(Ex. Doc. No. 81.

REPORT OF THE SUPERINTENDENT

OF THE

UNITED STATES COAST SURVEY,

SHOWING

THE PROGRESS OF THE SURVEY

DURING

THE YEAR 1875.

296 .45 1875

WASHINGTON: GOVERNMENT PRINTING OFFICE. 1878.

National Oceanic and Atmospheric Administration
 Annual Report of the Superintendent of the Coast Survey

ERRATA NOTICE

One or more conditions of the original document may affect the quality of the image, such as:

Discolored pages

Faded or light ink
Binding intrudes into the text
This has been a co-operative project between the NOAA Central Library, the Office of Coast Survey and the National Geodetic Survey. To view the original document, please contact the NOAA Central Library in Silver Spring, MD at (301) 713-2607 x124 or www.reference@nodc.noaa.gov.

Please Note:

This project currently includes the imaging of the full text of each volume up to the "List of Sketches" (maps) at the end. Future online links, by the National Ocean Service, located on the Historical Map and Chart Project webpage
(http://historicals.ncd.noaa.gov/historicals/histmap.asp) will includes these images.

LASON
Imaging Contractor
12200 Kiln Court
Beltsville, MD 20704-1387
January 13, 2003

LETTER

FROM
 THE SECRETARY OF THE TREASURY, TRANSMITIING

REPORT OF THE SUPERINTENDENT U. S. COAST SURVEY FOR THE YEAR 187.

January 18,1876 .-Referred to the Committee on Commerce and ordered to be printed.

Treasury Department, December 29, 1875.
SIR : I have the honor to transmit, for the iuformation of the House of Representatives, a report made to this department by O. P. Patterson, esq., Superintendent of the United States Coast Survey, showing the progress in that work during the year endiug June 30, 1875; and also an engraved map, illustrating the general progress in the survey of the Atlantic, Gulf, and Pacific coasts of the United States.

I have the honor to be, very respectfully,
B. H. BRISTOW,
Secretary of the Ireasury.

Hon. Michael O. Kerr,
Speaker of the House of Representatives, Washington, D. C.

ABSTRACT OF CONTENTS OF REPORT.

Introductory remarks on the inadequaey of the vessels of the Coast Survey; necessity for construrtion of steamers and schooners to replace those worn ont in service, p. 1. Sites of active operations, aud general progress of the survey, pp. 1-3. Estimates in detail for continuing survey of the Atlantic and Gulf coasts, pp. 1 and 3-5. Estimates for continuing survey of Pacific ooast, pp. 5, 6. Compratire table of estimates, p. 7. Discoveries and developments, pp. 7, 8. Tides of New York Harbor, 1. 8. Transit of Venus, pp. 8-10. Obituaries of Prof. Joseph Winlock, Messrs. John Knight, John C. Kondrup, and Henry S. Barnard, p. 10.

Part II.-Brief abstracts of work accomplished, pp. 11, 12.
Field and office twork, progress in, pp. 12-69.
summary of tield-work, pp. 12-66.
Section I.-Deep-sea soundings between George's Bank and Bay of Fundy, p. 12. Deep-sea hydrography, Gulf of Maine, p. 12. Topography and hydrography of Monat Desert Islaar, Me., pp. 12, 13. Egir Rock, in Fronchman'o Bay, p. 13. Topography and hydrography of Eggemoggin Reach, Me., p. 13. Topography of islands in Penobncot Bay, Me., p. 14. Topography above Castine, Me., p. 14. Topography near Bucksport, Me., p. 14. Topography of Bagaduce River, Mo., p. 15. Hydrography of Penobscot Bay, y. 15. Tidal observations at North Haven (Penobscot entrance), Me., p. 15. Observations at Ragged Mountain and Mount Desert, p. 15. Triangulation in New Hanpshire, p. 16. Isles of Shoals, p. 16. Soundings on Jeffrey's Ledge, p. 16. Soundinge on Cashe't Ledge, p. 16. Discovery of Platt Bank, p. 16. Souudings on Jeffrey's Bauk, p. 17. Tidal observations at Boston, p. 17. Hydrography westward of Monomoy, Mass., p. 17. Survey of Tannton River, Mass., p. 18. Physical survey of Providence Harbor, R. I., p. 18. Tidal observations at Provideuce, R. I., p. 19. Pendulum observations at Hoosac Mountain, Mass., and in Europe by Assistant C. S. Peirce, p. 19.

Section 11.-Survey of Thames River, Cone., p. 19. Survey of New Haveu Harbor, Cous., p. 20. Triangulation Long Island Sound, N. Y., pp. 20,21. Hydrography near Plum Islaud, Long laland Sound, N. Y., p. 21. Coast Pılot, p. 22. Survey of Port Jefferson, Long Island, N. Y., p. 22. Triangulation for New York boundary-line, p. 23. Latitude and azimuth at Rouse's Point, N. Y., p. 23. Observations at Cheever Station, p. 24. Shore-line survey of Lake Champlain, p. 24. Hydrography of Lake Champlaiu, p. 25. Survey of Hackensack River, N. J., p. 25. Relative to search and identification of station marks in vicinity of New York Harbor, put down by late Superinteudent Hassler, pp. 25, 26. Physical survey of New York Harbor, pp. 26, 27. Hy drograply of New York Bay, p. 27 Tidal observations at Governor's Islaud, New York Harbor, pp. 27, 28. Recital of noble act of Henry Rynders, seaman of U. S. C. S. S. Eudeavor, in saving life of a boy at risk of his own, p. 28. Survey of Great South Bay, Long Island, N. Y., p. 28. Reconnaissance in behalf of the geological survey of the State of Now Jersey, made at request of the Governor, p. 28. Topography of Barnegat Bay, N. J., p. 28. Hydrography of Barnegat Bay, N. J., p. 29. Triangulation, topography, and hydrography in Delaware River, pp. 29, 30. Geodetic survey in Pennsylvania, p. 30.

Section III.-Special survey of Craney Ieland, Va., p. 31. Additional soundings in Elizabeth River, p. 31. Tidal observations at Fortress Monroe, Va., p. 31. Survey of the Chickahominy River, Va., p. 31. Survey of James River, Va., pp. 31, 32. Maguetic observations at Capitol Hill, Wasbington City, D. C., j1. 32. Triangulation in Virginia, pp. 32, 33. Reconuaissance along the Blue Ridge, Va., p. 33.

Section IV.-Triangulation of Pamplico Suund, N. C., f. 33. Topography of Pamplico Sonnd, p. 34. Hydrography of Pamplico Sound, p. 35.

Section V.-Topography of Bull's Bay, S. C., and vicinity, p. 35. Sea-encroachment at Hanting Island, S. C., p. 35. Hydrography of Savannah River, Ga., p. 36.

Sxction VI.-Coast hydrography near Saint Augustine, Fla., p. 37. Curious " boiling spot" noticed in the waters north of Matanzas Inlet, pp. 37, 38. Sarvey of Halifax River and eastern coast of Florida, p. 36. Triangulation and topography of the Tortages, pp. 38,39. Hydrography of Tortugas Harbor and Reef, p. 39. Snrvey of Tampa Bay, Fla., pp. 39, 40. Hydrography of Tampa Entrance, Fla., and its Gulf approaches, pp. 40, 41. Tidal observations at Saint Thomas, West Indies, 1. 41.

Srctos VII-Topography and hydrography between Pepper Keys and Oeilla River, Fla., pp. 41, 42. Hydrography near Cape San Blas, Fla, p. 42. Triangnlation, azimath, and magnetic oliservations iu Georgia, pp. 42, 43. Magnutic observations at Grassy Mountain, Skitt's Mountain, and Currihec Mountaits, Ga., pp. 43, 44. Recounaissance in Alabama, p. 44. Reconnaissance in Ohio and Kentucky for points to base geological survey, pp. 44, 45.

Sbction VIII-Mouths of the Mississipit, pp. 45, 46. Hydrography of Gulf of Mexico, pp. 46, 47. Survey of the Misnissippi River at New Orleans, La., pp. 47, 48. Triaugulation in Missouri, p. 48. Reconnaissance in Wisconsin, ; Plo. $4^{2}, 49$.

Section IX.-Hydrography of Aransas Bay and Musquit Bay, Tex., p. 49.
Section X.-Employment of assistants of the Coast Survey on the Pacific coast in several expeditions authorized by the government, pr. 50, 51 ; see, also, Appendix No. 13. Triaugul itimu, topography, and hydrography of Newport Bay, near Point Lasued, Cal., p. 51. Topography of Santa Cruz Islanıl, Cal., pp. 51, 5e. Hydrógraphy round Santa Criz Island, Cal., pe. 52,53. Triangulation aeross the Santa Barbara Cbannel, p. 53. Hydrography of San Luis Oloispo Bay, Cal., pp. 53, 54. Topography of Point Sur, pp. 54, 55. Shoal off South Farallon Island, p. 55. Noonday Rock, p. 55. Hydrograpby of San Francisco Bay, pp. 55, 56. Tidal observatiuntat Fort Point, Cal., p. 56. Reronmaissance from Mount Diablo, Monnt Shasta, \&c., pp. 56, 57. Dangerous rock off Cape Mendocino, p. 57. Hydrograply het wren Point Gorda and Rocky Point, coast of California, p. 58. Coast topography north and south if Ten Mile River, Cal., pi. 58, 69. Redding's Roek, p. 60. Inshore hydrography fiom False Klamath, Cal., to Mark's Arch, Or'g., pp. 60, til. Mount Shasta, Cal., p. 62.

Stcmon XI.-Hydrography between Chetco Cove and Mack's Arch, p. 62. Coast triangulation and topography near Nehalem River, Oreg., pp. 62, 63. Survey of Colnmhia River, p. 63. Tidal observations at Astoria, p. 63. Detaild durvey of Duwan sh Bay, W. T., pp. 63, 64. Tidal oloservations at Port Townshend, Cal., p. 64.

Sfrction XII-Coast reconnaissance of Alaska, pp. 6i4, 65, 66.
Offick-wonk-Assistant-in-Charge, p. 66. Computing Division, pp. 66, 67. Tidal Division, p. 6\%. Hydrographic Division, p. 67. Drawing Division, pp. 67, 68. Engraving Division, p. 68. Electrotype aud Photographic Division, p. 68. Division of Charts and Iustruments, pp. 68, 69. Clerical force, p. 69. Conclusion of report, p. 69.

Appiendices, pp. 73, 412.

CONTENTS OF APPENDICES.

Pages.
No. 1. Distribution of subveying parties upon the Atlantic, Gulf, and Pacific coasts of the United States during the surveying season of $1874-75$ 73-78
No. 2. Statistics of field and office work of the United States Coast Survey during the year ending December 31, 1874 79-80
No. 3. Infonmation furuished from the Coast Survey Office in reply to special calls, during the year 1874-75. 8I-se
No. 4. Ditawing Division.-Charts completed or in progress during the year 1874-75 $\mathrm{CB}-\mathrm{x} 4$
No. 5. Engraving Division.-Plates completed, continned, or begun dnring the jear 18:4-75. स5-86
No. 6. Repoikt upon electrotyping and photograpbing大8-88
No. 7. Original topographic sheets registered in the archiver of the United States Coast Survey from January, 1834, to July, 1875 (Nos. 1 to 1378 inclnsive). 89-114
No. 8. Oniginal hydrographic sheets registered in the archives of the United States Coast Surver from January, 1835, to July, 1875 (Nos. 1 to 1244 iaclusive) 115-1:38
No. 9. Repont apon the telegraphic determination of the longitude of Key West 139-156
No. 10. Report on Mount Saint Elias, Alaska 157-188
No. 11. Refort on recent observations at South Pass Bar, Mississippi River 189-193
No. 12. Discussion of tides in New York Harbor 194-221
No. 13. Report on the Transit of Venus Expedition to Japan, 1874 2:22-2:30
No. 14. Repokt on the Transit of Veuns Expedition to Chatham 1sland, 1884 231-24c
No. 15. Description of an apparatus for recording the mean of the times of a set of oheervations 249-2:3
No. 16. Teniestinat magnetism.-Instructions for maguetical observations 254-278
No. 17. The closing of a circuit of triangulation 279-292
No. 18. Observations on certain harbor and river improvemente collected on a voyage from Hong-Kong, via Suez, to New York 293-314
No. 19. Fohmula and factors for the computation of geodetic latitides, longitudes, and azimuths $315-368$
No. 20. Meteorological nesearches for the use of the Coast Pilot 369-412

ALPHABETICAL INDEX.

A.

ABALONE POINT, CAL, p. 22.
A BSECOM INLET. Survey of cobst of New Jerbey below, p. 20.
ABSTRACT OF LOCALITIES OF WORK ON ATLANTIC,
GVLF, AND PACIFIC COASTS (Ees Appendix No. 1), pp. 73-76.
ACADEMY HILL, LAWHENCEVLLLE, GA p. 44.
ADAMS, HULL, ASSISTANT. Survey east of Castine Harbor; topograply of Bagaduce River, Me. p. 15.
ADAMS, J. D., LIELTENANT, D. S. N. Sorviooe in Soction!X, pp. 53, 62.
ADAMSON, J. B., AID. Services in Section I, p. 17; services in Section VI, p. 41.
AGASSIZ (schooner) Use in Section VI, p. 39.
ALABAMA. Reconnaissance in, p. 44; survey of Gulf coast and bays of, Section VIII, p. 45.
ALASKA. Survey of cosst of, Section XII, pp. 64-66; report on Monat Saint Elias and Mount Fairweather by dssistant W. H. Dall (A ppendix X), pp. 157-188.
A LGIERS. Survey of New Orleans, including town of, p. 47.
AMERICAN BENEVOLENT LIFESAVING SOOIETX OF NEW
YORK. Silver medal presented to Henry Rynders, seaman of the
Endeavor, p. 28.
AMITE RIVER. Recounaissance of, p. 47.
ANAGAPA PASSAGE, CAL., p. 51.
ANAMEIM. CAL., p. 51.
ANDERSON, HORACE, ASSISTANT. HYdrography of Eggemog.
gin Reach, Mo., Pp. 13, 14; hytrograyhy of Penobscot $\mathrm{Hay}_{\mathrm{y}}$ and. River, p. 15; reconoaissance in Alabmma, p. 44.
ANOREWS, HORACE. Services in aurver of New Haven Harbor, Conn., p. 20.
ANGLES, M. Drawing Division, Corst, Surver Office, p. 68.
APALACHICOLA, FLA. Hydrography of coast near, p. 42.
APPARATUS FOR RECORDING THE MEAN UF THE TIMES
of a set of observations (eee Appendix No. 15), pp. 949-253.
APPENDICES Nos. 1 to 19, p. 8.
APPROPRIATIONS REQUIRED FOR WORK OF TEE COAST SURVEY, pp. 1-6.
ARAGO (steamer). Use of, in Section II, p. 27; Section IV, pp. 34; 35.

ARANSAS RAY, TEX. Hydrography of, p. 49.
ARCHIVES OF THE UNITED STATES COAST SURVEF. Original topographic and bydrographic shoots registored therein from January, 18is, to July, 1875 (ece Appendices Noa. 7 and 8), pp. 89138.

AREWRIGHT (Bhip). Helief to, afforded by the Hamer off Banta Barbara, p. 53.
ARNOLD'S BAY, LAKE CHAMPLATN, p. 24.
AsTORIA, p. 62 . Tidal observations at, p. 63.
ASTRONOMICAL CLOCK ordered by Areistent G. Davideon in Berlin for the observatory at Tokio, Japan, p. 50.
ASTRONOMICAL HILL. Station need in triangalation of hake Champlain, p. 28.
ASTR JNOMCAL OBSERVATIONS at atations between the Uuited States beandary-line and Canada, pp. 23, 24.
ATLANTA, GA. Reconnaissanoe near base line at, p. 44.
ATLANTICCOAST, Section 1, pp. 12-19; Section II, pp. 19-30; Section III, py. 31-34; Section IV, pp. 33-35; Section V, pp. 35-37; Section VI, p. 37.
ATLANTIC AND GOLF COASTS Enumeration of field-work for, pp. 1-3; estimater for the sanne, pp. 3-5; abstraot of work on, p. 11 (see Appendix No. 1), pp. 73-78.
H. Ex. $81 \longrightarrow \mathrm{i}$

ATLANTIC COAST PILOT, p. 22
AURORA, ALA., p. 44.
A VERY, R. S. In charge of Tidal Division, Coast Surrey Office, p. 67.

AZMMUTH. At Hanover, N. H., and Dartmouth College, p. ig; at New Fork Harbor, p. 22; at Rouse's Point, N. Y., p. Et; at Astronomical Hill, p. 23; at Cheever Station, p. 24: at the Tortugas, Fls., p. 39; in Georgia, Section VII, pp. 42, 43; at Curraheo Station, Ga., p. 44; at Alaska, p. 65.
AZIMUTHS, LATITUDES, AND LONGITUDES, GEODETIC. Formale and factors for compatation of (see Appendix No. 10), pp. 315-368.

BACHE (steamer). Ube of, in Section I, pp. 16.17; Section VI, pp. 38, 39, 40, 41.
BACHE, C. M., ASSISTANT. Topograpby of the coast of New Jersey. p. 28.
BACHE G. M. (schooner). Use of, in Section II, p. 28, and Section V, p. 36.
BACHE, 五. W., SUBASSISTANT. Serviess in Section II, p. 24, and in Section IV, p. 35.
BACHE, R. M. ASSISTANT. Survey of New Haven Harbor, p. 20. BAGADUCE RIVER, ME., pp. 14, 15 .
BAIRD, PROFESSOR SPENCER F. Commisdioner of Fish aud
Figheries, p. 17, Section X, p. 51.
BAKER, MARCUS, AID. Serfices in Section XII, p. 65.
BALLSTON, N. F., p. 23.
BANK DEVELOPED BETWEEN JEFEREY'S LEDGE AND
CASHE'S LEDGE, Gulf of Mrine, p. 16.
BARKER, J. R., AID. Services in Section II, p. 22.
BARNACLE ROCE, p. 61 .
BARNARD, HENRY S. Engraving Piviston, Cossc Survay Oflied, obituary of p. 10.
BARNEGAT BAY, N.J. Topography of, p. 28; bydrography of. p. 29.

BARTLE, R. F. Engraving Diviaion, Coast Surver Office, p. 68.
BARTLETE'S NARROWS, pp. 12, 13.
BASSETT, R. T. Tidal observatious at Governor's Lsland, N. Y., pp. 27, 28.
BAYLOR, J. B. Services in Section III, p. 31; temporarily ensployed in Cimaputing Division, Coast Sarvey Office, p. 67.
BAF OF FUNDY. Sonndings off the, p. 12.
BAYOU GRANDE, MISSISSIPPI RIFER, p. 46.
BEACON HILL. Stanion in vicinity of New York Harbor, p. an.
BEEBE ROCK. Section 1I, p. 22.
BELFAST BAY, ME. Ledges developed in, p. 15.
BELKNAP, COMMANDER, G. S. N. Deep-sea soundings in Gulf of Mains, p. 12
BELOBTDA CREEK, CAL., p. 58.
BERLIN. Astronomical clock for the observatory at Tokio, Japan, ordered frum, p. 50.
BIBB (sehooner). Use of in Section II, p. 29, and Section IX, p. 49. BIG LAGOON, CAL., p. 60.
BIG SANDY RIVRE Recondaismance in vicimity of, p. 44.
BIRD KEY, Coast of Florida, p. 39.
BIRD ROCK. CAL. p. 56.
BISHOP AND CLERK'S LTGHT-HOUSE, p. 1%.
BISHOP'S HARBOR, FLA. Hydrography of, p. 39.
BLACK RIVEN, WIS. Reconnaiasance in Wiscongin,near, pp. 4849.
BLACK ROCK, p. 22.
BLAIR, H. W., ATD. Services in Section VII, p. 44.

BLAKE (ftemmer). Cse in Section I, pp. 11, 12, and in Section VIII. pp. 45, 46.
BLOCK ISLAND LIGHT-HOUSE. Position determined, p. 20.
BLOCK ISLAND SOUND, p. 22
BLOOD MOUNTAIN, GA., p. 44.
BLOSSOM ROCK, CAL., p. 56.
BLOUNT COUNTY, ALA. Mineral springs in, p. 44
BLUE HILL BAY, p. 13.
BLUE RANGE BILL, GA., p. 44.
BLUE RIDGE, VA. Reconnaissance along the, p. 33.
BLUNT, EDMUND, LATE ASSISTANT. Work begun be, in Section II, p. 23.
BLUNT'S REEF, CAL, dangerous rock developed, p. 7; passage inside, unsafe for navigation, pp. 57,58 .
bODEGA HEAD, CAL., p. 54.
BODELL, W. J. Tidal observationa at Fortress Monroo, Va., p. 3 .
BODIE'S ISLAND, N.C., p. 34.
boilling spot off matanzas inlet, Fla., pp. 37, 38.
böttger, PROFESSOR. Appendix No. 6, p. 87.
BOND, W. S.; AID Services in Section I, p. 13; and in Section V, p. 35.

BOSTON. Tidal obeervations at, pp. 2, 17.
BOUKE, W. Services on expedition to observe the Transit of Veuus, at Chatham Ialand. Appendix No. 14.
boUTELLE,C. O., ASSISTANT. Primarytriangulation in Georgia, pp. 43, 44.
BOUTELLE, J. B., AID. Services in Section VII, p. 44.
BOWSER, PROFESSOR E. A. Services in Section II, p. 28.
BOYD, C. H., ASSISTANE. Survey at mouths of the Missiseippi River, p. 45 ; survey of the Mississippi River at New Orleans, La., p. 47; triangolation in Missouri, p. 48.
bradrury, bion, ald. Services in Section I, p. 18; in Section VIII, p. 45.
bramburx, C. A., LIEUTENANT, U. S. N. Services on coast of New England, attached to Hydrographic Division, p. 11 ; deepea soundinge in bay of Fondy, p. 12 ; work on the Coast Pilot, p. 22.

BRADBURX'S ISLAND, p. 14.
BRADFORD, GERSHOM, ASSISTANT. Hydrography of San Francisco Bay, pp. 55, 56 ; dangerous rock off Cape Mendocino developed by, p. 57.
BRADFORD, J. S., ASSISTANT. Hydrography near Plum Island, Long Island Sound, N. Y., p. 21.
BRAID, ANDREW, SUBASSISTANT. Sertices in Section II, p. 24 ; in Section VIII, pp. 45, 46, 47.
BRANDON. Section VII, p. 43.
BRANDON POINT, JAMES RIVER, VA., p. 32.
bREESE, K. R., CAPTAIN, T. S. N. Services as Hydrographic
Inepector, p. 11; relative to rock struck by Unifed States ship Conatellation between Gull Island and entrance to Gardiuer's Bay, p. 21; Hydrographic Iuspector, p. 67.

BRIOGEPORT, CONN., p. 22
BRIG HT, W. T. In charge of Drawing Division, Coast Survey Office, p. 67.
BROOKLXN. Relative to commission of United States officers requested by New York authorities to rectify pier-lines of, p. 26; tidal observations at, p. 28.
BUCKSPORT, pp, 2,14, 15.
buehler, otto. First Absistant Photographer on the expedition to observe the Transit of Venus at Chatham Ibland, afterward Chief Photographer (see Appendix No. 14), pp. 231-243.
BULL'S BAY, S. C. Topography of, p. 35.
BURLINGTON, VT., p. 24.
BURNT COAT GARBOR, p. 14.
0.

CALIFORNTA. Sanken rocke developed opposite the boandaryline of Oregon and, p. 7 ; sorvey of coast of, inclading bays, harbors, and rivers, section X, p. 50.
CAMDEN, ME., pp. 215.
CANADA AND UNITED STATES BOUNDARY-LINE, p. 23. CAPE COD BAY, pp. 11, 12.
Cafe constantine, alaska, p. 65
CAPE FORTUNAS, CAL., p. 58.
CAPE HATTERAS, N.C. Position of old light-house determined, p. 33.

CAPE MENDOCINO. A dangerous ruck developed off, p. 7; also hidden rocks, p. 8; Section X, p 51; survey of rocks off, pp. 57, 58.

CAPE NEWENHAM, ALASKA, p. 65
CAPER'S ISEAND, S. C., p. 35.
CAPERTON, H. Temporarily employed in Computing Division,
Coast Survey Office, p. 67.
CAPE ROMAIN, S. C., p. 35.
CAPE ROSIER, p. 14.
CAPE SAN BLAS. Hydrography of, p. 42.
CAPITOL HILL, WASHINGTON CITY, D. O. Magnetic oberer.
vations at, Section III, p. 32.
CAPTAIN'S BAY, ALASKA, p. 65.
CAPTAIN'S ISLAND. Examinations of herhers of, p. 82.
CARROLLTON. Survey in ricinity of New Orleans, including, p. 47.

CASCO BAY. ME., p. 14.
CASHE'S LEDGE, pp. 1, 12, 16.
CASTINE, ME., pp. $2,14$.
CASTINE HARBOR. p. 15.
CASTLE PEAK, CAL., p. 57.
CASTLETON, PARALLEL OF. p. 23
CASWELL (schooner). Use in Section I, p. 14, and in Section 7 , pp. $35,36$.
CATSKILL MOUNTAIN, pp. 23, 24
CAWKIN'S ISLAND. Examination of harbors of, p. 20.
Cedar island, near the isle of shoals, N. H., p. 16.
CEDAR ISLAND LIGHT-HOUSE. Position determined, Section II, p. 20.
CEDAR KEYS, Fla., p. 41.
CENTENNIAL STOCK CERTIFICATE FOR TREASURY DEPaRTMENT, p. 68. (See Appandix No. 6, p. 87.)
CFPHET, 51. Obgervations on, p. 23.
CHANDLER, RALPH, CAPTAIN, U. S. N. Services on om-
miss:on to observe the Transit of Venus at Chatham Island (ase Appendix No. 14), pp. 231-248.
CHARTS AND INSTRUMENTS. Division of, pp. 68, 69.
CHARTS COMPLETED OR IN PROGRESS DURING THE FEARS 1874, 1855 (see Appendix No. 4), pp. 83, 84.
CHASE, A. W., ASSISTANT. Survey at Newport Bay near Point Laquen, Cal., p. 51; objects of interest collected for the Sinithsonian Institation, p. 51 ; dovelopment of Redding's Rock, Cal., p. 60.

CHatham island, south pactfic ocean. Party aent there to observe the Trangit of Veuns, p.8.; proliminary obeervations at, pp-9, 10. Report of expedition (see Appendix No. 14).
CHATHAM ROADS, pp. $2,17$.
CheEVER STATION, p. 24.
CHETKO COVE. Dangers in navigation of, p. 61; hye rography hetween Mack's Arch and, p. 62.
CHIACHI ISLANDS, ALASKA, p. 65.
CHICKAHOMINY RIVER, VA. Surver of, p. 31.
CHINA. Report of Assistant Davidqon on barbor aud river inprovements of (eoe Appendix No. 18), pp. 293-314.
CHIQUIK BAT, ALASKA. p. 65.
CHILIKOFF ISLAND, ALASKA, p. 65.
CHRISTIAN, J. H., AID. Services in Setition VII, p. 43
CIRCUIT OF TRIANGULATLION. The closing of a (see Appendix No. 17), pp. 979-242.
CTIX ISLAND. Examidation of barber of, p. 22.
CITY POINT, JAMES RIVER, VA., p. 31.
CLARK'S COVE, p. 13.
CLARK, JOHN. Division of Charte and Instruments, Coast Survey Office, p. 69.
CLOVER, RICHARDSON, LIETTENANT, U.S.N. Hydrography of Santa Cruz Island, Cal., p. 53; eervices on bydrographic sarvey from False Klamath, Cal, to Mack's Arch, Oreg., pp. 60, 61, 62.
COAST HYDROGRAPHY, near Saint Augustine, Fhe, p. 37.
COAST PILOT, pp. 12, 22
COAST SURVEX. Remarks on progress and condition of, for year ending July 1, 1875; relative to office work and officers of, p. 66.
COAST SURVEY OFFICE. Information farniahed from, see Appendix No. 3, pp. 81, 82.
COEFFICIENT OF REFRACTION. Obmervations at Raqged Mountain for determining, p. 16.
COLLINS' BEACH, DEL. Tidal obegrvatione at, p. 30.

COLONNA, B. A., AID. Services in Section IV, p. 33.
COLUMBIA RIVER, p. 62; survey of, $p .63$.
COLUSA. CAL., p. 57.
COMMODORE (steamship). Notice of rock off Gape Mendocino, mentioned by Assistant Daridson "as muder the wheel of the," p. 57.

COMPCTATION OF GEODETIC LATITUDES, LONGITUDES, AND AZIMUTHS. Formule and Factors for (see Appendix No. 19), pp. 315-368.

COMPCTING DIVISION OF THE COAST SURVEY OFFICE p. 66.

CONN ECTICUT. Surveys in, Section II, pp. 19, 23.
CONSCIENCE BAY, L. I., p. 22.
CONSTELLATION (U. S. ship), Capt. K. R. Breege, commanding,
reports a rock or shoal between Gull's Isiand and entrance to Gardiner's Bay, p. 21.
COOK, PROFESSOR G. H. In charge of geological survey of State of New Jersey, p. 28.
COOPER, W. W., ASSISTANT. In Coast Survey Oftice, p. 69.
COOSA STATION, GA.p. p. 43.
COPANO BAY. Hydrography of, p. 49.
CORIN'IH HILLS, p. 23.
COURTENAY, E. H. Computing Division, Coast Survey Office, p. 66.

COULITENAY, F. Eugraring Division, Coast Survey Office, p. 68. CODPTIS, FRANK, LIEUTENANT, U. S. N. Hydrography of Santa Cruz Island, Cal., pp. 52, 53; and survey from False Klamath, Cal., to Mack's Arch, Oreg., pp. 61, 62.
CRAIG, NEVILLE B. Servjees in survey of New Haven Harbor, Conn., p. 20.
OKANEF ISLAND, VA. Special survoy of, p. 31.
CRESCENT CITY, CAL., p. 60; rocks developed off the anchorage, p. 61.
CRESCENT CITY REEF
CROATAN LIGHT-HOUSE. Stations erected to ascertain posi tion of, $p .34$.
CROWN POINT, pp. 24, 25.
CROYDON MOUNTAIN, N. H., p. 16.
COBE MOUNTAIN, N. H., pp. 16, 23.
CUBITT'S CREVASSE, MISSISSIPPI RIFER, p. 46.
CUMESERLAND GAP, p. 45.
CURRAHEE MOUN'TAIN, Habersham County, Ga., pp. 43, 44. CURRITCCK BEACH, N. C., p. 34.
CUTTS, R. D., ASSISTANT. Triangulation on botudary between Connecticut and New Fork, pp. 20, 23; observatiors at Monnt Rafinesque, p. 23; reconnaissance in Wisconsid, p. 49; inspoction of work on Pacific coast by, p. 51.

D.

D'AGELET. Relative to height of Monnt Saint Elias, p. 66 .
DALL, W. H., ACLING ASSLSTANT. Survey of coast of Alaska, pp. 64, 65; report on Monat Saint Elias and Mount Fairweather, Aluska (see Appendix Ko. 10), pp. 157-188.
DANA (scheoner). Use of, in Section II, pp. 22, 2.5; in Section IV, p. 34.

DARTMOUTH COLIEGE ODSERVATORY. Connected with triangulation in Now Hampshire, p. 16.
DAVIDSON, GEORGE, ASSISTANT. Appointed to observe Transit of Yenus, in Japan, p. 89; report (see Appeodix No. 13), pp. 22.2-230; reck seen of Cape Mendocino, p. 57; report on harbor and river improvements of Chína, Egypt, Italy, Holland, and Great Britain by (see Appendix No. 18), pp. 29s-314.
DAVIES, PROFESSOR .F. E. Recomogissance in Wiscongid, pp. 48, 40.
DAVIS, W. H. Engraving Division, Coast Survey Ofice, p. 68.
DEAN, G. W., ASSISTAN'T. Latitude and azinuth at Ronse's Point, Ch ever, and Monnt Merino, N. Y., p. 23.
DEEP-SEA SOUNDINGS. Bay of Fundy, p. 12; Galf of Maine, p. 12; off Jeffrey's Bank, p. 17; between Southwest Pass and the Rio Grande, and Rio Grande and Tortagas, p. 47.
DEER ISLAND, p. 14.
DEER ISLE; p. 13.
DE KALB COUNTY, ALA. Mineral springs foundia, p. 44.
DELAWARE. Surwey of cosst of, Section II, pp. $29,30$.
DELAWARE BAY, Triangulation of p. 99.
DELAWATRE CETY, DEL. Setting up of tido-gauge at, p. 30.

DELA WARE RIVER. Triangulation, topography, and bydrography in, p. 29.
DENNLS, W. H, ASSISTANT. Topography of Eggemoggin Reach, Me., p. 13; topography of Bull's Bay and vicinity, S. C.. pp. 35, 36.
DESCRIPTION OF AN APPARATCS FOR RECORDING THE mean of the times of a set of observations, by Assistant C. S. Peirce (see Appendix No. 15), pp. 249-253.
DEVELOPMENTS AND DISCOVERIES, pp. 7, $4,15,16,21,22,40$, 44, 54.
DEWEES, H. M., SEBASSISTANT. Serrices in Section II, p. 29.
DEWEES' INTET, S. C., p. 35.
DEWEES' ISLAND, S. C., p. 35.
DE WOLF, J., AID. Services in Section II, p. 28; in Section TI, p. 38.

DICKINS, E. F., AID. Serrices in Section X, pp. 5e, 59.
DILLAWAY, C. P., SUBASSISTANT. Sorvices iu Section II, pp. 22, 25.
DISCOFERIES AND DEVELOPMENTS, pp. 7, 8, 15, 16, 21, 22, 40, 44, 54, 55.
DISCUSSION OF TIDES IN NEW YORE HARBOR, by William Ferrel (oee Appendix No. 12), pp. 195-221.
DISMAL SWAMP, N. C., p. 33.
DISTRIBUTION OF SURVEYING PARTIES TPON THE Atlantic and Pacific coasts of the United States, during the survering season of 1674-75 (see A ppendix No. 1), pip. 73, 78 .
DIX, JOHN A. (steamer). Use in Section VIIL, p. 46.
DIXON, T. G., SALLING MASTER Honorable mention, p. 33.
DOBBIN (revenue-cutter). Groundiag of, on shoal; which was subsequently sounded ont by Assistant Anderson.
DONN, F. C. Services in Seetion I, p. 13, and in Section III, p. 32.
DONN, J. W., ASSISTANT. Topography and hydrography of Momet Desert Island, Me., pp. 12, 13; special survey of Cranes Island, p. 31; surver of the Chickahominy River, p. 31; survey of James River, p. 31 .
Doolitthe, M. H. Computing Division, Coast Survey Offee, p. 66. (See also Appendix No. 17, pp. 279-292).

DORR, F. W., ASSISTANT. General assistant in Coast Survey Office, p. 66.
DOWNES, J. Tidal Division, Coast Survey Office, p. 67.
DRAWING DIVISION, COAST SURVEV OFFIOE, pp. 67, 69; Charts completed or in progress during the year 1874-75 (see Appenaix No. 4), 83, 84.
DRUMMOND'S BANK. Sperial antrey of, p. 20.
DRY BAY, p. 64.
DUNMORE WHARF, JAMES RIVER, VA., p. 32.
DTWAMLSH BAY, W. T. Detailed survey of, pp. 63,64.
UUWAMISL RIVER, W. T., p. 64.
E.

EADS, J. B. Relative to jothes at moufh of the Mississippi River, p. 46.

EAGLE ISLAND, p. 14.
EASTERN BAY, Monnt Degert Lsland, Me, p. 12.
EASTERN PENOBSCOT RIVER, p. 14.
EAST BLUFF BAY, in Pamplico Sound, p. 34.
"EAST GBOUND," a shoal off Bloek Island, p. 21.
EAST KEY, FLA., pp. 33, 39 .
FASTPORT, ME., p. 22.
EAST RIVER, N. Y., p. 26.
HCONFENEE RIVER, W. FLA., p. 41.
EDWARDS, W. S., AID. Services in expedition to observe Trabsit of Venus, in Japan, p. e; services in Section $X, p .53$.
FGGEMOGGIN REACH, pp. 2, 13.
EGG ROCK. Special survey by Assistant Doun, as to titaess for location of light-honse, p. 13.
EGMONT KEY, FLA., pp. 38, 39, 40.
EGYPT, MdSS, p. 18.
EGYPT, AFRIGA. Raport on harbor and river improcements of (see Appeudix No. 18), pp. 293-314.
EICHOLTZ, HUGO. Drawing Division, Coast Survey Ofice, p. 68.
EIMBECK, WLLLIAM, ASSISTANT. Reconnaisance near the Paciflo coast, p. 56.
ELBA ISLAND, GA., p. 36.
ELECTEOTYPING AND PHOTOGRAPHY. Report on (eee
Appendix No. 6), pp. 87, 88. Division of Coast Survey Office, p. 68.
ELIZABETHPORT, N. J., p. 29.

ELIZABETH RIVER, VA. Supplementary hydrography of Section III, p. 31.
ELK CREEK, p. 62
ELLICOTT, EUGENE, SLBASSISTAN'T. Services in Section X p. 51.

ELLIOTT'S KNOB, VA., p. 33.
ELM TREE BEACON, p. 26 .
ENDEAVOR (steamer). Use of, in Section I, p. 17; in Section II p. 28 ; in Section VI, p. 37.

ENGLTSH CREEK. SnTvey of Hackensack River, $p .25$.
ENGRAVING DIVISION, Coast Survey Gfice, p. 68; plates com pleted, continued, or begun during the years $1874-155, \mathrm{pp} .85,86$.
FNTHOFFER, J. Engraving Division, Coast Survey Office, p. 68.
EPPES ISLAND, JAMES RIVER, VA., p. 32.
ERICHSEN, P. v. Drawing Diviaion, Cobst Sarvey Office, p. 68.
ESHLEMAN, E. Divibion of Charts and Instruments, Coast Survey Office, p. 69.
ESTIMATES FOR ATLANTIC AND GULF COASTS, pp. 516 ; for general expenses of Coast Survey, pp. 5. 6; for office and field work of the pacific coast, pp. B_{1} it for continuingtield-work and hydrography, pp. 1 to 6; for general expenditures, p. 6 ; for years 1875-76 and 1376-77, table of comparison of, p. 7.
EVANS, EI. C. Engraving Division, Coast Survey Office, p. 68.
EVANS, J.J., AID. Services in Section II, p. 29.
EXPEDITLON TO ORSERVE THE TRANSIT OF VENUS IN JAPAN (see Appendix No. 13), pp. 222-230; at Chatham Island, Pacific Ocean (see Appendix'No. 14).

F.

FACTORS AND, FORMULE FOR THE? COMPUTATION OF geodetic latitudes, longitudes, and azimuths (see Appendix No. 19), pp. 315-368.

FAIRFAX, F. Draning Division, Cosst Survey Office, p. 6e, FAIRFAX, W. Drawing Division, Cobst Sarvay Office, p. 68. FAIRFLELD, CAL. Reconnaisannce of California coast, p. 56
FAIRFIELD, G. A., ASSISTANT. Triangalation of Pamplico Sound, N. C., p. 33.
FATRFIELD, W. B., AID. Services in Section IV, p. 34.
FALL RIVER, MASS. Relative to displacement of station mbrks, p. 18.

FALSE KLAMATE, CAL. Inshore bydrography from Mack's Arch to, p. 60 ; dangers in navigation oft, p. 61 .
FANNY SHOAL, another name for Noonday Rock, p. 55.
FAR ALLON LIGHT-HOUSE. Shoal devaloped off of, p. 55.
FARQUHAR, G. SUBASSISTANT. Services, Section X, p. $\boldsymbol{6}$.
EATHOMER (eteamer). Use of, in Section 1I, p. 25.
FAULKNER'S ISLAND LIGHTHOUSE. Position determined, p. 20.

FAONTLEROY (brig). Use of, in Section XI, p. 63.
FENHOLLAWAY RIVER, WEST FLORIDA, p. 11.
FERGUSON, C. Compating Division, Coast Survey Office, p. 67. FRENANDINA, FLA., p. 37.
FERREL, PROFESSOR WILLMAM. Tidal observations in New York Farbor, p. 8; discassion of tides in New York Harlor (see A ppendix No. 12), pp. 194-221; meteorological reaearches for ase of the Const Pilot (see A ppendix 20), pp. 369-41\%.
FIELD AND OFFYCE WORK OF THE COAST SURVEY, during the year ending Decernber 31, 1874 (see Appendix No. 2), pp. 79, 80.
FIELD-WORK ON THE PACIFIC COAST. Geographical ennmeration of, pp. 5, 6 .
FISFER'S ISLAND. Poaition determined of light-honee under cen struction at weat end of, p. 20.
FISHER'S ISLAND SOUND, p. 2.
FITCH, OFARLESGH. Clerk in office of the assistant in cbarge, p. 69.

FIVE-FATHOM CRERK, S. C., p. 35.
FLENNER, W. L. Clerical duties in Coast Sarvey Office, p. 69.
FLORIDA PENINSULA.* Surrey of coast of, including reefs and keys, and the seaports and rivers, Section VI, pp. 37-41.
FLORIDA REEF. Completion of hydrography of, p. 39
FLYING DRAGON. Wreok of ship, repor'ed dangerous to navigation, p. 56.
FOG-SIGNALS SCGGESTED FOR THE MORRO, CAL., p. 55.
FOLLER, JOAN. Instrumeut-agker, Coast Survey Offce, p. 69.
FOHGE BEIDGE, CHICKAHOMINY RIVRR, VA., p. 31.
FORK MOUNTAIN, MADISON COUNTY, VA., p. 32.

FORMUT. \mathbb{A} AND FACTORS FOR THE COMPUTATION OF geodetie latitudes, longitudes, and azimaths (see Appendix No. 19), pp. 315-368.

FORNEY, STEHMAN, SLBASSISTANT. Serviceb in Section X, p. 51.

FORTRESS MONROE, VA. Tidal observations at, p. 31.
FOR'T GEORGE, p. 14.
FORT HALE. Survey of New Haven Harbor, p. 20.
FORT JEFFERSON, on Garden Ker, coast of Florida, p. 39.
FORT KNOX. A middle gronbd forming in Penobscot River, opposite, p. 15.
FORT MONTGOMERY, p. 24.
FOR' PULASKI, GA., p. 36.
FORT TOMPKINS. Determining position of new light-honse at, p. 22.

FORT TOMPKINS LIGHTHOUSE. Relative to the dumping of material by dredgers near, p. 27.
FOUR BROTHERS ISLANDS, IN LAKE CHAMPLAIN. SURvey of, p. 24.
FOX ISLANDS, $p 15$.
FRANKLIN, JAMES, LIECTENANT, U. S. N. Services in Section VI. p. 37.
FRASER, W., ATD. Sorvices in Section I, p. 14.
FREEMAN, EDWARD A., Captain of steamer John A. Dix. Services in Section VIII, p 46.
FRENCH, W. B., ATD. Serviges in Section II, p. 27, and in Section VI, p. 40.
FRENCEMAN'S BAY, p. 13.
G.

GADSDEN POINT, TAMPA BAY, FLA., p. 7; hydrogtaphy of p. 39 ; ledge of rocks gouthwest of, p. 40.

GALES FERRY, THAMES RIVER, CONN., p. 19.
GARDEN KEX, COAST OF FLORIDA, p. 39.
GARDEN KEY LIGHT-HOUSE, FLA., p. 38.
GARDINER'S BAY. Rock or shoal at entrance of, p. 21; harbors of, p. 22.
GARDINER'S ISLAND LIGHT-HOUSE. Pobition determined, p. 20.

GARDNER, C. L. AID. Services in Section I, p. 15; in survey of
Delaware River and Bay, p. 29 ; ses vices in Section III, p. 33.
GASCONADE RIVER. Triangulation near, p. 48.
GAULEY MOUNTAIN. Survey in the region of the Kanawha, Va., p. 33.
GAVIOTA STATION, on shore of Santa Barbara Channel, p. 53.
GEODETIC LATITUDES, LONGITUDES, AND AZIMUTHS.
Formalw and factors for the compntation of (see Appendix No. 19), pp. 315-368.

GEODETIC SURVEY IN PEN NSTLVANIA, p. 30.
GEOGRAPHICAL ENOMEXATION OF COAST SURVEY WORK, pp. 5,6.
GEORGE'S BANK. Lines of soundings off of, p. 12
GEORGIA. Surrey of coast and sem-water channels of including sounds, harbora, and rivers, pp. 35-37.
GERDES, F. H., ASSISTANT. Survey of Port Jefforson, Long
Island, N. Y., p. 22; survey of Hackensack River, N. J., p. 25.
GEKDES, H. H. Computing Division, Goast Survey Oftiee, p. 66.
GILBERT, J. J., SUBASSISTANT. Serviee in Section XI, pp. 62, 63.

