a caual (an open one to be preferred) at a height of at least 2 meters [62 feet] above the pavement; the canals may be of wood, cement, or metal, according to circumstances, and from them the water should fall vertically into the hatching apparatus placed below. The object of letting the water fall from a certain height is to add to its aeration; special contrivances attached to the pipes may also serve this purpose.

The hatching apparatus generally used in large fish-cultural establishments are cement troughs, as being the most durable and less apt to favor the development of parasites on the eggs.' The eggs may be placed in these troughs, on frames with a wire bottom, the bottom being covered with very fine gravel. Wherever water is abundant it is advisable that each trough should have a se parate fancet, because if parasites should develop in any one of them the infectious germs can easily be removed. Even wooden troughs may be used, provided they are carbonized on the inside, or at least tarred. In smalt, especially private, establishments the most useful hatchingr apparatus is the Califoruia box, of whatever model it may be. Those, however, are preferable in which the water flows through a very large openiug.

After the eggs have been placed in the apparatus strict watch should be kept over them to remove immediately all those which have not been properly fecundated, which show traces of disease, or have become opaque. The eggs should be kept in the dark, because light favors the develomment of fungi and parasitical alge. All hatehing apparatus, no matter of what lind, should be provided with strong covers to prevent mice, rats, \&c., from entering.

When the eggs are near being hatched thoy can, if they are on frames in large troughs, bo taken off the frames and placed on the bottom, or placed in special apparatus. If, on the other hand, they are in California bores, it is not necessary to do this. Great care should be taken to remove at once spoiled eggs or dead young fish, as the presence in
the apparatus for any length of time of one dead body may cause the death of thousands of healthy eggs or young fry. To obviate this diffculty, the water should never cease to run into the apparatus freely. Whenever the fish begin to be less lively than usual aud there is reason to suspect the development of the much-dreaded fungus (Saprolegnia), endeavors should bo made to prevent its spread by throwing a large quantity of salt into the water. In some cases excellent results have been obtained by raising fresh-water fish in sea water. When the young tish are intended for public waters it is best to place them there some days before they have lost their umbilical sac, so they may become somewhat accustomed to their new elemont before they are compelled to seek their food. They should not all be put into the water at the same time and at one and the same place, but be seattered orer a larger surface of water, selecting localities which contain the conditions favorable to their existence. Instead of quite young fish it would be preferable to put into open water fish about one year old, which are stronger and are not exposed to so many dangers. If the young lish are to be fed artificially the first food should consist of brains chopped very fine; afterwards they may be given meat chopped fine, fish eggs which have not been fecundated, grofud meat (meat flour), and larva of flies. When they are two to three years old fish begin to be capable of propagation.
Fecundated eggs may be transported without any danger at two periods, immediately after fecundation and after the points of the eyes begin to show in the embryo, while during the first stage of the development eren the least shock may cause the death of the embryo. The eggs are wrapped in a small piece of moist muslin and praced on a bed of moistened wadding, which in its turn rests on a bed of moss. They are corered with a similar layer of wadding and moss, on which another layer of eggs may be placed. In this way they can be shipped a considerable distance, placing on the top of the whole pile a small piece of ice, which serves to keep the temperature low, and which should be renewed from time to time. The box containiug the eggs is placed inside another larger one, and the space between the two boxes is filled with sawdust, hay, \&c.

The American fish-culturist, Fred Mather, has invented an apparatus, a sort of chest with different bottoms, which is used for transporting the eggs which the German Fishery Association receives every year from the U. S. Fish Commission. The first attempts to convey eggs such a distance were not successful, but at present they are shipped with perfect safety.

It is much more difficult to transport young fish, owing to the necessity of having the water acrated. For this purpose Schuster and others have coustructed vessels to which air-pmoms are attached, but according to Haack and others, these are not absolutely necessary; if great precaution is taken, and the water is changed as often as possible, using
also ice, so that the water does not get too warm, the young fish may be shipped a considerable distance without great loss. The consignment of fish should in every case be in charge of a practical, intelligent, and reliable persou.

There is of course much less difficulty in transporting grown fish. Director Haack has succeeded in transporting alive from Pisia to Huiningen young eels, known under the name of "blind eels."

In Italy the first attempts to stock the public waters with fish were made by Professor De Filippi, and continued during the last few years, by the aid of the ministry of agriculture, indastry, and commerce, by Professor Pavesi. But in order to make these experiments with the certainty of favorable results, they should be preceded by investigations relative to the physical and biological conditions of our fresh waters, such as Professor Pavesi has made in some of the lakes of northeru Italy, Lake Trasimeno and Lake Albano.

All the kinds of salmonoids found in Central Euroje, with the exception of the Khine salmon, the Danube salmon, and the different kinds of Corcgonus, are also found in the fresh waters of Northenn Italy; and it is therefore certain that these efforts to increase the fish in our waters will be crowned with success. The trout, the Salvelinus, and Thymallus could easily be cultivated, and there is also reason to hope that the Corcgoni introduced at first in Lake Maggioro by IProfessor De Filipi, and recently in Lake Como by Professor Pavesi, will become acelimittized and will propagate.

In Central and Southern Italy only trout are found; but it would not be difficult to increase their number in the uper tributaries of the Arno, the Tiber, and in all the streams of fresh waters coming from the Apennines. I have not yet been informed of the results of the attempts made during the past year to introduce Rhine salmon in the Po and the Pescara. During my stay in Germany, I was advised more than once, especially by the illustrious president of the German Fishery Association, von Behr, to attempt the acclimatization of the California salmon (Oncorhynchus chouicha), which lives in localities whose natural conditions greatly resemble those of Italy. The non-migratory salmon of the Schoodic Lakes (Sulmo sebago) might be raised to advantage in the deep lakes of Northern Italy, and the voleaniclakes (eraters) of Central. Italy.

Throughout the whole of Italy, but especially in Central and Southern Italy, the industry of carp culture is, as I think, destined to be developed veloped on a large scale; so far it has beon introduced in some lakes and ponds. Mr. Max von dem Borne also advised the cultivation in Italy of the American black bass (Ifuro nigricans). It is true that it is a very voracious fish, but the same may be said of the pike; and yet they do not destroy all the other fish in the waters in which they are found; suitable precautions and careful watchiug may prevent much of this evil; and there is no reason to exaggerate the daugers to which one kind of fish is exposed by another.

Fish-culture in Italy, especially in itssouthern portion, presents doubtless fower difficulties thau in Central and Northern Europe, by reason of the milder climate, which does not expose the water in the lateling. house to the danger of freezing, and renders unnecessary many of the precautions which have to be taken in a more northeru climate.
There are two mothods of stocking with fish the fresh waters of a country : The founding of large central establishments of fish-culture, or of small fish-cultural stations seattered throughout the country. It has now been demonstrated that the second method is the better and more practical of the two. Large fish-cultural establishments are in nearly all cases more subject to diseases which destroy the eggs and the young fish than small oues. "Splendid results may be expected from fish-culture only when every one has become his orn fish-culturist," says ron Behr, and with good reason. But in order to obtain these results it is necessary that this iudustry should become more general and should be prized as highly as it deserves, and this can only take place after long and patient labor, and if the proper inpetus is given by the Government. This is the grand service which the Hiiningen establishnent has rendered to tho whole of Europe. But whei tish-culture has entered the iield of private cuterprise the Government should cease to carry it on. This is also the opinion of the eminent director of the Hiuningen establishment, Mr. Haack. The large fish-cultural establishments should be the centers from which this industry is spread, and they should make efforts to start as lirgo a number as possible of small establishments throughout the comitry.
This result has been reached perhaps in the most satisfactory manner in Saxony, since in that kingdom there were, at the end of 1882, not less than 73 fish-cultural establishments, both large and small, or one to erery 40,000 indabitants and to about 200 square kilometers [77 square miles]. This result is due particularly to the efforts of Doctor Nitsche, professor of zoology in the Academy of Forestry at Tharand. Since 1878 he has given a special course of lectures on fisl-culture, lasting not longer than a week. These lectures have been attended by the students of the academy and by many other persons, anong the rest sevcral fish-culturists. In most cases the inspectors of forests, both Government and private, hare founded the different fish-cultural establishments, and hare done their share in diffising the practice of fish-cultureThe same could be done in Italy. The Institute of Forestry at Vallombrosa possesses, as I think, all the necessary material for a course of fish-culture. This course should be made free to all, so that it could bo attended not only by the students of the institute, but also by persons employed in the superintendence and care of forests. The course should not merely comprise theoretical instruction relative to the physiology and reproduction of tish, the histological development of the embryo, \&c., but it should be essentially practical and brief, occupsing in all not more than three or four woeks, divided into different
periods, and thus it will be possible for the emploges of the forest service, the only service which at present can be connted on in this respect, to becomo practically acquainted with fish-culture.
In conclusion it cannot be denied that in Italy the sea fisheries are of greater importance than the fresh-water fisheries; but at the same time it should be stated that even in the sea man may exercise a beneficial influence on the propagation of fish. We have an example of this by what is done in this direction in America as regards the cod, and in the Baltic as regards the herring. Some of our efforts should, therefore, be directed to salt-water fish-culture, which is destined in time to produce still greater results than fresh-water fish-culture.

Genoa, August 6, 1885.
[*After risiting and studying the principal fisl-cultural stations of Germany, Switzerland, and the Netherlands in 1884-'85, under orders from the Italian Government, Dr. Bettoni and Dr. Vinciguerra advised the establishment of two somewhat similar stations in Italy. The principal fish which they pointed ont as suitable for cultivation were salmon, trout, and carp. Bolsena was mentioned as the most favorable place in Central Italy for one such establishment. The plan for the station contemplated a hatching-house, with all the necessary apparatus, an artificial canal from a small stream to the Lake of Bolsena, and the construction of two large ponds, each with an area of 1,000 square meters [nearly $\frac{1}{4}$ acre] and a depth of one meter [3 feet]; these ponds being intended for the cultivation of carp on the Dabitsch system. Besides these ponds, two rectangular basins were to be laid in cement, each with an area of 12.5 square meters [134.5 square feet], and two other basins, one round and the other elliptical, to be used as stock and winter ponds for carp and other fish. The total estimated cost for starting this station was about $\$ 2,350$. Brescia was proposed for the location of the establishment in Upper Italy, on a somewhat larger scale than the one at Bolsena. The plan contemplated making a large canal and two small ones, emptying into a pond of irregular shape, having an area of 246 square meters [2,648 square feet]. From this pond another canal is to start, feeding a large hatching-house and supplying water for three circular ponds with an area of 495,128 , and 110 square meters, respectirely $[5,328,1,378$, and 1,184 square feet]. There are to be also four rectangular ponds, in pairs, each covering 414 square meters [4,457 square feet], and two large rectangular ponds, each with an area of 506 square meters [5,447 square feet]. The building is to contain, besides liatching-rooms furnished with the latest improved apparatus, a room for the director, one for a laboratory, and one for a small museam. The total estimated cost for the Brescia station was about $\$ 4,650$.]

[^83]
INDEX.

[Notis-The references aro to page-figures in bateste.]

Pago

	Pago	Page.
Frankfort-on-the-Lain	30	Micropterus salmoidos
Freiburg, Gormany	43	Mietzel
Fungas, how prevented	57	Mittag, Mr................................ 1,4
Ganfisch	26	Mülius, Carl.
Garda, Italy	3.5	Mobor-Ott, Mr 1,5
Gelin, Mr.	36	Netherlamds, fish-culture in..............36, 41, 53
Genera	51, 52	action of Government........ 25, 5
Genoa, Italy	60	salmon in
Gerinan Fishery Association	4, 48, 57	Nouhuusen, Switzerland. ${ }^{\text {, }}$, 7, 8, 9, 10, 11, 19, 24, 27,
Gormany, fish cultare in.. salmon in	$\begin{array}{r} 30,41 \\ 24 \end{array}$	hatching bores used at....... ${ }^{32,34,50,51} 8$
Glaser, Mr	24	Nitsche, Professor.............24, 28, 30, 45, 40, 50
Glyceria fuitans.	28	matching eystem.
Golden orf	35, 47	Oncorly

Goldüh 35
Gold tench
Grayling
Guben, Gormany 47
Haack, Herman. 1, 4, 6, 23-5, 28, 30, 31, 36, 41, 43, 57-9
liatching apparatns. 10, 17
Hartmann, M
Hatching apparatus, kinds used 56
pike 35, 47
requisites of 9roviow of 17
bousos, description of 18, 10
Hegt, J. Noordhook 1, 53
Herring ca
Holton apparatus 10, 13, 46
Hiiningen, Germany ,2, 5, 10, 11, 13, 1418, 10, 24, 25, 26, 27, 28, 20,$30,32,34,30,41,42,58,59$
financial atatement of 40
fish culturo at 33, 41
Ifuro nigricans :31, 33, 49, 58
Ieb-boxes, use of 17
Illus 42
melanotus 30, 31,33
var.aurous 45
Italy, fists in 58
Jacohi, IManorerian 36
Jacobson, Herman 1
Küstrin, Gormany 48
Lachs, local name for salmon 24
Lasto Maggiore 68
Lake Garda, tront from 44
Albano 58
Couno 2C. 58
Constance 44, 18
Geneva 52
Zarich 51
'Trasimeno 58
tront. 5, 43, 45
hatehing of 41
La Valletto hatehing ryatem 17, 45
Limmat river 51
Liter, number of eggs in 21
Liibbinchon, Germany...1,3,13, 19, 20, 27, 20, 31, 34 fish-cnlture at 29, 33, 47
Jacioperea sandra 31, 33
Madue Latse 48
Maeudli, Mtr I
Marktroit 16
Mathor, Frei? 57
Michaolstoin, Germauy.....1,3,12,10,19,27,34,49fish-cultare at33, 49
Osmerus 35
eporlanus 27
Pavesi, Y $5,13,21,58$vulgaris31
Perch 35
Poscara, river. 58
Phyllopoda. 30
Micropterus salmoidos 31
Mittag, Mr,
ius, Carl 28
1,50Netherlands, fish-culture in
action of Government. 25, 5
salmon in 2432, 34, 50, 51
hatching boxes used at.8
hatching of 31
Pisa, Italy 31, 32, 42
Po, river 58
Polesino, Italy 31
Potamegeton crispum 32
pectinatum 32
Prussia, action of Government 40
Kiudolfszoll, Gurmany.......1, 3, 12, 13, 10, 25-7, 31-4fish-cultare at44
Raiubow trout, rearing of 41
Romy, Mr 30
Rhine, river. 50, 51, 53
placing salmon in 40, 42
salmon. 25, 43, 58
River trout 43, 45
Frecl 25
Russian mothod of artificial fecundation 55
Rvfécll, Mr 30
St. Gothard 32
St. Pölton, Gormany 18
Sahno carpio 25,27
fario. 25. 27
fontinalis. 27, 35, 43
irideus 25, 27, 35, 43, 48
rearing of 41
lacustris. 27
quinnat 27, 35
salar. 27
malvelinas $3:$
нobagn $25,27,35,45,58$
unbla 20, 27
Sabnon...
crosed wilh trout.27
culture of. 1
hatching of 41
migration of 27
Salrowoide, artifleial fecundation of 20
foed for 22
hatehing of 41
planting of 23
apecies cultivated 24
thking egge from 20
tanks and ponds for 28

l'age.
Salvelinus26, 40, 41, 43, 44, 45, 46, 48, 40, 53, 54, 58.American47
European 47
fontinalis. 2G, 45
umbla 20, 27
Sons Sisint Jean 62
Saprolegnia 67
Sazony, asu cultursin 36, 59
Schafthauson, canton of 50
Schoocio Lalice, salmon of 58
Schuster, Carl, . $1,7,10,25,20,31,43$, 44,57
neses wooden troughs 12
Schrarz.Spenglor, Josepl
18
18
Scorieso, Gurmany $1,3,5,9,19,24,27,34,44$
fiblh-culture at 33, 44
Selzenbof, Germady . $1,2,5,9,19,24,25,26$, 34
flah-culture at 43
Sex, distinguishing 20
Silberfelchen 20
Siluris 35,47
glanis. 33
Squalius cavedanus 24
Sterlot 35,47
Switzerland, Aah culturo in 36, 41, 50
snlmon in 24
Tanks, use of 20
Temperatare of water needed 23
Touch $30,35,47$
'renbuer, Mr1
Tharand acailemy of forestry $24,30,45,59$
Ish-culture at 46
Thymallus
vexillifer...................... $20,27,35,40$
Tiber, river ,
Tinca 42
vulgaris 31, 33
Torbole 3.5
Tront 1,25
Page.
Trout, hatehing oges of 41
hybrid migration of 27
in open waters 38
in poonds 22
lectures on raising. 37
raising of 38
Trutta iridea 25
liccustris 2.5
United Statos Fiell Commission. 57
Upper Rhine 53
Unterseo, river 26
Vallombrosa, institute of forestry nt 59
Velp, Nethatiands 1, 3, 5, 9, 10, 24, 27, 33, 34
description of 53
salmon hatehed at 25
Verson, Drofessor. 19
Vinciguerri, Dr. Decio. 1
Volga river 48
Walther, Ignaz 16
Water, acration of 7
filtration of 4, 18
temperaturo of 3
Waurick, Mr. 46
Wegener, Mr 1, 49
Wesonitz rivor. 24
Williamson hatching tables. 10, 12
Wiltlyen, Germany.............. $1,3,5,9,10,23,27,34$
fish-culture at 40
Wintor alm, local name for salmon 24
Wittingau, Germany. 30
Wraskij, Mr 54
Fssel river 53
Zenk, F 1,12
hatching apparatus. 13
Zug, Switzorland 51
hatching apparatus 17
Zurich, Switzarland.......1, 3, 5, 0, 11, 10, 24, 20, 27,34,50,51
description of. 51

Blank page retained for pagination

APPENDIX' D .

REPORTS OF VESSELS AND STATIONS.

Blank page retained for pagination

VII.-REPORT ON THE WORK OF THE UNITED STATES PISH COMmission s'teamer albatross for the year ending DECEMBER 31, 1886.

By Lieut.-Commander Z. L. Tanner, U. S. n., Commanding.

The vessel was at the navy-yard, Washington, D. C., on the first of January, practically ready for sea, although the mechanics were still at work on one of the boilers. Cold weather coming on at this time, the Potomac was frozen over and all navigation ceased.

Lieut. Seaton Schroeder, executive officer and navigator, was detached on January 2, and Lieut. H. S. Waring assumed his duties: Ensigu W. S. Benson reported for duty on the 13th, and Ensign W. S. Hogg on the 16th.

We were detained by ice until 7 a. m., February 17, when we cast off from the wharf aud steamed down the Potomac river. Several buoys were out of place, and after passing Glymont considerable floatiog ice was encountered. A heavj gorge was found between Upper and Lower Cedar Points, but we passed it without difficulty or delay. We anchored in Hampton Roads at 1.30 a. m., Fobruary 18, and at daylight got underway for the nary-yard, Norfolk, Va., where wo arrived and moored to the coal wharf at $8.30 \mathrm{a} . \mathrm{m}$. Having telegraphed our departure to the commandant, we found 100 tons of coal on the whar awaiting our arrival, thus saving us a day in coaling.

At meridian February 20 we left Norfolk; and proceeded to sea under the following orders:

U. S. Commission of Fisir and Fisheries, Waslington, D. C., February 1, 1856.

Sir : For the purpose of extending researches commenced by the Albatross into the distribution and habits of the more important foodfishes of the United States, especially of the mackerel, menhaden, bluofish, etc., you will proceed, as soon as the steamer is ready, to Norfolk, Va., there, if convenient, to go into dock, and then talse on board coal for the trip. After that you will continue the voyage, at the carliest possible inoment, to the waters of the Bahama Islands, as there is
reason to believe that the yet undetected winter abode of the fish mentioned may be found to be in that vicinity.

If encountered, you will note the comparative number of the fish, their character and peculiarities; and also determine whether they carry ou the operations of spawning, and, if so, under what circumstances. You will also note any facts that may present themselves to you as to other species of tish, such as sheepshead, Spanish mackerel, drum, and other useful food-fishes known on the coast of the United States or peculiar to those waters; and will secure specimens of the various kinds for the purpose of more critical examination on the return of the vessel to Washington.

As in previous cruises, you will make collections by trawl, dredge, or otherwise, of the marine animals inbabiting the waters, whether rertebrate or invertebrate, and will gather as many data as you can respect ing their relationskip to each other and to their physical surroundings.

The Navy Department having expressed a desire to have a series of soundings made in the Babama seas for the purpose of extending our hydrographical knowledge, you are authorized to do what you can in this connection without endangering the safety of the men or the vessel under your command. It is understood that the extra expense of any work done in behalf of the Navy Department is to be defrayed by a supply of coal not to exceed 200 tons for the trip; and for this the Department has authorized you to call upon the coal depots at Key West or Pensacola.

You will give the scientific corps accompanying the vessel all possible facilities in carrying out their investigations, allowing thom such opportunities for visiting the shores and bringing them on board again as may best aid in their work. Mr. James E. Benedict, as lieretofore, will act as chief of the scientific party, aided by Thomas Lee and Willard Nye, jr.

Respectfully,
SPENCER F. BAIRD,
Commissioner.
Lieut.-Commander Z. L. Tanner, Commanding Steamer Albatross, Navy-Yard, City.

> U. S. Commission of Fish and Fisheries, $$
\text { Washington, D. C., February } 2,1880 .
$$

Dear Sir : In continuation of my original detail of Messis. Leo and Nye as assistauts to Mr. Benedict in the natural history work of the Albatross during her coming cruise, I have taken advantage of the meturn from California and the Aretic Ocean of Mr. Charles H. Townsend, of the Fish Commission, and arranged to have him accompany the ressel on the Bahama trip. He is a gentleman of most excellent qualifications, and I have no doubt you will tind him a pleasant addition to the scientific corps.

You will please arrange to have him mess in the ward-room, and give him comfortable accommodations in any stateroom that may be vacant.
Mr. Townsend is an accomplished collector and naturalist, and has been in the service about three years.

Yours truly,

S. F. BAIRD.

Capt. Z. L. Tanner,
Commanding Steamer Albatross, Navy-Yard, City.

bureau of Navigation, Navy Department, Washington, D. C., January 18, 1886.

Dear Sir: I learn from Lieutenant-Commander Tauner, commanding the U. S. Fish Commission steamer Albatross, that it is your intention that the vessel shall cruise in the viciuity of the Bahama Islands and the Gulf Stream, engaging in work connected with the Commission, and that it will not interfere with this work for Lieutenant-Commander Tanner to fill several important gaps in the lines of deep-sea soundings in that vicinity, provided that the additional coal required for this purpose can be transferred from the Nayy Department.
I have therefore to request that, if practicable, the necessary soundings indicated in the accompanying chart by red lines may be taken, and to state that the actual amount of coal consumed by the Albatross for steaming purposes, while so employed, will be issued to that vessel at Key West, not exceeding in amount 200 tons.

Very respectfully, your obedient servant,

> J. G. WALKER,
> Chief of Burcau.

Prof. Spencer F. Baird,
Commissioner of Fish and Fisheries, Washington, D. C.
We passed Cape Henry at $2.40 \mathrm{p} . \mathrm{m}$. with clear weather and moderate NW. gale. Cantionary off-shore signals were flying at Norfolk, Fortress Monroe, and Cape Henry. The wind continued during the night, and at moridian the following day backed to SW., blowing a fresh gale until noon of the 22 d, gradually decreasing in force to a moderate breeze from west in the evening.

We comneneed sounding to the northward of Great Abaco on the morning of the 23 d , in 557 fathoms, latitude $28^{\circ} 41^{\prime} \mathrm{N}$., longitude 78° 03^{\prime} W., and ran a line to the eastward, reaching a depth of 2,845 fathoms, in latitude $28^{\circ} 43^{\prime} \mathrm{N}$., longitude $76^{\circ} 26^{\prime} \mathrm{W}$.
From 5 to 5.30 p . m. we swaug ship under steam, observing azimuths of the sun on cvery other point of the compass in order to ascertain errors due to local attraction.
We then steamed to the sonthward, and at $12.51 \mathrm{a} . \mathrm{m}$. on the 24th sounded in 3,196 fathoms, latitude $28^{\circ} 34^{\prime} 42^{\prime \prime}$ N., longitude $76^{\circ} 10^{\prime} 25^{\prime \prime}$ W. This depth was a surprise to us, as the soundings on the chart to
the northward and southward did not lead us to expect more than 2,800 fathoms. A line was then run to the southward, termiuating in 677 fathoms, latitude $27^{\circ} 38^{\prime} \mathrm{N}$., longitude $76^{\circ} 23^{\prime} 24^{\prime \prime}$ W., thence to the northward and eastward to latitude $27^{\circ} 51^{\prime} \mathrm{N}$., longitude $75^{\circ} 53^{\prime \prime} 30^{\prime \prime}$ W., where a depth of 2,599 fathoms was found. The wire parted while reeling in, and we lost the specimeu cup and thermometer. The break was attributed to an imperfect splice, but we subsequently learned that it was caused by a partial collapse of the drum.

The weather was boisterous during the day, and although the work was carried on successfally, it was at considerable expense of labor and fuel and no little personal discomfort.

The wind continued from east to south during the 25th, with a heavy head sea. One sounding only was taken during the day, in 2,761 fathoms, latitude $27^{\circ} 30^{\prime} \mathrm{N}$., longitude $75^{\circ} 35^{\prime} \mathrm{W}$. The wire parted again while heaving in, and the thermometer and specimen cup were lost. The line was coutinued to San Salsador, or Watling's Islancl, the greatest depth found being 2,709 fathoms. We reached the island and auchored oft Cocklourn Town at $9 \mathrm{p} . \mathrm{m}$. on the 26 h . The settlement as seen from seaward consists of a small group of white honses, a tall fiagstaff, and two or three boat-houses on the beach. In approaching from the northward, Riding Rock Point will be recognized by three isolated palm trees just back of it, overtopping all other foliage. The coast from the point to the settlement is a series of low rocky cliffs, a white sand beach commencing at the latter point. To reach the anchorage, bring the flagstaft to bear cast and stand in slowly, keeping the lead going, and anchor in from 14 to 7 fathoms, white sand bottom. Boats land on the sand beach in frout of the settement.

There is a light-house in process of construction on Dixon's Lill, about two miles from NL. point, and one nile fiom the eastern shore. The tower is of limestone and is being built in the most substantial manner. Its base is 100 feet above the sea, and the center of focus 65 feet above the base, making a total height of 160 feet above the sea. It is to have a first-order lens, and will be completed in about a year.

Water is procured from wells, and is very hard. Good mutton, fowls, eggs, sweet potatoes, and the fruits of the season can be procured at fair prices.

The magistrate, Marwell Nairu, esq., the only white man living ou the island, is a naturalized American citizen, and was formerly a shipmaster sailing from Philadelphia. Lieut.-Commander James Mr. Forsyth, U. S. N., a relative of Mr. Nairn, had written him of our coming, and he had been looking for us for several weeks. He received us very kindly and made prompt and very satisfactory arrangements for the accommodation of a couple of naturalists we wished to leave on tho island while the vessel went to Rum Cay. He gave his office for a laboratory and sleeping quarters, aud took them to his own table for meals.

Messrs. Lee and Nye were detailed to remain behind, and they were landed on the morning of the 27 th with everything necessary for the prosecution of their work. After seeing them established in their new quarters we got under way about noon and ran a line of soundings to Rum Cay, the greatest depth of water being 1,264 fathoms, white coral ooze.

We arrived and anchored in Port Nelson, Rum Cay, at 5.30 p. m., hauled fires, and made preparations for work on and about the island.

We were net here by still other friends and relatives of Lieut.Commander Forsyth, whom he had informed of our expected arrival. They exerted tiemselves to make our stay pleasant and rendered material assistance in the prosecution of our work.
The following day being Sundor no work was done. The collectors were away at early daylight on Monday, and their explorations were prosecuted vigorously during the remainder of our stay. On board ship we overhauled the sounding apparatus, and while transferring the wire from the working reel for the purpose of overhauling splices, \&c., we found the dram partially collapsed, thus accounting for our loss of wire on the outward trip. We then mounted a kew and heavier reel. Should it show signs of weakness, it would be advisable to adopt somo other and stronger type, which can, I think, be readily procured.

A plan of Port Nelson and St. George's Bay, or Man-of-War anchorage was made by Lieutenant Scott, assisted by Ensign Hogg.

We made a fair collection of the fishes of the island, but our attempts to gain information regarding their spawning habits resulted in absolute failure, the uatives having little or no knowledge of tho subject. When questioned about migratory fishes, such as mackerel, shad, and menhaden, they said they were unknown among the islands, but bluefish were taken at any season of the year. I was unable to identify the blue.fish of the islands with our northern fish of that name, those I saw being "parrot fish," of a deep blue color and called blue-fish by the natives.

We continued our practice of rendering medical aid to the people of the islands where they had no resident physician, the ship furnishing necessary medicines if they could be spared from the stores. Dr. Flint gare a portion of each day to the care of the sick, and his name will be long remembered by the people of Rum Cay for his kindness and attention.

The harbor and settlement of Port Nelson lie on the south side of Rum Cay, about 6 miles east of Sandy Point, tho western extremity of the island. The harbor is formed by a reef running westward from Sumner's Point. The channel is narrow and intricate for vessels of more than 10 feet draught, and should not be attempted without a pilot; 18 feet can be carried through the channel.

St. George's Bay, or Man-of-War anchorage, lies to the westward of Port Nelson, and is in fact a part of the same bay, separate names boing
given to designate different localities in the same harbor. It is easy of access, the channel being straight and clear, with a depth of 24 feet. A vessel intending to enter St. George's Bay should keep in blue water, outside of the reef, until the conspicuous white house on Cottonfield Point bears N. by E.; then stand in for it until inside the reef, when she may auchor in any desired depth, white sand bottom. This anchorage is safe in all ordinary weather.

The settlement of Port Nelson will be recognized at a distance by a grove of tall cedar trees near the center of the village which overtop all other foliage. The Govermment flagstaff marks the head of a small wharf having 4 feet of water at its outer end. The white house referred to on Cottonfield Point is about $1 \frac{1}{2}$ miles to the westward of the flagstaff.

A poor quality of beef, good muttou, fowls, eggs, sweet potatoes, and fruits of the seasou were obtained at fair prices. The water is procured from wells in which the tides rise and fall, and is decidedly hard.

The following brief historical sketch by Lieut.-Commander James M. Forsyth, U. S. N., a native of the islaud, is reqlete with interesting facts and reminiscences:
"Rum Cay, one of the Bahama groun, is probably identical with Santa Maria, the second island touched at by Columbus. Little is known of its history until the latter part of the cighteenth century, when, with the adjacent islands, it became the refuge of a number of loyalists from the Carolinas and other parts of the United States. Most of these refugees had been engaged in cotton growing in their former homes, owned slares whom they brought with them, and continued the cultivation of cotton. The island at this time was well wooded, and in clearing for fields the lignum-vita and the dye woods not only paid all expenses, but gave a fair profit. The cotton, hard wood, and dye woods were annually shipped to Euglaud through agents in Nassau, and supplies were received at the island through the same channel. Later on, probably about 1818, the salt industry begau to be developed. The island has one of the best salt pouds in the Bahamas, lying convenient to a safe and commodious anchorage. The salt was manufactured by solar evaporation, and exported direct to the United States and British provinces. For a period of about fifty years the island was fairly prosperous. Then the abolition of slavery began to be pressed on the colonists by the British goverument, causing an unsettled state of affairs until, finally, emancipation was proclaimed. Naturally this worked great changes in the control of labor. The wants of the newly liberated slaves were few and simple, and in a country where the climate was mild and sea and soil readily yielded the mere necessaries of life, the laborer with his new found liberty was quite independent. Some of the proprietors of land became disheartened and left the island. Those who remained found that cotton could not be profitally cultivated with the uncertain labor of their former slaves, and as the supply of valuable woods was
about exhausted, salt became the leading product. From 1840 to 1852 there was exported from Rum Cay between 100,000 and $2 \widetilde{0} 0,000$ bushels of salt yearly, reaching the highest production in 1852 . The prices, paid on delivery on board generally cash down, ranged from 10 to 15 cents a bushel; 10 cents was considered fair profit, 12 cents very good, and 15 cents extra. In November, 1S53, a severe hurricane struck the island and caused great damage. The sea broke into the reservoir of the salt pond, injured the canals and wharves, and gave the salt business a setback from which it never fully recovered. During the Crimean war, 1854-56, prices went up to 25 cents a bushel. The demand exceeded the supply, for the damage inflicted by the 1853 hurricaue limited the production. Since that time the output of salt has gradually decreased, and is now small, the shipment of a cargo being an event. This decline of production was due to varions canses, foremost among which were competition, sharply pressed, and the protective tariff placed on salt by the United States. Early in the fifties the salt ponds at Inagua and Fortune Islauds were taken hold of by euterprising men who commanded capital. Superior facilities for thading and quicker dispateh were promised to vessels and great paius taken to secure charters in the United States and at St. Thomas (at that time a noted port of call for West India traders who were in search of homeward bound cargoes). This turned the trade into a new chamel. Then the United States tariff on salt cut the price down so low that profit on the industry was impossible. With the loss of this trade the population decreased, people leaving the island to search for employment. In 1850 the population was about 800 , of whom 35 wero whites. At present it is about 350 , of whom 3 are whites. The inhabitants are as a whole an industrious, law-abiding people. Their deliberate methods of labor are at times aggravating to foreigners, yet they are capable of long-continued and severe effort and will work faithfully when sure of fair wages and certain pay. At plodding, steady labor they do not excel, a trait more the effect of climate than anything else. In the season of salt raking and the loading of vessels their quick, cheerful mode of work cannot be surpassed. The stroug hold the salt industry had on the laboring class was due to the fact that the main work was done in large companies with song and excitement, the returns were prompt and distributed almost at once, whilst there were long periods when the laborer was at liberty to eujoy his case in a fine climate and work as ho pleased on his orn little holding. Emaucipation was disastrons to the proprietors, but shows a strong balance in its favor in the comparative happiness and comfort it has given to the colored people. Even those who mourn most over the decadence of the Bahamas must admit that it has proved to be the greatest good to the greatest number. At Rum Cay all business is in the hands of the blacks, several of whom show marked ability, integrity, and intelligence. There are several churches and a public school, where the rudiments of an luglish education are taught. Tho
inhabitants of this island as a community were never wreckers. They are skillful and fearless boatmon, good fishermen, and make capital sailors on the small craft of the Babamas. They still cling to the hope that the removal of the United States tariff on salt will restore some of the old-time prosperits, but there is doubt if such would be the case. The trade has sought new channels and is hard to turn back; and new deposits of salt have been found in the Urited States. The use of canned provisions for sea life, and the supply of armies and navies, has lessened the demand for salt provisions, so that the future of the island must depeud on agriculture and stock raising.
"Pineapple culture has been started of late years, the first cargo being shipped to the United States about 1378. At present fonr or five cargoes are shipped every year, and the prospect for success is good. Fiber plants of several varicties grow readily and efforts are being made to cultivate them. Some attempt is also being made to establish cocoanut groves. The agricultural products of the island were never sufficient to support the population, mainly because more attention was given to salt raking as more remunerative. Supplies were obtained from Watling's and Long Islands. At present, with a reduced population, the products are still insufficient to supply the people, though Indian corn, Guinea corn, sweet potatoes, yams, peas, tomatoes, beans, okra, melons, bananas, plantaius, and oranges are produced. Cattle, sheep, and hogs are reared to some extent and shipped to Nassau. Under a careful system of agriculture these products mightbe largely increased, but unfortunately a method of working land on shares, established just after emancipation, has cducated the laborer into carelessness as to the life of the soil. No manuring is attempted, and land is worked until it is exhausted; then new tracts are cleared. Λ liberal use of fire in clearing often does harm. The soil is light and mainly composed of vegetable mold and is injured as to producing qualities by the passing orer it of the flames. This working on shares, with its inherent defects, is not the fault of the colored people, but is rather a legacy from the old slavery times, when, after emancipation, the freedman had no capital but his daily labor, whilst the proprictors held the land. The only way to bring land and labor together was to start this share culture, one-third of the product going to the land owner. This system is, however, steadily being displaced by that of the small freeholder. The colored man's first ambition is to own his house and plot of ground. The descendants of the slaves are therefore buying land from the goverument and the descendants of the slave-owners, often becoming owners of the land where their forefathers were held in slavery, so that at the present time a large portion of the island is owned by the colored race. The soil will give rich returns when carefully cultivated, and as a quiet home for the small freeholder of the colored people it can hardly be equaled. Δ bad year may come, caused either by drought or hurricane, but a littlo forcthought in the good years will render the owner of five or ten acres of land more indepeudent and comfortable than a laboring man can pos-
sibly be anywhere else in the world. Laud is cheap, government lauds selling at five shillings sterling per acre. There is no tax on land, so with ordinary industry a home may easily be kept. If there was a sure market and quick transportation for fruit and vegetables production would be stimulated, for each owner would strive to keep his holding at its best. The day may come when, with the waters of the Bahamas used as a winter cruising-ground by American yachtsmen, and Nassau the headquarters and winter resort it should be, there will be the desired increased demand for out-island produce and an incentive given to more careful and thorough work."

At $5.50 \mathrm{a} . \mathrm{m}$., March 8, we got under way and rau a line of soundings to Conception Island, the greatest depth being 1,017 fathoms. Arriving off the western side of the island about $11 \mathrm{a} . \mathrm{m}$. the naturalists went on shore for a few hours. We, in the mean time, steamed several miles off shore and lowered the trawl in 1,169 fathoms, white coral ooze bottom. After dragging a few minutes it fouled on one of the projecting coral rocks which crop up at intervals throughout the Bahamas, even in the deepest mater. We succeeded in getting the trawl on board, with the net somerwhat torn, after sevetal hours' effort, only to find a few shrimp, a small octopus, and a fow minute forms in the bag. Our experience has been the same on all coral sand or ooze bottoms, which seem to be almost barren of life.

The naturalists returned at $2.45 \mathrm{p} . \mathrm{m}$. with a large number of birds and, the trawl being up, a few minutes later we started ahead, running a line of soundings to Columbus Point, Cat Island, the greatest depth being 845 fathoms, developing a conuecting ridge between the islauds.

We sounded in 22 fathoms on the reef off Columbus Point about dusk, and a few minutes later slowed down and put over the large surface tow-net. Very little life was found. During the night a line of soundings was carried to Watling's Island, developing a depth of 2,482 fathoms. At daylight on the morning of the 9th we anchored off Cockburn Town, took Messrs. Lee and Nyo ou board, and returned to Rum Cay, anchoring in St. George's Bay at $4.40 \mathrm{p} . \mathrm{m}$. We were under way at $6.15 \mathrm{a} . \mathrm{m}$. on the 10th, and ran a line of soundings to Cape Sta. Maria, north end of Long Island; thence to the SW. end of Cat Island, where we arrived at $5.27 \mathrm{p} . \mathrm{m}$. and anchored for the night at Hawk's Nest anchorage. The greatest depth found during the day was 1,398 fathoms, between Rum Cay and Long Island, and 1,056 fathoms between the latter and Cat Island.

Hawl's Nest anchorage is safe and couvenient, with northerly or oasterly winds. We anchored in 7 fathoms, white sand bottom, the buildings on Hawk's Nest hill bearing ENE., with the western extremity of the reef about 300 yards distant.

The naturalists landed at daylight the following morning and returned at 10.30 a. m., when we got under way and rau a line of soundings across Exuma Sound to the NW. end of Exuma Island, thence to the south end of Eleuthera Island, arriving and anchoring at Miller's
anchorage at $6.43 \mathrm{a} . \mathrm{m}$. on the 12 th . The naturalists landed an hour later and made a successful hunt for birds, reptiles, $\mathbb{\& e}$.

At $1.50 \mathrm{p} . \mathrm{m}$. we got under way and made two hauls with the tangles on the edge of the reef' in 36 and ' 369 fathoms. The bottom was exceedingly rough, the tangles fouling soon after they landed on the reef. We secured very fow specimeus beside fragments of coral rock which were detached by dragging the apparatus over the uneven surfaces. Finding the work difficult and almost wholly unproductive, we returned to our anchorage at $4.55 \mathrm{p} . \mathrm{m}$.

We were uuder way again at 1.16 a. m., Mareh 13 , and ran a line of soundings to Wide Opening, thence to the head of the Sound. At 2.05 p. m. we lowered the trawl in 791 fathoms, white coral ooze, landing it on deek at $4.53 \mathrm{p} . \mathrm{m}$., with a few shrimp, a fragment of a holothurian, a quantity of dead coral, \&c., the mud-bag being filled with the white, pasty ooze of the bottom.

The results of this hanl confirm our former experience of the barrenness of waters where the bottom is composed of coral sand or ooze. The haul finished, we started for the channel between Eleuthera and Little San Salvador Islands, sounding 18 miles inside the reef in 476 fathoms, and one-half mile outside in 926 fathoms. The depth increased to 2,664 fathoms 30 miles to seaward in a northerly direction, latitude 25° $2^{\prime} 45^{\prime \prime} \mathrm{N}$., longitude $75^{\circ} 43^{\prime} \mathrm{W}$. Having completed the line, we steamed for N.E. banks off Northern Eleuthera, rumuing a line of soundings from 11 fathoms on the banks, to 2,663 fathoms, latitude $25^{\circ} 44^{\prime} 45^{\prime \prime}$ N., longitude $76^{\circ} 23^{\prime} 15^{\prime \prime} \mathrm{W}$. The last sounding was taken at $5.10 \mathrm{p} . \mathrm{mb}$., March 14. We then stood for Nassau, New Providence, under low speed, arriving and mooring in the harbor at 7.15 a. m., March 15. We were visited by the harbor-master and health officer, and promptly granted pratique. A boat was sent for the United States Consul, T.J. McLain, who visited the ship. At 3 p.m., accompanied by the United States consul, I made au official call on his excellency the governor, Henry A. Blake. It being the closed season, a license for our naturalists to shoot birds for specimens was requested, and granted as follows:

Govervment House, Bahamas, March 17, 1886.
In virtue of the authority vested in me by the terms of the 48th Victoria, chapter 10, I hereby grant permission to the undernamed persons to take, during the year 1886, whatever birds or eggs of birds, protected by the provisions of the said act, they may require for the purposes of the scientific expedition of which they are members.

> HENRY A. BLAKE,

Governor.
Jas. E. Benedict, C. H. Towusend, F. L. Washburn, Thomas Lee, W. Nye, jr.

The birds mentioned in the act are: Wild pigeons, partridges, doves, flamingoes, boobies, man-of-war birds, pimlies, noddies.

The governor very lindly sent us the following letter also, which is evidence of his friendly interest in our work, and desire to assist in its prosecution:

Government House, Nassau, March 17, 1 SSG.

To whom it may concerv:
The governor requests that public officers and other inbabitants of the islands of this colony will afford every assistance in their power to the uaturalists on board the U.S.S. Albatross, who are engaged in scientific investigations.

BENRY A. BLAKE, Governor.

The work of collecting and investigation was carried on vigorously during our stay in port, and large numbers of rare and interesting specimens were obtained.
His excellency the governor visited the ship ou the 17 th, and spent several hours in inspecting the apparatds, examining the specimens, and familiarizing himself with our methods. He has a good knowledge of natural history, and is doing useful work in that branch of science himself; hence his study of our apparatus and methods was with unusual interest and intelligence.
At 6.10 a. m., March 24, we left the harbor of Nassau, avd ran a line of soundings to the south end of Great Abaco, the maximum depth being 1,490 fathoms. At 5.25 p . m. we anchored off Soldiers' Road Settlement and landed Messrs. W. Nye, jr., and C. H. Townsend, with necessary supplies and apparatus for the prosecution of their work while the vessel was absent. This anchorage is safe with winds from NW. and N. to E . The Albatross auchored in 7 fathoms, white sand bottom, Hole-in-the-Wall light-house bearing ENE. three fourths E. in sight over the land. We left the anchorage at 8.10 p . m., and ran a line of soundings through NW. Providence Channel to Great Isaac's, theuce proceeding direct to Key West, Fla., where we arrived and anchored at $2.05 \mathrm{p} . \mathrm{m}$., March 26. The flagshin Tennessee, flying the flag of Acting Rear-Admiral James E. Jouett, the Powhatan, Galena, Swatara, and Yantic Were at anchor in the harbor, and the U.S. Coast and Geodetic Surver steamer Blake arrived during the evening. Tho fleet left at $11.45 \mathrm{a} . \mathrm{m}$. , March 28, and the U.S.S. Brooklyn camo in and went to the coal wharf.

At $1.40 \mathrm{a} . \mathrm{m}$., on the 30th, fire broke out in a building adjoining the San Carlos theater, and quickly spreading among the dry wooden structures in the vicinity, soon became totally unmanageable in the absence of suitable fire apparatus. A working party of thirty men, under command of the executive officer, Lientenant Waring, was sent on shore from this vessel at $2 \mathrm{a} . \mathrm{m}$., and fought the fire milil 3 p . m., when it was under
control. Ensigus Benson and Hogg and Mr. Thomas Lee volunteered their services, and rendered valuable assistance. The party went armed with axes and a coil of rope for pulling down and demolishing buildings, as that was about the ouly method of fighting the fire in the absence of water and fire-cngines. Large parties well officered were sent from the Powhatan and Brooklyn, and the crew of the revenue-catter Dix were early at the scenc of fire. Captain Matthews, of the Brooklyn, with his torpedo corps, leveled many buildings, which tended to narrow the track of the flames as they swept through the city toward the water.

Steam was raised as soon as it was seen that the conflagration was becoming serious, and every preparation made to get under way should assistance be required in moving vessels from the wharves. Several men were detailed to carry hot coffee and hard-bread from the ship to the parties ou shore, and about fifty gallons were dispensed in this way, much to the comfort of both officers and men. All the business portiou of the city, including the wharves, was burned, beside several large cigar factories and many dwellings. The government property was saved.
We commenced coaling at 6.45 a. m., on April 2, and finished at meridian on the 3d, having taken on board 127 tons.

The fire disarranged all business matters on shore so mach that we were unable to procure money for the use of the vessel, fresh water for the boilers, or stores for officers and crew, hence it was determined to go to Havana for the articles required. As there was a wide break in the soundings between American Shoal, on the Florida coast, and Matanzas, we took the opportunily to run a line between the points mentioned. Leaving port at $5.10 \mathrm{p} . \mathrm{m}$. we commenced the line off American Shoal in 145 fathoms, and completed it at 12.45 p.m., April 4, when we started for Havana under steam and sail, arriving and mooring at one of the govermment buoys at $6.30 \mathrm{p} . \mathrm{m}$. The health officer visited the ship and grauted pratique; and officers from Spanish and German men-of-war in port called, tendering the usual civilities. These calls were returned on the following day, when I also visited the commodore (acting admiral) and captain of the port.
The services of the government water-boat were secured and the boilers filled on the 6th, preparations for sea being completed in the mean time. At $7.30 \mathrm{a} . \mathrm{m}$., April 7, we left port and spent the forenoon hauling the tangles near the reef to the castward of Morro Castle, taking 120 Pentacrinus, a varicty of coral, crustacea, shells, \&c. The trawl was lowered at $2.09 \mathrm{p} . \mathrm{m}$. in 1,025 fathoms, and landed on deck at 4.45 ; a water haul. The current was so strong that the trawl failed to reach the bottom. We then started for Key West, arriving and anchoring off the government wharf at $6.17 \mathrm{a} . \dot{\mathrm{m}}$. the following morning.
At $7 \mathrm{a} . \mathrm{m}$. we went alongside the Freeda $\dot{\Lambda}$. Willey and took from her 50 tons of coal which filled the bunkers and bags, about 30 tons being carried on deck. We cast off and went to sea at 5 p.m., and at 6 a.m.
the following day put the dredge over in 56 fathoms off Carysfort Reef. Thirteen hauls of dredge, tangles, and triwl were mado during the day between Carysfort.and Fowey's Rocks, in from 56 to 363 fathoms. Large numbers of minute shells, numerons crustacca, small fish, cephalopods, \&c., were taken. We continued dredging till dark, then steamed across the straits to Great Isaac's and ran a line of soundings thence to SW. Point, Great Babama Island; after which the northern part of NW. Providence Channel was sounded, the greatest depth, 869 fathoms, being found 15 miles west of Burrows Cay. The last sounding was taken at $10.10 \mathrm{p} . \mathrm{m}$., and we then steamed direct for Soldiers'. Load anchorage, Great Abaco, arriving at 5.40 a. m., April 11.

While engaged in sounding the NW. Providence Channel, we encountered a stroug NW. current, exceeding 2 knots per hour, setting into the bight, and a counter-current of some force to the southward and eastward along the line of reefs from Burrows to Gordo Cays. Brisk to fresh easterly winds prevailed,

Boats were sent for Messrs. Nye and Townsend, who had been on the island since March 24. They appeared in good condition, and reported fair success in collecting. Every thing being on board, we left at 8.30 a . m .for Tongue of Occan, anchoring in $4 \pm$ fathoms on the eastern bank at $10.40 \mathrm{p} . \mathrm{m}$. We were under way again at 5.20 the following morning, and at $7 \mathrm{i} . \mathrm{m}$. anchored off Green Cay and landed the naturalists. The anchorage is on the west side of the cay, the northwest aud southwest points projecting slightly, forming an open bay protected from easterly winds. The bottom is white sand and there is sufficient room for vessels to anchor and swing.

The island is unimbabited at present, but gives evidence of having supported quite a large population in earlicr times. The collectors returned at 10.45 , much pleased with their success and anxious for another opportunity of landing on the cay. We were under way at 11 a. m ., and steaming to the southward passed Booby Rocks, then hauled up to the southward and eastward for the extremity of Tongue of Ocean, sounding and putting the tangles over in 36 fathoms at 5.30 p . m ., latitude $23^{\circ} 34^{\prime}$ N., longitude $76^{\circ} 33^{\prime} \mathrm{W}$. It was an exceedingly rough coral bottom, and we anticipated a variety of specimens usually found on such ground, but our catch was confined to a few sprays of gorgonian coral, sponges, mollusca, and crustacea. Steaming W. by S. one mile the tangles were again lowered in 360 fathoms, the same rough and barren bottom being encountered.

The large surface tow-net was put over a little after dark with equally poor success, very fow specimens being takon. A line of soundings was run to High Point, Andros Island, during the night, and thence to Booby Rocks, where wo anchored at 7.10 a. m., April 13. The depth of the southern portion of Tongue of Ocean developed by our soundings averaged about 750 fathoms, ranging from 711 to 805
fathoms, with the bottom of white coral ooze as found throughont the Bahamas.
The naturalists landed as soon as we came to anchor, hoping to get a fow specimens of sea birds, numbers of which were seen on the wing hovering over the rocks. They returned in about an hour with two specimens of boobies, the only species of bird they saw. Wo then got under way, and at 9.46 lowered the tangles in 97 fathoms off the west side of Green Cay. It was an exceedingly rougl bottom, and we expected a rich haul, but found nothing but a few gorgonian corals, barnacles, and sponges. The dredge was then lowered in 140 fathoms, coral'sand bottom, but it soon caught on a coral lump and parted the rope at the hoisting engine. The end caught under the guard on the dredge-block, which for the second time held the rope till we could clamp and secure it. The bottom was found to be exceedingly barren, a few small shells being the ouly specimens brought up by the dredge. We anchored off Greeu Cay at $11.30 \mathrm{a} . \mathrm{m}$. , and landed the naturalists. They returued at 1.30 p . m., when we got under way and resumed our work of sounding, finally anchoring for the night on the bauk in latitude $24^{\circ} 29^{\prime} \mathrm{N}$., longitude $77^{\circ} 15^{\prime} \mathrm{W}$.
We were under way the following morning at daylight and continued the soundings. The weather was clear and pleasant with light airs and calms during the forenoon, but later in the day the wind increased to a moderate gale from north with thick rainy weather and heavy sea. We continued work until dark, then hove to under the lee of Thompson's Cay until daylight the following moraing, when a line of soundings was run to the west end of New Providence Island, completing the work in Tongue of Oceau.

The gale continued with a heavy and exceedingly uncomfortable sea. The bar at the entrance of Nassau Harbor was breaking so heavily that we were unable to enter, and were forced to make an anchorage in Southwest Bay to leeward of the island.
The weather appearing to have moderated somewhat on the 17th, we got under way and steamed to the vicinity of the bar which we found still impassable, and were obliged to return to our anchorage in Southwest Bay. Another attempt was made to enter on the 19th, but the bar was still breaking heavily and it was not until the 21st that we succeeded in passing it. We reached the harbor at $11.30 \mathrm{a} . \mathrm{m}$. on that day, received the usual visits, and, during the afternoon, accompanied by the United States consul, I made an official call on the governor.

The naturalists continued their work while we were detained at Southwest Bay, and, after our arrival in Nassau, the fishing and spongeing industries of the Bahamas were investigated as thoroughly as our limited time would permit. The results of their inquiries will be found in the naturalist's report.

During the prosecution of our work among the islands we have encountered brisk to strong winds from various points of the compass,
easterly winds prevailing, and much squally weather. These conditions are normal for the months of January and Febrnary, but rather exceptional for March and particularly for April. We left Nassau April 30, and rau a line of soundings from Egg Island reef to a point of the shoal off Hole-in-the-Wall, to develop a shoal said to exist in mid-channel. Au old shipmaster who traded for many years among the islands said he had fisher on it and knew that it existed. We found a depth of 2,222 fathoms on the spot indicated, aud saw no sigus of shoal water. It is more than probable that the captain fished on the extremity of the reef, making off 10 miles or more from Hole-in-the-Wall, and it is not at all strange that he should think himself half way across the channel, particularly if he was in a small vessol.
From Hole-in-the-Wall we steamed to Little Guana Cay, and sounded in 940 fathoms, latitude $26^{\circ} 40^{\prime} \mathrm{N}$.; longitude $76^{\circ} 49^{\prime} 30^{\prime \prime} \mathrm{W}$.; then ran a line to the northward and eastward, perpendicular to the coast, to latitude $26^{\circ} 50^{\prime} \mathrm{N}$., longitude $76^{\circ} 04^{\prime} 45^{\prime \prime} \mathrm{W}$., reaching a deptl of 2,670 fathoms. The course was then changed to the northward and westward and a sounding takeu in 2,715 fathoms, latitude $27^{\circ} 11^{\prime} \mathrm{N}$., longitude $76^{\circ} 19^{\prime} \mathrm{W}$. The nest cast gave 943 fathoms, latitude $27^{\circ} 41^{\prime} \mathrm{N}$., longitude $76^{\circ} 41^{\prime} \mathrm{W}$. From this point a line was run to the westward to latitude $27^{\circ} 57^{\prime} 30^{\prime \prime} \mathrm{N}$., longitude $77^{\circ} 27^{\prime} 30^{\prime \prime} \mathrm{W}$., in 660 fathoms. The trawl was lowered at this station at $8.29 \mathrm{a} . \mathrm{m} .$, May 2, and a large number of pteropod shells, a few fish, a single specimen of Argonauta, dead shells of various species, and a quantity of foraminifera were obtained.
A line of soundings was then run to the southward and westward, striking the banks off Graud Oay. At $5.45 \mathrm{p} . \mathrm{m}$. we lowered the trawl in 338 fathoms, coral sand, latitude $27^{\circ} 22^{\prime} \mathrm{N}$., longitude $78^{\circ} 07^{\prime} 30^{\prime \prime} \mathrm{W}$., and made a successful haul. Amoug the specimens were four species of sea-urchins, dogfish with young, munidas, two species of gorgonian coral, shrimp, crabs, glass sponges, brachiopod shelle, fish, \&c. At 7.20 We steamed to the northward and at 8.20 stopped for forty minutes to use the submarine light. A few good specimens were procured, but the waters were exceedingly barren. The course was resumed at $9 \mathrm{p} . \mathrm{m}$. , and . at $5.24 \mathrm{a} . \mathrm{m}$. the following day the trawl.was lowered in 572 fathoms, latitude $27^{\circ} 58^{\prime} 30^{\prime \prime} \mathrm{N}$., longitude $78^{\circ} 24^{\prime} \mathrm{W}$. Five hauls were made during the day between the above position and latitude $28^{\circ} 40^{\prime} \mathrm{N}$., longitude $78^{\circ} 40^{\prime} \mathrm{W}$., in 504 fathoms. The character of the specimens taken in all the hauls was much the same; among them were shrimp, starfish, many fine specimens of flabellum, hermit-crabs, barnacles, seaurchins, a variety of corals, pennatulas, holothurians, hydroids, several species of fish, \&ic., beside a large quantity of foraminifera washed from the contents of the mud-bag.
The large tow net was put over after dark and the submarine lights used, but the surface was barren of life. At $11 \mathrm{p} . \mathrm{m}$. we steamed to the northward and westward, and at $530 \mathrm{a} . \mathrm{m}$. the following morning
lowered the trawl in 438 fathoms, gray sand, latitude $29^{\circ} 16^{\prime} 30^{\prime \prime}$ N., longitude $79^{\circ} 30^{\prime} 30^{\prime \prime} \mathrm{W}$. Five hauls were made during the day between the above position and latitude $29^{\circ} 47^{\prime}$ N., longitude $80^{\circ} 05^{\prime} 45^{\prime \prime}$ W., in 263 fathoms, fine gray sand. The first three hauls brought up large masses of branching coral of various species, besides a few fish, sea-urchins, shrimp, \&c. The last two had very little coral, but a variety of other specimens, among which were several species of crabs, mollusea, worm-tubes, shrimp, sea-urchins, and numerous species of fish. The surface net and submarine light were used successfully during the evening.
The working ground of the day was under the bed of the Gulf Stream and extended diagonally across its course. At $9 \mathrm{p} . \mathrm{m}$. we started ahead to the northward and eastward, and at 5.20 a . m., May 5, lowered the trawl in 270 fathoms, gray sand, latitude $30^{\circ} 47^{\prime} 30^{\prime \prime} \mathrm{N}$., longitude $79^{\circ} 49^{\prime} \mathrm{W}$. Seven hauls were made duriug the day between the above position and latitude $31^{\circ} 31^{\prime} \mathrm{N}$., longitude $79^{\circ} 05^{\prime} \mathrm{W}$., in 277 fathoms, coarse brown sand. The results of the day's work were remarkable for the enormous loads of coral brought up by the trawl and tangles. Other specimens were taken in considerable numbers also, among which may be mentioned hydroids, siliceons sponges, seaurchins, sea-anemones, and several varieties of fish. A large porpoise was caught during the day, and its skeleton preserved for the National Museum.
The bottom was so thickly covered with coral that the trawl was soon wrecked, and the tangles were used in subsequent hauls. A remarkable feature of the day's work was the capture of nine sharks, of it species unfamiliar to us. One of them was preserved in salt for future examination at the laboratory of the National Museum. The stomach of one was found to contain about a gallon of oil of a reddish tint, which smelled like ordinary fish-oil. Unfortunately most of it was lost, but we saved about half a pint for examination. The presence of this large quantity of oil in a shark's stomach shows that it had fed bountifully on it a short time before, but it would be difficult to conjecture where it could have found $i t$. The stomach contained nothing else.

We steamed to the northward and eastward during the night, and at $5.17 \mathrm{a} . \mathrm{m}$. on the 6th lowered the trawl in 240 fathoms, gray sand and coral, latitude $32^{\circ} 26^{\prime} \mathrm{N}$., longitude $77^{\circ} 43^{\prime} 30^{\prime \prime} \mathrm{W}$., and made seven hauls during the day between that position and latitude $32^{\circ} 40^{\prime} \mathrm{N}$., longitude $76^{\circ} 40^{\prime} 30^{\prime \prime}$ W., in 782 fathoms, light gray ooze.

The results of the day's worlk were very satisfactory. The earlier hauls were on coral bottom and the nets were badly cut, but later in the day, after reaching deeper waters, we found smooth bottom, from which we brought up a great number and variety of specimens. The various forms of deep-sea fish were unusually abundant, besides seaanemones, corals, hydroids, hermit-crabs, shrimp, cephalopods, pennatulæ, squid, shells, glass sponges, ophiurans, holothurians, \&c. The
working ground of the 5th and 6th was, like that of the 4th, under the bed of the Gulf Stream.
The winds, which had been light to moderate from the 2d, increased during the afternoon of the 6th, aud at midnight, when the last haul was finished, was blowing a brisk breeze from SW ., with indications of approaching bad weather.
The submarine light was used until about 2 a . m. on the 7 th, when we started ahead under steam and sail for the capes of the Chesapeake. The weather became overcast during the afternoon and the wind increased, with falling barometer. At 8 p . m. there was a moderate gale from south, with thick threatening weather and incessant thunder aud lightning, followed by a furious squall half an hour later. We were near the northern verge of the Gulf Stream off Cape Hatteras, where the sea rises with the wind and assumes a magnitude entirely disproportionate to the apparent cause.

We passed Cape Henry at 7.30 a . m. on the 8th, and the weather still being thick and unsettled, anchored in Hampton Roads until the following morning, when, the storm having passed, we steamed up the bay, anchoring for the night off Upper Cedar Point. We were under way at daylight on the 10th, and arrived at the navy-yard, Washington, D. C., at $10.50 \mathrm{a} . \mathrm{m}$.

We remained at the navy-yard overhauling and refitting for the summer's cruise until June 30 , when we left for Norfolk, Va., arriving the following morning.
At $7.30 \mathrm{a} . \mathrm{m}$. , July 2 , we went into dry-dock, and the work of scraping and painting the bottom commenced. Considerable rust was discovered, but very few barnacles or other marine life. The vessel was last docked at Baltimore May 27, 1885, and has therefore been a little more than thirteen months in the water; five months at sea, three mouths in the Potomac river, followed by auother three months at sea in West Indian waters, and finally about two months in the Potomac. These intervals in fresh water killed the marine growths, thus accounting for the comparatively smooth bottom. The rust was readily accounted for, and was excessive wherever the dredge-rope or sounding. wire had been in coutact with the bottom. There was much rust near and below the water-line, where the paint was rubbed off by ice when we were steaming down the Potomac cn route to the West Indies in February last.
We found another small piece gone from a broken blade on the port propeller, and to compensate for the loss of weight aud surface, an equal area was cut off the opposite blade. The outboard bearings are wearing somewhat, and it will be necessary to reline both shafts when the vessel is dacked again.

The painting having been fivished, the ship was hauled out of dock at $1 \mathrm{p} . \mathrm{m}$. , July 7, and at $2 \mathrm{p} . \mathrm{m}$. wo commenced coaling, finishing at $2.30 \mathrm{p} . \mathrm{m}$. on the 8 th, having received $1200_{2^{2} \frac{20}{10}}^{10}$ tous. $\operatorname{At} 5.10 \mathrm{p}$. m. we
cast off from the wharf and procceded down the Elizabeth River. The weather was clear and very warm. We passed Cape Henry at 7.45 p. m. and at 9.45 set our course for Wood's Holl, Mass. The weather became overcast, with rain-squalls and fogs during the night, continuing until our arrival, at 2.30 p. m., July 10.

At 5.10 p. m., July 15, we left for a dredging trip, and passing Gay Head at 7.35 p . m. We set our course to the southward during the uight. Tho weather was clear and pleasant, with fresh breeze from southwest.

At $9.03 \mathrm{a} . \mathrm{m}$. the following day we sounded in 555 fathoms, latitude $39^{\circ} 50^{\prime} \mathrm{N}$., longitude $70^{\circ} 26^{\prime} \mathrm{W}$., and while recling in the stray line parted, losing one specimen cup and one N. Z. thermometer with Tanner improved case. The beam-trawl was lowered at 9.27 and landed on deck at 11.16, with one octopus, two large crabs, six species of fish, archasters, maldana, and foraminifera. Two other hanls were made during the day in latitude $39^{\circ} 43^{\prime} \mathrm{N}$., longitude $70^{\circ} 29^{\prime} \mathrm{W}$., and latitude $39^{\circ} 38^{\prime} \mathrm{N}$., longitude $70^{\circ} 22^{\prime} \mathrm{W}$., respectively, resulting about the same as the previous haul, with the addition of several benthodytes and seaspiders. The surffee net was towed in the early morning and evening with meager results.

At 4.30 a. m., July 17, we sounded in 887 fathoms, brown ooze, latitude $39^{\circ} 33^{\prime}$ N., longitude $70 \circ \tilde{0} 0^{\prime} \mathrm{W}$., and at 5.04 put over the beam-trawl. It was landed at 7.42 with one specimen of Cyclothone lusca, but no bottom specimens. Two other liauls, in 1,106 and 1,137 fathoms, latitude $39^{\circ} 35^{\prime}$ N., longitude $70^{\circ} 54^{\prime} \mathrm{W}$., and latitude $39^{\circ} 3 \bar{o}^{\prime}$ N., longitude 71° $02^{\prime} 30^{\prime \prime} \mathrm{W} .$, respectively, were made during the day, securing a large quantity of Ophiomusium, 5 species of fish, benthodytes, 1 octopus, and numerous archasters. Serial temperatures were taken to 1,000 fathoms. The surface net was used in the evening as before, but the results were uninteresting.

The following day six stations were occupied, in depths from 326 to 835 fathoms, between latitudo $30^{\circ} 59^{\prime \prime}$ N., longitude $71^{\circ} 20^{\prime} 45^{\prime \prime} \mathrm{W}$., and latitude $39^{\circ} 37^{\prime} \mathrm{N}$., longitude $71^{\circ} 08^{\prime} \mathrm{W}$. The results were the same as on the previous days, with the exception of a specimen of Onus rufus, taken in the last haul. Serial temperatures were taken to 500 fathoms, and the surface net towed without success. At 9.05 p . m. we started for Wood's Holl. Soon after entering Vineyard Sound the following morning we discovered tho steamer Gate (ity aground on the beach east of lRobinson's Hole, Naushon Island, and, communicating with her, learned that she had gone ashore the previons evening during a deuse fog. We oficred assistance, but there was nothing to be done ponding the arrival of divers, who had beon sent for. We then resumed our course, and in a few minutes saw the steamer Panther aground near Job's Neck, Naushon Island, and in response to our ofters of assistance, they requested us to aid them in getting afloat. We took a hawser from her stern and towed her off the rocks, when she procecded to New Bedford.

We arrived and moored to the Fish Commission wharf at 10.30 a. m. The captain and agent of the Gate City called about 11.30 and requested, us to tow Davis's wrocking scow to the stranded vessel, as it was very important that the divers should be on the spot as soon as possible, and there was no other meaus of getting them there for several hours. We left soon after with the scow in tow, delivered her at the steamer about 1 p. m., and returned to port.

We remained at the wharf, coaling ship, overbauling apparatus, and making necessary repairs to boilers, until 1.40 p . m., August 2 , when we proceeded to sea under the following orders:

> U. S. Commission of Fish and Fisheries, \cdot Wood's Holl, Mass., July $29,1886$.

Sir: As soon as the Albatross is ready you will make a cruise to the eastward, for the purpose of determining the existenco and, if possible, the character of certain bauks which are believed by some to exist, but which, so far, have not been properly sounded and examined.

In connection with this inquiry you wild follow, as far as convenient, the suggestions of the Bydrographic Office of the U.S. Navy as embodied in a letter from Commander Bartlett.

A particular point to be examined is the so-called Hope Bank; another is in the vicinity of the Flemish Cap, and also an alleged marine ridge connecting Flemish Cap with the Azores.

In the course of this voyage you will of course take occasion, by sounding, trawling, and dredging, to ascertain any physical or biological characters of the region.

In consequence of Mr. Benedict's resiguation, Mr. Thomas Lee, the assistant naturalist, will have charge of the natural history work, and of the various operations of making collections and preserving them for transfer to Wood's Holl.
The length of time during which the voyage is to last is loft to your discretion. The principal object of finding and defining the banks in question is to furnish new grounds to the American fishermen, and you will therefore take such steps as are in your power to determine their economical value, by securing fall collections of the fishes themselves aud the animals that serve them for food.

You are authorized to stop at any port in the British Provinces for the purpose of taking in coal and supplies.

As opportunity presents you will communicate by telegraph your Whereabouts and the general condition of the vessel and those on board. Very rospectfully,

SPENCER F. BAIRD, Commissioner.
Lieut. Commander Z. L. Tanner, Commanding Stcamer Albatross.

We steamed to the eastward through Vineyard Sound and over Nantucket Shoals. The weather was pleasant, but the barometor was falling rapidly and a heavy thunder-shower approaching from the northward and westward. It followed along the land, gradually gaining on us, until, off the east end of Nautucket, the storm fiually passed ahead and across the bow.
The oflicer of the deck reported seeing on two occasions, between 8 and $10 \mathrm{p} . \mathrm{m}$., several pieces of floating ice from 8 to 10 fcet square and $\mathbf{5}$ feet thick. Ice in this locality in August is unusual, if not unprecedented.

Wo had light southerly winds and moderate swell during the night, with pleasant weather and passing clouds. A strong NW. wind was blowing at noon on the 3 d , and increased to a moderate gale later in the day.

The following is a copy of the Hydrographer's letter, referred to in the preceding orders of the Commissioner:

> Bureau of Nayrgation, Nayy Depariment, Washington, D:C., July $16,1886$.

Dear Sir: The receipt of your letter of July 13 is acknowledged. I send to day copies of Hydrographic Office charts $21 a$ and $22 a$, on which I have marked in red pencil the position of possible dangers. The records of these are very meager, and would be of no assistance to yon. I have also indicated by blue pencil crosses where it is desirable to have soundings. Of course any others that you can get will be useful.

I am inclined to think there is a submarino ridge extending from the Azores to the Flemish Cap, bence I have marked a line to develop it. This may be the mackerel grounds you have been looking for.

The line across the old position of Hope Bank will develop it in a north and sonth direction, if it exists. Your line (referring to your work. of last year) rums cast and west.

Beaufort and Milne Eanks ought to be developed, and the vicinity of Zaragosa Rock ought to be closely examined. If you are going to the eastward of the Azores I should like to know it, as there is a host of reported dangers all around these islands.

Very respectfully,
J. R. BARTLETT,

Commander, U. S. Navy, Iydrographer.
Lieut.Commander Z. L. Tanner, U. S. N.,
Commanding U. S. F. C. Steamer Albatross.
The first line of soundings indicated by blue pencil crosses on Hydrographic Ollice chart $21 a$, referred to in the above letter, began at latitude $40^{\circ} 14^{\prime}$ N., longitude $65^{\circ} 56^{\prime} \mathrm{W}$., where, notwithstanding the prevalence of a gale, we sounded, at $2.10 \mathrm{p} . \mathrm{m}$., Δ ugust 3 , in 2,224 fathoms. ${ }^{\circ}$ We carried the line to the eastward to latitude $40^{\circ} 20^{\prime}$ N., longitude $64^{\circ} 54^{\prime}$
W., in 2,575 fathoms, thence to the position assigned to Hope Bank, where eleven soundings were taken at intervals of about 5 miles, the depths ranging from 1,930 to 2,069 fathoms. On the position assigned the bank, latitude $41^{\circ} 29^{\prime} 28^{\prime \prime} \mathrm{N}$., longitude $63^{\circ} 17^{\prime} \mathrm{W}$., we found a depth of 1,069 fathoms. Five soundings taken by the Albatross last year form another line from 5 to 10 miles farther south.
Learing the reported position of Hope Bank on the morning of the 5th, we ran a line in a northeasterly direction to Sable Island Bauk. The depths decreaset graduaily, showing no evidence of outlying banks or shoals. This line was recommended by the Hydrographer.
On the morning of the 6th we discovered an unexpected error of the compass, which had carried us about 20 miles out of our course during the night, thus throwing discredit' on our steering-card. As we were ontering the region of fogs it was necessary to ascertain our compass errors as accurately as possible; accordingly, at'as early an hour in the afternoon as practicable, wo swung ship under steam, observing azimuths of the sun, from which a table of errors was constructed. A comparison of the card thus obtained, with flat we had been using, not only accounted for the deviation from our course, but demonstrated the fact that something was wrong. A search occupying the remainder of the day and night resulted in the discovery of a piece of iron pipe, 13 inches outside diameter and 8 feet in length, deposited in the seine-boat on the starboard side of the deck. The forward end of the pipe was about 8 feet from the compass and 1 foot 6 inches below the card. The cause of disturbance being found and removed, a new card was made by swinging the ship on the 7 th, the results corresponding nearly with observations in Narragansett Bay. .
A line of soundings was then run between Banquereau and Grand Baink, about 60 miles to the southward of our line last year, in from 1,780 to 1,172 fathoms.
At meridian, August 8, we sounded in 34 fathoms on Grand Bank, latitude $44^{\circ} 52^{\prime} \mathrm{N}$., longitude $50^{\circ} 25^{\prime} \mathrm{W}$., and put over the hand-linès baited with menhaden. Two cod and two haddock were taken, thus confirming our former experience that menhaden are worthless as bait for cod on the Grand Bank. Another trial was made at $6.12 \mathrm{p} . \mathrm{m}$. , in 35 fathons, without taking a fish.

The significance of hydrographic soundings 1,042 to 1,047 , inclusive, in $35,35,35,38,41$, and 115 fathoms, will be made apparent by reference to H. O. chart $21 a$, where the contour of the eastern edge of the Grand Bank is distorted, apparently, on the evidence of a single negative sounding.

The line was continued east on the same parallel to develop a bank referred to in the following extract from a letter of Capt. J. W. Oollins of the U. S. Fish Commission schooner Grampus, dated Wool's Holl, Mass., July 10, 1886:

$$
\text { S. Mis. } 90-40
$$

"Referring to our conversation of this date, relative to the possible future movements of the Albatross, I beg to submit to your consideration the following:
"On the general charts of the North Atlantic a small bank is laid down to the castward of the Grand Bank, perhaps about 200 miles distant from the latter, and about on the 40̈th parallel of north latitude. This bank, on which are marked depths approximating 75 to 100 fathoms, has long been an object of much interest to the Gloucester fishermen, and much speculation has been indulged in as to whether the bank really exists or not. If so, it is universally believed that cod and halibut may be found there in great abundance, and its authentication would, no doubt, prove a bonanza to the fishermen.
"If it does not exist, the settlement of the question would prove not only interesting, but extremely valuable to the fishermen, since they may be prevented from spending their time in fruitless search for the bank.
"The Albatross is so eminently well adapted to making this research that I trust I may be pardoned for hopiug she will look for the place in question if her other work takes her in the vicinity of the Grand Bauk during the summer.
"The value of such work may be fairly illustrated by the fact that, a short time ago, while the Grampus lay in Gloucester Harbor, one of the captains came on board who was about to sail on a halibut trip. Incidentally he told me it was his intention to try to find Hope Bank when he got to sen. I told him that it had no existence except in the imagination of the person who reported it, and that the Albatross had found 2,000 fathoms where the bank is laid down.
"This information not only surprised him, but pleased him very much, for he said it would practically save hin (and another vessel which was going to make the attempt in company) a broken trip, since he had determined to spend a week or ten days in the search."

The depth found 100 miles east of the Grand Bank was 1,916 fathoms, increasing to $2,6 \ddot{\mathrm{c}} \mathrm{S}$ fathoms 200 miles farther east. The soundings show no rise in the sea-bottom along this line, which extends far enough to the eastward to intersect a marine ridge extending from the Azores to Flemish Cap. On the contrary the depths increased with great regularity until the maximum, 2,658 fathoms, was reached at the extremity of the line in latitude $45^{\circ} 14^{\prime} \mathrm{N}$., lougitude $42^{\circ} 03^{\prime} \mathrm{W}$. From this point a line was run to Flemish Cap, as indicated by the hydrographer, with still no signs of marine elevations until reaching the abrupt rise of the Cap.
A few words as to the accuracy of our varions positions may not be out of place here. We had generally clear weather to $6 \mathrm{p} . \mathrm{m}$. on the 8th, enabling us to locate the soundings as accurately as ordinary sea observations permit. On the 9th, latitude by ex-meridian altitudes of the sun was obtained, but no longitude. Foggy weather and moderate

SW. winds prevailed. The sun was visible at intervals during the 10 th , giving us an excellent opportunity of locating the ship. Strong winds to moderate NW. gale prevailed. On the 11th the sun was visible at intervals until late in the afternoon, affording us ample opportunity of locatiug our stations.

Our first sounding on the 11 th was taken at $3 \mathrm{a} . \mathrm{m}$. in 2,135 fathoms, and the next at $10.38 \mathrm{a} . \mathrm{m}$. in 73 fathoms, gray sand, black specks, and stones, on Flemish Cap, latitude $46^{\circ} 50^{\prime}$ N., longitude $44^{\circ} 35^{\prime} \mathrm{W}$. The beain-trawl was put over at this station, resulting in the capture of several specimens of Cottide, ophiurans, starfish, sea-anemones, seaurchins, corals, \&c. It may be said that stones were a marked feature in all the hauls during the day, the bottom seeming to be pretty thickly strown with them, dropped there by ice.

Four other latuls were made at stations 2,693 in 78 fathoms, 2,694 in 86 fathoms, 2,695 in 105 fathoms, and 2,696 in 98 fathoms, the character of the bottom and catch comparing closely with those of the first haul.

A serious leak was discovered in the bottom of the port boiler, water and steam escaping to such an extent thatpit was impossible to get near enongh to determine the nature of the damage. Fires were hauled and the boiler blown down, when the leak was traced to a defectire gasket on a mud-hole plate.

After the trawl was on board we steamed to the westward toward the Grand Bank, carrying a line of soundings across to further develop the counection between the two banks. The greatest depth was 477 fathoms. Reference to H. O. chart $21 a$ will show Flemish Cap to be an extension of the Grand Bank, to which it is counected by a narrow submarine ridge having a depth of 500 fathoms or less, increasing rapidly on either side to 1,000 fathoms.

We were enveloped in a douse fog during the night of the 11th and all of the 12 th, which made it impossible to locate ourselves by observation, but, assuming the eastern extremity of the Grand Bank to be correctly laid down on the chart, we were able to plot our soundings with some degree of accuracy.

The normal direction of the current between the banks is about ESE., but we experienced a strong set to the northward and eastward. A fresh SW. breeze which prevailed at the time may account for the change of direction.

The trawl was lowered at $12.09 \mathrm{p} . \mathrm{m}$. on the 12 th in 206 fathoms, green mud, black specks, lat. $47^{\circ} 40^{\prime} \mathrm{N}$., long. $47^{\circ} 35^{\prime} 30^{\prime \prime} \mathrm{W}$., and camo u_{p} at $1.15 \mathrm{p} . \mathrm{m}$. with specimens of ray, halibut, a large number of macrurus, flounders, sea-anemones, starfish, mollusks, \&e. A rock was brought up also, weighing about 2,000 pounds, and much time and patience was expended in getting it on board without sacrificing the net.

Necessary repairs being completed, fires were started under the port boiler.

Soundings were continued toward the coast for navigational purposes, we being enveloped in a dense fog, which continued until 2 p . m. on the 13th. These soundings have been carefully located, and may have some value bydrographically.

We arrived at St. John's, Newfomdland, at 7.10 p. m., August 13, and found H.M. S. Emerald, Lily, and Mallard at anchor in the harbor. An officer came on board, and, in the name of the senior officer present, tendered the usual civilities of the port. The United States consul visited the şhip at $10 \mathrm{a} . \mathrm{m}$., August 14. His call was returned later in the day, and official visits were made to the governor, and Capt. A. H. Hanond, of H. M. S. Ewerald, senior British naval ollicer present.
Fires were hauled and the usual work of stopping leaks in the hoilers commenced. We coaled ship ou the 19th, taking on board 100 tons of anthracite.
Preparations were made for extending the cruise to the castward, including Beaufort Bank, Milne Bank, and Laurat Ethel Shoal, but that part of the expedition being abaudoned, we took on board only the quantity of coal required for the trip to Wood's Holl, including a few days' dredging and sounding.

We coaled from Shea's Wharf, where we also filled the boilers with fresh water, which was taken from a hydrant in the street, at a cost of $\$ 12$ for 10,000 gallons. The necessary bose for conducting the water on board was borrowed of the fire department.

At $9.30 \mathrm{a} . \mathrm{m}$., August 21, we got under way and proceeded to sea en routc to Wood's Holl. The reather was clear until 5 p. m., when we were enveloped in a dense fog. Cape Race bore WNW. about 4 miles distaut. As our course was seaward, we stood on and soon ran out of the fog bank into clear, pleasant weather. Our course during the night was to the southward and westward, and at 8 a. m. the following morning we cast the trawl in 90 fathoms, latitude $45^{\circ} 07^{\prime}$ N., lougitude $55^{\circ} 09^{\prime} \mathrm{W}$., off the southern extremity of Green and St. Pierre Banks. Fivo hauls were made during the day on a westerly course, in from 50 to 205 fathous, the results being numerous ascidiaus, ophiurans, startish, mollusca, and several species of tish. The positions and depths indicate an extension of the 100 -fathom line to the sonthward of Green and St. Pierre Banks. Fog shut in about sundown and continued during the night.

We finished trawling for the day at $6.15 \mathrm{p} . \mathrm{m}$. and started alhend, rumuing a line of soundings across the chamel between St. Pierre and Banquereau, developing a depth of from 226 fathoms in mid-chaunel to 32 fathoms on the latter bank.
The fog continued until 6 a. m., August 23. At 7.33 we sounded in 32 fathoms, latitude $44^{\circ} 25^{\prime}$ N., longitude $57^{\circ} 35^{\prime}$ W., on Banquereau, and put over several hand-lines, taking 136 cod in 45 minutes. The vessel was not anchored, but allowed to drift. The fish were examined for parasites, contents of stomach, ©c. Two hauls of the trawl were made during the day in 140 and 110 fathoms, on the southeast extremity
of Sable Island Bank, resulting in the capture of a ferr fish, ophiurans, starfish, shrimp, sea-inemones, and mollusca.
At 9.11 a . m., the 2.1 th, we cast the trawl in 1,255 fathoms, latitude 42° 47^{\prime} N., Iongitude $61^{\circ} 04^{\prime \prime} \mathrm{W}$. The frame was landed at 1.07 p . m., minus the net, which had been torn away by an overload of stones or mud. We expended much time and patience in the vain endeavor to clear it from the bottom without sacrificing the apparatus. We started ahead on our course as soon as the hanl was completed, the general appearance of the weather making it inad visable to cast the trawl agaiv. The wind, which was light during the early part of the day, increased to a moderate gale from WNW. in the afternoou. The barometer was unsteady and there was a heavy southerly swell; in fact, all indications pointed to heavy weather.
The 25th commenced with fresh winds from WNW., and overcast misty weather. We had heavy rains and light to moderate breezes in the middle part, and fresh SSE. winds in the latter part of the day. The barometer was unsteady, and although the sea was comparatively smooth, the general indications were of approaching bad weather. Ten soundiugs were taken during the day near the position assigned to Hope Bank, in depths ranging from 1,044 to 1,043 fathoms. The soundings are inshore, or to the northward of those taken on the outward trip, and demonstrate beyond doult that no shoal or bank exists on the ground covered by them.

We were unable to locate our position by observation during the day except by ex-meridian observations of the sun for latitude, and, although We had covered the ground satisfactorily, wo determined to remain on the spot until the weather permitted us to verify our work. With this object in view the vessel was hove to from midnight until $1.10 \mathrm{p} . \mathrm{m}$. , August 26, when, having ascertained our position by good observations, we procecded to run a line of soundings at right angles to those of the previous day in from 1,587 to 1,910 fathoms; the results confirming the general accuracy of our former work.

The unsettled weather of preceding days culminated in a cyclone of moderate force on the 26 th, as will be shown by the following extract from the meteorological columns of the ship's log.

The force of the wind should be increased about .2- otherwise the record may be considered correct.

Having completed our search for Hope Bank, we ran a line of soundings to the westward to George's Bank without finding any indications of shoal water to the eastward of it.

Having definitely proven that Hope Bank does not exist in the locality assigned it on Π. O. chart $21 a$, it may not be out of place here to inquire into the probable reasons for its having been frequently reported. Reference to the chart will show its assigned position to be near the northern edge of the Gulf Stream, where its deep blue waters, with temperatures above the normal and higl specific gravity, impinges upou the colder green water of the Arctic current. The first sight of this green water on emerging from the Gulf Stream gives one the impression that he has suddenly struck somndings. The bank once placed on the chart, the navigator who found himself in green water auywhere in that region during foggy weather, or when from any cause he was uncertain of his position, would conclude at once that he was in shoal water, and locate himself on the position assigned to Hope Bank. The difference in color and specific grarity between the waters of the Gulf Stream and the region adjacent varies with the seasons, and is more marked during summer and aitumn, when the fresh water from melting ice finds its way from the Arctic.

On August 3, at meridian, in latitude $40^{\circ} 26^{\prime} 30^{\prime \prime}$ N., longitude 66° $19^{\prime} \mathrm{W}$., surface temperature $78^{\circ} \mathrm{F}$., the specific gravity reduced to 60° F. was 1.027508 , and at noon of the 5th, latitude $41^{\circ} 48^{\prime}$ N., longitude $62^{\circ} 51^{\prime} 30^{\prime \prime} \mathrm{W}$., surface temperature $67^{\circ} \mathrm{F}$., the reduced specific gravity was 1.025008 , a differeuce of .0028 , quite sufficient to account for the change of color. Thus it will be seen that the various indications of shoal water are accounted for from natural causes wholly independent of the existence of bauks or shoals, and the depths developed by our soundings show positively that none exist in that locality. The navigator in passing over the region had neither time nor the means at hand for satisfactory investigation; therefore he was forced to judge from appearances, which, we have shown, are deceptive.

It may not be out of place here to call attention to a report conceruing Hope Bank, which to a casual observer would be considered dedinite and final as to its existence in the locality mentioned.

We hare what purports to be a complete cony of the log of the fishing schooner Marguerite on a voyage from Gloucester, Mass., to Iceland, extending from April 27 to September 24, 1885. On September 21, on the return trip, the following remarks are found relating to the bank above mentioned:
"From 4 to 8 a.m.—Wind steady in force and direction. At $7 \mathrm{a} . \mathrm{m}$. , water being discolored, sounded; depth 63 fathoms, with coarse sand. At 7.30 a. m., water looking whiter, sounded again, found 45 fathoms, with small black pebbles. At first thought the vessel had overrun the log and was on soundings on George's Bank. At 8 a. m. sounded; depth 38 fathoms.
"From 8 a.m. to noon.-Wind steady in foree and direction. At 8.30 a. m . took observation, which almost corresponded with the distance run by the log. At 9 sounded; depth 90 fathoms; hauled the vessel close to the wind SW. by W. At 9.30 sounded; depth 100 fathoms; hard bottom. Tacked ship, run off to the NE. 6 miles, sounded ; depth 40 fathoms, with small black pebbles; run to the north 4 miles, sounded ; found 75 fathoms; hauled up ESE: 4 miles, sounded; got 62 fathoms; tacked ship and kept off course. At noon found the latitude to be 41° 38^{\prime} and lougitude $63^{\circ} 30 .^{\prime \prime}$
The above extract from the schooner's log would seem to be conclusive, at least, as to the soundings having been made as stated, even if her position was not correctly giren. A vessel's log is usually taken as evidence in court, and entries in it are generally the results of personal observation of its writer or of other officers in charge of the deck for the time being. Facts only are looked for, and fictitious entries are so foreign to the habit of seamen generally that it would be cousidered correct until proved otherwise. Yet this copy fails to inspire confidence; in fact, the evidences of its having been cooked to suit the occasion are so palpable that its reliability becomes questionable at every point. It is a well-known fact that a fishing vessel's log is brief, that her navigational and scientific instruments are few, and equal to her absolute necessities only, yet this copy purports to give for every hour of the cruise, day and night, a complete record, including the filling out of 18 columns in the United States Navy log-book, which was used for making the copy, nine of them being meteorological observations, besides remarks more or less full.

On September 20, the day before the discovery of Hope Bank, this remarkable vessel made 77 miles in 12 hours on a SW. by W. course, Wind WSW., sailing within one point of the wind! With a wind force of 4 to 5 she made 7 to 8 knots, heeling 3° to 4°, with leeway of one-Lalf a point, the same leeway being maintained later in the day with a speed of 2 knots, heel of 10 to 20 , and wind force from 1 to 2 .
The following entry is found on May 13, at noou:
"Latitude, D. R., $48^{\circ} 35^{\prime} 00^{\prime \prime} \mathrm{N}$.
"Longitude, D. R., $49^{\circ} 38^{\prime} 00^{\prime \prime}$ W.
"Latitude by observations of $\odot 48^{\circ} 38^{\prime} 00^{\prime \prime} \mathrm{N}$.
"Longitude by chronometer $\odot 42^{\circ} 36^{\prime} 00^{\prime \prime} \mathrm{W}$.
"Current during the time 1.7 knots per hour, setting to the castward."
We find recorded here a current of 40.8 miles for 24 hours, whereas, assuming the calculations for position to be correct, there was actually a current of 4 miles N., 40° E. during the day.
Similar examples might be quoted throughout the whole log-book, but the above extracts are sufficient to illustrate its value as an accurate record of results. The meteorological record is hardly worthy of com. ment.

Referring to the lng of September 21, we find the schooner making 3 knots an hour until $7 \mathrm{a} . \mathrm{m}$., the time the sounding commenced, and, as the wind is logged "steady in force and direction" from this time till noon, the vessel should have made 15 knots had she continued on her course; but iustead of this uninterrupted progress she takes eight soundings in average depths of 64 fathoms, which must have consumed three-quarters of an hour at least, and sails 21 knots, about 5 knots an hour, or 2 miles an hour more than she would have logged had she taken no soundings and continued on her course with the wind two points abaft the beam.

Further comment is unnecessary ; enough has been written to show that reports of shoals and banks at sea are not always reliable, even when soundings, character of bottom, and other scemingly reliable data are given. A reference to the plan (Plate I) will show that the schooner Marguerite did not find bottom in the region indicated, and the presumption is strong that the lead was not put over the side at all.

At 9.33 a. m., August 27, we cast the trawl in 1,188 fathoms, latitude $41028^{\prime} 30^{\prime \prime}$ N., longitude $65^{\circ} 35^{\prime} 30^{\prime \prime}$ W., landing it on deck at 12.44 p. in. Among the forms taken were a quantity of ophiuraus, starfish, shrimp, mollusks, blue hake, coryphenoides, Macrurus asper, and skate. The trawl was lowered again at 2.21 p . m., but it soon buried and was lost.

At 7.09 a. m., August 28, the trawl was lowered in 980 fathoms, latitude $40^{\circ} 07^{\prime}$ N., longitude $67049^{\prime} \mathrm{W}$., and landed ou deck at $9.22 \mathrm{a} . \mathrm{m}$. ; a water haul, the current having prevented its reaching bottom. Another haul in 866 fathoms, six miles to the westward, brought up ant enormous load of mud and numerous ophiurans, holothurians, mollusks, crustaceans, and several varieties of tish, among them being coryphenoides, Macrurus Bairdii, blue hake, lycodes, \&c. A third haul was made in 984 fathoms a few miles farther westward with much the same results.

At $5.35 \mathrm{p} . \mathrm{m}$. we started for Wood's Holl. Fog shut in as soon as we touched the banks and continued until we passed the South Shoal light. ship, when it partially cleared. It shut down again off No Man's Land and continued until our arrival in port at 11.58 a. m., August 29.

We saw but few birds during the trip except "Mother Carey" chickens, which were always with us. An occasional gull and a few terns were seen. Whales were seen in the region between Sable Island and Grand Bank, and porpoises were frequentley observed playing about the ship. A large school of curved-fin orcas were seen on Flemish Cap during the morning of August 10.

We were detained in port overhauling our dredging and sounding gear, cleaning and repairing boilers and other mechanical appliances until 5.58 a. m., September 14, when we left for Nowport, R. I., for coal, preparatory to a dredging trip.

Arriving at the latter port at $10.30 \mathrm{a} . \mathrm{m}$., we commenced coaling from a schooner alongside at $1.15 \mathrm{p} . \mathrm{m}$., and finished at $\mathbf{6} \mathrm{p} . \mathrm{m}$. the following day, having taken on board $91 \frac{1.154}{\frac{1}{20}} 40$ tons.

We got under way at 6.40 and proceeded to sea en route to our working grounds, which were included in the region between latitude 38° and $39^{\circ} \mathrm{N}$., and lougitude 70° and $72^{\circ} \mathrm{W}$. Light to moderate SE. winds, smooth sea, and partially cloudy, pleasant weather was experienced during the night and following day.
At 3.38 p . w., September 16, we lowered the trawl in 1,544 fathoms, brown ooze, latitude $38^{\circ} 39^{\prime} \mathrm{N}$. , longitude $70^{\circ} 07^{\prime} \mathrm{W}$., and landed it on deck at $7.43 \mathrm{p} . \mathrm{m}$., with numerons specimens of shrimp, starfish, ophinraus, mollusks, Macrurus asper, lithodes, benthodytes, benthysaurus, \&c. The surface net and submarine electric light were used with fair success until $10 \mathrm{p} . \mathrm{m}$., when we steaned slowly to the southward to change our position.

The trawl was lowered at $5.49 \mathrm{a} . \mathrm{m}$., the 17 th, in 1,867 fathoms, latitude $38^{\circ} 20^{\prime} \mathrm{N}$., longitude $70^{\circ} 05^{\prime} 30^{\prime \prime} \mathrm{W}$., and landed on deck at 10.24 , a water haul. There were, however, a few valuable specimens of crustacea, \&c., taken while the net was coming up. It was again lowered at $11.20 \mathrm{a} . \mathrm{m}$. in 1,859 fathoms, latitude $38^{\circ} 20^{\prime} \mathrm{N}$., longitude $70^{\circ} 08^{\prime} 30^{\prime \prime}$ W., and landed at 4.05 p . m., with specineas of hermit-crabs, ophiurans, mollusks, sea-anemones, and cight species of fish. A third haul was made at $4.58 \mathrm{p} . \mathrm{m}$. in 1,825 fathoms, latitude $35^{\circ} 22^{\prime} \mathrm{N}$., longitude ${ }^{70.0} 17^{\prime} 30^{\prime \prime} \mathrm{W}$., and landed at 9.40 p . m., with mollusks, ophiurans, starfish, shrimp, ascidians, macrurus, \&c. The surface net was used successfully during the evening. Six dolphins and one shark were taken with hook and line during the day, and a large squid of an unknown species Was found dead on the surface.
Light airs and calms prevailed, with clear, warm weather, the thermometer reaching 80° Fahr. We had quite a strong current (17') to the southward aud westward, sometimes called the Gulf Stream countercurrent. It was this current which caused the failure of the first haul in the morning.

At $5.33 \mathrm{a} . \mathrm{m}$. , September 18, the trawl was lowered in 1,753 fathoms, latitude $38^{\circ} 29^{\prime} 30^{\prime \prime} \mathrm{N}$. , lougitude $70^{\circ} 54^{\prime} 30^{\prime \prime} \mathrm{W}$., and landed at 10.17 a. m., with several species of fish, shrimp, starish, sea-anemones, \&c. At 11.04 it was put over the second time, in 1,031 fathoms, latitude 38° $28^{\prime} 30^{\prime \prime} \mathrm{N}$., longitude $70^{\circ} 57^{\prime}$ W., and came up at 3.15 p . m., with sereral macrurus, shrimp, mollusea, gold-band coral, \&c. The trawl was cast a third time in 1,615 fathoms, at $3.54 \mathrm{p} . \mathrm{m}$., latitude $38^{\circ} 24^{\prime}$ N., longjtude $71^{\circ} 13^{\prime} \mathrm{W}$., and was landed at $8.32 \mathrm{p} . \mathrm{m}$., a water haul. There Were several interesting specimens, however, taken on the way up.
The engines were stopped and the ship allowed to drift until $3 \mathrm{a} . \mathrm{m}$., September 19, when we ran 10 miles to the westward, and at 5.38 put over the trawl in 1,569 fathoms, latitude $38^{\circ} 24^{\prime}$ N., longitude $71^{\circ} 52^{\prime}$ W., landing it ou deck at 10.08 a. m., with numerous archasters, shrimp,

Cyclothone lusca, and fish. Two other hauls were made duriug the day in 1,536 fathoms and 1,509 fatboms, in both cases the trawl failing to reach bottom owing to the strong current. The last haul, latitude 38° $36^{\prime} 30^{\prime \prime}$ N., longitude $72^{\circ} 12^{\prime} \mathrm{W}$., was notable, however, for the capture of a new species of fish, 5 feet in length, allied to Gastrotomus. While occupying this station Mr. Lee succeeded in shooting a large blue heron -adult female-which was flying about the ship. The bird was quite fat, and did not appear to be at all distressed, though so far at sea. The surface net and submarine electric light were used to good advantage, large numbers of squid being taken by aid of the latter.

Monday, September 20, moderate breeze from SW., hauling to the northward and increasing to a strong wind at meridian. The trawl was lowered at $6.02 \mathrm{a} . \mathrm{m}$., in 813 fathoms, latitude $38^{\circ} 56^{\prime} \mathrm{N}$., longitude 72° $11^{\prime} 30^{\prime \prime} \mathrm{W}$., and landed on deck at 8.50 , with two specimens of Geryon quinquedens, flabellum, annelids, holothurians, large numbers of fish, \&c. It was cast again at 9.33 in 594 fathoms, Jatitude $39 \circ 13^{\prime}$ N., lougitude $72^{\circ} 01^{\prime}$ W., and landed at 12.32 p. m., with 190 Macrurus Bairdii, 20 blne hake, 3 pole founders, 4 dogish, 3 Geryon, shrimp, mollusea, annelids, holothurians, Sc.' A school of whales was seen during the forenoon.

The weather becoming too boisterous to continue dredging, we started for Wood's Holl at 13440 p . m., arriving and mooring at the wharf at 10.30 a. m., September 21.

We remained at Wood's Holl overhauling the sounding and dredg. ing apparatus, repairing boilers, and making general preparations to leave the station for the season, until October 21, when at $2.40 \mathrm{p} . \mathrm{m}$. we cast off from the wharf and proceeded to sea. The weather was clear, with fresh westerly winds and heavy swell which moderated during the night. We had Mr. Tabor, an artist from the Century Company, on board, who wade the trip for the purpose of picturing the operations of the Albatross.

An accident occurred on the moming of the $22 d$ which might have been serious. While verifying the scale on the accumulator, the dredge rope 'broke under a strain of about 5,000 pounds, and the teusion-rod Hying back with great force, struck the band supporting the accumulator and boom topping-lift at the foremast head, broke the bolts, and allowed the band, accumulator, and boom to come on deck with a crash. No one was hurt, though sereral men had narrow escapes. The heel of the dredging.boom was broken and the accumulator guide-rods badly bent, besides other minor damages, all of which were repaired duriug the day and following night.

At 5.42 a . m., October 23 , we put the trawl over in 1,685 fathoms, latitude $36^{\circ} 47^{\prime} \mathrm{N}$., longitude $73^{\circ} 09^{\prime} 30^{\prime \prime}$ W., landing it on deck at 10.19 with many macrurus, starfish, marguerites, crustaceans, and one large lithodes. It was put over again in 1,641 fathoms, at 12.02 p . m., latitude $36^{\circ} 47^{\prime}$ N., longitude $73^{\circ} 25^{\prime} \mathrm{W}$., and landed on deck at 4.46 with sereral species of fish, two (probably new) mollusca, holothurians, \&c. The
large surface net was towed at intervals with fair success, and the sub. marine electric light was used during the evening. Among the specimens takeu were about forty squid.
At $5.54 \mathrm{a} . \mathrm{m}$. , October 24 , the trawl was lowered in 1,374 fathoms, latitude $36^{\circ} 34^{\prime}$ N., longitude $73^{\circ} 48^{\prime}$ W., and landed on deck at 10 a. m. with many macrurus, hake, holothurians, starfish, and a large quantity of brisinga. It was cast a second time at $11.10 \mathrm{a} . \mathrm{m}$. in 1,253 fathoms, latitude $36^{\circ} 34^{\prime} \mathrm{N}$., longitude $73^{\circ} 54^{\prime} 30^{\prime \prime} \mathrm{W}$., but while heaving in the rope parted, losing 1,210 fathoms and the trawl. Another cast was made at $4.09 \mathrm{p} . \mathrm{m}$. in 1,239 fathoms, latitude $36^{\circ} 39^{\prime} \mathrm{N}$., lougitude $74^{\circ} 03^{\prime} 30^{\prime \prime}$ W., aud, when landed on deck; at 7.26 p . m., the net was found to coutain a large number of macrurus, lake, oue large Synaphobranchus, many holothurians, benthodytes, a quantity of brisinga, mollusca, Sc. The large surface net and submarine electric light were used during the evening with fair success.
At $5.45 \mathrm{a} . \mathrm{m}$., October 25 , the trawl was cast in 859 fathoms, latitude $36^{\circ} 30^{\prime}$ N., longitude $74^{\circ} 33^{\prime}$ W., and landed ou deck at 8.14 a . m . with single specimens of black dogfish and Gastrostomus, numerous hake, lycodes, ophiurans, sea-urchins and mollusca, several species of crustaceans, and a quantity of flabellum. A second cast was made at 9.10 a. m. in 679 fathoms, latitude $36^{\circ} 36^{\prime} \mathrm{N}$. . longitude $74^{\circ} 32^{\prime} \mathrm{W}$., and the trawl lauded on deck at $11.30 \mathrm{a} . \mathrm{m}$. , containing the same species as wore found in the previous haul. A third cast was made at $12.28 \mathrm{p} . \mathrm{m}$. in 727 fathoms, latitude $36^{\circ} 42^{\prime}$ N., longitude $74^{\circ} 30^{\prime} \mathrm{W}$., and finished at $2.39 \mathrm{p} . \mathrm{m}$. ; contained the usual number of macrurus and hake found in similar depths along the Λ tlantic coast. Single specimens of pole. Hounder and Geryon quinquedens were found, besides a quantity of skates' eggs containing live embryos. There were also varieties of mollusca aud starfish and a quantity of flabellum. The fourth and last cast of the day was made at 4.12 p . m. in 781 fathoms, latitude $36^{\circ} 45^{\prime}$ N., longitude $74^{\circ} 28^{\prime} \mathrm{W}$., and finished at 6.44 p . m., the net containing skates' eggs, lycodes, holothurians, pomatulas, macrurus, and hake. There was a single specimen of red brick; also fourteen soles of shoes, the uppers having been rotted away. The surface net was towed at intervals with fair success. Our working ground being in the route of coastwise traffic, one or more steamers were in sight at all times during the day.

At $6.09 \mathrm{a} . \mathrm{m}$., October 26, the trawl was cast in 1,152 fathoms, latitude $37 \circ 27^{\prime} \mathrm{N}$., longitude $73^{\circ} 33^{\prime} \mathrm{W}$., and landed on deck at $9.20 \mathrm{a} . \mathrm{m}$., with numbers of hake, benthodytes, starfish, holothurians, sea-urchins, pennatulas, and other forms of Aleyonaria. It was cast again at 10.19 a. m . in 044 fathoms, latitude $37^{\circ} 26^{\prime} \mathrm{N}$., Iongitude $73^{\circ} 43^{\prime} \mathrm{W}$., and was up at $1.05 \mathrm{p} . \mathrm{m}$, with many macrurus, starfish, sea-urchins, three cephalopods, Alloposus mollis, one specimen of Onus rufus, holothurians, Alcyonaria, ©e. A third cast was made at $1.52 \mathrm{p} . \mathrm{m}$. in 841 fathoms, latitude $37^{\circ} 23^{\prime} \mathrm{N}$., longitude $73^{\circ} 53^{\prime} \mathrm{W}$., the trawl being landed on deck
at 4.35 p . m., with many specimens of macrurus, crustaceaus, benthodytes, starfish, sea-urchins, pennatulas, \&c. The fourth and last hau! was made at $4.55 \mathrm{p} . \mathrm{m}$. in 811 fathoms, latitude $37 \circ 23^{\prime} \mathrm{N}$., longitude $74^{\circ} 02^{\prime} \mathrm{W}$. It was completed at $7.32 \mathrm{p} . \mathrm{m}$. , and, besides an enormous load of mud, the net contained one specimen of a large red spiny crab, lithodes, pennatulas, starfish, flabellum, shells, and a large squid, Stenoteuthis megaptera, 5 feet $6 \frac{1}{2}$ inches in length, weighing 30 pounds. There were also the usual variety of deep-sea fish. The large surface net was towed at intervals with fair success. The use of this net in winter and spring has shown the surface waters of the North Atlantic to be comparatively barren of life, but during the latter part of summer and autumn many forms of crustacea are found, either mature or in the larval form. Fish are a marked feature of the catch, among them being the surface fishes, of various kinds, that have their homes iu floating Gulf-weed, or hover about the medusca. The young of various species, notably the bluefish and flying-fish, are taken in largo numbers, besides many other forms too numerous to mention. It may be truly said that the introduction of the large surface net has opened a new field of investigation.

At $7.35 \mathrm{p} . \mathrm{m}$. we started for port. The weather, which had been mild and pleasant, threatened a cbauge for the worse, and, after a night of menacing indications, we encountered, about. 5 a. m., a furious squall of wind and rain. Passing Cape Henry at $6.28 \mathrm{a} . \mathrm{m}$., we steaned up Chesapeake Bay and the Potomac River, anchoring for the night at 5.37 p. m., near Lower Cedar Point. We got under way again at daylight, October 28, and reached the navy-yard, Washington, D. C., at 1 p. m. Specimens and other articles received on board for transportation were sent to the Smithsonian Institution, and the work of cleaning and refittiag was commenced. Spars and rigging were overhauled and a new fore-top-gallant yard made to replace the old one, which was rotten. The chain cables were overhauled and restowed, store-rooms and holds broken out, cleaned, and painted, or whitewashed, and the inner side of the iron hull scraped and painted where accessible.

The engines were overhauled and repaired by our own people.
An appropriation was made during the first session of the Fortyninth Congress for new boilers. Passed Assistant Engineer George W. Baird, U.S. N., prepared designs for them, and for a rearrangement of coal-bunkers, \&c., which were approved, and, after duly advertising in the public press, the contract was awarded to the Columbian Iron Works and Dry Dock Company, of Baltimore, Md., for the sum of $\$ 13,439$.

MECHANICAL APPLIANCES.

The mechanical appliances and apparatus generally hare worked very well during the year, but experience has suggested improvements here and there, most of which have been adopted.

ACCUMULATOR.

The necessity is still felt for an improved accumulator having greater elasticity under extreme teusion. We have consulted the best spring manufacturers in the country and about exhausted the inventive talent on board without thus far attaining tho desired result.

COUNTER-BALANCES.

[Plate V.]

When dredging very low speed is required, from one-half to $1 \frac{1}{2}$ knots per hour, and to attain it one propeller ouly is turned as slomly as possible, but even then we cannot always bring the vessel down to the desired limit, except by stopping the engine until her headway is checked, when it is started again. The revolutions could be brought down to 24 per minute in smooth water, but after the introduction of carefully adjusted counter-balances a further reduction to 18 revolutions per minute was effected.
These counter-balances were designed by Passed Assistant Engineor George W. Baird, U. S: N., to reduce the vibration of the engines when running at high speed, and it is gratifying to say that they have sorved the purpose as well as the more important one mentioned above.

SOUNDING FROM BOATS.
[Plato II.]
The necessity for greater facilities for sounding from boats has beon apparent to us on several occasions when developing banks or shoals. It is frequently desirable to extend lines of soundings from 2 or 3 fathoms to several hundred fathoms with the same boat, and we have accomplished the object in a simple and inexpensive manuer by fitting our Tanner sounding machine to work on the stern of the steam cutter, thus giving the boat a compact and reliable apparatus for sounding in depths from 1 to 1,000 fathoms.

BAIRD'S ANNUNCIATORS.

[Plate VI.]
Among the most important improvements in mechanical appliances during the year are the pneumatic annunciators designed by Mr. Baird, showing by dial and index pointer, on the bridge and in the pilot-house, What the engines are doing. It is desirable to know whether engineroom signals are promptly and correctly answered on any steamer, but doubly so on this vessel, where the safety of the apparatus depends upon it.
'fUE SIGSHEE DERP-SEA SOUNDING MACIINE.
This machine has performed its work admirably during the year. Wo have crushed one reel, which caused the loss of some wire and two or three sounding cups and thermometers before it was discovered, but
a heavier one being mounted we had no further trouble in that direction, although we had to contend with greater inertia incident to the increased weight. This is of no great importance in moderate depths, but when the weight of wire and its attachments approximate to that of the siuker, every pound of extra weight in the reel detracts from the simplicity and reliability of the apparatus.
Passed Λ ssistant Eugiueer George W. Baird, U. S. N., of this vessel, proposed an improved reel, which would not only be stronger and lighter, but would avoid the necessity of throwing off and putting on the belt when a sounding is taken. (Plate III.) Mr. Baird describes this important addition to the sounding machine as follows:
"It is made of aluminum bronze, cast by the Cowles Electric Smelting and Aluminum Company, of Cleveland, Ohio, and finished by D. Ballauf, of Washington, D. C. This metal is reported, after tests by responsible engineers, as standing a tensile strain of over 100,000 pounds per square inch, aud is represented as being as strong as the best steel as regards compression and torsion.
"The reel is cast in one piece and the rimṣ are strengthened by numerous ribs which do not materially increase its weight.
"The objections to the old reel are its great weight and consequent inertia when revolving at high speed, as in sounding; the delay iucident to putting on the belt, aud working the water of condensation ont of the steam cylinder when starting to reel in; also the necessity of shipping the cranks and heaving in the first fow fathoms by hand.
"These objections were kept in mind while making the present design. The bronze reel Λ and cast-iron pulley D are mounted ou the shaft B. The pulley is grooved (d) to carry the belt. The original frames CC are used. The pulley D is driven from the same engine and belt which drove the old reel; with the new reel in use the engine is kept running all the time, revolving the pulley D in a direction to reel in the wire.
"The pulley D has its rim beveled and fitted to a corresponding surface on the reel A, and when pressed together will, by its friction, carry the reel with it. The pulley D may be pressed against A, or withdrawn from it through the intervention of the clutch lever E aud crank F . The open end of the lever \mathbf{E}, which permits the pulley and reel being lifted out of the frame without the lever E being disturbed, is the design of Lieut. Commander Z. L. Tauuer. To retard the velocity of the reel when paying out wire the lever G and its attached brake (shown in dotted lines) are provided. The operation of the machine is as follows: Turu the crank F ' to the left, which withdraws the friction wheel D from its contact with the reel A, when the latter being freed will revolve and pay out the wire by gravity. The engine is then started and the pulley D revolved in the opposite direction, i.c., the direction to reel in the wire. When the sinker reaches the bottom the crank F is quickly revolved to the right, which throws the friction in gear and starts the reel A to wiuding in the wire.
"The throttle valve of the eugine, the friction crank F , and the friction lever G are close together, and under the control of one mau, who can readily regulate and manage them. The counter or register, which measures the quautity of wire paid out or reeled in, is on the opposite side of the machine, convenient for the inspection of the officer in charge of the sounding."
The vessel has not been at sea since the completion of the new reel, but we have tested it at the wharf with a few fathoms of wire and a 35 pound lead, which demonstrated the advantage of the new arrangement over the old as far as rapidity of working is concerned. The strength of the reel can be demonstrated only by practical operations in deep mater.

DREDGE'ROPE.

The dredge rope furnished by the Fazard Manufacturing Company has not been uniform in tensile strength or length of lay, and the result has been that we have lost several thonsaud fathoms, with trawls and appurtenances. One lot of 4,000 fathoms was so imperfect that we had to reject it. Crucible steel has been used in the manufacture of our rope heretofore, but the requirements are so great that it has been difficult to fulfill them, and we are now getting estimates for the best mild extra plow steel, which should give much better results. With a superior quality of rope and an improved accumulator we hope to be more economical in the expenditure of dredging apparatus.

DEEP-SEA TEMPERATURES AND THERMOMETERS.

Deep-sea temperatures have been observed with great care during the year, and much thought has been given to the improvement of deepsea thermometers with a view of attaining still greater accuracy. The following remarks on this subject are by Dr. J. H. Kidder, who has charge of the Fisl Commission and Smithsonian Institution instruments, and to whom we are indebted for the suggestion of the special thermometer referred to:
"The Negretti-Zambra deep-sea thermometers now in general use by the Fish Commission, while doubtless the best instruments yet devised, cannot probably be depended upon for differences of temperature less than one-half degree Fahrenheit. Being pointed only to full degrees, upon short stems, the degree spaces are so small that estimation of swall fractions is almost as much a matter of opinion as a fact of observation. As heretofore furnished, the individual thermometers have furthermore shown a wide difference in rauge, some reading from - 30° to $+100^{\circ}$, others from $+34^{\circ}$ to $+92^{\circ}$; the results being that scarcely auy two instruments showed degree spaces of the same width, and that the observer gained nothing by his experience with one thermometer in estimating fractions of a degree with auother. The slight departuros from uniformity in breaking column shown by some of the instru-
meuts, although seldom equaling half a degree, tend to cast a doubt upon readings to small fractions; aud it may be that the quantity of mercury contained in the small safety bulb at the top of the tube is sufficient to cause a fractional error whon the temperature of the water differs from that of the air at the time of reading.
"For these reasons, and considering the fact that at depths greater than 1 mile the general ocean temperature falls very gradually if at all, and that observations at far greater depths do not agree in reporting corresponding differences in temperature, I requested authority from the Commissiouer to order an experimental half-dozen of longer tubes of uniform range, and pointed to one-fifth degree Fabrenheit (Plate IV). The specification was as follows: 'The special thermometers are required to be of sufficient length to be legibly pointed in fifths of a Fahreuheit degree, and it is particularly desired that all of the instruments now or hereafter ordored shall conform as nearly as possible to the range from 20° to 90° Falurenheit, as specified in my letter of August 6, 1886.' (Order dated September 6, 1886.)
"As far as can be determined by laboratory experiments the new thermometers fulfill all of the desired conditions, and are besides unusually free from index error. It is possible that before the Albatross sails I shall be ablo to furnish a correction for the small error arising from the expansion of the mercury contained in the small safety bulb at the top of the tube after oversetting."
the tanner improved thermometer-case wirt the sigstee CLAMP AND THE NEGRETMI-ZAMBRA SIECIAL DEEP-SEA THERMOMETER.

[Plate IV.]

Fig. 1 shows the apparatus complete, and Fig. 2 a vertical sectional clevation of the case containing the thermometor.

NOMENCLATCRL.
a. Neck of the bulb.
b. Catcli reservoir.
c. Small recoptacle.
d. Partition confining mercury in shiold surrounding bulb.
e. Glass shield inclosing thormomoter:
f. Thermometer-case.
\%. Thimble with rubber lining.
h. Spiral springs.
i. Cap.
j. Pivot.
k. Slot for reading scale.
l. Framo of cast brass.
m. Guard.
n. Propeller.
o. Spindle.
p. Stud.
q. Sigsbec clamp.
r. Latch.
8. Slot.

The thermometer-case is made of brass except the Sigsbee clamp, q, and spiral springs, h, which are phosphor bronze. The frame is cast and the case in which the thermomoter is inclosed is an ordinary tube of commercial pattern.

The Nerretti-Zambra deep-sea thermometer was described as follows in the Report on the Construction and Outfit of the U. S. Fish Commission Steamer Albatross, 1883:
"The thermometrical fluid is mercury; the bulb containing it is cylindrical, contracted in a peculiar manner at the neck a; and upon the shape and fairness of this contraction the success of the insrtument mainly depends. Beyond a the trive is bent and a small catch reservoir at b is formed for a purpose to be presently explained. At the end of the tube a small receptacle, c, is provided. When the bulb is downward the glass contains sufficient mercury to fill the bulb, tube, and a part of the receptacle c, having, if the temperature is high, suflicient space in c. When the thermometer is held bulb upward the mercury breaks at a, but of its own weight flows down the tube, filling c and a portion of the tube above c, depending upon the existing temperature. The scale is accordingly made to read upward from c.
"To set the instrument for observation it is only necessary to place it bulb downward, when the mercury takes the temperaturo just as in an ordinary thermometer. If at any time or place the temperature is required, all that has to be done is to turn the thermometer bulb upward and keep it in this positiou until the reading is taken. This may bo done at any tine afterward, for the quantity of mercury in the lower part of the tube which gives the reading is too small to be sensibly affected by a chauge of temperature, unless it is very great; while that in the bulb will continue to contract with greater cold and to expand with greater heat. In the latter case somo mercury will pass the contraction a and fall down and lodge at l, but it cannot go farther so long as the bulb is upward, and thus the temperature to be read will not be affected.
"The thermometer is inclosed in a glass shied which eliminates all errors that might arise from pressure at great dopths.
"To mount the thermometer, unscrew the cap i (Plate IV), drop a spring, h, into the case, slip a thimble, g, over tho glass shield at d, put the thermometer in the case, drop in another thimble, which will rest on the upper end of the shield; then place another spring on the thimble and screw the cap in place. The thermometer will then be suspended between delicate spiral springs at the ends, and soft rubber rings which surround the shield. This arraugement has proved effectual in guarding the thermometer against jars incident to the service required of it on board the Albatross.
"To take a temperature set the spindle, o, in to the hole in the cap, i, by scrowing it down until the propeller blades are against the stad p, then by means of the Sigsbee clamp, q, secure it to the temperature rope. The bulb will then be down and the mercury in the tube connected with it, the position required to take the temperature. The water acting on the propeller during the descent will keep, it in position, restiug against the stud, p, but as soon as the reoling in begins the propeller is set in
S. Mis. $90-41$
motion, bringing the screw on the upper end of the spindle into action, gradually raising the propeller until the lower end of the spindle is withdrawn from the hole in the cap, i, when the thermometer promptly turns over and registers the temperature by breaking the column of mercury at the point a, the column then falling to the bottom of the tube. It can be read at any time afterward, as changes of temperature do not affect the reading after the column is once brokeu."

The latch, r, and slot, s, in which it works, has been added to $\boldsymbol{p r}^{\text {re }}$ vent lateral motion after the thermometer has beon turned over.

THERMOMETERS FOR AIK AND SUIRFACE TEMPERATURES.
The instruments for this purpose were made by J. and H. J. Green, New York, and are all that can be desired.

```
STEAM TRAP.
```

```
[Plate VIII.]
```

The exhaust stean from the radiators, fore and aft the vessel, is trapped to the hot-well and again fed into the boilors, thus effecting a considerable saving in fuel.

We first used the Hawes trap, which did not prove satisfactory. The Chapman trap was then tried with better results, but it frequently failed to carry off the water, thus flooding the radiators and cansing more or less annoyance. Mr. Baird, coming to our assistance again, devised a simple and inexpensive trap which has performed its work admirably, relieving us from tho annoyances above mentioned.

HOILERS.

[Plate IX.]
Mention has been made of an appropriation for new boilers, made necessary by a contemplated cruise in the Pacific. The old ones are much worn and require exteusive repairs after each trip, making them totally unfit for a long cruise.

With the introduction of new boilers we will increase the size of the coal-bunkers between 60 and 70 tons, thas augmenting the steaming distance over 1,000 miles. A "donkey" boiler is included in the now arrangement, for distilliug water, heating and lighting ship, and for fire purposes. Heretofore this servico has been performed by one of the main boilers, at comparativoly large expense.

MATN S'IAY-SAIL:
We formerly carried a fore try sail gaff, but owing to the position of the standard compass, pilot-house rail, \&e., were unable to use the sail. We have recently dispensed with the gaff and substituted a stay-sail, containing 900 square feet of culnvas, hoisting on the main-
spring stay, which extends from the main to the foremast head. This sail can be carried in ordinary weather.

PERSONNEL.

The health of officers and crew has been excellent during the year, and no deaths have occurred. There have been several changes among the officers. Lieut. Seaton Schroeder, executive officer and navigator, Was detached January 2, 1886, Lieut. H. S. Waring assuming his duties.

In the detachment of Lieutenant Schroeder the Commission lost one of the most accomplished and indefatigable workers it has ever drawn from the Navy.

Ensign W. S. Bensou reported for duty January 13, and Ensign W. S. Hogg on the 16th.

Mr. James E. Benedict, resident uaturalist, resigned September 1, and Was succeeded by Thomas Lee, assistant.

The following officers are attached to the vessel at the close of this report, December 31, 1886 :

Lient.Commander Z. L. Tanner, U. S. N., commanding.
Lieut. H. S. Waring, U.S. N., exccutive officer and navigator.
Lieut. (J. G.) B. O. Scott, U. S. N.
Lieut. (J. G.) W. S. Hogg, U. S. N.
Ensign W. S. Benson, U. S. N.
Surgeon J. M. Flint, U. S. N.
Paymaster C. D. Mansfield, U. S. N.
Passed Assistant Engineor G. W. Baird, U.S. N.
CLVIL APPOINTMENTS.
Thomas Lee, resident naturalist.
E. H. Shuster, clerk to commanding officer.

> PEITIY OFFICERS, FIRS'I CLASS.
> Seaman class.
J. W. Astrom, chief boatswain's mate.

Special class

Charles Wright, master-at-arms.
S. L. Pritchard, equipment yeoman.
N. B. Miller, apothecary.
G. A. Miller, paymaster's yeoman.
F. L. Stailey, éngineer's yeoman.

Artificer class.
John Hawkins, machinist.
Walter Blundell, machinist.
F. M. Stromberger, machinist,
W. L. Watson, machinist.

Attention is called to the appended reports of the chiefs of the various departments:

Navigator's report, giving a summary of the distances steamed, objects of the cruise, number of soundings, dredgings, \&c.

Enginear's report; medical department, sanitary report and record of specific gravities; naturalist's roport, including lists of birds and fishes taken in the Bahamas; list of hydrographic soundings; and dredging and trawling record.

Navigator's report--Sununary of the movenonts of the Albatross for the year 1886.

Date.	Movements.	Distance.	Ohject.
		Mitce.	
February 17 to 18	Washington, D. C., to Norfolk, Va......	174	
February 20 to 27	Noriolk, Va., to San Salvador	1,053.4	Sounding.
Fobruary 27 to 28	San Salvador to IRam Cay	34	1)o.
March 8 to 15..	Rum Cay to Nassau, Now Providence.	560.3	Sonnding and dredging.
March 24 to 26..	Nassau, New Providence, to Key Wost, Fla.	380.8	Sounding.
April 3 to 4	Key West to Havana, Cuba.	156.3	- Ind.
April 7 to 8	Mavana to Koy West...	90	Sounding and dredging.
April 8 to 21	Key West to Nassau	793.4	Do.
April 30 to May 8	Nasaan to Hampton Roads	1,001.8	Do.
May 9 to 10	Hampton Koads to Washingto	162	
June 30 to July 1	Washington to Norfolk	174	
July 8 to $10 \ldots$.	Norfolk to Wuod's IIoll	405.8	
July 15 to 10.	Wood's Boll and return.	390.2	Sounding and dredglag.
Aagust 2 to 13.	Wood's İoll toSt. John's, Nowfoundland.	1,883.	Do.
Augrat 21 to 29	St. John's to Wood's Holl	1,080.8	Do.
September 14	Wood's Holl to Newport	40	
Soptomber 15 to 21	Nowport to Wool's Holl ...	499.2	Sounding and dredging.
October 21 to 28...	Wood's Holl to Washington.	724.1	
Total (05 days)		9,602. 3	

The above table gives the number of days the vemgel was at aea during the yoar; also the distance run and the object of each trip. The numbor of dags at sea, 95 . Number of drodging statione, 107. Number of hydrograplio soundinge, 221.

ENGINEER'S DEPARTMENT.

Report of G. W. Barrd, Passed Assistant Enginect, U. S. N., 1886.

THE MAIN ENGINES.

The engines have been in operation $1,160 \frac{1}{2}$ hours, while the ship was on her course, in free route, besides the time occupied in sounding and dredging at sea, while the engines were worked to signal.

The ship has steamed on her course 9,495 geographical miles-a mean of 8.182 knots per hour. During this time the starboard ongine made $4,652,279$ revolutions and the port engine $4,632,994$, being a mean of 66.81 per minute for the starboard, and 66.53 for the port.

The cruising has been made under easy steam, usually on a limited allowance of coal. We are carrying the same boiler pressure (50 pounds per square inch above the atmosphere) that we carried last year, but have seldom run the engines up to the highest power obtainable with even that limited pressure. The highest speed recorded for one hour during
the year is 10.4 knots, and highest average for 7 hours, uniuflueuced by wind or sea, is 9.93 knots.
The shaking of the ship (which has never been violent) Las been somewhat reduced by the counter-balauce wheels (Plate V) which we had built by the Steam Engineering Department at the Washington navy-yard, in January. The writer designed them in two parts, in order to get the wheels on without disturbing the shafts, and by filling certain pockets with lead we contributed counter-balance to the engines. It has always been difficult to move the engines by hand, owing to the preponderance of the moving parts over the original counterbalances; this has been modified by making teeth on the periphery of the wheel (Plate V) which afford additional points for "piuching" the engines. These new counter-balance wheels fit over the forward webs of the low-pressure cranks. The cost of the two wheels complete was \$314.04, or about $7 \frac{3}{4}$ cents per pound.

The new feed-pump valves, referred to in my last report, have fulfilled my most sanguine expectation; the pumps have not failed for an instant, during the year, and their noise has been very much diminished.
During the year we have fitted a new key to the starboard rock. shaft, and have put new anti-attrition metal in the port low-pressure crank-pin brasses; we have raised the main valves on their stems to restore the lead.

The following synopsis for the year's run covers the time the ship was ruaning, in free route, on her course; it includes the time the vessel was slowed down, in fogs, going into and coming out of port, running between dredging stations, \&e., but not the time soundings or dredgings were being taken. We have considerable trouble to keep the valvestems of the high-pressure valves and those of the high-pressure cutoffs tight for any extended period; this is owing to the shallowness of the stuffing-boxes and also to the uneven wear of cut-off rods. I will make a requisition for the Katzenstine metallic packing for these rods at the beginning of the year. We have replaced the main air-pump valres with hard-rubber valves, purchased of the Davidson Steam Pump Company at a cost of $\$ 29.10$.

[^84]Temperatures:
Of engine-room 107.9
On deck 67.5
Of injection water 09.8
Of discharge water 95.9
Of feed water 75.4
Total time fires wore lighted 6,232 1
Total time engines were in operation, the ehip being on her course do 1, 160 $\frac{1}{2}$
Revolutions:
Total of starboard engine 4,652,279
Total of port engine 4,632,994
Mean of starboard engine per minute 66.81
Mean of port engine per minute 66.56
Total number of geographical miles 9, 495. 2
Mean number of geographical miles per hour 8. 189
Total tons of coal consumed while engines were in operation 562 2 24 4
Mean number of pounds of coal consumed per hour while the engines were in operation 1,087
Total tons of coul consumed for all purposes $953, \frac{14}{24}$
Total tons of refuse (ashes) from the coal $211 \frac{1}{2^{1}} x^{4} 8$
Draught of water:
Greatest:
Forward feet and inches 115
Aft do 1310
Least:
Forward 10
Ait 125
Mean, for the whole of the steaming: Forward 106.81
Aft do 130.31
The greatest continuous speed during the year 1886.
Date, July 19, 1885 :
Speed 9. 93
Number of hours 7
Direction of wind NNE.
Force of wind $\stackrel{f}{6}$
State of sea Smooth .
Number of furnaces used 4
Steam pressare in boiler, per square inch pounds 50
Steam pressure in receiver, per square inch do 25.5
Revolntions per minute 81.5
Vacuum inches 23.7
Holes in throttle-valve open 5
Cut-off in non-condensing cylinder inches 22
Cut-off in condensing cylinder 14
Temperature:
In engine-room 115
On deck 68.6
Of injection water 69.8
Of discharge water 98
Of feed water 78.7
Draught:
Forward $10^{\prime} .8^{\prime \prime}$
Aft $12^{\prime} .7^{\prime \prime}$

The ship was docked in July at tho Norfolk navy-vard. We found the outboard valves in good order. Λ quantity of barnacles (Balanida) was found inside the cast-iron chamber of the injection-valve. We found the zine ferrules in the nozzle of the outboard blow-valve had corroded but little, while the iron chamber appeared preserved. We found the line-shafts, under the insulation tape, to be free from corrosion. This tape has been on the shafts two years.

The annunciator, referred to in my last annual report, was duly completed, and has worked well during the year.

A current of air blown into the bottom of the case (Plate VI) will cause the little wind-mill at the top to revolve. This is mounted on the vertical spindle, which has a screw-thread near its lower end which gears into a toothed wheel ; this wheel, which is ou a horizontal shaft, carries an arrow on each end; the bactr of the indicator is secured to one side of the pilot-house, with a circular hole in the wood large enough to move in ; the front arrow is visible from the deck and the back arrow from the interior of the pilot-house. If a current of air, blown iuto the bottom of the indicator, revolves the arrow ahead, it is manifest that the direction of the arrow will be reversed if the current be reversed.
To secure these positive blasts, a small blower (as in Plate VII) is placed in the engine-room, parallel with the line-shaft, to which shaft it is belted. If the engine goes ahead the blower deliver's a blast, aud if the engine backs the blower induces an air current, and if the engine stops the blower and current of air cease simultaneously.
There is one of these machines for each of the main engines; their action is positive and automatic, and they can make no mistake.

On board the United States ships Boston and Atlanta there are three of these indicators in each circuit, which consequently amounces the motion of the engine at as many different parts of the ship. To connect the blower and indicators we use lead pipes.
The inertia of a ship in motion is considerable, and it takes some little time for the ship to change her direction even after the engines are reversed; it often occurs, in sounding and in dredging, that opposing wind and curreuts carry the ship from the desired position in reference to the wire; hence it becomes imperative for the commander to kuow, promptly, if either engine has moved in the desired direction. Damage due to mistakes either in striking or in interpreting the siguals, which hitherto occurred, have not occurred since the pucumatic indicators have been used. The tax on the commander's mind in reconciling the wind, waves, current, strains on and direction of the dredging wire, while dredging in the great depths of the Gulf Stream is cousiderable,
and when he had, in addition to this, to remember the direction both engines were moving in, it was a surprise that successful work was done at all.

GOVERNOIRS.
The Svedberg governors have performed well during the year. They have required no repairs nor alteration, and but little attention.
On completing the repairs to the boilers at the Washington navgyard, in Januars, we put a cold-water pressure of 65 pounds in the port boiler and 64 pounds in the starboard boiler; at which pressure they appeared tiglit, but the soft patches on the front inboard corners began to leak soon afterwards.
The $1 \frac{1}{2}$-inch screw (pipe) plugs we put in the boilers were tight. One of the plugs began to leak ou the 1st of March and the legs began to leak soon afterwards. On the 1st of April we discovered one of the steel socket rivets broken off; we replaced it with an iron one.

On our return to Washington (from the Bahama cruise), we replaced five rivets in a patch on the back leg of port boiler; and a soft patch on a seam on the shell of starboard boiler; replaced a soft patch in the forward inboard corner of No. 4 furnace; replaced two soft patches in the port inboard corners of both boilers; put a new stem in the starboard main checik-valve; calked seams and rivets in No. 4 furnace; a new rivet in a brace in the starboard boiler; replaced two soft patches on the waist of port boiler and one on starboard boiler; replaced a soft patch on the bridge end, inboard corner of No. 1 iurnace; to accomplish this last job it was necessary to dig a portion of the cement out of that boiler, which we replaced. We put several new rivets in the front sheet of this furnace.

On completing the repairs at Washington the vessel made her summer cruise, during which time leaks occurred as before, but we were able to obtain fresh water at Wood's Holl and at St. Joln's-the only ports visited-and we only accumulated scale while at sea after our supply of fresh water was exhausted. Our star at Wood's Holl was longer and our voyages were of shorter duration than during previous cruises, which enabled us to take better care of the boilers.

During the year we have paid for repairs to the boilers:
For labor, $\$ 516.21$; for material, $\$ 494.15$. Total, $\$ 1,010.36$.

NEW BOILERS.

In obedience to the Commissioner's order the writer designed boilers to replace those now in the ship, which were bid on by a number of large engineering establishments; these bids were opened on the 23d of this month and the Columbian Iron Works and Dry Dock Company, of Baltimore, was found to be the lowest bidder.
The new boilers are to be two in number, cylindrical in form, and are specifed to be of "the best A merican cbarcoal-hammered iron."

They are to be placed in the main hold fore and aft, obe forward of the other, with the fire-room athwart-ships between them.
A steam chimney is placed over the fire-room-between the boilersand is supported on wrought-iron built-up girders, supported by the boilers, essentially as recommended in my quarterly report dated 31st of March, 1884.
The external diameter of the boilers is 12 feet, and the leugth on line of axis is 10 feet 3 inches. Each boiler has three furnaces, 36 inches internal diameter, and exposes a length of grate of 6 feet 6 inches, making an aggregate of 117 square feet of grate surface.

The tubes are to be wrought-irou lap-welded, 3 inches external diameter, 7 feet 9 inches long, No. 10 wire gauge in thickness; there are in all 394 tubes, including 48 stay-tubes, which are No. 8 W. G. thick.

The shells of the boilers are to be $\frac{3}{4}$ of an inch thick; the lougitudinal seams are double strapped; the circumferential seams are to have single straps; all the seams are butted.
The heads are to be io inch thick, butted and strapped. The heads are braced by $1 \frac{5}{8}$.inch rods, spaced 12 inches centers, and the other flat surfaces are stayed by $1 \frac{1}{4}$-inch screw-stays, spaced 7 -inch couters.
The stean-chimney is 7 feet 4 inches in diameter (the same as the old one) and is 10 feet high.
The flue is 4 feet 4 inches in diameter, is in four sections, stifferied by the Δ damson rings, and is $\frac{5}{8}$ inch thick.

The boilers are to sit in and be secured to wrought-iron saddles, which are to be riveted to the floor frames. The holding. down bolts are $1 \frac{1}{2}$ inches in diameter, and six in number for each lioiler.

The old stop-valres, checks, blows, salinometers, gauges, etc., are to be utilized as far as possible.

A new $8 \frac{1}{2}$-inch stop-valve, a section of $8 \frac{1}{2}$-inch copper steam pipe, a 3 -inch safety-valve, ono new escape-pipe, two safety feed-valves, and two sections of feed and blow pipe are to be made new.

The covering of the boilers will consist of half an inch of kaolin, half an inch of hair felt, and half an inch of wood pulp.

The center of the smoke-pipe will come about 5 feet 3 inches forward of the present one. We will put four ventilators (instead of two) into the fire-room, and, by bringing them close to the smoke-pipe, we will leave more "floor room" on deck than at present, and will bring the ventilator hoods clear of the main-stays, that we may run them up about 8 feet into the air. Δs there will be a boiler on both sides of the fire-room, we will need all the air we can get iuto the fire-room.

The iron in the old coal-bunkers is to be utilized in the new ones. We will get the new boilers and bunkers between the same bulk heads that inclose the old ones, but the new arrangement affords a space of 12 inches in the clear (at the smallest place) around the boilers, and an increase of more than 30 tons of coal in the bunkers.

This boiler is to be of the same material as the main boilers, is to be cylindrical in form, 4 feet 6 inches in diameter, and 4 feet 8 inches in length. It is to have a single furnace-flue 30 inches in diameter, exposing a grate 3 feet 3 inches long. It is to lave a steam drum 24 inches in diameter and 15 inches high; the tubes are to be cight in number, $4 \frac{1}{2}$ inches in diameter, and 3 feet 9 inches long, arrauged in nests over the spandrels of the furnace; they are to be lap-welded drawn tubes. This little boiler is to be placed on the main deck in the deck-house amidships, between the main steam drum and the galley. The object of using this boiler is to warm the ship, run the dynamo, run the pumps (for washing decks, pumping bilge, supplying the aquaria, etc.), and distilling water when the main boilers are not in use. It is believed that considerable labor and coal will thus be saved, as well as saviug the main boilers.

DREDGING-ENGINE.

The follower-bolts in the starboard cylinder of this engine, which were broken a year ago by water freezing in the piston, were at the time temporarily replaced by bolts belonging to another engine, have been replaced by new and proper bolts. The guide-roll of this engine was badly worn and scored by the dredge wire, aud was replaced by a new one made at the Washington nary-yard in June last. Two new wrist-pins have been made for this engine. The cost for labor on the above was $\$ 13.80$; material, 35 cents; total, $\$ 14.15$.

REELING-ENGINE.

This engine has been overhauled and adjusted; the wrist-pins, which were wearing "out of romd," have been turned around one-fourth of a turn, that the future wear may come on the high places.

SOUNDING•ENGINE.
The steam hose on the soundingengine burst at sea, on the 1st day of May, and as there was no way of repairing it the writer substituted the exhaust-hose for it and crected a temporary exhanst-pipe of iron, which temporary plan answered very well until the ship reached port. We provided new and larger steam hose and attached them. We had the steam cylinder rebored, increasing its diameter nearly one-quarter of an inch, had new piston-rings made, and provided a proper oil-cup to lubricate the valve and piston of this engine. The cylinder was not true and the original piston-rings leaked, which diminished the power of the engine, which is really too small for the work. The changes made it a little better. The writer believes, when the increased pressure from the new boilers is applied to this little engine, that it will reel the wire in about 15 per cent. faster than it did originally. A new
bronze sounding.reel has been built by coutract, and has been fitted to its place by the men in this department. Its pulley is slightly less in diameter than that of the original reel, and with increased pressure on the steam piston it is believed that the speed of reeling in will be from this cause augmented. The cost of the labor and material consumed on the engine of the sounding-machine-which come in the writer's department-were as follows:
\qquad
1 oil-cup... 0

Labor
20.70
Total... 41.30

STEERING-ENGINE.

The steam steering-gear has not been used much during the year, but has, when used, done its work with promptuess and precision. The plates over the exhanst chambers and passages are very light and are not bolted close enough; this makes bad air-leaks which reduces the vacuum from 2 to 3 inches in the condenser.

STEAM-WINDLASS.

This machine continues to give satisfaction. Besides hoisting, catting, and fishing the anchors, it is used to reel off wire rope, warp the ship, and hoist boats. No repairs have been needed to this engine during the year, except sweating thin pieces of brass on the sides of the crank-pin brasses, at a cost of \$1.38.

STEAM ASH-HOISTER.

This machine continues to work admirably. The (cast-iron) gland to one of the piston-rods was discovered to be broken; there was sufficient metal in it and the fracture showed a clear break, an indication that it was broken by accident or stupidity. The broken gland was replaced by a brass one at the Washington navy-yard, at a cost of $\$ 2.76$.

STEAM-PUMPS.

We have had to renew the leather cup-packings on the water-pistou of the circulating pump during the year, at an expense of $\$ 8$. The piston, which is of cast iron, is badly corroded and will not last much longer. It should be replaced by a light brass pistou fitted for heinp packing. We have had the steam-chest of the hydrant pump rebored, and a new steam-valve put in during the month of June, at an expense of $\$ 27.05$.

A No. 1 Davidson steam-pủmp has been purchased and erected in the engine-room to circulate sea-water through the aquaria. The pip-
ing is entirely of brass, and is provided with proper valves, tap-cocks, and safety-valve, which may be regulated in the laboratory. The pump and piping were erected by the meu in this department.

Cost of the aquarium pump	\$:4. 56
Cost of piping	48.23
Cost of valves, cocks, and fittings	11.89

STEAM CUTTERS.
These two boats continue to do good service, and are always ready for use when required. The nature of the service of this ship, which gives us semi-annual opportunities to overbaul these two boats, and the hearty co-operation of the commanding officer in all matters pertaining to their efficiency, are two important elements in the great success of these Herreshoff boats. During the year the following repairs were made to the larger boat, at the Washingtou yard: A sheet-brass cover was put on the separator, new wrist-pins were put in the cross-heads, and the cross-head gibs were rebabbitted; the lower half of the casing of the boiler has beeu renewed; new pins were made for the ec-centric-rods; new pins were made for the link blocks; the plunger and valve of the hand bilge-pump were refitted; a new steering-wheel and drum were made. In November a set of grate-bars were made. Repairs, such as straightening the screw-blades, which had been bent, remaking joints, \&c., have been made by our own men. The cost of repairs to this boat at the Washington navy-yard anounted to \$54.66. During the year we hare bought from the builders of the boat a new slide-valve for the high-pressure cylinder, at a cost of $\$ 5.50$. The wear of these slide-valres, which are made of brass, is all on one side.
The smaller boat (the gig) broke her high-pressure piston ring and spring and bent the rod and follower on the 7th of March. The brass follower was screwed to the cast-iron piston by a fiue thread; this became loose and unscrewed. We repaired it temporarily by casting ib solid Babbitt-metal ring, in place, and straightening the rod and follower; we replaced the piston, later in the year, by one of wrought iron. Later in the year we lost the low-pressure piston in the same way, and replaced it in like manner. The slide-valve of the high-pressure engine, which was worn to a knife-edge on one side, has been replaced with a new one.
The smole-pipe was rolled out of the gig on the night of the 5 th of March, in $3 \frac{1}{2}$ fathoms of water; it was recovered by a native diver. The top of the boiler was so badly torn by the accident, and the lower casing so badly corroded and burned out by the end of the summer cruise, that we were obliged to put on an entirely new easing. As the fine boiler-shop at the Washington navy-yard had been discontinued, as such, we were obliged to employ a journegman boiler-maker and build
the casing ourselves. By the courtesy of the chief engineer of the navy-yard we were permitted to use the shop. We purchased the material from L. H. Schneider, of Washington.
The cost of repairs to the gig during the year was as follows:
1 safety-valve spring $\$ 0.75$
1 high-pressure slide-valve 4.50
1 high-pressure piston 13.50
l. low-pressure piston 17.00
Material for new boiler casing 35. 57
Labor for new boiler casing 49.68
1 set of fire-bricks 2. 50
Total 123.50

FIRESII-WATER DIS'IILLING APPARATUS.

During the year we have distilled 53,425 gallons of water, which has been uniformly of good quality. A leak was discovered in the joint at one end of the coils during the month of June. This leak was stopped by a plumber's joint of soft solder, by a navy-yard worknam, at a cost of $\$ 9$.
The practice of cleaning and whitewashing the interior of the tanks each time they are emptied is continued with good results.

ELECTRIO LIGIIT.

The uniformls white, steady, and agreeable light from our Edison• incandesceut lamps has continued throughout the year.

The commutator of our Z-dynamo, though much worn, is still efficient. The engine is as efficient as when new, and gives as but little trouble. The engine and dynamo are run by a coal-heaver.
The usual amount of breakage of wires aud burning out of cut-out plugs has occurred, which has generally been traced to short circuiting through sea-water, which leaks through the decks, $\& c$., and gets at the wires.
We find, in repairing these wires (which are of copper) that they are now quite soft and ductile, though they were quite brittle two years ago. There can now be no doubt that a molecular chauge is going on in these wires all the time. The three-light pendants, with their flexible cables, have been used the entire year, to the exclusion of the are lights. The attachment at the end of the cable is troublesome in that the men break them by sometimes screwing up too hard; sometimes they burn out by arcing, from failure to screw them up to good contact, and again by dirt separating the contacts just enough for the purpose.

One of the small tension-screws of the dynamo brushes has been renewed during the year, and drip-pans have been fitted to the pillowblocks of the dynamo, the blocks being cut out to receire the pans.

The dynamo has been in operation 1,574 hours and 26 minutes during the year, during which time a mean of about 47 lamps has been in circuit, aggregating the following cost:
148 tons of coal, at $\$ 5.17$ $\$ 76.25$
$43 \frac{1}{2}$ gallons of oil, at 55 conts. 23.925
149 lamps, at 85 cents 126.65
34 3-light safety-pluge, at 8 cents 2. 72
18 6-light safety-plugs, at 8 cents 1.44
30-light safety-plug, at 8 cents 08
2 key-sockets, at 70 cents 1.40
plain sockets, at 60 ceuts 2. 40
3 wire shade-holders, at 30 conts 90
pounds copper wire, at 40 cents 1. 20
pounds insulation tape, at 50 cents 1.00
${ }_{1 \frac{1}{2}}$ gross assorted screws, at $\$ 1.25$ 1.875
46 feet floxible cord, at 15 cents 6.90
attachment plugs, at 40 cents 1. 60
3 dynamo-brushes, at 60 cents 1. 80
standard receptacle, at 44 cents 44
Total 250.58

Taking the 16 caudle-power lamps as requiring double the current of one 8 candle-power, the mean number of lamps will be (as nearly as can be estimated) 47 ; the candle-power hours will then be ($47 \times 1574 \times 8=$) 591824, and this quantit5, divided into the total cost, gives the cost of $\frac{250.58}{47 \times 1574 \times 8}=0.042$ cents per candle-power per hour, or almost exactly what an equal gas-light costs the consumers in Washington city.

The submarine lamps have worked very well during the year. The naturalists employed them extensively on the Bahama Banks, where the white bottom of the sea afforded a beautiful reflector in the darkness of the night. By the aid of the marine glass (improvised in this department) the position of the light and adjacent objects were readily observed even when the surface of the water was disturbed.

Though no hitch or delay has occurred during the year, and the plant has worked fully as well as when first installed, I fcel obliged to say that the B circuit of ouly 51 volts pressure is rather behind the age, so far as economy is concerned, and therefore recommend the exchange of the dynamo for one of higher potential.

Tho Albatross was, I beliove, the first Government vessel (of any nation) that employed the incandescent electric lighting for internal illumination.

The experiments made and the results obtained here were carefully considered in the Navy Department before any veuture was made to light their ships in a similar manner. We have produced our light, I believe, at least as economically as any peoplo using so weak a current as we employ, but since we installed our plant great improvements have been made in dynamos. The change in the dynamo will not be very expensive.

For the past tro years we have kept the lamps in the engine-room alone in circuit all the time, that we might obtain a correct estimate of the average duration of the lamps.
The total lamp hours was 27,987 hours and 31 minutes, and the total number of lamps expended was 30 , so that the mean life-time of the lamps in the engine-room appears to be $\left(\frac{27987-31}{30^{-}}=\right) 932$ hours and 54 minutes. Lamp No. 92 is included in the above average, though it was broken after 701 hours of incandescence.
In recording the great life-time of these lamps, it is proper to state that they were in circuit all the time, and were lighted and extinguished daily with the starting and stopping of the dynamo, and were, consequently, never suddenly heated nor cooled.

VENTILATION.

The veutilating fan has been in use, during the warm weather, for several hours each night when at sea. The wastefulness of the Wise motor, which drives the fan, is so great, that the writer does not feel justified in using it a great deal. The new arrangement of boilers will displace the prescut fau and motor, and I recommend that a pair of Sturtevant's No. 5 monogram exhaust fans and an orthodox steamengine be put in place thereof. They can be placed in the donkeyboiler room conveniently. To exhaust some of the heated air from the space over the working platform of the engine-room I recommend that two wrought-iron chimneys be run from this point to the open deck above.

The four proposed ventilators to the new fire-room, which will extend 8 feet above the deck, will doubtless be much more efficient than the present two, having the same (18 inches) diameter, and which are only 3 feet above the deck. The movable cowls of the new ventilators will be of copper, to prevent affecting the standard compass.

WARMING.

The usual trouble from breaking of heater ralves has continued. It is impossible to say when or by whom these valve-stems are twisted off or threads stripped; it is a contest between small brass valves and muscle, in which the latter appears to triumph. The large heater, which was removed from the berth-deck last year, has been replaced.

The steam traps (Chapman's) have never been satisfactory; water accumulates in the heaters if we trust to the automatic action of the traps, and if wo attempt to regulate the drain by aljusting the by-pass, We find stean blowing through at times.

The writer designed a valso (Fig. 2, Plate VIII) and improvised a trap by screwing the valve into a cast.iron cylinder we had been using
for an oil-filter; the steam and water enters at the top and the condensed water escapes through the valve; the steam does not escape.

We substituted this for the Chapman trap for draining the after heaters, and fiud it works admirably.

COAL.

Excepting 30 tons of semi-bituminons coal purchased at Nassau in April, and about two tous for the cutters, we have used authracite coal exclusively.
The total consumption, for all purposes, has been $9 \overline{3} 3$ tons 419 pounds, and the average cost has been $\$ 5.17$ per ton.
The quality has been generally good, except that obtained from the Norfolk navy yard, which we found dirty and air-slaked.

Wo check the weight of coal received by the increase in the ship's displacement, which latter quantity is obtained from a calculation of the ship's increase in draught of water. We either witness the weighing of every pound of coal we buy, or weigh it ourselves as it is deliv. ered alongside the ship. The following amounts of coal have been used for the purposes specified:
Coal consumed to propel the ship white on hor courso, to warm the ship, pump bilges, wash decks, aud hoist ashes while the main engines were ìn operation

$$
56282 \underline{2}+7
$$

Coal consumed to light tho ship by olectricity
Coal consumed to ventilate tho ship $10 \frac{1}{2} \frac{4}{7} 9^{3}$
Coal consumed to distill water 231929
Coal consumed lyy tho steam cutters 9 92至事Coal consumed for driving the hoisting engino, steam windlass, washingdecks, warming ship, and leeping fires banked when the main engineswere not in operation277 TV700
Total coal consumed by the engineor's department $899_{2}{ }^{968} 86$
Coal consumed by the equipment department (cooking)

MEDICAI DEPARTMENT.

IReport of Surgoon J. M. I'mivi, U. S. Navy.

The general health of the ship's company during the year has been very good. No cases of serions illness have occurred, and only those tritling accidents incident to all the ruder occupations of men. The provisious for ventilation are the same as heretofore, and are reasonably effective when in use. The between-decks, in this as in all other ships with which I have been acquainted, are more or less malodorous at sea. No precautions can prevent the evolution of foul gases in the bilges of a ship, where the presence of organic matter and the conditions of heat and moisture favorable to decomposition are unavoidable. How to remove these gases before they have contaminated the air of the apartments of men and officers, is a problem not yet solved; it is
evident, however, that any system of ventilation in order to be perfect must be in continuous action.
The first part of the year, from early in February to May, was passed principally anong the Bahama Islands, where the temperature was mild, the winds fresh but soft, and the climate generally conducive to health and comfort. The islands themselves in their preseut, condition furnish Wonderfully little of general interest to the visitor, and fail utterly to justify the glowing accounts given of them by their discoverers. The inhabitants of the islands, with the exception of New Providence, are poor and thriftless but not wretched or degraded, mostly colored, evidently diminishing in numbers, extracting a very plain subsistence from a thin soil impervious to modern implements of husbandry, and from the more open-hauded generosity of the sea. There are no educated medical men on the islands except at Nassau, and the announcement of the presence of a "doctor" among them was sufficient to surround him speedily with a numerous clientele, consisting of the sick, those who had been sick, and those who thought that they might at some future time get sick, all anxious to avail themselves of the rare opportunity for pro: fessional treatment. Every effort was made to minister to their neces. sities as well as their fancies, and their expressions of gratitude for What they received were evidently sincere. So far as was observed the physical condition of the people seemed to be good. There were few maimed or deformed, and only occasional evidence of the prevalence of specific diseases among them, either at prosent or in the past. These remarks, however, apply only to the outlying islands and not to New Providence, upon which is situated Nassau, the largest town and the principal commercial port of the Bahamas.

Among the interesting cases observed was one of Hysterical Paralysis of several months' continuance, the patient having been utterly unable to move a muscle of the lower extremities during that time. The subject was a well-conditioned young girl, one among uumerous victims of a remarkable epidemic of hysteria attending great religious excitement on Cat Island. Several hundred persons, a very large percentage of the whole population, were said to have been affected, mostly young people, boys and men as well as girls and women, and their wild vagaries were related by witnesses with x solemnity that assured the hearer how firmly rooted was the belief in the supernatural character of the menifestations. Treatment of this case by nervo tonics and electricity for a few days was attended by such marked improvement that a complete and speedy recovery was certain.
The summer and autumn cruise of the ship was made on the North Atlantic coast, with Wood's Holl as headquarters, northward as far as St. John's, Newfoundland. The Grand Banks in August developed the same foggy, rainy, disagreeablo, aud depressing climato for which it is noted, and a week in the quiet and snug harbor of St. John's was a welcome and refreshing interlude. Nothing for record iu this department
occurred during the summer，except the development of a case of Melan－ cholia in one of the seamen，who was in consequence transferred to the naval hospital at Chelsea，Mass．，and subsequently to the Government Insane Asylum in the District of Columbia．No satisfactory cause for the disease could be assigned．

The determinations and record of the densities of sea－water have been continued by this department during the ycar．The observations hare been chiefly coulined to surface densities，and the collection of water for the purpose has usually been made at 12 o＇dock each day that the ship was at sea．The specimen is kept until it has taken about the temperature of the room and of the instruments employed，and the same care as heretofore exercised iu the reading and reduction．The record in itself presents no romarkable features calling for extemled remarks． The high gravities of the Southern waters，where evaporation is rapid， is observable，and especially in those inclosed basins like Exuma Sound and Tongue of the Ocean，where there are no active currents to restore the equilibrium with the oceau water in general．In contrast are the low gravities of the Northeru waters，where evaporation is slight and the water is freshened by the Arctic currents．

The record of temperatures aud deusities observed during the year is appended：

Recorll of temperatures and specific gravitics．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Date． \& \& Latitude N ． \& Longitude W． \& Depth． \& \& \begin{tabular}{l}
3 \\
0 \\
\hline
\end{tabular} \& \& \& \\
\hline 1886 \& \& ○ 33 ＂ \& \(\begin{array}{ccc}\circ \& \prime \& \prime \prime \\ 75 \& 58 \& 00\end{array}\) \& \& 69 \& 45 \& 86 \& \& \\
\hline Feb． 21 \& 12 m. \& 3313100 \& \(\begin{array}{lll}75 \& 58 \& 00 \\ 70 \& 44 \& 00\end{array}\) \& Surface \& 619 \& 4.7
00 \& 86 \& 1.0243
1.0242 \& 1．028510 \\
\hline 22 \& 12 m ． \& 31815 \& \(\begin{array}{lll}70 \& 44 \& 00 \\ 78 \& 10 \& 00\end{array}\) \& \[
\begin{gathered}
\text {. . . do } \\
\text {. . .do. }
\end{gathered}
\] \& 68 \& 00 \& 86
80 \& 1．0242 \& 1.028 .516
1.038516 \\
\hline 23 \& 12 m. \& \(28.24 \quad 24\) \& 781000 \& \[
\text { . } 1
\] \& 71 \& 71 \& 80 \& 1． 0242 \& 1．028510 \\
\hline 24 \& 12 m ． \& \(2744 \begin{array}{lll}20\end{array}\) \& \(77 \quad 1600\) \& ．．dı． \& 71 \& 74 \& 85 \& 1.0244 \& 1．028508 \\
\hline 25 \& 12 mb ． \& \(26 \quad 3100\) \& \(75 \quad 0030\) \& ．\({ }^{\text {U }}\) \& 71 \& 70 \& 78 \& 1．0200 \& 1． 0288418 \\
\hline 26 \& 12 m ． \& \(\begin{array}{lllll}24 \& 47 \& 36\end{array}\) \& \(74 \quad 3615\) \& ， \& 74 \& 73 \& 77 \& ］． 0258 \& 1． 0288318 \\
\hline 27 \& 12 m ． \& Off San Salra \& dor \& do \& 75 \& 75 \& 77 \& 1． 0257 \& 1.028318 \\
\hline Mar． 5 \& 12 n. \& Port Nolson， \& 3um Cay \& \& 7.3 \& 75 \& 81 \& 1． 0255 \& 1． 004339 \\
\hline 6 \& \(3 \mathrm{p} . \mathrm{m}\). \& Well near bit \& ch．Port Nelsom \& ． 10 \& \& 76 \& 81 \& 1．0010 \& 1． \(1.00310^{0}\) \\
\hline 6 \& 3 j .10. \& Well in conto \& of town，Port \& \& \& 76 \& 80 \& 1．000 \& 1． 00310 \\
\hline 6 \& \& Nolmon．
Sult ponds， \& rt Nolsoa \& 1 \& \& 76 \& 80 \& 1．0850 \& 1088160 \\
\hline 12 \& 12 m ． \& Exama Soun \& － \& ．do \& 71 \& 72 \& 85 \& 1． 10248 \& 1．028000 \\
\hline 17 \& 12 m ． \& Harbor of Na \& sau，Now Prov－ \& ．．do \& 74 \& 82 \& 76 \& 1．0264 \& 1．028832 \\
\hline \& \& idenco．
250 \& \& ．．do． \& 74 \& 71 \& 84 \& 1.0242 \& \\
\hline April 9 \& 12 m. \& \(25 \quad 2600\) \& \(\begin{array}{ccc}79 \& 59 \& 30 \\ 78 \& 21 \& 20\end{array}\) \& ．．do． \& 73 \& 71 \& 85 \& 1． 0240 \& 1.028100 \\
\hline 10 \& 12 mm \& \(\begin{array}{llll}26 \& 3 \% \& 00 \\ 25 \& 23 \& 00\end{array}\) \& \(\begin{array}{lll}78 \& 21 \& 20 \\ 77 \& 26 \& 00\end{array}\) \& ．．．do． \& 73 \& 79 \& 84 \& 1． 0246 \& 1.028500 \\
\hline 11 \& 12 m.
12 m. \& 25
Tonguc of

00 \& \& ．．．dido． \& 73
73 \& 79
74 \& 84
78
78 \& 1.0276
1.0264
1.0241 \& 1．029208

\hline 13 \& 12 m. \& Green Cay， \& nguc of Oceat \& －do \& 74 \& 77 \& 77 \& 1．0266 \& 1.029218

\hline 14 \& 13 m ． \& 245000 \& 1773900 \& ．do \& 74 \& 73 \& 76 \& 1． 0260 \& 1.028982

\hline 15 \& 12 m. \& South Bay，${ }^{\text {N }}$ \& w Irovidonco． \& ．do \& 73 \& 73 \& 74 \& 1． 0264 \& 1．028850

\hline 30 \& 12 m. \& Off Eleuther \& Inland ．．．．． \& \& 76 \& 79 \& 85 \& 1． 1240 \& 1.028700

\hline May 1 \& 12 m ． \& Off Abaco Isl \& tud ．．．． \& do \& 74 \& 76 \& 86 \& 1． $0 \leq 4{ }^{\circ}$ \& 1.028510

\hline May 2 \& 12 mm ． \& $\begin{array}{llll}27 & 48 & 00\end{array}$ \& $\begin{array}{lll}77 & 37 & 45\end{array}$ \& ．${ }^{\text {do }}$ \& 73 \& 72 \& 84 \& 1． 0248 \& 1． 0288512

\hline 3 \& 12 m. \& $\begin{array}{llll}28 & 18 & 00\end{array}$ \& 78.3230 \& ．．do \& 73 \& 72 \& 84 \& 1． 0240 \& 1.028500

\hline 4 \& 12 m ． \& $\begin{array}{llll}29 & 85 & 00\end{array}$ \& 7058300 \& ．．do \& 77 \& 72 \& 85 \& | 1． 0244 |
| :--- |
| 1.0250 | \& 1.02850

\hline 5 \& 12 m ． \& 310900 \& $\begin{array}{llll}79 & 33 & 30\end{array}$ \& ．．do \& 77 \& 73 \& 83 \& 1．0250 \& 1.02012

\hline
\end{tabular}

Record of temperatures and specific gravities-Continued.

REPORT OF THE NATURALIST, MR. ThOMAS LEE.

The work of the Albatross for 1886 began with a cruise among the Bahama Islands. Mr. Jawes E. Benedict was in charge of the scientific department, and was assisted by Messrs. Willard Nye, jr., C. H. Townsend, F. L. Washburn, and myself.

We left Norfolk February 20, and met with little of interest before reaching our anchorage at Watling's Island. Before speaking of our Work, it is my pleasant duty to acknowledge our great indebtedness to Lieut.-Commander James M. Forsyth, of the United States Navy, for furnishing us with much valuable information with regard to the character of the islands, and for letters to Mr. R. C. Nairn, of Watling's Island, and the Misses Forsyth, of Rum Cay, who showed us every courtesy and attention, besides very materially aiding us in our work.
February 27 Mr . Nye and I lauded on Watling's Island, and remained there till March 9. The Albatross ran over and anchored at Rum Oay. W_{e} were cordially welcomed by Mr. Nairn, who furnished us with comfortable quarters, thius enabling us to get to work at once.

Watling's, like all the islands of the Bahama group, is made up of coral limestone, much weathered upon the surface, and below it of a very cavernous nature. A great part of the interior of the island is occupied by a series of connectiug lakes, which are surrounded by hills rising quite abruptly from the water to a height of $\tilde{5} 0$ to 140 feet, and thence sloping more gradually to the ocean. Between the hills and the ocean are a number of large swamps, hardly above tide-level.

The coast-line is partly rough coral rock rising abruptly from the water, partly stretches of coral sand, aud the island is pretty well surrounded by outlying coral reefs. Though there is little soil, the greater part of the island is clothed with a dense, low, scrub growth, with here and there a large tree to indicate what the timber was in old times. The surface has been quite extensively under cultivation, but since the abolition of slavery nearly all the white people have left the island, and the negroes cultivate tields only here and there, and scarcely do more than get a living oft the ground.
The swamp water is pretty much all brackish, but fresh water can be had at any point by digging down to near the ocean level. It collects slowly and is subject to a rise and fall with the tide.

We found the rough, coral bottom near the shore ill adapted to seining, and the inhabitants brought in but few species of fish caught with hook and line.

A trip across the island to a creek on the eastern coast resulted in the capture of a number of species of fish. There was little opportunity to haul the seine, but we made a number of sets across the mouths of small creeks, and then drove the fish down into the net.

From the lakes wo seined a large number of minnows, Atherina stipes -a species most plentiful in these waters aud apparently the only fish occupying them.
The lake water is very saline and subject to a slight rise and fall with the tide, though there is no apparent connection between the lakes and the oceau.

We made a trip through the lakes to a cave near the new light-house at the northern end of the island, and from which several human skulls are said to have been taken. The cave is near the lake, in the face of a low semicircular ledge of limestone. The mouth of this cave, about 8 feet long by 2 feet in height, was originally walled up. It now stands open, the wall having been pulled down. Within, the cave extends about 50 feet along the face of the ledge on each side of the entrance, and the low roof meets the floor about 20 feet back. It is divided into several chambers by natural columns rising from the floor to the roof. The largest of these chambers extends back to a pool of brackish water on the lake level, and it was from this chamber that we made our collections. A careful search through the other parts of the cave revealed no human remains, and only a few small bits of broken pottery. The outer wall of the cave is a mass of stones, piled up to the roof, through

Which the earth from without has washed into the cave, and dowa across the floor. Whether this wall is artificial or natural would be an exceedingly difficult task to determine.

From among the loose stones and earth, near this outer wall, we picked out several pieces of coarse pottery, and several pieces of bone belonging to the human skull, among them two jaw-bones with teeth intact. About lalf way across the floor we found a number of human long bones strewn about with no apparent arrangement.

Miss Nairn, who was one of the first to visit this cave, told us that she saw five or six skulls lying upon the floor when she was there, and that one of them had been taken to tho library at Nassau.
Both going and coming through the lakes wo saw great numbers of cormorants floating lazily about on the water or sitting on the mangrove bushes along the shore. They remain throughout the year and breed on these lakes. We saw, too, a number of herons, of which we shot sereral, and flocks of Bahama ducks and blue-bills, but conld not get near these latter.

Coming home, we landed on Iguana Key and captured six iguanas of the genus Cyclura. We saw there a largo brown rat, but did not succeed in capturing it.

During our stay on Watling's Island we visited several other caves, but found no human remains. In all the caves visited we found but one bat, though there was every indication that they had been there in great numbers quite recently. The negroes say that they always disappear during the winter months.

We procured a number of stone implements during our stay. These the negroes call thunderbolts, believing that they fall with the lightning. They preserve them very carefully, as a charm to ward off the lightning, and are very loth to part with them.

We made collections of the shore fauua as well as of lizards, crabs, insects, and mollusks from all parts of the island, and of birds we took a number of species as well as several nests with eggs.

Miss Nairn, who seemed quite conversant with the habits of most of the birds, told us that in December, during high winds, swallows sometimes made their appearance, very tired. They stay but a few days, and theu disappear. The " gale bird," undoubtedly ourbobolink, comes too, during the high autumn winds, in large flocks, but stays only a few days.

On March 8 the Albatross left Rum Cay, and on the same day touched at Conception Island and gave the naturalists a chance to make shore collections. One haul with the beam trawl, near Conception Island, at station 2629 (1,169 fathoms), brought up only a few crustaceans, one glass sponge, one piece of coral, and one fish. The mud-bag was filled with coral sand, with pteropod shells and foraminifera in it.

March 9 the Albatross picked up Mr. Nyo and myself and then ran back to Rum Cay, to give us a chance to take some photographs at Port Nelsou.

The character of the surface and the growth at Rum Cay are about the same as at Watling's Island, and the collections made at eacle island were made up largely of the same things.

The land suails, Helix, however, on Rum Cay were found clinging to the bushes, in low, wet places, in vast numbers, much greater than observed on any other island, and a very large collection was made.

The inhabitants of Rum Cay fish almost entirely with hand-lines, . though occasioually using basket traps. They never attempt to do more than catch fish enough for immediate use.

Wo, left Rum Cay March 10, and auchored off Cat Island for the night. Next morning we landed and made quite extensive collections. Near the shore, and ruming parallel with it, were several low ridges covered with thick scrub growth and separated by partly open glades. Further inlaud were fields of millet bordered by quite heary timber. Had it not been for a high wind our collection of birds here would undoubtedly have been much larger and comprised many more species, as this was one of the best collecting grounds visited during our cruise.

March 12 we landed in the morning on Eleuthera Island, and worked over a low country which stretches from the shore to high land about a mile inland. The day was perfect and our collections comprised a number of birds and a good representation of the shore fauna.
In the afternoon two hauls with the tangle, at stations 2630 (244 fathoms) and 2631 (280 fathoms), brought up ouly a few glass sponges and a few small pieces of coral.

March 13 a haul with beam traml, near the head of Exuma Sound, at station 2632 (791 fathoms) showed a bottom of white coral ooze with no apparent animal life.

We anchored in Nassau Harbor, New Providence, on the morning of March 15, and remained till March 24.

To Goveruor and Mrs. Blake we are indebted for much assistance in our work of making collections, as their knowledge of the character of the country, and of the localities in which certain things could be found, was a great help to us.

Mrs. Blake had a very fine collection of stone implements, from varions islands, and a lignum.vita stool from a cave on Rum Cay, of which we got very fair negatives.

The fish-market at Nassau afforded an opportunity for making a large collection of fish, as tho fishermen are compelled to sell all their fish through the market. The fishing industry is a large one, and I give a few details from data collected upon the subject by Mr. Benedict.

There is no record of the number of vessels employed in fishing, but it is estimated at 120 sail. The vessels are principally of two classesgchooners, measuring 28 to 30 feet on the keel, aud sloops of about 18 feet keel.
The schooners carry a crew of 7 men and do most of their fishing with seine of 1 -iuch mesh, 30 fathoms long, and 80 meshes deep. The sloops
carry 3 or 4 men and do all of their fishing with hand-lines. The hand-line fishing is done with the aid of a water-glass. The water-glasses are simply a box, painted some dull color, with a pane of plain window. glass set in the bottom. The fisherman holds this box on the surface of the water, and, by lookiug through the glass, can see the bottom through this clear water perfectly plainly to a depth of 00 or 60 feet. When fishiug, the men hunt about till they find a spot where the fish are plenty, then, by watching their lines through the glass, they can tell exactly when to strike the fish. Most of the fishing is done at Abaco and the Berry lslands, the vessels staying outabout a week and bringing the catch in alive in their wells. The larger specimens of skip.jack, bone, hound, and amber fish are split and dried in the fore rigging, but the bulk of the catch is pedded out fresh at the marketthe demand for fish determining the stay of each vessel in port. A fare will run from $\$ 12$ to $\$ 60$, and anything over $\$ 40$ the fisherman considers good work. After paying the expenses of a cruise, two shares of the profits ge to the vessel, one to the seine, one to the captain, and one to each member of the crew.

Many species of fish from these waters are excellent eating, and few seem to be poisonous. While barracuda, hog, aud amber fish are more likely to be poisonous than other species, this property is by no means confined to them. Cases of poisoning, however, are of such rare occurrence that the natives pay little attention to the matter, and bare no rule as to what can be eaten and what cannot.

The sponge fishing is another very importaut industry, the details of Which I give from data collected by Mr. Nye.

The sponging flect consists of about 475 vessels and employs not less than 4,000 men, the majority of them negroès. The vessels used are sloops of 15 to 20 feet orer all, and schooners running up to 20 tons, though commonly about 36 feet over all. The largest schooners carry 12 to 18 men and 6 to 10 boats-one of 12 feet and the others 10 feet in length.

The sloops carry 4 to 7 men and 3 or 4 boats. The small boats are of the smooth, round-bottom class, like the northern smack-boat, but with less sheer.

The sponging trips last about six weeks, and are made at all seasons except the "hurricane month:" October, when the vessels are generally bauled up for repairs.

When on the sponge ground the vessel anchors in 3 , or heaves to in 5 , fathoms of water, and the crew put off; two in a boat, at sumrise, and remain till sunset, unless a boat-load is secured before that time. One man bandles the boat, generally sculling, while the other gathers the sponges, using a water-glass in one hand and a long pole, rigged with a two or three tined hook, with the other. The men become very expert with this hook, and work to a depth of 5 fathoms, but seldom if ever over that depth. Ten pounds, dry weight, is a first-class catch for one boat in a day. The fresh sponges are left on deck uutil the
vessel has a deck-load, when they are taken to the "erawl," a crib built of sticks in the shallow water near the shore, where they are left to rot for sis or eight days. The rotten flesh and dirt is then beaten and washed out, the sponge being held in one hand and struck repeatedly with the "clipper," held in the other hand, and frequently rinsed. They are then thrown upon the beach to dry.

Oue man can wash 50 pounds, dry weight, of large spouges, or 15 pounds of mixed sponges, in a day. Though sponge beds get fished out and destroyed by hurricanes, the fishermen consider the suppls inexhaustible, for they say the young sponge grows so rapidly, reaching a marketable size iu about three mouths after its attachment, and new beds are so plenty that they bave little trouble in finding either a ner set or a new bed. The sponges broken off by storms collect in soft, muddy spots, and are known as "rolling sponges."

The fishermen recognize six kinds of sponges, though both they themselves and the dealers have many names for the different varieties of each. In point of abundance they run: (1) Reef (including glove), Sponyia tubifera. (2) Grass, Sponyia cerebraformis. (3) Boat (including velvet), Spongia barbara. (4) Wool, Spongia gossypina. (5). Yellow, Spongia corlosia. (6) Key West (wo specimen obtained).
The wool ranks first in value followed by reef, boat, grass, yellow, and Key West. Six hundred pounds, dry weight, is considered a good fare for a single cruise. The sponges are all brought to Nassau and sold through the market. No fixed value can be given, but a first-class ' wool sponge of S inches diameter brings 15 to 20 cents, and the small glove sponges 1 to 2 cents cach. The vessel bears one-third of the expense of the outfit and takes one-third of profits. The balauce goes two shares to captain, and one share to each member of the crew.

While in Nassau we made large collections of the shore fiuna, including fine specimens of the red and of the yellow fan corals, Gorgonia flabellum, which grow in great numbers on the reefs.

To Mr. Nye's indefatigable zeal and amphibious habits are due the credit for the bulk of these collections, as well as for the fish not brouglit into the market for food.

Trips inland added several species to our collection of birds, and one trip to the caves on Captain Lightloom's plantation, on his invitation and under his kindly guidance, resulted in the capture of a number of lats, Phyllonycteris seyckorni, which proved very wide-awake and flew swiftly about when disturbed by the lights. The bats, Vesperugo serotinus, taken from the vanlted chambers under Fort Cbarlotte, on the contrary, seemed quite torpid, and would do nothing but chatter, oven after having several of their number shot from the bunches hanging to the ceiling.

Among our collections at Nassan were tro unlaid but perfectly dereloped eggs of the Bahama cuckoo, takeu from specimens of that bird shot there.

March 24 we started for Key West, stopping on our way to land Messrs. Nye and Townsend on Abaco Island. At Key West we collected several species of birds, among them several specimens of the Fireo, Vireo noveboracensis maynardi, recently described by Mayuard.
This bird seems to bo very abundant here, but extremely shy and hard to see among the dense foliage.
On March 30 the greater part of Key West's business section burned down, creating quite an excitement. The next day Mr. Washburn left us to return North. April 3 we sailed for Havana, and on the 7th, on our way back to Key West, five hauls with the tangle at Stations 2633 to 2637 , in 100 to 200 fathoms, brought up about one hundred and twenty-ine specimens of the sea-lily, Pentacrinus decorus and Pentacrinus mülleri, with a few sea-urchins and brittle-stars.

We left Key West on April 4, and on the 5th began a line of dredg. ings, off Carysfort ligit, at Station 2639 (56 fathoms). We took six hauls with a ship's dredge and four with the beam-traw, the depth ranging from 50 to 217 fathoms. The bottom proved barren, and we took only a few small crustaceans, fish, and hydroids, the latter attached to the dead scallop skello, which were abundant.

April 11 we picked up Messrs. Nye and Townsend, with their extensive collections.
We had hoped that they would get a few flamingoes on Abaco, but, though they saw about sixty birds, they were too shy to approach, and a fire, which broke out in the woods, soon drove them all from their feeding-grounds.
The flamingoes live ou a large tract of land, about 6,000 acres in extent, on the west side of the island. The surface is little above tidelevel, and is composed of soft ooze, washed in from the coral reefs. Seattered through this tract are lakes, of all sizes, from 6 inches to 3 feet deep, and islands, of higher ground, covered with trees. The llamingoes keep to the larger lakes, or "swashes," as the inhabitants call them, and are very sliy. In the breeding-season they are much less shy, and are frequently killed while feeding in the smaller swashes by negroes, who consider them excellent eating. Parrots are said to have been common on the island, but of late years few are seen on the southern end of the island. Oue flock was reported as coming daily to feed on an old field, wear the light-house at Hole-in-the-Wall, but no specimens were procured.

From Abaco we ran past New Providence into the Tongue of Ocean, and on the morning of April 12 lauded on Green Cay. The island is small aud heavily wooded, rising to high ground near the ceuter. Near our landing-place was a poud with the remains of old salt-works. In spite of a steady rain we got a number of birds, among them two specimens of Kirtland's warbler.
In the afternoon a haul with tangle at station 2649 (30 fathoms) brought up a few small corals, sponges, mollusks, and crustaceaus. A haul at station 2650 (369 fathoms) brought up nothing.

April 13, a hatul with taugle at station 2651 (97 fithoms), and with ship's dredge at station 2652 (140 fathoms), brought up a few gorgoniau corals, barmacles, and mollusks.

On the 14th two boobies were shot, just after da;light, on Booby Rocks, and later we landed ou Green Cay. The white headed pigeons, Columbáa leucocephala, were very abondant, but extremely shy, aiways flying out of thick foliage, and taking great care to put the tree between you and themselves. We shot a number of small birds and found a lizard, Liocephalus carinatus, extremely abundant.

In the pores of the limestone, near the salt-pond, were quartered immeuse soldier-crabs, and under the bushes in the grassy swales in the interior, were hundreds of land-hermits crawling about. On the salt pond we started three Bahama ducks and saw several winter yellow. legs.

In the afternoon we took a hat with beam trawl at station 2653 (1,000 fathoms), and fonnd a bottom of coral ooze with no apparent animal life.

On the 15th we anchored in Southwest Bay, New Providence, and had to wait till the 21 st for the bar at Nassan to become passable.

During this time the country was well hunted over and a number of birds taken.

From the ship fish could be plainly seen moving about on the bottom, and several species were captured on hand-lines.

On the 17 th Mr. Townsend and I walked to Nassau and shot several birds on our way through the pine woods.

Our second stay at Nassau, April 21 to 30, was pretty much a repetition of our former work, though we added a few species to our collection of birds, and nearly doubled our collection of tish.

We left Nassau A pril 30 and reached Washington on May 10.
On the way north we took twentr-three hauls with the beam trawl and three with the taugle-stations 2654 to 2679 (263 to 731 fathoms). We added many valuable specimens to our collection of deep-sea fish and invertebrates, several large hauls of coral being of special interest.
At station 2655 one porpoise, Tursiops tursio, was taken, of iuterest from his nearly uniform dark color. At station 2056 eight sharks, Carcharhinus lamia, were taken with hook and line. Porpoise blood had been draining from the scuppers all day, and when we put over the electric light in the evening the water was literally alive with these sharks.

Throughout the entire cruise the electric light was used for surface collecting whenever there was an opportunity, and, while among the Babamas, mayy interesting forms of lish and invertebrates were taken, as well as at several stations during our run north.

- The Albatross lay in Washiugton till June 30, when we started for Wood's Holl.
July 15 we left Wood's Holl. Mr. Benedict was in charge of the scientific department, assisted by Mr. Sanderson Smith and myself.

We ran to the sonthward and eastward about 100 miles and took twelve hauls with the large beam trawl at stations 2680 to 2691 (220 to 1,100 fathoms). The bottom there is extremely rich in animal life, and We made very extensive and valuable collections of fish and invertebrates.

August 1 Mr . Benedict left the Albatross. Since that time I have had charge of the scientific department, and Mr. Sanderson Smith has been with the ship, detailed from the shore laboratory.
August 2 we left Wood's Holl for a cruise to the eastward. On the ${ }^{3} \mathrm{~d}$ we sighted a large school of porpoises traveling to the south ward. On the 5th a barn swallow flew on board ship. On the Gth sighted six finback and one humpback whale, and on the 7th a large school of killers traveling northwest. On the 11th we took several hauls with the beam trawl, beginning at station 2692 (78 fathoms), just to the southWard of the Flenish Cap, ruming up on to the Cap at station 2604 (56 fathoms). Here we found a bottom quite like that of the Grand Bank, While statious 2695 and 2696 (105 and 98 fathoms), just to the west of the Cap, showed a hard, barreu bottom.

At station 2697 (199 fathoms), we landed a bowlder of about 2,000 pounds on deck, with a number of sponges, mollusks, crustaceans, and fish.
After this haul we ran to St. John's for coal, and while there I made a collection of young salmon, Salmo salar, and brook trout, Salmo fontinalis, at Harbor Grace Junction, together with a few birds.
August 24 we left St. John's, and while ruming to the south passed a number of finback whales moving to the northward.

Eight hauls with beam trawl, beginning at station 2698, near the edge of the bank, and ruming to the westward to station 2705 , brought up many interesting specimens. From the deeper hauls between the two banks we took a great number of sea-pens, Pennatula aculeata, and a few specimens of Pennatula borealis; also a number of species of tish, among them Macrurus bairdii and Sebastes marinus in great numbers.

August 23, at hydrographic station 1070 (32 fathoms), we took, on hand-lines, one hundred and thirty-six cod, Gadus callarias, in about half an hour's fishing. We used squid for bait, and the cod took it voraciously. An examination of the cods'stomacus revealed a great number of Bank clams, Cystodaria siliqua, with a fow fish, crabs, squid, and other small mollusks.
One dolphin, Delphinus delphis, was here captured from a school. On the 25 th there was a winter yellow-leg about the ship, and a swallow flew on board during the high wind next day. On the 26th, too, we saw a number of porpoises, Delphinus delphis, moving to windward.
Five hauls with the beam trawl, to the southward and eastward of George's Bank, at stations 2706 to 2710,866 to 1,188 fathoms, brought up many iuteresting specimens.

We reached Wood's Holl August 27.

Leaving Wood's Holl September 14, we made a cruise about 200 miles to the southward to decp water on the inner edge of the Gulf Strean, and found a very rich bottom at stations 2711-2722, 594 to 1,867 fathoms. We succeeded in bringing in the large soft holothurians Benthodytes g^{i}. gantea and Euphronides cornuta, in an excellent state for study, by injecting them, through the natural orifice, with alcohol and setting the tanks of full strength alcohol in which they were placed directly upon the ice.
One of the deep-sea fishes from station $2720,1,509$ fathoms, Ophio. gnathus sp., was of special interest, as it was the first taken by the Albatross.
During this cruise we observed a pigeon-hawk, a cedar-bird, and a woodpecker about the rigging.
At station 2719 we took a big blue heron-Ardea herodias-which was very fat and seemed quite at home out there.
We had excellent opportunities for surface work, and made large collections, both with the scoop-nets about the electric lights and with the large tow-net. As usual the large tow-net brought the best results just about dark in the evening.

While at Wood's Holl, during the latter part of September, I made several trips, in company with Messrs. Edwards and Nye, over to Gay Head and Menemsha Bight, in the steam-launch Cygnet, to secure specimens of the haglets (Puffinus borealis) and jegers (Stcrcorarius pomari. nus and parasiticus), which were following the mackerel and herring. Wo shot a number of specimens, and were able to make a fine series of skins, besides seuding a number of fresh birds to Washington.
On October 21 the Albatross started south. We made thirteen hauls with the beam trawl, stations 2623 to 2635,629 to 1,672 fathoms, just to the southward of our last work.

The fauna was much the same, but we added one new species of fish to our collections.
A large specimen of the squid, Sthenoteuthis megaptera, was taken at our last station.
The amount of phosphorescence about most of the deep-sea life is a very striking feature of all the hauls landed after dark.
It is impossible to speak of our deep-sea worls except in this rery general way, on account of the vast amount of material collected. For particulars we shall have to wait for the reports of the specialists to whom the material has been turned over for study.
Thanks to the kindness of Dr. Bean and Mr. Ridgway, in allowing me access to their books, I have been able to copy off the following lists of the fish and of the birds collected by us while among the Bahama Islands.
It has seemed advisable to mention in these lists those species taken by other collectors which we did not succeed in finding, aud this I have done as far as I have found any record of their work.

Our work for the season closed with the arrival of the Albatross at Washiugton on October 27.

List of fish taken by stectmer Albabross among fiahama Ishandy and at Viassall fish-mearhet Naving Murch and April, 1 sedi.

List of fish taken by steamer Albatross among Bahama Islands, f.c.-Contiunted.

List of fish taken by steamer Albatrons amony Bahama Islands, fe. - Continued.

List of fish taken by steamer Albatross among Bahama Islands, sc.-Continued.

No.	$\begin{aligned} & \text { U.s. } \\ & \text { Mus. } \\ & \text { No. } \end{aligned}$	Name, \&c.	Common name.	Locality.
		Family Olyprinodontida:		
91	38501	Cyprinodon rivirendi Pooy..	Mud.gut...	Salt Pond, Groon Cas.
(1)	38939	Gambusia puncticulata.....		Grcon Turtlo Cay.
		Family Symodontida.		
92	*38502	Synodus ap		Watling's.
	*35503	Synodus ap .		Abaco.
		Family Allulida.		
93	38445	Albula vulpes Linnecue.	Bone.fish .	Watling's.
		Family Elopidar.		
94	38519	Elops (probably)		Rum Cay.
	38518	Elops (probably).		Abaco.
		Fumily Clupeida.		
95	38469	Clupea sp..........................	Pincers.	Nassau.
		Family Dussumicrida.		
98	38465	1)ussumieria stolifora Jordau \& Gil.		Nassau.
	38466	Dort. ${ }^{\text {bugsamieria stolifera }}$		
	38468	Dubsumieria stolitera.....		Electric light, Rumu
	38467	Dussumieria atolifera.		Eloctric light, Cat Isl.
		Family Mfurwnida.		and.
97	38470	Moringur nov. sp.		Abrco.
98	38472	Sidera moringa Cuvier.	Morray	Nasabu.
${ }_{100}^{89}$	38473	Sidera funebria Ranzani.............	Morray	Abaco.
100	38474	Echinal caten:ita Bloch Family Galcorhinida.		Abaco.
101	38497	Hypoprion brevirostris I'ooy.	Puppy shark	Watling's.

[^85]
A list of birld takien by steamer. Albatrobs on the Bahama Islands during Maroh and April, 1886.

A list of birds taken by steamer Albatross on the Bahama Islands, fc.-Continued.

A list of birds laken by steamer Albatross on the Bahama Islands, fre.-Continued.

A list of birds taken by stcamer Albatross on the Bahama Islands, \&oo.-Contınued.

${ }^{1}$ Nest and egg.
${ }^{2}$ Seen only.

In the following tables the abbreviations for the characters of the bottom and the instrument used are from the following code:

Ablere. viation.	Meaning.	Abbre. viation.	Moanitug.	Ablure. viation.	Moaning.
C	Clay.	fre	Ane.	stt	Atiff.
	Coral.	lge.......	larce.	bk......	black.
Q........	Stones.	rky.....	rocky.	blı.......	blue.
8.........	Gravel.	rtul....	rotten.	dk	dark.
For......	Sand.	its	eticky. browin.	I Cd	red.
Ptor......	Foraminifera.	ur	chown.	wh......	Whito.
M	Mud.	choc....	freen.	dd......	dead.
O2.......	Pebbles.	ft.......	Fight.	L. B. T..	Largo beam-trawl.
K	Oaze.	slat.....	slate color.	S. B. I'.	Smanl beam-trawl.
Sh.......	Rock.	yl........	yellow.	Bl. ${ }^{\text {d }}$	Blake dredgo (deop- bea dredge).
Glob.....	Shells.	cra	coarso.	Sh. Dr ..	Ship's dredgo (mud.
Spre.......	Specks.	8 ml	small.		leag).
vrk.....	broken.	8ft	Boft.	Tgls....	Tangles.

For the record of hydrographic soundings preceding those herewith reported, reference should be nade as follows: Nos. 46-557, pages 111112, Fish Commission Report for 1884; Nos. 591-868, pages 74-77, Fish Commission Report for 1885.

Record of hydrographic soundings of the U．S．Fish Commission steamer Albatross for the ycar 1886.

	Date．	Hoar．	Position．					Depth．	Charactor of bottom．	Tem	ratu		Current．
			Lat．N．		Long．W．					$\dot{\Delta}$		$\begin{aligned} & \text { 自 } \\ & \text { 苞 } \\ & \text { 灾 } \end{aligned}$	
	1886.		\bigcirc	，＂＇	\bigcirc	＇	${ }^{\prime \prime}$	Fathems．	gy．S．bk．Sp．．．	$\stackrel{\circ}{6}$	\bigcirc	\bigcirc	
869	Fob． 23	$10.36 \mathrm{a} . \mathrm{m}$	23	4100			00	557				39.7	Nominal．
870	Feb． 23	12 m ．．．	28	$40 \quad 00$	77	52	00	570	gy．S．bk．Sp．．．．．．．．．．．．	71	68	39.7	Do．
871	Feb． 23	1.30 p．m	28	$40 \quad 30$	77	37	00	572	gy．S．bk．Sp	73	73	39.7	Do．
872	Feb． 23	2.58 p．m	28	4130	77		00	581	gy S．bk．Sp	86	74	39.7	Do．
873	Feb． 23	$4.44 \mathrm{p.m}$	28	4200	77	09	00	C00	Fh． S ．	86	74	39.2	Do．
874	Feb． 23	6.45 p．m	28	$42 \quad 30$	76	53	30	623	gr．S．bk．Sp	71	70	39.2	Do．
875	Feb． 23	8.20 p．m	28	$42 \quad 45$	76	39	00	762	Uz．，．．．．．．．．．	67	70	39.7.	Do．
876	Feb． 23	9.58 p．m	28	4300	76	26	55	2，845	Oz	70	70	36.8	Nortinuest by north， 1 knot．
87.	Feb． 24	$12.51 \mathrm{a} . \mathrm{m}$	28	3442	76	10	25	3，196	Oz	68	69	36.8	Northwest， 1 k knots．
878	Feb． 24	4.20 R． m	23	$24 \quad 06$	76	15	55	1，407	No specimen	69	71	37.8	Nominal．
879	Feb． 24	6.02 cm in	28	1230	76	15	00	691	gy．S．．．．．．	69	71	39.2	Do．
880	Feb． 24	7.41 n ．m	28	0100	70	18	00	622	5l．Oz．gy．	69	71	39.2	Do．
881	Feb． 24	9.10 2 m	27	4900	76	12	00	633	py．and br．S	70	71	39.5	Do．
882	Feb． 24	$10.41 \mathrm{3} . \mathrm{m}$	27	3800	70	23	24	677	br．S ．．．．．．．．	72	71	39.0	No current．
883	Feb． 24	12.08 p．m	27	3700	76	12	00	705	g\％．and br． S	74	71	39.1	No Do．
884	Felb． 24	$2.08 \mathrm{p.m}$	27	4200	76	02	00	702	For ．．．．	70	72	39.2	Io．
885	Feb． 24	$5.25 \mathrm{p} . \mathrm{m}$	27	5100	75	53	30	2，599	No specimen	71	73		Do．
886	Feb． 25	6.45 a m	27	3000	75	35	00	2，761	No specimen．	70	71		
887	Feb． 26	$4.14 \mathrm{3} . \mathrm{m}$	25	$29 \quad 60$	74	50	00	2，589	For．Oz ．．．．．．	73	72		North by west，$\frac{1}{2}$ knot．
888	Fel． 26	19.40 am	24	50	74	36	45	2，709	br．Oz．	74	73	36.7	
889	Feb． 26	2.59 p．m	21	2500	74	36	00	2， 639	br．Oz	76	75	37.6	
890	Feb． 26	6.52 p．in	24	0800	74	35	00	1，135	hrd	74	73	38． 6	
891	Feb． 27	$12.51 \mathrm{p} . \mathrm{m}$	23	57 0U	74	36	30	535	Co	77	75	43.8	
892	Feb． 27	$1.56 \mathrm{p} . \mathrm{m}$	23	50 00	74	38	00	1，264	wh．S．Co	77	76	38.2	
893	Feb． 27	3.17 p．m	23	4300	74	39	30	1，263	lt．br． Oz	79	77	38.2	
894	Mar． 8	7.07 fm	23	3720	74	57	40	850	Co． S	78	75	39.1	
895	Mar． 8	8.16 am in	23	$42 \quad 20$	74	59	30	657	Co．S．	78	75	40.1	
859	Mar． 8	8.49 a．in	23	4435	75	01	35	1，017	Co．S．	78	75	38.7	
897	Mar． 8	$9.40 \mathrm{~A} . \mathrm{m}$	23	$46 \quad 30$	75	03	50	578	Co． S	78	75	42.3	
898	Mar． 8	10.38 m ． m	23	$49 \quad 30$	75	08	30	115	wh．Co．S	75	73	67.8	
899	Mar．${ }^{8}$	$3.44 \mathrm{p} . \mathrm{m}$	23	55	75	11	20	845	Co．S．bk．Sp	74	75	39.2	
900	Mar． 8	$4.49 \mathrm{p} . \mathrm{m}$	24	0120	75	13	30	741	wh．S．rd．and bls．Sp．For	73	75	39.5	
901	Mar． 8	5.54 p．m ．．	24	0830	75	15	00		wh．S．Sp．and brk Sh ．．．	73	74	74.3	
902	Mar． 8	$7.36 \text { p. in .. }$	24	09	75	06	00	2，104	br．M．©o．S ．．．．．．．．．．	72	74	37.2	
903	Mar． 8	$10.18 \mathrm{p} . \mathrm{m} .$	24	0800	74	56	30	2.482	br．Oz．．．	72	74	26.7	
904	Mar． 9	$12.56 \mathrm{~s} \mathrm{~m}$	24	080	74	45	00	$2,255$	br.Oz....	72		36． 5	
905 908	${ }_{\text {Mar．}}^{\text {Mar．}}$	$\left\lvert\, \begin{aligned} & 3.20 \mathrm{am} \mathrm{m} \\ & 3.44 \mathrm{p.m}\end{aligned}\right.$	24	${ }_{35} 070$	！74	38	00	｜r $\begin{array}{r}2,081 \\ 149\end{array}$	br．Oz $\mathrm{Co.S.SL}$	72		36．7	

Record of hydrographic soundings, se.-Continued.

998
g99
1000
1001
1002
1003
1004
1005
1006
1007
1003
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1095
1020
1027
1028
1029
1030
1031
1039
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

$\begin{aligned} & \text { Apr. } \\ & \text { May } \end{aligned}$
May
May
May
May
Mas
May
$\mathrm{May}^{\text {a }}$
May
may
May
July
Jalj
July
Aug.
Aug.
Aug.
ducg.
Aug .
Ang.
Aug.
$\Delta \mathrm{ag}$.
Aug.
Aug.
Ang.
Aug.
Ang.
Aug.
Ang.
Aug.
Aug.
Aug.
A 4 \%
Aug.
Ang.
Aug.
Aug.
Aug.
Ang.
Ang.
Ang.
Ang.
Aus.
Ang.
Aug.
Ang.

50
40
43
45
47
50
11
41
45
49
53
49
42
35
27
27
37
54
50
14
15
20
52
29
29
29
29
29
25
24
24
31
30
32
29
29
53
21
43
30
45

Record of hydrographic soundings, fc.-Continued.

[For the record of Albatross dredging stations preceding that herewith presented, reference shonld be made as follows: Nos, 2001-2116, pages 210-221, Fish Commiseion Report

Record of dredgings and travlings, \&c.-Continued.

2700
2701
2702
2703
2704
2705
2708
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731

Aug. 22
Aug. 22
Aug. 22
Aug. 23
Aug. 23
Aug. 24
Aug. 27
Aug. 27
Aug. 28
Aug. 28
Aug. 28
Sept. 16
Sept. 17
Sopt. 17
Sept. 17
Sept. 18
Sept. 18
Sept. 18
Sept. 19
Sept. 19
Sept. 19
Sept. 20
Sept. 20
Oct. 23
Oct. 23
Oct. 24
Oct. 24
Oct. 24
Oct. 25
Oct. 25
Oct. 25
Oct. 25
Oct.

$\begin{array}{llll}55 & 48 & 00 \\ 55 & 49 & 30 \\ 56 & 19 & 30 \\ 59 & 02 & 30 \\ 59 & 23 & 00 \\ 61 & 04 & 00 \\ 65 & 33 & 30 \\ 65 & 48 & 00 \\ 67 & 49 & 00 \\ 67 & 54 & 00 \\ 68 & 01 & 30 \\ 70 & 0 & 00 \\ 70 & 05 & 30 \\ 70 & 08 & 30 \\ 70 & 17 & 30 \\ 70 & 54 & 30 \\ 70 & 57 & 00 \\ 71 & 13 & 00 \\ 71 & 52 & 00 \\ 71 & 53 & 60 \\ 72 & 12 & 00 \\ 72 & 11 & 30 \\ 72 & 01 & 00 \\ 73 & 09 & 30 \\ 73 & 25 & 00 \\ 73 & 48 & 00 \\ 73 & 54 & 30 \\ 74 & 03 & 30 \\ 74 & 33 & 00 \\ 74 & 32 & 00 \\ 74 & 30 & 00 \\ 74 & 28 & 00 \\ 73 & 33 & 00 \\ 73 & 43 & 00 \\ 73 & 53 & 00 \\ 74 & 02 & 00 \\ 7 & & \end{array}$
88008888

Blank page retained for pagination

the tanner sounding machine mounted in the steam cutter.

IMPROVEMENT IN DEEP-SEA SOUNDING MAOHINE.

Whe Tiameritmpraved thermometer case, xurtos the ASigsbee ctoonp, used with tho Negretti \& Ziamtira special deepsea Zthermameter:

Tro Counter-balance Wheels, of Cast iron.
D.S.F. C. Stx. Albatross, Oct. 2 a 1885.

BAIRD'S
PNEUMATIC INDICATOR.

Report U. S. F. C. 1886.-Tanner. Albatross.

BOILERS FOR THE STEAMER ALBATROSS.

INDEX.

[Note.-The references are to patge-fguros in brackets.]

lage.	Page.
A ${ }^{\text {baco } .65, ~ 66, ~ 65, ~ 69, ~} 71$	Aythye americana 69
Acanthuridic... G6	collaris...................................... 69
Aceipiter fuscus..................................... 70	marila neactica.......................... 69
Aecumalator, necessity of mim improved	Azores.. 19,20
pattern.. :33	Bahuma Islunds................38, 55, 64, 69,71
Acklin Island....................................... 00, 71	birds tikken on 69
Actitis maculariat................................... 70	list of fish taken at........... 65
AEgialitis melodn................................... 70	sickness at...................... 53
semipalmatal................... 70	soundings made near........ 2
vocifera................................... 70	Baird, Speneer F.................................... 2,19
wisonii.................................. 70	Baird's ammunciatory, success of............... 33
Agelaius phmutecus bryanti..................... 71	Baird, George V 32, 31, 39, 40
Ајпja ajaja.. 69	Balknidgea. 43
Albatross.................................1, 19, 55, 62, 73, 79	13alistes buniva..................................... 65
courtesies extencled to 11	vetuta....................................... 65
list of flsh taken ly.................... 6.	13allauf, 1... 34
personnel of............................. 39	Baltimore, Md....................... 32,44
report on thermometers 35	Bancıuerat.. 21
summary of movernents of......... 40	soundiugs near.......... 24
synopsis of steam-log of....... if	I3nrnacles...... 15, 43
visitors to 12, 24	Barracouth 67
Albuht vulpes.. 68	Bartlett, J. I2 ... 19, 20
Alcedinide.., 71	Bartramia longicaudr........................... 70
Alloposus mollis 31	Bestard grunt...................................... 67
Ammodramus sandvicensis savanna........ 71	Bean, T. M.. . . 64
Anas bosehos. \qquad 69	Bonufort Bank, investigation to bo mado
discors............................... ©9	IBenedict, James E................... 2, 10,19, 39, 55,58
Andros Ishund........................13, 69, 71	Benson, W.S ... 1,39
Anisotrenus virginicus.......................... 67	nssistance rendered by.......... 12
Annundintor, strecess of.............. 43	Benthodytos gigantea............................. 6.4
Anous atolidus.	Berycidu .. 08
Antrostomus carolinensis.... 71	Binini... 69,71
Apogon 67	Black ungel-fish................................... 60
Ardea candidissima.................. 70	3lack-finned sumper 67
cortulon....................................... 70	Blackfish ... 66
cgretin.. $\boldsymbol{7}^{0}$	Blake, Const Survey stenmer G. S.............. 11
Iserodias..................................... 64, 68	Ihake, Meury A.................................... 11,58
prwlei.. 70	courtesies extender by 10
ruft....................... 70	Blake, Mirs ..., 58
tricolor rulicollis 70	13lenny 65
vireseent 70	Bluelsh ... 65
Arenaria interpres 70	oecurrence of............... 32
Argonmuta, occurrence of 15	proposed invostigation of
Astron, J. W... 39	taking of................................... 5
Atherina arma.......................... 67	I3lue heron, enpturo of............................ 30
stipes 50, 60	Mhue pudding-wifo 06
Aldanta, U. S. S.................................... 48	Blundell, Walter 30
Austidus ... G9	§oar grunt

Page.
Inagua...7,69,71

Inornis martinica..................... 70
Jack
Jolt-head porgy
Jouett, James I:
Katzenstine metallic packing
Key West, Fla., arrival at
fire at
Kidder, J. H
Kyphosus sectatrix
Iaborosowus nuchipinnis
Lachnolaenus maximus.
Jagodon rhomboides
Lamps, lifo-time of.
Lane snapper.
Larus atricilia.
Latilidat
Lee' Thome
Lily, It, M.S
$2,5,10,12,19,30,39$, 5̌)

Liocephaluscarinatus. $6 \mathbf{6}$
Little Guana Cay.................. 15
Little-head ... 60
Long Island..8, 69, 71
Lutjanus analis.. 67 buccanclla..................................... 67 caxis. griseus mabogoni. synagrisMackerel, investigation of67MaIatin, U.S. Consul'T.J10
Macrorlamphus griseus. 70
Macrurus asper 28,20bsirdii28, 30,63
Main stay-sail, adoption of 38
Malacanthus plumieri 66
Mallard, M. M. S 24.
Man-of-war anchorage, location of 5birds, permission to collect
Mansfleld, C.D
Margarops fuscatus
Margate
Marguerite, schooner, log ofMatthews, CaptainMeclanionl appliances
Medieal Department, reportion
Medus:eMenemsha Bightit
proposed investigation of.........
Miller, G. A
Miller, N. BMilne Bank, investigation to be made nearMinocichla plumbenrubripesMimus beliamensis.polyglotins.Minnow
Mnlotilta varia
Monacanthuspullus.
Moore, W. Is
Moringua.
MorrayMud-gut
Mrugil trichodon 67
Mullet. 67
Mulloides martinicus 60
Munidns, taking of 15
Murseniduc. 68
Mutton-fish 67
Myiarchus leucaysiensis 67
Myxodes lugubris 65
varius (5)
Nairn, Maxwell, courtesies extended by.. 4
Nairn, IR. C 65 65
Nantuckt 20 20
Nassau. $8,11,11,53,67,60,65,66,67$
arrival at 60
collections made ut
58
58
fishing-vessely of. 58
fish-markel at 65
list of lish thken at 53
Naturalist, report of. 55
Navigation report, acope of 40
Navy Department 20
conl bupplien by 2
soundings for 2
Negretti-Zambrathermometer, description
of. 35,36
loss of. 10
Net, loss of 2
Newport, R. I., arrival at , 71
permission to collect birds of.. 10

 0
Nigger-fish 67
Noddies, permission to collect. II
Norfolk, Va., rirrival at. 17
Nycticorax nycticorax nevias 70
violaceus. 70
Nyc, jr., Willard.. $.2,5,10,11,13,14,55,61$
Ocyurus chrysurus 67
Old-wife 66
Onus ruffus 18, 31
Ophidiidro 65
Ophidium 65
Ophiognathus 64
Ostracion quadricornis 65
trigonum 65
Pandion haliaëtus carolinensis 71
Panther, stenmer, assistance rendered to.. 18
Parrotifish, oceurrence of. 5,65
Partridges, permission to collect 11
Passer donesticus 71
Prsserina ciris 71
cyanca 71
I'elocanus fuscus 69
Penmatulaaculcata. 63
borenlig. 63
Pennatulas, taking of. 15
Pentuerinus decorus.. 81
mülleri. 61
taking of. 12
Percidoc 67
Perinit. 68
Phaëthontide 69
Phaëton flavirostris 69
Phalacrocorax dilophas foridanus 69
69

Page.

3

ntacrinus decorus.. mülleri. taking of.	61 12
Percidoc.	67
Perinit.	66
Phaëthontidie.	69
Phä̈ton flavirostris	69
Phaluerocorax dilophas floridanus.	09
mexicanus...	69

81113
541-8
析 12

[^86]
10

[^87]
4)

Phœonicoptorug ruber....................... Page. 69		Prgo.	
		Sable Island Bank........	21
Phyllonyteris seyckorni.	$6)$	whales in vicinity of....	28
Phyrrulagra noetis..................................	72	Sailor's choice..	67
violacea	72	St. Domingo Cay 6	69, 71
Picidae.	71	St. Grorge's Jny..	9
Pigeons, permission to collect	11.	location of	5
Pimlies, permission to eollect...................	11.	St. John's, Nerfoundland.......... 44, B	83, 63
Pincers..	68	arrival at..	94
Pitangus bahamensis	71	St. Pierre, sounding near........	21
caudifusclat	71	Sajmo fontinalis.	03
Plataleidar.	69	balar	03
Platyglossus bivitatu	66	Sand-fsh.	66
maculipinna	66	San Salvador, arrival at.	4
radiatus...............................	60	Santa Maria.	6
Pleuronectidu	05	Suucer-eye porgy	66
Podicipida	69	Saurothera bahamensis.	71
Polioptila currulea.	72	Searus carulcus.	65
cuesiog	72	Selmeider, L. II.	49
Pomacanthus nureus....	6^{6}	Sehoolmaster.	67
Pomncentrus lencostictus........................	66	Schroeder, Lieut. Seaton........	1,39
obscuratus	66	Sciurus \&urocapillus..	72
Pork-nsh	67	noveloracensis.	72
Porpoise, taking of	10	Scolopacidx..	70
Port Nolson, locatio	5	Scorpans grandicornis	65
Porzana carolina	70	plumieri.	05
Powhatan, U.S.S	11	Scoteh porgy..	60
Priacanthus arenat	67	Scott, 13. O...	5,39
cruentatus	67	Searlily, occurrence of.	61
Pristipomatide	67	Sca-urchins, taking of.	15
Pritehard, S. L	39	Sea-water, densities of.	54
Procellariide..	69	Scbastes marinus.	63
Psittacus leucoceph	31	Seriola rivoliana.	68
Pudding-wife.	06	Serranidœ....	67
Pufinus audubon	69	Setophaga ruticilia.	72
borenlis	64	Shad.	60
Pug.	5,66	Shark, oil in stomach of.	16
Puppy shark	68	Shed porgy .	66
Querimana gyrans	67	Sheep-head porgy...	∞
Rallue longirostris cropi	70	Sheepshead, proposed investigation of......	2
Recurvirostridw..........	70	Ship Channel..	69,71
Red smapper	66	Shrimp, taking of..................................	15
Reel, description of	34	Shuster, E. H...	39
Reeling-engine, repairs to	40	Sidera funebris......................................	68
Ridgway, Robert.........	64	moringa....................................	68
Riding Rock Point, location of		Sigsbeo clamp, description of..................	36
Rocknsh.	65	sounding machine......................	33
Rock hind	67	Slphostoma. ...	65
snapper	67	Skip-jack.	66
Rumu Cay 9, 57, 65, 60, 67, 68,		Slippery Dick..	- 06
arrival at.................................	5	Jenny	66
cattle raising at........................	8	Smith, Sanderson..................................	- 62
cocoanut grove of.....................	8	Sounding apparatus, loss of.....................	- 5
cducational facilitics of.	7	englne, repairs to....................	. 46
exports of.	6	Southwest Bay.....................................	14
historical sketch of	6	Sow grunt.	67
industrics of	0	Spanish logfish....................................	66
land-owners	8	mackorel, proposed investigation	
medical assistanco rendered at.	5	of...	- 2
modo of flaing at.............. ..	58	Sparidsc... .	. 60
fine-apple culture at..................	8	Sparisoma catesbyl.	. 65
product of..............	8	distinctus	65
salt industry of.	6	flavescens.	66
sickness at.	σ	Speeffic gravities, record of	- 54
Rum boundings near.........................	9	Specimen eltp, loss of,.............................	- 18
Rum Cay, woods of...	0	Speotyto cunfoularia foridana................	. 71
Running-jack.........	60	Spliyrrona plouda...................................	67

Prge.	Page.
Sphyrænidæ... 67	Teuthis hepatus......... 66
Sphyrapicus varius................................... 71	tractus..................................... 66
Spindalis zena....................................... it^{2}	Thalassoma bifasciatum.......................... 35
townsendi.......................... 72	Thermometers, deep-sen.......................... 14
Sponge, manner of collecting 14,59	'Thompson's Cay 65
sloops, deseription of 59	Tondfieh.
Spongia barbara...................................... 60	Tongue of Ocenn 54.610
cerebraformis.............................. 00	Totanus flavipes 70
corlosia 60	melanolcucus............................ 5 , 61
gossypina 60	Townsend, Charles H................2, 10, 11, 13, 50,66
tubifera 60	Trachurops crumenopthalmus
Sporadinus bracei.................................... 71	Trachynotus ginueus) 66
ricordi................................... 71	rhomboides........................ 31
Spotted hind.. 67	Trawl, use of.. 80.81
Squirrel-fishı... 66	Trawlings, record of.............70, 70,81
Stailey, Ir. I. ... 39	Tringr fuscicollis 70
Starfish,taking of 15	mreulats.................................... 70
Steam-cutter, use of................................. 48	minutilla..................................... 71
Steam Engineering Dejartinent................ 41	Trochilids ... ${ }^{\text {a }}$
Steam-log, synopsis of............................. 41	Troglodytidse .. 65 $^{\text {a }}$
Stemm-pumps, working of........................ 47	Turbot 72
Steam-windlass, satisfactory worktng of... 47	Turdus mustelinus 62
Stcering-engrine, working of....................... 47	Tursiops tursio 71
Stercorarius parasiticus............................ 64	'Tyrannus dominicensis 71
pomarinus........................... 64	magnirostris........................... 71
Sterna antethetus 09	United States, importation of salt by ${ }_{\text {d }}$
antillarum.................................... 69	Upeneus maenlatus ${ }^{\text {¢ }}$
dougalli 69	Ventilation, report on............................... 51
fuliginos̊ 69	Vesperugo serotinus................................ 60.
hirundo....................................... 69	Virco altiloquus barbatulus...................... 72
maxim\& 69	crassirostris ${ }^{2}$
philadelphi九................................. 69	flavesecns................... 72
sundvieensis acunnvida 69	finvifrons
Btbenoteuthis megrptera 32, 64	noveioracentis maynardi ${ }^{\text {ar }}$
Strix pratineola 7 C	Walker, J. G
Stromberger, İ. M................................... 39	Whring, II. S...1, 11, 39
Submarine light, use of......................15, 17, 30, 31	Washburn, I'. I,....................................... 10,35
Sucker... 66	Washington, D. C., srrival at 17,32
Sucking-fish .. 67	Watling Tsland...................8, 9, 55, 65, 60, 67, 60,71
Sula cyanops.. 69	arrival nt $\mathbf{6 7}^{4}$
sulя... 69	collection madert 67
Surface net, use of..........................29,30, 31, 32	inhnbitants of................... 56
temperature, therinometers for..... 38	natural fentures of 56
Svediberg rovernors, suceess of 11	
Swatara, U.S.S... 11	Whates, occurrence of.......... ${ }^{6}$
Sylviidsc... 72	White \&runt... 67
Symphemia semipalmata........................ 70	Wind, table of force of........... 51
Syngnathidx... 65	Wise motor ${ }^{\text {m }}$, 62
Synodus.. 68	Wood's IIoll, Muss....................19, 21, 28, 44, 53, 62
Tabor, Mr.. 30	Wright, Charles....................................... ${ }^{69}$
'Tachycinita bicolor 72	Xyrichthys infirmis................................ ${ }_{60}$
Tang.. 60	lineatus
Tanver, Z. L.....1, 19, 39, 72	Yantic, U. S.S...... 11
Tanner sounding mnehine........................ 33	Yellow angel-fish................................... ${ }^{6}$
thermometer casc, deserintion of... 30	concy... 67
Temperature, record of..........................18, 35, 54	¢runt .. 68
thernometer for taking....... 38	juck... 60
Totraonids... 70	pudding-wife.. 00
Tetrodon ... 65	tril
вpengleri G\%	Zarngosa Rock, investigation near........... 20
testudincus,...., 65	Zenaida amabilis

ViII.-REP0rt 0f 0perations of the U. s. fish Commission sTeamer fish hawk for the year ending december 31, 1886.

By Mate James A. Smiti, U. S. N., Commaniding.

The following is a general report of the operations of this vessel for the year 1856:

On January 1 the ressel was moored to the wharf at the U. S. Fish Commission Station at Wood's Moll, Mass. The crew and some of the batching equipment of the vessel were utilized in the codfish batching work then being conducted at that station. This continued until February 14, when the vessel proceeded to New Bedford, Mass., to procure coal and stores, returuing to the station at Wood's Holl on February 16. The next few days were spent in building a live-fish car, and otherwise preparing for a trip to the cod fishing.grounds in Ipswich Bay, for the purpose of procuring spawn for propagating purposes. On February 21 left station at Wood's Holl and proceeded down Vineyard Sound, bound for Gloncester, Mass., arriving there at $8 \mathrm{a} . \mathrm{m}$. the next day.

On February 94 got under way from Gloucester Harbor, steamed to Ipswich Bay, and in that viciuity boarded several fishing vessels in search of codfish spawn, but did not succeed in procuring any, and proceeded to harbor of Porismouth, N. H. Came to anchor in the roadstead at $4 \mathrm{p} . \mathrm{m}$.

On February 25 got under way at $5 \mathrm{a} . \mathrm{m}$., steamed out towards the Isles of Shoals, boarded several fishing vessels, and succeeded in procuring about $8,000,000$ of codfish eggs. Then proceeded to Portsmonth Harbor and came to anchor off New Castle. Shipped $4,000,000$ cod eggs from Portsmouth, N. H., to Wood's Holl Station. A severe gale of wind from SSE. shifted to NW., in which some slight damage was done to vessel by two schooners fouling while at anchor. Steam-launch of the vessel was also sunk, and at times there was great danger of the vessel dragging on the rocks, which was happily averted. Weather moderating on the 27 th , at 3 p. m. slipped starboard and port chains, steamed up the river, and arrived at Kittery navy yard, where the vessel was made fast to the wharf and remained until the gale was over.
On March 3, at $3 \mathrm{p} . \mathrm{m}$., steamed down the river and picked up the buoy; unshipped anchors and chains, which were both secured. Swept
for steam-launch and made a rigid search for her all next day, but without success.

From March 4 to 23 the vessel was engaged in making trips to the fishing.grounds whenever the weather would permit. Boarded all fishing vessels for the parpose of procuring codfisl spawn, and shipped it to station at Wood's Holl, Mass.

On March 24 got under way from navy-yard at Portsmouth, N. H., and proceeded to Boston, Mass.; arrived and made fast to wharf at nary-yard at $4 \mathrm{p} . \mathrm{m}$. Vessel remained there until $\Lambda_{\text {pril }} 10$ awaiting orders, during which time repairs were made to the upper work that had been damaged by the collision with the schooners during the gale of February 27.

On April 12, at 4 p. m., unmoored ship from wharf and steaned down the harbor, bound to Wood's Holl, Mass., arriving at Fish Commission whart on the 14th.

On April 16, at 10 a. m., cast off from wharf and proceeded down the Vineyard Sound, bound to New York. At 5.30 p . m. put into Newport, R. I., on account of fog. Got under way next day and proceeded to Brooklyn; made fast to wharf at navy-yard, Brooklyn, at 6.45 April 18. The vessel remained there awaiting orders until the 21st.

On April 22 proceeded down East River to sea, bound to Havro de Grace, Md. Arrived at Battery Station at 4 p. m. on April 24, and began to fit up hatching apparatus for the season's shad work.

On April 26, at 4 p. m., left Battery Station, steamed over to North East River and auchored at a point midway between Red Bank and Carpenter's Point, adjacent to the fishing-shores and gillers. Sent out spawn-takers daily to the fishing-shores and gillers, which duty was carried on until May 1, when orders were received to discontinue work at this point and proceed to the Delaware River. At 6 p . m. went to Battery Station and transferred all shad spawn and eggs in process of hatching to superintendent of station.

On May 3 steamed up to Havre de Grace; coaled ship at Hiller's coal wharf. At $1 \mathrm{p} . \mathrm{m}$. cast off from wharf, steamed down the river, landed Assistant Commissioner Ferguson at Battery Station, then proceeded down Chesapeake Bay, bound to the Delaware River; arrived and came to anchor off Gloucester City, N. J., at 12.30 p. m., May 5.

From May 6 to June 19 vessel was statioued in the viciuity of Gloucester City, N.J.; crew were employed in gathering shad spawn from the different fishing-grounds on the river. The depositing and transferring of shad fry was continued until the close of the season; a detailed report of which has been printed in Fish Oommission 13ulletin, 1886, page 289.

On June 10, at 3.30 p. m., proceeded to Cooper's Point. Camden, N. J. Arrangements were made to haul the vessel out on Tilton's marise railway, repairs being needed to the sheathing and the ship's rudder. On June 15 the vessel was hauled out, repairs were made, and vessel was
launched on the 17th. On June 19 took on board 50 tons of coal from coal wharf at Port Richmond. Returned to Gloucester City, N. J.
On June 21, at $5.30 \mathrm{a} . \mathrm{m}$. . proceeded down the Delaware River, bound to Washington, D. C.; arrired at and made fast to wharf at navy-yard at 1 p. m., June 24.
From June 25 to July 9 the vessel was at navy-yard, Washington, D. C., awaiting instructions, in the meau time making some necessary repairs to main boiler and repairing dredging-machine and scows to be towed to Saint Jerome Station, Maryland.

On July 10, at 5.15 a . m., got under way from navy-pard, Washington, D. C., with dredging-machine and two dump.scows in tow, aud proceeded down the Potomac River, bound to Saint Jerome Station, arriving there next day at $6.30 \mathrm{p} . \mathrm{m}$., and delivered them to superintendent of station.
On July 12, at 1.10 p. m., proceeded up the bay, bound to Battery Station, arriving there at 10 a. m. next day; took on board a lot of machinery for transportation to Saiut Jerome Station.
On July 14, at $10.40 \mathrm{a} . \mathrm{m}$. , left Battery Station with two steamlaunches in tow and proceeded down the bay, bound to Saint Jerome Station, arriving there on the 16 th at $2 \mathrm{p} . \mathrm{m}$. Delivered machinery and launches to superintendent of station; vessel remained at station uatil August 3. Orew were employed while there in working on dredg-ing-machines and scows and rendering assistance to the superintendent of the station in dredging the channel. During the stay of the vessel at this place the command of the ressel was turned over to Mate James A. Smith, U. S. Navy. W. J. Maxwell, U.S. Navy, was detached and ordered to duty on the U. S. Fish Commission steamer Albatross.

On August 3 received orders from Assistant Commissioner T. B. Ferguson to tow dredging-machine, two dumping-scows, and one steamlaunch to Battery Station, Harre de Grace, Md.
On August 4, at 2 p. m., got under way and procoeded up the bay With tow and arrived at Battery Station at 6 p . m. next day, and delivered the dredging-machine and scows and steam-launch to superinteudent of Battery Station, and vessel remained at station until August 20. Orew were employed in dredging-machine and scows in digging out the channel leading into the station. On that date receired orders to proceed to Saint Jerome Station and drive a well for the use of the station.

On August 21, at $10 \mathrm{a} . \mathrm{m}$., got under way with well-driving equipment on board, bound to Saint Jerome Station. Arrived there next day and made fast to the Fish Commission wharf. Crew were employed until August 27 in driving well pipes, when orders were received to discontinue work at this place aud proceed to Wood's Holl, Mass.

On August 28 took on board rell-driving apparatus and seven men for transportation to Wool's Uull Station. At noon steamed out of
creek and proceeded down Chesapeake Bay and came to anchor in Hampton Roads at $10.30 \mathrm{p} . \mathrm{m}$.

On August 29, at 9 a. m., got under way and proceeded out to sea. Visited Winter-Quarter Shoal, Five-Fathom Bank, and Sandy Hook Light-Ship and cousulted with the keepers in regard to the temperature observations for the United States Fish Commission. Arrived at Newport, R. I., and came to auchor at $10 \mathrm{p} . \mathrm{m}$. , having been instructed to stop there and convey the Commissioner to Wood's Holl, Mass. On September 2, Commissiouer Spencer F. Baird came on board. At noon steamed out of the harbor, bound to Wood's Holl; arriving at station at $5.45 \mathrm{p} . \mathrm{m}$., where vessel remained awaiting instructions until September 12 .

On September 13 took on board steam windlass left at the station by the schooner Grampus. Received orders to proceed to Providence, R. I., to hare it fitted in vessel by American Ship Windlass Company; also to tow steamer Halcyon to Bristol, R. I., for repairs.

On September 14, at 7 a. m., cast off from wharf at station, steamed out of the harbor with steamer Halcyon in tow. At 3.30 p . m. dropped steamer at HerresLoff's Works at Bristol, R. I.; then continued to Providence, R. I., arriving there at 5.30 p . m. The vessel remained here until September 26 , having steam windlass fitted.

On September 27, at 3.30 p. m., proceeded to Wood's Holl, Mass., laving put into Newport over night on account of fog. Vessel remained at Wood's Holl awaiting instructions until October 23, during which time the crew were varionsly employed about the station, discharging coal from schooner, etc.

Ou October 23 receired orders to sail for Battery Station, touching at New York and Saint Jerome Station en route. Took on board some articles for transportation to both stations; also took launch Cygnet in tow as far as New York.
On October 24, at $6.30 \mathrm{a} . \mathrm{m}$., cast off and steamed out of harbor with launch Cynget in tow, bound to New York. Arrived there and made fast to wharf at navy-yard, lirooklyn, at $8 \mathrm{a} . \mathrm{m}$. next day. While there, received paymaster's stores from mavy-yard.

On October 26, at 7 a. m., steaned down East River aud proceeded outside of entrance to New York Bay; made several hauls of the trawl in the vicinity of Sandy Hook Light-Ship for the purpose of ascertaining if any of the English sole could be found which were deposited in that locality some years ago. Did not succeed in finding any. Weather looking threatening, came to auchor in the Morse Shoe, and were detained by bad weather until November 1. Got under way at $7 \mathrm{a} . \mathrm{m}$. that morning and proceeded to sea, bound to Battery Station, touching at Saint Jerome Station en route, arriving there at 9 p. m. on November 2 , where well-driving apparatus was landed.

On November 3 , at 9 a. m., got under way with launch 55 in tow and proceeded up Chesapeake Bay, came to anchor off Spesutio Island at
$9.30 \mathrm{p} . \mathrm{m}$., and arrived at Battery Station next morning; anchored in the chanuel opposite the station, where vessel remained until November 20. The majority of the crew of the vessel were employed every day on work about the station, such work as the superintendent of the sta. tion required.

On November 22 received instructions from the Assistant Commissioner, T. B. Ferguson, to proceed with vessel to Saint Jerome Station; got under way and proceeded down Chesapeake Bay, arriving next day. Took on board several wheelbarrows, three flames aud gates to be transferred to Battery Station.
On November 25 , at 4 a . m ., got under was and proceeded up the bay to Battery Station, arriving there at $8.30 \mathrm{a} . \mathrm{m}$. November 26 . Got lighter alongside; put on board all articles received at Saint Jerome Station, which were transferred to superintendent of Battery Station. From then to December 3 the vessel remainel at the station. The majority of the crew were employed in discharging coal for station, tending dredging-machine and scows, wheeling mud, and assisting carpenter's gang to build extension of hatching-house.
On December 3 weather very cold (temperature 1) ; drifting ice begau to come down the channel. Not being able to get alongside of wharf at station, and to prevent vessel from being frozen in, at 4 p . m. got under way and steamed down oft Spesutie lishand and camo to anchor. About $10 \mathrm{p} . \mathrm{m}$. found iee making abont the vessel. Got mader way and steamed down the bay and anchored above Poole Island. Next morning proceeded to Baltimore, Md., and awaited instructions.
On December 94, at 9 a. au., went to Locust Point and took on board two small boilers and other machinery for tramsportation to Battery Station; then steamed up to Skinner's ship-yard and made fast to wharf.
Ou December 25 steamer Iatcyon hauled alongside, and there were placed ou board this vessel ber eylinders, crank-shaft, and bed-plates, ete., to be taken to Battery Station as soon as the chamel was open. From this time to December 31 ship remained at Skimen's ship-yard atwaiting instructions.

Wood's Moll, Mass., september 12, 1857.

IX. - Report 0n the operations of the steamer halcyon FOR THE YEAR ENDING DECEMBER 31, 1886.

[Abstract.]

At the beginning of the year this steamer (formerly known as the Lookout) was at Battery Station in winter-quarters, where she remained undergoing repairs until March 28 . The services of the crew were utilized for varions items of shore duty when not required for painting, cleaning, and overhauling the steamer and its apparatus.
On March 28, with Assistant Commissioner Ferguson and William Hamlea on board, she procceded to Baltimore, to take on articles for use in shad-hatching, aud 12 men for spawn-takers. After returning, the vessel remained at the station until April 15, when she proceeded to Baltimore, and on the 17 th to Saint Jerome Station, with the assistant commissioner on board. On April 18 and 19 pound-nets were visited between Smith's Point and the mouth of Wicomico River. Proceeding up the Rappahannock liver as far as Layton, 100 stake shad gill-nets and 58 pound nets were counted. The vessel, needing repairs, proceeded to Baltimore, and was hauled out on the railway April 22 , from Which time until the 20 th the shaft was undergoing repair.
From April 27 to May 23 the Haleyou was engaged in gathering and hatehing shad spawn and in depositing the fry. A detailed report of this work has been published in the Fish Cominission Bulletiu for 1886, page 29 J . The total number of eggs procured was $4,501,000$, a number far in excess of any previous year.
From the close of the shad season to May 27 the vessel was used for making freight trips between Battery Station and Harre de Grace. On that date she went to Wilmington, Del., with William P'. Sauerhoff on board, to investigate the shad fisheries of the Delaware. After some slight repairs had been made to the vessel the assistant commissioner came on board aud inspected her, after which she proceeded to Baltimore, arriving on the 28th. From this point Major Ferguson accompanied the vessel to Battery Statiou.
In May the equipment was increased by the addition of a light naphthaengine launch. On June 4 the steamer was loaded with lumber and stores for Saint Jerome. After discharging the cargo she steamed to Washington navy-yard, and arrived June 6. Two days later, accompanied by the assistant commissioner, she proceeded to Saint Jerome, and afterwards to Battery Station. On Junc 10 the vessel :proceeded to Havre de Grace, where the assistant commissioner left the ship.

From June 11 to the eud of the month the vessel was used for several freight trips.

On June 30 the steamer proceeded to Hawkins Hole, behind Hamp. ton Roads, and fitted up arparatus for the artificial hatching of crabs. On July 3 several female crabs were secured, the spawn of which was placed in hatching-jars. On July 8 deposited erab spawn in Elizabed River. On July 10 secured the spawn of five female crabs and placed it in hatching.jars. On July 12 overhauled pound-nets in the vicinity of Back Iiver Light. The catch of mackerel was very small, one uet securing 130 mackerel and 25 pompanos, none of which were found to be ripe.
On July 28 the command of the vessel was turned over to William Hamlen, James A. Smith having been trausferred to the command of the steamer Fish Hawk.

On July 30 the ressel left Baltimore, bound for Wood's Holl, reacling New York City on August 4 and Wood's Holl on August 9. On the 26 th of August search was made in the neighborhood of Cox's Ledge for swordash, withont suceess. On August 20 proceeded, with the assistant commissioner on board, to Mattapoisett, Mass., to meet Gen. W. F. Smith. On the return trip to Wood's Moll, without any known cause, the shaft suapped aud the propeller was lost. The vessel was then examined by a submarine diver, and the broken shaft removed. On September 7, with the assistance of a diver, the wheel was recovered from the channel. On September 14 the vessel was towed by the Fisle Hawh to Bristol, R. I., and hauled up to Herreshofy Manufacturing Company's wharf: While waiting to be hauled out on the railway the crew was engaged in painting and cleaning. On October 1 the vessel was towed to Providence, R. I., and hauled out on the dry-dock for repairs.

On October 4 conveyed the assistant commissioner to Fall River. Later in the month trips were wade to Newport, R. I.; New Bedford, Mass.; Noauk, Conn.; and New Loudon, Conn. At the latter place the assistant commissiouer rejoined the vessel, aud the compasses were tested by Lieutenants Waring and Scott, of the Albatross.

On October 25 the Falcyon, with the assistant commissioner on board, left Wood's Holl for Battery Station, where she arrived October 29 and remained until November 1. After this varions trips were made to Baltimore, Saint Jerome, and Amapolis, at which latter point the assistant commissioner joined the ship.
In the early part of December the vessel got aground from dragging of anchor, and it was impossible to get afloat until the 9th, when the tugs Pacific and Champlin towed her to Havre de Grace. In endeavoring to get off, the condensing-pipe was broken. This necessitated going to Baltimore for repairs, where she remained alongside of Skinner \& Son's railway wharf until the close of the year.

Balitimore, Md., Junuary 4, 1857.

X.-REPORT UPON THE 0PERATIONS OF THE U. S. FISH COMMISSION SCH00NER GRAMPUS FROM JUNE 5, 1886, 'T0 MARCH 15, 1887.

by J. W. Collins.

The Graupus was completed by the contractor, and went into commission on the morning of June 5, 1886, previous to which time the officers (first mate, D. E. Collins; second mate, J. M. Coombs; machinist, G. W. Williams), three seamen, and the cook hat joined her and were assisting in making preparations for sea. At 10.40 a . m. on the 5 th of June, we left Noank, Conu., and arrived at Wood's Holl on the afteryoon of June 6. On J une 8 we sailed from Wood's Holl for Gloucester, Where we arrived at 6.30 p . m. on the following day. Boats and fishing gear which had been made at Gloucester were taken on board at that place, and some necessary changes were made in the sails. On Juno 14, left Gloucester for Boston, arriving at the latter place the same afternoon. The chrouoneter and other instruments and apparatus were taken on board at Boston. Returned to Gloucester June 10; on June 22 sailed from Gloncester for Wood's Holl, reaching the latter place at $7 \mathrm{p} . \mathrm{m}$. ou the following day. The vessel remained at Wood's Holl until August 12, the time in the interim being spent in making the necessary preparations for a cruise.
On the morning of August 12 we left Wood's Holl on a cruise to the so called "tilofish grounds," which lis along the northern edge of the Gulf Stream, in depths varying from 75 to 175 fathoms, betweeu the meridians 70° and 73° west longitude.
After leaving Wood's Holl we went to Newport for bait, arriving at that place the same eveuing. A supply of menhaden bait was obtained on the 13th from fishing steamers off Wiesford, and the next day a quantity of clam bait was purchased at Newport.

At 5.40 p. m., August 14, got uuder way at Newport and proceeded to sea. On the afternoon of August 15 three trawls were set in 96 fathoms, latitude $39^{\circ} 59^{\prime} \mathrm{N}$., longitude $70^{\circ} 15^{\prime} \mathrm{W}$.
From this time until and including Angust 21, trials wero made every day, with the exception of August 17 (when it was too rough to fish), with hand-lines aud trawl-lines in depths varying from 60 to 160 fathoms, at intervals of from 5 to 20 miles apart, until a position was reached, latitude $39^{\circ} 20^{\prime}$, longitude $72^{\circ} 04^{\prime} 15^{\prime \prime}$, where the trawls were set
for the last time during the cruise. The results of these trials for fist were very meager. A few common hake (Phycis chuss) and silver hatie or whiting constituted the chief part of the catch.

On the morning of the 18th, at 5.30 oclock, I noticed a large number of small horse-mackerel (Orcynus thynnus) alongside, running with the vessel. We immediately put out two bluefish troll-lines and caught 10 of the fish. Such of them as were not severely wounded we put into the well, but some of them soon died. We had one of them cooked and found it very palatable, the flavor resembling somewhat that of the common mackerel. These fish were of uniform size, and, approximately, about 18 to 22 inches in length. Although they seemed to bite readily at troll-hooks when first put out, it was not long before they refused to take them, and all subsequent attempts at capturing others on hooks proved unarailing. These fish exhibited a remarkable peculiarity, and one which I have not previously noticed in similar species. While the vessel would be lying to, drifting, they would remain around her, their presenco being detected by an occasional flash of white, as they turned in the water several fathoms below the surface. But as soon as the vessel was under way and sailing through the water, they would rise near the surface and follow along on both sides, seemingly taking great delight in chasing her, their movements resembling those of the common porpoise or dolphin (Delphinus delphis); the chief difference being that the tunny exhibited no disposition to "play" under the bow as the dolphin does, but contented itself with keeping near each quarter of the vessel. It may be remarked here (though somewhat anticipating the rest of the report) that this school of tish remained alongside of the vessel for two or three days and nights, following her with unflagging vigilance, aud with seemingly increasing numbers. For most of the time when the vessel was sailing, many hundreds of these fish could be seen ou each side and astern, sometimes as far off as 200 fathoms, running down the slope of a wave. Several were struck with the harpoon, but our latest efforts to catch them on a trolling-line proved abortive. Mr. Newcomb saved the gills from some of the dead specimens, parasites having beeu observed on them.
The object of this cruise was mainly to ascertain if any tilefish (Lopholatilus chamceleonticeps) could be found on the grounds where this species had existed in such abundance prior to the great mortality which occurred to the same in the spring of 1882. No tilefish were taken on the grounds visited, and, so far as could be ascertained, by examination of the stomachs of the fishes caught, there was a decided scarcity of food suitable for the Lopholatilus.

The attempts to catch the tilefish having now continued for six days, and our researches having extended over a stretch of ground nearly 120 miles in length, where the Lopholatilus was formerly known to occur in large numbers, it seemed to me undesirable to pursue the investigation to greater length, more particularly as our bait at this time was quite
unfit to use. I think it is now safe to say that the large number of sets made with the trawl-line on this occasion, tog ether with the trials made with hand-lines, clearly demonstrate the fact, that, if the tilefish has not become absolutely extinct in this region, it is certainly so rare that the chances of obtaining it are limited. It is possible that in other regions it may be found, or it may be taken, at some later period, in the locality visited by us, but at tho present time it seems very doubtful if it exists along the northern borders of the Gulf Stream to the eastward of 730 west longitude.

It is a somewhat remarkable fact, and one seemingly worthy of notice in this place, that, with comparatively for exceptions, the fish caught had no food in their stomachs. Hake are notably voracious, and it is reasonable to infer that if food is abundant in this region there would be as good evidence of it as when, in former years, the tiletish were found gorged with crustacea, etc.

We left the tilefish ground on the evening of August 21. It was calm and foggy during the a. m. of the 23 d . At this time we were off to the southward of Block Island, about 15 or 16 miles distant. Here We saw several schools of porpoises running in various directions. In the afternoon the wind increased from a light air to a moderate breeze from the southward. Wo headed in for Martha's Vinegard. The fog cleared for awhile, and Block Island was seen. A number of hagdous (Puffinus major) were seen on the previous day off Long Island, and others were noticed to day. At $12.40 \mathrm{p} . \mathrm{m}$. I succeeded in wounding one, which we secured alive, aud brought it on board.

Wo arrived at Wood's Holl on the afternoon of August 24. As soon as the collections which had been obtained on the cruise were landed, together with such portion of the vessel's equipment as was not required for work in the immediate future, preparations were made for a trip to the eastern fishing banks in quest of halibut, which, it was hoped, might be brought into port alive in the vessel's well, thus affording an opportunity for experimentation in the artificial propagation of this important and valuable species.

The large iron steam windlass and the engine and boiler used on the Grampus having been found too heavy for her, tho accumulation of weight forward making it difficult to keep the vessel in trim, and causing her to pitch and send heavily in a seavay, the Commissioner determined to have them removed and to substitute instead a wooden windlass, such as is ordinarily used on fishing schooners.

The boiler and steam pump were landed at Wood's Holl, and, arrange. ments having been made with Gloucester parties to make the necessary changes in the windlass, we left Wood's Holl on September 1, and on the following day reached Gloucester.

On the afternoon of the $2 d$ the vessel was lauled out on the railway to have the condensing pipes taken off her bottom, and at high water the next day she was launched again and moored to the railway pier,
where she lay nearly all the time while the new windlass was being made and put on.
The construction of the vessel's deck-frame forward of the foremast, though well adapted to the requirements of a steam windlass such as had tirst been put on her, was not so well suited for the support of a wooden windlass. It was necessary to put in a new deck-beam for the windlass bitts to rest on and fasten to, and also a new pawl-bitt. To do this the deck had to be taken up forward of the foremast, running back of the forecastle in places to break joints. New decking had also to be put in where the hole for the smoke-stack of the steam boiler had previously been cut.

The change in the windlass rendered necessary a change in the stow. age of the chain cables. These had been stowed under the forecastle floor, forward of the formast, but under the now arrangement they were placed in boxes built on the after side of the forecastle bullhead. This carried the weight of the chains-some 6,500 pounds-about 10 feet farther aft, wearer the center of the vessel; a desirable change, since she would thus be less liable to pitch and send heavily in a seaway.
September 6 the iron windlass was landed, and the next day it was shipped to Wood's Holl. Some delay was experienced in getting the new windlass completed, owing to the fact that several days' work were expended on the stick of timber first selected before it was found to be unfit for the purpose. The work of the carpenters, calkers, painters, and plumbers was finally completed at noon of September 22.
Previous to this, at 9.40 a. m., September 15, Mr. James Carswell, expert fish-culturist, reported on poard, he having been ordered on from Washington by the Commissiouer to join the vessel for this cruise to the banks. Mr. 1R. L. Newcomb joined the vessel on the 21st to make the cruise in the capacity of naturalist.
It was thought that there was at least a probability of finding halibut with ripe eggs, which might be takeu from the fish and impregnated on the ground. In this event it would be uecessary to have some device to keep the eggs in, so that they would retain their vitality and go on in their development until the vessel reached Wood's Holl. Mr. Carswell devised and had made two wooden frames, each capable of holding two of Chester's glass hatching.jars. Theso frames were so arranged that they would float in the well, thus supporting the nearly immersed jars, their motion being regulated by upright wooden guides nailed to the side of the well, though they were not prevented from oscillating with the movement of the vessel in a seaway. Ten of the Chester jars were sent on from Wood's Holl and taken on board; also pans, dippers, etc., that were required for fish-cultural purposes were purchased.

The season was at hand when heavy weather might-be expected on the banks. The foretopmist was therefore sent down and the rigging
set up taut before sailing. September 21 we took on board six tons of ice, and the next day, just before sailing, the water tanks were refilled.

As previously mentioned, the repairs on the vessel were completed at noon of September 22, and at $4.20 \mathrm{p} . \mathrm{m}$. of the same day wo sailed on a cruise to the banks under the following orders:

U. S. Commission of Fisif and Fisheries, Wood's Holl, Mass., September 19, 1886.

Sir: As soon as the repairs and alterations incident upon the completion of the new wiudlass are completed, you will proceed with the Grampus to some one of the eastern banks for the jurpose of determining the possibility of bringing in cod and halibut living, in connection with the artificial propagation of these species. If jou can add some living haddock or pollock or others of the gadoid fish, you will do so. Should you find any of these ish spawning, it may be well to try the experiment of stripping them on the spot, and bringing the eggs in under such conditions as you and Mr. Carswell may decide upon. The locality to be visited, and the period of your stay, are left to your discretion. The vessel will return to Wood's Holl with its cargo.

You will also obtain as good a series of the sea-fowl of the coast as you can secure, procuring as many duplicates as possible. A fow specimens of each species should be brought in the flesh, to be forwarded to the National Museum.

Vory respectfully,

SPENCER F. BAIRD, Commissioner.

Capt. J. W. Collins, Commanding Schooner Grampus, Gloucester.

Wo passed Eastern Point at 5.25 p. m., and at 11 a. m., Soptomber 23, we spoke the schooner Carrio E. Payson, of Portland, one of the gill-net herring lishing fleet, off Wood Island, Maine. From her we obtained 8 barrels of fresh herring, which we immodiately iced for bait.

As soon as the bait was on board (at $11.50 \mathrm{a}, \mathrm{m}$.) we filled away on port tack, close hauled by the wind, heading SE. $\frac{1}{2}$ S., with a moderato breeze E. The latter part of the day was rainy, with light to moderate wind from E. to SF., varied by calms; weather threatoniug in appearauce.

We went into Portland Harbor for the night, in company with a large Heet of fishing. and coasting vessels, and at S p. m. anchored oft Fort Preble.

At 6 a. m., September 24, we got under way, and ran out of Portland with a light breeze, which varied from W. to WNW. Tho wind gradually increased during the p. m., and at midnight blew a moderato gale from NNE.

The wind blew stiff during the first part of the 25th, decreasing to moderate breeze at meridian.
S. Mis. $90-45$

At 12.15 p . m. sounded in 49 fathoms, hard bottom; latitude $43^{\circ} 05^{\prime}$ N., longitude $65^{\circ} 15^{\prime}$ W.; put out 5 hand-lines and caught 17 cod, mostly of small size, and one haddock. These were all put into the well, but 9 of the cod soon died. Their ovaries and spermaries were very small, apparently not at all advanced in development. Nothing was found in the stomachs of the fish except a few pieces of partially digested squid. Squid were seen in the water following up the fishing gear, but none could be caught on a squid-jig that was put out.
We lay to fishing one and three-quarters hours, and got under way at $2 \mathrm{p} . \mathrm{m}$. Just previous to this a school of porpoises came alongside the vessel for a brief time, but did not "play" under the bow when we kept off.
At 2.45 p . m. spoke schooner Garibaldi," at anchor in 82 fathoms (approximately), trawling for cod. Her captain came on board. He reported having good fishing, and said he caught a halibut that day, which was then on deck among the recently caught codfish.

Mr. Carswell and I went on board the Garibaldi to ascertain what stage of development the reproductive organs of the halibut were in. It was a male, of about 25 pounds' weight. Its spermaries, though not ripe, were in an advanced condition of development.
In the evening, as we lay becalmed, about 200 squid were caught, the majority of which were put into the well alive. They seemed to live without any difficulty, but in a few days they nearly all made their escape through the holes in the bottom of the well, which are large enough to allow a somewhat bulkier animal to pass through if he chance to hit directly in a hole.

There was a moderate breeze from SSW. on the morning of the 26 th, but the wind rapidly augmented in force, blowing a stiff breeze at 3 p . m . and somewhat stronger after that, veering westerly. We ran to the eastward, along the southern border of La Have Bank, making occasional soundings and trials for fish with hand-lines, but without success. Only one of the cod put into the well yesterday remained alive to-day.
At 11 a. m., while we were lying to trying for fish, the schooner Mabel Leighton, of Gloucester, spoke us, and her captain, Charles H. Greenwood, told me that he had a large squid on board which he would give to the Fish Commission. I immediately went on board the Leightou and got the squid. It proved to be the "broad-finned squid" (Sthenoteuthis megaptera Verrill), of which no perfect specimen had heretofore been obtaiued in the United States. The only perfect specimen previously known was picked up on Cape Sable, Nova Scotia, and it is now in the Provincial Museum at Halifax.

Captain Greenwood said the squid had been caught on the previous evening by John F. McDonald, one of his crew; who was fishing with an ordinary squid-jig. The locality where it was taken was off the southern part of La Have Bank, near the meridian of $64^{\circ} \mathrm{W}$., and in 82 fathoms of water.

[^88]I made the following measurements of the specimen before putting it into alcohol:

Circumforonce of body, 2 inches bohiud tho junction with tho head........... 1
At noou we filled away and ran to the eastward, and at $1.45 \mathrm{p} . \mathrm{m}$. spoke the schooner M. A. Baston, of Gloucester, a balibut catcher, at anchor in 220 fathoms. Her position, as given by Captain Thompson, Was latitude $42^{\circ} 47^{\prime} \mathrm{N}$., longitude $63^{\circ} 12^{\prime} \mathrm{W}$.
After lowering and furling the mainsail and laying the ressel to under foresail and jib, I went on board the Baston, accompanied by Mr. Carswell.
On her deck were 12 to 15 halibut that had just been caught. The fish were opened and examined to ascertain the condition of the reproductive organs. These were found in various stages of development; some well advanced, but none fully ripe.

Captain Thompson reported halibut fairly plentiful, aud thought we might get enough for our purposes if the weather proved favorable. I therefore concluded to lay to by his vessel and wait for an of portunity. to fish.
The next day, September 27 , was very unfavorable for our purpose, since wo had to set under sail, or make a "flying set," as it is often called. It was raining in the early morning, with a fresh WSW. wind. $\Delta t 7 \mathrm{a} . \mathrm{m}$. the wind hauled to WNW.; the rain ceased, and was immediately followed by a thick fog, which continued till $11 \mathrm{a} . \mathrm{m}$. Between meridiau and 4 p . m. the wind hauled from NW. to NE., increasing in force, with a rough choppy sea aud current setting sonthwesterly with considerable strength.

The crew of the Baston went out about noon to haul their lines, which had been previously set. Two of her dories, each having two men, were brought so far to leeward by the change of wind that they could not reach their vessel. Indeed, the men could make little or no headway against the wind, sea, and current. Anticipating a difficulty of this kind, I had run down to leeward of the Baston, and al lookout was kopt for any of her boats that might be in that direction. The men in the first dory wo picked up were considerably exhausted. Thoy had been unable to find their gear, and had been rowing coutinuously for several hours; they could then scarcely hold their position against the sea and wind. After getting the boats on board we beat up to windward of the Baston, hove to, hoisted out her dories at 5.30 p . m., and her men returned to their vessel.