GOODFELLOW, EDWARD, ASSISTANT, Identification of old station-marke in the vioinity of New York Farbor, pp. 25, 26 ; as. signed to duty in Coast Survey Office, pp. 26, 66.
GOOD HILL, CONN. Station erected at, p. 20.
GOT IHEIL, A. Tidal Diviston; Cost Survey Office, p. 67.
GOVERNOR'S ISLAND, NEW YORK HARBOR. TJdal obaercations at, p. 27.
GRAHAM, J. D., LATE MAJOR U. S. A. Stations occupied by him in 1845 when running boundary between the United Sinten and Cauada, still in use, p. 83.
GRAND MANAN ISLAND, p. 12,
GRAND PLATEAD GLACHER OF LA PEROUSK, ALASKA, p. 64.

GRAND RAPIDS, p. 48.
GRANGER, F. D., SUBASSISTANT. Services in Section I, p. 17 ; in Section VII, p. 43.
GRASSY MOUNTATN, GA. Magabtie observations at, p. 43

GRAY, E. Tidal observations at Fort Point, Cal.. p. 56.
GRAY'S BASIN, p. 24.
GREAT BIITAIN, AND OTHERCOUNTRIES. Report on certain harbor and river improvements of (see A ppendix No.18), pp.293-314 GREAT POINT RIP, p. 17.
GREAT SOUTH BAY, LONG ISLAND, N, I. Surveg of, 1 . 28. GREEN MOUNTAINN. Triangulation in New Hampshire westward to the, p. 16.
GREENPOR'T HARBOR, p. 92.
GREENWICH, p. 23.
GRETNA, INCLUDED IN SURVEY IN VICINITY OF NEW ORLEANS, p. 47.
GREYLOCK MOUN'TATN. Signal erected on, p. 23.
GRIMES, J. M., LIEUTENANT, C.S. N. Services in Section VIII, p. 47.

GUALALA RIVER. South of Point Arena, p. 59.
GULF COAST AND SOUNDS OF WESTERN FLORIDA, including ports and rivers, pp. 41-45; bays of Alabama and sounds of Misaissippi and Lonisiana to Vornillion Bay, pp. 45-40; West ern Louisiana and Texas, including bays and rivers, $\mathbf{p} .49$.
GULF OF MAINE. Relative to survey, p. 1 ; deep seat sondings off of, p. 12.
GULF OF MEXICO. Depth of water at junction of the Mississippi River and the, p. 45; hydrography of, p. 46; deusity and temperature of the water in the, p. 46.
GULE POIN'I, p. 43.
GULF WA'TER. Density and temperature of the, p. 47.
GULL ISLAND, CAL., p. 53.
GULL ISLAND LIGET-HOUSE. Position Ieterminod. p. 20. GULL ISLAND, PAMPLICO SOUND, N. G., p. 33.

II.

IIAOKENSACK, N. Y., p. 25.
HACKENSACK RIVER, N.J. Survey of, p. 25.
HAGENMAN, J. W., LIEUTENANT, U.S. N. Services in Section VIII, p. 47.
HAGMEISTER TSLAND, p. 65.
HALFWAY ROCK. Rock developed between it and Star Ialaud, p. 16.

HALIFAX RIVER, EASTERN COAST OF FLORDDA. Survey of, p. 38.
HALL, ASAPH, PROFESSOR, U. S. N. Exchange of longitnde signels with Assistant Davidson, in Japan, p. 9.
HALTER, R. E., ASSISTANT. Keconnaissance in Kentacky and Ohio, pp. 44, 45.
HANDKERCHIEF SHOAL, p. 1%.
HANDY, H. O., MASTER, U. S. N. Survey in New York Harbor, p. 27; services in Section IV., p. 35.

HANOVER, N. H. Observatory Hill, near, p. 16.
HANSON, D. C., AID. Services in Section I, p. 17; in Section III, p. 32.

HANUS, G. C., ENSIGN, U. S. N. Services in Section V, p. 37.
HARBOR OF REFUGE AT MACK'S ARCH, OREGON, pp. T. 8 .
HARBOR RIVER, S. C., p. 35.
HARBOR ANDRIVER IMPROVEMENTS OF CHINA, EGYPT
ITALY, HOLLAND, AND GREAT BRITAIN. Report on the (aee Appendix No. 18), pp. 293-314.
HARKNESS, WILLIAM, PROFESSOR, C.S. N. Chronometer cor rections furnished to Subassistant Smith, at Hobart Town (nee Appendix No. 14), pp. 231-448.
HARRISON, A. M., ASSISTANT. Survey of Tannton River, Mass., p. 18.

HARRISON, T. A., AID. Services in Section I, p. 14 ; in Section VI, p. 38.

HART ISLAND, p. 22.
HASSLER (eteamor). Use of, in Section X, pp. 52,53, 60,61,62.
HATTERAS INLET, N. C., p. 35.
HAULOVER CANAL, connecting Indian Kiver, Fla., with intand wator pasaage to Halifax River, p. 38.
HAUPF, In M. professor in University of Pennaylvania. Recon. naissance in Lehigt tuining region, p. 30 .
HAWKINS, R. L. Clerk in the office of disbursing agent, Coast Survey Offee, p. 69
HA WLEF, J. M, LIEUTENANT, U.S.N. Services in Section V, อ. 36.

HEAD OF THE PASSES, MTSSISSLPPI RIVER, pp, 45, 46.
HEIN, SAMUEL, Disbursing Agent, Coast Survey Onfice, p. 64.
HELIOTROPES on Sau Miguel Island and Santa Cruz, Cal., j. 53.
HELL GATE. Examination of passage through the Sound at, p. 22.

HEMPSTEAD, p. 22.
HERBERT. W. A. Clerical force of the Coast Survey Office, p. 69.
HERENDFEN, CAPTAIN, sailing-master of the Yukon. Services in Section XII, p. 65.
HERGESHEIMER, E. In charge of Engraving Division, Coast Survey Oftice, p. 68.
HERGESHEIMER, JOSEPH, SUBASSISTANT. Services in section I, p. 14; in Section VI, pp. $39,40$.
HERRICK'S BAT, p. 13.
HESS, JA MES. Division of Charts and Yustrunents, Coast Survey Office, p. 69 .
HILGARD, J. E., ASSLSTANI. In Charge of Coast Survey Ofice, p. 66. (See Appendix No. 19. pp. 315-368.)

HILLSBORO BAY, FLA., p. 39.
HILLSBORO REVER, FLA., p. 38.
HIPP CLEONOGRAPE, ordered by Assistant Davidson for th obsorvatory to be built at Tokio, Japan, p. 50.
HITCHCOCK, R. D., LIEUTENANT, E. S. N. Services in Section I, p. 17; reporte gallant conduct of Seaman Rynders, of the Eudeavor, p. 2 e ; services in Section VI, p. 37.
HITCHCOCK (steamer). Use of, in Section IV, pp. 33, 34.
II. M. COOL (steamer). Wrecked on roef in Tampa Bay, p. 40.

HODGKINS, W.C., AID. Services in Section I, p. 14.
hog island, Pamplico sound, N. C., p. 34
HOLLAND. Report of Assistant Darideon on harhor and river improvementa of (see Appenतix No. 18), pp. 293-314.
HOOSAC MOUNTATN, MASS. Pendulum observations at, p. 19.
HOOVER, TOHN T. In charge of Division of Charts aud Iustruments, Coast Survey Office, pp. 68, 69.
HOSMER, CHARLES, ASSISTANT. Survey of Great South Bay. p. 28; survey of Halifax River and eastern coast of Florida, p. 38.

HOT SPRINGS, several handred foet below the summit of Mount Shasta, Cal., p. 62.
HOWELL, JOEN A., COMMANDER, U. S. N. Deep-sea sound. inge between George's Bank and the bay of Fundy. p. 12; bervices in Section VIII, p. 46.
HOWELES POINT, LONG ISLAND, N. Y., p. es.
HOWLAND, H. Tidal observations at Boston navy yard, p. 17.
HDBBARD, MASTER JOHN, U. S. N. Services in Section VI, p. 17.

HUDSON, N. Y., p. 24.
HUDSON, F. Compating Division, Coast Survey Oftice, p. fir.
HUDSON RIVER. Deepening of the, below Castle J'oint. p. 26 .
HULL'S COVE, MOUNT DESERT ISLAND, ME., p. 12 ,
HUMBOLDT BAR, CAL., p. 58.
HUMBOLDT BAY, CAL., p. 56.
HUMPBACK MOUNTATN, VA., p. 33.
HUNSICKER, J. L., MASTER, D. S. N. Sorvices in Section VI, p.37.

FUNTING ISLAND, S. C. Change in the shore-line of, p. 7 : sea encroachments at, p. 36.
HONTINGTON BAT, p. 2.
HUTCHINS, C. T., LIEUTENANT, U. S. N. Services in Section VIII; p. 47.
HYANNIS, $p .17$.
HYDROGRAPHIC DIVISION of Coast Survey Office, p. 67.
HXDROGRAPHIC SHEETS, original, registered in the Archives of the United Staten Coast Survey from January, 1835, to July; 1875 (Nos. 1-1244, inclnsive) (see Appendix No. 8), pp. 115-138.
HFDROGRAPHY. Monnt Desert Island, Me., p. 12: Eqgemoggin Reach, Me., pp. 13, 14; Penobseot Eay, p. 15; Weat of Monomos:, Mass., p. 17; near Plum Lsland, Long Laland Sound, N. X., p. 20 ; of Lake Champlain, p. 25 ; New York Bay, p. 27; Great Soutb Bar, N. Y., p. 28; of Rarnegat Bay, N. J., p. 29 ; in Delaware River, p. 29; at mouth of Schaylkill River, p-30; in Elizabeth River. Va., p. 31; of Pamplioo Sound, p. 35; of Savannab Fiver, Ga, p. 36: of Tortagas Harbor and Reef, p. 39_{i} of Talmanola Bay, Terraceia Bay, Little Manatee River, and Bishop's Harbor, p. 39; of Tampa Entrance and its Gulf approachee, Fla., p. t0; of Pepper Keya aul Ocilla River, p. 41; near Cape San Blas, Fla., p. 42; of the Gulf of Mexico, p. 46; of Aranaas Bay and Musquit Bay, Tex., p. 49; at

ALPHABETICAL INDEX

Newport Bay near Point Lasuen, Cal., p. 51; near Santa Crnz Islaud, Cal., p. 52; of Sals Luis Olispo Bay, Cal., p. 53; betweel Point Gorda and Ruby Point, Cal., p. 58; between Chetko Cove and Mack's Arch, Oreg. p. 62.

1.

IARDELLA, C. T. ASSISTANT. Topography of Pamplico Sonnd, N. C., p. 34 ; shore-line survey of Lake Champlain, p. 24.

ILLINOLS. Signais aet up in. in connection with triangulation in Miseonri, p. 48.
INDIAN MOUNTAIN, GA., p. 43.
INDIANOLA, TEX., p. 49.
INDIAN PASS, FLA., p. 42.
INDIAN RIVER, FLA., p. 38.
INFORMATION furnished from the Coast Survey Office in reply to special calls during the year 1874-'75 (see Appendix No, 3), pp. 81,82 TNSTRUCTIONS for maguetical observatione (see Appendis No. 16), pp. 254-278.
ISLEBORO, ME. Shoal discovered south of, p. 15
ISLE OF SHOALS, pp. 2, 16.
ISLE AC HAUT, pp. 2, 14.
ISLIP. Resumption of survey of Great South Bay, N. Y., fat, p. 28.
ITALY. Report of Assistant Davidson on certaill harbor and river improvements of (seo Appendix No. 18), pp. 293-314.
IVES, O. A., AID. Services in Section If, pp. 25, 26 ; and in Section 111, y. 32.
IVY STATION, p. 23.
IWA KAWA, or Mont Diffenback, Chathay Island (see Appendix No. 14), pp. 231-248.

J.

JACKSONVILLE, CAL., p. 61.
JACOR, E. S., LIECTENANT, U.S. N. Services in Section L, p. 12. JACOBI, W. Division of Charts and Instrunents, Coast Suryey Office, p. 69.
JaCQUES, W, H., LIEUTENANT, U. S. N. Services in Section I, p. 12.
JAMES RIVER, VA. Survey of, pp. 31. 32.
JAPAN. Parties sent to observe Transit of Venas in, pp. 8, 9; report on the Trangit of Venus expedition to, 1874 (see Appendix Ne. 13), pp. 222-230; observatory to be erected at Tokio, p. 50 .
JEFEERS, W. N., CAPTAIN. U.S. N. Request for minute murvey of Craney Island, Va., p. 31.
JEFEREY'S BANK, pp. 1, 12, 17.
JEFEREY'S LEDGE, pp. 1, 16.
JOHN A. DIX (steamer). Use of, in Suction VIII, p. 46.
JOHN'S MOUNTAIN. GA.. pp. 43, 44.
JOHNSON, ए. C., COMMANDER, U. S. N. Services in Section X, pp. 52, 53.
JOHNSON'S CREEK, S. C., p. 36.
JOHNSON'S NARROWS, ME., p. 15 .
JORDAN'S POINT LIGHT-HOUSE. Tidal observations at, p. 32
JOSEPI HENRY (schooner). Use of, in Section 1, p. 14.
JUMP, Mouth of the Misaissippi River, the, p. 46.
JUNIPER BAT, N. C., p. 34.
JUNKEN CHARLES, ASSISTANT. Hydrography of Lake Cbrmplain, p. 25; bydrography'of the Schuylkill River, p. 30 ; topography of Hanting Island, S. U., p. 36 ; Lrawing Division, Cuast Survey Ofice, p. 68.
JUPITER INLET, FLA., p. 38.

E.

KADIAK, ALASKA. Magnetic observations and azimuth at, p. 65.

KARCEER, L. Diawing Division, Coast Snrvey Office, p. 67.
KLARSA RGE MODNTAIN. Triangulation of New Hampshire to, p. 16 .

KEITII, R. Computing Division, Comat Survey Offce, p. 67.
KENNERVILLE, LA. Sarvey in vicintity of New Orleans, inchuding, p. 47 .
KENNETT, LIEUTENANT-COMMANDER, U.S. N. In charge of steamer Bache for service on Northern coast, p. 39.
EERR, L. C. Engraviug Diviaion, Coast Survey Office, p. 68.
KEY Prest. Report opon the telegraphie determination of the longitnde of (see Appendix No, 97, pp. 1:19-156.
KING, V. R. Reaignation of office, p. 69.

KLAMATH RTVER, CAL. Completion of triangulation between Rocky Point and, p. 60.
KNIGHT, H. M. Engraving Division, Coast Survey Office, p. 68. KNIGITT, JOEIN, late of Engrafing Division, Coast Survey Office. Obituary of, p. 10.
KNIGHT, W. H. Engraving Division, Cosat Survey Office, p. 68. KONDRUP, JOHN C., late Danish vice-consal at Washington, D. C., and in Engraving Division, Coast Survey Office. Obituary of, p. 10.

KRUSE, T. Tidal observations at St. Thomas, W. I., p. 41.
1.

LACKEY, F. E. Division of Charts and Instruments, Coast Survey Office, p. 69.
LA GRANGE, in the vicinity of the Tennessee River, p. 44.
LAEE CHAMPLAIN, p. 23; shore-line survey of, p. 24; hydrograpley of, p. 25.
LAKE EARL, p. 60.
LAKE PONTCHARTRAIN, p. 47.
LAKEPORT, OAL., p. 57 .
LAKE TALLAWA,p. 60 .
LAKE UNION, p. 64 .
LAMAR BAY. Bydrography of, p. 49.
LANE, J. H. Transferred to Computing Division, Coast Survey Office, p. 67.
LA L'EROUSE. Correctness of his chart of Lituya Bay, Alabka, p. 64.
LA'TITUDE AND A TIMIUTH at Rouse's Point, N. Y., p. 23.
LATITUDES, LONGITUDES, AND AZIMCTHS. Formulæ and fictore for the computation of Geodetic (aeo A ppendix No. 19), pp. $315-368$.
LAVENDER MOUNTAIN, GA., pp. 42, 43, 44.
LAWRENCEVILLE, (iA, p. 44.
LAWSON, F. A., SUBASSISTANT. Serviceg in Section X, p. 51; and in Section XI, p. 64.
LAWSON, J. S., ASSISTANT. Detailed survey of Duwamish Bay, W. T., pp. 63, 64.
LEAGUE ISLAND, PA., p. 30.
LEFAVOR, T. M., MASTER, U.S. N. Services in Section IV, p. 35.
LEHIGH MINING REGION. Reconnaissance of, by Professor Haqpt, p. 30.
LESLET, PROFESSOR J. P. State geologist of Pennsylyania, p. 30. LIGHT-HOUSES. Positious of, determined, pp. 20, 22.
LIGHT-HOTSE BOARD. Survey in Delaware River, at the request of, p. 29; obstructions in navigation of Schaylkill River roported to the, p. 30 ; survey of Point Sur, Cal., for use of the, p. 54; tracing of survey of Point Saint George, Cal., for use of the p. 60.
LIGONIER POINT, p. 24.
LINDENKOHL, A. Drawing Division, Coast Sarvey Office, p. 67.
LINDENKOHL, H. Drawing Division, Coast Survey Office, p. 67.
LISTON'S TREE, DELAWARE RIYER, p. 29.
LITTLE EGG HARBOR, N. J., p. 29.
LITTLE KONUISHI ISLAND, ALASKA, p. 65.
LITTLE MANATEE RIVER, FLA. Hydrograpby of, p. 39.
LITTLE RIVER, near Tribidad, closed during dry season, p. 59.
LITUTA ENTRANCE, ALASKA, p. 64.
LIVELY (steam-tender). Use of, in Seotion XI, p. 64.
LOGGERHEAD KET, FLA., p. 38.
LOLA MOUNTAIN. Oocupied duing recomaissance on Pacific coest, p. 37.
LONG BEACH LIGHT-HOUSE. Position determined, p. 20.
LONGFELLOW, A. W., ASSISTANT. Topograpliy above Castine. Me., p. 14.
LONG ISLAND, S. C., pp. 35, 37.
LONG ISLAND SOUND, N. Y., pp. 2, 11, 20, 21, 22; triangalation of; pp. 20, 22.
LONGITUDES, LATITUDES, AND AZIZUTHS, GEODETIC.
Formals and factors for the couphtation of (see Appendix No. 19), pp. 315-368.

LONG SHOAL RIVER, PAMPLTCO SOUND, N. C., p. 34.
LONG SHOAL SIGNAL, PAMPLICO SOUND, N. C., p. 34. LOOKOUT MOUNTAIN RANGE, p. 43.
LOUISIANA. Survey of Gulf coast of, to Vermillion Bay, inciading ports and rivers, p. 45; survey of Gulf coast of Weatern, p. 49. LELL, EDW ARD T., GOMMANDER, U. S. N. Spccesar to Captain Breose, as hydrographic inspector, pp. 11,67.

M.

MACK'S ARCE, OREG. A barbor of refuge, p. 7; inshore hydrog raphy from False Klamath to, pp. 60, 61, 62.
MACK'S SHELTER, p. 61.
MADISON. WIS. University of, longitude determined. p. 49.
MAD RIVER. North of Humboldt Bay, p. 59
MAEDEL, A. M. Engraring Division, Coast Survey Office, p. 68.
MaEdel, E. A. Engraving Division, Coast Survey Office, p. 68.
MAGNETLC ObSERVATIONS, at Capitol Hill, Washington City, p. 32; in Georgia, pp. 42, 43.
maGNETICAL OBSERVATIONS. Terrestrial magnetism, iu-
structions for (see A ppendix No. 16), pp. 254-27e.
MAGNETISM. Terrestrial, instructions for magnetical observa tions (seo Appendir No. 16), pp. 254-278.
MAIN, J. Compriting Division, Coast Surver Office, p. 66.
MAINE. Coast of, pp. 12, 13.
MAINE. Gulf of, deep-sea somndings off of, p. 12.
Maltole RIVER, south of Capo Meadocino, p. 59.
MARCT (schooner). Eae of, in Section X, pp. $55,56$.
MARINDIN, H. L., ASSISTANT. Hydrography of Providenco
Harbor, R.I., pp. 16, 19; physical survey of New York Larbor, pp.
26. 27; surver at mouths of the Mississippi, pp. 45, 46 .

MARK ISLAND LIGHT HOUSE, p. 14.
MARSHALL'S ISLAND, p. 14.
MARYLAND. Survey of eoast and bays, including seaports and rivers, p. 31.
MARYSVILLE BUTTE. Reconnaissance on the Pacific const to, p. 57.
massachusetts. Coast of, p. 12; bonndary between New York and, p. 23.
MATANZAS INLET, FLA. Singular "boiling apot" reported by Lieutenaut Hitchcock, U. S. N., north of, pp. 7, 37, 38.
MATINICUS, p. 15.
MAUNGANUi, CHATHAM ISLAND (see Appendix No. 14). MAULDIN, S.C., p. 44.
MCLLINTOCK, J. N., SUBASSISTANT. Services in Section I, p. 14.
McCLINTOCK, W.E., AID. Servicesia Section I, p. 19; andia Section VIII, pp. $47,48$.
McCORKLE, S. C., ASSISTANT. Reconnaissance in Virginia, p. 33 of Lookout Mountain Range, p. 43; reconnaissance in Alabama, p. 44
McCRACELN, ALEX., MASTER, U. S. N. Serviese in Section VII, p. 42.
MCDONNELL, THOMAS. In charge of map-room, p. 69 .
mcmertrie, late w. B. Illustrations fur final edition of Vol. I, of Coast Pilot, p. 22.
MCNELLS BAY, p. 24
MEAN OF THE TIMES OF A SET OF ORSERVATIONS. De seription of an apparatas for recording the (see Appendix No. 15).
MENDELL, G. B., COLONEL, U.S.E. Tidal observations at Fort
Point, Cal, p. 56 ; tidal and meterrological observationsat Astoria, p. 63; tidal observations at Port Townshend, p. 64.

METEOROLOGICAL OBSERVATIONS at White Head light-
huuse, p. 15; at Mount Desert Island, Me., p. 15.
meteorological researches for the use of tue
COAST PILOT (appendix 20), pp. 369-412.
MEUTH, M. C. H. Draw ing Division, Coast Survey Office, p. 68.
mexico, gUlf of. Dapth of water at junction with the Missis.
eippi River, p. 45; hydrography of, p. 46.
MIDDLETON ISLAND, ALASKA. Observations for latitude, time, and azimuth at, p. 65.
MINERAL SPRINGS discovered is several conntiea of Alabama, p. 44.

MISSISSIPPI. Survay of Gulf coast and soundsof, including ports and rivers, Section VIII, p. 45.
MISSISSIPPI RIVER. Mouths of the, pp, 45, 46; survey of the, at New Orleans, p. 47 ; report on recent observations at South Pass Bar (see Appendix No. 11), pp. 189-193.
MISsourl. Triangulation in, p. 48.
MISSOURI RIVER, p. 48.
mitchell, henry, assistant. Sarvey of Providence Harhor, R. I., p. 18; physical survey of New York Harbor, p. 26; serv. ices at noutbs of the Mianissippi River, p. 45 (see Appendix No. 11), pp. 189-193.

MOHICAN, CONN, p. 19.
MOLKOW, E. Engraving Division, Coast Survey Offee, p. 68.
MONOMOX, MASS., p. 2. Hydragraphy west of, p. 17.

MONTAUK LIGET-HOUSE. Position of, determined, p. 20.
MONTEREY BAY, CAL., p. 54.
MONTGOMERY, ALA., p. 44.
MOORE, FRANK. Division of Cbarts and Instrumente, Coast Survey Office, $p .69$.
MORRISON, G. A., AID. Services in Section II. p. 25 ; Section VI, p. 40.

MORRO. Fog-signal proposed on the, p. 55.
MORSE'S COVE, p. 14.
MOSMAN, A. T, ASSISTANT. Triangulation in Virginia, p. 32.
MOSQUITO INLET, FLA., p 38.
MOSQUITO LAGOON, COAST OF FLORIDA., p. 38.
MOUST AIRY, CHICKAHOMINY RIVER, VA., p. 3 t .
MOUNT CRILLON, p. 64 ; correct estimate of height, p. 66 .
MOUNT DECATUR, CONN., p. 19 .
MOUNT DESERT ISLAND, p. 2; topograpby and hydrography of, pp. 12, 13; meteorolggical obs-rvatious at, p. 15.
MOUNT DIABLO. CAL., p. 56.
MOUNT DIFFENBACK, CHATHAM ISLAND see Appendix No. 14), pp. 231-248.
MOUNT EQUINOX, p. 23.
MOUNT FAIRWEATHER, A LASKA, pp. 64, 65; correct entimate of heirht, p. 66. (See Appendix No. 10, pp. 157-18e,
MOUNT HOPE BAT, MASS., p. 18.
MOUNT MARSHALL, RAPPAHANNOCK COUNTY, VA., p. 32. MOUNT MERINO, N. Y., p. 24.
MOTNT MISERX, p. 22
MOUNT RAFINESQUE. Sigual erected on, p. 23.
MOUNT ROSE, CAL., p. 57 .
MOTNT SHASTA, CAL pen. 56, 57, 62.
MOUNT SAINT ELIAS, ALASKA, p. 65; correct estimate of
beight, p. 66; report on (8ee Apperdix No. 10), pp. 157-188.
MOUNT TOM. Signal erected on, p. 20.
MOUTHS OF THE MISSISSIPPI RIVER. Survey of, ple 45. 46.
MUIR, JOHN. Geologital and botanical cbaracteristics of Monut
Shasta recorded by, p. 62.
MUSQUIT BAy, TEX. Hydragraphy of, p. 49.
MYSTIC LIGET-HOUSE. Position of, dotermined, p. 20 .

N .

NAGASAEI, JAPAN. Station at, to obserre the transitiof Venus. p. 8; difference of longitude betwern Tokio and, p. 50.

NANTUCKET LIGHT-HOOSE p . 17.
Nantucket sound, p. 17.
NAPEAGUE baf. Harbor of, p. 22.
NASKEAG POINT, p. 13.
NATIONAL MCSECM. Contributions of Assistant Chase in, p. 51
NAVARRA RIDGE, CAL. p. 59.
NA WO-TOSHI YANAGI. Chief of burean of bydrography of navs of すapan, p. 50.
NEHALEM RIVER, OREG. Triangulation and topography of pp 62, 63.
NES, F. F., ASSISTANT. Hydrograply of Now Tork Bay. p. 27; triangulation, topography. and hydrography in Delaware River pp. 24, 30.
NESSEL, L. Tidal observations at Port Tomensend, Wabb. Ter., p. 64.

NEUSE RIVER, N. O. Rescne of seamen at nonth of, p. 33 .
NEWARK BAY, N. 1., p. 22.
new brunswice, N.J. Proposed station near, p. 28.
NEW CASTLE, DEL. Setting up of tide-gaugo at, p. 30 .
NEW HAMPSHIRE. Trianghiation ip, pp-2,16; coast of, p. 12 .
NEW HAVEN HARBOR. Survey of, p. 20; descriptions and notes relative to, $p .22$.
NEW JERSET. Survey of, p. 19; reconmairsance in, p. 22.
NEW TERSEY NORTHERN RALLROAD, p. 25.
NEW LONDON, CONN., p. 19.
NEW LONDON HARBOR, p. 22.
NEW ORLEANS. Survey of river at, p. 47; topographical survas near, p. 47.
Neffrort bay, hear Point Labuen, Cal. Triangulation, topog raphy, and hydrography at, p. 51 .
NEW TORK Survey of, p. 19; State bondary triangnlation, p. 23. NEW YORK BAY, pp. 22, 23; hydrography of, p. 27.
NEW YORK HAEBOR. Tidal observations at, p. 8; friangolution of, p . 22; physical survey of, pp. 26, 27; discussion of tiden in (see Appendix No. 12).

xvi

ALPHABETICAL INDEX.

NICHOLS, H. E., LIECTENANT, U. S. N. Services in Hydro. graphic Difision, pp. 11, 67; Coast Survey Office, p. 67.
NICHOLL'S POINT, LONG ISLAND, N. F., p. 28.
NILES, KOSSTTTH, MASTER, U. S. N. Services in Section I, p. 13 ; and services in Section VII., p. 42.
NISSEN, H. Division of Charts and Instraments, Cosat Survey Office, p 69.
NOONDAY ROCK. To be removed by blasting, p. 7; buoy placed on, p. 55.
NOONDAX (ship). Wrecked on rocks near North Farallon, p. 55.
NOETH ADAMS, MASS. Pendulum observations at Hoosac Mountain, near, p. 19.
NORTH BAY, ME., p. 15.
NORTI CAROLINA. Section IV, coasts and sounds, including seaports and rivers p. 33.
NORTHEAST KEY, formerly on coast of Florida, now under water, p. 39.

NORTH FARALLON. Dangerous rocks near, p. 55.
NORTH, F. H., AID. Services in Section I, p. 14; and in Section Vi, p. 40 .
SORTH HAYEN (Penobscot entrance), pp. 2, 15.
NORTH HUMMOCK LIGHT-HOTSE. Hosition of, determined, p. 20.

NORTH KEY, formerly on the coast of Florida, now under water, p. 39.

NORTH RIVER, N. C., p. 34.
NORTHWEST BAY, p. 24 .
NORTHWEST HARBOR, ALASKA, p. 65.
NORTHWEST POINT, LONG ISLAND SOUND, p. 22.
NORWICH, CONN., p. 19.
NOTO RIVER, CAL., pp. 58, 59.
NUNIVAK ISLAND, ALASEA, p. 65.
NYE, F. C., MaSTER, U. S. N. Services in Section VI, p. 37.
0.

OAKLAND FLATS. Sonndinga between the sboal off of and Yerba Buena Ialand, p. 55.
OAK POINT. Survey of, Colambia Riter, p. 63.
OBITUARIES OF PROFESSOR WINLOCK AND MESSRS.
KNIGHT, KONDRDP, AND BARNARD, p. 10.
OBSERVATLONS AT SOUTH PASS BAR, MISSISSIPPI RIVER. leport on recent (see Appendix No. 11), pp. 189-193.
OBSERVATIONS, MAGNETICAL. Instructions for (see Appent.
dix No. 16), pd. 254-278.
OBSERVATORY AT TOKIO, JAPAN. Instraments ordered for an, p. 50.
OBSERVATORY FILL, HANOVER, MASS., p. 16.
OCLLLA RIVER, COAST OF WEST FLORIDA. Hydrography and topograpliy of, p. 41.
OFFICE WORK, ENUMERATION OF, p. 5. Estimates for Atlan-
tic and Gulf coants, pp. 5, 6; estimates for expenses of Pacific coast, p. 6.

OFFICE WOLK OF THE UNITED STATES COAST SURVEY during the year ending December 31, 1874. Statistics of field and (see Appendix No. 2), pp. 79, 30.
OGDEN, H. G., ASSISTANT. Survey of Thames River, Conn., pp. 19. 20; triangulation and topography of the Tortugas, pp. 38, 39.

OGDEN, S. N., AID. Serviees in Section I, p. 13; and in Section V, p. 35.

OHIO. Reconnaiseanco in sevaral connties of, p. 44.
OFIO RIVER. Relative to points for triangulation in Va., p. 33; reconnaissance near, $p .44$.
OHD COLONY AND NEWPORT RAILROAD, p. 18.
OLDFIELD LIGHT-HOUSE, p. 22.
ORDNANCE BUREAU OF TEE UNITED STATES NAVY DE-
PARTMENT. Request from, for special sarvey of Craney Iblaud, Va., p. 31.
OREGON. Sunken rocks developed opposite boandary-line of Cali. fornis and, p. 7 ; survey of coast of, including bays, porta, and rivers, Section XI, pp. 62-64.
ORLAND, ME., p. I4.
OVER, FRANK. Electrotyping and Photographic Diviaion, Coast Sarrey Ofice, p. 68.
OWL'S HEAD ITGHT-HOUSE, ME. Height mbove tide.water ascertalned, $p .15$.
OFSTER BAY, p.
OYSTER POINT. Survey of New Haven Harbor, p. 20.

OYSTER POND POINT. Change of ehore at, p. 52. OYSTER POND REEF. Shoal reported near, p. $\& 2$. OYSTER REEF, GA., p. 36.
P.

PACIFIC COAST. Estimetes for general expenses of the, pp. 5,6 ; for field and office work, p. 6.
PACIFIC COASTS OF THE UNITED STATES DURTNG THE SURVEYING SEASON OF 1874-75. Diatribation of aurveying parties upon (see Appentix No. 1), pp. 73-78.
PACKARD, PROFESSOR A. S. Examination of specimens of dredging from Platt's Bank, p. 17.
PADDY'S KNOB, HIGHLAND COUNTY, VA. Station at, p. 33. PAGE, PROFESSOR W. BTRD, p. 45.
PALFRET, R. B., AID. Services in Section I, p. 15 ; and in Section II, p. 30.
PALINURUS (schooner). Dse of in Section II, pp. 21, 22.
PALISADE RIDGE, N. J. Survey along edge of, p. 25.
PALMASOLA BAT, FLA. HYdrography of, p. 39.
PAMPLICO SOUND, N. C. Triangulation of pp. 33, 34; topography of, pp. 34, 35; hydrography of, p. 35.
PAMPLONA BANK, ALASKA. Soundings on, p. 65.
PANTHER KNOB, PENDLETON COUNTY, VA., p. 33.
PARIS, S. C., p. 44.
PARSONS, F. H., AID. Services in Section I, p. 13; and Section LII, p. 32.

PARTIES UPON THE ATLANTIC, GULF, AND PACIFLC COASTS OF THE UNITED STATES DURING THE SUR. VEFING SEASON OF 1874-75. Diatribution of surveying. (See Appendix No. 1.)
PASQUOTANK RIVER. Survey of Pamplico Sound, p. 34.
PASS A L'OUTRE, mouth of Misaissippi River, pp. 45, 46.
PATCHOGUE, LONG ISLAND, p. 28.
PATTERSON, C. F., SUPERINTENDENT UNITED STATES COAST SURVEX, submitting report of 1874-75 to the Hon. B. H. Bristow, Secretary of the Treasury, pp. 1-69.
PAXTON'S POTNT, p. 24.
PAXNE'S MOUNTAIN, FAYETTE COUNTY, VA., p. 33.
PEA ISLAND, EAST SIDE OF PAMPLICO SOUND, N. C., pp. 33. 34.

PECK, MASTER R.G., U. S. N. Services in Section VIII, p. 47.
PECONTC BAY, p. 22.
PEIRCE, PROFESSOR B. Direction of pendulum observations at Hoosac Mountain, p. 19.
PEIRCE, ASSISTANT C. S. Pendulum observationa at Hoosac Mountain, y. 19. (See Appendix No. 15.)
PENDLETON, A. G., AID. Servioes in Section II, p. 24; and in Section VII, p. 42.
PENDULUM OBSERVATIONS AT HOOSAC MOUNTATN, p. 19.
PENINSULA POTNT, CAL. Soundinge off of, p. 56.
PENNSYIVANIA. Section Il, p. 19 ; geodetic survey of, p. 30.
PENOBSCOT BAY. Survey of, p. 2; hydrography of, p. 15; topog. raphy of islands in, p. 14.
PENOBSCOT ENTRANCE, p. 2; soundinge near, p. 15.
PENOBSCOT RIVER, p. 2; soundings in, p. 15.
PENEOSE FERRY BRIDGE, SCHUYLKILL RIVER. p. 30.
PEPPER KEYS, COASI OF WEST FLORIDA. Hydrography and topography of, pp. 41, 42.
PERKINS, F. W., ASSISTANT. Determinations of the coefficients of refraction, pp. 15,16 ; services, p. 23 ; hydrography and topogra. phy between Pepper Koys and Ocilla River, Fla., pp. 41, 42.
PERKY'S PEAK, p. 23.
PERTE AMBOT, N.J., p. 22.
PETERSON, A. Engraring Divigion, Coast Survey Otfice, p. 68.
PETRE BAY, CHATHAM ISLAND (
pp. 231-248.
PHELPS, THOMAS S., CAPTAIN, U. S. N. Information relative to channela in the waters of Alaska, p. 66,
PHILADELPHIA, EENN. Survey in ricinity of, p. 30.
PHOTOGRAPHY AND ELECTBOTYPING. Report upon (e日e Appendix No. 6), pp. 67, 88.
PHYSLCAL SURVEX OF PROVIDENCE HARBOR, R. I, p. 18; of New York Harbor, pp. 26, 27.
PICKERINGS ISLAND, p. 14.
PLLOT HILL, CAL., p. 57.
PINE HILL, CAI., p. 57.

PINE LOG MOUNTAIN, GA., pp. $42,43$.
PINE POINT, LONG ISLAND, p. 22.
PINNACLE, S. C. Signal at, p. 44.
PLACENTIA BAT, p. 17 .
PLATES COMPLETED, CONTINUED, OR BEGUN, DURING THE YEAR 1874-75. Engraving Division. See Appendix No. 5.
PLATT BANK DISCOVERED OFF COAST OF MAINE, pp. 7, 16, 17.
PLATT, ROBERT, AOTING MASTER, T. S. N. Services in Sec tion I, p. 16; nocice given of subken wreck off Baruegat, p. 29; serciees in Section VI, pp. 38-41; Hydrographic Division, Cuast Survey Office, $\mathbf{p} .67$.
PLEASANTS, E. B. AID. Services in Section II, p. 29, and in Soction IX, p. 49.
PLUM GUT BEACON. Position determined, n. 20.
YLUM ISLAND, LONG ISLAND SOUND, N. Y. Hydrography near, p. 21; changes in shore of, p. 2 .
PLUM ISLAND LIGHT-HOCSE. Position determined, p. 20.
POINT ADAMS, p. 62.
POIN'I ARENA, CAL, pp. 54, 59.
POINT CABRILLO, CAL., p. 58.
POINT CAVALLO, CAL. Soundinge off, p. 56.
POINT DUMA, CAS., p. 51.
POINT GORDA, CAL. Hydrography of, p. 58.
POINT JUDITH, p. 22.
POINT PINELOS. Triangulation of Tampa Bay Fla., resumed at p. 3 .

POINT SAINT GEORGE, CAT. Copy of survey of, forwarded to the Light-House Board, p. 60.
POINT SAN LUIS, QAL. Three sunken rocks dangerous to navigation near, pp. 7, 54.
POINT SDR, CAL. Topography of, p. 54; wreck of the Ventura on rocks north of, p. 55.
POLARIS. Observations on, pp. 23, 24, 43, 44.
POND ISLAND, p. 14.
PONQUOGUE LIGHT-HOUSE. Position determinad, p. 20.
PORT ETCHES, ALASKA. Obgervationsat for latitude, time, and azimnth, p. 65.
PORT HENRY, N. Y., p. 24.
PORT JEFFERSON, LONG ISLAND SOUND, Survey of, pp. 22, 23.
PORT MOLIER, ALASKA, p. 65
PORT MTLGRAVE, ALASKA. Evidences of the murder of a boats' crew in 1870 at, p. 65
PORT PENN, DRLAWARE BAY, p. 29.
PORT TOW NSREND. Tidal observations at, p. 64.
POTOMAC RIVER. Triangulations near Washington City across the, p. 32.
POTTERSVILLE, MASS., p. 18.
POWALKY, C. Computing Division, Coast Survey Office, p. 6\%.
PRAIRIE DU CHIEN. Reconnaibannce in Wigoonsin near, p. 48.
PRATT, I. F., AID. Services in Section II, p.23, and in Section VII, p. 42.

PRETTY MARSH HARBOR, pp. 12, 13.
PRICE'S INLET, S.C., p. 35.
PRIMARY TRIANGULATION OF GGORGIA, p. 43.
PRISONER'S HARBOR, CAL., p. 52
PROMONTORY SPTRR, Pacific coast, p. 5\%.
PROVIDENCE, R. I. Request for survey by oivil authorities of, pp. 18, 27.
PROVIDENCE GARBOR, R. I. Soundinge in, p. 2; Physical Survey of, pp. 18, 19 ; Call for Saryey of, p. \&7.
PUDDING CREEEK, CAI. Closea during dry season, p. 59.
Q.

QUIMBY, PROFESSOR E. T. Triangnlation in Now Hampelire, p. 16; canferente relative to New York benadary triangalation, p. 123.

QUINNIPIAC. Special survey of Drummond's Bank in the, p. 80. R.

RACE POINT LIGHT-HOUSE. Poaition determined, p. 20.
RAOE ROCK LIGHT.HOUSE. Under constrnction; position determingd, p. 20.
RAGGED MODNTALN, ME. Heightabove tide-water agoortained, pp. 15, 16, 23.

RAD, W. H. second assiatant photographer on expedition to ob serve the transit of Fenus at Chatham Island (see Appendix No. 14.) pp. 231-248.

RAYNOLDS, GENERAL. Light.honee ongineor at Philadelphia, p. 30.

RAT, W. P., MASTER, T.S. N. Servicesin Section IV, p. 35.
RECONNAISSANCE, in New Jersey, p. as; along the Blue Ridge, Va., p. 38 ; in Alahama, p. 44; and in Kentucky, p. 44.
RED BLUFF, near entrance to H nmboldt Bay p. 5 s.
REDDING'S ROCK, CAL., 94 feet out of water, pp. 60,61.
REEDY ISLAND LIGHT-HOUSE, p. 99.
REPORI CPON ELECTROTYPING AND PHOTOGRAPHING (ser Appendix No. 6), pp. 87, 88; upon the telegraphic determination of the longitude of Key West (Appendix No. 9), p.139-156; on Mount Saint Eliug, Alaska (Appendix No. 10), pp. 157-168; on recent ohservations at South Pass Bar, Missiseippi River (Appendix No. 11), pp. 189-193; on the Transit of Venus expedition to Japan, 1874 (Appendix No. 13), pp. 222-230; on the Transit of Venus expedition to Chatbam Islaud, 1874 (Appendix No. 14), pp. 231-24E ; on certain harbor and river improvemente of Chins, Egypt, Ithy, Holland, and Great Britain (Appendix No. 18), pp. 293-314.
RESEARCH (schomer). Use of, in Section II, p. 26, and in Section VIII, pp. 45, 46.
RESEARCHES, METEOBOLOGICAL, for the use of the Coast Pilot (see Appendix 20), pp. 369-412.
RHODE ISLAND. Survey of coast of, P. 12.
RICHARDSON'S BAE, CAL. Soundiuge off of, p. 50.
RICKARD, W. W. Harbor commissioner of Prowidence, R. X., p. 18.
RING, F. W., AID. Services in Section I, p. 15, and in Section YII, p. 42.

RIO GRANDE. Character of aoundinge between Southwest Pass and, p. 47.
RITTENHOUSE, H. O, MASTER, U.S. N. Services in Section VII p. 42.

ROANOKE ISLAND. Station established on west side of, p. 34.
ROANOKE MARSHES LIGHT-HOUSE, visited by Assistant Fair* field, pp. 33-35.
ROCKS DEVELOPED, pp. 7, 16; at entrance to Gardiner's Bay, p. 21 ; Beebe Rock, Long Island Sound, p. 22; in Tampa Bay, p. 40 ; in San Luis Obispo Bay, p. 54; off Point Sur, p. 5s ; Noonday Rock, p. 55 ; off Cape Mendocino, p. 56 ; in the anchorage of Crescent City Harbor, p. 61; abreast of California and Oragon State lino, p. 61.

ROCK HARBOR, p. 24.
ROCK WELL, C., ASSISTANT, Topograpby of Point Sur, Cal, pp. 54, 55 ; survey of Columbia River, p. 63.
ROCKY BLUFF, CAL. Rocks developed selath of, p. 54.
ROCKY PUINT, CAL. Completion of coast triangulation between Klamath River and, p. 60.
RODGERS, A. F., ASSISTANT. Relative to rocks off Cape Mrendocino, p. 57; topography of coast of California, pp. 53-60; sarvey of Noonday Rock by, p. 55.
ROME, GA., p. 43.
ROSE (cutter). Use of, in Section II, p. 30
ROUSE'S POINT, N. Y. Latitude and azimnth si, pp. 23, 24.
ROMPF, G. Computing Division, Coast Survey Office, p. 66.
RUSH, R., IIEUTENANT, U.S. N. Servicos in Seotion I, p. 12.
RUSSIAN RIVER. Closed during the dry semson, p. 59.
KYNDERS, HENRY. Seaman of the Endeavor; honorablemention of p. 88.

S.

SACHEM HEAD, L. I., p. 22.
SAEGMULLER, G. N. Inatrument-maker, Coant Snrvey Office, p. 69.

SAGADAHOCK (steam-launch). Use of, in Section I, p. 13.
SAINT ANDREW'S POINT, FLA., p. 42.
SAINT AUGUSTINE, RLA, Coast hydrography near, pp, 37, 38. SAINT AUGUSTLNE HARBOR, FLA. Increase in depth of chamel, pp. 7, 37.
SATNT CHARLES BAY. Development of, $p 49$
SAINT CLALE COUNTY, ALA. Mineral spring found in, p. \&1.
SAINT GEORGE, ALASKA, p. 65
SAINT GEORGE ISLAND, FLA. Tide-gange established itshore of, $p .42$.
SATNT HELENA SOUND, S.C., p. 36.

ALPAABETIOAL INDEX.

SAINT JOSEPH'S BAY, FLA., p. 42.

SAINT LOLIS, MO. Triangulation near, p. 48 .
SAINT PAUL, ISLAND, of the Pribyloff group, Alaska, p. 65.
SAINT THOMAS, WEST INDIES. Tidal observations at, p. 41.
SAINT VINCENT ISLAND, FLA., p. 42.
SALISBURY COVE, p. 13.
SALMON CREEK, north of Bodega Head, Gal., p. 59.
SALT LAKE CITY, p. 5 .
SAN ANTONIO BAY, p. 49.
SAN ANTONLO CREEK, $p .56$.
SAND FILLL STATION. Observations for azimath at, p. 59.
SAN DIEGO, CAL., pp. 51, 54.
SANDS' POINT, p. 13.
SANDY HOOK. Proposed tide-gange at, p. 28.
SAN FRANCISCO, CAL. Offico work at, p. 53.
SAN LUIS OBISPO, CAL. Hydrography of, pp. 53,54.
SANNAKH REEES. Observations for detergining the position and dangers of, $p .65$.
SANTA BARBARA GROUP OF ISLANDS, pp. 52, 53.
SANTA BARBARA CBANNEL, p. 51. Triangulation across, p. 53. SANTA CATALINA ISLAND, CAL., p. 52.
santa cruz island, cal. Submarine cañon developed off of, p. 7; topography of, pp. 51, 52; hydrography around, p. 52.

SANTA MONICA BAY, CAL., p. 51.
SARATOGA, N. Y., p. 23 .
SAUCELITO, CAL., p. 56.
SAVAGE, E. C. Survey of New Haven Harbor, p. 20.
SAVANNAH RIVER, GA. Hydrography of, p. 36 .
SAYBROOK HARBOR CONA., p. 22.
SCHAEFER, H. W., MASTER, U. S. N. Services in Section VIL, p. 42.

SCBOONERS REQUIRED FOR COAST SURVEY DUTY, p. 1.
SCBOTT, ARTEUR. Charge of library and clerical work in Draw. ing Division, Coast Survey Office, p. 68.
SCHOTP, CHARLES A., ASSISTANT. Magnetic observations on Capitol Hill, Washington, D. C., p. 32; in charge of Computing Division, Cosst Survay Office, p. 66; relative to Atlanta baseline p. 67 ; report upen the telegraphio determination of the longitude of Key Weat (eee Δ ppendiz No. 9), pp. 139-156; terreatrial magnetism, instructiond for magnetical observations (see Appendix No. 16), pp. 254-978; the cloning of a circuit of triangulation (see Appendix No. 17), pp. 279-292
SCHUMACHER, PADL. Agent of the Smithsonian Institution' p. 53.

SCHUYLERVILLEE, N. Y., p. 23
SCHUYLKILL RIVER. Survey for placing beacons at entrance to, pp. 29, 30.
SCORESBY (echooner). Uee of, in Section I, p. 13, and in Section MI, pp.31, 32
SCOTT, ALBERT H., AID. In party sent to observe the transit of Venus at Chatham Island, p. 9 (see Appendix No. 14f, pp. 231-248. SEA ENCROACHMENT AT HUNTING ISLAND, S. C., p. 36.
SECTIONS OF WORK AS AREANGED IN REPORT. Section I, pp 12-19; Section II, pp. 19-30; Seotion III, pp. 31-33; Section IV, pp. 3s-35; Section V, pp. 35-37; Section VI, pp. 37-41; Section VII, pp. 41-45; Section VIIL, pp. 45-49; Section IX, p. 49 ; Section X. pp. 50-62; Seotion XI, pp. 62-64; Section XII, pp. 64-60.

SEDGINOT, p. 13.
SEEBOHM, LOUIS. Cbief photographer on expedition sent to ob. serve the transit of Venus at Chatham Island (see Appendix No. 14), pp. 231-248.

SEEKONK RIVER AND PROVIDENCE HARBOR. Special aur. veys of, pp. 2, 18.
SEMIDI ISLANDS. Obnervatione for latitude and azimuth at, p. 65.

GENGTELLERE, A. Ingtaving Dirision, Coast Survey Offica, p. 69.
SENGTELLLKR, 1. A., ASSISTANT. Hydrography of San Luio
Obispo Bay, Cal, pp. 53, 54; eurvey of Ten Mile River, Cal., p. 59.
SETADEET HARBOR, p. 22
SEWALL MOUNTAIN IN TEE REGION OF THE KANAWHA River, Va., p. 3 :
SHWELL, W. E., ENSIGN, U.S.N. Services in Section VIII, p. 47 . SHALER, PROFFSSOR,N. S. State geologiat of Kentacky, p.44. SHEETS. Original topographic, registered in the Arohives of the United Statea Coant Survey from Jennary, 1834, to July, 1875, Nos. 1 to 1378, tmoluaive (bee Appendix No. 7) pp. 99-114; original
hydrographic, registered in the Archives of the United States Coast Survey from January, 1835, to July, 1875, Nos. 1 to 1244, iuclasive (see Appendix No. 8), pp. 115-138.
SHEFFIELD SCIENTIFIC SCHOOL, CONN., p. 20.
SHEFFIELD ISLAND HARBOR, p. 22
SHELBURNE BAY, p. 25.
SHELTER COVE, CAL., p. 59.
SHELTON COVE, CAL., p. 58
SHENANDOAE RIVER. Triangulation in Virginia, p. 33.
SHETUCKET RIVER, CONN., p. 19.
SHIDY, L. P. Tidal Divibion, Coadt Survey Offee, p. 67.
SHOAL POINT, Pamplico Sound, N. C., p. $\mathbf{3 5}$.
SHOALS DEVELOPED. Section I, p. 15; atentrance to Gardiner's
Bay, p. 21; off Block Island, p. 2L; between Pine Point and Oyster
Pond Reef, L. I., p. 22; off South Farallon Island, p. 55.
SHOALWATER BAY, p. 62.
SHORE-LINE SURYEY OF LAKE CHAMPLAIN, p. 24.
SEUBRICK (cutter). Use of, in Section X, p. 5.5.
SHUMAGINS, ALASKA, p. 65.
SIEBERT, S. Engraving Division, Coast Sarvey Office, p. 68.
SIGSBEE, C. D., LIECTENANT COMMANDER, U. S. N. Deep-
ses soundings off Cashe's Ledge, p. 12; hydrographio surver at
mouths of the Mississippi River, pp. 45, 46; hydrography of Gulf of Mesico, pp. 46, 47.
SILLIMAN (schooner). Use of, in Section I, pp. 12-16, and in Sec tion VII, $\mathbf{p} .42$.
SINCLAIR, C. H., AID. Services in Section II, pp. 25, 30.
SIPE, E. H. Engraving Division, Coast Sarvay Office, p. 68.
SISTER ROCK, CAL., p. 60.
SITKA, ALASKA. Coast reconaaissance at, p. 64.
SKIT'T MOUNTAIN, GA., p. 43.
SLOOP POINT, JAMES RIVER, VA., p. 31.
SMITH, EDWIN, SUBASSISTANT. Chief of party sent to observe the trandit of Venus at Chatham Island, Paciac Ocesn, p. 9; report of observations at Chathan Ialand, 1874 (see Appendix No. 14) pp. 231-248.
SMITHSONIAN INSTITUTION. Facilities of traneportation afforded to observers for, $\mathbf{p} .53$.
SMITH'S RIVER ENTRANCE, pp. 60, 61, 63.
SNOW MOUNTAIN, CAL., p. 57 .
SOMERAET, MASS., p. 18.
SOUTHAMPTON SHOAL, CAL., p. 56.
SOUTH BAY, LAKE CHAMPLAIN, p. 25.
SOTTTH BAY, ME., p. 15.
SOUTH BUTTE, CAL., p. 56.
SOUTG CAROLINA. Survey of coast and sea-water channels, including sounds, harbors, and rivers. Section ∇, pp. 35-37.
SOUTHEAST BEACON, SAVANNAF RIVER, Gd., p. 36.
SOUTH FARALLON. Rook developed off, pp. 7, ड5.
SOUTH PASS BAR, MISSISSIPPI RIVER. Report on recent observations at (see Appendix No. 11), pp. 184-193.
SOUTH PASS OF THE MISSISSIPPI RIVER. Appropriation for deepening, pp. 45, 46, 47.
SOUTHWEST KEY, formerly on the coast of Florida, now under water, p. 39.
SOUTHWEST SPIT, NEW TORK GARBOR, p. R7.
SPAUlding, J. G. Tidal observations at North Haven, Me., con tinued, p. 15.
SPEAR MOUNTAIN, VA., p. 33.
SPECIAL SURVEY OF CRANET ISLAND, VA., p. 31.
SPEEDWELL (swhouner). Use of, in Section VI, pp. 39, 40.
SPRANDEL, J. Hydrographic Division, Coast Survey Office, p. 67. SPRING GREEN, WIS., p. 49.
SPRUCE HEAD, p. 14.
STAR ISLAND. Rock developed between Half-way Rock and, p. 16. STATEN ISLAND. Survey in vioinity of, p. 22.
STATE GPRLNG, BOCKINGHAM COUNTY, VA., p. 33.
STATION MARKS. Inspection of, in vicinity of New Fork Har. bor, pp. $\mathbf{2 5}, 26$.
SEATISTICS OF FIELD AND OFFICE WORK of the United States Coast Sarvey, duxing the year ending December 31, 2874, (see Appendix No. 2), pp. 79, 80.
STEADFAST (eloop). TVe of, in Section VI, p. 38.
GTEAMERS REQUIRED FOR COAST SURVEY USE, p. 1.
STEARNS, W. H., ATD. Services in Seetion I, p. 18.
STEEP BROOK VILIAGE, MASS., p. 18.
steinhatchee river, west fla., p. 41.
STEWART, C. SEAFORTH, LIEUTENANTCOLONEL, U. S Corps of Engineers. Engaged in removal of Noonday Rock, off Oregon cosst, pp. 7, 8, 55.
STEWART, G. A. Division of Charts and Instrumente, Coast Survey Oftice, p. 69.
STONINGTON HARBOR, CONN., p. 22.
STOTT, F- H., VICE-COM MODORE, of Brooklyn Yacht Clab, conrtesy and eervies extended to officers engaged in survey of Long Island Sound, p. 21.
STUMPY POINT, coast of North Carolina, p. 33.
SUBMARINE CANON developed off Santa Cruz Ibland, Pacific coust, p. 7.
SUESS, W. Mechavician in Coast Survey Office, p. 69.
SULLIVAN'S ISLAND, S. C., p. 35.
SOLLIVAN, J.A., ASSISTANT. Tribngulation, Long Island Sound, N. Y., pp. 20, 21 ; triangulation, topography, and hydrography in Delaware River, pp. 29, 30.
SUNKEN ROCKS opposite boundary line of California and Oregon, p. 7.

SUNKEN FESSELS dangerous to navigation, off Barnegat Bay, p. 29; above the bar in Schaylkill River, p. 30; wreck of Flying Dragon, San Francisco Bay, p. 55.
SURVEXING PARTIES upon the A tlantic, Gulf, and Pacific coasts of the United States, during the surveying season of 1874-75. Distribution of (sese A ppendix No. 1), pp. 73-78.
SURVEY OF HACKENSACK RIVER, N. I., p. 25; Great Sonth Bay, Long Island, N. F., p. 28.
SWATARA (U. S. ship). Use of, for transportation of Transitof, Venos parig to Chatham Island, p. 9; see, also, Appendix No. 14, pp. 231-24E.

T.

TAUNTER, SUMNER, instrument-maker to the expedition to observe the transit of Venus at Chatham Island, 1874 (see Appendix No. 14), pp. 831-248.
TALCOTT, GEORGE, LIEUTENANT, U. S. N. Services in Sec. tion X. pp. 53, 62.
TAMPA BAY. Sonndings on bar and channel, p. 7; rock developed southwest of Gadeden Point, in, pp. 7, 3e, 39; survey of, p. 39; hydrography of entrance to $\mathbf{p} .40$.
TAPP IN, CHARLES. Megnetic observations Rt Lavender Monntain, Ge., p. 43.
TASEUA STATION, p. 23.
TAUNTON RIVEir. Triangulation of, p. 2, survey of, p. 18.
TAFLOR, H. C., LIEUTENANT-COMMANDER, U.S. N., ASSISTANT. Hyarography around Santa Crua Ibland, Cal., pp. 52, 53 ; survey of ahoal off Farallon ligbtrhonse, p. 55 ; inshore hydrography from False Klmath, Cal., to Mack's Arch, Oreg., pp. 60-62; hydrography between Chetko Cove and Maok's Arch, p. 62.
TELEGRAPHIC DETERMINATION OF THE LONGITUDE OF KEX WEST, Loport upon the (see Appendix No.9), pp. 139-156.
TEN-MILE RIVER, CAL. Topography north and south of, pp. 58,59 ; olosing of, during dry beasen, p. 58.
TENNANT'S FARBOR. Height above tide-water ascertained, p. 15.

TENNESSEE RIVER. Reconnaigeance ia the vicinity of the, p. 44. TERKACEIA BAY, FLA. Hydrography of, p. 39.
TERRRESTRIAL MAGNETISM. Instrictiong for magnetioal obeervatione (see Appendix No. 16), pp. 254-278.
TEXAS. Survey of Gulf cosst of, inclading bays and rivers, Section IX, p. 49.
THAMES RIVER. CONN. Sarvey of nhores of, pp. $2,19$.
THE CLOSTNG OF A CTRCUIT OF TRIANGULATION (see Appendix No. 17), pp. 279-292.
THOMAS, M. Tidal Division, Coant Survey Office, p. 67 .
THOMPSON, J. G. Engraving Division, Coast Survey Office, p. 68. THOMPSON, W. A. Engraving Division, Coast Survey Ofice, p. 68. THOMSON, SIR WILLIAM. Tre of his deep-sea-sonnding appa. ratus, pp. 12, 46.
THROG'S MPCK. Propoped tide-gange at, p. 28.
TICONDEROGA, N. Y. Speeial uurvey of old fort and vicinity. pp. 24.2.

TIDAL DIVISION, COAST SURVEY OFFICE. Offcers of, p. 67. TIDAL OBSERVATIONS, p. 2; at New York Harbor, p. 8; st Penobsoot entrance, p. 15; at Boston, pp. 2, 17; at Monomoy, Mass, p 17; at Providenoe, 1. I., p. 19; wt Governor's Island, Now York

Harbor, p. 27; at Brooklyn, p. 28; proposed at Sandy Hook and Throg's Neck, p. 28; at Delaware City, p. 30 ; at New Castle, Del., p. 30; at Collins' Beach, Del., p. 30; at Fortrees Monroe, Ya., p. 31; at James River, Va., p. 32; at Pamplico light-house, N. C., p 35; at Savanush, Ga., pp. 36, 37; at Saint Thomas, W. I., p. 41; at Saint George Island, Fla., p. 42; at West Pass, p. 42; at New Orleans, Ea., p. 48; at Fort Point, Cal. p. 56; at Astoria, p. 63; at Port Townshend, p. 64.
TIDES IN NEW YORK HARBOR. Discnssion of (ses Appendix No. 12), pp. 194-221.
TILLAMOOK BAY, p. 62.
TILLAMOOK HEAD, p. 62
TIMES OF A SET OF OBSERY ATIONS. Description of an ap paratus for recording mean of (soe Appendix Nu. 15), pp. 249-ins.
TITTMAN, O. H., SUPASSISTANT, On expedition to observethe transit of Venus, 1874, pp. 8,9; and triangulation across the Santa Barbara Channel, p. 53.
TOM'S RIVER, N. J.. p. 28.
TOPOGRAPHIC SHEETS, original, regiatered in the Archiven of the United States Cosst Survey from January 1834, to July, 1875 (Nos. 1 to 1378, inclusive) (see Appendix No. 7), pp. 89-114.
TOPOGRAPHY of Mount Desert Island, p. 12 ; of Eggemoggin Reach, Me., p. 13; of islands in Penobscot Bay, p. 14; above Castine, Me., p. - near Buckaport, Me, p. 14; of Bagaluce Rirer, p. 15; along upeer shore of Great Sonth Bay, Long 1sland, N. Y., p. 2s; of Barnegat Bay, p. 28; in Delaware River, p. 99 ; of Craner Island, Va., p. 31 ; of shores of James River, p. 31; of Pamplice Sonnd, p. 34; of Bull's Bay, S. C., p.35; of Tortagas, Fla., p. 38 ; of Pepper Keye and Ocilla River, Fla., p. 41 ; in vicinity of New Orleans, La. p. 47 ; at Newport Bay, near Point Lasuen, Cal., p. 51 ; of Santa Cruz Island, Cal., $\mathbf{y} .51$; of Point Sur, Cal., p. 54 ; near Ten-Mile River, Cal., p. 58; near Nehalem River, Oreg., p. 62.
TORTUGAS HARBOR AND REEF. Hydrography of, pp. 4, 6, 39,47.
TORREY (schooner). Use of, in Scetion VII, p. 13.
TRANSIT OF VENUS. Helative to parties sent to observe, ppre, 9 ; return of officers to duty on coast surver, p. 50 ; expedition to Japan, 1874, report on (see Appendix No. 13), py. 222-230; expedition to Chatham Island, 1874, report on (see Appendix No. 14), pp. 231-248.
TREASURY DEPARTMENT. Relatipe to the eagraving of Centennial stock certificate for use of the, p. f8; see Appendix No. 6, p.e7. TRIANGCLATION. The closing of a circuit of (nee A ppendix No. 17), pp. 279-292; triangulation in New Hampshire, p. 16; in Long Island Sound, p. 20; on New York boundary-hine, p. 23; in Delaware River, p. 29 ; in Virginia, pp. 32, 33 ; of Pamplico Sound, N. C., pp. 33, 34 ; of the Tortugas, p. 38 ; in Gborgia, p. 42; primary, in Georgia, p. 43 ; in Missouri, p. 48; at Newport Bay, Cal., p. 51 ; acrose Santa Barbara Channel, p. $\overline{3} 3$.
TRINLDAD, CAL., p. 58.
TRINIDAD HEAD, CAL., p. 59.
TROY, N. Y. p. 23.
TURTLE MOUND, coast of Florida, p. 38.
TYBEE LIGHT-HOUSE, GA., p. 36.
TYBEE ROADS, GA., p. 36.
TYLER, G. W., LIEUTENANT, U. S. N. Services in Section X, pp. 53, 62.

U.

UNALASHKA, ALASKA, pp. 65, 66.
UNITED STATES AND CANADA. Stations on boundary-line between, p. 23.
ONITED STATES COAST SURVEY ARCHIVES. Original topographio sheeta from Jenuary, 1834, to July, 1875 (Nos. 1 to 1378, inclusive,) registered in the (see Appendix No. 7), pp. 89-114.
UNITED STATES COAST SURYEY ARCHIVES. Original hy-
drographic sheets from January, 1835, to Jaly, 1875 (Nos, 1 to 1944, inclusive), registered in the (see Appendix No. 8), pp. 115-138.
TRSAE MLNORIS. Observations on, pp. 23, 24.
USSEL CREEK, NEAR SHELTER COVE, CAL., p. 59.
V.

VACA STATION, GAL. Reconnaissance of Pacific coast, pp. 56, 57.
VAL HRRMOSA, AIA. White Sulphur Spring, noted for ita qualities at, $p .44$.
VAN ORDEN, C. H., AID. Services in Section VIII, pp. 47, 48.
VARINA (schooner). Use of, in Section VIII, pp. 45-47.
VENTVEA (Eteamship). LOss of, on rocke north of Point Sur, p. 55.

VENUS, TRANSIT OF. Arrangements for observing, pp. 8, 9; re. port of expedition to Japan for observation of (see Appendix No. 13), pp. $22-230$; report of expedition to Chatham Island for observation of (see A ppendix No. 14), pp. 231-248.
VERMILLION BAY, LA. Survey of, p. 45.
VESSELS REQUIRED FOR COAST SURVEY USE, p. 1.
VINAL, W. I., SHBASSLSTANT. Services in Section II, p.29, and in Section IX, p. 49.
VIOLET dight-house steamer). Use of, in Section IL p. 30.
VIRGINIA. Survey of coast and bays, including seaporte and riv. ere, Section III, p. 31 ; triangulation in, p. 32.

W.

WADE'S POINT, N. C., p. 34.
WAINWRIGHT, D. B., AID. Services in Section II, p. 20, and in Section VI, p. 40.
WAINWRIGHT, RTCHARD, TIEUTENANT, U.S.N. Sorvicesín Section IX, p. 49.
WALKER'S POND, $p .15$.
WALTER ELLWOOD, Preaident of American Benevolent LifeSaving Sociaty of New York. Tranemitting reward to Henry Ryuders, seamse, for saving life, p. 28.
W ASHENGTON CITY, D.C. Magnetic observations at, p. 32; triangulation uerves the Potomac River near, p. 32.
WASHINGTON TERRITORY. Coast of, including interior bays, porte, and rivera, Section XI, pp. 62 to 64.
WEASEL STATION, NEW YORK HARBOR, pp. 25, 26 .
WEBBER, If. P., ASSISTANT. Survey in North Georgia, p. 42; recomnaissance in Alabama, p. 44 .
WEEDEN, LIEUTENANT. Services at Noonday Rock, nader Lientenaut-Colonel Stewart, pp. 7, B, 55.
WEIR, J. B., ALD. Services in Section I, p. 19; in Section II, p. 26; and in Section VILI, p. 45.
W ERDEN, REED, REAR-ADMMRAL, U. S. N. Service rendered partios engaged in survey of Thamos River, p. 19 .
WERNER, T. W., ASSISTANT. Compating Division, CoastSurvey Office, p. 66.
WEST BANK CHANNEL, NEW YORK HARBOR. Resmrvey of, $p .27$.
W EST BEUFF BAY, west side of Pamplio Sound, N. C., p. 34.
WEST BEOOKVILLE, p. 15.
Westdahl, F., AlD. Services in Section X, p. 54; in Section X, pp. 56f, 57 ; in Section XI, p. 63.
WESTKRN BAY, MOUNT DESERT ISLAND, ME., p. 12.
WESTERN FLORIDA. Surveg of Gulf coant and Sounds of, Section VIL, p. 4 L .
WEST PASS, FLA., p. 42.
WEST VIRGINIA. Reconnaissance in, p. 44.
WHALER ISLAND, CAL. Rocks developerl southwert of p. 54. WHALON'S BAY, p. 24.*
WHANGAROA BAY, OHATHAM ISLAND. ATHival of expedi. tion to obeerve the transitiof Venus at, p.9; A ppendix No. 14, pp. 231-248.
WHEELER, LIEUTENANT. U. S. Corps of Engineers. Exploring expedition in Californis under, p. 53.

WHITE, CAPTAIN, DAVIJ, Civil Engineer. Facilitien extended oflioers of the Coast Surrey, p. 24.
WHITEHALL, LAKE CHAMPLAIN, pp. 24, 25.
WHITE HEAD LIGET-HOTSSE. Height above tide-water ancer. tained, p. 15.
WHITE ISLAND LIGHT-HOUSE, p. 16.
WHILING, H. L., ASSISTAN'T. Surves of Providence Harbor, expenses defrayed by civil authorities, p. 18.
WHITMORE'S ISLAND, p. 14.
WIGHT, J. M., ENSIGN, U. S. N. Services in Section V, p. 37.
WILCOX'S WHARF, JAMES RIVER, VA., p. 32.
WILKINS, G. F., LIEUTENANT, U. S. N. Navigating officer of the Swatara (see Appendix No. 14), pp. 231-248.
W ILLENBUCHER, E. Hydrographic Division, Coast Sirvey Office, 67.

WIILENEBUCHER, W. C. Hydrographic Division, Coast Survey Office, p. 67.
WILESBORO' BAT, p. 25.
WILSON, AID G. H. Services in Section XI, p. 63.
WILSON, L. Tidal observations at Astoria, p. 63.
WINDMILL POINT LIGHT-HOUSE, p. 24.
WINDOW SHADES, CHICKAEOMINY RIVER, VA., p. 31.
WINLOCK, PROFESSOR JOSEPH, late director of Harvard Col. lege Observatory. Obituary of, p. 10.
WITTERPORT, p. 15.
WISCONSIN. Reconnaissance in, p. 48.
WISCONSIN FIVER. pp. 48, 49.
WISWALL, CAPTAIN WILLIAM J. Facilities afforded offeers of the Coast Snrvey at Monnt Merino, N. J., p. 24.
WOLCOTT, ALD D. S. Services in Section ILI, p. 32.
WOODW ARD, T. P. Services in Section XI, p. 64.
WOOSTER. Signals erected at, p. 20.
WRIGHT, L. B., SUBASSISTANI. Servicesin Section II, p. 28; in Section VI, p. 38
WLRDEMANN, WILLIAM. Maker of meridian instrument deried by Assistant Davidson for observatory at Tokio, Japan, p. 50. WYVILL, E. H. Services in Section II, p. 25; in Section LX, p. 49.
\mathbf{Y}.
YANTIC RTVER, CONN., p. 19.
YARMOUTH. Deep-ser soundings off, p. 12.
YARROW. DR., U. S. A., p. 53.
Yeatman, A. Divigion of Charts and Instrumente, Coast Survey Office, p. 69.
YELLOW PINE STATION, p. 23.
YERBA BUENA ISLAND. Sounding between Oakland Flate and shoal off, p. 55.
YESOCKING BAY, PAMPLTCO SOUND, N. C., Pp. 34, 35.
YOUNG,J.J. Engraving Division, Coast Survey Office, p. 68.
TUKON (achooner). Use of, in Section X, pp. 56, 58 ; in Section XIT, p. 64.
Z.
ZUMBROCK, DR. A. In charge of Electrotyping and Photograpluing Diviaion, Conat Survey Office, p. 68 ; report apon Blentrotyping and photographing (see Appendix No. 6), p. 87,

REPORT.

Coast Surver Office,
 Washington, D. C., October 15, 1875.

Sir: In accordance with law, I have the honor to present my report showing the progress, during the year from July 1, 1874, to July 1, 1875, in the surrey of the Atlantic, Gulf, and Pacific coasts of the United States.

Field-work has been well adranced in triangulation and topography, as will be seen by the synopsis in Appendix No. 1, which states the number of surveying parties and their distribution along the coast.

The inshore hydrographs, favored by provision made in the last and the preceding Congress for the construction of several vessels, has been pushed as actively as the means allowed. More are, however, needed, as was explained in my report of last year, the laud-work being yet in advance of the inshore hydrography, and much remains to be done in the marine development oft shore.

On the Pacific coast, we have only one sea-going steamer; but the energetic naval officer in command has already decreased the arrearage in coast-soundings which was outstanding at the opening of the year 1874. It is gratifying to record also that bydrographic progress on the Atlantic coast has profited by able discrimiuation at the Navy Department in the assigument of several accomplished officers. As yet, the provision for them in vessels adapted to the work is inadequate, bat it will be kept in view as a duty to arge the construction of a few vessels in addition, to insure the completion of hydrograply in all cases in the season in which prosision is made for it by laudoperations. Apart from this aim, and as explained in previous reports, most of the smaller ressels used for prosecuting the coast-triangulation and topography are worn out. Nine, used for several years merely as quarters, have been disposed of within the present sear. The one last offered for sale, under the sanction of the Treasury Department, was twenty nine years old. Of the class of vessels here referred to, and all of which have become useless by long service, none were built under the control of the Hydrographic Dirision of the Survey. Most of them, unseaworthy for years, have served as uncom fortable quarters for parties workirg near the ports at which the hulks were laid ap.

The first direct provision by Congress for means of transit at sea adapted to the reguirements of the service took effect at the end of the year 1871, when two steam-vessels were bailt in accordance with plans furnished by the hydrographic inspector. Both of these vessels have justified my expectation in their construction. Subsequent appropriation provided for the consiruction of sereral steamers and schooners, each of which, in plan and arrangement, bas beeu the sulject of careful study in the office, based on foresight of the work in which the vessel was to be employed, whether in deep-sea soundings, ordinary inshore hydrography, or in the development of comparatively shallow bays and sounds along the southern coast. For efficiency in prosecuting the hydrography of the Pacific coast, onesteamer and two schooners are needed, and two others are requisite to replace schooners that bave been worn out in service on the Atlantic and Gulf coast.

On the 1st of October, detailed estimates were submitted for continuing the field-work aud hydrography of the coasts of the United States during the fiscal year 1876-77. As heretofore, a copy will be included in this report, preceded by a brief recapitulation, to show the assignment of parties in theoperations of the year euding Jume 30,1875 . In the body of the report, more extended mention will be made of the several items of work prosecuted in the course of the year under the following heads: Soundings in the Galf of Maine; also, on Jeffrey's Bank, Cashe's Ledge, and JefH. Ex. 81-1

REPORT OF THE SUPERINTENDENT OF

frey's Ledge; development of Platt's Bank, and of dangers to navigation near the Isles of Shoals; survey of the northwestern part of Mount Desert Island and soundings in the adjacent waters; topography of the shores and hydrography of Eggemoggin Reach; survey of numerous islands near Isle au Haut and in the eastern part of Penobscot Bay, and of the bay-shore between Castine and Bucksport, Me; soundings in Peuobscot River near Winterport; tidal obserrations at North Haven, on the Fox Islands, Penobscot Entrance ; determination of height and of co-efficient of refraction near Camden, Me., and of geographical points by triangulation in New Hampshire ; tidal observations at Boston nary-yard; bydrography westward of Monomoy Peninsula, including the vicinity of Cbatham Roads; triangulation and topographical survey of Taunton River, Mass., from Fall River to Somerset; special observations on currents and soundiugs in Providence Harbor and Seekonk River for the use of harbor commissioners; surrey of the shores of Thames River, Conu., and soundings between the United States naval station and Norwich; topography of New Haren Harbor; determiuations in position of lighthouses at the east entrance of Loug Island Sonnd; hydrography in that vicinity, and special examination for sailing-courses into the harbors between Point Judith and New York; survey of Port Jefferson and soundings in the adjacent waters; triangulation near the boundary-line between Massachusetts and New York; latitude and azimuth determined at Cheever Station, near Port Henry, at Mount Merino, near Hudson, N. Y., and at Rouse's Point; shore-line survey and bydrography of Lake Champlain extended from Four Brothers southward to Whitehall, including detailed surveys of the vicinity of Crown Point and Ticonderoga; topography of the shores of Hackensack River, N J.; angular measurements at Beacon Hill and Weasel Mountain; prelimivaries for determining points in New Jersey; observations for leducing transverse curves of velocity in the waters of Hudson River, East River, and the main channel of New York Harbor; tidal observations at that port; soundings in West Bank Channel and near Sonth West S_{p} it in New York Bay ; topography and hydrography of Great South Bay, Long Island, between Islip and Howell's Point; survey of the west side, and soundings through Barnegat Bay, N. J.; bydrography of the entrance and approaches to Little Egg Harbor; preliminaries for determining points in the eastern part of Pennsylvania; triangulation and soundings for light-house parposes in Delaware River at Liston's Tree cud near the month of the Schnylkill River; magnetic declination, dip, and intensity determined at the standard station in Washington City, D. C.; special topographical survey of Craney Island, Va., and soundings in the chaunel between it and the main shore; tidal observations at Fortress Monroe; survey and hydrography of James River from Sloop Point upward to the vicinity of City Point, and of the Chickahoming from Sbip Yard upward to Forge Bridge; primary triangulation extended southrard along the Blue Ridge to Fork Mountain; reconnaissanco from that station westward to the Kanawha; triangulation of Pamplico Sound, N. C., completed and comnected with the primary base-line on Bodie's Island; survey of the shores extended from Jumiper Bay northward and eastward to the Roanoke Marshes; hydrography of the sound extended from Shoal Point southward, including Yesocking Bay; detailed survey of the coast of Sonth Carolina, and soundings through the water-passages between C ape Romain and Sullivan's Island; preliminaries for tracing the altered shore line at Hunting Island, S. O.; hydrography of Savannah River from the bar upward to the head of Elba Island; hydrography of the coast of Florida north and sonth of Saint Augustine; surver and sounding of the inland sea-water channels south of Mos. quito Inlet, including the head of Iudian River; detailed survey of the Tortagas Islands and hydrog. raphy of the harbor and reef; triangulation and topography of Tampa Bay and hydrography of the bar and approaches; tidal observations continued at Saint Thomas, West Indies; toprography and bydrography of the western coast of Florida between Pepper Keys and Ocilla River; hydrography of the vicinity of Cape San Blas and of Saint Joseph's Bay ; triangulation and reconnaissance westward and northward of the base-line near Atlanta, Ga.; latitude, azimuth, and magnetic elements determined at primary stations in that vicinity; preliminaries for determining points in the State of Kentucky; special shore-line survey and hydrography of the mouths of the Mississippi; observations ou density and relative to the rolume of water-discharge; the bar and approaches to the delta sounded, and deep-sea lines of soundings rum in the Gulf of Mexico ; topography of the Mississippi above New Orleans; triangulation in Missouri extended westward from Saint Louis to the vicinity
of Gasconade River; reconnaissance for intercisible stations near the Ohio River; measurement of base-line at Spring Green, Wis., preliminary to the determination of points in Wisconsin; and hydrography completed in San Antonio, Musquit, and Aransas Bays, Texas. On the Pacific coast, a detailed surres of the adjacent const of California and development of the approaches and channels of Newport Bay, near Point Lasuen; topography of Santa Cruz Islaud, and hydrography of its ricinity; triangulation across the Santa Barbara Channel from Gaviota Pass; bydrography of San Luis Obispo Bay and development of dangers to navigation near Point San Luis ; special topographical survey of Point Sur for the Light House Board; tides and currents observed in San Francisco Bay; soundings between Yerba Buena and Oakland and abreast of Sancelito ; development of a shoal off the South Farallon; buoyage of Noonday Rock; inshore soundings completed between Cape Mendocino and Rocky Point ; reconnaissance for intervisible stations from the Pacific coast across the Sierra Nevada Mountains to the vicinity of Austin, Nev.; triangulation and topography north and south of Ten Mile River, Cal., completing the detailed survey between Point Cabrillo and Shelter Core; discovery and determination in position of a daugerous rock in the passage used by coasters between Blunt's Reef and Cape Mendocino; triangalation of the coast between Rocky Point and Klamath River, including the vicinity of Redding's Rock; inshore soundings extended along the coast of California from False Klamath northward to Mack's Arch, on the coast of Oregron; reconnaissance of the summitand region of Monut Shasta as a center for triangulation ; topography of the shores of Colnmbia River, Oreg., extended from Oak Point to Smith's Island; tidal observations at Astoria; triangulation and topography of the coast from Point Adams south toward Nehalem River; detailed survey of the eastern shores of Duwamish Bay, W. T., including the town of Seattle and part of Lake Union; tidal observations at Port Townshend, W. T.; survegs of harbors on the coast of Alaska, with determinations of latitude, azimuth, the magnetic elements, and observations for correcting errors in geographical positions as now appear on charts, and for the height of Monat Crillon, Mount Fairweather, Mount Saint Lias, and other prominent landmarks on the coast of Alaska.

Progress in office-work hat been kept up to that of the field-work of the preceding season. Computations of the current geodetic, trigonometrical, and tidal observations have been daly made, including the preparation of records and results for publication; tide tables for the principal ports of the United States for the year 1876 have been published; the drawing of fifty-four charts has been in progress, and of this number sixteen have been completed; twenty-nine sketches of harbors on the coast of Alaska have been drawn for publication by lithography; eleven new copperplate charts have been begun, thirty-eight have received additions by engraving, and eleven have been completed. An aggregate of 14,000 copies of charts has been issued in the course of the year. The first volume of the Coast Pilot for the Atlantic Coast, giving sailing directions for harbors between Eastport and Boston, has been published, and a second edition, illustrated by charts, is in preparation. The second volume, comprising the coast from Boston to New York; is well advanced toward publication.

ESTIMATES.

The estimates for continuing the surcey of the Atlantic and Gulf consts of the United States are intended to provide for the fellowing progress:

Field-work.-To continue the topography of the western shore and islands of Passamaquoddy Bay and its estuaries; of the const and eastord of Penobscot Bay toward Narraguagus Bay; to finish rork on the islands and slrores of Penobscot Bay and River; to continue the determination of leiguts at some of the principal trigonometrical points between Boston and the Saint Croix, and of co-efficients of refraction; to complete the bydrography of Penobscot Bay and River, and continne soundings in the coast-approaches eastward of Penobscot Bay; to continue a topographical and bydrographic survéy of Portsmouth Harbor; to make such additional triangulation as may be requisite for that and other survess on the eastern coast, and determine the position of new light-houses between Lastport, Me., and New York; to contime soundings along the coast of Maine, and other offshore hydrography between Cape Cod and Manan, and make special examination for the sailing lines for charts; to contiune tidal observations, and to make

REPORT OF THE SUPERINTENDENT OF

such astronomical and magnetic observations as may be required; to continue such topographical and bydrographic resurvess of the coast between Cape Cod and New York as may be found necessary; to continue the survey of the Connecticut River from its mouth to Ilartford; to make sach examination as may be required in New York Harbor, and such surveys in its vicinity as may be found necessary; to make, at this port, observations on tides and currents; to extend the planetable survey of the Hudson River above Haverstraw ; to continue the triangulation between the Hudson River and Lake Champlain; to make the requisite astronomical observations; to continue the topographical and hydrographic surveys of the coast of New Jersey, and the resurveys of the hydrography of Delaware Bay and River; to connect the Atlantic triangulation with that of Cbesapeake Bay, near the boundary-line between Maryland and Virginia; to complete the detailed snrvey of James River, Va., including the hydrography, and continue the plane table survey of the Potomac River; to continue southward the main triangulation along the Blue Ridge, parallel with the coast, including astronomical and magnetic observations; to contiune the supplementary bsdrography between Cape Henlopen, Del., and Cape Henrs, Va., and in Chesapeake Bay, and also the tidal observations; to measure a base-line of veritication and determine azimuthfor the coast-triangulation sonth of Cape Lookout; to make the astronomical and magnetic obser vations requisite; to coutinue the offshore hydrograply between Cape Henry and Cape Fear ; to complete the hydrography of Pamplico Sound and its rivers, and that of Core and Bogue Sounds and sound the entrance to Cape Fear River; to extend northward the primary triangulation along the eastern and southern slopes of the Alleghanies in North Carolina and Alabama; to continue the topographical and bydrographic surcey of rivers near the coast of South Oarolina and Georgia; t_{0} determine azimuth for the triangulation of the const of South Carolina and Georgia; to continue the detailed survey of the sea-islands and water passages between Charleston and Savannah, and to make tidal observations; to make a hydrographic resurvey of Georgetown Harbor, S. O., aud its approaches, and continue the offshore hydrography between Cape Fear, N. O., and the Saint John's River, Fli.; to continue southward from Canaveral the triangulation, topography, and hydrography of the eastern coast of Florida, including Indian River; to coutinue the triangulation, topography, and hydrograpby of Saint John's River; to make the requisite astronomical observations, to continue hydrography off the eastern coast of Florida from Mosquito Inlet to the southward; to continue soundiugs and observations for sea-temperatures in such parts of the Gulf Stream as may be deemed advisable, between the west end of Cuba and Nova Scotia, and dredging along the coast within the same limits, in conjunction with the United States Commission on Fish and Fisheries; to continue the astronomical and magnetic observations requisite between Cape Florida and Pensacola; to continue the triangulation, topography, and hydrography of the western coast of Florida south of Tampa Bay, and to the southward of Charlotte Harbor, of the coast of the peninsula between Tampa Bay aud Cedar Koys, and between Appalachee Bay and Pensacola; to ruu lines of soundings and make observations of sea-temperatures in the Gulf of Mexico, and derelop the hydrography of the Gulf coast included in the field-operations; to connect the trigonometrical survey of the Mississippi River at New Orleans with that of Lake Borgue and Lake Pontchartrain, and continue the trigonometrical, topographical, and bydrographic survey of Lakes Pontchartrain and Manrepas, and of the Mississippi Liver above Carrollton, La.; to determine geographical positions, and make the astronomical and magnetic observations required; to extend the triangulation, topography, and hydrography of Louisiana westward of the Mississippi delta, and coutinue the hydrography of the Galf of Mexico between the month of the Mississippi and Galreston, Tex.; to continue the triangulation, topography, and hydrography of the coast of Texas westward, between Sabine Pass and Galveston, and between Corpus Christi and the Rio Grande; to measure a baseline of verification, and make the astronomical and magnetic observations requisite between Sabine Pass and the Rio Grande; to continue the hydrograply of the approaches to the coast of Texas; to continue the determination of the positions of new light-houses and life-saving stations along the coast between New York and the Rio Grande; to continue the field-work for the description and rerification of the work for the Coast Pilot; and to coutiune the organized system of in tgetio obszrvations required for a eomplete magnctic survey.

OfFICE-WORK.-To compute results from the fieldoperations made along the Atantic and Gulf coasts, including astronomical, geodetic, geographical, magnetic, and tidal work; to continue the reproduction of the original topographical maps, and to plot the hydrographic charts; to contime the drawing of the general chart of the coast from Quoddy Head to Cape Cod, aud of Charts Nos. 1 and 2, showing the coast of Maine between Saint Croix River and Petit Mauan light-house; to continue drawing and engraving for Ohart No. 3, which includes Frenchman's Bay, Mount Desert Island, Blue Hill Bay, Isle au Hat Bay, and their approaches, also of local charts of Mount Desert Lsland, Eggemoggin Reach, and Penobscot Bay east, and to drarr and engrave the cbart of Lake Champlain; to continne the drawing and engraring of charts of Thames River and of Oonnecticut River to the head of navigation; to complete the engraving of Chart No. 7 from Seguin Islaud to Kenuebunkport, and to draw and engrave the resurrey of the entrance to Nautucket Sound including Monomoy Shoals; to draw and engrave the resurcey of the eastern entrance to Long Island Sound, and to continue work on a new chart of that sound; to complete the engraving of Chart No. 21, showing the coast between Sandy Hook and Barnegat Inlet; to continue the drawing and engraving of Nos. 22 and 23, between Barnegat and Cape May; to make additions to the charts and sketches between New York and Cape Menry ; to continue the drawing and engraving of a new chart of Delaware Bag and River, and to complete that of James River; to continue the drawing and engraving of the gencral chart of the coast between Cape Henry and Cape Lookout, and of Charts Nos. $37,39,42,43,44,45,46$, and 47 , showing parts of the Atlantic coast between Cape Heury aud Cape Lookont, inchading Pamplico Sound; to continue engraving on the general chart of the coast between Cape Hatteras and Cupe Romain, and the drawing and engraving of that of the coast between Cape Romain and the Saint Mary's River, and of Charts Nos. 51 and 52, between Oape Fear and Winyah Bay; to continue the drawing and engraving of a new chart of Georgetown IIarbor, S. C., and to make allitious to the charts between Cape Henry and the Saint Mary's River; to continue the drawing and engraving of the general chart of the coast from Saint Mary's River to Cape Canaveral, and of Charts Nos, 59 and 60, from Saint Augustine to Cape Canaveral, and make additions to the charts of the coasts between Saint Mary's River and Cape Florida; to continue the drawing and engraving of Charts Nos. $80,81,82,83,84,85,86$, and 87, showing the Gulf coast between Chassahowitska River and Pensacola Entrance, and of the charts of Tampa Bay ; to engrave the chart of Saint Joseph's Bay and the chart of Saint Audrew's Bay; to complete the drawing and engraring of Charts Nos. $91,92,93,94$, and 95 , showing Lake Borgne, part of Lake Pontchartrain, Isle au Breton Sound, and the Mississippi River between New Orleans and the Gulf of Mexico, and the general chart showing the sea-approaches to the Mississippi River; to continue the drawing and eugraving of the general chart of the coast of Lonisiana and Texas from Atchafalaga Bay to Galveston; to continue the drawing and engraving of that between Galveston and the Rio Grande, ayd of Charts Nos. 109 aad 110, Aransas Bay, Copano Bay, aud Corpus Christi Bay; for material for drawiag, engraving, minp-printing, for electrotyping, photographing, for instruments and apparatus.

Total for the Atlantic and Gulf coasts, involving work on the coast of the following States, viz, Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Penusylvania, Delaware, Maryland, Virginia, North Carolina, South Carolina, Georgia, Florida, Alabama, Mississippi, Louisiana, and Texas, will require $\$ 330,000$.

The estimates for continuing the survey of the Pacific coast of the United States are intended to provide for the following progress:

Field-work.-To make the requisite observations for latitude, longitude, azimuth, and the maguetic elements at stations along the Pacific coast of the United States; to continue offishore soundings along the coast of California, Oregon, and Washington Territory, and tidal observations at San Francisco, Astoria, Port Townshend, and such other localities as may be necessary; to continue the main coast-triangulation from Mpnterey Bay to the southward, or from Point Conception to the northward, and from San Pedro torard San Diego, including the islands off that part of the coast; to continue reconnaissance for the main triangulation upon the mainland from Point Conception to San Diego, from Russian River to the northward, from Columbia River north to Puget Sound, or south up the Willamette Valley; to continue the reconnaissance for and commence the
rimary triangulation through the Sacramento and San Joaquin Valleys; to continue the coasttriangulation and topography from Newport, Los Angeles County, toward San Diego, and that of the islands off that coast; to continue the tertiary triangulation and topography of the coast north of Point Conception toward Point Sal, or the teriary triangulation and topography from Point Buchon toward San Simeon; to contiaue the hydrography between San Diego and Point Conception, between Point Conception and Monterey Bay, develop the hydrographic changes in San Francisco Bay and its approaches, exteud bydrography between Cape Mendocino and the Klamath River, between Cape Sebastian and Port Orford, north and south of, aud in the approaches to, the Columbia River; to continue the hydrography of Puget Sound and adjacent waters; to observe currents along the coast and take soundiugs and temperature-observations in the California branch of the Kuro-Siwo Current, and execute such other hydrographic work as local demands may require; to continue tidal and current observations at the Golden Gate, and observations on the ocean-currents along the coast of California; to continue the triangulation and topography of the coast between Bodega Bay and Point Arena, between Cape Sebastian and Port Orford; to continue the triangnlation, topography, and hydrography of the Columbia River; to complete the detailed survey between Cape Sebastian and Urescent City, and offishore hydrography at Orescent City Reef; to measure a base-line and continue the triangulation of the Strait of Fuca, aud the triangulation and topography of Puget Sound and adjacent waters; to continue the reconnaissance of the coasts and islands of Alaska, with observations for tides and currents, and to make the requisite astronomical and magnetic observations; to continue the field-work for the description of the coast and verification of the Coast Pilot of the coasts of California, Oregon, and Washington Territory, and to continue the organized system of magnetic observations required for a complete magnetic surves.