On the 28th the wind was moderate from ENE. in the morning, veering southeasterly in the eveuing. We set two codfish trawls, each hav-
ing 1,000 hooks, in from 90 to 110 fathoms, pebbly bottom; position (5013), lat. $42^{\circ} 50^{\prime} \mathrm{N}$. ; long. $63^{\circ} 20^{\prime} \mathrm{W}$. This set was made chiefly to procure cod, hake, ete., to use as bait for catching halibut. There was also some probability of catching a few of the latter specios. The total catch was as follows: 60 cod; 81 lake (P. chuss); 37 cusk (Brosmius americanus); 5 pollock (Pollachius carbonarius); 2 small skates; a fow shells, chiefly whelks (Buccinum), and some sea anemones. Tho following birds were collected during the day: 6 common hagdons (Puffinus major), 1 black or sooty hagdon (\dot{P}. fuliginosus), 7 jægers, and 1 young herring gull.

It was rainy during the first part of the 29th, and too rough and blowy to fish. In the afternoon the weather improved slightly, but the wind blow fresh all day, with occasional squalls and a choppy sea. Shortly before noon the M. A. Baston's dories went out to haul the trawls which had been set the previous evening. Soon after, we passed close to the Baston's stern, and Captain Thompson hailed, saying he had ordered his men to give us any small halibut they should get which appeared to be strong enough to live in our well. Being very desirous of ascertaining whether or not balibut that were caught in deep water (200 to 350 fathoms) could be kept alive in a vessel's well, I deemed it best to accept this generous offer. Accordingly, during the afternoon we got 4 halibut from the Baston's dories, the fish varying in size from 18 to about 50 pounds weight each. They appeared tolerably lively when put into the well, but they soon died, the last of them being dead on the following morning. The birds collected on the 29th were as follows: 3 hagdons, 1 noddy (Fulmarus glacialis), and 4 jægers.

September 30 was moderate, with fog in the latter part of the day. We set two halibut trawls to the westward of the M. A. Baston, beginming to set about 2 miles from her in 321 fathoms. The strong current carried the gear nearly 2 miles to the westward before it fetched up. The depth at the northwestern end of the trawls, where they brought up, was 266 fathoms. After the gear was set, and while we were waiting for the time to arrive when it should be hauled (between 10 and $11.30 \mathrm{a} . \mathrm{m}$.), several birds were shot, as follows: 8 hags (1. major), 4 kittiwake gulls, and 6 jegers.

Much difficulty was experienced in hauling the trawls, owing to the great tenacity of tho sticky clay bottom, into which the anchors were buried. The difficulty was increased by one of the tramls of the schooner Gertio May, of Portland, going across one of ours, the result being that our gear parted and we lost nearly half of one trawl.*

We caught 19 halibut, 14 of which were put into the well alive. Eleven of the live halibut were caught on a portion of trawl that we

[^89]hauled on board the vessel. These fish were lifted over the rail with the greatest care. They were immediately unhooked and pat into the Well. Every possible effort was made to guard agaiust the fish receiving any injury. The conditions under which they were captured were certainly as favorable as they well could be, in deep water, to insure their living in the well; and it was felt that this would be an unusually good test of the feasibility of keeping alive halibut that had been eaught in such a depth. The result, however, was contrary to our hopes; for, although we did not complete hauling the lines until 5.25 p . in., six of the fish were dead next morning, and all died in less than 36 hours after they were put into the well. This, though somewhat discouraging, was not entirely unexpected. It is self-evident that a fish taken from a depth of 200 to 300 or more fathoms must undergo a very great change in pressure and temperature in reaching the surface. Such changes are generally fatal to mauy species of fish, and might be particularly so to a halibut caught on a trawl-line, and which must necessarily be half drowned aud so much exhausted that it would not have sufficient ritality left to endure what otherwise it could successfully withstand. It will, therefore, in my opinion, be difficult, if not absolutely impracticable, to get halibut from deep water which will have sufficient vitality to live until they can be carried into port alive.
This being the case, the attempt to obtain a supply of gravid halibut will be attended with many difficulties, and it is probable that success will be attained only after considerable experimentation. The fact that the breeding grounds of the halibut are usually, so far as known, in depths ranging from 150 to 400 fathoms, and that the species is now seldom found in any considerable abundance in shallow water, complicates somewhat the solution of the problem.
It is, however, a fact that halibut may yet be caught in a few localities on the west coast of Nowfoundland, and along the shores of southorn Labrador, in very shallow water- 5 to 15 fathoms-during midsummer. There is a strong probability that fish caught there would live for a considerable period in a vessel's well. The conditions of the Water in the well would be the same as those in which they were living, and their capture on such shallow grounds would not seriously af. fect their vitality. It is, of course, not yet certain what effect the change of temperature might have on them before they arrived at Wood's Holl, for undoubtedly there would be a considerable difference in this respect between the littoral waters of Nowfoundland and Labrador and those of southern Massachusetts.

We had hoped that some fish might be found with ripe eggs and milt, so that the eggs could bo impregnated and some experiments made with them on board. But, although the majority of the halibut We caught, as well as those seen on board of the M. A. Baston, were apparently well advanced, none of them were ripe. This fact, together with our total lack of success in keeping any halibut alive, made me
determine to fish in shallower water the remainder of the trip, since it was possible halibut might be caught there, and if we got any they would have a much better chance to live.
The halibut we dressed had almost nothing in their stomachs. In eight that were carefully examined we found only a few bones, and pieces of fish that were wholly or partially digested. Among these I recognized the head of a "hand-saw" fish (Alepidosaurus ferox).

The wind blew a gale on the 1st and 2 d of October, backing from SSE. on the morning of the 1st to WNW. and W. on the evening of the same day, blowing a smart gale, with a heavy cross-sea. On the 2d the wind veered from W. to NW. and blew a moderate gale, with a sharp choppy sea and heavy tide rips. This being the first gale of any magnitude to which the Grampus had been exposed, her movements were noted with care and interest. During the heaviest of the gale she lay to very steadily under a double-reefed foresail. She lay close to the wind, varied little more thau one-half point in the direction of her head, and made comparatively little leeway. Later, the forestaysail, with the bonnet out, was set with the reefed foresail. Under this sail she lay steady and was very weatherly. In all cases she was remarkably dry on deck, apparently had less pitching and sending motion than the average vessel of her size, but her sideways motion was rather quick, as it generally is in small craft, though she lurched far less heavils than the ordinary fishing schooner.

The weather was fine on October 3, with a moderate breeze, varying from NW. to WSW. Between 7 and $8 \mathrm{a} . \mathrm{m}$. two halibut trawls were set in 80 fathoms, latitude $42^{\circ} 52^{\prime} \mathrm{N}$., longitude $63^{\circ} 04^{\prime} \mathrm{W}$. No halibut were caught. The total catch was as follows: 18 cusk, 8 hake, 9 cod, 7 spiny-backed dogfish (Squalus), 1 blue shark, and 2 small skates.

This result, with oar previous experience, led me to think it nearly useless to remain longer on La Have Bank. I therefore determined to work to the westward and be governed by circumstances as to whether we tried on Brown's Bank or Seal Island Ground, or both. Scatteriug halibut are sometimes found on these fishing grounds, and to visit them offered the greatest probability of success in seeking fish in moderate depths.

Fine weather prevailed on October 4, with moderate to fresh breeze, varying from SSW. to W. $\frac{1}{2}$ S. At $11.40 \mathrm{a} . \mathrm{m}$. sounded on Roseway Bank, in 39 fathoms, sand and pinkish colored bryozoa; latitude 43° 19^{\prime} N., longitude $64^{\circ} 40^{\prime} \mathrm{W}$. Hove to under mainsail and foresail and put out hand-lines. Cod were abundant. In about one and one-half hours we caught 50 or 60 cod and 4 haddock, all of which were immediately put into the well. Those fish which had swallowed the hook in biting generally had their gills wounded in getting the hook out. They died in a short time, and about one-third of the whole number had to be removed from the well. These were dressed and iced for halibut bait. Almost nothing was found in the stomachs of the fish that were dressed, and their generative organs were very little developed.

Shortly after meridian the supply of drinking wator was reported naarly exhausted, and I determined to go into Shelburne to fill water. Accordingly, at 1.30 p . m., we got under was, and at 5.30 p . m. anchored in Shelburne, above Sand Point. Upon going ou shore I learned that it would be necessary to go to the village of Shelburno, 5 miles further up the harbor, to fill water or to get other necessary supplies.
It was calm and foggy on the morning of the 5 th, but at $9.30 \mathrm{a} . \mathrm{m}$. the fog cleared off and a light northerly breeze sprang up. We immediately got under way to beat up to Shelburne village, but the wind was exceeding light, with occasional periods of calm, so that it was $1.30 \mathrm{p} . \mathrm{m}$. when we anchored near the wharves.
At 10.50 a . m., on October 6, we got under way to go down the harbor to Sand Point. While beating down the harbor we met the schooner Laura Sayward, of Gloucester, whose captain spoze us and reported his ressel in distress, she being short of water, provisions, and light. In compliance with his request, I gave him 2 gallons of kerosene to supply his immediate need of a light, and also garo him a letter of introduc. tion to F. O. Blanchard, esq., a citizen of Shelburne, who is a law partner of Mr. White, the American consul, asking him to use his good offices to assist Captain Rose in obtaining a supply of provisions, enough at least to onable him to reach home." I have since learned that the officials at Shelburne refused to permit the captain of the Laura Sayward to bry provisions.
At $1.30 \mathrm{a} . \mathrm{m}$., October 7, we got under way and left Shelburue. Aftor getting out of the harbor a course was steered for Cape Sable, and it was my intention to set halibut trawls near the cape if the weather proved favorable, since reports had reachod Shelburne that a considerable number of halibut had been taken in that locality a few days previously. But when we had reached the locality where it was proposed to fish, the wind blew fresh, and there was a sharp choppy sea running. It was too rough and windy to set trawls, therefore we ran into Pubnico for a Larbor.

On the morning of October 8 we left Pubnico, but the wind was light, and we did not reach any fisluing ground until the forenoon was well advanced. At $10.20 \mathrm{i} . \mathrm{m}$. halibut trawls were set in 22 fathoms between Pon Portage and Seal Island, latitude $43^{\circ} 25^{\prime} \mathrm{N}$., Iongitude $65051^{\prime} \mathrm{W}$. Nothing was caught except 9 spiny-backed dogfish and 17 skates, also a few sea lemons. Hand-lines were also put out, both before and after the trawls were hauled, but only dogfish were caught.

At $1.35 \mathrm{p} . \mathrm{m}$. put out boat dredge, the vessel at this time drifting in a calm with the flood tide setting toward the Mud Islands. A small

[^90]quantity of marine life, chiefly shells and crustacea, was obtained from the dredge, but when it was put out again, at $2.10 \mathrm{p} . \mathrm{m}$. , the net bag was torn open by the rocky bottom and nothing was taken.

On October 9 two sets were made with halibut trawls on the Seal Island Ground, the localities being as follows: First position, latitude $43 \circ 04^{\prime} \mathrm{N}$. , longitude $65^{\circ} 54^{\prime} 15^{\prime \prime} \mathrm{W}$. ; deptl, 50 fathoms; pebbly bottom. Second. position, latitude $43^{\circ} 06^{\prime}$ N., longitude $66^{\circ} 07^{\prime}$ W.; depth. 40 fathoms; bottom, sand and gravel.
Catch: First set, 39 dogfish, 10 skates, 15 cusk, and a few sea lemons. Second set, 21 dogfish, 9 skates, and 5 cusk; also 2 small sponges attached to stones and gravel.

At 4.40 p . m. the dories came alongside from hauling the trawls for the second time and were hoisted on deck. At the same time the boat dredge was put out, with 125 fathoms of towing line payed out on it. Nothing was got in the dredge.

The absolute failure which we had met with in the various attempts made to catch halibut in moderate depths convinced me that there was small probability of catching any tish of this species in shallow water, unless we were prepared to continue our cruise several weeks louger, for a new supply of bait would have to be obtained to start with, the small quantity of herring we had left on board being then unfit for use. Our ice was also exhausted. Besides this, little success could be expected so long as dogfish remained so abundant as we had found them on Seal Island Ground, and we certainly could not expect to find them less plentiful on Brown's Bank. For, not only will these pests of the fisherman gather round a trawl when it is being set, to cat the bait off or get caught, but their presence on a fishing ground is usually suffcient cause for other species to leave, at least to such an extent that other fish are seldom plentiful.

Not considering it desirable to refit, I determined to return to Wood's Holl. Therefore, as soon as the dredge was hauled, shortly after 5 p. m., October 9, we filled away, and after a pleasant passage-most of the time with unfavorable winds-we arrived at Wood's Holl at 9.45 a. m. on the 12 th of Oetober.

No noteworthy incident occurred on the passage home, with the siugle exception of falling in with three fishing schoonors while beating down the eastern sitle of Cape Cod, on the afternoon of the 11th. As they were going in the sawe direction that wo were bound, and all of them some distance to the windward of us (from 4 to 10 miles), it was a fair opportunity, at least a better one than had previously been afforded, of making a comparative test of the sailing qualities of the Grampus when beating dead to windward. Two of the vessels, a large two-masted clipper schooner of about 150 tons register, and the other a craft of perhaps 70 tons, we outsailed very much, beating them, at the most moderate estimate, two knots au hour, dead to windward. The third vessel is reputed to be one of the best sailers in the fishing fleet. At 2 p. m., when we were 4 or 5 miles to windward of Cape Cod

Highland Light, she was just fairly in sight to windward, the upper part of her sails showing above water, and with glasses I made her out to be a fishing vessel, beating to the southward. We gained on her rapidly, and at $9.30 \mathrm{p} . \mathrm{m}$. we weathered her, wheu just off the bell buoy north of the Pollock Rip. The distance made to windward by our vessel did not exceed 28 miles, and though the other vessel towed a seine boat, the rate at which we outsailed her proved that the Grampus can at least make a fair rate of speed in wind ward work.
Since the latter was designed for an improved type of fishing vessel (more particularly, however, to obtain greater safety), it is gratifying to find that she is more than commonly swift, since speed is au important and necessary qualification in a schooner which must be employed in most branches of our fisheries.
The collections and fish obtained ou the trip were landed ou the 12th and 13th. Reference is made to the following notes, prepared by Mr. R. L. Newcomb, for a statement of ornithological collections:

List of ornithological specimens oltained by the U. S. Fish Commission schooner Grampus, from September 26 to October 9, 1880, inclusive.
[By Raymond L. Nowcomb.]

Mr. James Carswell, who had been on board during the trip to the banks as an expert fish-culturist, left the vessel October 13, after her arrival at Wood's Holl.
On October 14 we got under way and made a short run to Gay Head to observe the movements of the fishing vessels, which were then engaged in hook-and-line mackerel fishing about the western end of Vineyard Sound. Mr. Thomas Lee, naturalist of the steamer Albatross, accompanied us, and he and Mr. Newcomb interested thomselves in collecting and making obserrations on the sea birds that were seen near Gay Head. Wo returned to Wood's Holl in the latter part of the afternoon.
Having made preparations for a new cruise, we left Wood's Holl on October 17, for Gloucester, where we arrived on the following day. A supply of hand-line gear for catching pollock was obtained.

It was necessary for me to remain on shore to attend to business matters connected with the vessel and to do other necessary work for the Commission. Therefore, on October 20, I ordered the first mate, Mr. D. E. Collins, to take command of the vessel, and when the weather permitted to proceed to the fishing grounds in Massachusetts Bay and to the eastward of Cape Ann and procure as many live cod, pollock, etc., as practicable.

On October 24 the anchor of the vessel fouled a telegraph cable on Jeffrey's Ledge, when a kedge anchor, a 30 -pound Chester anchor, and 5 fathoms of manila-hawser were lost. The Grampus not being provided with a suitable anchor and hawser for riding on the fishing grounds, I hired an anchor and 100 fathoms of 7 -inch manila-cable from Daniel Allen and Son, of Gloucester, which served for the remainder of the trip.

The weather was very rough and fish difficult to obtain on the inshore grounds during the latter part of October and the beginning of. November. A good deal of difficulty was experienced also in endeavoring to keep the fish alive in the well. Cod caught in moderate depths appeared to live fairly well, but a very large percentage of the pollock died.

On November 13, having determined to take the fish that had been caught to Wood's Holl, I resumed command of the vessel. On.November 15 we sailed from Gloucester and reached Wood's Holl ou the following day. The total of live fish landed was as follows: 195 cod, 25 pollock, 17 haddock, 7 hake, 6 squirrel hake, and 2 cusk. After our arrival at Wood's Holl, Mr. Newcomb, whose term of service had expired, left the vessel.

At 7 a. m., November 20, we sailed from Wood's Holl, and at $2.10 \mathrm{a} . \mathrm{m}$. on the following day arrived at Gloucester, when I immediately trans. ferred the command of the vessel to the first mate, who remained in charge until December 8. During this period (from November 21 to December 8) he exerted himself, as opportunity offered, to procure all live fish which it was possible to oftain. Through all this time the

Weather was exceedingly stormy and unfavorable, and cod were unusually scarce on the inshore grounds.
On December 8 I resumed command of the vessel, and on that afternoon we sailed for Wood's Holl, where we arrived at 3.50 p . m. on the following day, and began to transfer the live fish from the well to the cars. On this occasion 297 fish were landed, of which 287 were cod.
On December 11, at the request of Lieut. J. H. Weber, of the U. S. Sigual Service, we made an attempt to sweep the submarine cable between Martha's Vineyard and Naushon Island, which had been broken a short time previously by the anchor of a coasting vessel. Lieutenant Weber and his assistant were on board, but the attempt to grapple the cable was a failure. The apparatus wo had on board being too frail for the purpose was broken by being caught on the rocky bottom. After the failure of our attempt to get the cable, Lieutenant Weber and his assistant were, at their request, landed on Naushon Island.

Mr. Atkins informed me that cod had been found in abundance about No May's Land, as also on the grounds westward of Vineyard Sound; and suggested that it would be desirable to make an attempt to fish in that locality. Accordingly, a supply of bait was obtained, and a pilot familiar with those grounds was engaged to go with us. He belonged at Vineyard Haven, and after landing Lieutenant Weber and his com. panion we went over to the Haven, so that the pilot might get such clothing as he needed for the trip.

On the following morning we started for the fishing-grouuds above mentioned, with a gentle but increasing wind from ENE. to NE. By the time, however, that we had reached the Vineyard light-ship the wind was blowing fresh, and the weather was threatening. We therefore steered for Newport, where we arrived at $3.40 \mathrm{p} . \mathrm{m}$.

At $6.40 \mathrm{a} . \mathrm{m}$., December 14, , e got under way at Newport for the fish-ing-grounds, the wind at that time being NW. by W., and the weather generally clear. Outside of the harbor there was a heavy ground-swell, and the wind rapidly increased in force. Before we reached the grounds the wind was too heavy to carry on fishing operations; we therefore steered for Wood's Holl, where we arrived at $2.30 \mathrm{p} . \mathrm{m}$.

On December 15 we left Wood's Holl, and at $2.10 \mathrm{p} . \mathrm{m}$. tried for cod on Brown's Reef, to the westward of Vineyard Sound light-ship. No fish of any kind were taken. The weather was then very threatening, with indications of the near approach of a snow-storm. For this reason we went back to Vineyard Sound, and, at midnight, anchored off Falmouth.
A heavy storm prevailed on December 16, but the weather cleared on the following day. We left Falmouth at 6.25 a . m., December 17, and at $9.20 \mathrm{p} . \mathrm{m}$. on the same day arrived at Gloucester.

After transferring the command of the vessel to the first mate, I went on shore. The Grampus continued to fish off Cape Ann and in Ipswich Bay whenever it was possible to get out of the harbor. The weather
was exceedingly boisterous and cold, with frequent storms, so that there was rery little time when fishing could be prosecuted. I would say, as illustrative of the extreme inclemency of the weather in which it was necessary to fish, that on January 19 the Grampus visited the fishing.ground and the crew hauled her gear when the temperature ranged from 20 to $7 \circ$ below zero Fahrenheit. The vapor was unusually dense, and seamen Collins and Campbell were considerably frost-bitten. Besides this adrerse condition of the weather, cod were unusually scarce for this seasou of the year, and few were taken under the most favorable circumstauces.

On January 23 I resumed command, aud we left Gloucester for Wood's Holl. $\Delta t 6.55 \mathrm{a} . \dot{\mathrm{m}}$. on the same day we anchored off Cape Cod, north of Chatham, the wind being to the southward and weather foggy. The wind blew a gale from SSW. to NW. on the 24th, and on the following day we reached Wood's Holl at 3.35 p . m., and immediately commenced to transfer the live fish from the ressel's well to the tanks beneath the batching house. On that evening and the following day 219 fish were landed.

On January 27 we took on board $2,000,000$ young cod and sailed from Wood's Holl for Gloucester, getting under way at $10.10 \mathrm{a} . \mathrm{m}$. On the moruiug of the 28th the young fish were put overboard in 29 fathoms of water, Race Point bearing east $3 \frac{1}{2}$ miles distant, temperature of air and water each 331° Fahrenheit. Shortly after noon we arrived in Gloucester, and I then transferred the command of the vessel to First Mate Collins, after which I went on shore to engage in other duties which demanded my atteution. At this time the ressel had become very foul, and on January 31 she was hauled out on the marine railway to be cleaned, after which, on the following day, she was launched.

It had now been decided by the Commissioner to try the experiment of taking eggs from the cod on the fishing-grounds, by seuding one or more men on board of the fishing-vessels to collect them. Accordingly, Mr. G. EI. Tolbert, expert spawn-taker, who had been ordered to join the Grampus, reported on board the vessel on Februars 3. From that date until the close of the seasou's work eggs were obtained on every occasion when it was possible to get them, and were shipped to Wood's Holl either by express or in charge of Mr. Tolbert. I went on the vessel only on one occasion after Mr. Tolbert joined her, which was on February 18 , when about one million eggs were obtained from the fishing. schooners off Eastern Point, Gloucester.

On February 25, in compliance with orders received from the Commissioner, I left Gloucester for Washington for a stay of several months, the cirampus being left in command of the first mate.
The work of collecting cod eggs was continued whenever opportunity offered until March 14, at which date $5,000,000$ eggs were taken. It may be explained that the statistics of tish landed at Wood's Holl do not by any means represent the number taken. In many cases, as for
example in that of the pollock, not 5 per ceut. of the catch lived until the vessel reached Wood's Holl, and the mortality to the other species was always large.

The Commissioner having decided to send the Grampus on a cruise to the southern mackerel grounds, orders were issued for the work of collecting fish eggs to be brought to a close and for the necessary proparations to be made to fit the vessel for the intended cruise.

In concluding this report upon the operations of the Grampus it is only just to say that the officers and men under my command have exerted themselves to the utmost to carry on successfully the work in which they were engaged. Hardships and dangers, which might intimidate and discourage men unaccustomed to the vicissitudes and perils of a fisherman's life, were cheerfully borne, and no opportunity was lost to obtain fish and fish eggs. Mr. D. E. Collins, while in command, not only exhibited much energy ir, carrying out his instructions, but he also exercised care and prudence in the mangement of the vessel, which met with no damage whatever during the winter, though she was constantly going in an out of crowded harbors, often at night and not unfrequently in thick weather.

Record of dredyings and trawlings of the U. S. Fish Commission schooner Grampus on the trip to the tilefish ground.

		Hoar.	Position.		Temperatures.		Depth.
	Date.		Lat. N.	Long. W.	$\stackrel{4}{4}$	安	
	1880.		${ }^{\circ}{ }^{\prime \prime} 11$	\bigcirc			Fathomat.
${ }_{6002}^{5001}$	Aug. 15		$\begin{array}{lll}38 & 63 & 00 \\ 39 & 54 & 00\end{array}$	$\begin{array}{lll}70 & 15 & 00 \\ 70 & 16 & 10\end{array}$	74	74	118
5003	Aug. 10		$\begin{array}{llll}39 & 64 & 00 \\ 39 & 59\end{array}$	$\begin{array}{lll}70 & 17 & 15\end{array}$	74	73	110
5004			$\begin{array}{llll}30 & 50 & 00\end{array}$	704030	698	78	108
5005	Aug. 10		$40 \quad 0100$	710500	708	75	104
5006	Aug. 10	${ }_{\text {a. m}}^{\text {m }}$	$\begin{array}{llll}39 & 58 & 00 \\ 30\end{array}$	$\begin{array}{lll}71 & 13 & 15 \\ 71 & 10\end{array}$	67	75	155 100
5007 5008	Ang. 20	$7.45 \mathrm{sm} . \mathrm{m}$.	$\begin{array}{llll}30 & 40 & 00 \\ 30 & 34 & 00\end{array}$	$\begin{array}{llll}71 & 30 & 15 \\ 71 & 50 & 30\end{array}$	70	72	100
5000	Aug. 20	$2.45 \mathrm{p} . \mathrm{m}$.	$\begin{array}{llll}30 & 34 & 00 \\ 30 & 27 & 00\end{array}$	$\begin{array}{llll}71 & 08 & 45\end{array}$	711	731	135
5010	Aug. 21	6a. ${ }^{\text {and.... }}$ 10.10 $\mathrm{a} . \mathrm{m}$	$\begin{array}{llll}30 & 20 & 00\end{array}$	$\begin{array}{llll}72 & 04 & 15 \\ 72 & 05\end{array}$	71	72	145
5011	Aug. 21	$8.30 \mathrm{p} . \mathrm{m}$.	39 33 00	$\begin{array}{llll}72 & 05 & 45 \\ 72 & 07\end{array}$			$\stackrel{60}{45}$
5012	Aug. 21	$5.80 \mathrm{p} . \mathrm{mm}$.	$\begin{array}{llll}39 & 38 & 15\end{array}$	720745			45

[^91]| $\begin{aligned} & \dot{4} \\ & \text { 劵 } \\ & \text { 昌 } \\ & \text { 咸 } \\ & 8 \end{aligned}$ | Character of bottom． | Direction of wind． | Instrument usod． | Fish cauglt． |
| :---: | :---: | :---: | :---: | :---: |
| 5001 | | NNE ．．．．．． | 3 trawle，3，000 hooks | 10 silver hate（Morlucius）， 2 akato（Raia）． |
| 5002 | White sand with black speck． | SSE ．．．．．．． | 2 trawls，2，100 books | 11 silver， 3 common halre（riy－ cis chuss）， 3 slime cels，cras－ tacea，otc． |
| 5003 | Muddy ．．．．．．．．．．．．．．．． | NE | do | 2 silver， 1 common hake， 1 spear－ fish（Totrapturus albidas． 1＇0ey）． |
| 5004 | | NE......... | 1 trawl，1，050 hooks＊ | G silvor hake．
 115 common， 11 nilver hako． |
| 5005 5000 | Fine sandy
 Muddy | $\begin{aligned} & \text { ENE } \\ & \text { ENE } \end{aligned}$ | Trawl ．．．．．．．．．．．． | 115 common， 11 nilver bake． 5 common， 33 silver hake． |
| 50007 | | ENE | | 18 conmon， 4 вilver hake， 8 squid． |
| 5008 | ．．do | | ．do | 3 common， 2 ailver hake． |
| 5000 | do | | | 18 common， 17 silver hake． 1 |
| 5010 | | | | 5 common， 3 silver hake， slime oel． |
| $\begin{aligned} & 5011 \\ & 5012 \end{aligned}$ | Sandy and muddy | | $\begin{aligned} & \text { Dredge } \\ & \text {-..... } \end{aligned}$ | Mud，gray sand，sholle，shrimp Shells． |

＊In setting the trawl on this occasion wo adopted a now method．Two dories were put out，each taking one tub of trawl，the ends of which wero bent togother；the dories thon palled in opposite direc－ tious at right angles to the wind，and whou the lino was out thoy lot go the anchors and each boat lay by its respectivo ond．This mathod of setting has a considerable advantage over the ordinary mothod， when quick work 18 desirable，for as soon as the men weigh the anchors and get them on board，there to comparatively littio strain on the trawl，and it can be quickly and ossily pallod in．
Washington，D．C．，May 25， 1887.

INDEX.

[NoTE.-Tho reforenoes aro to pago-fgures in brackets.]

	Pagc.	Page.
Alepidosaurus ferox.............................. 10		IIake taken .. 2, 8, 10
Anchor fouled a telegraph cable................ 1	14	Ifalibut diffeult to keep alivo
lost ... 1	14	egess, apparatus for...
Birds collected, list of 1	13	propagation of
Blanchard, F. C..... 1	11	linrdiness of............................... 8, 0
Blue shark taken.................................. 10	10	not ripo
Bonito, habits of	2	plentiful.
Broad-finned sci		taken
Brosmins a	8	Hand-saw fish.. 10
Bucein	8	Herring-gull collected....................... :......
Cable, attempt to grapule......................... 1		Horse-mackerel, edible qualitics of......
Carrie E. Payson, schooner.....................		following vessel.
Carswell, James.. 4,6	4,6,14	parasites on
Cod abundant.. 10		taken..
egge, number taken	10	Jregers collected
taken on fishi	16	Kittiwake gulls collected.
landed allive		Lopholatilus chamaleonticep
planted n	16	La Imavo Bank..............6, 10,
scarce.. 15,10	15,16	Ridges 13
taken.. $8,10,15$, 10,15	Larus argentatus var. smithsonianus..
Collins, D. E................. 1, 14,	, 14,17	Laura Sayward, schooner, refused provis-
Cusk landed alivo	14	fons at Shelburne 11
taken 8, 10,	, 10,12	Lec, Thomas ...
Cymochoreal	13	M. A. Baston, schouner 7,0
Delphinus deiph	2	Mrbel Leighton, schooner
Dogish abunda	12	MeDoneld, Joln F...
take	12	Melanetta velvetina................................ 13
Dredging near Mud Island	11	Men, reseue of.
Drodgings, record of	17	Neweomb, Raymond L 2, 4,
Engino removed	3	Noddy collected.....................................
Fish-food, searcity	- 3	Nova Scotia.
Fibli landed alivo	14	Orcynus thymnus..........................
Fulmarus glac	8	Phycis chuss ... 2, 8
Garibaldi, seho	6	Pollachius earbonarius
Gertio May, sch	8	Pollock landed nlive
Grampus completed	1	take
first cruise o	1	Puflnus fuliginosus................................ 8, 13
sailing qualities	12	major3, 8, 13
seaworthiness of.	10	Race Point, cod planted near..................... 16
trim of	3	Rissa tridactyla
Greenwood, Charles II	0	Rose, Capt. Medco
Gulls collected 8,	8,13	Roseway lank....................................... 10, 13
Haddock lande	14	Seranemones ta
taken	10	Sea-lomons taken.................................. 11, 12
Hagdons collected	8	Shelburne nuthorities refuso provisions to
Hake landed ali	3 14	

XI.-REPORT OF OPERATIONS AT COLD SPRING HARBOR, NEW YORK, DURING THE SEASON OF 1886.

\qquad .

By Fied Matier.

On the work done in hatching and distributing different fishes for the U. S. Fish Commission at this station, which is leased by the Now York Fish Commission, I have the honor to report as follows:

CODFLSIF (GADUS MORRHUA).

Early in January, 1880, we had $2,000,000$ eggs in the house, which Were doing well, and we could see the embryos in the eggs, but on January 11 a cold northeast wind blew through our old hatchery and froze our salt water solid, and they all perished.

Whilefish (COREGONUS ClUPEIFORMIS).
On January 7, 1886, we received from Mr. Frank N. Clark, of the Northville, Mich., station, one case containing $1 ; 000,000$ whitefish eggs in excellent order, the temperature of the eggs in the packages being 44° Fahr. They were placed in seven MeDonald hatching.jars and did very Well, the loss being 57,700 , or a little less than 6 per cent., and 942,300 Were distributed to the different waters on Loug Island, but thus far I ain unable to report any captures of these fish in waters on the island previously stocked. They are deep, cold lakes containing plenty of small crustacoaus and other food, bat, no net-fisbing being allowed in them, it is possible that the fish may be there, but have not been seen.

LAKE TROU' (SALVELINUS NAMATCUSH),

On December 19, 1885, we received from F. N. Clark, Northville, Mich., one case containing 150,000 eggs in good condition. Of these We lost 12,000 eggs and fry before distributing, and tried the experiment of keeping 50,000 nntil they should be a year old or so, in our rearing ponds. They were put in the upper ponds in the coolest water, and before September the last one had died. My experience with this fish is that they are the most delicate of all the Salmonide which I have had any experience with, aud that they require colder water than any others [1]
S. Mis. $90-46$
of the family that I know. Our fish took food very well until some time in June, when the temperature in their ponds reached 600 Fahr., and then they began to die. Λ table of distribution will be found at the close of the report.

atLan'fic or penobscot salmon (SALmo salar).

This was the third season of operations with this fish at this station, and the fourth in which plantings in the Hudson River were made. The first plant in the IIudson was from Roslyn, Long Island, in 1882, when I obtained the use of the strean and hatchery building of Mr. Thomas Clapham of that place, to carry on the work; and the captures of salmon in the Hudson River during the summer of 1886, which will be detailed further on, have given us great encouragement.

On January 7, 1886, we received from Mr. Charles G. Atkins, in charge of the salmon station at Bucksport, Me, three cases containing 240,000 egge, which were in excellent condition; and on the following day we received four cases, containing 260,000 eggs, which were also in good condition. The fry were placed in tributasies of the Hudson, Saint Lawrence, and Lake Ontario, the details of which are in the tables of distributiou appended to this report.

In May, 18S5, we nade plantings of salmon in Paulinskill and the Pequest River, New Jersey, tributaries of the Delaware River, and the fry have been seen there, as is shown by the following letters from one of the fish commissioners of New Jersey :
"New'ron, N. J., November 13, 1886.
"Fred Mather, Esq.:
"Dear Sir: Yours of the 8th ultimo is at hand, making inquiries about the salmon fry placed in the Pequest, Paulinskill, and Musconetcong rivers, they being tributaries of the Delaware. These salmon were placed in the streams about 20 miles fiom where they empty into the Delaware, and were found in the Paulinskill in September, 1885, in the small spring-runs near the main stream. In May of the present year I learned that somo had been taken by a party while fish. ing for trout at a point about 5 miles below where they were placed the year before. The party that caught them at first thought they were rainbow trout, but on examination I learned they were young salmon, from $4 \frac{1}{2}$ to 6 inches long. They were taken with a common angle-worm bait, and seemed to be quite numerous at this point. I have seen them, during the early part of last September, in the same stream, and have no doubt that they have done equally well in the two other streams. There were, perhaps, about forty taken at this point, and vearly all of them were returned to the stream. I am satisfied, from this experience, that the planting of the fry in the headwaters of the tributaries, in natural trout water, is the best way to stock the

Delaware, and if the effort to do so succeeds, it must be done in this manner. Allow me to congratulate you on the success, so far, of this experiment.
"I an yours, etc.;

> "F. M. WARD, " Neto Jersey Commissioner of Fisheries, in charge of Northern New Jersey."

Mr. Ward wrote again on the subject of salmon, as follows:
"Fred Mather, Esq.:
" New'ron, N. J., April 29, 1887.
"My Dear Sir: I wrote you, some months since, that in May and June of last year there were taken from the Paulinskill, in the headWaters of which you caused to be placed some of the salmon fry two Jears ago, what 1 supposed to be young salmon, from 5 to 6 inches long. For a fow weeks past they have been taken in small numbers, at the same point, from 8 to 9 inches in length, but, on examination, I doubt their being young salmon, the sides having the bright red spots of our brook trout, and all the other marks of the oquassa or Dolly Varden trout, as described in recent reports by the U.S. Commission of Fisheries. Presuming that you might be interested in this unlooked-for development aud may be able to account for it, I have been induced to write you in relation to it.
" Yours, etc.,

> "F. M. WARD, "Commissioner of Fisheries for New Jersey."

To which I made the following reply:
"Cold Spring Harbor, N. Y.; May 2, 1887. "F. M. Ward, Esq.:
"My Dear Sir: I have yours iu reference to some fish taken in Paulinskill, where we planted the salmon fry two years ago, and which Were then from 5 to 6 inches long. You now say that for a few weeks past they have been taken in small numbers from 8 to 9 inches in length, but doubt their being young salmon because of the sides having little red spots like a brook trout. Now, the fact is that young salmon have these red spots during the first year or 'parr' stage, but they can easily be distinguished from the trout on account of the forked tail. The second year they assume the 'smolt' stage, and are then silvery, the red spots having gone never again to appear. But I should think that they would have gone farther down the river by this time; but your letter is a very valuable coutribution to their life history, and 1 am exceedingly obliged to you for it, for I have not the slightest doubt that the red-spotted fish were young salmon which had not yet taken ou the silvery coat. I should much like to have a specimen, if possible.
'" Very truly, yours,

For information concerning the captures of adult salmon in the Hudson we are greatly indebted to Mr. A. N. Cheney, of Glens Falls, N. Y., a gentlemau who is well known as an augling authority in this and other countries, and who has taken a greatinterest in the work of stocking the waters with tish. He writes me, under date of March 23, 1887, as follows:
" Last year twenty-four salmon were taken in the Hudson River at the places named:
Troy Dam 9
An island, below 'Troy 2
Stockport 2
Albany 2
Rhinobeck 2
Poughkcepsie 3
Yonkers 4
"The New York Herald also reports some taken at Staten Ísland."
The largest salmon taken in the Hudson, of which we have any account, was caught at the State dam, at Troy, and weighed $14 \frac{1}{2}$ pounds. This fish was seen by Dr. H. P. Schuyler, of Troy, who has also taken a great interest in the stocking of the river, and who has said that he believes that the waters in the vicinity of the dam contain many salmon that are unable to get farther. In addition to the list of twentr-four salmon given by Mr. Cheney, I am able to add one which I saw in Fulton Market, which weigbed about 10 pounds, and was captured by John Denyse, of Gravesend, in Gravesend Bay, some time in the latter part of May, 1886. Several gentlemen, among whom are Messrs. Cheney and Schuyler, before referred to, and Dr. Samuel B. Ward, of Albany, president of the Eastern New York Fish and Game Protective Association, have moved to induce the State legislature to make an appropriation for fishways, to be placed in the Troy and other dams, in order that the salmon may reach the breeding grounds. If they accomplish this, and the fish have proper protection, it is among the possibilities that we may jet take eggs from salmon which bave been artificially hatched and planted in the Eudson, a feat which we might justly regard as one of the greatest triumphs in fish-culture.

LANDLOCKED OR SCHOODIC SALMON (SALMO SALAR var. SEBAGO).
On March 18, 1886, there was received from Mr. II. H. Buck, of Grand Lake Stream, one case contaiuing 34,000 eggs in exceedingly good condition, only 76 being dead. After hatching, the fry were planted in Adiroulack lakes by request of General R. U. Sherman, of the New York Fish Commission.

BROWN OR EUROPEAN TROU'T (SALMO FARIO).

Three lots of brown trout eggs were received from Germany. On March 1, 1886, one case came from the Dentscher Fischerei-Verein con-
taining 64,000 eggs. These were in very bad condition, one fourth had hatched in the package, and the remalnder of the eggs were dead. It was evideut that they had not been iced on the ship. On March 20 we received from the Fischerei-Verein a case containing 40,000 eggs which Were in better condition, only 4,134 being dead. Ten thousand were sent to Mr. F. N. Clark, of Northville, Mich., and 3,000 to George A. Seagle, of Wytheville, Va. On April 16 we received from Herr Max Von dem Borne, of Berneuchen, two cases containing 50,000 eggs, which Were in very good order, about 500 being dead. Thirteen thousand Were repacked and sent to Mr. Clark, at Northville, and 1,000 to James Nevin, superintendent of the Wiscousin Fish Commission at Madison.

SHAD (CLUPEA SAPIDISSIMA).

On Δ pril 26, 1886, we received from Central Station at Washington two cases containing 546,000 eggs, which were all dead on arrival. On April 29 we received from the same place five cases containing $1,250,000$ eggs. These were not in good condition, and the loss in hatching was very great, but we succeeded in getting 100,000 good fry, which were planted in the Hudson, near Troy.

smelts (osmardus mordax).

We bave succeeded in hatching large numbers of smelts, the parent fish being obtained on the south side of Long Island and brought here in cans. The glutinous nature of the eggs has reudered their latching very difficult, but we have managed to bring out about 50 per cent. of the eggs taken, and in the spring of 1886 turned out over $2,000,000$ fry in Cold Spring Harbor. There has been no smelt in the harbor for a number of years, but in the spring of 1887 a number were reported to have been taken in Oyster Bay, whieh connects with the harbor; and at the upper end of Cold Spring Harbor wo have seen several male fish in the little streams where our plants have been made for the past two Jears, but no females were observed.

tomiod (microgadus tomoodus).

These little fish, although very plentiful here, are more numerous than ever since our efforts in cultivating them. The eggs are free and heary enough to hatch well in the McDonald jars. They are about oneseventeenth of an inch in diameter. A small Bar glass, 24 inches high, 1_{2} inches at the bottom and $2 \frac{1}{4}$ inches at the top, inside measurements, holds 20,000 eggs when filled up to a height of about 2 inches. Two million two hundred and trenty-five thousand of these eggs were taken and placed in hatching. jars, and at about the time when the embryos in the eggs could be seeu, a blizzard blew through our old building and froze them all.

On May 29, 1886, I brought from the United States hatching station at Wood's Holl, Mass., 5,000 young lobsters which had been hatched there and also 50,000 lobster eggs. The eggs were all dead on arrival at the Cold Spring Harbor batchery, but the young lobsters were in very good condition. They were placed in small aquariums and fed on soft clams (Mya arenaria), and did very well for a few dass until they began to molt, when as soou as one little fellow cast his shell his brethred would devour him. I think that Prof. J. A. Ryder, who hatched these lobsters, told me they had molted twice before and that they were theu between two and three weeks old. After losing perbaps two hundred of them I decided to plant them, and did so on June $\tilde{5}$, six days after receiving them, off Rocky Point in Cold Spring Farbor. When planted the goung were about five-sixtecuths of an inch iu length. There have been no lobsters in this harbor for a number of jears, and in September, 1886, Capt. S. A. Walters and Capt. Bunce each caught young lobsters while working on their oyster-beds, which they informed me measured about an inch and a half in length, but I have been unable to secure specimens.

GENERAL REMARKS.

As before stated the grounds are leased by the New York Fish Commission, and much work was done for that commission which is not here reported. The codlish work mentioned was done at the expense of the State. The building used for a hatchery is an old mill nearly ready to tumble down and not worth repairing. A bill has been introduced into the New York legislature to appropriate $\$ 5,000$ for the purpose of building a new hatchery, and at present writing (May, 1887) it has passed the assem bly, and there is every reason to hope that it will become a law.*

[^92]In ease we have a new buthding there will be no danger of such accidents by freezing as that referred to, and we shall be enabled to have our work all on one floor and to do moch better than has been done, both in salt and in fresh water.

The following tables show the distribution of the varions kinds of fish handled at this station during the season:

Table 1.-Distribution of whilefish from Cold Spring Inwhor in 18 E .

Date	Messenger.	Where planted.	Number.
$\mathrm{Feb}^{\text {Pe }} 16$	C. H. Walters.	Large mill-pond near hiverheal, N. Y	500, 00
${ }^{\text {Nebeb }} 23$	O. V. Rogers.	Lionkonkomia Lake, Loing lslad	400.000
Apr, ${ }^{\text {are }}$	O. V. Rogme	Shint John's Lake, Long Latand.	30, 0160
Ar, 3	O. V. Rogers	Saint John's Lake, Lond lsjaud	12,300
	'Total.		942, 300

Table II.-Distribution of lake trout from 'obld Spring Harbor in Apmil and May, 1886.

Date.	At whose request.	Messenger.	Where phanted.	Number.
${ }_{\text {App }}{ }_{\text {api }} 3$			Riverhoal, L. I	15,000
	ii. Siloskinak	Dolivered.	1 1rewath, 1, 1.	
${ }_{\text {Apr }}{ }_{\text {apr }}^{\text {pri. }} 18$	Prof S. 1 I. Bairi		Pouds at matehely	
-		T. A Welivered	I1, Adirmudack waters	
${ }^{\text {Apr. }} 27$	Prof. S. F. Baird A.N.	O.V.		5, 3000.
May 2	E.G. Blackford.....	0.v. Rogers	Munroe, N . Y	5,000
	Total			137, 775

Table III.-Distribution of Allantic snlmon from Cold Spring IIarbor in April and May, 1886, on account of the U. S. Fish Commission.

Date.	Messenger.	Place of deposit.	Fish supjlied.	Loss in trangit.	$\begin{gathered} \text { Fish } \\ \text { planted. } \end{gathered}$
${ }^{\text {Apr }}$ Apr 12	C. H. Whiters	Carr's Brook, Murson Rivar	50,000	200	49,800
${ }_{4}{ }^{\text {prer }} 12$	F. A. Walters	Raymond lrronk, Iludann liver	50, 000	200	49, 800
Apr. 20	C. II. Walters	St. Resjo and 'Brandon Likes,	50.000	500	49,500
${ }^{\text {Apr. }} 27$	O.V. Rogers	St. Lawrence River. Clendou Brook Ihudson River.....	20,000	300	19,700
Apr. 20	C. II. Walters	Oswego liver, Lake Ontario	50,000	310	49,700
May 3	C. H. Walters	Eldridgo Bromk, Ifudson River ...	60, 010	200	59, 800
May 7	O. V. Rogers.	Gak Orchard Creels, Lako Ontario.	50, 000	500 200	40, 500
May 10	O. M. Walters	Roaring Brook, Hudson livor....	60,000 69,073	100	59,800 58,973
	O. V. Rogers.	Balmu of Giload Brook, Madsun River.	69,073	100	
	Total		449, 073	2,500	440,573

Table IV.—Distribution of Zandlocked salmon from Cold Spring Harbor in May, 1886.

Date.	At whose request.	Messenger.	Whore planted.	Number.
May 13	IR. U. Shernan.	F. Δ. Walters...	St. Regis Lake, Franklin Coun-	15,000
May 13	12. U. Sherman	F. A. W	ty, N. Y. Clear Pond, Franklin Counts, N. Y.	16,020
	Total			31,020

Table V.-Distribution of brown trout from Cold Spring Harlor in April and May, 1880.

Date.	Messonatr.	Pace of deposit.	$\begin{gathered} \text { Fish } \\ \text { supplied. } \end{gathered}$	Loss in transit.	$\begin{gathered} \text { Fish } \\ \text { planted. } \end{gathered}$
Apr. 20 Apr. 27 Apr. 13		 Poud of Mi. Beekiman, Oyster Iby	8,000		8,000 78000
	O. V . Rogers		¢8,000	1,000 $\ldots \ldots$	8,000
				\cdots	800
May 27	Total		24,500	1,000	23,500

Table VI.-Distribution of shad, smelts, and lobsters from Cold Spring Harbor in 1886.

Datc.	Kind.	Messcnger.	Where planted.	Number.
May 10	Shat	O. V. Rocgers	Hadson River, at Albany, N. Y	100, 000
Apr. 20	Smelts	F. A. Walters.	Saranac Lake Franklin County, N. Y.	50.000
Apr. 25	Smelts.	O. V. Rogers	Cold Spring liarbor, N. Y............	50.000
Apr. 27	Smalts	C. H. Walters	Cold Spring Harbor, N.	2,000, 5,000

Cold Spring Harbor, N. Y., May 16, 1887.

XII.- REPORT OF OPERATIONS AT THE MICHIGAN STATIONS 0 O 'THE U. S. FISH COMMISSION FOR THE YEAR 1886-87.

by Frank N. Clark.

During the summer of 1886 the whitefish hatchery at Alpena was closed, as usual. At Northville the small force employed at this season was eugaged chiefly in work that is current the year round-the care of ponds and stock fish, \&c.-devoting such time as could be spared from this work to preparing for the operations of the ensuing season. The lhatching boxes, trays, tauks, \&c., were repaired or renewed, and coated with asphaltic varnish. It was necessary also to refill with flannel trays the transportation cases that had been emptied by the egg shipments of the previous winter and spring.
The following table summarizes tho receipts and shipment of eggs and fish at both the stations in Michigan:

Sumnary of oggs and fiall handled at the Michigan stations in the ycar 1880-'87.

Kind of fish.	Egige roceived.	$\begin{gathered} \text { Eggs } \\ \text { shippod. } \end{gathered}$	Fish olipped.	Fish retained at statlon.
Brook trout	1186,750	£2, 000	${ }^{527}$	4,000
Ralnbow trout.	108,850	50,000	34, 920	25, 000
Lake tront.			0,150	
Brown trout 292,400	7,500	10,000
Saibling....	815.000			15, 000
Whitelish	-120,400,000	32, 000,000	62, 070, 000	
Total	120, 830, 000	32,730,500	62, 081, 597	64, 000

[^93]
WHITEFISH.

The funds available for the collection of whitefish eggs being less than in either of the two preceding years, the field-work was confined to fewer points. Operations in Lake Erie were confined to the fisheries of North Bass, Middle Bass, and Put-in-Bay Islands, and the penning of fish in Put-in-Bay; in Lake Huron to the fisheries along the, west shore from Alpena to Oscoda, and at Detour and vicinity on the north shore;
and in Lake Michigan to the north shore fisheries at Thompsou. The points that had heretofore furnished more or less eggs, but which were not included in last fall's programme, are Monroe, Toussaint, and Catawba Island, Lake Erie; Hammond's Bay, and some unimportant fisheries of Thunder Bay, Lake Euron ; and Epoufette and Naubiuway, north shore of Lake Michigan. Penning operations were trausferred from Monroe to Put-in-Bay. The only new territory worked was at Detour and vicinity, on the north shore of Lake Huron.
Whitefish commenced spawning at the Lake Erio islands on November 7. The first eggs were taken on that date from the pound-net fisheries at North Bass, while the last eggs were taken from penned tish on December 2. The pound and gill net fisheries of Lake Erie furnished $39,600,000 \mathrm{eggs}$, and the peuned fish $4,000,000$, all of which were received at Northville in good condition. The weather as a whole was quite unfavorable, a series of heavy blows occurring during the best of the spawning season. On December 2, Put-in-Bay was entirely frozen over, while outside large fields of ice bore down from the westward and damaged or destroyed quite a large amount of twine, vearls one-third of which was still in the lake.
The collection of spawn from the pound-net fisheries along the west shore of Lake Huron, below Alpena, occurred between November 4 and 25 , and these shore fishories furnished $38,000,000$ eggs, which were forwarded to Alpena. At Detour the spawning commenced November \mathbf{G}, and $16,800,000$ eggs were taken here and sent to Alpena. The gill-net tugs fishing out of Alpena furnished only $2,000,000 \mathrm{eggs}$, the first of which were taken November 22 . The total number of eggs placed in the Alpena house was $56,800,000$.

The spawning season at Thompson, north shore of Lake Michigau, occurs nearly one month later than elsewhere. The run is quite heary, and usually begins from December 1 to 5 and euds December 15 to 20. The grounds are several miles out, and steam-tugs and gill-nets are employed. From December 5 to 13, Mr. Tulian, with a force of four mon, secured $29,000,000$ eggs from the tugs fishing out of Thompson and Manistique. The weather was very severe, the temperature frequently being at or below zero; and it was therefore impossible to effect a high percentage of impreguation, and nearly one-half of these egge were afterwards drawn from the hatching.jars and thrown away. Mr. Tulian brought the eggs to Northville in one lot of ten large cases, by steamer from Manistique to Escanaba, thence by rail to Milwaukee, thence by steamer to Ludington, thence by rail to Northrille, arriving at night on December 16. The eggs were transferred to hatching-jars the following morning, filling one hundred and forty-five jars. The total receipts of whitefish eggs at Northville, direct from the spawning grounds, were $72,600,000$. The total collection of whitefish eggs at both stations was 129,400,000. On January 29, 21,000,000 were transferred from Alpena to Northville, by car No. 2, in charge of George H. H. Moore.

The whitefish eggs were carried forward in hatehing jars, as usual, and no special features atteuded their development. On November 28 about 30,000 eggs were taken from two whitefish from the pond of three-Sear-olds raised at the Northville Station, and a fair percentage of impregnation was obtained. The incident is worthy of record only from the fact that it is doubtless the first aud only instance of the taking of eggs from whitefish hatched aud reared wholly by artificial treatment.

Shipments of whitefigh eggs from Northville Station, scason of 1886-'87.

Date.	Destivation.	Namber.
Dec^{1880}		
Dec. ${ }_{29}{ }^{1}$	Delivered to car No. 3. Wilmington, Del	$\begin{array}{r} 100,000 \\ 1,000,000 \end{array}$
2887.	Dr. E. G. Shortlidge, Wilmiugton, Dol..	
Jă. 3	William Baller, Erio, 1'a...	$5,000,000$
	Charles R. Buck laud, San Fraucisco, Cal., for Now Zealand	1, 51000,000
15		1,500, 000
17	Fred Mather, Cold Spriar ILarbor, N. Y...	1, 000,000
19	Central Station Washingtou, D. ©..	2,500, 000
22	C. Gralackiord, New York, for Germ:ny	1, 5,00000000
Feb. ${ }^{20} 3$	Dr. IR. O. Sweeny, Saint Paul, Mini ..	5,000,000
Feb. $\begin{array}{r}3 \\ 9\end{array}$		$2,500,000$ $5,000,000$
19	E. G. Blaokford, Now York City, for London, fingland	1, 0000000
22	$\mathrm{D}_{\text {r. E. E. G. Shortlidge, Wilmington, Del }}$...	1, 500,000
	Total	32, 000,000

Whitefish eggs began hatching at Northville on March 11, and the last eggs were hatched on April 12. At Alpena the hatching season commenced April 22 and closed May 8. The distribution from Nortlville was successfully mado by car No. 2, in charge of George H. H. Moore; from Alpena, by steam-tugs and the regular lines of steamers. The tables of distribution of whitefish fry during the spring of 1887 are as follows :

FROM NORTEVILLE STATION.

Date.	Lake.	Place near which deposited.	Numbor of fry planted.
1887.			
Mar. 25	Lake Michigan	Ludington, Mich.	3,000,000
27	Lake Haron ...	Bay City, Mich.	3, 000, 000
Apr. ${ }^{31}$	Lake Michigan	Grand IIAven, Mich	3. $3,000,000$
	-Zake Rrio...	Monroo, Mich...	$3,000,000$
8	Lako Michigan	Michigan City, Ind	3, 0000000
12	Lake Ontario..	Oswago N. Y North bnss Island, Obio	$3,000,000$ $3,000,000$
13do...	Monrue, dilch	3, 3000,000
20	-	Sandusly, Ohio	$3,000,000$ $3,000,000$
	Lake Michigan.	Saint Joscph, Mich	3,000,000
	Total		33,000,000

FROM ALPENA STATION.

Date.	Lake.	llace near which deposited.	Number of fry plantod.
$\begin{gathered} 1887 . \\ \text { Apr. } 30 \\ \mathbf{M l i t y} \\ 2 \end{gathered}$	Thander lay, Lake Iuron	Whitednl Point, Mich	3, 000, 000
		Sulphur Ialand, Mich.	3, 00000000
-	Lako liuron	Alcona, Mich	3, 000, 000
4	Thunder Lay Lake Huro	- ${ }^{\text {arorajo }}$	3,000,000
7	Latiol nurou -.............	Oscota, Mich	3,000,000
1dodo	3, 0100,000
11		Detour, Mich.	2, 000, 0000
16	Lake Michigan	Thompson, Mich	$2,000,000$
17	Thunder liay, Lako Ifurou	North Point, Mich .	1, 00000000
18		Whitotish Point, Mich	1.000,000
19	Lake Huron	Sand Beach, Mich.	2, 00000000
24	Long Lake Clegr Lake	Alpena County, Mich	50,000
	Total		29,070,000

Summary of whitefish fry distributed in the Great Lakes, spring of 188%.

Lako Haro	30,000,000
Lake Michigan	17,000,000
Lake Erie	12,000, 000
Lake Ontario	3,000,000
Clear Lake	$50_{2} 000$
Long Lake	20, 000

BROOK TROUT.

The spawning season of brook trout in the Northville ponds began October 14 and closed December 31, 1886. In all, 186,750 eggs were taken, from which 82,000 were shipped and 4,000 fry hatched and retained at the station.

The record of the number of eggs taken from females of different ages, and the table of shipments of brook-trout eggs, are as follows:

ONE YEAR OLD.

Date.	Females.	Egge.	Date.	Females.	Egge.
1880.			1880.		
October 19..	1	200	November 12.	11	2,000
October 21	2	350	November 14	1	
October 24.	${ }^{2}$	600	November 15	${ }_{10}^{6}$	1.0000
Otober 25.	1	200	November 17	10	4 4,200
October 28	${ }^{2}$	800 2,100	Noveniber 19.	14	2,809
November 1	3	1,000	Norember 22	18	3 8, 800
November 2	1	400	Novembor 23	5	1,000
November 3	3	1,000	November 24	19	4, 600
November 6	12	2,400	November 27	15	2,600
Novomber 7	2	400	November 30	10	1,800
November 8	3 9	600 2,000	December 8. December 7.	$\begin{array}{r}3 \\ 17 \\ \hline\end{array}$	0, 000
November 9	9	2,000 1,600	December 7	17	0,000
November 11	4	1700	Total	213	47,250

TWO FLARS OLD.

Dato.	Females.	Egge.	Date.	Fomalos.	Engs.
Oot 1886.			1888.		
Ootober $14 . .$.	1	coo	Novemiser 15	8	3,200
October 18	1	400	November 16	7	2, 800
October 22	1	400	November 17	18	5,800
October 23	4	2,000	November 18	7], 800
October 25	6	3, 800	November 20	19	9,200
October 26	2		Novembar 21	3	1,800 4,400
October 27	7	3,400	Novembur 22	11	4,400 2,200
October 38	8 \%	3,800	November 23	5 5	2,200 1,800
October 30	5	2,600 1,000	November 24 Novomber 25	15	1,800 4,800
October 30	41	2, 2,400	Novembier 27	5	2,800
Noveraber 1	61 5	3, 300	Novembor 28	1	400
November 2	15	0, 200	November 30	7	2,300
November 3	0	2,300	December 3.	7	2,800.
November 4	7	3,100	December 9.	8	2,800
Noveraber 5	3 !	1,000	Decominer 11	0	1,400
November 0	10 '	4,000	December 13.	$1 \quad 3$	2,000 000
November 7	5 i	2,400	December 14.	$1 \begin{aligned} & 2 \\ & 0\end{aligned}$	600 1,800
November 8	${ }_{8}^{2}$	9. 900	December 18.	1	1,000 1,000
November 9.	81 8	2,800 3,200	December 21.	6	3,200
November 11	91	4,200			
November 12	21^{\prime}	7,400	Total	301	124, 200
November 13	4	3,800			

TIIREE YEAKS OLD.

October 14	1	1, 000
Ottober 24	1	1,200
Otzober 25	1	+ 800
October 31	1	800
Noveraber:	8	5,500
$\lambda_{0 v e n b e r ~}^{\text {a }}$	1	5,600

Shipments of brook-thout agge during the season of 1880 -87.

RAINBOW TROUT.

The spawning of rainbow trout occurred from Januaryc 6 to April 25. The total number of eggs taken was 100,350; total results, 50,000 eggs shipped, and 25,000 fry hatched. Of the latter, 300 were shipped to J. F. Miller, Richmond, Inl., and the remainder were retained at the station.

About one half the eggs were carried forward in hatehing boxes as usual, and the remainder on gravel. The loss on the eggs in trays ranged from 80 to 95 per cent., while with those on gravel the loss in
no instance was more than 50 per cent., and in some cases ouly 5 per ceut., the average being about 30 per cent. A number of experiments were made in carrying forward eggs of the same taking by two systems, and the results in every iustance were greatly in favor of the gravel treatment. Arrangements for handling a good portion of this fall's crop of brook trout eggs on gravel will be provided, and further comparative experiments of the two systems made.
A case of 20,000 rainbow-trout eggs arrived March 19 from Baird station, Cal., in a very poor condition. They had evidently been exposed to a high temperature in transit, as the ice was all gone and the eags mostly hatched. About 2,500 eggs were picked out and placed in Latching boxes, where they soon hatched. The fry seemed feeble, and a large percentage of them died within a few weeks.

Shipments of rainbow tront eggs were made as follows: March 21, 25,000 to the Michigan Fish Commission, Paris, Mich.; and April 6, 25,000 to Eugene (. Blackford, New York eity, for shipment to France.
The spawning record for the rainbow trout during the season is as follows:

BROWN TROUT AND SAIBLING.

A case containing 20,000 brown-trout eggs and 15,000 saibling eggs, shipped from Cold Spring Harbor, N. X., by Fred Mather, arrived at Northville on March 17 in tirst-class condition. The saibling hatched soon after, but the fry refused to eat, and most of them died of "blue sac" aud starvation. Shipments of brown-trout egge were made as follows: March 21, 2,500 to Michigan fish commission, Paris, Mich.; and March $28,5,000$ to Wisconsin fish commission, Madison, Wis. There was considerable loss before hatcling, but nearly 9,000 fry were hatched and retained at station.
Between November 18 and December 21 a total of 9,400 eggs of brown trout were taken from stock fish in the Northville ponds, but they turned out quite poorly, and only 1,500 fry were hatched. The spawning record is as follows:

Record of brown-trout spawning, season of 1886.

Date.	Females.	Egge.	Dete.	Femules.	Eggs.
1886.	6 ;		1888. Dec. 13	11	5,000
Nuv. ${ }_{22}^{18}$	6 1	1,200 250	Dec. 13	11	1,000
22	1	350	18	$\stackrel{3}{2}$	400
25	1	300	21	1	100
20	1	200	Total .	29	0.400

LAKE TROUT.
No lake-trout eggs were taken, owing to a lack of funds available for the purpose. This is greatly to be regretted, as no fish of equal rank is more easily propagated, and, if held in confinement until of suitable size aud age, it is remarkably adapted for diffusion to a large range of waters into which the whitefish, brook trout, rainbow tront, and other high-grade varieties cannot be established. As compared with other trouts, the cost of obtaining the eggs is greatly in favor of lake trout, as is also the percentage of young that can be reared in confinement until of suitable size and age for distribution. During the fiscal year a total of 6,150 of the lake trout, hatched in Jauuary and February, 1886, were delivered to cars No. 2 and No. 3, and distributed chiefly in Ohio, Indiana, Kentucky, and Tennessee.

During the fiscal year a total of 11,297 trout, ranging from oight months to two years old- 6,150 lake trout, 4,620 rainbow trout, and 527 brook trout-were distributed, as is shown by the following table:

Distribution of trout from December 1, 1886், to March 3, 1887.

Date.	Kind of fieh.	Age of flsh.	Car uned.	Number of Hoh.
Dec. 1	Rainbow trout.			850
	Brook trout.			252
	Lake trout.			1,300
Jan. 18	Rainlow trout. Lake trout.....	2 years.	No.2.......... No. 2	
		1 усar..		1,300
202020	Rainbow trout	2 years	No.2.........	
		1 year		640 600
	Lake trout	1 ye	No. 2	300
28	Rainbow trout. Brook trout....	1 and 2 yeara	No. 2	25.0
		1 and 2 years	$\begin{aligned} & \text { No. } \\ & \text { No. } \end{aligned}$	250
Fob. 1	Rainbow trout..Lake trout......	1 year ${ }^{\text {' No. }}$		
		1 year	No. 2	1,300
-12 3 21 $?$	Rainbow trout.Lako trout..........do	2 yearb................... No. 2		100
		1 y yar	No. 2	1,350
		1 year	No. 2	1,300
Mar. $\begin{aligned} & 2 \\ & 2 \\ & \\ & 3\end{aligned}$	Rainbow tront. Lake trout......	1 and 2 years	No.2.........	100
		1 year	No. 2 (*)	300
	Total			
				297

* Delivered to Frank Elwell, Owosso, Mich.

Northville, Mich., August 16, 1887

XIII.-REPOR'T OF OPERATIONS AT THE U. S. SALMON AND Trout stations on the m'cloud river, california, FOR THE YEARS 1885-87.

By Livingston Stone.

SALMON.

Matters in relation to salmon at this statiou remain in much the same condition as at the close of my last report. The property was left in charge of Mr. Robert Radeliff; but, for various reasous, no active operations were carried on during these years.

TROUT.

The operations in tront breeding at this station during the past two Jears developed no now items of special interest. The fishing in the MeCloud River for breeders was continued very much the same as in previous years, and the station was conducted according to the same methods as heretofore.
Δ few improvements were made during the year, among which may be mentioned the building of two or three new boats, and the constructing of some ponds for growing the young trout, which ponds Mr. Loren W. Green, the superintendent of the station, says are so carefully and securely built that nothing can get into or out of them without his knowledge.
The date of the beginning of the sparning season for the trout in the ponds at this station has receded till now the first eggs are obtained late in December,* the first for this season being 12,500 eggs which Were taken on December 26, 1885. Operations in taking eggs coutinued from this date until May 10, 1880, when the spawning season closed for that year. More than 220,000 eggs were obtained, as shown in Table I, accompanying this report, which were distributed as shown in Table UI. In 1886-'87 over 268,000 eggs were taken, of which 184,300 were disposed of as per Table IV.

This total number of eggs taken in 1855-86 was not so large as usual, owing chiefly to two misfortunes that befell the trout during the year. The first was another outbreak of the mysterious disease described in

$$
[1]
$$

S. Mis. $90-47$
my last report, and referred to more at length under the heading below, which carried off a great many of the breeding trout; and the second was a terrible rain-storm which visited the McCloud River in December, 1885, just before the trout began to spawn, and which forced so much mud and sand into the ponds that many fish died from the effects of earthy matter collecting in their gills. Specimens of trout that died of the disease and of some that died of earthy matter in their gills were sent to Prof. S. A. Forbes, of Illinois, for examination.

Some brief memoranda, which are given in Table VI from Mr. Green's diary, contain information in regard to the weather, the trout fishing, and other matters, from September 7, 1885, to December 31, 1886. Table V is also added, showing the temperatures of air and water at the station between the same dates.
Disease affecting rainbow trout.-Mr. Green, superintendent of the trout ponds at the McCloud River station, described a disease which affected the rainbow trout in the ponds and river at this station during the fall of 1885, and caused the death of many breeding fish, substantially as follows :*
The fish all died in the same way, being apparently in perfect health up to the time of their being taken with this disease, while none that were taken ever recovered. By watching them closely, the first symptom discovered is that the fish begin to grow dark colored, some of them nearly black, and about the second day after this they refuse food and seem inclined to keep very quiet, and remain most of the time resting on their left sides at the bottom of the pond. This symptom differs from any I have ever wituessed in trout before. I have seen a great many fall sick and die, some from old age, others from bruises or fungus or other causes, but they almost invariably rise near the surface, and sometimes so near the top that their back fins will bo out of water, and as they grow weaker they keep falling off towards the back screons; but such is not the case with any of these fish dying of this disease, as they lie on the bottom all day long unless disturbed, while if disturbed they swim off apparently all right. If taken from the water they seem to shake or quiver, aud will splash around quite lively for a moment. They remain in this state from three to six days, breathing very naturally. I have kept them seven days after this, always lying on their sides and breathing faster each day. They seem to be in no pain, but simply stupefied. I think they would live even longer than this if it was not for the sediment that gathers in their gills from their being so quiet in the water. Some of them seem to cramp and their bodies will be crooked and it is almost impossible to straighten them. I have given them earth, salt, and everything I could think of as remedies, but to no avail. After they stop breathing it is eight or ten hours before they begin to get stiff or look like dead fish, and I have opened them forty-

[^94]five minutes after there was no sign of breathing and no feeling, and still found the heart beating. The fish are all fat and nice to look at, and I can find no trouble with cyes or gills or any other part, except the stomach seems a little hard and drawn up, and a hard and contracted yellow substanco sometimes appears around the heart and stomach.
The disease has been very serere in the McCloud River, and I feel sure that it was introduced into the ponds by transferring fish to them from the river. It seems to be a clearly contagious disease, as in one pond, which received no fish from the river and where the water flows directly to the pond from the flume without running over any other fish, no trout have bcen affected.

The water in the river this autumn has been much lower than I have ever known before, aud has been of a milky, muddy color all summer, owing to the overflow from Ash Creek. The very hot weather melts the snow on Mount Shasta, which has been reduced much more than usual this summer and fall, some of which empties through this creek, and when very higi the creek overflows its banks and carries quantities of ashes into the McCloud River.
The large trout suffered from this disease nuch more than the small ones. It was thought that the changed weather and heavy rains late in the fall would stop the progress of the disease, but it did not seem to do so. The temperature of the water while the fish were dying was about 58 or 60 degrees Fahrenheit.
Some specimens of these diseased trout were sent to. Prof. S. A. Forbes, of Champaign, Ill., with the result of his making a careful examination and reporting as follows:
In these six specimens the kidneys were evidently the principal seat of disorder, the spleen being also considerably affected, and the liver much less so. The muscular tissue of the heart was involved in the single specimen that I examined in that particular.
The kidneys were as black as coal and as soft as mush, a condition explained by microscopic sections, which show the urinary tubules little altered, with their epithelial lining intact, but all the other tissues (tho counective tissue, capillaries, \&c.) almost wholly replaced by a mere pulp of pigmented corpuscles, black pigment granules, and micrococei, in which lie imbedded vast numbers of spherical corpuscles each containing an embryo parasite. These oncysted parasites are so numerons that the kidney pulp is seen to be everywhere thickly speckled with them.
The spleen is much pigmented, like the kidneys, but less so, and the liver still less than the spleen, the pigment cells being much the most abundant about the blood-vessels, and often blocking the capillaries, especially in the livor, and causing the degeneration of large tracts of the gland substance. A similar disorganization of the liver cells frequently appears at a distance from arterics or veins. The
spleen and liver are free from parasites. On the other hand, my sections of the heart show great numbers of the kidney parasites all through the walls of that organ. I counted thirty-three in a single thin section. A hasty examination of the muscular tissue of the back showed none, and the brain does not coutain them.

As matters are, I cannot doubt that these kidney parasites caused the death of these fish. In my previous and first examination of these fish I was misled by the fact that the first specimens from which sections were obtained contained relativels few of these parasites, while the general appearance of the organs in other respects was closely like that of the diseased herring from Lake Mendota.

Of courso, no practical conclusion can be drawn from this until we know what these parasites are and where they came from, or in what other host they continue their development; and for this a general study of the subject on the spot would be necessary.

Charlestown, N. H., April 30, 1887.

Table I.-Record of trout eggs taken at MeCloul River Station during tho season of 1885-86.

Date.	Fornales.	Egis.	Date.	Forualos.	Egg*
1885.				18	
Decomber 26....	1"	12,500	March 16......	18	11, 500
1886.			April 3.	10	10, 050
January 4...	12	12, 200	April 5.	10	20, 150
January 13.	23	21,000	April 12.	4	5, 025
January 18.	13	12,100	Δ pril 20.	8	10,000
Janaary 23.	15	15,300	April 27.	10	10,000
January ${ }^{\text {February }} 1$.	10	10, 100	May 5.	12	13,000
February 1.	12	10, 150	May 10.	10	8,000
Fobruary 14.	14	10, 100	Total	228 :	221,425

Table LI.-Record of trout egys taken at McCloud River Station during tho beason of 1886-'87.

Dato.	Fomalos.	Eggs.	Date.	Fernales.	Eggs.
1886.			Felbruary 17.	30	28, 000
Docember 26..-	8	7,500	Fobruary 23...................	10	10, 000
			Fobriary 25...................	12	10,000
Jannary 4.	90	20,500	March $3 . .$.	21	20,500
January 12.	7 4	7,200	March 0.	5	5,200
January 24.	15	3,000	Mareli 20	21	20,000
January 27.	18	13,200	March 20	16	12, 000
January 31.	20	18,000	April 8.	28	10,000 24,000
Felrruary 3	28	20,300	April 11**	4	2, 2,000
February 12.	15	11, 000	Aph1.	4	2,
February 15.	15	13,000	, Total	200	268,400

* At this date there are 53 more fish which aro expectod to spawn.

Date．	Disposition．	$\begin{aligned} & \text { Number of } \\ & \text { eggs. } \end{aligned}$
1880. Jan． 12	Central Station，Washington，D．C．	12，00C
21	Central Station，Washington，D．C．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	12， 000
Fob ${ }^{29}$	Lost by high and muddy wator	20， 000
＊ob． 3	I．B．Hodgo Plymouth，N．HI ．	15，000
10	Hatched for trout ponds．．．．．．．．．	10.00 C
17	II．M．Garlichs，Snint Joseph，Mo	10，000
Mar．${ }^{25}$	H．A．Cutting，Plymouth，N．II	10， 000
Aar． 2	13．E．13．Kennedy，Omaha，Nelr．	10， 000
23 31	Otto Granım，Laramio City，Wyo	20，000
Apr． 15	A．W．Aldrich，Anamosa，Iowa	10，000
18	H．M．Garlichs，Saint Joseph，M	20， 000
27	Hatched for river．．．．．．．．．．．．．．．．	5,000
	Total．	170，000

Table IV．－Disposition of trout egga from McCloud River Station during the season of 1887.

Table V．－Temperatures of är and water at noon at McCloud River Station from Septem－ ber 7，1885，to December 31， 18×6.

Day of month．	1885.								1880.							
	Sept．		Oct．		Nov．		Dec．${ }^{\text {．}}$		Jın．		Fob．		March．		April．	
	$\stackrel{.4}{4}$	苞	安	安	$\dot{\Delta}$		耍	安	守	嵓	守	它	\pm	董	台	＋
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
			78	00	08	${ }^{68}$	58	52	54	62	68	52	00	53	54	66
			86	60	52	53	60	52	52	50	68	52	60	54	56	54
			88	00	52	63	62	52	48	50	68	59	58	54	58	54
			89	60	52	53	${ }^{62}$	52	48	50	08	52	${ }^{60}$	54	516	54
			87	00	54	54	68	52	40	50	62	53	60	54	56	54
			86	00	50	50	00	52	48	48	64	53	60	54	50	5
	78	${ }^{60}$	88	58	50	50	56	52	40	48	62	54	${ }_{60}^{60}$	54	${ }_{58}^{60}$	54
9	70	60	885	58	42	4	${ }_{5}^{1 / 4}$	5	48	48	${ }_{60}^{60}$	64 54	${ }_{60}^{60}$	${ }_{65} 5$	88	5
	80	60	83	58	48	48	68	52	40	48	60	54	60	54	60	54
$12.10 . .$.	80	00	82	68	48	48	50	52	50	48	00	54	60	56	0_{0}^{00}	64
13．．．．．．．．．．．．．．．	84	60	81	58	48	48	60	52	50	48	60	54	48	56	58	54
14．．．．．．．．．．．．．．．．	80	00	80	50	46	48	60	52	00	50	60	54	5	54	${ }_{58}^{68}$	54
．	82	00	80	60	48	48	00	62	50	50	68	54	48	64	58	B4

Table V.-Temperatures of air and water at noon at McCloud River Stalion, etc.-Cont'd.

Table VI.—Mcmoranda relating to the weather, etc., at MeCloud River Station from
September 7, 1885, to Dccember 31, 1886.

to	Condition of weather, ote.	Dato.	Condition of woather, etc.
$\mathbb{S}_{\ominus \mathrm{pt} .}^{1885 .}$	Weather clear and moderato, caught	${ }_{\text {Oct. }}^{1885}$	
	5 bmall trouti trout biting very	Oct. 27	Four largo und 2 small trout; some
Sop	poorly.		outdyingin rivar, but mora in ponds.
	Weather clear; water in river quite mondy; cought 7 small and 1 large	Oct. 28	Clear; no trout. No trout; 5 doad ones in ponds; look
			fat.
Sipt. 10	Weather rory nico; 4 small tront.	Oct. 30	Notrout ; etill looking lodly in pouds.
Sept. 11	Claar and nice; $\mathbf{6}$ small trout.	Oct. 31	Raining a
$8{ }_{8}{ }^{\text {dipt. }} 12$	Foathar ganosas uska!; no tr	Nov.	Rainiof quito hard in aft
pt. 13	Clear and nice; 1 small tront.	Nov.	Still raining; no trout ; they bito rory
1	Weather very nice; no trout.		poorly.
jut. 10	Two vory lirge tront and 2 amall ones.	Nov.	laining quito hard; wator risen con-
Sopt. 17			Hoavy rain; water stil
Sopt. 18	Weather nice; 1 largeand 15 small tiout.	N	lafuing yory hard; wn
	Cool: 2 small trout; bait very scar		Still raining yuito hard.
Sopt. 20	very fow balmon in river.	Nor	Raining; trout in poode looking badly;
	So trout; have sent to Sacramonto for		Kaining not
	Wenther vory nice; 7 trout.	Nov. 10	Clear; 3 more dead trout in ponds.
	Wenther nice, but rather warm; 1 lar	Nov. 11	Clear; no tront.
	trout; some trout in river looking		Clear; wore trout in ponds looking
Sopt. 23	-		
Supt. 24	Weathor rery mice; 2 large tront. Raining quite hard.	Nov. 13	No thshing yet, wator too high; trout still dying.
Supt. 25	Weather very nico; no moro rain; no	Nov.	Eight dead trout in ponds; no idoa
Sept. 20	${ }^{\text {tront. }}$		what ails them.
	Weather nice, but warm; 4 sinal	Nor. 16	hainine hard; water rigivg; 3 doad
Sopt. 28	Weather nico; 5 small trout, found 4		tront in ponds.
Sept. 29	doad trout in river.	Nor: 17	Rnining hart; caught 2 large trout in
	No trout; several trout on thoir sides, but not d	Nor. 18	Water rining fast; 1 trout in trap.
Sept. 30	Twolarge and ${ }^{\text {2 }}$ small trout; trout dy	N	Pleasaut; no ti
	quito fast in river.	Nov. 20	Trout still dying in ponds; took out 8
Oct. $\frac{1}{2}$	Nutrout; trout still Caught 3 small trou		today Raiulng hard all day; water rising fast.
	river.	Nov. 22	lainhig vory hard; water bich nud still
	Woather nice; notr		rising; toik out of ponds 5 deal trout.
O_{ct}.	No trout; moro deal	Nov. 23	Water still risiner: 15 foot high how;
	No trout; trout in ponds acting strangely.		loge runuingover tops of traps; 3 trout in ponds.
	Weather very nice; 2 large trout and 4 small ones: somu in ponds rofusing	Nov. 24	Wator very hifh and still rising; ono boat swoptaway, and one trap washel
Oct. 7	firol; fumolying on their sitcs.		ont; water 20 fiot high.
	Fivo large and 10 smull tront; bomo in ponds atill refusing food.	Nov. 25	Raining quite hard, but water falling somo; showing high up on mount-
$\mathrm{O}_{\text {ct. }}$	Two largo and 2 smanl trout.		; 5 dead trout in ponds.
	Weather cool; 2 largeand 6 small trout; 3 that wero lying ou their sides aro dead; a disbaso nover known before	Nov. 20	Raining slowly; water ligha; pory daugerous erossing river; traps all tilled up with sand and rocks.
Oct.	soemingly nico, bright fish.	No	Still rafung; wator high; 8 doad trout
	Weather nice: caught 4 large trout.		in ponds.
Oct: 12	Two large and 5 suall trout. Six larse trout: more trout in ponds	Nov. 28	Kaiuing nlowly; wator rising; snow meltiur on mountains.
	Iringon thent; more trout in ponds	Nov. 29	Raining Alowly; flyl still dying ; no ap.
	Fiftoon large trout; 5 trout dead in		Mining a littlo; wator falling: conght
$\begin{array}{ll}\text { Oct. } & 14 \\ \text { Oct. } & 15 \\ \end{array}$	ponds.		laniuing a littlo; mater falling; canght 2 trout in trap; took 13 doad trout out
Oct. 15	Have no bait; sent after somo		of ponds.
	eggs, but got none. Weather nice; no tro	Dec	Clear; water rising; snow on mountaine melting.
27	No trout; sonue moro tront in ponds	2	Clonr; water fall
	lying on their sides. but not d	Dec. 3	Clear; water falling; 10 dead trout in
	Trout atill lying on thar sidos.		
			Clondy, bnt no rain; wator falling; trout dying fast.
Oct. 21	in ponds looking quito sickly. Sevon large trout; 10 largo trout iu ponds died to day; all look very fat	c.	Cloar; water falling; 15 dead trout in punds. Morning foggy; no rain; fish still
Oct. 2	and healthy.		Wying. 10 dead tront in pands; all
Oct. 23	Cloar: 7 larce	Dec. 7	Water low; 16 dead tront in ponds; all
			Clourly; some fish in ponds looking siok.
Oct. 24	No trout; trout in ponle refusing food. No trout; they bite vory badly; 3 dead troutin ponds; all loot fat ; uóknown oause for the diseago.	Dec.	Cloudy, but no rain; shippod 4 spocimens of diseased trout to Professor Forbes; took 18 dead trout from ponds.

Table VI.-Memoranda relating to weather, elc.-Continned.

Date.	Condition of weather, otc.	Date.	Condition of weather, otc.
$\begin{aligned} & 1885 . \\ & \text { Doc. } 10 \end{aligned}$	Raining, bat wator falling: fisl still dying.	$\stackrel{1885 .}{\text { Jan. } 20}$	Raining hard; wator high; no troat: lost 20,000 ofge.
Dec. 11	Clear; 13 dead trout in ponds.	Jan. 30	No rain, but clondy; no mail : can not
Doc. ${ }_{\text {dec }} 13$	Clear; took 8 dead trout out of ponds. Clear; fish th ponls looking sick.	Jan. 31	croar: water falling a littlo: 1 doad
Dec. if	Clear; some flshim ponds raftising food.		trout in ponds.
Dec. 15	laining hardall dity; zu doad tront in ponds.	Fol.	Clear; water falling, caught 3 tront in trap : mil came to. day
Dec. 10	Laining bard, water stanling about the same.	Fob.	Cloudy and misty ; no hard rain; water falling.
Doc. 17	leaining; water 3 fect lionher; 11 dead trout in ponds.	Fel.	Cloar, and wator falling; trout in pondis looking much better, and enting well.
Dec. 18	Clear; $\overline{\text { a dead }}$ tront in ponds.	Feb.	Clear: whter getting quite low : craght
Dec. 19	Clear; water 1		in trap 5 female trout and 4 males.
Dec. 20	Clondy; water low; 8 deal tront in ponds.	$\begin{array}{ll} \text { Fob. } \\ \text { Fcb. } & 5 \end{array}$	Clear; wator falling; no trout to das. Clear: no trout ; tiali in ponds lookina
Dec. 21	Raining all day; 0 dead tront in pombs.		voll.
Dec. 22	Ruining all day; caught 10 large trout		Cloar ; water low ; no fish running.
Dec. 23	Kaining hard; watur rising cross river; caught 7 tro		nicely: Cloudy, but no rain ; oggs doing well.
Dec. 24	water in ponds nut Water 10 teet high,	Fob. IU	Cloardy, and a little rain in morning;
	traps; rainivi hard ponds; ponds very	b. 12	Clar: young trout hatchen out and
Dec. 25	Rainiag vory havd; water 15 foet high, but not risiog any more; trout in	Feb. 13	looking nicoly. Clear; fish in ponds doing woll, and
	ponds atill dying.	Feb. 13	young fish doing splendidify.
Dec. 20	Clear, aud wator fulling; water vory nigh in creok: can not get in traps;	Feb. 14 Fub. 15	Clear; water low; no flah. Clear: water low.
	c	Fob. 10	. wator low. Clenr; egir doidg well.
Dec. 27	Clarar; water falling fart; nights cool ; egge doing well 8 dend tront in		Clear; water very low. Cloar.
	pgge doing well; 8 dend tront in		Clear; egge doing
Dec. 28	Clondy ; more rain; water rising.	Foll. 20	Cloar; wate
Doc. 29	Raining ; water hixh; orgs doing well.	Feb. 21	Clear; all the fish dolug very well.
Dec. 30	Clear; water falling; 3 dead truat		Clear; nges doing woll.
Doc.	Clear; nights cool, egres doing nicel	Feb. 24	Clear; little fishl looking very nicel
188		Feb. 25	Cloar; mill the dish oating yicoly.
Jan. 1	Clear; water fallitic.	Fob. 29	Clear: whtor low.
Jan. 2	Clear; 5 dead troutin ponds.	Fob. 27	A little clomky.
Jan. 3	Clarar; eggs doing	Fob. 23	Heavy snow-storm, very large flakesd
Jan. ${ }^{\text {Jan. }}$	Clasar. Clear; no trout ruming up tiaps.		th snow, sun slining by spells in
Jan. ${ }^{\text {a }}$	Clear; ogrs doiug woll.		the afternoon.
	Clear; 4 dead treat in ponds.		Clear; water
Jan.	Clear; disease seems to bo leaving		Clear; Hah doing splendidly.
	Clioar. ${ }^{\text {cout }}$		Chonit, but no rain. ${ }^{\text {R }}$,
Jan. 10	Clear; flsu seem to bo looking a littlo		Rainini slow
	better.	Mar. ${ }^{\text {g }}$	Still raining a little.
Jan. 11	Clear; 3 dead trout in pond	Mrar. 7	Rainiug a very littlo.
Jan. 12	Cloudy; gega doing weal.	Mar. 8	Clear; tish looking spleudidls.
Jan. 13	Raining a little; 1 dead trout in ponds.	Mar. 9	liather
Jan. 14	Raining all day, but not hard.	Mar. 10	Clear.
Jan. 15	Still raiuing.	Mar. 11	Clar ; eqgs doing well.
Jad. 10	Clear; egys looking well.	малаг 12	Clear; all flsh doing well.
Jav. 17	Clear, though erouing at littlo clondy-	Mar. 13	Clear.
Jan. 18	Suowntorta of nboat 2 inches.	Mar. 14	Cloar; little fish onting piedy.
Jan. 19	Raining hatal all day.	Mar. 15	${ }_{\text {Cloar }}$
Jan. 21	Cloar ; water falling.	Mar. 17	Rather cloudy; eggs and fixiodoing woll.
Jau. 22	Rniuing very hard; water high; no	Mar. 18	loudy ; all flah looking w
	trout rumbing.	Mar. 10	Cloudy; water juw.
Jan. 23	Raining hard; water rising fast 8 trout in trap.	Mar. 20 Mur. 21	
Jan. 24	Raining very har	Mar. 22	Clear; n littlo wind
	rising.	Mar. 23	Clourly.
Jan. 25	Clear in morniug, annshine at noon, and		
	cloudy aud ratuins inevening: water rising: caught 3 trout in trap; 2 doad	Mar. 25 Mar. 20	Clouds and windy; all fash looking wo Clear; egrs doivg well.
	troutin ponde: water mudily, dead	Mat. 27	Clear:
Jan. 20	Raining hard all day; caught	Mar. 28	Do.
	to 0 e 2000 a	Mar. 29	Clear ani
	to lose 20,000 cygs by high water.	Mar. 30	Clear.
Jan. 27	Raining hard; water	Mar. 3!	Clear; all
	with mad.		Cloar; water low.
Jan.	Raining hard; water violug and muddy;	Арг. ${ }^{\text {apr }}$	Clear.
	no figh to-day.	Apr.	Clear; water vory low.

Table VI.-Memoranda relating to the wcather, eto.-Continued.

\begin{tabular}{|c|c|c|c|}
\hline Date. \& Condition of weather, etc. \& Dato. \& Condltion of weather, eto.

\hline ${ }_{\text {A }} 1880$. \& \& 1880. \&

\hline ${ }^{\text {Apr. }}$ Apr. ${ }^{5}$ \& Clear ; egge doing well. \& Oct. 10 \& Clear; 15 large and 3 small trout.

\hline \& Clear; fligh all eatlag well. \& Oct. 17 \& Strong north wind; no troat.

\hline ${ }^{\text {A pr. }}$ pr. 7 \& İegan raining, very dismal day. \& Oct. 18 \& North wind and very clondy; no troat.

\hline ${ }^{\text {A pr. }} 8$ \& Rajning hard; river rising. \& Oct.
Oct.
O20 \& Clear; ${ }^{\text {no trout. }}$ D.
Do.

\hline ${ }^{\text {Apr. }}$ Apr, 10 \& Still rainiug ; ofge dolug well. \& Oct. 21 \& Clear; no trout biting.

\hline ${ }^{\text {A pr. }}$ Apr. 12 \& Not raining quite so hard. \& Oct. 23 \& Clomly; no trout.

\hline ${ }_{\text {A pr. }}^{\text {pr }}$ pr. 12 \& Rajning hard; wator rising. \& Oct. 23 \& Do.

\hline \& Still ralning hard; wator high and fast \& Oct. 24 \& Do.

\hline Apr. 14 \& filing. ${ }^{\text {Still raining; mater rising fast. }}$ \& Oct.
Oct. 25

O8, \& Clear; no trout.
Cloudy, without raln; no fleh.

\hline Apr. 25 \& liaining rery hard; mater highor than \& Oct. 27 \& Cloudy; fish not biting.

\hline Apr. 10 \& before this wintor. \& Oct. 28 \& Clear; no trout.

\hline Apr. 10 \& Still raining a little; water high; snow \& Oct. 29 \& Do.

\hline ${ }^{\text {A pre }} 17$ \& Not mountaing. ${ }^{\text {on }}$, water atill risiog. \& Oct.
Oot.

31 \& Do.

\hline Apr. 18 \& No raining much ; water sater vory ligh, but not \& Nov. 1 \& Clear; uights cool.

\hline Apr. 10 \& rising. \& Nov. 2 \& Clear and pleasant.

\hline 4 pr. 20 \& No rain; water gtill pretty high. \& Nov. ${ }^{\text {Nor }}$ \& Clar; trout

\hline \& woll. ; wator faling; litho lisbaino \& Nov. \& Do.

\hline ${ }^{\text {Apr. }}$ pr. 21 \& Clear and nice; water falling fast. \& Nor. ${ }^{\text {a }}$ \& Do.

\hline ${ }_{4}{ }^{\text {pr. }}$ 23 21 \& Very nice; fish all doing well. \& Nov. \& Do.

\hline ${ }^{\text {A pr. }}$ Pr. ${ }_{24}$ \& Splondid day , water quile low. \& Nov. 8 \& Very cloudy, with some rain ; troul not

\hline Apr. 25 \& Splondid weather; littlo fish growivg \& Nov. \& Daye clear and nights cool.

\hline \& rapidly. \& Nov. 10 \& Do.

\hline \& Fery nlce; flsh-trape all very bady \& Nov. 11 \& Clear; no trout biting.

\hline ${ }^{\text {Apr. }} 27$ \& damaged by recent high water. figh. \& Nor. 12 \& Do.

\hline Sopt. \& Splendid weather; clearing out figh. traps. \& Nov. 19
Nov. 14 \& Cloudy, but no wind.

\hline Spt. 0 \& Weather cloar, with strong north wind; \& Nov. 15 \& Cloudy, with wind.

\hline \& began fighing to-day; caught 1 large \& Nov. 10 \& Clouky, with strong north wind.

\hline Sopt. \& and 5 small trout. \& Nov. 17 \& Cloudy; no trout biting.

\hline \& Continued north wind; almost impossi. \& Nov. 18 \& Do.

\hline ${ }^{\text {Sopt. }} 8$ \& Noo to gtay on the wator. \& | Nov. 10 |
| :--- |
| Nor. 20 | \& Cloudy; caught 13 trout. Iroavy rafn ull night.

\hline ${ }^{\text {Sopt. }} 8$ \& North wind; no tront. \& Nor. 21 \& Clouds; night cool.

\hline Sept. 10 \& Noith wind in foronoon ; clearand still \& Nov. 22 \& Cloudy, but no rain.

\hline Sopt \& in aftornoon; caught 5 small trout. \& Nov. 23 \& Do.

\hline \& Hot and smoky, no wiud; caught 4 \& Nov. 24 \& Do.

\hline Sept. 12 \& mmall trout ; largo trout very scarco. \& Nov. 25 \& Clcar and pleasant.

\hline Sopt. 13 \& Hot and smoky; no trout.
Du. \& Nov. 20 \& Cloady; caught 13 tront.

\hline Sept. 14 \& Cloar; no tront. \& Nov. 28 \& Clouly; no tront.

\hline Sept. 15 \& Cloar; canght 1 large trout; flahing \& Nor. 29 \& Cloudy; 13 trout.

\hline Sept. 10 \& very poor. \& Nor. 30 \& Clear; 6 trout.

\hline Sept. 17 \& Caught 3 small trout. \& Dec. 1 \& Clondy; no trout.

\hline Sept. 18 \& Clear; flshing poor. \& Dec. ${ }^{\text {Deo. }}$ \&

\hline Sept. 19 \& Clear; trout not biting. \& | Doo. |
| :--- |
| Dec. | \& Cloar and ploasant; no trout.

Do.

\hline Sept. 20 \& Caught 18 nive trout. \& Deo. 5 \& Do.

\hline Sept. 22 \& Clear; no trout. \& Dec. 0 \& Clear.

\hline Sept. 23 \& Clear; caught 7 small tront. \& Dec. 7 \& Do.

\hline Sopt. 24 \& Cloar; no trout. \& Doc. ${ }_{\text {Dec }}$ \& Clear, with north wind.

\hline Soptet 25 \& Cloar; 0 small trout. \& Dec. ${ }^{\text {D }}$ \& Cloudy, with south wind.

\hline Sept. 27 \& Cloar; no trout. \& Des. 11 \& Very oloudy.

\hline \& Clour; 5 small tront; fow large ones in \& Dec. 12 \& No.

\hline \& river. \& Dec. 13 \& Do.

\hline Sept. 28 \& Clear; 0 amall trout. \& Doc. 14 \& Vory oloudy, but no rain.

\hline ${ }^{\text {Soptr }} 30$ \& Clear; water low no troat.
Strong north wimd no trout. \& Doc. 15 \& Raining suightly.

\hline Oct. 1 \& Drong north wimd; no trout. \& Dec. 17 \& Cloudy, but not raining.

\hline \& Cloar; no As? \& Dec. 18 \& Clear and pleasnnt.

\hline \& Clear; 0 small trout. \& Dac. 19 \& Cloudy, but no rain.

\hline \& Clear; no trout. \& Dec. 20 \& Cloudy ; working on fish-traps.

\hline \& ${ }^{1}$ \& Dec. 21 \& South wind; working on fah-traps.

\hline \& Do. \& Dec. 22 \& Began raining in afternoon.

\hline Oct. 8 \& Clear; 2 amall trout. \& \& done; no trout in lish-traps ns yet.

\hline Oct. 10 \& No trout ; moved boat up the ripor. \& Dec. 24 \& Wator a foet higher than uaual.

\hline \& Clear: no trout. \& Dec. 25 \& kaining slowly.

\hline Oct. 12 \& Do, \& Dea. 20 \& lasining again quite hard.

\hline \& Clear; 0 largo trout and 12 small \& Dec. 27 \& Ralning very hard.

\hline \& \& Dec. 28 \& Water vory muddy and rising.

\hline Oct. 14 \& Cleari no trout. \& Dec. 20 \& Raining, but wator falling.

\hline \& laining hard in oveuing. \& Dea. 31 \& Rainod hard all night.

\hline
\end{tabular}

XIT. - REPORT ON THE PROPAGATION OF PENOBSCOT SALMON IN 1886-'8\%.

By Ciarles G. Athins.

The number of salmon purchased for breeding purposes at the Pe nobscot Station in 1886 was limited to 205, which were received between May 29 and June 8. By collecting them thus early it was hoped that We might avoid in great measure the losses that aunually decimate the stock of salmon during the transfer from the weirs to the inclosure, and also while confined during the summer months in Dead Brook. These hopes were only partially realized. There were, to be sure, no deaths in transit, but out of the 205 placed in the inclosure only 147 (or 72 per cent.) were recaptured in the fall. This is a less favorable result than in 1885, when the collection of salmou was continued till June 20, and when 72 per cent. of the whole number purchased and 82 per cent. of those actually placed in the inclosure were saved and made serviceable in the fall. The deaths in the inclosure occurred for the most part, as usual, soou after the salnon were inclosed, and thus before the height of the summer's drouth or heat. Of 4 S whose remains were found 33 Were discovered in June, 9 in July, and 6 in August, the last 6 bearing eridence of hąving been dead from ten to twenty days.
This was a year of large salmon in the Pevobscot. The average of the estimates of the entire stock collected was 16.47 pounds. At the sparning season those remaining on hand were found to average 14.47 pounds in weight and 34 inches in length, including all the males and gravid fomales.

The spawn was taken at the usual date, and the 101 females recorered yielded•a total of $1,155,776 \mathrm{eggs}$, an average of 11,473 each.

The development of the embryos up to the shipping point was attended with a loss of 59,776 , or 5.2 per cent. The loss from non-impreg. nation was estimated at 21,035 , or 1.8 per cent. Among the rejected ${ }^{\text {egge was }}$ wan entire lot of very sunall aud evidently worthless eggs which were thrown out in a mass soon after placing them in the hatchery. Leaving these out of the account, the total loss appears to have been but 3.9 per cent., a very satisfactory result.
The net stock of eggs available for division among the subscribers to the fund was $1,099,000$, of which there were awarded to the State of

Massachusetts 320,000 ，and to the U．S．Commission of Fisheries 779，000． Ont of the latter， 25,000 were reserved for experiments in rearing and feeding at the Bucksport Station，but were subsequently liberated （June 13）in Craig＇s Pond．The remainder were distributed as per fol－ lowing schedule：

Table I．－Statement of shipments of salmon eggs from the Penobscat Slation in 1887， from the stock collected in 1836.

Dato．	Consignee and address．	Beloug． ing to Masяa－ chusetts．	Belong－ ing to United States	Total．	$\left\|\begin{array}{l\|} 4 \\ 0 \end{array}\right\|$		Condition on mpacking．	河号
${ }^{1887}$						Days．		
Fob． 1	F．Mather，Cold Spring Harbor， N．Y							479
2	F．A．Walters，Bloomingdalo，		250，000	250， 000	4	3	Excellent．	4
	N．Y．．．．．．．．．．．．．．．．．．．．		250，000	250， 000	4	6	Good．	${ }_{28}^{58}$
8	F．S．Hodge，Plymouth，N．H ．．．	110， 000	100， 000	210，000	3	2	Good．	40
21	16．B．Hodge Plymouth，N．H ．．．	210，000		210， 000	4	2	Good．	4
	N． $\mathrm{Y} \ldots .$.		40，000	40，000	1	3	Excollont．	38
23	F．Mnther，Cold Spring Harbor，				1			40
24	W．H．Munson，Grand Lako		10，000	10，000	1	3	Excellent．	
28	Wtream．Mo．．．．．．．．．．．．．．		89，000	80， 000	2	3	Good．	37
	Stream，Me ．．．．．．．．．．．．．．．．．．．．．		15，000	15，000	1	3	Good．	0
	Total	320，000	751，000	1，074，000	20			715

Table II．－Observations on temperature of Eastern River at Orland Lower Dam，Juno， 1886.
［During the period whilo brecding salmon are usually collecting．］

Date．	Hour．	Temper． aturo．	Date．	Hour．	Tomper－ ature．
$\begin{gathered} 1886 . \\ \text { Junc } \end{gathered}$	c p．m	${ }^{\circ}{ }^{5}$	$\begin{gathered} 1886 . \\ \text { June } 14 \end{gathered}$		${ }^{\circ} \mathrm{Fr}{ }^{18}$
2	$8 \mathrm{il} . \mathrm{m}$	05		5t p．ma \ldots	70
2	${ }_{8}^{\text {g }}$ p．m	64	15	8 a．m．．．	88
3	8 แ11	62	10	8 a．m	69
3	5t p．m	04	17	7t $\mathrm{A} . \mathrm{mm}$ ．．．	${ }^{69}$
4		634	17	枋 p．m．	71
4		60	18	8 a．m．	70
5	5 ¢ p	${ }_{60}^{65}$	18	${ }_{8}^{\text {\％}}$ n． $\mathrm{p} .1 \mathrm{~m} \ldots$	70
0	Soobservation	${ }^{1}$	19	54 $\mathrm{p} . \mathrm{m}$ ．．．	71
7	8 a．m．．		90	8 mm ．	70
78	51 p．mm	${ }_{67}^{68}$	20	的 p ．m． m ．	71
8 8	8 a．m1 af p in	67 68	21	8 a．mi f， p．m	71
9	7 п． 11	67	22	${ }_{7}{ }_{\text {n }}^{\text {n }} \mathrm{m} . \mathrm{m}$ m	72
11	7 n a．m	67	2.5	5 pm.	71
11		${ }_{68}^{68}$	20	8 m．m．．	70
13		68	28	4t p．m ．	71

$\mathrm{T}_{\text {Abla }}$ III.—Observations on tomperature of Dcad Brook (at the salmon inclosures), 1826.

(otr.-Theso observations were takon betweon 5 and 6.a. m.]											
$D_{8,}$ of month.	June.	July.	Δu. ginst.	Septom. ber.	Octo. bor,	Day of mouth.	June.	July.	$\underset{\text { gust. }}{\text { Aut }}$	Soptomber.	Octo.
1.	${ }^{\circ} \mathrm{F}$.	\bigcirc	$\bigcirc \mathrm{F}$.	$\bigcirc \mathrm{F}$.	\bigcirc F.		- F.	FF.	- F.	- F.	- F.
		5	64	50	52	17.....	60	60	52	52	35.
3		58	04	54	50	18.	62	62	52	52	36
	57	64	63	54	44	19.	50	62	52	54	52
	51	62	63	64	44	20.	50	58	68	52	37
	55	60	98	55	46	21......	56	58	52	48	37
	54	60	58	55	45	22.	57	88	58	44	40
	53	05	57	62	43	23	00	52	58	42	37
	56	60	G0	61	47	24......	01	55	53	44	36
	50	63	60	60	48	25......	59	55	52	44	36
	58	63	59	62	47	28.......	58	62	58	48	35
	00	50	60	63	48		60	62	58	54	34
	58	58	62	91	48		${ }^{60}$	62	${ }^{60}$	50	40 40
	55	58	60	60	47		58	63	${ }_{5}^{60}$	5	40
$15 . \cdots \cdots$	55	60	60	00	45	30......	55	${ }_{6}^{62}$	${ }_{60} 6$	52	\ldots
$18 . \cdots$	50	62	58	56	55	31.		05	60	\ldots	\ldots
	58	00	56	51	45						

Table IV.-Obscrvations on temperature of water in the hatchery at Craig's Brooh, October, 1886, to June, 1887.
[Takou in the moruinc.]

Day of month.	1880.			1887.					
	- October.	Novom. ber	Dacem. bor.	Janu. ary.	Fubruary.	Marcb.	April.	May.	June.
1	$\bigcirc \mathrm{F}$.	$\bigcirc F$.	$\bigcirc{ }^{\circ} \mathrm{F}$.	- F.	${ }^{\circ} \boldsymbol{F}$.	\bigcirc	\bigcirc		${ }^{\circ} \mathrm{F}$
		51	39	34	33	32	34		54
3		52	30	34	33	32	34		
4		52	36	33	32	33	34	38	60
5		52	32	32	32	33	34	38	55
8		52	33	34	32	33	34	38	54
7		52	34	34	32	33	34	42	56
8		50 40	33	34	32	33		4.3	58
10		44	30	32	33	13	84	44	58
11		48	33	32	33	34	95	44	57
12.		50	30	32	34	33	35	42	57
13		46	36	34	34	33	34	43	57
15		42	36	33	13	33	34	43	57
15		44	34	31	33	34	34	44
17.		41	34	82	34	34	34	47	.
17.		41	33	32	34	34	34	48	.
18		42	32	31	34	34	34	48	
19		42	32	32	34	34	34	50
20		43	34	31	33	34	34	5	
22.		42	34 34	34	32	34	35	54	
23.		40	34	34	34	34	34	53	
24		40	34	34	34	34	36	50	
25		44	34	34	34	33	313	50	
26		40	34	34	33	33	36	50	
27		40	33	34	34	33	35	50	
28		18	34	32	33	33	35	56	
29	48	36	34	32	33	34	35	54	
30.	50	36	34	34 34 34	34	36 36	54
31.	52 50	42	32 32	334		34	36	55	
Mcan	50	44.3	34	33	33.1	33.4	34.5	48	56.4

Bucksport, Me., November $8,1887$.

XV.- REPORT ON THE PROPAGATION OF SCHOODIC SALMON AT grand lake stream, maine, in 1886->87.

By Chas. G. Atkins.

The management of the Schoodic Station for this year was placed in the lands of the assistant superinteudent, Mr. W. O. Buck, of Bucksport, whose chief helper was the experienced foreman, Mr. William H. Munson, of Princeton, who has served the station in that e cpacity since its organization, and to whose skill and fidelity the success of the work has been largely due.

Mr. Munson began work the first of September aud placed the barriernets across the outlet of Grand Lake on the 15th of that month. The pounds were built at the usual date, and made ready for the capture of fish on the 28th of October. The ruu of fish was rather small, not quite equal to that of 1885 . Of the 752 taken in all, 505 , or 67 per cout., were females, and 247 , or 33 per cent., males. The fish proved of satisfactory ${ }^{8} \mathrm{iz}_{0}$ and fecuudity, the females yielding an average of 1,935 eggs each, a higher rate than ever before observed, except in 1884, when the yield Was 2,349 eggs per fish.

The fishing and spawn-taking was accomplished under the disadvantage of very low water and a current too sluggish to attract the fish into the inclosures so freely as desirable, and a larger number than usual spawned on the slallows above our uets. But for extra exertions to capture the recusauts, by stretching additional nets, the loss from this cause would have been very serious.
In 1885, at the close of the work of spawn-taking, the greater number of the salmon in hand were marked by cutting out a V-shaped piece from the outer margin of the anal fin. This year all the salmon that Wero handled were closely scrutinized for these marks, aud 56 of them (5 males and 51 females) were found to bear what appeared to be the mark sought for. In each of these cases there was a distinct, well-defined triangular transparent spot in the requisite position. It appeared as though the rays and integuments had been reproduced so as to completely fill out the outline of the fin, but that the new growth had as yet assumed no color. So distinct were these marks that both Mr. Buck and Mr. Munson were fully convinced that they were the marks of 1885 . Such a result was unexpected and great interest will attach
to a repetition of the experiment. These 56 marked fish average in weight 3.4 pounds, and in length 20.5 inches, in both points less thall the general average of 1885. For a more exact experiment Mr. Back has dovised a system of marks consisting of holes to bo punched through the fins, by which numerals cau be indicated and individual fishes identified on their return, and these marks were applied to a large part of the fishes handled in 1886.
The eggs obtained numbered in all 942,500 . They were all placed for development in the cold water of the river house, and there remained till the mouth of February, when they were removed to the cove house, preparatory to division and shipment, which was accomplished in March. The losses from- lack of impregnation and other causes reduced the egge. available for division to 855,500 . The legal reserve took from these 214,000, aud the remaining 641,500 were divided among the subscribers to the fund as follows: Massachusetts, 132,000; New Hampshire, 132,000; United States, 377,500.
The eggs for shipment were packed as usual in Sphagnum moss, and transferred by express, over the usual route, including a ride of 36 mile in the open air, and all reached their destination safely.
The 214,000 eggs reserved for Graud Lake were hatched and planted with the very small loss of 1,044 eggs and fry. A lot of 104,000 seasalmon eggs were sent over from Bucksport by the Maine Commissioners and hatched at the Schoodic Station to be planted in waters tributary to the St. Croix. They were likewise successfully hatched with a loss of but 255 eggs and fry, and were plauted in Junior Stream and Upper "Dobsey" Stream June 15, 17, and 20, 1887.

The following tabular statements will be found to give additional details of interest:

Table I.-Fishing record at Grand Lake Stream, Maine, 1886.
[Lach day of 24 hours, onding at 7 a. m.]

Tamle I.-Fithing record at Grand Lake Stream, Maine, 1880-Continued.

S. Mis. $90-48$

Tanle III--Statement of shipmente of egys of Schoodic salmon from Grand Lake Stream, Maine, in March, 1887.

*To Germany, 40,000; Euglam, 25,000.
\dagger To France.
; Mr. Mather's report of condition on arrival at Cold Spring Harbor.

Obbervations on temperature, etc., at Grand Lake Stream, Mraine, from Scptember 13, 1886, to June 29, 1e87.

Observations on temperature, etc., at Grand Lake Sircam, Mainc, etc.-Cuntinued.

Observations on temperature, etc., at Grand Lake Stream, Maine, etc.-Continued.

Observations on temperature, etc., at Grand Lake Stream, Maine, etc.-Continued.

Obyereations on tenverature, etc., al Grand Lalie Strean, Maine, eto.-Continued.

XVI.-Report of operations at battrery station, hatree DE GRACE, MD., FOR THE YEAR ENDING DECEM BER 31. 1886.

By W. de C. Ravenel.

This year was ushered in at Battery Station by a continuance of work on the breakwater at west end of carp pond. This was interrupted early in January by bad weather and ice, so that but 12 feet were added to the work of December, making 92 feet to the end of January. One hundred and fifty tons of ice were cut and stored in this mouth; 20 iron cots were finished, which completed the 30 originally intended. The boilers and engines of tho launches were thoronghly overhanled, as also the pumps. One of the station carpenters assisted in work on steamer Halcyon for fifteen days during Jauuary. On tho 30th, at 9.30 D. m., 200 feet of the crib at the outer end of the wharf were carricd away to low-water mark by ice and overthrown into the carp pond. The damage is estimuted at $\$ 1,000$. On 31st, the entire force was at Work cutting ice to move pile driver to a place of safety. The presence of ice made it necessary to use sledge-boats in trips to Havre de Grace for mail, provisions, etc.
A very small portion of February was suitable for outdoor operatious, it being generally too cold. But very little work was done to the new breakwater; the piles pushed off the main wharf by ice were recovered, and such timbers from the broken wharf as could be got at and wedged apart were saved. The general and routine work was carried on; repairs to launches were made in the way of stauchions, fenders, scraping, and sand-paperiug. The barge kitc hen and mess-room were given two coats of paint inside, and tinware used in hatching operations was painted outsido.
Ice covered the head of the bay all the first portion of February. A hoavy movement of ice occurred on 13th at 4 p . m., lasting thirty minutes, crushiug about 20 feet of the sleet pile dike erected during the Winter. at midnight, sawe date, a movement lasting ten minntes crushed about 25 feet of the southern end of the same work. The damage by ice this month is about $\$ 180$. The ice piled 15 feet above wharres on north side of island.
During the early part of March, work on the machinery, etc., of the launches was pushed to completion, and, as soon as the weather permitted, all of the boats, scows, ete., belonging to the station were over-
hauled, painted, and launched. Six new flat-bottom row-boats were purchased, making the number of this class available 20 . Two new round-bottom gilling skiffis, 21 feet long, with masts, oars, and anchors, were also purchased for use in the shad work. Two gilling nets of 100 fathoms each were added to the outfit, and the seine was hung and tarred. The seine haul was well dragged and cleared of snags and stumps, and all necessary work for patting the station in order for the hatching operations was doue.
The shad season opened on April 18 and closed June 10, during which time the station collected $60,766,000$ shad eggs and 600,000 eggs of the rockfish. A full report of these operations has been submitted by Mr. L. R. Grabill, the superintendent of the station at that time.*

At the couclusion of the shad work the temporary forco was discharged, the equipment dismantled and stored, and the seine cat out. A drive-well was started on the island, with the viow of obtaining an artesian water supply. The well was carried to a depth of 150 feet by July 1. The Assistant Commissioner obtained authority from the U. S. Geological Survey to have a geologist examine this well, and Mr. W. J. McGee proceeded to Battery Station during the first half of JulyHis report, however, was adverse, and the well was abandioned.

In the middle of July, Mr. Grabill left the station temporarily to assume charge of some dredging operations to be conducted at Saint Jerome Station. This work occupied him until August 5, when the dredging-machine, which had been borrowed from the Navy Department, was brought to this station in tow of the steamer Fish Hawk. The report of the work accomplished will be embodied in the annual report of Mr. W. de C. Ravenel, superintendent of St. Jerome Station.

In the mean time, the routine work of the station was carried ou under the supervision of Mr. William P. Sauerhoff, and the roof of hatehing. house was painted and work was done to pumps, etc. The launch Blue Wing arrived at the statiou on August 10, and wàs at once dismantled and the machinery removed for overhauling, and the launch towed to Havre de Grace to be hauled out for repairs to hull and condenser. She was returned to Battery Station on August 21 and hauled out.

On Mr. Grabill's return with the dredging-machine, he proceeded to cut a channel from the main channel to pool gates, and completed this between the 9 th and 14th of August; the cut was 20 feet wide with a depth of $8 \frac{1}{2}$ feet at low water, mean. The remaining work in this line was completed by August 21, and Colonel Abert, deciding to postpone further dredging at Saint Jerome, the proposed return to that point was given up. Mr. Spencer agreeing to make certain concessions as to the use of his railway at Havre de Grace if permitted to do one day's dredging with the mud-machine, the dredge was towed to that point on the 23 d , the work he desired performed, and then the machine returued to the station. The well-driving equipment was transterred to the steamer

[^95]Fish Hawk, and on the 21st transported to Saint Jerome Station, to be used there in securing an artesian water supply. On the 24th of August the dredge force was discharged, the machine laid up, and Mr. L. R. Grabill left the service of the Fish Commission to return to the U. S. Engineer service under Col. S. T. Abert. The station was then transferred to the charge of Mr. William P. Sauerhoff. .
After Mr. Sauerhoff assumed charge of the station, and up to the latter part of Soptember, the small force under him was engaged in rontine work of painting flat-boats and deck of Blue Wing and interior of launches, and in repairs to pile driver, gill-boat sails, pamping out dredge and pile-driver, work ou pile-driver, engines, ete. The welldriring equipment sent to Saint Jerome by the Fish Wawk was returued to this statiou on September 6. September 22 Maj. N. II. Hut. ton visited the station to obtain information as to the depth of water around the island, etc. His visit was followed by those of Captain McCullough and Mr. Glemn in reference to the engineer work provided for by act of Congress.
Mr. McGee arrived at station on 21st, and on 22d and 231 nsed lannch in his investigations as to the geology of the surrounding country. Towards the latter part of October the United States engineer force bogan to arrive at the station aud soon had preparations for their work completed. The operations were commenced October 27 and continned nutil December 23 , when work was suspended on account of ice. The work of exteuding the hatching-house was commenced in the first part of November, aud was vigoronsly pushed during the following weeks. The foundation for the new storehouse was started, and the men from the Fish Hawk, which had arrived on the 4th of Novenber, and from the Halcyon, assisted the station force in these operations. The Assistant Commissioner frequently visited the station to supervise the work.
On November 20, Mr. W. de C. Ravenel, superintendent of Saint Jerome Station, was transferred to the charge of this station and took the work in hand. During the latter part of Norember and throngh the month of December the work on the hatehing-house was carried forward with all energy. The force was increased by details from the Fish Hawk and Шalcyon. In the machinery department, all pumps and machinery were overhauled, as were launches, small boats, etc.
Havie de Grace, Md., September $9,1887$.

XVII.-REPORT OF 0perations at saint jerome oysterbrecding station for the year 1886.

By W. de C. Rayenel.

During the greater parts of the months Jamuary, Feloruary, and March the channel to station and the upper part of the creek was frozen over, stopping all oystering and communication by water Records of the temperature and density of water in the ponds and bay Were kept during that time when practicable.
It having been decided to continue the experiments in artificial propagation by means of artificially-impregnated spawn on a much larger scale than before and without confining it to ponds in which the water Tras filtered, and also to give Prof. John Λ. Ryder's system of spat collection a fair trial, 300 bushels of oysters were purchased in April and bedded in lower poud for the artificial propagation, and 75 bushels were But in pond 5 to furnish spawn for the Ryder experiment, the flume used to connect pond and channel having been taken out.
I was ordered to Battery Station on 4 pril 21 to assist in the shadhatching operations and returued to Saint Jerome on May 20. During the inonth of June a zigzag canal 270 feet in leugth, 4 fect deep, and $3 \frac{1}{2}$ foet wide, conuecting pond 5 and main channel, was dug, sheathed up, aud baskets made, which, soon after the 1st of July, wero filled with clean shells aud placed in canal.
Tho bank around the lower pond was wattled from the south end of piles to wharf on Deep Point; piles were driven around the mouth of terra-cotta pipe comnecting bay and pond 4 and inclosed with wire netting to keep out sea-weed aud trash. A large quantity of sea-weod having settled at wharf, the meu were emploged two days removing a part of it; the Malcyon arriving on 30th with the Assistant Commissioner, finished this work by means of her propeller.
The laborers employed in digging canal, handling baskets, and other general work were hired from the immediate vicinity at $\$ 1.50$ per day.

On June 23 ripe ojsters were found in sufficient numbers to commence sparning regularly. The force, cousisting of four men, was employed daily during the season in collecting ripe oysters, distributing the artificially fertilized spawn in ponds $1,2,3,4$, and 5 , and at other points, and putting out collectors of slate and tile, coated with mortar,
placed in frames of various desigus, so as to be in horizontal and ulright positions. Wire trays, covered with oysters and slate, resting ou trestles about S iuches high, were ased in the ponds where artificially-fertilized spawn was distributed. In addition to these, plastering laths and shingles nailed to strips were made use of in the ponds and surrounding waters, fixed so that where some floated on the surface, other's rested on the bottom or were anchored midway. Shells were als 0 used as formerly, strung on galvanized wire.

The Stemmer Fish Hazeli arrived July 11 with dredge and two scows. Leaving them she proceeded to Battery Station, returning on the 16th with two launches and a large force of men to work the dredge and sink an artesian well under the direction of Mr. Grabill, superiutendent Battery Station, who, immediately upon his arrival, commenced sinking the well at the north east corner of wharf. After several attempts to get water near the surface, the pipe was driven down about 80 feet and then abaudoned, in consequence of the pumps being out of order.

The dredge commenced work in front of wharf to dig out a basin 150 feet wide by 9 feet deep, and to continue deepening the channel loading to station. Very little progress was made, owing to the poor condition of machinery, the difficulty of getting fresh water, and the hardness of the soil. Un the 3 th the dipper-pole broke and was not replaced until the $28 t \mathrm{t}$, when work was resumed.
The Assistant Commissioner arrived on steamer Halcyon on 30th instant to inspect the general work of station.
During this month all the shells in the baskets wore washed, as much sediment had collected on them; very few goung oysters were found at that time on them.

In August spawning was pushed with energs, new collectors being put out daily until the 24th, when these operations ceased. The first appearance of spat was in pond 2 on July 29, when oysters one-eighth of an inch in diameter were found. Mr. Grabill left for Battery Station Auguse 3, sending the dredge, seows, and a launch by the Jish Hawh to same point; leaving Launch No. 55 aud crew to assist in spawning at this statiou.

On August 18 Machinist Glennan and a carpeuter reported for duty with a pump borrowed from the Fort Washington Station and work was resumed ou the well. After several inefifectual attempts to drive the pipe deeper it was given np and a new one commenced, which had been sunk to a depth of 94 feet when Passed Assistant Engineer Reeres arrived on Fish Mavek with a large force of :nen to take charge. The work was now pushed night and day until, on the 20th, when a deptli of 303 feet had been obtained, the pipe wrung off 23 feet below the surface. It was then abandoned and the Fish Mawk left for Wood's Holl, Mass., taking with her the carpenters, the greater part of the engineer force, and the well-driving equipment. The rest of the meu, except Conswain Jones, were sent to Battery Station on the 31st.

Daring the months of September and October all coilectors put out Were taken up and overbauled. The set of spat was exceedingly poor ${ }^{\text {on }}$ collectors from channel and lower ponds, thongh 183 oysters were found on one slate collector from Vrightson's Bar. About 500 were found on collectors in pouds $1,2,3$, and 4. All those with spat were placed in ponds 1 and 2 on wire trays, resting on bottom.
On September 13, finding the oysters in poud 5 dying in great numbers from the effect of sand, I had them all talsen up and put in lower pond. Upon thoroughly overhanling the baskets of sholls and finding about 40 oysters to the basket, the shells were scattered in the channel and pond west of cottage.

Having observed a very heavy set of spat in parts of the outer creek, at the suggestion of the Assistant Commissiouer, a careful examination of this, with Point Lookout and Smith's Creeks, was instituted. In the former the set of spat was phenomenally large for about one-half mile up both branches, while in the others the set was quite poor, though oysters were plentiful. It would therefore appear that Saint Jerome Creek had been advantageously affected by the large quautity of arti-Acially-fertilized spawn distributed by the station.
The Fish Havok arrived here on $3 d$ of November, left well-tower and equipment, and taking Coxswain Jones and Lannch 55, proceeded to Battery Station. The Herreshoff pump borrowed from the carp pond in Washington was returned November 8.
November 14 the Halcyon arrived with the Assistant Commissioner, Who, after inspecting the station, instructed that it be closed and puit in charge of a watchman and the superintendent report to Battery Station. All collectors with oysters attached were left in ponds 1,2 , and 3 ; about 350 oysters obtained from collectors placed in outer creek were put into three caissons and placed in pond 3 . The station was turned over to the watchman, S. B. Wrightson, on 20 th of November. - Appended is a table of weather variations aud deusity and temperature, etc., of water at Saint Jerome Station.
Gavre de Grade, Octoler 2s, 1887.

Table of temperatures, weather, and densities of zater at Saint Jerome Station from January 1, 1886, to April 17, 1886, and from July 1, 1886, to Noveniber 7, 1886, inchusive.

Note-Salinometer No. 5317 was in use duing the following periods: January 17 to February 17; March 10 to April 3; april 5 to April 17 ; Augast 4 to Septenber 28. Salinoneter No. 5319 was in use during the following periods: January 1 to Jannary 9; February is to February 20; March 1 to Drarch 15; July; to August 3, and Septem. ber 29 to Norember 7.