Office-work.-To make the computations from the observations recorded in the field, including astronomical, geodetic, geographical, magnetic, and tidal observations; to continne the reproduction of the original topographical maps, and to plot the bydrographic charts; to draw aud engrave the additions on the general chart of the Pacific coast of the United States; to continue the drawing and engraving of the charts of the coast from San Diego to Point Conception, Nos. 1, $\mathbf{2}$, and 3; to complete the engraving of a new chart of San Francisco Entrance and Harbor from resurveys; to continue the drawing and engraving of charts of the coast from Point Arena to Cape Mendocino, No. 7, of that from Cape Mendocino to Saint George's Reef, No. 8, and of that from Saint George's Reef to the Umpquah River, No. 9, Shoalwater Bay, Paget and Washington Sounds; to continue the drawing and engraving of the chart of Columbia River and of the local harborcharts of the coast, with those of the northwestern coast.

Total for the Pacific coast, iuvolving work on the coast of the States of California and Oregon and Washington Territory and Alaska, will require $\$ 245,000$.

For extending the triangulation of the Coast Survey to form a connection between the system of triangulation along the Atlantic and Gulf and Pacific coasts of the United States, and assisting in the State surveys, involving work in New Hampshire, Vermont, Connecticnt, New York, Pennsylvania, New Jersey, Virginia, West Virginia, North Carolina, Alabama, Missouri, Illinois, Wisconsin, Kentucky, Kansas, California, Nevada, and Utah Territory, will require $\$ 90,000$.

For repairs and maintenance of the complement of vessels ased in the Coast Survey will require $\$ 50,000$.

For continuing the pullication of the observations made in the progress of the Coast Surrey will require $\$ 8,000$.

For general expenses of all the work, rent, fuel ; for trausportation of instruments, maps, amd charts; miscellaneons office expenses, and for the parchase of new iustruments, books, maps, and charts, will require $\$ \mathbf{\$ 4 , 6 0 0}$.

The annexed table shows, iu parallel columus, the estimates for the fiscal year $1875-76$, and the estimates herein submitted for the fiscal year $1870-77$.

Objects.	Estimated for 1875-"\%	Estimated for 1076-7\%.
For continning the surrey of the Atlantic and Gulf consts of the United States including compensation of civilians engaged in the work, and pay and rations of cogincers for steamers used in the Coast Survey, per acts of March 3, 1843, and Jume 12, 1858	\$400,000 00	*380,000 00
For continuing the surver of the western coast of the Uaited States, including compensation cf civilians, and pay and tatiobs of engineers for the steamers used in the work, per act of September 30, 1850	260, 00000	245, 00000
For, extending the triangulation to join the surrey of the Atantic and Pacific coasts of the United States, and assisting in the State surcey: including compensation of civilians engaged in the work, per act of March $3,1271 . \ldots$.	\%0, 00000	90, 00000
For repairs and maintenance of the complement of ressels used in the Coast Survey, per act of A ugust 18.1856.	50,00000	50, 000 co
For contiouing the publication of observations made in the progreas of the Coast Survey, iucluding the compensation of civilians engaged in the work, tie publication to be made at the Govermment Printing Office, per act of March 3. 1869.	8,00000	2,000 00
For general expences of all the work, viz: Rent, fuel, fransportation of instruments, mips and charts, for miscellaneous oftice expenses, and for the purchase of new instruments, books, maps, and charts.	\| 37, 00000	31, 60000
Total	885,10000	807,60000

DISCOVERIES AND DEVELOPMENTS.

Particulars in regard to most of the items which belong under this head were pablished as Notices to Mariners in the course of the present year. As special results, they are reported from the chiefs of parties without delay, and the notice in each case issues immediately after the receipt at the office of sufficient information in regard to the danger. Under the leads of Seetion I, Section V, Section VI, and Section X, in this report, further mention will be made of the items here recapitulated:

1. A bank found off the coast of Maine (Platt Bank), 10 miles long and 5 miles wide, and having at places on it ouls 29 fathoms of water.
2. Shore-line changed by sea encroachment at the north end of Hunting Island, coast of South Carolina.
3. Increased depth of the channel into Saint Augustine Harbor, Fla.
4. Water in 21 fathoms at a spot off Matanzas Inlet, Florida, frequently agitated, and when turbid appearing as a shoal.
5. Soutb west eutrance to Tampa Bay, Florida, sounded, showing 19 feet on the bar at mean low water and a straight chanuel. The north channel into that bas has 21 feet.
6. A large rock found two miles southwest of Gadsden's Point in Tampa Bay, Florida, with peaks, having only 4 feet of water at low tide.
7. Submarine cañon oft the Pacific coast, southward of Santa Craz Island, Cal.
8. Three sunken rocks, dangerous to navigation, near Point San Luis, Cal.
9. A rock off the South Farallon.
10. A very dangerous rock inside of Blunt's Reef off Cape Mendocino, Cal.
11. A sunken rock off the Pacific coast and opposite to the boundary between California and Oregon.
12. A harbor of refuge developed near Mack's Arch on the coast of Oregon.

Appliances in marine engiveering have recently given promise of the removal, by blasting, of the upper parts of isolated rocks that are now dungerous to navigation. Amongst these is "Noonday Rock" in the Pacific, and more than 30 miles southwest of San Francisco Entrance. In regard to its removal, arrangements have been made by Lieut. Col. C. Seaforth Stewart, Uuited Statea Corps of Engineers, under whose direction Lieutenant Weeden employed a diver to search near the buos set by the hydrographic party, and found two additional sharp points of rock, one of them having on it only; 14 feet of water at low tide. Specifications embodying full information bave been issaed since by Lieatenant-Colonel Stewart, and it is hoped that the pinnacles of "Noonday Rock" that were dangerous to large vessels may be blasted away before the close of the present year.

REPORT OF THE SUPERINTENDENT OF
The ship Noondar, on the 2 d of January, 1863 , struck on one of the sharp points, and in less than two hours sank in 40 fathoms.

Continuous watching off shore by one of the land-parties, while working near Cape Mendocino, without seeing any break, even in storny weather, in water in which the same party subsequently found sharp rocks, renders it extremely probable that on some of the most dangerous points of rock the sea may never break at any time.

TIDES OF NEW YORK MARBOR.
The continuous tidal observations recorded at the station in New York Harbor, between the years 1856 and 1874 inclusive, embracing a complete series of nineteen years, trave been recently discussed by Prof. William Ferrel, of the Coast Surcey.

The amplitudes and epochs of all of the principal inequalities in the heights and lunitidal intervals, found needful for either theoretical purposes or for practical application in forming tables for the predictions of the tides, have been determined.

The result of the discussion shows that the same general type of tides prevails here which is found at Boston and along the New England coast. This consists in a very small solar tide and declinational inequality, and a proportionally large lunar parallactic inequality, and likewise a very small diurnal tide.

The most interesting result reached by Professor Ferrel, and having a bearing upon the theory of the tides; one, moreover, which seems peculiar to the station, is that the lunar diurnal tide at New York does not vanish when the moon is on or near the equator, but is a minimum, and still about one third as large as the maximam at the times of greatest declination.

Practical tables have been formed from the resulis of the discassion, to be used in computing the heights and times of high water in New York Harbor, and these are now being applied in computing them for the year 1877. The results of the discussion, and also the practical tables for computing the tides, are giveu in Appendix No. 12.

TRANSIT OF VENUS.

At the date of my last annual report, two parties of Coast Survey assistants, organized noder the auspices of the commission which was anthorized by Congress to arrange for ouserving the transit of Venus in December, 1874, had left our shores, one of the parties destined for Jipan, the other for Chatham Island in the South Pacific Oceal.

In forethought and preparations by the commission, nothing was omitted that could add to efficiency in the arrangements desirable for success in the observations. With reference alone to the parties of Coast Survey observers, the stations selected and approved by the commission were such that, with clear weather on the day of transit, a fair value of the solar parallax might be deduced from obserrations recorded at these positions. To this end, provision was made for observing by two methods:-Halley's, depending upon the observed duration of the transit; and the photographic method, which is relied on to give a record of the apparent path of Venus across the sun's disc. The instrumental equipment incladed also means for determining the latitude and longitude of each of the stations, so that, in the event of partial success in observing the transit, the compater might introduce a conditional equation for any single observation of ingress or egress in connection with the general system of conditions derived from observations at all other stations.

From the detailed reports of the two parties, given in the Appendices Nos. 13 and 14, it will be seen that in Japan the transit was observed with some measure of success. Uufortanately, clouds and rain prevailed at the critical hours on Ohatham Island, and permitted little to be recorded bearing directly on the object of the expedition.

Assistant George Daridson, acsompanied by Subassistant O. H. Tittmann and Mr. W. S. Edwards, aid in the Coast Survey, sailed from San Francisco on the $29 t h$ of August, and reached Yokohama on the 23 d of September, 1874. Nagasaki, in Japan, having telegraphic communications with European observatories, was chosen by Mr. Davidson as the station for observing the transit. The astronomical instraments were mounted on a hill about oas mile south of that city.

In advance of the period for final observations, the Japanese officials took deep interest in the subject, and detailed several intelligent Japanese to aid in the successive steps of the work. These subsequently reported to their government on the use of the instruments with which they had practice under the direction of Professor Davidson, and on the operations performed. Nagasaki connects by telegraplicable to the north with Wladivostock, and to the south with the coast of China. Professor Hall, of the United States Naval Observatory, with a party at Wladivostock, by previous arrangement with Professor Davidson, exchanged several handred clock-siguals with the Coast Survey observers at Nagasaki on three favorable nights of October and November, and thus was carefully determined the difference of longitude between those two stations. The tele-graph-station at Nagasaki was connected by triangulation with the point at which Mr. Daridson subsequently observed the transit of Venus.

Obserrations for latitude, others on the occultation of stars, and practice by the astronomical aids and photographers occupied the month preceding the 9 th of December. On the 8 th, good observations were recorded for local time, and another series for the same purpose was obtained early in the morning of the day on which the planet crossed the sun's disc. As these last observations were closing, clonds began to form and to thicken until sunrise. At the first contact of the planet, which I'rofessor Davidson observed personally, the sun's limb was much obscured by clonds. The second contact was very satisfactorily observed by Professor Davidson and Mr. Tittmann, though the face of the sun was at the time covered by thin clonds and haze. After the first exterior contact, the clouds partially cleared, and micrometric measurements were made of the separation of the casps of the planet. After the first interior contact, Professor Davidson secured, by micrometric measurement, records of the distance between the limbs of the sun and planet, and at the meridian-transits of the two bodies he observed the passages of their limbs for their difference in right ascension. His assistant, Mr. Tittmann, at the same time measured for their difference in declination by recording micrometer differences between the sun's upper limb and the upper and lower limb of the plauet. Before culmination, and a few minutes after noon, Professor Davidson cbtained a fine series of measures of the diameter of Venus under various degrees of brightness, using the double-image micrometer, the value of which had been previously determined by transits of the pole-star. Soon after, the face of the sun was again obscured, and no other observations seemed possible; but, fortunately, a momentary break occurred in the clouds, and the third contact of the planet was satisfactorily observed by Professor Davidson and also by Mr. Tittmann. Dense clouds shut out of riew the fourth contact, and rain fell quickly afterward.

Daring the transit, the photographers attached to the party at Nagasaki exposed one hundred and sixteen plates, about half of them producing fair negatives. For clock correction, a final set of star-transits was recorded ou the eveuing of the 9 th of December, the observations being made through breaks in the rain-clouds.

Between Professor Davidson and the officials of Japanese departments, cordial intercourse was maintained during the stay of the party in that empire.

In Section X of this report, mention will be made of subjects to which the attention of Mr. Davidson was given incidentally before bis return to the United States.

Subassistant Edwin Smitb, accompanied by Mr. A. H. Scott, aid in the Coast Survey, arrived at Whangaroa Bay, Chatham Island, in the United States ship Swatara, on the 19th of October, 1874. For determining the longitude of the place, the transit-instrament taken by the party was immediately mounted, and the chronometers were compared with the results obtained for local time.

Up to the Gth of December the weather continued fine at Ohatham Island; the party was drilled in the use of instruments, and was in complete readiness for observing the transit of Veuus. On the 7 th, a storm set in, and prevailed while the planet was crossing the sum's disc. The first or outer contact was entirely hid by a cloud, but, through a momentary break soon after, a few cuspmeasurements were recorded. The second or interior contact was also hid from view by clouds The sun shone faintly at intervals afterward, and a few measures with the equatorial were recorded. The photagraphers exposed twenty plates, all the points of which show the presence of clouds. Of the plates, abont two-thirds will be of no value, in consequence of the clondy obscuration of the sun. H. Ex. SI-2

From 5 o'clock p. m. till after the egress of the planet, rain fell, and no observat ion was practicable. Latitude was carefully determined at the observing-station on Chatham Island, and also the mag. netic declination, dip, and intensity. The ricinity of the station was mapped by the party.

OBITUARIES.

During eight years preceding the untimely death of Prof. Joseph Wiulock, director of the Cambridge observatory, on the 11th of June, 1875, the work of the Coast Survey had benefited by his resources and expedients in practical astronomy, and by personal co-operation in our most important longitude-determinations. At the observatory, his teure was made effective to us by the activities of a strong intellect, that centered only on the attainment of desirable results. His extended list of Standard Time Stars is specially valuable. A mongst instrumental improvements and inventions resulting from his stadies are the break-circuit chronometer and the horizontal photograpbic telescope, already in use for special purposes, and much valued by observers at home and abroad. That device was particularly serviceable in recording observations on the recent transit of Venus. Large prospective value attaches also to his labors in providing methods and means for precision in astronomical observations aud records. Fortunately, stadies to such ends were the bent of this able man of science, and so was he occupied on the last day of bis life. In plan and effect, some of his ingenious derices have been realized to the adrantage of seience; of some, the application pertains to the future. The important results due to them will be gathered hereafter by other men.

Professor Winlock, though reserved to an unnsual degree in manner and spech, was widely known. In the social circle, be was also warmly regarded. There his geuial thoughts aud feelings were quietly and evenly manifested toward all, and by all who knew him could be readily interpreted as the promptings of a ferrent nature.

In the Engraving Division, the work of three skillful hands has been closed by death since the date of my last report. Of these, John Knight, who died on the $28 t h$ of November, 1874 , had rendered thirty gears of faithful service as engraver of titles and lettering on our principal charts. It will not be forgotten in the division that employment was his daily pleasure, a cast of mind which had early become habitual in this gentle, intelligent, conscientious man. Though not excelled as a letter-engraver, some of the last working time of Mr. Knight was given to the application of forms for the improvement of style, and recently issued charts show that beyond the age of seventy-one years his band retained its former skill. Only a few months after their completion, and in great debility, bat withoat any apparent disease, he resigned life, exehanging in his last honr cheerful greetings and leare-takings with his relatives and many friends.

John C. Koudrap, Danish vico-consul for Washington City, joiued the office as engraver in May, $180 \check{0}$, and, after continnous and acceptable service, died at his residence on Capitol Mill on the 10 th of December, 1874. He was valued for skill in reudering the even outlines required on charts of the first order.

For some years, the health of Mr. Kondrup had been impaired by the pulmonary disorder that caused his death in his forty-sisth year. To the last, however, he manifested before all who silently grieved in view of the inevitable issne the same manly fortitude, friendly courtesy, and generous qualities of mind which at an early period had gained for hitn the esteem of a large circle in Washington.

Henry S. Barnard, an engraver of special talent in the branch of delineation known as "sanding" on charts, died, after a short illuess, at the age of sixty years, on the 23d of September, 1874. As a worthy and industrious man, Mr. Barnard fulfilled the expectations which attended his call to the Engraving Division in April, $18 j 0$.

PARTII.

In this part of the report, short abstracts, arranged in geographical order, will be given, to show the essential particulars of work done by each of the field and bydrographic parties. For the Atlantic coast, the order of arrangement will be from north to south, and, as heretofore, the work on the Pacific coast, will be noticed in the reverse order. The abstracts will be, as usual, recapitulated in tabular form, to accompany this report as Appendix No. 1. Widely distributed as the sur. veying parties have been off the coast and on the land, and subject to all the variations of weather and of climate between the West Indies and Alaska, it is gratifying to record that no serious accident within the year has beeu superadded to hardships that are in many places incident to the service. Much rough weather prevailed when parties were transferred last autumn for field work and hydrography ou the southern coast and in the Gulf of Mexico, but by cautions navigation all disasters were avoided. On the Atlantic side, some little delay was allowed in consequeuce of yellow fever, bat the only seizure by pestilence occurred iu a party on the Pacific coast. The sick haud, when small-pox appeared, was promptly removed to some distance, cared for properly by the chief of the party, and in due time was allowed to return, the work mean while not having intermitted.

In general, the notices of work done will be restricted to the mention of dates and limits, the names of the persons emploged, and the results in statistics; but, in a tew cases, collateral incidents, either of personal moment or of local interest, will also be mentioned.

For several months after the opening of the present year, I had the able co-operation of Capt. K.R.Breese, U.S.N., who accepted and effectively discharged the duties of bydrographic.inspector in the Coast Survey until the end of May last. The intelligent interest, personal cordiality, and readiness of that ofticer in applying the results of matured experience in maritime details made it a matter of special regret to sever an association so promising for the future beneft of the Surcey. In May, however, fortunately for the service, Commander Edward I. Lull succeeded in the vacant position, and to him I am already indebted for valuable assistance in providing for the transportation of field and bydrographic parties, and in other important details of the division, amongst which are plans, specifications, and estimates for the construction of vessels; arrangements for their repair and ontfits; and, ou the return of hydrographic parties, inspection of the manuscript charts in advance of their acceptance for registry and deposit in the archives. In general duties pertaining to the Hydrographic Division, inclading the selection of sailing-lines, preparation of notes for the engraved clarts, and revision in regard to the marked positions of aids to navigation, Commander Lull is assisted by Lieut. H. I. Nichols, U. S. N.

Lieut. C. A. Bradbury, U.S. N., after service in the hydrographic party on board the steamer Blake, daring the summer of 1874 , off the coast of New England, was temporarily attached to this branch of the service. While he was at the office, exceptionally cold weather, after the opening of the present jear, so much interrupted navigation along the eastern coast as to make a record desirable of peculiarities in the ice formation. At my request, he visited the ports of New England, and from pilots and others collected and recorded particulars at places uear which ice was then regarded as dangerous to vessels in approaching the coast, and at others in which it had been or was then a binderance to navigation. Inquiry was made also with reference to periods of recurrence in excessice ice formation; the dates at which navigation had been closed in preceding sears; the effect of ice on sailing-courses here and there; and whether or not well-set buoys had been displaced by moving ice in the course of the winter.

As results of the investigation, it appears, from the detailed report of Lieutenant Bradbury, that the extensive local formations of ice in January broke up, and in the first week of February uccumulated as drift-ice along the shores. Twelve days of severe cold followed, and in that period the local formations were renewed by ice, some of which remained in place until the middle of March. Meanwhile, the drift ice, by subsequent freezing, had formed extended masses, as in the lower parts of bays along the coast of Maine; also, in Cape Cod Bay; and as far to the southward as Long Island Sound the frozen drift was funad in connection with ice, which remained where it
had formed. The movements of sailing.vessels were impeded, and navigation, except by powerful steam-vessels, was attended with danger in most of the sounds, bays, rivers, and harbors of the coast between Narragansett Bay and Eastport until the middle of Mareh. On the coast of Maine, only a few of the buoys were displaced; bat, as being more exposed to the sweep of large bodies of drift-ice, the displacement of buoys was general in Nantucket Sound, Vineyard Sound, Long Island Sound, Cape Cod Bay, Buzzard's Bay, and in the harbors adjacent. Lientenant Bradbury's report was accompanied by a series of eugraved charts, on which he indicated the extent of the local and casual ice formations in each of the localities. The unusual impediments recorded as affecting navigation ssem to be due to the sudden cold that formed into fixed masses the ice which was liberated at the end of January. The substance of Lieutenant Bradbury's report will be embodied in the Coast Pilot.

SECTION I.

ATLANTIC COAST OF MAINE, NEW HAMPSHIRE, MASSACHUSETTS, AND RHODE ISLAND, INCLUDING SEAPORTS, BAYS, AND RIVERS.-(SkigTches Nos. 2 and 3.)

Deep-sea soundiags.-At the end of June, 1874, Lieut. Commander John A. Howell, U. S. N., assistant in the Coast Survey, left Provincetown with his party in the steamer Blake, and was engaged until the middle of September in ruming offshore lines of soundings between George's Bank and the Bay of Fundy. In the latitude of Yarmonth, two lines were run across that bay, and one to the southward from Graud Manan Island. Further westward, several courses were steered, and soundings were recorded in crossing Jeffrey's Bank and Cashe's Ledge. The least depth found on that ledge was $7 \frac{1}{2}$ fathoms. Before the close of the season in this quarter, Lieut. Commander C. D. Sigsbee, U.S. N., who subsequently succeeded to the command of the Blake, joined the parts with improved appliances and means for deep-sea soundings. These were put in operation by LieutenantCommander Howell, worked satisfactorily, and were subsequently used by the party in the Gulf of Mexico, of the work in which notice will be taken under the head of Section VIII. With the apparatus devised by Sir William Thomson for deep-sea soundings, and modified by Commander Belknap, U.S. N., the party on the steamer Blake readily brought up specimens of bottom from a depth of $\mathbf{2 , 1 4 4}$ fathoms in the Gulf of Maine. The work in the steamer Blake was prosecuted with the assistance of Lieutenants W. H. Jacques, E. S. Jacob, Richard Rash, and C. A. Bradbury, U. S. N. At the end of the season in this section, the first three of these officers, who had rendered acceptable service during several preceding seasons, were detached from the Coast Sarver. The statistics in deep-sea hydrography of the Gulf of Maine are:

Miles run in soundiag	3,491
Positions determined	110
Number of soundings plotted	531

Commander Howell, at my request, kindly retained charge of the steamer Blake until after the arrival of the vessel at New Orleaus, and the organization of a party for hydrographic work in the Gulf of Mexico. After the close of the season in that section, in June last, Lieutenant-Commander Sigsbee returned with the steamer Blake to the coast of New England, and will prosecute the offshore hydrography until November of the present year. The term of service of Commauder Howell on Coast Surveg duty was closed by his assigument by the Nary Department to the responsible position of instructor of gunnery at the Naval Academy, Aunapolis.

Topography and hydrography, Mount Desert Island, Me.-Resuming field-work in this section at Hull's Cove in July, 1874, Assistant J. W. Donn traced the remaining shore-line of the northwestern part of Mount Desert Island, and joined with the limits of a previous plane-table sheet at Pretty Marsh Harbor. The interior topography was then filled in to join the limits of topography completed in other seasons. North of the Mount Desert Narrows, the shores were traced to include Eastern Bay, Western Bay; the island shores in that vicinity; and further to the southward the islands in Bartlett's Narrows.

With his party in the schooner Scoresby, Mr. Donn took up the hydrography in the vicinity of Sands Point, where the operations bad been closed in the preceding year. The soundings develop the depths in Bartlett's Narrows and Monnt Desert Narrows, and include Clark's Cove, Salisbury Cove, and Pretty Marsh Harbor. The head of Placentia Bay was also sounded for some distance from the shore; but, the water being deep in the body of that bas, its general lydrography will be prosecuted with means which were not available when the plane-table work was in progress.

The work done by the party of Assistant Donn completes the detailed surces of Mount Desert Island. He was aided in the field by Messrs F. O. Donn and F. H. Parsons. The following summary shows the statistics of work:

$$
\begin{aligned}
& \text { Shore-line surveyed, miles } 69 \\
& \text { Creeks and ponds, miles... } 38 \\
& \text { Roads, miles . } 49 \\
& \text { Area of topography, square miles . } 41 \frac{1}{2} \\
& \text { Miles ruu in sounding ... } 443
\end{aligned}
$$

$$
\begin{aligned}
& \text { Number of soundings . 18, 293 }
\end{aligned}
$$

Egg Rock, in Frenchman's Bay.-With reference to its fitness for the location of a light-bouse Assistant Dom made a special survey of this rock, under my direction, in August, 187t. The surface was carefully mapped on a large scale to show successive elevations of six feet. Mr. F. C. Doun, the aid, after carelul examination by trial with a boat, marked on the sleet of survey the points at which, under orhinary circumstances, landings might be effected. Daring heary gales, it is not possible to land a boat anywhere at the rock in safety.

The work in this section occupied the party of Assistant Donn until near the end of October, 1874, when preparation was made for resuming operations in Section HI, under which head mention will be made of the work done during the winter.

Topography of Eggemoggin Reach, Me.-The plane-table survey of the coast of Maine, in the vicinity of Eggemoggin Reach, was resumed by Assistant W. H. Dennis on the 17th of June, 1874. After completing work to include the northern part of Deer Isle, the party was transferred to the opposite shore of the reach, where a fringe of the usual width in topography was mapped from Sedgwick south ward and eastward to Naskeag Point and from thence northward to the mouth of Blue Hill Bay. The shores of Herrick's Bay are shown on one of the three plane-table sheets which were worked on in the course of the season, as are also the islands, rocks, and ledges that exist within the working limits of the season. In character, the topography is that generally seen on this part of the coast, a rocks, irregular shore-line, backed by ground unevenly hilly, and marked by considerable detail in natural features and artificial improvements. Mr. S. N. Ogden and Mr. W. S. Bond served as aids. The work was closed on the $30 t h$ of September. 1 synopsis in the fieldreport shows as statistics:

$$
\begin{aligned}
& \text { Shore line survejed, miles ... } 31 \\
& \text { Roads, miles.. } 50 \frac{1}{2} \\
& \text { A rea of topography, square miles... } 26
\end{aligned}
$$

The subsequent occupation of Assistant Dennis will be stated uuder Section V in this report.

Hydrography of Eggemoggin Reach, Me.-In the latter part of September, 1874, after the completion of work which will be stated pre ently, Assistant Horace Anderson, with his party, in the schooner Silliman and steam-launch Sagadahoc, sounded out the western part of Eggemoggin Reach. In the adjustment for plotting the chart, the work was referred to a tide-gauge, which was used for recording at Sedgwick while the hydrography was in progress.

Master Kossuth Niles, U. S. N., joined the party in the Silliman at the opening of the season in this section, and after the close of work acceptably conducted the operations of a hydrographic party in the same vessel, as will be mentioned under the head of Section VII in this report.

Assistant Anderson was aided on the coast of Maine by Mr. F. II. North. Both were subsequently employed in southern sections.

The following aggregates include the hydrographic work in Eggemoggin Reach and that done at several detached localities in the Penobscot:

$$
\begin{aligned}
& \text { Miles run in sonnding ... } 278
\end{aligned}
$$

$$
\begin{aligned}
& \text { Number of soundings . 22, } 406
\end{aligned}
$$

On closing work early in October, the steam-launch was laid up at Cousin's Island in Casco Bay. The schooner Silliman was soon after refitted for service in the Gulf of Mexico.

Topograply of islands in Penolscot Bay, Me.-For the survey of numerous small islands, some lying sonth of Cape Rosier, others westward of Deer Island, aud some in the vicinity of Isle an Haut, a party was sent in the schooner Caswell early in July, 1874, under charge of Subassistant J. N. MeClintock. After completing the details about Cape Rosier and near the Fox Islands, Mr. McClintock mapped the islands southwest of Mark Island light house, and subsequently Marshall's Island and smaller ones between it and Isle au Hant. The details on the several sheets include all the rocks and ledges visible at low water. In the vicinity of Spruce Head, the party mapped Pickering's Island, Bradbury's, Eagle Islaud, Pond Island, and many others of less area. Before closing work at the end of September, Subassistant MeClintock determined in position the lights at Burnt Coat Harbor. The topographical statistics are:

$$
\begin{aligned}
& \text { Shore-line traced, miles. } 31 \frac{1}{2} \\
& \text { Roads, miles.. } 5 \text {. } \\
& \text { Area of topography, square miles } 4
\end{aligned}
$$

The sheets containing this work show one hundred and seventeen islands and ledges. Messrs. T. A. Harrison and W. Fraser were attached to the party as aids.

Topography above Castine, Me.-The party of Assistant A. W. Longfellow, in the schooner Joseph Henry, resumed field-work near Castine on the 11th of July, 1874, and closed operations for the season on the 8 th of October. On the resulting topographical sheet are represented the entire vicinity of Castine and the southwest part of the town of Penobscot, the east shore of Penobscot Bay as far up as Morse's Cove, where the work of this party joins with that of Subassistant Herges. heimer, and the north side of Bagaduce River to a point opposite to Morse's Cove. The site of the old English Fort George and remains of seven batteries, constructed probably at the earliest period in the history of New England, were carefully marked on the plane-table sheet by Assistant Long. fellow. Mr. W. C. Hodgkins was attached to the party as aid. At the close of work, the vessel, as being no longer seaworthy, was laid up in Casco Bay. The following are statistics of the plane. table survey:

$$
\text { Shore-line surveyed, miles . } 20
$$

Streams, miles . 20 . 20
Roads, miles. .. . 18
Area of topography, square miles 13
The sheet represents the shore-lines at high water and at low water, and, besides details of surface, successive elevations of twenty feet for the entire area included within the survey.

Topography near Bucksport, Me.-North of the work mentioned under the last bead, Subassistant Joseph Hergesheimer completed the detailed survey of the east side of Pe nobscot Bay, to include the towns of Bucksport and Orland, Wbitmore's Island, and the shoren of Eastern Penobscot River, in the vicinity of the towns named. At both places, the ontlines of the wharves were also traced, and appear on the upper plane-table sheet as part of the details of survey. Mr. Hergesheimer extended work about eleren miles north of the line at which his survey joins with that of Assistant Lougfellow. As the operations advanced, tracings from the shore-line survey were furnished for the use of the bydrographic party. Field-work in this section was begun by Mr. Hergesheimer late in June, 1874, and was continued until the middle of October. His subsequent
service will be stated under the head of Section VI in this report. The statistics of work on the two plane-table shects, showing the features below Bucksport, are:

Mr. Hergesheimer is now making arrangements for resuming field work near Tampa, Fla.
Topography of Bagaduce River, Me.-This works conncets with that mentioned under the two preceding heads. For extending the survey castward of Castine Harbor, Assistant Hull Adams commenced early in July, 1874, at the entrance of Bagaduce liser, aud traced its shores, to include the expansion known as South Bay, the islands which separate that expanse from North Bay, and the branch of the river which includes Johnson's Narrows. All the roads in the vicinity of the water-line appear on the topographical sheet, and the village of West Brookville. Contome-lines to show the character of the surface were traced as usual. Siguals were set up by Mr. Adams for extending the plane-table survey as far south as Walker's Pond, but the advance of the season made it expedient to close work in the middle of October, and to defer the completion of the second sheet. The statistics are:

> Shore line surveyed, miles .

Area of topography, square miles 20
Assistant Adams was aided in this surrey by Mr. R. B. Palfrey. His party is now at work on the shores of the river beyond the limits of the work bere noticed.

Hydrography of Penobscot Bay.-Early in July, 187t, the schooner Silliman, with the party of Assistant Anderson, left Portland to prosecate soundings at several localities near lenobscot Entrance. The numerous ledges between Cape Bosier and the Fox lslands were dereloped. In August, Mr. Anderson found, south of Isleboro', and sounded out, a shoal on which the revenuecutter Dobbin had grounded. In Penobscot River, soundings were extended upward as far as Wirterport. Assistant Anderson remarks of that part of the river that a middle ground is forming opposite to Fort Knox. Several ledges in Belfast Bay were developed by soundings. The work between Cape Rosier and the Fox Islands was referred to a tide-gauge at Castine; that in the Penobscot to a tide-gauge on the steamboat-wharf at Bucksport. The statistics of the hydrography here noticed are iuchuded in the synopsis given under the lead of Eggemoggin Reach in a preceding abstract in this section.

Tidal observations.-The series began at North Haven (Penobscot Entrance, Me.) in January, 1870, has been well maintained through the fiscal year by Mr. J. G. Spaulding. As stated in my last report, the self registering gange at that station is furnished with all requirements for the preservation of a continuous record. Among these is the apparatus for heating, which proved effective last winter, no tides being lost even when the cold was excessire. Occasionally, when the gange, is stopped for repairs, Mr. Spaulding has continued the record by staff-obserrations, so that from the beginning of the series each high and each low water is given in the record.

Co-efficient of refraction.-The party of Assistant F. W. Perkins was ready for work at Ragged Mountain, a station of the primary triangulation near Camden, Me., in the middle of Juls, 1874, but operations were hindered for several weeks by fog, haze, and rain. During that interval, however, as throughout the season, the requisite metcorological observations were recorded hourly on the mountain, and for periods of ten days each at Mount Desert and White Head light-house. The heights above tide-water of the geodetic stations on Ragged Mountain and Mount Desert, of a point on Tenuant's Harbor, and of the light-houses at White Head, Owl's Head, and Matinicts were determined by lines of levels run by the aids of the party, Messrs. C. L. Gardner and F. W. Ring.

Before commencing observations with the barometer, psychrometer, and thermometer for determining the co-efficient of refraction, the instruments were carefully compared with staudards.

One series of observationg. recorded at Ragged Mountain, included hourly measurements of the vertical angles made by lines from the signals on outlying stations, the distances to which were known. The absolute height of each of the stations as measured by the aids completed the records for computation. Mr. Perkins closed work on the 1st of September, and later in the season resumed the survey of the Gulf coast in Section VII.

Triangulation in New Hampshire.-Early in June, 1874, Prof. E. T. Quimby took the field, and by reconnaissance determined the practicability of a scheme of triangulation to pass from the ralley of Connecticut River, or western boundary of New Hampshire, westward to the Greeu Mountains. The detailed work was then taken up at Observatory Hill near Hanover, N. H., a station in the system which connects with the primary triaugulation of the coast of New England. Azimuth was determined at Observatory Hill, and Dartmouth College obserratory was connected with that station by the measurement of horizontal angles. Kearsarge Mountain was occupied with the theodolite early in July, 1874, and Cube Mountain before the end of that month. The observations were continued at all favorable interrals until the close of the season in August. Statistics of the fieldwork are thus stated in the report of Professor Quimby:

$$
\begin{aligned}
& \text { Stations occupied ... } 3 \\
& \text { Points determined. } 70 \\
& \text { Number of observations ... 4, } 088
\end{aligned}
$$

At all the stations oceupied, as many subsidiary points as could be identified were observed on. By such means, many objects are determined approximately in position, and noted in the record as data for the construction of a map of the State.

Professor Quimby again took the field on the 1st of Jone, 1875, commencing the operations of the season at Cros don Mountain. The details of work done in the course of the present fiscal year will appear in my next annual report.

Isles of Shoals.-The hy drographic party of Acting Master Robert Platt, U.S. N., in the steamer Bache, was in readiness for duty in this section in the middle of July, 1874, baving made final preparations for work while at anchor in the harbor at Isles of Shoals. In steaming out by the chanuel between Half Way Rock and Star Island, the ressel passed very near to a rock, which was found, on examination, to have only seven feet of water on it at low tide. Notice was promptly given of the existence of this danger, and, at intervals when reather was unfavorable for offshore work, the vicinity of the rock and of the ledges adjacent to the islands was carefully sounded. The chart has been revised in accordance with the results of this examination, amongst which is a development of the channel between Star Island and Cedar Island, showing a depth of only uine feet at mean low water.

Jeffrey's Ledge.-Acting Master Platt sounded out this ledge in August, and found no depth less than has been heretofore reported. Working, howerer, with a steam-ressel, and under circumstances otherwise favorable, the contour of the ledge was defined with greater accuracy than has been hitherto practicable. The chart was plotted from records which showed the angles taken simultaneously by theodolite observations from White Island light-bouse, and by the sextant while soundings were in progress.

Cashe's Ledge. -In reference to his work in that vicinity, Acting Master Platt reports as foljows: "The deep-sea lines ranning off to the ledge depend of necessity on the logs and chro-nometer-observations, our departure being always from shore points which had been well determined The direction of the ship was followed by sextant-angles on the different light-honses, and the end. of each line was determined as carefully as possible by taking angles avd bearings on prominent objects as soon as they became visible."

The soundings recorded by the party on the steamer Bache showed no depth on Cashe's Ledge less than twenty-four fathoms; bnt, as the existence of less water is not at all doubtfal, it seems probable that future soundings may develop spots baving as little as seren fathoms between the lines of soundings recorded in this examination.

Platt Bank.-Outside of the curve of 100 fathoms, and between Jeffrey's Ledge and Cashe's Ledge, Acting Master Platt found a bank the existence of which was hitherto unknowu. Ho reports that, unlike most of the shoals in this section, the soundiugs showed it to be composed of
saud, gravel, and broken shells, but without any mud. The bank was carefully developed, and proved to be about 10 miles long east and west, and 5 miles in breadth, within the curve of 50 fathoms. The least water on Platt Bank fonnd in the survey here noticed was 29 fathoms. Speci. mens of the dredgings taken while soundings were in progress were forwarded to Dr. A. S. Packard as having probably some bearing on the researches now peuding under the direction of Prof. Spencer F. Baird, United States Commissioner of Fish and Fisheries.

Jeffrey's Bank.-This bank was reached in the hydrographic operations by deep-sea lines started from well-determined points on shore. Acting Master Platt found the bottom very irregular, but the general depth as developed by the soundings does not vary from the depth heretofore reported.

Early in September, Dr. Packard and two assistants were taken on board of the steamer Bache at Salem, and the next fortnight was passed in dredging and in instrumental tests on sea-water. Specimens of sea-bottom taken at forty different localities were procured in that interval by the obserfers. Temperatures of the water were recorded at sixty-three positions in the course of the operatious on the several banks and ledges. The general statistics of the work are:

$$
\text { Miles run in sounding . } 833
$$

Angles determined.................................... 678
Number of soundings. 2,690
Late in October, the steamer returned to Norfolk, and was there refitted for hydrographic service, of which mention will be made in Section VI of thris report.

Mr.J. B. Adamson was attached as aid to the hydrographic party on board the steamer Bache.
Tidal observations.-At Boston navg-yard, the self-registering tide-gauge of the old form, although provided with heating apparatus, became clogged with ice during the severely cold weather of last winter. Several breaks in consequence appear in the tidal records. The observer, Mr. H. Howland, reports that ice formed in a large mass around the float-box. This seems to have been a consequence of the accumulation of mud, and resulting want of depth in the water around the lower part of the box. The apparatus will be refitted for service at this station.

Hydrography westuard of Monomoy, Mass.- With his party in the steamer Endeavor, Subassistant F. D. Granger resumed work near Monomoy on the 10 th of Jaly, 1874. Soundings were prosecuted to include, in the northern part of \cdot Nantucket Sound, part of Handkerchief Shoal, Chatham Roads, and generally the waters westward to the vicinity of Bishop and Clerk's lighthouse. Along the north shore of the sound, a space was not reached in the operations previous to the date at which it was most expedient to withdraw the ressel for service during the winter in Section VI. The space referred to was therefore included in plans of work to be prosecuted in the autumu of 1875 . Much bad weather was experienced in the summer of 1874 . The work in deep water was frequently interrupted, and boat-work was impracticable during the stay of the party. Hydrographic operations were discontinued for the season on the 20th of October.

Tidal observations were recorded during three moaths at Monomoy, and for part of the season also at Hyannis.

On a separate hydrographic sheet, Subassistant Granger plotted soundiugs which were made by bis party at favorable intervals in the vicinity of Nantucket light-hoose, to develop the present character of Great Point Rip, and to fill a space near it and farther eastward. The aggregate statistics of work are:

Miles run in sounding . 701 . 70.
Angles measured... 5,649
Number of soundings. 28, 685
Soon after the inception of this work, Lieut. R. D. Hitcheock, U. S. N., joined the party in the steamer Endeavor, and assisted in various details pertaiaing to the hydrographic survey. At the close of the season, he took charge of the vessel, and prosecuted work of which notice will be taken under the head of Section VI.

Subassistant Granger was aided in the work near Monomoy by Mr. D. C. Hanson.
H. Ex. $81-3$

Survey of Taunton River, Mass.-For the determination of points on which to fourd the planetable survey of the shores of Taunton River, Assistant A. M. Harrison took the field on the 15th of July, 1874. The triangulation was joined with stations previously occupied on the shores of Mount Hope Bay, and was extended about twenty two miles upward along the course of the river. Rapid advance in local improvement, the extension of city-limits, and the opening of new roads had, by consequent alterations of the ground-surface, displaced the station-marks in the vicinity of Fall River, which positions were relied on at the outset of the season for a prompt beginuing in plane table work. Points were determined, however, sufficient in number for a topographical sheet, by the 20th of September, when Mr. Harrison commenced the plaue-table surrey at a station about three miles above the mouth of the river. The triangulation was continued a month begond that date, in charge of Mr. W. H. Stearns, one of the aids in the party.

On the topographical sbeet, which was completed by the 6th of November, details of survey were shown for both banks of the river from points below Steep Brook Village, to stations above Somerset. The features generally within abont one-third of a mile from the water-line are included in the surver. In joining with the limits of work done in 1861 , Mr. Harrison noticed that great alterations had been wrought in the interval, not only in respect of artificial features, but also in regard to the shore-lines. The completed sheet represents the town of Somerset, and the villages of Steep Brook, Pottersville, and Egypt, the Old Colony and Newport Railroad, with deep cuttings and high embankments, its course across the river, and the high embankment opposite to Somerset. Above that town, the points already determined will suffice for extending the plane table survey to the vicinity of Taunton.

Assistant Harrison was aided in the topographical survey by Mr. Bion Bradbury. In the survey here noticed, the amount of detail relative to the area represented is unusually large, hence the general statistics, as reported at the end of the season, do not properly measure the degree of labor requisite for the results. The statistics are:
Siguals erected 33
Stations occupied 32
Points determined 44
Observations with theodolite. 7, 008
Shore-line surveyed, miles 16
Roads, miles 29
Creeks, ponds, and marsh, miles $11 \frac{1}{2}$
Area of topographs, square miles. $2 \frac{1}{4}$

Assistant Harrison is now at work on Taunton River some miles above Somerset.
Physical survey of Providence Harbor, R. I.-This work, prosecuted during the autamn of 1874 in connection with a careful shore-line surrey, was undertaken at the request of the city authorities of Providence. All the ranning expenses of the two parties engaged under the direction of Assistants H. L. Whiting and Henry Mitchell were defraged by the municipal government.

The question presented in the call for this special survey, as made known by previous conference with the chairman of the harbor commissioners, W. W. Rickard, esq., is expected to result in the assignment of limits in encroachments upon the harbor and its tributary basins, or lines beyond which the water-space could not be encroached on without injuriously affecting the natural order of its tidal and river streams that maintain the present channels. Anchorage; of course, and winding-room, in present use, or likely to be required hereafter by vessels visiting the port and wharves of the city, necessarily make parts of the question involved. As a basis for the special hydrography, Assistant Whiting carefully traced the shores of Providence Harbor and Seekonk River, and subsequently mapped the results in triplicate. Two of the sheets represent the results of the physical survey, and on two others the proposed lines as limits of encroachment are traced. The six sheets on a scale ample for any future purposes of the city authorities were delivered to the harbor commissioners in March last.

For the special hydrographic work, the party of Assistant Mitchell left New York in the schooner Research on the 3d of September, and, withont delay, took up sonadings and continued observations on the currents of Providence Harbor antil the 12th of October. The results appear
on two of the sbeets already mentioned as isodynamic lines and transverse curves of currents. The soundings were carefully plotted, and represent the hydrography of the harbor below the bridges. These details and the tidal and current observations were conducted under the inmediate direction of Mr. Mitchell by Assistant H. L. Marindin. Mr. J. B. Weir served as aid in the hydrographic party. The following is a synopsis of statistics:

```
Augles measured......................................................................... 1,630
Number of soundivgs .................................................................... 8,910
Observations on currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 574
```

While the mork was in progress in Providence Harbor, Mr. Mitchell, as associate member of the board of engineers on the improvement of the Mississippi outlets, was called away for conference relative to that service, further mention of which will be made under the head of Section VIII.

Tidal observations.-The city engineer who commenced the series of observations at Providence, R. I., bas been furnished with a supply of paper for continuing the record by means of the selfregistering tide-gauge. This series, if well maintained, will in time be useful for the investigation of tides in Narragansett Bay.