Date.	State of tide.	State of weather.	Direc. tion of wind.	Tem. Watorat rharf.pera- $\begin{gathered}\text { Waterofosster } \\ \text { ponds. }\end{gathered}$ Water at canal.						Water at lower pond.		Water at Deep Point.		Water in the bay.	
				of l,Tem. air. $\begin{array}{l}\text { pera- } \\ \text { ture. }\end{array}$	Density.	Tem-perature.	Deusity.	Tem-perature.	Density.	Tem. регаture.	Densits.	Tem. pera. ture.	Densits.	Tem. pera. tare.	Density.
1886.				$\bigcirc 0$		-		\bigcirc		\bigcirc		\bigcirc		\bigcirc	
January 1, $10 \mathrm{a} . \mathrm{m}$.	High.	Clear.	NW.	$42 \quad 41$	1.0114	41	1.0110	40	1.0110	41	1.0114	41	1.0114	41	1.0114
Januars 1, \ddagger p.m.	Low.	Clear.	NW.	$50 \quad 45$	1.0110	45	1.0110	45	1.0110	4.	1.0112	44	1.0112	44	1.0112
January $2,11 \mathrm{n} . \mathrm{m}$	High	Clear.	NW.	43442	1.0112	49	1.0112	42	1.0114	42	1.0110	42	1.0112	42	1.0110
January ${ }^{\text {a }}$, $5 \mathrm{p} . \mathrm{mi}$.	Low	Clear	NE.	$45 \quad 44$	1.0112	44	1.0112	44	1.0112	44	1. 0112	44	1.0112	44	1.0112
January 3, 12 m .	High.	Cloudy . .	E.	55	1.0112	47	1.0112	47	1.0112	47	1.0110	47	1.0116	47	1. 0110
January 3, 6 p. m	Low.	Cloudy. .	E.	55	1.0112	47	1.0112	47	1.0112	47	1.0112	47	1. 0112	47	1.0112
January 4, $7 \mathrm{a} . \mathrm{m}$	Low	Rain...	SE.	50.46	1.0110	46	1.0110	46	1.0110	46	1.0110	46	1.0110	46	1.0110
Janaary t, 1 p.m	High.	Main.	S.	52 46	1.0110	48	1.0110	48	1.0110	46	1.0110	48	1.0110	48	1.0110
January 5, 8.30 p.m	Low.	Clear.	W.	45 46	1.0108	44	1.0106	41	1.0100	44	1.0106	44	1.0110	42	1.0122
January 5, $2 \mathrm{p} . \mathrm{m}$.	High	Clear.	NW.	50	1. 0104	46	1.0104	46	1.0106	45	1.0108	42	1.0112	42	1.0122
Janoary 6, 9.30 a .	Low.	Clear.	NW.	$38 \quad 41$	1.0109	40	1.0108	40	1.0104	40	i. 0110	40	1.0114	40	1.0118
January 6, $3.30 \mathrm{p} . \mathrm{m}$	High	Cloudy. .	NW.	44	1.0106	42	1.0106	42	1.0106	42	1.0110	42	1.0118	43	1.0120
January $7,10.15 \mathrm{a}$ m	Low	Cloudy ...	NW.	30 38	1.0114	37	1.010t	36	1.0100	38	1.0114	36	1.0114	37	1.0114
January $7,4.15$ p.m.	High	Clear. ...	NW.	3438	1. 0114	38	1.0110	38	1. V 110	38	1.0114	38	1.0114	38	1.0114
January 8, 11 a. in	Low.	Clouds. .	NE.	$30 \quad 34$	1. 0110	34	1.0106	34	1.0196	34	1.0110	34	1.0110	34	1.0116
January 8, 5 p.m	Hight.	Suow. . .	NE.	30 3k	1.0114	34	1.0106	34	1.0106	34	1. 0114	34	1.0114	34	1.0116
January 9, 12 m .	Low..	Clear. ...	NW.	22.31	1.0100	31	1. 0100	31	1.0102	32	1.0104	33	1.0110	33	1. 0110
Jannary 9,6p.m...	High..	Clear	NW.	20 31	1.0100	31	1.0100	31	1.0102	31	1.0104	31	1.0106	31	1.0100
January $17,10 \mathrm{a}, \mathrm{m}$ *	High ..	Clear.	NW.	32								33	1.0100	34	1.0100
January 17,4p.m..	Low ...	Clear	NW.	32								34	1.0100	34	1.0100
January 18, 11 a m	High	Clear.	E.	38								35	1.0100	35	1.0100
January 18,5 p.m.	Low.	Clear.	E.	35								36	1. 0100	36	1.0100
January 19, 12 m	High. .	Jrain.	SW.	38								38	1.0098	36	1.0098
January 19, 6 p.m	Low	Rain.	SW.	40								38	1. 0096	38	1.0096
January 20, 7 a.m.	Low	Clear	NE.	32								36	1.0096	36	1.0094
January 20, $1 \mathrm{p} . \mathrm{m}$.	High	Clear	NE. 37	1. 0050							35	1.0096	35	1.0056
January 21, 830 a.m	Low	Rain......	SE.	39.40	1.0070							40	1. 0074	40	1.0074
January 21, $2.30 \mathrm{p} . \mathrm{m}$	High	Rain......	SW.	40.40	1.0660							40	1.0070	40	1.0070
Jenuary 22, $10 \mathrm{a} . \mathrm{m}$.	Low	Clear	NE.	35 38	1. 0070	38	1.0070	38	1.0070	36	1.0076	36	1.403:	37	1.0092
January 22, 4 p.m.	High	Clear	E.	45 40	1.0480	36	1.0070	36	1.0072	37	1.0078	37	1.0078	37	1. 0488
January 23,11 a.m	LOW.	Clear	NE.	$32 \quad 36$	1.0076	33	1.0070	33	1. 0070	34	1.0080	33	1.0090	34	1.0090
January 23,5 p.m \dagger Jannary $27,8 \mathrm{a} . \mathrm{m}$	High High	Clear	NE.	30 33 38 35	1.0070 1.0084	33 35	1.0070 1.0074	$\left\lvert\, \begin{aligned} & 33 \\ & 34\end{aligned}\right.$	$\left(\begin{array}{l}1.0070 \\ 1.0070\end{array}\right.$	33 35	1.0080 1.0088	32 35	1.0092 1.0088	32 34	1.0092 1.0088

* Evarything frozen ap and no record kept until the 17 th , when the bay and deep ponds became free of ice. \& Creek and bay frocen on the 2 d and 3d; no record kept. : Vory heary fall of anow and intonsely cold weather; everything frozen up.

Table of temperatures，teather，and densities of water at Saint Jerone Station from January 1，1886，to Norember 7，1886，inclusive－Continued．

Date．	Stato of tide．	State of weather．	Direc． tion of wind．	Tem－ pera． tinre of air．	Water at wharf．		Water of osster ponds．		Water at canal．		Water at lower pond．		Water at Deep Point．		Water in the bay．		$\begin{aligned} & \text { H } \\ & \text { T } \\ & 0 \\ & 0 \end{aligned}$
						Density．	Tem－ pera－ ture．	Density．	Tem． pera－ ture．	Density．	Tem． pera－ ture．	Densitg．	Tem． pera． tare．	Density．	Tem pera． ture．	Density．	
1886.				\bigcirc	0		\bigcirc		0		\bigcirc		\bigcirc		\bigcirc		\bigcirc
March 5． 7 a．m．	Low	Clear	NE．	34	38	1.0110	40	1.0108	38	1．C110	38	1． 0108	40	1.0108	40	1.0110	2
March 5， 1.30 p ．	High	Clear	E．	44	40	1.0110	40	1.0110	40	1.0110	40	1.0112	40	1． 0112	40	1．0112	2
March 6， 8 am m	Low	Clear	NE．	38	44	1.0106	42	1.0106	42	1． 0106	42	1． 0106	42	1.0106	44	1.0106	0
March 6， 2.30 p．	High	Clear	NE．	44	4：	1.0108	42	1.0106	43	1． 0106	43	1． 0108	44	1． 110108	44	1． 0106	＋
March 7， 8.30 a ，	Low	Clear	NE．	38	44	1.0106	42	1.0106	42	1． 0106	42	1.0104	42	1.0104	41	1． 0104	
March 7， 3 p．m	High	Clear	NE．	48	44	1.0106	44	1.0106	44	1． 0166	44	1． 0106	44	1.0106	44	1． 0106	易
March 8， 9.15 a．m	IN\％．	Snow	SW．	38	40	I． 0106	38	1.0108	38	1． 0106	38	1．0104	38	1． 0104	43	1． 0101	\square
March 8，3．45 p．m	High	Clear	W．	38	49	1． 0106	40	1.0106	40	1.0106	40	1.0106	40	1.0106	40	1． 0100	${ }^{2}$
March 9， 10 a．m．．	Low	Clear	NE．	42	46	1.0102	46	1.0102	46	1.0102	40	1.0100	46	1.0102	48	1． 0102	－
March 9， 4 p．m．	High	Clear	N．	48	46	1.0102	40	1.0100	47	1.0100	48	1.0100	48	1.0102	48	1． 0102	7
March 10，10．30 a m	Low	Clear	NE．	44	44	1． 0100	44	1.0100	42	1.0100	44	1.0100	44	1.0100	44	1． 0100	1
Marc！10， 5 p．m	High	Clear	NE．	44	44	1． 0100	44	1． 0100	44	1.0100	44	1.0100	44	1.0100	44	1.0100	2
March 11， 11.15 a．m	Low	Clear	NW．	50	38	1． 0100	40	1.0100	38	1.0100	38	1.0100	38	1.0100	38	1.0100	0
March 11， $5.30 \mathrm{p} . \mathrm{m}$	High	Clear	NW．	45	38	1． 0100	38	1.0100	38	1.0100	38	1.0100	38	1.0100	38	1.0100	\bigcirc
March 12， 12 m ．	Low．	Ruin．	W．	50	38	1.0100	42	1.0100	40	1.0100	40	1.0100	40	1.0100	40	1． 0100	H
March 12， 6 p．m	High	Rain．．	W．	42	40	1．0108	40	1． 0100	40	1.0100	40	1.0100	40	1.0100	40	1.0100	
March 13， 7 a m	High	Rain．．．	W．	40	44	1.0100	44	J． 0100	44	1.0100	44	1． 0100	44	1.0100	44	1.0100	H
March 13， 1 p．m	Low．	Cloudy	W．	46	44	1.0100	44	1． 0100	44	1.0100	44	1.0100	44	1.0100	44	1.0100	${ }_{C O}$
March 14， 8 am	High	Clear．	SW．	43	44	1.0100	44	1.0100	44	1.0100	42	1.0100	42	1.0100	42	1.0100	界
March 14， 2 p．m	Low	Clear	SW．	50	44	1． 0100	43	1.0100	42	1． 0100	42	1． 0100	42	1.0100	44	1.0102	
March 15， 9 a．m	High	Clear	W．	55	50	1.0100	48	1.0100	48	1.0100	48	1.0100	50	1.0100	50	1.0100	\％
March 15， 3 p．m	Low	Clear	W．	63	50	1.0100	50	1． 0100	50	1.0100	50	1.0100	50	1.0100	50	1.0100	z
March 16， 9.30 ar ．m	High ．	Clear	NW．	69	54	1． 0104	56	1． 0094	53	1． 0094	53	1．010\％	52	1.0102	$5:$	1.0102	θ
March 16， $3.30 \mathrm{p} . \mathrm{m}$	Low ．．．	Clear	NE．	70	58	1.0100	58	1． 0100	38	1． 0098	58	1． 0098	56	1． 0100	56	1.0100	
March 17， 10 a． m ．．	High ．．	Clear	NE．	45	47	1.0104	47	1． 0100	47	1.0100	45	1． 0104	45	1． 0101	44	1.0100	$\xrightarrow{7}$
March 17， 4 p．m．	Low．	Clear	NE．	65	52	1.0100	53	1.0100	52	1.0100	51	1． 0100	51	1.0100	50	1.0100	\sim_{0}
March 18， $10.30 \mathrm{a} . \mathrm{m}$	High	Clear	SE．	49	48	1.0102	47	1． 0102	47	1.0102	48	1． 0104	48	1． 0106	50	1.0102	号
March 18， 4.30 p．m．	Low．	Clear	SE．	55	50	1． 0100	50	1.0100	50	1.0100	51	1． 0102	50	1． 0102	50	1． 0102	E
March 19， 1130 a m	High	Cloudy	SE．	54	50	1.0100	50	10100	50	1.0100	50	1．0100	50	1.0100	53	1.0102	0
March 19， $5.30 \mathrm{p} . \mathrm{m}$ ．	Low	Cloudy	SE．	50	50	1.0100	50	1.0100	50	1.0100	50	1． 0100	50	1.0100	54	1． 0100	－
March 20， $12.30 \mathrm{p} . \mathrm{m}$	High ．．	Rain．．．	SW．	54	53	1.0100	52	1.0100	52	1． 0100	52	1.0100	5	1． 0104	53	1． 0106	\％
March $20,6.30 \mathrm{p} . \mathrm{m}$ ．	Low ．．．	Rain．．	SE．	50	52	1.0100	53	1． 0100	53	1.0100	53	1． 0100	53	1.0100	54	1． 0100	\bigcirc
March 21， 7.308 m	Low．	Clear	W．	50	54	1.0100	54	1.0100	54	1.0100	51	1.0100	54	1.0100	54	1.0100	
March 21， 1.30 p．m．	High	Clear	W．	58	54	1.0100	54	1.8100	55	1.0100	56	1.0100	56	1.0100	56	1.0102	
March 22， 8.30 mm	Low．	Clear ．	NW．	48	50 58	1.0100 1.0100	50	1.0100 1.0100	50	1.0100 1.0104	50	1.0100 1.0110	50	1.0100 1.0110	48 56	1.0104 1.0110	
March $22,230 \mathrm{p}$ ．m．	High	Clear．	W．	50 38	58 45	1.0100 1.0104	56 44	1.0100 1.0102	56 44	1.0104 1.0102	56 44	1.0110 1.0104	58 45	1.0110 1.0104	$1 \begin{aligned} & 56 \\ & 45 \end{aligned}$	1.0110 1.0100	
March 23，9．30 a．m March 23， $3.30 \mathrm{p} . \mathrm{m}$ ．	Low ${ }_{\text {High }}$	Clear Clear	NW．		$1 \begin{aligned} & 45 \\ & 44\end{aligned}$	$\left\lvert\, \begin{aligned} & 1.0104 \\ & 1.0104\end{aligned}\right.$		｜ 1.0102	［ 44	\1．010	－ 44	（1．010	－ 4.	\} 1 . 0 1 0 0	0 ！ 41	1 1.0206	\cdots

Table of temperatures, weather, and densitics of vater at Saint Jerome Station from January 1, 1886, to November 7, 1886, inclusive-Continued.

Table of timperatures，weather，and densitics of vater at Saint Jerome Station from January 1，1886，to November 7，1886，inclusive－Continued．

Date．		State of tide．	State of weather．	Direc－ tion of wind．	$\left\lvert\, \begin{gathered} \text { Tem- } \\ \text { pera. } \\ \text { tare } \\ \text { of } \\ \text { air. } \end{gathered}\right.$	Water at wharf．		Water of osster ponds．		Water at canal．		Water in tho bay．			
		Tem． pera－ ture．				Deusity．	Tem． pera． ture．	Density	Tem－ pera－ ture．	Deusity．	Tem． pera－ ture．	Density．			
Angust 15，	1880.					\bigcirc	\bigcirc		\bigcirc		－				
August 15， 4 p ． m ．		Ligh	Clear	SW．	76	78	1． 0076		1．0076		1．0090		1.0086	12	
August 16， 10.15 am m．		Low ．．．．	Cloudy	w．	80 76	82 74	1． 0074		1． 0072		1． 0070		1．0078		
Augast 16， 4.15 p ．m．		High	Cloudy	W．	80	74 82	1.0074 1.0072	$\cdots \cdots$.	1.0064		1． 0074		1． 0074	O	
August 17， $10.30 \mathrm{am} . \mathrm{m}$		Low	Clear．．．	W．	83	84			1.00% 1.0070		1． 10072		1． 0070		
Angast 17，4．30 p．m．		High	Clear	W．	86	84	1． 0064		1.0061		1． 1.0066		1． 1078	它	
August 18．11 a．min		Low	Rain．	SE．	72	76	1． 0074		1.0074		1． 1.0080		1．00：0	\％	
August 19， 11.45 am m．		Low	Raill．．	VE．	72	76	1.0078		1． 0080		1.0032		1．0094	8	
		High	Clear	NE．	76	77	1． 0080		1.0080		1.0078		1.0080	$\stackrel{\square}{0}$	
Angust 20， $12.30 \mathrm{p} . \mathrm{m}$ ．		Low	clear	NE．	72	71	1． 1090		1.0084		1． 0084		1.0060	，	
Augast 20， $7 \mathrm{p} . \mathrm{m}$ ．		High	Clear	NE．	74	75	1． 1.0092		1.0086 1.0080		1．0086		1． 01990	边	
August $21,8 \mathrm{a}$ a．m．		High ．．．．	Clear	E．	72	72	1.0088		1.0090		1.0082		1． 0090		
A ngust 21． 2 p．m		Low ．．．．．	Clear	E．	\％ 8	80	1.0072		1.0084		1．00920		1． 00992		
August 22， 830 a．m		High	Clear	NE．	68	70	1． 0180		1.0080		1.0082		1． 1.0080	\bigcirc	
			Clear	NE．	74	78	1.0094		1.0090		1.0090		1．0094		
Augnst． $23,3 \mathrm{p} . \mathrm{m}$		Low．	Cloudy ．．	E．	88	8	1.0072		1.0074		1.0074		1． 0074	边	
August 24.9 .30 arm ．		High ．．．．．	Clear．．．．．	E．	88	88	1.0074		1．0066		1． 0062		1． 0072	6	
A agust $24,3.30 \mathrm{p} . \mathrm{m}$		Iow．	Clear．．．．．．	E．	82	84	1.0170		1.0074 1.0076 1		1.0074 1.0074		1． 0080	近	
August 25， $10 \mathrm{a} . \mathrm{mm}$		Uigh	Clear	E．	82	84	1.0074°		1．0070		1．0072		1．0072	B	
August $25.4 \mathrm{p} . \mathrm{m}$ ．		Low	Clear ．．．．	E．	84	84	1.0076		1.0074		1.0074		1.0076	8	
August 26， $4.30 \mathrm{p} . \mathrm{m}$.		Low	Clear．．．	SW．	88 80	86 88 8	1． 0074		1． 0074		1． 0070		1.0068	8	
August $27,11.20 \mathrm{~mm}$ ．		High	clear．	S．	88	88 86	1．007t		1.0072		1.0072		1．0063		
August 27． 5 p．m		Lnw	Clear	$\stackrel{5}{5}$	${ }_{8}^{84}$	86	1．0074		1.0074 1.0074		1．0074		1． 0068		
August 28， 12 m ．．．		High	Clear	SW．	84	86	1． 01774		1.0074		1.0074		1.0068		
Augnst tr， 6 p．m		Low	Clear	SW．	$8{ }^{82}$	84	1． 0072		1.0072		1.0070		1．0072	回	
August $29,1 \mathrm{p} . \mathrm{m}$ ．		High	Clear．．．．．	Sir．	88	84	1． 0070		1． 0074		1.0074		1.0074	0	
Angust 30， 8 s ． m ．		Low．	Clear	Sw．	71	74	1．0084	74	1．0070		1．1070		1.0068		
August 30， $2 \mathrm{p} . \mathrm{m}$		High	Cloudy	SW．	80	78	1．0078	24	1．0084		1．0084		1． 0088	\％	
August 31， 9 a．m．			Ruin．	NE．	76	． 76	1． 0084		1.0072		1.0078		1.0078		
Angust 31， 3 p．m．		High	Rain．	NE．	76	78	1． 0082		1.0082		1.0084		1．0080		
Beptember $1,10 \mathrm{am}$		Minw．	Clear．	NE．		7	1． 10093	${ }_{74}^{72}$	1． 0096	72	1．0098	$7{ }^{79}$	1． 0094		
Sopteraber 2,11 a．									1.0082 1.0080				1．0082		
Eoptember $2,5 \mathrm{y}$ ． m		Hig	Clear	$\underset{\mathbb{K}}{\mathbf{E}}$	${ }_{72}$	${ }_{72}$	（1．0098	${ }_{72}^{72}$	（1．0090	${ }_{72}^{72}$	$\ \begin{aligned} & 1.0091 \\ & 1.0090\end{aligned}$	行 $\begin{aligned} & \text { 22 } \\ & 72\end{aligned}$	1．0088	S	

Table of temperatures, weather, and densities of water at Saint Jerome Station from Jamury 1, 1886, to November 7, 1886, inclusire-Continued.

Date.	State of tide.	State of wearher.	Direc. tion of wind.	Tempera. tare of air.	Water at wharf.		Water of oystor ponds.		Water at canal.		Water in the bas.		
					Tem perature.	Density.	Tem-perature.	Densits.	Tem-perature.	Densits.	Tem pera. ture.	Density.	
1886.						1.0112		1.0100	68	1.0108	68	1.0112	$\underset{y}{9}$
September 29, 8.30 am	High	Clear	N.	68	68	1.0110	70	1.0108	70	1.0110	70	1.0110	8
September ${ }^{\text {September }} 30,9 \mathrm{am}$.	Low ...	Clear..	E.	65	64	1.0110	64	1.0110	68	1.0110	${ }^{66}$	1.0108 1.0110	\bigcirc
Soptember $30.3 \mathrm{p}, \mathrm{m}$	High ...	Clear	E.	78	70	1.0106	70 70	1.0104	${ }_{70}^{68}$	1.0112	\%	1.0110 1.0108	K
October $1,9.45 \mathrm{a} . \mathrm{m}$.	Lown	Clear	N.	65 65	${ }_{68}$	1.0110	${ }_{68}$	1.0110	68	1.0110	68	1.0112	\underline{s}
Octover 1, $3.45 \mathrm{p} . \mathrm{m}$.	Low	Clear	N.	65 59	${ }_{54}$	1.0120	54	1.0104.	54	1.0120	56	1.0120	0
October 2, $4.30 \mathrm{p} . \mathrm{m}$	Bigh	Clear	NE.	${ }_{60} 6$	6^{62}	1.0110	52	1.0120	62	1.0110	62	1.0110	$\stackrel{0}{0}$
October $3,11.30 \mathrm{am}$ m.	Low.....	Clear	SW.	${ }_{60}$	64 64	1.0110	64 66	1.0110 1.0108	68	1.0110 1.0108	64	1.0110	\bigcirc
October $3,5.30 \mathrm{p} . \mathrm{m}$	How	Clear ...	Sw.	68	${ }_{62}^{64}$	1.0114	${ }_{62}^{66}$	1.0110	62	1.0112	62	1.0110	共
October 4, 630 p . ma .	High	Clear ..	SW.	60	68	1.0110	68	1.0108	68	1.0108	68	1.0110	第
October $5,7.30 \mathrm{~mm}$	High	Clear..	N.	60	63	1.0110	${ }^{62}$	1.0108	68	1.0110	${ }_{68}^{62}$	1.010	
October 5, 1.30 p.m	Low	Clear....	NE.	68 65	66 68	1.0108 1.0108	${ }_{68}^{68}$	1.0110 1.0106	${ }_{68}^{68}$	1.0112	${ }_{70}$	1.0110	\%
Octaber $6,8.30 \mathrm{~mm}$ Octaber $6.2 .30 \mathrm{~m} . \mathrm{m}$	High	Cloudy ...	NE.	${ }_{68}^{65}$	${ }_{66}^{68}$	1.0108	${ }_{60}^{68}$	1.0112	66	1.0112	60	1.0112	
October 7 , 9.15 m m	Higu	Clear....	NE.	64	62	1.0116	62	1.0114	${ }_{6}^{6}$	1. 0114	${ }_{6}^{64}$	1.0112	O
Octaber $7.3 .15 \mathrm{p} . \mathrm{m}$		Clear	NE.	68 62	66 64	1.0110 1.0110	68	1.0108	64	1.0110	64	1.0110	\%
Octuber $8,10.30$ a.m	Low	Clear.	E.	65	68	1.0108	68	1. 0104	68	1. 0108	T0	1. 0110	
October 8, $4.50 \mathrm{p} . \mathrm{m}$ October $9,12 \mathrm{~m}$...	High ${ }^{\text {Le.... }}$	Clear	SIV.	34	64	1.0112	64	1. 0110	64	1.0110	66	1. 0108	
October 9 , Bp p . m .	L.OW	Clear....	SW.	68	68	1.0110	70	1. 0104	68	1. 0106	70	1.0110	-
October 10, $7 \mathrm{a} . \mathrm{m}$	Low	Clear	SWV.	68	64 68	1.0110	68	1.0110 1.0104	68	1.0106	70	1.0410	
October 10, $1 \mathrm{p} . \mathrm{ra} . .$.	Low.....	Cear	NE.	65	68	1. 1.112	66	1.0100	68	1.0102	66	1.0103	2
	Higu	Clear....	E.	72	70	1.0104	70	1.0100	70	1.0100	70	1.0100	0
Oclover 12, 8.30 am	Low	Clear....	W.	70	66	1. $0: 110$	66	1.0106	66	1.0112	${ }^{60}$	1. 10108	\%
October ${ }^{12}, 2.30 \mathrm{p} . \mathrm{m}$	Higu	Clear.	NE.	74 70	72 68	1.0102 1.0106	${ }_{68} 6$	1.0100 1.0106	68		68		5010
October 13, 9 amm			SE.										
October 13, 3 p.m October 14, 9 a. m	$\begin{aligned} & \text { High } \\ & \text { Low. } \end{aligned}$	Clondy ...	SE.	98	68	1.0110	66	1.0108	60	1.0108	68	1. 0112	6
October 14, $9 \mathrm{am} . \mathrm{m}$ October 14, $3 \mathrm{p} . \mathrm{m}$	High	Cloudy .	SE.	74	70	1. 0108	${ }_{68}^{68}$	1.01106 1.0108	${ }_{68}^{68}$	1.0110 1.0106	71	3.0112 1.0108	
October 15, 0.15 a . m		Clear..	NW.	70	${ }_{6}^{70}$	1.0112 1.0110	68 68	1.0108 1.0108	${ }_{68}^{68}$	1.0110	68	1.0112	
October 15, 3.15 p. m		Clear.	N.	55	66 56	1.0122	58	1.0112	58	1. 0120	$\stackrel{5}{8}$	1. 0122	
October 16, 10 a. mu	High		Niv.	65	62	1. 0132	60	1.0114	60	1. 0122	60	1. 0124	\cdots
October 16, 4 p.m.	Lov	Clear.	Sw.	52	56	1. 0120	34	1.0122	5	1.0122	54	1. 0122	0
October 17, 10.45 am	High ..	Clear.	SE.	64	58	1.0122	60	1.0124	53	1.0124	60	1.0124	

XVIII.-REPORT ON THE ARTIFICIAL PROPAGATION OF THE CODFISH A'T WOOD'S HOLL, MASS., FOR THE SEASON OF 1885-'86.

By James Carswell.

Having received instructions on the 1st of December to proceed to Wood's Holl, Mass., and report to Capt. H. C. Chester to assist in codfish hatching, I left Washington December 2 for that place, taking with me all the necessary apparatus.

On my arrival at Wood's Holl Captain Choster was engaged in carrying on a series of experiments for the latching of codfish eggs, and after conference with him I learned that his idea was that in order to secure success the eggs must have motion, and that all the apparatus he had tried previous to that time, and was still using, was constructed under this impression. He had several boxes fitted up with jets of water let in, one so as to merely move the eggs, the others varying in volocity from 1 to 4 miles an hour; but all of these arrangements resulted in failure. I had been sent on with apparatus constructed by Colonel McDonald, designed for using the tidal motion, but Captain Chester appeared to be thoroughly convinced that motion was the thing. There was also at the station an arraugement of barrels put up by direction of Major Ferguson which failod, and the ouly success which had been attilined up to this time was by a series of cones, which Captain Chester called the "Tanner arraugement." In this a very small percentage was hatched out; but it had the effect of changing our minds in regard to the necessary motion, as the eggs worked very slowly with a tidal motion.

On the 4 th I fitted up two tubs and glass aquaria with side and center jets, siphon bag in conter, and water escaping at tho bottom. On the 5 th I procured 400,000 eggs and placed an equal number in each of the two apparatus. I was very much pleased with tho motion, which was just enough to forco the eggs slowly to the bottom, diffusing them well through the water, and then rising toward the surface. Having had no previous experience, I thought by what I had learned from Captain Chester and by examining his apparatus that I had combined all the necessary conditions to sccure success. The eggs looked all right and seemed to be doing very well, although a great many ad-
hered to the siphon cloth. This, however, was easily remedied by giving the siphon bag a slight shake hourly.

On the morning of the 7th I found a great many dead eggs in both apparatus, and the following day all were dead in the aquarium. I attributed the mortality to the fact of this adhesion to the siphon cloth and to the sediment in the water.

On the 9 th Colonel McDonald arrived at the station, and after talking the matter over we concluded that there was too much motion. I put 100,000 more eggs into the aquarium, using as little motion as possible, and eutirely filtered the water. The eggs in the tub were still doing well, although under exactly similar circumstances as those in the aquarium, so I thought the alvantage of the former over the latter was due to the larger area. I then started a large tub, fitted up in the same manner as before, with a fresh lot of eggs and a moderate circular motion. They all did well until the 13 th, when I found it was necessary to do something else with them, as they were clotted together and sunk to the bottom. The fish at this time could be seen distinctly. I took them out and, after cleaning them off, placed them in a McDonald. jar and worked the same as with shad. I was also compelled to transfer those in the large tub to jars, working with a small jet of water applied to the surface, which made them swing gently around the jar, but not enough to drive them to the bottom.

On the 15 th all the eggs taken on the 5 th, which were worked in the aquarium for five days and afterwards transferred to jars, were dead; but they were well developed and would probably have hatched out in a fow days.

On the 16th I was obliged to take all the eggs out of jars and aquaria for the same reason as before, and I am convinced that cod eggs sink to the bottom as they grow older and as the young fish begin to develop. I then placed them in three jars, working one with top motion, one with bottom motion, and the other with a combined motion of top and bottom ; but this resulted, as before, in their gradually dyiug, and on the elerenth day after they were taken all were dead. In one jar the eggs were left to adhere constantly to the siphon bag for eight days. For the first six days they did well, but after that they began dropping off, and at the end of the eighth day they had all dropped off and were dead. I tried the tubs once more with slightly altered conditions, but the result was the same. In all the methods and motions tried a great many of the eggs lived until the hearts of the young fish could be seen to beat.

Captain Cuester also had two boxes fitted up, one with a copper screen in the bottom, and in another he put two of the hatching jars, but covered thom with copper-wire screens. All of these experiments resulted in naught, but the experiments had been continned long enough to satisfy us that it was better than anything lieretofore discovered. In putting in the next lot of eggs Captain Chester used cheese-cloth
instead of copper wire to cover the jars and placed these in the box with tidal motion as before. This lot of eggs was hatched out with a small percentage of loss.

From wy own experience I have come to the conclusion that cod eggs will duat for inve or six days, bat at the end of that time they begin clotting together and sink.

It would be impossible for me to give in detail all the difterent appliances and means that were resorted to, but they were all carried on with the view that it is necessary for the cod eggs to be submerged for awhile and then allowed to rise to the surface, and every motion that could be conceived was tried to attain this end. I think it a great mistake to use any metal whatever in fitting up auy kind of apparatus for cod hatching.

Although prepared for applying the tidal motion, I. had never up to this time fitted the tubs up, applying this motion. On the 23d of December I fitted up one glass aquarium and wash-tub with tidal motion, using cheese-cloth screens made to fit tight on the inside, about 4 inches from the bottom.

On the 25 th I found that most of the eggs had gone to the bottom in both apparatus, owing to the density of the water laving fallen from .025 to .021 degrees, and upon examination found that the pumps were drawing fresh as well as salt water, which, of courso, put an end to this experiment, as the eggs were all destroyed.

On the 28 th I put in another lot of eggs, which did very well, but do not think that I got more than 50 per cent. of young fish; but even this was an improvement on anything heretofore accomplished.

On the 6th of January, 1886, I put a fresh lot of eggs in the aquarium and one tub, which did well until the 9 th ; but for some unaccountable reason at least onebalf the eggs in the aquarium had gone to the bottom and were dead, while those in the tub were still doing splendidly. 'Ihese commenced hatching on the 19th, and by the $22 d$ all had hatched ont, not more than 10 per cent. laving been lost.

After the many experiments tried both by Captain Chester and myself I have no liesitation in saying that tho best conditions for success in cod-hatching are :
(1) As littlo motion as possible, with just sutlicient change of water to keep it fresh.
(2) To use entirely filtered water, which can be easily done by filliug a McDonald jar with cotton, and fitted up as is done in shad work.
(3) To avoid the use of anything lise metal in fitting up an apparatus.

The work now ceased for a time, as the codfish in live cars had all died on account of the extremely cold weather, aud I was instructed to proceed to Florida with half a million of the young fry. Up to the time I left I estimate that wo had taken about, $15,000,000 \mathrm{eggs}$, all of which were lost in experimenting, with the exception of about $2,000,000$,

Five hundred thousaud of these were deposited in the waters of the Gulf and 100,000 in Chesspeake Bay. The remainder, $1,400,000$, were planted in Wood's Holl Harbor. The shipment to the Gulf was sent in my charge, while that to the Chesapeake Bay was mado by Messrs. Moore and Robinson.

On my return to Washington I was ordered to the Fish Mawk to contiuue the collection of codtish eggs off the Isle of Shoals. In consequence of the rough weather there was only oue day on which we succeeded in collecting eggs, when wo procured about $8,000,000$, half of which were shipped to Captain Chester by express in trausfor cans, and the other half were placed in large glass aquaria which I had fitted up on board the Fish Hawh, applying the tidal motion, but owing to the extremely cold weather and to an accident to the vessel these were all lost. We mado several attempts subsequent to this to collect more eggs, but without avail. Of the lot forwarded to Wood's Holl I an informed that one-third were received alive. These were hatched out with a small per cent. of loss and turned into the Wood's Holl Harbor. Washingion, D. C., February 10, 1886.

XIX.-REPORT ON THE AR'TIFICIAL PROPAGATION OF CODFISH at W00d's h0LL, MASS., FOR THE SEASON OF 1886-'87.

By Cifirles G. Atines

The experiments in the hatching of codfish at the Wood's Holl Station for the season of 1886-'S7 extended, in point of time, from the 16 th of November to the 6 th of April. The spawn was obtained, for the most part, from codfish bronght in by the schooner Grampus from the Gulf of Maine, a single lot of 170 adults having been secured from local fishermen who had caught them at Nantucket Shoals and about $11,000,000$ eggs having been taken by the Grampus from the fish on the fishiug-grounds off Cape Aun. Tho hatching was all conducted in the hateling room of the laboratory, and all, with the exception of a few experiments, in the Chester hatching-boxes. The total number of eggs handled was $43,575,000$, of which $22,040,000$, or a little more than 50 per cent., were hatched, and $19,495,000$ were liberated alive in the waters of the adjacent coast.
The scale of operations, which under favorable circumstances might be greatly extended, was limited by the difinculties attendiag the collection of the parent fish. The first fish that came to haud were collected by the schooner Grampus to the eastward of Cape Cod and brought to the station on the 16 th of November to the number of 195 codfish, together with a few pollock, haddock, hake, and cusk. Only the codfish yielded spawn. Another lot of adults, numbering 273 live codtish, were brought iu by the Grampus from the same waters on the 9th of December; on the 11 th of December 170 codfish were obtained from Nantucket Shoals; and, finally, on the 25th of January, 219 more were brought in from the Gulf of Maine by the Grampus. By the latter date the temperature of the sea along the coast, especially in the harbors, had fallen to so low a point that it seemed quite probable that an attempt to collect codfish and bring them to the station in the well of the Grampus, as had been done with the lots brought in by her so far, would fail by the death of the fish from the excessive cold to which they would be exposed should the vessel be compelled to seek a harbor during the trip.
The result of the observations heretofore made on this point is, in general, that colfish will live in water not colder than 30° Fahrenheit,
but that when it falls to 29° they all die, apparently through actual freezing. It has several times occurred at the Wood's Holl Station that all the adult fish on hand have died in this way in a single night. At the suggestion of Captain Collins, it was determined to attempt the collection of eggs directly from the fish on the fishing-grounds and transfer them to the Wood's Holl Station by rail. Mr. George H. Tolbert was sent from Washington cbarged with the manipulation of tho eggs; and, with the assistance of the officers and crew of the Grampus, he collected and transferred all the eggs obtained after the 25th of January.

In an ordinary season the weather and other circumstances would be much more farorable to the capture of codfish than the winter of 1886'87, and there would be no great risk attending their transfer from the Gulf of Maine to Wood's Holl up to the 1st of February. It might, therefore, be reasonably expected that a sufficient stock of breeding codfish could be gathered at Wood's Holl before the end of January to supply all the eggs that could be profitably incubated there.

The fish brought in by the Grampus were taken from her well in fairly good condition and placed in cars in one of the basins at the station. On the approach of dangerously cold weather in the winter an inclosure was made in the basement of the hatchery and the fish then on hand, and afterwards received, were placed therein. The experience of a single winter seems to warrant the belief that in such an inclosure fish will be safe from freezing in the severest weather.

The fisl were overhauled from time to time, generally at intervals of two to four days, and the spawn and milt extruded into large pans containing a little sea-water, from which they were in a very short time washed off and placed carefully in the hatching-jars. The total number of gravid females found during the season was 108, and their average yield of eggs was about 300,000 each.

The first lot of eggs, talsen on the 18th of November, began to batch ou the 26 th, eight days from impregnation. The temperature of the water, which up to this time had been above 50°, fell steadily, until, on the 19th of January, it reached 32° Fahrenheit, the lowest reached in the hatchery during the season. The development of the spawn was, in consequence, so retarded that the lots taken in January aud February were from twenty to twenty-five days in incubation. The best success attended the incubation of the eggs that were taken from the fish at the station in December and January. In several lots as high as 35 per cent. of the eggs put into the jars were successfully hatched, and in most cases all of the fry were liberated alive. Some of the lots of those months were, however, less satisfactory, the ratio of fry hatched being in some cases as low as 50 and 40 per cent., and the results obtained from those taken in November, and from those taken at soa and brought, overland to the station in February and March, were even less satisfactory. Froin 11,150,000 trinsferred overland, but 722,500 were hatched.

It is a matter of common experience among tish culturists that the
individuals that mature earliest in the season yield less healthy eggs than those spawning in the leight of the season, and we may suppose that the eggs taken in November were from fish prematurely ripe. The unsatisfactory results from the eggs brought overland must, however, be attributed to the conditions under which they were taken and transferred. They were taken frequently under the great difficulties attendaut on a boisterous sea and extremely cold weather, had generally to bo kept over night, while awaiting shipment, in jars or other vessels, and their transfer by express involyed their confinement for many hours, in a crowded condition, in small jars of water hermetically closed, with at best a scanty allowance of air. I do not think the ill success attending these transfers at all settles the question of the practicability of this method of collection under varied conditions. It might be possible to bring them through in perfect health by more careful attention to the necessity of a coustant aration of the water. This, however, is a matter for future expeximent.

As a rule the fiy were liberated as soou as practicable after they were hatched. If, as was commonly the case, the period of hatching out was protracted, those first breaking the shell were taken out of the jars and liberated, while the remainder of the lot were left in the jars to hatch. A single lot of the fry, numbering 2,050,000, was taken by the Grampus, on the 27 th day of January, and liberated near Raco Point in Cape Cod Bay. All the others were liberated in the immediate vicinity of Wood's Holl, sometimes on the dood tide, which would carry them into Vineyard Sound, and sometimes on the ebb, which would, carry them into Buzzare's Bay.

The experiment was tried in several instances of keeping the fry in aquaria until they should attain some growth. The conditions of these experiments were greatly varied, but no satisfactory result was obtained in any case. Although appearing to be in good health when put into the aquaria, the fry invariably dwindled away until all or nearly all were goue. Egress was so guarded against that there scems little doubt that in most cases the disappearance was the result of death. It seemed impossible to so arrange the screens that the young cod wonld not be drawn against them and die. Whether the egress of the water was constant or intermittent (which latter condition we oitained by means of a tidal morement), in every case the result was practically the same.

A determination of the conditions under which cod fry cin bo reared, even to the age of a fow weeks, presents to us, therofore, an unsolved problem. It will be necessary to inquire whether the difficulty does not arise, in part at least, from the crowied condition of the eggs in the hatching jars. These jars are of glass, 9 inches in diameter and 15 or 16 inches deep, and eggs enough are placed in one of them to form a layer at the surface a large fraction of an inch in thickness. When this apparatus is in operation the jar is covered closely witl: cheesecloth and placed in the hatehing-box in an inverted position, the water, S. Mis. $90-50$
aerated by the artificial tidal motion, which is the most essential feature of this arrangement, rising and falling through the cheese cloth and the complementary supply of air having ingress and egress through a hole bored in the upturned bottom of the jar. It is supposed that the ingress of water from the bottom disturbs the eggs onough to change their position and gives each egg its share of the water-supply; but it is questionable whether the arrangoment secures sufticient change of water throughout the mass of eggs to maintain them in a coudition of healthy and normal development. As yet there has been no opportunity of comparing the artificially latched fry with those hatched in the natural way in the open sea.

A very important improvement has been effected in the water service during the past season. Two circular tanks with an aggregate net capacity of 17,000 gallons, have been erected alongside the coal-shed, and are served with a system of piping of which the mains are formed of log pipe wound with iron and covered with coal-tar, and the smaller pipes of hard rubber. We are consequently now entirely free from the dificulties that used to arise from the presence of irou rust in the pipes and hatching apparatus and which was, in fact, a very serious difficulty. The new system was put in operation on the 7th of December, aud, with the exception of an occasiomal muddiness, resulting from heavy rainfall, the water has been admirably pure ever since.

The number of hatching boxes brought into operation during the winter was 24. They were arrauged in series of three boxes each, and the amourt of water fed to cach series amounted to 150 gallons per hour, or a total of 1,200 gallons per hour. Tho total net capagity of the tanks is 17,000 gallons, so that in case of a suspension of pumping the hatehery can be made to run about fourteen hours withont any curtailment of the quantity before the supply would be exhausted.
The Chester hatching boxes appear to be well adapted to the purpose of hatching buoyant eggs, yet, like most other new inventions, to be capable of simplification. A few boxes on essentially the same plan, but with simplified details, were constructed and found to work quite as well as those built on the original desigu. With the ordinary watersupply, which was about 150 gallons per minute, the period of each tidal pulsation was about ten minutes. The automatic action of the apparatus is well-nigh perfect, interference of the attendant being rarely necessary. It was, however, not cousidered prudent to leave the boxes without attention during the night, and the night watchman made regular examinations.
Observations on the temperature and density of the water in the hatchery were made daily through the months of December, Jawary, February, aud March. From these it appears that the density was very uniform, ranging from 1.0250 to 1.0260 , and that the temperature of the water ranged from 49° to 320 , the wean for the months being 38.70.

Subjoined will be found the report of Mr. James Carswell, who was in charge of the manipulation of the eggs and of the water observations.

REPORT OF MR. CARSWHLL.

As desired, I submit the following report of cod-hatching for the winter of 1886-'87.
On my arrival at the station, on the 20th of November, I found in the hatchery a few cod oggs and fry. Some of the latter I put in an aquarium, but all got drawn upon the siphon bag and were lost. This I attributed to their sickly condition when put in.
Ou the 9th of December the Grampus arrived with 273 live codfish, and a smack, on the 11 th of the same month, with 170 , all of which were put into the live cars, and all proved to be good spawners. The first eggs taken were a small lot ou the day of arrival, but these and the two following lots turned out badly, not hatehing over 50 per cent. At the time they were taken I did not think they were likely to turn out Well, because they scattered too much in the water when put in the batching jars. Cod eggs when taken should at once rise to the surface of the water after being impregnated, and remain there until hatched; although in the case of very low temperature, when a long time is taken to hatch, the eggs will sometimes get coated with a very fine sediment and sink. Still, if they are far enongh advanced for the young fish to be secu with the nabed eye, they will hatch out, notwithstanding they have sunk to the bottom.
The codfish in live cars were examined every other day with varied success, the smallest number of eggs taken being 75,000 , and the largest $3,200,000$. All the eggs taken from the 13th to the 31st of Decemberabout 18,000,000-turned out well, the average loss, as near as I could estimate, being about 20 per cent., but in several instances it did not exceed is per cent. I thiuk the cod hatching apparatus now iu use at the Wood's Holl Station will compare favorably with any apparatus known to me and which is used for the hatching of other species of fish.
Experience has proved that it is not advantageous to have the temperature of the water above 400 . In warmer water the eggs hatch out too rapidly, the fry are weak and sickly, and a very large percentage of them die after hatching. I consider the best temperature to be from 34° to 38°, when the eggs will take from eighteen to twenty-five days in hatching; then the fry straighteu out soon after hatching, look strong and vigorous, and invariably stay on the surface of the water. Myexperience is, the stronger the fry the nearer the surface they will remain.

From the 13th to the 31st of December I mado several experiments in trying to keep the young fry alive in aquaria. First with the usual siphon-bag as in shad work; but in every case this resulted in drawing all the fry onto the cheese-cloth, where the would remaiu until they died. Next I fitted up three aquaria (see phans) and applied the tidal motion in three different ways, but this also resulted in the death of the fry after a time; not, however, oll account of their sticking to the
cheese cloth, as the draught was very slight and only lasted from five to fifteen minutes, when the return would come, releasing any that might have got onto the cloth, but from other causes which I am unable to account for. The best success obtained was in one of the smaller aquaria (No. 1), with a lot of very strong and healthy fry, which were put in on the $22 d$ of January and did rery well for some time, but all gradually died, and on the 14th of February all were gone. I also kept some of this lot in the hatching.jars, but they, too, died about the same time. I noticed that the sacs of most of them were gone before they died.

Un the 25th of January the Grampus arrived with 162 live cod, which were put in the basement, and they lived equally as well there as in the cars. My experience in keeping large codfish alive is they will live anywhere, provided they have a plentiful supply of fresh salt-water and the temperature norer goes below 30°; for at 29° all will dic. Very few eggs were obtained from this lot of fish, as the majority were males aud the females had mostly spent, and even those taken turned out badly on account of the poor condition of the tish when received.

I fitted up two tubs with the tidal motion and put \cdot in $1,000,000$ eggs, which did very well for a few days, but owing to the high temperature of the hatchery and the large surface exposed to it, the temperature of the water in the tubs got too high and killed them all. I did not get another opportunity of trying the tuls, but from former experience I am satisfied good hatching can be done with them.

Sereral lots of eggs were received by express from Gloucester, and Mr. Tolbert brought three lots, in all about $11,000,000$; and on each occasion from one third to one-half died in transportation. On examining the apparently good ones with a microscope very many of them were found to be more or less defective, and, consequently, but fow healthy fry were hatched out.

I submit the following suggestions for auother seasou's work :

1. That there should be a supply of not less than 1,000 codfish at the station by the 1 st of November, or as soon as they can be obtained from Nantucket Shoals.
2. That arrangements should be made for getting a monthly supply of at least 500 more. By this means the number would be kept up, and I think would furuish all the eggs the present force could handle.
3. That the basement bo fitted up with a number of small pools, couveniently arranged, so the fish can be casily overhanled and get a pleutiful supply of fresh water. This will obviate the chances of their getting killed by frost and afford an opportunity of examining them at any time.

Accompanying this you will find copies of the daily record kept during the season.

Wood's Holl, Mass.: March $95,1887$.
[Prepared by Jamea Carawell.]

Record of the planting of cod fy's during the winter of 1880-87.
[Prepared by James Carswell.]

* Captain Collins reported the firy plauted in splendid condition.

The fry put in harbor were sometimes put in on the flood tide, when they would be drawn into Vineyard Soumd, and sometimes on the ebb, when they wonld be drawn into Buzard's Bay.

Record of temperature and density of water, winter of 1886-'87.
[Drepared by Jnmes Carswell.]

Record of temperature and densily of water, winter of 1886-s7-Continuod.

Day of month.	January, 1887.		Febmary, 1887.		March, 1887.	
	$\left\lvert\, \begin{gathered} \text { Tompera- } \\ \text { two of } \\ \text { water it } \\ 2 p . m . \end{gathered}\right.$	Dunsity of watete at $2 \mathrm{p} . \mathrm{m}$.	'Tempera. ture of water at 2 p. m.	Density of mater at 2 p.m.	Tempera. ture of waterat $2 \mathrm{p} . \mathrm{m}$.	Density of water at 2 p . m.
	0		-		-	
1.	37	1. 0255	37	1. 0255	34	1. 0258
2.	37	1.0235	37	1.0225,	35	1.0257
	36	1. 0225	37	1. 0255	35	1. 0257
	34	1.1025	37	1.0255	35	1.0260
6.	35	1. 10.55	3	1. 0256	3	1. 0200
7.	36	1. 0254	34	1.0253	34	10259
8.	35	1.0254	34	1. 02255	35.	1. 0260
9.	34	1.0224	35	1. 0555	35°	1. 0200
10.	34	1. $02: 4$	35	1. 0235	35	1.0258
11.	33	J. 025	30	1.0255	厚	1. 02680
13.	33	1. 125	36	1. 0254	35 30	1.0268 1.0257
13.	34	1. 0295	35	1. 10245	35	1.0250
14.	35	1.020	34 34	1. 0255 1. 0254 1.	35	1.025,
16	34	1. 0250	85	1.025\%	36	1.0252
17.	33	1.0256	35	1.0255	35	1.02:54
18.	34	1. 0226	35	1.0225	36	1.0259
19.	32	1.0256	35	1.0255	30	1.0252
20.	33	1.0257	36	1.0585	36	1.0252
21.	34	1. 0256	36	1.0255	37	1.0252
22	34	1.0256	36	1.0255	37	1. 0252
23.	35	1.0256	36	1.0254	37	1.0252
24.	30	1.0256	36	1.0256	37	1.0254
25.	36	1.0256	37	1.0258	37	1. 0254
	37	1.0257	36	1.0238		1. 1.0255
27.	35	1. 0255		3.0258 1.0258	37 38	
38	$3{ }^{36}$	$\begin{aligned} & 1.0255 \\ & 1.0255 \end{aligned}$	34	1.0258	38	1.02520
3	38	1.0225			
3.	37	1. 0255				
Mean	35	1.02554	35. 4	1.02553	*35.8	-1.02552

* 29 days.

XX.-REPGRT OF OPERATIONS AT THE WYTHEVILLE STATION, va., FROM JANUARY 1, 1885, T0 JUNE 30, 188%.

By Marsiall McDonald.

The plans projected during 1884 for exteuding and improving the facilities for work at this station were earried out during the summer and fall of 1885, under the direction of the Commissioner of Fisheries for the State of Virginia, and the cost of the exteusive improvements made was defrayed by the State Commission.
The station is now substantially complete in its equipment and appointments. Additional ponds will be needed from time to time to proride increased capacity for rearing trout aud other species for distribution.
Much also remains to be done in providing access to and circulation through the grounds bs the construction of good graded roads, in erecting substantial inclosures for protection from depredatious, and in improving the amenities of the grounds by phanting trees and shrubs, clearing up the undergrowth, and turting bare aud unsightly spots. But the station may now be regarded as fully equipped for its work; and a description of its location, buildings, ponds, and grounds, and its facilities for production and distribution of the Salmonide will well illustrate its importance and value to the work of the U. S. Fish Commission.
(1) Location.-The station is situated in southwesteru Virginia, about 3 miles east of the town of Wytheville aud immediatoly on the line of the Atlantic, Mississippi and Ohio Railroad, which, with its extensive conuections northeast and southwest, traversos that broad belt of mountain region which stretches from New York to Georgia and Alabama and is the natural trout region of the Middle and Sonth Atlantic States. The facilities thus afforded for expeditious and satisfactory distribution to the most distant points are all that can be desired.
A railroad siding, not a huudred yards from the station and accessible by a good graded road, affords every convenience for satisfactory distribution by car and messenger sorvice.
(2) Water supply.-This, which aggregates 1,100 gallons per minute, is allorded by two bold springs, coming to the surface in an oval depres-
sion or basin in the hillside to the north of the hatchery. The water supply for the hatching-house is drawn from the upper spring (see Plate I) through a 4 -inch iron pipe conveying about 120 gallons of water por minute. The excess of water from the upper spring is conducted by shallow flumes, which also serve as spawning races, through the two ponds, 12 by 50 feet, which are reserved for the oldest breeding trout. Escaping from the lower of these the discharge unites with tiat from the lower spring and is conveyed by a tunnel under the hatchery to the sloping hillside south of this building, and the whole discharge from the springs is thus utilizel for the supply of the succession of troutrearing ponds constructed on the rather abrupt slope extending from the hatchery to the valley below.
The station, it will be seen (Plate II), presents remarkable advantages in the large water supply available for fish-cultural operations, and in the fact that the distribution both to the hatching-house and ponds can be made by gravity, thus eliminating one very considerable item in the cost of maiutenance of stations where circumstances require the water to be pumped to a higher level before it can be utilized. One serious trouble relating to the water supply yet remains to be corrected.

During the seasons of heary and prolonged raiufall the springs become muddy, and although the muddy water does not appear to be directly injurious, the fact that proper observation and attention can not be given to the eggs and young fish may give rise to serious losses. Where this muddy condition is prolonged the gills of the larger trout become congested or inflamed, and many of our losses of fish have doubtless originated from the abnormal condition of water, if not directly attributable to it.
It is expected to get rid of this trouble and embarrassment to the work either by the use of a settling reservoir or by devising effective methods of filtration. Experiments are now in progress with a view to determining the most convenient and available means to accomplish the desired end.
(3) Hatchery.-The buiking first occupied as a hatchery was an old, \log still-house, fitted up with hatebing troughs affording capacity for the development and hatching of 300,000 trout eggs. In the spring of 1886 this building was removed, and on its site was erected the preseut comfortable, convenient, and well-equipped station. It is shown in elevation in the general view of buildings, ponds, and grounds (Plate II). Details of interior construction and arrangements are given in Plates III, IV, V.
The building is 50 feet by 25 feet and two stories high. The basement or lower story is of stone, the floor of concrete, so that it may be flushed with water and thoroughiy cleaned whenever necessary. This floor constitutes the hatchery proper, and is fitted up with troughs and hatching jars, as shown in Plate III. As at present arranged, about

800,000 trout eggs cau be incubated conveniently ; by crowding, provision could be made for $1,200,000$ eggs. Under the hatching troughs and supplied by the overflow of the water from these are an equal number of nursing t roughs for the young trout.
Experience has shown that it will not do to transfer them to the openair pouds until they are several months old. It is proposed to make additional provision for twenty-five more nursing troughs in a separate building, and so increase the capacity of the station as to enable us to rear and furnish for distribution each season not less than 200,000 yearling trout.

The second story of the hatchery is framed, and the-interior is arranged for office, storage, and quarters, as shown in Plate IV.
(4) Work done. -The work of the station was at first directed with the view of producing the eggs and young of the Rainbow Trout (Salmo irideus) for distributiou. The breeding fish have been reared from eggs obtained from native wild fish at Baird Station, California. These spawned first in the winter of 1853-'84, and, in the winter of 1886-'87, we obtained from our own stock of the Rainbow Trout, 220,000 eggs. The work of the station has been by degrees extended and diversified so as to provide for the pond culture of Carp, the Goldfish, the Rock Bass, and the small-mouthed Black Bass.
For the better economy and distribution of the work of the station, arrangements were begun in 1885 to accumulate a stock of the native or red-spotted tront of the Eastern States by the collection of wild fish from streams of Virginia aud by hatching and rearing breeding fish at the station from eggs obtained both from Michigan and from the Northeastern States. The eggs from the West gave fry of feeble vitality, and the percentage reared was very small. The stock of breeding fish on hand consists of a few hundred of the native Brook Trout and about 2,500 one and two-year old fish reared from eggs hatched at the station. It is probable that a fer thousand egge will be obtained during the winter of 1887-'83. Only a small number, however, will mature enough to spawn before the winter of 1888-s9.
The current work of production and distribution for the fiscal year beginning July' 1,1886 , is given in the following tables. The receipts of fish and eggs by collection from our breeding fish and from open waters and by transfer from other stations are given in Table I. The distribution of fish and egge from the station during the fiscal year beginning July 1,1886 , is given in Table II.

Table I.-Receipts of fish rod aygs at Wythoville Shation for the year ending Junc 30, 1857.

Species.	Whenco ruceived.	Dato.	Ligrs.	Fish.
	Cental Station, hy W. F. Page Central Station, by W. Δ. Dunnington Collected at Wytheville Station			*5,000
		May 4...		*3,000
			20, 500	
			220, 500	8,000
	Northville Station, by R.S. Johnson Northrilho Station, by express did bird E. Follett. Windiam, Conn. Central station, by W. F. Pare'lotial	1)ec. $11 . . .1$		$+195$
		$\begin{aligned} & \text { Jan. у... } \\ & \text { Jan. } 8 . . . \end{aligned}$	26, 508	
			$\text { 7.5, } 000$	+5,000
		$\begin{aligned} & \text { Jin. } 8 \ldots . . \\ & \text { Apr. } 14 . . \end{aligned}$	01, 5	193
Brown trout 1 Bo	Fred. Mather, Cold Spriog Harbor, N. Y	$\begin{aligned} & \text { Mar. } 17 \ldots \\ & \text { Mat... } \\ & \text { May. } 13 . \ldots \end{aligned}$	9,100	$\cdots \cdots, 000$
	Central Station, by W. A. Dunnington ..		0,100	
Landlocked salmon	Chas. G. Atkins, Grand Lako Stream, Me.		90,000	
Redeye perch	Peal Creek, Pulaski County, Va.	$\begin{aligned} & \text { Aug. 16.... } \\ & \text { Aug. 16... } \\ & \text { June 23.... } \end{aligned}$		2, 125
	lieed Cresk, wythe County, Va			$\begin{array}{r}+58 \\ +19 \\ \hline\end{array}$
Duack bass. Do.	Aug. 16.....June 23....		2,202
				-100
				+11
	Tutal			111
Carp (leather) 10.	Central Station, Washington, D. C .	Nov. 11, 20 Mac. 1...		$: 3,000$
110............				
1)o..	do	$\left\lvert\, \begin{gathered} \text { Mar. } 1 \\ A_{\text {Pry }} \\ \text { Mar..... } \end{gathered}\right.$		+3
Curp (scale) Do.....		$\begin{array}{lll} \text { Jan. } & 6 & \ldots \\ \text { Apr. } 14 \end{array}$		+450
	Total			3,469
	Central Station, Washington, D. C	Jnd. 6... Арг. 14...		1450
				+2
	Tota			452

Table II.—Distribution of fish and eggs from Wytheville Station for the year ending June 30, 1887.

Species.	Where sent.	Date.	Eggs.	Fisl.
California tro	11. C. Parsons, Natural Bridge, Va	Aug. 11		+100
Do........	M. C. Treiber. Stanuton, Va.....	Aug. 11		*100
	North liver, Weyer's Cave, Va	Aug. 11		-407
Do	A.Y. Stevens, Nushrille, Tionn.	Aug. 17		$\times 100$
	Edward D. Jicks, Nashrille, To J. D. Wads, Warrenaburgh. Mo	Ang. 17		- 50
1)0	Thbutary of maramee River, Mo	Aug. 17		+985
	Tributary of Gasconado River, Mo	Aug. 17		- 70
$1{ }^{1}$	'Tributary of Osage River, Mo..	Ang. 17		${ }^{*} 950$
Jo	Tributary of Noosho River, Mo	Aur. 17		2 425
	'ributary of Wbito Rivor, Ark Gicorre L. Harman, Olympic, Va	Alug. 17		*1, 110
	George L. Hnrman, Olympic, Va wa.dio.................	Aug. 20		*50
	William Spauglor, Specdiveli va	Aur. 21		*20
110.	Stouy Jork of Reod Creels, Wy the County, va	Sept. 20		1100
	Fli F. Thomas, Graut, Vr.......................	Sopt. 21		
	Ilcadwaters of James River, Va	Sopt. 23		*400
	Slony Furk of Rawd Creek, Wythe County	Sept. 23		*500
	Cacapon River, W. Va	Oct. 12		*400
	hlonry Stowart, Highland, N. C	Oct. 19		$\because 300$
	I). W. Mackall messenger Wabli	Nor. 7		$+309$
		Nor. 13		
Do	V. G. Shepard, Faber's Mills, Vim	Nov. 15		-100
Do	Nowton Simmons, messenger, Wialiugton, D. C	Jan. 6		*225
	M. MeDonald, Washington, D. C................	Jan. 21	5,000	
Do,	Max yondem liorne, Borneuchon, Germany	Jan. 24	10,000	
Do	Dentuche Fischeroi. Verein, Berlin, Germany	Fob. ${ }^{7}$	15,000	
Dudo.......	Feb. 14	15,000	
	National Fibh-Culturo Association, Londok, England.	Fob. 21	10,000	

Table II.—Distribution of figh and egge from Wytheville Station, etc.-Continued.

Species.	Where sent.	Date.	Eggs.	Fish.
	M. V. Osbornu, Conh Crook Matehery, Ohno.......	$\text { Fol. } 1$	10,000	
IDO	F. G. Shorthicke, Vitmiaxton, bel	Febr 21	$5,000$	
	E. H. Finhmuth, Philatelphia, Pa	Feb. 20	5, 000	
	J. W. Inoxio \& Co., Carollia, 1. I	Fob. 26	13,000	
	Charlea F. Hardio, Now York. N.	Mar. ${ }_{\text {Mar }}$	10,000 5,000	
	Long Meadow hun, nent	Mar. :1		*22
	Long heatow Run, nenr ham	Mar. 31		*(62)
Do	Jush Rna, near Hagerstown, Md	Mar. 31		* 022
	Walker's Run, near Hagerstown. Md...............	Mar. 31		* 022
D	South Forl, of Reed Creek, Wvehe Co	May ${ }^{\text {M }}$ (${ }^{\text {a }}$		+ $\begin{array}{r}\text { +6\% } \\ \hline 500\end{array}$
	Holstou Rivery nour Marion, Vn Covo Creek, Wythe Connty, Vit	May ${ }^{\text {May }}$ 24		* 5000
	Walker's Creak, Bland County, ${ }^{\text {V }}$	May 27		*250
Do	North Fork of Reed Crook, W, ythe County,	Juиo 1		+100
	L. S. Allison, Wy tho County, Va.............	June 20		*250
			98, 000	i2,230
Brook trout	Long Meadow Run, near Hraverstown, Md.........	Var. 31		-622
1,	Almshouse Rum, near Hagurstown, Ma.............	Mar. 31		+
Do	Rash Run. near Hagerstown, Md Walker's zun near Hagerstown, Md	Mar. 31		\pm
	Waker's Run, near Hagerstown, Md	May 24		\pm
Do	Walker's Creek, Bland County, V	May 27		$* 250$ $+2 \% 0$
	L. S. Allison, Wythe County, Vr.	June 20		+2:0
	Total			3,238
	H. C. Pargons, Natural Bridge, Va	Aug. 11		${ }^{+100}$
no.	M. C. Treibar Stanaton; Va.....	Ang. 11		+100
	T'ributary of Gasconade River. M	Aug. 17		
1n	Wiliam Spaugler, spoedwoll, V	Sopt. ${ }^{2}$		- 25
110	Eh F. Thomas. Grans, Va,	Sept. 21		*25
	S. N. Muthord W ythoville, ${ }^{\text {d }}$	Nov. 15		250
	do	Nov. 23		600 +30
	Nextun simmons, messenger, Washington, D.C ..	Jan. 30		30
				1,200
				*1, 197
Docked anlmon Do	South Ferk of Sheuandoa! River, Wiajuesbor. ough, Va.	May 19		${ }^{1} 11,000$
				12,997
Red-eyo perch	W. Y. Bumgarduer; Staunton, Va	Aug. 11		+ $+\mathbf{5}$
10........	I. G. W. Stoedman, St. Lonis, Mo	Aur. 17		* 600
$1 \mathrm{No}$.		Oct. 12		$\times 500$
	W. O. Watsou, Charlottery ille,	Oct. 12		*200
	W. E. Grant. Grantland, V®.	Oct 15		* ${ }_{*}^{100}$
	D. B. Mackall. mugsenter Washid	Nor. 7		
	V. G. Shepard, Faber' Mills. Vat			${ }_{-50}^{100}$
130	1. S. Pendleton, Frederick's Hall, Va	Nov. 15		* 510
1)0.	Fred Mather, Cold Spring Larbor, N. Y. Nowton Simmont wessenger Washington, 1). C..	Dee. ${ }^{\text {Dan. }}$		\$0
	Nowton Simmons, wessenger; E. M. Rolinson, messenger, Washington, I). C.	rab. 25		\$12
				2, 103
Bla	J. D. Eals, Warrous	Aug. 17		8
Carp (loather)	Ninoty-ono spplicants in southwest Virginia and			825
Curp (scale)	eant T'mnesses. South Fork of Liced Crook, W ythe Comnty, Va...	Jan. 8		450
				2,3.5
Tonch	South Furk of Reod Crook, Wythe County, Va	Jan. ${ }^{8}$		*450
Gounlish.	Mrs. O.J. Smythe, Wythoville, Va	July 13		
	T. C. Fwah, Paris, Tex	July 17		
$100 .$	Mra Cmma W. Guy, Glain spring, Va	Auk. Ang		
110	Mias litioy ledford, Viekshury, Miss .	Ang. ${ }^{\text {Dat }}$		
110.	J. M. Robinson, Fiysterillo, N.C	Dec. ${ }^{\text {Dan }}$		
110.		${ }^{\text {dai. }} 22$		
170		dan. ${ }^{\text {dar. }}$		
	Hon. C. F. Trigu, ibingion,			
	Tual			50

From the eggs hatched at the station during the season we have now in our ponds for distribution during the fall of 1887, according to the estimates of the superintendent of the station, about 60,000 California and Eastern brook trout, from 3 to 5 inches in length.
During the spring of 1887 our facilities for pond-culture were extended by the construction of a series of ponds covering about 2 acres, for the cultivation of the rock bass (Ambloplites rupestris), a species well adapted for pond-culture and rapidly growing in favor with those desiring a species of easy cultivation, with gamy characteristics and of good favor.
The landlocked salmon bred during the season were held in pouds at the station until June, 1887, and then transferred to the headwaters of the Shenandoah River, in Augusta County, Va. They were from 212 to 3 inches in length when planted, and about 25 per cent. only of the eggs received survived.

The stocking of the headwaters of the Sheuandoab with salmon is to be regarded as an experiment in acclimation rather than assured fishcultural work. It is hoped that by the selection of a variety of salmon that has largely lost its migratory instincts and by hatehing it and constraining it to live for some months in a much higher range of temperature than is natural to it, it may become habituated to its new environment and become resident in the Potomac River basin. Should but a few survive and spawn it is probable that the young will exhibit considerable modification of labit and be in better accord with their environment, and after a succession of generations develop a distinct race, tinding congenial Labitat in streams with a higher range of temperature thau is found in the natural salmon streams of the Northeast.

It is not possible to report even a fair measure of success in hatching eggs of the Brown Trout of Europe (Nalmo fario). From the Deutsche Fischerei-Verein we obtained about 2,000 fish, which, at the age o six months, are from 4 to 6 inches long and growing rapidly. The very large percentage of loss occurred during the period intervening between hatching aud beginning to feed.
(5) lrovision for pond culture.-In the oval depression north of the hatehery (Plate I) are two pouds, 12 by 50 feet, provided with spawning races. These are reserved for our breeding trout. They are constructed entirely of plank, sides and bottom, and at first tine sides projected above the level of the soil. The considerable losses occurring among the breeders during the hot weather of summer indicated unhealthy conditions, which were attributed to the exposed sides, which became heated during the day, thus causing a considerable rise in the temperature of the water. This was remedied by banking up the sides with earth and sodding the slopes. The plank bottoms at the upper euds of the ponds were also covered by broken stone and coarse gravel. These changes were marked by the greater improvement in the condition of the fish in the ponds. Losses are now comparatively rare, and are almost entirely confined to the males, being usually the result of injuries
inflicted in the fierce fights they wage with each other during the breeding season. -

A gencral view of the series of ponds to the south of the Latchery is given in Plate VI. The four ponds lying upon the slope immediately below the hatchery are each 8 feet by 50 feet, and are reserved for the larger trout which are being reared at the station to maintain the succession of breeders or for distribution after attaining considerable size.

The eight ponds at the base of the hill, between the superintendent's house and I'ate's Run, are also appropriated to the rearing of trout for distribution. All of these ponels have earth sides and bottom, and each has an independent water supply and drainage. The series of four large ponds on the opposite side of 'rate's Run, near the railroad, is appropriated to the pond culture of the carp and other species requiring warm waters for their successful cultivation. The water supply for this series of ponds is conducted from the springs in a 4 -inch pipe, and, with the view of securing the warming of the wator as much is possible by exposure to summer temperature, the water supply is reduced to an amount barely sufficient to replace the losses by evaporation and leakage. The extent of surface exposed to the air and the presence of abundant vegetation in the ponds are relied upon to maintain the water in healthy condition.

A series of six ponds, covoring about 3 acres, has been coustructed in the area of ground lying between 'rate's lian and the series of carp ponds. These are not shown in the general view of ponds in. Plate VI.

They have been constructed especially with a view to the breeding of tho red-eyes and the swall-month black bass for distribution. The water supply is drawn from Tate's Run, and carries into the pond an abundant supply of food both for the parent fish and the young.
(6) Capabilities of the station.-As now equipped this station may safely be looked to to furnish each season 400,000 or 500,000 eggs of tho rainbow tront for distribution or for hatching and rearing. Equally good results may be expected from the work with Eastern brook trout in a year or two.

The trout ponds at the station are of sufficient extent to permit the carrying of 150,000 fish up to the age when they are of sufficient size to permit their introduction with safety into open waters infested by predaceous tish. The arrangements for poud culture are sufficiently extensive aud the results of such work well enough assured to enable us to look with confidence to the Wytheville station to provide for all demauds for the streams and ponds of Virginia, North Carolina, Tennessee, Maryland, and West Virginia. The distribation of trout fry from this station has been conspicuous by the failare to secure appreciable results in the improvement of the streams stocked. Rarely did We find any evidence of success from such work, so far as it has come under my observation.

The change in our methods of handling the trout, namely, rearing them at the station and distributing after they have attained a length of 5 inches to 6 inches has, on the other hand, met with most encourag. ing success. The irideus has been established in several of the streams of southwest and Piedmont Virginia, and in Margland and in a number of ponds in Virginia and 'Tennessee.

A remarkable comparison of the different results of the two methods is given by the experiments conducted under my own observation and direction with a view of stocking the natural tront stream flowing through the grounds of the station. For several years in succession this strean was stocked with the fry of both the California aud Eastern brook trout. The aggregate number planted was not much short of 100,000. No appreciable results followed from this work. In August, 1886, about 400 fingerling trout from 4 to 5 inches in length were released into the stream. During the ensuing fall and winter about 100 of these were captured at the heal of a little fishway fed by the waste water discharged from the ponds. They had attained a length of 7 to 8 inches, and the brightness and clearness of their color were in marked contrast to the duller hues of the fish of same age in the ponds. An examination of the stream subsequently showed that the trout were still quite numerous in the stream in the vicinity of the hatchers.

The important lesson to be drawn from these experiments is that in stocking strearns infested by small predacoous fish we can only assure success by stocking with trout of sufficient size to dominate the water. Under the circumstances indicated experienco shows that several humdred yearling trout are sufficient to stock a stream presenting suitable habitat. On the other hand, we can rarely expect success in stocking such waters with any number of the fry, however great. It may be assumed as a rule that a pair of yearling trout are fully the equivalent of several thousaud fry in stocking streams presenting the conditions to be found in the trout region of Pennsylvania, Maryland, Virginia, and States farther to the south.

Wasifington, D. C., November 19, 1887.

LIST OF PLATES.

Plate I.-Water supply and ponds for brood fisl.
II.-General viow of buildings and grounds.
III.--Plan of hatchery, first floor.
IV.-Plan of hatchery, second floor.
V.-View of interior, showing details of equipment. VI.-General viow of ponds.

WATER SUPPLY AND PONDS FOR BROOD FISH.

Report U. S. F. C. 1886.-McDonald. Wytheville Station.

GENERAL VIEW OF BUILDINGS AND GROUNDS.

四

Porch

Plan of First Floor.

XXI.-REPORT OF SHAD DISTRIBUTION FOR THE SEASON OF 1886.

By Marsihald McDonald.

The work of shad propagation and the production of the young for distribution was conducted on the Potomac River at Fort Washington and Central Stations, on the Susquehanna at Battery Station and by the steamer Lookout, and on the Delaware River by the steamer Fish Hawk. Shad for distribution were contributed as follows:

Battery Station, Sasquehanna River.	43, 776, 000
Central Station, Potomac River	28, 151, 000
Steamer Fish Hawk, Delaware River	21,018,000
Steamer Lookout...	310,000
Total	93,255,000

The aggregate number of fry actually planted was $92,679,000$. In this distribution liberal plants of shad fry have been made in the Potomac, the Susquebanna, the Delaware, and other tributaries of Chesapeake and Delaware Bays. The following is a summary by river basius of shad distributed during the season of 1886 :

River basin.	Recoived from etation.	Aotually planted.	Lost in transit.
TMbu	2, 534,000	2, 584,000	
Tributaries of Narragansett Bay	2,832,000	7440,000	88, 000
Hudson Rivor	2,312,000	2, 812, 000	
Dolamare River	21, 618, 000	$21,018,000$ $52,835,000$	
Tribataries of Cherapuake Bav	$62,923,000$ $1,900,000$	$52,835,000$ $1,000,000$	88,000
Streamaries of Albemarlo Sound....................................	$1,990,000$ $4,288,000$	$1,800,000$ $4,183,000$	105,000
Miegismippi lifer and minor tributarios of tho Gulf of Moxico......	4, 758,000	4, 758,000	
Culorado livor, Gulf of California.	1,000,000	850,000	150, 000
Columbia River basin	1,000,000	850,000	160, 000
Total	93, 255, 000	92, 079,000	670,000

The localities at which the plants were made, the streams in which they were made, and the number of fish included in each doposit are given in the following table:

Record of distribution of shad from Central Station, Washington, D. C., and from Battery Station, Haere do Grace, Md., season of 1886.

Date.	Stream stocked.	Tributary of	Place of deposit.	Fish shipped.	Died in tranait	Planted.
Apr. 24	$\begin{aligned} & \text { Potomac River. } \\ & \hline ~ \end{aligned}$	Chesapease Bay.	Little Falls, Md	918,000 364,000		918,000 364,000
27	Rivanna River	James River	Charlottesvilie, ${ }^{\text {Fa }}$	534, 000		363,000 534,000
28	Rappahannock River	Chesapeake Bry.	RappabannockStation,	340,000		340, 000
${ }_{29}^{28}$	Kapidan River.	Rappahannock Rivcr	Rapidan Station, Ya	341,000		341,000
3	Occoquan River ${ }^{\text {Rappalismnock }}$	Potomao River -	Wooduridge Statiod, Va	579,000 730,000		539.000 730000
May 1	Mattapony River.	York kirer....	Near Mredericksturgb,	391, 000		730,000 391,000
	North Anna River	Pamnnker Rive	C. $\&$ O. Janction, Va,	331, 000		$3 \mathrm{P91}, 000$
1	Fork of Sbenandoah 1 i	Potonac liver	Near Waynesborough,	557, 000		557, 000
$\frac{2}{2}$	Acquia Creek.	Acquia Creek	Near Qaantico, Va	389,000		389, 000
2	Risanna Rirer	James River.	Near Charlottesrille,	700, 000		700, 000
3	Appomattor Rire	….do.....	Near Mattoar Va	378, 000		379, 000
3	Monocacy River.	Potomao Rirer	Near Frederick Junction, Mr	603, 000		603, 000
3	Paturent River	Chesapeoke Bay	Laurel, M1d.......	600, 000		609, 000
3	Shonandoah Rive Rapidan River..	Potomao Itiver	Warnesboraagh, Rapidan,	200,000 629,000		200,000
1	James River..	Chéapeane Bay	Ono mile abore Bosh	380,000		350, 000
5	Occoquan Rirer	potoman hiver	Bristoe, ${ }^{\text {Va }}$	531,000		531, 000
5	Chickalominy Rir	James River	Mupslett Station, $\mathrm{Va}^{\text {a }}$	310,000		310,000
7	Pamankey River	Yotk River	Near White House Sta	${ }^{385} 5000$		$38{ }^{385}, 000$
8	Man River.......	Roanoke River	Near Milford, Vail. ${ }^{\text {Triol }}$	367,000 399,000		307,000 399,000
9	Chickahomins River	James River.	Fives miles from Δ shland, V	316, 000		366,000
10	Colorado River of the W	Gulf of California	The Needles, Colo	1, 000,000	150, 000	850,000
10	Cheat River	Mozongahela River	Threo milles irom Rowlesburgh, W. Va	336,000		356, 000
12	Stony Creek.......	Notoway River....	vear Stony Creek Station,	364, 000		364, 000
13	Mehorrin River	Chowan Rirer.	Near Bellield, Va	415,000		415,000
14			$\underline{1}$ millcs abore Belfeld, Va	314,000		314,000
15	Fomtaine's Creek		Near hargaretisville, N.C	30, 000		30, 000
16	Sayannah Prirer	Atlantic Ocean	Augasta, Ga	301,000	30,000	271,000
16 17	Nottoway River	Chowan River	Jear Stony Creek, Va	228, 000		288000
17 21	Mononga hela Rir	Ohio River	Two miles from Fairmont, W.	281,000		281,000
21	Hossatonic Rire	Long Istand Soun	Birmingham, Conn.	\&32, 000	$83,0<0$	749,000
22	Will's Creok.	Potomac Kiver	Cumberland, Mul.	5332,000		532, 000
22	Rapidan River	Rappahannock Rire	Rapidan Station,	259, 3000	20,000	$209,000$

Record of distribution of shad from Central Station，Washington，D．C．，and from Battery Station，Havre de Grace，Ma．，go．－Continued．

Date．	Stream stocked．	Tributary of－	Placo of deposit．	Dlert in trausit．	Planted．
May 11	North3ast Rirer．	Chesapeake Bay ．	Bull＇e Mount，Md．		1，500，000
12	Elk River．．．．．．．．	．．．．．do ．．．．．．．．．．	Eliton，Md．．．．．．．		1，300，000
12	Northeast River		P．，W．\＆B．R．R．，		300，000
12	Susquehanna River	do	Near Station，Md		1，500，000
12	Broad Rivor ．．．．．．．．．	Congaroe River	Colambia，S．${ }^{\text {c．．．}}$		1，750，000
12	Saluda River	．．．．．do ．．．．．．．．．	－．．．．do ．．．．．．．		750，000
13	Monongrahela River．	Ohio Riser．．	Graiton，W．Va		250，000
13	Sassafras River．．．．．	Chesapeake Bay	Ordinary Point，Md		1，000，000
15	Chester Rirer ．．．	．．．．．．do ．．．．．．．．．．	Crumpton，Md．．．．．．	40，000	560,000
15	James River \qquad Susqnebanna River．	．．．．．．do	Clifton Forge，Va．．．．．．		250， 000
15	Susquebsnns River． Ocklockonnce River	Gulf of Mexico	Near Port Deposit，Md S．，F．\＆W．R R．，Go．．		$\begin{aligned} & 370,000 \\ & 750,000 \end{aligned}$
16	Withlacoochee River	，．．．．．do ．．．．．．．	S．，．．do ．．．．．．．．．．．．．		750,000 750,000
16	Brandywine River．．	Delaware River	Wilmington，Del		450，000
17	Cheat Rirer	Monongahela River	Rowlesburgh，W．Va		300， 000
18	Nanticole River	Cbesapeake Bay ．．．	Seaford，Del		450，000
19	Wicomico River	Tangier Sound．．．	Salisbury，Md．．．		450，000
19	Chester River．	Chesapeake Bay．	Millington，Md．		600， 000
20	Pataxent River	M...do	Patuxent，Md．．．．．		540，000
22	West Forli River．．．	Monongahela River	Clarksburgh，W．Va		300，000
24	Ensquehanna River．	Chesapeake Bay ．．．	Near Columbia， $\mathrm{P}_{\mathrm{a}} .$.	．．．．．．．．．．．．．．	900， 000
25	．．．．．．．do ．．．．．．．．．．．．．do.	Near Port Deposit，Md		750，000
認	.-....do.do	Poach Bottom， $\mathbf{P a}$		$838,000$
20	- do	$\mid \cdots . . . d o$	Marietta， Pa_{a}		$1,500,000$
27	Nanticoke River．．．	．．．．．．do	Seaford，Del．．．．	．．．．．．	$\begin{array}{r} 1,00,000 \\ 977,000 \end{array}$
28	Susquehanna Rivor	do	Conowingo，Md．		$500,000$
31	Deep Rivor	Caps Fear Rirer	Moncare，N．C．	55，000	$1,045,000$
June ${ }^{31}$	Monongahela River． Snsqueñona River	Ohio River．	Fairmont， \mathbf{W} ．Va		$\begin{array}{r} 1,200,000 \\ \hline \end{array}$
June 1	Sasqueñana River．	Cheszpeake Bay	Safo Harbor，Pa		$550,000$
1	\qquad	．．．．．．do ．．．．．．．．．	Tido＇s Eddy，Pa		$500,000$
$\stackrel{\rightharpoonup}{2}$	．．．．．．do ．．．．．．	．．．．．．．do	Above Havre de Grace，Md		$100,000$
5	．．．．．．．do	－．．．．．do		$228,000$
7do	．．．．．．．do	Near Station，Md．	$\cdot 1$	$429, n 00$
${ }^{9}$	…...do	-.....do	．．．．．．do	\because	$\begin{aligned} & 472,000 \end{aligned}$
10	．．．．．．do	．．．．．．do	．．．．．．do	．．．．．．．．．．．．．	$208,000$
12do	．．．．．．．dodo		481000
13	．．．．．．．do		－．．do		$256,000$
	Total			293， 000	43，483，000

Egas for Eurctae.-In addition to the distribution covered by this table, 50,000 shad eggs were sent from Battery Station to Mr. H. C. Mercer, of Doylestown, Bucks County, Penusylrania. Mr. Mercer had arranged to sail for Europe on the North German Lloyd steamer Eider April 28, and expected to reach Hüningen, Alsace, in ten days. He wished to take some shad eggs with him, and try to reach the Danube before they perished. He proposed to keep down the temperature of the eggs as much as possible while on board the steamer, by the use of ice. On April 27, 1886, Mr. Grabill forwarded the eggs to him. When he reached Southampton he found many of them dead, and the remainder died before he reached Bremen, to his great disappoiutment.
Stocking the Colorado.-An attempt to acclimate shad in the Colorado River of the West, and to establish fisheries on the Colorado, Gila, and other tributaries of the Gulf of California, was commenced by the deposit of 983,000 fish in 1854 and 998,000 eggs in 1885, and was continued the present season by a deposit of 850,000 eggs, thus making a total of $2,831,000$, all of which were deposited at The Needles. These plants are considered sufficient to determine whether the waters present such conditions as will assure the establishment of a run of shad in the streams tributary to this gulf. The evidence of success will be looked for in the capture of mature shad in the season of 1888, or possibly of male or buck shad in 1887. It is not proposed to prosecute this experiment further.
Stociring the Columbia River.-An unsuccessful attempt was made in 1886 to transfer shad from the Atlantic to the Pacifc coast. Detentions on the way consumed so much time that the fry were all lost. In order to guard against loss occasioned by delay en route, the present year arrangements were made to send eggs as well as fry. Car No. 3, with J. F. Ellis in charge, was detailed for the purpose. The car was equipped with tanks for storing and a steam-pump for circulating the water. Two stands of McDonald jars, with specially designed glass aquaria for collecting and holding the fry, completed the equipment of the car as a moving hatchery. The car left Havre de Grace May 9 with $1,000,000$ young shad, 200,000 eggs on trays, and 385,000 eggs in the McDonald hatching.jars. Mr.E.M. Robinson went on board to take charge of the hatching. The fry were transported with a loss of 50 per cent, while the eggs on trays were all lost. The 385,000 eggs in jars latehed and were planted in the Willamette River, with a loss of less, than 10 per cent. The success of this experiment has so important a bearing upon the mothods of our work, and points out such possibilities, that Mr. Ellis's report relative to the incubation and hatching of the eggs on the way is given.*
Washington, D, C., Maroh 1, 1887.

[^96]slow motion given to the eggs. At 8.25 p . m. on May 6 th 210,000 of these egge had been taken, and 175,000 at $9.30 \mathrm{p} . \mathrm{m}$. on May 7. The temperature of water at Battery Station when the egge were taken was 56 dogrees; the temperature of water in car was 60 degrees. 'Took on fresh water at York, Pa., at 10 o'clock p. m., from cogine-tank, usin rour suction-hose and pumping about 30 minutes. Pumped the water through the ice-coil during the night, so the temperature was brought down to 58 degrees. Took on fresh water at Altoona, Pa., and after that purmed water from engine-tauls three times each day.

May 10. The temperature was from 58 degrees to 60 degrecs. The eggs worked nicely, with only a small loss. About a dozen or so of those taken on the gth instant Latched this afternoon. The egge look rather light in color, and the fish can be seen moving lively in the egge. One jar of egge went over in the aquaria last night; replaced them in jar at 6 o'clock a. m .
May 11. The temperaturo was from 56 degrees to 58 degrees. Only a few more Gish hatched out, as the fall in the temperature of the water seemed to retard them. They all look woll, and are developing slowly.
May 12. Got on a little alkali to-day; this did not seem to lave any effect on the eggs. Those taken on the 6 th instant are hatching to-day. Tomperature of water 58 degrees. The fish look well, and have a large sac. Those taken on the 7 th instant are almost ready to come out, and a fow hatched before night. Worked all the dead egge off and measured those left in jars; found the loss on the $210,000 \mathrm{egg}{ }^{\mathrm{g}}$ taken May 6 to be 10 per cent, and the loss on the 175,000 eggs taken May 7 to be B per cent. This would make an average loss of 9 per cent. We lost very few, if any, after this. The egge were hatching slowly this evening. The water in tanks got a little low, so the pump was used to get some air into the water. The air-bubbles attached themsolves to the young fish and turned them head down; also collected around the jars and aquaria. This caused some trouble, which was overcome a little by keeping the lower tanks as full of water as possible.
May 13. The eggs of the 6th instant are latching rapidly; temperature of wator 58 degrees. The fish look healthy and strong, with large sacs. Those of the 7 th are latching slowly. Put up at $11 \mathrm{a} . \mathrm{m}$. 25,000 fish in five cans, and 25,000 more at 5.30 p. m. The air-bublles were still troubling the joung fish a little, so took them from aquaria as fast as hatched.
May 14. Almost all the eggs of the 6 th instant hatched to-day. The temperature of water went down to 56 degrees this morning. This retards the egge of the 7 th a little. The air-bubles in the water seem to collect on some of the eggs, making them come to top of jar; so can give them lut very little motion or they will go over in the aquaria. This air-bubble has been the only difficulty we have had to contend with, which seems strange, as the air-pump has not been in use on the trip. The air also collects on the shells and causes them to come to the top, when they can be easily skimmed off. Removed the young fry from the collecting aquaria to transportation cans as fast as they were hatched. Planted 25,000 of these fish in the Columbia River, at Wallula Junction, at 11.30 to-night. They were in fine condition.

May 15. The car arrived at Portland at 10.30 this morning. All the eggs of the 6th were hatchod, and those of the 7th hatched rapidly all day, the temperature of water gradually going up to 62 degrees. The air-bubbles ontirely disappeared this morning. The car was taken to the Willamette, at Albany, at 9.30 p . m., and the young fry planted at $11.30 \mathrm{p} . \mathrm{m}$. The eggs did not quite all hatch to-day, so ran the pump up to 10 o'clock May 16, at which time all the egge had hatched, with a total loss of 9 per cent. The experience of this trip makes it safe to recommend the sinipping of eggs instead of the young fry on all long trips, as this is perhaps the most diffcalt trip in the country. The water is very cold, going as low as 44 degrees in a great many places. The alkali, too, is very strong. I think without doubt this car can take 2,000,000 egge to any stream in the United States, and hatch them in as good condition as they come from the hatcheries, and with as small a loss.

XXII.-REPORT OF OPERATIONS ATT THE SHAD-HATCHING STATION ON BATTERY ISLAND, NEAR HAVRE DE GRACE, MD., dURING THE SEASON OF 1886.

By L. R. Grabill.

The first run of shad was perceived on April 18, and 35 ripe shad were taken on April 19. This run continued for a week, and was larger in namber than had been known for 20 years. Both shad and herring came in enormous quantities. It was impossible to obtain the catch of shad at the seines during this run. The catch of Mr. Osmond's seine in shad for one day alone was more than 5,000 .

The collection of spawn for the station was done by men and boys hired temporarily for the purpose. As many as 40 men and boys in addition to the station's ordinary force were employed. Theso were paid monthly wages, each being allowed $\$ 10$ a month for subsistence. It was eudeavored to station men permanently at all the seines, and to attend to as many gill-nets as possible. The men wero graded as first and second class spawn-takers, and apprentices. Besides these, boys were used merely as oarsmen.

Experience shows, however, that it will be better in the future to employ 3 men to every boat, 2 of whom are apprentices; these 2 to take nightly turns at receiving instruction. Boys, unless quite large and strong, cannot care for boats in a squall. Large as was the collecting force it could not attend to more than one-half of the gilling boats on nights when all of the fishermen were out. As a rule it was found more profitable to attend gill-nets than seines.

Collection was continued from April 19 to June 10, the total number of eggs collected being $60,766,000$. Of this number there were received from the steamer Fish Hawk $2,099,000$, and from the steamer Lookout $2,433,000$, the total received from other sources thus boing $4,532,000$.
The Commission's gill-nets were put in use during the latter part of the season, there being no scarcity of male dish during the first part. Notwithstanding the smaller mesh of the net, it was not noticed that there was a large difference from other nets in the proportion of male fish caught. The largest roe fish seen during the season was caught in one of the Commission's small-mesh gill-nets. On a ferv occasions these nets served a good purpose in supplying male fish for impregnating eggs, but they did not supply theso male fish nearly so often as they were supplied from ordinary nets near at hand. The Commission's gillnets, being fished by expert fishermen, caught about as many fish, both male and female, as most of the gill-nets fishing in the same locality.

At the beginning of the season the hatching dopartment was not prepared to do the work that was forced upon it by the early and immense
run of shad. The conuections for the hatching apparatus and for the water supply were inadequate to the demand, and the supply of hatehing apparatus on hand was insufficient. To increase the hatching room an addition, covered with canvas, was made, accommodating 2 tables additional with 50 McDonald jars. The store-room used for the seine was furnished with sky-lights, and 28 hatching cones were placed in it, and about 30 cones in all conditions of repair were hastily fitted up outside of all shelter. Notwithstanding the increase thus made, the cones and jars constantly carried twice as many eggs as they should have done, and much loss was the result. But by far the greater loss was caused by being obliged to allow eggs brought in to stand in buckets, \&c., until room could be made for them. In many cases eggs nearly hatched were compelled to be placed in the river to make room for new ones. About 170 McDonald jars and 58 cones were in constant use, supplemented by wire-gauze cylinders, buckets, pans, and all kinds of arrangements for hatching.

Three experts were employed during most of the season in the hatch-ing-house. Three apprentices were also emploged most of the time as assistants. These men received and cared for all eggs, cared for the fish when hatched, filled the cans for shipment, and loaded them in the launch or scow.
Notwithstanding the losses, the number of shad fry hatched was $45,231,000$. These numbers are based on the measurement of the perfectly cleaned eggs in the jars just before hatching in every case, and are as uearly accurate as these figures can be made. It is believed that this is rather under than over the actual result. The percentage of hatching during the season was 74.4. The total number of fry shipped and receipted for by messengers was $43,776,000$. The total loss of fish was $1,455,000$. Three tables are appended to this report, which give details concerning the collection of the eggs, the shipments of the fry, aud meteorological observations during most of the season.

The collecting force was entirely disbanded after June 10, when gilling is no longer permitted by Maryland laws. On June 13 all the eggs on hand had hatched, and the hatching department was then closed. But few eggs, however, were taken after June 1, the date on which the greater part of the force was discharged. After the close of the hatcling season the time of the small number remaining was given to storing the equipment, and in work upon a drive-well, which was beguu with the hope of finding an artesian water supply. This well was carried to a depth of about 150 feet by July 1.

There is little doubt but that the area of 4 or 5 square miles immediately surrounding Battery Station is as large as any, if not the largest, spawning ground for shad ou the const. The station is well located for reaching every part of this ground. The possibilities of the station are almost unlimited. Fishermen and fishing boats cover the bay during the season, and every ripe egg taken in fish in the nets would be
lost if it was not taken by the collectors of the station, impregnated, and hatched. One need only to see the bay studded with the lights of the fishing boats on a nightin May to convince him that but for the Commission's work very few fish could come from eggs naturally deposited. But, large as was the Commission's force last year, 1 am satisfled that not over one-half of the ripe fisli taken in the bay by fishermen were stripped by its collectors, as they could not possibly attend to all.
It is fairly demonstrated by this season's work that collecting from gillers produces a better result than hauling the Commission's seine. Tro or 3 men can secure as many ripe fish from gillers in a day as 80 men would secure if employed in hauling the seine. Moreover, hauling the seine by the employees of the station necessarily involves the Fish Commission in the care and disposal of the fish talsen, while it seems to antagonize the fishermen, and is an unnecessary cost. With a good run of fish in the coming year, if the collecting force is doubled and their work thoroughly systematized, perhaps double the number of eggs secured last season cau be oltained during 1887. The collection of eggs in 1886 was stimulated also by giving small rewards to those gathering the greatest amount of good spawn.
Penning sinad.-Out of a large number of shad full of roo, but not ripe at the time of introduction, which were placed in the pool and kept for a space of time ranging from a few days to 2 weeks, not one ever produced eggs that would hatch, though apparently ripe when stripped. It would seem that possibly the fright at being taken in the net, or of confinement in the pool, prevents the eggs from further development. All of the fish placed in the pool become more or less diseased after a short time, which may be due partly to the muddy bottom. This interesting experiment has hitherto met with such small success as to warrant its being dropped hereafter.

Herring.-Herring were taken continually and sometines in such quantities as to retard the bauling of the seines. No account was kept of them, as they were considered valueless in most cases, and they were shoveled back dead into the river or allowed to escape through the large meshes before completely hauling in the soine.

Rocimish of striped bass.-Experiments were made in hatching the eggs of the rockfish, the greatest success being obtained by swing. ing a cylinder with ganze ends in a sluice-way through which a current, caused by the tide, constantly flowed. It appears, however, that even with very fine gauze the eggs in a certain state are forced through. Owing to want of time, caused by pressure of other matters, suffcient attention could not be devoted to these experiments, and most of the eggs taken were lost. In all, c00,000 rockfish eggs were taken, and 75,000 fry were shipped to Lake Ontario, near Oswego, N. Y.*
Washington, D. C., December 20, 1880.

[^97]Taber I.-Record of the shal-hatching operations conduoted at Battery Station, Mraryland, from April 19 to June 13, 1886, under direction of L. I. Grabill, superintendent.

- Records for the hanl-seines are rery incomplete. No banling of seines is allowed by Marylamd law after Janel.
\uparrow Herring wers taken in grést nombers, but no account of them was kept.
fi4.4 per cent of ail eggs taken were hatched.
Kept too long in buckers.
, Fo room for them in hatching-house.
kept on ghore all night.
spat on trays in relrigerator becanse hatching-house naty full.
©Fifty thousand eggs sent to H, C. Morcer, to be patinto Danabe River.

Sent to car No. 1
cigighty thongand hatched from 200,000 eggs in re frigerator, and died in a few hours; 69,000 lost by orerfow of gquarions.
is Shipued orerflory of aquariams.
${ }^{11}$ From steamer Fish Ḧawk, 2,099,000.
18 On account of lack of water.
${ }^{13}$ Eggs nearly hatched and pat overboard to mako room.
${ }^{14}$ Also 585,000 eggs in beat condition received thris day.

Also received 600,000 rock fish eggs.
${ }^{2}$ From steamer Loukont, 992000 .
${ }_{7} 5$ Erom steamer Lowk ont, 992,000 .
is Two honifred poands of other fish taken. ${ }^{19}$ Five hanared poands of other figh taken. ${ }^{20}$ Orer mature.
21 Deposited in Saequebanna River, for want of means of removal.
${ }_{2} \mathrm{Not}$ assignable to particular date or dates.

Table II.-Record of meteorological observations made at Battery Station, Maryland, from May 1 to June 12, 1886, by William P. Sauerhoff and D. W. Kenly.

${ }^{1}$ Tide very low; no Fater in tank from 2 a . m. to 3.18
a. m.

2 .
${ }^{2}$ Rain at 11 m m
4 Rain ; stopped at 4 p.m.

- Rain ; stopped at 4 pery mady.
${ }^{6}$ Rain from $10.20 \mathrm{p} . \mathrm{m}$. to $11 \mathrm{p} . \mathrm{m}$.
${ }^{6}$ Rain from $10.20 \mathrm{p} . \mathrm{m}$. to $11 \mathrm{p} . \mathrm{m}$.
Rain from $6.30 \mathrm{p} . \mathrm{m}$. to 11 p . m .
${ }^{9}$ Strong mind and current, makiner obb ran over its time. ${ }_{10}$ waterbegan to clear at 4 p. m. ; current falling fast ${ }^{1}$ Rain at 11 p.m.
12 Stopped raining at $9 \mathrm{a} . \mathrm{m}$.
18 Rain from 4 am . to $2.45 \mathrm{p} . \mathrm{m}$.
14 Rain from 1.15 a m . to 3.45 a m .
${ }^{15}$ Rain from $11.50 \mathrm{~m}, \mathrm{~m}$. to $2 \mathrm{p} . \mathrm{m}$.
${ }^{26}$ Rajn from 8.45 a m . to 11.45 mm .
${ }^{i f}$ Day rather warm ; light drizzle in early morn ing. West wind making vory high tides. ${ }^{19}$ Wind blowing northwest for several days lept tide back.
${ }^{20}$ Rain from 1 p. m. to 2 p. m.
${ }^{21}$ Rain from 12.50 p. m. to 5 p. mo
enegan raining at 7 p.m.

Table III.-Statement of shipments of shad fry made from Battory Station, Havre do Grace, Shd., in April, May, and June, 1886.

State.	Place of deposit.	Stream.	Date.	Number sent.
Maryland	Near Battery Station'.	Susquehanna River	Apr. 25	25,000
			Apr. 28	1,421,000
	Below Port Depo		Apr. 27	2, 431,000
Marsland	Noar Battery Station	Susquehanna River	Apr. 27 Apr. 28	(r)
		Northeast, Ganpowder, and Hush Rivers. ${ }^{4}$	Арг. 28	1, 500,000
	A bove Havre de Grace ${ }^{1}$		A pr. 29	1,055,000
$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$	Near Battery Station'		Apr. 30	60,000
		Gunpowder, Northeast, and Patapsco Rivers. ${ }^{\text {a }}$	Apr. 30	1, 430,000
Do..		Bush rad Elk Rivers ${ }^{\text {a }}$.	May 1	1,200,000
Pendeylvani Marpland...	Harriaburg ${ }^{4}$ Near Battery Station	Susquebanua Rivor...	May 3	1, 021,000
Rhodo Island.			May May 	$1,952,000$ $1,500,000$
Maryland.	Near Battery Station ${ }^{\text {a }}$	Narraganseit Bay	May May	- $1,5004,000$
Do.	Below Port Deposit' ${ }^{\text {. }}$		May 6	1,245,000
Do		Chestor River ${ }^{\text {d }}$	May 8	600,000
Do		Patuxent River	May ${ }^{\text {M }}$	650, 000
Oregon		Colnmbia River.	May 0	1,000,000
		- ${ }^{\text {a }}$ do do^{7}........	May 0	
Marylan	-	Northeast River	May 10	500, 000
Marylani.		Guapowdentiver	May 11	1,500, 6000
Do.		Bush Rivers....	May 11	- 800,000
		Northeast River ${ }^{\text {a }}$	May 11	1, 000,000
		Northeast and Elk Mivers ${ }^{\text {b }}$	May 12	1,600,000
		Northeast River and flate off Locust Point. 10	May 12	1,500, 000
Wost Virginia	Grafton ${ }^{11}$		May 12	250, 000
Maryland		Brandywine and Nanticoke Rivers. ${ }^{6}$	May 13	900, 000
Do..	OfP Ordinary Point?.	Sapsafras River.	May 13	1,000,000
Georgia		Withlacoochee and Ocklock.	May 14	1, 5000000
Virginia	Clifton Forgel'	onnee Rivers. ${ }^{6}$ James River...		250,000
New York	Near Oswego ${ }^{6}$	Lake Ontario	May 14	
Marcland		Chester Rivers	May 14	000,000
Dolaware	Below Port Deposit ${ }^{1}$	Suequehanna Riv	May 15	370, 000
Weat Virgio	Rowleaburghi	Brandywine Rive	May 16	400, 4000
Maryland.	Milliogton ${ }^{\text {3 }}$	Chester River.	May 18	600, 000
Delaware	Seaford ${ }^{\text {d }}$	Nanticore Rive	May 18	450, 000
Maryland	Saliaburs ${ }^{\text {B }}$	Wicomico River.	May 10	450.000
Wert Vo........		Patuxent River Monongahola	May 19	540, 0000
Ponnsylvania.	Near Columbia ${ }^{\text {a }}$	Monongahola Riv	May 21	300,000 805,000
Maryland...	A bore Port Deporit ${ }^{\text {a }}$do	May 25	750,000
Penngyivania.	Peaoh Bottom		May 20	830,000
Do..	Marietta ${ }^{\text {a }}$	…..a	May 20	1,500,000
Delaware.	Scaford ${ }^{\text {² }}$	Nanticoke Rive	May 27	977, 000
Maryland......	Conowingo ${ }_{\text {Fayetteville }}$		May 28	-500,000
North Carolina West Virginia	Fayetteville	Cape Fear River	May May 80	1, 100,000
Penneslvania.	Safe Harbor ${ }^{\text {b }}$	Susquehanna Rivor	May 31	550, 000
Do..	T'ides Eddy ${ }^{\text {c }}$do	Jnne 1	500, 000
Marsland.	A bove İavre de Gracos	do	Jnno 2	100,000
1)o...	Below Havre do Gracel.		Juve 5	228, 000
	…)do!.		June 7	429,000
	Near Battery Station ${ }^{\text {L }}$		June 9	472,000
	${ }^{101}$		June 10	298,000
	do		June 12 Juno 13	481, 256, 000
Total.				43,776,000

[^98]7 By J. F. Ellis, oar No. 3.
${ }^{8}$ Delivered 685,000 eggs in good order.
${ }^{-}$By ateamer Lookont.
10 By launches Nos. 68 and 82.
${ }^{11}$ B. H . B. Quinn.
${ }^{12}$ Soventy-ive thousend rockfisk.

XXIII.-REPORTT OF SHAD PROPAGATION ON THE POTOMAC RIVER DURING THE SEASON OF 1886.

By Marsitall McDonald.

The organization and conduct of the work was the same, in geueral, as during the season of 1885. The facilities for collecting eggs were greatly improved by substituting for the launch heretofore employed in the collection service the small steamer Lilla, chartered for the season, bat at the close of the season purchased by the U. S. Fish Commission.
The eggs collected from the fishing-shores and gillers were transferred to the field station at Fort Washington, where they were kept and deVeloped until hardened, so as to permit safe transportation to Central Station, Washington. Here the hatching was completed, and the distribution of the fry conveniently made by car and messenger service. Several million eggs were retained and hatched at Fort Washington for stocking waters in the immediate vicinity of the station.

OOST AND RESULTS OF THE WORK.

For the conduct of the work, in accordance with the program sabmitted and approved, the Commissioner authorized an expenditure not to exceed \$5,000. At Fort Washington Station the actual cost of collecting, developing, and transporting the eggs was $\$ 2,879.90$; at Central Station, for hatching and distribution, $\$ 916.55$; total, $\$ 3,796.45$. The total number of eggs obtained was $36,362,000$, and the losses during incubation were $6,625,000$, leaving the aggregate number furnished for distribution from the Potomac River stations $29,737,000$. The percentage of loss during incubation was 18 per cent, and shows marked. improvement over the results of previons seasons. The cost of production was $\$ 127.66$ per million, or 78 shad for each cent of expenditure.

FORT WASHENGTON STATION.

On March 26 the station was occupied by a small force. The men were employed in tarring and rigging the seine, cleaning up the shore, and getting everything in readiucss for active work when the ran of shad should begin.
The first haul of the Commission seine was made April 12, and the first ripe fish was taken on the 16 th . The run of fish steadily increased from that time to the 22d, as did also the proportion of ripe females. On the afternoon and night of the 22 d of Δ pril $3,503,000$ shad eggs were taken and impregnated. This was the maximum number taken in one day during the season. The period of maximum production was from April 20 to 27 , inclusive; the total prodaction for the period referred to being 16,017,000, or nearly one-lhalf of the entire number obtained during the season.

The eggs which were hatched and planted in local waters $(3,154,000)$ and forwarded to Central Station $(33,208,000)$ were derived as follows:

From the Fish Commission sejue at Fort Washington .	11,848,000
From Chapman's Point hauling-seine	5,506,000
From Ferry Landing hauling-seine	4,349, 000
From White House hauling-seino	1,487,000
From Stony Point hauling-seine	2,191,000
From the gillers	10,981,000
Total	36, 362, 000

The records of the Commission seine fished on the Fort Washington reservation have been carefully kept, and are here published, so as to preserve important data in a shape accessible to fish-culturists generally. Theso show the fluctuations from season to season, not only in the aggregate catch of shad on the same shore, but also the variations in the proportion of males to females, in the time of maximum run, and in the date at which the proportion of ripe fish reaches its maximum, and the interval during which the largest numbers of eggs are taken.

Rccord of scine-hauling at Fort Washington shore during the season of 1886.

*Seline hauled bat once.
\dagger Oue haul omitted.

+ No hauls, on account of the high wind or heavy current.
8 Current lighter und runuing down vory fast.
Rain all day.
Noir current beginning to run.
*"Cut seine out aller argt haul.
\triangle comparison of the records of the seine－hauling in 1885 and $1 S 86$ ， for which seasons only we have reliable records，affords contrasts as interesting as they are perplexing．These may be summarized as fol－ lows：

Years．		$\xrightarrow{\text { a }}$				Maximumproilnction of egers for entire rivor．	
						Date．	Periol．
		Pr．ct．	Pr．el．	I＇r．ct．	Pr．ct．		
1885	2，698	45.7	64.3	0.0	17.0	May 10	Mny 5－11
1888	7，419	71.8	28．：	Б． 3	14.1	Apr． 28	Apr．90－＊7

A considerable proportion of the excess of males was made up of small two－year－old＂buck shad，＂called by the fishermen＂skimmers，＂ Which，being too small to count，are sold by the bunch．The preponder－ ance of these during the season gives promise of an increased run of full－sized spawning fī̃u in 1887.
Transportation of eggs．－The transfer of impregnated eggs from Fort Washington to Central Station was made by the steamer W．W．Coreo－ ran，plying daily between Washington and Mount Vernon，the trans－ portation being uniformly made on trays，by the＂dry method，＂inau－ gurated by me in 1881．The total number of eggs forwarded from Fort Washington Station was $33,208,000$ ．Of these $4,925,000$ died in transit．

CENTRAL STATION：

The total number of eggs received in good condition，the number of eggs and fry distributed，and the average percentage of loss in hatch－ iug are given in the following summary for the season of 1880：

Legratr	1，580，000
Fish distributed．．．	24，997，000
Egge lost in latching， 7 per cent．	1，700，000
Total egrs received alivo fr	28，283，000

The records of the station contain a history of each lot of eggs re－ ceived from the Fish Commission seine，giving the temperature of im－ pregnation，the maximum，minimum，and meau of water temperatures during the period of incubation，and the percentage of loss in batch－ ing，data which it is important to preserve for reference，but which it is hardly necessary to publish．

Comparison of the cutch of 1855 and 1880．－The catch of shad in the Potomac varles greatly from one season to another．The aggregate number＊taken in 1885 was 157,697 ；in 1886 it was 275,422 ，the iucrease of 1886 over the previous seasou being 117,725 ．

[^99]
XXif. - -report on the shad work of the stenmer fish hawr during the season of 1886. ${ }^{\circ}$

By Mate Jamies A. Smitif, I. S. N.

The shad work prosecuted by the U. S. Fish Commission steamer Fish Hawk duting the season of 1856 covers the period from April 25 to Juuo 3 , inclusive. Most of the operations were conducted on the Delaware River, thongh some of the work in the first part of the season was done on the northern end of Chesapeake Bay.

On A pril 24 the Fish Hawk arrived at Battery Station from Wood's Hon, Mass., and on the 25th proparations for the season's work were beguu. On the 26th the vessel proceeded across to the east side of the bay and took up a position in the mouth of North East River, from Which the spawn-takers could conveniently visit the fishing-shores and the gillers in the vicinity, and arrangements were made for paying the fishermen for the ripe shad furnished. This work was continued until May 1, when orders were received to proceed to the Delaware River. Op to this time 2,102,500 eggs had been tiken, which, on May 2, were transferred to Battery Station, and on the 3d the vessel proceeded down Chesapeake Bay bound for the Dolaware.

On May 5 arrived in the Delaware River, and at $1 \mathrm{p} . \mathrm{m}$. anchored off Gloucester City, N. J. This point was the headquarters for most of the subsequent operations on the river, as from it most of the gillers and fisheries could easily be reached by the spawn takers. Found the U. S. Fish Commissiou stcamer Lookout at anchor at this place, 'and on the 0 th received from her $1,150,000$ egge. The Lookout was of assistauce also by towing the spawn boats to and from some of the various fishing shores, and by transporting the sparn-takers. On May 6 the Fish Hawk steamed down the river, stopping at the different shores, Where the proprietors were seen and arrangemeuts made about paying them for shad spawn taken. 1 t $10.30 \mathrm{p} . \mathrm{m}$. of the 7 th the vessel grounded on the mud-flats off the mouth of Mantua Creels, where she remained till $4 \mathrm{a} . \mathrm{m}$. of the 8th.
On May 11 transferred to Dr. E. G. Shortlidge, of the Delaware fish Cormmission, 600,000 eggs; while in the channel off Gloucester, deposited $1,140,000$ fry from eggs obtained on the river. On the $12 t h$ went down the river to Wilmiugton, Del., where arrangements were made to

[^100]repair steam-launch No. 55 , just arrived from Battery Station. Sent to Dr. Shortlidge* 450,000 more eggs, after which returned to the usual anchorage off Gloucester. On the 13th lauuch No. 55 arrived from Wilmington and began to render service in distributing spawn talkers and tending the different fishing-shores. The fishermen reported a great decrease in the catch of shad for the week ending May 15, and attributed this to the constant easterly weather. Almost daily deposits of fry were made in the river, as will be seen from the appeaded table.

Owing to heary rains the river was very muddy during the middle part of May, and some of the eggs in the jars and cones. were covered with a muddy sediment and died. This led to the use of raw cottou in the jars for the purpose of filtering the water.
On May 27 William P. Sauerhoff reported for duty from Battery Sta. tion, to assist in shad-hatching work. On the 31st orders were received to discontinue gathering spawn.
On June 3 trausferred to Dr. E. G. Shortlidge 180,000 fry; a shipment was also made to Philadelphia, in launch No. 55, of fifteen cans containing $1,010,000$ fry, which were delivered to U. S. Fish Commission car No. 2. As there were no more eggs or fry on hand, this terminated the shad-hatching operations of the Fish Mawk for the season of 1886 . Appended will be found a table giving details of the work, showing especially the nunber of eggs taken, the number of fish hatched, the number deposited, and the times and places of deposit, with other statements of particulars in this connection.

> U. S. Fism Comminsion Steamer Fisi Hawk, Wood's Holl, Mass., October 11, 1886.

[^101]Becord of shad operations by the Fish Hawk on the Susquehanna and Delauare Ricers, during the season of 1886.

Date.	Fishery.	Nowber of-			Time put in cones.	$\begin{gathered} \text { Time } \\ \text { bogan } \\ \text { hatching. } \end{gathered}$	Number hatched.	Namber deposited.	Time deposited.	State of rater.	Temners. ture of surface.		Temperatare in cones.	
											Max.	Min.	Max.	Min.
$1886 .$											\bigcirc	\bigcirc	\bigcirc	
pr. ${ }_{27}$	Red lank.	1	1	30,000 30,000	$9.15 \mathrm{p} . \mathrm{m} . .$. $9.15 \mathrm{p} . \mathrm{m} .$.			(*)		Clear	67	65	64	64
:8	Gillers......	6	8	150,000	1.50 a. m...					... do				${ }_{64}^{63}$
28	\ldots do	9	8	180, 000	3.00 a . m...					\cdots do	65	64	65	64
29	Carpenter's Point	3	3	128,000	$8.15 \mathrm{p} . \mathrm{m} .$.					Partly muddy	63	61	6.5	64
88	Gillers..	4	4	120, 000	$9.30 \mathrm{p} . \mathrm{m} .$.					. . . do	61			64
$\stackrel{29}{9}$... do -			72, 000	$2.00 \mathrm{am} \mathrm{m} .$.				do	62	61	65	64
29	... do .	6	8	262,500	$8.00 \mathrm{p} . \mathrm{m} . .$.					. . . do	62	60		
29 ${ }^{\text {do }}$		8	400,000	$11.20 \mathrm{p} . \mathrm{m} \ldots$				do	62	60	63	63
	... do			330,000 82,500	$\begin{aligned} & 11.30 \mathrm{p} . \mathrm{m} . . . \\ & 10.00 \mathrm{p} . \mathrm{m} . . . \end{aligned}$						${ }_{6}^{62}$	${ }^{\text {c }}$		63
$\begin{aligned} & 40 \\ & 30 \end{aligned}$...do do	2 3	3 3	82,500 127,500	$\begin{aligned} & 10.00 \mathrm{p} . \mathrm{m} \ldots \\ & 11.30 \mathrm{p} . \mathrm{m} . . . \end{aligned}$...do	63 63 68	$\begin{aligned} & 61 \\ & 61 \end{aligned}$	63 61 6	${ }_{6}^{63}$
May 1	...do	9		280,000	$4.30 \mathrm{a} . \mathrm{m} . .$.				(t)	do				
5	Faunce's.	5	5	200, 000	$11.00 \mathrm{p} . \mathrm{m} . .$.	May 10	160,000	100,000	May 11	-iruddy	${ }_{61} 61$	60 59	${ }_{6} 6$	61
5	Eagio Point	10	1	40, 000	$11.00 \mathrm{p} . \mathrm{m} . .$.	May 10	35,000	35,000	Ming 11do .	61	59	63	61
${ }_{6}^{6}$	Leokont	10 8	12 10	568,000 588,000	.	May May 1	465,000 480,000	465,000 480,000	May 11do	62	61	${ }_{63}^{63}$	${ }_{61}^{61}$
6	Fannces	${ }^{\text {a }}$	3	103, 000	5.30 p.......	May 10	170, 000	480, 17000	may 12	-...do	62	${ }_{61}^{61}$	63 63	${ }_{61}^{61}$
6	Howell's Coro.	8	3	161, 000	$6.30 \mathrm{p} . \mathrm{mm} \cdots$	May 10	140, 060	140, 000	Мау 12do	62	61		
6	Gloncester Poin	4	4	262, 500	$8.00 \mathrm{p} . \mathrm{m} . .$.	May 10	220,000	220,000	May 12	...do	62	61	63	61
8	Howell's Core.	10	10	5788	$9.00 \mathrm{p} . \mathrm{m} . .$.	May 10	470,000	470,000	Mas 12	…do	62	61	63	
6	Eagle Point. Faunce's	6	3 6	157,500 208,000	${ }_{11.00} 11.00 \mathrm{p} . \mathrm{m} . .$.	May 10	${ }_{160}^{135,000}$	${ }_{169}^{135} 000$	May 12	Partly mady	${ }^{62}$	61	${ }_{63}^{63}$	61
6	Faunces....	6 7	7 7	207, 5000	11.00 p. m...	May diay 10 10	166,000 320,000	166,000 320,000	Mas 14do	${ }_{6}^{62}$	${ }_{61}^{61}$	${ }^{63}$	51
7	Lookont.			500, 000	${ }_{7.00} \mathrm{a}$ a. m...	May 10	400, 000	300,000	May 14	…do	${ }_{6} 62$	${ }_{6}^{61}$	63 63 6	${ }_{6}^{61}$
7	Howell's Core	2	2	75,000	7.30 p. m...	May 11	65,000	65,000	мау 15do	62	63	63	62
7	Gloucester Poin	8	8	\$83, 000	7.30 p.m...	May 11	480, 000	480, 000	May 15do	63	63	63	62
7	Woodury	1	5	$240,000$	$11.00 \mathrm{p} . \mathrm{m} . .$.	May 11	200, 000	200, 0 O	May 15do	62	62	63	62
7	Eagle Point Fannce's	1	1	$45,000$	11.00 p. m....	May May 12 12	40,000 345,000	40,000 345,000	May 15		62	62	63	${ }_{60}^{62}$
10	Howell's	108	10	630,000	7.00 p. m...	Mas 15	450,000	450,000		...do	62	61	${ }_{6}^{61}$	60
10	Fannce's.	13	13	548, 000	$7.30 \mathrm{p} . \mathrm{mm} .$.	Mas 15	403,000	400,000	May 17	. do	62	61	62	60
10	Benuett's	15	15	855, 000	Midnight...	May 15	400, 000	400,000	May 17	-...do	63	61	62	60
10 10	Woodbary ... Howell's Cove	14	14	255,000 $1,042,000$	10.00 p. m....	$\left\lvert\, \begin{aligned} & \text { May } \\ & \text { May } \\ & 15\end{aligned}\right.$	160,000 191,000	160, 000	$\frac{\text { May }}{\text { May }} 17$...do	${ }_{6}^{62}$	61	${ }_{62}^{62}$	${ }_{60}^{60}$

- All fry Fere deposited in the Delamare River, except as otherwise indicated.

1 The $2,192,500$ egge taken in the Chesspoake were transferred to Battery Station on May 1.
\ddagger Deliverea 660,00 eggs to Dr. E. G. Shortlidge on May 11

Record of shad operations by the Fish Havk on the Susquelanna and Delavare Rivers, during the season of 1836-Continued.

XYy.-REPOR'T ON THE SHAD WORK OF THE STEANER LOOKou't diting tile sbason or 1886.

By Mate James A. Smitif, U. S. N., Commanding.

The work in gathering, transferring, and hatching the spawn and depositing the fry of shad, performed by the U.S. Fish Commission steamer Lookout during the season of 1856 , covered the time from Δ pril 27 to May 23 , inclusive. The greater part of the eggs obtained came from the Delaware Iiver, but about one-third were gathered at the northern end of Chesapeake Bay and its inflowing streams. Most of the eggs were transferred to Battery Station or to the Fish Hawk, While some were hateled on board and deposited from the Lookout. During the season $3,000,000$ fry were received from Battery Station and deposited in the tributaries of the Upper Chesapeako.

The scason's work began on April 27 in the mouth of the Susquehanna River, where the floats and gill-bdats were visited, but no ripe spawn Fas obtained. On the 29 th received 500,000 shad fry from Battery Station and deposited them in the mouth of North East River. From the gill-boats in this vicinity obtained $520,000 \mathrm{eggs}$, which were transferred the next day to Battery Station. On the 30 th left this station, passed through the Chesapeake and Delaware Canal to the Delaware liver, communicated with some of the ishing.shores, and late at night anchored off Gloucester City, N. J., a few miles below Philadelphia, which was a convenient point from which to visit many of the most important shad fisheries in the river.

On May 3 went to Wilmington, Del., for the purpose of having some repairs made, but returned to tho spawn-taking work on the river during the afternoon. On the 5th the Fish Hawl arrived, and the Lookout received orders to co-operate with her in gathering spawn, in obedience to which, the work was carried on conjointly for several days. On the 8th passed through the canal to Chesapealse Bay, and proceeded to Battery Station.

On May 10 Commissioner S. F. Baird and Assistant Commissioner T. B. Ferguson came on board at Havre de Grace, and were taken to Battery Station. All the eggs obtained during the last fow days wero transferred to the station, and several deposits were made on that and subsequent days in the Susquehanna, North East, and Sassafras Rivers, of fry received from the station. Many of the flshing-shores and gillers in this region were visited almost daily, but comparatirely emall numbers of eggs were taken, as the shad were becoming scarce, and these were duly transferred to the station. On the 15th proceeded to Baltimore.

On May 18 left Baltimore and returned to Battery Station, where the gathering and transferring of spawn were resumed. On the $22 d$ some of the fisheries had ceased operations and most of the gillers on the east side of the bay had stopped fishing for the season, so the sparra takers from the Lookout were sent out to gather spawn in the immediate vicinity of the station and to attend the gillers above the station, which resulted in getting 218,000 eggs on the 22d and 23d.
On May 23, as the fishing season was about ended, orders were received to discontinue the operations by the Lookout.

Appended will be found tables giving records of the shad operations duriug the season and of meteorological observations made in the vicinity of Havre de Grace and on the Delaware River during a portion of the month of May. The total number of eggs procured by the crew of the vessel was $4,561,000$.

Table I.-Record of shad operations conduoted t:ear Havre de Grace, Md., and on the Delaware River, on the U. S. Fish Commission steamer Lookout.

Thble II.-Record of temperature observations made at Mavre de Grace, Md., and on the Delaware River, on the U. S. Vizsh Commission tteamer Loolout, from Mfay it to May 10, 1886.

*The bottom thermometor in use was No. 5264.

XXVI.-REPORT OF EGGS SHIPPED TO AND RECEIVED FROA FOREIGN COUNTRIES AT THE COLD SPRING HARBOR, NEW YORK, S'TATION DURING THE SEASON OF 1886-'87.

By Frei Mather.

SHIPPED 'TO GERMANY.