Pendulum observations.-The series of observations commenced last year was continuel during the present season at Hoosac Mountain, near North Adams, Mass., by Assistant U. S. Peirce, under the general direction of the consulting geometer of the survey, Prof. Benjamin Peirce. Other stations will be occupied in order to procure means for investigating the laws of variation in the intensity of gravity, and thus to aid in determining the figure of the earth. The fact will be kept in view that in many places gravitation has been found at the sea-level on islands, greater than on mountains far from the sea. Assistant Peirce was aided in the observations at North Adams by Mr. W. E. McClintock.

Under sanction from the Treasury Department, Mr. Peirce proceeded in April last, in accordance with my instructions, to repeat experiments at various stations in Europe. The objects sought are, to compare, by swinging at the foreign stations the non-invertible pendulum and the invertible pendulum belonging to the Coast Survey, with pendulums used in the geodetic operations of the great European surveys. This work is yet in progress, and will include all the tests needful for determining relations between our own and the foreign instruments which have been heretofore used for ascertaining the force of gravity and of local attraction. The results of the work will be given in my next annual report.

SECTION II.

atlantic coast and seaports of connecticit, new york, new jersey, pennsylvania, and delaware, including bays and hivers.-(Sketches nos. 4 and 5.)

Survey of Thames River, Conn.-For continuing the survey of the Thames abose the naval station, a party was organized on the 8th of July, 1874, and prosecated work in the field, under the charge of Assistant H. G. Ogden, until the $2 d$ of October.

In order to provide points for the plane-table work, Mr. Ogden extended a tertiary triangulation from the vicinity of the naval station upward along the course of the river to Norwich. The topographical survey was resumed at points above Gales' Ferry, and was continued aloug both sides of the Thames as far up as the junction of the Shetucket with Yantic River. Parts of both of these streams appear on the hydrographic sheet, which contains also the soundings made in the Thames between Norwick and the naval station.

The topography of this season joins previous work on the east bank at a point sometimes designated as Mount Decatur, and embraces a strip about half a mile wide to within oue mile of Norwich, but is restricted to the river road in approaching the city. Oa the west bank, the survey by Mr. Ogden was begun at Mohican, and inclades the tract between the river and the New Loudon turnpike from Mohican to the vicinity of Norwich, narrowing near the suburbs. Tides were observel with a gauge near the naval station, and also at a wharf near Norwich. It is noted in his report by Assistant Ogden that the records of observations steadily indicated a rise and fall at the city
six inches greater than the rise and $f a l l$ of tide at the naval station. Mr. Ogden mentions his obligation to Rear-Admiral Reed Werden, then commandant at the naval station, for the use of a boat $f_{\text {or hydrographic work. The statistics are as follows: }}^{\text {hy }}$

Siguals erected	17
Stations occupied	14
Points determined	40
Shore-line traced, miles	49
Creeks and marsh, miles	$8 \frac{1}{2}$
Roads, miles	372
Area, square miles.	11.
Miles ruo in sounding	94
Angles measured.	737
Casts of the lead.	8,937

Mr. D. B. Wainwright aided in the field-work and bydrography. The work subsequently done by the party of Assistant Ogden will be noticed uuder the head of Section VI.

Survey of New Haven Harbor, Conn.-The work of Assistant R. M. Bache in the survey at New Haven has resulted in the completion of thirteen plane-table sheets, showing the detanls of topography along the shores above Oyster Point and Fort Hale. During July and August, 1874, and under his immediate direction, the survey was continued above New Haven by a party of volunteers from the Sheffield Scientific School, and, until November, by two others, maintained at the expense of the city, for mapping details desired by the harbor commission. Mr. E. C. Savage, graduate of the Scientific School, conducted one of the parties, the members of which had been instructed in the use of the water-level on the plain near the city. In progress eastward, contourlines were traced in as the party ascended the range of hills in that direction. The details are fall in relation to the area, the ground passed over being largely covered by extensions from the former limits of the city. Twenty-four miles of roads and streets, and all artificial improvements in that quarter, appear on the topographical sheet. The two working.parties furnished by the city were condncted by Messrs. Horace Andrews and Neville B. Oraig, both graduates of the Scientific school. Seven large sheets, each three feet square, having been completed in the preceding season, the parties took in hand field-work for the eighth, and closed after completing the thirteenth sheet. The ground features and artificial objects were mapped with great precision, on a large scale, on drawing-paper attached, in the manufacture, to thin metallic plates, by a special process developed by Assistant Bache. Twenty-one miles of water-line were minutely traced for the five sheets. The adjustment of these and other features required the determination of twenty-two additional points by triungulation, and the measurement of sixty-cight horizontal angles.

Additional to the work already noticed, Assistant Bache made a special survey of Drummond's Bank in the Qaiunipiac, and closely determined the differences in depth, to enable the barbor commission to decide on exceptions whicir had been filed against the line marked as a harbor limit. In this sarvey, each sounding was located by an angle measured by simultáneous determinations with two transits. For the adjustment of soundings in the harbor, special care was taken in the establishment of a bench-mark and in recording the tides.

In the course of the winter and spring, the large amount of details mapped in the fleld in pencil was inked, and the sheets have been delivered to the harbor commission.

Triangulation, Long Island Sound, N. Y.-Near the end of July, 1874, Assistant J. A. Sullivan took the field in this section, in order to co-operate with Assistant Cutts for the triangulation near the boundary between Counecticut and New York. In the course of a week, Mr. Sulliran put up siguals at Wooster, Mount Tom, and Good Hill stations, but on an emergency he was then transferred to the eastern end of Long Island Sound, and was there engaged until the 1st of December. Thirteen light-houses were determined in position. These include the old and the new structare on Block Island, and those at Montauk, Mystic, Race Point, North Hummock, Gull Island, Cedar Island, Plan Island, Long Beach, Gardiner's Island, Faulk ner's Island, Ponquogue, and the derrick which gires an approximate center for the foundation of a light-house under construetien at Race Rock, near the west end of Fisher's Island. The beacon in Plum Gat was also determined in
position. The triangulation done in this ricinity availed for the uses of the hydrographic party, the operations of which will be mentioned presently. Iu order to complete the determinations of position, it will be requisite to occupy additional stations, and, in July of the present year, Assistant Sullivan will take the field for that service. The statistics of the work done in the autumn of 1874 are :

> Signals erected
> 15

At the outset of the season, and until a small vessel conld be hired, this work was farored by the courtesy of F. H. Stott, esq., vice commodore of the Brooklyn Yacht Club, who was then cruising in the vicinity. In the course of several weeks, the party was transferred from station to station by that gentleman in his own sacht; the aid being, moreover, made specially acceptable by the earnestness of Mr. Stott in repeating his invitations, and by his cordial expressions of interest in the work of the party.

Hydrography near Plum Island, Long Island Sound, N. Y.-Soundings which have heretofore appeared on the published chart of this part of Long Istand Sound were made in the year 1838, and the vicinity has not been subsequently examined until within the present surveying year. In July, 1874, my attention was asked for the derelopment, by special soundings, of the channel which leads west of Plum Island from Gardiner's Bay into Long Island Sound. As soon as practicable, the work was taken up by Assistant J. S. Bradford, who completed the hydrography of the entire channel between Oyster Pond Point and the west end of Plum Island. His party, in the schooner Palinarus, was engaged in this work until the 21st of August, 1874.

A few days after, Capt. K. R. Breese, U. S. N., then cruising with the United States ship Constellation, reported that his ship had touched on a rack or shoal between Gull Island and the entrance to Gardiner's Bay. Assistant Bradford, being near by, commenced search immediately, but many traverses were patiently run in the course of seven days before auy rock was found on which a deep-draught vessel could have touched. A spar-baoy was placed by the party in the Palinurus to mark the danger. Amongst the expedients for finding such rocks, Mr. Bradford used a sweep, weighted in the usual manner, and which, in operation, made it plain that some of the many rocks in that locality are large bowlders that merely rest on the bottom uear the eastern eud of Long Island, and that the rocks may be easily overturned. The drag used having 70 fathoms of line, and towed by the gig and cutter, finally caught ou a large bowlder, the depth on which was found to be 23 feet at mean low water, the depth around it being 5 fathoms, as was found when the Constellation touched. The ship, howerer, was drawing not more than 21 feet, and her position was well determined. Hence, although from observation, in regard to other bowlders in the ricinity, it might be inferred that the Constellation, on tonching, overturned a rock, many of the bowlders haring been orerthown in the search by a force not comparable with the impact of a large ship, the difference in positions makes it plain that the rock fonnd by Mr. Bradford is not the bowlder which was strack by the Constellation. The search for that rock will be renewed, and it will doubtless be identified. When the chart of this vicinity was issued some years ago, the requirements in graphical bydrography were not such as they are now. In order that the close supplementary sounding made by the party in the Palinurus might avail at once for the cagraved chart, positions on shore in the vicinity were carefully determined by the triangulation-party of Assistant Sullivan.

Before resuming the work to which his party had been assigned for the season, Assistant Bradford made a survey of the "East Ground" off Block Island and found 7 fathoms. This shoal lies about five and a-half miles eastward of Block Island, and by a passing vessel had been reported as having shoaled to 6 fathoms. After completing the reconnaissance, a survey was made of Block Island Basin, the breakwater constructed by the United States engiueers being then nearly finished. The following shows the statistics of work done near Plum Island:

```
Miles run in sounding.58
```

Angles measured 1,054
Number of soundings 3,888

The resulting hydrographic sheet shows Beebe Rock with only 8 feet of water on it, near North West Point, and a shoal with 17 feet about midway between Pine Point and the spindle on Osster Pond Reef. . Iu reference to alteratious along the shore, Assistant Bradford says: "Oyster Pond Point and the west shore of Plum Island have changed very much and are rapidly being cut away. At the northwest point, the light-house site is defended by lines of heary bowlders, that, falling, wheu washed out by the action of the water, now form a natural breakwater, which protects the face of the cliff. What was formerly Oyster Pond Point is now a mass of bowlders with threads of water between them ; but, where there are no bowlders, the point is gradually giving way."

Coast Pilot.-The work noticed under the last head was done at intervals of the time allotted between Jnne and December for compiling notes for a second volume of the Atlantic Coast Pilot. In previous years, Assistant Bradford had personally examined all the barbors between Eastport and Point Judith. The larger part of his notes gathered in that work were printed last year, giving descriptions of dangers and sailing-directions for entering the harbors of the coast of New England north of Boston.

Assistant Bradford, in the schooner Palinurus, resumed the special examinations in July, 1874, and in the course of the summer and autumn prepared descriptions and notes relative to Long Island Sound, Block Island Sonnd, and Fisher's Island Sound; and of the harbors of Stonington, New London, Saybrook, New IIaven, Napeague Bay and Gardiner's Bay, Greenport, Peconic Bay, Hempstead, Oyster Bay, Huntington Bay, Bridgeport, and Black Rock; the harbors at Sheffield Island, Cawkins Island, Cartain's Island, Sachem Head, Hart and City Islands; the passage through the sound at Hell Gate; the courses of navigation in the waters of New York Bay; and notes respecting Newark Bay, Elizabethport, Perth Amboy, and the south coast of Long Island. The ressel and party were engaged in this service nutil the $20 t \mathrm{t}$ of November, when the Palinurus returned to Norfolk and was laid up for the winter.

Mr. Bradford was aided throughout the season by Mr. J. R. Barker, whose skill in graphic representation is well illustrated by the sixteen views, taken from the deck of the Palinurus, of approaches aud harbor eutrances that are mentioned in the notes of the year. In March last, after adapting, for a cheap and effective process of reproduction, the series of views drawn by the late W. B. McMurtrie, as illustrations in a fual edition of the first volume of the Coast Pilot, Mr. Bar ker etched the siews on glass preparatory to their transfer to stone for printing. Assistant Brad. ford occupied the winter in compiling and arranging notes for the second volume of the Coast Pilot, the preparation of which is now well advanced. During the summer and autumn of the present year, Lieut. C. A. Bradbury, U. S. N., will be associated with the party on board the schooner Palinurus, for revising work in ad vance of a second edition of the Coast Pilot.

Survey of Port Jefferson, Long Island, N. Y.-The party of A ssistant F. H. Gerdes was organized for service with the schooner Dana, and early in July, 1874, was at work in the vicinity of Stateu Island. For determining in position the new light-house near Fort Tompkins, a short base was measured, and connected with several triangles that were laid out between it and the position of the fort. Azimath was determined for the line joining one of the stations with Trinity spire, the relative place of which, iu the triangulation of New York Harbor, was previonsly well known. On the completion of this work, the party was transferred to Port Jefferson, on the north side of Long Island. Mr. Gerdes identified two of the stations which had been occupied for the triangulation of Long Island Sound. From these, points were determined sufficient for a plane-table survey, which was made in the course of the season to include Port Jefferson, Setanket Harbor, and Conscience Bay. The waters included within the topographical limits were sonuded carefully. Outside of the entrance, the hydrography was extended about a mile beyond the shore, and close soundings between Oldfield light-house and Mount Misery were plotted on a separate sheet. Subassistant C. P. Dillaway was attached to the party in the schooner Dana. The statistics of the work are :

Shore-line surveyed, miles... . 21
Roads, miles...... 9
Area of topography, square miles . 7
Miles run in soundiug .. 115
Augles measured... 1,055

The survey of Port Jefferson was completed on the 4th of October. A few days after, the party engaged in work which will be mentioned presently in this section.

Triangulation.-The New York boundary-triangulation, commenced by the late Edmumd Blunt, assistant in the Coast Survey, for determining the exact geographical position of monuments on the line between that State and Connecticut and Massachusetts, starts from a line of the primary triangulation at Tashua and Ivy Stations, and ends at the line joining Perry's Peak and Yellow Pine Stations, near the parallel of Castleton. For extending this scheme northward, and thas connect the survey of Lake Champlain with the primary series, and also provide a basis for meeting prospective requirements in regard to the determination of poiuts in the interior, Assistant Richard D. Cutts took the field at the end of June, 1874, and first occupied Perry's Peak, a point very little eastward of the boundary line between Massachusetts and New York. As soon as practicable, signals were erected by his aid, Mr. J. F. Pratt, on Greylock, on Yellow Pine Station, and on Mount Rafinesque, but, owing to a succession of rainstorms, angular measurements with the theodolite were not completed at Perry's Peak until the 18 th of August. The party was immediately transferred to Yellow Pine, where the requisite observations were closed on the 21 st of September. A few days after, the instruments were in positiou on Mount Rafinesque. The summit was cleared to afford an open horizon, and Mr. Pratt was detached to set up signals at the outlying stations. By the 8 th of October, observations to the south ward and westward were complete, bnt the siguals on Mount Equinox, Greenwich, and Corinth Hills, which, by reason of distauce, could be seen only under circumstances exceptionally favorable, were entirgly hidden from view after the 20 th by the baze of Indian summer. On the 23 d of October, Assistant Catts closed field-operatious for the season. Trelve signalis were erected and observed on, and thirty two horizontal angles were measured by lines of from 18 to 35 miles in length. The heights of four stations were determined by vertical angles. The records, since deposited in the office, include angular measurements made from the stations which were occupied, on prominent church-spires, for determining, in relative positions, Troy, Ballston, Saratoga, Schuylerrille, and other towns and villages that coald be seen from the mountain-stations.

At intervals when the observing instruments were in transit, Mr. Cutts conferred personally at Cube Mountain in reference to the interests of the work in progress at that station under the charge of Professor Quimby, and also with Assistant Perkins, whose work at Ragged Mountain, on the coast of Maine, has been a subject of mention under the head of Section I in this report.

Arraugements are now in hand for completing the observations requisite at Mount Rafinesque.
Latitude and azimuth at house's Point, N. Y.-In the course of the summer and autumn of 1874, astronomical observations were made by Assistant G. W. Dean, at several stations between the United States boundary-line near Lake Champlain and Catskill Mountain near the Hudson Riser. His party took the field early in August, and first occupied "Astronomical Hill" one of the stations used in the triangulation of Lake Champlain. The station is not far from one of the points occupied in 1845 by Major Graham, U. S. A., for establisining the bonudary-line between the United States and Canada. Finding in place several of the granite blocks on which the astronomical instruments were adjusted in 1845 , Assistant Dean made careful measurements, and noted the distances between them and his own station on Astronomical Hill. There the latitude was determined from 176 obserratious on 23 sets of stars with zenith-telescope No. 4. Nine nights favorable for observing were occupied in this work. The arc-value of the micrometer was found from 147 observations during three nights on Polaris near eastern elongation.

Azimuth at Astronomical Hill was ascertained from the record of 86 observations with the 46 -inch Transit No. 4 on δ Ursæ Minoris near its upper culmination, and an equal number on 51 Cephei near lower culmination, with lamps east and west. These observations in the course of six nights were referred by 116 pointings upon a meridian-mark, which had been set up about half a mile north of the astronomical station. A meridian-line was traced on the Goveruments reservation, and Mr. Dean carefully marked the ends by drill-holes in the tops of granite posts, which were sank four feet into the ground. The station ocoupied for latitude is about midway in the meridian-line, and the position occupied by the zenith-telescope was marked by a granite post similar to those placed at the ends of the line.

For local time at the station on Rouse's Point, Mr. Dean recorded 50 observations on 12 staudard stars with the transit-instrument.

The angle between the meridian-line and Windmill Point light-house was carefully measured with the 10 inch Gambey theodolite No. 63 by means of 432 readings of the horizontal augle.

Capt. David White, civil engineer, who was at Fort Montgomery while astronomical work was in progress, extended all the facilities at his command to further the operations at Rouse's Point.

Cheever Station, abont two miles north of Port Henry, N. Y., was occupied by Assistant Dean, in the middle of September, with the instruments which had been used for latitude and azimuth determinations in August. For latitude at Cheever, 168 observations were made on 21 sets of stars during tive nights, and $9 \boldsymbol{f}$ observations were recorded for arc-value of the micrometer. Azimuth was determined as usual by an aggregate of 172 observations on six nights; 120 pointings on a meridian-mark and 372 measurements of the horizontal angle were made for referring the azimuth-determinations to Station Whitford on a line of the triangulation. For local time, observations were repeated on seven nights. The work at Cheever Station was closed on the 6th of October. As soon as practicable, Mount Merino, near Mudson, N. Y., was occupied by Assistant Dean for similar determinations. There the latitude was found from 146 observations on 18 pairs of stars on six nights, and 135 observations were recorded for the value of micrometer-divisions.

For azimuth, 77 observations were made on λ Urse Minoris near upper culmination, and 60 on Polaris; and 164 measurements were made for connecting the azimath-determinations with the mark. A signal-pole was set up on Catskill Monntain; but, though the distance from Mount Merino was less than 12 miles, the signal was commonly obscured in the latter part of October and early in November by the haze then prevalent along the Hudson Valley. Mr. Dean, however, ultimately referred the azimuth-mark to the triaugulation by 696 measurements of the horizontal angles between the mark and the signal-poles at Catskill Station and Mount Merino.

Mr. A. G. Pendleton served as aid in the astronomical party, and subsequently was engaged in Section VII. Assistant Dean closed the work at Monnt Merino on the 14th of November. The original records of his-observations have been duplicated and deposited in the office, and the computation of results is now well advanced.

The proprietor of Mount Merino, Capt. William J. Wiswall, afforded many facilities for the service of the party while the work was in progress at that station.

Shore-line survey of Lake Ohamplain.-This shore line survey was completed before the approach of winter, in 1874, by two plane-table parties, the work of which was joined at a point not far below Ticonderoga.

Assistant O. T. Iardella took the field early in May. After mapping in outline the islands known as "Four Brothers," he joined with previous work on the east side of the lake at Paxton's Point and on the west side at Ligonier Point, and from thence extended the survey southward. His work is on five sheets, which show the several harbors of the lake between Burlington and Crown Point. Amongst these are MeNeil's Bay, Arnold's Bay, Gray's Basin and Rock Harbor, Northwest Bay, and Whalon's Bay. The roads in the immediate vicinity of the lake appear as details, and also the villages that adjoin the water-line. After completing the general surrey to the point desiguated at the ontset of the season, Mr. Iardella made a detailed topographical survey of the vicinity of Crown Point on a scale sufficient to admit of marking in position the outlines of all the fortifications and defensive lines that could be identified. Remembering that while interest in such remains is deepening, the objects themselves are wasting away and must soon disappear, it will be deemed a duty to include in topographical operations the mapping of localities that have been famous or noteworthy in our early history, when the places chance to be within the projected limits of work, as in the case here mentioned.

Subassistant H. W. Bache was attached to the party of Assistant Iardella.
Sabassistant Andrew Braid, with a separate topographical party, took the field on the 1st of June. Beginning at a point agreed upon in conference, below Crown Point, the shore-line survey was extended from thence soathward to include Whitehall. In the course of the operations, numerous points were determined for use in the bydrography, and traciags of shore-line were furnished as the work advanced. At Ticonderoga, Mr. Braid made a special survey, on a large scale,
of the old fort and its ricinity. Traces of all the defensire lines and redonbts were carefully sought for and delineated. Contours of such as could be identified were traced to show the ground-elevation as it now exists. The walls of the old fort are crumbling rapidly, and, as the fragments are passing away in the hands of tourists, the spot must soon be left without any trace either of the ruin or of its foundation. Mr. Braid found that the old French lines of 1758 were tolerably well preserved in places; but, at the eastern limit of the works, the lines have been nearly obliterated by the plow. Subassistant Braid was aided in the field by Mr. U. M. Sinclair. The work of the season done by the two plane table parties is shown in the following statistics:
Shore-line surveyed, miles 235
Roads, miles 99
Marsh-outline, miles 47
Area of topograply, square miles 20

Assistant lardella during the winter conducted a plane table party in Section IV. Subassistant Braid was at the same time in service which will be mentioned under Section VIII.

Hydrography of Lake Champlain.-Within the plane-table limits of the present year, the hydrography of the lake has been completed by a party under the charge of Mr. Charles Junken, working with the steamer Fathomer. Soundings were began in Shelburne Bas in the middle of June, and were finished on the Gth of July, 1874. After completing work in Willsboro' Bay, Mr. Junken proceeded to Crown Point, and there resumed the general bydrographic survey, all the waters north of that point having been previously sounded. Weatber being favorable, the work in going southward reached Ticonderoga by the 3th of August. During several weeks succeeding that date, the charge of the bydrographic party devolved on Mr. E. H. Wyvill, in consequence of the illness of Mr. Junken. Mr. G. A. Morrison served as aid. Work was steadily pushed until the 10th of October, when the sounding party had passed Whitehall and completed the hydrography of the lake, including at its sonthern limit the expausion known as South Bay, below Whitehall. The following are statistics:

```
Miles ran in sounding
507
Angles................................................................................ 10,432
Number of soundings. ............................................................ 43, 481
```

As evidenced by the number of recorded angles, the bydrography below Orown Point, in places likely to be under consideration for future improvement, was prosecated with reference to such contingency. After completing his manuscript sheets of the lake hydrography, Mr. Junken resumed duty as draughtsman in the office. At the end of June of the present year, he was detailed to examine and report on shore line changes and sea-encroachment on the coast of South Carolina. The results there found will be mentioned in Section V of this report.

Survey of Hackensack River, N.J.-As far up as Hackensack, and in the lower part of English Creek, soundings were made in the river in 1873, and the shores had been previously traced. In the middle of October, 1874, Assistant Gerdes commenced a plaue table survey of the ground along both sides of the Hackensack, and extended the detailed topography eastward to the New Jersey Northern Railroad, which passes along the western edge of the Palisade Ridge. Most of the area surveyed is marsh, but it includes many patches of well-cultivated land, and is crossed by plank-roads, turupikes, and railroads. This work, was completed early in November. The statistics are:

Subassistant Dillaway was engaged in this work under the direction of Assistant Gerdes, and Mr. U. A. Ires served in the party as aid during part of the season. After refitting at Baltimore, the schooner Dana was employed during the winter in Section IV.

Station-marks.-The prospective requirements of field-work in the vicinity of New York Harbor making it desirable to refer to Beacon Hill and Weasel, two stations occupied in the early

```
II. Ex. 81-4
```

surves of that region, Assistant Edward Goodfellow was directed to search for the marks which had been set in the ground, and thus to identify them as points used in the general triangulation of the coast. With the requisite office-data and descriptious of the stations, Mr. Goodfellow took the field in August, 1874, and, from a preliminary station on Beacon Hill, observed upon five known points of the secondary triangulation. From one of these, at Elm Tree Beacou, angular measurements were also made, the purpose being to identify the point which had been occupied by the; theodolite in a former year on Beacon Hill. Having ascertained withiu close limits the locality in which the early signal must have stood, Mr. Goodfellow next proceeded to Weasel, to search for the ground-marks. These he readily found by clearing the rock of earth and moss which had gathered on it in the course of years since the station was first occopied. After adjusting a signalpole over the point to be observed on from Beacon Hill, Mr. Goodfellow visited that station, and, apllying results gathered from angalar measurements at the others, found, after due search, the stone cone which had been buried there by Superintendent Hassler. This work was completed on the 18 th of September, when descriptions applicalle to the present condition of the stations were filed at the office, with sketches to facilitate identification of the points in future. Mr. C. A. Ives aided in the field-operations.

In December, Assistant Goodfellow was assigued to duty under the direction of the assistant in charge of the office in Washington.

Plysical survey of Nem York Harbor.-As far as practical purposes have demanded, this work has been pursued systematically. The harbor has undergone some changes since the early surveys were made, and these alterations, with their causes, make the subjects of operations and studies at this time. Incidentally, however, an investigation of the relations of the channels to the streams that traverso them is continued by Assistant Henry Mitchell, and is expected to show at what points the old pier-lines are at fault, and the proper location for new ones, not ouls where faulty ones exist, but also in localities not jet occupied.

The deepening of the Hudson below Castle Point, referred to in a previous report, naturally suggested an iuquiry into the causes of the excavation and the disposal of the material remored. A glance at the earlier harbor-chart shows that this part of the river was originally of adequate depth for all the possible wants of navigation, and that the deepening is not only no improvement, but implies injury elsewhere, since a very large volume of material must have been deposited in other parts of the harbor. It seems probable that the general occupation in later years of the New Jersey shore, and the erection of numerous wharves, etc., on that side of the river, have restricted the former How, and that increased scour has been thus induced.

The utilization of hitlierto worthless flats, even if some such consequences as those referred to must follow, is not necessarily inexpedient, but in the case under question a proper study of the natural conditions in adrauce of the erection of structures might have secured the community against undue sacrifices. The commission of United States officers, requested by the State authorities of New York to rectify the pier-lines of Brooklyn, owes its origin primarily to complaints against the extension of wharves beyond the previonsly adopted harbor-lines. That board, having no power to remove the extensions, which seem to have been made without any previous stady or consultation in regard to their probable effect on the channels, was constrained to locate a new pier-line, more advanced than the old one, in order to mitigate the injurious effect of the obstructions. Researches in the physical survey hare had direct bearing on the conclusions reached, and at times the observers in the party of Mr. Mitchell have rendered immediate service to meet the requests of the board.

Immediately after his return from Central America, Professor Mitchell arranged a project for further operations in New York Harbor. The schooner Research was equipped and ready for work on the 8th of July. Assistant H. L. Marindin took charge of the party, and Mr. J. B. Weir served as aid.

In East River, six transverse curves of velocity were determined, both for maximum ebb and maximum flood. These were compared, each with the profile of the section sounded out at the same time, and connected by tracing free floats, the courses of which were determined by many three-point positions.

Sabsequently, worts in Hudson River and along the western part of the main channel of the harbor was taken $u p$; four transverse curves were determined, aad these were connected and extended by twenty-nine trips with free floats. Peculiar difficulties are offered in the Hudson. Many stations are needful to give the trausverse curves of velocity, and, if not observed on simultancously, corrections cannot well be applied for variations in the river-ontflow.

Part of the design in view is to draw isodgnamic lines throngh the harbor-chart, and exhibit their relation to the submerged contours, especially where the bottom is jielding, bat also where the flow is subordinated to the form of the channel. It is obvious that such a chart, if satisfactorily made, would show directly where artificial improrement of the chanvel will accord with, and where it would vivlate, natural rules; which of the shoals were antecedent to the existence of the present currents, and which of the shoals resulted from these morements-the first belonging to the class of obstructions that can be permanently removed, the last to the class of shoals that will at some future time reappear.

In the course of the work in New York Harbor, it has become evident that observations in summer and autumn, which have been our rorking seasous there; must be supplemented by obser. vations made in the spring, in order to find co efficients for the flood periods.

Earnest call having been made for similar observations in Providence Harbor, notice of which has been taken under the head of Section I, the work near New York was closed on the 1st of September, 1874. Subsequently, the party was employed in special observations at the Mississipp delta.

Hydrography of New York Bay.-During the month of July, 1874, the party of Assistant F. F. Nes, in the steamer Arago, was emploged in sounding the parts of the lower bay which had not been reached in the operations of the preceding season. While that work was in progress, my attrntion was asked to determine whether the harbor-dredgings for the final deposit of which certain localities had been indicated were moving so as to lessen the depth in the adjacent channel, an inquiry based apparently on the supposition that the barges of mang contractors were all towed in accordance with the "permit" to the designated sites, and discharged within the limit of depth specified when the dumping-grounds were selected. Assistant Marindin being then in the viciuity, aud knowing the requirements which were carefully iuserted in each permit, soon observed that barges were discharged elsewhere. While pointing ont to Assistant Nes the siguals used in the survey of 1873 , which resulted in selecting the place of deposit, Mr. Marindin saw some barges depositing material in the channel at a position less than threequarters of a mile from the Fort Tompkins light-bouse. Their movements in reaching the place, moreover, made it very likely that the "permit" to dump material only in depths greater than six and less than twelve feet had been generally disregarded. Inquiries by some of the members of the Board of Commissioners of Pilots led to the same conclusion. Under the adrice of Professor Mitchell, a resurvey was made of West Bank channel aud dumping-ground by the party in the Arago. Mr. Nes completed that work on the 24th of August, aud then sent to the office the records of the bydrography and specimens of the bottom. Soundings were resumed in the vicinity of Sonthwest Spit, and there the operations of the party were continued until the 10th of October, when the Arago returned to port, to be refitted for hydrographic service which will be mentioned hereafter. Master H. O. Hands, U.S. N., joined the ressel on the 13th of August, aud assisted in the work in New York Bay. The following is a synopsis of the statistics:

Miles run in sounding.. 390
Angles measured.. 4,934
Number of soundiugs. .. 19,607
Assistant Nes was aided in this section by Mr. W. B. French. Lieutenant Handy took charge of the steamer Arago at the end of October, and subsequently conducted the operations of the party in that ressel, as will be stated under Section IV.

Tidal observations.-The self-registering tide-gage, though of the old form, in charge of Mr. 12. T. Bassett, was kept in operation throughont the severe weather of last winter at Governor's Island, New York_Harbor, by the free use of warm water when circumstances so reguired. Ouly a few interruptions appear in the register, and correspond to periods when, because of the floating
ice, the observer found it impossible to reach the tide-gauge. As heretofore, Mr. Bassett records the tides also with a box-gange at Hamilton avenue in Brooklyn.

Places have been selected at Sandy Heok and Throg"s Neck for the establishment of self-registering tide-gauges, and it is hoped that series of observations may be commenced at an early day.

In the following extract, Lieutenant Hïtchcock mentions an act of noble daring by a member of his hydrographic party, of the steamer Endeavor, at Jersey City, on the 25 th of June of the ' present year, when arrangements were in progress for transferring the party from that vessel to the steamer Gedney, and which is here cited as specially commendable:
"While on shore, Henry Rynders, seaman of this vessel, noticed a crowd, and on inquiry found that a boy in playing ball had accidentally fallen into a sewer, and that be had been swept under the street and beyond the reach of a rake, the only means tried in the course of nearls twenty minutes for his recovery. Rynders procured a rope, lowered himself into the sewer, found the boy, almost lifeless, about 15 feet from the opening, and brought him up."

The rescue of the boy by a humane impulse stronger than any sense of personal risk was promptly noticed by the American Benevolent Life Saving Society of New York. The silver medal of the society, suitably inseribed, and a substantial token in money, a warded by the society to Henry Rynders, seaman, have been transmitted by its president, Ellwood Walter, esq., with a communication expressing the exalted motives that prompt such awards.

Survey of Great South Bay, Long Island, N. Y.-This work was resumed by Assistant Charles Hosmer on the 23 d of June, 1874, at Islip. In the course of the season, the detailed topography was extended eastward along the upper shore of Great South Bay as far as Howell's Point. Conformable to the same limits east and west, the strip of land bounding the south side of the bay was mapped on the plane-table sheet. Soundings were taken up at Nicholl's Point, where hydrographic work had closed in the preceding season, and were extended eastward to Howell's Point. On the north side of the bay, the survey includes Patchogue and all artificial improvements now existing between the water-line and the railroad. Under direction of Mr. Hosmer, the soundings were prosecuted by Subassistant L. B. Wright in the schooner G. M. Bache. Mr. J. De Wolf aided in the plane-table work. The statistics are :


```
Roads, miles. ...........................................................................}10
```



```
Miles run in sounding........................... ...................................... }21
Angles measured............. .............................................................. 1,169
```


The party was disbanded on the 26th of September. Its subsequent operations will be mentioned under the head of Section VI.

Reconnaissance.-At the request of the governor of New Jersey, and in behalf of the geological survey now in progress in that State under the direction of Prof. G. H. Cook, arrangements have been made for the determination of points to serve in correcting the State map. The examination of the ground for stations bas been committed to Prof. E. A. Bowser, who will take the field in the course of the summer in the vicinity of New Brunswick.

Topography of Barnegat Bay, N. J.-For resuming field-work on the coast of New Jersey, the party of Assistant C. M. Bache was organized on the 16th of July, 1874, and a planetable sheet was projected for details of survey along the western side of Baruegat Bay, betreen the town of Barnegat and the north shore of Tom's River. Field-work was continued until the 6 th of November. After tracing the shore-line, the surface-features adjacent were mapped inland as far as the road which passes from Tom's River to Barnegat. The survey was closed for the season on the south side of the river, where it will be resumed in the summer of 1875 by the same party. Statistics of work for the present season are :
Shore-line surceyed, miles 159
hoads, miles 106
Area of topography, square miles 38

Subassistant H. M. De Wees was attached to this party, and Mr. J. J. Evans aided in the field-work.

As means for transportation, Assistant Bache used a barge, which has proved to be well adapted for conducting plane-table operations in the vicinity of shallow waters. It is expected that in the coming season the detailed topographical survey of the coast of New Jersey will be made continuous from Sandy Hook to a point below Absecom Inlet.

Hydrography of Barnegat Bay, N. J.-Early in July, 1874, the party of Subassistant W. I. Vinal was transferred to the schooner Bibb. The vessel left Norfolk on the 11th of that month; but, owing to adverse winds, five days were spent in reaching the working.ground on the coast of New Jersey. Notice will be taken presently of the survey, which was immediately taken up, but in geographical order mention must be made of the work which was commenced on the 20th of August in Barnegat Bay. During an eutire month from the ontset, soundings were prosecuted under great disadvantage, the air being clonded by smoke from extensive tracts of burning forest. By the 8th of October, bowever, the entire bay, which is about 12 miles long and from 2 to 5 miles wide, was completely sounded out. Ten stations on shore were occupied for determining the positions of signals. The ordinary hydrographic statistics are :

$$
\begin{aligned}
& \text { Angles measured. 2, 264 } \\
& \text { Number of sonndings. } 56,234
\end{aligned}
$$

In the progress of this survey, the positions of six life-saving stations and fice buoys were determined.

Subassistant Vinal took up the bydrograpbs of the entrance to Little Egg Harbor on the 20 th of July. The lines of soundings required, being outside, conld be run only at intervals, during which the irregular "dry bortheaster" was not blowing on shore. No opportunity for advancing the work was lost, and by the 13th of August the hydrography of the eutrance and approaches to Little Egg Harbor was completed. While the work was in progress, the officers engaged in lighthouse service renewed the buogs and moved several of them in position. All the positions, thirteen in number, were carefully determined by Mr. Vinal, and are marked on his brdrographic-sheet. In this vicinity, he determined also the positions of three life-saving stations. The general statis. tics are:

$$
\begin{aligned}
& \text { Miles run in sounding .. } 101 \\
& \text { Angles measured... } 913 \\
& \text { Number of soundings . } 9,587
\end{aligned}
$$

Mr. E. B. Pleasants served as aid in the hydrographic parts, and accompanied Mr. Vinal for similar duty in Section IX, under which mention will be made of the occupation of the party during the winter and spring.

In going northward in the steamer Bache, for service which has been stated under the bead of Section I, Acting Master Platt passed, ou the $19 t h$ of JulS, 1874 , off Barnegat, a large spar, which seemed to project from a sunken wreck. Near the spar, the depth of water was thirteen fathoms, the light-house bearing north-northwest, and distant about nine miles. Prompt notice was given through the press in regard to this obstacle, which, for any period that the wreck might hold the spar in place, would be highly dangerous to navigation.

Triangulation, topography, and hydrography in Delaware River. - This work was prosecuted at the request of the Light-Honse Board, to meet the requirements of that service for the proper location of range beacons as aids to narigation in the Delaware, near Liston's Tree, and also for entering the month of the Schuylkill. Of necessity, the hydrography of the channels was revised in both places, the channel into the Schuylkill having been recently altered by dredging, while that near Liston's Tree was represented only by the soundings made many years ago. Iu order to provide the points requisite on land, Assistant J. A. Sullivan took the field on the 26 th of April, and, with the aid of Mr. U. L. Gardner, soon identifed the station-mark which had been placed in the gronnd at Port Peun as one of the points in the triangulation of Delaware Bay. The line to Reedy Island light-house serving as a base, suitable angular measuremeuts were interpolated, and
twenty-seven additional points were furnished for the use of the hydrographic party. These were determined by 1,440 observations with the theodolite.

After providing the requisite projections, Assistant F. F. Nes proceeded to Delaware City on the 19th of April, and set up a tide-gauge there, and another at New Castle. At Collins' Beach, tidal obserration were also recorded. Cntil the 4 th of May, the party was employed in erecting signals, under the disadrantage of contivuous bad weather. The light-house steamer Violet, assigned as means for transportation, was soon withdrawn under an exigency of the service, but was replaced a week afterward by the cutter Rose. During that interval, Assistant Nes prosecuted soundings with a small boat. Progress in the work was very satisfactory after the middle of May, and, in the course of the following week, the hydrography of the channel was completed. Positions for range-lights were then selected, tripods were erected over the points, and lines of soundings were run between the tripods on the selected ranges. The least depth found on either side of the rauge was twenty feet.

In this service, Mr. Nes erected twenty-two tripod-siguals, and carefully determined tho positions of seven buoys. The geueral statistics of his work are as follows:

Miles run in sounding . 248
Angles measured 1,579
Casts of the lead 8, 778
The report of Assistant Nes includes descriptions of the signals used for the bydrography, and of the ground selected as sites for the range-beacons. Messrs. R. B. Palfrey and C. H. Sinclair served as aids in the party of Assistant Nes.

The party assigued for revising the hydrography at the mouth of Schaylkill River was placed in charge of Mr. Charles Junken, who conferred immediately with General Raynolds, the lighthouse engineer at Philadelphia, and commenced work on the 30th of April. Mr. Junken used the plane-table for tracing the shore-lines of the lower part of the Schuylkill aud of the adjacent part of League Island. By the same means, he determined in position a number of poles placed at lowwater mark, each being the end of a subsequent line of soundings. As the work advanced, the sonndings reduced to mean low water were plotted on the chart. The result shows that a depth of $19 \frac{1}{2}$ fcet can be carried into the mouth of the Schuylkill and up to Penrose Ferry Bridge. Pusitions for the range-lights were then nrarked by tripods on the ground.

On the 11th of May, General Raynolds went on board of the light-house cutter Rose, and passed into the Schuylkill by the ranges as marked, finding a depth of 20 feet on the bar. Soundings above the bar, bowever, developed the existence of some obstruction, which subsequently proved to be a sunken coal barge, and near it a pile of stone, probably the diseliarged ballast of a vessel. These obstructions were marked on the chart, copies of which have been furnished for the uses of the Light-House Board. The general statistics are:

Miles run in sounding .. 11
Number of soundings ... 1, 1, 98.7
Geodetic survey in Pennsylvania, At the instance of the State geologist, Prof. J. P. Lesley, request was made early in the summer, by the governor of Pennsylvania, for the co operation authorized by law in regard to extending the triangulation of the coast so as to determine points for correcting the State map. Prof. L. M. Haupt, of the University of Pennsylvania, who has been accepted as field observer, conferred personally at the Coast Survey Office in June, and is now conducting a reconuaissance in the Leligh mining region, where it is desired by the State geologist that the accurate determination of points should be commenced.

SECTION III.
ATLANTIC COAST AND BAYS OF MARYLAND AND VIRGINI, iNCLUDING SEAPORTS AND RIVERS. (Shetch No. 6.)

Special survey of Craney Island, Ta. While Assistant J. W. Donn was yet engaged in arrangements for resuming field-work on the James River, request was made by the chief of the Ordnance Bureau of the Navy Department, Capt. W. N. Jeffers, for a minute topographical survey of the ground of Craney Island, above the low-water shore-line. This and similar calls of course have in view such delineations of surface as will meet all possible requirements in engineering operations. At Craney Island, the earthworks thrown up in 1861 were fonud by Mr. Donn, in December, 1874, as broken irregular mounds, hillocks, and ridges. He dereloped the entire surface of the island by contours, to show each successive foot in rertical height of the ground above the low-water line, and mapped the features on a scale suitable for engineering purposes. The Ordnance Bureau baving defrayed the expenses incurred in this special survey, a cony of the resulting map was transmitted to Captain Jeffers for the archives of the Nary Department. Field-work at Craney Islaud was concluded by Mr. Donn in the third week of December. His party then took up service which will be mentioned under the next head.

Supplementary fydrography.-For the completion of the chart of Elizabeth Rirer, the shallow passage between Craney Island and the mainland was sounded out in August, 1874, and several lines were added, giving additional soundings in Elizabeth River near the western end of the island. Mr. James B. Baylor, who was detailed for this service, promptly turned in the resulting sbeet, on which is the following syuopsis of statistics:

$$
\begin{aligned}
& \text { Miles run in sounding . } 7 \\
& \text { Angles measured.. } 100 \\
& \text { Number of soundings................ } 1,126
\end{aligned}
$$

Mr. Baylor had been previously engaged in Sections VI and VII.
Tidal observations.-A self-registering gauge of the new form, with large interchangeable cylinders, reading box, and clock with a balance-wheel, is now in operation at Fortress Monroe, in charge of the observer, Mr. W. J. Bodell. The record of tides at this station has been much improved by substituting the time keeper now in use for the pendulum-clock, which, in rough weather, was liable to stop, aud thus occasion breaks in the tidal register.

Survey of the Chickahominy River, Va.-In the preceding season, this work Lad been extenderd from the mouth of the river upward to Ship Yard. Assistant Donn there resumed the survey in the latter part of December, 1874, with his party, in the schooncr Scoresby; ronghness of the weather making it inexpedient to undertake operations in the broad waters of James River at that period-

The triangulation of the Ohickahominy was continued from the point gained in the general work of the previons season, and was carried to the head of narigation. Subsequently, the topography was mapped to represent a margin about one mile wide on either bank, and as far up the stream as the old English cut or canal at Forge Bridge. The river was sounded within the same limits. Much inclement weather and the nusual thickuess of ice in the river made this service difficult, but the work was finally accomplished in March within the limit of time assigned for its completion. The Scoresby was then immediately passed into the James River for further service. In the Chickahominy, the tides were recorded at Mount Airy and Window Shades for short periods; and, for an entire month, all the high aird low waters were recorded by means of a tide-gauge at Grares' Landing.

Survey of James Kiver, Fa.-When the work described under the preceding head was closed, the severity of the season had remitted. Good weather followed in April and May, and, under farorable circumstances, Assistant Donn resumed the detailed survey of the James IRiver at Sloop Point. As the work advanced toward City Point, the details of topography were mapped to represent a margin of the usnal width on each side of the river; and, of the several brauches of the river within the limits of the sarvey, the shore-line and adjacent topography were iucluded. All
the creeks not too shallow at the entrance to admit the boats of the Scoresby were sounded generally by lines along the axes of their channels. The trork was extended up the James River as far as means available for the season wonld allow, and was closed for the fiscal year on a line from the middle of Eppes Island to the terminus of the railroad on Oity Point.

The tides were observed by means of temporary gauges at Brandon Point, Dunmore Wharf, and Wilcox's Wharf. At Jordan's Point light-house, each recurrence of high and low water was recorded during twenty-six consecutive days. The datum-planes of the gauges from Braudon to Jordan's Point were connected by a line of levels run at intervals during April and May.

Assistant Donn was aided in field-work in this section by Messrs. F. C. Donn, F. H. Parsons, and C. A. Ives, and, after February, also by Mr. D. C. Hanson. The statistics of work are for the survegs on the James River and the Chickahominy:
Statious occupied in triangulation 44
Angles measured with theodolite. 152
Shore-line surreyed, miles 199
Streams, miles 94
Roads, miles 144
Area of topography, square miles 91
Miles run in sounding. 426
Augles (sextant) 2,722
Namber of soundings 23, 051

Under Section I, in which the party is now engaged, notice has been taken of the service performed under the direction of Assistant Donn in the summer of 1874.

Magnetic observations.-At the standard station, on Capitol Eill, Waslington, D. C., observations for the magnetic declination, dip, and intensity were made, in June of the present year, by Assistant Charles A. Schott. This is the eighth year in the series of determinations by the same observer. The discussion by Mr. Schott, and conclusions reached in regard to the magnetic elements at the station on Capitol Hill, were given in my last annual report.

Triangulation in Virginia (Sketch No. 8).-For extending southward the primary triangulation which crosses the Potomac in the ricinity of Washington City, Assistant A. T. Mosman took the field on the 10 th of June, 1874 , aud occupied Mount Marshall in Rappahannock County, Va. The month of June was spent in visiting and adjusting signals at the stations of the main triangulation as they were left in 1871. Observations for horizontal angles were begun with a new 14 -inch theodolite at Mount Marshall early in July, but progress in the work was much bindered by haze, so that angular measurements from that station on eight primary, two secondary, and twelve tertiary signals were not completed until the 8 th of September. Vertical angles were measured on eight of the outlying stations. The sammit of Mount Marshall is 3,850 feet above the sea, and is so difficult of access that Mr. Mosman of necessity pitched the camp of his party about six huudred feet below the observing station. The close of operations there was followed by several weeks of rainy or thick weather, in the course of which the party and instruments were transferred to Fork Mountain in Madison County. Between the 12th and 21 st of Cetober, a few observations were secured and recorded at that station; but generally then, and continuously afterward until the 20th of November, the atmosphere was so smoky that monntains onily ten miles off could not be seen in outline. The party, however, though under much hardship, remained, and recorded angular measurements at all favorable moments, until the 26th of December. For some weeks, Fork Mountain and the neighboring summits had been covered with snow and ice, and communication between the party at the station and the lower conntry was cut off for days at a time. The field-records show that angular measarements were made from Fork Mountain on ten primary, three secondary, and twenty-one tertiary signals, and that differences in height were measured by the micrometer on twenty one outlying stations. Four heliotropes were used for determining the direction of the longest lines in the triangulation. The party was disbanded on the 31st of December. During the next three months, Assistant Mosman, and his aid, Mr. D. S. Wolcott, were employed in computing results from the records of field-work, April and May
were occupied in reconnaissance for stations, to connect properly with Humpback Monntain, for the measurement of horizontal angles. Mr. U. L. Garduer was temporarily attached in December, and was again assigned to duty in the party in June last. The general statistics of the work are:

```
Signals erected ....................................................................................
nirections determined .. . . . . . . . . . . . . . . . .. . . . . . . .. ... . . . . . . . . ........ ... . . 20
Number of' observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... 1,498
```

At the end of June, observations were closed at Humpback Mountain. The party was then transferred to Spear Mountain, at which the work prosecated will be made the subject of notice in my next report. At Humpback, the differences in beight between that and four other stations were determined by means of the vertical circle. Owing to the difficulty of access, the obserrer's tent was of necessity four miles distant from the station, a condition adding moch to the labors of the party in this region.

Reconnaissance.-For the extension of a chain of triangles westward from points in the series which passes southward along the Blue Ridge in Virgivia, Assistant S. C. MeCorkle took up the work of reconnaissauce in the middle of July, 1874. Mumpback Mountain and the primary station at Fork Mountain being approved as starting-points, Mr. McCurkle visited Elliott's Kuob; in connection with it, afterward selected a station in Rockingham County at State Spring; and from thence passing into Pendleton County, be examined the country from the summit of Panther Kuob. Several mountains in Highland County were visited, and Paddy's Knob was selected as a station. This is on the Alleghany Range, and near the corner of Bath aud Highland Counties. Subsequently, positions were examined near Covington, and others in the southwest part of Pocahontas County and on the borders of Summers and Greenbrier Counties. In the region of the Kanawha, points were examined on Sewall Mountain and Gauley Mountain. In Fayette Connty, Payne's Mountain was selected, and, visible from it, a point in Nicholas County, west of Sammersville. Toward the Ohio River, the elevations are less, some being twelve hundred and otbers not more than eight hundred feet above the general level of the region.

The results of this reconnaissance make it probable that a good scheme of triangulation is practicable between the Shenandoah range of monntains and the Ohio River. Assistant McCorkle's report was accompanied by a sketch showing the approximate positions of statious which had been found intervisible, and notes in regard to local facilities and means of transit from place to place. His subsequent work in reconnaissance will be mentioned under the head of Section VII.

SECTION IV.

atlantic coast and sounds of north carolina, including seaports and rivers.-(sketcif No. 7.)

Triangulation of Pamplico Sound, N. C.-As mentioned in my report of last year, this work has been prosecuted coutinuously by the party under the charge of Assistant G. A. Fairfield, and is now completed. Early in the fiscal year, the station at Stumpy Point was occupied, but observations there were long delayed in consequence of the volume of smoke brought from the burning pines of the Dismal Swamp. Mr. Fairfield completed the angular measurements at that station on the 25 th of November, 1874, and then transferred bis party in the steamer Hitchoock to Gull Island, where observations were continued until the 12th of February of the present year, through the coldest and most stormy season yet experieuced in the sound. In that interral, a boat's crew, sent to Newbern for the mail-matter which had accumulated, nearly perished; but, though coated with ice an inch thick, the men were safely landed at the mouth of Neuse River by the energy of Mr. T. G. Dixon, sailing master, who was in charge of the cutter.

While observations were in progress at Gull Island, Mr. B. A. Colonna, aid, was sent to Capo Hatteras, and there determined the position of the old light-house, and chained the distauce between it and the new stracture. The positions of both, relative to the beacon-light, were determined by angular measurements.

On the 20th of February, a station on the eastern side of Pamplice Sound was prepared at Pea Island. Assistant Fairfield visited the light-house at Roanoke Marshes, but found the structure H. Ex. 81-5
and the ground anywhere near it too unstable as a place for the theodolite, and of necessity established a station on the west margin of Roanoke Island, at a point nearly three miles northeast of the light-house. Angular measurements at the station (named Sand Island) were completed on the 2 th of March. Subassistant Colouna and Mr. W. B. Fairfield, aid, were then detailed to make the observations at Pea Island, and completed work there on the 19th of April. The only anchorage for the steamer in that vicinity being much exposed, the party lived in camp while at: Pea Island. Next in order, the north and south ends of the base line at Bodie's Island were occupied with the theodolite by Mr. Colonna, and horizontal angles were measured upon the three signals in view, connecting that base with the triangulation of Pamplico Sound. One of the granite monuments set to mark the sonth end of the line had been overturned and broken within the past ten years, but was again replaced by Mr. Colonna, and securely marked.

After completing the triangulation, Mr. Fairfield determined the positions of two of the new light-houses erected within a few years as aids to navigation in the waters north of his locality of work. A signal was erected, and three stations were occupied for ascertaining the position of Croatan light-house. The structure now in course of erection at Currituck Beach was also determined in position. Finding by examination that known points were not available for determining the lights at Wade's Point, North River, and Pasquotank Ricer withont additional fieldwork, the party in the steamer Hitchcock was recalled from this section in the middle of June, and proceeded to Batimore, where the vessel will be refitted for other duty. The statistics of the concluding field work in Pamplico Sound are:

The field-records, containing descriptions of the stations and angles observed, have been duplicated and compared, and, together with the computations by the observers, have been deposited in the office.

At the end of the fiscal year, Subassistant Colonna was detailed to conduct a party inSection II.

Topography of Pamplico Sound, N. C.-In the field operations of the fiscal jear 1874-75, the shore-line survey of Pamplico Sound was completed by a party under the direction of Assistant C. T. Iardella, who resumed work in this section with the schoover Dana on the 7 th of December, 1874. Commencing at Long Shoal signal, and as data for the immediate uses of the hydrographic party, in the steamer Arago, the shore-line was carefully traced as far as Hog Island. In the same direction, the survey was then prosecuted to a junction at Juniper Bay, with the feld work done in a previous year. Resuming again at Long Shoal signal, Mr. Iardella extended the survey northward, and joined on the 14th of May with a plane-table sheet of the year 1864, showing details of the shore in the vicinity of the light-house at Roanoke Marshes. The three planetable sheets returned to the offce by Assistant Iardella show several small bays on the west side of Pamplico Sound. In reference to their importance as harbors for local trading-vessels, the following remarks are made in the field-report:
"West Bluff Bay, two miles wide, with good anchorage in ten feet, is a safe harbor for small vessels in all except southwest winds. East Bluff Bay is also a safe harbor, excepting in heavy southeast weather."
"Yesocking Bay, the entrance of which is sheltered by Gull Sboal, receives vessels drawing eight feet, that load with corn and cattle brought down in scows through the canals that traverse the adjacent countrs."
"Long Shoal River is two miles wide at its entrance, and four miles long. Vessels can anchor in twelve feet and be safe in all winds; but as yet the shores are not occupied, the nearest habitations being fifteen miles from the river."

Subassistant II. W. Bache was in service in this plane-table party. The statistics of work are:
\qquad
Roads, miles . 32
Water-courses, miles . 17 .
Finding that the islands near Roanoke Marshes light house had been washed and lessened by the action of the water in the course of the last ten years, Mr. Tardella resurveyed their shore-lines, and mapped them in relation with the shore-line of his upper plane table sheet. The abrasion observed principally affects the islands on the side which is exposed to the open water of the sound.

Hydrography of Pamplico Sound, N. C.-The progress made in the course of the fiscal year by Lieut. II. O. Bandy, U. S. N., has adranced toward the completion of the hydrography of Pamplico Sound. His party, in the steamer Arago, left Baltimore early in December, 1874, and by the middle of that month reached Washington, N. C. Sigaals were set up without delay on the shores of Yesocking Bay, the shores of which had been traced by the plane-table party, as stated under the last head. Lieutenant Handy established a tidal station at Pamplico light-honse, and there bad observations recorded while the soundings were in progress. The work closely occupied the party in the Arago from the 14 th of January until the 27 th of May, when operations in this section were closed for the seasou. The steamer Arago then sailed for New York, and made prepara. tion for prosecuting supplementary soundiugs on the coast of New Jersey.

For hydrographic work on the west side of Pamplico Sound, opposite to Hatteras Inlet, eighteen large signals were erected, and nine stations on shore were occupied. The general statistics are:

$$
\begin{aligned}
& \text { Miles run in sounding . } 610 \\
& \text { Angles measured... } 3,355 \\
& \text { Number of soundings . 33, 334 }
\end{aligned}
$$

The work was closed for the season in the ricinity of Shoal Point, below which the hydrograpby of Pamplico Sound is complete. The past season was very unfavorable in respect of weather, and progress was in consequence much hindered. It is hoped that the remaining part of the hydrography may be completed in another fair working-season.

Lieutenant Handy was assisted in the operations of the hydrographic party by Masters W. P. Ray and F. H. Lefavor, U. S. N.

SECTION V.

ATLANTIC COAST AND SEA-WATER CHANNELS OF SOUTH CAROLANA AND GEORGIA, INCLUDING SOUNDS, HARBORS, AND RIVERS.-(Sketch No. 10.)

Topography of Bulls Bay and vicinity, S. C. -In continuation of the work of the preceding season, Assistant W. FI. Denuis, with his party, in the schooner Caswell, resnmed field-operations on the 20th of December, 1874, at a point abont a mile below Cape Romain. From thence the detailed survey was extended southward and westward, and at the close of the working season in this section was joined at Sullivan's Island with the limits of a survey made in 1854. Soundings were made as the topograply advanced, and these, plotted on separate sheets, show the bydrography of the inside water-passages within a stretch of thirty two miles coastwise. The two planetable sheets represent the shores of Ball's Bay, including the surface-features adjacent to Harbor River and Fire Fathom Creek; Bull's Island, Caper's Island, and Price's Inlet, which separates them; Dewees' Island and Long Island, separated by Dewees' Inlet; and generally the topographical featares between the coast-line and the main public road passing from Georgetown to Charleston, S. C. "The character of the topography is similar to that of the southern coast generally in this section-a line of sea-islands, with some fast land, backed by marshes three or four miles in width, and traversed in all directions by many rivers and creeks. The margiu of the mainland bordering on the marshes is generally cultivated, the remainder being pine-barrens."

Assistant Dennis was aided in the field by Messrs. S. N. Ogden and W. S. Boad. The survey
was closed on the lst of June, when the schooner Caswell was dispatched from this section and laid up at Norfolk. The following is a synopsis of the statistics of work:

$$
\text { Shore-line surveyed, miles . } 529
$$

Marsh-line, miles. $10 \frac{1}{2}$
Roads, miles . 129
Area of topography, square miles .. 155
Miles run in sounding 421
Angles measured.... 3, 286
Number of soundings . 51,481
Assistant Dennis is now making preparation to resume field-work in Section I, under which head his occupation of the summer of 1874 has been mentioned.

Sea-encroachment at Hunting Island, S. O.-The topographical features of the north end of Hanting Island, which were mapped in the careful survey of 1859 , could all be recognized some years after that date. About the year 1897, however, the sea, urged by a violent gale, broke through the beach opposite to a small creek near the site of the old light-honse, and during subsequent years the encroachment has not ceased. In order to determine the amount of change, Mr. Charles Junken was detailed at the end of June of the present year to make a careful resurvey of the north end of the island. The results show that since 1859 the firm land of the north end to the extent of two-thirds of a mile has been wasbed away, and a channel with six feet of water at low tide now trarerses a part of the island that was then covered with large trees. This channel, moreover, being bounded by an extensive sand shoal, that replaces what was formerly the north end of the island, is now the outlet of Johnson's Creek.

Mr. Junken found by examination that the other channels into Saint Helena Sound have not been iufluenced by the wearing-away of the north end of Hunting Island. Some changes hare occurred in the main ship-channel, but only such as to make it expedient to re-arrange the buoys. As soon as practicable, the hydrography of the vicinity of Hunting Island will be examined.

Hydrography of Savannah River, Ga.-In my preceding report, mention is made of the shoreline survey of Savannal River, and of an examination of the currents, made at the request of the city authorities of Savanuah, and important as the basis of plans for improving the channel. Means not being available for conducting the hydrographic resurvey at the same time, that work was deferred until the present season.

Lieut. J. M. Hawley, U. S. N., assistant in the Coast Survey, with his party, in the schooner G. M. Bache, sailed from Brooklyn, N. Y., on the 19th of December, 1874, but, in consequence of much bad weather on the passage and continuous rain after reaching Savannah, found it impracticable to commence operations antil the 20th of January. A tide-gauge was established at the outset, and the record of high and low water was kept up until the 8th of May, when the soundings were completed. The limit of the bydrography abore is the upper end of Elba Island. From thence, down the stream, the river was sounded thoronghly to the bar ; the bar was developed and sonndings were extended eastward to a line about a mile outside of Tybee light-honse. The weather until April was very uufavorable, seldom affording an entire day for bydrographic operations.

In reference to the changes revealed by his soundings, Lieutenant Hawley remarks:
"I found the channel of the river in general but little changed since 1866, as shown by the Coast Survey cluart of that year. The shoal off the lower end of Elba Island, between Basket Beacon and South East Beacon, has increased slightly, and, as a result, the width of the channel is there somewhat reduced."
"The large shoal off Cockspur Island has grown in the direction of the channel."
"In the channel dredged east of Oyster Reef by the United States engineers, the depth at mean low water this season is between twelve and thirteen feet."
"During the spring, owing to freshets, the current was so strong as to overcome the flood tide entirely, and it was noticed that vessels did not swing to the flood, except when at anchor in Tybee Roads."
"Many of the pile obstructions placed in the river during the late war still remain, s.nd impede the downward passage of allavial matter."

Tidal observations were recorded at Savannah, at the western end of Long Island, and at Fort Pulaski. The general statistics of the work are:

Miles ran in sounding.	232
Angles measured	3,316
Number of soundings.	24,974

After completing the hydrographic resurvey of Savannah River, Lieutenant Hawley retarned to Brooklyn in the schooner Bache, and reached that port on the 24th of May. In the course of the season, in Section V, he was assisted by Ensign J. M. Wight and Ensigu G. C. Hanus, U. S. N.

SECTION VI.
ATLANTIC AND GULF COAST OF THE FLORIDA PENINSULA, INCLUDING THE REEFS AND KEYS AND THE SEAPORTS AND RIVERS-(Sketches Nos. 11, 11a, 11b, and 12.)

Coast hydrography near Saint Aujustine, Fla.-In previous operations by the party in the steamer Endeavor, the iushore hydrography of the eastern coast of Florida hid been adranced to a line abont midway between Fernandina and Saint Angustinc. At the opening of the working. season of the last fiscal year on the northern coast, Lieut. R. D. Hitcheock, U. S. N., assistant in the Coast Survey, after passing a short period at the office in noting methods aud processes applicable for hydrographic work, joined the party in the Endeavor, and assisted in service afloat, as was stated under the head of Section I in this report. In December, 18it, the vessel was refitted at New York under the supervision of that officer, and, before the close of the month, his parts was in effective working order on the coast of Florida. Above Saint Augustine Entrance, soundings were resumed on the $2 d$ of February, and the work was extended southward until the 10 th of June, when operations were closed for the season at Matanzas Inlet. From the shore-line to seaward, the coast-approaches were dereloped to an average distance of about uine miles. In crossing the approaches to Saint Augustine Elarbor, which was about midway in his project of work, Lieutenant Hitchcock found that the channel leading into that harbor had improved. A careful examination was made and a deptl of ten feet at mean low water was found on the bar. The course of the channel at the entrance changes in accordance with the direction and force of the storms in that vicinity; hence the sailing-directions prepared by Lieatenant Hitchcock, and which were issued from the office in January, enjoin that strangers should not attempt to cross the bar without a pilot.

For prosecuting the inshore hydrography, seventeen signals were erected at intervals along the coast above and below Saint Augustine. Four stations were occupied on shore while soundings were in progress. Surface-currents were observed generally within the limits of work, aud the tides were recorded at Saint Augustine while hydrographic operations were in progress.

The general statistics are :

$$
\begin{aligned}
& \text { Miles run in sounding .. 1,036 } \\
& \text { Angles measured... } 3 \text {. } 017 \\
& \text { Number of soundings . 15, 206 }
\end{aligned}
$$

Lieut. James Franklin, U. S. N., and Masters John Hubbard, H. C. Nye, and J. L. Hunsicker, U. S. N., were attached to this hydrographic party.

In March, Lieutenant Hitchcock, noticed from the deck of the steamer Endeavor, when about two miles and a half off shore and a little to the northward of Matanzas Inlet, a curions agitation at the surface of the water, which seemed to indicate the existence of a spring issuing from the bottom at a spot where the depth was found to be 21 fathoms. Near by and all around the place at which the action was so violent that the ship was thrown off, the depth was 9 fathoms, and the agitation at the surface was noticeable only within a circle of abont 30 fect in diameter. The specimen of bottom brought up by a cast of the lead showed very clean, broken, small shells, but, no instruments being at hand for special observations at that time, the steamer passed ou her course. On the 8th of April, the Endeavor was anchored at the same place, but no sigu of agitation appeared in the water. It was noticed, however, that, at intervals of a few minntes, the water within the space of a few square feet, became bright yellow, and coincidently gave off a very strong
odor of sulphureted hydrogen. Blue mud and shells were found in twenty fathoms near one of the yellow patches, all of which took color quickly, and, after liberating gas as quickly, disappeared.

Next day, the surface was found in motion like boiling water, all being yellow within a circle of 30 feet, and giving off sulphureted bydrogen. The yellow water seemed to rise as in clouds from the bottom. Owing to haze, which obscured the signals on shore, the exact position of the spot could not be determined at either of the visits so far noticed; but, on the 30th of April, several hours of continnous calm and clear weather sufficed for its accurate determination and for securing specimens of the water and of the bottom. The odor emitted and the great agitation were on that day the same as had been previously observed, but the water was not in the least discolored. It was flanked to windward by white caps, giving it the appearance of a shoal, and it now appears that the place has been sometime avoided as such. While the water is agitated from the bottom, pieces of shells are thrown up from the center of disturbance, which seems to have a greater depth than any other spot in that vicinity. The surrounding lines of soundings, crossing the place in all directions, give an average depth in the vicinity of 9 fathoms, with 21 fathoms in the small "boiling spot."

Survey of Halifax River and eastern coast of Florida.-At a point ten miles below Mosquito Inlet, the detailed survey of the eastern coast of Florida was resumed in November, 1874, by Assistant Charles Hosmer, with a party in the sloop Steadfast. Above that point, the field-work was then continuous to Saint Augustine, but soundings had not been made to include the lower part of Halifax River and Hillsboro' River. Mr. Hosmer completed the hydrography of both, and pushed the detailed survey from Turtle Mound southward abont twenty-five miles along the Atlantic coast, including, in his limits of work, the shores and wide expanse of water at the head of Indian River and the adjacent part of Mosquito Lagoon. The body of water last named was sounded ont, and the detailed survey includes also the topography of its shores. Finding it impracticatle to pass the sloop Steadfast through the "Haulover," a short caual projected some years ago for connecting Indian River with the inland water-passage to Halifax River, the vessel was transferred by land over the barrier at reasonable cost, and was laid up at the end of May in Indian River, to be available for prosecuting the work southward to Jupiter Inlet.

As a check on the triangulation done by his party, Assistant Hosmer measured a base of verification on the neck of land which divides Mosquito Lagoon from Iadian River, and immediately north of the Haulover Canal. The line is nearly 2,300 meters in length, and the measurement was found to be in near accord with the length as computed through the triangulation.

Subassistant L. B. Wright was attached to this party, and mainly conducted the soundings. Assistant Hosmer was aided also by Messrs. J. De Wolf and T. A. Marrison. The general statistics of the work are:

$$
\begin{aligned}
& \text { Signals erected... } 31 \\
& \text { Stations occupied } 25
\end{aligned}
$$

Field-work prosecuted by Assistant Hosmer in the early part of the fiscal year has been noticed under the head of Section II.

Triangulation and topography of the Tortugas.-For this service, Assistant H. G. Ogden temporarily left his party while it was engaged at Tampa Bay, and sailed with Acting Master Platt in the steamer Bache from Egmont Key early in March for Key West, where arrangements were com. pleted for determining the relative positions of the seven keys of the Tortugas group. On the 24th
of March, a base-line was measured on Loggerhead Key, and from it angular measurements were recorded on teu signals, to include in position all the kers and the reef to the sonthrard of the light house on Garden Key. The triangulation was closed at a check-base on East Key.

In this work, Mr. Ogden uoticed that, although the theodolite was mounted as usual on stubs of wood driven eighteen inches deep in the coral sand, the instability of the sand was such that any lateral movement by the observer caused a perceptible change in the pointing of the telescope. Observations were recorded by Assistant Ogden for azimuth, but under disadvantages arising from the prevalence of high winds during the short period available for the work at the Tortugas; Polaris being, moreover, at elongation near sunset and sumrising.

The plane-table sheet returned by Mr. Ogden shows in detail the seven islands in the Tortugas group, of which Loggerhead Key is the largest. Fort Jefferson, on Garden Key, affords a good landmark, and the harbor is well protected by the outlying reefs. North Key, Northeast Key, and Southwest Key, as represented on old maps, have no existence now, not being bare even at low water. Bird Key, East. Key, and Loggerhead are partly corered with a growth of cedar. The others, excepting Garden Key, are merely sand banks, of which the outlines chauge with almost every gale.

Acting Master Platt, with his hydrographic party, in the steamer Bache, effectively co-operated in means for the triangulation and topography. For the uses of the sounding party, Mr. Ogden determined thirteen points. The ordinary statistics of his work in that vicinity are :

Stations occupied with theodolite... 9
Angles measured. ... 67
Number of observations. 1, 476
Miles of shore-line traced $7 \frac{1}{4}$
Assistant Ogden completed the survey of the Tortugas on the 9 th of April, and a week afterward rejoined his party on the shores of Tampa Bay.

Hydrography of Tortugas Harbor and Reef.-When the plane-table work was complete, and tracings had been made for the use of the hydrographic party, Acting Master Robert Platt, in charge of the steamer Bache, landed Assistant Ogden and his instruments at Egmont Key, and retarned to proseeute soundings in Tortugas Harbor. That work was taken up on the 21st of $\Delta_{\text {pril }}$, and was completed on the 14th of May. The statistics are:

$$
\begin{aligned}
& \text { Miles run in sounding .. } 367
\end{aligned}
$$

$$
\begin{aligned}
& \text { Number of soundings 24, } 953
\end{aligned}
$$

The chart plotted from soundings made this season at Tortugas Harbor and Reef essentially completes the hydrography of the Florida Reef.

The steamer Bache returned to Baltimore early in June, and, after being refitted, was placed in charge of Lieutenant-Commander Kennett for hydrographic service on the northern coast. The work conducted by that officer will be noticed in my next report.

Survey of Tampa Bay, Fla.-For extending the triangulation, and prosecuting the topographical and bydrographic sarvey, Assistant H. G. Ogden had his party in readiness early in November, 1874; but, as yellow fever then prevailed along the West Florida coast, the schooners Speedwell and Agassiz were not moved into Tampa Bay until the middle of the month following. The last-named vessel was placed in charge of Subassistant Joseph Hergesheimer, and was provided with means for sounding the waters within the limits of field-work.

The triangulation was resumed at Point Pinelos, and was extended northward to include old Tampa Bay and Hillsboro Bay. Of old Tampa Bay, the shore lines were traced and the planetable survey was completed, leaving for the operations of another season the detailed survey of the shores and soundings in Hillsboro' Bayं.

In preceding seasons, the hydrography of the main body of Tampa Bay had been adranced abore the entrance on the Gulf, and upward to Gadsden's Point. Mr. Hergesheimer took up in February the hydrography of Palmasola Bay, Terraceia Bas, Little Manatee River, and Bishop's Harbor, and in those waters completed soundings by the middle of March. After that date, and
until the close of the season, his party was employed in the hydrography of Tampa Bay, in which soundings were also completed. Assistant Ogden left Egmont Key on the 12th of March for service which has been noticed under a precediug head. Returning in the latter part of April, he conducted the sereral branches of work in the survey of Tampa Bay, and closed operations on the 31 st of May. The two vessels were then moved to Manatee, and there the bauds who had been, employed in the vicinity for the season were discharged. The schooner Speedwell was dispatched on the 10 th of June for Baltimore, and was there refitted for other work.

Assistant Ogden was efticientls aided in the triangulation by Mr. H. F. North. The planetable work was prosecuted by Mr. D. B. Wainwright, and is contained on four sheets. Subassistant Hergesheimer was aided in the hydrographic survey by Messrs. G. A. Morrison and W. B. French. At the outset of the season, this party assisted in erecting siguals for the triangulation.

Tides were observed at five stations while the soundings were in progress, the results found by each of tho tide-gauges being referred to a bench-mark at Egmont Key. Soundings made this season develop in position a number of shoals and rocks in Tampa Bay. About two miles southwest of Gadsden's Point, the steamer H. M. Cool was wrecked, in the season preceding the survey, on a ledge of rock which Assistant Ogden's survey proves to be several acres in extent, and marked by a number of sharp peaks, on one of which the depth is only four feet at low water. The existence of this ledge was not known previous to the wreck here mentioned.

During the early part of the season, the weather was very unfavorable for field-work in this section. After the 1st of May, squalls and showers recurred almost daily, but less impeded the progress of the parties, as the boats were started at daylight, and the rain commonly fell only in the afternoon. The statistics of the work are:

$$
\text { Signals erected . } 67
$$

Stations occupied with theodolite. 17
Angles measnred... 94
Number of observations 3, 443
Shore-line surveyed, miles . 219
Creeks and ponds, miles . $30 \frac{1}{2}$
Roads, miles... $9 \frac{1}{2}$
Marsh-outline, miles ... 18 . 18
Area in topography, square miles. 102
Miles run in sounding . 895
Sextant-angles. 6, 890
Casts of the lead recorded.. 69, 434
Forty eight points were determined in position by the measurement of horizontal angles.
Field-work previously done by the party of Assistant Ogden las been mentioned under the head of Sectior II.

Hydrography of Tampa Entrance and its Gulf approaches, Fla.-This work was commenced by Acting Master Robert Platt, U. S. N., with a party in the steamer Bache, on the 18th of December, 1874, and was completed in the middle of the following March. Bad weather generally prevailed while the survey was in hand. The steamer was very often stopped and anchored in consequence of fogs. Smoke along the coast and frequent winds also impeded progress in the soundings.

The hydrographic sheet shows the depth of water and character of the Gulf approaches for fifteen miles abreast of Tampa Bay, and from the coast-line westward to a limit of about fire miles. The two channels were developed, and also the outlying dangers. Acting Master Platt found on the North Bar 21 feet of water at low tide and 19 feet on the Southwest Bar. The channels are straight and plain, and the anchorage is safe and well protected from heavy gales. During the period occupied by the party in this survey, there were no local pilots about Tampa Entrance, and no fresh water was to be bad nearer than Manatee River. Renewing supplies from a point so far from the ground of work, of necessity delayed the prosecntion of the hydrography. The statistics are:

Mr. J. B. Adamson served as aid in this party. After closing the lydrographs, Acting Master Platt afforded transportation in the steamer Bache for Assistant Ogden. The ressel left Tampa near the middle of March, and co-operated in the sursey of the Tortugas, as already mentioned.

Hydrographic work done in the course of the summer of 1874 by the party in the steamer Bache has been described under the head of Section 1 in this report.

Tidal obstrvations.-The self-registering gauge set up at Saint Thomas, West Indies, by Colonel Thŭlstrup, continues in operation, and periodical receipts from the observer, Mr. T. Kruse, show an uninterrupted series. It is desirable that the record should be maintained until November of the present year, as means will then be afforded for comparing the tides of Saint Thomas with the tides observed on the southern coast of the United States.

SECTION VII.

GULF COAST AND SOUNDS OF WESTERN FLORIDA, INCLUDING THE PORTS AND RIVERS.-(SkETCI

 No. 13.)Topography and hydrography between Pepper Keys and Ocilla River, Fla.-The work of the season ending with June, 1874, on this part of the Gulf coast, determined points for the plane-table surrey and inshore bydrography. Assistant F. W. Perkins had arranged to proceed southward early in November, after closing service which has been mentioned 11 Section I of this report; but, on account of yellow ferer in scuthern ports, the organization of his party was delayed until the 8th of December, when the schooner Torrey was in readiness for work at Cedar Kess.

The stretch of coast included within the working limits of this party is low aud marshry. On the land-side, the line of woods in some places is only a quarter of a mile from the water-line; in others, the forest is a mile distant, and, except at high tide, great mud flats impede the approach to the coast in boats. At several places, four miles off shore, the depth is only six feet at mean low water. Difficulties encountered by the party in prosecuting this work are thus referred to in the final report from the field: "The low flat woods, devoid of prominent features distingnisbable at a distance, and consequent restriction in the placing of siguals for angular measurements, a wide barrier of deep, soft mud impeding at low water the movements of the sounding boats as well as transfers of the plane-table party, and the necessity of working waist-deep on the orerflowed marsh, have called for the employ of many expedients, but most of the hindrances were such as to be overcome simply by perseverance and endurance in the party."

As the first two months of the season were very unfavorable, being, rainy, stormy, or foggr, the results of the work are evidence of constant energy. Four topographical sheets returned from the party represent about seventy miles of the Gulf coast, and, within a belt of several miles, the courses of numerous streams, amongst which are the Steinhatchee River, Fenholloway River, Econfence River, and Ocilla River, the roads adjacent to the shore, and in detail the intervening firm land, wooded areas, and marsh. The aggregate statistics are:

$$
\begin{aligned}
& \text { Shore-line surveyed, miles . } 124 \\
& \text { Rivers and creeks, miles .. } 171 \\
& \text { Roads, miles } 44 \frac{1}{4}
\end{aligned}
$$

Soundings were prosecuted at all favorable intervals between the 30th of December, 1574, and the $23 d$ of June last. The results on four sheets show the inshore bydrograpliy of the Gulf coast between Pepper Keys and the mouth of Ocilla River. The channels of that and other rivers already named were also developed. In geveral, the lines run in sounding the Gulf waters terminated at the depth of eighteen feet. The curve of that depth, as traced on the hydrographic sheets, is ten miles from the shore-line in some places, but on the average not much beyond seren miles. A beavy growth of grass springs up from the muddy bottom. The coral crops out frequently, and that formation is nowbere probably more than a few feet below the surface of the mud. Assistant H. Ex. 81-6

Perkins reports that anchorage is good in the offing, and, except near the points and capes, sufficiently smooth for the safety of vessels in almost any weather.

Shoresignals being impracticable for the hydrography, tripods about thirty feet long were made of scantling, lauuched from the vessel at suitable positions off shore, and properly weighted. Several signals of this kind were set in a day, and determined by angular measurements, while the sonndings were in progress. Tides were recorded for each half-hour during a month, day and night, at a station on Pepper Key. The hydrographic statistics are:

Miles run in sounding ... 1, 711
Angles measured.............................. ... 7,652
Number of sonndings............................... 40, 721
The results of the work done by this party practically illustrate the terms in which Assistant Perkius commends the earnestness and ecdurance of his aids, Messrs. J. F. Pratt, F. W. Ring, and A. G. Pendleton.

Hydrograply near Cape San Blas, Fla.-On the 8th of November, 1874, a hydrographic party, in the schooner Silliman, was organized uuder the charge of Master Kossuth Niles, U. S. N., assistant in the Coast Surver. As soon as practicable, the vessel was refitted at Jersey City, and arrived at Apalachicola late in December. Continuous fog during seven days deferred active operations until the $2 d$ of January.

Iushore of Saint George Island, a tide-gange was established at a station opposite to the lighthouse and another at West Pass. Mr. Niles, noticing a slight difference in results, determined mean low water by day and night observatious for one month at the last-mentioned station, and applied the result as best suited for the adjustment of soundings to be made by his party. Two sheets were projected, to represent, when filled, the bydrography of the Gulf coast from Saint George light-house northward and westward to Saint Andrew's Point, and including the vicinity of Cape San Blas and the sounding of Saint Joseph's Bay. Signals for the work were set up and determined in January, when the weather was unfit for operations afloat; but, in the frequently recurring fogs of that and the month following, it was fond expedient to observe with two theodolites at shore-stations while soundings were in progress. For the survey off the shoals off Cape Saint George, one theodolite was used at Cape Saint George light-house, and the second at a station on Saint Vincent Island. Subsequently, for developing the shoals off Cape San Blas, the instruments were used in coujunction at the cape light-house and at Indian Pass. By takiug advantage of all favorable times, the hydrography was extended to Cape San Blas by the middle of April, and, with improved weather, the vessel was then anchored under the cape. Two observers were placed on shore with theodolites, and the shoals off the cape were surveyed. May was favorable for hydrographic work, and daring that month Saint Joseph's Bay was sounded. The level of mean low water there was derived from day and night observations, continued through two weeks at a tidal station ou the west shore of the bay. Early in June, the bar was developed by soundings, and the hydrography of the Gulf coast was afterward extended to include the approaches of Saint Joseph's Bay, between Cape San Blas and Saint Antrew's Point. The schooner Silliman returned to Apalachicola on the 26th of June.

Masters H. O. Rittenhouse, A lex. McOrackin, and H. W. Schaefer, U. S. N., rendered effective assistance in the hydrography, and their zeal and intelligence in the service are specially commended in the concluding report on the operations of the season by Master Niles. The statistics of the work are :

$$
\text { Miles run in sounding. } 728
$$

Number of soundings . 42, 087
In the course of the season, the observers in the party determined thirty-five shore-stations, and measured angles with theodolites for nearly fifteen handred positions on sounding-lines.

Triangulation, azimuth, and magnetic observations in Heorgia.-Assistant F. P. Webber occupied Pine Log Mountain, in Northern Georgia, in July, 1874, and completed angular measurements with the theodolite at that station on the 17 th of September. The party was then transferred to Lavender Mountain, which lies about thirty-seven miles to the westward, where observations, after
some days' hindrance from haze and smoke, were resumed on the 10th of October, for the determination of latitude as well as for advancing the triangulation. On seven nights previous to the 4th of November, 161 observations were recorded with twenty-eight pairs of stars. Azimuth-observations were made subsequently, thirty sets of twelve repetitions, each being recorded for the value of the augle between Polaris and a sigual at Coosa Station. Mr. J. H. Christian, aid in the party, made time-observations. Magnetic observations for declination, dip, and intensity were made at Pine Log Mountain by Mr. Cbristian and at Lavender Mountain by Mr. Charles Tappan. The measurement of borizontal angles was completed at Lavender on the 31 st of Janaary. While that work was in progress at favorable intervals, the time unsuitable for observing was occupied in compatations for latitude, time, and azimutb, and in duplicating the field and astronomical records. After the opening of October, this season proved to be particularly unfarorable for operations, the prevailing haze of autumn being succeeded by continuons rains and cold weather. Early in February, Mr. Webber stored his camp-fixtures at Rome, Ga., in riew of resuming field-work with as little delay as possible in the spring.

John's Mountain, to the northward and eastward of Larender Station, was occupied by the party early in May of the present year, and the observations were completed there in tiwe to admit of the trausfer of the party to Indian Mountain by the middle of June. The general statistics of the season in triangulation are :

$$
\text { Primary stations occupied . .. } 3
$$

Horizontal angles determined 69
Vertical angles 44
Number of observations 9,554

At the opening of the present season, Subassistant F. D. Granger joined the triangulationparty. The advance of the work westward to a line within riew of Lookout Mountain is there met by some difficulty in the likelihood, that, in order to pass that high ridge, it might be necessary to occupy another station at its eastern approach, for the determination of Gulf Point and Brandon, two positions on the Lookout Mountain Rang e. A like difficulty was to be expected on the western side of the ridge. The question thus pending at the opening of the present season was committed to Assistant S. C. MeCorkle, whose work will be mentioned under the next head.

While employed at Lookout Monntain, Mr. Christian, aid, wben overtaken by a tornado in June, was seriously injured by an uprooted tree which was hurled against him.

Primary triangulation (Sketch No. 9).-As stated in wy report for last year, the party of Assistant C. O. Bontelle was encamped in June, 1874, at Grassy Mountain, in Pickens County, Ga. The theodolite-station there being about 3,300 feet high, and thirty-five miles distant from any railway-station, arrangements for observing involved much personal discomfort, and the labor incident to the construction of a road several miles long.

Magnetic observations were recorded at Grassy Mountain between the 12th and 31st of July. At the same time, angular measurements were made on seren distant signals with the new 20 -inch theodolite, which Mr. Boutelle reports as being satisfactory in regard to precision, and as saving much time in easy adjustment, due to the facilities afforded by the pecaliar construction of the iron stand of the instrument.

Observations by zenith distances for differences of level were made in the usual manner.
At Skitt Mountain, which was next in order occupied, eastward of the preceding station, the measurement of horizontal angles and observations for magnetic declination aud iuteusity were recorded between the 14th and 31st of August. Vertical angles were measured for determining the relative beights of the outlying stations. At this station, Mr. Boutelle noted also the approximate direction of each of the prominent mountains that could be ideutified as means for correcting in future the state map. Twenty-six points, chiefly mountains, were thus added for such revision, exclusive of the stations occupied by his party for actual triangulation.

Assistant Bontelle transferred his party in the first week of September to Currahee Mountain, Habersham County, Ga., and there established also an astronomical station. Observations for horizontal and vertical angles were begun at Currahee on the 17 th of September, but their completion was delayed by smoke until the 21st of November. Ten siguals were observed on. Thirty-
one subsidiary points were approximately determined in direction, and noted separately, as data for fature reference in constructing a State map. One of the signals observed on from Currahee Station was sixty two miles distant.

Azimuth was determined by 198 observations on Polaris within three hours of elongation.
For latitude, 44 pairs of stars were observed by the aids, Messrs. H. W. Blair and J. B. Boutelle; with zenith-telescope No. 3 , in the course of three weeks in October, by 223 measurements on seventeen nights. Local time for latitude and azimuth-observations was obtained with Transit No. 11. The micrometer-value and leveldivisions were found by the aid, Mr. Blair. The general statistics of the primary triangulation prosecuted this year northeastward from the Atlanta baseline are:

Angles measured. 20
Number of observations ... 2, 158
When obserrations were closed at Currahee Station, Assistant Boutelle sent Mr. Blair to Lawrenceville, where the theodolite was mounted on the observing-tripod at Academy Hill for perfecting the measurement of horizontal and vertical angles immediately connected with the base-lineThis service was completed on the 18 th of December.

For extending the triangulation northward and eastward, Assistant Boutelle had conducted a reconnaissance in order to preserve advantages afforded for stations by the Blue Hill Range, and avoil the disadrantage of occupying higher mountain-tops in the region of the Alleghanies. The three stations selected, and the signals at which wero observed on from Currahee, are Paris, Mauldin, and Pinnacle in the monntain region of South Carolina. In May, the triangulation-party transferred the instruments to a station on Blood Mountain, where observations were in progress at the close of the fiscal year, June 30, 18.5.

Reconnaissance in Alabama.-In advauce of resuming triangulation for determining points westward of those last occupied in the vicinity of the base-line near Atlanta, Ga., Assistant McCorkle was assigned to select stations that would connect properly with the work of Assistant Webber at Lavender and John's Mountain.

Crossing the State boundary of Georgia, the examination for stations was continued in Northern Alabama as far as Aurora in the northwestern part of Etowah County. This point is more than a bundred miles distant from the Atlanta base-line. Signals are now in place on Brandon and Gulf Point, intermediate between Aurora and John's Mountain, which last-named point was occupied by the party of Assistant Webber in the latter part of the present fiscal year. Assistant H. Anderson accompanied Mr. MeCorkle on the reconnaissance. The region through which he passed affords no facilities for comforts in travel, and the service has in consequence been prosecuted under mnch personal discomfort. By the end of June, the examination was pushed as far west as La Grange in the vicinity of Tennessee River. West of Lookout Mountain, and through the eutire tract between the Tennessee line and a line near Montgomery, Assistant McCorkle noticed evidence of mineral resources. Mineral springs trere found in De Kalb, Saint Clair, and Blount Counties, and a white-sulphur spring noted for its qualities at Val Hermosa in Morgan County, Ala.

Reconnaissance.-To meet requirements in the State of Kentacky for geographical points on which to base the geological survey now in progress, Assistant R. E. Hulter was assigned to the . field early in July, 1874. After a personal conference with Prof.N. S. Sbaler, State geologist, the examination was begun near Cincinnati. In advancing up the Ohio River, the country on both sides was included, but is reported as unfavorable for triangulation. Mr. Halter readily found a site suitable for a base-line, but no distant points were in view, and no scheme of triangles with sides of ordinary length was found practicable. In exceptional cases, a line of sight ten or twelve miles long was fonud, coincident with the course of a valley; but, in general, the connecting-points were only three or four miles apart. The reconnaissance was extended through Jackson, Pike, Scioto, Meigs, and Vinton Counties; and then south of the Ohio in the vicinity of Big Saudy River, in parts of Carter, Boyd, and Lawrence Counties in the State of Kentucky; and through Wayne aud Cabell Counties in West Virginia. The region traversed is hilly and heavily timbered, especially in Kentucky and West Virginia, and affords no facilities for the ready transfer of instruments from station to station.

Assistant Halter returned from this section late in September. ${ }^{7}$
Late in June of the present year, Prof. W. Byrd Page personally conferred at the office in regard to the requirements for effective triaugulation in advance of taking the field near Cumberland Gap, a site of work indicated by the State geologist, and which will be occupied during the early part of the present fiscal year by Professor Page.

SECTION VIII.

GULF COAST AND BAYS OF ALABAMA AND TIE SOUNDS OF MISSISSITPI, AND OF LOUISIANA TO VERMILION BAY, INCLUDING THE PORTS AND RIVERS.-(Sketci No. 14.)

Mouths of the Mississippi.-With the riew principally of furnishing information for the commission appointed to examine plans for improving the outlets of the Mississippi River, subsequently replaced by a board of engineers appointed by the President of the United States, and of which board Prof. Henry Mitchell, Assistant in the Coast Survey, is an associate member, his party in the schooner Research reached Pass à Loutre on the 12 th of December, 1874. The illness of the sailing-master, however, delay in the arrival of a substitute, calms on the passage south of Norfolk, and adverse winds, had consumed much of the time during which the commission awaited the co-operation of the party. Under advice of Mr. Mitchell, who returned north when preliminary deliberation was closed at tbe delta, Assistant H. L. Marindin, and the aid, Mr. J. B. Weir, remained, and prosecuted physical researches during the early months of the present year with the party in the schooner. These operations, as far as then practicable with the means at hand, were closed in March, and the schooner Research returned to New York. Meanwhile, a special appropriation had been voted by Congress for deepening the South Pass of the Mississippi, and, to meet the prospective reqnirements of the board of engineers, Assistant Marindin was detailed to proceed immediately by land to the delta, and to hasten the return of his vessel. Pending the arrival of the Research, the phssical bydrography was resumed and prosecuted by Mr. Marindin, with assistance afforded by Mr. Boyd, who detached from his party the schooner Varina and a working force in charge of Subassistant Andrew Braid. The schooner Research arrived at the delta on the 30th of April, and, the party being thus re enforced, observations upon currents, tides, and densities of water at the ricer-ontlets were pushed without intermission until the end of June. Good observations were obtained at the three passes, and notably at South Pass, which will be valuable for comparison with series recorded as the work advances in the construction of jetties. These records, it is hoped, may furnish data for a physical history of the effects artificially wrought by expedients for deepening the water on the bar of the Mississippi. The preliminary report by Professor Mitchell (Appendix No. 11) describes the method by which he proposes to formulate the results of observation. At the Head of the Passes, observations were made in order to show in what mavuer the main stream separates as it approaches the passes, and the relation of the mud bank at the head of South Hass in this distribution of the main stream into several channels.