(A) SUNFISH (Eupomotis aureus).-Some time in the summer of 1856 , I shipped to Max von dem Borne, of Berneuchen, 125 sunfish about 1 inch in length. The fish were captured from the mill-pond of Mr. Townsend Jones at Cold Spring Harbor and sent to Mr. Blackford in Fulton Market for shipment. The wisdom of introducing these fish in Germany was rather questionable, but after repeatedly waruing Von dein Borne of their predatory character and that their ouly value was as an aquarium fish, lee still wished them. No report of their arrival has been received.
(B) White Percil (Roccus [Morone \rceil americanus). -Three shipments of fish from 5 to 6 inches long were made to von dem Borne as follows: October 9, 1886, 36 fish were sent in six cans by stoamer Aller, but they died on the fifth day out. On December 22,16 fish in four cans, per steamer Werra, which arrived in Germany in a frozen condition, all dead. On March $1,1887,16$ fish of the same size as those sent before were shipped in four cans, but only 3 of them reached von dem Borne alive. These fish were taken from the mill-pond at Cold Spring Harbor by permission of Mr. Townseud Jones.
(C) Rock bass (Ambloplites rupestris).-On March 1, 18S7, tuero were sent to Eerr von dem Borne 25 rock bass of about an inch in length. They were put in one can and 20 of them reached him alive. These fish came from New River, Virginia, and were forwarded by order of Col. M. MeDonald from the Wytheville Station.
(D) Brook like (Esox americanus).-On December 22, 18S6, I sent vou dem Borne 14 brook pike per steamer Werra, at the same time that One shipment of white perch mentioned above was made. The fish Were all dead on arrival. The only thing that survived in the cans were some very small cyprinidec put in as food for the pike. The fish were furnished by Mr. M. B. Hill, superintendent of the New York hatchery at Clayton.

SHIPPED TO FRANCE.

(A) LaNd-LuCiEd SALMON (Salmo salar, var. sebago).-On April 1, 1887, there was packed and shipped to Mr. M. D. Hallay, vice•president [1]
of the Fish Commission of the Lorrer Seine, Gonzerville, France, one case containing 25,000 eggs of the land-locked salmon, per steamer La Bretagne. These eggs name some days before from Grand Lake Streall, Maine, and were in rood coudition for the voyage. No word has beell received from them, but from the appended letter of Mr. Louis De Bibian, agent General Transatlantic Company, dated New York, April 2,1887 , and relating to their care on shipboard, there is every reason to believe they will get to their destination in safety:
"Your telegram of 31st March and letter of April 1 at hand. The case reached me this morning and goes on La Bretagne, sailing to day, in care of an oflicer whom I have given instructions in reference to keeping the box cool and adding ice thereto. I have sent the case to our agent's care in Have and written him to reship by express on ar: rival there."

REOELVED FROM SCOTLAND.

(A) Loch-Leven trout (Salmo levinensis).-On January 14, 1887, there were received from Sir Janes Gibson Maitland, Bart., proprietor of the Howietoun Fishery, Stirling, Scotland, three cases of eggs of the Loch-leven trout, per stean-ship, Bothnia. The cases contaiued 16,000 each, or 48,000 in all. The eggs on the upper trays were in good condition, but the lower trass in all the boxes contained only dead egge, owing to the wet condition of the moss and a rise in the temperature. The eggs were all clean and entirely free from fungus, and had they been iced on the ship and the temperature kept down they would have arrived in splendid condition, for those which contained dead embryos had not been dead long and merely showed the white line in the egg. We took ont 20,300 dead ones, and the loss since that time has been trifling. The fry from the good eggs are as strong and bealthy as any fish ever hatched here. The packing at Howietoun is most excellently done.

RECHIVFD FLOM GERMANY.

(A) Saibling (Sulvelinus salvelinus).-On February 9, 1887, there were received from Herr Max von dem Boruc, proprietor of the fishcultural establishment at Berneuchen, one case containing 20,000 Saibling eggs, from which there were taken 8,000 dead. In reply to an order to send one-fourth of the eggs to Col. E. B. Hodge, commissioner of fisheries of New Hampshire, 3,000 were repacked and shipped to the hatchery at Plymouth, N. H. He reported their arrival in good condition. On March 9 another case of Saibling eggs was received from Herr von dem Borne, containing 20,000 , of which 5,500 were dead. Through a misunderstanding these were mixed with an installment of brown trout eggs received the same day from Germany, and the 14,500 good eggs were distributed with the brown trout to the hatcheries at Corry, Pa.; Wytbeville, Va.; Northville, Mich.; and Cold Spring Harbor, N. Y.

Oll the same date there were received 20,000 eggs of the Saibliug from Herr von Behr, prosident of the Deutsche Fischerei-Verein, from Which we romoved 5,000 dead and sent the remainder to Mr. F. N. Clark, Northville, Mich., who reported their arrival in good order.
(B) Brown Trout (Salmo fario).-On March 4, 18S7, there was received from Merr von dem Bome, per steamer Elbe, one case containing 8,000 brown trout eggs, which arrived in very good coudition, very few being dead; and, in accordance with orders, they were kept at Cold Spring Harbor. On March 22 there were received from von dem Borne 50,000 brown trout eggs, in two cases. They were in very bad condi$\mathrm{ti}_{\mathrm{i}} \mathrm{n}$, many being hatehed. On the first day 30,000 dead were remored. Those eggs not being fit to send out were placed in the troughs to hateh, the prospect of getting auy good fish at all from them being very small. At the present time there are about 3,000 fry which are two weeks old and looking well. Probably six hours more in the packarge would have ruined them.

On March 9 there were receired from Herr vou Behr, of the Deutsche Fischerei Yerein, per steamer Werre, one case containing 50,000 eggs of the brown trout, which were in excellent condition, altbongh 13,000
from the lower trays were dead. These eggs were sent out as follows:
E. B. Hodre, Plymouth, N. II

Central Hatelaing Slation, at Washington, D. C...................................... 5,000
F. N. Clark, Northville, Mieh... 20,000

fthovillo, Va., Hatchery .. 10,000
The above figures include the 14,500 saibling, which, as already explaiued, had been mixed with them. All except Colonel Modge got a portion of them.

This station has received on account of the New York Fish Commis. sion the following eggs shipped to Commissioner E. G. Blackford : twenty thousand eggs of the grayling (Thymallus vexillifer Ag.), of $^{\text {when }}$ Which only 300 eggs were good, and 10,000 eggs of the brown trout from Herr von Behr, which came in excellent condition.

Cold Spring Iarbor, N. Y., April 8, 1857.

XXVII.-REPORT OF DISTRIBUTION OF FISH AND EGGS BY THE U. S. FISH COMMISSION FROM JANUARY 1,1886 , 'l'0 JUNE 30 , 1887.*

By M. McDonald.

The aggregate number of fish and eggs distributed by the U. S. Fish Commission, as collated from the reports of stations, in the period comprised between January 1, 1886, and June 3, 1887, was 210,628,413.
The actual number distributed, however, was several hundred thouband less than this, the discrepancy resulting from the fact that the eggs of Salmonido produced at one station hare been transferred to and batched out at other stations and consequently have been reported trice, once as eggs and again as fry or older fish. The aggregate distribution by species is shown in the following summary, from which it will be seen that the whitofish, the shad, and tio carp still constitute the main features of the work of the U. S. Fish Commission.

Summary of distribution.

| | |
| :--- | :--- | :--- | ---: | ---: | ---: |
| Spertos. | |

${ }^{1}$ Of this number 1.711 wore one or more years old.
${ }^{2}$ Of this number 6,023 wore one or more yoars old.

[^102]The following summary of fish and eggs furnished for distribution, arranged by stations, will indicate the character and extent of the work accomplished by each station.

Summary of fish and eggs furnished for distribution by the stations during tho season.

Stations.	Species.	Egge.	Fry.	Larg ${ }^{\theta}$ tisib.
Alpeva, Mich	Whitafish	*29.071), 000		
Bairel, Cal....	Rainlow trout	+136, 000	$\because 30$	
Do	-...do	* 145,000	*39,300	
Jucknport, Mo......	Atlantic salmon	*754, 000		
Ceutral Station, D.C 1)	Whiteftsh		$\begin{aligned} & 11,191,000 \\ & =3,9 \bullet 0,000 \end{aligned}$	
$\begin{aligned} & \text { Do... } \\ & \text { Do... } \end{aligned}$	-Make trout. .		- $+18,025$	173 719
Do.	Rainbow trout		+5,300	
1)o.ilo . . .		*5,330	$\cdots 2$
110.	Grayling			15
Do.	Atlantic salmon		$\cdots 000$	-103
Do.	Brook trout		*6, 000	
Do.	Brown trout .		+3,000	
Do.	Shad	*8,718,000	+36,018, 000	$\cdots \cdots$
Do.	Carp (from Ft. Washincrton soino)		*
Do.	'Tonch			*200
Do..........	Red.eye perch			
Cold Spring Marbor, N. Y	Whitedigh		1912 $+137,300$	
Do................	Lako trout. .	127,000	$\begin{array}{r} \dagger 137,775 \\ i 23,500 \end{array}$	
Do.	Brown trout do	127,000 $* 50,000$		
Do.	Saibling	* 18, 000	-	
Do.	Athantic salmon		\$446,573	
Do.	Land locked salmon.	*25, 000	\$ 311,020	
Do.	Shad. .		1100, 000	
Vo.	Amelt.		†2, 100, 000	
130.	Lobsters		15,000	-25
Jo.	Redreyo perch			* 68
10.	White perch..			-125
1 O	Suntisb			+14
Do.	J3rook piko			*19
Do.	Soles
Carp ponds	Carp for public waters		$* 5,974$ $-05,135$
Darp Do..	Curp for private ponds............		* 05.135
Do.	Cary for Stato commissioners. . . .		* 32,660	
110.	Goldtish . .		*2,755	13
10.	Breeding carp to other statious ..			
Do.	Troneh		*750	$\cdots 200$
Do...........	Eels.......................................			
Stommer Fish Hawk ...	Shad.....-. .	+3, 330,000	*18, 934, 000	
Fort Washington Station,do do.............................	*57, 385, 000	*2, 050, 000
Grand Lako Stream, Me.	Land-locked salmon....	*35\%,500		
Steamer Lookout.........	Rocktish.		$\begin{array}{r} 175,000 \\ * \$ 29 \end{array}$	
Hiarre de Grace, Ma ...	Shad		$* 42,650,000$	
Northville Station, Mich	Whitefish	* $32,600,000$	*33, 000, 000	$\cdots{ }^{-9} 550$
100....................	Lake trout.... kainbow tront	*50, 000		$\begin{array}{r} 0 \\ +3 . \\ \times 768 \end{array}$
1)0	Mrook trout....	* 82,000		* 76
190	J3rown tront .	*7, 500		
Wood's Holl, Mase.	Voultish....		†662, 000	$\cdots 1.200$
Wythevillo, Va..	Laketront			$\begin{gathered} 19,360 \\ 4, \end{gathered}$
$\begin{aligned} & \text { Do........ } \\ & \text { Do }_{0} \end{aligned}$	Rainbow tront Brook trout.	* 08,000	-...--72, 48	
IDo.	Land-locked anlinon.		2,488	-12, ${ }_{-2,103}$
Do.	Red-eye porch			$\times 48$
Do.	Black bass...			
I)	'rench		*4.50	
1)e.	Carp for privaso pouds		*1,025	
Jo.	Carp for open river.................		*450	
Do..	Goldfish	*50	

By comparison with reports of distribution of previous years it will

 be seen that the tront work is growing very much in importance, and to make adequate provisions for the rapidly increasing demand for the Salmonide will necessitate considerable extension of the work of the U. S. Fish Commission in this direction.The details of distribution of the most important species, as summarized above, are as follows:

(a) Whiticfish (Coregonus clupeiformis).

Of this species $32,600,000$ eggs were distributed from Northville Station, Michigan, the present season and were allotted as follows:
To the State Commissioners, to be hatched and planted in public waters.. 22,500, 900
To foroign countries (international oxchange).................................. $5,000,000$
To other U. S. Fish Commission statious....................................... 5, 100,000
Total ... $32,600,000$
The egos which were retained and batched at the Michigan stations Yielded $62,070,000$ fry, which were distributed as follows:

To Lake Outario	3,000,000
To Lake Erie	12,000,000
To Lake Huron	30, 000, 000
To Lake Michigan	17, 000, 000
To Long Lako	20,000
To Clear Lake.	50,000

(b) Brook Trout (Salvelinus fontinalis).

Eggs of this species are collected at the Northville Station from fish reared in the pouds. The number furnished for distribution during the season of $1880-87$ was 82,000 , which were assigned as follows:

To State commissiouers and individuals.	37,000
To Central and Wythevillo Stations, for hatchiug and rearing	35,000
To foreign countrics (international oxchange).	10,000
Total	82,000

(c) Lake trout' (Salvelinus namaycush).

No eggs of this species were collected during the seasou.
(d) Rainbow trout (Salmo ivideus).

Eggs of this species are collected for propagation and distribution at Baird Station, California, Northville Station, Michigan, and Wytheville Station, Virginia. At Baird Station the eggs are obtained chiefly from wild native fish. At Northville and Wytheville Stations the breeders have been reared from oggs artilicially impreguated at Baird Statiou and hatched and roared at the stations.

The total production available for distribution was as follows:

	$\begin{gathered} \text { Season } \\ 1885-80 . \end{gathered}$	$\begin{aligned} & \text { Season } \\ & \text { 1880-'87. } \end{aligned}$	Intal
From Baird Station, California:	5,000	39,300	44.3000
Hitched and planted in micClond River	10,000		10,000
Distributed to applicants and eastern United States stations	131, 000	1 150,000	270,00
From Northvilde Station, Michiman:			25,000
To Michitan State commission)			25.
Mntched for rearing at station.................			\ldots.
From Wytheville Station, Virginia:			5,000
To State commissioner and individunis.			38.0000
To foreign countios (intornational exchange)			55,
Matched for rearing at station			
Totai			478, ${ }^{300}$

(e) Atlan'tic salmon (Salmo salar).

Eggs of this species distributed by the Commission are all furnished by the collecting station at Backsport, Mo. The production for the year was 779,000 , which were distributed as follows:

Date.	Consigneo.	Adilreas.	Number.	Condition 0^{n} arriqual.
Fub. $\begin{array}{rr}1 \\ & \\ \\ 3 \\ & 21 \\ & 31 \\ & 34 \\ & 24 \\ & 26\end{array}$	F. Mather ...	Cold Spring Matbor, N. Y..	250, 000	Fxcellent.
	F. A. Walters	Bloomingriale, N. Y	250, 000	Good.
	E. B. Hodge .	Plymouth, N. H..........	100,000	Dicelient
	F. Mather.	Cold Sprivg Harbor, N. Y..	40,000 10,000	İxcellent Do.
	W. H. Munsou	Grand Lake Stream, Me....	80,000	Gond.
do	do	15,000	Do.
	Total shipped on account Giited States. Retained at hatchery for rearing ...		754,000 25,000	
	Total		779,000	

(f) SCHOGDIC OR LAND-LOCKED SALMON.

The station at Grand Lake Stream, Me., reported 352,500 eggs of this species as available for assignment. These were distributed as follows:

Dito.	Consiguce.	Addrebs.	Number.	Condition ${ }^{01}$ arrival.
Mar. 2	E. D. Carleton	Spirit Lake, Inwa	30,000	Fair.
	13. O. Sworny	Saint Paul, Minu..........	30, 000	Goun.
	buker Brob	Irome City, Ind...........	2, 500	Good.
	F. A. Waltors.	Bloominglale, N. X.......	30, 010	
	G. W. Dolawder...........ila........		10,000 30,000	
	Max yon dem Borne, care- W. (r. Blackford.	New York, N. Y	30,000 10,000	
	National Fish Culturo Association, care E. C. Black ford.	. 10	25,000	
	II. T. Root.......	Providence, R.I	10,000	Excollont
	1. Z. Lasiter	Lako Goneva. Wis.........	5, 400	Good.
	G. A. Seaclo	W ythovillo, Va	50,100 40	Vory ${ }^{\text {fod. }}$
	F. Mather. A . ${ }^{\text {Srackott }}$	Codd Spring Larbor, N. Y.	40.000	
	1. B. Hodge.		25, 2000	Fair.
	F. Mather...	Cold Spring Harbor, N. Y.	25, 1000	
	Total		352, 500	

	SUMMAIY.
To Stato commissioners and iudividuals	287, 500
Deutecho Fischeroi-Vursin	30,000
Hax von dem Borue urin	10,000
$N_{\text {ational }}$ Fish Culture ${ }^{\text {a }}$ ssociation 25,000
Total	352,500

(g) Brown trout (Salmo fario).

To the courtesies of Herr von Behr, president of the Deutsche Fisch${ }^{\text {Orei.Vercin, }}$, and Herr Max rou dem Borne, of Berneuchen, Germany, the U. S. Fish Commission is iudebted for several consignments of oggs of the brown tront. The number received, their condition as reported on arrival, and the assiguments made of the eggs are given below:

Fromu Herr von Behr (iutornational exchango)	37,000
From Herr Max you dem Borne...	22,500
	59,500

They were distributed as follows:
To Pennsylvana commission 10,000 10,000
To Wytherille Station
To Wytherille Station
To Northville Station 20,000 9,500 9,500
To Cold Spring Harbor Station
To Cold Spring Harbor Station
To New Hampshire commission 5,000 5,000
To Central Station 5,000

A shipment of 50,000 brown trout eggs sent by Herr von dem Borne Were three-fifths dead on arrival, and the balance will probably prove a total loss.
(h) Sambing (Salvelinuis salvelinus).

The Commission is indebted also for egrs of the saibling to Herr von Behr and Herr Max von dem Borne. The number received and their distribution is as follows:

Their distribution was:
$\mathrm{N}^{\text {North }}$ villl C_{0} Station... 15,000

${ }^{\text {of }}$ Hampshire commission ...000
27, 000

(i) Suad (Clupea sapidissima).

The total distribution of shad for the season was $110,370,000$, which Were contributed as follows:

[^103]A summary of the distribution of fry by river basins is as follows:

(j) Carp (Cyprinus carpio).

The production of this species for distribution the present season was ${ }^{99}$ not sufficient to meet all requests filen by applicants and gave rise to considerable dissatisfaction on the part of those who expected to be sup. plied. The diminished production was occasioned by the work of rec. lamation of the Potomac flats, which necessitated the interruption of the drainage of the ponds and prevented their proper preparation for the spawning of the fish. This cause is, of course, temporary, and "e may reasonably expect in the future to be able to produce the carp in sufficient numbers to supply all demands. The total distribution of carp for the season aggregated 133,769 in thirty-two States and four Territories, as follows:

Distribution of carp by U. S. Fish Commission during season 1886-'87.

Stato.	Point of distribution.			Fish issued-		Total
Alabama.	Birmingham and Greonvil	4.5	159	3,110		3. 11090
California	San Francisco	23	33	Gfio		
Clorida Connecticut	Jacksonvillo.	14	77	2, 260	+476	-760
Comnecticut	Woston, Mass.	8 3	36 18 18	720 340	\cdots	${ }_{6} 6_{60}^{00}$
District of Colitdo	3	18	(ii)		3.975
Georgin..	Atlanta	67	$18 i$	3,725	250	3, 4.58
Illinois	Qutincy	75	221	4,520		
Indiana.........	1ndiariapolis	73	257	5, 950		5.140
Idaho Territory	Salt Lake City, Utah	4	87	, 140		9. ${ }^{190}$
Iowa...	Les Moines.	90 83 88	187		5,590	13, 3 , 300
Kentucky	Lexington.	8	98	2, 15,	\$224	
Maino ...	Benston, Mass	1.5	$(11$	1, 230		1, ${ }^{\text {1,50 }}$
Maryland..	Washington, D .	10	31		1,200	, 70
Massachusetts	Poston.......	$1: 3$	37	770		4.500
Minnesota.	Saint licul	29	53	1,060	3,500	
- Dres not incl turned into IInd. \dagger Does not ine turved into thas : Plantod in La § Doposited iu	roduct of $8.601,000 \mathrm{cgras}$ ship and tributaries. roduct of $4,074.060$ egge wh of Delavary S:ay. Mlorida. voir at Lexiagton, Ky.	$\begin{aligned} & \text { Cold } \\ & \text { to Wil } \end{aligned}$	$\text { ring } 1$ ugion	biber to Dol., to	be liatc bo hatc	

* Supplind from stock belonging to Stato fish commission.
\dagger Deposited in Muskingum River, at McConnelisville, Uhio.
; Dupositod in leaed Creek, Virginia.

(k) Goldpisu (Carassius auratus).

The total distribution of this ormamental species for the season aggregated 2,755, which were distributed to 392 applicants in twonty-two States and two Territories in lots of from 4 to 10.
The summary of distribution by States is as follows:

CAR $\triangle N D$ MESSENGER SERVICI.

Biring the seasou of 1886 the ears of the Commission were moved 45,861 miles, as follows :

Of the above transportation 8,150 miles were furnished by the railroads gratuitously, and 37,711 miles paid for atan average rate of 20 cents per mile.
The number of miles traveled by messengers on detached service was as follows (all paid):
\qquad
Carp distribution
Shad distribution 13,059 12,259
Whitefish distribution 7,784

Soles distribution 929

Total
41,535
As heretofore many of the railroads, especially the great continental lines, have responded freely and generously to requests for free transportation, and we have thus been enabled to extend the benefits of the distribution to remote sections of the country, which it would otherwise have been impracticable for us to supply on account of the coormous expense of such distribution.

The following is a list of the railroads which furnished free transportation:

CAR No. 2.

Date.	Species.	Railroad.	Route.	Distanco
1886-'87.				Milest ${ }_{5}$
Nov. 20	Carp.	Missouri Pacifle .	Saint Louis to Kansas City nud	
23	. 10	..do	Kansas City to Omaha	${ }_{74}^{213}$
Dec. ${ }^{1}$. ${ }^{\text {do }}$	Utah Centra	Orden to Silt Lake City and return.	45
Aug. ${ }^{4}$	Trout		Salt Lako City to Milford and return.:	2^{7}
Aug. 19	Trout	Saint Louis and San Fran. cisco.	Saint Louis to Verona	
20	$\begin{gathered} \text {...do } \end{gathered}$ do	Verona to Nichols	24^{42}
2do	Kansas City, Fort Scott and	Nichols to Kanaas City................ Nichols to Mammoth Spings and	288
Fob. 2	. 10	Ginlf. Flint and Pere Marquete .	return. Northville, Mich., to Roed City and return.	326 124
12	.do .	. ${ }^{\text {do }}$	Northville, Mich., to Toledo aud re- turn.	

CAR No. 2.-Contivued.

Dito.	Speries.	Railroad.	Route.	Distamea.
	Trout.	Flint and lere Marquetto ..	Northville, Mich., to Wayne Junc-	Milce. 2
			tion and return.	52
			Northville, Mich., to Dotroit aud re turu.	
	10	.do	Northville, Mich., to East Sithinaw	160
		do	Northville, Mich., to lhotroit.......	${ }^{2} 16$
	do	ichigra Central	Wayno Junction to Jackson and	
		ke Shore and Michigan	Jackson and Auburn Junction...	78
	.. do	Sionthern. Gamad Rapids and Indiana.	Reed City to lichmond, Ind., and	600
		Utah Central...............	Salt Lake City to Oglen, Utah, aud	74
	White lish	Fint and Pors Marduetto...	Northeillo to Ladington nad return. Northiville to Hully, Mich., and re-	45
			tilin. Northville to Wayno Junction and	22
			Northrille to Ludington and returs.	434
	do	do	Northville to Munroe, Mich., and	7
			Norchville to Detroit, Mich., and re.	50
			Northvillo to Toledo and retura	124
				124
	do		Northville to Wayne Junction and roturn.	
			Northville to Toledo mud roturn....	124
	do		Northville to lhay City and roturn..	180
	. ${ }^{\text {do }}$ do	Dotroit, Gramb Havon and	Toledo, Ohio, to Northville....... Holly to Grand Haven and roturu	244
	do	Detroit, Grami laven add Milwankeo. Michisan Contral	Wayne Junction to Michigan City	420
	do	Michigan Cential............	and return. Wayne Junction to Now Buffalo	400
			aind return. Dotroit to Suspeusion Bridge and	430
	do	Camadn Southor	Dotroit to Sugpension Briago and retara:	43
	. ${ }^{\text {do }}$	Rome, Watertown and O_{6} denstourah.	Susponsion Bridgo to Oswego, N.Y., and return.	302
	do..	Lakes Shoro and Michigan Sunthorn.	Toledo to sindusky and roturn	
	do		Monrouville to Toledo, Ohio	
	$\begin{aligned} & 10 \\ & d y \end{aligned}$	Chicagoani Wers Muhizan	Now Buthlo to Saint Joseph nud re- tun	
		Total		3, 010

CAR No. 3.

IIATCHING OF SHAD EGGS EN ROU'IE.

The first successful attempt in this direction was made in the spring of 1886 , when 600,000 shad eggs were transferred from the Susqehanna River Station to Portland, Oregon, successfully hatched after arrival at destination and the fry deposited in good condition in the Columbia and Willamette Rivers in the State of Oregon.
The application of this method during the season of 1887 has greatly increased our facilities for distribution and, by enlarging the carrying
capacity of the cars, has introduced a corresponding rednction in the cost of distribution.
Only one car (No. 3) is as yet equipped for this service. This made three trips, carrying each time, in addition to its full complement of fisl, $1,200,000 \mathrm{eggs}$, and experience has shown that the hatching of the egrs in this moving station can be conducted as conreniently and with as good results as at the fixed stations. The number of hateling.jars in use was 12 , each requiring one-half a gallon of water per minute and having a capacity of $\mathbf{9 0 , 0 1 0}$ eggs.
It is desirable that the eduipment of car No. 3 should be increased to 60 jars, which will afford hatching roon for $5,000,000$ shad eggs or about $8,000,000$ whitetish eggs. It is recommended that car No. 2 be similarls equipped and provided with circulating hatching aud collecting ap ap ratus, thus giving eacin a carrying capacity four-fold greater thau if young fish only are transported.
Should the increase of the work of shad production necessitate, as is probable, the construction of another car, it is desirable that this should be built and equipped with special reference to its use as a tield or moring station for the hatching of eggs of slad and whitetish.

TRANSFER OF RGGS 'LO DISTANT STATIONS.

The number of shad eggs collected during the season was greater than we could care for at Battery and Central Stations. The necessity of making proper provision for this excess led to the application of the methods of transportation now in use for the trausfer of eggs from Fort Washington to Central Station to the transfer of large lots of eggs to remote stations, where the eggs were batched and planted in adjacent waters.

The eggs, packed on shallow, cloth-lined wooden trays, were crated up in packages of convenient size for hauding (each package contairing 250,000 eggs), packed in the refrigerators of car 3 , the temperature rogulated so as to stand at about $60^{\circ} \mathrm{F}$., and transferred to destination. Of the four lots of $2,000,000$ each, moved in this way, two arrived at destination in gool condition, one in inferior condition, and oue proved almost a total loss. This lot, however, was delayed 12 homs en route, and the eggs for safety stored in a refrigerating apartment where the temperature approached freezing. To this is donitless to be attributed the loss of this shipment.

We have yet to learn much as to the conditions determining the successful transfer before we can be assured of uniform success in making shipments of eggs instead of fish to distant points, but doubtless the movement of eggs iustead of fish will be the main feature of future distributions, since eggs can be transferred in large numbers at little relative cost to distant points convenient to the waters to be stocked, and hatched out there in improvised field stations or in a car equipped as a hatching station.

Washington, D. C., July 25, 1887.

XXVIII.-DISTRIbUTION OF DUPLICATE SETS OF MARINE INVERTEBRATES, 1879-1886.

In the Commissioner's report for several years past, reference has been made to the work done by the U.S. Fish Commission in distributing to inuseums specimens of the lower forms of aquatic life; but as in no case has a detailed report beeu made, it has been deemed proper to present one at this time. Thus in the report for 188: it was stated :
"The Commission has also made very large collections of aquatic aniinals, especially of fishes, shells, corals, crustaceans, star-fishes, etc., and after submitting them to a carcful investigation for monographic research and setting aside a full series for the National Museum, the remainder has been made up into well-identified and labeled sets for distribution to colleges, academies, and other institutious of learniug throughout the United States. The educational advantages of this last measure have proved to be of the utmost value and are thoroughly appreciated by teachers throughout the comntry. Applications for these sets are being continually received, and several hundreds of them have already been supplied, a number of persons being occupied for a good part of their time in preparing to meet additional calls. There is nothing which so much increases the iuterest in natural history as the opportunity of examining actual specimens of rare and usually unprocurable species, instead of depending upon deseriptions or drawings; and as the possibility of obtaining these series becomes the better known it is, quite likely that all the resources of the Commission for making collections, great as they are, will be fully taxed.
"The calls for these specimens are usually made through the member of Congress representing the district in which the institution is established; or, if made direct to the Commission, they aro referred to the member for his indorsement and recommendatiou."
Again, in his report for 1884, the Commissioner said:
"The Fish Commission has beeu enabled to do a great deal incidentally in the way of promoting science and edncation; especially by the discovery of many rare forms of life in the waters, and by the accurate labeling and extensive distribution of duplicates of these objects to colleges and academies throughont the country; the reservo specimens, of course, going, under the law, to the National Musemm."

In his report for 1855 lie wrote:
"There has also been hearty eo-operation with the work of investigation by varions men of science, notably by those connected with Gorernment bureans of this and other countries, and with many of the leading colleges and educational organizations of the country. To the latter it has been possible for the Commission to supply, in return, collections of marine forms and other material of great ralue for class-room instruction and for museum purposes. These collections involve no expense to the recipients beyond the cost of freight, of alcohol, and of suitable receptacles for exhibition and storage, and are assigned to schoois and colleges upon recommendation of the member of Congress from the district in which the institutions are located."

The following is a copy of the circular which was usually sent to ap. plicants for these specimens:
"Some of the duplicate specimens of marine iuvertebrates collected by the U. S. Fish Commission have been arranged into sets for distribution to educational establishments throughout the country. They are partly dry and partly in alcohol, each specimen accompanied by a printed label giving name, locality, etc. The sets contain about 105 species each, and represent many of the principal families, orders, and genera of Crustaceans, Mollusks, Radiates, and Sponges of the Nortl Atlantic.
"To obtain one of these sets application must be made through and indorsed by a member of Congress and must contain an assurance that the expense of proper exhibition will be met. Alcoholic specimens are packed in a number of storage jars, from which they masi be removed and each placed in a separate bottle. The cost of jars and alcohol generally amounts to from $\$ 2 \overline{5}$ to $\$ 40$, but these materials are not furnished by the Fish Commission."

These series of duplicates were all prepared by Mr. Richard Rathbun, the first series at New Haven, Conn., under the direction of Prof. A. E. Verrill, the remainder at the National Museum. The following explanatory remarks are quoted from the official lists:
"The specimens included in the following list are preserved in alcobol, unless otherwise stated. The authority given for the name is usually the aththor who first used the combined binomial namo herein adopted, aud is not necessarily that of the author who first described the species or gave the specific name. (A name in parentheses is authority for the specitic name only.)
"The species are not all included in each of the fifty sets, but those sentineach numbered set are checked on the list bearing the corresponding number. The species now distributed are not to be considered as the most common, but simply those which happen to be at present most abundantly represented in the collections of the Fish Commission, or
"Proceedings of the United States National Misenm, 1879, pp. 227-232; 1881, pp. 298-303, 304-307; 1883, pp. 212-216.
those which, for other reasons, can be most conveuiently distributed at this time, and have been so selected as to give representatives of most of the important groups. It will also be understood that the species included in this list form but a rery swall proportion (less thay onetwelfth) of the total number of species contained in the collections made by the Fish Commission on the New England coast." (Explanatory of Series I.)
"The species enumerated in the present list were collected by the \mathbb{U}. S. Fish Commission, mainly during the past four years, and represent a portion of the duplicate material resulting from their sea-coast explorations, and now available for distribution. Several of the species included in these duplicate sets are recent additions to science, obtained by the U. S. Fish Commission steamer Fish Hawk, from the inner edge of the Gulf Stream slope, south of Martha's Vineyard, during the summers of 1880 and 1881 . This region, which was first explored in 1880, has proved to be the richest dredging ground yet discovered upon our coast, both as regards variety of life and abundance of specimens.
"Nearly all the species enumerated are included in each set, but of a few species only enough duplicates were secured to supply a portion of the sets. The sets will number about one hundred. The crustacea bave been identified, for the most part, by Prof. S. I. Smith, and most of the other species by Prof. A. E. Verrill. The names are mainly those used in the Preliminary Checl-list of the Marine Invertebrata of the Atlantic Coast, by Λ. E. Verrill, edition of 1879 . A cousiderable number of species that have since been described are, however, here included." (Explanatory of Series II.)
Five series, containing 360 sets in all, have been prepared, and of these, 247 sets hare been distributed to date. The following lists of institutions and individuals supplied are furnished by Mr. Rathbun, who bas had charge of the distribution:
List of institutions and individuals yuphlied with sets of duplicate specimens of marine invertebrates from the collections of the D. S. Fish Commission (t) Decmber 31,1886 .
1.-FOHLIGN.

Cunntry.	City or town.	Institution or individual.	$\begin{aligned} & \text { Surios } \\ & \text { No. } \end{aligned}$
Argentine llepublis. Australiat		Museo Puhlicoda Imamos Airos.	1
	3rimbami	Querensland M1 usoum. . . .	1
	Molburrue......	Victorja Musbun	4
	Elizaboth Bay, Syd	Willinm Mateay	1
	Sydnoy		1
Cumada	Minhsela	Qneen's Unversits....................	2
	Montrual	Inter ledpath Musemb, Me(inl Enivetsilj'	1
	Ottawa		4
	Shorbronko	Associstion.	
	'Toronto	Trinity Collove.	
	1) ${ }^{\text {d }}$	Trinity Medieal school	
	1)	Chaversity Colleg Vhivarsité Laral	2
Chili	Quobere. Siatiago	Museo Naciohal.	

List of institutions and indiriduals supplied with sets of duplicate specimens of marine invertebrates, etc.-Continued.

1.-FOREIGA-Continued.

Commiry	City or town.	Instifution or individual.	$\begin{aligned} & \text { Suries } \\ & \text { No. } \end{aligned}$
Jenmark England.	Coponlagen	Royal Zoological Museat	
	Cambridye	John W. Clark, Cambridge University	
	Fence Housea, County Durham.	Rev. A. M. Norman	
	Livorpool.	Derlsy Museun.	
	London....	Britich Mnseum	
	$\begin{aligned} & \text { Manchester } \\ & \text { Oxford...... } \end{aligned}$	Manchester College and Musnum Prof. II. N. Moseley	
	Suvderiand	Prof. Goorre S. Brady	
Fradco	Nantes	Societe d'IIsatoiro Naturello	
	Paris..	Museum-Jardin des Plantes	
Germany	Drinin	Zoolorical Museum.......	
Greeco	Aresden	Royal Zoological Museum	
Hollaud.............	Loyilen	Neilor. Diork Vereoniging	
	Do	Notherlauds Minseam	
	Florenco	Realo duneo di Fisico e Storia Natura	
Japan	Couna	maseo Civico di Storia Naturalo	
Manitoba	Vimipeg	Manitoba Mistorical andScientific Society	
Mfoxico.	Mexico	31ивеп Nacional	
	Ginamajuat	Prof. Alfredo Duges	
	Mexico	Prof. F. Ferrari Pergz, Mexican Exploriner Commission.	
Now Brunswick	Fredericton	New Brunswick University	1
New Zealand	St. Jobn...	Society of Natural History.	
	Christ Charch	Canterbury Museum...	
	Dunesdin.	Otago Muybum.	
	Wellington Morgen.	Colonial Masoum .	1
Norway	Morgen....	Bergens Diuseum.. Oniversity Museum	1
Nova Scotia	Windsor..	King's College	3
Pru	Lima...	liacultad do Medieina do Lima	2
Portugal	1,isbon.	Zoological Museum...........	
Russia.	St. P'stersbing	Universits of st. Petersburg	5
Scotlind	Edinburgh	University of Edinburgh, Prof. I. C. Ewat.	1
Sweden	Do..................	Sir C. Wyvillo Thomeno. Prot Sven Loven koyal Acaldmy	5
	Do........................	Musemm of tho A cademy of Seime	1

2. -DOMESTIC.

List of instilutions and indiniduals supplied with sets of duplicate sperimens of marine invertebrates, etc.-Continued.
2.-DOMES'IIC-Continuod.

List of institutions and individuals supplied with sets of duplicate specimens of marine invertebrates, etc.-Continued.

2.-DOMES'LIC-Continued.

List of institutions and individuals supplied with sets of duplicate specimens of marinc inver tebrates, etc.-Coutinued.
2.-DOMESTIC-Continuod.

RECAPITULATION.

Number of sets of Sorius I distributed 40
Number of sets of Series If distributed 40
Number of sets of Serlos III distributed 40
Number of sets of Serios IV distributed. 97
Total 247
The number of species in each series was as follows:
$\delta_{\text {erriey }} I$ 198
II. 183
IIt (first educational) 102
IV (second educational) 110
V (for exchange only) 213The following single list, containing 260 items, has been compiled fromThe five lists upon which the specimens were sent out. The seriesWhich contain representatives of each species are deuoted by Romanthumerals so placed in columns as to indicate the place from whencethe specimens were obtained.
S. Mis. 90 54

List of species of marine invertelrates from the Allanitio

coart uned in making up sets for ${ }^{\circ}$ distribution.

[^104][^105]List of specics of marine inverteobrates from the Atlantio coas ${ }^{\prime}$

used in making up sets for distribution-Continued.

${ }^{3}$ Off IInlifax, Nova Scotia.

854 REPORT OF COMMISSIONER OF PISII AND FISHERIES.

List of species of marine invertebrater from the Atlantic const

used in making up sets for distribution-Continued.

List of species of marine invertobrates from the A tlantic coosh

used in making up sets for distribution-Continued.

							Newport, R. I., or vicidity.	Narragansett Bas, Rhode Island.						
				1			II, \%							
				...										
		I, iv, v					11-v							${ }^{1}{ }^{*}$
		II, v												1^{12}
														r^{2}
\cdots			n,iv.											
\cdots			\ldots	.								-		\ldots
			1	H-v									
				!									11, ${ }^{-}$	
							in, minv		...				
													
				$\stackrel{\rightharpoonup}{\mathrm{v}}$	${ }^{\text {w }}$. ${ }^{\text {a }}$
\cdots	1					v					1			$17^{\text {b }}$
\cdots			i			\checkmark	v						
					…...				\cdots				
\cdots						…...	${ }_{\text {unin }}^{\text {u,v }}$	…...		\cdots				
\cdots					\%		Mi1.			\ldots	\cdots	
\cdots		\ldots	3,11, ${ }^{\text {V }}$	Iv	${ }_{\mathrm{HI}, \mathrm{V}}$		-	.	
		v								.	…...	…		
\cdots				\cdots	av	…			...	11, v
\cdots				1	IV	\cdots					H,v	ii,	
				1								
\cdots			Iv				Ir, II, ,				1			
a, v		...			Iv	iv	11,112,				1	\cdots		
			I	${ }^{111}$	iv								
	\ldots	H-v			H, V		1	.		.	.	
												
\because						${ }^{1}$								
					n, m, v						i			$\cdots{ }^{1 i^{-9}}$
\cdots														
	ast of	(ew En	gland.		${ }^{8}$ Coast	of m	idule \mathbf{A}	thauti	tates.			Chera	apeak	e Bay.

List of specics of marine invertebrates from the fllante coast

used in making up sets for distribution-Continued.

List of species of marine invertebrates from the Atlantio coasb

${ }^{1}$ Hallfay, Nova Scotla.
${ }^{2}$ Off Nova Scotia.
used in making up sets for distribution-Continued.

List of species of marine invertebrates from the Atlantic coost

${ }^{2}$ George's J3ank.
For convenience of referonce there is added an index to genera and brackets on the inside of each page.
used in making up sets for distribution-Continned.

species contained in the above list, with page references to figures in

INDEX.

[Note.-The references aro to page-fgures in brackets.]

	Page		Page.
${ }^{\text {Acanalla normani }}$		Carcinus manas	
Acauthogorgia armata	18	Catapagurus sharreri	. 8
Actarea toatudinalis.	14	Collularia ternata.	18
Alopprora ...	10	Cerobratulus ingens.	12
${ }^{\text {alogonidiun ramosu }}$	10	roseus	12
A oyonium carneum	18	Chretoptorus porgamenta	10
${ }^{\text {a }}$ orcecium constell	10	Chalina oculata.	20
pollucidum	10	Ciona ocellata.	16
Atmetellatum..	10	Cirolana concharum	10
Ampliura macilonta	18	Cirratulus grandis	12
Aphitrite ornata	12	Cladorhiza grandis.	20
Anchis avara	12	Clidiophora triliuonta	14
- atoja aculea	14	Cliona sulphurea.	20
A glabra	14	Clitellio irrorata	12
Adedon dentatum	18	Clymenella torquata	10
Anthomastur grand	18	Crangon vulgaris 6
Arabella opalina...........	10	Crepidula fornicata	12
arbacia panctulata.	10	plana...	14
Archastor agassizii	18	Cribrella sanguinolenta	18
anıericanus	18	Crisia eburnea	10
	18	Ctenodiscus crispatus	18
Argina perata	14	Cyrtodaria siliqua.	14
Artemia gracili	10	Cyprina islandica.	14
Ascidia mollis.	14	Dentalium etriolatum	14
Astidiopsia complanat	14	Diastylis quadriepinosus.	8
Astarte undata	14	Diphrsia fallax ...	20
$4_{\text {aterías forberil }}$	18	Diplopteraster multiper	18
stellion	18	Discopora nitidn.	10
Astr valgaris	18	Echinarachnius parma	di
Aatrangia danm.	18	Echinus gracilis.	10
Astrochele lyman	18	Ensatella amoricana	14
Astrop'ayton agasaizii	18	Epizoanthus americanus	18
Astirn lamarchii	18	paguriphila	18
Athorhiza aronacea	20	Escharina isabelliana	10
Balaniz lunata...	12	Euglycera dibranchinta	10
Baltiotus balanoides	10	Eupagurus berutiardus.	8
Bitituma finmarchica.	. 18	kröyori.....	8
Bolocin nigrum	12	lougicarpus	8
Boltera tuedia	. 18	politus...	${ }_{8}^{8}$
Botruia bolteni.	10	pollicar's.	${ }_{8}^{8}$
$\mathrm{B}_{\text {uecing }}$ gouldii	10	pubosceus.	8
Bugula undation	12	Euprogatha rastellifora	8
gula flabollata.	10	Flustrella hispida.	10
murrayaua	10	Fulgur carica.....	12
Callip turrita.	10	Gammarus locusta	10
Callisectes hantatus	8	natator.	10
Camiba convexa..	14	Gclasimus pugilator.	8
	8	pumnox.	- 8
der borealis	8	Gemelharia Ioricata.	18
Irroratus	8	Glantula arenicola.	16
[23]			
8. Mis. 90			

Page. Page
20 Globicops tiarolla 20
Gygo hippolstes 10
Halocampa producta 18
Halocynthia oohinnta 16
partita 10
pyriformis 16
Harmotboe imbricata 10
Heteroteuthis tenera 12
Hippa talpoida 8
Hippolste epina 8
securifrons 8!
Hippothoa hyalina 16
Homaras amoricanus 8
Hyalincecia artifex 10
Hyas coarctatus 8
Hydrallmania falcata. 20
Idotoa irrorata 10
robusta 10
Ilynnassa obsoleta 12
Lacuna vincta 12
Latmatonice armata 10
Lepas anatifera 10
fascicularis 10
Lepidonotus aquamutus 10
Lepralia americana 10
Leptasterias compta 18
Leptoclinum albidum 10
var. Iutoolun 16
Leptosynapta girardii 16
Libinia dubia 8
emarginata 8
Ligia oceanica 10
Limulus polyphermus 10
Littorina littorea. 12
palliata 12
rudis 12
Loligo pealei 12
Lophothuria fabricii 16
Lunatia Leros 12
Macome sabulosa 14
Margarita helicina 14
Megalopas 8
Molampus lineatus 14
Mombranipora pilosa 16
Motridium marginatun 18
Microciona prolifora 20
Modiola modiolus 14
plicatula 14
Molgula uronata 16
nanbattonsis. 10
retortiformis 10
Mílinia lateralis 14
Munids 8
Mya arenaria 14
Mysis amoricana 8
mirta. 8
Metilus edulis 14
Nophthys cueca 10
iuejsa 10
Noptunea decencostata 1!
Nercis pelarica 10
virens 10
Nevorita duplicata 12
Nothria conchyloga 10
opalina. 10
Page. Page.

APPENDIX E.

MISCELLANEOUS.

TABLE OF CONTENTS.

Page.
Preface 1
$L_{\text {ist }}$ of charts 4
List of the dredging stations of the U. S. Fish Commission, 1871 to 1879 ©
IFish Hawk, 1880 to 1882 43 56
Fish Hawk, 1883 to 1887
Fish Hawk, 1883 to 1887
$\mathrm{Re}_{\text {eport }}$ of the dredging stations of the Albatross for 1883 61
Allhatros8 for 1884 65
Albatross for 1885 73
Albatross for 1886 81
Albatross for 1887 (up to November 1).
Albatross for 1887 (up to November 1). 84 84
$L_{\text {ist }}$ of dredgiug statious occupied by Coast-Survey steaners, 1867 to 1880 85
List of dredging stations of the Chailenge: in the Atlantic, 1872-'76 101
Travailleur in 1880 and 1881 104
Thavailleur in 1882 107
Talisman in 188:; 108
Washington in 1881 114
Norwegian North Atiantic expeditions, 1876-98 115
Swedish expeditions of Nordenskjöld, otc., 1875, 1876, 1878-'79 116
Danish Arctic expedition 188\%-83 120
British steamer Lightning, 1868 124
British steamer Poroupine, 1869 124
Britigh steamer Porcupine, 1870 126
Notice of dredgings of the British steamer Shearwater, 1871 128
List of dredging stations of the British steamer Falorous, 1875
List of dredging stations of the British steamer Falorous, 1875 128 128
British steamer Knight Ewant, 1890 129
British steamer 1riton 129
Notice of dredgings of the Swedish frigate Josephinc, 1869 130
$\mathrm{Cl}_{\text {assifiged }}$ list of deep-water dredgings of the U. S. Fish Commission north of
$\mathrm{Cl}_{\text {assifiged }}$ list of deep-water dredgings of the U. S. Fish Commission north of 130 130
the Bahamas
the Bahamas
the Bahamas
Qorial temporatures taken by the U. S. Fish Commission steamers Specduel
Roco Albatro88, 1877-85 133
Rocord of speed of five trawlinge and soundings by the Allatross, Jnly, 1833 144
XXIX.-LISTS OF THE DREDGING STATIONS OF THE U. S. FISH COMMISSION, THE U. S. COAST SURVEY, AND THE BRITISH STEAMER CHALLENGER, IN NORTH AMERICAN WATERS, FROM 1867 TO 1887, TOGETHER WITH THOSE OF THE PRINCIPAL EUROPEAN GOVERNMEN'T EXPEDI'IONS IN THE ATLANTIC and arctic oceans.

Preparid by Sandergon Suith.

pREFAOE.

The records of the dredgings and trawlings exccuted by the U.S. Fish Commission from 1871 to 1879 were published in the Fish Commission Report for 1879 by the author and Mr. Richard Rathbun; those of the Fish Hawk from 1880 to 1882 in the Bulletin of U. S. Fish Commission for 1882, by Mr. Richard Rathbun; those of the Albatross from 1883 to 1886 in various volumes of the Fish Commission reports. The dredgings of the Fish Hawk from 1883 to 1887 and of the Albatross in 1887 have not yet been published.
Although separate copies were printed of the lists from 1871 to 1882, the scattered manner iu which most of these lists appeared in various publications and associated with great masses of other material has rendered it very difficult to bring together a complete series of them.
The completion of the accompanying series of charts, on which all the dredging positions of the U. S. Fish Commission, the U. S. Coast Strvey, and the British steamer Challenger in North American waters are laid down, has rendered it desirable to bring together and complete all these scattered lists, together with those of the Coast Survey and the Ohallenger. The opportunity has at the samo time been taken to collect together the records of the dredging operations undertaken by the British, French, Italian, Norwegian, Swedish, and other European Governments in the Atlantic and Aretic, the results of which are of almost as much importance to us as of those carried on upon our own coasts. These are scattered through a great number of works in various languages, aud many of thom very difficult to find, and have in many cases never been reduced into the form of tables; so that the task of bringing them together and putting them into shape has been a somewhat
laborious one. It has been endeavored to present as nearly complete 1 set of these records as possible, but uo doubt some will be found to have been omitted which ought to have been included. Excepting in the Arctic seas series consisting mainly of shallow-water dredgings, sucls as those in the Baltic, have not been included. Of other expeditions which have made important dredgings no lists, so far as is known, have ever been published. It will be uoticed, also, that the amount of detailed information given in these lists varies very much, some giving only the position, depth, and kind of bottom, whilst others coutain full particulars of temperature of air, surface, and bottom, drift, etc. They are here presented essentially as originally published, with some slight changes of arrangement for the sake of uniformits, and with foreign measures or temperatures accompanied with their American equivalents. The sources from which they were derived are, as a rule, stated, hut with some exceptions.
A large part of the dredging positions of the Coast Survey were published by Professor Agassiz in the Bulletin of the Museum of Comparative Zoology at Cambridge, Mass. Those of 1867, 1868, and 1869 made by Count Pourtales have, however, been rendered definite by reference to the original charts and records in the Coast Survey Office; those of 1872, made by Dr. William Stimpson, hare been added from the same sources, and a few other additions and corrections have beell made.

The prefatory notes attached to each, both of the American and foreign lists, will render unnecessary any further explanation of their sources or peculiarities here.
The five large charts accompanying these lists require but little explanation. They relate only to the work of the Fish Commission, Coast Survey, and Challenger on and near our Atlantic coast, as it was not found practicable to publish at present charts illustrating the dredgings in other parts of the Atlantic and Aretic, although such have been prepared.

Every dredging made by the Fish Commission or the Coast Survey has been placed upon one or the other of these charts, except where the scale compels their omission or where the position was originally so indefinitely stated as to reuder it impossible to place it accurately. Of both these classes special lists are given on the charts, pointing out the nearest station which is placed on the chart.

A few words may be added to explain the special objects of the four small charts and sections placed upon the chart of the Caribbean Sea. The little chart of the Gulf of Mexico and the northwestern part of the Caribbean Sea serves to show parts of the Gulf not included on any of the large charts, to give additional contour lines, and to direct attention to the remarkable regions of deep water existing in both seas, and especially to that one marked as the Sigsbee Deep in the Gulf of Mexico. The bottom of this is almost a perfect plain, varying in depth over a

Pery large area only from 2,000 to 2,050 fathoms, as is shown by the $e_{\text {ast }}$ and west section across the Gulf, which is also given.
The three sections, from the Cultivator Shoal, or George's Bank, $f_{r o m}$ Hatteras, and from Charleston, illustrate the general fact of the $V^{V}{ }^{\text {ry }}$ gentle slope of the sea bottom along our eastern coast until the depth of about 100 fathoms is reached and of its very abrupt descent beyond that line, whilst they show the very different distances from ${ }^{8}$ hore at which this line is found.
The two sections showing the tomperatures in the Mediterranean and the Oaribbean Sea illustrate the fact that in a deep basin closed by a barrier of shallower soundings no change of temperature occurs from a deptl Corresponding with that of the barrier to the very greatest depths. In the Mediterravean the temperature found at a depth of about 120 fathoms, that of the Straits of Gibraltar, is about $57 \mathrm{z}^{\circ} \mathrm{F}$ Fabr. and does a 0 vary to a depth of more than 2,000 fathoms, whilst in the Caribbean and Gulf of Mexico the deepest channel communicating with the ocean appears to be about 500 fathoms, corresponding to a temperature of ${ }^{391 / 2}$ Fahr., and below this depth this temperature is invariably found $d_{0 \times n}$ to 2,000 fathoms and more. The temperatures marked upon the Bection of the Gulf of Mexico illustrate this fact more fully.
The other temperature sections show the very rapid diminution of temperature from the surface and the very low temperatures reached in great depths.
As, after the preparation of the chart of the Carribbean Sea, the sections illustrating depths and tempelatures were found, when reduced, to be too small for convenient use, enlarged copies of them are given as separate plates, numbered $5 a, 5 b$, and $5 c$.
The tables of serial temperatures, taken by the Speedwell, Fish Haikk, and Albatross, afford the means of studying these chauges of temperature in greater detail. These tables, like those of positions, have been scattered through numerous volumes, and, as requiring the aid of charts for their intelligent use, it has been cousidered best to bring them together in connection with these.
The hydrographic stations of the Albatross having been published for the most part by the Hydrographic Office as well as in the Fish Cnomission reports, and requiring only very rarely to be referred to by their serial numbers, the lists of them have not been reprinted.

LIST OF CEARTS.

No. 1. Dredgings of U. S. Fisk Commission in Gulf of Maine, Nantucket and Vineyard Sounds.
No. 2. Dredgings of U. S. Fish Commissiou in Nantucket, Vineyard, and Long Island Sounds.
No.3. Dredgings of U. S. Fish Commission, U.S. Coast Survey, and Challenger, from Cape Canaveral, Florida, to the Grand Bank of Newfoundland and the Flemish Cap.
No. 4. Dredgings of the U.S. Fish Commission and the U. S. Coast Survey in the Gulf of Mexico and adjacent parts of the Atlantic Ocean and the Caribbean Sea. The Florida Reofs are also given as a separate plate of enlarged size, numbered $4 a$.
No. 5. Dredgings of tho U. S. Fish Commission, U.S. Coast Survey, and Challenger in the Caribbean Sea and adjacent parts of the Atlantic Oceau.
[On this chatt have been placed four small subsidiary charts and sections, as follows: (1) A small chart of the whole of the Gulf of Mexico, with additional contour lines. (2) A section from enst to west acrose the Gulf of Mexico, with temperatures. (3) Several temperature sections in Atlantic, Caribbean, and Mediterrauean. (4) Three sections of the sea bottom, commeucing at tho Cultivator Shoal, Cape Ifatteras, and Charlestou, respectively. For further explanations of these subcharts see the proface. In order to rendor these sections more convenient for uso the second, third, and fourth are also given of ahout four times the size as separate plates, numbered $5 a, 5 b$, and 50 .]

LISts of the dredging stations of the u. S. Fish COMMISSION FROM 1871 TO 1879, INCLUSIVE, WITH TEM Perature and other observations.

[Arrangel for publication by Sanderson Smith aud Riciard Ratibun.]

The following lists include all the recorded dredging stations made by, or in connection with, the United States Fish Commission, from its organization up to date. The stations are, for the most part, arranged chronologically, and are designated by four series of numbers or letters, as follows: One series of numbers, from 1 V to 87 V , with letters appended, represents the stations for 1871. The 1872 stations (in the Bay of Fundy) are designated by letters from t to z. Those for 1873 are indicated by a second series of numbers, from 1 to 212 , with B. (Bache) or Bl. (Bluelight) added, according as the dredgings were carried on from the steamers Bache or Bluelight. In this series, however, are also included the stations of the Bache for 1872 and 1874, as well as those for 1873. The last series combines all the stations from 1874 to 1879, inclusive (omitting 1876, during which year sea-work was suspendod), in numbers running from 1 to 769. For the sake of obtaining greater uniformity in recording the stations on charts, as explained further on, the stations for 1874 and 1875, originally numbered separately, have been uvited with those from 1877 to 1879, and given numbers foll^{1} wing 1879 . The numbers for these later jears ruu as follows: 1874 , from 400 to $580 ; 1875$, from 600 to 769 ; 1877, from 1 to 128; 1878, from 129 to 238; 1879, from 239 to 378.
The stations of the Spcedwell for 1877, 1878, and 1879 are indicated by numbers only, and are readily distinguished from those of the Bache and Bluelight, which have B. or Bl. affixed to them. In the following tables the localities given are taken from the original record books, Whenever such exist (i. e., for all the work of the Specducell and much of that of the Bluelight-101 Bl. to 166 Bl .), with some other notes added to facilitate the finding of the localities on the chart. In many cases the positions were marked, at the time, on the steamers' charts by the commanding officer, and all such positions have been adoptel, even though differing somewhat from those given by the record books. From the nature of the operations of dredging and trawling, it becomes almost
impossible to estimate exactly the changes of position caused by curreats, etc., especially when out of sight of land, and in a few cases the positions were not placed on the charts at the time, and the bearings given do not suffice to fix them very accurately. It is believed, however, that but few positions are rendered uncertain to any great extent by either of these causes. A large part of the positions determined by the Bache were originally given by latitude and lougitude. The other latitudes and longitudes given in the tables are intended to serve as the readiest means of finding the localities, all of which are either thus designated or are referred to as being near others which are so. The bearings. giren for the Speedwell's work in 1878 are true; the others, with a few (unrecognizable) exceptions, are magnetic.
In the last column of the tables the letter indicates the apparatus employed in dredging: D. 2 Dredge; Ag. D., Agassiz Dredge; R. D., Rake Dredge; T., Trawl; Ag. T., Agassiz Trawl; O. T., Otter Trawl; Tan., Tangles.

STATIONS FOR 18:1, IN AND ABOUT VINEYARD SOUND, MASSACHUSETTS.
During this, the first year of the Commission, the dredgings in shallow water were made partly from a sail-boat and partly from a steamlaunch, and those in the deeper waters from the United States revenuecutter Moccasin, Capt. J. G. Baker. The dredging stations numbered in all about 250 , but to avoid confusion in laying them out on the chart, they were combined into 87 groups or lines, each including from 2 to 9 stations, the lines being designated by numbers, the stations by letters. In this manner they were represented on the large chart accompanying the Report of the United States Fish Commissioner for 1871-72. In making up the present list the same arrangement has also been followed, and where all the stations of a group were of the same nature, they have been located collectively ; otherwise the exact position of each station has been given.

Dates are not prefixed to all of the inner groups, as many of these include stations made on different days. Temperature observations (with Miller-Casella self-registering thermometers) were taken at most of the outer stations, as recorded in the list, but were omitted at the inner ones. The dredge was the implement most commonly used for scraping the bottom, but the beam-trawl was also frequently omployed on the smooth inner grounds. The rake-dredge was worked a few times off Gay Head and the tangles very rarely, in only a few places. The characters of the many localities gone over in 1871, as well as the species of animals found inhabiting them, are fully discussed in the "Report upon the Invertebrate Animals of Vineyard Sound and the adjacent waters, with an account of the physical characters of the region," by Prof. A. E. Verrill; contained in the Report of the United States Fish Commissioner, Part I, for 1871-72

Note --Tho \quad erini mumbers in this tablo from 1 to 87, inclusive, should be read $1 v, 2 v, 3 v$, ote., to correspond with the charts upon whioh tho positions are so designuted.

S. Mis. $90-56$

$\begin{aligned} & \text { 息 } \\ & \text { 蓸 } \\ & \text { 莒 } \end{aligned}$	Date．	Locality．
70	1871.	a, b, c, d. Bazzerl＇s Bay，westward of Quurnquisset Harbor，about 1玉－21 nilles．
71		a, b ．Wood＇s Holl Passage，between Long Neck and Uncatena Xsland． c, d ．West of Long Neck，then milo．．．．
72		a, b, c, d. Buzzard＇s Bay，northvard from Woopecket Island， $12-2$ miles， forming a line ranning about north－ east and southwest．
73		Bazzard＇s Bay，north of northern part of Naushon Island： a, b, ．Parallol and near to shore from Oncatena Island to south of Woo－ peoket Island． d．About west of Woopecket Island， t mile． a，$\}$ ，g ．Northwestorly from Woepecket； e，$\frac{1}{2}$ mile；$f, 1$ mile；$g, 1 t$ miles．
74		a, b ．Buzzard＇s Bay，northward of Woo－ peoket Island， $12-27$ miles．
75		Buzzard＇s Bay，forming a lino of dredg－ inge parallel to the Elizabeth Islauds and distant from them il $\frac{z}{2}$ milo． a, b, c ．Off Naushon Island． d，e．Off Pasque Island f，g，h．Off Cutty hunk Harbor \qquad
76		a, b, c ．Buzzard＇s Bay，betweon Quick＇s Hole and Lone Rock．
77		a, b, c, d, e, f ．Quick＇s Hole，between PasqueIsland and NashawenaIsland．
78		a, b, c, d, e ．Buzzard＇s Bay，off northern ontrance to Robinson＇s सole．
7980		In channel vetween Chappaquiduick
		Island，Martha＇s Vinoyard，and Hawe＇s Shoal： a．Northern part of channel b．Southern part of channel
80	Sept． 12	Southeasterly from Martha＇s Vine－ yard， $3 \frac{1}{2}$ to θ miles：
		b． 13 miles south from Cape Poge c． 14 milles west of b
81	Sopt． 12	South of Marthe＇s Vineyard， 5 to 8 miles： a．Southeast of Gay Head，12b miles．．．
		b．Southeast of Gay Head， 8 milcs．．．．．
82	Sopt． 9	Southand south west from Gay Head， abont 5 miles；northwest of No－ man＇s Land： a． 5 miles south 80 thiwest of Gay Head． b．$\overline{3}$ miles south of Gay Head．．
83		a, b, c, d ．Vineyard Sound，offGay Head， parallel to No． 58 ，and slightly more distant from shore．
84	Sept： 11	South and bouthwest of Gay Head： a．14 miles southwest of Gay Head．．．． b． 4 millos southwest of Gay Head o． $2 t$ miles a little west of south of Gay Head． d．8t miles a little east of south of Gay Head．
85	Sept． 0	West of Gay Head， 2 to 5 miles： a． 3 niles；b ，ât miles；west of Gay Head． c． 4 miles west of Gay Head． d． 1 mile north－northwest from ${ }^{\text {c．．．．．．．．}}$ e． 5 miles a little north of west from Gry IIcad．
60	Sept． 13	West－8outhwest of Gay Head， 10 to 13 miles： a． 13 miles wost－Routh west from Gay Hend． b．iod nilles wost－southwest from Tay Hatel．

		Locality．		Natare of bottom．	Temperatare．		
	Dato．				年	宫	䂞
87	$\begin{gathered} 1871 . \\ \text { Sept. } 14 \end{gathered}$	a． 104 milles west－bouthwest of Gay Hend． b． 18 m milles west－southwest of Gay Head．	$\begin{aligned} & 29 \\ & 29 \end{aligned}$	Sandy maddo		63	69

STATIONS FOR 18̇2，WITH HEADQUARTERS AT EASTPORT，ME．
The dredgings for 1872 were mostly carried on from a large sail－boat； lut those in the deeper waters of the Bay of Fundy were made from the United States revenue－cutter Mosswood，Captain Hodgdlon．The regions explored were about as follows：Eastport Harbor，South Bay，and Pas． samaquoddy Bay，all of which are comparatively shallow－water areas； the shallow waters about the island of Grand Menan，especially those among the small islands to the east of Grand Menan；and the deeper waters east of Campobello Island，west of Grand Menan；and toward the center of the Bay of Fuudy，between Grand Menan and Nova Scotia．

In connection with the shallow－water dredgings no complete record of observations was kept，but the collections made were appropriately labeled with the precise locality，depth of water，nature of bottom，\＆c． The more important hauls in deep water，mostly accompanied by tem－ perature observations，are as follows，the letters used to designato them being the same as were employed in the original records：

STATIONS FOR 1873, WITH HEADQUARTERS AT PEAK'S ISLAND, CASCO bay, MAINE ; AND also STATIONS OF THE UNITED STATES COAST SURVEY STEAMER BACHE FOR 1872, 1873, AND 1874, IN THE GULF OF MAINE, ETC.

In this list the dredgings indicated by the above heading have been grouped together, as they appear on the chart prepared for publication. Numbers ranging from 1 B . to 78 B . were originally assigned to the Bache dredgings for 1873 and 1874 , in papers published by Professor Verrill in the American Journal of Science for April, 1874, and June, 1875, and elsewhere. To these the dredging stations of the Bache for 1872, 18 in number, have been added, thus increasing the list to 97 B . As to the regular series of dredgings made by the Bluelight, under command of Lieut. Commander L. A. Beardslee, in and off Casco Bay, no serial numbers were given to the hauls until the commencement of the temperature observations, July 21. To the numbers (1 to 66), given to such of the subsequent hauls as were accompanied by temperature obserrations, 100 has been added (101 Bl . to 166 Bl .), and numbers from 167 Bl . to 190 Bl . have been given to the hauls from July 12 to July 21 , and from 191 Bl . to 212 Bl . to those taken after July 20 , but not included in the temperature series. The descriptions of localities from 101 Bl . to. 166 Bl . are taken from the record books for temperatures, with some additions, and from 167 Bl . to 212 Bl . from the eight books of dredging lists, which were kept. Additions to 101 Bl . to 166 Bl ., taken from the dredging books, are marked D. L.

The dredging stations of the Bache for $18 i 2$ were on and about Saint George's Bank and La Have Bank, and extended as far as Halifax, N. S.; in 1873 they were mostly in the Gulf of Maine, especially in the region of Jeffrey's and Cashe's Ledges, a few being made in Massachusetts Bay; those for 1874 were entirely in the Gulf of Maine.
lirevgings by taic bacied, 1675.

DREDGINGS BY THE BACHE, 1873-Continued.

No record exists of any hauls corresponding to Nos. 11 B. and 19 B .
DREDGINGS BY THE BACME, 1874.*

68B.................. do	42 52ł
67 B................ ...do	4251
57-B.................... do	4261
58B..................... do	4304
	4322
60 B................ Sept 6	4317
61 B................ . . do	4351
62 B................ Sept. 7	43 401
63 B........e...... ...do .	43 433
64 B................. ...do	43 38t
65 B................. .-.do	43 44
66B................ Sept.	$4334{ }^{4}$
67 B. +do	43 25
$68 \mathrm{~B}, \ldots d o$	4331
69 B. do	4311
70B................ ...do	4303
71 B............... Sept. 9	4255
72 B.................... do	4257
73 B. do	428881
74 B..................... do	4301
75 B. . .-. do	4302
76 B.................... do	4303
77 B.................	42583
78 B................ Sept. 12	4304

				10
37	Rocky.			1
39	$\cdots \cdots$ तo			
65	Mud and gravel	$60{ }_{2}$	57	40
92	Mrud...	61	55	41
65	Mud and sand	61	57	41
5	Mud.	64	58	51
48do	62	62.	47
42	Brown mad	68	65	48
68	Mud..	612	57	$42 \frac{1}{8}$
47	Soft mud.	$64 \frac{1}{2}$	59	44^{8}
65	Brown mud and	66	64	40
86	Brown mud.	68	64	40
91	Mad.	643	59	40
32	Sand.	64	60	46
91	Mnd.	61.	58	40
96	Brown mud	61	58	40
125do	61	57	392
102do	62	59	40^{2}
88do do	02	00	38
92	-....do	64	64	40
51	Mad and grarel.	64	63	42
33	Racky....................	69	65	44
35	Blae clay, mad, sand......	612	60	43

*The sarface temperatures taken this year were quite unreliable, in consequence of an erroneous method of observation.

DREDGIFGS BY THE BACHE, 1872.

(The letters preceding the serial nombers are the same used to distingnish the hanla in Smith and Harger's Report on the Saint Goorge's Bank Dredginge (Trans. Conn. A cad., vol iii), and in Professor Yerrill's papers in American Journal of Science. The bottom temperatures this year are quite nureliable, manifestly too hinh in general.)

DREDGNGG BY THE BLUELIGHI, 1873.

	Gravel and shells	73	63	4871	
19	Sandy and rocky..........	75	62	46t	
18:	Coarse sand, gravel........	74	60	439 ${ }^{4}$	
33	Maddy	71	68	56	,
3do	70	62	58	
13	Sandy and rocky...........	72	64	46	
48-54	Muddy	65	64	3921	D. and T.
3	. ${ }^{\text {do }}$	68	63	57	
23	do	68	62	53	
48-542	do	69	64	38	D. and T.
48	Stones and mad	72	64	372	T.
64	Muddy	68t!	65	36	D.
2	-.....do	64	61	57	
2 do	$6{ }^{1}$	61	58	
7	MIud, dead eel-grass.	70	59	54	
25	Gravelly	65	57	$4{ }^{4}$	
15	Soft mad	65	55t	45	
13	Sandy, with shells	63	61	47	
68	Muddy	64	621	38	T.
12	Sandy	64	52	47	T.
33	Sandy and rocks, 80me mad.	64	57	413	
3	Mad.	60	58	50	
9	Sand and mud	62	57	55	
9	Muddy ...	64	551	54	T.
2do	Cl	58	67	
75 do	62	59	38	
40	Sand and grarel, rocls....	65	58	388	
2	Muddy	63	61	60	
2 do	62	58	57	
2	….... do	01	58	56	
2do	60	58	57	
2do	60,	61	57	
11-14	Procky	58	54	50%	
5	Muddy	63	591	53	
6	M...do	63	59	541	
16	Mud	
17	Rocky				
(9)	Sand and rocks			
(1) 20	(3)				Tan.

DREDGINGS BY THE BLUELIGHT, 1873-Continned.

STATIONS FOR 1874 AND 1875, WITH HEADQUARTERS AT NOANK, CONN., AND WOOD'S HOLL, MASS.

In 1874, the headquarters of the United States Fish Commission were established at Noank, Conn., and the area covered by its dredgings included Fisher's Island Sound; the eastern part of Long Island Sound; Block Island Sound; and Gardiner's and Peconic Bays; and also extended some distance to the east, south, and southwest of Block Island. In 1875, with headquarters at Wood's Holl, Mass., dredgings were carried on in Vineyard and Nantucket Sounds; Buzzard's Bay; over a portion of Nantucket Shoals; to the southward of Nantucket Island and Martha's Vineyard; and also on and about Southwest Shoal. The dredgings were all made by the United States steamer Bluelight, Commander L. A. Beardslee, and a separate series of numbers, to designate the stations, was employed for each year. To facilitate the recording of all the dredging stations of the United States Fish Commission on charts, and to bring the southern ones into uniformity with those made to the north of Cape Cod in more recent years, and already recorded both on charts and in reports prepared for publication in a single series of numbers ranging from 1 to 378 , 400 has been added to the 1874 dredgings and 600 to those of 1875. In this way all the dredging stations from 1874 to 1879 , inclusive, are included in a single series.

The temperature observations recorded in the two following tables were mostly taken with much care. Former experiences had proved that the Miller-Casolla thermometers were slow in acting, requiring from three to ten minutes (according to the depth of water) to obtain a correct reading, and they were, therefore, always left down a suitable lengtl of time. The bottom and surface temperatures, in nearly all cases, were taken with Miller-Casella self-registering thermometers; occasionally a United States naval thermometer was employed for surface temperatures, and the same instrument was generally employed for the air.

GTATLONS THOR 1874.

	Data.	Locality.		Nature of bottom:	Temperatures.			
					$\stackrel{4}{4}$		宫	
401	July 13	Fishers Island Sound, West Clump, bearing S.	$7 \frac{1}{6}$	Mad	-	-	-	D.
402	13	Fisher's Island Sound.............	118	Sand..				D.
403 404	13	Fishor's Island Sound, off Latimer's Reer.	418	Rocky	...			D.
$\begin{aligned} & 405 \\ & 400 \end{aligned}$		(No record.) ${ }_{\text {Tisher's Island Sound, }}$ N. of						D.
406	July 14	Fisher's liland Sound, N. of Young's Rock.	11	ILocky				
407	14	Fisher's Island Sound, NW. of Soal Rocks.	9	Sand, stones				D.
408	. 14	Fisher's Island Soand, N. by E. of Wicopessit.	112	Clay .				D.
409	14	Fishor's Island Sound, Lord's Channel.	112	Rocky				Tan
410	14	Fibhor's Ibland Sound, off Napatreo Point.	2\}	Sand				t.
411	10	Watch Iill Light-Hoase, R. Y. NNW., diataut about faile.	11	.do				D.

STATIONS FOR 1874-Continued.

SIATIONS FOR 1874－Continued．

安	Dato．	Iocelity．		Natare of bottom．	Temperaturas．			甹
$\begin{aligned} & \text { 品 } \\ & \text { 愛 } \\ & \text { } \end{aligned}$					年	杰		
445	$\text { July. } 30$	Block Yaland Sonnd，SE．$\frac{1}{8}$ E．of Race Rock nearly 3 milos；E．of Little Gull Lelend Light－House 5 miles．	45	Sand．．．．．．．．．．．．．．．	70°	$\stackrel{\circ}{02} 5$	57	D．
440	80	Block Island Sound，t mile about W．by S．of 445.	40	．do				D．
447	30	Blook Island Sound， 18 miles about W．by S．of 445.	24	．．．do				D．
448	30	Mouth of Gardiner＇s Bay，Long Islond，Gardiner＇s Point Light－ House S about $\frac{8}{}$ milo．	14d	Gravel．	71	68	03.5	D．
440	30	Gardiner＇s Bay，Long Island．．．．	64	Mud．．．．．．．．．．．．．．．	71.5	67.5	64.5	D．
450	30 30	…．．．do． do ．	3	Sand．．．．．．．．．．．．．．	72	68.5 06.5	65	D．
452	30	－．．．．．d．do	${ }^{4} 8$	Mud	69.5	68.5	${ }^{65}$	D．
453	31	Block Island Sound，Watch Hill Light N．by W． 3 miles．	18	Saud．	68	66	5B	D．
454	31	Block Island Sonnd，Watch 1 IIl Light N．by E． 3 miles．	184	Mud，sholls ．．．．．．．				T．
455	Ang． 3	Long Island Sound，Britlott＇s IRef Light－Ship E．about 1t miles．	22	Sand，mad．．．．．．．．	60.5	64.5	03.5	D．
456	8	Long Imland Sound，Bartlett＇s Reof Light－Ship E．about 2d miles．	14	Gravel，sand ．．．．．．．	59	04	63	D．
457	3	Long Island Souni，Bartlott＇s Reef Light－Ship E．if N．about 3 miles．	154	Sand，gravel，shells	07	64.5	63.5	D．
458	3	Long Island Sound，Hatchett＇s Point NW．about 2 miles．	10	Gravel，sholls ．．．．	61.5	64	63	D．
450	3	Long Island Sound，off Say－ brook，Conn．	4.	Sand．	67	64.5	63.5	T．
460	8	Long Island Sound，between Cornileld Point and Long Sand Shoal．	9					T．
481	4	Littio Peconic Bay，Long Island．	78	Gravel，shells．．．．．	06.5	74	71.3	D．
462 463 8	4		7	Sand，${ }^{\text {Grarel } ~}$			72	T．
464	4	．do	132－10	Sand，gravel ．．．．．．	07	72	71.5	D．
405	4							D．
466 467	4	Great Peconic Bay，Long Island．	5	Mud，sand，gravel．	${ }_{6}^{68} 5$	74	72.5	D．
468	4	－．．．．．do	4	Gravol	68.5	73	72.5	D．
409	4	Little Peconic Bay，Long Ielnnd．	93	Sand，sholls	c 6	72.5	71	D．
470 471	4	Gardiner＇s Bay，Long Island．．．．．．．．．．．．．．．．．．．．．．．．．．．．	4	Sand．．．．．．．．		70.5	68	T．
472	5		4	Sand，shells．．．．．．．．				T．
473	6	Block Island Sound，Watoh IIill\} Light N．$\frac{1}{2}$ W．，distant 3 miles．$\}$	18－23	Sand．．．．．．．．．．．．．．．	03	03	$\left\{\begin{array}{l}590 \\ 60\end{array}\right.$	T．
474	6	Block Island Sound，Montauk Point SW．i S． 6 miles．	17	．．do		63.25	60.	D．
475	6	Block Island Sound，Block Isl－ and Light ENE．，distantabout 8 miles．	19.4	Mud．		03.5	00	D．
476	0	Block Leiand Sonna，Block Iel－ nnd Light SE．by In t E．about 4 milos．	18t	Sand，mud ．．．．．．．．		04	∞	D．
477	6	Block Island Sound，Block Isl－ and Light ESE．，about 7 miles．	10	Mud		64	50	D．
478	6	Block Island Sound，Watch Hill Light NW．$\frac{1}{}$ W．about 4 miles．	24	Sand	70	64	58.5	D．
478	0	Blook Island Sound，Wratoh Itill Licht NW．\＆N．abcut 3 miles．	22	Band，sholls．．．．．．．				T．
480	10	In West Harbor of Fisher＇s Isi－ and．	4	Sand	74	66.5	65． 25	D．
$\begin{aligned} & 481 \\ & 482 \end{aligned}$	10 10	．．．．．．do． \qquad In West Harbor of Fisher＇s Isl－ and，off Clay Point．	361		$\begin{aligned} & 74 \\ & 74 \end{aligned}$	$\begin{aligned} & 60.5 \\ & 60.5 \end{aligned}$	65.25	D.
483	10	Off Hawk＇s Nest Point，inner gide of Fishor＇s Island．	51－21	Sand，gravel，to mad and weeds．	74			T．
484	10	Fisher＇s Island Sound，between Middle Clump and Ram Ial－ and Reef．	121	Mud，shells ．．．．．．．．	73.5	00	64.75	D．
485	11	Block Island Sound，about 1 mile S．of E．end of Fisher＇m Ipland．	15.	Sand	75	68	61	D．

STATIONS FOR 1874－Continued．

$\begin{aligned} & \text { 昌 } \\ & \text { 点 } \end{aligned}$	Dato．	Locality．		Natare of bottom．	Temperstares．			$\begin{aligned} & \text { 㤟 } \\ & \text { 茄 } \\ & \text { 灾 } \end{aligned}$
					药	边	蒙	
	1874. Aug． 11	Block Island Sound，aboutimile S．of E．end of F＇isher＇s Island．	81	Sand Stones	75	65.5	62.5	D．
486			81		72	65.5	63	
487	11	Block Isinnd Sound，about d mile off centro of Fisher＇s Isiand．	8	Stones ．．．．．．．．．．．．．．	78	$\begin{aligned} & 65.5 \\ & 66.5 \end{aligned}$	63 6.3	D．
488	11	ofi cettro of Fibler＇s Isiand． Block Island Sound，off Mount 1＇rospect．Fishier＇s Island，	7\％do	76		63	
488	11	about $\frac{1}{\text { nile from land．}}$ d mile	6	Stonea，gravol．．．．．	78	66． 5	63.25	D． D．
		Block leland Sound，avout mive westward of 488.			70.5	00.5	63.25	
400	11	Blook Island Sound，about है mile SE．of Raco Point．	51			60.5	58.5	
401	11	Blook Ishant Sound，about it miles S of Mount Prospect．	39\％	Sand	75	60.5		
492	12		${ }_{43}^{2}$	San	78	67.5	62.5	D．
493	12	Fisher＇s Island Sound，botween Sea－Flower and Horbc－Shoo Reefo．						
$\begin{aligned} & 404 \\ & 405 \end{aligned}$	12	．．．do	${ }_{6}^{4}$	Sand，gravel Fimesand and mud．	75	67	64.5	1.
		Fisher＇s Islami Sound，W．of Sea－ Hower Jeef beacon．			72	67	64.5	
408	12	Fisher＇s Inland Sotnd，W．of Sca Flower Reof boacon about 1 mile．	15		72	65	04	D．
407	13	Block Island Sound，Montank	15.2	Fine and and gravel．	74	05	64	D．
408	13	Point Lights She aboutumiles． Blook Island Sound，Montauk Point Light SSE．about Gg	9		71			
409	13	miles． Block Isinnd Sound，Montank Point Light SSE．about 7t	64	Coarse sand and rooky．	72	65	04	D．
500	13	Block Islaud Sound，Montruls Point Light S．by E． 43 miles．	19	Fine sand． Sand，shells \qquad	72	60	63.5	D．
501	13	Block Ibland Sound，Montank Point light S．by W．about 3 miles．	20－8					
502	13	Blook Island Sound，Montauk Point Light SSW．about 2d	8	Stony ．．．．．．．．．．．．．	72.5	65	65	D．
503	13	Off Montank Point，Light－House WSW．about 2 miles．	71	Rocky	72	05	$\text { 64. } 5$	D.
504	13		71	．．．．do ．．．．．．．．．．．．．	72	65	64.5	D．
505	14	W．about 2 miles． Fisher＇s Island Sound，be－ tweenEalyrass Iight－Shipand White kook．	51	Sand，grarel ．．．．．．			04.5	D．
508	14	Fisher＇s Islind Sound，about 1 mile E．by N．from Lelgrass Light－Ship．	6	．．．do ．．．．．．．．．．．．．．．．	07		．．．．	T．
	14		\checkmark	Sand．．．．．．．．．．．．．．．．	67			
507		Figher＇s Iblam Sound，Stoning－ ton Light NJ． 3 E．about1milo．					．．．．	
609	14	Fisher＇s Islaud sound，Eelgrass Light－Sliip WNW．$\frac{a}{2}$ mille． Figher＇s Island Sound．Eelgrass Light－Ship N W．by W．about z milo．	514	Rocky	67	67	63	
	17		7		69.5			D．
	17							
510	17	Fisher＇s Island Sound，Eelgrass Light－Ship W N W． 1 milo． Fishor＇s Island Sound，Nelgrass Light－Skip W．by N．about is miles．	Ot－34	Sand，rocky	09.5	07	03	D． Tın
511	17		51	Hard，rooky	69	．	．．．．	
512	17	Fisher＇s Island Sound，Stoning－ ton Light ENE．about 1 talles．	4	Sand	69	5	00.5	D．
	17				70	07	63	D．
518		Fisher＇s Island Sound，Eelgrass Light－Ship W．d N．aboutimile．	7	Hard，stonos ．．．．．．．		00.		
614	17	Fiaher＇s Islund sound，Delgrass Light－Ship E．about 1 mifo．	71	Sand．	70	． 5	63	
515			20		71	66	47.5	
810		W．about o milcs．		．．．．do		67.5	45.5	
810	18	Off Block Island，Montank Point NW．byW．\ddagger W．about 11 miles．	25	Sand，shells ．．．．．．．	70			D．
517	8		$\begin{aligned} & 231 \\ & 231 \\ & 103 \end{aligned}$		－ 70			
518	18	ㅈ．．do		Sand，atones ．．．．．．	． 1.	67		
618	18	Of Blook Island，Ohd Harbor Point，Block Island N． 5 milea						

STATIONS FOR 1874－Continued．

$\begin{aligned} & \text { 呙 } \\ & \text { 曾 } \\ & \text { 蒠 } \end{aligned}$	Date．	Locality．		Nature of bottom．	Temporatures．			厚	
					耍	总	具		
520	$\begin{array}{r} \text { 1874. } \\ \text { Aug. } 18 \end{array}$	Off Block Island；Old Harbor Point，Block Island，N． 5 miles Off New Shoreham，Block Islanc	11	Sand，stones ．．．．．．	70			D．	
			14	Gravel，atones	70	$\begin{gathered} 006 \\ 000.5 \\ 0 \end{gathered}$	57．5	D．	
522			14		70 73 70				
3		ợ Block İland，New Shoroham NW．by N．about 0 miles． Of 13lock Island，New Shoreham NNT．							
524	19		141	Coarse mand ．．．．．．	73	60	50.5	D．	
5	19		142	Gravel． Sand，gravel ．．．．．．．	$\frac{60.5}{75}$	$\begin{aligned} & 06.5 \\ & 67.5 \end{aligned}$	${ }_{54.5}^{53}$		
5		SE．from Point Judith，Rhodo Island，about 4 miles．							
7	10	5．from Point Judith，Rhode Isl－		Stones．．		60.5	61		
8	19		4	Rocks， 89	76	． 07.5	03		
	19	Nicland，about 3 mil	81	Sand，gra					
52									
0	1021		10\％${ }_{21}$	Stones，gravel．．．．． Sand．	80		136.5		
631		iblock ksland Sound，Watch iiiil Litht N．\ddagger E．，distant 3 niles．Block Island Sound，SW． Z S．of No． 531 ，distant $\frac{1}{2}$ mile． Block Islnind Sound，WSW．of No． 631, distant f mile． Block 1 sland Sounch about S． 7 E． of enst point of Fishor＇s Ifland							
2	1		20	．．．．do ．．．．．．．．．．．．．	80	67． 25		T．	
533			170	do	70.5	67.			
53	21				78	60.5	63.5	D．	
	21								
53		Block Imand Sonnd，east ond of Fiahor＇s Island N．by E．about	193	Sand	78	67	57.5		
530	24	Forl Pond Bay，esat end of Long	7	Mud．．．．．．．．．．．．．．	70	73.5	65.5	D．T．	
537	24		6	Sand，gravel ．．．．．．		07.5			
538	24	OHf Fort Pon		Sand		65.5	D．	
	24	Point，Longy İland．Napeague Bay，east ond of LonfIsland．	$5-8$	．．．．do ．．．．．．．．．．．．．					
530						$\ldots .$		D．	
0	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	ibock Inland Snund，Race Point N．nbout 1 d milo． Fisy liarbor，weat ond of Tisher＇s island． Of west ond of Flisher＇s Islund， lace Point about S ．，distant \ddagger mile．	${ }_{4}^{6-7}$	\＃itony ．．．．．．．．．．．．．．．．．	$\begin{aligned} & 70.5 \\ & 70 \end{aligned}$	60			
542	25		4	Sand		0.5	6.5		
543	25		71	Mruc	70	05.5	64.5		
544	25.	Off west end of Fisher＇s Island， Race Point SSE． 1 milo．	81	Fino 8					
	25	buey．	51	Rock					
			$7{ }^{\text {7 }}$	Hard ．．	74.5	65.5	05		
	25								
561548548	25		${ }_{14}^{14}$	…do ．．．．．．．．．．．．．．．					
		Fibhor＇s İland Sound，ESE． from houso on Kam Island． Of Niantio Bay，Connecticut， of Niantio Iray Connecticut， hetweon Blacli P＇oiut and T＇ro－ Trao Islaud．			70.5				
	27		6	Sand．．．．．．．．．．．．．		65	64		
50			5			．．．．			
	$\begin{aligned} & 27 \\ & 27 \\ & 27 \end{aligned}$								
${ }_{5} 53$		İ．ing Ioland Sound，ofr saybrook	516878	．．．do do ．．．．．．．．．．．．．．．	－				
	27	Long Island Sound，Plum Ialand Light SE．by E． 3 miles．	22	Gravel．．．．．．．．．．．．		${ }_{80} 6$	$\begin{aligned} & 05 \\ & 65 \end{aligned}$		
4									
85				，					
	30	Off Cox Ledge ESE，from Block	20	Rocky					
		（The shallowest part of Cox Ledge lies in abont $41^{\circ} 11 b^{\prime} \mathrm{N}$. Lat．and $710^{0} 02^{\prime}$ W．Long．）							
	30	Off Cor Lodgo．	${ }_{21}^{21}$	Sand，rocks	67	62	5		
	30 30								

STATIONS FOR 1874-Conoluded.

(There are no numbers 581-600.)
STATIONS FOR 1875.

S. Mis. $90-57$

STATIONS FOR 1875－Continued．

	Date．	Locallty．		Nature of bottom．	Temperatures．			㵄
					$\stackrel{H}{4}$	$\begin{aligned} & \dot{\ddot{0}} \\ & \text { H } \\ & \text { 欯 } \end{aligned}$	$\begin{gathered} \text { 苞 } \\ \text { ざ } \end{gathered}$	
021	$\text { July } 20$	Vineyard Sound，Cuttyhnnk Light NW．by N． 34 miles， Sow and Pigy Light－Ship	10	Пard ．．．．．．．．．．．．．．	－	0	－	1．
022	20	Vineyard Sound，Cuttyhunk Light N． 17 miles，Sow and Pige Light－Ship W．by N．	10					D．
023	20							P．
624	20	Vineyard Sound，Monomsha Bight．						1.
625	21	Nantucket Sound；Onk Bluffs Hetel W．by S．．W．eud of Squash Meadow E．by N．	5	Sand．				D．
026	21	Nantucket Sound，between Oak Bluifs and Squash Meadow．	0	．．do				D．
627	21		a	．．．do				＇r．
628	21	Nantacket Sound，Oak Blutfs NW．，Cano Pogo SE．by E ．	5	．do				T．
629	21	Nantucket Sound，about samo as 628.	52	．．do				＇I．
${ }_{631}^{630}$	21		10．	-r.do	76	60	68.5	$\underset{\sim}{\text { D }}$
631 632	20	Night－Ship E．by＇s．क mile． NantucketSound，close to Cross－ Rip Light－Sbip．	$1{ }^{1}$	$\begin{aligned} & \text { Sand } \\ & \text { Bhulls. } \end{aligned}$	70	69	69	D．
633	20	Nantuoket Sound，Cross－Rip Light－Ship W．by S．$\frac{3}{}$ milo．	12	Sand，gravel．	70	69	69	D．
634	20	Nantucket Soand．Cross－1ifp Light－Ship WNW．about 1 milo．	10	．．．do	70	69	69	D．
635	20	Nantucket Sound，Brant Point Light，Nantucket，S．by E． 4 miles．	71	Maddy sand ．．．．．．	70	71	69.5	D．
636	20	Nantucket Sound，Leant Point Light SSE． $2 \downarrow$ miles．	8	Mud	70			D．
637	28	Nantucket Sionals，Snnkoty Head Light west，distant 10 miles．	16	Sand，Bhells		50	58	D．
638	28	Nautucket Shoals，about same as 037.	151	．．．．do		59	58	T．
639	28	Nantucket Shoals．Sankoty Ifead Light westabouto miles．	14	Sand		60	50	D．
640	28	Nantucket Shoals（a littlo S．of 0307）．	11	Sand，shells		co	59	D．
641	Aug． 4	Buzzard＇s Bay，Woopecket buoy W．by S．z milo．	7	．．．．do	75			D．
642 643	4	Buzzard＇s Bay ．．．．．．．．．．．．．．．．．．．	8 5	Hintil		${ }_{69}^{68}$	67 69	${ }_{\text {1 }}{ }_{1}$
－643	4	$\begin{aligned} & \text {........do } \\ & \text { - } \end{aligned}$	5	Sand,	75	${ }_{60}^{69}$	${ }_{69}^{69}$	${ }_{\text {D }} \mathrm{D}$.
645	4	Buzzard＇s Bay buoy No． 8 off Scragey Neck NE．mile．	0	Sand，blells				D．
640	4	Duzzard＇s liay，of Cataunot Harbor．	0	Sand．	75			T．
647	4		do	75			$\stackrel{\text { T．}}{ }$
648 649	4	Vineyard Sound，Tio．．．．．．．．．．．．．．．．．．	10	75			$\underset{\sim}{\mathrm{D}}$ ．
649	5	Vineyard sound，Tarpaulin Covo Light N． 1 mile． do	10 18	Har	71 71	68	07	D．
651	5	Buzzardes Bay，z milo N ．of Penikeso．	10	Sand．		65	G4	D．
652	5	．．．．do	10	Mrido．．．．．．．．．．．．．				D．
653	5	Buzzard＇s liay	$\begin{aligned} & 81 \\ & 01 \end{aligned}$		71	68	00	D．
654	5	．．．．do ${ }^{\text {do }}$ do	${ }^{01} 0^{18}$	Soft mul ${ }_{\text {Sand，mad }}$				1.
6050	5	．．．．do	8	Mud．	71	08.5	68	D．
657	5	－1．0		\ldots ．．do ．．．．．．．．．．．．．	71			D．
658	10	About i mile off Gay l	9	Gravol．．．．．．．．．．．．．				D．
${ }_{609}^{659}$	10	．．．．．．．do	9 9	Hard	73	66 66	${ }_{64}^{64}$	D．
661	10	About is niles on Gay Hend．．．	13	Shell ${ }_{\text {c }}$ ．．．．．．．．．．．．．．．		07	05	D．
683	10	Vineyard sound ．．．．．．．．．．．．．．．	10	Sand．．．．．．．．．．．．．．				＇1．
063	10	Vineyard Sound，off Jarpaulin Cove．	$14 \frac{}{2}$	Hard		68	68	D．
${ }_{604}^{665}$	10	．．．．．do ．．．．．．．．．．．．．．．．．．．．．．．．．．．	$1{ }_{13}^{10}$	HarL		67.5 67.5	66.5	D．

6TATIONS FOR 1875-Continned.

STATIONS FOR 1875-Continued.

STATIONS FOR 1875－Conoluded．

$\begin{aligned} & \text { 品 } \\ & \text { 麀 } \\ & \text { O } \end{aligned}$		Locality．		Natare of bottom．	Temporatares．			．星
	Date．				安	免	宕	
763	$\begin{gathered} 1875 . \\ \text { Sept. } 20 \end{gathered}$	Off Southwest Ledgo，is milo W． of 762.	17	Gravel，sand ．．．．．．．	$0{ }^{\circ}$		0_{0}°	D．
704	20	Off Southwest Ledge，it mile S ． of 78.					00	D．
785	20	Off Southwest Ledge，$\frac{7}{2}$ mile W． of 76 ．	17	Sand，gravel ．．．．．．			0	D．
760	20	On Southwest Lodge，$\frac{1}{3}$ mile NW． of 765.	17	．do ．．．．．．．．．．．．．．			∞	
$7 \mathrm{C7}$	20	Off Southwest Ledge，if miles W．of No． 782.	18	Sand．．．．．．．．．．．．．．．		－	01	D. $\mathrm{D} .$
$7(18$ 761	20 20	9 miles SW．of Gay Hoad．．．．．．．．	20	．do ．．．．．．．．．．．．．．．．	04		01	$\stackrel{\mathrm{D}}{\mathrm{D}}$

STATIONS FOR 1877，1878，AND 1879，WITH HEADQUARTERS AT SALEM， mass．，halifax，N．S．，Gloucester and provincerown，mass．

During these three years the dredgings were carried on from the U．S．Str．Speedwell，commanded in 1877 by Lieut．Commander A．G．Kel－ logg ，in 1878 by Lient．Commander L．A．Beardslee，and in 1879 by Lieut． Z．L．Tanner．In 1877，headquarters were first established at Salem， and the stations made from there covered the northern part of Massachu－ setts Bay，and portions of the Gulf of Maine，off Cape Ann．During the session of the commission of arbitration on the fishery claims，how－ ever，the headquarters were removed to Halifax，N．S．，and dredgings were made in the waters off that coast，from the last of August to the first of October．The Speedwell also made a line of statious on her trip across the Gulf of Maine，from Cape Ann to Cape Sable，N．S．In 1878， with headquarters at Gloucester，Mass．，the area dredged over included the northern and central parts of Massachusetts Bay，and the Gulf of Maine，off Cape Ann．In 1879，the dredging grounds were the southern part of Massachusetts Bay，and the Gulf of Maine，off Cape Cod．The bottom temperatures in 1877 were mostly taken with Miller－Casella Eelf－registering，deep－sea thermometers，but in 1878 and 1879 Negretti－ Zambra thermomoters were used for that purpose．All the tempera－ tures for 1879 were taken with more than usual care，the thermometers employed being frequently compared with a reliable standard．

DREDGINGS BY SPEEDWET工, 1877.

DREDGINGS BY SPEEDWELL, 1878.

DREDGINGS BY SPEEDWELT，1878－Continued．

	$\begin{aligned} & \text { 䔡 } \\ & \text { 品 } \\ & \text { 总 } \\ & \text { H } \end{aligned}$		B䔍HH		Locality．	血	Nature of bottom．	Temperatares．				
		免				嚅		号	总	空		
		${ }^{1878}$	－＇	－＇，	Th：tcher＇s Island NE．\quad N． 63 miles，Eastern Point N． 1 E． 22 miles，Baker＇s Island W．$\frac{7}{2} \mathrm{~N} .5 \frac{1}{2}$ miles， 1 mile NW．of No． 133		Pebblcs and coarso sand．．	$\begin{gathered} \circ \\ 68 \end{gathered}$	$\stackrel{0}{0}$	\bigcirc	D．	
	135	July 20	42332	70 383			Stony and gravellj．．．．．．．．	70	$58 \frac{1}{4}$	40.		
					Islanil NE． 1 N． 53 milles， 2 miles N．of No． 133.				．．．．．．	40		
	${ }_{135} 13$	do			About same as No．135．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	± 25		72			D． 1）and T ，	
	137	July 29	42	70		63	Rocks，drifting into soft mud．	T0	6	3－7．		
	138		4233								T．	
					N． 166 miles．		Muddy．．．．．．．．．．．．．．．．．．．．．．．			．．．．		
	139	．．．do				$\begin{aligned} & 59 \\ & 38 \end{aligned}$	．．．．．．do ．．．．．．．．．．．．．．．．．．．	C_{7}				
	140	do	4234	$70 \quad 32$	Eastern Point W．by N． 6 N． 6 miles，Thatcher＇s Island N． by W． 4 W． 47 miles．			Ca	69%	40		
	141	Ang． 1			Gloncester Harbor，Eastern Point Light ESE．，Norman＇s	81	Sandy ．．．．．．．．．．．．．．．．．．．．．	63	$57 \frac{1}{2}$	44t	D．	
	142				About as last．．．	9		$\cdots \cdots$	．．．．．	50		
	143	\ldots ．．．do			．．．．．．do．．．							
	144	．．．do			do ．．	8		63	56.7	51	$\stackrel{T}{\mathbf{T}} \mathbf{D}$	
	145	do			Gloucester Harbor，between hound hock and Ten Powd ssland Ledge．	8	Sa			01	T	
	146	Ang． 1			A bout samo as No． 145 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．				369	421	$\stackrel{\text { T．}}{\text { D }}$	
	147	Aug． 3	4233	70 41：	Eastern Point Light NE．by E．\％N． 24 miles，Baker＇s Island W． 4 miles．	16	Gravel，stones，broken shells．	67				
	148	．．．do			A mile S．by W．from No． $147 \ldots \ldots \ldots$	${ }_{*}^{16}$	Stony Sand and gravel	$\begin{aligned} & 60 \\ & 66 \end{aligned}$	61i¢	42.	$\mathrm{D} .$	
	149	．．．do			Δ bott 2 miles SSW．of No． 1488 ，Eastern Point NW．${ }^{\text {G }}$ N．							
	150	do				72	Sand and mad．．．．．．．．．．．．．	70	61	514	T．	
					between it and Eastern Point Light．				．．．．．．．．．．．．．．			
	151	．．do			A bout the same ground ．．．．．．．．．．．．．．．．．．．．．．	7－10	do	．．．．．．．			T．	
	152	． C do			About the same groand，just off Fresh Water Cor．							
	$153{ }^{2}$	Aug． 8			Eastern Point Light SW． 2 miles，（on schr．Hattio）．．．．．．．．．．	17	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	\bigcirc	$\begin{gathered} \dddot{63} \\ 64 y \end{gathered}$	${ }^{4} 9$	D．	
	154	Aug． 15	4235	7031	Thatcher＇s Island NW． 7 N． 46 miles，Eastern Point W．${ }^{\text {a }}$	38	Muddy			41\％		
	155	．．do	4235	$70 \quad 30$	i nile ESE．of No．154，Thatcher＇s Island NW． 1 W． 5	45		$\begin{aligned} & 70 \frac{1}{2} \\ & 73 \end{aligned}$				
	156				A miles，Eastern Point	42			$\left\lvert\, \begin{aligned} & \text { cst } \\ & x_{2} \end{aligned}\right.$	$\begin{aligned} & 413 \\ & 423 \end{aligned}$	$\frac{T}{D}$	
	155				$\frac{A}{2}$ milo F ．of last pla		San					

DREDGINGS BY SPEEDWELL, 1888-Continued.

DREDGINGS BY SPEEDTELL, 1870.

	Sand and gravel	${ }_{70}^{725}$	${ }^{612}$		D.
31	退	70. 7	65.4	39	T.
$35 \frac{1}{2}$,	Green mud	69	68	39	D.
37	do	71	67	30.	D.
474	do	68	67!	38.	T.
33	Fino blue sand and shells.	72	07.3	385	T.
45	Fine gray mand	693	688	38	T.
31do	72	6334	38	D.
30do		64°	40	T.
29	Blue mud, fine sand	69	65	41	D.
27	Green mud	60	651	394	D.
26do	661	66	89	T.
26	.do	67	65^{2}	393	R.D.
26	do	$68 \frac{1}{2}$	65	89	I).
22	Fine sanil.	69	65	391	T.
16	Fine brown sand	64	$61 \frac{1}{2}$	55.4 (?)	D.
20	Irown sand and pebbles..	68	59	44	D.
21	Fine brown sand...........	66	61%	45	T.
20	Srown sand and pebbles..	68	61%	45	T.
27	Soft brown mud	66	60	42.2	D. and R.D.
124	Fine brown mad.	68	60	41	D.
122	Soft brown mud	71	614	41	T.
122do	$75 \frac{1}{2}$	$61 \frac{1}{2}$	41	T.
118do	69	01	41	T.
30	Blue mud	63	61	41	T.
31	Blue mud and fine sand...	65	$61 \frac{1}{6}$	43.3	T.
26	Fine sand and broken shells.	64	018	41	D.
27	Fine gollow sand.	66	608	401	T.
21	Blue niad, fine sand.......	63	601	474	D.
16	-...do do..................	613	61.3	49	R. ${ }^{\text {P }}$
15	Mad and sand	65	62	50	12. D.
15	Bluo mad.	64	61	501	R. D.
10	Coarso sand...............	67	613	61	R D.
6	Coarso Band and gravel ...	60	633	56	T.
8 do	69	62	63	D.
25	Blue mnd	59	60	448	D.
28 do	61	61.	44	T.
263	.. do	60	${ }^{601}$	44	T.
29	Fine gray sand	631	61	44	R.D.
291d0	65	61	44	T.
67	Speckled sand, broken shells.	68	60	408	D.
60	Speckled sand	671	58	COH_{3}	L.

DREDGINGS BY SPEEDWELL，1879－Continaed．

				$\begin{aligned} & \text { 邑 } \\ & \text { 总 } \\ & \text { 品 } \\ & \text { H } \end{aligned}$	Iocality．		Nature of bottom．	Temperatures．			
		$\begin{aligned} & \text { Si } \\ & \text { ค } \end{aligned}$						\dot{y}	$\begin{aligned} & \dot{\ddot{0}} \\ & \text { 岗 } \\ & \text {. } \end{aligned}$		
		1879.	－，	$\bigcirc \cdot$				－	－	－	
	324	Sept． 1	42122		Off Cape Cod，Cape Cod Light S． $2^{\circ} \mathrm{W} .11$ milos．．．．．．．．．．．．	45	Coarse sand，black specks，	67	61	40%	T．
	325		$\begin{array}{ll} 42 & 34 \\ 1 \end{array}$		Off Cape Cod，Cape Cod Light S． 80 W． 13 milcs．	83	broken sbells．	67	61	404	
	326	$\left.\left\lvert\, \begin{array}{cc} \cdots \text { do } & \cdots \\ \hdashline \text { Sont } \end{array}\right.\right]$		$\begin{array}{ll} 70 & 02 \\ 70 \\ 70 \end{array}$	©ft Cape Cod，Cape Cod Light S． 4° W． 124 miles．．．．．．．．．．．．．．			70	598	$40 \frac{1}{2}$	Ag．T．
	327	Sept． 6	4211	70 123．	S．end Stellwagen＇s Bank，Race Point Lisht S． 11° W． riles．	17	Coarse sand，black specks．	614	60	$44 \frac{1}{4}$	${ }_{\text {D }}^{\text {D．}}$ ．${ }^{\text {c }}$
	336	．．do	$42 \quad 10$	\％0 13	Orrs．end Stellwagen＇s Bant，Race Point Light S． $11^{\circ} \mathrm{W} .6 \mathrm{t}$	23	．do	72	6012	42	O．T．
	320	．do	4202	f3 12		26	Fino bromn sand，pebbles．	671	00	42	R．D．
	330	do	42004	7313	Ofises． nild Stcluragen＇s Lank，Race Point Lioht S． 80 W .0	20	．${ }^{\text {d }}$	63	60	42	T．
	331	do	42093	\％ 14	Cfils．ond Stellwagen＇s Lank，Race Point Light S． 20 TV． $5 \frac{1}{3}$	28	Fiue bromn sand，black	67	$60 \pm$	418	T．
	332	do	42 m	7015	Off Siles．ead Stellmagen＇s Bank，Hace Point Light S．Cose． $5 \frac{1}{4}$	28	sjectis． Fine brown sand，chells．	T0	01	42	T．
	333		49 08t		miles．Stellmagen＇s Bank，Raco Point Limet S． 180 E． 54			7	1	484	R D．
	333		42088		Of S．end Steinkagen＇s Bank，Raco Point Light S． $18^{\circ} \mathrm{E} .5 t$	27		71	C1	4．4	I．D．
	334	da	$42 \mathrm{C84}$	7018	Off S．end Stellmagen＇s Lank，race Point Light S． 28° E． $5 \frac{1}{4}$	27	Fine jellow sand	74	61 ${ }^{\frac{1}{4}}$	42	$\boldsymbol{A}_{\mathbf{G} .} \mathbf{T}$
	335	Sept． 9	41588	70 343	Off Plymouth，Gurnet Point Light N． 300 W .13 miles ．．．．．．	7	Grcen mud，sand，with	C3	$61{ }_{\frac{1}{3}}$	55	D．
	336			$70 \quad 33$	Off Plsmouth，Gurnet Point Light N． $40{ }^{\circ} \mathrm{W} .23$ milles ．．．．．．		derd cel．grass．				
	336				Or Plsmouth，Gurnet Point Light N． 400 W． 23 cides ．．．．．．		brown sand，specas，cel－ grass．	69	613	50	T．
	337	$\ldots \mathrm{do}$	41 577 41 57 1	$70 \quad 301$	Off Plymoath，Gurnet Point Light N． 580 W． 4 it miles	16	Green mud and sand．．．．．．	70			
	3338	．do	41 574 41 54 1	$\begin{array}{ll} 70 & 28 \\ 70 & 28 \end{array}$	Off Plywouth，Granet Point Light N． 66° W．Git miles ．．．．．	18	Saud，blue tuith．	71	632	497	T．
	330		4154	7028	Cape Cod Bay，Manomet Point $\mathrm{N} .67^{\circ} \mathrm{W} .3 \frac{1}{9}$ miles，3ì miles S．of No． 338.	15 H	Mud and saud	75	63	$47 \frac{1}{4}$	T．
	340	．．．do	41	70 27t	Cape Cod Bas，Manomet Point X． $835 \mathrm{~W} . \mathrm{G}$ miles		Fromb sand and mu	60． 2	63	493	D．
	341			$70 \quad 21 \pm$	Capue Cod Pay，Manomet Point N． 6850 W． 9 miles ．．．．．．．．．．．．．	15，	Grem mud，sand．．．		$6{ }^{6} 18$	488	T．
	342	Sept． 10	42 16 42 17 4	$\begin{array}{ll} 69 & 56 \\ 69 & 51 \end{array}$	Of Cape Cod，Cape Cod Light S． $2: 3 \mathrm{~W} .14$ miles．．．．．．．．．．．．．．．．． Oft cape Cod Cape Cod List $5.33^{\circ} \mathrm{W}$ ． 173 miles	${ }_{16}^{94}$	Bromin mud．．．．．	${ }_{63}^{6 ; 15}$	581	411	T．
	343 344		42 42 42 17	$\begin{array}{lll} 69 & 51 \\ 69 & 4 \\ \hline 1 \end{array}$	Of Cape Cod，cape Cod Light S． $33^{\circ} \mathrm{W}$ ． 17 miles \ldots.	1116	．${ }^{\text {do }}$	${ }_{64}^{63}$	57 574	$41{ }^{41}$	T．
					on original chart）．						：
	345	Sept 13	42 193 42 4 16 1	$\begin{array}{ll}70 & 45 \\ 70\end{array}$	Of Boston Harbor，Mrinot＇s Ledge Light S． 31 mailes ．．	10	Speckied sand and shells．－		${ }^{61}{ }^{\text {P }}$		D．
	347	…do．．．．	42121	70 332	Maseachusette Bas，Minot＇s Ledige Light N． $66^{\circ} \mathrm{V} .9$ miles．		Spectiled sand．		613°		T．
	348	－．do．．．．	12094		Massarhasetts Lay，Standish Monament（near Darbars） N． $2: 0$ W． 10 miles．		Gravel and mand		62.4	$46{ }^{4}$	D．

${ }_{36}^{26}$	Sand snd mud Blto mad	$\frac{65}{724}$	611^{8}		$\text { o. } \begin{aligned} & \text { o. } \\ & \hline . \end{aligned}$
30	-.... do .	67	$02{ }^{2}$	42	$\Delta \mathrm{g} . \mathrm{T}$.
103	Sand and graral	011	64	623	
14	Green mud	${ }^{61}$	${ }^{63}{ }^{3}{ }^{3}$	$49 \frac{1}{4}$	T.
7	Coarse ycllow hand	764	$6{ }^{6} \frac{1}{2}$	62	D.
7	Fine sand, pebbles	${ }^{66}$	${ }_{64}^{64}$	618	D.
$7 \frac{1}{6}$		65	${ }^{651)^{3}}$	${ }^{64}$	T.
15	Pluo mad	65	${ }_{5}^{648}$	483	${ }_{\text {T }}^{\text {T }}$
105	Green mad	67	583		D.
108	Gray mud	65	588		T.
103do	62	58.		${ }_{\text {T }}$
108	Mo..do do.......	${ }^{6}-6$	59.		
108	Mud fine grarel	${ }^{66}$	598		$\underset{T}{\text { D }}$
70	Hard sand, broken shells .	${ }_{6}^{65}$	${ }^{60}$		T.
11^{3}	Coarse band Fine sand.	${ }_{6}^{63}$	61		T.
12		6313	61.		D.
15	Coarse sand, gravel	63	${ }^{612}$		D.
18do	64	61		T.
18	Speckled sand	61	573		T.
342	Coarse speckled sand.....	${ }^{66}$	${ }^{61 \frac{1}{2}}$		T.
70	Sand and pebbles	${ }_{58}^{618}$	59		T.
42	Fine gray sand, black specks.	58	54	44	T.
46	Fine sand, broken shells .	61	543	43	T.
46	Coarso sand	59 59 59	54 54	451	T.
46 94	Brown mud...................	58	5	4318	D.
96do				D.

DREDGing stations of tele U. S. Fise COMmission STEAMER FISH HAWK, LIEU'. Z. I. TANNER COMMAND. LNG, FOR 18s0, 1881, AND 1882, WITH TEMPERATURE AND OTHER OBSERVATIONS.

[Arrangod for publication by Richard Rathbun.〕

In the summer of 1880 , the headquarters of the United States Fish Commission were established at Newport, R. I., and the steamer Fish Hawk, then newly constructed, made its dredging and trawling trips from there, whenever the weather permitted. The field of explorations for the summer included Narragansett Bay, Sakonnet River, and the regions to the north ward, eastward, and southward of Block Island. In September and the first part of October, three trips were made by the Fish Hawk to the inner edge of the Gulf Stream slope, between latitudes $40^{\circ} 05^{\prime} 42^{\prime \prime} \mathrm{N}$. and $39^{\circ} 40^{\prime} \mathrm{N}$., and longitudes $70^{\circ} 22^{\prime} 06^{\prime \prime} \mathrm{W}$. and $71^{\circ} 10^{\prime} \mathrm{W}$., in depths of 64 to 487 fathoms, resulting in the discovery of a new and exceedingly rich fauna, both as regards fish and marine invertebrates. On her passage to Washington in November, the Fish Hawk also trawled off the mouth of Chesapeake Bay, in depths of 18 to 300 fathoms.
During the summers of 1881 and 1882 , the headquarters of the Commission were at Wood's Holl, Mass. As the shallow waters of this region had been quite fully explored by the Commission in 1871 and 1875, very little time was expended in work near land; but adrantage was taken of all pleasant weather to still further investigate the rich faunal region of the Gulf Stream slope, discovered the previous year. Seven trips wore made to this region, in 1881, between latitudes $39^{\circ} 40^{\prime} \mathrm{N}$. and $40^{\circ} 22^{\prime} \mathrm{N}$.; and longitudes $69^{\circ} 15^{\prime} \mathrm{W}$. and $71^{\circ} 32^{\prime} \mathrm{W}$., in depths of 43 to 782 fathoms. A line of dredgiugs and trawlings, at intervals of about four miles, was made from off Noman's Laud to the Gulf Strean slope, in order to connect the inshore with the offishore stations; and a few trips were also made in Vineyard Sound, Buzzard's Bay, and off Chathan, Cape Cod, on, and in the vicinity of, Crab Ledge. Cod trawl-lines were set ou most of the outside trips, for the purpose of catching fish that would not enter the beam-trawl.

In 1882, five deep-water trips, were mado to the same region, extending the area of dredgings considerably beyond its former eastern and Western limits. A few hauls of the dredge and beam-trawl were taken in Vineyard Sound, and one trip was made to the one-hundred fathom line, off the eastern side of Capo Cod. The most eastern haul on the Gulf Stream slope for 1882 , was in latitude $40^{\circ} 08^{\prime} \mathrm{N}$. and longitude 68° $45^{\prime} \mathrm{W}$.; and the most western in latitude $39^{\circ} 31^{\prime} \mathrm{N}$. and longitude 72° 00^{\prime} W.; the deepest haul was in 787 fathoms. Cod-trawls were set on two of the trips only.

916 REPORT OF COMMISSIONER OF FISH AND FISHERIES.
The temperatures of the air wero taken, in part, with a Jas. Green, in part with a Signal Service, thermometer; the temperatures of the bottom and surface waters were obtained by means of Negretti and Zambra deepsea thermometors. The bearings are all magnetic. As the bearings and latitudes and longitudes indicate only the points at which the dredge or trawl was lowered upon the bottom, the direction of the drift of the vessel and the distance gone over in dredging and trawling have been given in most cases. to show the extent of the hauls. The figures in the column of "Drift" indicate the distance of the drift in miles. The abbreviations in the column of "Apparatus used" have the following significations: D., dredge; R. D., rake-dredge; O. D., oyster-dredge; 'I., trawl; O. T., otter-trawl; B. T., Blake-trawl; Tan., tangles; C. T., cod-trawl.

The New York fishing schooner, Josie Reeves, Capt. T. M. Redmond, employed by the Fish Commission to look for the tile fish (Lopholatilus chameleonticeps) in the neighborhood of the one-hundred fathom line, south of Martha's Vineyard, made five stations in that regrion, which for convenience sake have been given numbers in the regular series from 1145 to 1149, inclusive. She used cod trawl-lines and lobster-pots.

Dredging stations of the steamer Fish Hawk for 1880，1881，and 1882—Continqed．

									Tomperatures．				些
									Air．	Surf．	Bot tom．		
	${ }^{1880}{ }^{\text {Alug．}} 16$		－＇ 1	$0 \quad 1$	Narragansett Bay： Poplar Point Lights，W．byN．， 24 miles．．			Mnd	C5．0	71.0	68.0	T．	H
801	Alig． 16	${ }_{2.15}^{12.20} \mathrm{p.m}$						．．．do	68.0	70.5	63.0	T．	－
802	Ang． 16	2.15 3.25			Haifway Rock， H ，${ }^{2}$ of tifm mile ．．．．．．．．．．．		20	Fine sandj mu	67.0	69.0	60.0	$\stackrel{1}{\mathbf{D}}$ ．	2
803	Ang． 16	3.25 $11.15 \mathrm{~g} . \mathrm{m}$.			Halfway Rock，N．by E．$\frac{1}{6}$ E．， $2 \frac{3}{8}$ miles ．． Off Nevport，R．I．（Brown＇s Ledge）： Cuttyhnok Licht NE．by E．， 8 m miles．．	NW．by W．，$\frac{1}{2}$	20	Fine sandy	68.0	600	59.0	D．	0
804 805	Aug． 17	$11.15 \mathrm{~s} . \mathrm{m}$ ．				NW．by W．，${ }_{\text {mile．}}$	113	Fine gravel				D．	0
806	Ang． 17	12.00 m			Cuttyhunk Light．E．NE．， 7 （ miles	W．SW．，mile．	14	．．．do．．	60.0	67.0	50.0	Tan．	
807	Aug． 17	$12.50 \mathrm{p} . \mathrm{m}$			Cuttyhunk Light，NE．by E．，a E．，it miles．	SW．by S．， 4 mile．	123	Fine gravel and stones	70.0	67.0	co． 0		$\underset{6}{8}$
808	A．ag． 17	1.20			Cuttrhank Light，NE．br E．$\frac{1}{2}$ E．， 8 miles． Off Newport，R．I．；SW．of Brown＇s Ledge：	SW．by S．$\frac{1}{8}$ S．，$\frac{1}{4}$ mile．	13	．do	70.0	67.0	60.0	D．	$\stackrel{6}{6}$
809	Aug． 17	1.55			Cattyhunk Light，NE．by E．， 12 miles ．．．	W．${ }^{\text {d }}$ S,$~ t$ mile．．．	$21{ }^{1}$	Fine sand	70.0	67.0	52.0	D．	$\underset{Z}{O}$
810	Ang． 17	2.15			Cattyhank Light，NE．by E．， $12 \frac{1}{2}$ miles．．． Off Newport，R．I．；W．of Brown＇s Ledge：	W．NW．，$\frac{1}{\text { d milo．}}$	21	Fine sand and grare	70.0	67.0	52.0	T．	安
811	Ang． 17	2． 20			Cuttjhunk Light，NE．by E．， $12 \frac{1}{2}$ miles ．．	SW．，${ }_{4}^{\frac{1}{4} \text { milo ．．．．．}}$	194	Fino sandy mud	69.0	67.0	53.0	D．	
812		11． 30 a ． m ．			Block Island Light，N．NW．\＆W．， 20	NW．，支 mile．．．．	282	Sand	70.0	66.0	46.0	D．	21
		11.30 a			miles．${ }^{\text {mlock }}$ Island Light N NW 4 W， 20				70.0	67.0	46.0	T．	－
813	Ang． 18	11.55			Block Island Light，N．NW． 1 W．， 20 miles．	S			70.0	67.0	48.0	I．	－
814	Ang． 18	$1.00 \mathrm{p} . \mathrm{m}$.			Block Island Light，N．NW．W．， 18 miles	SW．，$\frac{1}{4}$ mile ．．．．	27\％	Sand and	72.0	72.0	46.0	T．	尘
815	Ang． 18	2.15			Block Igland Light，N W．by N．， 17 miles ．	SW．，$\frac{1}{4}$ mile	29	Fine sane	72.0	72.0	48.0	R．D．	s
810		10.25			Narragansett Bay：${ }_{\text {Brenton＇s }}$	SE．，$\frac{1}{\text { mile }}$	$8 \frac{1}{2}$	Sand and broken	71.0	69.0	66.0	D．	E
81	Ang． 3	10.25 a．m．			miles．			d			03.0		
817	A．ug． 23	11.00			Brenton＇s Roef Light－bhip，E．I N．， 3 miles．	SE．，z mile．．．．．．	10	．．d	72.0	68.0	03.0	D．	$\underset{\sim}{2}$
818	Aug． 23	11.20			Brenton＇s Reef Light－ship，E．$\frac{1}{8}$ N．，3i	SE．，$\frac{1}{\text { ¢ mile }}$ ．${ }^{\text {c．}}$ ． ．		．do	72.0	68.0	65.0	D．	－
810	A	$1.00 \mathrm{p.m}$ ．			South end Hopo Island，SE．bs E．$\%$ E．，	W．SW．，¢ mil	6	Mud and broken shel	74.0	73.0	70.0	T．	0
	A	$1.60 \mathrm{p.m}$ ．			$\frac{1}{2}$ mile．					72.0	70.0	T．	120］
820	Ang． 23	1.40 215			South end Hope Ialannl，N．NE．，$\frac{1}{女}$ mile．．． South end Hopo Island．N．by E．，\＆mile．．	W．br S．，$\frac{1}{2}$ mile． SW．a milo．	51	...do do	78.0	$\begin{aligned} & 72.0 \\ & 72.0 \end{aligned}$	$\begin{aligned} & 70.0 \\ & 70.0 \end{aligned}$	$\underline{1}$	\％
821	Aug． 23 Aug． 23	2.15 3.00			South end Hopo Island，N．by E．，t mile．． South end Hope Islaud，NE．，$\frac{1}{8}$ mile ．．．．．	$\begin{gathered} \text { SW. i milo....... } \\ \text { W., } \end{gathered}$		C do	78.0	71.0	70.0	T．	
825	Aug． 23	3.00			North of Block Ifland：					05.0	$€ 0.0$		
823	AIg． 24	12.35			North Light of Block Island，W．$\frac{1}{2}$ S．， $1 \frac{1}{2}$ miles．	$\text { NW., } \frac{1}{2} \mathrm{mil}$							1
824	$\text { Ang. } 24$	12.50		－．．．．．．．．	Morth Light of Block Lahnd，SW．$\frac{1}{4}$ W．， 1 mile．	NW，\％milo．．．．．			174	${ }^{65.0}$	187.0	I	0

 North Light of Block Island, W. NW. I S.SW., $\frac{1}{4}$ mile . Norih Light of Block Island, W.N W. North Light of Block Island, SW. by W. North Light of Blat
Month of Sakonnet River, R.I.:
Cormorant Rock, NW'. by N., i mile
West Island, SE. by E. $\frac{1}{8}$ E., $\frac{3}{4}$ mile...
alconnet River, R. I.:
North end of Gould Island, SW. $\frac{1}{6}$ W., 350 yards
North end of Gould Island, W, 150 rands. South end of Gond Island, W, 100 rard South end of Gould 18land, W., 100 yard McCarry's Point, N. t E., $1 \frac{1}{2}$ miles. Miccarry's Point, N. $\frac{1}{2}$ E., 1 miles Black Point, NW. by W. $\frac{1}{8}$ W., 角 mile Wood's Castle, W. by N., I mile.......
Narragangett Bay:
Dnmplings, N. W. $\frac{1}{2}$ N., 300 yards.........
Goat Island Light, NE. by E. $\frac{z}{2}$ E.f mile.
Goat Island Light, E.NE. E. E. $\frac{1}{2}$ mile. North end Dyer's Island, NE. W., mile.
North end Dyer's Island, SE. E., mile.
Prudence Yight, N. $\frac{1}{8}$ W., $\frac{3}{4}$ mille......... Pradence Light, N. by E. a E., $1 \frac{1}{2}$ miles. Malf-Way Rock, N. $\frac{1}{2}$ W., 2 Fort Dumpling W W Wil Fort Dampling, $\mathrm{FE}, \frac{1}{\mathrm{o}}$., 1 milo. Fort Dumper Thil Bearver Tail Light S SW. v^{2} itmiles Beaver Tail Light SW by S., 2 miles. Beaver Tail Light, S w. 3 S., 17 miles.. Beaver Tail Light, SW. by S., gmiles. Bescer Tail Light SJ. it W., 12 miles. Beaver Tail Light W.SW. $\frac{1}{2}$ W., ó mile Bearer Tail Light, W.NW. $\frac{1}{2}$ W., $\frac{1}{3}$ mile.
Finevard Sonnd
Cattyhunk Light, N. 1 W., 3 miles Cuttyhunk Light, N. W., 3 miles.... Cattyhank Light, N. W., $\frac{8}{2}$ miles.... Cuttyhonk Light, N., 4 miles Cuttyhunk Light, N. E. E., 34 miles

Dredgint atations of the steamer Fish Hawk for 1830，1881，and 1882－Continued．

	Dato．	Hour．	Latitude N．	Longi－ tade W ．	Locality．	Drift．	$\begin{aligned} & \text { gig } \\ & \text { 番 } \\ & \text { 品 } \end{aligned}$	Nature of bottom．	Temperatures．			
									Air．	Surf．	Bot－ tom．	
	1880.		－＇									
$\begin{aligned} & 8655 \\ & 866 \end{aligned}$	Sept． Sept． 4	5． 40 am m.	$\begin{array}{llll}40 & 05 \\ 40 & \\ 40 & 05\end{array}$	$\begin{array}{lll} 70 & 23 \\ 70 & 22 & 18 \end{array}$	Off Martha＇s Vineyard	E．NE．，${ }^{\text {a }}$ ．	65	Coropact fine sand and mud．	71.0	73.0	68.	T．
	Sept． Sept．	6． 304 7.04	40 40 40	702218		NE．by E．，	65	Fine and and mad	73.0	73.0	68.5	
						E．SE．，$\frac{1}{3}$	64	Compact hard mand and	75.0	73.0	53.0	R． D ．
868	Sept． 4	8.23	400142	702230	do		162	Fineken sand and black apecks．				
869	Sept 4		400218	702306	do	N．NE．，${ }^{\text {a }}$	192	Fine sand ．．．．．．．．．．．．．．．．．．	80.0	76．0	50.0	T．
$\begin{aligned} & 870 \\ & 87 \end{aligned}$	Sept． 4	10．53	40 40 40 40 4	7023 70 70 7 23 10	do	W．brin．	155	Mrad and fine sand	80.0	77.0		T．
$\begin{aligned} & 871 \\ & 872 \end{aligned}$	Sept． 4 Sept．	${ }_{12.40} 12 \mathrm{p} . \mathrm{m}$.	400254 400539	70 70 70	do		115	Mud and fine sand	84.0	76.5	49.0	T．
	Sept． 4	$12.45 \mathrm{p} . \mathrm{m}$ ．	400539	702352	．do	NW．by $\mathrm{N} ., \frac{1}{\text { a }}$ ．．	86	Sand，grarel，shells，and spongr．	81.0	77.0	50.5	T．
$\begin{aligned} & 873 \\ & 874 \end{aligned}$	Sept． 13 Sept． 13	5.36 am. 6.26	4002 400000	70 57 70 57 7	．do	NW．by N．，${ }^{\text {N }}$ ．．．	100	Soft sticky mad ．．．．．．．．．．．．	68.0	69.5	51.0	T．
875	Sept． 13	7.51	395700	705730	．${ }^{\text {do }}$	NW．，it mile．	${ }_{125}^{85}$	\ldots ．．．do	70.0	70.0	${ }_{53}^{51.0}$	T
876	Sept． 13	8.45	$39 ¢ 700$	705000	．．do	N．，${ }^{\text {N }}$（ mile mile．．	120	．．．．do	70.0 68.0	70.0 70.0	53.0 53.0	$\stackrel{\text { T }}{\text { T }}$
877	Scpt． 13	9.40	395600	705418	do	N．NW．，$\frac{1}{2}$ mila．．	128	\cdots do	71.0	71．0 71.0	57.0	${ }_{\text {T．}}^{\text {T．}}$
$\stackrel{818}{879}$	Sept． 13	11．00	395500	705415		NW．，き mile．．．．．	1421	Mud	72.0	71.0	520	T．
888	Sept 13	${ }_{3.12}^{1.20}$ p．m．	39 39 39 49 30	705400	do	N by W．，z milo．	225	Sand	73.0	71.5	42.0	T．
881	Sept． 13	3.12 5.00	394830 394630	7054 70 74	do	W by N．，if mile．	252	Mud	74.0	715	43.0	${ }_{\text {T }} \mathrm{T}$ ．
					Aarraganselt Bay：	W．aw．，$\frac{1}{\text { milo }}$	325	．．．do ．．．．．．．．．．．．．．．．．．．．．．．．	70.0	71.0	42.0	T．
$\begin{aligned} & 882 \\ & 883 \end{aligned}$	Sept． 17 Sept． 17	$\begin{aligned} & 10.56 \mathrm{a} \mathrm{~m} . \\ & 11.35 \end{aligned}$				SW．${ }^{\frac{1}{2} \text { mile }}$	$13 \frac{1}{2}$	Mud	${ }^{68} 8$	63.0	67.0	T．
884	Sept． 17	${ }_{2} 10 \mathrm{p} . \mathrm{m}$.				SW．，${ }^{\text {a }}$ S mile	13		70.0 720	65． 0	63.5 63.5	T． R ． ．
885	Sept． 17	3.15			Gould Islund N．Ly E．z E．， 8 mile	S．，$\frac{1}{}$ mile．．．	16	Mixud and shella	71.0	63.0	65.0	O．T．
888	Sept． 21	12.49			South Light of Block Island，N．$\{$ E．， 58	N．，$\frac{1}{}$ milo	19	Shclls and coarse grav	67.0	64． 0	62.0	D．
887	Sept． 21	1.30			South Light of Block Island，N．$\frac{1}{3}$ W．， $5 \frac{3}{8}$	W．，$\frac{1}{}$ milo	19	do	67.0	64.0	02.0	T．
888	Sept． 21	2.00			South Light of Block Island，N．by E．， 6	W．，1t miles．．．．	19	．d	c8． 0	64.0	63.0	T．
889	Sept 21	3.50			South Light of Block Lsland，W．\＆S．， 5	W．SW．，$\frac{1}{8}$ mile．．	11	Hard sand and rocks．				
890	Sept． 21	4.15			miles． South Light of Block Island，W， 3 S． 47	W	11					
891												
892	Oct． 2	8． 46	334600	711000 710500	Atlantic Ocean，of Martha＇s Vineyard ．．．．．．	N．，${ }^{\text {m mile }}$ ．${ }^{\text {a }}$ ．	480 ？	Soft，brom	6.0	c7．0		T．
						N．sE．， 2 miles．．	487	Soft，brown mud and small	64.0			
884	Oct 2	${ }_{1.10}^{11.23} \mathrm{p} . \mathrm{ma}$ ．		$\begin{array}{ll}70 & 58 \\ 70 & 58 \\ 70\end{array}$		N．，${ }^{\text {N }}$	$\begin{gathered} 372 \\ 3650 \end{gathered}$		63.0	C4． G． 0	40.0 40.0	T．

里	里害	禺置落		骎	罭	8：	8	令	\％	 		禺焽

Oct． 21	3． 17	395630	7059	
Nov．J6	9． 20 am m ．	372600	741900	Atlantic Ocean，off mouth of Chesapeake Bay．
Nov． 16	10，10	372500	741800	
Nov． 16	11.25	372400	T\＄ 1700	do
Nor． 16	$1.55 \mathrm{p} . \mathrm{m}$.	372200	742900	do
Nov． 16	400	371900	744100	
Nov． 16	7.15	371000	750800	do ．．．
$\} \begin{gathered}\ldots \ldots . \\ 1881 .\end{gathered}$				Shallow water dredgings on theorster beds， off Point Lookont．Potomac Kiver，Vir． finia，by the Fish Hawk．
．July 16	4． $10 \mathrm{a} . \mathrm{m}$ ．	402200	704200	Atlantic Ocean，off Martha＇s Vinogard．．．．．．
Joly 16	5.33	402024	704130	do
Jaly 16	7.00	401618	704118	do
July 16	8.20	401300	704151	．do
July 16	0.40	400748	704354	do
July 10	10.57	400348	704554	lo
July 10	$12.27 \mathrm{p} . \mathrm{m}$ ．	400124	704600	10
July 16	1． 53	305730	704600	．${ }^{\text {do }}$
July 16	3.35	395500	704700	．．．．．do ．．．
Jaly 16	5． 24	395600	704600	do
July 20	10.47 sm m．			Vintyard Sound： Menernsua Bight；Gay Head Light，W． by S．A S．， $2 t$ miles．
Joly 20	11.30			Gay Head Light，W． S ．， 21 miles
July 20	12．35 p．m．			Off Qujck＇s Hole；Gay Head Light，S．by W． 4 程 miles
July 20	1.10			Gay Head Licht．S．by W．， 47 miles ．．．．
July 20	1.42			Off Robinson＇s Hule；Gay Head Light， SW．by S．S．，54 miles．
July 20	243			Off Lackey＇s Bay；T＇srpaulin Cove Light， W．be S．$\frac{1}{2}$ S．， 3 miles．
July 20	3． 30			
Jaly ${ }^{\text {cu }}$	4． 10			Nobska Light，W．$\frac{1}{}$ S．， $1 \ddagger$ miles． A tlantic Ocean：
Ang． 4	8.14 mm ．	394500	694445	Off Martlia＇s Vineyard．．．．．．．．．．．．．．．．．．．．．．．
Ang． 4	10．43	394630	694700	．do
Ang．	$12.45 \mathrm{p} . \mathrm{m}$ ．	394925	694900	do
Ang． 4	2.44	395100	694915	．．do ．．
Ang． 4	4.25	395300	695030	．．．．．．do
Aug． 4	5.30	395400	695130	．do
Ang． 4	7.45	400100	695600	．．．．．．do
Ang． 9	6.15 am ．	400100	711230	．．．．．do
Aug． 9	7.10	400000	711430	．．．．do

238	Soft mad．	6_{52}^{62}	65.0	420	\underline{x}
58	Sand，shells	52.0	62.0	55.0	T．
1575	Sand，mid	62.0	$6 ? .0$	48.0	T．
300	Mnd．．．．．．	60.0	62.0	44.0	T．
57，	Sand	58.0	61.0	54.0	T．
31	Sañ．	55.0	59.0	56.0	T．
18	．．．．do	53.0	60.0		T．
44	Green mud	66.0	6．3． 0	42.0	T．
40	．．．do	67.0	63.0	42.0	T．
53	． A do	70.0	66.0	42.5	T．
63	．．．．io	72.0	66.0	49.0	T．
67	．．．．do	75.0	70.0	52.0	T．
71	Green mad and sand	76.0	72.0	52.0	T．
98	Sand．．．	74.5	72.0	52.0	T．
164	．．．．do	74.5	71.0	44.5	T．
229	Sand and mad	74.0	71.0	42.0	T．
199	．．．．do	74.0	71.0	44.0	T．
11	Sand	68.0	62.0	59.0	T．
10	．do	69.0	62． 5	60.0	T．
10	do	66.0	63.0	62.0	D．
12	Sand and uhells	65.0	63.0	62.0	D．
16	．．．．do	65.0	63.0	62.0	D．
14.	Rock	67.0	66.0	66.0	D．
14	Stones	68.0	65.0	64.0	D．
9	Sand and grarel	68.0	67.0	67.0	T
783	Green mad and sand．．．．．．．．．	72.0	70.0	39.5	T．
716	Green mud ．．．．．．．．．．．．．．．．．．	78.0	71.0	39.5	T．
616	Green mud and sand，with lumps of clay．	75.0	72.0	10.5	T．
317	Green mad and sand．．．．．．．．．	80.0	72.5	42.0	T．
264	． do	78.0	73.0	470	T．
134	Hard sand and sponges	76.0	72.0	52.0	T．
79	Flard sand and mud	74.0	71.0	52.0	T．
138	．．．．do	72.0	69.0	50.0	0.
157	Mad，sand，and shells．．．．．．．	76.0	70.0	49.0	D．

TO6 SNOILVLS DNIDGG\＆G HO SLSIII

Dredging stations of the stcamer Fish Havok for 1880, 1881, and 1882-Continued.

872 073	Ang. 30	10.48 11.10	-		Chatham Lights, NW. bs W. W., 7t miles. Chatham Lights, W.NTV., $6 \frac{1}{2}$ miles	
073	Ang. 30				Chatham Lights, W.NW., 6! miles	W.SW., t mile.-
974	Ang. 30	11. 30			Chatham Lights, W. NW. W. Wh miles -	
975	Ang. 30	11.45			Chatham Lights, W. NW. W., $6 \pm$ miles -	S. SW. , mile...
976	Ang. 30	12.00 m.				W. by N., mine..e.
977	Ang. 30	$12.20 \mathrm{p} . \mathrm{mr}$.				W. by N., it mile.
978	Ang. 30	12.30			Chatham Lights, W.NW. $\frac{1}{2}$ W., 6 miles..	W. by N., $\frac{1}{8}$ mile:
979	Aug. 30	12.40 1.00			Chatham Lights, W.N.	SW., if mile.....
980	Ang. 30	1.00			miles. Chatham Lights, W.NW., 16 miles	S. $\frac{1}{6}$ W., $1 \frac{1}{8}$ miles
982	Aug. 30	2.45	4136	6935	Off Chatham, Cape Cod.	S. SW., $1 \frac{1}{2}$ miles
983	Agg. 30	3.23	4133	6932	do	S. by E., $\frac{1}{2}$ mile..
984	Aug. 30	4.07	4131	6928	Atlantic Ocean:	S. $\frac{1}{2}$ W., milo..
985	Sept. 7	$12.55 \mathrm{p} . \mathrm{m}$.	41	7049	Off Martha's Vinesard	SW. by S., 1t miles.
086	Sept. 7	2.00	4055	7048	do	S. $\frac{1}{2}$ W., 1 mile ..
987	Sept. 7	2.28	4054	704830	. do	S., $\frac{1}{2}$ mile........
988	Sept. 7	3.30	404930	7047	. do	S., $\frac{1}{2}$ mile
089	Sept. 7	4.00	4049	7047	. do	S. $\frac{7}{4}$ mile
899	Sept. 7	5.08	4044	7047 do	S. $\frac{1}{2} \mathrm{~W} ., \frac{3}{2}$ mile ..
991	Sept. 7	6.05	4039	7046	. do	S. ${ }^{\text {S }}$ W , mile.......
092	Sopt. 7	7.30	4033	7045 7044	. do	S., 各 mile........ S. 8 mile........
993	Sept. 7	8.20	4028	7044 7130	- do	S.,
994	Sept. 8	4. $50 \mathrm{z} . \mathrm{m}$.	8940 394030	7130 7131	do	W.NW., 2 miles. W.NW., $\frac{2}{2}$ mile
985 996	Sept. Sept. 8	6.32 7.35	394030 3941	$\begin{array}{llll}7131 \\ 71 & 31 & 37\end{array}$do	NW., $\frac{1}{\text { a mile }}$.
997	Sept. 8	9.03	3942	7132do	N. by V.il mile.
998	Sept. 8	10.34	3943	7132	. do ...	N., 14 miles.....
999	Sept. 8	11.48	394513	7130	. do	N. NW., z milo..
$\left.\begin{array}{l} 1000 \\ 1094 \end{array}\right\}$					(Dredgings by steamer Lnokont. Nos. 1006 to 1013, close off Gay Head; 1014 N. of Lacas Shoal, Vineyard Sound.)	
1025		$1.05 \mathrm{p} . \mathrm{m}$.	3949	7125	Atiantic Ocean: Off Martha's Vineyard	N. $\frac{1}{\text { E., }} 1$ milo...
1026	Sept. 8	2.55	395030	7123	. do	N. by E, 1 $1 \frac{1}{2}$ miles
1027	Sept. 14	7.23 sm .	4000	6919	do	N., z mile
1028	Sept. 14	9.01	3957	6917do	N. NE., ${ }^{\frac{1}{2}}$ milo..
1029	Septe 14	$12.13 \mathrm{p} . \mathrm{m}$.	395706	6916do ...	mile.
1030	Sept. 14	1.52	395830	6915	do	N. by W., $1 \frac{1}{2}$ miles.
1031	Sept. 14	2.54	8957	6919	. ${ }^{\text {o }}$	NW. by N., $1 \frac{1}{2}$ miles.
1032	Sept. 14	4.00	3956	6922	do	NW. ${ }^{\text {a }}$ mile
1033	Sept. 14	4.55	3356	6924do	N. NW. 2 miles
1034	Sept. 14	5. 55	3956	6926	. ${ }^{\text {d }}$	
1035	Sept. 14	6. 56	3957 3958	6928do	N. ${ }^{\text {N }}$ W., 1 milales
1036	Sept. 14	7.54	3958	6930	. do	N.NW.t 1 miles

Dredbing stations of the steamer Fish Hauk for 1880, 1881, and 1882-Continued.

1065	Mar．${ }^{6}$	9．003 m．		
1060	Mar． 6	9． 20		
1067	Mar． 6	9.90		
1068	Mar． 11	9． 50 am mm ．		
1069	Mar． 11	10.20		
1070	Mar． 11	10.45		
1071	Mar． 11	11.22		
1072	Mar． 11	12.00 m ．		
1073	Mar． 11	12.25 p．m．		
1074	Mar． 11	1.10		
1075	Mar． 13	9.45 mm ．		
1078	Mar． 13	10． 15		
1077	Mar． 13	10.55		
1078	Ang． 2	7.30 am m ．		
1079	Aug． 2	8.40		
1080	Aug． 2	9.40		
1081	Aug． 2	10.50		
1082	Ang． 2	11.45		
1083	Aug． 2	$12.45 \mathrm{p} . \mathrm{m}$ ．		
1084	Aug． 2	2． 20		
1085	Ang． 3	6.15 am ．		
1086	Ang． 3	7.00		
1087	Ang． 3	8． 30		
1088	Aug． 3	9． 50		
1089	A品 3	11． 10		
1090	Aag． 3	11.50		
1091	Ang． 11	5． $30 \mathrm{a} . \mathrm{m}$ ．	4003	0944
1092	Aug． 11	6． 54	3958	6942
1093	Ang． 11	8.35	3956	6945
1094	Aug． 11	10.10	3957	6947
1095	Ang． 11	11.55	395528	6947
1096	Ang． 11	1． 39 p．m．	3953	6947
1097．	Ang． 11	3.10	3954	6944
1098	Ang． 11	4.35	3953	6943
1093	Ang． 18	$11.06 \mathrm{a} . \mathrm{mb}$ ．		
1100	Ang． 18	11． 47		

E゙F゙E゙E゙E゙	संR		E	स	H		E＊		स	H	Hifisi	Hi	स゙ゼャ゙	［	4
	$\begin{aligned} & 0 \\ & \mathbf{N} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { 웅 } \end{aligned}$	$\begin{aligned} & 0 \\ & i \end{aligned}$	$\begin{aligned} & 0000 \\ & \text { Bicis } \end{aligned}$		00015000 	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.00 \\ & \text { 붕 } \end{aligned}$	－		E	$\stackrel{\sim}{4}$
	$\begin{aligned} & \text { or } \\ & \text { sis } \end{aligned}$	$\begin{aligned} & 000 \\ & \text { cioin in } \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { eis } \end{aligned}$	Ois		0	OnOOnOO 	옹	[ip	 にたた	$\begin{gathered} 0 \\ 0.0 \end{gathered}$	以 00 누ㄴㅜㅜ웅	N	¢ N
	$$	ถ்ธ்	운	$\begin{aligned} & 0 \\ & \stackrel{1}{2} \end{aligned}$	$$	Nigid io	0		$\frac{12}{\infty}$	$\stackrel{8}{8}$		$\begin{aligned} & 0 \\ & 0 \\ & \mathbf{\alpha} \end{aligned}$	000 م义゚	辰	E

Dredging sfations of the steamer Fish Havk for 1880，1881，and 1882－Continued．

首	Date．	Hoar．	Latitude N．	Longi． tade W．	Locality．			Nature of bottom．	Temperatures．				）
$\begin{gathered} 5 \\ 0 \end{gathered}$									Air．	Surf	Bot． tom．		苞
	$1882 .$		－＇＂	－ 1	Fineyard Sound：								\bigcirc
1101	$\text { Ang. } 18$	$12.15 \mathrm{p} . \mathrm{m}$.			Nobska Point Light，W．by S．1\％miles．．．	NE．， 1 mile	5	Sand，gravel，shells．．．．．．．．	78.0	72.0			ت
1102	Aug． 18	1.10			East Chop I，ight，NW．W W．， 2 m miles ．．．．	E．by S．，$\frac{1}{\text { a mile }}$	5	Coarsesand．．．．．．．．．．．．．．．．．．．．	78.0	7	71.0 69.0	T．	－
1103	Ang． 18	1.42			East Chop Light，NW．by W．， $2 \frac{1}{2}$ miles．．．	E．by S．，mile．	5	Conrse sam．．．	70.0	10.0 70.0	69.0 69.0	T．	\bigcirc
1104	Aug． 18	2.12			East Chop Light，W．NW．\％W．， 4 miles．．．	N．by W．${ }^{\text {a W }}$ W．，	$8 \frac{1}{2}$	Shells．	79.0	70.0	69.0	T．	，
1105	Ang． 18	3.00			Cape Poge Light，S．by W．， 4 miles．．．．．．．	NE．by E．E．E．，	10	Coarse sand．	80.0	72.0	71.0	T．	2
1106	Alıg． 18	3.35			Cape Poge Light，S．bs W．$\frac{1}{2}$ W．， $5 \frac{1}{2}$ miles． Atlantic Ocean：	NE．miles．${ }_{\text {N }}$	5	Sand，shells．	80.0	72.5	72.0	T．	感
1107	Aug． 22	$6.00 \mathrm{n} . \mathrm{m}$ ．	4002	7035	Off Martha＇s Vineyard．．．．．．．．．．．．．．．．．．．．．．．	NW．，I mile	116						
1108	Aug． 22	6.55	4009	703730	．．do ．．．．．．．．．．．．．．．．．．．．．	NW．， 1 mile \ldots ．．．	1101	Gray mind Gray mud，	69.5	71．0 71.0	48.0	T．	8
1109	Aug． 22	7.55	4003	7038	．do	N．NW．， 1 milo．．	109	Gray mud，ine sand．	69.5	71.0 71.0	$\begin{aligned} & 48.0 \\ & 49.0 \end{aligned}$	T．	¢
1110	Ang． 22	9.16	4002	7035	．do	N．by W．$\frac{1}{2}$ W．，	100	Green mud，fino sand	75.0	72.0	47.0	T．	\bigcirc
1111	Aug． 22	10.45	400133	7035	．do	N．NE．E．， 1	124	Fine sand．	76.0	720	47.0	T．	込
1112	Aug． 22	12． $43 \mathrm{p} . \mathrm{m}$ ．	3956	7035	． 10	milo．by N．， 1	245	Green mud，san	72.0	72.0	43.0	T．	
1113	dug． 22	1.45	3957	7037	．do	N．， 1 mile．							120
1114	Aug． 22	2.40	3958	7038	．．．．．．．．do	N．${ }^{\text {N }}$（oy W．， 1 mile	171	Green m	75.0	72.0	43.0 43.0	$\underset{T}{T}$	
1115	Alig． 22	3.28	3959	7041	．．．．．．．d．do	N．by N．，$\frac{1}{3}$ mile	171 140	Green inud，sand	74.0 75.0	72.0 72.5	43.0 45.0	$\mathrm{T} . \mathrm{D}$	管
1116	Aug． 22	4.20	3953	7044	．．．．．do	NiW．by W．， 1	144	．．．do ．．．．．．．．．．．．	77.0	72.0	46.0	＇T．	曷
1117	Ang． 22	5． 30	4002	7045	．．．．．．do	N．byte． 1 milo	83	Fine sand	78.0	72.0	48.0	T．	p
1118	Aug． 22	6． 20	4003	7045	－．．．．．do	N．NiW．，${ }^{\text {a mile．．}}$	70	．．．do ．．．．	74.0	72.0	40.0	T．	2
1119	Aug． 26	6． 32 it m ．	4008	6845	．．．．．．do	NE．$\frac{1}{}$ N．，mile．	97	Sind，broken shells	65.0	65．0	48.0	T．	E
1120	Aug． 26 Aug． 26	7.41 0.05	4005 4004	6848 6849	．．．．．do	N WV．， $1 \frac{1}{2}$ miles．．．	194	Fine sand，stones．．	69.0	65.0	43.5	T	
1129	1u9． 20	10.28	4002	6850	．．．do	Wiv．， 1 mile．．．．	234	．．．．do	65.0	65.0	41.5	T．	－
1123	Ang． 26	12.00 m ．	395945	6854	．．do	N．${ }^{\text {NW，}} 1$ monile．．	787	Fine santi，rreen mui．	70.0 70.0	67．0	40.5 39.0	$\stackrel{\text { T．}}{ }$	$\underline{2}$
1124	Aug． 26	$4.01 \mathrm{p} . \mathrm{m}$ ．	4001	6854	．do	NTF．by N．， 1 mile	640	Fine sand，green mud，lime－	65.0	65.0	30.0	$\underline{1}$	（1）
1125	Aug． 26	5.45	4003	6556	Y	NW．by W．， 1	291	stone nodules． Sand，mud．．．．．	65.0	64.0	40.0	T．	－100
1126	Ang． 28	$1.46 \mathrm{p} . \mathrm{m}$ ．			Vineyard Sound，Mcuensha Hight ： Gay Hear Light－house，w．S ${ }^{\text {a }}$ ，miles	mile．${ }_{\text {ce }}$	14	Sand，mad．	72	ce． 0	40.0	1.	－
1127	Ang． 28	2.30			Gay Mead Light－honse，W．by S．， 3 miles．	F．SE．in mile．．．	10	Giay maud muv	72．0	66． 0	63.5	T．	
1138	Aug． 28	3.10			Gay Mead Licht－honse，W． 3 S．， 27 miles．． North of Noman＇s Lind：	S．by E．，$\frac{1}{4}$ mile．．	10	Gray sami；mud	69．0	66.0	C4．0	$\stackrel{\text { T．}}{\text { D．}}$	
1129	Sept． 2	2． 00					4	Sand，stoues					
1130		2.13			Fishing Village S．${ }^{\text {d }}$ E．， $\mathrm{t}^{\text {mile }}$	NV．byN．，dmilo	4	Sand，stoue	72.0 72.0	65.0	62.0	D．	r
1131	Sept 2	2.29			Fishing Village，SE．by E．，t milo	E．by N．，z mile．d	4	．．．．do	72.0	6.0 65.0	62.0 03.0	D．	\pm

Dradging stations of the steamer Fish Havek from 1883 to 1837.

Dredging stations of the steamer Fish Hatch from 1883 to 1887-Continued.

Dredging stations of the Steamer Fish Hack from 1883 to 1887－Continued．

	Date．	Hour．	$\begin{aligned} & \text { Latitudo } \\ & \mathbf{N} . \end{aligned}$	$\begin{aligned} & \text { Longi. } \\ & \text { tude } W \text {. } \end{aligned}$	Locality．	Drift．		Nature of bottom．	Temp Air．	peratur Surf．	$\xrightarrow[\substack{\text { Bot．} \\ \text { tom．}}]{ }$	皆
1235	$\begin{aligned} & 1887 . \\ & \text { Aug. } 29 \end{aligned}$	$2.10 \mathrm{p} . \mathrm{m}$ ．	－＇＂	－＇	Vinevard smmi－Continurd． Viuevard Sound Lieht－xhip，W．by N．A．；Cutty hunk，NW．$\frac{1}{2}$ N．；Gay Hean，SE by S．S． Block Island Sound：	W．，क mile．．．．．．．．．．．．．	12 ｜	Sand，sleclls．	$\begin{gathered} \circ \\ 65.0 \\ \\ \\ \hline 65.0 \end{gathered}$	$\text { 64. } 0$	$\begin{gathered} \circ \\ 62.5 \end{gathered}$	T．
1236	Aug． 30	9.03 a m．			Gas Had Lioht，NE．br E． E．；Cut－ thank Litht，N．by E．；No Man＇s Lami，：E．WY E．$\frac{1}{4}$ E．	S．by E．，${ }^{\text {a mile．．．．．}}$ ．	191！	Hard	65.0 67.0	62.0 c4． 0	60.0 59.0	T． ＇С．
1237	Aug． 30	10.00			Gay Heallight，E．by N．Cutt Chunk， NE．by N．；No Man＇s Land，SE．by E．$\frac{8}{8} \mathrm{E}$ ．	z mile		．．．do \qquad Sand，broken slells．	67.0 65.0	64.0 01.0	59.0 61． 0	D．
1238	Aug． 30	10.45			Gay Heal Light，E．by R．$\frac{\text { g N．；Cutty．}}{}$ liunk．NF．by N．bN．；No Man＇s Lavd，ESE．	1 mile	20	Sand，broben shells． Hard．．．．．．．．．．．．．．．	65.0 65.0	61.0 62.0	01.0 01.0	D． r．
1239	Aug． 30	11.35			Hen and Clickens Light－ship，N．by E．$\frac{1}{}$ F．；Cuttyhunk，NE．；No Man＇s Land，SE．z E．	$\frac{1}{1}$ milo．	16	Hard		02.0	01.0 60.0	T．
1240	dug． 30	12.44 p．m．			Gay Heail Light．E．by S．Z S．；No Man＇s Land．SSE．$\frac{1}{8}$ E．；Vineyard Sound Light－ship，N W．$\frac{1}{2}$ W． Nantucket Sound	$\frac{1}{2}$ mile	18＊	B＇ue mud．	64.0	6.0 68.0	60.0 69.5	T．
1241	Sept． 5	$10.27 \mathrm{a} . \mathrm{m}$.			Bishopand Clerke Light－ship，E．FN．； Succonesset Ligut－ship，W．by M．z N．	ESE．，\ddagger milo．．．．．．．．．．	21 18	Sand，shells	70.0 70.0	68.0	69.5 69.0	
1212	Sept． 5	10.50			Bishopand Clerks Light－ship，E．$\frac{1}{}$ N．； Succonesset Lipht－ship．W．$\frac{1}{2}$ N．	NNW., 主 mile	18	Sand，shells \qquad Sand，shells，rocks．	70.0 70.0	68.0	69.5	D．
1243	Sept． 5	11.15			Bishop and Clerks Light－ship，E．N．； Succonesset Light ship，W．$\frac{1}{2}$ N．	N．by E．，\＆mile．．．．．．．．	151	Sand，stells，rocks．．． Sand，słells，mad．．．．	70.0	67．0	69.5	D．
1244	Sept． 5	11.54			Bishop and Clerks Light－ship．F． N N． Succonesset Light－ship，W，$\frac{1}{2}$ ．， Hyannis Light，NE．by N．$\frac{1}{2} \mathrm{~N}$.	W．by N．，i mile．．．．．		Sand，słells，mad．． Sand，shells	60.0 68.0	67．0	69.5 69.5	D． T．
1245	Sept． 5	12． 22 p p．m．			Bishop and Clerks Light－ship，E．by S．$\frac{1}{}$ S．：Collins＇Beacon，N．by W．$\frac{z}{3}$ W．；ПYaunis Iight，NE $\ddagger \hat{N}$	W．bs N．，$\frac{1}{2}$ mile．．．．．		Sand，shells do \qquad	$\begin{gathered} 68.0 \\ 68.0 \end{gathered}$	68.0 68.0	69.5 69.5	T．
1246	Sept． 5	1． 60			Succonesset Light－ship，SW．a S．； Colling Beacon，N．；Hyandis Light， NE．$\frac{1}{2}$ N．	W．by N．，古 uile ．．．．．．			68.0 67.0	68．0	53．5	T．
1247	Sept． 6	9．49 ${ }^{\text {a }}$－m．	$\begin{array}{llll}41 & 00 \\ 41 \\ 41 & 02 & 00\end{array}$	710005	Southwest of Gay Head	NE．${ }_{\text {a }}$ N．．．	26，		68.0 6.0 6.0	64．0	53.0 57.0	T
1248 1249 1	Sept． Sept． 6	$\begin{aligned} & 10.39 \\ & 11.29 \end{aligned}$	$\left\lvert\, \begin{aligned} & 410200 \\ & 4104 \\ & 41\end{aligned}\right.$	$\begin{array}{r}71 \\ 70 \\ 70 \\ \hline 0\end{array}$	do							
1250 1250 1251		${ }_{12.30}^{1.36} \mathrm{p} . \mathrm{m}$.	410600 411000	（10	．．do	do		．ado．．．．．．．．．．．．	187.4	184.0	60.0	T．

REPORT OF DREDGINGS OF. THE ALBATIROSS FOR 1883, BY LIEUT. SEATON SCHROEDER, U. S. N., NAVIGATOR.

The cruising of the Albatross during this first year of service has been included between the parallels of 35° and 45° north latitude aud the meridians of 64° and 77° west longitude. The number of days under way, the object of each trip, and the distances performed are given in the following table:

1.-Dredging and trating record, C. S. Fish Commission steamer Albatross, Lieutenant-Commander Z. L. Tanner, U. S. N., commanding, seasou of 1883.

$\begin{array}{lll}\text { Jnly } 18 & \text { 4. } 30 \text { a.m. } \\ \text { Jaly 18 } & \text { 1.22 p.m. }\end{array}$	$4.30 \mathrm{a} . \mathrm{m}$
$\mathrm{J} .22 \mathrm{p.m}$	I. 22 p. m

2.32 p .1 m Jaly 28 2. 32 ph .1 July 28
Jaly 29
July
Jun Noon.
4.20 a m.
$3.15 \mathrm{a} . \mathrm{m}$. July 30

 10.32 a m. $\begin{array}{lll}\text { July } & 30 & 5.07 \mathrm{p} . \mathrm{m} . \\ \text { Julg } 31 & 5.25 \mathrm{a} . \mathrm{m} .\end{array}$ | July 31 | $10.00 \mathrm{a} . \mathrm{m}$ |
| :--- | ---: | July 31

July

Jul \begin{tabular}{l|l}
July 31 \& Noon.

July 31 \& $215 \mathrm{p} . \mathrm{m}$

July 31 \& 2.15 p.m.

Jaly 31 \& 3.56 p. m.
\end{tabular} Jung.

Aug.
Aug. Aug
Aug
Ang Ang.
Aug.
Anc. Ang. 29
Ang. 29
Ang. 30 Ang. 30,
Aug. $30 ;$
Aug. 30 Aug. 30
Aug. :0
Aug. 31 Aug.
Aug. dug.
dug.
dug. Aug. 31
Aug. 31 Aug.
Ang. 3 Ang. 31 Sept.
Sept. Sept.
Sept.
Sept. Sept.
Sept.
Sept. Sept. Sept. 2 Sept.
Sept. Sept. 8 2084 Sep

 11,735

3.8	Do.	∞
7.5	Deep-sea trawl.	0
11	1).	
10	Do.	
10	$1)$.	
12	Do.	
9	Do.	
7	Do.	
2.5	Beam trawl.	
2.5	Do.	
2.5	Deep-sea trawl.	
2	Do.	
3	Do.	
3.5	Beam trawl.	-
4	Do.	-
3	Io.	$\xrightarrow{\prime}$
1	Io.	\boldsymbol{O}
1.4	Dredge.	
1.5	Do.	\bigcirc
1	Do.	H2
2	Deam trawl.	
1	Do.	\bullet
2	Do.	\%
1.5	Do.	d
1.5	Wo.	θ
1.5	Jo.	Ω
1 ;	Do.	-
1 ,	Do.	Z
1	Rako dredge.	Q
1.5	Do.	
2	Ijeam trawl.	6
2	Do.	$\stackrel{\square}{2}$
1.5	Grapael dredge.	-
1	Far and tangles.	$\stackrel{9}{\square}$
1	Grapuel dredge.	0
5	Beam traml.	2
2	Do.	0
4	Do.	
2	10.	
3	1)0.	
5	Do.	
2	Do.	
1.5	Do.	
1.5	Do.	
1	Do.	
1	Do.	
2.5	Do.	
4.0	Do.	
1.5	Do.	0
1.5	Do.	0
2	1 Do.	π

1．－Dredging and travoling record，U．S．Fish Commission steamer Albatross，etc．－Continued．

$\begin{aligned} & \text { 㤩 } \\ & \text { E } \\ & \text { E } \\ & \text { E } \\ & \dot{C} \end{aligned}$	Date．	Hour．	Localits．		Temperatures．				Eind of bottom．	Wind．		Drift．		Instrament used．
			Latitude north．	Longitudo west．	$\dot{\ddot{~}}$		$\begin{aligned} & \text { g } \\ & 0 \\ & \text { ث } \\ & \text { مٌ } \end{aligned}$	Depth．		$\begin{aligned} & \text { 号 } \\ & \text { 苞 } \\ & \stackrel{y}{A} \end{aligned}$				
	1863.			\bigcirc	\bigcirc	\bigcirc	\bigcirc	Fathonis．					3 Piles	
2088	St．pt． 20	12． $40 \mathrm{p} . \mathrm{m}$ ．	395915	703030	68	68	48	143	I1． s	NE．bs F．	3	S．by W．	1.5	Beam trawl．
20×9	Sept． 20	$3.13 \mathrm{p} . \mathrm{m}$ ．	395850	703940	76	69	45	168	Gy．s．	E．	3	N．	1.5	Do．
2090	Sept． 90	$4.40 \mathrm{p.m}$.	395940	704110	71	68	$48 \frac{1}{2}$	140	Gy．s．，brk．sh	ENE．	3	NE．	1.5	Do
2091	Sept． 21	5． $30 \mathrm{n} . \mathrm{m}$.	400150	705900	68	69	49	117	Gn．m	E．	3	N．	2.5	Do．
2093	Sept． 21	7.50 \％．m．	395835	710030	74	671	45	197	Gn． $\mathrm{ml}^{\text {a }}$	E．	3	NE．	2.5	Do．
2093	Sept． 21	1． $12 \mathrm{p} . \mathrm{m}$ ．	394250	710120	75	69	39	1， 000	Foraminifera，s．，m	T．	3	N．by V ．	5	Do．
2094	Scept． Ei	5.07 p．nu．	394430	710400	70	68	$38 \frac{1}{2}$	1，022	Foramivilera，s．，m	NE．	5	NNE．	5	Do．
209.5	Sept． 30	9.02 n．11．	392900	705840	71.8	691		1，342	Glob．oz．	SSW．	3	S．	2	Io．
2096	Sept． 30	2． 07 p．in．${ }^{\text {a }}$	392220	705220	70	69	371	1，451	Glob．oz．	SSW．	$\stackrel{4}{8}$	SW．	1.5	Do．
2097	Oct． 1	$5.30 \mathrm{ar} . \mathrm{m}$.	375020	705730	73	722	．．．．	1，917	Glob． 0 z．	SW．	3	S．${ }^{3} \mathrm{~W}$ ．	1.5	$1 \mathrm{Do}$.
2098	Oct． 1	1． $08 \mathrm{p} . \mathrm{m}$ ．	374030	703730	73	721		2， 221	Glob．oz．	NW．	4	W．bes．	2	Do．
2099	Oct． 2	5.30 ar ．m．	371220	693900	71	$8{ }^{8}$		2，819	Glob． 02	SE．	${ }^{6}$	SSW．	2	Do．
2100	Oct． 3	$11.05 \mathrm{a} . \mathrm{m}$ ．	392260	683430	63	69	372	1，628	Glob．oz．	WNW．	3	F．	2	Do．
2101	Oct． 3	$4.31 \mathrm{p} . \mathrm{m}$ ．	391830	682400	61	67	37	1，686	Glob． 02	WSW．	3	S．	2	Do．
2102	Nor． 5	$6.53 \mathrm{a} . \mathrm{m}$.	384400	723900	64	621	39	1，209	Glob． oz ．	Var．	0－1	SSW．	1.7	Do．
2103	Nor． 5	$11.14 \mathrm{a} . \mathrm{m}$ ．	384720	723700	67	62	39	1，091	Glob． 02	SSW．	1	SSE．	1.5	Do．
2104	Nov． 5	$3.41 \mathrm{p} . \mathrm{m}$.	384800	784030	67	63	412	091	Bı1．m．	SSF．	2	S．	0.5	Do．
2105	Nor． 6	6.06 m m.	375000	730350	63	63	41	1，395	Glob．oz．	SW：	3	S．by W．	3	Do．
2106	Nov． 6	Meridian．	374120	730320	60	63	422	1，497	Glub．oz．．．．．．．．．．．．．	SSW．	3	S．byW．		Do．
2107	Nor．？	8.23 arm ．	351930	751520	71	76		164	Fne．dk．gy．8．，small s	W．	3	S．	0.5	Do．
2108	Nor． 9	11． $60 \mathrm{a} . \mathrm{m}$ ．！	351600	750230	76	78.8	66	48	Bu．m．，cr8．s ．．．	SSW．	4	S．by WF．	0.5	Do．
2109	Nor． 9	$1.03 \mathrm{p} . \mathrm{m}$ ．	351420	745910	74	76	5013	142	13n．m．．．	SSW．	4	S．	1.	Do．
2110	Nor． 9	$2.50 \mathrm{p.m}$.	351910	345715	76	$75 \frac{1}{2}$	40	516	Bu．m	SSW．	4	S．by W．	0.8	Do．
2111	Nov． 9	$5.25 \mathrm{p} . \mathrm{m}$.	3509 －0	745740	75	76		938	Gn．m ．．．	SW．	4	－S．	1.5	Do．
2112	Nor． 10	9.15 ar m．	352050	751800	70	70	731	151	S．blk． sp	SW．	4	SW．	0.8	Do．
2113	Nov． 10	$10.04 \mathrm{a} . \mathrm{m}$ ．	352030	751900	72	70	721	15	M．，blk．s．	SW．	4	SW．	1	Do．
2114	Nor． 10	$11.15 \mathrm{a} . \mathrm{m}$.	352000	752000	73	70	72	14	M．，blk． s ．	SW．	4	SW．bs S．	0.8	Do．
2115	Nov． 11	7．54 a．m．	354930	743445	77	78	39	843 888	Mr．，fne．s．．．．	SW．	4	S．by W．	1.5 1.5	Do．
2116	Nov． 11	Mferidian．	354523	743125	76	77	39	889	Bu．m．，fne． 8	WSW．	4	S．	1.5	Do．

REPORT OF DREDGINGS OF THE ALBATROSS FOR 1884, BY LIEUT. SEATON SCHROEDER, U. S. N., NAVIGATOR.

During the jear 1884 the geographical limits of the cruising of the Albatross were the parallels of $8^{\circ} 30^{\prime}$ and 43° north latitude and the meridians of $61^{\circ} 30^{\prime}$ and $85^{\circ} 30^{\prime}$ west longitude. The number of days at sea and the distances run, together with the object of each trip, are given in the following table:

The number of soundings taken during the year was 701, almost all of which were located with sufficient accuracy to be of hydrographie ralue; of these, 194 were also dredging stations.
During the winter and spring the vessel was employed in hydro. graphic work for the Nary Department; searching for reported dangers in the West Iudies and between there and the Cbisapeake; rumning lines of soundings across the Caribbean Sea and among some of the islands; taking serial temperatures and noting surface currents; making an examination of a part of Savanilla Bas, United States of Colombia, and establishing the longitude of Cape San Antonio light bouse, Cuba.

Following is a list of reported dangers over or near which the depths were found in the positions given:

List of reported dungers.

Name.		$\begin{array}{\|c\|c\|c} \text { Latituite } \\ \text { north. } \end{array} \begin{gathered} \text { Longitude } \\ \text { west. } \end{gathered} \text { Deprile. }$		
Orion Shoal		0 11 34 48	$\bigcirc{ }^{\circ}$	Fathoms.
Asliton Shoal		344845 335020	72 71 71 $4: 000$	2, 2,003
Perseveranas Sli		311542		2, 787
Mourand Shoal		243514	6.51307	. 3, 000
Leightou Rock		$17: 3930$	732215	2, 4,40
Loos shoal		174800	733415	2,369
Jirankers.		125440 12 10	661 60 60 1110	2, 708
Georgia Shoal		Many aod	undinga.	(Leati) 17
Tribune Shoal		121130	$74273 n$.	2, 055
Powhatan Shoal		111100	755030	1,195
Daubtful........		145340	802000	1, 151
Albatross Shoal.			Antopio.	Many 050
Vigia.		230000		625
Huntley Shori		304600	783500	470

The soundings were such as to prove the non-existence of all except the Georgia Bank off the east eud of Jamaica, which had been recently searched for by several vessels. It was originally discovered by Capt. John S. Holt, of the American brig Georgia, in 1867, who reported 14 fathoms in about latitude $17 \circ 46^{\prime} \mathrm{N}$., longitude $75^{\circ} 45^{\prime} \mathrm{W}$. Au extensive and careful search was made for this, resulting in the discovery of a bank with a least depth of 17 fathoms a little to the southward of the reported position, in latitude $17^{\circ} 30^{\prime}$ to $17^{\circ} 44^{\prime}$ N., longitude $75^{\circ} 40^{\prime}$ to $750^{\circ} 45^{\prime}$ W. The Navy Department has given it the name of Albatrose Bank. This inust not he confonuded with the Albatross Shoal off the northwestern shore of Cuba, which was reported by the German gunboat of that name and not subsequently found.

One hundred soundiugs were taken off Cape San Antonio, extending to just beyoud the range of the light, with deep water everywhere (up) to 1,200 fathoms), and Sancho Pardo Shoal has, in cousequence, been expunged from the charts of the Hydrographic Office, Navy Department.

Six lines of soundings were run across the Caribbean Sea, four between the Leeward lslands and the Main, and diagonal lines on and off the coast of the United States of Colombia. The eastern part of the Caribbean Sea is the decpest, the greatest depth being 2,844 fathoms, in latitude $13^{\circ} 25^{\prime} \mathrm{N}$., longitude $66^{\circ} 2 \bar{j}^{\prime} \mathrm{W}$. Off the Honduras coast, however, still deeper water was found, there being 3,160 fathoms at 60 miles southwest of the Grand Caymau.

An interesting discovery was that of a submarine ridge comnecting the islands of Sauta Cruz and Puerto Rico, the least depth on which was 578 fathoms and the greatest 900 , while on citier side was found over 2,000 fathoms.

Ares Islet, 100 miles westward of Guadaloupe, was found to be the summit of a mountain, precipitous on its western slope and oxtending in a south-southeast direction over 150 miles to the 1,000 -fathom curve.

During the summer and autumn of 1884 hydrograplic work was merely incidental, as continnous dredging and trawling generally interfered with the correct locatiug of the stations. Still, a number of tho soundings taken were considered plotted with sufficient accuracy to be of hydrographic value. This work was off the United States coast between Cape Hatteras and Gcorge's Banks.

Nothing of special interest was definitely ascertained. But in the course of the season it became very evident that in the vicinity of the 40 th parallel and the f0th and 71 st meridians there is an easterly and a westerly movement of the water, alternating at intervals of apparently about half a day. Circumstances prevented a close examination into this matter, but, as the approximate time of the change of the current was notieed on screral occasions to be later each day, it is believed that the phenomenon may be attributed to the influence of the moon, and that probably there may be tidal currents, less pronounced, but as regular there as along shore.

Indications were also found of a pocket running in north ward from the 600 fathom line ou about the meridian of 70015^{\prime}, differing from the contour lines on existing charts. But, owing to cloudy weatherand the impossibility of keeping a good reckoning while trawling, the positions found were not consjdered sufliciently reliable to warrant making a report to the Ifydrographic Office.
 yl．，yellow；gy．，gray ；bu．，bluo；dk．，dark；lt．，light；gn．，greon；br．，brown；hrd．，hard；eft．，soft；foo．，fine；crs．，coarse ；brk．，broken ；lrg．large；sml，small；rky．，rocky；

Serial No．	Dato．	Time．	Positions．		Temperaturea				Character of bot－ tom．	Wind．		Drift．		Instrument used．
			Latitude N．	Longitude W．	$\stackrel{4}{4}$	$\begin{aligned} & \dot{8} \\ & \text { 䭴 } \\ & \text { 呙 } \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \text { 莡 } \\ & \text { 品 } \end{aligned}$			Diroction．	$\begin{aligned} & \dot{0} \\ & 0 \\ & 0 \\ & \text { B } \\ & \hline \boldsymbol{H} \end{aligned}$	Direction．		
0117	1884.		$\bigcirc{ }^{\circ}$＇${ }^{\prime}$	$\bigcirc{ }^{\circ}$									Mriles．	
2117.	Jan． 27	1.58 p．m．	152440	633130	84	78	39.75	683	5l．m．fne． s.	ENE．	2	NTV．bs W．	2.5	L．B．T．
2118.	Jan． 28	8.15 a．m．	133240	625400	76	77		690	gy．m．bk， 8 ．．．．．．．．	SE．	2	ENE．	1． 7	Do．
2119	Jan． 29 －	1.07 p .10.	114830	621730	75	77	39.25	1，140	fr，m ．．．．．．．．．．．．．．．	NE．	3	SW．	2.5	Do．
2120	Jan． 30	$6.30 \mathrm{a} . \mathrm{m}$ ．	110700	621430	76	76		73	bu．m ．．．．．．．．．．．．．．．	E．	2	N．	0.2	Dr．Tel
2121	Fel． 3	6.37 arm ．	103740	614240	76	77	67	31	dk．slate－col．m．	NW．by W．	2			L．B．T．
2129	Feb． 3	7.18 a ．m．	103700	614422	77	77	73	34	dk．slate－col m．	NW．by W．	2			Do．
2！23	Fel． 3	8.45 ก．10．	10 4： 02	614848	78	78	64.5	117	bu．m．．．．．．．．	NE．by N．	2			Do．
2121	Feb． 18	$2.03 \mathrm{p.m}$.	113130	690210	77	T4	59.5	122	fne．sh．gn．m．．．．．．	E．by S．	2	3iv．by N ．		Sh．Dr．
2125.	Feb． 18	$4.31 \mathrm{p} . \mathrm{m}$.	114300	690930	75	74	50.7	208	yl．m．в．bk．ap．．．．．	E．brin．	2	W．by S．		S．B．T．
2126.	Feb． 19	$10.11 \mathrm{a} . \mathrm{m}$ ．	131745	700100	78	77	39.3	1，701	yl．m．crs．s．for．．．．	ENE．	3－4	NNE．		Do．
2127.	Fel． 25	$3.14 \mathrm{p} . \mathrm{m}$ ．	194500	750400	78	77		1，639	rn．m ．．．．．．．．．．．．．	WSV．	3	W． 1 S．		L．13．T．
2188.	Fel．${ }^{2} 7$	10.58 ar m．	195546	754923	78	78	49.5	400	bu．m．fne． 8.	SE．	1	F．to ENE．		Tgl．bar．
2149	Feb． 27	1225 p．m．	195004	754855	77	78		274	bu．m，fne． 8.	SE．	2	E．to ENE．		－${ }_{\text {Do．}}$
2130.	Fel． 27	1.04 p．10．	195023	754943	77	79	．．．．．．	175	gy．m．s．brk． $\mathrm{sh} . .$.	SE．	2	E．to ENE．		10.
2131	Fel． 27	$200 \mathrm{p} . \mathrm{m}$ ．	195644	755049	78	79		202	hrd．ers．s．．．．．．．．．	SE．	3	E．to ENE．		10.
2132	Feb． 27	$3.33 \mathrm{p} . \mathrm{m}$ ．	195538	754910	78	79		478	y1．m．brk． $\mathrm{sh} . . .$.	SE．	3	E．to ENE．		Do．
2133	Fcb． 27	$4.30 \mathrm{p} . \mathrm{m}$ ．	195555	754803	79	79		290	wh．s．brks 8h．．．．．．	SE．	3	E．to FNE．		Do．
2134.	Frb． 27	$5.37 \mathrm{p} . \mathrm{m}$.	195005	754732	77	78		254		SE．	3	ESE．		Do．
2135.	Feb． 27	6.31 p．m．	195558	754707	77	77		250	hrd．co．．．．．．．．．．．．．	SL．	3	ESE．to SSF．		Do．
2136	Fcb． 59	2.04 p．m．	174340	753825	81	78		52	co．brk．8h．．．．．．．．．．	SE．	3	$\left\{\begin{array}{l}\text { NW．by } \\ \text { W．W．}\end{array}\right\}$		Do．
2137	Felb． 29	$2.25 \mathrm{p} . \mathrm{m}$.	174150	753920	81	78		47	co．brk	SE．	3	$\{$ NW．by $\}$		Do．
2138	Fel． 09	$536 \mathrm{p} . \mathrm{m}$ ．	174405	753900	78	78		23	co．brk．sh ．．．．．．．．．	SE．	3	S．$\frac{8}{8}$ E．		Do．
2139.	Mar． 11	$\underline{2.56 ~ p . m . ~}$	175200	764530	80	79	62.3	215	bk．m．．．．．．．．．．．．．．	ESE．	4			Do．
2140	Mar． 11	7.18 pm.	173010	764605	80	78	39.7	966	8．．．．．．．．．．．．．．．．．．．	E．	3	NNE．$\frac{1}{2}$ E．		S．B．T．
2141	Mar．13	$11.29 \mathrm{a} . \mathrm{m}$ ．	172500	755955	78	77		5	co．8．．．．．．．．．．．．．．．	E．	5	S．by E．${ }^{\text {a }}$ E．		Tgl．bar．
2142	Mar． 2.3	$4.05 \mathrm{p} . \mathrm{m}$.	93015	762030	81	81		42	gn．m． s ．．．．．．．．．	WNW．	2	W．${ }^{\frac{1}{2} \text { S．}}$		S．${ }^{\text {B T．}}$
2143.	Mar． 23	$5.01 \mathrm{p} . \mathrm{m}$.	93045	762530	80	80	－－．	155	gn．m ．．．．．．．．．．．．．．．	NNW．	2	W．${ }^{\text {b }}$ S ．		Do．
2144.	Mar． 25	6.46 am．	94900	793130	78	79	．．．．．．	896	gn．m ．．．．．．．．．．．．．．	N．	1	SSW．		L．B．T．
2145.	Apr． 2	$10.41 \mathrm{a} . \mathrm{m}$ ．	92700	795400	80	79		25	gn．m．brk． 8 h ．．．．．	NNE．	4			Sh．Dr．
2146.	Apr． 2	$12.03 \mathrm{p} . \mathrm{m}$ ．	93200	795430	80	79		34	brk．8h．．．．．．．．．．．．．	NNE．	4			L．B．T．
2147．．．．	Apr． 2	$12.46 \mathrm{p} . \mathrm{m}$ ．	93220	79.545	80	79	78.5	34	co ．．．．．．．．．．．．．．．．．	NNE．	14			Tal bat

Draging and Trawling Record of the United States Fish Commission steamer Albatross, Season of 1884—Continued.

2538	Sept 13	$2.26 \mathrm{p} . \mathrm{m}$.
2239	Scpt. 26	5. 05 m m.
2940.	Scpt. 26	7.29 ar .
9241	Sopt. 20	$9.20 \mathrm{ar} . \mathrm{m}$.
2242	Sept. 26	12.33 am m.
2243	Sept. 26	$1.13 \mathrm{p} . \mathrm{m}$.
2241	Sept. 26	$3.11 \mathrm{p} . \mathrm{m}$.
2245	Sept. 26	$4.50 \mathrm{p} . \mathrm{m}$.
2246	Sopt. 26	$6.42 \mathrm{p} . \mathrm{m}$.
2247	Sept. 27	$4.57 \mathrm{~A} . \mathrm{m}$.
2348	Sept. 27	$0.50 \mathrm{am} . \mathrm{m}$.
$2 \cdot 49$	Sept. 27	8.24 ta m .
2250	Sept. 27	10.04 am.
2951	Sept. 97	$12.02 \mathrm{p} . \mathrm{m}$.
92\%	Sept. 27	$1.46 \mathrm{p} . \mathrm{m}$.
22.33	Sept. ${ }^{1}$	3.11 p.m.
2:54	Sept. 27	4.39 p . mm .
2255	Sopt. 27	6.10 p. m.
2256	Sopt. 28	5.42 a m .
2257	Sept. 28	7.17 am m.
2258	Sept. 28	8.34 a . m.
2359.	Sopt. 28	9.56 a.m.
2260	Sept. 28	$11.13 \mathrm{a} . \mathrm{m}$.
2261.	Sept. 28.	$12.52 \mathrm{p} . \mathrm{mm}$.
2262	Sopt. 28	2.51 p.m.
2263.	Oct. 18	$1.06 \mathrm{p} . \mathrm{m}$.
2264	Ott. 18	2.37 p. m.
2255	Oct 18	$3.47 \mathrm{p} . \mathrm{m}$.
2266	Uct. 19	6.00 a m.
2267	Oct 19	6.39 am m.
2268	Oct. 19	7.43 arm .
2959	Oct. 19	8.46 mm .
2970	Oct. 19	9.40 am m.
2271	Oct. 19	10.45 m m .
2272	Oct. 19	11.57 am .
23.3	Oct. 19	$12.45 \mathrm{p} . \mathrm{m}$.
22	Oct. 19	$1.22 \mathrm{p} . \mathrm{m}$.
2975.	Oct. 19	$1.43 \mathrm{p} . \mathrm{m}$.
2276.	Ock 19	2.08 p. m.
297	Oct. 19	2.21 p.m.
2278.	Oct. 19	$2.45 \mathrm{p} . \mathrm{m}$.
2370.	Oct. 19	$3.36 \mathrm{p} . \mathrm{m}$.
2280	Oct. 19	$4.15 \mathrm{p} . \mathrm{m}$.
2281	Oct 19	4.35 p. m.
2332.	Oct 19	5.13 p. m.
2383.	Oct 19	5.41 p.m.
2284.	Oct 19	6.09 p. m.
2285.	Oct 19	$6.40 \mathrm{p} . \mathrm{m}$.
2286.	Oct 19	$7.13 \mathrm{p} . \mathrm{m}$.
2287.	Oct. 20	$6.15 \mathrm{~m} . \mathrm{m}$.
2288.	Ock 20	6.45 a . m.
2289.	Oct 29	7.15 \& m.

Dredging and Travoling Record of the United States Fish Commission steamer Albatros8, Season of 1884-Continued.

Serial No.	Date.	Time.	Positions.		Temperatures.				Character of bot tom.	Wind.		Drift.		Instruments used.
			Latitude N.	$\begin{gathered} \text { Longitude } \\ \text { W. } \end{gathered}$	$\stackrel{4}{4}$					Diraction.	$\begin{aligned} & \dot{8} \\ & \dot{B} \\ & \text { C } \\ & \text { B } \end{aligned}$	Direction.		
	1884.		$\bigcirc{ }^{\circ} \mathrm{\prime}$	\bigcirc									Mriles.	
2290.	Oct. 20	7.45 a.m.	352300	752430	70	69		015	8. brk sh..........	ESE.	2	ENE.	. 5	L. B. T.
2291	Oct. 20	8.45 a.m.	352530	752030	70	69		15	gy. s. brk. 8 h	ESE.	2	E.by ${ }^{\text {che }}$.5	Do.
2292	Oct. 20	9.32 am m .	352720	751030	72	70	17	\#5. 8. brk. 8h.....	ESE.	2	E.by C .		Do.
2293	Oct. 20	$10.25 \mathrm{~m} . \mathrm{m}$.	352910	751230	71	71		18	crs. s. bk. sp......	ESE.	2	E. by N.	.5	Do.
2294.	Oct. 20	$11.18 \mathrm{a} . \mathrm{m}$.	353100	750830	73	71		19	crs. gy . s.	ESE.	2	E. by	. 5	
2295.	Oct. 20	$1203 \mathrm{p} . \mathrm{m}$.	353241	750430	70	73		22	crs. Ly. 8...........	ESE.	2	L. by N.	. 5	Jo.
2296.	Oct. 20	$1.15 \mathrm{p} . \mathrm{m}$.	35350	745845	75	71		27	crs. Ey. B..........	SE.	2	E. by N.	${ }^{.5}$	Do.
2297.	Oct. 20	2.18 p.m.	353800	745300	75	73		49	bk. nu. brk. ah.....	SE.	1	E.by N.	. 75	Do. Do.
2298.	Oct. 20	$2.55 \mathrm{p} . \mathrm{m}$.	353900	745200	74	73		80	bk. m. brk. sh.....	SE.	1	E.bgN.	. 7.75	Do. Do.
2299.	Oct. 20	$3.50 \mathrm{p} . \mathrm{m}$.	354000	745130	71	73		296	bk.m..............	SE.	1	E. brini.	1^{-10}	$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$
2300.	Oct. 20	$5.20 \mathrm{p} . \mathrm{m}$.	354130	744830	71	71		671	bk. m..............	SE.	1	E. NYN.	1.5	Do. Tri. bat.
2301	Oct. 21	6. 10 a . m .	351130	750500	73	77	75	59	crs. \& bk. sp........	SES.	1	NNE.	.5 .25	Tel. bar.
2302.	Oct. 21	6.45 am m.	351400	750300	74	77	71.4	49	A. co............	ESE.	2	NE.	. 2 j	
2303.	Oct. 21	7.11 mm .	351700	750100	74	77		41	fne. gr. \& bk. 8....	ESE.	2	NE.	. 5	S. B. I.
2304.	Oct. 21	7.40 ar m .	$\begin{array}{lll}3519 & 00\end{array}$	745800	$7 \pm$	77		37.	fue.gy. \& bk. 8....	ESE.	2	E.	- 5	Do.
2305.	Oct. 21	8.36 mm m.	352300	745130	73	79	66.2	58	fne.gy. \& blo 8....	ESE.	2	E.	.5	L. B. T.
2306.	Oct. 21	11.00 am.	352130	745200	76	79	41.7	322	gy. m …........	ESF.	2	$\underset{\text { E. }}{\text { E }}$.5	L. P. ${ }^{\text {Do. }}$
2307.	Oct. 21	$4.11 \mathrm{p} . \mathrm{m}$.	354200	745430	76	70	57.3	43	g5. \& bk. s........	FSE.	2	NE.	1	Do.
2308.	Oct. 21	$5.17 \mathrm{p} . \mathrm{m}$.	354300	745330	72	71		45	Ey. \& bk. $8 . .$.	SE.	1	NE.		$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$
2309.	Oct. 21	6. $08 \mathrm{p} . \mathrm{m}$.	354330	745200	72	71		56	gV. 8. brk. sh......	SE.	1	NE.	.5 .5	Do.
2310.	Oct. 21	4. 59 p.m.	354400	745100	76	71		132	bk.m. ine. 8.	SE.	1	NE.	. 5	D.

Record of dreduings and trawlings of the U.S. Fish Commission steamer dlbatross, etc.-Continned.

	$7.46 \text { a. m. }$ $9158 . m$
Mar.	10.56a.
Mar. 4	$13.48 \mathrm{p} . \mathrm{m}$.
Mar. 4	2. $63 \mathrm{p} . \mathrm{m}$.
Mar. 13	5.27 ar m
Mar. 13	$9.37 \mathrm{a} . \mathrm{m}$
Mar. 13	$1.35 \mathrm{p} . \mathrm{m}$
Mar. 13	$4.31 \mathrm{p} . \mathrm{m}$.
Mar. 13	$6.09 \mathrm{p} . \mathrm{m}$
Mar. 14	$5.32 \mathrm{a} . \mathrm{m}$
Mar. 14	8.24 a. m
Mar. 14	$10.59 \mathrm{a} . \mathrm{m}$.
Mar. 14	$1.23 \mathrm{p} . \mathrm{m}$.
Mar. 14	$4.01 \mathrm{p} . \mathrm{m}$
Mar. 14	$6.18 \mathrm{p} . \mathrm{m}$
Mar. 15	5. $30 \mathrm{a} . \mathrm{m}$
Mar. 15	$7.45 \mathrm{a} . \mathrm{m}$
Mar. 15	9.39 a.
Mar. 15	11.21 a. m.
Mar. 15	$1.14 \mathrm{p} . \mathrm{m}$.
Mar. 16	$9.22 \mathrm{s.m}$
Mar. 18	$1.12 \mathrm{p} . \mathrm{m}$
Mar. 18	$3.52 \mathrm{p} . \mathrm{m}$.
Mar. 18	6.21 p. к.
Mar. 19	$6.50 \mathrm{a} . \mathrm{m}$
Mar. 19	$10.04 \mathrm{a} . \mathrm{m}$
Mar. 19	6. 11 p.m.......
Apr. 1	$5.31 \mathrm{a} . \mathrm{m}$.
Арг. 1	$12.01 \mathrm{p} . \mathrm{m}$.
Apr. 2	$12.13 \mathrm{p} . \mathrm{m}$.
Apr. 2	$12.54 \mathrm{p} . \mathrm{m}$.
Apr. 2	5.25 p. m.
$\mathrm{Apr}^{\text {Apr. }} 5$	6.20 p . m
June 3	$5.40 \mathrm{a} . \mathrm{m}$
June 3	$9.55 \mathrm{a} . \mathrm{m}$
June 3	$3.11 \mathrm{p} . \mathrm{m}$
June 4	$4.30 \mathrm{a}$. m
June 4	$11.30 \mathrm{a} . \mathrm{m}$.
June 4	$4.49 \mathrm{p} . \mathrm{m}$.
June 23	$6.00 \mathrm{a} . \mathrm{m}$
June 23	8.18 я. m
Jupe 23	$12.04 \mathrm{p} . \mathrm{m}$.
June 23	$3.05 \mathrm{p} . \mathrm{m}$
June 23	$4.24 \mathrm{p} . \mathrm{m}$.
June 23	5.28 p. m.......
June 23	$6.05 \mathrm{p} . \mathrm{m}$
June 23	$7.20{ }^{1}$ p. m.
June 23	$8.13 \mathrm{p} . \mathrm{m}$.
June 24	4.22 ar .
June 24	5.04 a . m

Record of dredgings and trawlings of the U. S. Fish Commission stcamer Albatross, etc.-Coutinued.

 $\left.\begin{array}{ll}4 & 2 R \\ 4 & 30 \\ 4 & 28 \\ 28 \\ 4 & 50 \\ 4 & 30 \\ 4 & 05 \\ 4 & 40 \\ 4 & 06 \\ 4 & 07 \\ 4 & 08 \\ 4 & 00 \\ 4 & 16 \\ 4 & 00 \\ 4 & 20 \\ 4 & 00 \\ 4 & 26 \\ 4\end{array}\right)$

 \qquad

*Dredge-rope parted, losing ship's dredge and 79 fathoms of wire rope.

Record of dredgings and tratclings of the C.S. Fish Commission stcanter Albatross, etc.-Continued.

Record of dredgings and travclings of the U. S. Fish Commission steamer Albatross, ctc.-Continued.

In the preceding and following tables the abbreviations for the characters of the bottom and the instrument used are from the following code:

Abbre viation.	Meaning.	Abbre-	Meaning.	Abbreviation.	Meaning.	Abbre. viation.	Meaning.	Abbreviation.	Meaning.	Ablere. riationi.	Meanizg.
	Clar.	$1 \stackrel{P}{8}$	Pobblos.	lge.	Jarge.	stf....		br	brotra.	L.B.T..	Large beam-travl.
Co.......	Coral.	1 Oz	Ooze.	rky.	rocky.	slat..	slate color.	choc	chocolate color.	S. B. T ${ }^{\text {B }}$	Small besm-travi.
St.......	Stones.	i! 16.	Rock.	rot.	rotten:	Pl.......	Fellow.	gn	green.	B1. Dr ..	Blake dredge (deep-
	Grarel.	$i^{1} \mathrm{Sh}$.	Sbells.	atk	sticky.	bk......	black.	It.......	light.		sea dredge).
S	Sand.	1 Glob...	Globigerina.	crs.	coarso.	bu	blue.	dk	dark.	Sh. Dr .	Ship's dredge (mad. hag).
For	Foraminifera.	: Sp ${ }_{\text {brk..... }}$	Specks. broken.	hrd.	harri.	gr ${ }_{\text {rd }}$	gray: red.			'Tgls....	Tangles.
M	Mud.	fne	fine.	sft.	soft.	wh.....	white.				

Record of dredgings and traulings of the C. S. Fish Commission steamer Albatross, etc.-Continued.

Record of dredgings and travlings of the C. S. Fish Commission steamer Albatross, from April 8 to September 19, 1887.
 AND BLAKE, FROM 1867 TO 1880.

The dredgings from 1867 to 1871 , and those of the Hassler in 1872, Were all made by Count L. F. Pourtales, Assistant U. S. Coast Survey, in a great measure under the direction of 1'ró. Louis Agassiz, who accompanied several of the expeditions. Their positions were originally pablished in the Bulletin of the Museum of Comparative Zoology at Cambridge, Mass., in September, 1879. A continuous series of numbers running from 1 P . to 224 P . has been assigned to them for convenience in placing them on charts without confusing them with other Coast SurFeg or Fish Commission dredgings.
The following stations were occupied by the Corwin, Acting Master R. Platt, U. S. Navy, commanding, in 18G7, in connection with a survey for a telegraph cable between Key West and Havana. The expedition was cut short by the breaking out of yellow fever on board.

The dredging in 1868 and 1860 were made by the Bibb, Acting Master R. Platt, U.S. Navy, commanding. They are all situated in the Florida straits, between Tortugas and Cape Florida. The positions, as pulblished in the Bulletin of the Museum of Comparative Zoology, were only giren in a general way, and are here taken from Count Pourtales's original charts, preserved in the Coust Survey Office. A separate series of numbers is attached to each day's work, both on the charts and in the bulletin, and theso numbers and the depths giren correspond for the loost part, except that the depth on the charts have been corrected whilst those in the bulletin are apparently from the original rough notes. In some cases, however, a different number is given to the haul on the chart from that in the bulletin. All notes here given on the character of the bottom are also derived from the charts. The number and letter assigned to each dredging on the origiual charts and record-books, the number given in the bulletin, and the depths given by them, respectively, are given in separate columns, so as to facilitate future comparisons. A few hauls, mostly shallow water oues, it has beon impossible to place exactly.

Irctgings made by U．S．Coast Survey，1868－＇69．

岂	$\begin{aligned} & \text { No.on chaitsand } \\ & \text { record-books. } \end{aligned}$		Dato．	$\begin{gathered} \text { Latitude } \\ \text { N. } \end{gathered}$	$\begin{aligned} & \text { Louri. } \\ & \text { tudo W. } \end{aligned}$			Nature of bottom．	Locality．
			1868.	－＂	－ 11				
51. $6 \mathrm{I}^{\prime}$.		2 3	Apr． 23 Apr． 23			195			$\text { 1) } 0 .$
7 P ．	7 I ．	7	$\begin{array}{ll}\text { Apr．} \\ \text { May } & 1\end{array}$	242850	810310	111	111	IIard	$1) \mathrm{O}$
8 P ．	613.	6	May 1	242515	810130	121	121	．do	$1) \mathrm{l}$
9 I.	5 I.	5	May 1	242140	810000	111	140	Rock	IJo．
10 P ．	4 B ．	4	May	241800	$80 \quad 5830$	152	152	．．．do	No．
11 I ．	3 I.	3	May	241620	805730	183	180	do	Io．
12 I ．	213.	2	May	241420	8？ 5700	962	228		$1) 0$.
13 I ．	113.	1	May 1	241230	805530	$5: 7$	517	Mud	1 DO
14 P ．	1 L.	1	May 4	$2433: 30$	811000	10	19		Off Bahia Londi．
15 P ．	4 D.	4	May 4	243020	811820	75	75	Sand	1 Do．
16 l ．	51.	5	May 4	242030	811730	95	91		Do．
1713.	6 D.	6	May 4	342830	811630	105	105		I）o．
18 P ．	7 I.	7	May 4	24 2630	811430	100	100	Rocky ．．．．．．．．．．．．．	130.
19 P ．	9 I）．	9	May 4	$24 \quad 2230$	811030	119	112		Io．
201.	10 I ．	10	May 4	241940	810700	128	128		Do．
21 P ．	11 D.	11	May 4	241700	810320	176	167		10.
2 P 1．	12 I ．	12	May 4	241420	805940	：124	310		1 \％o．
231.	$131)$	13	May 4	2412 汭	805800	418	400	Mud ．．．．．．．．．．．．．．．．	Do． Slooal
24 I	1 I.	1	May 6	2 ± 3020	813030	10	16	Rorten shells ．．．．．	Of a merican Shoad
2.51.	3 E ．	3	May 6	242830	813030	43	43	Mud	Io．
26 I ．	4 E ．	4	May 0	242800	813015	55	5	．．．do	Do．
27 P	5 E ．	5	May 6	$2427 \quad 311$	812945	75	70	－do	Uo．
28 I ．	6 E.	（	May 6	242700	$81: 900$	$8: 3$	83	do	10.
2919	7 E,	7	May 6	2 ± 2040 ．	812830	98	08		Do．
301	8 EL.	8	May 6	242606	812750	94	04	Rock	Do．
31 P ．	0 E ．	9	May 6	$\because 4250$	812700	100	99	Inard	110.
32 P ．	1 F	1	May 8	$24 \geq 40$	b1 2900	111	111	Mind	$1)$
33 I.	3 F	3	May 8	$24 \geq 030$	8124319	130	199	Coral and rocks ．．	Jo．
34 P	4 F ．	4	May 8	241510	$81 \quad 2210$	135	132		$1) \mathrm{O}$
35 P ．	5 I.	5	May 8	24150	811940	260	260		Do．
301 ．	3 r ．	2	May 0	$2427 \quad 15$	813920	3.4	34	Mud and send	Off the Samboes，
37 I ．	（6）．	4	May 9	242600	813840	67	67	Mud	$1) 0$.
381	7 G.	5	May 9	242505	$81: 3800$	80	80		Do．
39 I ．	813.	6	May 9	242400	$81 \quad 3710$	93	933	Jroken shells	$1)$
401	9 G ．	7	May 9	242320	813615	01	96	Mud．．．	Do．
411.	10 G.	8	May 0	24220	813500	101	100	．．．do	Do．
431	11 G．	9	May 0	242200	813400	106	104	－．－do	Do．
43 P ．	126.	10	May 9	242120	813300	106	106	－．．do	$1) 0$.
44 P	136.	11	May 9	242045	813200	116	116	Hard	Do．
451 13．	146	12	May 0	242005	813100	123	121		Do．
46 P	15 G ．	13	May 0	241910	813000	125	123	Coral，rock	I）o．
47 J ．	16 G.	14	May 9	$\underline{3} 1845$	818484	125	121	Mard．	I） 0.
48 I ．	18G．	16	May 9	241620	81 2430	130	137		$1) 0$.
49 P ．	13 G ．	17	May 9	241445	812230	147	145	Hard ．．．．．．．．．．	Do．
50 P	20 G ．	18	May 9	241320	814000	298	292	Sinnd and sholls ．．．	Do．
51 P	21 G．	19	May 9	241240	811925	237	312	linme coral mual ．．	Do．
521	$\because 11$.	2	May 11	242610	814730	26	20	Comal and slielts．．	Ofl Sand Key．
6．313．	411.	3	May 11	24.2515	K1 4730	54	54	Broken shells．．．．	Do．
54 P	6 H	4	May 11	242430	814700	67	67	．．．．llo	${ }^{1} \mathrm{O}$
＇55 1＇．	811.	5	Mas 11	242330	814640	82	82	．．．do．．．．．．．．．．．	Do．
56 P	10 H.	6	May 11	24 2350	814620	91	94		I） 0
57 I ．	1111.	7	May 11	24 2900	814600	103	10.3		I）o．
5 L ［．	13 II.	9	May 11	$2420 \leq 0$	814520	119	115	Hard	Do．
50 P ．	14 T	10	May 11	$2419: 0$	81.4500	119	111	10	Do．
601	15 H.	11	Misy 11	24 1900	814450	128	1111		10.
$61{ }^{2}$	16 H.	12	May 11	241830	814420	127	118		I）${ }^{\text {d }}$
62 P	17 II.	$1: 3$	May 11	241755	814350	123	123		Do．
03 P	18 H.	14	May 11	241730	$8143 \% 0$	134	130		Io．
64 P ．	10 H.	15	May 11	241700	814.300	143	140		1）o．
65 P P．	20 H.	16	May 11	241610	814200	138	137		Do．
651	21 H．	17	May 11	241500	814110	15.4	150		1）0．
47 P	23 H	10	May 11	241325	813930	300	$\stackrel{297}{ }$	Mud	Do．
68 P ．	24 H ．	20	May 11	241230	813830	248	241	do	I） 0.
69 P ．		1	May 15			100			10.
70 I＇		3	May 15	吕		100			Do．
71 1		4	May 15			100			Jo．
72 B		5	May 15	－		110			Do．
73 P		0	May 16	人 突気		100			Do．
74 P		${ }_{2}^{1}$	May 16	家云		120			Do． Do．
75 P ．		2 \＆ 3	May 16	क		120			Do．
76 P ．		＋\＆5	May 10			120			Do．
77 P ．		0	$\begin{aligned} & \text { May I6 } \\ & 1809 . \end{aligned}$	）${ }^{\text {g }}$		120	．．．．		Do．
78 P：		1	Jan． 15	\％					South of Tortugas，

Dredgings made by U.S. Coast Survey, etc.-Continued.

Dredlyings made by U. S. Coast Survey, etc.-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \dot{0} \\
\& \stackrel{\rightharpoonup}{g} \\
\& \vec{g} \\
\& \stackrel{y}{E} \\
\& \dot{E} \\
\& 0
\end{aligned}
\] \& \& \& D.ate. \& \[
\begin{gathered}
\text { Latitucle } \\
\text { N. }
\end{gathered}
\] \& Longi. tude W. \& \& \& Nature of bottom. \& Locality: \\
\hline \& \& \& \[
1869
\] \& - " \& \& 40 \& \& \& Off the Elbow leuf. \\
\hline 145 P. \& \(\cdots\) \& 4 \& Mar. 21 \& 250830 \& S0 1115 \& 710 \& 70 \& Sand \& Oft Carjsfort Heel. \\
\hline 1461 P. \& 20 \& 5 \& Mar. 21 \& 25, 1030 \& 801045 \& (i) \& co \& \& \\
\hline 147 P . \& 30. \& 6 \& Mar. 21 \& 251230 \& 80 1030 \& 48 \& 48 \& \& 1)o. \\
\hline 148 P . \& 40. \& 7 \& Mar. 21 \& 251340 \& 8010.45 \& 40 \& \& \& Do. \\
\hline 149 P \& 50. \& 8 \& Mar. 21 \& 251415 \& 801115 \& 35 \& \& \& ff courtlo larbor. \\
\hline \[
\begin{aligned}
\& 1501 \\
\& 1511
\end{aligned}
\] \& 1 P. \& 4 \& Mar. 21 \& 251115 \& 800945 \& 12 \& 70 \& Broken mhells \& Oif Carysiort lees. \\
\hline \(152{ }^{1}\) \& 2 P \& 4 \& Mar. 23 \& 251030 \& 800000 \& 113 \& 102 \& \& עo. \\
\hline 1531 . \& 3 P \& 3 \& Mar. 23 \& 251200 \& 800200 \& 138 \& 138 \& Sand \& o. \\
\hline 1541 \& \(4 \mathrm{I}^{\circ}\) \& 4 \& Mar. 23 \& 251320 \& 705700 \& 293 \& 293 \& \& Do. \\
\hline 155 P . \& \(5{ }^{1}\) \& 5 \& Mar. 2.5 \& 251630 \& 795300 \& 31.7 \& 317 \& White muld \& Do. \\
\hline \(1561{ }^{1}\) \& \({ }_{7}^{61}\) \& (\& Mar. \({ }^{23}\) \& 252000
25
23
2300 \& 70500
704806 \& 3301 \& 320 \& \& 10 \\
\hline 158 \& 10 \& 1 \& Mar. 31 \& 251100 \& 801100 \& 52 \& 5 \& Rock \& \(1)\). \\
\hline 150 P \& 2 C \& \(\stackrel{3}{2}\) \& Mar. 31 \& 250830 \& 800000 \& 117 \& 118 \& \& 1 \%o. \\
\hline 1601 '. \& 36 \& 3 \& Mar. 31 \& 25.51430 \& 800100 \& 206 \& 210 \& San \& \\
\hline 161 P \& 4 Q \& 4 \& Mar. 31 \& 250140 \& 795540 \& 349 \& 349 \& \& On Orange Liey, Bn- \\
\hline 102 \& 1 ¢. \& \& Apr.
Apr. \& 250135 \& 802015 \& \& 15 \& Rocky \& \begin{tabular}{l}
hamas. \\
Oll I'rench Reof.
\end{tabular} \\
\hline 164 \& 2 T \& 2 \& Apr. \& 250125 \& 801945 \& 37. \& 37 \& \& Do. \\
\hline 165 \& 3 T \& 3 \& Apr. 3 \& 250120 \& 801930 \& 44 \& 44 \& \& Do. \\
\hline \(166 \mathrm{I}^{2}\). \& 4 T \& 4 \& Apr. 3 \& 2.5 0100 \& 80 181845 \& \& 70 \& Sind \& 1)0. \\
\hline \(167{ }^{168}\) \& \({ }_{5}^{5}\) \& 5 \& Aprer.
Apr.

Apr. \& 25
20000
245840

50 \& $\begin{array}{llll}80 & 16 & 30 \\ 80 & 14 & 15\end{array}$ \& $$
\begin{aligned}
& 75 \\
& 100
\end{aligned}
$$ \& 70

94 \& Shells.... \& 1)0.

\hline 1681 \& 1 l \& 1 \& ${ }_{\text {Apr, }}^{\text {Apr, }} 2{ }^{3}$ \& 24
24
24

18 \&	81		
81	50	15	
15			\& 135 \& 125 \& locky. \& Off Key Weat.

\hline 1701 P. \& 2 U \& 2 \& Apr. 21 \& 241400 \& 815145 \& 295 \& 200 \& Cora \& Io.

\hline 171 I . \& 4 U . \& 3 \& Apr. 21 \& \& \& 140 \& 140 \& \& ,

\hline $172{ }^{1}$ \& 515. \& 4 \& Apr. 21 \& \& \& 140 \& 134 \& \& Io.

\hline 173 P . \& 6 J. \& 5 \& Apr. 21 \& \& \& 120 \& 124 \& \& Do.

\hline $174{ }^{1}$ \& 1 x \& 1 \& Mny 7 \& 244430 \& 80
80
80
4
4 \& 51 \& 55 \& \& 1)0.

\hline $175{ }^{170} \mathrm{I}^{2}$. \& 2 x 2 \& 3 \& May
May
7 \& $\begin{array}{ll}24 & 42 \\ 24 & 40 \\ 40\end{array}$ \& 80
80
814
44
4 \& 53, \& 85 \& St \& $1)$.

\hline 1771 P. \& $4 \times$. \& 4 \& May \& $24: 38: 30$ \& 80 4245 \& 108 \& 105 \& Sand. \& I) 0.

\hline 1781 \& 6 X . \& 5 \& Mny 7 \& 94:36:010 \& 804100 \& 114 \& 114 \& Shells \& ,

\hline 179 P. \& f X . \& 6 \& May \& 243500 \& 8039001 \& 115 \& 115 \& Sund. \& Do.

\hline 180 P \& 7 X \& 7 \& May 7 \& 243300 \& 803700 \& 124 \& 124 \& Cora \& Do.

\hline 181 ग ${ }^{\text {P }}$ \& 8 x \& 8 \& May 7 \& 243115 \& 80
80
80
3 \& ${ }^{3} 170$ \& 157 \& \& 1).

\hline $1881{ }^{183}$ \& ${ }_{10} \mathrm{X}$ X. \& 10 \& May
May
7 \& $\begin{array}{ccc}24 & 29 & 15 \\ 24 & 27 \\ 45\end{array}$ \& 803300
803100 \& 174
200 \& 200 \& Conal, \& Do.

\hline 183 P
184
18. \& 10 X. \& 10
2

2 \& | May |
| :--- |
| May | \& 24

24
24

4 \& | 80 |
| :--- |
| 80 |
| 80 |
| 55 | \& 240

41 \& 21
4 \& Mnd. \& Off Alligator Reet.

\hline 185 \& 3 Y \& 3 \& May 8 \& $24+80.5$ \& 803445 \& 56 \& 53 \& do \&

\hline $3 \times 6{ }^{1}$ \& 4 Y. \& \& May 8 \& 244715 \& 803400 \& 98 \& 64 \& Shell \& 1)\%.

\hline 18. ${ }^{1}$ \& 5 Y \& 5 \& May 8 \& 244030 \& 8033300 \& 79 \& 78 \& Brokel \& 10.

\hline ${ }_{189}^{188}{ }^{\text {P }}$ \& ${ }_{6}^{6} \mathrm{Y}$. \& \& | May |
| :--- |
| May |
| 8 | \& | 24 | 47 | 15 |
| :--- | :--- | :--- | :--- |
| 24 | 41 | |
| 4 | 45 | |
| 15 | | | \& \& 888 \& 110 \& Sa \& 1\%\%.

\hline 190 P \& 8 Y . \& 8 \& May 8 \& 244340 \& 8113045 \& 110 \& 113 \& \& Do.

\hline 191 P \& $0 \mathrm{~F}^{\circ}$ \& 1 \& May 8 \& 24438 \& 80) 28810 \& 113 \& 113 \& Sand, broken blucle \& 1)w.

\hline 192 P . \& 10%. \& 10 ! \& May 8 \& 244145 \& 8i0) 2745 \& 118 \& 118 \& Jrockyi \& 10\%.

\hline 194 P . \& 11 Y. \& 111 \& May 8 \& $\begin{array}{llll}24 & 40 & 30 \\ -4 & 30\end{array}$ \& 80
80
80
81
25 \& ${ }_{147}^{138}$ \& 13.5 \& Brukenshele,corat \& 10.

\hline \& 12 Y . \& 12 \& | May |
| :--- |
| May | \& - 24.3930 \& 80

80
80
80
23
830
30 \& 147
156 \& 147 \& Shoul \& Do.

\hline 1901 \& 14 Y \& 14 | \& May 8 \& $24: 77$ \& $80 \leq 015$ \& 183 \& 1®8 \& Broken mho \& 170.

\hline 1971 1. \& 15 Y. \& 15 \& May 8 \& $24 \leq 600$ \& 811805 \& 238 \& 2:18 \& Fine stand \& Off Conch Roef.

\hline 1981 \& 1% \& 1 \& May 11 \& 24 的 15 \& 8027 \& 30 \& 30 \& Broken shol \& Do.

\hline 109 P . \& 2% \& 2 \& Mi:y 11 \& 245540 \& 8082380 \& 36 \& 48 \& do \& Do.

\hline 202 D \& 4% \% \& 4 \& May 11 \& 24.620 \& 80220 \& 77 \& 77 \& Sand, \& Do.

\hline 2031 P. \& 6%. \& 6 \& May 11 \& 245180 \& 801840 \& 117 \& 117 \& \& 1 Do.

\hline 204 P . \& 7 Z \& 7 \& May 11 \& 2464015 \& 801730 \& 139 \& 139 \& Broker \& Do.

\hline 205 P . \& 8 Z \& 8 \& May 11 \& 2t 4020 \& 801430 \& 357 \& 137 \& \& No.

\hline $2061{ }^{2}$ \& 97. \& 0 \& May 11 \& 244800 \& $$
801130
$$ \& ${ }^{3} 16$ \& 108 \& Sand, \&

\hline ${ }_{208}^{207 \mathrm{P}}$ \& 10% \& 10 \& May 11 \& 24 4645 \& | 80 |
| :--- |
| 80 |
| 808 |
| 0 | \& 257

30 \& - 31 \& \& Off Pacifio lieef.

\hline 209 P \& 2 2 S. \& 2 \& May 33 \& 251930 \& 800730 \& 40 \& 40 \& hooky \& Do.

\hline 2101 '. \& 3 K \& 3 \& May 13 \& 251990 \& 80 0030 \& 60 \& 6 \& Shelts \& Do.

\hline 211 P . \& 4 K. \& 4 \& May 13 \& 252010 \& 800.515 \& 75 \& 75 \& lino \& 10.

\hline 212 P . \& 5 S. \& 5 \& May 13 \& 25.2100 \& 800300 \& 08 \& 9 \& \& 1 1).

\hline 213 P . \& 0 ${ }^{\text {d }}$. \& ${ }_{7}^{6}$ \& May 13 \& $\begin{array}{ccc}25 & 22 & 00 \\ 25 & 93 & 15\end{array}$ \& | 80 |
| :--- |
| 010 |
| 9 | \& 140 \& 177 \& Mu1 \& Do.

\hline 214 P 215. \& ${ }^{7} 8$. \& 7 \& May 13

Mny 13 \& | 25 |
| :--- |
| 25 |
| 25 |
| 25 |
| 25 |
| 150 | \& 7959

7950
79 \& 238 \& 24. \& \& Do.

\hline 2161 \& 9 A. \& 9 \& May 13 \& 252700 \& 795700 \& 287 \& 287 \& \& Do

\hline
\end{tabular}

On the voyage of the Hassler, Lieut. Commander R. P. Johnson, U. Si Navy, commanding, from Boston to San Francisco in 1871-72, dredgings, numbered from 1 to 8 , were made off Sandy Bay, Barbados, and trenty-six other dredgings were made in the South Athatic, besides fifteen made off the coast of Chili. To the thirty-four hauls in the Atlantic, uumbers frou 217 P . to 250 P . have been assigned. The dredgings were wade by Count Pourtales under the direction of Prof. Louis Agassiz.

Dredgings of the Hessler in 1871-72.

The dredgings in 18i2, except those of tho Hassler, were made ly Dr. William Stimpson. The first ones were made upon the Bibb, Acting Master R. Platt, U. S. Navy, commanding, those numbered ito 20 S . in this list being in the Yucatan Chamel, following a proposed telegraph line, and 30 to 34 S . south of Sand hey, near Key West. Dr. Stimpson afterwards joined the Bache, Lient. Commander I. A. Howell, commanding, and made dredgings numbered 41 to 60 S . Lieutenant Commander Howell had made a few dredgings in anticipation of Dr. Stimpson joining him, numbered 35 to 40 S . All the Bache's dredgings were off the west coast of Florida, except 50 to 60 S ., which were southwest. of the Tortugas.
S. Mis. $90=61$

Dredgings made by the Bilb and Bache in 1872.

[^106]During the season of 1877-78 the dredging operations from Decem. ber to March were in charge of Prof. Alexander Agassiz, and were conducted upon the Blake, Lieut. Commander C. D. Sigsbee, U. S. Navy, commanding. The cruise extended from Key West to Havana, from Havana westward aloug the morth const of Cubn, from Key West to the Tortugas, thence to the northern extremity of the Yucatan Bank and Alacran Reef, to Cape Catocho and across to Cape San Autonio, returuing to Key West, and from Key West to the Tortugas, and uorthward to the mouth of the Mississippi River. The positions were originally published in the Bulletin of the Museum of Comparative Zoology at Cambridge, Mass., September, 1879. In giving these positions on the charts, etc., the word Ag. has been added to the numbers in the bulletin so as to distinguish them from the dredgings of the U. S. Fish Oommission, Count Pourtales, etc. The positious from 1 Ag . to 4 Ag . are taken from Sigsbee's original charts.

Dredgings made by the Blako in 1877-'78.

-sequanu jeices	Latitudo N.	Longitude. W.	Depth.	Locality.	Tomperatures.	
						E
	- 1	\bigcirc - '	Fathoms.		-	
${ }_{2}^{1} A^{2}$	231400	82850	801	North of IIavana.	73	393
$3{ }^{2} \mathrm{Ag}$.	231400	828500	805		77	394
$3{ }^{\text {Ag }}$.	233100	- 821000	924		783	303
${ }_{6}^{4} \mathrm{Ag}$.	233 30	82 214000	- 936	South of Marquosas Коув	774	391
$\mathrm{O}_{\mathrm{Ag}} \mathrm{g}$.	$\begin{array}{\|ccc\|}24 & 15 & 00 \\ 44 & 17 & 30\end{array}$	821300 820	152-229 137	South of Marquosas Koye,		491
				Only muil brought up		
${ }^{10} \mathrm{~A} \mathrm{~A}$.			111	Sorm miles S. by W. from Sand Key	70	55
10 Ag.	2t 4400	832600	37	Woat of 'lortugas.		
$12{ }^{12}$	244300	832500	37			
${ }_{13}{ }^{\text {atg }}$.	243400	831600	36 74.2	North		
$14{ }^{15}$	23 is 00	822100	850-900	.,do		
15 Ag.	231460	832500	785do		
${ }_{17}{ }^{\text {Ag. }}$	231100	822300	292		77	551
18 At.	230100	824300	320	Off Mariel, Cuba	76	Sud
10.45.	23 23 23	8.1 83 83 83 1030 30	756	Ocr ${ }_{\text {do }}$	76	40
${ }^{20} \mathrm{~A}_{\mathrm{g}} \mathrm{g}$.	23 23 23 03 200	$\begin{array}{cc}8.3 & 10 \\ 83 \\ 83 & 11\end{array}$	$\begin{array}{r}310 \\ 220 \\ \hline\end{array}$	On Mahia Honda,	73	$5{ }^{5}$
${ }_{21}{ }^{\text {Ac }}$	23020	${ }^{83} 31300$	287	do		12
${ }_{24}{ }^{\text {a }}$ A.	250100	831400	100	. do	77	$7{ }^{-}$
${ }_{24}^{24} \mathrm{Ag}$.	230100	831400	190	do	77	${ }^{6} 4$
${ }_{25}{ }^{4} \mathrm{Ag}$.	230230	8831300	342		78	50
204 Ag .	23 20400	8312 83 83 36 00	635		78	406
${ }_{28}{ }^{27} \mathrm{~A}_{\text {g. }}$.	24 3780	83 86 83 89 4900 000	392	Wor. do do	78 73	¢ 684
${ }_{28}^{28} \mathrm{AE}$.	243410	844000	863do	75	398
${ }_{80}{ }^{29} \mathrm{Ag}$.	$243000{ }^{1}$	840500	955			
$8^{80} \mathrm{Ag}$.	343300	843400	908do		396
${ }_{32}{ }_{4}^{\text {A }} \mathrm{S}$.	24 33 00 23 32 01	442300 880500	1, 020			394
$83 \Delta \mathrm{~g}$.	240100	885800	\{1,400 to\}	Nortle of Yucatan Bavk		
${ }^{84} \mathrm{Ag}$.	235200	885900	1,588)	North of Yacatan Davk	725	404
${ }_{35} \mathrm{~A}_{5}{ }^{\text {P. }}$	23 5200	88 58	400-600 804	\cdots	81	ti06
${ }^{36} \mathrm{Ag}$.	231300	8010.00	94	Xorth part of Yucatan Bank		404
${ }_{38}{ }^{\text {A }}$ c.			35	Northwest eud of Alactun Reof, Yucatan Bank..		60
88 Ag .	231000	883500	20	North part of Yuchtan J3ank...........		
			14	Sisteen miles north of Julbos Islands, southwest part of Yucatan Bank.		
${ }_{41} \mathrm{Ag}$.	232600	840200	1,323	Nurthwest of Cubar...............................	77	
13 Ag.	234200	831300	800	...do	73	301
deng.	235300	830430	620	.do		38

fIn 800 fathoms.

Dredgings made by the Blake，etc．－Continued．

宮					$\begin{aligned} & \text { Tomp } \\ & \text { tur } \end{aligned}$	
$\begin{aligned} & \text { E } \\ & \text { 品 } \\ & \text { 芯 } \\ & 0 \end{aligned}$	$\begin{gathered} \text { Latitudu } \\ \text { N. } \end{gathered}$	$\begin{aligned} & \text { Longi- } \\ & \text { tulde } \\ & \text { W. } \end{aligned}$	Depth．	Locality．		
	－＇＇ 1	$\bigcirc 1$	Futhoms．			45
43 Ag ．	240800	825100	330	South of Dry Torthras．．．．．．．		381
44 Ag ．	253330	843500	589	Northwest oi Dry Tortugas．	${ }^{74} 7$	61
45 Ag	253300	842100 84	101			39
40 Ag ．	25 28 28 43 43 100	$\begin{array}{llll}84 & 47 & 30 \\ 88 & 40 & 011\end{array}$	888 321	Ofrnouth of the Mississip	74.2	$4{ }_{4}^{46}$
47 Ag ．	28 28 28 47 700	88 88 880 41 180	533	．．．．．．do ．．．．．．．．．．．．．．．．．．．．	66	
49 Ag ．	285130	89 0130	118	．．．．．．do ．．．．．．		
50 Ag ．	263110	8.55300	＊119			
51 Ag．	231160	832100	243－450	Ofl Havaut		
52 Ag ．	230300	82 ± 300	158	．${ }^{\text {do }}$		
53 Ag ．			175	do		
55 Ag	230900	832100	242	．．．lo		
50 Ag ．	2309 （17）	$8{ }^{\prime 2} 2130$	175	．．．．do		
57 Ag ．	23 29 15	42 2100	177	．do		
58 ¢ 5 ¢	23 U9．30	821130	248	．．．．10		
00 Ay．			480	．．．do		
61 A	230910	820100	943	．．．．do		
62 Ag ．			$\begin{array}{r}80 \\ 178 \\ \hline\end{array}$	．${ }_{\text {do }}^{\text {do }}$		
$\begin{aligned} & 63 \mathrm{Ag} . \\ & 61 \end{aligned}$			122－940	． 10		
65 Ag．			127	…．．．．do		
$66 \Delta 5$			80－100	．．．．do		
67 Ag ．			12x－20	do		
68 A5．			－24－458	－．．do		
7080 A．				Oras saud Kuy		
$70 \mathrm{Ag} .$			458	Offlavanay		
72 Ap．			50	Ofi Sand Key		
73 Ac．	232500	831100	920	North of Bahia Londa，Cuba		
74 Ag ．	232500	831100	298	Off ¢avaıa．		
76 Ag ．			154	．．．．．．tio		
77 A穴．			240			
78 Ag．			175	do		

Norfe－Stations 50 to 70 wervoccupped by Liont．Commander Sigsheo while in soarch of Pentac ＊The position or dopth mast be wrong，ay there are 1，700 fathoms there；perhaps $28^{\circ} 31^{\prime}$ ．
No dredgings appear to have been taken to which the numbers 50 to 99 in this series were originally given，but on the oriminal chart of Sigsbee＇s cruise seren dredging stations are marked，which are not contained in Professor Agassiz＇s list in the bulletin．To these，null bers from 80 to $86 \Delta \mathrm{~g}$ ．have been assigned．

\pm					Ton	lempers.
	$\begin{gathered} \text { Latitudo } \\ N . \end{gathered}$	Longi－ tude W.	Dopth．	Kind of bottom．	Locality．	
	＇＂＇	＇	F＇aths．		．．	．．．．
$\mathrm{P}_{0} \mathrm{Ag}$ ．	293900	845900	1， 222	It．br．M．abil S	South part of Canmocho Ba	
81 89 Ag 8.	$\begin{array}{llll}22 & 11 & 30 \\ 23 & 48 \\ 000\end{array}$	48 88 88 80 1030	1， 501	S．and Sh	Northeast of Campecho Bunk．．．．	
83 Ag	235400	803130	603－9	1t．br．M． 4	－．．．do．．．．．．．．．．．．．．．．．．	
84 Ag ．	232000	891230	84	lt．br．M	Nortlı odge nf Campocho Ban	
85 Ag ．	231830	891300	$\stackrel{4}{21}$	Co．M．and	．．．．．do	
86 Ag ．	231000	801600	11	Co．M．and	．．．．．d0．．．．．．．．．．．．．．．．．．．．．．．．．．．．．｜	，

During the season of $1878-79$, the dredgings, from Decembor to March, were in charge of Prof. Alexander Agassiz, upon the Blake, commanded by Commander J. R. Bartlett, U. S. Nary. The cruise extended from Key West to Havana, from Havana to Jamaica through the Old Bahama Ohannel and Windward Passage, from Jamaica to St. Thomas, along the south coast of Hayti and Porto Rico. From St. Thomas the Blake visited Santa Cruz, Saba Bank, Montserrat, St. Kitts, Guadeloupe, Dominica, Martinique, St. Lucia, St. Vincent, the Grenadines, Grenada, extended the dredgings as far as the 100 fathom line off Trinidad, returned to St. Vincent, and finished the dredging operations at Barbados. These positions were also published in the Bulletin of the Museum of Comparative Zoology, September, 1879, aud are distinguished in the same manner as the preceding ones. The serial numbers, temperatures, and localities are taken from the Bulletin, while the depths, latitudes, and longitudes, nature of bottom, original numbers of casts, and letters designating lines are mainly takeu from "Hydrographic Notice Nn. 9 of 1S82," published by the U. S. Hydrographic Office, with the exception of about a dozen hauls, to which no latitudes or longitudes are aflixed.

Dredgings made by the Blake in 1878-79.

		永

\footnotetext{

Dredgings made by the Blake, tec.-Continaed.

[^107]Dredyings made by the Blake，etc．－Continued．

도			$\stackrel{\stackrel{\rightharpoonup}{\underset{~}{⿷ 匚}}}{\stackrel{\rightharpoonup}{6}}$							Tem tur	era. s．
	Line．	Date．	$\frac{\stackrel{y}{0}}{E}$	$\begin{gathered} \text { Latitude } \\ \text { N. } \end{gathered}$	tado W．	Depth．	Nature of bottom．	－	Locality．		$\begin{aligned} & \dot{\vdots} \\ & \stackrel{\vdots}{\circ} \\ & \text { 邑 } \end{aligned}$
		1879.		$\bigcirc{ }^{\circ}$＇ 1		Fath．				\bigcirc	\bigcirc
278 Ag ．	L	Mar． 6	7	130450	593740	69	Coral，shell	Off Barbatos		78	68
279 Ag．	L	Mar．${ }^{6}$	8	130100	593042	118	Coral，broken sbell	．${ }^{\text {d }}$ do		793	5.4
280 Ag ．	L	Mar． 6	3	135740	$59: 3650$	221	Sacd．．．	．do		80	50.
281 Ag．	L	Mar． 6	10	125448	$59: 630$	288	Broken shell	．do		80	46.
282 Ag ．	L	Mar． 7	11	130520	594000	154	Saud，shell．．	do		81	56
283 A tr ．	L	Mar． 7	12	130505	594050	236	Hard bottura．	．do		80	49
284 Ag．	L	Mar． 7	13	136710	594350	347	Sand．．．．．．．	．．．tio		80	444
285 ± 9.1	L	Mar． 7	14	130512	593718	13	Coral	．．．io			
286 Ag ．	L	Mar． 8	15	131058	593885	63.	．．．．．．tlo	．．do			
257 Ag．	\underline{L}	Mar． 8	！ 16	131125	593820	7	Cural，sand，brokeu shell	．ito			
288 Ag．	I	Mar． 8	17	13112	594535	390	Hard ．．．．．．．．．．．．．．．．．．．．	．de		80	44%
289 Ag．	I	Mar． 8	18	131125	5994815	713	lurown ooze．．	．．do		8013	40
$200 \mathrm{Ag} \cdot$－	L	Mar． 9	19	131151	593845	73	Coral，sand shell	．．${ }^{\text {do }}$		80	707
291.4 g ．	$\stackrel{L}{L}$	Mar．？	¢0	131900	594100	210	Coarse sand ．．．	．．．．．d．do		798	403
292 Ag．	L	Mar． 0	21	131355	593850	56	Coral，saud，broken shell	．．．．．．do		80°	13t
293 Ag．：	I．	Mar． 9	22	131123	593010	81	．．．．．．do ．．．．．．．．．．．．．	．．do		80	64
294 dg ．	I．	Mar． 9	23	131418	594010	136	IIard	．．．．．．do		801	54
295.4.	I．	Mar． 9	－4	$131: 18$	594112	180	do	．．．．．do		80°	510^{3}
2964 c ．	I，	Mar． 10	25	1330.524	503845	85	do	．．do		78	61.
297 Ag ．	I．	Mar． 10	： 6	130236	593745	123	Rock	．．．do		84	56.
298 八g．	I，	Mir． 10	7	130328	593740	120	．．．．．．do	．．do		804	61
$290 \Delta \mathrm{~g}$ ．	I．	Mar． 10	28	130.500	50：39 40	140	Coral，broken sbell	．．do		801	568
300 Ag ．	I．	Mar． 10	29	$1306: 0$	593920	82		．．．．do		E0t．	60

The following stations were ocoupied by Commander J. R. Bartlott on the Blake, from February to May, 18s0. They are all, except the first three, in the western Caribbean, between Cuba, Jamaica, and Honduras:

The following stations were occupied by the Blake during the dredg. ing cruise of the summer of 1880 :
Stations 301 to 308 are on the lines run off the northeastern extremity of George's Bank.
Station 309 is intermediate between the northeastern extremity of George's Bank and the next line run off Newport, which inchedes statious 310 to 312.
Stations 313 to 318 are in a line normal to the coast in about latitude 330 north.
Stations 319 to 323 are in a line parallol to the coast in the so-called axis of the Gulf Stream.
Statious 324 to $3 \mathcal{2 M}$, south of Cape Intteras.
Stations 330 to 333 , north off Cape Hatteras.
Stations 334 ta 339, enst off Cape May.
Stations 340 to 347 , normal to coast southeast off Montauk Point.
Dredgings by the Blakic in 1880.

$\begin{aligned} & \dot{\Delta} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$								Temperaturos.	
$\begin{aligned} & \text { V } \\ & \text { ت } \\ & \text { B } \end{aligned}$	line.	Date.		$\begin{aligned} & \text { Latitude } \\ & \text { N. } \end{aligned}$	Iongi tude W.	Depth.	Nature of bottom.		
		1880.			- ' "	7.		-	
301 Ac.	A	Junc 28	3	41265	600300		Fellow sand, black apecks	5	场
302 Ag .	A	June 28	4	413000	660000		Yellow nand, black . neecks, shepls.	53	24
303 Ag .	A	Tune 28	6	413430	655130		Gray arnd, black specks, mud.	61	$40 \pm$
304 AL	A	Juno 28	8	413500	693 5780		No мрпеіmen.		
305 As.	A	June 28	9	413315	0.5 5.12	810	Dark-riay mud, mand, stones..\|	50.2	
306 As.	A	June 29	12	413250	6.58500	:24		59)	398, 38
307 Ag .	A	June 29	10	412045	${ }^{65} 4710$	${ }^{980}$	Datk-may		
308 Ag.	A	June 29 Jume 30	19			1, $2 \cdot 4.2$	Wark-an	${ }^{65}$	
310 Ag.	${ }_{\text {A }}$	July 1	2	306900	$\cdots 01845$	360	Grean mad	6 fint	4
311 Ag.	13	July 1	3	395920	701130	143	Greon samb, black apecks	$7{ }^{\text {7 }}$	40
312 At.	13	July 1	6	395030	701100	41:6	Dark-mreen mud. prema sami	71	40
313 Af.	C	July 12	3	323150	7×4500	75	Fine gray sand, black specks...	$8:$	
314 Ar.	$\stackrel{\square}{8}$	July 12	4	32.2400	784400	112		$\stackrel{5}{1}$	$4{ }^{6}$
315 Ag .	C	July 12	6	321820	784300		Green sind. black specks. broben sholl.	c.03	
310 Ag .	O	July 12	0	320700	783730	290	Peebbles	$82{ }^{2}$	48
317 Ag.	C	July 12	11	315700	781835	334	Hard	$8{ }^{5}$	
318 A5.	O	July 12	14	31.4850	77 77 7 40	337	Coral. shell	88.4	$4{ }^{\text {4, }}$
319 AL	C	July 13	20	322500	774230	263	Comal matud		51
320 Ag .	8	July 13	21	323315	7731010	257	Gray sanl, black spectsa, Alulls	$84 \pm$	534
321 Ag .	C	S July 13	23	$\begin{array}{ll}32 & 43 \\ 3 & 25 \\ 10\end{array}$	772030	233	Globirerina, ome	84	46 lit
322 Ag .	C	$\begin{aligned} & \text { July } 14 \\ & \text { Julv } 14 \end{aligned}$	29	331000 331000	$\begin{array}{llll} 76 & 32 & 15 \\ 76 & 12 & 30 \end{array}$		Coral, nam, Elobigerina, ocza .		40°
$3 \geqslant 4 \mathrm{Ag}$	0	July 14	33	332720	755330	1, 386		84	
325 A\%.	1	July 14	1	3385	760000	647		84.	
326 Ag .	I)	July 14	2	334215	760050	401		815	30
327 Ag .	$1)$	July 15:	4	3400030	751030	178		8.8	3
328.4 gr	IT	July 15	4	342845	75.305	1,632	do	8	30
3298 Ag .	İ	July 15	4	344940	7. $1+4 \prime$	${ }^{603}$: 38
330 Ag .	${ }_{\text {E }}$	July 16	13	35 35 41 41	74 7109	1.017	alobigerina,		39
331 AL	E	Jaty 16	17	359440	74 40 ± 0	898	Glohigeriua,	81 701 8	413
332 Ag .	${ }_{4}^{1}$	July 17	21	35 45.30	74 748 780	203		7018	41
$33: 18$ Ag.	E	July 17	23	35 45.25	745010 30	6.3	Clay	79	
334 Ag	${ }_{\text {F }}$	July 18	1	38.3030	7321040	395	Globigorina oozo, clay	784	$\stackrel{108}{108}$
335 Ag .	F	July 18	4	389205	733340		Griay mand, black apocks	778	45
$\begin{aligned} & 336 \text { A } \mathrm{g} . \\ & 3: 77 \mathrm{~g} . \end{aligned}$	$\stackrel{\mathrm{F}}{\mathrm{F}}$	$\begin{aligned} & \text { July } 18 \\ & \text { July is } \end{aligned}$	5	382150 382008	73 73 73 23 200	107	Finegray sand, mut (flointrerina, 10%..	77. 78 78	\%9
338 Ax.	F	July 18	8	3 k 1840	731810	92		79	:39
339 Ag .	F	July 38	10	381645	731010	1,186	. 11	78	${ }_{38}^{39}$
340 AE.	G	July 20	2	$3925: 30$	$7_{0}^{0} 58.411$	1,304		761	388888888
$341 . \mathrm{AE}$.	G	July 20 i	5	393820	705800	1,241	-	70	319
$34 \pm$ Af.	G	July 20	8	139 43 00	7050	1, 102	Blue clay	764	30
343 Ag.	(July 20	8	394540	$705 ; 001$	732	Green mat		51
344 Ap .	G	July 21	12	400100	705800	139	Gre.dr	743 73	51
345 Ag. 346 A	$\stackrel{\text { G }}{\text { G }}$	July 21	13	40 10 15 40 25	71 71 71 1030130		Green mul, brokeu sholl, sand Creen mud	73	49
347 Ag.	G	July 21	15	405900	712230		Coarse black sand, yellow specks.	$72 \downarrow$	0

dredging stations of the challenger in the at. LANTIC OCEAN, 1872 TO 1876.

The British steamer Challenger left England for her scientific trip around the world in December, 1872 , and returned to England in May, 1876. She was under the command of Captain Nares, and the scieutific operations wete under the charge of Dr. (afterward Sir) Wyville Thompsou.

The serial numbers in the following table are those of the stations at which serial temperatures, trawlings, and dredgings were obtained, not those of the soundings, which had a separate numbering, ruuning up to 504. This table includes only the stations in the Atlantic, aud of these ouly those at which dredgings and trawlings were made are given, except from No. 22 to No. 63 (includivg all statious in North American waters). For these all stations, which iucludes also all the soundiugs made, are given, and they are placed upou the accompanying charts. In the ninth column, D. signifles dredging ; T. trawling.

Dredging stations of Challenger, 1872 to 1876.

Dredging atations of Challenger，etc．－Coutinued．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 宮 \& \& \& \& \& \& \& \begin{tabular}{l}
poris. \\
es．
\end{tabular} \& \[
\begin{array}{r}
\stackrel{\stackrel{\ddot{U}}{\ddot{~}}}{=}
\end{array}
\] \& \\
\hline \[
\begin{aligned}
\& \text { 吕 } \\
\& \text { 㤟 } \\
\& \text { 號 }
\end{aligned}
\] \& Dato． \& Latitudc． \& Longi． tude． \& opth \& ature of bottom． \& \[
\begin{aligned}
\& \text { تٌ } \\
\& \stackrel{4}{ت} \\
\&
\end{aligned}
\] \& \& \& Locality \\
\hline \& 1873. \& North． \& HEst． \& ath． \& \& \(\bigcirc\) \& \& \& \\
\hline 28 \& Mar． 20 \& 243900 \& 652500 \& 2， 850 \& Red clay \& 75 \& 36.3 \& 1. \& \[
\text { i. } \Gamma
\] \\
\hline 20 \& Mar． 21 \& 274000 \& 645900 \& 2， 700 \& do \& 2 \& \& D． \& \\
\hline 30 \& Apr． 1 \& 290500 \& 650100 \& \(\underline{2}\) ， 6010 \& \& 720 \& 36.5 \& \& 1）0． \\
\hline 31 \& Apr． 3 \& 312400 \& 650000 \& 2，475 \& Globigorina，ooze \& 69．5 \& 36.5 \& \& \\
\hline 32 \& Apr． 3 \& 314910 \& 6450 \& 2，250 \& \& \({ }_{\text {if }}\) \& 36.7 \& \& ， \\
\hline 3：1a \& Apr． 3 \& 320100 \& 645100 \& 1，8： 010 \& \& \({ }_{6}^{68}\) \& \& \& No． \\
\hline 32 b \& Apr．
Apr．
A

4 \& （32 10000 \& \& | 980 |
| :--- |
| 780 |
| 80 | \& Cotal，

$\cdots+. d o$ \& ${ }_{6}^{68}$ \& \& \& | （b）． |
| :--- |
| Ofr Bormuda． |

\hline $32 c$
$32 d$ \& $\begin{array}{cc}\text { Apr．} & 4 \\ \Delta \mathrm{pr} . & 4 \\ 4\end{array}$ \& 32 1730 \& \& 780 \& \& ${ }^{67}$ \& \& \& 1)o.

\hline $32 d$
320 \& $\begin{array}{ll}\Delta \mathrm{pr} \\ \Delta \mathrm{pr} & 4 \\ 4\end{array}$ \& 321900
32
32
10

30 \& $$
\begin{aligned}
& 6440=0 \\
& 6440: 35
\end{aligned}
$$ \& 320 \& do \& 67.5 \& \& D． \& Do．

\hline $32 j$ \& Apr． 4 \& 322040 \& 643815 \& 125 \& Hard \& 67.5 \& \& \& 10．

\hline 32 g \& Арг． 4 \& 322125 \& ct 3715 \& 263 \& $\because \mathrm{do}$ \& ${ }^{68}$ \& \& $\stackrel{1}{1}$ \& Do．

\hline 53 \& Apr． 4 \& 322130 \& 6435.55 \& 435 \& Coral， \& 18 \& \& D． \& o．

\hline 33 a \& Apr． 21 \& 32310 \& 644255 \& 175 \& Sand \& ${ }_{67.2}^{67.2}$ \& \& \& Do．

\hline 84 3 \& Apr． 21
Apr． 21

Apr \& ［32 38230 \& \& 1，3711 \& $$
\begin{array}{r}
\text { Mind } \\
\text { do }
\end{array}
$$ \& 67.9

67.2 \& \& \& 1\％o．

\hline $35 a$ \& Арг． 22 \& 323900 \& 650600 \& 2，450 \& Globigerina，ooze \& 67.8 \& 36.5 \& \& 1 ）．

\hline $35 b$ \& Apr． 22 \& 322600 \& 650900 \& 2， 100 \& \& ${ }^{18}$ \& 36.5 \& \& Do．

\hline $35 c$ \& A pr． 22 \& 321500 \& 650800 \& 1，930 \& do \& 08 \& \& \& Do．

\hline 36 \& Apr． 22 \& 320725 \& 6.50400 \& 30 \& Coral ．．．．．．．．．．． \& 67.5 \& \& ${ }_{1}^{1}$. \&

\hline 37 \& Alp $^{1} 124$ \& 321800 \& 653808 \& 2， 650 \& Globigerina，ooze \& 63 \& 36.5 \& D． \& and Malifax．

\hline 38 \& Apr． 25 \& 330300 \& 663200 \& 2,600 \& ．．．do ．．．．．．．．．．．． \& 70 \& 30.5 \& \& Do．

\hline 39 \& Apr． 27 \& 340300 \& 073200 \& 2，850 \& Rod clay \& 65 \& 36.5 \& \& Do．

\hline 40 \& Apr． 28 \& 345100 \& 0830 u3 \& 2，¢75 \& Biue mul \& 09.5 \& \& D． \& Do．

\hline 41 \& Арг． 29 \& 360500 \& 695400 \& （2，500） \& \& ${ }_{6} 15$ \& \& \& Do．

\hline 42 \& Apr． 30 \& 355800 \& 703500 \& －${ }^{3}, 425$ \& Blue mu \& 65 \& 36.8 \& \& Do

\hline 43 \& | May |
| :--- |
| May |
| | \& $\begin{array}{llll}36 & 23 & 00 \\ 37 & 25 & 00\end{array}$ \& 714000

714000 \& $(2,600)$
1,700 \& H14e \& ${ }^{75} 5$ \& 30.8
36.2 \& $1)$. \& 1）．

\hline 45 \& May 3 \& 383400 \& 721000 \& 1， 240 \& ． 10 \& 49.5 \& 37.2 \& 1. \& Do．

\hline 40 \& May 6 \& 401700 \& $60{ }^{63} 40$ \& 1，350 \& \& 40 \& 37.2 \& D． \& Do．

\hline 47 \& May 7 \& 411400 \& 654509 \& 1，340 \& \& 42 \& \& D． \& Do

\hline 48 \& May \& 430400 \& 040500 \& 51 \& Rock \& ${ }_{40}^{38}$ \& \& D． \& Do．

\hline 49 \& May 20 \& 430300 \& 633900
63
63 \& －85 \& Gravel，stones．．．
Blues mud．．．．．． \& 40.5 \& \& D． \& Do．

\hline 50
51 \& May 21
May 22 \& 420800
41

19 \& $$
\begin{array}{lll}
63 & 39 & 00 \\
03 & 12 & 00
\end{array}
$$ \& 1， 250 \& Blues mud ．．．．．．． \& 45

59 \& \& D． \& Do．
Do．

\hline 52 \& May 23 \& 394400 \& 632200 \& 2， 800 \& ．do \& 67．2 \& 36.2 \& \& Do．

\hline $52 a$ \& May 24 \& 381000 \& 631700 \& \& \& 73 \& \& \& Do．

\hline 53 \& May 26 \& 303000 \& 634000 \& 2， 650 \& Red clay ．．．．．．．． \& 73 \& 30.3 \& \& Do．

\hline 54 \& May 27 \& $\begin{array}{lll}34 & 51 \\ 33 \\ 50\end{array}$ \& ${ }^{63} 59000$ \& 2， 650 \& do do ．．．．．．．．．． \& 70.5 \& \& T． \& Do．

\hline $$
55
$$

$$
55 a
$$ \& May 28

May 28 \& $\begin{array}{llll}33 & 20 & 00 \\ 32 & 46 & 00\end{array}$ \& $\begin{array}{llll}04 & 37 & 00 \\ 64 & 39 & 00\end{array}$ \& 2，500 \& Globigerina，ooze \& 70.5
70.5 \& 36.2 \& \& Do．

\hline 556 \& May 29 \& 320735 \& 44 5345 \& 1， 325 \& Coral， \& 72 \& \& I）． \& Off Bermuda．

\hline 56 \& May 29 \& 320845 \& 645035 \& 1，075 \& Cor \& 72.5 \& 38.2 \& $1)$. \& Do．

\hline 560 \& May 20 \& 321045 \& 645880 \& 506 \& \& 72.5 \& \& I）． \& Do．

\hline 57 \& May 30 \& 321107 \& 650320 \& 690 \& \& 72.5 \& \& \& Do．

\hline ． 570 \& May 30 \& 3210930 \& 650735
651050 \& 1，250 \& Cornl，mud ．．．．．．． \& 73 \& \& D． \&

\hline －676 \& Mny 30 \& $\begin{array}{llll}32 & 09 \\ 32 & 45 \\ 32 & 00\end{array}$ \& 651050

642100 \& 1， 578 \& Globigorina，ooze \& $$
\begin{aligned}
& 73 \\
& 73.5
\end{aligned}
$$ \& 37.2 \& \& BormudatoAzoros

\hline 59 \& June 14 \& 325400 \& 632300 \& 2，360 \& ．．．io ．．．．．．．．．．． \& 74 \& 38.3 \& \& Do．

\hline 60 \& June 16 \&	34	28
34	00	\& 585600 \& 2,575 \& red cla \& 71.5 \& 30.2 \& ＇r． \& Do．

\hline 61 \& June 17 \& 345438 \& 503800 \& 2，8：51 \& Red mud \& 71 \& 36.2 \& ＇s． \& Do．

\hline 03 \& June 19 \& 352900 \& 5053800 \& 2.750 \& Rod clay \& 71 \& \& ＇1． \& Do．

\hline ${ }_{64}^{64}$ \& June ${ }^{\text {June }}$ \& $\begin{array}{llll}35 & 35 & 00 \\ 38 & 03 & 19\end{array}$ \& | 50 |
| :---: |
| 39 |
| 38 |
| 19 |
| 1800 | \& $\left(\begin{array}{l}(2,700) \\ 2,175\end{array}\right.$ \& Glohigerina，ooze \& 75 \& \& İ． \& Do．

\hline 68 \& June 24 \& | 38 | 03 | 19 |
| :--- | :--- | :--- |
| 38 | 23 | 40 | \& | 3919 |
| :--- |
| 37 |
| 100 |
| 31 | \& 2,175

2,200 \& Glubigerina，00ze

$\ldots . . .10 ~$ \& 70 \& $$
\begin{aligned}
& 36.2 \\
& 36.2
\end{aligned}
$$ \& T． \& Do．

\hline 70 \& June 26 \& 382500 \& 355000 \& 1，0175 \& ．．．．do．．．．．．．．．．．． \& 70 \& \& ＇1＇． \& Do．

\hline 71 \& June 27 \& 381800 \& 344800 \& 1， 675 \& do \& 71 \& 36.8 \& T． \& 1 No

\hline 73 \& June 30 \& 383000 \& 311400 \& 1，000 \& Ptoropod \& 60 \& 30.4 \& I． \& Dis．

\hline 75 \& July 2 \& 383880 \& 282830 \& 450 \& Volcanic mud．．． \& 70 \& \& ${ }_{\text {I）}}$ ）． \& Off Azores．

\hline 76 \& July
July

10 \& | 3811 |
| :--- |
| 37 |
| 60 |
| 10 | \& $\begin{array}{llll}27 & 00 & 00 \\ 25 & 13 & 00\end{array}$ \& 900

1,000 \& Ppteroped，ooze．． \& 70 \& 40 \& ${ }_{1}^{1)}$ 1）． \& $$
\begin{aligned}
& \text { Do. } \\
& \text { Do. }
\end{aligned}
$$

\hline 70 \& July 11 \& 362100 \& 233100 \& 2，025 \& Globigerina，ooze \& 71.5 \& 35.9 \& 1）． \& Azoren to Maderia．

\hline 83 \& Juty 15 \& $3: 41300$ \& 181300 \& 1，650 \& －．do ．．．．．．．．．．． \& 71. \& 37 \& D． \&

\hline 85 \& July 19 \& 284200 \& 180600 \& 1，125 \& Voleanic \& 69． 2 \& \& I． \& de Verdes．

\hline 87 \& Tuly 21 \& 254900 \& 201200 \& 1， 0^{-5} \& Rock． \& 72 \& \& I． \& Jo．

\hline 89 \& July 23 \& 221800 \& 22 0200 \& 2，400 \& Glohigerima，ooze \& 73.5 \& 36.6 \& T． \& 1）

\hline 98 \& Tuly 20 \& 1760 \& 244100 \& 1，975 \& \& 74.7 \& \& D． \&

\hline 98 \& Aug． 14 \& 92100 \& 182800 \& 1，750 \& \& 78．2 \& 36.7 \& 1. \& St．Psul＇s Rocks．

\hline 101 \& Aug． 10 \& 54800 \& 142000 \& 2，500 \& Blue mud \& 70.2 \& 30.4 \& T． \& $1) \mathrm{D}$.