While weather was unfavorable for boat-work in the spring, Assistant Marindin, aided by Mr. Bion Bradbury, occupied the time effectively in setting up signals along the shores of South Pass. After his return, the shore-lines were carefully traced throughout, and subsequently the bed and channel of that pass were thoroughly developed by numerous soundings. An abstract appended to the field-report shows that the density of the water at the junction of the Mississippi with the Gulf of Mexico was tested by 203 observations. Amongst the details of the physical survey were determinations giving six profles of sections, and currents along fifteen lines were determined by free floats. The general statistics are:

Current-observations recorded . 2, 2, 2, 4
Miles ron in sounding . 268
Angles measured .. 5, 543
Number of soundings . 21,646
Operations in the physical survey were much advanced by the co-operation of the hydrographic party in the steamer Blake, under Lieatenant Commander Sigsbee. During May and June, Mr.

Marindin employed, by the courtesy of Capt. Ed. A. Freeman, the steamer John A. Dix, and a launch, temporarily assigned by the Navy Department, for lines of soundings off the bar. These lines radiate from the delta, and connect as inshore hydrography with soundings made off the delta by Lieutenant-Commander Sigsbee.

Under the immediate direction of Assistant Marindin, the special hydrographic survey at the Head of the Passes was prosecuted by a party in charge of Subassistant Braid. As the prospective operations in engineering required, the ratio of discharge was determined by observations at the junction of Bayou Grande and Sonth Pass with a view to the closing of the first-named outlet. Mr. Marindin measured sections above Bayou Graude in South Pass, also in the bayou, and in the pass below it, and at each ascertained the discharge of water per hour on the 4th of June of the present year. The result showed that the discharge through Bayou Grande was twenty-two per cent. of the volume emitted by South Pass above the bayou. In the pass below the bayou, observations were made also for set and drift of current.

Sections were measured on the $22 d$ of Jone at Cubitt's Crevasse and the Jump. The former is a breach 2,700 feet wide, and with a maximum depth of 132 feet; but the water quickly shoals beyond the mouth of the crevasse, the depth in the conrse of a few hundred feet not being more than five feet at an average. When these observations were made, the surface of the river was about two feet above the extreme low-water stage. At the Jump, the section across measured 642 feet, and the maximum depth was 56 feet.

The shore-lines of the pass with those of the Head of the Passes, and the outline of lumps at the bar, were traced by means of the plane-table, and the statistics show an aggregate of thirty-four miles.

At the Head of the Passes, Mr. Marindin made sets of free-float observations on fifteen different lines, to determine locations for the spur jetties proposed in the engineering operations of Mr. Eads for diverting part of the water from either the Southwest Pass or Pass à Loutre into South Pass.

After the close of work at the mouths of the Mississippi, at the end of June, the schooner Research underwent repairs, made necessary by exposure to the extreme heat in that month, and was then dispatched for New York. Assistant Marindin immediately engaged in the computations and other office-work pertaining to the several operations of the physical survey. Transcripts of all the data gathered in the physical survey will be forwarded at an early day to the War Department.

Hydrography, Gulf of Mexico.-Commander John A. Howell, U. S. N., assistant in the Coast Survey, with the bydrographic party in the steamer Blake, left New York on the 6th of November, 1874, and in the course of a fortnight arrived at New Orleans.

Uuder the direction of a board of commissioners, appointed by the President of the United States, to consider plans for improving the navigation at the mouth of the Mississippi, several weeks were employed by the hydrographic party in work ontside the bars of the several passes, and in co-operating for the advancement of the physical survey, respecting which an outline was given under the preceding bead.

Commander Howell having been transferred by the Navy Department to duty in the Naval Academy at Annapolis, as stated under Section I, Lieut. Commander C. D. Sigsbee, U. S. N., Assistant in the Coast Surrey, succeeded to the command of the steamer Blake on the 12 th of December. After that date, and until the 26 th of April, the party was engaged in runniug lines of soundings outside of the Mississippi delta in depths rarying from ten to fifty fathoms. This work supplements the bydrography which was prosecuted in the course of the physical survey. Twentr-seven lines in all were run, averaging 120 miles in length, and radiating into the Gulf from the shallow water of the approaches to the delta. The temperature of the water, and also its density, were recorded at each of about fire hundred soundings. At intervals nutil May, the party in the steamer assisted in the various operations of the physical survey at the mouths of the Mississippi, mention of which service was made in the notice of that work.

Early in May, Lieutenant-Commander Sigsbee ran a line of soundings in the Gulf of Mexico from Southwest Pass to the mouth of the Rio Grande, and another from the mouth of that river to the Tortugas. Wire and the Thomson apparatus, which, for his immediate purposes, had been modified
by Lieutenant-Commander Sigsbee, were used for deep soundings, and the results proved to be entirely satisfactory.

In reference to the lines run in the deep water of the Gulf, it is mentioned in the summary report that the specimen of mud brought up from a depth of 583 fathoms emitted a strong odor of sulphureted hydrogen. This was on the line between the Southwest Pass and the Rio Grande. On both of the lines, temperatures were observed, and specimens of the bottom soil, and of the water there and at the surface, were taken at intervals corresponding with the determinations of depth. The greatest depth found was 2,119 fathoms, on the line between the Rio Grande and the Tortugas. In the hydrographic registers, seven hundred observations for temperature are recorded, and three hundred for densities of the Gulf water.

The temperature observations so far made lead to the inference, that, in general, the normal temperature of the Gulf water is abont $39 \frac{1}{2}^{\circ}$ Fahreuheit, that temperature being reached at 350 fathoms, and remaining apparently constant to depths of 2,000 fathoms.

The general statistics of the work are:

$$
\begin{aligned}
& \text { Miles run in sounding ... 2, 2, } 724 \\
& \text { Angles measnred. } 764
\end{aligned}
$$

In prosecuting hydrographic work in the Gulf of Mexico, Lieutenant Commander Sigsbee was ably assisted by Lieuts. O. T. Hutchins, J. W. Hagenman, and J. M. Grimes, U. S. N.; by Master R. G. Peck, U. S. N.; and by Ensign W. E. Sewell, U. S. N. At the close of the fiscal year, Lientenant Hutchins and Lieutenant Grimes were assigned to take charge of separate hydrographic parties for work on the coast of New England, near which Lieutenant Commauder Sigsbee will also be engaged in deep-sea soundings.

Survey of the Mississippi River at New Orleans, La.-The schooner Varina was refitted at New Orleans for the service of the party of Assistant C. H. Boyd early in November, 1874; but as yellow fever prevailed then in the city, the vessel was not moved matil the end of that month, when the topographical survey of the vicinity of New Orleans was taken up. Two plane tables were employed; and, with frequent weather-iuterruptions, the work advanced upward from a station about three miles below the city, where the detailed survey had stopped in the previous year. In the course of the season, the plane-table operations included the city of New Orleans and the towns of Algiers, Gretna, McDonoughville, and Carrollton, and both banks of the river from stations near the battle-ground to Keonerville, or about nine miles above Carrollton. The triangulation was extended from the town last named to stations several miles above Kennerville. All the field operations in this quarter were retarded during December and months followiog until the 1st of March. The field journal noted rain during some part of every day in January.

Late in Mareh, Assistant Boyd, under special instructions, detached from his party Subassistant Braid, and co-operated also in person at the outset, for a miuute survey of Sonth Pass, reference to which was made under the last head. A triangulation then conducted through the pass determined in position forty-two points for guiding in the detailed plane table survey. Returning to the site of his own field-operations, Mr. Boyd closed the river-triangulation for the season at the end of April, and made a reconnaissance of the Amite River region for stations that might serve to connect the survey of Lake Pontchartrain with that of the Mississippi above New Orleans. Assistant Boyd also ran lines of level (fourteen miles in all) to counect the Carrollton bench-mark, established in the survey of 1858 by the Uuited States Corps of Engineers, with the bench-mark at the mint in New Orleans, to which last are referred the tidal records of the Coast Survey. Messrs. C. H. Van Orden and W. E. McClintock were attached to this party as aids. The work was discontinued on the $23 d$ of June. Few soundings had been made in the river above New Orleans, as, when arrangements had been completed for such work, the emergency arose for the services of Mr. Braid in South Pass. The general statistics of work reported by Assistant Boyd are:
Siguals erected 16
Stations occupied 21
Angles measared 182
Number of observations 3,072
Shore-line surveyed, miles 56
Creeks, miles 4
Roads, canals, levees, and streets, miles 870
Area of topography, square miles 78

The river-currents were observed at three stations, and tides were recorded daily at New Orleans thronghout eight months. The topographical survey is comprised on three sheets, which will be inked as soon as practicable.

Triangulation in Missouri (Sketch No. 15).-This work was resumed by Assistant Boyd on the 15 th of Angust, 1874, at a station on the south side of the Missouri River, about thirty miles west of Saint Louis. The chain of triangles laid out westward extends the work to the vicinity of Gasconade River. Signals have been set up in eight counties of Illinois and Missouri; and, of the stations already occupied, eight are in the immediate neighborhood of the parallel of latitude that passes through Saint Lonis.

The triangulation done this year previous to the middle of October, when the party resumed work in another part of the section, extended the determination of points westward thirty miles, through a country thinly settled, and offering some obstacles that are not commouly met along the seaboard. All the ridges relied on for stations are densely wooded with hickory and oak, and, being nearly of the same height, their identification at a distance is difficult. Clearing lives for sight proved to be very laborious, and no lumber could be procured in the region for signals. In crossing the fifth principal meridian of the United States land surveys, Assistant Boyd occupied a subsidiary station, and connected one of the marks on that meridiau with his scheme of triangles. Another corner was identified eastward and northward of that line, and was brought into connection with his scheme of geographical points. The latitude and longitude of Saint Louis having been well determined since the period of the land-surreys in that part of the State, the two points referred to, as might be expected, do not accord on the local maps with results given by the geodetic work. The statistics of the triaugulation are:

$$
\begin{aligned}
& \text { Stations occupied . } 9 \\
& \text { Angles measured ... } 56 \\
& \text { Number of observations. ... 4, 4, } 032
\end{aligned}
$$

Of the lines connecting stations, seventeen required clearing to admit of observing with the theodolite. As usual in work of this kind, a number of objects were observed on, additional to erected signals, the positions of which were to be precisely determined by means of angular measurements. Mr. Van Orden accompanied Assistant Boyd as aid in this work and in that noticed under the preceding head.

Reconnaissance in Wisconsin.-In order to provide for the systematic determination of points in the State of Wisconsin, a reconnaissance, conducted by Prof.J.E.Davies, was commenced at the opening of the fiscal year, as was mentioned in my last annual report. Duriug the season, until October, 1874 , and at intervals in the course of the winter and spring, the work was vigoronsly prosecuted through the region included between the Wisconsin River, below Grand Rapids, and the east bank of the Mississippi, between Black River and Prairie du Chien. Three chains of triangles were laid out, bounding that region, and making in the aggregate a belt of about 225 miles in linear extent. Some of the lines in the scheme are thirty miles long; lut, in places where obstacles intersened, the lengths lessen to six and eight miles. The practicability of some of the lines is yet ancertain, but the scheme as presented, results from the patient examination in person of ground, in traversing which, Professor Davies traveled abou tnine hundred miles over rough or sandy roads, the stations desirable being of course in parts the most elevated and the farthest from social comforts. Windfalls, marshes, and unimhabited tracts fully tested, but they have not lessened, the interest of the intelligent observer who has enlisted in this work. In the spring of the present year, and in advance of the appearance of forest-leaves, Mr. Davies again took the feld, with a view of improving the scheme of triangulation, which was provisionally marked out for including the region of Black River at a time when foliage had not fallen from the trees. Preliminary
arrangements for such work include as conditions for ultimate success, that sites for base lines should be arailable at suitable intervals in the triangalation. The ground to be measured, if not level, should be such that the measuring bar shall in no case have an inclination of more than 6°, and the line should be so related to the nearest geodetic stations as to admit of convection with them by large angles. At intervals in the scheme of triangulation, it is desirable also that quadrilaterals should appear, if the reconnaissance shows that a chain of successive quadrilaterals is impracticable. The conditions here mentioned were kept in view in the operations of Professor Davies, and will be met as far as the difficulties of the ground allow. As now provisionally marked ont, the three connecting chains of triangles will require as many bases of verification, determina. tions of azimutl at four stations, and of latitude at two points of the triangulation. The longitude of the university at Madison bas been already determined.

Early in June of the present year, Professor Davies perfected arrangements for resuming field-work at Spring Green, near which, in the valley of the Wisconsin River, the plain seemed favorable as a site for a base-line about three miles in length. In the middle of the month, Assistant Richard D. Cutts reached Madison, and proceeded with Professor Davies to Spring Green. A site for the line was selected, the adjacent country was examined with reference to its connection with station points, and reconnaissance was made for conducting the triangulationont of the valley. Assistant Cutts cooperated in the movements of the party during several days, and gare detailed explanations in regard to all the requirements for field-work, in particular the scbeme of lines for emerging from the confined valler, and for convecting the base with the main triangulation. When he left Madison, at the end of June, to arrange for the operations of his own party, in Section I, Professor Davies was in readiness to occupy stations for the measurement of horizontal angles iu the ricinity of Spring Green.

SECTION IX.

GULF COAST OF WESTERN LOULSIANA AND OF TEXAS, INCLUDING BAYS AND RIVERS.-(Sketch No. 16.)
Hydrography of Aransas Bay and Musquit Bay, Tex.-For this duty, the schooner Bibb, after serrice which has been mentioned ander the head of Section II, was retitted, and sailed from Nor. folk on the 3d of December, 1874. The party reached Iadianola, Tex., after a run of three weeks. As soon as practicable, Subassistant W. I. Vinal, who was in charge, proceeded to San Antonio Bay, and sounded a space near the western end to complete an interval in the operatious of the preceding season. Stormy weather prevailed through the month of January. This hindrance, and the fact that by reason of her draught of water the schooner could not be used in extending the work further, constrained the engagement of a lighter of fifteen tons, by means of which Mr. Vinal commeted the supplementary work in San Antonio Bay on the 21st of March. Frequent and heary " northers," the extreme scarcity of fuel and of fresh water, and sickness amongst the crew retarded the operations. With weather somewhat improved after the equinox, the tender was able to prosecute work near the anchorage of the Bibb, and made satisfactory progress during April and May. By the 1st of June, soundings were completed through Musquit Bay, and about two thirds of the upper part of Aransas Bay bad been sounded out. The statistics are :

```
Miles run in sounding ........ ........................................................ 635
Angles measured. ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 156
Number of soundings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89, 607
```

Subassistant Vinal was aided by Messrs. E. H. Wyville and E. B. Pleasants. Early in the season, Lieut. Richard Wainwright, U. S. N., was associated with the bydrographic party in the schoover Bibb. On the 1st of June, the charge of the party was transferred to that officer. Mr. Vinal then took in hand the details of office-work pertaining to his hydrographic operations in this section. Under the direction of Lientenant Wainwright, the hydrography of Aransas Bay was completed by the end of June. His operations include, also, progress in the hydrography of Lamar Bay and Copano Bay, and the development of Saint Charles Bay up as far as the reef which traverses it from shore to shore.

The party of Lientenant Wainwright will continue work in this section during the summer. H. Ex. 81-7

SEOTION X.

COAST OF CALIFORNLA. INCLUDING THE BAYS, HARBORS, AND RIVFRS--(SRETMHES NOS, 17, 19, 19.)
Good progress has been made by the land-parties working in this section, and a large advance in hydrography. Daring the greater part of the fiscal year, the field-assistants, who have hitherto made the astronomical obscrvations at stations on the Pacific coast, were absent as members of several expeditions sent by our Govermment to A sia and the South Pacific Ocean for observing the transit of Venus in December, 1874. The junior observers, mentioned in my report of last year as on that special astronomical service, returned in the spring and resumed their accustomed fieldwork. Assistant George Davidson, the principal observer in Japan of the December transit, was requested to improve the opportunity aftorded by the distant voyage for recording magnetic observations while crossing the Pacific Ocean. As arranged, also, with that experienced observer in personal conference previous to his departure, he passed some weeks of the present year in India carefully examining systems of irrigation, with reference to provision for an acknowledged want in some of our great western valleys, Professor Davilson being hinself a member of the commission appointed by the President of the United States to devise plans of irrigation for California. At the same time adrantage was taken to note the wethods in field-work for the geodetic surrey of India, and generally the appliances, and expedients as compared with our own resources for prosecuting the work of triangulation. In Egypt and elsewhere, Assistant Davidson gave attention to results gained in marine engincering, and has recordel the methods adopted in successfal works of that character. The scarcity of harbors on the apper coast of Califomia and on the coast of Oregon, must at an early day, in view of the increase of settlements, call for the construction of breakwaters at places capable of being so sheltered and affording good anchorage as harbors of refuge. For such prospective requirements, information has been gathered from all available sources in Earope, and, incidentally, the methods pursued there in the reclamation of tide-lands.

The comprehensive report presented by Professor Davidson, includes the results of his inspection of instruments of precision now used by Luropean observers, a branch of researeh for which he is specially qualified. In the introductory part of this report, allusion has been made to the results obtained by Professor Davidson at the station occupied iu Japan by Limself and his aids for observing the transit of Veuns. The details in regard to his operations for that service are given in Appendix No. 13.

Of the several Japanese officers who visited the transit station of the Coast Survey observers at Nagasaki, Capt. Nawo- Yoshi Yanagi, chief of the burcan of hydrography of the imperial navy, is regarded as one of the most learued men of Japan. Fron the naval station at Tokio he made the trip to Nagasaki for the sole purpose of witnessing and stndyiag the operations of the party. After personally noting the processes for determining the difference of longitude by telegraph between Nagasaki and Tokio, the captain consulted Professor Dividsou in reference to instruments, and requested him to procure and forward such an outfit for an observatory as would include meaus for rating the chronometers of the naval vessels of Japan, and serve for general purposes in astronomy. This first observatory in Japan will be erected in the extensive gronnds of the imperial navy department at Tokio, and on the site occapied by Mr. Daridson for longitude obser. vations. At the joint request of Captain Yanagi and other high officials of the government, the longitude-station at Tokio was connected by telegraph with the transit of Venus station at Nagasaki.

In passing through Europe, Mr. Davidson gave the orders of Captain Yanági for an astronomical clock with break-circuit attachments, at Berlin, and for the Hipp chronograph. A break-circuit chronometer will be sent from Nes York; and a meridian instrument, of the form devised by Davidson, and made by Würdemann, will be forwarded from Washington. Mr. Daridson has consented also to arrange all the needful telegraphic apparatus, test the instruments as they are delivered by the maker, and furnish copies of papers descriptive of the field-nses of the several instruments, and in regard to methods of reducing the observations.

Proceeding uow in geographical order, notice will be taken of the work done in each locality
to which parties have been assigned within the fiscal year on the Pacific coast. In the arrangement, mention will first be made of work done near the southern boundary of Califormia, and the report on field-operations will close with an abstract of the results gathered on the coast of Alaska.

The operations of parties working near and along the coast to the southward of San Francisco were inspected in April last by Assistant Richard D. Cutts. With some, then at work with the plane-table, special conferences were held in regard to the delineation of the abrupt and high elevations that mark the topogtaphy of the coast adjacent to the Santa Barbara Channel, and for which the methods employed on the less rugged coast of the Atlantic would prove both too laborions and expensive After general consultation at San Francisco, in reference to these aud other details of field-work, Mr. Catts left early in May to return to Washington, but, at my request, remained a few days at Salt Lake City. There he examined the valley with reference to its facilities as a site for a base-line to serve in a chain of large triangles, for part of which, starting near the Pacifc coast, reconuaissance has been made, as will be noticed further on in this section. The large experience of Assistant Cutts in field-work on both sides of the continent gives special ralue to the notes and observations which were fled at the office on his return from San Francisco.

S'riangulation, topography, and hylrography at Neaport Bay, nour Point Lasuen, Cal.-Iu order to resume operations on the southern const near Auahein, Assistant A. W. Chase took passage, on the 25th of Jamuary, from San Fraucisco, but on his arrival fomm the entire region flooded, and railroad and stage communication cut off by high water. Early in February, howerer, he took up the survey uear Newport, where he was joined at the end of the preceding month by Subassistant Eugene Ellicott and Mr. F. A. Lawson. Signals were erected for extending the work along the coast southward toward San Diego, and tidal observations were commenced to proride data for the adjustment of soundings on a chart of Newport Bay, the commerce of that region in wool and other products having recently attracted vessels from San Fraucisco. At the end of Λ_{p} ril the hydrography of the approaches and channels, the triangulation of the vicinits, and two plane-table sbeets of the detailed survey had been completed. Early in May the party was discharged as the sum allotted for field-operations was then exhausted. Mr. Chase completed his records and compatations by the end of the fiscal year, and is now engaged in extending the sarvey to inclute the shores of Santa Monica bay eastward from Point Duma. The general statistics of the work done within the year previous to the eud of June are, for this vicinity :

```
Signals erected ............................................................................. 19
```



```
Angles measured.......................................................................... 10s
Number of observations.... . .......................................................... 1, 746
Shore-line traced, miles.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41\frac{1}{2}
```



```
Angles measured, sextant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708 
Number of soundiugs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5,514
```

Periods unfavorable for field-work and all incidental opportunities have been for some years improved by Assistant Chase for collecting objects of interest in archacology, geology, and natural bistory, in which studies he has maintained intimate relations as a correspondent with the Smithsonian Institution. At the instance of Prof. Spencer F. Baird, and in well-founded reliance on the discretion of Assistant Chase, full scope has been allowed for securing in time, and without cost, such objects within his reach as wonld be deemed worthy of the National Museum. His researches and contributions have already added much that will avail in compiling a history of earlier times for the coast of Californin.

Early in the fiscal year, Mr. Chase was occupied in exteuding the surrey of the coast above Cape Mendocino, in regard to which, notice will be taken presently in this chapter.

Topography of Santa Cruz Ysland, Cal.-The detailed survey of Santa Cruz Island was prosecuted by Subassistant Stehman Forney during the summer and antumn, and until the th of December, 1874, when the party was disbanded for the winter. Mr. Forney employed the iuterval
until February in working ap, at San Francisco, the field-observations and perfecting the planetable sheets which had been brought from the field. His party was re-organized as early as the weather would permit, and resumed the detailed survey. Owing to the scarcity of fresh water in the region to which the work had extended early in the spring, temporary camps were used at sites near small springs in the interior of the island, and from these as centers of work the topography was advanced and joined with the details of previons seasons. Before leaving the west end of the island, Mr. Forney selected and marked a station at which signals on all the outlying islands of the Santa Barbara gronp will be in view under favorable circumstances.

Along the shore at Prisoner's Harbor, on the north side of the island, changes were observed, to which is probably due the loss of the point occupied for astronomical observations in 1852. The shell-mound on which the instrumeuts were placed has been washed away by subsequent winterfreshets.

The field-report states that on the northwest and northeast ends of Santa Cruz Island terraces, snpposed to mark old sea-beaches, are set distinctly defined. Such features in topography have been frequently noticed on the main; and within the limits indicated for plane-table work along the coast the terraces there and elsewhere will be mapped as details of special interest in researches relative to the geology of the coast of Califormia.

Santa Craz Island is nearly twenty five miles long, and has an average width of about four miles. The surface, though exceedingly rough, is well represented in the plane-table sheet by curves drawn for each 200 feet of successive elevation above the water-line. The bighest point of the island is 2,410 feet above the lesel of the sea. On the lower parts of the surface, grass is abundant, and for some years has sustained a stock of sheep so considerable that fifteen to twenty thousand head have been taken from the island annually.

The detailed survey has developed several good anchorages and boat-landings additional to those heretofore resorted to, and the exact location of each of the fresh-water springs, some of which, when more generally known, will doubtless be of account to sea-going vessels.

The following synopsis gives the statistics of work in the conclading season of the surrey of Santa Craz Island:

$$
\begin{aligned}
& \text { Signals erected for triangulation.. } 13
\end{aligned}
$$

$$
\begin{aligned}
& \text { Creeks, miles . } 6 \\
& \text { Roads, \&c., miles. } 39 \\
& \text { Area of topography, square miles . } 41
\end{aligned}
$$

At the close of the fiscal year, Subassistant Forney made preparation to take up the detailed survey of Santa Catalina Island.

Hydrography around Santa Craz Island, Cal.-The work done in the summer of 1874 by the hydrographic party of Lieut. Commander H. C. Taylor, U. S. N., assistant in the Coast Survey, in the steamer Hassler, will be mentioned under a subseqnent head in this section. When the season closed for operations abreast of the boundary-lipe between California and Oregon, the steamer retnrned to Sau Francisco, was promptly refitted, aud commenced soundings in the vicinity of Santa Cruz Island on the 12th of November, 1874. The work was steadily pushed until the 19 th of December. During the winter, Lieutenant-Commander Taylor and his officers completed and forwarded to Washington the charts and records of the season passed on the northern coast. The hydrograply near Santa Cruz was resumed on the 19th of Mareh of this year, and was steadily prosecuted onward and throughout June, when the work was essentially finished. Near the west end of the island, soundings were made last season by the party in the Hassler under the direction of Commander P. C. Johnson, and near the east end the approach had been developed previonsly in connection with the hydrography of Anacapa Passage. Joining with the limits of completed work, Lieutenant-Commander Taylor sounded the approaches of the north and of the soath side of the island, making in the aggregate a belt of forts-eight miles in length and nearly six miles wide. Of the features developed, two of the most important are the well-marked submarine plateau extending from the north face of Santa Cruz Island, and a remarkable submarine cañon off the southrest corner
of the island. Comwander Johnson, in sounding Santa Cruz Channel, found 100 fathoms with 40 fathoms on each side, and supposed the vessel to be directly over the head of a cañon that stretched directly to seaward, but time did not then allow of the development. In the course of the present year, Lieutenant-Commander Taylor found exceptional deptbs at places southward of Santa Cruz Island and some miles to eastward of the Santa Cruz Channel. Following the course indicated by large variations in depth, the cañon was traced to its head, and that was found at the position in which Commander Johnson had recorded the soundings before mentioned. In further reference to this remarkable depression in the sea-bottom, Lientenaut-Commander Taylor says:
"Commencing at about the middle of the sonthern part of Santa Cruz Cbannel, the cañon turns at once to the eastward and sweeps along parallel to the south shore of Santa Cruz Island for some miles, when it again turns southward and goes to the deep sea at a point a little east of Gull Island. It averages 300 fathoms in depth for the greater part of its leugth, with 40 and 50 fathoms on its seaward side. The bottom is rock and shells as far as the turn to seaward, where the ooze of the deep sea begins to show. This remarkable feature has been fully dereloped, as will be seen by the manuscript chart."

The statistics of hydrographic work in the vicinity of Santa Cruz Island are:

$$
\begin{aligned}
& \text { Miles run in sounding . }
\end{aligned}
$$

Lieutenant-Commander Taylor has been assisted in the operations of his party by Lientenants Talcott, Courtis, Clover, Adams, and Tyler.

In order to further as far as practicable important researehes conducted ander directions from the Smithsonian Institution, the steamer Hassler and means at his disposal were temporarily used by Lieutenant-Commander Taylor in June for facilitating the movements of Mr. Paul Schumacher, agent of the Iustitution; and for the transfor of a scientific party under Dr. Farrow, United States Army, attached to the exploring expedition ander command of Lieutenant Wheeler, United States Corps of Engineers.

At Santa Barbara, on the 7th of June, Lientenant-Commander Taylor relieved the ship Ark. wright by passing the Hassler out to lead through the kelp, when it was feared that a shift of wiud would throw the first-named vessel on shore.

The hydrographic party, when this report closes, is about completing work in the viciuity of Santa Cruz Island.

Triangulation across the Santa Barbara Channel.-Subassistant O. H. Tittmann, after his return from Japan, where be was of the party sent nuder the direction of Assistant Davidson to observe the trausit of Veñus in December, 1874, resumed field-work at Gaviota Station on the shore of Santa Barbara Channel. Heliotropes were stationed on San Miguel Island and on Santa Cruz, and angular measurements were made on them in connection with a signal at Santa Barbara, until June of the present year. The seasou was unfarorable, and the siguals were consequently often incisible from the observing-station. Several partial series of horizontal angles were, however, measured, and astronomical observations were recorded successfully on four nights. Mr. W. S. Edwards was attached to this party as aid. In the course of a continuous spell of foggy weather, Mr. Edwards ran a line of levels from Gaviota Station down to the beach. Tbe bench-mark established there will be referred to a tide gauge, which it is the intention to put in operation when the party returus to this quarter in the course of the present year. The wharf now under construction will probably be completed in Angust, and will afford the facilities needed for tidal observations.

Hydrography of San Luis Obispo Bay, Cal.-As mentioned in my last annual report, Assistant L. A. Sengteller remained at San Francisco during the early part of the present fiscal year in consequence of a very serions accident, which disabled him for months from undertaking field-service. When at length able to sit up and more ou crutches, his office-work was taken in hand and completed. Three plane-table sheets were inked and placed in the archires, with nineteen volumes containing the records and computations of his previous field-work. The office depository in San Francisco was carefully examined, and its contents were classified and arranged for convenieut ref-
erence. In this duty, Mr. Sengteller was busily engaged during the winter. Fiuding himself able to take the field in the latter part of February, a party was organized, and prosecuted under his direction the hydrography of San Luis Obispo Bay. In that work, three sunken rocks were dis. covered and repoted as dangerous to narigation. One of these, in fourteen feet water at mean low tide, lies a mile to the sonthward of Rocky Bluft; the others are in eighteen feet water, are about half a mile apart, and lie about a mile and a half southwest of Whaler Island, at the extremity of Point San Luis. All were carefully determined in position; ranges for avoiding the dangers were promptly furnisbed, and in May a "Notice to Mariners," in the usual form, was issued from the office.

The hydrography of San Lais Obispn Bay was developed to a line about three miles west of Point San Luis, so as to include the approaches to the bay from the northward. Soundings were extended to about the same distance eastward of the point. The curre of trenty fathoms was traced on the chart after its completion, and appears at varying distances from the line of mean low water, in some places being a mile and a hall and at others four miles off shore.

Mr. F. Westdahl serred as aid in the party of Assistaut Sengteller. Soundings were commenced on the 1st of March and were completed at the end of A pril. The general statistics are :

```
Miles ran in sounding ................... ......................................... 549
```


For the adjustment of soundings, uineteen siguals were erected on shore and determined in position by means of the theodolite.

Mr. Sengteller completed his office work by the end of June, aud then made preparation for resuming field-duty on the coast between Bodega Head and Point Arena.

Topography of Point Sur.-This survey for the uses of the Light-House Board was committed by my instrnctions to Assistant C. Rockwell in the latter part of January, and in expectation that means of transit could be readily had. Finding, however, that the light house tender was laid ap for repairs, and wishing to avoid delay, a small ressel was engaged to move the party to the work-ing-groumb. That vessel proving anequal to the service, Mr. Rockwell engaged the steamer San Luis to pat himself and the party aud instruments ashore on the next trip of the vessel to San Diego. A storm from the southward detained the ressel two days in Monterer Bay, but she was off Point Sur on the morning of the 4 th of March. The San Luislay off all day under steam ; but, finding it impossible to land the camp-fixtures and some of the instruments and tools, she passed on to San Diego, learing Assistant Rockrell, who had gone ashore in the only boat that it was fond practicable to land on the point. Two bands belonging to the party were, carried off by the steamer. With the remaining hands, Mr. Rockwell took shelter in a deserted dairy-shanty, and, pending the return of the ressel, commenced next day and continued feld-work with such instruments as he had taken ou shore. He selected a site for a base-line, and marked points as stations for the triangulation. On the 17 th of March, the steamer San Lais, on the upward passage, was again off Point Sur, but a northwest gale made it impossible to restore to Mr. Rock well what was on board belonging to his party outfit. The articles were consequently left at Monterey, and finally were delirered on Point Sur by a suall sea-going boat hired for the purpose. Unfortunately for the owners, while moored under the rock, after landing her cargo on Point Sur, the boat broke from ber moorings and was dashed to pieces on the beach. Awsistant Rockwell measured a baseline with a twenty-meter chain, and made a triaggulation sufficient for the desired plane table survey, which includes sereral miles of the coast adjacent to the point. The journal of occupation shows that at Point Sur the wind blew incessantly from the 10 th until the $22 d$ of March, and very frequently for shorter periods in the course of the season. The result of this topographical survey is a valuable map on a scale sufficiently large for any purpose of the Light-House Board. Bearings up and domn the coast to numerons points in view were taken by Mr. Rockwell, and such details were incladed as were decmed indispensable for the selection of sites proper for a light-house and fog signal. Owing to its peculiar shape, the hill presents difficult features with reference to the coast-lines of visibility: While the triangulation was in hant, two of the monntan-peaks back of

Point Sur were determined in position, and, both being sharply lefined, ther will, as lamdmarks, be of special use in prosecating the offshore hydrography.

On the 21 st of April, while Mr. Rockwell was at work near by, the steanship Ventura ran ipon the rocks a mile north of Point Sur, and proved a total loss. The opinion is expressed in his report that the disaster conld not have occurred if a fogsigual had been moperation on the Morro. From that which he oceupied as one of his statious, he noticed outlying rocks and bunches of kelp to the southeast of the rock and at considerable distances off shore. He remarked that ressels, in rounding the point, ran too near; and such appears to be the eustom in navigation at ot her points on the western coast not less marked by dangers in navigation. The statistics of work done in the survey of Point Sur are:

Signals erected ... 10
Stations occupied 8
Points determined................ 12
Angles measured. 5
Number of observations ... (09s
The topographical sheet of the Morro at Poiut Sur, on a scale of ${ }_{2}{ }^{\frac{1}{6} \sigma}$, shows by curves the successive elevations of tive feet. These curves were carefully traced by means of the level. A second topographical sheet, on a scale of $\frac{10}{}{ }^{\prime} 0$, , shows the entire vicinity of the cape. The work depends on a measured base of 800 meters.

The party of Assistant Rookwell left Point Sur on the 13th of May, on the steamer Santa Craz, and returued to San Franciseo.

Shoal off South Farallon Island.-Late in June of the present year, Lient. Commander II. C. Taylor, U. S. N., assistant in the Coast Surver, in charge of the steamer Hassler, while taking in coal at San Francisco, was informed of the existence of an mmarked rock near Soath Farallon light-honse. Before resuming regular work near Santa Cruz Island, search was made, and the shoal was found at the reported bearing, bnt onls abont half a mile from the light house. The depth found was six and a half fathoms, and, as reported, the sea breaks on it ouly in exceptionally heary weather.

Noonday Rock.-In October, 1874, Lient. Col. C. Scaforth Stewart, Corps of United States Engineers, provided means for increasing the depth of water on Noonday Rock, the position of which was determined some gears ago by Assistant A. F. Rodgers of the Coast Survey. This danger was eighteen miles from the coast of California, and about three miles northwest of the North Farallon. As Fanny Shoal, its existence had been known; but there was much uncertainty in regard to its whereabouts previous to 1863 . On the $2 d$ of January, in that year, the ship Nomday, when the vessel by her reckoning was eight miles from the North Farallon, struck on the roek near midday, and within two hours sunk in forty fathoms.

When arrangements were complete for the operations proposed in submarine engineering, no suitable ressel could be procured at San Francisco, and the cutter Shubrick could not be spared from pressing duties in the light-house service. Cuder these circumstances, application was made to Lieutenant-Commander Taylor for the co-operation of his party in the steamer Hassler. The vessel accordingly left San Francisco on the 30th of October, and by nightfall a buoy was phaced on the top of the rock, where the depth was found to be $20 \frac{1}{2}$ feet at low water.

Subsequently, Lieutenant Weeden, of the Corps of Engineers, in close examination, by the aid of a diver, discovered that the rock did not terminate in a single point, but in three, and that the depth on one of the peaks was only fourteen feet at mean low water. Mensurements made by Lientenant Weeden were embodied by Lieutenant Colonel Stewart in a published notice inviting proposals for the removal of the upper part of Noonday Rock, to insure an average depth of forty-five feet at mean low water. As the terms require the completion of the operation within the year 1875, and all the conditions are well kuown, the early removal of this obstacle in the seaward appronch to San Francisco Bay is not a matter of donbt.

Hydrography of San Francisco Bay.-At the opeuing of the fiscal year, work was resamed in San Francisco Bay by the hydrographic party in the schooner Marcy, under charge of Assistant Gershom Bradford. Soundings were made between the shoal north of Yerba Buena Ishand and
the Oakland Flats, and, compared with previous results, these give evidence of both deepening and widening of that channel.

South of Oakland Wharf, and near the mouth of San Antonio Creek, where close sonndings were recorded, no rery considerable change is appareat. The twelve feet and eighteen feet curves coincide nearly with those triced twenty years ago. Assistant Bradford notes that Blossom Rock at the lowest tides may have on it a depth of only about twenty-one feet, and that some of the vessels that resort to San Francisco as a port draw twenty-six feet of water.

In a previous report, mention was made of the wreck of the ship Flying Dragou as a danger in narigation. The party in the schooner Marcy carefully examined, by means of drags, the spot in which the obstruction bad settled, but no part of the wreck remains there. Numerous observations were recorded ou the currents of the bay. Those at the surface were determined by a pole reaching down about twelve feet, so that results might apply for vessels of average dranght. In the sulicurrent observations, the number of sets recorded were proportioned to the depth of water. Mr. Bradford used for results below the surface the connected cans first proposed by Prof. Henry Mitchell. Of three current-stations in each series, one was in the fair-way of the channel, and one on each side of it, but near the edge of the channel. Abont Southampton Shoal, the stations were increased in number, with a view to results that may aid in developing the canses of its formation. In regard to it, Assistant Bradford mentions as a significant fact "that the sand of which the shoal is chiefly composed was, at one of the stations, found to be underlaid by mud at the depth of seven feet." This was noticed on raising a screw-pile which he had used there as a tide-gauge.

For stations at the surface and below it, the currents hare been plotted in diagrams, showing velocity aud direction, and also the corresponding tidal curve at the nearest station. From these, current-tables were constructed in which the large flood and large ebb were separated from the small ones, the mean of the two differing, for practical uses, too much from either. In the course of the work south of Bird Rock a great difference was noticed in the slacks of ebb and flood.

Assistant Bradford and his aid, Mr. F. Westdah], recorded upward of 6,000 observations for determining the direction and velocity of currents. In December, 1874, the parts sounded out the space between Peninsula Point and Point Cavallo, and developed the character of the bottom from that line upwards abreast of Sancelito and into Richardson's Bay, as far as the tramsverse line of sonndings showed a depth of seren feet. Opposite to Saucelito, the eighteen feet curve includes a space somewhat more than a hundred yards in width, and for that vicinity the chart shows some soundings in fire fathoms. The general statistics of the bydrographic work are:

$$
\begin{aligned}
& \text { Miles run in sounding ... } 481 \\
& \text { Angles measured. } 5,237 \\
& \text { Number of sonndings . 18, 434 }
\end{aligned}
$$

Through the winter and until March of the present year, Mr. Bradford continued the series of observations on curreuts. As the time approached for resuming hydrographic work near Humboldt Bay, the party was transferred from the schooner Marcy to the schooner Yukon, the former being no longer serviceable for work along the coast.

Tidal observations.-Under the immediate direction of Colonel Mendell the series of tidal and meteorological observations at Fort Point, Cal., have been kept up by the observer, Mr. E. Gray. As usual, the observer tabulates the high and low waters and the hourly ordinates as derived from the curre of tidal rise and fall.

Reconnaissance.-In order to adjust the preliminaries for a chain of large triangles to pass eastward from points near the Pacific coast, Assistant William Eimbeck took the field on the 20th of April at Mount Diablo. After several days passed there in expectation of determining the practicability of a line of sight to Mount Shasta, the party proceeded to Fairfield, and from thence to Vaca Station, which was reached on the 1st of May. The mountains in this locality being very rugged and densely covered with brush, many hardships were endured. In successive ascents from one to another of the points deemed favorable for seeing the distant stations which bad been marked for recognition, the issue was not promising, but after seven days and passing several nights at differeat places on the highest part of the mountain, Mr. Eimbeck recoguized the orest of the Sierra.

At the same point, however, the snmmit of Shasta was invisible. Proceeding castward, the party traversed the country to Monticello and Knoxville. At Lakeport, arrangements were made for occopying Snow Monutain for reconmaissance purposes, and the soathern summit was reached on the 14th of May. This being unficorable, the party moved to the northern summit, and in the course of two days a position was found at which Mount Shasta could be seen. The station is 3,000 feet high and extremely difficult of access. In the middle of May, the party on the summit found the air so cold as to require a constant fire near the shelter-tent. After completing the preliminary observations at Vaca, Mr. Eimbeck left for Marysville Butte by way of Colusa. The summit of the South Butte was reached on the $24 t \mathrm{th}$ of May, and the practicability of a line to Mount Shasta was quickly decided. Returning to Marysville on the 26th of Mar, Assistant Eimbeck plotted the points which had been determined by reconnaissance as intervisible, and studied for perfecting the scheme with additional points in the chain of triangles.

Early in June, Mr. Eimbeck made repeated examinations from the summit of Pilot Hill and also from points on Pine Hill. Other localities were examined in the course of an extended journey by way of Promontory Spur and through Auburu and Colfax to the summit of the Central Pacific Railroad, where all the members of the party rejoined Assistant Eimbeck in the middle of Junc. A few days after, the summit of Lola Mountain was occupied, and within a week a peak of Monnt Shasta was recognized. From Monnt Rose, that high summit not being visible, Mr. Eimbeck went t, Castle leak and spent a day in making observations from the summit of its eastern prong. His party was in that vicinity at the eud of June, when the last field report was dispatched by Assistant Eimbeck.

Dangerous rock off Cape MEndocino.-At intervals, in past years, many rocks have been determined in position in the vicinity of Cape Mendocino. On most of these, however, the water breaks in ordinary weather, and being thus commonly known, they are probably not reckoned as dangers by navigators who pass and repass the cape frequently. The usage of ressels along this part of the coast, in going inside of known dangers, has been repeatedly mentioned in the field-reports. Assistant Rodgers, while the topography of the adjacent coast was in progress, provided, as far as practicable, against resulting disasters by watching, in stormy weather, for breaks that had not shown under ordinary circumstances. Assistant Bradford, in charge of the hydrographic party, early in 1873 gave special attention to the development of unknown dangers that might exist between Blant's Reef and the cape, and several spots at which the water broke were then approximately determined by the hydrographic aid, Mr. F. Westdahl. To his careful observation at that time, is mainly due the discovery, which was made in April last, of a dangerous sunken rock southwest three-fourths west by compass, and distant a mile and three-quarters from the light-house on Cape Mendocino. The rock has only six feet of water on it, is not more than three feet in diameter at the top, and is not marked by kelp. Soundings alougside gave uine and ten fathoms, and near by, the water rapidly deepens to fifteen fathoms. In reference to this danger, the following remark is made in the report of Assistant Bradford: "The development of the rock settles any question in regard to the danger of this passage without a pilot, for it is evident that a stranger conld only make moderately sure of safety by keeping close inside of Blunt's Reef, and the gain of barely one mile in the run, between Point Gorda and False Cape, would not compensate for the risk incurred in passing midway between Blant's Reef and Cape Mendocino. Moreover, the water on a rock of such peculiar shape will break only under very exeeptional conditions; and, thongh so near the surface, the danger rarely shows any sign of its existence."

Of the particular point of rock found and determined in position by Mr. Bradford, there was no previous knowledge, or esen a hint, unless it be taken as the rock mentioned by Assistant Davidson in his Directory, as secu in 1857, under the wheel of the steamship Commodore. Such dangers are likely to baffle, in the search for them, all ordinary expedicuts. Pilots, of tried skill and experience, have repeatedly run their tug-boats through this passage without seeiug the rock in question. While setting ap signals on shore, in 1872, Assistant Bradford carefully inspected the reef from a station on high land, located many breaks, and afterward found the rocks which occa. sioned the breaks. At that time, he also brought into requisition a drag, about sixteen feet-long, and reaching well below the surface of the water, and that was constantly in use while the party H. Ex. 81 - 8
worked near Cape Mendocino. It is evident that the existence of rocks so sharp as to elade detection when such means are applied, makes the passage inside of Blunt's Reef unsate for navigation. The risk will be only in a degree lessened when all the hiddea dangers are found and accurately marked on a chart showing their relative positions.