\hline 104 \& Aug． 23 \& $\because 2500$ \& 200100 \& 2，500 \& Globigerina，aozo \& 78 \& － 30.6 \& ＇T． \& Do．

\hline
\end{tabular}

Dredging staiions of Challenger, etc.-Conitinucd.

DEEP'SEA DIREDGINGS OF LE TRAVALLLEUR.

Abstract of decp-sea dredgings in the Bay of Biscay, the Atlantic Occan, and the Mediterrancan, by the French dispatch boat Jo Travaillew.
[Onder the command of M. E. F. Richards, Lieutonant de Vaissean, by a commission of naturalists, of which M. Milne Edwarde way president. 1

BAY OF BISCAY IN 1880.

Alotract of deep-sea dredgings in the Bay of Biscay, etc.-Continued.
BAY OF BISCAY IN 1880-Continued.

IN THE ATLANTIC IN 1881.

FIRGT BERIES.					
Jtue 13	1	430040	(1)3725	1, 103	Sand and rock.
June 14	2	414300	01925	1584	Sand, peblies.
June 15	3	304750	95145	1,808	Gray nund.
June 16.	4	380850	94315	1,300	Gray mud.
Do	5	380500	94145	1,781	Gray mul.
June 17	6	365520	93145	1, 020	Gray mud.
June 18.	7	363820	70.341	291	Soft mud.
July 31.	30	359445	75852	650	Soft mud.
Do.	31	302715	81241	756	Soft mud.
Do Ang.	31	362715	81241	1, 148	Soft mud.
Aug. 1	32	371520	02455	618	Soft mud.
${ }^{\text {Aup }}$	32	371520	92455	563	Soft mud.
Aug. 5	33	381520	0 0 1745	1, 014	Soft mud.
Aug. ${ }^{\text {D }}$.	93	381520	91745	1,013	Soft mud.
Aug. ${ }_{\text {Do. }}$	34	381800 381830	0 24 0 26	${ }^{669}$	Soft mud.
Aug. 7.	35 36	381830 303300	$\begin{array}{llll}0 & 26 & 25 \\ 0 & 51 & 15\end{array}$	747 1.416	Soft mud.
DO_{0}	38	393100	95845	1,455	Soft mud.
Aug. 14.	37	$4410 \mathrm{d5}$	81745	- 219	Gravol, sand, and sholl.
Ango.	38	441100	81345	1, 048	MLud.
Aug. 15.	30	440500	70025	. 670	Black sand, cornl.
Do.	30	440445	70315	621	Black and, coral.
Do.	a39	440500	70915	547	Gravel, coral.
Do.	239	410545	71215	567	Black mavd, coral.
An Do.	40	440500	71445	214	liack snnd.
Ang. 18.	41	440215	70715	549	Sand and mud.
Do.	42	440120	70445	490	Mud and cornl.
Do.	43	440050	65800	402	Mixell sand and mud.
A Do.	44	440010	64800	951	Mud.
Aug. 17.	45	4 ± 4880	44015	2,745	Mud with foraminifura.

Abstraot of deep-sea dredgings in the Bay of Biscxy, etc. \rightarrow Continued.
IN THE MRDTTERRANEAN IN 1881.

DREDGINGS OF THE TRAVAILLEUR IN 1882.

The Travaillour in 1882 continued the series of dredgings commenced in 1880 and 1881, and extended them from Cape Penas, on the north coast of Spain, along the coast of Portugal, the Gulf of Cadiz, and the coast of Morocco to the Canary Islands, through the strait of Bocayna (between Fuerteventura and Lanzarote), to Madeira, Lisbon, and back to Rochefort. Twenty-one hauls of the dredge were made, in from 100 to 3,700 meters (55 to 2,023 fathoms) of water. M. Alphonse Milne-Edwards was in principal charge of the natural history observations. Λ general report of the expedition was publisked in the Revue Maritime et Coloniale, February, 1883 ('Tome LNXVI, page 454), and the details of position, etc., in the Annales Hydrographiques, vol. 5, p. 4, 1883.
The number of the Annales Hydrographiques containing these positions was found t, be wanting in all the accessible libraries in the United States, and although ordered from France, failed to arrive in time to allow the positions to be included in this paper.

980 REPORT OF COMMISSIONER OF FISH AND FLSHERIES. [108]

DREDGINGS OF THE FRENCH STEAMER TALISMAN, 1883.
The Talisman continued the researches carried on by the Travailleur in 1850-s2, and extended from the coast of Portugal along the west coast of Africa, touching at the Canaries, to about $17 \circ \mathrm{~N}$. latitude; thence westward to the Cape de Verde Islands; thence northwestwardly to latitude $31^{\circ} 34^{\prime}$, longitude $41^{\circ} 1 \bar{v}^{\prime}$; thence northeasterly to the Azores, and thence back to France.

Mrete
1
\square

373
779
1, 198
1,198
301
301 .
, 516

Mud

.....dlo.
. . do

............

..........
............

June
Jane 15
June 15
June 15 June 15
June 15
June June 15 June 15
June 16 June 16
Jane 16 Juno 16 June 16
June 17
June June 17
Juno 17 Juno 17
June 17 Juno 17
June 17

Juue | June 17 |
| :--- | :--- | :--- |
| June 17 |
| June 18 |\(\quad \begin{array}{ll}32 \& 29

32 \& 24

\& 32\end{array}\)

955
1023
1023 : 12

1. 15 !

Coast of Morocco, from Cape Blanco
to Mogador.
Do.

Do. Do.

Do. Do.

Do. No. Do.

1)

Do.
Do.

Do.
Do.
Do.

Dredgings by the French steamer Talisman，1383－Continued．

	Date．	$\begin{aligned} & \text { North } \\ & \text { latitude. } \end{aligned}$	West West longitulate， Greut wich． longitude， ＇rans．		Depth．	Depth．	Kind of bottom．	Temperatures．				Localits．	－	
$\begin{aligned} & \underset{E}{E} \\ & \stackrel{\rightharpoonup}{E} \\ & \text { in } \end{aligned}$					$\begin{aligned} & \text { 岂 } \\ & \text { H } \\ & \text { B } \end{aligned}$				$\begin{aligned} & \dot{8} \\ & \text { 总 } \\ & \text { 部 } \end{aligned}$	$\begin{aligned} & \text { E } \\ & \stackrel{\rightharpoonup}{U} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$	或			
		$\begin{array}{ll}\circ & \prime \\ 31 & 59\end{array}$	0.1 1009	0 12 12		Fathoms．	Meters．		$\bigcirc \cdot \underline{ }$	F＇．	－ 0.	－C ．		
36	Jupe 18	3159	1009	1229		1，048	Mud			．．．		Coast of Morocco，from Cape Blanco to Momador．	O	
37	June 21	3134	1021	1241	499	912	Red mud					Do．		
38.	Jane 21	3131.	1027	1247	574	1，050	\％edo and yellion					$\xrightarrow{\text { Do．}}$	\bigcirc	
39	Juno 23	30 30 30	1119 1117	13 13 13 17	1， 1,512	$\stackrel{2}{2,525}$	Rerd and yelior mud					Mogador to Canari Do． Do．	\％	
41	June 23	3009	1141	1401	1， 209	2， 210	Mud	71.6	39.2	22.0	4.0	Do．	易	
42	June 23.	3008	1142	1402	1，203	2， 200	Greasy mud					Do．	\cdots	
43	June 23	3008	1145	1405	1，203	2， 200	．．．do	70.7	39.2	21.5	4.0	D．	0_{6}	
44	June 24	3003	11 4＂	1402	1，210	2,212	Gray mud，broken shells．	65.7	41.0	18.7	5.0	Do．	－	
45	June 24	3001 2958	1146 1141	1406 1401	1，157	2， 1104	．．．do					Do．	2	
46	June 25	$\underline{2952}$	1144	1404	1，135	2,075	．．．do	67.1	41.0	19.5	5． 0	11.	E	
48	June 25	2952	1147	1407	1，139	2，083	．．do					Do．	\％	
49	Juve 26	2908	1220	1446	676	1，235	Soft yellow mud	68.5	47．3	20.3	8.5	${ }^{\text {Do．}}$		
50	June 20	2903	1228	1448	${ }_{6}^{667}$	1，220	Yellow mad．	71.6	46．4！	22.0	8.0	Do．	可	
51	${ }^{\text {June }}$ June 26	29 2902 2901	1229	1448 1451	636 615	1,163 1,180	Mud．	70.7	47.7 47.3	21.5	8． 7	Do．	1	
53	Jung 27	2837	1303	1523	473	805	Yellow nud	69.8	44． 6	21.0	7.0	Do．	\bigcirc	
51	June 27	2835	1310	1530	533	975	．．．．do	70.2	45．0	21.2	7.2	Do．	\％	
55	June 27	2835	1316	1536	677	1，238	．．．．do	72.5	45.0	22.5	7.2	Do．		
50	June 27	2833	1319	1539	518	946	Sand，black specks，rocks				8.0	Do．	2	
57	June 27	$\stackrel{88}{83}$	1319	1539	－ $\begin{array}{r}497 \\ 10-142\end{array}$	905 $30-259$	Pebblos add rocks．	72.5	46.4	22.5	8.0	Camary Islands．	号	
$\begin{aligned} & 58 \\ & 59 \end{aligned}$	June 28	2848 2849	13 13 13	1606 1613	15－142	30－292	Sand aud rocks．．．．					Io．	E	
c0		2848	1401	1621	495－678	906－1， 240	Muddy sand，rocks					Do．	发	
61	Ju！${ }^{\text {\％}}$	273.5	1415	1635	1，094－1，102	2，000－2，015	Yellow mud	73.4	38.3	23.0	3.5	From Canaries to mouth of Senegal， near coast of Africa．	家	
62	Juls 7	2732	1409	1629	1，101	2，013	．．．do	73.0	39.2	22.8	4.0	1）．	或	
63	July 7	2731	1408	1628	1，080	1．975	．．do	73.0	39,4 39.4	29.8 2.8 2	4.1	Do．	0	
94	July 7	2731	14.07	1627 1713	1，049	1，918	Sand shells，corals	73.0	39.4	22.8	4.1	${ }_{\text {Do }}$	寺	
$\begin{gathered} 65 \\ 66 \end{gathered}$	July^{8}	26 26 26 18	1453 1452	1712	450 350	640	Sund，shels，corals．．．．．．．	70.7	49.1	21.5	9.5	Do．	$\%^{2}$	
67	July 8	2617	1451	1711	194	335	Sand，shells，corals					Do．		
68	July 8	2616	1451	1711	136	250	．．．do					Do．		
69	July 8	${ }^{2613}$	1450	1710	96	175	\cdots					Do．		
9	July 8	${ }^{26} 2607$	1448	17 17 17 08 18	71 56	130						Do．	$\underline{\square}$	
71	July 8	26 254 254	［ 1459	17816 1818	224	410	Muddy yand，corals					Do．	0	
	July 0	2538	1558	｜ 1818	！ 382	693	Muddy sand，corals，Bhells					Do．	$\underline{\square}$	

 Jalr 29 -

$\begin{array}{lll}13 & 58 \\ 16 & 09 \\ 16 & 06 \\ 16 & 09 \\ 16 & 11 \\ 10 & 51 \\ 10 & 53 \\ 16 & 55 \\ 17 & 00 \\ 17 & 12 & \\ 17 & 15 \\ 17 & 16 \\ 17 & 17 \\ 17 & 17 \\ 17 & 30 \\ 17 & 31 \\ 17 & 29 \\ 17 & 26 \\ 17 & 23 & 1 \\ 17 & 21 \\ 17 & 33 \\ 17 & 36 \\ 17 & 32 \\ 17 & 30 \\ 17 & 28 \\ 17 & 28 \\ 17 & 27 \\ 18 & 07 \\ 18 & 08 \\ 18 & 09 \\ 18 & 19 \\ 18 & 20 \\ 18 & 02 \\ 18 & 00 \\ 17 & 57 \\ 17 & 57 \\ 17 & 59 \\ 17 & 07 \\ 17 & 07 \\ 16 & 59 \\ 18 & 26 \\ 20 & 23 \\ 20 & 1\end{array}$
 Enfirons of La Praja

$$
\begin{array}{c:c}
1613 & 243 i \\
\text { coads of Porto Grande }
\end{array}
$$

Roads of Porto Grande..
Between Branco and IAazo..
Hoads of Porto Grande...

Dredgings by the Fronch steamer Talisman, 1883-Continued.

$\begin{aligned} & \text { 炭 } \\ & \text { B } \end{aligned}$!						Temperaturos.				Locality.
	Date.	latitude.	ongitude. Greenwich.	lougitude. Paris.	Depth.	Depth.	Kind of bottom.					
116		0 1653	${ }^{\circ} \mathrm{O}$ -	\bigcirc	Fathoms.	Melers.			\bigcirc	\bigcirc C.	${ }^{\circ} \mathrm{C}$.	
117	July 29	1653 1652	25 2510 25	2730 2730	224-252	410-160	Sand, grarel					Among the Cape Ferde Islands.
117	July 29	1653	4506	2730 2726	219	400	do					I).
118	July 30	1655	2507	2726 2727	317 190	580 347	Sand rocks					10.
118	July 30	1651	2500	2727 8729	190	347 405	Sand, rocks					Do.
119	Juls 30	1652	2510	2729 2730	261	405 550	Sand.	75.2	59.7	24.0	11.5	Do.
119	duly 30	1652	2512	2732	416	760	Sand, gravel	75.2	50.0	24.0	10.0	Do.
120	July 30	1653	2512	2732	338	618	Mruddy sand	73.2	20.0	24.0	10.0	Do.
121	July 30	1051	2510	2730	346	633do					No. Do.
121	July 30	1652	2512	2733	327	598	Sand, rocks	74. 3	50.0	23.5	10.0	Do. Do.
122	July 30	1837	2510	2730	2, 469	4,115	Yellow mad	74.3	37.2	23.5	2.9	North of Cape Verde Islands.
123	dug. 7	3017	4047	4307	1,980	3,530	Powdered pumice	76.1	37.4	24.5	3.0	In Sargasso Sea.
121	Aug. 8	3134	4115	4335	1,709	3,125	. . . do	73.4	34.7	23.0	1.5	
125	Auc. 9	3319	3544	3801	1, 877	3,432	. . . do	77.4	35.8	25.2	2.1	$1)$.
126	Aug. 10	3446	3351	3611	1,736	3,175do	76.3	38.1	24.6	3.4	
$1: 7$	A11\% 11	3611	3201	3421	1, 201	2,195	Sand, rocks, hard ground.	74. 3	39. 2	23.5	4.0	Sonthwest of Azores.
$1 \because 7$	dug. 11	3612	3154	3414	1, 527	2,792	. . . do	75.2	28.3			Do.
$1 \geq 8$	Aucir 11	3012	3154	3414	1, 527	2,792	-...do	7.2	28.	24.0	3.5	No.
12	Ang. 11	3613	3147	3407	1,597	2,921	-do	$7{ }^{7} 9$	38.8	24.0	3.8	Do.
13	A11\%. 11	3614	3140	3400	1, 574	2,878do	76.3	38.3	24.6	3.5	Do.
1.0	Ang. 12	3735	2926	3140	-789	1,442	Gray mud	72.5	44.6	22.5	7.0	Do.
131	Ang. 12	3735	2926	3146	787	1,440do					Do.
13:	dug. 13	3823	2850	3110	306	56	Sand, ¢ֻ.	73.4	54. 5	23.0	12.5	A zore Islands.
133		3825	2844	3104	344	629	Sand, rocks.					Azore ${ }^{\text {Do. }}$ Diands. Do.
1135	Aug. 13	3825	2844	3104	344	639	Sand, gravel					Do.
136	Ang. 13 Aug. 13	\} Between	Fayal an	d Pico . $\{$	41-63	80-115	..- do				--.	Do.
137	Aug. 15) 3837	2821	13041	44-10!	$80-190$ 1,258	Gray	73.				Do.
138	Aug. 15	3838	2820	30 40	688	1,221	Gray mud	73.4	5. 7	23.0	11.5	Do.
139	Allg. 15	3838	2821	3041	687	1,157 ${ }^{\text {do }}$ do	72.5	52.7	22.5	11.5	Do.
140	Aug. 15	3839	2821	3041	680	1,255do		52.7	22.5	11.5	Do.
141	Aug. 16	3807	2712	2932	538	, 983	Sand, shells Globigerina	-72.		22.5		Do.
142	Aug. 16	3800	2713	2933	1,214	2,220	Soft, gray mud............	72. 5	48.2	22.5	9.0	Do.
142	Aug. 16	3800	2705	2925	1,179	2,155	Wort, gray mud.					Do.
143	Aug. 10	3755	2702	2922	1,222	2,235	-do	73.4	39.2	23.0	4.0	Do.
144	Aug. 22	3838	2506	2726	1,638	2,995	Soft, white mad	73.7	38.1	23.0	3.1	North of St. Michacl.
145	Allg. 23	4035	2334	2554	2,414	4,415	. . . do				3.1	From Azores to France.
146	Aug. 24	4215	2117	2337	2,174	3,975	...do	09.8	37.4	21.0	3.0	Do.
147	Ang. 24	14219	2118	\| 2336	2,220	4,060do	70.7	37.4	21.5	3.0	- Do.

.

4293	21	15	2335
4315	19	20,193	
4420	1711	21931	2,278
4441	1331	1551	2,327
4429	1332	1552	2,078
4421	1333	1553	2,737
4609	056	916	2,618
4606	650	910	2,819
4004	426	646	1,250
4559	409	620	809

4,010				
4,165	do			
4, 255	do	07	37.4	19.5
3,800	do	69.8	37.4 36.9	21.0 21.5
4,975	W bitish mod	70.7	36.9	21.5
5, 005	vdo	68.0	37.0	20.5
4,787 4,789	Yellowish,	08.0	37.0	20.5
2, 285	Mud, clay			
1,480	Coral			

.	Do.
2.9	Do.
3.0	Do.
3.0	Do.
2.7	Do.
\ldots	Do.
2.8	Do.
	Bag of Biscay Do.

dredging stations of the italian steamer waseINGTON IN THE MEDITERIRANEAN, 1881.

The Washington was under the command of Commander G. B. Marnaghi, of the Italian navy, and tho dredgings were under the direction of Prof. Enrico Hillyer Giglioli. The report from which these positions are taken was published in the Report of the Third International Geographical Congress ("Terzo Congresso Geografico Internazionale") held in Venice in 1881, published in Rome 1882.

Dredgings by the Italian steaner IVashington, 1881.

[^108]
ZOOLOGICAL STATIONS OF THE NOLWEGLAN NORTH.AT. LaNTIC EXPEDITIONS, 1876-187s.

These expeditions were malle by the steaner Vorringen and the zoological and physical researehes were under the charge of Dr. Danielssen, Profs. Mohn and G. O. Sars, Merr Friele, etc. The first expedition, in 1876, extended along the western coast of Norway to the Firöo Islands and Ieeland; the second, in 1si7, from Bergen to outside the Loffoden Islands, and from Tromsije to Jin Mayen; the third, in 18is, to Vardio, thence westward to Beeren Island, and afterwards to Spitzbergen in 80° N. latitude. All the dredging stations are given in this list.

Dredyings of Norwegian North-Allantio expeditions, 1876-1878.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \& Dale. \& Latitule. \& Longi. tude. \& Deptu. \& Nature of botlom. \& Botto pera -. Palır. \& \begin{tabular}{l}
nters uros.
\(\qquad\) \\
Cent
\end{tabular} \& \\
\hline \& 1870. \& \[
\underset{0}{\text { North; }}
\] \& East., \& Faths. \& \& \(\bigcirc\) \& 0 \& \\
\hline 1 \& Juve 3 \& 61 13 \& 630 \& 650 \& Sandy day \& 43.8 \& 6.0 \& D. \\
\hline 4 \& June 3 \& 6130 \& 632 \& 672 \& \& 4.1 \& 6.7 \& T \\
\hline 4 \& June 8 \& 0105 \& 514
4
4 \& 560 \& Sandy clay, pobbles \& 43.3
43
4 \& 8. 0 \& \({ }_{1}\) \\
\hline 8 \& June \({ }_{\text {Jano }} \mathbf{9}\) \& 6100
0130 \& 449
337 \& 200 \& Clay, sand, ntones
Clay \& 43.9
42.6 \& 0.0
6.0 \& V. \\
\hline 10 \& Juno 21 \& 6141 \& 319 \& 240 \& Oоze, clay \& 42.8 \& 6.0 \& T. \\
\hline 18 \& June 21 \& 624 \& 148 \& 412 \& Clny \& 30.2 \& -1.0 \& I).,T. \\
\hline 23 \& June 23 \& 625 \& 550 \& \& \& \& \& \\
\hline 25 \& June 28 \& 6310 \& 525 \& 98 \& Sandy clay \& 44.4 \& 0. 9 \& D.,'T. \\
\hline 26 \& June 28 \& 4310 \& 510 \& 237 \& ... do \& 44.8 \& 7.1 \& D. \\
\hline 31 \& June 29 \& 6310 \& 500 \& 417 \& C. 10 \& 30.2 \& -1.0 \& 1).,T. \\
\hline 33 \& June 30 \& 63305 \& 300 \& 525 \& Clay \& 30.0 \& \(-1.1\) \&], , \(\mathbf{T}\). \\
\hline 34 \& July 1 \& 0305 \& 053 \& 587 \& do \& 30.2 \& -1.0 \& \\
\hline 35 \& July 5 \& 6317 \& 127 \& 1,081 \& Biloculina elay \& 30.2 \& -1.0 \& \\
\hline 40 \& July 18 \& 6392 \& 520 \& 1,215 \& do \& 20.8 \& -1.2 \& 1., T \\
\hline 48 \& Aug. 6 \& 6430 \& 10.2 \& 299 \& 1)ark gray clay \& 31.5 \& -03 \& Tıu. \\
\hline 51 \& Ang. 7 \& 6553 \& 718 \& 1. 103 \& Biloculina clay. \& 30.0 \& -1. 1 \& \\
\hline 52 \& Aag. 8 \& 0547 \& East.
3 \& 1,861 \&do \& 29.8 \& -1.2 \& 1. \\
\hline 53 \& Aug. 10 \& 0513 \& 033 \& 1,539 \& ..do \& 29.7 \& -1.3 \& D.T. \\
\hline 54 \& Aug. 12 \& 6447 \& 424 \& 001 \& \& 20.8 \& -1.2 \& D.,' \\
\hline 79 \& Aug. 21 \& 64
64
64
02 \& 63
5
5 \& 155 \& Saudy clay \& 44.4 \& 6.8 \& D. \\
\hline 87
92 \& Ang. 22
Aug. 22 \& 64
02
04
00 \& 5
645
642 \& 498 \& Clay Sand olay \& 30.0
45.0 \& -1.1 \& \(\stackrel{\text { d. }}{\text { D }}\) \\
\hline 93 \& \[
\begin{aligned}
\& \text { Aug. } 24 \\
\& \text { dug. }
\end{aligned}
\] \& (120 41 \& 7 708 \& 158 \& Soft ulay. \& 43.5 \& 6.4 \& I \\
\hline 96 \& June 16 \& 6608 \& 300 \& 805 \& Biloculina clay \& 30.0 \& -1.1 \& D. \\
\hline 101 \& Tune 17 \& 6530 \& 832 \& 223 \& Sandy clay. \& 42.8 \& 6.0 \& \\
\hline 124 \& Juno 19 \& 0041 \& 659 \& 350 \& Coarse clay \& 30.4 \& -0.9 \& D., T. \\
\hline 137 \& Jnue 21 \& 0784 \& 858 \& 452 \& Clay \& 30.: \& -1.0 \& D.,' \\
\hline 147 \& Tune 22 \& 6049 \& 1208 \& 142 \& Gray clay \& 43.2 \& 6. 2 \& \\
\hline 149 \& June 23 \& \[
\begin{aligned}
\& 67 \text { fer } \\
\& \text { ? Vers }
\end{aligned}
\] \& \[
\begin{array}{r}
1358 \\
\text { jord.) }
\end{array}
\] \& 135 \& Clay \& 40.8 \& 4.9 \& D., \({ }^{\text {d, }}\) \\
\hline 164 \& June 29 \& \(6 \times 21\) \& 1040 \& 457 \& Sandy clay. \& 30.7 \& -0.7 \& 1).' P \\
\hline 1736 \& July 3 \& 6918 \& 1432 \& 300 \& Clay, stoues \& 40.3 \& 4. 6 \& 1. \\
\hline 175 \& July 2 \& 6917 \& 3435 \& 415 \& Chay, pebules \& 37.4 \& 3.0 \& \\
\hline 177 \& Tuly 3 \& (0) 25 \& 1349 \& 1,443 \& Bilocsulina clay \& 20.8 \& -1.3 \& 1) 'r' \\
\hline \(1 \times 3\) \& July 5 \& 6950 \& 615 \& 1,710 \& - ..do \& 29.7 \& -1.3 \& 1),'11. \\
\hline 100 \& July 7 \& 69141 \& 1551 \& 870 \& Sandy clay \& 20.8 \& -1. 2 \& T. \\
\hline 102 \& duly 7 \& 69945 \& 1615 \& 049 \& \(\cdots \mathrm{c}\) do \& 30.7 \& -0.7 \& \(1)\). \\
\hline 115 \& July 16 \& 70.55 \& 1838 \& 107 \& Stones, clay \& 41.2 \& 5.1 \& \\
\hline 200 \& July
July

din \& 7125

7051 \& | 15 |
| :--- |
| 13 |
| 13 |
| 18 | \& 620

1,287 \& Clay \& 30.2 \& -1.0 \& ${ }^{\text {b, }}$, ${ }^{\text {1 }}$

\hline 213 \& Juny ${ }^{\text {July }} 8$ \& 7023 \& 230 \& 1,700 \& Biloculin \& 29.8 \& -1.2 \& ${ }^{1}$

\hline 223 \& Ang. 1 \& \& \& 70 \& Dark gray, sandy clay \& 30.0 \& -0. 0 \& D.

\hline 224 \& Aug. 1 \& 7051 \& 8 \& 05 \& ...do \& 30.0 \& -0.6 \& D.

\hline 295 \& $A^{\text {A } 14.5}$ \& 7058 \& 801 \& 105 \& \& 30.9 \& -0. 6 \& 1.

\hline 237
$\mathbf{P} 40$ \& Aug. 3 \& 71141 \& 1010 \& 263 \& Brown clay, Atones \& 31.5 \& -0.3 \& 1.

\hline P40 \& Aug. 4 \& 6902 \& 11.20 \& 1,004 \& Biloculian olay. \& 30.0 \& -1:1 \& D.

\hline
\end{tabular}

Dredgings of Norwogian North-Atlantic expeditions, 1876-1878-Continued.

$\begin{aligned} & \dot{8} \\ & \frac{8}{g} \end{aligned}$	Dato.	Latitude.	Longi. tude.	Depth.	Nature of bottom.	Bottom temperatures.		∞
						Fahr.	Cont.	
	1877.	North;	East.	Faths.				
248 231	Aug. 8			778	Biloculina clay.	29.5	-1.4	${ }_{\text {1) }} \mathrm{D}$.
$\begin{aligned} & 251 \\ & 252 \end{aligned}$	Aug. 9 Aur. 11	$\begin{gathered} 6800 \\ (\nabla \text { estfi } \end{gathered}$	${ }_{\text {jord.) }}{ }^{944}$	034	Clay	29.7	-1.3	${ }_{\text {D }} \mathrm{D}$.
253	Ang. 15	(Skjerata	dfjord.)	203	\cdots...do	37.8	3.2	${ }_{\mathrm{D}}$
2536	$\begin{aligned} & \text { Ang. } 17 \\ & -1878 . \end{aligned}$	(Saltátro	nmen.)	90	Stones			1.
255	Juno 19	6812	1540	341	Clay	43.7	6.5	D.
257	June 21	70 (Vatf	jord.) 23	100	...do	30.0	3.9	D.
		(Altenf	jord.)					
258	June 21	7013 (Alten	$\text { jord.) } 23$	230	do	39.2	4.0	T.
200	June 21	${ }^{70} 55$ ।	2011	127	...do	38.3	3.5	D.,T
201	June 25	${ }^{\text {(Porsang }}$	rfiord.)	127	.d	37.0	2.8	D.,T
262	June 27	${ }_{70}{ }^{(\text {Canaf }}$	oril.) 32	148				
207	Junge 27	7142	3701	148	Clay, stones	29.5	-1.4	
270	June 27	7227	3501	1136	Clay.	32.0	0.0	D.
273	July 1	7325	3130	197	...do	30.0	2.2	D.
275	${ }^{\text {July }} \mathbf{4}$	7408	3112	147	. do	31.3	-0.4	7.
280	July 4	$\begin{gathered} 7410 \mid \\ \text { (Becren } 1 \end{gathered}$	1851 slabil.)	35	Stones	34.0	1.1	D.
283	July 5	(13ecren 73 17	slaut.) 14.	707	Clay			D.
280	July 0	7257	1432	$4+7$	-..do	30.6	-0.8	T.
200	July 7	7237	2051	101	Sandy clay	38.3	3.5	T.
295		7159	1140	1,110	Biloculina clay	${ }^{20.7}$	-1.3	T.
297	July 16	7230	512	1. 280	...do	29.5	-1. 4	
$30: 3$ 312	Tuly 19	$\begin{array}{r}7512 \\ 74 \\ 74 \\ \hline 84\end{array}$	302 1453	1, 200	C.ay	29.1 29.8	-1.6 -1.2	T
315	July 22	7453	15.55	180	Clay sand		$\underline{1.2}$	${ }^{1}$
322	July 23	7457	1959	21	Hard	32.4	0.2	1.
333	July 30	7253	2151	223	Clay	34.7	1.5	'
329	Aug. 3	7531	1750	123	\cdots	34.0	1.6	T.
333	Aug. 4	7006	1310	748	Biloculina clay	29.7	-1.3	'1.
336	Aug. 5	7610	1542	70	Clay hard botto	32.7	0.4	D.
338	Aug. ${ }^{6}$	7619	1801	143	Hard		-1. 1	T.
343	Aug. 7	7634	1251	743	Clay		-1.2	T.
350	Aug. 8	7620	West.	1,686	Biloculina olay.	20.3	-1.5	T.
353	Aug. 10	7758	East.	1,333	...do	29.5		T.
357	Aug. 12	7803	1118	125	Clay	35.4	1.9	1.
359	Auc. 12	7802	925	410	..do	3:3. 4	0.8	ก.
302	Aug. 14	7959	540	459	do	30.2		T.
303	Aug. 14	8003	828	260	do	34.0	1.1	T.
300	Aug. 17	7935	1117	61	. 10	28.2	-2. 1	宁
368 370	Aug. 17 Ang. 18	Magdaleda 7848 78	an Bay,	37 109	...do	31.6 34.0	-0.2	召
. 372	Aug. 19			129	-	34.21	1.2	\%
374	Aug. 22		$\begin{aligned} & \text { rd. } \\ & 1533 \\ & \text { Bay) }^{15} \\ & \hline \end{aligned}$	60	...do	33.3	0.7	T.

ZOOLOGICAL STATIONS OF THE SWEDISH AROTIC EXPEDITIONS OF 1875, 1876, AND 1878-'79.
The dredgings of 1875 were made by A. E. Nordenskiöld and Dr. Hjalmar Theel in the sloop Proeven, those of 1876 by Nordenskiöld in the steamer Ymer, those of 1878-'79 by Nordenskiöld in the Vega.

The numbers assigned to the stations are arranged geographically, instead of according to the dates at which they were made.

The numbers 98,103 , and 104 refer to collections not mado by the Vega expedition but brought in by the Tschuktsches, who found them thrown on the shores in the spring and summer months of 1879.

Zoological stations of Sucedish Arctic expeditions, etc.-Continued.

DREDGING STATIONS OF THE DANISH ARCTIC EXPEDITION, 188릉․

The Danish Arctic expedition of 1882-'83 in the steamer Dijmphna, commanded by Lieutenant Hovgaard, was partially at the expense of the Danish Government, but mainly at that of the brothers Gamél. The naturalist in charge was Th. Holm. The zoological and botanical results were published in 1887 at Copenhagen in an octavo volume, containing papers by Holm, Jensen, Deichmanu Branth, Wille and Kolderup Rosenvinge, on the botany, and by Liitken, Hansen, Lerinsen, Bergl, Jungersen, Traustedt, Collin, and Holm on the zoology.
The dredgirgs were on the southern coast of Nora Zembla and in the Kara Sea.

No. 1 in the Kostin Schar on the southwest coast of Nova Zembla.
No. 2 in the Nicholskoï Schar on the southwest coast of Nova Zembla.
No. 3 in the Olenje Sund on the south west coast of Nova Zembla.
Nos. 4-6 in the Petuschowski Schar in the southwest coast of Nova Zembla.
No. 7 in the Kara Sea, off Cape Yarasol.
Nos. 8-10 in the Jugor Schar at its outlet into the Kara Sea.
Nos. 11-183 in the Kara Sea.
Nos. 189-90 in the Kara Strait, between Nova Zembla and Waigatsch Island.
Dredging stations of the Danish Arctic expedition, 1882-83.

	Dato.	Latitude north.	Longitude gast, Gren. wich.	$\dot{\overrightarrow{\hat{\Delta}}}$	Kind of bottom.	
	1882.	$\bigcirc{ }^{\circ}$	$\bigcirc 1$	Fath.		
1	Aug. 12	7124	5049	5	Sand and stones	
2	Aug. 18	7031	5728	12	Blue clay, with stonos	
3	Aug. 23	70 70 74	5703 6018	12	Sand and stones	A.
5	Au\%. 28	7034	5618	5	do	A.
8	Sopr. 1	7034	5018	5	..do	A.
7	Sept. 0	09.52	6040	10-12	Bluo clar, with brown mud, stony	A.
8	Sept. 12	6949	6032	c	Sand and blue clay..	${ }_{\text {A }}^{\text {A }}$
9	Sept. 13	6949	6032	0	-....do...........	
10	Sept. 15	6948	8033	6	Blue clay	
11	Sont. 20	7015	6495	61	Blue elay, with irown inud	
12	Sopt. 27	7017	6490	70		
1:3	Sept. 28	7012	6137	(i7	${ }^{10}$	
14	Sept. 20	7010	6441	$6: 5$do	
15	Sept. 30	7011	6130	67	Dark	
17	Oct. 3	7014	0422		Dark-...dsown	
18.	Oct. 4	7016	6423	66	..do	
10	Oct. 5	7019	0420	60do	
20	Oct.	7020	6ı 31	68do	
21	Oct. 7	7021	6422	65	du	A.
	Oct. 0	7023	64403	79	Bi...do	
$2: 31$	Oct. Oct. Of 11	7022 70	63 60 63 6	81.	Blue clay, with brown mud	
25	Oct. 12	7019	6340	98	do	
26	Oct. 14	7017	6337	104	Dark-brown clay	
27	Oct. 16	7021	6355	78	. do	
28	Oct. 17	7010	0111	75	. ${ }^{\text {do }}$	A.
29	Oct. 19	7007	0423	70	Blue clay, with brown muc	Δ.
30	Oct. 20	7007	0427	67do	
31	Oct. ${ }^{21}$	7008	6442	67	...do	
32	Oct. 23	7007	64t 52	01	. ${ }^{\text {do }}$	
33	Oct. 24	$\begin{array}{ll}70 & 03 \\ 70 & 01\end{array}$	6453	01	Stiff gray clay with a littlo brown	
34	Oct. 2.5	7003	6447	58	Blue clay, with brown mud.	
35	Oct. Oct. cti	7004	6451	60 75	…..do	
37	Nor. 2	7018	0400	76		
38	Nov. 8	7017	0420	02	Dark-brown clay.	

Dredging stations of the Danisk Arctio expedition, 1882-83-Continued.

Dredging etations of the Danish Arctic expedition, 1882-83-Continuod.

	Date.	Latitulo north.	Longitude gantur. Grieh. wich.	㝘	Kind of bottom.	
	1883.			Frth.		
105	Apr. 18	7145	6512	90	Light-brown clay, with brown mud	
$\begin{aligned} & 108 \\ & 107 \end{aligned}$	${ }_{\text {Apr. }}{ }_{\text {Apr. }} 19818$	714	6.511	$\begin{aligned} & 89 \\ & 91 \end{aligned}$		
108	${ }_{\text {Apr }}$	7143	0504	80	Light-brown chay, with brown mud, and ferruginous toncretious.	
109	Apr. 24	7139	6.45	73		
110	Apr. 25	7138	6458	79	Dark-brownclay, with brown mud, stones, and forruginons concrotions.	
111	Apr. 20	7137	64 56	74	Giayish brown clay, with ferruginous concretions..	
112	Apr. 27	7137	6454	74	Grayinh brown day	
113	Apr. 28	7136	64.49	710	Gragith-brown clay, with brown mud................	
114	Apr. 30	7138	0.437	65	Gravish-brown chay, with small stones, and ferrafinoms concretions.	
115	May	7134	6429	50	i31ud do ...	
116	May 2	7133	6117	50	Bhue clay, with brown mad, and ferruginoun concretions.	
117	May	7132	6417	50		
118	May	7134	6418	4.		
119	May	7135	$6+12$	49		
120	May	7132	C4 18	53	d	
123	May 11	7128	Lit 17	66	Mhio day, with brown	A.
124	May 12	7127	6t 20	53		
125	May 15	7125	6422	50	Bhne clay, with forruginous concretions	
12 B	May 10	7124	6421	55	Blue clay, with brown mud.	
127	May 17	7122	6120	68	Blue clay, with brown mad, and ferraginous concretions.	
128	May 18	7121	6423	09	. ${ }^{\text {do }}$	
129	May 21	7121	6418	68		
130	May 22	7122	6417	56	(1)	
131	May 24	7125 7118	6418 64 64	$\frac{55}{55}$		
$\begin{aligned} & 132 \\ & 133 \end{aligned}$	$\begin{array}{ll}\text { May } & 20 \\ \text { دnay } & 28\end{array}$	7118 7121	64 64 64	$\begin{aligned} & 55 \\ & 55 \end{aligned}$	Hhue clay, with brown m	
134	May 30	712	6402	55	Blue clay, with brown mud, and ferruginons concretions.	
135	Juno	7120	6405	56.	Blue clay, some small stones.......................	
130	June 4	7118	6416	57	Blue clay, with brown mud, nud ferruginous concretions.	
137	Tune 0	7117	64 16	60		
138	June 8	7116	6416	59	Blue clay, with brown mud	
139	June 9	7115	6416	${ }^{64}$	13 lue clay, with sandy chay, and a fow mall stones..	
140	June 11	7112	6420	56	Bhae clay, wish brown mud, and ferrugivous concretion.	
141	Juno 12	7113	6422	59	nhue clay, with brown mnd............	
14:	June 14	7110	6411	73	Blue clay, with brown mud, and a few ferruginous coucretions.	
143	June 15	7100	6406	58	do	
144	June 10	7110	6402	75		
145	June 18	7118	03342	70	Bluo clay with brown mud	
146	June 19	7120	6330	09	Blue clay, with brown mud.........................	
147	Juno 20	7121	6343	65	Blae clay, with brown nud, and fertuginous concrotions, and small stonos.	
148	June 21	7120	6349	85	Blue clay, with brown mu	
140	Tune 23	7118	63348	8		
150	June 25	7115 7114	63 6344	918	¢ibue day, with brown mud, nuid sandy chay	
152	June 27	7113	0343	83	Blue chay, with brown mud, and ferruginous concrotions.	Δ.
153	June 28	7112	6343	85	Bhate clay, with brown mud	
154	Junie 29	7112	6343	95		
155	Juno 30	7111	6342	78.	Bhe clay, with brown mud, forruginous concrotions, aud stones.	
150	July 1	7110	6337	67\%	Blue clay, with brown mud, and fertuginous concretions.	
157	Tuly 2	7109	6333	70		
158 150	$\stackrel{\text { July }}{\text { July }}$	71 71 71 07	6324 03 032	70 73	Blne clay, with brown	
100	Juli	7104	6313	72do	
181	Juiy ${ }^{6}$	7105	6310	72	iino chay with brown mud, and forruginous con-	
102	July 7	7100	63 07	791	Blue ehy, with hrown mud, and berruginons conaretions.	
163 164	July $\begin{gathered}\text { Suly } \\ \text { J } \\ \text { Sun }\end{gathered}$	71 71 71 08	62 595	89 80	33100 clay, with brown mud	
165	Tuly 14	715	6238	75	Blue chay, with brown mud, and ston	
106	July 16	7104	0240	768		
107	July 18	7104	6237	75		

Drcdging stations of the Danish Lrctio expedition，1882－＇83－Continued．

葛荷品	Date．	Latitulde north．	$\left\lvert\, \begin{gathered} \text { Tongitude } \\ \text { orst, } \\ \text { Greon- } \\ \text { wich. } \end{gathered}\right.$		Kind of bottom．	
	1883.	\bigcirc	$\bigcirc 1$	Fath．		
108	July 20	7106	6242	75	Blue clay，with brown mad．	
169	July 22	7105	6247	73	Blue clay，with brown mud，and stonos	
170	July 24	$\begin{array}{lll}71 & 04\end{array}$	6240	74	Blue clay，with brown mud．．	
171	Aug． 2	7114	0237	70	．．．．．do ．．．．．．．．．．．．．．．．	A．
172	Aug． 4	7118	6210	58	Blue clay，with brown mid，and stones	
173	Ang． 7	7110	6137	40	．．．．．．do	A．
174	Aug， 8	7113	6128	48	．do	
175	Allg． 10	7110	6122	52	－do	
176	Aug． 13	7111	0112	53	．．do	
177	Aug． 16	7059	6030	68．	Blue clay and brown mud，with many sandy worm－ tubes．	A．
178	Aug． 17	70.52	6000	92	Jline clay，with light－brown mud，and small stonos	A．
170	Aug． 20	7054	5951	93	Blno clay，and small stonos	A．
180	Aug． 22	7056	5940	97	．．．．．．do．．	A．
181	Augr 22	7056	6036	100	Mi．．do ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	A．
182	Aug． 24	7057	50335	100	Blus elay and brown mud，with small stones．．．．．．．	
183	Aug． 30	7106	6940	98	Blue ciny and avall stones ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	
184	Sopt，is	7117	5043	74	Blue clay，with biown mud，saud－tubos，and small stones．	A．
185	Sept． 4	7110	5924	100	Blue clay，with brewn mud．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	A．
188	Sept． 5	7108	59151	106	Blas clay and brown mud，with very numerous sand－tubos．	
187	Sopt． 8	7118	69） 44		Blue clay and many baud tubes ．．．．．．．．．．．．．．．．．．．．．．．	A.
188	Sept． 0	7120	5958	63	Blue clay and many sand－tubos，with somo mud and stones．	A．
189	Sept． 21	7020	5753	30	Sandy olay，and stony ．．．．．．．．．．．．．．．．．．．．．．．．．．	A.
190	Sopt． 2	$70 \leq 0$	5747	50	．．．．．．do ．．	d．

DREDGING AND SOUNDING STATIONS OF THE LIGHT. NING, 1868.

The dredgings made by the British surveying steamer Lightning in 1868 were undertaken at the request of the Royal Society, and, with the excention of the dredgings of Count Pourtales in 1867 and 1865, were almost the first deliberate attempts to investigate the deep-sea fauna. The region explored was between the north of Scotland and the Färöe Islands and extending thence to a distance of about 950 miles northwest of Scotland. The series of temperatures obtained on this expedition, showing the great difference of temperature exising to the northeast and southwest of a submarine barrier (discovered by a subsequent expedition) were the first contributions of importance to our knowledge of the laws governing deep-sea temperatures. The scieutific observations were under the charge of Dr. W. B. Carpenter and Prof. Wyville Thomson, and the preliminary report by Dr. Carpenter was published in No. 107 of the Proceedings of the Royal Society, 1868.

Dredging and sounding stations of the Lightning, 1868.
warm amea.

Serial number.	$\begin{aligned} & \text { North } \\ & \text { latitude. } \end{aligned}$	West longitude.	Depth.	Temperatures	
				Surfaco.	Bottom.
	- ,	\bigcirc -	Fathoms.		\bigcirc
$1 .$.	5920	705	1500	54.5	49 48.5
2	60 60 60 60	9 9 9 18	164 229	54	48.
4**.	60314	+ 818	229 72	54	48
5*	0101	748	62		50
12**	5930	720	530	62.5	47.3
33**.	5905	729 0	189	52	49.3
$14 .$	5959 6038	915 1107	650 570	63 62	46
10^{*}	6102	1204	650		48
17.	6049	1238	620	52	46

COLD AREA.

DREDGING STATIONS OF THE PORCUPINE, 1869.

The dredgings of the British steamer Porcupine in 1869 were in continuation of those of the Lightning in 1868, and were, like them, undertaken at the request of the Royal Society. They extended west of Ireland and Scotland, as far west as the Rockall Bank, and as far north as the Färöe Islauds, and reached a depth of 2,435 fathoms, a much greater
one than ever before attained. Dr. Carpenter's report on them is contained in No. 121 of the Proceedings of the Royal Society, Vol. 17, 1. 397.

Dredging stations of the Porcupine, 1869.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& \multirow{2}{*}{Dato.} \& \multirow{2}{*}{Latitude.} \& \multirow{2}{*}{Lougi. tude.} \& \multirow{2}{*}{Depth.} \& \multirow{2}{*}{Kind of bottom.} \& \multicolumn{2}{|l|}{Temperatures, Fahronhoit.} \& \multicolumn{2}{|l|}{Tomporatures, centigrado.} \\
\hline \& \& \& \& \& \& Sur. face. \& Bot. tom. \& \begin{tabular}{l}
Sur. \\
face.
\end{tabular} \& Bottom. \\
\hline \& \& North: \& West., \& Fath. \& \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline \& May 18 \& 5151 \& \& \% 370 \& \& 54.2 \& 49.0 \& 12.3 \& 9.4 \\
\hline 4 \& May 18 \& 5128 \& 1225 \& 808 \& Soft mud \& 54.2 \& 41.4 \& 12.3
12.5 \& 6. 2 \\
\hline 3 \& \& 5138 \& 11350 \& 722 \& \& 54.5 \& 43.0
49.5 \& 12.5 \& 6. \({ }^{6}\) \\
\hline 4 \& \& 5156
52
07 \& 13
12
512 \& 251 \& \& 54 \& 49.5
48.8 \& 12.2 \& 0.3 \\
\hline 0 \& \& 5225 \& 1140 \& 90 \& \& 54.0 \& 50.0 \& 12.2 \& 10.0 \\
\hline 7 \& \& 5214 \& 1148 \& 159 \& \& 53.2 \& 50.4 \& 11.8 \& 10.2 \\
\hline 8 \& \& 5315 \& 1151 \& 106 \& \& 5 \& 51.2 \& 12.3 \& 10.7 \\
\hline 8 \& \& 5310 \& 1242 \& 185 \& \& 53.5 \& 49.7 \& 12.0 \& 9. 8 \\
\hline 10 \& \& 5323 \& 1329 \& 85 \& \& 54.0 \& 49.5 \& 12.5 \& 0.7 \\
\hline 11 \& \& 5324 \& 1524 \& 1,030 \& \& \& \& \& \\
\hline 13 \& \& 5341 \& 1417 \& 670 \& \& 52.2 \& 42.6
49.6 \& 11.2 \& 5.9
9.8 \\
\hline 13 \& \& 53
53
53
40 \& \(\begin{array}{lll}13 \& 55 \\ 13 \& 15 \\ 18\end{array}\) \& 208
173 \& \& 53.6
53.2 \& 49.6
49.6 \& 12. 1.8 \& 9.8
9.8
8 \\
\hline 14 \& \& 5340
54
54 \& \(\begin{array}{lll}13 \& 15 \\ 1217 \\ 12\end{array}\) \& 173 \& \& 53.2
52.2 \& 49.6
47.0 \& 11.8
11.2

11 \& 9.8
8.3

\hline 10 \& \& 5410 \& 1150 \& 816 \& \& 53.0 \& 39.5 \& 11.7 \& 4. 2

\hline 17 \& \& 6428 \& 1144 \& 1,230 \& \& 53.2 \& 37.8 \& 11.8 \& 3.2

\hline \& Juno 7 to Jaly 0 \& 5415 \& 1109 \& 183 \& \& 53. \& 49.5 \& 11.8 \& 9.7

\hline 19 \& ...do.... \& 5453 \& 1050 \& 1,360 \& \& 54.8 \& 37.4 \& 12.6 \& 3.0

\hline 20 \& . . do \& 5511 \& 1131 \& 1, 443 \& \& 65.5 \& 37. 0 \& 13.0 \& 2. 7

\hline 21 \& . do \& 6540 \& 1246 \& 1,476
1,263 \& \& 50.2
56.7 \& 36.9
37.3 \& 13.4 \& 27
29
29

\hline 22 \& do \& 50
508
060 \& 13
14
14 \& 1, 263 \& \& 57.3 \& 43.5 \& 14.1 \& 8.4

\hline $23 a$ \& do \& 5013 \& 1418 \& 4 ± 0 \& \& 56.8 \& 40.4 \& 13.7 \& 8.0

\hline \& do \& 5620 \& 1428 \& 109 \& \& 67.7 \& 40.4 \& 14.3 \& 8.0

\hline 25 \& . do \& 5041 \& 1339 \& 164 \& \& 56.8 \& 40.5 \& 13.7 \& 8.1

\hline 20 \& . do \& 5058 \& 1317 \& 345 \& \& 57.4 \& 46.7 \& 14.1 \& 8.2

\hline 27 \& do \& Ifockall \& Bank. \& 54 \& \& 55.6 \& 48.3 \& 13.1 \& 9.1

\hline 28 \& do \& 5644 \& 1252 \& 1,215 \& \& 57. 6 \& 37.1 \& 14.2 \& 2.8

\hline 29 \& do \& 5034 \& 1223 \& 1,264 \& \& 58.9 \& 36.9 \& 13.8 \& 2.7
2
2

\hline 30 \& do \& 50024 \& 1149 \& 1,380
1,360 \& \& 50.0
50.0 \& 37.1
37.2 \& 13.3
13.8 \& 2.8
2.9

\hline 31 \& . $\mathrm{}$. do \& $\left.\begin{aligned} & 50 \\ & 50 \\ & 60 \\ & 0.5 \\ & 0.5\end{aligned} \right\rvert\,$ \& 1125
1023 \& 1,360
1,320 \& \& 56.9
55.9 \& 37.2
37.4 \& 13.8
13.3 \& 3.0

\hline 33 \& July 20 \& 5038 \& 927 \& 74 \& Mud, gravel, doad \& 65.2 \& 49. 0 \& 18.4 \& 0.8

\hline 34 \& \& 4951 \& 1012
10
10 \& 75 \& \& 60.0
63.4 \& 49.0
51.3 \& 18.9
17.4 \&

\hline 85 \& July 21 \& 49
48
48
50 \& 1057
11 \& 98
725 \& Gravol, dend shelis Muddy sand \& 63.4
64.0 \& 51.3
43.9 \& 17.4
17.7 \& 10.7
0.1

\hline $$
\begin{aligned}
& 30 \\
& 37
\end{aligned}
$$ \& July 22 \& 4850

4738 \& 1109
11208
119 \& 725
2,435 \& Muddy sand Gray, onzo... \& 64.0
05.6 \& 43.9
30.5 \& 17.7
18.6 \& 2. 5

\hline 38 \& July 23 \& 4730 \& 1133 \& 2,090 \& -..do.... \& 64.2 \& 36.3 \& 17.8 \& 2.4

\hline 39 \& July 20 \& 4901 \& 1156 \& ${ }^{2} 557$ \& Oozo sand, dead shells \& 63.0 \& 47.0 \& 17.2 \& 8.3

\hline 40 \& ...do ... \& 4901 \& 1205 \& 517 \& do \& 03.4 \& 47.7 \& 17.4 \& 8. 7

\hline 41 \& - ido. \& 4904 \& 12 29 \& 684 \& ...do \& ${ }^{63.4}$ \& 48.5 \& 17.4 \& 8.1

\hline 42 \& July 27 \& 4912 \& 1252 \& 882 \& -..d \& 02.6 \& 30.7 \& 17.0 \& 4.3

\hline 43 \& July 28 \& 5001 \& 1228 \& 1,207 \& 0020 \& ${ }^{61.7}$ \& 37.7 \& 10.5 \& 3.21

\hline 44 \& July 20 July 30 \& $\begin{array}{lll}50 & 20 \\ 51 & 01\end{array}$ \& 1134
11 \& 865
458
4 \& \& 01.2
60.0 \& 30.4
48.1 \& 16.2 \& 4.19

\hline 45 \& July 30
Aug. 17 \& 51
51
59
29 \& 1121
704 \& 498

374 \& \& | 60.9 |
| :--- |
| 53.9 | \& 48.1 \& 15.9

12.1 \& 8.1
7.7

\hline 47 \& Angust \& 5034 \& 718 \& 542 \& \& 54.0 \& 43.8 \& 12.2 \& 6.5

\hline 48 \& \& 5982 \& ${ }^{15} 59$ \& 510 \& \& \& \& \&

\hline 49 \& ...do... \& 5043 \& 740 \& 475 \& \& 53.0 \& 45.4 \& 12.0 \& 7.4

\hline \& $\cdots{ }^{\text {a }}$ do \& 5054 \& 758 \& 355 \& \& 52.6 \& 46.2 \& 11.4 \& 7.0

\hline 61 \& . ${ }^{\text {do }}$ \& 00006 \& 814 \& 440 \& \& 51.0 \& 42.0 \& 10.0 \& 5.5

\hline \& . do \& 6025 \& 810 \& 381 \& \& 52.1 \& 30.0 \& 11.2 \& -0.8

\hline 53 \& . ${ }^{\text {do }}$ \& 6025 \& 726 \& 490 \& \& 52.1 \& 30.0 \& 11.2 \& -1.1

\hline \& - 10 \& 593 50 \& $\begin{array}{lll}6 & 27 \\ 6 & 19\end{array}$ \& 303
605 \& \& 52.5
62.8 \& 31.4
29.8 \& 11.4 \& -0.3

\hline $$
55
$$ \& ...do \& 60

604

0002 \& | 618 |
| :--- |
| 6 |
| 6 |
| 11 | \& 605

480 \& \& 62.8
$5 \% 6$ \& 29.8
30.7 \& 11.4
11.4 \& -1.2

\hline \& . do \& C0 14 \& 617 \& 632 \& \& 62. 0 \& 30.5 \& 11.1 \& -0.8

\hline 58 \& do \& 6021 \& 051 \& 640 \& \& 51.4 \& 30.8 \& 10.0 \& - 0.6

\hline 59 \& Aug. 20 \& 6021 \& 541 \& 580 \& \& 52.7 \& 29.7 \& 11.5 \& 1.3

\hline 60 \& \cdots \& 0103
6201 \& 515
519
508 \& 107 \& \& 49.5
50.4 \& 44.3
45.0 \& 10.7
10.2 \& 6.9
7.2

\hline 62 \& - .do... \& 6150 \& 438 \& 123 \& \& 49.6 \& 44.6 \& 9.8 \& 7.0

\hline 03 \& . do \& 6157 \& 402 \& 817 \& \& 49.0 \& 30.3 \& 9.4 \& -0.9

\hline 64 \& Aug. 25 \& 6121 \& 344 \& 640 \& \& 40.7 \& 30.0 \& 0.3 \& -1.1

\hline 65 \& Aug. 26
\ldots do... \& 6110

6115 \& | 221 |
| :--- |
| 144 |
| 18 | \& $\begin{array}{r}345 \\ 207 \\ \hline\end{array}$ \& \& 52.0

52.4 \& 30.0
45.7 \& 11.1
11.3 \& -1.1

\hline 67 \& Aug. 27 \& 6032 \& 029 \& 64 \& \& 51.0 \& 49.1 \& 11.0 \& 9.5

\hline
\end{tabular}

Dredging stations of the Porcupine，1863－Continued．

$\begin{aligned} & \text { L } \\ & \text { H. } \\ & \text { 䒤 } \\ & \text { 冎 } \\ & \text { N } \end{aligned}$	Dato．	Latitude．	Longi－ tude．	Depth．	Kind of bottom．	Tompera． tares Fahrenhoit．		Tompera－ tures contigrado．	
						Sur－ face．	Bot． tom．	Sur． face．	Bot－ tom．
		North：	East． －	Fath．		\bigcirc	\bigcirc	\bigcirc	\bigcirc
68	August．i	6023	033	75		52.5	44． 0	11.4	6． 7
69	．．．dlo．．．．	6001	Wext.	67		53.5	43.8	12.0	6． 5
70	Ang． 28	6004	021	60		53.4	45.1	11.0	7.3
	Sept． 1	6017	253	103		53.0	48．6	11.6	0.2
	＇．．．do ．．．．	6020	305	76		52.3	48.8	11.3	9.4
	－．．．do ．．．．	6029	306	84		52.7	48.8	11.5	9.4
74	．．．do ．．．．	6039	309	203		52.6	47.6	11.4	8.7
75	．do ．．．．	6045	306	$2: 0$		51.5	41.9	10.8	5.5
		6036	358	344		50.3	29.7	10.1	-1.1
	．．．．do．．．．	0034	440	560		50.9	29.8	10.5	-1.2
	Septomb＇r	0014	430	290		52.2	41.5	11.2	5.3
79	．．．do ．．．．	5944	444	76		52.1	48.9	11.2	0． 4
80	｜．．．do ．．．	5949	442	92		53.2	49.4	11.8	9． 6
	1．．．do ．．．．	5054	$50:$	142		51.3	49.1	11.8	9． 5
89	．．．do	S0 00	513	312		52.3	41.4	11.2	5.2
83	＋．．．do	6006	508	362		53.1	37.5	11.7	3． 19
81	Sept． 4	5934	634	155		54.3	49.1	11.4	0． 5
85	．．．．lo ．．．．	5940	634	190		53.9	48.6	12.1	9.3
80	…do．．．	5948	631	445		53.6	30.1	12.0	-1.0
	Sept． 0	5935	911	767		52.5	41.4	11.4	5． 9
． 88	．．．do ．．．．	5926	823	705		53． 5	42．6	12.0	5． 9
－ 89	（ Sept． 7	5938	740	445		53.1	45.5	11.7	7.5
リ0		5941	734	$4: 8$		53.1	45.2	11.7	7.3 -0.2
VI		（30 45	440	510		52.0	31.7 30.2	11.1 10.0	－0．9
VII		6007	－ 21	500		51.0	30.2 20 2	10.0 11.7	$\begin{aligned} & -1.0 \\ & -12 \end{aligned}$
VIII		0010	5.99	550		53.0	29.8	11.7	－1．2
X		60 28	655	500		51.0	30.8	10.6	－0．7
XI		0031	716	450		50.0	31.2	10.0	－ 1.4
XII		6930	720	$5: 30$		52.5	44.8	11.4	7． 1
XIV		5959	915	650		53.0	42.5	11.7	5．${ }^{\text {6．}} 4$
XV		6038	1107	570		52.0	43.5 435	11.1	（i． 4
XVII		5949	1230	620		52.0	43.5	11.1	6． 4

DREDGING AND SOUNDING STATIONS OF THE PORCUPINE， 1870.

The dredgings of the Porcupine in 1870，like those of 1869 and those of the Lightning in 1868，were undertaken at the request of the Royal Society to extend the examination of the deep－sea bottom to the south of Europe and the Mediterranean．Two cruises were made，the first under the scientific direction of Mr．Gwyn Jeffreys，accompanied by Mr．Josua Lindahl and Mr．W．L．Carpenter，extending from Falmouth to Gibraltar，and the secoud under W．B．Carpenter，assisted by Mr． Lindahl and Mr．P．H．Carpenter，exploring the western basin of the Mediterranean between Gibraltar and Malta，in order to determiue its physical and biological－relations to the Atlantic，with special reference to the Gibraltar current．The temperature observations made on this second cruise，showing an almost absolute uniformity of temperature from the depth of about 100 fathoms（or that of the Straits of Gibraltar） to the greatest depths reached（ 1,743 fathoms），shed a most important light upon the phenomena of ocean basins iuclosed by shallow barriers， such as the Mediterranean，the Caribbean Sca，Gulf of Mexico，and Sooloo Sea，as contrasted with those of the open occan．Thus，on this season＇s work，the six temperatures taken below 1,000 fathoms in the Mediterranean（rangiug from 1,328 to 1,743 fathoms）were all between
$54.7{ }^{\circ}$ and 56°, and one at 112 fathoms giving $5 \overline{5} .5^{\circ}$, whilst in the Atlantic, almost in the same latitude, depths of 1,095 and 1,065 fathome gave $39.7 \circ$ and one of 128 fathoms, a little farther north, 52.50. The report on the expedition, by Mr. J. Gwyn Jeffress and Dr. W. B. Carpenter, forms No. 125 of the Proceedings of the Royal Society, December 8, 1870. There appear to be some discrepancies between the numbers assigned to the stations in the Mediterranean in the detailed description of the dredgings and those given in the list of stations and on the charts, but as the latter two series agree the others are probably erroneous. Oare, therefore should be taken in making use of the lists of animals dredged to see that they really beloug to the station ascribed to them in the body of the text. The exploratious of the first cruise (No. 1 to 38) extended from July 7 to August 5, 1870, and those of the second cruise from August 15 to October 1 ,

Dredging and sounding stations of the l'oreupinc, 1870.

Dredging and sounding stations of the Porcupine, 1870—Continued.

DREDGINGS OF THE SHEARWATER, 1871.
In 1871 the steamer Shearwater made some dredgings on the coral banks between Sicily and Cape Bon, in depths of not more than about 200 fathoms. Dredging was not the main object of the expedition and no record exists, so far as is known, of the precise localities.

SOUNDING AND DREDGING STATIONS OF THE VALOROUS, 1875.

The Valorous was a war-steamer sent as a store-ship with the British North. Polar Expedition of 1875 (the Alert and Discovery). As it was to return directly from Disco, Greenland, the Royal Society requested the Government to permit Mr. J. Gwyn Jeffireys and an assistant, Mr. Herbert P. Carpenter, to make the voyage, so as to undertake natural history observations both at Disce aud on the return voyage. The reports on the dredgings, etc., between Davis's Straits and England by Mr. Jeffress, Dr. William B. Carpenter, Rev. A. F. Norman, Dr. W. C. MeIntosh, Professor Allman, Professor Duncan, Prof. Georgo Dickie, and Mr. R. Etheridge were published in No. 173 of the Proceedings of the Royal Suciety, 1876. The first dredging was made about July 22 and the last on August 23, 1875. . In the following table the letter D. indicates a dredging, S. T. a scrial temperature. At the other stations soundings only were made.

Sounding and dredging stations of the Valorous, 1875.

$\begin{aligned} & \dot{8} \\ & \text { 台 } \\ & \text { 总 } \end{aligned}$	$\begin{aligned} & \text { Lati- } \\ & \text { tude N. } \end{aligned}$	Longitude W .	Dopth.	Bottom tempar ature.	Kind of observation.	Nature of bottom.	Localits.
	\bigcirc,	\bigcirc -	Fath.	-			
1	7030	5441	175		D.	Sand, mud	North of Disco
	7027	6500	85 100		D.	Mud	West of Diaco Island.
3	6931 6758	50 01 55 27 27	120		D.	Broken barmacles, ehells	In Davis's Straits.
5	6055	55 :30	57		$1)$.	Rock, sand, shells	Do.
8	0405	5047	410	34.6	D., S. T.	Sand, mud..............	Do
7	6.3 09	5043	1, 100	36.4 34.6	D., S. T.	Clay mud me olay under)..	Do.
8	0200	5550	1,350 1,750	34.6 34.0	D...... do	Do.
9	5910	5025 4020	1, 1.660	34.3	S. 'T.	Fino sand.....	SW. of Cape Farowell.
11	58814	4452	1,800	33.4		Globigerina ooze........	South of Cape Farow
12	5011	3341	1,450	36.3	D., S. 'T.	Globigerina ooze, stone.	In Atlantic Ocea
12	5001	3442	${ }^{600}$	38.2		Globigerina 00ze........	Do.
14	5568	3141	1. 230	30.8 30.5		Clay blue mud...........	D.
15 16	5558 5510	2842 25 58	1,485 1,785	36.7	D.	Globigerina oozo (blue	Do.
16	5510	2558	1,785			mud under).	

DREDGING STATIONS OF THE KNIG.HT ERRANT, 1880.

The dredgings of the British steamer Knight Errant were made in the Färöe Channel between the Färöe Islands and the north of Scotland, covering a part of the same ground that was explored by the Lightning in 1808, and defining the position of the submarine barrier by which the so-called warm and cold areas of the Fïröe Channel are divided from each other. The report of the expedition was published in the Proceedings of the Royal Society of Edinburgh, Vol. XI, pp. 638-720, read May 15, 1882. The dredgings were under the scientific charge of Mr. John Murray, of the Challenger expedition.

Dredging stations of the Kigight Errant.

	Date.	$\begin{aligned} & \text { Latituade } \\ & \mathbf{N} . \end{aligned}$	Longitude ${ }_{\text {W. }}^{\text {chen }}$	Dopth.	Kind of bottom.	Temperatures.	
						Surface.	Bottom.
	July 27	${ }^{\circ} \mathrm{O} 00^{\prime}$	${ }^{\circ} 731$	Fath.	Mud	58.8 53.0 58	¢ 36.5 31.0
1 2 3	July 28	60 50 50		375 53			
3 4 4		${ }_{50}^{593}$	714	95	Miud	57.0 50.0	45.0
5	Aug. 11	58 50 50 8	719 719	515	Oozo	500.0 57.0	
${ }_{7}^{6}$		[5037	719	530		57.0 50.5	${ }^{28.7 .0}$
8	Aug. 17	6003	551	540			

DIREDGING STATIONS OF THE TRLTON, 1882.

The dredgings of the British surveying steamer Triton in 1882 were, like those of the Fnight Errant, in 1880, directed towards the further exploration of the Fïröo Cliannel, and covered nearly the same ground. They were also under the scientific charge of Mr. Joln Murray, and Mr. J. Gwyn Jeffirey's report on the mollusea obtained was published in the Proceedings of the Zoological Society of London, June 19, 1883, from which these positions have been taken.

Dredging stations of the Triton, 1882.

$\begin{aligned} & \dot{8} \\ & \text { 号 } \\ & \text { 呙 } \\ & \end{aligned}$	$\begin{aligned} & \text { Latitude } \\ & \text { N. } \end{aligned}$	$\begin{gathered} \text { Longitude } \\ \text { W. } \end{gathered}$	Depth.	Teinperature of bot. tom.	Remarks.	Area.
	¢99\% 513	© ${ }^{\circ} 21$ if	Fathoms. 240	$47.5-47.6$	On the ridge.	
$\frac{1}{2}$	${ }_{59} 5730$	82100	530	$46.2{ }^{\text {4, }}$	Wost of ridige.	Warm.
3	80 3930	90600	87	49.5	Farüe banks.	
4	602240	82100	327-430	31.5-32.0	East of ridue	Cold.
$\dagger 5$	$\begin{array}{ll}60 & 11 \\ 45\end{array}$	81500	433	43.5	Went of ridge	Waria.
0	6000900	71030	406	29.5-30. 0	East of ridge	Cold.
7	$\begin{array}{\|ccc\|}196 & 19 & 00 \\ 60 & 18 & 00\end{array}$	71000 61500	585 640	$29.9-30.5$ 30.0do	Do.
8 9	60 60 0500	61500 0 2100	608	30.0		Do.
10	504000 ।	72100	516	413.0-40.5	West of ridge	Warm.
11	6939301	71300	555	45.5do do...	Do.
12	603100	73400	580	31.0 45	Fwat of ridge	Cold.
13	595102	81800	570	45. 7	W ost of ridge..........	

* Partly on the ridge.
t The tiawl had beon carried right orer the ridge and came up in the cold area.

DREDGINGS OF THE SWEDISE FRIGATE JOSEPIINE, 1869.

These dredgings extended from the coast of Portugal to the Azores, and thence across the Atlantic to America. They were under the charge of Messrs. Smith and Ljungmans. I have been unable to meet with any details as to the precise positious or character of the drodgings.

CLASSIFIED LIS' OF ALL DREDGINGS OF OVER 60 FATHOMS MADE BY U. S. FISH COMMISSION NORTE OF BAHAMAS.

Dredgings made in the Gulf of Maine are not given, nor those made inside the Banks situated off the coast of Nova Scotia.
'The others are designated as follows:
S.-Off Savaumab to Bahamas. N. Lat. $27^{\circ} 30^{\prime}$ to $34^{\circ} 00^{\prime}$.
H.-Off Cape Hatterals. N. Lat. $34^{\circ} 00^{\prime}$ to $36^{\circ} 30^{\prime}$.
C.-Of Chesapeake Bay. N. Lat. $36^{\circ} 30^{\prime}$ to $38^{\circ} 00^{\prime}$.
D.-Oft Dela ware Bay. N. Lat. $38^{\circ} 0 v^{\prime}$ to $39^{\circ} 00^{\prime}$.
M.-South of Block Island, Martha's Vincyard, and Nautucket.
G.-South to cast of St. George's Bank.
N.-South and sonthoast of Newfoundlaud and on the Flemish Cap.

60 to 100 fathoms:
H.-2008, 2267, 2269, 2298, 2595, 2600, 2002, 2603.
C.-2005, 2011, $2012,2265,2421,2422,2424$.
M.-865, $866 ; 867,872,874,920,921,922,941,950,1091,1109,1117,1118,2031,2032$, 2057, 2085, 2086, 2087, 2177, 2197, 2198, 2199, 2243, 2244, 2247, 2248.
G. -83 B., 84 B., $2065,2066,2079,2524,2525$.
N.-2432, 2692, 2693, 2094, 2698, 2699, 2700, 2701.

100 fathoms:
H.-2266, 2425, 2420, 2092, 2601.
C. -2004 .
D. $-1046,2746$.

100 fathoms-continued.
M. $-871,873,875,876,877,923,919,1027,1035,1036,1010,1107,1118,1110,1111$, $1119,1151,1152,2053,2054,2055,2056,2091,2245,2246,2505,2512,2522,2558$, $2559,2560$.
G.-2060, 2061, 2061, 2057, 2069, 2070, 2071, 2523, 2526, 2527.
N.-2477, 2481, $2695,2690,2704$.

150 fathoms:
H. $-2109,2310,2593$, 2:394, 2613, 2614.
C. $-897,2020,2170,2264,2423$.
D. $-1043,1047$.
M. $-800 \pi, 870,878,921,940,942,943,944,1034,1035,10: 30,1097,10118,1115,1116,1150$, $2026,2033,2003,2090,2184,2145,2200,2536,2537,2533,2539,2540,2541,2542$, $2543,2544,2545,2555,2557,2582,2553$.
G.-9613.,97 I3., 2062, 20633, 2063.
N.-2431, 2472, 2474, 2479, 2483, 2703.

200 fathoms:
C. -2021 .
D. $-1044,2745$.
M. $-869,926,945,951,1025,1026,1032,1033,1092,1113,11: 4,11: 0,1121,1137,1133$. $1153,1154,2027,2025,2092,2183,2543,2556,2590,2591$.
N.—2430, 2469, 2470, 2471, 2473, 2475, 2476, 2474, 2450, 2483, 2454, 2455, 2486, 2097, 2702.

250 fathoms:
S.-2624, 2625, 2665, 2666, 2667, 2673.
D.-2232.
M. $-878,879,895,925,939,1112,2024,2025,2178,9135,2262,2589,2686$.

300 fithoms:
S.-2668, 2670, 2671, $2672,2674,2675$.
H. $-2249,2306$.
C.-898.
D. -1045.
M. $-881,933,947,996,997,998,999,1031,1094,1095,1096,1125,1139,1142,2176$, 2506.
N.-24S2.

350 fathoms:
S.-2626, 2655, 2664,2669.
M. $-1030,1033,1122,2186,2687$.

400 fathoms:
S.-2627,2661, 26602, 2663, 2676.
C.-2014, 2023, 2171, 2263.
D. $-1048,1049$.
M. $-493,894,952,994,995,1028,1140,1141,2033,2015,2046,2047,2187,2212,2213$, 2547, 25.54, 2581, 2587.
G. -85 B .

500 fathoms:
S.-2628, 2657, 2658, 2659, 2660, 2677.
H.-2009, 2110.
C.-2001, 2006, 2022.
M.- $891,892,1039,1143,1141,2043,9175,2179,2180,2201,2202,2214,2237,2540$, 2561, 2584, $2585,2588,2689$.
G.-207ミ.
N.-2427, 2429.

600 fathoms:
S.-2656.
C.-2002, 2003, 2019, 2172.

600 fithoms-continued.
D. $-2233,2744$.
M.-937, 1124, 1155, 2030, 2189, 2215, 2236, 2549, 2553, 2680, 2688, 2690, 2722.
G.-2073.

700 futhoms :
S. $-2654,2678$.
H. -2300 .
C.-2729, 2730.
М.-936, 953, 954, 2181, 2203, 2204, 2235, 2452, 2749.
G.-2528, 2520, 2532.

800 fathoms:
S. -2679 .
H.-2115.
C.-2018, 2731, 2734, 2735, 2739.
D.-2721.
M.—935, 1123, 2551, 2691.
G. -2533.
N.-2428.

900 fathorus:
H. $-2010,2111,2116$.
C.-2013, 2728, 2733, 2738, 2741, 2742.
M.-2182, 2217, 2218, 2219, 2\%38, 2683.
G.-2072, 2075, 2076. 2531, 2709.

Dredgings in 1,000 fathoms or more are not distinguished geographically, but are all between N. lat. $36^{\circ} 06^{\prime}$ and $41^{\circ} 43^{\prime}$ aud W. long. 65° 29^{\prime} and $74^{\circ} 33^{\prime}$.

1,000 fathoms:
2049, 2050, 2083, 2093, 2094, 2104, 2191, 2206, 2210, 2216, 2231, 2530, 2681, 2682, 2708, 2710, 2740.
1,100 fathọus:
2044, 2051, 2052, 2103, 2192, 2193, 2194, 2195, 2205, 2207, 2209, 2211, 2220, 2550, 2684, 2685, 2707, 2743.
1,200 fathoms:
$2029,2102,2190,2196,2303,2230,2534,2535,2706,2727,2732,2748$.
1,300 fathoms:
2034, 2074, 2077, 2084, 2005, 2705, 2726, 2747.
1,400 fathoms:
2035, 2105, 2220, 2562, 2563, 2564, 2571, 2725.
1,500 fathoms:
2043, 2096, 2106, 2221, 2222, 2711, 2719, 2720.
1,600 fathoms:
2041, 2042, 2100, 2101, 2173, 2174, 2323, 2716, 2717, 2718, 2723, 2721.
1,800 fathoms:
2036, 2037, 2568, 2569, 2570, 2572, 2573, 2574, 2575, 2712, 2713, 2714, 2715.
2,000 fathoms:
2038, 2097, 2226, 2565.
2,200 fathoms:
2040, 2098, 2227.
2,400 fathoms:
2039.

2,600 fathoms:
$2223,2224,2225,2566,2567$.
2,949 fathoms:
2099.
$I A+$ above the tempernture indicates that it is that of the bottom，when that precise depth is not in the table；a Δ beforo the temperature indicates that the precise depth at which it was taken will be found in column A．J

				$\stackrel{\square}{0}$	Temperatures．																					A．
	足	䔍			－	脦	莬		安													咸		宫		
${ }_{\text {Aug．}} 187$.	9	0	－	25	$\stackrel{\circ}{69}$	${ }^{\circ} \mathrm{C} 3.5$			$\stackrel{0}{512}$	$\stackrel{-}{503}$	\circ 52.5	$\stackrel{\circ}{\circ}$	0	－	－	－	\bigcirc	\bigcirc	－	－	\bigcirc	－	－	－	\bigcirc	
									5	+ 50.5																
$\begin{aligned} 6 \\ 6 \end{aligned}$	10	4220	17037	45	69.5 70	64.5 04.5	603	593			53.5				48.5											
28	59	42	（ 37	25	68.5	$65{ }^{4}$				497	43.5			．．．．．．	48.5											$2{ }^{1}$
29	63			26	67	665	67				34															
29	64			40				603																		
29	60			41	68.5	68				36.5				$\stackrel{+}{33.5}$												
	69	4246	6243	6：00		653				52															$\stackrel{+}{37}$	
Sept． 1878.	69	4246	6243	6：0		653.				52																
Jaly 23	130 131			49	68 68	${ }_{6}^{63}$	$\cdots 0.5$	47.5	43	41						（？）										
23	132			45	70	63	47．5	451	43	41					38											3it
26	135	$4233 \frac{1}{2}$	70381	25.	70	58.5	44.5		44.5	$\triangle 41.5$	40.5															19
26	$135 a$			25^{*}	72				42.5	41	40															
29	137	42331	＇ro 23d	53	70	65	57.5	514	519	45	46	42.5	40	40	388		$\stackrel{+}{38.5}$									
Ang ${ }^{1}$	141			81	63		53.5	${ }_{44.5}^{1}$																		
1	145			8	63．${ }^{-1}$	56.5		$\stackrel{+}{51}$																		4
3	147	：423							$\stackrel{+}{4}$																	
		＋2	（1）${ }^{2}$	10						\ldots																
3	149			193	66	613			43	42		．．．．														．．．．．
3	150			$7 \frac{1}{1}$	70	61	د56．5	${ }_{51.5}^{+}$																		4
8	．53a			17		62	52	48																		
15	154	${ }_{42} 35$	\％ 71		697	64.5								$+$												10.5

SERIES OF TEMPERATURES TAKEN BY THE SPEEDWELL IN 1877, 1878, AND 1879-Coutinued.

SERIES OF TEMPERATURES TAKEN BY THE SPEEDWELL IN 1877, 1878, AND 1879-Concluded.

	褭	Locslity.
$\sum_{\substack{-5 \\ \text { Sept. } 25 \\ 2579 .}}^{25}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	
29	3	Woor End Light NE . $\frac{1}{6}$ mile.
29	4	Tood Fad Light N. $80^{\circ} \mathrm{E}$ E. 2 miles .
29	5	Wood End Light $\mathrm{N} .35{ }^{\circ} \mathrm{E}$ E. 31 miles
29	0	Wood Eıd Light N. $48^{\circ} \mathrm{E}$. 53 miles
29	$7!$	Wood Eud Light N. 40 E E. $7 \frac{1}{4}$ miles
29	8	Wool End Lichtt N. $50{ }^{\circ}$ R. $73{ }_{4}^{3}$ miles
23	9	Wood End Light N. 66° E. $6 \mathcal{\text { miles }}$
29	10	Wooll Eur Light X. 8ij E. 6 miles
29	11 ;	Wookl Ead Light S. $750{ }^{\circ} \mathrm{E}$. ${ }^{3}$ miles
29	12.	Race Point Light S $710^{\circ} \mathrm{E}$. $3 \frac{1}{4}$ miles
20	13 :	Race Point Light S. $45^{\circ} \mathrm{E} .4 \frac{1}{2}$ wiles
20	H	Racc Point Liglet S. suc E. 6 miles
29	15	Raco Point Light S. 130 E . 5 \% miles
23	16	Race Point Linhts. 100 W . G miles
29	17	Race Point Liglit S. 36° W. Gt wiles
29	18	Race Point Light S. 510 W. $\varepsilon^{\frac{1}{3} \text { miles }}$
29	19	Race Point Light S 680 W .93 miles

TEMPERATURE OBSERVATIONS BY THE SPEEDWELL SEPTEMBER 25 AND 29, 1879-Continued.
 A series of temperature obscrrations was nade by the Speodwell, off lrorincetown, on September 25 and 29 , 1879 . These had separate numbers from No. 1 to No. 25 , tables of serial temperatures taken in the course of dredging expeditions.
II.-Serial temperatures, U. S. Fish Commission steamer Albatross, Lieut. Commander Z. L. Tanner, U. S. Navy, commandiug, $18 \in 3$.

II.-Serial temperature, Є. S. Fish Commission stamer Alatross, Lieut. Commander Z. L. Tanner, C. S. Nary, commanding, 18ミ3-Continued.

Table of serial temperaturcs, 1884-Continued.

Record of serial temperatures taken by the 2 . S. Fish Commission stcamer Albatross during the year 1885.

Record of specd of five trawlings and soundings, Juiy, 1888, U. S. Fish Commission st, anler Albatross, Licut. Commander Z. L. I'anner, U. S. Navy, commanding.

. Fathoms.	Number of etation.				
	2038.	2039.	2040.	2041.	2042.
	h. m. g .	h. 2 2. 8 .	h.m.s.	h. m. 8.	h.m. 8.
Surfaces to 100	400	515	730	355	400
100 to 200.	500	405	410	430	400
200 to 300.	500	350	915	400	345
300 to 400.	400	400	425	430	530
400 to 500.	440	530	905	430	365
bu0 to 600	400	445	415	446	330
600 to 700	400	353	. 400	445	330
700 to 800.	520	402	330	447	500
800 to 900.	445	415 ;	400	445	400
900 to 1,000	410	400	340	447	430
1,000 to 1,100.	405	735	430	447	400
1,100 to 1,200	450	615	340	505	400
1,200 to 1,300	$9: 0$	725	415	420	410
1,300 to 1,400	600	5001	415	420	410
1,400 to 1,500	550	500	340	420	400
1,500 to 1,000	430	430	440	430	420
1,600 to 1,700	430	430	435	440	410
1,700 to 1,800	600	400	740	425	415
1,800 to 1,900	515	800	620	420	360
1,900 to 2,000.	415	1145 i	525	410	340
2,000 to 2,100	505	745	500	410	345
$\because, 100$ to $\because, 200$	500	750	510	410
2,200 to 2,300	435	700 !	700	*200
2,300 to 2,400	420	-500	615		...
2,400 to 2,500	400	500	700		
2,500 to 2,400	930.	645	645		
2,600 to 2,760	530	450	400		
2.700 to 2,800		500	330		
2,800 to 2,900		955	400		
2,800 to 3,000		500	340		
3,000 to 3,100		420			
3, 100 to 3, 200		015			
Total time	21730	30215	24840	14032	12000
A verage apeed per 100 fatlioms	505	542	457		400
Ifathin tathome......	2, 033	2,360	2,206	1,608	1,555

*'To 2,250 fathoms.
THAWL-COMING Ul'.

Record of speed of five tramlings and soundings, July, 1883, etc.-Continued.
SOUN'DING-GOING DOWXN.

SOUNDING-COMING OP.

100 to surface	100	10.5	12.5	100
200 to $100 . .$.	100	130	125	057
300 to 200.	100	130	125 i	058
410 to 300	1010	1%	125 ,	100
5000 to 100.	100	130	125	100
ciu0 to 500.	10%	130	12.5	100
500 to 600	100	$13: 1$	120	$1 \cdot 11$
8100 to 700.	057	130	120	105
gue to tol)	0 50	130	125	107
1,4000 to 900	051	1 311	$1: 10$	10 s
1,100 to 1,000	052	145	12.5	110
1,900 to 1,100	103	145	125	11.1
1,300 to 1,200	10.5	145 .	125	114
1,400 to 1,300	10.5	14.5	125	$11: 1$
1 1, 000 to 1. 500	110	\bigcirc	130	100
了,000 to 1.500	116	105	100	
1,700 to 1,800	110	140		
1,800 to 1,700	127	130		
1.960 to 2,800	130	130		
2,000 to 1,900	133	130		
$\cdots 2100$ to 2,000	215	130		
2.200 to 2.100	225	030		
2.300 to 2,200	200			
Total timo	$28: 30$	3250	2115	1604
A verago speed jer i00 fathoms	112	138	119	102

The "Total time" is not the sum of the partial times, but the whole time employed for the trawling or sounding, including preparation for it.

american Museum of Natural Mistory,
New Vork, Iccember 20. 1887.

6

$$
3
$$

$$
4
$$

2-

XXX.-CHEMICAL COMPOSITION OF FISH PRODUCTS, WITH some remarks on their nutritive value.*

By Prof. P. Kostritscuerf,
Of the Agricnltural Station in St. Ielcraburg.

The number of inrestigations on the chemical composition of the various substances used as food by man is not great. Owing to the experiments on the feeding of domestic animals, we have, for instauce, hundreds of analyses of the various kinds of hay, whilo the available analyses of the different kiuds of bread will hardly count by dozens, Of the alimentary substances ased to prepare food for man, only those have been frequently investigated which at the same time find application in technical industries, such as the potato, the grains of cereals, etc.; and it is to be noticed that such investigations were called forth not by the requirements of bygiene but of technology. The reason is ovidentenougl. Every manufacturer is deeply interested in the amount of profit he can obtain, whereas but few persons will take as great an interest in the life of people unknown to them.

Nevertheless, there can be no doubt as to the great importance of chemical investigations concerning the composition of the materials from which the food of man is derived. Aside from the physiological interest attaching to the problem, it must be taken into consideration that the results of such investigations, if held together with the neces. sary statistical dath, will throw much light on the economical conditions of the national life, and may sometimes illustrate such points as wrould otherwise escape attention.

I have thought it might not be superiluous to say these few words as introduction to the following, because my invostigations concerning the composition of the flesh and some other products of fish will afford me an opportunity to call attention to the importance of fish as food in our national life in general, and, in counection with the available statistical data, will allow me to show how much other food would have. to be provided and what means would have to be used if, for some rea. son or other, the yield of the fisheries was considerably reduced.

[^109]The present article is therefore subdivided into two parts. In the first part I shall try to present the results of all investigations made u_{p} to the present time on the chemical composition of the flesh of fish. In the second part I intend as far as possible to show, with the aid of certain statistical data, what importauce fish has as a food-substance in.our domestic economy.

I.-RESULTS OF INVESTIGATIONS.

Investigations on the chemical composition of the flesh of fish canproperly be said to have begun only with the year 1854. Before this date only two such analyses were made, and they were very incomplete, so that it is impossible to obtain from their results a correct idea of the composition of the flesh of fish.*

Last year Dr. Popòf analyzed the flesh of some Russian fishes. \dagger Being evidently macquainted with the work of Mr. Almen, to be referred to hereafter, he proceeded in his analyses in the same manner as did Pajen and König. His results are as follows:

In the spring of the present year I made analyses of thirty species of fishes and fish products from Russian waters. \ddagger I determined in my aualyses all the substances enumerated in the table, closely following the directions given by Hoppe. Seyler in his hand-book of physiological chemical analysis. Besides the substances indicated in the table, I also determined the amount of common salt in salt fish, and in certain (salted and preserved) fishes the amounts of phosphoric acid and iron.

[^110]
Tho results of $m y$ analyses will be found in the following tables:*

Table: I.--Percentage of bubstances found in certain fishes.

Name of fisl.	Wator:	Extrane one sulb. stancos.	Gratiu	Albu. minoun matter.	Fat.	Anl.	Compion sall.
fridal fisil.							
Coremonns Bagrii (Rites. Sig.)	79. 13	2.03	3.70	11.69	1.53	129	
piko-perch	79.47	3.23	3.55	12.10	0. 20	1.6	
Common colfislı	¢1.03	3.45	4.24	10.11	0. 07	1.11	
Carp (Rus8., "Sazam")	71.80	3 O	2.84	10.79	1.42	1.14	
Phe.	80.70	3.14	3,32	11. 23	0.33	1.18	
Srucian (earp).	80.82	4. 50	3. $6: 3$	9.44	10. 48	1.07	
Hadilock (Russ., "Navaga')	81.35	4.90	2.40	9.08	11.59	3. 58	
Smelt..	7 F ¢ 38	4.14	2.8 .3	10.00	3. 04	1. 67	
Salmun.	62.02	2.80	5. 188	12.08	14. 82	1.30	
Salmon tront.....	7\%.35	3.11	1. 71	16.0i	2.40	1.33	
Sturgcon (Rusy., "Ositor")	76.02	3.05	1. 58	13. 04	5.15	1. 16	
Sterdot	$7{ }^{7}$ (1. 81	1.69	1. 74	13.21	5.59	0. 26	
sprat	76.11	$\because .14$	1. 20	13.46	4.89	1.71	
Livor of celpout	45.58	2.55	1.01	5.20	44.60	0.61	
Dried arnelt; the whole fish, with the bones	47.12	3.56	2.27	20.55			
Piekled anchovs; whole fish, with				-0.05	8.03	18.47	13.14
hones	60.72	3.73	3.01	3.70	17.14	11.6	. 90
Sammon (Russ., "Siomga ')	53.48	3. 46	5. 08	15. 16.4	12. 19	11.85,	11.21
Salt turbot.......	514. 65	5. 57	1.64	16. $\mathrm{x}: 3$	(i. 8.2	15. 0.4	13.77
Silt esturqeon (Russ., "Belaga ')	61.85	1.83	2.0 .5	14.82	8.03	10.52	10.03
Pickled Pamprey; whole fithl, will out head rind tail.	44. 62	2.70	405	27.58	Jf. :7	4.49	3. 33
Smoked shiell-flsh	54. 89	6.42	0.14	18. 18	5.08	9.20	7.90
smoked herring (Iluss., "She.	4.3. 533	6. 37		18.09	16. 21	11.43	-8. 86
Smoked Astrakian horring	59.30	3.78	4. 87	13.41	8.80	1.59	8.85
Roos of Coregonus Baer	66i. 05 !	2.10	1.10	14.37	8.07	7.20	6. 10
Fresh roe of sturgeon............	56. 97	1.192	0.78	25.47	13.8.5	2.31	0.35
)ried "Vobla" (kind of crucian ${ }^{\text {a }}$)	27.06	9. 44	8.23	30. 18	0.88	14.31	8.12
Dried cod	25.23	i. 21	13.23	F90. 41	0.68	5. 20	1.20
" Balyk "* of whitefish	67.55	3.99	4. 59	14.91	13.07	5. 78	4.13
" Mallyk" of at mrgeod t................		8.34	2.63	31.08	14.35	6. 93	3.53
of sturgeon).....	50.09	5.21	40.04	0.18 :	0.06	3.52	

* "Batyk" is the Russian torm fer the flesh of dish dided in the mun.
\dagger Tho "hatyk" iuvestigatal by mee was ton dry; fresh "bulyk" ought to contuin al least 48 to 0 for cont. of water, with corresponling amounta of other constituent parts.

Tables II.-Proportions of phosphoric acid and iron contained in certain fish products.

	Percontage of-	
	Phos.acid.	Iron.
Flosh of Coregonur liacrii (Russ. "Sig.")	0.4711°	0.0031
Flush of pike-pureh	0. 2002	0.0025
Flesti of trosh cotl	0.3731	0.10018
Flesh of pike.	0.30s0	0. 01034
Figesh of Ladduck (Russ, "Natvogit")	0.4×33	0. 0041
Flesh of malmon	0.3822	0.10135
Flesh of' galmon-tront	0.3098	12.0010
liesh of aturgeon	0. 2993	0.1027
Flesh of storlet	0.:3104	1. 01125
Driod enselt (Salmo epcrianus)	1. 3701	0. 1341
Wlosh of sult turlot	0. 41107	0.0041
Flesh of Abtrakhan herring	0.2733	0.0020
Roo of aturgeon	1. 0340	0.0047

*Where nothing is specified, the substance amalyerd is the flesh alone.
[At the International Fisheries Exhibition in Loniton in les there were dinplayond in the Rassian exhibit two printed charts of autlyses of the tishes of Russia by Pro-

By comparing these results in their different bearings we are led to the following conclusions, which are not without interest:
(1) The greater the proportion of water contained in the desh of a fish the smaller is the proportion of fat, as is also the ease with the mammalia.
This will readily appear from the tables given above. It will be seen, for instance, that all our most common fishes-the perch, pike, pike-perch, etc., and also the corl-contain in their flesh about 80 per cent. of water, while the proportion of fat amounts to a little over 1 per cent. or less than 1 per cent.* On the other hand, such fishes as the salmon, sturgeon, eel, ete., which contain much fat, have a far smaller proportion of water. The greatest proportion of fat was found in the liver of the eel-pout, which also contains the smallest proportion of water. One and the same fish, if it has mo efat, will have less water, as will the seen from the following examples:

(ま) In general it may be said that the more expensive a fresh fish is the more it contains of mutritions matter. In this respect it will be instructive to compare, on the one hand, the figures showing the propor-
fessor Kosty tseleff. Aside from one evident misprint, the figures are the samo us here given, except that in the shiohd-fish (I'elecus rulyaris) the percontage of fat is 5.87 instead of 5.08 , and in the balyk of whitefish (Concgonus lencichthys) the fat is $\mathbf{1 3 . 1 7}$ instead of 13.07 per cent. Tho names are somewhat difierent, and the Latin names are added. As they are (it is to be presumed) the anthon's translation into English, the names are inserted here, by the aid of Professor Atwater, io supplement the names as bere translated from lrofessor Kustytschef's article.

Fresh fishes.-Flesh ot Sig, Coregonus Lacrii; Pike-perch, Lucioperca sandra; Codfish, Gadus morrhua; Carp, C'yprinus carpio; l'ike, Esox lucius; Crucian carp, Carassins vulga ris; Gadus navaga; Smelt, Osmerus cperlanus; Salmon, Salmo salur; Sal-mon-trout, Salmo trulla; Sturgeon, Aciponser gilldenstacdtii; Sterlet, Acipenser rulhcnus; Clupea harengus var. membras; liver of Burbot, ecl-pout, Lota vulyaris.
I're served fishes.-Salted and dried ontire Osmerus spirinchus; marinated ontiro Maletta vulgaris; salted salmon, llesh of Salmo salar ("Semga"); salted flesh of tho halibut, Hippoglossus maximus; salted ficsh of the great sturgeon, Acipenser huso; marinated entire river lamprey, letromyzon fturiatilis; salted and suoked fesh of I'clecus vulyaris ; salted and smoked flesh of Allunus chalcoides; salted tlesh of caspian shad, Aluba caspica; salted caviare of Coregonas species; fresh eaviare of stargeon; salted and drie d flesh of Leuciscus rutilus var. caspica; driod flesh of codfish, Gadus morrhua; saltod and dried backs of Corcyonus leucichthys ("Balyk") ; salted and dried backs of sturgeon ("Balyk"); dried cartilaginous dorsnl chorls ("Vezegra").
The Osmerus spirinchus here is the smelt of the tables; the lefecus vulyaris the shicld-fish; tho Alburnus calcoides, smoked herring; the Alosa caspica the Astrakhan herring ; the salted caviare, the coo of Coregonus Bacrii; the Leuciscus rutilus, the vobla, and tho Corsyonus leucic hthys the whitefish.-DEditor.]
"[The original has "or not less than 1 per cent.;" probably a misprint.]
fions of fat and albumen in the flesh of the salmon, salmontrout, sturgeon, and sterlet with the corresponding figures for the pike perch, pike, perch, eod, ete., on the other. Among the cheap, fishes only one presents an exception, namely, the sprat. Its flesh has precisely the same composition as that of the sturgeon and sterlet. It will be noticed that, of all fresh fish-products, fresh (gramulated) caviare or roe of sturgeon contains the greatest proportion of motritious matter.
(3) As regards digestibility, certain kindred species of dish appear to present a remarkable diversity; for instance, salmon and salmon-trout. The flesh of salmon is much fatter than that of "s siomya,"* which, however, contains more albuminous matter; and compared with other fishes it has much soluble albumen, as far as could be judged from the size of the coagulated albumen without weighing it. Hence, a weak stomach will stand salmon-trout more readily than salmon.
(4) Some fish products used as food apparently contain scarcely any mutritive matter; for instance, "viaziga," which is almost exclusively composed of water and gelatiu-forming substances. The liver of the eel-pont contains mainly fat (nearly $4 \tilde{5}$ per cent.), with a small quantity of albuminous matter.
(s) The investigation concerning the proportions of phosphoric acid and sesquioxide of iron contained in the flesh of fish did not result in any definite indications of particular interest, excepting, perhaps, the fact that ermonated caviare is distinguished by a large proportion of phosphoric acid. The high figures resulting in the case of dried smelt are due to the circumstance that the whole fish, with its bones, was subjeeted to analysis, and that the ashes were not free of extrancous matter adhering to the smelt from the drying process.

I restrict myself to the present few remarks and the incomplete grouping together of figures, leaving it to the realer to evolve from the tables those more minate indications aud results that may be of interest to him.

It is well known that in genernl our waters are companatively rich in fish, and that a very large quantity of fish is caught there every year. In a recently published pamphlet by 0 . A. Grimm, the amount of fresh fish caught every year in IRussia is estimated at $40,000,000$ puds. \ddagger Whoever will take the trouble to examine closely the statistical data presented in this work will find that such data are very incomplete, and that this digure of $40,000,000$ puds is far below tho actual number.

But even this incomplete estimate will allow us to deduce some rery instructive conclusions concerning the importance of fish as food in our

[^111]national life. To do this, let us determine the quantity of nutritive matter derived from the fish canght and prepared in various manners in Russia. In doing this we may restrict ourselves to the consideration of the albuminous matter as the most important constitucnt of auimal food.

Let us first select for our calculation those more important epecies of fish about which Mir. Grimm's pawphlet gives definite data, and for waich we have also analyses:

It will be seen from Mr. Grimm's figures that this whole amount of fish, which is mostly in a preserved condition, corresponds to $25,000,000$ puds of fresh fish. Consequently, the quantity of all other kinds of tish caught every year amounts to not less than $15,000,000$ puds.

Assuming that in the fishes mentioned above two-thirds of the weight is flesh and one-third makes up the weight of bones, skin, etc., it will be found, with the aid of the analyses given before, that the amount of dry albumen obtained from these fishes is not less than $2,330,000$ puds. Assuming further that in the remaining $15,000,000$ puds of fish the skin, scales, bones, etc., amounts to one-third and the flesh to twothirds of the total weight, and supposing all these fishes to be such as contain the least amount (10 per cent.) of albuminons matter, the amount of dry albumen obtained will be at least $1,000,000$ puds.

We thus find that we amually derive from our fisheries $3,330,000$ puds of albuminous matter. This estimate is certainly: below the actual amount; first, because many fishes contain more than two-thirds of Hesh; second, because the annual yield of the fisheries in Russia is no doubt greater than $40,000,000$ puds. At first sight this figure of $3,330,-$ 000 puds of albuminous matter may not appear very great. To realize better its true signification let us try to calculate what resources would be required to obtain the same amount of animal albuminous substances from cattle.

Let us suppose that, to replace fish as food, we keep black cattle of such kind that, on an arerage, every head when fully grown weighs 90 puds. Such on animal will contain 45.9 per cent. of flesh without bones, or 9.18 puds; and this flesh will contain 1.61 puds of albuminous matter. Now, to obtain from such black cattle $3,330,000$ puds of albuminous matter anmually it will be necessary to kill not less than $2,000,000$ head of cattle a year.

Let us further assume that our cattle will be ready for slaughter when four years old; it will be seen that the supply of cattle in Russia would have to be increased by $8,000,000$ head of cattle for slaughter
and not less thau $2,500,000$ cows for breeding. Consequently, even under the most fortunate (but impossible) circumstances, such as the absence of special cattle diseases, sterility of cows, etc., the number of black cattle in Russia would have to be increased by at least $10,500,000$ in order to supply those $3,330,000$ puds of albumen, and it would require not less than $25,000,000$ desiatin* of meadows and pastures of good quality to keep and feed these cattle.

How enormous these figures are will be seen from the fact that the number of milch cows in European Russia (not including Poland and Finland) is estimated by various authors at from five to teu millions, and the area of pasturage at $55,000,000$ desiatin.

We have, however, neglected in our calculation to take into account the milk provided by the cows. Supposing that, on an average, every cow gives 60 pails, or 180 pounds, of milk, this milk represents 1.44 pud of albuminous matter (the average proportion of albumen in milk being 3.2 per cent.). Every cow thus furnishes nearly as much albuminous matter per year as is contained in the flesh of the full grown animal.

Taking into account the milk, our figures will therefore have to be reduced by one-half. But even then they are exceedingly high, amount. ing to $6,000,000$ head of cattle that would require over $12,000,000$ desiatin of meadows and pastures. Approximately, we may adopt as our final result that, in order to substitute the albuminous matter of the milk and flesh of our domestic animals for that obtained from our fisheries, we would have to raise by 10 per cent. the productivity of our cattle-breeding industry and the supply of food for the same.

These tigures define (with the degreo of approximation attainable with the available statistical data) the positiou and rank the fisheries take in the animal food-supply of the population of Russia. It wonld of course be possible to replace it by the products of cattle-breeding, but only with the same prices for food. But the prices for the products derived from cattle are far higher than those for the correspouding nutritive products of fish (taken on an average, of course): 1 pud of albuminous matter of fish is worth less than 20 roubles [1 rouble $=58.2$ cents], whereas the same amount derived from the flesh of cattle will be worth not less than 40 to 50 roubles; the latter food is therefore acces. sible to a smaller number of people.
It is true, however, that to replace fisl by vegetable food would requive very much smaller resources. To produce $3,330,000$ puds of albuminous matter requires, for instance, only 600,000 desiatin of rye, assuming a yield of 55 puds per desiatinu exclusive of seed, or not over 900,000 desiatin in the case of triennial farming and neglecting the meadows necessary for obtaining manure.

[^112][^113]Blank page retained for pagination

XXXI.-CASES OF POISONING CAUSED BY SPOILED CODFISH, and the unnecessary prohibition of the sale of red. DENED CODFISH.*

By Dr. E. Mauriac.

By a circular dated December 31, 1855, the minister of commerce instructed the prefects to prohibit the sale of red codfish throughout the eutire French territory. The prohibitory orders of the profects, issued in accordance with this circular, threatened venders of reddened codfish with articles 423,471 , and 477 of the penal code, and the law of March 27, 1851, relative to the suppression of frauds in the sale of goods, i.e., they may be punished by imprisonment, fines, seizure of their goods, and the publication of the judgment by means of placards; moreover, dealers are made responsible for any cases of sickness which may be caused by the use of red cod. This prohibitory measure, which was taken in consequeuce of several cases of poisoning caused by spoiled codish, has raised energetic protests in all the ports where fishing fleets are fitted out, and esperially in Bordeaux, which is the most important center of the codfish trade.

At the urgent request of interested parties, indorsed by the deputies and senators from the sea-board departments, the new minister of comwerce, Mr. Lockroy, has withdrawn the circular of his predecessor, until fuller information ou the subject could be obtained; but this withdrawal is only temporary and not final, as some papers have erroueously stated.

We have therefore deemed it useful to make an exhaustive study of this whole question, and to submit the results to the Bordeaux Society of Medicine and Surgery and to the central Council of Public Hygiene of the Gironde.

Our work is divided into five parts:
(1) In the first we give a brief historic review of all the cases of poisoning caused by spoiled codfish, which, as far as our knowledge goes, have been noticed in the anuals of science. We give at the same time a sketch of the symptoms which have been found to accompany these cases of poisoning.

[^114](2) In the second we endeavor to ascertain the physical characters of the codtish which have produced these cases of poisouing, with the aid of all the information contained in the reports of the physicians who have treated these cases.
(3) In the third we give the results of receut investigations relative to the nature of the red color of the codtish; and we show that not only is the red in the codish not poisonous, but that it is not even the determining cause of the putrid change of the codfish. We endeavor, moreover, to ascertain under what special conditions this abnormal color develops, and we show the means by which it may be cansed to disappear, or by which its development may be prevented.
(4) In the fourth we show that all the cases of poisoning which have been observed must be attributed solely to the cating of spoiled codish, whose flesh had already become more or less putrid. We also give the results of investigations relative to the specific poisonous matter contained in spoiled codfish. We compare the phenomena produced by eating spoiled codfish with those produced by other spoiled articles of animal food, and show the difference between these phenomena.
(5) In the fifth we enter into some technical details regarding the cod fisheries, and regarding the curing and preserving of cod; we show the important place which this fish holds among the articles of human food; and we point out the evil effect which the ministerial circular of December 31 , 1885, is liable to produce on national and local commerce, without yielding any benefit for hygiene and the health of the people.
I.-REVIEW of cases of poisoning, in cimonological order.
(1) Case on a gun-boat in 186G, reported by Dr. Maréchal, chief physician of the navy.
"In 1866 there suddenly appeared on the 5th of June, in the port of Toulon, a sickness which fortunately was not very serious, but which, when night set in, had attacked about one hundred and thirty men belonging to the navy. All awoke with violent colic, followed soon by liquid, copious, and frequent operations, sometimes by vomiting, and more or less pronomed headache; nearly all the patients bad a cold skin, and occasionally they were slightly feverish. In nearly all cases a very marked prostration was noticed, accompanied by profuse perspiration, and an evident tendency to a syucopal condition.
"I at once begau to search for the cause of these phenomena. The kitchen utensils were in perfect condition, but the crew had on that day had codfish for their meals. I had the codfish brought to me, and tasted it raw, after I had already eaten it cooked at the same meal as the crew and without producing in me the slightest inconvenience.
"The appearance of the phenomena was as follows: A fer a period varying between balf an hour and one houdred and fifteen hours, and averaging from five to fifteen hours, the symptoms began to appear.

The first were digestive tronbles, consisting at first in a feeling of dryness in the mouth and throat, which most of the patients cousidered as an excessive thirst, while some considered it as the sharp after-taste of their dimer, which they hoped to overcome by drinking copiously. But soon, no matter whether they drank anything or not, they had a feeling of heaviness in the stomach, and a disagreeable bloated feeling, which very soon, however, turned to a severe stomach-ache. In the evening more than half the men were on their feet again, and on the following day most of them did not feel any traces of this slight indis. position."
(2) Cuse reported by Dr. Hermann, of St. Petersburg, in 1878.

In 1878, 108 persons at St. Petersburg were poisoned by eating the salt and dried cod called "stock-fisch," which forms a common article of food in Russia. Dr. Hermann treated four of the worst cases. Ono of them, forty-four years of age, died after twenty-four hours; and the antopsy shoryed a hemorrhagic injection of the ileum and the larger intestines. The symptoms in all cases were faintness, stupor, violent colic, diarrhea, vomiting, eramps in the lower extremities; pulse weak, a little quicker than usual; stomach elastic, no sensation of pain when pressed.

In most cases convalescence was reached on the third day; in one case the diarrhea lasted longer than two days. The codfish which had produced these cases had a bad taste and odor; and a sample examined under the microscope showed that the muscular tissue had become grauulous and brittle; while the streaks of the muscular fiber were no louger apparent. The codtish had a deep yellow color.

(3) Case in a regiment of the Foreign Legion, at Sidi-Bel-Ablc̀s, in 1878.

Dr. Schaumont has published in the Recueil de memoires de Chirurgie et de Pharmacie militaires (vol. for 1878, p. 504), a report on a case of poisoning of the same lind, showing extremely grave symptoms.

The case occurred in the night of April 19, 187s, in a company of the Foreign Legion stationed at Sidi-Bel-Abbes, province of Oran, Algiers. At 9 p . m. the physician was informed that 20 men had been taken with violent colic, diarrhea, and vomiting. At $11 \mathrm{p} . \mathrm{m}$. the number of patients had increased to 64, and the condition of those who had been taken first became more and more serious. An hour later the number of patients had reached 80 . In all, 122 men were sick, 17 of whom had to be sent to the hospital.
"All complained at first of vertigo, headache, and nausea; the face became livid; then followed cramps in the stomach, and vomiting of food matter, and finally frequent and violent attacks of diarrhea. At last the lower extremities began to grow cold, and cramps were felt in the calves."

Dr. Schaumont and Dr. Peborde gave to the sick a draught composed of six drops of ether and eight drops of tincture of opium dissolved in a little water, and followed this up by some tea. In the morning there was a very noticeable improvement in all the patients. On the 21st only 36 were sick ; on the $22 \mathrm{~d}, 27$; on the $22 \mathrm{~d}, 16$; the 24 th, 15 ; the $25 \mathrm{th}, 14$; the 26th, 7 ; and on the 27th, 4, who were all convalescent on May 1.

After having administered the most urgent remedies, Dr. Schaumont inquired what had occurred on the 19th, and learned that the men had gone to target practice in the afternoon. None of them had experienced the least inconvenience before dimuer, although the heat on that day was excessive.
In the evening they had taken their principal meal, composed of codfish, potatoes fried in lard, and wine. In the morning of April 20 several dishes containing some of the food which had not been touched since the evening were taken to the pharmacy of the military hospital to be subjected to an analysis, as well as samples of the wine, lard, and codfish from the stores of the commissary of the Foreign Legiou. It was found that neither the wine nor the lard (which was white and free from bad odor) contained any poisonous matter. The potatoes were in perfectly good condition. No copper utensil had been used in cooking any of the victuals. But when the dishes were opened an exceedingly stroug and very disagrecable odor was noticed at once, reminding one of putrefying matter.

The sample of codfish from the commissary was examined next. By its external appearance it might deceive an unskilled eye. When subjected to a careful examination, and broken into two parts its entire length, it showed towards the middle a grayish portion, measuring almost six centimeters [21 inches] in diameter, and completely decayed. When opeued it exlated a sickeuing odor. No poisonous snbstance was discovered in this analysis. It was, therefore, an evident case of spoiled codfish.

From the above facts Dr. Schaumont arrived at the conclusion that the cases of sickness which occurred in the vight of April 19 were caused by accidental poisoning by putrid codtish, which opinion was coufirmed by the circumstance that none of the officers, who bad a mess of their own and had not partaken of codtish, were in the least indisposed.
(4) Case reported by Dr. Bertherand, of Algiers.

While on a tour of inspection of the military grocery stores, Dr. Bertherand ate codfish with a white sance, which produced colic and diarrhea. The symptoms consisted in "violent pain in the stomach, incessant bilious vomiting, frequent attacks of diarrhea, accompanied by a very painful tenesmus; general collapse, excessive thirst, dysphagy, acrid taste, a burning sensation along the entire esophagus, general cramps, and very cold extremities."

The examination of this colfish showed that it had a faint putrid odor, and that all along the backbone, on the surface and even in the thick part of the flesh round the backbone, there was a very pronounced vermilion color.

Several other persons who had partaken of codfish having a similar red color, and a certain putrid odor, experienced similar attacks of sickness.
(5) Case reported by Dr. Heckel, of Marscilles, in 1878.

In 1878 Dr. Heckel visted a family of fifteen persons, who had all been poisoned by a spoiled colfish which had the red color above referred to. The symptoms were similar to those already described, and all the persons suffering from these attacks were quickly cured.
(6) Case on the flat-ship of the prastice fleet in Jecember, 1880.

This case, witnessed by Dr. Berenger-Férand, director of the naval health service at LOrient, was briefly as follows:

On December 10, 1880, the practice fleet, commanded by ViceAdmiral Garnault, was engaged in gin exercises out at sea between Frejus and Toulon. After this very tining exercise, the crew partook of colfish at $10 \mathrm{a} . \mathrm{m}$. At $8 \mathrm{p} . \mathrm{m}$. a sailor from the admiral's ship, the Collert, became indisposed, experiencing violent colic, ascompanied by vomiting. Soon after, and during the course of the night, 35 others from the same vessel were taken sick. On the following day and the day after, 16 more were similarly affected, and in all 52 men were taken sick ont of a force of 710 men, composing the crew of the Colbert.

The symptoms were exactly like those already mentioned, but were not quite so serious, "because convalescence or a perfect cure was effected after a few hours. Eren the person who suffered from the most violent, attacks was only excused from service for two days.
"On board the five other ironclads and the two trausports where codfish from the commissary at Toulon had likewise been used, there were 50 cases of sickness like the one deseribed, but none of them was serious. In all abont 100 persons were affected, aud none of these suffered more than one to two days."
(7) Case in the fect at THrient, on October 3, 1884.

This case, observed and carefully described by Dr. Bérenger-Féraud, is of the greatest importance, and we belicve that it really has been the determiuing cause of the recent ministerial circular prohibiting the sale of red codfish. It is, therefore, proper that we should give it somewhat more in detail.

The first report on this case was published by Dr. Berenger-Ferand in the Archives de Médecine narale (vol. for 1884-'85) under the title, "Etude d'un empoisonnement multiple survenuá L'Orient par l'usage de
morue altérée. '(Study on cases of poisoning at L'Orient by spoiled cod. fish).

In a more recent treatise, published in the Annales d'Hygiene publique et de Médecine légale (October, November, and December, 1885) under the title Recherches sur les accideuts que provoque la morue alterée (Investigation of cases of poisoning caused by spoiled codfish) Dr. BérengerFéraud, has grouped together all similar cases which have come to his knowledge, and has produced a remarkable monograph, showing the question as it stands at present in all its features.

The number of cases which he describes is 7, and they are not all of equal importance. We reproduce the description of the last, in point of time, as given by Dr. Bérenger-Féraud.
On October 3, 1884, a number of cases of sicikness, occasioned by eating codfisu from the naval commissary at L'Orient, occurred awong the crew of the Heet stationed at that port. Of 387 men composing the crew of the frigate Vengeance, 175 were taken sick; 114 of these within twelve hours after partaking of codfish at the noonday ineal.

At the same time similar cases occurred on board the Aubette and among the marines; but none of these were as serious as the first mentioned. On board the Aubette there were only 19 cases of sickness out of a total number of 978 men, and among the marines only 17 were sick out of a total of 746 men ; the largest proportion of sick (45 percent.) was on board the Vengeance; and to these Dr. Bérenger-Feraud gave his special attention.

We should state right in the begiuning that most careful investiga. tions very clearly determined the causes of the sickness, as neither the utensils in which the food had been cooked nor the water, bread, coffee, wine, or the oil used in the preparation of the codfish showed the slightest traces of poisonous matter.

In most cases the following symptoms were observed soon after the persons had been taken sick: Stomach-ache, nausea, vomiting, attacks of diarrhea, sometimes accompanied by the passage of blood, and coldness in the lower extremities. Cramps in the lower extremities were not observed in all cases. All these symptoms were of a very pronounced bilious character. The first period of the sickness, lasting from two to ten hours, generally was followed by a period of reaction, accompanied by great lassitude. Convalescence was very rapid, and even those who suffered from the most serious attacks did not have to stay in the hospital more than eight to ten days. In fact, in all these cases of poisoning the first symptoms were very alarming, but the consequences were not serious. A commission of competent men, appointed ley the vice-admiral commanding at L'Urient, made a careful examination of the codfish furnished by the naval commissary at L'Orient on October 3, and found that some of it was perfectly sound, while some was spoiled.

According to the report of this commission, the change in the cod-
fish, which were found to be spoiled and which had caused the cases of sickness, "consisted in an abnormal coloring. of the muscular tissue of the fish. This color varied from a tender rose color to an orange-red, aud seemed to follow eertain portions of the flesh, leaving others close by entirely somud. This change was noticed in the two muscular bands Jying along the backbone and in the neighborhood of the head. The more intense the color, the more deeply did it penetrate into the tissues. In codtish which had some pale rosy spots it, weut only to the depth of half a millimeter [one-fiftieth inch], while in some which had an orange-red color it went to the depth of 3 or 4 millimeters, and even half a centimeter $[.12$ to .20 inch]. In these last-mentioned fish the spoiled portions exhaled a putrid odor, and at the same time the mus. cular fiber crumbled to pieces, having lost all consistence."
The above are the symptoms of cases of poisoning by spoiled codfish, observed and described by Dr. Berenger-Féraud.

In spite of the most exhaustive bibliographic researches made by us in regard to this subject, we have not been able to find in the numerous medical publications consulted by us any other cases, and, as far as our knowledge goes, we have not learned that any cases of this kind have ever occurred at Bordeaux. Our city, however, is the principal port.of importation of codfish, and an enormous quantity of this fish is consumed in Bordeaux.

Cases of poisoning by codtish are therefore extremely rare, considering the rast quantity of codfish consumed throughout the world. Such cases have only been observed among troops or on board a fleet, where it is well known the food is not always of the first quality, and where the culinary arrangements often leave much to be desired.

II-Characteristics of the codfish producing cases of poisoning.

In endeavoring to ascertain the characteristics of the codfish which have produced cases of poisoning like those described, we find that in 4 out of the 7 cases the codfish did not show any red color (on the gunboat, on the practice fleet, case reported by Dr. Hermanu, and the case which occurred in the Foreigu Legion at Sidi-Bel-Abbès.)

In the St. Petersburg case-the only one where the symptoms were violent enough to cause death-the codfish had a deep.yellow color, a bad flavor, and a bad odor; its flesh crumbled to pieces; in short, it showed ummistakahle signs of putrefaction.*

The same, or very nearly the same, physical characteristics were observed in the case which occurred in the Foreign Legion at Sidi-Bel-

[^115]Abbes. When the lids were removed from the dishes which contained the codtish an exceedingly strong and disagreeable odor arose at once, in every respectlike the odor from putrid animal matter. The codish taken from the commissary might deceive an unskilled eye; but when suljected to a careful examination, and broken in two along its entire length, it showed towards the middle a grayish part, measuring hardly 6 centimeters in diameter, and completely decayed. This part when broken open exhaled a sickening odor.

In the first four cases of poisoning, therefore, which are the most important on account of the larger number of individuals attacked (460), no red colfish was the cause. On the contrary, this red color was noticed only in the three other cases, in which the total number of individuals attacked was only 227 (case of Dr. Bertherand, in Algiers; case of Dr. Heckel, in Marseilles; case on the fleet at Lorient).

The codish described by Dr. Bertheraud had along the backbone a rery prouounced vermilion color; but it had at the same time a faint putrid odor. The codish which Dr. Heckel examined at Marseilles in 1873, and by which fifteen persons were poisoned, had likewise a red color.

As regards the codfish which caused the more recent cases of poisoning on board the fleet at L'Orient, they showed an abnormal color, from a tender rose-coior to a deep red-orange, and this color was found principally in certain parts of the fish (the two muscuiar bands lying along. side of the backbone), leaving here and there portions which were entirely sound. Especially in those codfish which bad an orange-red color the spoiled portious exhaled a puirid odor; the muscular fiber crumbled to pieces, and lad lost all consistence.

It will be seen that in the three cases where the red color was noticed there was observed at the same time a putrid odor and a crumbling of the muscular fiber-plain indications that the flesh of the codfish had become decayed.

It appears from the brief examination of the physical character of poisonous codfish that in two-thirds of the cases observed there was no red color, while the putrid odor and the crumbling of the flesh were observed in all cases.

There is, therefore, no reason to assume that the red color of codlish is an indication of their being poisonous, because on the one hand the most numerous and most serious cases of sickness have been caused by codfish which did not have its red color, and because, on the other hand, in cases of sickness caused by red codish there was at the same time noticed a putrid odor and the crumbling of the flesh-the only indications (wo must repeat it) common to all cases, and the only ones which can be considered in the etiology of cases of poisoning of this kind. In short, these codfish did not cause cases of poisoning because they were red, bat because they were more or less decayed or putrified.

Although there is no absolute identity of symptoms between the cases
of poisoning caused by spoiled codfish and cases of poisoning produced by other spoiled fish, or by fresh or preserved meats which have begun to decay, there is good reason to believe that all these cases must be attributed to special poisonous substances produced by the putrefaction of auimal matter.

III-NATURE OF THE RED SUBSTANCE IN CODFISH, ITS OHARACIER, DEVELOPMENT', AND PREVENTION.
Since it has been deemed proper to prohibit the sale of red codish, it is evident that in the opinion of the ministry which has taken this measure, the red codfish is the principal indication that the flesh has undergone a hurtful change. But what proofs are there, and what experiments can be cited, to show that the red color of the codfish possesses any poisonous qualities? We shall endeavor to answer these questions.

In the first place, what constitutes the red color of the codtisis? The few authors who have studied this subject do not agree among themselves. . It seems, however, pretty well established that this red color is produced by the development of a fungus, whose name varies according to the different authors who have described it. Thus, Mr. Fonssagrives calls it the Penicillium roseum; Mr. Heckel, the Coniothecium sanguineum; and Mr. Megnin, the Coniothecium bertherandi. In an article published in the Madrid Imparcial, March 20, 1886, and cited by ProfAlex. Layet, it is stated that some years ago (in 1878) attention was called at Gloucester and some other places in the United States to the red color of the tresh and dried codfish, which appeared during the summer months. Prof. W. G. Farlow was commissioned to investigate the causes of this coloration, and it is stated in the Imparcial that Professor Farlow found that it was caused by an alga of the family of the Nosto chaccec, namely, the Clathrocystis roseo-persicina.* Mr. Carles, who bas recently published the results of his researches in the Bulletin des travaux de la Société de Pharinacie de Bordeaux (February, 1886), thinks that the red color of the codfish is caused by the evolution of various parasites of a very primitive organization, belonging to the micrococci.

This is also, we believe, the opinion of Mr. Gayon, professor of chemistry at the faculty of sciences at Bordeaux and chief chemist of the custom-house, who for about two years, in conjunction with Mr. Oarles, has been engaged in the cultivation of these small organisms. He writes the following:
"When oue examines under the microscope the red spots of a codfish one sees among the loose muscular fibers and the sea-salt crystals numerous organisms of various kinds, young and live specimens of the micrococcus. The red color is attenuated through their eulargement-
"If the surface of a red spot is dissolved in some drops of boiling water, and if the liquid obtained is carefully stirred in codlish broth or

[^116]poured on moist pieces of muscle of collish, it will be found that after baving been kept in a stove heated to from 300 to $35^{\circ} \mathrm{C}$. [39° to $95^{\circ} \mathrm{F}$.] red color develops and gradually covers all the parts exposed to the air. The microbes causing this coloration are, therefore, aërobies (produced by the action of the atmosphere).
"By successire experiments, and by varsing the physical and chemical conditions, Messrs. Carles and Gayon succeeded in eliminating a large uumber of live organisms; and when they closed their investigations there were only two kinds left, a bacillaria and a micrococcus, which, when mixed, invariably produced the red color, although it could not be determined which part each took in this process. It is remarkable that these infinitesimal orgavisms can live on sea-salt; they even develop on salt crystals which are merely moist, but not on all kinds of salt."
On the other hand it appears from recent investigations made in the hygienic laboratory of the medical school of Bordeaux, by Drs. Layet, Artigalas, and Ferré, that "in examiniug the red mattor of the codfish under the microscope we find, after it has been dissolved in water or glycerine, that it is composed of (1) crystals of sea-salt; (2) lanceolate lamella; (3) a granular substance; (4) muscular elements; and (5) special elemeuts, resembling in shape the elements called sarcines, found not only in decaying but also in sound substances. They represent quarters of a splere joined by a common diameter. Taken by themselves, each one of these elements is transparent and colorless, but when grouped in masses, forming several layers, it can easily be seen that the ceuter has a rosy color. The coloration, therefore, seems to be due to the greater or less quantity of these elements. One of the gentlemen who made these experiments was of opinion that the red color was produced exclusively by the sarcinoid elements.

The three gentlemen arrived at the following conclusions as the result of their microscopical examination:
(1) There are, on the surface of the codfish showing a red color and iv the interstices between the bundles of the surface muscles, special organisms of a vegetable nature which constitute the coloring elements.
(2) These elements are found in masses, together with a granular substance composed of single or double grains, zooids, and detritus.
(3) These colored masses are particularly dense round the salt crystals, appear to penetrate with them into the interstices between the bundles of muscles, and to reach small cavities when these open on their level.
It was important to know whether these small cavities were found in the sound codfish, without red color. This could casily be ascertained. Cuts made in a sound codfish showed these cavities formed of radiating lamella, more or less filled with detritus. They are, as in the red codfish, found in the first central muscular layer, in the shape of grains producing a screeching noise when rubbed on a plate of glass.

This kind of corrosion of the muscular iibers must, therefore, be attributed to an entirely different cause than the development of the red color. It is probably a normal production in the codfish during the salting process.

In the red codfish no otier change is noticed in the muscular tissue, except the formation of small carities which are found in the salt, white, sonnd codfish; but the red color penetrates into the flesh, continues to develop, and gains in intensity.

In an additional note, Dr. Layet states that the small organism composing the red part of the codfisl is not a fungus, but rather an alga, belonging to the family of the Bacteriacec.

We shall not say any more regarding the composition and nature of the red of the codfish, as we desire that our article shall keep the character of a practical hygienic treatise. Whatever may be its nature, the red is evidently a parasitic growth in the flesh of the codfish. So far as our kuowledge goes, there is not a single proof of the poisonous character of this parasite, while proofs of the contrary abound.

We first give the opinion of Dr. Dumas, of Cette, vice-president of the hygienic council of Herault, as given in the treatise of Mr. Béren-ger-Féraud. Dr. Dumas says: "This fungus is not poisonous in itself, which fact has beeu sufficiently proved by direct experiments made by the codfish dealers of Cette, who, as well as their employès, have many a time eaten rosecolored and red codfish, which was otherwise perfectly good, without being in the slightest inconvenieuced thereby."

Mr. Bérenger-Féraud adds that the employès of the commissary's department at L'Orieut have frequently made the same experiment with exactly the same result. He does not believe in the poisonous character of the red of the cod fish, and bases his opiniou on the circumstance that he has many a time seeu people eat rose-colored and even red codfish which had no putrid odor without causing any indisposition, and ou the fact that Mr. Degorce, principal pharmacist of the navy at L'Orient, las frequently found this same fungus in otherwise perfectly sound codfish, and that fish containing these fungi have repeatedly been eaten without causing auy disturbance of the digestion, so that it can certainly not be termed a poisouous fungus. Mr. Méguin is, as far as we know, the first who has given red codfish to live animals (dogs and rabbits). The result of his experiments was entirely negative, as these animals showed no symptoms of indisposition. He, therefore, reached the conclusion that this fuagus is not poisonous.

Dr. Carles, of the School of Medicine of Bordeaux, also maintains that the red of the codfish is not injurious to health. He calls to mind the fact that the city of Bordeaux, which for the last two years has been right between two dangerous cholera centers, has remained entirely free from any case of sickness resembling cholera, in spite of the enormous quantities of red codfish from the suburban drying establishments which were consumed in the city every day.

Professor Layet, in his recent "Note sur le rouge de la morue" (notes on the red of the codfish), states that " the red in itself cannot be considered as the cause of poisoning by spoiled codish, but that the poisonons character depends entirely on the state of putrid decay of the fish." For more than a week he fed two cats exclusively on red codfish, and these animals were not in the least inconvenienced thereby.

We have fed two hunting dogs of medium size on a codfish which was strongly tainted with red, and neither of these dogs experienced any disagreeable consequences. The codish was given to them mixed with bread soaked in tepid water. It should be stated, however, that this fish when split open along its entire length did not emit any putrid odor, and that its flesh had preserved its normal consistence.

We ourselves have repeatedly eaten red codfish without being incon. venienced, and we know many places in the southwest of France where the codfish sold by the small dealers frequently has a red color.

If one considers, on the other hand, that the greater portion of the codfish received in our colonies, in the Antilles, in Réunion, and in eastern countries has always more or less of a red color, produced by the influence of the great heat, and that the people of these countries have been in the habit of eating such codfish every day, from time im. memorial, without experiencing any injurious consequences, we are forced to the conclusion that the red color of the codfish has nothing to do with the poisonous nature of the decaying flesh.

But, it will be said, if red codfish are not injurious to health, why has their sale been prohibited, as a hygienic measure? Here the ques. tion becomes somewhat complicated.

Mr. Berenger-Féraud says in his treatise: "If the red is not poisonous in itself, it seems certain that, when closely examined, it acts in a powerful manner in producing or aiding the decay of the codfish, and the decay always began, as far as the codtish served to the garrison at L'Orient is concerned, coincident with the appearance of the reddish color. In those parts which first turued red, and in their immediate surroundings, the Hesh was first noticed to become soft, moist, and crumbling, and finally the putrid odor first began to show itself in these parts."

Further on the same author states: "In my opinion, therefore, the codfish sometimes undergoes a change whose first indication is the grow th of the red cryptogan referred to. It is true that this cryptogam, in itself, has not the property to render the flesh poisonons, but it will, under certain special conditions-for instance, when the weather has for some time been moist and hot-favor a putrid decay of a greater or less portion of the codfish."

According to Dr. Bérenger-Feraud, therefore, the red, although not poisonous in itself, is one of the determining causes of the patrid decay of the codfish. It probably (the author is not absolutely sure) hastens the putrid decay of the flosh; and this is the only effect of the kind which it produces.

This opinion appears to us to be based on at inaccurate interpretation of the facts. We agree that this is only a supposition, but the authoritative character attaching to it from the high stauding of the author has caused it to be accepted as true in government circles. The minister reasoned in the following manuer: Because the red color of the codfish causes and aids its putrid decay, we shall prohilit the sale of red codfish, aud thus cause all danger of poisoning to disappear on the well-known principle that when the cause is removed the effect will cease. This mode of reasoning would be correct if the basis ou which it rests were sound, but so far the relation supposed to exist between the red color of the codfish and its poisonous putridity has not been sufficiently proven.

If the opinion of Mr. Berenger-Feraud is well founded, the degree of poison iu the flesh of a codfish should be in the direct ratio of the extent and intensity of the red color. But the very contrary is the case, because in by far the larger number of cases of poisoning by spoiled codfish and in the most serious cases there was no red color. In a second category of facts, it is true, the codish which had been eaten were red, but we believe to have shown sufficiently that these fish did not produce cases of sickness, because they had this abnormal color, but because they were at the same time spoiled and partly putrid.

In short, the more or less advanced stage of putrid decomposition of codtish, no matter whether they are red, gray, yellow, or white, is, in our opinion, the sole cause of the poisonous character of their Hesh.
In order to maintaiu authoritatively, as Mr. Bérenger-Féraud has done, that the red color-although inoffensive in itself-favors the putrid decomposition, and should be cousidered as the first cause of the poisonous nature of the flesh, it ought to have been proved, in the first place, that all the codish which produced cases of poisoning were more or less impregnated with the fungus referred to above. But this proof has not been furnished. On the contrary, it has been clearly shown that this cryptogamic vegetation has been observed only on a small number of the codfish which produced cases of sickness; from which we think wo can draw the conclusion that the presence of the red color on these fish is simply a coincidence and a sort of unimportant phenomenon.

Although the red color is found both in somed and spoiled codfish, it is none the less true that, from a commercial point of view, to which we shall soon have occasion to return, codtish which have that color are slightly depreciated in value in our French markets, where whiteness of the flesh is the principal recommendation of a codfish. It seems that this was not always so, for we read in a popular almauac for the year 1838 that red codfish was at that time considered the best; a proof that the popular taste changes in course of time, and that red codfish are not a new thing. In hot countries, especially in the Autilles and in Remion, cousumers even to this day give the prefereuce to red codish, which they term "saumonée" (salmonilied).

Endearors have been made to find what might be the cause of the red color in codfish. It has been noticed more frequently during the last twenty years. Sometimes it is found in all the codish of one consigument, and sometimes there is not one which has a red color. It seems that moist heat favors its development. It has been observed that entire cargoes of codfish which had kept white during the voyage from Newfoundland to Bordeaux rapidly turued red only a few days after their arrival at the latter port.

According to Dr. Dumas some dealers have observed "that the rose color shows itself most frequently when Mediterranean salt has been used in salting codfish, while the salt from the west of France produces the contrary effect, and they think that this result is due to the presence in the salt from the west of France of a larger quantity of small earthy particles. These particles, although rendering the salt less pure, would therefore have at least this adrantage, that they prevented the codfish from turning red. But as this salt gives to the codfish a yellowish color, which is not very agreeable to the eye, most people prefer to use the Mediterranean salt."

This opinion regarding the special influence of the Mediterrauean salt on the development of the red color is not shared by all dealers; but it is uevertheless interesting to note, because it raises the question as to the influence of the salting on the production of parasitic germs in albuminous matter.

According to Dr. Layet there are facts, proved by actual practical observation, which seem to show this intluence of the different methods of salting on these small organisms in other substauces than the red of the codfish, as for instance, the appearance of red color in the Norregian sardines; and there are likewise facts, proved by experiments, which clearly establish the intluence of sea-salt on the development of microbic germs. Miguel has clearly shown that, according to the quantity of salt added to the liquids which serve as elements of cultivation for schizomycetes, these show themselves in greater or less quantity; a certain quantity favors their development, while a different quantity almost entirely prevents it.

We have alreaty given the opinion of Professor Farlow regarding the red color of the codtish. According to the Spanish journal which has published Professor Farlow's opinion, he examined the Cadiz salts, which showed a slight rose colored tinge, and arrived at the conclusion "that the Cadiz salt, as it comes into the hands of tishermen, is already improg. nated with a considerable quantity of the cluthrocystis," and that this plant develops on the codtish whenever the temperature is sufficiently high (above $65^{\circ} \mathrm{F}$.)

Let us now hear what Mr. Carles has to bay on the subject:
"It is a very delicate matter to show precisely whence come the germs of this red coloring, especially in the absence of samples of the different substances with which the codfish has come in contact from the time it
is caught till its arrival in the port of destination. But everything leads us to suppose that the origin of the trouble is in the salt; and if the germs develop on salt fish with an intensity which varies in different years-i.e., according to the temperature, the condition of the atmos. phere, etc.-the codtish must, in order to become a fertile soil for the parasite, have commenced to spoil on the surface."

In short, it may be said that all the naturalists who have occupied themselves with this question and the codfish dealers agree in considering the salt as oue of the principal causes of this eryptogamic vegetation. But so far this is only a supposition, which, in spite of its great probability, needs to be confirmed by experimental investigations conducted on scientific principles. We know that Messrs. Layet, Artigalas, and Ferré, of Bordeaux, and Dr. Heckel, of Marseilles, have midertaken this task, and we shall probably soon learu the results of their investigations.

Several means have been proposed to prevent the development of red in the codfish, but so far none has proved sufliciently practical to be employed. Salicylic acid, borate of soda, sulphite of soda, a freezing process, etc., all have been mentioned. By a ministerial circular of February 7, 1881, the application of salicylic acid to articles of food was prohibited. This method, therefore, could not be employed. As regards borate of soda, by which it has been proposed to replace the salt, and the freezing process, it must be said that these methods are too expensive to be employed to any extent.

As far as we are concerued, and until something better is found, we frecly give the preference to the means indicated by Mr. Carles, which, if they do not altogether kill the germs, at least prevent their spread. These means are the following:
(1) Careful washing of the fresh codfish, so as to remove all inpurities from the intestines.
(2) Using salt obtained from mines, which is free from all germs, and contains fewer deliquescent magnesian salts.
(3) Washing and disinfection of the ressels by fumigation with sulphurous gases.
(4) Disinfection, by the same means, of the material, the ground, and the walls of the drying-houses.
(5) Removing at once from the drying-houses all orgavic detritns produced by the washing of the fish and their immediate disinfection by sulphates of iron or copper.
(6) A final washing of the fish in water from which all orgauic products and deliquescent salts have been carefully remored.

This question of the influence of the salt on the production of the red color in codfish naturally leads us to speak of the codfish termed "soft. salted;" that is, insufficiently salted. It is certain that these corlish spoil more easily than others, and may therefore cause cases of poisoning similar to those which have been described. Otherwise they are

$$
\text { S. Mis. } 90 \longrightarrow 66
$$

much less subject to being infected by red color than those which have been well salted. When fresh-aud even when dried-they exhale, according to the statements of dealers whom we have consulted, a very strong odor of garlic; their flesh is soft, and an impression made with the finger will remain. When cooked they exhale a putrid odor, characteristic of their decay, which generally prevents people from eating them.

There are "soft-salted" codfish which accidentally have been badly salted at the fishing stations. Their number, however, is small; but there are large quantities of badly salted codfish simply owing to the fact that the fishermen, with the view to makiug greater gains, have been too saving with their salt. Insufficiently salted codfish keep a much larger quantity of water in their flesh than well salted ones, and consequently weigh heavier when they reach the French ports, where they are sold by weight.
This method of insufficiently salting codfish can not be censured too severely, and dealers can nut be too careful in this respect, as both from a hygienic and from a commercial point of view the consequences may be most deplorable.
IV.-NATURE OF IUE POISONOUS SUBSTANCE CONTAINED IN PUTREFIED CODFISH.
The cases of poisoning observed, which we have described in the first part of this treatise, prove beyoud a doubt that spoiled codfish contains a poisonous substance which, when eateu, is liable to cause in human beings more or less serious cases of sickness resembling cholera in its symptoms. We deem it proper to enter somewhat into detail regarding the nature of this poison; and it may be stated here that there are weighty reasons for supposing that the poisonous substance of putrefied codtish is a cadaveric alkaloid or ptomaine.

This last-mentioned word was introduced to science in 1872 by Pro. fessor Selmi, of Bologna, who tirst of all toxicologists called attention to the existence of small quantities of poisonous alkaloids which could be extracted firom human bodies, which had not been poisoned, after having lain in the ground for some time. He proposed for these poisonous substances the name ptomaine (from the Greek word $\pi \tau \tilde{\omega} \mu a$, cadaver), and pointed out the possibility of confounding these substances with vegetable alkaloids. In 1870 Selmi's attention was for the first time directed to the existence of these alkaloids. He produced, according to the method of Stas, from the ontrails of a man who was supposed to have been poisoned an alkaloid which he could not identify with any of the poisonous alkaloids hitherto known. But it was only in 1874, and later, in 1878, that Selmi again took up this question and made experiments on a large scale on human bodies which had been buried for several months. By these experiments Selmi established, beyond the shadow of a donbt, the fact that poisonous alkaloids will develop in the course of putrofaction.

This study of the ptomaines from a toxicological point of view has been continued in France by Messrs. Brouardel and Boutmy. In 1881 Messrs. A. Gauthier and Etard, taking up Selmi's work, isolated the products from a large number of putrefying fish from the volatile bases belonging to the pyritic series, which were the first of these interesting compounds to be analyzed. The physiological action of these alkaloids varies greatly; some are only poisonons for animals, while others produce symptoms similar to those produced by strychnine, morphine, and veratrine.
Our knowledge of these substances, some of which are extremely poisonous, is still very rudimentary. A large number, however, of new and well-established facts have increased our knowledge since 1850, when Stas, in connection with the celebrated Bocarme affair, discovered a method of separating the alkaloids, which bears his name. But, on the other hand, many new alkaloids have been discovered since that time whose poisonous character has hardly been demonstrated, or which as yet has not been shown at all. Mr. Duvillier, professor of chemistry in the medical school of Algiers, has discovered a large number of these cadaveric alkaloids in the tlesh of spoiled codifish, which Dr. Bertherand had submitted to him for analysis in 1878. This chemist by follow. ing the Stas method succeeded in obtaining the characteristic reaction of ptomaines (precipitate of Prussian blue by prussiate of potash and perchlorate of iron).

Mr. Degorce, principal pharmacist of the navy, did not obtain the same result in his examination of spoiled codfish from the port of L'Orient. He says in his report to Mr. Bérenger-Féraud: " 50 grams of codfish, taken from those parts of the fish which were rose-colored, were treated according to the Stas'method, and did not show any traces of organic alkaloids or ptomaines." This negative result is not surprising. It is, on the contrary, only another proof that the poisonous substance of spoiled codfish is not found in its red portions; aid it is more than probable that, if this chemist had sought for ptomaines, not in the red portions, but in the positively putrid flesh of the codfish, he would have found them.

Other experiments have confirmed the presence of ptomaines in putrefied codfish. Brieger discovered, besides the alkaloids which are generally found in spoiled articles of aninal food, a particular ptomaine, which he has called gadinine. Mr. Brieger has made experinents on ptomaines developed in digested tibrine, in spoiled milk, putrefied fish, spoiled cheese and gelatine, and putrefled yeast. According to him, putrefied milk produces a poisonous base neurine, and a non-poisonous base neuridine. The poisonous quality of neurine is ten times stronger than that of choline. Neurine is the characteristic alkuloid of putrefied meat. In the long run, these alkaloids are destroyed by the process of putrefaction. Decayed tish produces neuridine, diumine ethylene, muscarine, similar to that of mushrooms, and a new base, gadinine and
rimethylaminc. Most of these ptomaines have been reproduced by synthesis.

Professor V. K. Anrep, of Kharkov, Russia, had occasion to observe several cases of poisoning by salt sturgeon, five of which were fatal, and found on incestigating the nature of the poison that it was a ptomaine. He examined matter drawn from the gastro-intestinal canal of one of the victims (blood, liver, brain, and milt of the sturgeon), and likewise the urine of oue of the persous who had died, and he found in both cases a substance identical in its physical and chemical properties as well as in its physiological action on animals. This ptomaine appeared in the shape of a solid amorphous substance, having strongly pronounced alkaline properties, and of an exceedingly strong, poisonous character. Not very solublo in water it produces salts of a very great solubility. Its principal characteristic is its great firmness.

When given to animals (dogs, rabbits, frogs) it very soou produced the same symptoms which had been observed in human beings. In human beings the eating of poisonous fish invariably produced in a few hours (never more than twenty-four) great lassitude, a sensation of cold with violent pain in the stomach, vomiting, dryness of the mouth and tongue, excessive thirst, a weakened sight, ptosis, and dilation of the pupil of the eye, cold extremities, difficult respiration, procordial auxiety, a slow pulse, considerable prostration, and gradual diminution of the temperature of the body. In fatal cases the cardiac and respiratory functions do not recover their normal condition and the sight becomes very weak. These symptoms are followed by cyanosis of the face, paralysis of the bladder and intestines, and great difficulty in speaking or eveu uttering sounds. Death occurs ou the second day, or sometimes on the third or fourth.

Bocklisch found that codtish and perch undergoing a process of putrid fermentation sielded different products. He also made an investigation regarding herring, which frequently, when decayed, cause cases of poisoning. He succeeded in extracting from the brine of herring the following bases: trimethylamine, dimethylamine, and methylamine. In the flesh of a decayed herring he found cadaverine (discovered also by Brieger), diamine-ethylenc, gadinine (discovered by Brieger), and putrescine, as well as methylamine and trimethylamine.

This question, which is still but little known and has not been sufficiently studied-that is, the question of poisons produced in decaying organic matter-has been treated from a more general point of view by Mr. Netter in an excellent treatise published by him in 1884 in the Archives générales de Médecine. The author attributes to these poisons, the study of which has hardly beeu begun, the cases of poisoning known as bolutism and allantiasis, which sometimes occur after partaking of certain articles of food, especially preserved meats and spoiled sausage. The following are, according to Mr. Netter, the symptoms of bolutism:
"Two stages may be distinguished; one of irritation and one of paralysis. Eighteen hours after the food has been partaten of the
patient complains of an uncomfortable feeling, general lassitude and pain and a heavy feeling in the epigastrime. He has no appetite; but instead nausea, attacks of retching and vomiting. There is pain in tho abdomen, which is frequently swollen and extended. Sometimes diarrhea sets in at the very begiming, but it is soon followed by constipation, which generally is very severe. There is an extraordinary dryness in the mouth and throat, which frequently rises to a burning. sensation. Ouly in rare cases these symptoms are accompanied by chills. The head aches.
"On the secoud or third day the paralytic stage commences. At first this shows itsolf by attacks of vertigo, an uncertain step in walking, and heary respiration. The sight becomes dim and the pupil of the eye is dilated. On the third or fourth day the upper eyelid falls down, the pupil is immovable and insensible. Then follow attacks of choking and congl, reminding one of croup. From the fourth to the tenth day dysphagy becomes more pronounced, and it now becomes impossible to swallow anything. All secretions are suppressed, with the exception of the urinary secretion ; constipation becomes settled, the faintness of sight becomes amaurosis, and the hoarseness becomes speechlessness; the sense of touch is entirely lost. The patient can no longer move the tongue. The paralysis of the members becomes complete; the skin is cold, the pulse slow and feeble, and the beating of the heart can no longer bo noticed. One fainting spell follows another, and respiration ceases. Finally the patient dies with every indication of complete and utter exbaustion. Sometimes death is accompanied by convulsions.
"This is the course in fatal cases. Death, which follows in one-third of all the cases, occurs daring the first ten days. At the autopsy nothing can be discovered but a congestion of most of the viscera. Rigidity sets in slowly, and putrefaction likewise makes its appearance very slowly."

These morbid phenomena of bolutism differ far too much from those of poisoning by spoiled codfish to allow us to draw the conclusion with Berenger-Féraud that they both are produced by the same cause, by a poisonous substaince having varying effects, according to its different degree of strength. It seems much more natural to suppose that the putrefaction of animal matter produces different poisonous substances, according to the nature of the matter in which they are developed.
This appears very clearly from all the recent researches and from the different symptoms which have been observed both in cases of accidental poisoning by decayed food substauces of animal origin aud in physiological experiments.

Mr. Berenger-Feraud himself recoguizes the decided difference of the symptoms of the two cases. "In cases of poisoning by spoiled codfish," he states, "we notice immediate attacks resembling that of cholera, and after this tirst stage has been passed the condition of the patient improves very regularly and rapidly. In bolutism, on the other hand,
there are two stages, one of irritation and the other of paralysis, and after a short and deceptive period of improvement the special symptoms begin to show themselves-paralysis of the limbs, cyelids, etc.; symptoms which have never been known to follow the eating of spoiled codfish." It is truly astonishing that the author, after making the above statement; nevertheless arrives at the conclusion that there is a complete etiological identity between the two cases.

For our part we can not share this view; and we find a new proof of the decided difference between the two poisonous substances by examining the different symptoms by which these two cases of poisoning are followed.

Poisoning by spoiled codfish, which we propose to designate by gadinism, in order to distinguish it from other cases of poisoning of the same kind, has only resulted in death in a single case (in St. Petersburg) among 700 persons who had been poisoned. Bolutism, on the other hand, very frequently causes the death of the victims, as will be seen from the following facts from Mr. Netter's treatise already referred to:

In 1799, on a farm in Suabia, 5 persons were taken sick from eating spoiled meat-balls, and 4 of them died. In 1808, Jaeger observed 25 cases, in 11 of which death followed. In 1820, Kerner observed 76 cases, of which 37 were fatal ; and in 1822, 155 cases, in 86 of which death ocurred.

The objection might be raised against these statistics that they are of ancient date, of foreign origin, and that the study of these cases doubtless left much to be desired. But the opinion which we have adv anced regarding the probability of the existeuce of different poison. ous substauces in decayed articles of food of animal origin is not merely based on a comparison of the symptoms of bolutism described by Mr. Netter and the symptoms observed in cases of poisoning by spoiled codfish and on the different course of the illness following these two kinds of poisoning; it.is also based on the comparative examination of a certain number of more recent cases of poisoning by animal substances of the most varied character, in which the symptoms showed essentially different characteristics.

It is impossible to give in this place a detailed account of all these cases without exceeding the limits allowed for this article. We shall content ourselves to enumerate them and to indicate the sources from which they have been taken, so that our readers, if they desire it, may study these sources, and ascertain the truth of our assertions:
(1) Cases of poisouing produced by the eating of mussels, communicated by Dr. E. Monod at the session Society of Public Hygiene of Bordeaux, December 5, 1883 (Revue sanitaire de Bordeaux, January 25, 1884).
(2) Case of poisoning by eating Portuguese oysters during the month of August, observed by Dr. Méran (Revue sanitaire de Bordeaux, January 25,1884).
(3) Case of poisoning from eating the roo of flounder, reported by Dr. Rondot (Revue sanitaire de Bordeanx, January 25, 1884).
(4.) Case of poisoning from eating presorved turkey which had become spoiled, communicated by Mr. Darnet, a pharmacist of Soulac at the session of the Society of Public Mygiene of Bordeanx, December 5, 1883 (Revue sanitaire de Bordeaux, January 10, 1854).
(5) Poisoning by the flesh of a goose, reported by Brouardel in Hoffman's Traité de Médecine legale.
(6) Poisoning by the spoiled Hesh of a turkey, communicated to the Academy of Medicine of Dublin at the session of Jannary 18, 1884. (Revue sanitaire de Bordeanx, March 10, 1884). In this connection the author recalls other cases of poisoning by spoiled meat, observed by Van der Corput, Klein, and Ch. Cameron.
(7) Case of poisoning by small mussels; reported by Dr. J. Turle in the Sanitary Record, January 15, 18s4. This was a case of the doath of a person who had eaten about a handful of these small shell-fish, bought in the Finchley market. Four hours after eating them he was taken with violent attacks of colic, followed by utter prostration, and death after thirty hours.
(s) Poisoning by eating snails; reported by Dr. Dumas, of Cette, in 1873. Several persons who hatl partaken of suails were taken with intestinal troubles, nervous symptoms, vertigo, headache, delirium, etc. (Revue sanitaire de Bordeain, March 10, 1884).
(9) Poisoning by spoiled meat. This case occurred at the Bordeaux fair in October, 1884, in a family of strolling actors, three of whom died (Revue sanitaire de Bordeaux, October 10, 1884).
(10) Poisoning by spoiled English preserved beef, March 26, 1881, on board the Laglish pleasure yacht $A m y$, in the barbor of Villefranche This was observed and described by Bérenger-Féraud in his treatise Sur les accidents que provoque la morue alteŕo (cases of sickness caused by spoiled codfist).
(11) Poisoning by cheese, in Michigau (Revue sanitaire de Bordeaux, January 25, 1885).
(12) Polsoning by meat from a sick calf (Echo vêtórinaire belge; Art médical de Bruselles, June, 1885, and Revae sanitaire de Bordeanx, September 25, 1885). In this last-mentioned case 10 persons were poisoned, and 1 died. The man who died, and a woman, showed typhoid symptoms. The others, whose cases were not so severe, were attacked by headache, violent diarrhea, and intenise colic for two days. The patients, moreover, suffered from a very painful dysury, and the urine, which flowed out drop by drop, was as black as ink.
(13) Numerous cases of poisoning by mussels; communicated to the Berlin Society of Medicine by Dr. Virchow, at its session of November 18, 1885.

The cases occurred in one of the docks of Wilhelmshafen on the North Sea. After two ressels had entered the dock, and after the water had
been let out, it wals noticed that these vessels were covered with an innumerable quantity of mussels. The workmen gathered them, had them cooked, and partook of them with their fanilies. After a few hours 19 persons (13 men, 5 women, and 1 child) were taken seriously ill. Four died ; the first, three-quarters of an hour after having eaten the mussels; the three others several hours later. We should state that these two vessels were not covered with copper.

The syinptoms observed after eating only from five to six mussels were in all cases the same. The teeth of the pationts seemed blunted; they experienced an itching sensation in the hauds and feet, but no headache. An excitement like the one produced by alcohol soon gave way to a feeling of depression; the pulse varied between 80 and 90 ; the temperature of the body did not increase; the pupil of the eye became dilated, but the vision did not become dim; convulsive movements of the hands were noticed, great feebleness in the lower extremities; no diarrhea. During the last stage there were general chills, ansiety, a feeling of oppression, and finally the patients died, withont having lost consciousness for a singie moment.

At the autopsy the intestines showed symptoms of indammation of the bowels, which confirms the opinion of Orfila as to the irritating action of the poisonous substance.

Professor Virchow gave some of these mussels to dogs, cats, rabbits, and frogs; and all these animals died after haring eaten a very small quantity. Thus, the largest dog had only eaten from six to seven mussels. A cat licked a very small quantity of the liquor from the mussels left in a dish and was taken violently sick. The poison must, therefore, have been very strong. Dr. Schmidtmann, the physician of Wilhelm. shafen, who observed all these cases of poisoning, believes that it was ptomaine. Virchosv is inclined to cousider it as a chemical poison. In either case it must be admitted that the mussels produced this poison.

In the Japau seas there is a species of fish which for several months during the year becomes poisonous, while during the remaining portion of the year it may be eaten with impunity. Does not this fact agree with the supposition of a kind of virulence showing itself at the time of reproduction, and might wot this virulence be the result of the development of a normal or accidental ptomaine, resembling the substance described by Balbaud (in Etudes sur l'empoisonnement par les moules, Paris, 1870), and terued by him molluscine (?)

It is probable, however, that mussels may also become poisonous by the beginning of the patrefying process, which would agree with the circumstance that these cases of poisoning are more frequent during the hot season. However this may be, the variety of symptoms observed in most of the cases justifies the opinion that spoiled articles of food of animal origin contain ptomaine or different chemical poisons. The clinical observation therefore agrees entirely with the chemical observation, which has already isolated and characterized several of these
poisonous substances. Much remains, doubtless, to be done, both from a chemical point of riew and from that of physiological experimenting, in order to throw full light on this but little explored field of the toxi: cology of cadaveric alkaloids; but the results which have been reached thus far justify the hope that seience will finally succeed in solving all the knotty problems of this question.

We will close this chapter by the report of a personal experience regarding the eating of putrefied codfish: During the first days of A pril two reliable codfish dealers of our city furnished me, at my request, with a number of dried codfish which had been more or less tainted with red; and three of the oldest and most decayed codish which could be found among the refuse of their drying-houses.
These three codish, three years old, and destined to be sold as grease, showed all the signs of putrefaction-a putrid odor, and flesh which throughout was of a brownish color, and easily crumbled to pieces. The outside showed many red spots seattered irregularly over the entire body.

I gave these three old codfish, raw, and without being prepared in any way whatever, to three dogs of the physiological laboratory of the Faculty of Medicine, which Professor Ore kindly piaced at my disposal. None of these three dogs were inconvenienced thereby. They neither vomited, nor had they attacks of diarrhea, or any other symptoms of sickness; and still the codfish of which they had eaten was old and thoroughly decayed.

May we conclude from this experiment that the eating of such codfish would not produce cases of sickness in a human being $\$$ I do not believe it. Dogs are in the habit of eating all sorts of impure matter, and putrefied substances, without suffering any bad consequences.

The same would liardly the the case with man, whose stomach is of a much more delicate organization; and one should be carefill not to draw any conclusion as regards man, as to the Larmless character of spoiled articles of food, from cases in which dogs ato such articles with impunity. To make the experiment complete, I should also have eaten of the spoiled codfish, but I freely confess that I did not have the courage to let my scientific derotion go so far. I contented myself by eating red, but otherwise sound, codfish at tro consecutive meals; and I can state that I digested it perfectly without the least tronble, like all the members of my family who partook of it with me.
It may, therefore, be considered as settled that the red codfish has no hurtful quality, and that dogs could eat, without being in the slightest inconvenienced, raw codfish, three years old, intended to be used for grease, and showing every sign of putrefaction. Should we admit that the poisonous products of putrefied codisish do not act on dogs, or that these products, poisouous at a certain given time, are finally destroyed by the process of putrefaction? These questions can ouly be solved by new researehes, and by much more numerous experiments.
V.-COMMERCIAL ASPECTS OF THIS QUESTION.

The cod fisheries aro carried on on the coasts of Iceland and New. foundland from April till the middle of September, aud more than 12,000 of the best class of fishermen and sailors are engaged in these fisheries.

Ihe codfish are not caught in the same manner near Iceland as near Newfoundland. In Iceland fishing is going on while the vessel is moving, drawing the fishing-lines after it. The fishermen constantly raise these lines, and the codfish pass direct from the sea into the vessel which is to take them to France. When they reach the deck of the vessel the head is cut off and the abdominal viscera are removed, among which is the roe, which is to be used as bait in the sardine fisheries, and the liver, from which oil is to bo extracted. Then the fish are cut open and a portion of the backbone is removed; whereupon they are washed, salted, and piled up in the hold of the vessel.

Near Newfoundland the fisheries are carried on in a different way. Lines with hooks are immersed in the water and left there from ono tide to the other. At each tide sinall boats are sent out from the ves. sel to raise the lines. The codfish are at first received in these small boats, or dories, which convey them to the vessel. There is therefore a double handling, which does not take place in the Jceland fisheries. As regards the methods of preparing the codifisb, they are the same in both countries. We should also bear in mind the fact that the temperature of Iceland is much colder than that of Newfoundland.

These details are of importance regarding the question before us, for they may have to be taken into account in explaining the fact, which has been duly observed, that the codfish canght near Iceland turn red more rarely than those caught near Newfoundland.

In 1885 the average quantity of codfish taken by each fishing vessel near Newfoundland was from 3,500 to 5,000 quintals. A boat manned by 24 men can take at each tide about 5,000 codfish. The largest fishing vessels can carry as many as 180,000 codfish.

It is probable that if Dr. Bertherand, of Algiers, had been acquainted with the above-mentioned fact when he read his treatise on the poisonous fungus at the meeting of the scientific societies beld in Paris in April, 1884, he would not have proposed as a remedy for preventing the growth of this fungus, to arrange in the fishing vessels tanks in which live codfish could be conveyed to France. Without mentioning other impossibilities we must say that no vessel would be large enough to hold tanks for 180,000 live codfish, many of which are 3 feet long. It is true that the fish might be distributed amoug a number of vessels, but what an enormous fleet would be required to convey to France in tanks the $1,200,000$ quintals of codfish which represent the aunual yield of these fisheries. All-the vessels of the French merchant marine would not suffice, not to speak of the enormous expense which this mode of trausportation would involie.

We stated that the cod fisheries take place from April till the middle of September. The first vessels conveying fresh codfish from Iceland and the Newfoundland banks arrive in France about the end of May or the beginuing of June, and from that time on ships continue to arrive every week in July, August, September, October, and November. A considerable quantity of codish, thorefore, arrives in our ports during the heat of summer. It is no rare case to see entire cargoes turn red from the influence of the heat, either during the voyage or when the fish are landed in the port of destination. But at that time the red spots are merely found on the surface.

As soon as the codfish are landed they are taken to the drying-houses. There they are piled up in enormous heaps in closed but well- ventilated rooms. They remain in this condition a longer or shorter period, according to the needs of the trade. They are termed "green codfish." Some are shipped in this condition, but by far the largèr quinntity is delivered to the dealers as "dried codfish."

According to the needs of the trade, the green are transformed into dried codfish in the following manuer. They are brushed violently with a broow-corn brush, and washed in several waters, so as to get them as clean as possible. This operation frequently causes the red color to disappear. After they have been thus washed, they are hung in the open air to dry. In summer two "suus" suffice to dry them completely, but in winter and in wet weather they have frequently to hang much longer. The codish hung to dry is carried to the warehouse every erening, aud is not allowed to stay in the open air a single night. We have seen 30,000 codfish hung up to dry in a single drying.house at Bégles. This operation, of course, necessitates the employment of a very large number of persons.

The dried codtish generally leaves the drging-houses in good condition, but it passes through several hands before it reaches the retail dealers, and with these latter it is not alwass kept under conditions favorable to its preservation.

The following figures, derived from a reliable source, give an exact idea of the importance of the Freuch codfish trade:

The whole of France receivos every year from the Iceland and Newfoundland fisheries codish valued at from 30,000,000 to 35,000,000 francs (about $\$ 6,000,000$). The share of Bordeaux alone in 1885 was $14,000,000$ francs (about $\$ 2,700,000$). The average annual quantity re. ceived is 600,000 quintals.

In 1885 the Bordeaux merchants exported to Spain and Italy 150,000 quintals, Spain taking three-fourths of this quantity.

Some jears ago (hardly six) France exported no codfish to Spain, Norway furnishing that comutry with all the codish consumed. It seems that considecable difficulty was experienced in opening the Spanish market for French codish, but at present the Norwegians again take courage, and, since the ministerial circular prohibiting the sale of red codfish in France, again ship large quantities of codfish to Spain.

The Spanish dealers say: "Don't buy any more Trench codfish, be. cause they have turned red; and that this color is a proof of their bad quality is clearly shown by the recent circular of the French ministry prohibitiug the sale of red codtish." A Bilboa paper has even gone so far as to insinuate that it is more than probable that it was the French codish which last year carried the cholera into Spain, and that if these fish had been carefully examined specimens of Dr. Koch's bacillus would probably have been found.

All this evidently is not strictly scientific, but it will be seen how much in such matters the hygienic consideration influences the commercial side of the question; aud it will be understood what great damage may be inflicted on commerce by an erroneons scientific opinion when it has been pronounced in an official way, especially in the shape of a prohibitory measure.

We have stated that the new minister of commerce, Mr. Lockroy, has suppressed the circular of his predecessor until the entire question in all its bearings has been made the subject of exhaustive investigations. We hope that soon sufficient light will have been thrown upou this question to cause the minister to revoke detinitively the prohibitory measure refarred to, and to proclaim positively in a new circular the absolntely harmless character of red codfish from a hygienic point of view. Such a declaration seems to be the only means of conquering the very considerable prejudice which has been created against these fish by the prohibitory ministerial circular of December 31, 1885.

VI.-CONOLUSIONS.

From all that has been said above we feel justifted in drawing the following conclusions:
(1) Cases of poisoning from eating spoiled codfish are extremely rare, considering the enormous quantity of these fish consumed thronghout the entire world.
(2) The exceptional cases which have been observed must be attributed to the eating of spoiled codfish which had already commenced to putrefy, which can always be recognized by the following two certain indications: A patrid odor, and the easy crumbling of the flesh. Every codfish showing these two indications should be condemned at once.
(3) The red color which often appears on these fish, both when "green" and when "dry," under certain conditions of temperature and the place where they are kept, is no indication of their injurious character; because, on the one hand, it is a well-established fact that from time immemorial people have eaten red codfish without experiencing any bad consequences; and because, on the other hand, animals (dogs and eats) have for several days in succession been fed on raw codtish, having a deep red color, without cansing any sickness whatever. One may threfore eat without fear any codfish which has preserved its
normal odor, and the firm consistence of its flesh, no matter whether its color is more or less rosy or red.
(4) The red of the codtish is produced by a cryptogamic vegetation, the nature of which has not yet been fully determined. Some think it is a fungus, others an alga.
(5) This cryptogamic vegetation which develops both on spoiled and on sound codfish, seems to be aided in a special manuer by the salting process; but it has nothing whatever to do with putrefaction.
(6) Only those codish whose flesh is more or less putrefied contain a poisonous substance, which in man may produce symptoms similar to those of cholera.
(7) This poisonous substance has been isolated and characterized by several experimenters as a kind of ptomaine, or an alkaloid produced by putrefaction.
(8) Protection against all danger of such poisoning is easy, simply by not eating any codfish which has at all begun to putrefy. Λ s regards sound codfish, they should in variably, before being eaten, be carefully cleaned, soaked in water, which should be changed several times for twelve hours, and above everything else should be well cooked. Thorough cooking of all articles of food of animal origin is in fact the best means of destroying all hurtful parasites and minute organisms which they may contain.
(9) In peremptorily prohibiting the sale of red codtish, which is absolutely harmless unless it is at the same time spoiled (a measure which can not be justified by any reasons, and which has done considerable injury to an important branch of our commerce), a product which has lost nothing of its alimentary value, and which is of great and every-day importance to the laboring classes, has been unjustly depreciated and condemued.
(10) We therefore consider it our duty to addise that, as soon as possible and in the most positive manner, this prohibitory measure be revoked, because it is based on a manifestly erroneous interpretation of facts.

Bordeaux, France, April 25, 1886.

Blank page retained for pagination

XXXII.-NOTES ON THE NORWEGIAN FISHERIES 0F 1885.

[Abstract from a Compilation of A. N. Kiær."]

Cod fisheries.-The yield of the cod fisheries in 1885 was larger than in any of the four preceding years; while it was considerably less than in 1880 , which was the most productive year since 1866 , when somewhat complete statistics of these fisheries were first taken. The amount of cod taken in 1885 was above the average, while the value was somewhat below it, owing to a decided fall in prices. A comparison of the results of $1884 \dagger$ and 1885 may easily be made by referring to the following table:

The amounts for 1885 are owing partly to the Lofoden fisheries and partly to the spring fishories in Finmark, which gave a regular and average yield. The Lofoden fisheries, which had such poor yields in 1883 and 1884, inproved very much, and in the Lofoden district proper during the fishing season $26,530,000$ codfish were taken. If to this are added the number of fish caught after April 14 and those caught near Viroöe and Röst and near the outer group of islands (in all 7,480,000 fish, 500,000 of which were caught in the Lofoden district proper after April 14), the total yield of these tisheries is brought up to $34,010,000$, while in 1884 it was only $23,3 \overline{5} 4,000$.

[^117]The Ronsdal fisheries in 1885 yielded the following quantities:

Sündü̈re	2,011,500
Romsdal.	265, 500
Nordmëre	1,306,800
Tota	3,583,800

These figures are below those of 1884 in each instance, and considerably less than the average for several years back.

Iu the Tromsöe district the cod fisheries have been on the increase during the last few years, giving in 1885 1,433, 800 fish as against 1,241 . 800 in 1884. On the other hand, the Fosen (or South Trondhjem) fisheries were not so productive as in former years, falling from an average of about $1,000,000$, and from $1,766,000$ in 1881 to 689,400 in 1885 . The Namdalen isheries yielded 618,400 in 1885 , against 494,000 in $1884 ._{\text {. }}$

The quality of the fish was about the same in 1885 as in 1884. They were fat and plump, but the Lofoden tish were very small. But the fish were not so tat nor did they contain so much liver as in average years, when one hectoliter of liver may generally be obtained from $3 \tilde{5} 0$ fish, while in 1885 it took 506 fish to yield one hectoliter.

The average prices paid at the tishing stations were much below thoso of 1884, especially in the case of romad fish and roe. The inspector of the Lofoden fisheries said in his report that with reference to roe the fall in price could be attributed only to accidental circumstances. Re. garding the price of the fish, however, he thought the canse a different one. In 1880 and 1881 the price was lower in the Lofodens than in 1885 , but he considered it doubtful whether it would again rise as rapidly, as the competition in the codfish trade is considerable, owing to the iscrease in the French cod fisheries near Iceland and Newfoundland.

Fat-herring fisheries.-The gield of these fisheries in 1885 was nearly twice as great as in 1884; but the value was not much greater, owing to the low prices. The principal fat-herring fisheries were, as usual, carried on in the Nordland distriet, where the quantity caught was 498,570 hectoliters, or nearly five-sixths of the eutire quantity. A comparison of 1884 and 1885 is afforded by the following table:
Year.

Spring-herring fisherics.-The following table shows the yield, value, and average price for 1884 and 1885:

Sprat and other small herring fisheries.-The following table affords a comparison between the quantities taken, the values, and the average prices for 1884 and 1885:

Yoar,	Quantity.	Value.	A verage price per hectoliter.
1888	$\begin{gathered} \text { Hectoliters. } \\ 157,471 \\ 121,207 \end{gathered}$		$\$ 0.50$.47

Maokerel fisheries.-The comparison of the mackerel fisheries for 1884 aud 1885 is shown by the following table:

	Year,	Number.	Valuo.	Average price por 100 fish.
1884		5, 348,700	\$107, 084. 43	\$3. 69
1885		6, 111,969	200, 562.60	3. 43

Summer fisheries for ling, coal-fish, torsk, ctc.-The total quantity of these fish taken could not be ascertained; but their value in 1885 was $\$ 653,593.57$, while in 1854 it was $\$ 776,960.41$, thus showing a considerable decrease in value.

Salmon-trout and sea-trout fisheries.-These fisheries yielded much better results in 1885 than in 1884, though that year was better than any of the five preceding years. The yield was particularly good in the districts of South Trondhjem, Lister, Mandal, and Stavanger. A comparison of the years 1884 and 1885 is shown in the following table:
Year.

Lobster fisheries.-The number of lobsters taken was smaller than usual, while, owing to the high prices, the value was about the arerage. A comparisou for the two years is as follows:

	Fear.	Sumber.	Value.	A vorage price por 100 .
1884		$\begin{aligned} & 1,090,828 \\ & 1,007,871 \end{aligned}$	$\$ 111,022.15$ $106,681.05$	\$10.18

S. Mis. $90-67$

Oyster fisheries.-The comparative total statistics of these fisheries for 1884 and 1885 are shown in the following table:

The total value of the Norwegian coast fisheries in 1855 was $\$ \overline{5}, 142,907.41$, as against $\$ 6,535,488.45$ for 1884 , showing a considerable falling off for 1885. This small total value, which was less than for any of at least the six preceding years, was due principally to the low prices of the products of the cod fisheries. A comparative table showing the value of the coast fisheries according to the kinds of fish caught is as follows:

Fiaheries.	1884.		188 J.	
	Total value.	Por ceut.	Total valuo.	Pur cent.
Cod ftehnories.	\$4, 163, 739.68	6:3.7	\$2, 951, 275. 23	57.4
Fht-herring tishories.	085; 0;0.34	10.4	811, 823. 81	15.6
Spring-herring tisheries	387, 3966. 05	0.9	2019, 1488.86	\cdots
Sprat, otr Hackerel fisteries.	78, 6105.74		57, 5865. 77	1.1
Sunmuer fivherios.	770, 080.41 i	11 k	663, 56, 56.67	12.7
Salnou-trout, etc., flshori	132, 70\%.97	23	158, 050.22	3.1
Lobster fishuries	111, 023. 15	1.7	100.601. 0.7	2.1
Oyster fimherics.	1,901. 78		1,290.27	
Total	6. $335,488.45$!		5, 140, 007.41	100

Storeggen Bunk fisherits.-The results of the fisheries, whick were especially for ling and torsk, were not very favorable in 1885, owing chiefly to the stormy weather.

The fisheries on the lauks near Stordy Bet were comparatively more successful, being carried on simultaneonsly with the Storeggen fisheries.

The following table gives the statistics for 1885, and affords a partial comparison with the figures for 1884:

Tor.	Storogren.			Stordy bet.				Total valuc.
	Versols.	Men.	Vulue.	Steamer.	Boats.	Vossels.	Value.	
1884...	25 20		\$28, 056. 38					
1885...	26	310	20,038.30	1	20	90	\$48,240	\$6x, 278. 30

Shark fisheries in Finmark.-These employed 14 boats, 25 vessels, and 174 men. The total value of the livers obtained (4,078 hectoliters) was $\$ 13,74 \div .77$. The quantity obtained was less than for several years
and the low prices of the oil caused the value of these fisheries to decline.

Other Polar Sea fisheries.-These fisheries employed 45 vessels, with a tounage of 1,933 , and 453 men . They jielded 10,654 seals, 721 walruses, 177 white-fish, 12 bottle-noses, 623 hectoliters of sharks' livers, and 40 hectoliters of whale fat. The total value in 1885 was $\$ 54,603.66$, against $\$ 80,145.40$ in 1884. Besides the above, a vessel from Vardöß brought 204 seals and 6 walruses, valued at $\$ 1,447.20$.

Whale fisheries in Finmark.-These fisheries yielded 1,269 whales, valued at $\$ 320,883.64$. This result is a great increase over 1884 and the catch for many years previously.

Seal fishcries.-These fisheries near Jan-Mayeu and in the sea between Iceland and Greenland employed 18 steamers, with a tonnage of 4,527 , and 993 men, 148 of whom were hunters. They yielded 58,098 seal skins and 10,625 hectoliters of fat and oil, having a total value of $\$ 174,200$.

Bottle-nose fisheries.-These omployed 20 vessels (5 being steamers), with a tonnage of 9,255 , and yielded about 800 bottle-noses, producing about 7800 barrels of oil, valued at $\$ 83,616$.

Tutal valne of Noriogyian salt water fisheries in 1885.

Coas	\$5, 142, 007.41
Bank fisheries	68,278.36
Shark fisheries.	13,742.77
Other Polar Sea fisherios.	54, 603.66
Whate fisherics.	320,883.64
Soul fishories.	174,200.00
Bottle-nоне fisherics	83, 616, 00
Tutal.	5, 858,231. 84

The following twelve tables give more full details in regard to the coast fisheries in 1885:

Table I. - Number of fishermen engaged in the cod, fat-herring, and mackercl fisheries in 1885.

District.	Cod fisl. егіев.	Fat-herring fish. orles.	Mnok. ortl fish. erios.	Total.
Smarlonene			182	182
Δ korshus..			125	125
Buaskerud.			80	30
darlaborg and Laurvig			937	937
Bratmberg			79	70
Nedenass.			232	232
Lister und Mandul.			1,286	1,284
Stavangor	47.	114	1,302	1, 891
Sunith Borcouhus	650	2, 189	24	2, 804
North Bergenhus	$\begin{array}{r}60 \\ \hline 15\end{array}$	1, 494	1, 554
Romedial.........	15,626	2,830		18,450
South Trondhjom.	3,162	5,161		8, 323
North Trondhiom.	2, 020	2, 190		4,119
Nordland	34, 810		50, 812
Tromsïo.	2, 2818	3,167		5, 508
rinmark	17,311			17, 311
Total	76,504	33, 008	4,147	113, 659

Table II.-Falue of the coast fisherics in 1885."

District.	Cod.	Fat ber. riug.	Sprat and other emall herring.	Spring berring.	Mackerel.
Smaalenene			\$1,404	\$20,507	\$4,744
Akershas			2,000	134	1,454
Buskernd			1,769		
Jarlsberg and Laurvig			947	19,108	48, 629
Mratsberg				5,215	3,175
Nedonms - ${ }^{\text {a }}$ -				12, 017	8, 280
Lister and Mandal			8509		87,735
Stavanger...	\$1, 415	\$5, 186	8,740	89,908	54, 853
South Berfenhus.	1,029	21, 606	10,213	32,605	187
North Bergenhus	1500	5, 085	6, 620	2,037	
Romsdal	223, 063	25,063	9,700	11, 560	
Soth Trondhjem	30, 057	37, 438	5,628		
North T'rondhjem	35, 417	32, 374	858		
Nordinud.	1, 896, 559	635, 782	1,745		
Tromazöe	72, 961	39, 300	482		
Finmark	681, 271				
Total.	2, 1,275	801,8:4	57,587	203, 019	209, 503
District.	Summer flsheries for ling. coal.fish, etc.	Salmon troatand aea-trout.	Lobsters.	Oysters.	Total.
Smaalenene	\$1.837	\$1,544	\$5, 070	\$14	\$47, 320
Akershus.	1,745	1, 6ilj	80	${ }^{1}$	7, yuk
Buskerud	5,140	2, 6\%4	51	40	10, 230
Jarlaberg and Laurvis	10,307	4, 615	9. 301	454	10:250
1 Bratab erg.	(i. 049	2,352	3, 533		20, 325
Nedenics.	6, 579	4.326	12.54:3		44, 615
Lister and Maudal	9, 9097	$2 \cdot$,2:38	29,756		150, 23:
Staranger	7.607	21, 44.5	31, 287		215, cito
South Borgenhus	29,010	10,45;	14, 1213		1:31. 20
North Bergenhus	8. 001	12.213	4. $1: 106$	111	38, 7.51
Romsdal	21.603	8,065	1,700	129	301, 817
Sonth Trondhiem	21,769 16,480	38,065 14,387		246 54	342, ¢9\%
Nordland.......	139, 433	3, 213			2, mi7, :108
T'rouraio	74, 847	2, 304			189, 8 6, 4
Finuark	280, 607	1, 040			903, 0:7
Total.	653, 594	158, 056	106, G61	1, 299	5, 142, 908

*The figures in this table are given in oven dollars.
Table III.-Details of the cod fisherics in 1885, showing the number of fishermen and boats.

District.	Total number of tinher. men.	Fishermen using-			
		Neth ouly.	Night. litus only.	Limen ollly:	I'vo or moromi those.
Staymger......	475				475
South Jergenhus.	650			050	
North Bergenhus.	101				m0
Romstal	15,020	1,723	2,040	1. 512	9. 313.5
South Trondhjem. North 'woudhjom.	3,162 3,029 3,820	601 302		1, 272	
North Troudhjom Nordland.	2,029 34,810	302 12,072	19, $\begin{array}{r}30 \\ 48\end{array}$	$31: 4$ 1.650	1,381
Tromяӥо.	2, 381	12, 50	1,305	. 76	1.451
Fiomark	17,311	25	3,500	3, 093	10, 027
Total.	76, 504	14, 633	27, 280	9,065	25,317

Table III.-Details of the cod fisherics in 1885, e!c.-Continued.

District.	Tital number of boats.	Eoats equipped with-			
		Nots only.	Nightliness only.	Lines ouls.	T'wo or more of these.
Stamager.	125				125
Sunth Bergenhus	200			250	10
North luorgenhus.	2, 110	213	510	280	1,04*
South lromilhie.in	-787	150		36:	23.5
North Trondisiem.	514	57	15	93	349
Nordland..........	8, 157	2, vow	5, 250	501	410
Tronsion .	+62\%	16	452	83	9, 3137
Finmark.	4, 959	8	1,12:	869	2. 1 H0
'lutal	18,310	2, 464	7,355	2,417	6, 1180

Tabley IV.-Gumatity of codfish canght in 1885.

District.	Number of cod taken.	Liver.	Rue.	Nituber of hath-brails sold.
		Hectuliters.	Inectoliters.	
Stavanger	29,000	37		22, 000
South Bugernhins	15, 000	$\stackrel{25}{15}$	20	7,500
North Borgenlits	8i, 500	\% 18	5, $\begin{array}{r}17 \\ \hline 17\end{array}$	
Rommadal.	3, 583, 8001	5, 0661	5, 3174	2, 301,814
South Troulliem	(Ex), 4100	1,360	1,440	470, 0001110
North Trondhiom	(120) 300	C) 9195	44, 71.5	29, 300,11000
Norchand Tromsian	$34,888,400$ $1,433,500$	2,	44, 1982	22, 115,1100
Finmark	17, 5: ${ }^{\prime \prime}$, 700	44,210	393	13, 790 , 810
Total	58, 798,001	117, 888	53, 065	39, 402,600

Table V.-Falue of the cod fisherics in 1885 and the average prices paid.

District.	Value of the different products.				
	Fish withont liver and 100.	Liver.	1 Roo.	Fish-hoals sold.	Total value.
Stavanger.	\$1, 179. 20	\$00. 16	\$77.72	\$58.00	\$1,415.04
South frergubhis	'837.50	147.20	64. 32	20.10	1,029.12
Norti. Bergenlias	849.74	77.18	55. 48	\% 17.42	${ }^{423} 499.82$
Rombdal	175, 152.74	24, 258.83	17,244.46	6, 410.02	223, 3000.05
South Trondhiem	28,291. 15	5, 252. 4,050 4.055	4, 031.04	881.72 568.80	$39,050.71$ $35,417.27$
North Trondhjem Nordand. ${ }^{\text {a }}$.	$26,834.11$ $1,4 \pm 6,171.65$	4, 055.38 $204,952.23$	155, 644.38 .30		$\begin{array}{r}35,417.27 \\ 1,880,569.35 \\ \hline 18\end{array}$
Tromeioo	1, $58,763.83$	10, 318.00	3, 747.71	131. 33	72, 060. 811
Finmay	530, 084. 22	1388, 045.41	1,140.07	10, 501.31	081, 271.01
Total.	2, 250, 264.14	478, 066. 10	184, 575. ©8	38, 360.82	2, 051, 275. 23

Table V.-Faluc of the cod fibheries in 1885, etc.-Continued.

District.	A verago prices.				Ehtimated micaper 100 with livar. rob. and hends.
	Without liver and roe, per ind	Liver, per Lectoviter.	Roe, per hectuliter.	Fish-hends, per 100.	
Stavanger.	\$5. 36	\$2. 68	\$2. 68	\$0.27	\$6.43
South lercenbus.	5. 58	4.20	3.2:	. 27	C. RH
North Bergenbus	5. 38	4.29	3. 70	. 27	7. 69
Romstal	4. 89	4.07	3.21	. 28	(6. 22
South 'l'ronilijem	4.10	3.80	3.22	. 19	6. fi7
North 'Tromilijem	4.50	4.25	2.64	-19	5. 6.3
Nordland	4.09	4.71	3.53	. 09	5.44
'romagö	4. 10	3.61	4.02	. 12	5. $\% 9$
Fiumark	3.03	3.14	2.90	. 08	3. 88
Geheral iveruge	3.83	4.05	3.48	0.10	5.02

Table VI.-Details of the fat-herring fisheries in $\mathbf{1 8 8 5}$.

Table VII.-Details of the mackerol fisheries in 1885

Table VIII.-Details of the sprat and other small-herring fisheries in. 1885.

District.	Quantity.	Valuo.	Average price per hecto. litor.
	Hectoliters.		
Smarleneno	2,280	\$1, 403.78	\$0. 62
Akershus .	888	2, 900.33	1. 33
Buskerud..	1, 1085	1, 768.80	1.87
Jarlsbarg and Laurvig	1,030	500.20	. 64
Listor and Mandil	20,778	$8,7415.15$. 42
Stavanger	46, 170	16.212. 66	. 35
South Bergenhus	10,468	0.024i. 03	. 63
North Borgenhus	10,903	0,700. 53	. 49
Romisdal	11,010	5, 62.28 .10	51
Nouth Trondhjem	1,100	857.60	.78
Nordland	4, 1205	1,744.68	35 68
Trumsöo			
Total	121, 207	57, 586.77	. 47

Table IX.-Details of the spring-herring fisheries in 1885.

District.	Quantity	Value.	Arerage price per heoto. liter.
	Irectoliters. 00, 080	\$20, 506. 80	\$0.49
Smaalenene		-134.00	2.68
Akershus .ond Mat......	20,810	19, 105.72	1. 92
Mratsberg	3,100 11.700	8, $12,917.00$	1.10
Nedenxes.	-177, 630	60, ye7. 60	1.33
Stavanger........	-34, 050	33, 004.88	. 06
Sonth Bercenhus. .	8.891	2, 036.80	2. 29
North Burgenhus	10, 8:5	11,500. 18	1.07
'Total.	200, 240	203, 048.86	97

Tables X.-Dctails of the salmontrout and sea-trout fisherics in 1885.

District.	Quantity.	Value.	Average price per pound.
	Pounds.		
Smaulenene	7, 010	\$1,543. 95	$\$ 0.20$.18
Akershus.	8,827 15,388	1, 4.024 .52	.17
lsuskorud	15,388 26648	2, $4,615.50$. 17
Jarlaberg and Laurvig	26,	2, $2,351.70$	-18
Nedenes.	32, 518	4, 825.58	. 18
Lister and Mandal	177, 779	22, 238.87	13
Stuvanger	166. 337	21,444.82	12
South Bergouhus..	133, 294	18, 4.53 .06	.13
North Bergenhus	\%12, 853	12.212 .76 $8,068.94$. 11
Sounsdal...........	82,813 321,856	38,084.08	. 12
South Trondhjem	321,850 123,250	14, 386. 78	. 12
Nordland.........	-38,257	3, 8339.37	. 10
Tromsë́n...	32, 1002	2, 304. 20	. 07
Finmark.	13,856	1, u49. 22	. 08
Total.	1,287, 000	158, 050. 22	. 12

Table XI.-Details of the lobster fisheries in 1885.

	District	Quantity.	Valce.	Avorage price por 100.
Sinazlenene		Number.		
A kerwhins.		61, 000	\$5, 078.60	\$8. 33
Buakmend.		1,000	81.419	8.04
Jabisberg and Lau		09, 60010	538.60	10.72
Branmberg.		93, 3006	3, 300. 678	10.31
Nedenas		128,547	12,543.41	10.72 9.76
Tister amh M		233, 770	29, 75050.04	12. 73
Stavenger.......		232, 305	26, 286.78	11.32
South Bergonhus North Bergenhus		155, 1441	14, 126. 28	0.11
North Bergenhus		46,950	4.197.088	8.94
		15, 860	1, 700.19	10.72
'Total		1, 007, 871	106, 601. 05	10.58

Tinss: XII.-Details of the oyster fisheries in 1885.

Christiania, Norway, October $23,1886$.

INDEX.

Note.-This index contains general references to the entire volume; more detailed indexes to nine papers will be found at the paros indicated.
Page.
Baird, Spencer F., Sea Fisheries of Eastern North Amorica 217
Bottoni and Vinciguorra, Fish-Calturo in Contral Europe 539
Collins, J. W., Operations of the sehooner Grampus 701
Fewkes, J. Walter, Molusas from the Galf Stroam 535
Jordan and Eigenmann, Review of the Scianidw 447
Jordan and Goss, Flounders and Solos of Anerica and Europo 337
Linton, Edwin, Entoroa of Marine Fishes of New England 511
Tauner, Z. L., Work of tho Albatross in 18:6 687
Marine iuvertobrates distributed 843

A. Pago.	Atkins, Chas. G............. $747, \begin{gathered}\text { Page. } \\ \text { Pri, } \\ \text { \% }\end{gathered}$
Agrassiz, Alexander ... $82,225,343,874,965$	Atwater, W.O.................... . 1020
Agassiz, Louis...... 957, 961	Atwood, Nathaniel E............... 16,119
Albntross, apparatus.... 636, 643	A\%ore Islands, examination of.
assistance to vessels.... (6\%2	
Bank, location of....... 938	B.
birds takeu by........... 673	Babson, F.J........................ 16

dredgings by............ 683, $933,937,940,945,953$
clectric lightiug......... 653
engineer's report 644
fish taken by............ 669
medical report Gั.
medusa 513
naturalist's roport...... \quad (is9
navigator's roport 644
now boilers for.... $636,648,649$
personnel................ 643
report of operations..... 605
soundings 616, 678
temperatures taken by.. 1011
Alpera Station, operations at....... 729
American fisheries, review of...... 142 statistics of.... 214
Journal of Science cited. 884
Anadromus fishes, list of........... 49
Anrep, V. K............................. 1044
Apeldoorn fish hatchery 591
Apparatus for hatching fish.....547,558
Ashly, jr., Benj. 10
Atlautic salmon, distribution of.. 727,836
propagation of:.. 722 ,Page.
Atwater W.1020
Atwood, Nathaniel E 16, 119
A\%ore Islands, examination of 6
Babson, F.J 16
Bache, steamer, dredrings by 884, 961
Bahuma Islands, cruise to 605-621
sens, soundings in 606
Baird, George W 636, 644
Baird, Spencer F .1, 171, 606, 623, 705
Bait for sea fishes 31-34, 126
proservation of 133
Baker, J. G 876
Barker, George F'., quoted 153
Bartlett, J. R. 965
Battory Station, moteorological ob- sorvations at... 812
operations at. 761
shad work 762, 807
Bean, Tarleton II. 343
Boardslee, L. A. 884, 892, 901
Bonodiot, Jumes E. 606, 667
Benson, W. S. G05
Berengor-Feraud, Mr. 1037, 1038
Bergne, J. H. G 15
Berneuchon fish hatchery 586
Bettoui, Eugenio 539,598
Bibb, steamor, dredgings by 957, 961
Birds collocted by Albatross 673
collected by Grampus 713
Bläck-bass culture in Europe....... $\quad 5 . \quad 59$ Cod-fish, rearing of
Page. 785
Blackford, E. G., quoted 135)
Blake, Henry A. 614
Blake, steamer, dredgings by 957,
963, 965
Bluefish with acanthocephala 496
Bluefish infested by cestoids. 456
Bluelight, steamor, dredgings by . . 884, 892
Brock, A24
Borne, Max von dem 542, 543, 829, 830
Brook pike for Germany 829
trout, distribuiion of 733, 734
eggs taken 732
Brown trout, distribution of 728,
$735,831,835,837$
eggs taken 735
hatching of 798
from Germany 725, 831
Back, W. O. 751
c.
Caribbean Sea, soundings in 938
Carp culture in Europe 565
distribution of. 838
Carpenter, Herbert P. 1000
Carpenter, P. H: 998
Carpenter, W. B. 996, 998
Carpenter, W. L 998
Carswoll, James 704, 779
Caspian Sea fisheries 21
Catadromous fish 51
Central Station, shad work at 817
Challenger, dredgings by 8:3, 973
Charts of dredgings 874,876, 1018
Chemical analyses of fish 1021
Chester, H. C. 779
Chub mackerel, scarcity of. 48
Clark, Frank N. 729
Clupea sapidissima 725
Cod-fish, effect of temperature on.783,787eggs, taking of..........784, 787
transportation of.. 785fisheries of Norway...... 1055,1059, 1060latching apparatus........ 779,285, 786experiments. 780,781,782
record of 789
planting of 781,785, 790
poisoning ly 1027, 1028
poisoning, preventivo 10 i 3
poisonous 1033, 1042
propagation $693,721,779,783$
statistics 22stomach, specimens from
36
taking of 783
value of, to Frauce 1051
Cold Spring Harbor hatehing-house 726
oporations at: 721
shipment of eggs from 829
Collett, Robert, quoted 24, 113
Collins, D. E 714
Collins, J. W $79,112,125,701$
Columbia River, shad planted in 805
Corwin, steamer, drolgings by 957
Coregonus clupeiformis 721
Cosmandorf fish-hatchery 583
Costo, \mathbf{P} 574
Crossobothrium described 469
Crowell, Prince 16
Cutts, Richard D., quoted 20
Cyprinus culture in Central Eurone 565
D.
Dachsen fish-hatchery 588
Dana, jr., Richard H 15
Danielssea, D. C 987
Danish Artic expeditiou 992
De Filippi, Professor 596
Delaware River shad-works. 819
Delfosso, Maurice 15
d'Halloy, Leon 829
Dibothrium aluterw n. sp 458
manubriforme \mathbf{u}. sp 456
Diesing, Mr 460
Dijurnphua, steamer, dredgivgsleg. 992
Distribution, report on 833
Dog-fish infested by cestoids 477
Doutre, Joseph 15
Dredgings on Now England const. 884
by Coast Survey 958
in Atlantic Ocean 977
Bay of Biscay. 976
Bay of Fundy 883
Block Island Sound. 892
Buzzard's lay 915
Casco Bay, Mo 884
Eastport Harbor, Me 883
Färüc Channel 1001
Fisher's Island Sound 892
Gardner's Bay 892
Gulf of Maine 901
Kara Sen 392
Long Island Sound 892
Massachusetts Bay 901

Pago.
Dredgings in Moditorranean Sca... 978,
980, 998
Nantucket Sound.... 892
Narragausett Bay... 915
Passamaquoddy Bay. $88: 3$
Peconic Bay 892
South . Bay, Me. 483
Vineyard Sound..... 878,492, 915
near Block Island 915
Campobello Intand 853
Grand Meman. 883
Gulf Stream 915
Nova Zembla. 992
off Nova Scotia. 901
on Southwest Shoal 892

Dusky slartk iufested ly cestoids.476, 486
E.
Echinorhynchus sagittifer n.sp. 49:3
Edwards, Vinal N 16
Ee! culture in Central Europe 569
infosted by acanthocephalar. 490 490
Eigenmann, Carl II 343
Entozoal of marine fislics 453
F .
Farlow, W. G 10:35
Fowkes, J. Wialter. $51: 3$
Fish ats a food supply 102:3
Fisl-culture in Central Europo 530,
[571, 574 5
mothould of 592
Fish-eggs from abroad と 30
sent abroad 829
.transportation of 595
Fisheries, production of 20
Fish-food, cconomy of 1024
Fisl, foreign slipuents of 829
Fish-hateherios, location of. 581-591
Fish-Hawk cod work 693
dredgings by 915
in collison (993
ropairs $.690,700$
report of operations... 693
shad work 694, 819, 421
Fish, liuds distributer 6:3
Fish migrations, causo of 55
offal, disposition of. 138
Fish, preservation of 134
Fish prodacts, composition of. $101!$
investigation of 1020
Page.
Fish products, nutritive value of.- 1019
Fisb, takon by Albatross. 669
transportation; methods of... 23
Fishing apparatus. 108-125
Fishing-grounde, description of. 85-102
Fishing-vessels, description of 103-108
File-fish infested by cestoids 458
Flat-fish, with acanthocephala 493
Flemish Cap, examinatiou of. 626, 627
Flint, J. M 656
Floundor, with acanthocephala 496
Flounders of America and Europe. 225
Foor-fishes, danger from preda- ceous fish 63, 64
increasod by artificialmeans160-164
list of 2.)
Forbes, Houry 0 69
Forbes, S. A 738
Ford, F . C. 15
Foreign shipments of fish egrs 829
Forsyth, James M 610
Foster, Dwight. 15
Fort Washington, shad work at 815
France, fish for 829
Fricle, Ilerman 987
G.
Gadus morrhua 721
Galt, Aloxander T 15
Gamol IBrothers 992
Garman, Simuel 225, 343
Gate City, ste:mer, assistauce to 622
Ganthier, A 1043
Gencya fish hatehery 590
Georgia Bank, location of. 938
brig 938
Germany, fi..a for 829
fish from 830
location of hatcheries $581-588$
Gigliuli, Enrico Lillyer. 896
Gillert, Chas. II 225,343
Goldish, distribution of 839
Goodo, G. Brown 16, 456
Goss, David K 225
Grabill, L. R 762,807
Grampus anchor fonled 714
cod work of 716
cruise to tilefish grounds. 701
dredgings and trawlings. 717
first cruino of 701
halibut work of 707
personuel 701
repairs 703
Grampus report of operations..... $\begin{array}{r}\text { Page. } \\ 701\end{array}$sailing qualities of $\boldsymbol{7 1 3}$
Grand Lake Stroam, operations at 751
Grimm, O. A 1023
Gurry, disposition of 138
H.
Haack, Hermann, referred to 542,574, 579
Haddock stomach, specimens from 38
Halcyon, report of. 699
Halibut difficult to keep alivo 709
Hamlen, William 700
Hassler, steamer, dredgings by 9:7
Hatcheries of Europe, products of. 572Herviug fisherica of Norway 1056,1059, 1062, 1063
occurronce of 809
price of 50
statistics 22
Hibermation of fishes 54
Hodgdon, Captain 883
Hogg, W. S 605
Holdsworth, Mr., quoted 112, 11:
Holu, Th 002
Holt, John S 938
Homarts americanns 726
Hope Bank, examination of.. 625, , 629, 630
Hovgaard, Lieutenant 992
Howell, I. A 961
Hiiningen fish hatchory 579
Hurlbat, Rolert II 16
Huxley, Thomas F., reforred to 83
I.
Indiaua University 285, 34:3
Inshore fishes, list of 52
Institutions receiving invertobrates 845
Invertebrates, distribution of 845
used for bait 32
J.
Jacobi, Hanoverian 574
Jacobson, 11., trauslator...539, 1027, 1055
Jeffreys, J. Gwyn 998, 1000, 1001
Jerrell, H. P 1055
Johnson, R. P 961
Jordan, David S 225, 343
Josophine, frigate, dredgings by .. 1002
Josie Reeves, schooner, dredgings. 916
K.
Kellogg, A. G 901
Kellogg, E. H 15
Page.
Mosswood, steamer, dredgings by 883
Mullet fisheries 14
Munson, William II. 751
Murray, John 1001
Museum of Comparative Zoology.225,343
N.
Nairn, Maxwell 608
Nares, George S. 973
National Mnseum 225, 343
Natural history of sea fishes 24
Navs Department, soundinge607, 624
Notherlands, Gish hatcheries in. 591
Nettor, Mr 1044
Neulausen fish hatchery 588
Newcomb, R. I 704
Now Providence, natural history of 662
Nitsche, Prof 574
Nordenskiöld, A. E 988
Northville Station, operations at 729
Norwegian fishorion, notes on 1055 production of. production of. 20 20
North Atlantic trip.. 987
Nutt, N. B 131
Nye, jr., Willard 606
0.
Orygmatobothriom angustum ni. sp. 468
Osmorum mordax 725
Oyster culturo at, Saint Jerome 765,
766, 767
fisheries of Norway..... 1058, $10 \mathrm{G}_{4}$
P.
Palmer, Dr. E 35
Panther, steamer, assistance to 622
Patterson, C. P., quoted 154
Pavesi, I' 543, 596
Pelagic fishes, list of. 53
Penobscot sulmon, distribution of 748
eggs, taking of 747
mortality of. 747
Station, roport 747
Phoreiobothrian deseribed 474
Phyllobothrium thysanocephalum described 464
Pike culture in Central Europo. 569
Plates, list of 336,
Platt, Robert $446,500,800,876$ (.......957, 961
Pleurophysir described [:17
Popof, Dr., analysis of fish by....... 1020
Porcupine, stoamer, dredgings by $.996,098$
Potomac River fishories. $50,51,162$
shad work 815
Pourtales, L. F
Page. 874, 957, 961
Powel, Samuel:Proceedings of tho U. S. NationalMuseum citerl844
Proeven, sloop, dredgings by 988
R.
Radolfszell fish hatchery 582
Rainlow trout diseased 738
eggs taken 733,
734, 737, 740
insue of ..734,736,741, 835
propagation of 737
Rathbun, Richard 35,
844, 873, 8i77, 915
Ravenel, W. de C. $.761,765$
Rel cod-fish, characteristice of, 1035, 1053proisonons qualities of. 1027,1052
Reddening of cod-fisb, cause of.... 1040preventive. 1041
Redmond, F. M 916
Rhynchobothriun bisulcatum n. sp. 479
Richards, M. E. F 976
Rock buss for Germany 829
Rock-fish, latehing of 809
Rum Cay, deseription of 610
natural history of 662

S.

Saibling, distribution of 831,837
from Germany 830,831
propagation of 735
Saint Jorome, improvements at 766
roport of 765
Salmo fario 724
salar 722
Salmon, artificial fecundation of. 558
culturo 539
cgge, packing of 559
in Central Europo 562, 565
occurrence of 72
trout fisheries of Norway 1057, 1063
Salvolinus namayensh 721
Sand shark infested by cestoids 474
Sars, G. O. 24, 83, 987
Schrocder, Seaton 605, 933, 937
Scienide, review of 343
Schoorlic salmou, distribution of 754
egres takem......751, 754marking of...... 751station, reporton 751
Scotland, fish from 830
Scudder, N. P., quoted Page.
Smith, James A.
lage.Sea-fisherics:dangers to62
geuoral consideration of 17
importance of 17
improvement of 151
logislation 151-160
maintonance of 151
of Lastern North Amorica 3, 13
products, use of 143
statistics of 215
Sea-Lishes:
abuudance of. 21, 61
biological notes on 45
bait for 31, 126-132
capture of 85
causes of dostruction 68-72
destroyed by manmals 63
onemies of 88, 63, 77
food of 34, 72
habitat of 40
increased by artificial means.160-164
iufluenced by man $59,66,77$
inshore, list of 52
list of 25-31
mothods of capture 108-125
migration of. 47, 57
natural history of 24
number of egre laid by 82
reproduction of. 80
spawning of 83
stomachs, specimons from 38-44
supply of 165-167
Scal fisherius of Norway 1059
Sea trout fisheries of Norway . . 1057, 1063
Soowiese fish hatchery 582
Solini, Professor 1042
Solzonhof fish Latchory 581
Shad, distribution of $\ldots . .728,801,814,837$
for Europe 805
hatching on car 806, 841
ponning of 809
planting of 801,802,819
price of 50
propagation of 725,
$762,807,815,819,825$
Shark fisheries in Fiumark 1058
Shearwater, steamor, drodgings by - 1000
Shenandoali River, salmon planted 798
Sigsbee, C. D 963
Skate infested by cestoids 462
Smelts, distribution of 728
propagation of 725
Smith, Sanderson 873, 877
Smith, S. I 845
Soles of America and Europe 225
Solsliy, N. M 11120
Soundings by Albatross .607-609, 613, 615, 678, 1016
Spear-fish infested by cestoids 458
Speedwoll, steamer, dredgings by 901
temperatures taken by-..- 1005
Spongo fishery, account of 663
Spongiobothrium described 462
Squeteague infested by- acanthocopbala 496
cestoids 456
Squid, capture of 706
Stations, fish listributed from 834
Steindachner, Dr. F. 225
Stimpson, William 874, 361
Sting ray infested by cestoids 464
Stoue, Livingston 737
Striped bass infested by-acanthocoplala497
cestoids 456
Sun-fish for Gormany 829
Swedish Aretic expeditious 988
Switzerland, fish hatcheries in 588
T.
Tania dilatata deseribed 488
Talismav, steamer, drodgings by 960
'Tanner, Z. L. 72, 605, 901,915
「omperature, effoct of, ou fish 55
record of 658,
$741,749,755,768,790,1005$
Tharand fisl hatchery 584
Tbecl, Do Hjalmar 988
Thermounoters used in dredging 892,901,916
I'howson, S. R. 15
Thomposon, Wyvillo 973,996
Tiger sharls, infested by cestoids. 468
'Cownsond, Chas. H. 606
Tomeorl, propagation of 725
'Iravailleur, steamer, dredgiugs ..976, 979
'Trawlings, record of 1016
'「rescot, William H 15
Triton, steamer, dredgings by 1001
Trout culture 539
method of planting 800
raising, lectures on 575
Trumbul!, J. H 36,30

Page.
Whitefish, proparation of......... 730

White perch for Germany 829
Whiteway, W. V. 15
Wilthon fish hatchery 584
Wood's Holl, cod-fish propacration at

796
fish roceived at 790
hatchery 794
improvemeuts at 793, 798
location of. .-......................... 793
ponds at. 799
report on 793
wator supply 793
Y.

Ymer, steamer, dredgings by 988

Z.

Zurich fish hatchery589

[^0]: *In Fowkes' Ieport on Medusa from tha Gulf Stream.
 In Drs. Dettoni and Vinciguerra'a Notes on the Fish-cultural Establishments of Contral Europe.
 ; In 'tinuer's Report on Work of the Alatrous.
 § In Collins' Report ou Operations of Grampus.
 i| In McDonald': Repint of Operations at Wythoville Station, Va.
 If In Sanderson Smilh's List of Dredging Stations in the North Atlantic.

[^1]: The work of the season began early, the first vessels sailing from Gloucester on March 11. A large fleet was soon cruising off the Delaware coast. On March 28, the S. Mis. $90-\mathrm{II}$

[^2]: i. The Rockfish or Striped Bass (Roccus lincatus).

 600,000 eggs were obtained at the Battery Station, near Mavre de Grace, Md., but owing to pressure with the shad work, few of them were

[^3]: For the extablishment of a samon hatelary on the Colnubia River, its tribntaries or other branches, and for the eurrent expeuses of the same for one yoar, $\$ 20,000$.

[^4]: * This paper was mostly writton in 1877 and 1878 , but its publication was doferrod by the author, in the hope of boing able to propare additional material, which seemed essential to its complatoness. The opportunity for this, howevor, nover occurred, and his subseguent illuces, while tho paper was going himongh tho press, provented him from ever examining the proofs. The accounts of the fishing-grounds and tho fishery marine are additions to the original mauuscript, the former being an abstract of a report by J. W. Collins and Richard Rathbun, published in Section III of the Fisheries and Fishery Industries of the United States, Washington, 1887; and the latter having been taken from unpublished manuseript prepared by J. W. Collins.
 t This analysis is somewhat fuller than the paper itself, the additional itoms representing points upon which information was considered desirable, but which time did not permit the author to obtain. -Editor.

[^5]: *The treaty of Washington, made by the joint high commission in 1871, provided that nearly all the restrictions to the unimpoded use of tho fisheries by the Amoricaus on the shores of the British provinces on the Atlantic coast, and by the subjects of these provinces in American waters as far south as the parallel of 39°, or Capo May, should be mutually conceded, and either party was to have the priviloge of exporting fish other than the products of the Great Lakes to the other country free of duty; and tbat a commission should meet at Halifas, to consist of a commissioner and agent, for oach side, to determine what the commercial value respectively of these concessions amounted to, and if it were found that the privileges granted to the Amoricans were greater than those securod by the same treaty to tho Dominion, a money value should be estimated for a twolve yoars' period and paid by the United States. It was not supposed at the time that the balance might bo on the other side.
 This convention was organized in obodience to the provisions of the treaty at Hali. fax on the 15 th of June, and was represented by Hon. E. H. Kellogg on the part of the United States, and Sir Alexander 'T. Galt on the part of Great Britain, the third commissioner, in accordance with the provision of the treaty, being Mr. Maurice Delfosse, the minister from Belgium to the United States. Mr. Dwight Foster, of Boston, was the agent for the American causo, and Mr. F. C. Ford, of London, for the British. Mr. J. H. G. Bergne, of the foreign office, London, was chosen as secretary of the joint convention.
 Subsequently the selection of counsel was authorized to assist the agents in their labors, those for the United States boing Mr. Richard H. Dana, Jr., of Boston, aud Mr. William II. Trescot, of Washington ; tho British counsel boing one for each province, pamoly : Mr. Joseph Doutre, for Cauada; Mr. S. R. Thomson, for Now Brunswick; Mr. Wetherbe, for Nova Scotia; Mr. Davies, for Prince Edward Island; and Mr. Whiteway, for Nowfoundland.
 It is not my province to rofor to the history and results of this convention excepting so far as relates to the testimony available for the oljocts of the present roport. Suffice it to say that a vast body of testimony was takon on both sides, much of it contradictory, but leaving a residuum of well-ostablished faot, and that this was sapplemented by personal inquiries and eqecial conference with the most intelligent witnesses.

[^6]: * In 1874 there were 25,000 tons of ice brought from Norway to Hull, for the proeervation of lish taken by trawl nets.

[^7]: *This list is intended to present the principal spocies of food and bait fishos found north of the Delaware or the thirty-ainth degree of latitude.

[^8]: *This article is essentially the same as the ono contributed by Prof. A. L. Verrill to the report of U. S. Fish Commission of 1871-'72. I am indelted to Mr. R. Rathbun for rearrangiog it and adding notes by Professor Verrill made at Eastport, Me., oither in 1871 or previous years, and notes of the fishes found as food in the stomachs of other fislies at Wood's Holl in 1871 by Dr. E. Palmer, Professor Vorrill having entrmerated in his report only tho invertobrate coutents.

[^9]: * Ihis section of the report as prepared at Halifax I have concluded to omit until a now digest of our knowledge of the subject can be prepared, so much information having been obtained in reference to the labits of our fisbes since 1877 as to render it obsoleie.

[^10]: * Baars, Des Fischerein Industrio de la Norwogo, 1873; p. 158.

[^11]: *A new and comprohensivo gazettcer of Virginia and the District of Columbia, containing a copious colloction of geographical, statistical, political, commorcial, religious, moral, and miscellaneous information, collected and compiled from the most respectable and chiefly from original sources, by Joseph Martin. To which is added a history of Virginia from its first settloment to the yoar 1754 ; with an abstract of tho principal events from that period to the indopendence of Virginia, written expressly for the work by accitizen of Virginia. Charlottesville, published by Joseph Martin. Moseley \& Tompkins, printors, 1835, page 480.

[^12]: "In the first report of the U. S. Fish Commission I have given numerons quotatious from carly authors in reference to the abmodance of varieus fishes in the rivers and along tho coast of the United States. Burnaby (Travels through the middle sottlemonts of North Amorica in the yoars 1759 and 1760, Loudon, 1775), in speaking of the Potomac River, remarks as follows (on page 9): "These waters aro stored with incrediblo quantities of fish, such ns shoopsheads, rock-fish, drums, whitepearch, herrings, oysters, crabs, and several other sorts. Sturgeon and shad are in such prodigious uumbers that one day, within tho space of two (2) miles only, some gentlemen in canoes canght above 600 of the former with hooks which they lot down to the bottom and drew up at a venture when thoy porcoived them to rub against a It is and of the later, above 5,000 have been caught at one single haul of the seine." It is probable that the soines used in tho lotomiae waters over a hundred yoars ago were much smaller than those now employed, one of one hundred yards being, doubtless, of remarkable magnitude.

[^13]: * Circulare des Deutschen Fischerci-Vereins, 1873, p. 112.
 \dagger Circulare des Deutschen F'ischerei-Yereins, 1874, p. 90.

[^14]: *According to tho report of the British Fishery Commission, p. xliv, at ono time in consequence of tho apparent diminution in tho abundance of fish in Loch Fyne, ono of the beat known herring fisheries in Scotland, what was thon considered a very destructive mode of fishing, by the circle-net, was interdicted for a number of yoars. It was found, howerer, that this had not produced the effect supposed, as the decroase of the fish continued for a time, and after the circle-nct fishing was restored the fish again became as abundant as ever.

[^15]: *Field and Forost Rambles, or Notes and Observations in the Natural History of Eastern Canada. London. Honry S. King, 1873. p. 264.

[^16]: * I have frequently found young mackercl--blinks-several inches in length in the stomache of mackerel. Theso aro sometimes as large as they aro ablo to swallow. Without doubt they also foed to some extent on tho smaller crustaceans. As is wellknown, a variety of these forms grow on floating sea-woed, and many fishermen consider it a good sign of mackerel in tho vicinity when they see floating cel-grass broken into small fragments. They assert that tho causu of the cel-grass being "chopped up" in such a manuer is becauso it is bitten into by mackerel. This is perhape true, and, if so, is doubtless done by the fish while feeding on the small shell-fish with Which the grass or sed-wced is generally covered. I have observed mackorel attacking jelly-fish.

[^17]: * Prof. Alexander Agassiz has paid special attontion to the charactor and place of deposit of the spawn of fishes of the Atlantic coast, and las furnished mo with the

[^18]: * T'le journal of schooner Alice, of Swan's Island, Maine, records the fact that the first mackerel in 1879 wero caught in $37^{\circ} 50^{\prime} \mathrm{N}$. latitude and $74^{\circ} 03^{\prime} \mathrm{W}$. lougitude. The first catch of the Alice in 1878 was in $38^{\circ} 38^{\prime} \mathrm{N}$. latitude.

 The journal of schooner Augusta E. Horrick, of Swan's Island, records first mackerel taken in 1879 in $37^{\circ} 57^{\prime} \mathrm{N}$. latitude and $74^{\circ} 22^{\prime} \mathrm{W}$. longitude.

 First mackerel taken by schooner John S. McQuin, of Gloucestor, in 1879, in $37^{\circ} 42 \prime$ N. and $74^{\circ} 13^{\prime} \mathrm{W}$.

 First fish by Charles Haskell, 1879, in $38^{\circ} 03^{\prime}$ N., $73^{\circ} 57^{\prime}$ W.
 First fish ly schooner Albert II. Harding, 1879, in $33^{\circ} 08^{\prime} \mathrm{N} ., 74^{\circ} 30^{\prime} \mathrm{W}$.
 First fish canglat by schooner John Somos, in 18.33 , was in $33^{\circ} 21^{\prime}$ N. aud $74^{\circ} 1^{\prime} \mathbf{W}^{\prime}$ W.

[^19]: * Although slool-rigged vessels have been and aro still omployed in the fishorien, these form but a comparatively small part of the fishing fleet, the schooner rig having always been a favorite one with onr fishermen.

[^20]: *Trips are made to the western part of Nova Scotia, and during the winter of 1880-'81 many of the large vossels went as far as Le Have Bank, where haddock were found in great abundance, some of the vessels gotting as many as 500,000 to 600,000 pounds each daring the winter, most of which were caught on this bank.

[^21]: "Dories built expressly for haddock fishing, where but littlo rowing is required, are not so sharp as others, carrying capacity being the chief requirement. The same may be said of those used by the fresh-fish companies in the largor fishing ports. A few have becn built with rounding sides, but this form has not been so favorably received by our fishormen as the other with straight flaring sides.

[^22]: * Writing of the occurronces of the year lid43, Captain Atwood says: "About this time wo began setting trawls for halibut, as has been deseriberl elsewhere." Capt. Poter Sinclair, of Gloucester, claims to have boen the first to use trawls in Massachn. setts Bay, about 1850, and makes tho statement that a man named Atwood, who bolonged at Provincotown, and was with him at tho time, afterwards introlucod the method of trawling in that place.

[^23]: *Although the British fishermon set louger trawl-hacs in ono string than tho Ancricans do, they rarels if ever use so many fathoms or such a number of hooks to the veasel as tho latter. The greater part of tho American "bankers" bet more than nine miles of traw: in the aggregate, laving 9,000 hooksattached, while the smallest amount would be aboat two-thirds as mech. It should also be horne in miud that it is not uncommon for tho American fishermen to set and haul this amount of gear twice a day. The vessels engaged in the winter haddock fishery on our coast have a still greater number of hooks than the cod fishermen. The sinaliest class of these rarely have less than eight miles of trawl, with 12,000 hooks attached, while all of the larger vessels liave, at least, half as much more, and quite a number have twice as many, namely, 24,000 hooks, or about sixteen miles of trawl.-J. W. Collins.

[^24]: * Baars, Dos Peches de la Norvegre; I'irin, le67. H. J., Dio I'incherei Indastrie Norwéges, Bergen, 1873.

[^25]: *Another instance of this mutual interdependence of fish; as asserted by the fishermen, occurs on the coast of Nove Scotia, in this case between the lobsters and the starishes. According to this the lobsters aro deatroyed by the starfishes in great numbers, and in the immediate vicinity of the caming establishments where the lobsters aro taken and putup there is found to be an nupreciable diminntion of them from this cause. The starfishes are then said to multiply very greatly. The fishermen insist that the starfishes feed upon sea-weed, and that they dovour this iu such quantities as to clear the bottom of this covert, and that the food-fishes finding no means of conceniment do not resort to what were formerly excellent fishing-grounds. The statoment that startish eat sea-weed is perhaps yet to be substantiated.

[^26]: *According to De la Blanchoro, Le Poche et les Poissous, 1,500,000, 900 of these fish are brought into the port of Concarneau alono, this being only one of many from which the industry is carried on in France, Spain, and elsewhere.
 \dagger All bait as above referrod to is used fresh whenever it can be done. It is, however, preserved in various ways, somotimes by drying, more frequeutly by salting. The use of ico of late jears has come into play very oxtonsively and constitutes a necossary olement in most fisheries whether for the preservation of tho bait itself or of the fish When eaught. For the most part tho bait is preserved by keeping ice in contact with it. It is probable, howover, as already suggested, that bard freezing may more advantageonsly be substituted in many oases as being- more likely to rotain the same attractiveness that froshly-caught bait presents. It is quite probable that by using special apparatus and adjustmonts tho hard froering may be conductod at very little expense.

[^27]: * Squid can usually bo kept from 2 to 3 weoks in ico, and for monthe whon salted. While the French use salted squid almost exclusively on the Grand Bank, the Americaus and Proviacials profor to have thom fresh, and use but fow salt ones, and those only in the fall when no others cay be obtained.-J. W. Collins.

[^28]: "I am informed that the first to commence the business of freezing herring and bringing them from Newfoundland was Capt. Henry Smith, of Gloucester, in 1856. In 1857 Capt. Sylvanue Smith went into the same business and continued it for some time.

[^29]: *At one time the practice of the French fishermen of throwing overboard the gurry was bitterly complained of by the English on the ground that it materially affected the fishing. The explanation given was probably the true one, namely, that this offal attracted an immonse number of sharks, dogfish, and other predaceous fish, which concentrated in unusual unmbers, and not only devoured the offal, but drove out all the fish from the ground. Nothing was suggested as to any defilement of the sea bottom itsolf by the accumulation of decaying animal matter. (British Fishery Commission Report, p. lxi.)

[^30]: S. Mis. 90

[^31]: *It is proper to say that the accuracy of Martin's figures has boon disputed by somo recent writers, Even if they are, however, twice as largo as the fact would justify, the generel argument would not bo invalidated.

[^32]: *Both pectorals are wanting in the genus Mancopsetta Gill ($=$ Lepidopsetta Gthr.), nu antarctio member of the Pleuronectina.
 \dagger In the Samarina, the eyes and color are on the right side, the wouth is small bu: nearly symmotrical, the voutral fins are looth lateral but with base somewhat prolonged, the gill-rakers are minute, and in most of the spocios some of the dorsal rays are filamentous and simplo, rosernbling spines. The group, like the Ono opterinc, seems to lie botween Plouroncetince and Platessince. It seems to includo the genera Samarib, Lophoneotes, Pccilopsetta, and Nematops, all belonging to the Indo-Pacific fauna.

[^33]: *Frequently siuistral in Hippoglossoides elarsodon.

[^34]: *Dextral in some species of Hippoglossina; oocasionally doxtral in some species of Paralichthys and Xystreurys.

[^35]: *Tro lateral lines on the blind side in the Asiatic genus, Pardachirus.
 tArrow-shaped canine-teeth are also found in tho Asiatic gonus I'setlodes Bennett, a curious group somewhat allied to Atheresthes. In Psettoder, the cundal fin is rounded, the dorsal fin begins on the nape, abova midde of the cheok, the seales are mall and etenoid, and there are no gill-jakers.

[^36]: "Only an outline of the very exteusive synouymy of this common food-fish is here given.

[^37]: Platessa oblonga DoKay, New York Fauna, Fishes, p. 299, pl. 48, fig. 156, 1842. (Now
 York; not Pleuronectes ollongus Mitchill.) Storer, Syn. Fish. N. A.: 1846, p. 477. $P_{8 e u d o r h o m b u s ~ o b l o n g u s ~ G u n t h e r, ~ C a t . ~ F i s h ., ~ i v, ~ 426, ~}^{1862 \text { (copied). }}$
 Pecudorhombus dentatus Goode, Proc. U. S. Nat. Mus., 1879, 110. (St. Johu's River, St. Augustine.) Goode and Bean, Proc. U. S. Nat. Mus., 1879, 123 (Pensacola). Chcenopsetta dentata Gill, Proc. Acad. Nat. Sci. Phil., 1864, 218.

[^38]: *Pleming's definition is as follows:
 "Gon. XLVI. Pleuronectes, Turbot.-Mouth entire; teeth numerous, slender: lateral line curved. Eyes on the left side." Tbe species mentloned by him are:
 P. maximug-Common Turbot.
 P. rhombus-lirill.
 r. megastoma-Whiff.
 I. punctatiu--Top-kuot.
 P. arnoglossus-Scald-tish.

[^39]: Arnoglossus (Perpaire) Rondelet, Do Piscibus, xi, c. 14, 394, 1554.
 Pleuronectes laterna Walbaum, Artodi Pisciun, 204, 1792 (after Roudolot).
 Arnoglossus laterna Günther, Cat. Fish., ir, 415, 1862. (Cannos, Broxham, Plymouth.)
 Steindachuer, Ichthyol. Bericht. Akad. Wissen. Wion, 1868, Scehste Fort-
 setzung, p. 50. (Barcelona, Alicante, Malaga.) Day, Brit. Fishos, vol. ii, p. 22 , plate xcix, Gg .2.

 Pleuronectes arnoglossus Bloch and Schueider, 1801, p. 157.
 Pleuronectes diaphanus Shaw, Gen'l Zool., iv, 309, 1503.
 Pleuroneotes casurus Pennant, "Brit. Zool., 1812, iii, 325, pl. 53."
 I'leuronectes lcotardi Risso, Iohth. Nice, 31s, 1810.

 - Bothus tappa Rafinesque, Caratteri, 1810, 23 (Palermo).

[^40]: Eiropus eotenes Jordan, sp. nov.
 Habitat.—Pacific coast of South America.
 The types of this species are two examples (11605, Mus. Comp. Zool.) collected at Callao, Peru, by Dr. Tones. There are also a large number of young examples in the collection (11145) obtained at Paraca Bay by the Hassler Expedition.

[^41]: "The pharyngeals in dxincnsis and glacialis have not been examined.

[^42]: *Besides the species here mentioned, another, Achirus lorentzi Weyenbergh (Algunos Nuevos Pescados del Museo Nacional y Alganas Noticias Ictiologicas 1877, 13, pl. 1, f. 1-Buenos Ayres), has been described from Santa F6, Uruguay. We have not seen the desoription.

[^43]: "D.76. A.57. Scales 92. Color uniform brownish gray (Günther). D. 72. A. 53, Scales 95. Color brownish, mottled with darker spots (Steindaohnor).

[^44]: *"Sulla Stato Giovanile del Rhomboidiohthys mancus," Facciola, Naturalista Siciliano, vi, 1887, and "Sn di Alcuni Rari Pleuronettidi del mare di Messina," Nat. Sicil., iv, 1885.
 t"Om Skjollheden hos Flynderne og navnlig om Vandriugen af det örre Oie fra Blindsiden til Ojesiden tvers igjennem Hovedet," 1864.

[^45]: ""Non è a dubitarsi che questi Plouronettidi son giovani di altro specio più grandi. Diro soltanto che la Peloria hceokeli non puo confondersi con nessun Pleuronettide conosoiuto." (F'acoiold.)

[^46]: * Hippoglossus kingi is known from a drawing only, excented by unscientific hands. In all reapects but oue this drawing agrees well with I. adspersus. Tho first 18 of the 66 rays of the dorsal are represented as lower than the others, apparently forming a distinct portion. Depth 2 in length. Anal rays 51.

[^47]: *We are probably in error in regarding Etropus rimosus as identical with Citharichthys microstomus. The latter has a larger mouth, the maxillary 28 in head, instead of neariy 4 as in the former.

[^48]: ＊For completeness＇sake we include in the following analysis，besides the American genera，Otolithus，Sciænoides，Colliohthys，and Pseudotolithus；the only well－dofinod genera without American representatives with which we are acquainted．
 \dagger Otolithus Cuvier，Regno Animal．＇Type，Johnius ruber Bloch．The characters here given are dramn from Otolithus argenteus（specimen from Hong－Kong，China）．

[^49]: *These charactors (which separate the rest of the Scienina from Eques) have been verified in part of the genera only, aud the statemont of them may ueed some modification when the eatire group is considered. The genus Lonolurus especially should be oxamined in this regard.
 \dagger Soicnoides Blyth, Journ. Asiat. Sci. Beng., 29, 1861; type Otolithus biauritus Cantor. The characters here given are dramn from Soianoides pama. This genus seems nearest to Nebris, but it shows several resemblances to Lonohurus. If it really has vertebres $14+10$, as stated by Bleeker, it should be placed among the Otolithince.

[^50]: -Collichthys Giinther=Hemisciana Bleeker; typo Scionna lucida Gifnther, not of Richardson. Our specimens from Swatow, China (Collichthys lucidus Rich. 1) agree with Bleeker's acconnt of Hemisciona lucida rather than with Gunther's. This genus is certainly very close to Scianoides.

[^51]: "Preudotolithus Bleeker, Poissons do la cote de Guinóe, 1862, 59 ; typo Pseudotolithus typus. The characters here given are taken from a species from Gambia.

[^52]: *Cestreus obliquatus, a species imperfectly known, belongs presumably to this group.

[^53]: - Rather large in Cestreus microlepidotus.
 \dagger Not examined in Ccstreus microlepidotus, of moderate length in C. steindachneri.

[^54]: Cynoscion xanthulum Jorlan \& Gilbert, Proc. U. S. Nat. Mus., 1881, q(00 (Mazathun). Jordan \& Gilbert, Bull. U. S. Fish. Com., 1881, 319 (Mazatian). Jordan \mathcal{A} Gilbert, Bull. U. S. Nat. Mus., 1882, 107 (Mazatlin).
 Habitat.-Pacific coast of Mexico ; Mazatlan.
 S. Mis. $90=24$

[^55]: *The following is the substance of Professor Cope's description of Corvina monacantha:
 First ventral ray produced as a filament which reaches past the vent; pendobranchio none ; oyes 5 in head; depth equal to length of head; preopercle sharply serrate on its vertical margin; pharyngeal patehes of teeth small, tho teeth bristly; caudal fin sublanceolate ; pectorals as long as ventrals without filaments; anal spine short, singlo in typical spocimons; color, silvery, grayish above ; no spots. D. X-I, 33 ; A. I, 5. Scalos 10-49-16.

[^56]: "This character is not mentioned in the description of s. vermicularis. We give it on the strength of our rorasmbrance of the species, as no specimens of the species now exist in any American museam.

[^57]: 'Labrus hololepidotus Lacépède, Hist. Nat. Poiss., iii, 517, plate 21, fig. 2, 1802 (Cape of Good Hope).
 Cheilodipterus aquila Lacópede, loc. cit., v, 685, 1803.
 Seicena aquila Cuv. \& Val., v, 28, pl. 100. Gunther, ii, 291, and of writers genarally.
 Perca vanloo Risso, Ichthyol. Nice, ed. i, 298, plate 9, fig. 30, 1810.
 Scirena umbra Cuvier, Ḿ́m. Mus., j, 1 (not of Linnæus).

[^58]: * This species, although namod for ito discovorer, Marceltin Fournier, is always written furnieri by Desmarest,

[^59]: ""Je note ici que l'espéce typique du genre Sciana Art. étant l' Unbrina oirrosa CV., le nom de Soiana devra etre appliquo aux ospèces dont Cuvier a fait des Umbrina, et ne pourra plus etre employs dans le sens de Cuvier. Ni M. Gunther ni M. Gill, dans leurs travaux sur les Sciénoides, paraissent avoir fait attention à ce que le nom génorique d'artedi est mal employ'́ par les auteurs modernes, et M. Gill cite même lo Sciena aquila commo lo type du genre." (Bleeker, l. c.)

 In quoting Umbrina cirrosa as the type of Artedi's genus Scicina, Bleeker means merely that it is the one placed first by Artedi in the list of species.

[^60]: * Bothriocephalus auriculatus Sichold, Zeitschrift f. Wissensch. \%ool., ii, 218, tab. xv, 12.

 Antholothriam musteli Van Beneden, Mem. Acad. Bolgique, xxv, 126 and 190, tab. vii, 1.

 Tetrabothrium (Ory!matobothrium) versatile Diesing, Sitzungsb., xiii, 582.
 Tetvabothrium musteli Vau Benclen, Wagoner, Nov. Act. Nat. Cur., 'xxiv, Suppl., 85, tab. $x \times i i, 276-278$.

[^61]: Millinetors.

 Diameter of acotabula... 12
 Diameter of neck, narrowest part 0.20
 Distance of first segments from head. 17.00
 Length of fourth segrnent from end of strobile... 1.30
 Breadth of same, posterior ond. ... 1.50
 Breadth of same, anterior end .. 1.60. 1. .
 Length of posterior segment... 0.90
 Breadth of same, posterior end ... 0.60
 Breadth of same, anterior end... 1.25
 Habitat.-Common Eel (Anguilla vulgaris) ; intestine; Wood's Holl, Mass., Δ ugust 26, 1885 ; one specimev.

 Von Linstow (Compend. der Eelminth., 1878) records but tro Tcenia from the Common Eel, T. macrocephala Creplin and T. hemispherica Molin. T. dilatata is very different from the former. Diesing (Revis. der Ceph., Ab. Cycl., p. 378) mentious the latter, but gives no enumeration of characters. I do not havo access to Molin's paper, and cannot, therefore, say whether T. dilatata is identical with his species or not. The peculiar inflated character of the neck suggests T. ambigua Dujardin, but the difference in size between the adult specimens is alowe sufficient to render their union in the samo species impossible.

[^62]: " Letter No. 3. Bull. M/us. Comp. Zö̈l. Vol. V, No. 14, pr. 289-290.

[^63]: *It is possible that in my account of the polypites of Pterophysa collected by the Albatross in 1883, I have exaggeratod the grasping power of the ptern of these organs. As I then stated, "It is difficult to determine definitely the function of the ptera and the peculiar structure of the polypites of Pterophysa, unless we study the animal alive."

[^64]: * Uober dio cyclische Entwickelung und Verwandtschafts-Verhailtnisse dor Siphonophoren. Silzungsber. Akad. Wis8., LII, pp. 1155-1172. Berlin, 1882.

[^65]: * The existence of radial subumbral knols and a larger number of tentacles than radial tubes is supposed to characterize gronlandioa, although the knobs are not mentioned in A. Agassiz's dcscription.

[^66]: "This species is supposed to be the same, or closely allied to the genus once called Rhegmatodee, now Polgcanna. It is given tho former name in the plates, the latter in the text of Hockel's System cor Medusen. The species falls in Hrckel's sulogenns Rhacostoma (L. Agassiz, sensu mutato) nnd may be the same as I. fungina, Heok.
 t The spelling, Stomatoca, is alopted iustead of Stomotoca, from the derivation $\sigma r \delta \mu \alpha$ (gen. $\sigma t o ́ \mu \alpha \tau o s)$ root $\sigma r o \mu c \tau$.

[^67]: * The specios of Cunina, C. discoides, may evontually turn ont to ve ono of the Atlantio species of Solmaris. It may be the young of S. coronantha, Hackel.

[^68]: *Cunina discoides, Fowkes, was probably described from an immature specimon. No gastral pouches were observed, and it is therefore probable that it belongs to the Solmaridus. It is possibly the young of Solmaris coronantha, Hackel.
 \dagger Uober Carybdea marbupialis. Arbeit. Zool. Inst. Wien., I IIeft., 1878.
 \ddagger Das System der Medusen, pp. 440, 443.
 §Cf. Report on Albatross Medusa for 1883-'84. Ann. Rept. Com. Fish and lisheries, 1884, 1. 951.

[^69]: "Bull. Mus. Comp. Zool., ix, 8, p. 306. In one of the two specimens of Halicreas there described, sausage-shaped sexual bodies were obsorved hanging from the underside of the bell. In one of the above specimens (15750) glaudular bodies were observed in the subumbral radial furrows.

[^70]: *The surface of the exumbrella is contmmons and without division between the disk part of the umbrella aud the marginal lobes. P^{\prime}. pantheon, which this species in some respects closely resembles, has a "deep horizontal coroual fossa."

[^71]: "This spocies is common as far north ats Grecoland. Tho alliced godus Nanphanta somewhat resembles the young leriphylla, but has oight sense bodices and oight tentacles. It romains yet to be seen whother the young leriphylla has the same number of tentacles and sense bodies as tho adnlt. If it has eight tentacles instead of twolve it may be readily conjectured that Nauphanta is in young Periphylla, and that immature tentacles have been mistaken for sense bodies.
 I have elsowhere recorded a Nauphanta, N. polaris, Fewk., from Lady Franklin Bay, North Greenland.
 There seems to be a relationship betweon the cold waters of great depths of the sea and those of the cold waters of the Arctic Ocean. Temperature would seem to play an important part in the relationship of medusw from those two localities.

[^72]: * One of the main differences botwoon this Cyanea and C. arotica is found in the incisions in the marginal lappets. There aro in the unknown Cyanea eight doep ocular incisions, eight shallower tentacular incisions, and the margin of the boll botweon oach occular and tentucular incision is again incised. Thore are therefore 32 marginal lappots.

[^73]: * Sugli Stabilimenti di P'iscicoltura visitati all'estero dal Novembro, 1884, all'Aprile, 1885." From Annali di Agricoltura, Rome, 1885. Translated from the Italinn by Himman Jacobson.

[^74]: * According to Ainsworth's observations tho duration of hatching varies with the salmon from 1 to $\frac{1}{6}$, at a temperature varying from 2.5° to $12.5^{\circ} \mathrm{C}$. [36.50 to $54.5^{\circ} \mathrm{F}$.].

[^75]: * B. Benecke: Fische, Fischerei und Fischzucht in Ost- und West-Irenssen, Königsborg, 1881, p. 459.
 \dagger P. Paresj: Espobiziqne Internazlonale di pesca a Berlino, Rome, 1882, p. 105.

[^76]: *Carbouization is olvtained by a piece of red-hot iron, or ly applying smoking sulphuric acid.

[^77]: "It seems to me that the vegetation which endangers packed eggs is perhaps favored by the finish of the cloth in which they aro wrapped and on which they rest. I would therefore recommend the use of cloth without any finish, or from which it has been removed by a solution of lye.
 \dagger I saw at Seewiesc an ice box for transporting Thymallus egge to the establishment from the place where the eggs had boen fecundatcd. 'Ihis apparatus had the dimensions of an ordinary Dillon vessel used by horbaists, and is made of tin by Joseph Sohwarz-Spengler, in St. Pülton, and like this can be carried slung over the shoulder. It contains six frames for eggs, and a soventh (the top one) for ice. It has two panels, one for lowering what constitutes tho loug side of the parallolopiped box, the other to raise the upper side.

[^78]: * Although there are large stoves at Huningen, thoy were not used this joar, not evon during a poriod of intense cold, when the temperature of the spring water became considerably lower,
 tFor this reason, as well as to protect the young fish against theif pupmies, tho hatching apparatas is kept covered.

[^79]: *The male fish may be rocognized by having a more slouder body, and its sexual maturity by the brown color of the skin of the belly. When the male fish is large its jaws are more hooked than those of tho female. The fomale is recognized by having a stouter body; it has reached maturity when tho bolly is swollod out and elastic, and particularly poffed up above the anal fin, and whon the reddish genital gland begins to swell.

[^80]: *A liter measure [a little more than a quart] of eggs contains 15,625 Thymallus egge, 8,000 trout eggs, 7,000 of salmon, and 36,926 of the Coregonue.

[^81]: * Daily visits aro mado to the hatching-box to remove the spoiled ogge. Among the substances omployed to feed silmonoids I havo observed meat ground fine, meat flour, dissolved brain, heart chopped fine, cut-up ontrails, and larvio of flies bred in decaying flesh. There aro many more or less complicated machines for grinding the food, but as they have been described in varions troatises, I need not give any further description of auy of thom, not oven of tho ingenious hydranlio grater for moat Which I saw at Seowiese, bccause its construction can oasily bo imagined,

[^82]: * Crass-lroeds of the 2 fish namod.

[^83]: *This paragraph is not a part of Dr. Bettoni's report, but is from an article by Prof. P. Pavosi relative to the establishment of fish-cultural stations in Italy. It is inserted here as showing one of the results of Dr. Bottoni's work.-Editor.

[^84]: Engines: Synopsis of the steam \log of the Albatross for the year 1886.
 Meall point of cutting-off, in tho high-pressure cylinders, from commencoment of stroke .inches.. Mean point of cutting-off, in the low-pressure cylinders, from commencemont of stroko... inches. Mean number of holes of throttle-valve open............................. 4. 19
 Mean vacuum in the condenserinches.. 22.7
 Mean pressuro in the boilers, per square inch.................pounds.. 47.9
 Mean pressure in starboard receiver, per square inch, above zero ...
 Mean pressure in port receiver, per square inch, above zero... do....
 16.3
 16.8
 19.3

[^85]: * Young.
 * All fleb so marked were taken during tho winter of 1886 by students of Johus Hopkins University.

[^86]:

[^87]: 7

[^88]: "This vessel was destroyed by firo October 2, near Murder Island, off the west coast of Nova Scotia.

[^89]: *The Gortio May had just arrived at this place, from the eastward, and had set under sail some time after our gear was oitt. The current swopt one of her trawls afoul of one of ours-a result that could not bo anticipated, since no indications of the strong westerly tide were apparent to one on a vessel under sail, more particularly as there was little surface current.

[^90]: "The letter was as follows: "This will introduce to you Capt. Medoo Rose, of the schooner Laura Sayward, of Gloucester. He has just arrived hero in a distressod condition, being short of provisions and vater, owing to heavy adverse winds on his passage home from the banks.
 "I know, of course, that ho has the right to fill water, aud I trust you will have no diffeulty in securing for him suffoient supplies to obviato any risk of actual distress on his passage home from here."

[^91]: * For bounding wo used an ordinary cotton fishing lino, marked at overy ten fathoms, and a doop-sea sounding load of 16 pounds weight. Tho dopths given in this roport may not on this account be deemed absolutoly acher but will not in any caso vary moro than a fow fathoms-probably in no case more than 2 or 8 fathoms-from tho notual dopth. The reason for using this ruethod of sounding was threofold: (1) It was not doumed essentially necessaty to unake accurate hydrographio recorls; (2) our "Tanner machlne" was not ready to use, and consequontly wo had to depend on the ordhnary ine, and (3) it would he impracticable to use the machine, even if it was ready, in carrying on rapid fishing oparations, sinco the time required to wake soundinge, eto., would very much interfaro With the time absolutely required for fighing, and whero the vessel hias only a bmanl force, 2 a in the present caso, it was necessary to adopt the most feasible method.

[^92]: * Since the above was written, the following law has been passed (chapter 613, Laws of Now York):
 "An act to provide for the orection of a fish-hatchery at Cold Spriug Harbor, and making an appropriation therofor. Passed June 18, 1887, three-fifthe being present.
 "The People of the State of New York, represented in the senato and assembly, do euact as follows:
 "Scction 1. There shall be appropriated from any funds in the treasury of the State, not othorwise appropriated, for a new hatchery building and improvement of grounde at the Cold Spring Harbor station of the commissioners of fisheries, $\$ 5,000$, or so much thereof as shall be necessary, to be expended under the direction of the commissioners of fisheries on vouchers to be approved ly the comptroller; but no money shall be paid out of the appropriation till in lease of the lauds and water rights now occupied for such hatchery shall be executed to the State, rent free, from the owner, for such period as the same may be occupied as a public hatehery, which lease, when accepted by the commissioners, shall be filed in the office of the secretary of state."
 Such a lease was given by the owner, Mr. John D. Jones, and the building is now (October 26, 1887) in process of orection. The contract requires its completion by January 1, 1888, which will be in time for the salmon work of that year. In the mean time a small building outside the grounds is being used for tront and other fishes.

[^93]: ${ }^{1}$ From ponds at Northville Station.
 ${ }^{2}$ 198,350 from ponds at Northville, and 2,500 from Baird statiou.
 ${ }^{\text {a }}$ Of this number 300 wero shippeil as fry to J. F. Miller, Richmond, Ind.; tho remaindor being yearlige or two-yerr-olds.
 20,000 from Frod Mather, and 9,400 from ponde at Northvillo.
 ${ }^{8}$ From Frod Mather.

[^94]: * For previous reforences to this disease seo F. C. Report for 1885, 1. 134, and F. C. Bulletin for 1885, p. 472.

[^95]: *See F. C. Bulletin for 1886 , p. 361.

[^96]: * Alay 0, 1886. The 585,000 egge arrived at the oar at 2.20 p. m., 200,000 of which wera put on trays in an ioe-box. The other 385,000 came to the oar in two Wroten buckets; and were put in four MroDonald jars at $3.30 \mathrm{p} . \mathrm{m}$. The pump was then atarted and a.

[^97]: *For notice of their successful planting, see F. C. Bulletin for 1886, p. 137.

[^98]: ${ }^{1}$ By employees of station.
 ${ }^{2}$ Fifty thousand egas on trays shipped to I.
 C. Mercer. by stoamebip Jider, fon Dunube River.
 ${ }^{2}$ By R H. Dana.
 4 By N. Simmons, oar No. 1.
 ${ }^{5}$ Egga almost batched when pat into river.
 ${ }^{6}$ IS F. L. Donnelly.

[^99]: Seo reports of Gwynn Harris，inspoctor of marine products，in U．S．F．C．Bulle． tin．Vol．V，p．192，and Vol．VI，p． 20%.

 $$
 \text { S. Mis. } 90-52
 $$

[^100]: *This report was compiled from the records of Lient. L. W. Piepmeyer, U. S. N., "ho was in charge of the vessol when the work was dome.

[^101]: *Dr. Shortlidge reported that the general condition of the $1,110,000$ eggs which he reccived from tho Fish Hawk on May 11 and 12 was bad, as at least one-third werr found dead on unpacking. The subsoquent loss on these egge was about ove-eightlo. All the fry were planted in the Brandywine Creok, near Wilmington. July 21 a emali ehad was caught in Brandywine Crcok, supposed to have bean one of thoso planted ir May.

[^102]: ${ }^{s}$ Of this namber 10,482 wers one or morv yoirs ohd.
 "This ropurt includes also the distribution of 180 -in- 86 from Baird Station, Califorpia, and Cold Spring IIrbor Station, Now York, not proviously roportod.

[^103]: $\mathrm{Ba}_{\text {attery }}$ Station, Susquehanna Rivor 42, 650,000
 Fisb Hawk Station, Susquelanua River
 20,934,000

 Fort Washington Station, Potomace River
 2,050,000

[^104]: ${ }^{5}$ Now England coast.
 Mamac Rirer.

 - Massachusotts coast.

[^105]: ${ }^{8}$ Off Dolawaro Bay.
 ? Cape Cod frem whalo's stotanch.

 - Off Grmad Monan.

[^106]: Nore.-Eithar the depth or the postion of 60 S . must be erroneous, ad thore is less than 300 fathoms there.

[^107]:

[^108]: * Aloat 110 fathoms
 \dagger About 200 meters.

[^109]: [*Transated from the Rnssian Jommal of Raval Econowy mal Forestry, Vol. CXLIV, Part II.]

[^110]: *The anthor here recapitulates the analysis of fish reported provions to the ysar 1883, when the following analyses by himself were performed. It is deemed unnecessary to repeat his recapitulations here, the more so as the same data with others are to be included in a detailed discussion of the sulbject by Prof. W. O. Atwater in connection with a report of his to be published by the Commission. A series of analyses by Popof are, however, included, as thes have not becomo current in the literature of the subject.-Editor.
 \dagger Determination of the proportion of autritive matter contaiued in the most common species of fish. Diesertation for the degree of doctor of medicine. St. Peters burg, 188\%; in Russian. [The analyses are stated by Professor Kosty tscheff to have been rade in the usual way, from which it is to be inferred that the protein was estimated by multiplying the uitrogen by 6.25.-EDiton.]
 \ddagger Owing to an offor made by Mr. N. M. Solsky, director of the Museum of Rural Economy; and late general commissiouer to the International Exbibition of Fisheries at Loudon.

[^111]: ["It would seem as if this ought to be "sulmon-trout" and wot "siomega."].
 t Fishiug and Funting in Russian Waters. (Interuational Fisheries Exhibition.) St. Potersburg, 1883. (Euglish.)
 t 1 jud $=40$ Russian pounds $=$ abont 36 English pounds.

[^112]: S. Mis. $90-65$

[^113]: " 1 desiatin $=$ about 2.7 acres.

[^114]: *"Des acoidents toxiques ocoasionnés par la morue avarice, et do linterdiction de la nire en vente des morues rouges." From tho Journal de Médecine de Bordeaux, vol. xv, 1886, p. 425. Translatod from the French by Herman Jacobson.

[^115]: * It seems proper to stato here that the only case of death resulting from spoiled codfish was one caused by the cod caught and propared by the Norwegians, and termed "stock-fisch." But "stock-fisch" never turns red. The mode of curing it is entirely different from that followed in Franco. The "stock-fisch" is cod dried, hardened, and rolled out into sticks, which are left to dry in the opou air for two or three montlus. The French fishermen never cure codfish in this way.

[^116]: *See F. C. Report for 1878, p. 969, and F. C. Bulletin for 1887, p. 95.

[^117]: * From the Norges Officielle Statistik, 3d series, No. 29, Christiauia, Norway, 1886. Compiled by A. N. Kimor. Mr. H. Jacobson has assisted in the translation aud Mr. H. P. Jerroll in preparing and roducing the tables.

 Throughout this articlo reductions are made to dollars and pounds, by considering the crown as worth $\$ 0.268$, and the kilogram equal to 2.2046 pounds. The heotoliter contains nearly $26 \frac{1}{2}$ gallons, wine moasure, or about 28 bushels.
 \dagger For the statistics for 1884 , with comparative tables covering the five preceding years and other details, seo the U. S. Fish Commissiou Report for 1885, p. 313.