Hydrography between Point Gorda and Focky Point, coast of Calffornia. - In the course of the present year, additional soundings, to develop the coast hydrography, have been made between these limits by Assistant Bradford, with a party, in the schooner Yukon. Early in April, he oceupied some of the stations, at which siguals had been previously erected, to include about fifty miles of coast-line. The work was continued thronghout May and June, and was joined with the bydrography of 1872 , completing the iushore soundings between Rocky Point and the limit, two miles below Cape Mendocino. As means additional to the facilities afforded by the schooner, a steam-tug was chartered, and was effectually used in prosecuting the iushore hydrography. A synopsis of the statistics of work is appended:

$$
\begin{aligned}
& \text { Miles run in sounding .. } 760 \\
& \text { Angles measured . } 6,313 \\
& \text { Number of soundings........ 11, 100 }
\end{aligned}
$$

Thirty-one signals were erected, and cighteen positions were determined at intervals along the coast between Cape Fortunas and Rocky Point. The hydrography done this season, closing with the 30th of June, is represented on three sheets. Humboldt Bar was examined by Assistant Brad. ford on the 12th of April. He remarks in reference to it: "I found a great alteration in the direction of the chanuel, though the change mnst have occurred previous to May, 1872, for the same ranges are in use now as we often used for crossing the bar while sounding on Blont's Reef off Cape Mendocino. The depth, however, is about two feet less at the present time. At favorable times this season, lines of soundings were ran across the bar, showing that depth only had been affected, and not the direction of the channel, which is straight, of good width, and in the direction of the swell, so that, with a steady, fair wind, and moderately smooth sea, there is little difficulty in entering with a sailing-vessel, the ranges being known and risible. At mean low water, the average depth is nine to ten feet."

The coast hydrography was extended seaward to an average distance of ratber more than four miles from the water-line, the work terminating generally at the depth of thirty fathoms. Where hidden rocks were suspected, the soundings were increased in number; and a drag was kept in constant use, while the hydrography was in progress, between Rocky Point and Pilot liock. The approach to Trinidad Mr. Bradford found to be exceptionally free from dangers. The sunken rocks in that vicinity being quite near to the rocks in riew are readily avoided. "The general character of the bottom is fine gray sand, looser and with black specks off the bar at Humboldt; and, receding from shore, the sand becoming gradually mixed with mud. In depths of thirty to thirtyfive fathoms the bottom is wholly of mud, and that mud-line (well defined by soundings made in 1872), will, if sought for, be found of benefit to vessels when approaching the coast."

For the adjustment of sonndings, made by the party in the schooner Yukon, the tides were observed at Red Bluff, near the entrance to Humboldt Bay, and at Trinidad. By a previous com. parison of tidal results it was found that the difterence in time was not appreciable between Cape Mendocino and Trinidad.

Coast topography north and south of Ten Mile River, Cal.-At the opening of the fiscal year, two plane table sheets were projected to receive the details of topography yet unsurveyed between Shelton Core and Point Cabrillo. For prosecuting the field-work, the party of Assistant A. F. Rodgers was dispatched from San Francisco on the 22d of Jaly, 1874. Mr. E. F. Diekins, the aid, took up the coast topography at Abalone Point, and conducted the work southward, while Mr. Kodgers was engaged at San Francisco in computing the positions of several light houses from observations recorded earlier in the season. When he joined his party, the plane-table survey had been advanced to a point about seventeen miles northward of Noyo River. Early in September, the working-camp was moved to Belobida Creek, from which station the sheet then in hand was conveniently finished, and work was commenced on the remaining sheet. Meanwhile, Assistant Rodgers examined the region, and selected a site on the beach at Ten Mile River, with a view of
measuring a base line for rerifying the triangulation which he bad extended from the northward to join with that done in preceding seasons. A preliminary alignment was made, but the measure. ment was deferred until the plate-table operations had advanced to the vicinity.

Mach difficulty was experienced in crossing Ten Mile River. Even at low tide, the party found at the beach a heary swell that sent runners several feet high up the river. Assistant Rolgers and Mr. Dickins crossed and recrossed at the ford on the $29 t h$ of September, with saddle-horses, and, by carefully leading the way, the teams with the baggage of the camp safely passed the stream and reached a deserted cabin five miles to the southward.

The final plane-table sheet of the const work between Trimidad Head and Point A rena includes the details between Ten Mile Rirer at its north limit, and Pudding Creek at the south, where the work was joined with that of Assistant Sengteller. In the middle of October, topograpbical work was suspended, the weather then being most farorable for determining the length of the line selecterl at Ten Mile River entrance. The result of measurement ($1,516.29$ meters) was satisfactory as a check on the detailed work, which now represents seventy seren miles of coast north and south between the bases on Navara Ridge and Shelter Core.

While Mr. Rodgers extended his triangulation sonth of Ten Mile River, the topographical work was advanced by Mr. Dickins, and was joined on the 1st of December with a survey made previously by Assistant Sengteller. The statistics of the field work are :
Siguals erected 9
Stations occupied 9
Angles measured 34
Number of observations 1,569
Coast-liue surveyed, miles 20
Streams, miles 15
Roads, miles. 23
Area of topography, equare miles \because

The following remarks were taken from the field-report of Assistant Rodgers:
"This season was exceptional in the early commencement of settled rain; from October 18 to Norember 24, fourteen rainy days interfered materially with the progress of our work. Early in November a sudden freshet in Ten Mile River carried away fences, horses, cattie, and hogs, and an Iudian attempting to cross on horseback lost his life, both man aud horse being swept into the breakers and drowned.
"Most of the coast-streams here close for a period near the end of the dry season of each year, the sand forming in a bar at each outlet. As a result, water accumulates on the valley-lands, until a heavs rain-storm, by sudden increase of pressure, breaks the barrier, when the stream again assnmes its normal character. This is the case at Little River, near Trinidad; Mad River, north of Humboldt Bay; Bear River, three miles north of Cape Mendocino; Mattole River, twelve miles south of the cape; Ussal Creek, thirry miles south of Shelter Cove; Ten Mile River; Gualala River, fourteen miles south of Point Arena; at Russian River (clozed about five weeks in each year); Salmon Oreek, north of Bodega Head; and at Puddiog Creek, which empties at the coast one mile north of the mouth of Noyo River."

This closure of the rivers canses serious inconvenience, the ordinary fords being at such times either useless or datugerous. While his work was advancing in the vicinity of Pudding. Creek, early in November, 1874, Assistant Rodgers, in the course of a few hours, with four men, started a trench across the barrier of that stream, sufticient to admit the flow of some water toward the mouth. While the water was shallow, an hour was spent by the party in rining on horses through the trench, and thus loosening the material of the barrier; and at noon next day, farmwagons crossed in only two feet of water at the ford, which for a loug period had been impracticable. "On the 1 st of November, the lower reach of this creek presented the appearance of a lake, close to the ocean-beach, but with no outlet; and during six weeks, the gradual accamula. tion of water had covered all adjacent low ground, and deepened the usual ford to about ten feet." After observiug at Sand Hill Station for azimutb, Mr. Rodgers moved to the Noyo, and there
discharged his parts, and reached San Francisco on the Sth of December. Office-work, including the computations and iuking of details on the plane-table sheets, was completed in the course of the winter.

On the 10th of March, Assistant Rodgers took the temporary direction of details in the office at San Francisco, and provided the requisites in data and projections for the intended field-work and hydrography of the present year. Subassistant G. Farquar, at the same time, joined the office, and made tracings of previous work, which was to be joined by the operations of the season in hydrography. Early in April, Mr. Rodgers, at my request, ascended Mount Shasta for special reconnaissance, mention of which will be made before closing notices of work in this section.

Redding's Rock-W ben my report of last year closed, Lieutenant-Commauder Taylor, aud, in cooperation, Assistant A. W. Chase, were awaiting a favorable opportunity for landing on this rock, to erect a sigual for use in determiuing its exact position. The steamer Massler, on the 19th of September, 1874 , was anchored off the upper gold-blnffs, nearly opposite, at the close of a severe northwester; but the continued heary sea aud dense fog prevented all attempts to land until the 21 st, when a boat from the steamer was safely moored at the rock. It was found to be an immense mass of quartz, gray and white, containing mineral of some kind, the summit of the rock being merely a narrow idge. Holes were drilled to admit a sigual-pole twenty-seven feet in height, and its requisite support. While the hands of the topographical party were so employed, LieutenantCommander Taylor and Mr. Chase applied the plumb-line at the western side of the rock, and found that it stood ninety-four feet out of water.

Redding's Rock is about five miles off the coast of California, and about midway between locky Point and Klamath River. The bottom all around is rocky, and the arerage depth is twenty fathoms.

Fogs prevailed during all the time allotted for operations; and, athongh the signal was set and secured, none of the signals on shore were visible from the rock during the stay of the party. Angular measurements were of necessity deferred, as the steawer could not be detained at that time to admit of determining the exact position of the rock. Assistant Cbase returned to his working ground ou the mainland, and completed the coast-triaugulation between Klamath River and Rocky Point, connecting at Big Lagoon with the survey which had been extended northward by Assistant Rodgers. Several attempts to land on Sister Rock were prevented by stormy weather; and that station, like Redding's Rock, remaius to be occapied as the apex of a series of triangles, the bases of which connect with each other from point to point along the coast. The following are statistics of the triangulation in this quarter :
Siguals ereeted 12
Stations occupied 11
Angles measured 42
Number of observations 768

After his return to Crescent City, Mr. Chase made, for the ases of the Light-House Board, and furnished to Lieutenant-Colonel Williamson, a tracing from the plane table sheet of the survey of Point Saint George. The tracing shows the are of visibility from a proposed iight-house location which is 156 feet above the water-level, and was marked also with the height of each of the prominent rocks in that vicinity. Subsequently, Mr. Ohase proceeded to San Francisco, and there, by the middle of January, completed the compatations resnlting from.his field-work.

Inshore hydrography from False Flamath, Cal, to Mack's Arch, Oreg.-Lieut. Commander H. C. Taylor, U.S. N., assistant in the Coast Survey, with the steamer Hassler, left San Franciseo on the 10th of June, 1874. A few days after, his party took up and prosecuted until the end of September the inshore bytrography of the Pacific coast above and below the boundary-line between California and Oregon. The stretch of coast-approaches, developed by soundings in the course of the season, is about fifty-five miles, and, seaward, the lines were extended to an arerage distance of six nantical miles. One of the sheets shows, in connection with inshore soundings, the depths in Lake Earl and Lake Tollawa, and another, the channel at Smith's River entrance.

In the reach incladed within the working limits of the party in the Hassler, four dangers to navigation were discovered, and, as castomary, reported immediately. On a rock found in the
anchorage of Creseent City Harbor, Lientenaut-Commander Taylor maintained a mark pending the arrangements for placing a buoy. Of these dangers, two of which were mentioned in my last report, one was found off the False Klamath, and oue in the anchorage of Chetko Cove. Abreast of the California and Oregon State line, the insbore sonndings developed the character of a danger well-off shore. Information concerning these rocks, and other matters of interest in navigation, was communicated from the surveying-steamer directly to captains of steamers and sailing-vessels, as they passed to and fro. In this vicinity, Lieutenant-Commander Taylor met earnest inquiries in regard to anchorages, the best being sought as the terminus of a wagon-road 120 miles long, to lead from Jacksonville to the coast.

Crescent City Reef haring been thoroughly sonuded, a tracing of the chart tras furnished at the request of an agent who was searching, with a party of divers, for property lost by the wreck of a ressel some years ago on one of the rocks of that reef. As stated under the last head, the operations of the land-party, when working near Redding's Rock, were assistel by the temporary use of the Hassler, and the personal co operation of Lieatenant-Cumonader Taylor. In the time given to aid of the work in charge of Assistant Chase, soundings were made in the ricinty of the rock. The depth immediately around it is eighteen fathoms, but the water deepens to twenty-three fathoms midway between Redding's Rock and the main, and from that depth the water shoals gradually to the beach.

On a reriew of the bydrographic work, Lieutenant Commander Taylor thus obserces, in his report, at the end of the season: "Beginning at the south, the water deepens off shore about live fathoms per mile, and this appears to be anattected by the outlying rocks which, in this section, fringe the coast almost everywhere. With the exception of Crescent City Reef, where the bottom is broken and irregular, this average deepeuing per mile off shore continues as we proceed northward to Chetko Cove. Above that, a much more rapid deopening becomes well marked off Barnacle Rock, and reaches a maximum (as far as yet known) abreast of Mack's Arch, where fourteen fathoms per mile off shore is the average increase of depth. We there find seventy fathoms, but off the False Klamath ouly thirty fathoms at the same distance from the beach."

On the important subject of anchorages, it is remarked by the same oflicer: "Increasing commerce makes only more distinct the lack of shelter on this coast. At an early day, doubtless, measures and means will be sought for making artificial improvement. Hence, it seems proper to put on record such reliable information as can be had in adrance in regarl to the few existing anchorages. One of these, which I have vamed Mack's Shelter, may be said to have been hitherto unknown. Some swell rolls in, but not mach; the place is undoubtedly a good northwest lee; aud, julging from the small amount of wash apparent on the cliff, and from the undisturbed kelp in the upper part of the shelter, I conclude that there the violence of wind and sea in the southeasters of winter is considerably reduced, and that a tolerable southeast lee can be here obtained."

The following remarks bear on the capability of this anchorage for artificial improrement: "A breakwater, extending from the beach to the reef, or only part of the way, would give excellent results. If built across in five fathoms, it would afford good accommodation for schooners, small steamers, and the coasting-trade; if in eight fathoms, it would give anchorage to all classes of vessels, aud ample room for all probable needs; while, if bailt in ten fathoms, the result would be a most admirable and capacions harbor. There is no village, and the nearest settler lives some miles distant; but the problem of a harbor on this stretch of coast will be solved in the interest, not of the scanty population of the vicinity, but in that of the busy and rapidly-increasiug popalation of the valleys in the interior of Sonthern Oregon aud Northern California."

The hydrographic sheets sent to the office by Lieutenant-Commander Taylor were accompanied by sailing-directions for entering Mack's Shelter, for the chanuel of Sinith's River, aud also for navigating at Crescent City Reef. The statistics of the work are :

As chief of the hydrographic party, Lieutenat-Commander Taylor, in his oflicial report,
specially mentions the services of the executive officer of the Hassler, Lient. George Talcott, U.S. N., to whose suggestions and skill in details is attributed much of the success in operations. The cheerful zeal and ability of Lient. Frank Courtis, U. S. N., Lient. Richardson Clover, U. S. N., Lient. J. D. Adams, U. S. N., and Lieut. G. W. Tyler, U. S. N., in furthering the hydrographic. work, are commended in the same report.

Mount Shasta, Cal.-To provide in advance for such uses as might be made of Mount Shasta in the determination of geographical points, Assistant A. F. Rodgers, at my request, visited the regiou, ascended the mountain on the 2sth of April, and reached the top after a steady walk of twelve and a half hours over and through snow that, in occasionally giving way, allowed himself and attendants to sink waist deep. After remaining an hour on the summit, Mr. Rodgers moved down to the hot springs, a patch of about a hundred square yards, and several hnodred feet below the highest point of the mountain. Near the springs, which are alkaline, and unfit for drinking or for cooking purposes, frequent jets of steam were seen to issue from fissures and rise eight or ten feet in air, the temperature at the time being 20 below the freezing-point. In regard to surfacefeatures, he thas reports: "Shasta summit is a triple ledge of shattered lava, the fragments being of all sizes and lying at all angles, many of them ready to roll off down the monntain under little exertion of force. In a range of about 150 feet at the snumit, the south point of ledge is the highest, the north point being twenty feet lower." Several of the large blocks of lava interfere with lines of sight to the southward, and involve, additional to the cost of a signal, some expense in securing a large are of visibility from stations toward the southward. Assistant Rodgers, nevertheless, deems it practicable to occupy the summit as a station, and, for future reference, he has filed with his report notes and remarks that will have special value if it should be foum expedient hereafter to erect a signal on Mount Shasta. The geological and botanical characteristies of the monntain were observed and recorded by Mr. Johu Muir, who accompanied Mr. Rodgers in the ascent, and to whose intelligence, physical endurance, and experience as a mountaineer, the field-report ascribes the success of the undertaking. Mr. Muir's deseription of the storm, which constrained him to pass the night with a single attendant on the summit of Shasta, is made specially interesting by his careful record of all the changes attendaut upon storm-formations at an elevation of about 14,000 fect. Common as they doubtless are at such heights, deseriptions are eveumore rare than occasions that have constraned some few observers in the past to witness the terrible phenomena.
SECTION XI.

COASI OF OREGON AND OF WASHINGTON TERLITORY, INCLUDING TME IN PERIOR BAYS, PORTS, AND RIVERS.-(Skbtciss Nos. 19 and 20.)

Hydrography between Chetho Cove and Mack's Areh.- Tushore soundings along this part of the coast of Oregon were prosecuted in conthuation of hydrographic operations in Section \mathbf{X} by the jarty of Lieutenaut-Commauder Taylor, U. S. N., assistant in the Coast Surves, in tho steaner Hassler. As the work was of necessity mentioned under that section, the extension of the hydrograply somewhat above the north bounlary of California was not regarded as calling for a subdivision of the alustract, a subdivision in respect of the statistics of work not being practicable.

Coast-triangulation and topography near Nehalem Ricer, Oreg-DEarly in July, 1874, Subas. sistant J. J. Gilbert completed the triangatation of the coast between Colnmbia River eutrance and Tillamook Head. The topography was then taken up and was prosecated until the gud of October. Four plane table sheets containing the results lave suce been inked, and are on file in the office. These represent tweuty-five miles of the coast-line south of Point Adams, and the adjacent features of topography, amongs which are Tillamook Head, and below it the vicinity of the month of Elk Creek. Mr. Gilbert remained in the field until the 6th of November, and occupied the last week of the season in measuriog horizontal angles for connecting the survey of Shoalwater Pay with the triangulation of Columbia River. He then stored the instruments and camp-equipage at Astoria for the winter, and took ap oftice-work and compatations.

At the end of April, 1875, the camp-fixtures of the party were sent by sea to Tillamook Bay, and in the course of the following fortuight tield-work was resumed at the month of Nebalem

River. As weather wonld permit, lines were opened for extonding the coast-triangulation, and the requisite signals were set up. The wet season, howerer, continued, and deferred observations with the theodolite. Of forty-one days after commencing work at the mouth of the Nehalem, nineteen days were rainy. Snbassistant Gilbert is yet in the fteld, and engaged in completing the const. triangulation between Tillamook Head and Nehalem River. Lis party will remain in that region as late as the weather will permit, and at the approach of wher will discontinue field operations as heretofore.

The following is a syropsis of the statistics of work done within the fiscal year:
Signals erected .. 36
Stations occupied . 95
Angles measured .. 152
Number of observations.. . . 4, 518
Shore-line surveyed 50
Oreeks, miles
Roads and trails, miles . $60 \frac{1}{2}$
Area of topography, square miles . 42
Mr. F. Westdahl is now attached to this party as aid, and frll provision has been made for the prosecation of such hydrography as may be found practicable for a small vessel, within the limits of the plane-table survey.

Survey of Columbia Rivor.-In May, 1874, projections were made for continuing the detailed survey of the Columbia upward from the limits which had been reached in the preceding rear. Assistant Oleveland Rockwell was soon after established in camp at Oak Point, but in the course of a week a case of small pox occurred amongst the hands. The man was properly cared for, and although the entire party had been exposed to the disease, work was continued as usual, and no other person was affected by the pestilence. Eariy in July, Mr. Rockwell permitted the hand to return to camp and resume duty.

The cbatacter of ground traversed by the party in the operatious of this fiscal year has been mentioned in previous reports. The north, or Washington Territory side of the rirer, is abrupt, precipices of columnar basaltic rock on that shore having deep water at their bases. These walls are several hundred feet high and surmounted by a dense covering of fir timber and an aboudant undergrowth. The opposite side of the river is a broad expanse of marsh lands, liable to be submerged in June by freshets, and in winter by high tides. Numerous slonghs traverse the ground, and some of the channels are deep enough for navigation. Of these low lands, the parts nearest to the river are in all cases a little higher than grond a hundred yards back, and are covered by a heavy growth, mostly cottonwood, with some ash and oak. As no use is made at preseut of the low lands, the survey includes the basin on the south side of the Columbia, and part of the high land which bounds it. The season was more than usually unfavorable. In August, field progress was hindered by ten rainy days in succession. Two plane table sheets were completed, and on a third the detailed survey was advanced as far as Smith's Island. As the plane-table work required, Mr. Rock well established points from time to time by triangulation. The statisties are:

Shore live surveyed, miles . 43
Creeks and marsh, miles . 101
Area, square miles.... .. 35
Assistant Rockwell was aided in the field by Mr. G. H. Wilson. The party was disbanded at Oak Point in the middle of Uctober, and was subsequently eugaged in work which has been noticed under the head of Section X.

Tidal observations.-At Astoria, the excellent series of tidal and meteorological observations have been continued by Mr. L. Wilson, under the direction of Col. G. H. Mendell, Unitad States Engineers. The hourly ordinates and high and low waters are tabulated by the observer, aud filed with the records which are taken from the self-registering gauge.

Detailed survey of Dukamish Bay, W. T.-Assistant J. S. Lawson was in the field with his party, on the shores of Dawamish Bay, when my last annual report closed. The triangulation was prosecuted until November, 1874, when the party in the brig Fauntleroy was disbanded
for the winter. Mr. Lawson then took up and completed his computations and sent to the office the records of the work in duplicate. Six plane-table sheets of the previons season were also inked, and are now in the archives. In this service, Mr. F. A. Lawson aided until February of the present year, when he was temporarily assigued to the party of Assistant Chase.

Late in March, preparation was made for resuming field-work on the eastern side of Duwamishi Bay, but, owing to prevalent bad weather, operations were deferred until the middle of April. The season proved to be more than usually unfavorable. Of sixty-five working-days, the daily journal maried thirty-five as rainy and unfit for the use of the plane-table. At such interrals, however, the party employed the level-instrument, and thus advanced the detailed survey. The topography includes the head of Lake Union, the surface of which Assistant Lawson found to be about twelve feet above the high-water line of Duwamish Bay. On the plane-table sheet, the delta is also shown, and two miles of the course of Duwamish River above the delta. A detailed survey was made of the town of Seattle and of the roads adjacent.

Mr. T. P. Woodward, after his return from service abroad, as an observer of the transit of Venus in December, 1874, was assigned to duty in this section, and joined Assistant Lawson early in April. At the end of the fiscal year be was transferred to the party of Assistant Chase, and was replaced by Mr. F. A. Lawson. The following are statistics of the work at Duwamish Bay:

Shore-line surveyed, miles .. 20
Roads, etc., miles 25
Details, area in square miles 4
For service in prosecnting the hydrography, the steam-tender Lively is now under the charge of Aesistant Lawson. Soundings are in progress in Duwamish Bay.

Tidal observations.-At Port lownshend, owing to the roughness of the place about the tidal station, the pendulum-clock, attached to the only tide-gauge available when the station was established, occasionally stopped when the winds were strong. To meet this inconvenience, a gauge of the new form, and provided with a time-keeper, which is operated by a balance-wheel, will soon bo substituted for the old apparatus. The observer, Mr. L. Nessel, conducts the operations at this station under the direction of Colonel Mendell, of the Corps of United States Engineers.

SECTION XII.

COAST OF ALASKA TERRITORY.-(Sкшtch No. 21.)

Coast of Alaska. - When my report of last year was closed, Acting Assistant W. H. Dall had not returned from the coast of Alaska. The schooner Yukon, with himself and his party, arrired at San Francisco on the 12th of October, 1874.

On the $3 d$ of May preceding, Mr. Dall took up the coast reconnaissance at Sitka, and from thence in passing up the coast recorded carrent and temperature observations and plotted soundings. Vertical angles were measured to determine the heights of mountains in that region that serve as landmarks at sea. Olservations for time, azimuth, and latitude were made at Lituya Entrauce, and the position given on most charts found to be erroneous. The chart of the inner bay, by La Peronse, was tested, and proved to be generally accurate. Here the party on the Yukon had much difficulty in preventing the persistent attempts of the natives to board the vessel, but fortunately they were kept off without bloodsbed. It is added in the report that these natives distil their own rum, and are well supplied with the best kinds of fire arms. Before leaving the place, observations were made for correcting the positions heretofore assigned to Mount Fairweather and Mount Crillon. It is recorded that except at slack water the sea breaks quite across the entrance to Lituya Bay, even in calm weather.

A few days following the 20th of May were occopied in hsdrographic work at Dry Bay, in reaching which the Yukon passed the seaward face of the Grand Platean Glacier of La Perouse. Mr. Dall procured data for a corrected sketch of the bay, and for a general chart of the coast sonthward as far as Litnya Eutrance. Of the region inland, he says: "The scenery is grand; the mountains, reaching 16,000 feet above the sea, are bedded in forest lowlands, and are scored by enormous glaciers."

At Port Mulgrave, Mr. Dall made a carefal surver, the existing charts heing very erroneous. Latitude, time, and azimuth were determined, and a good series of observations were recorded for ascertaining the heights of Mount Saint Elias, Mount Fairweather, and other peaks in riew. Here the party in the Yukon found evidences of the murder by natives of a boat's crew supposed in 1870 to have been lost at sea, but which in that year went ashore from a whaling-vessel commanded by Captain Herendeen, the present sailing-master of the Yukon. In regard to a small trading-vessel from Sitka, the arrival of the surveging-party was timely, in averting rough usage by the savages.

Late in May, soundings were tried on the so called Pamplona Bank, but no bottom was found with 575 fathoms of line. Elsewhere on this bauk, to which attention has been drawn by the report that a rock with kelp existed, it is believed that the depth may be no more than 75 fathoms; but no search has yet developed the existence of a danger to navigation.

At the end of May, Mr. Dall and his aid, Mr. Marcas Baker, recorded observations at Port Etches for latitude, time, and azimuth. The ressel then passed on to Middieton Island, where similar observations were made, and a sketch of the island for transfer to the general chart. Kadiak was reached on the 4th of June. After rating the chronometers of the Yukon and obserring for azimath and the magnetic elemeuts, Mr. Dall sailed for Chirikoff Island. Soundings were made of the space used as anchorage, and the position of the place was determined by astronomical observations. On the 12th of June, the vessel anchored near the Semidi 1slands. Azimuth and latitude were determined, and a sketch was made for the general chart. Sailing next day, a safe anchorage was sought for in Chiquik Bay. Here the vessel was detained ten dafs by bad weather, but, at farorable intervals, latitude, time, and azimuth were oltained, the anchorage was sounded, and also the northwest bight of the bay. Mr. Dall next proceeded to the ricinity of some rocks that exist about sixty miles west of the Semidi group. Observations were recorded for position, which, bowever, must be regarded as merely approximate, there being no landing-place at the rocks, nor anchorage for the schooner, the least depth found near the rocks being 45 fathoms. On the 25 th of June, a spot was selected on one of the Cbiachi Islands, and observations were recorded for latitude, time, and azimuth. Proceeding to the Shamagins, the Yukon was anchored on the 1st of July in Northwest Harbor, Little Koniushi Island. In that vicinity, Mr. Dall completed the triangalation of the harbor. Latitude, azimuth, and time were determined, and the survey of the group was extended by the tracing of shore-line and the record of soundings.

Several days were passed in the vicinity of the Sannakh Reefs, where numerous observations were made for determining in position and extent that danger to navigation.

The Yukon reached Unalashka on the 13th of July. Currents were observed constantly when the vessel was not in port. After due preparation at the anchorage, the party left for Saint Panl Island, of the Pribyloff group, and there arrived on the 22d. A sketch of the island was made, and observations were recorded for azimuth, time, and latitude. The position of the island, as given on the existing charts, was found to be six miles too far to the eastward, and the form as represented on them is also erroneous.

At Nunivak Island a reconnaissance was made of the anchorge and determinations of latitude, time, and azimuth. This island is much in error as represented on all previous charts. Leaving on the $2 d$ of August, the Yukon was next anchored under Hagmeister Island, between Cape Constantine and Cape Newenham. Observations were made for geographical position, but the extraordinary mirage which prevailed prevented any trustworthy triaugulation on the neighboring islauds or adjacent mainlaud. Hence, sailing for Port Moller, a reconnaissance was made of that harbor, proving that it has been heretofore inadequately represented on charts. On the 16th of August, after a period of good weather, the Yakon steered for Saint George, but by heavy seas and winds was nuable to land until the 22 d , when series of observations were recorded for time and latitude. The position of that island is reported by Mr. Dall as being about thirteen miles in error, and that in form it differs greatly from the view of it given on charts. As bad weather continued, Mr. Dall returned to Unalashka, and there at favorable intervals extended the survey of Captain's Bay, which work had been begun by a party under his charge in 1871. The shore-line of the west side of the bay was traced in September, and determinations were made of the magnetic declination, dip, and intensity. These indicate that the declination is decreasing.

H. Ex. 81—9

Wiuter set in early at Unalasbka. A heavy fall of snow on the uplands, and constant rain, mule it unadvisable to undertake further operations. On the 29th of September, the Fukon sailed for San Francisco, and there arrived after a stormy passage of thirteen days.

The following is a synopsis of statistics from the final report of Mr. Dall :

$$
\begin{aligned}
& \text { Latitude-observations at twenty-one stations... } 864 \\
& \text { Time-observations at thirty-one stations . } 2,099 \\
& \text { Azimutb-observations at sixteen stations.. } 680 \\
& \text { Magnetic-observations at fifteen stations . } 884 \\
& \text { Horizontal and vertical angles.. } 728 \\
& \text { Number of soundings plotted. 1, 259 }
\end{aligned}
$$

Amongst interesting results derivel from the records of observations by Mr. Dall is that which proves the height of Mount Saint Elias to have been heretofore underestimated. D'Agelet, of the La Perouse expedition, assigns an elevation of only 12,672 feet; and amongst several other authorities that vary from each other the greatest elevation hitherto stated is 17,855 feet. Mr. Dall's observations, made with care and under circumstances favorable for accuracy, have been carefully tested in the Computing Division of the Office. The result is for Mount Saint Elias an elevation of upward of 19,000 feet. As proved from the same series of observations, Mount Fairweather and Mount Crillon have each an elevation exceeding 15,000 feet. Mr. Dall's observations are confirmatory of the position marked by the eminent navigator, Captain Cook, for Mount Saint Elias; and also of the positions assigned by the La Perouse records for Crillon and Fairweather, both of which have been erroneonsly marked on some subsequent charts. In Appendix No. 10 will be found an interesting paper by Mr. Dall on the determination of heights, including that of Mount Saint Elias on the coast of Alaska.

When in command of the United States ship Saranac, Capt. Thomas S. Phelps, U. S. N., formerly an officer on the Coast Survey service, and of large experience in hydrographic operations, had frequent occasion to traverse the interior waters of the southeast coast of Alaska. His constant interest in such details prompted a communication in October last, which was gratefully accepted as containing suggestions in regard to the relative importance of the channels in that quarter, and which will hare special value when means are available for giving effect to the suggested plan of work.

COAST SURVEY OFFICE.

The charge of the Coast Surrey Office bas remained with Assistant J. E. Hilgard. To his Iong experience, eminent ability, and thorough comprebension of the requirements of the work is due the effective co-operation of the office operations with those of the field.

In executive details, Assistant Hilgard had the aid of Assistant F. W. Dorr, until increasing ill health made it desirable that he should be transferred to field-service in December last, since which time the same duties have been performed by Assistant Edward Goodfellow.

Computing Division.-Assistant Charles A. Schott has continned in charge of this important division, and bas kept it up to the high standard of exactness and efficiency maintained by him daring many years, this abstract being based upon his twentieth annual report. The computations, according to their character, are distribated in general among the computers, as follows: Assistant T. W. Werner, though in very feeble health, has computed the current simple triangulations. Dr. G. Rumpf attends to the secondary triangalations, their adjustment and revision, furnishes all needful data for field-parties, and, where opportunity offers, attends to the bringing up of the older secondary triangolations. Mr. J. Main takes charge of the revision of the astronomical latitudes, longitudes, and azimuths, also of magnetic observations, and furnishes mean places of stars for observing-parties. Mr. E. H. Courtenay has charge of least square adjustment of primary and secondary triangulations, of measures of vertical angles, and miscellaneous geodetic work. Mr. M. H. Doolittle atteuds to the least square adjustment of primary and secoudary triangulations, spirit-levelings, and miscellaneous geodetic work. Mr. H. H. Gerdes attends to the clerical duty of the division, supplies copies of records to field-parties, and inserts geographical positions in registers.

During the year, the following temporary computers were engaged:

Prof. R. Keith, on telegraphic longitude-work, for three and a half months; Mr. J. H. Lane, temporarily transferred from the Weights and Measures Department; Mr. F. Hudson, on reductions of latitudes and azimath : Dr. C. Powalky, on astronomical latitudes; Mr. C. Ferguson, ou computations of triangulation and lerelings ; Mr. J. B. Baylor and Mr. H. Caperton were employed a few days upon miscellaneous computations. Assistant Charles A. Schott personally examines and reports upon the work done under his charge, attends to the office-correspondence referred to him, and to such special discussions and compatations as his time allows. He made the usnal magnetic-obsercations in June last. The following reports submitted by him deserve special mention: Discussion of the magnetic-observations, both absolute and differential, made at key West, Fla., between 1860 and 1866 ; and the compatation and discussion of the three measures of the Atlanta base-line of 1872 and 1873. Under his direction, the factors for the computation of geodetic latitudes, longitudes, and azimuths have been extended from latitude 500° to latitude 65°. With the addition of the similar table of factors from latitude 23° to latitude $50{ }^{\circ}$, already published, and a preface prepared by the assistant in charge, this appears in Appeudix No. 19.

Tidal Division.-The inspection of the tidal and meteorological observatious received at the oftice, the correspondence with the observers and others relating to tides, the furnishing of tidal data when wanted, the supervision of the construction and repair of tide-gauges and of the computations relating to tides have been kept by R. S. Avery, who has been assisted in the computations by A. Gottbeil, Mr. J. Downes, Mr. L. P. Shidy, and Miss M. Thomas. A considerable amount of information respecting tides has been farnished for office use, for observers and fieldparties, and also for engineers and others not connected with the survey. To do this, the ordinary reductions of all the observations received are made as soon as practicable, and the results tabulated, so that they can be furnished for charts or other uses on short notice.

A particular account of what has been done at each permanent tidal station has been given in the general statement of progress in the section in which it is situated.

The predictions of tides for 1876 , for both eastern and western coasts, are nearly completed, and will soon be published. For some of the places, these hare been improved by using the results of new discussious based on longer series of observations, and such discussions form an important part of the labors of the tidal division.

Hydrographic Division.—Capt. K. R. Breese, U. S. N., served as hydrographic inspector from December 27, 1874, to June 3, 1875, when he was relieved by Commander E. P. Lall, U. S. N. Lieut. Henry E. Nichols and Acting Master Robert Platt, both of the Navy, are on duty in the office.

Mr. E. Willenbucher has been employed as principal hydrographic draughtsman ; Messrs. W. C. Willeubucher and J. Sprandel as assistants. Their work includes the inspection and verification of hydrographic records and sheets, the plotting and drawing of sheets from the original notebooks, the preparation of projections for the bydrographic parties, and various miscellancous tracings and drawings.

The hydrographic inspector acts as the immediate assistant of the Superintendent in directing and inspecting the construction, repairs, outfit, and preservation of the vessels of the Coast Survey.

Drawing Division.-To this division is intrusted the preparation of all projections for field. work, the consideration of projects for charts, the reductions of the original topographic and hydrographic sheets, and the arrangement of the reduced drawings for the engraver or lithographer. The immediate direction of the details is in charge of Mr. W. T. Bright, whose experience and assiduity are constantly called into service.

The information furnished from the office in reply to special calls, and consisting principally of tracings from original sheets, is given in Appeudix No. 3.

The charts completed or in progress, arranged in geographical order, are given in Appen. dix No. 4.

Of the persons employed, Mr. A. Lindenkohl has been, as heretofore, engaged upon the more elaborate hydrographic reductious as well as upon the small scale of offshore charts. Mr. H. Liudenkohl, upon fine topographical reductions for harbor-charts and photolithographic maps and sketches. Mr. L. Karcher, priucipally in making the numerous projections called for by the
field-parties. Mr. F. Fairfax was engaged upon hydrographic drawings and tracings until July 1 st, wheu he resigned. Mr. P. Er:chson has made diagrams, miscellaneous drawings, and tracings. M. C. H. Meath traced for photographing to the publication-scale of $\frac{1}{80} \overline{0} \bar{\sigma} \overline{0}$ all the plane-table sheets turned in during the past year of portions of the coast of Maine, and lettered those of the Atlantic, Gulf, and Pacific Coast received during the same period. Mr. C. Junken retarned from feld-duty and was assigued to the division in May, since which time he has made projections for field-parties, plotted hydrographic work, and supplied the aids to navigation to most of the charts issued since that date. Mr. M. Angles has made tracings, corrected pablished eharts, and done other miscellaneous work. Mr. W. Fairfax and Mr. Hugo Eicholtz made tracings, corrected charts, and colored buoss and light-houses thereon. Mr. W. Fairfax resigned July 1st. Mr. Arthar Schott had charge of the library, and performed occasional clerical work for the division.

In addition to the work done as given in Appendix No. 3, the following comprises a small portion classed as miscellaneons:

Projects for new charts prepared . 15
Tracings made on special calls. 58
Projections made for field map and charts... 73
Diagrams made... 12
Projections made on copper for engraving charts....................................... 8
Topographical sheets traced for reduction by photography............................ 7
Engraving Division.-The charge of this division has been continued with Assistant E. Hergesheimer. Its labors are shown in detail in the table (Appendix No. 5) of plates begun, in progress, and completed dariug the period indicater.

The distribution of work among the persons employed has been as follows : Messrs. J. Enthoffer, S. Siebert, H. C. Evans, A. Sengteller, W. A. Thompson, A. M. Maedel, and R. F. Bartle have been classified as topographical engravers; Messrs. E. A. Maedel, E. Courtenay, and A. Peterson as letter engravers; Messrs. H. M. Knight, J. G. Thompson, J. J. Young, E. H. Sipe, W. H. Davis, and W. H. Knight as miscellaneous engravers.

The pantograph for the transfer and reduction of outlines has been ased by Mr. E. Molkow. Mr. L. O. Kerr has performed the clerical duties of the division.

Careful stady has been given by Mr . Hergesheimer to the introduction of such improvements in design and execution as have seemed best adapted to adrance the artistic character of the work in bis division.

Electrotype and Photographic Division.-Dr. A. Zumbrock has remained in charge, assisted by Mr. Frank Over. His report, which will be found in Appendix No. 6, gives an iateresting account of the improvements in methods and apparatus introduced by hin in the course of the year.

A very successful application of the recently-discovered process of steel-facing copper plates has been made to the finely-engraved plates of the centennial certificate of stock for the Treasury Department.

Since October 1, 1874, there have been prepared twenty-four altos, and thirty-six bassos or printing-plates. Nine positives, twenty negatives, and fifty-four prints have been made for the use of the draughtsmen and engravers.

Division of Charts and Instruments.-The work of this division, which includes, besides the safekeeping of the archives and instruments, the priuting of maps and the distribation of charts and reports, the management of the instrument-shop and the carpenter-shop, has been directed by Mr. John T. Hoover, who has also kept the accounts of the office and made disbursements for the assistant in charge.

The duty of registering and filing for convenient reference the original maps and charts, and records of observations made by the field-parties, and of keeping an account of the same as they are used temporarily in the office, was performed by Mr. G. A. Stewart.

A period of ten years having elapsed since the publication of lists of the original topographic and bydrographic sheets, forming part of the archives of the surver, arranged in geographical order
from the date of their earliest registry, it has been deemed advisable to republish these lists (Appendices Nos. 7 and 8) with the addition of the original sheets which have been deposited in the archives since the year 1865.

During the year, the copper-plate printer in the office, Mr. Frank Moore, has rendered 15, 319 copies of charts ready for issue.

Mr. H. Nissen has prepared the backed drawing-paper for field and office mork, and also the miscellaneous duties pertaining to the folding-room.

The map-room has remained under the care of Mr. Thomas MuDonnell. An aggregate of 14,000 copies of charts has been issued during the year, and 532 copies of the annual reports of various years have been distributed.

The work in the instrument-shop was done, under the supervision of Mr. John Clark, by John Foller, W. Jacobi, G. N. Saegmuller, W. Suess, and E. Eshleman.

The wood-work of instruments, their packing for transportation, and all carpentry work required in and about the office was done by Mr. A. Yeatman, assisted by F. E. Lackey and James Hess.

Since the resignation of Mr. V. E. King, in May last, the duties of clerk in the office of the assistant-in-charge has been satisfactorily performed by Mr. Cbarles H. Fitch. In the office of the disbursing-agent, Samuel Hein, esq., Mr. R. L. Hawkins has remained as principal bookkeeper and acconntant. Messrs. W. A. Herbert and W. I. Flenuer have performed the clerical duties.

In the distribution of means available for field and office work many details are involved, the adjustment of which, by the foresight and large experience of the disbursing-agent, Samuel Eein, esq., has invariably secured promptness in the operations. Under my immediate direction, Assistant W. W. Cooper has also rendered, as heretofore, acceptable service.

Respectfully submitted.
C. P. PATTERSON,

Superintendent Cnited States Coast Survey.
How. B. H. Bristow,
Secretary of the Treasury.

APPENDICES.

APPENDIX No. 1.

Distribution of surceying parties upon the Atlantic, Gulf, and Pacific coasts of the United States during the surveying season of 15:1-75.

Coast-sections.	Parties	Operations.	Persons condueting operations.	Lecalities of work.
Atlantic coast of Maine, New Hampebire, Mas sachusetts, and Rhode Istand, inchthing seaporte, bays, and rivers.	No. 1	Mydrography.... Topography and bydrography.	Commander Jubn A. Ifowell, E. S N.. assistant; Lieutenanto W. II. Jacques, E. S. Jacob, Richard Rash, and W. L. Field, C.S. 天. J. W. Doun, assistant; F.C. Donn and F. F. Parsons, aids.	Deep-sea soandings in the Gulf of Maine, hetreen the Bay of Fundy and George's Bank. (See also Section VIII.) Topography of the northwestern part of Monot Desert Island, and soundings throngh Eatern Bay, Western Bar, Clark's Cové, and Pretty Marsh Harbor ; detailed survey of Ege Rock, in Frenchman's hay, coast of Maiut, (See also Sectiou III.)
		Topography Topography	W. H. Dennis. assistant; S. N. Ogden and W. S. I Bond, aids. J. N. MeClintock, subassistant; T. A. Marrison and Waltor Fraser, aids:	Plave-table survey of the slores of Eggemoggin Fench, coast of Maine. (Set also Section V.) Detailed ancvey of namerons ialands and ledges abjacent to Islo an Haut and Decr Isle, Penobscot entrance, Me.
		Topograply	A. W. Longfellow, assistant; W. C. Hodgkins, aid.	Topography of the east sido of Penobscot River abose Castine, including part of the north shore of the Bagaduce River, Me.
		Topography Topogray ${ }^{\text {a }}$ (```Hull Adams, assistant; R. B. Pal. frey, aid. Joseph Hergeslieimer, subassist- ant.```	Topographical survey of the shores of Bagaduce Rifer, eastward of Castine Harbor, Mo. Plane-table survey southward from Bucksport and Orland, Me., including Whitmore's Isiand and the adjacent shores of Penobscot Kiver. (See also Section VI.)
		Hydrography.....	II. Auderson, assistant; Kossuth Niles, master T.S. N., assistant; F. II North, aid.	H_{y} drograplyy of the western part of Exgemor. gin Neach; and supplementary soundings in Fenobscot River and hay, below Winterport, Mo. (See also Section Vil.)
		Tides.............	J. G. Spauhing	Serics of tilal and meteorological olservations contined at Forth Haven, Pemobscotentrance.
		Special observations.	F. W. Perkins, nssistant; C. I. Gardner and F . W. Ring, aids.	Co-efticient of refraction determined at hagged Monntain primary station, near Camden, Me., and beights of the adjacent stations. (Seo also Section VII.)
		Triangulation	Prof. E. T. Quimby	Kearenrge Mountain, Cube Monntain, and Observatory Hill occupied, and subsidiary points determined by triangulation in New Hampshire.
		Hydrography	Acting Master Robert Platt, C . S. N., assistant ; J. B. Adamson, nid.	Hydrographie derelopment, inclading the vicinity of Isles of Shoaly, Jeffrey's Ledge, Cashe's Ledge, Matt's Wank, and Jefres's Bauk. (Sce also Section Ti.)
		Tides	H. Howland.	Series of observations cominucd at Cbarlestown nary-yard (Buston)with eelfregistering tidegange.
		Hydrography.....	F.D.Granger, subassistant ; Lient. R. D. Hitcheock, U. S. N., Rssistant; D. C. Hanson, sid.	Soundings extended westward of Monomoy Island to Bishop and Clerk's Iight-horse, and inchading Chatham Roads, Mass. (Seo also Scetion WI)

H. Ex. $81=10$

APPENDIX No. 1-Contiuued.

APPENDIX No. 1-Continued.

\begin{tabular}{|c|c|c|c|c|}
\hline Coast-sections. \& Parties \& Operations. \& Persons conductivg operations. \& Localities of work.

\hline \multirow[t]{7}{*}{Section II-Contiaued.} \& No. 15 \& Topography and hydrography. \& Charles Hosmer, assistant; L. B. Wright, subassistant; J. De Wolf, aid. \& Topograpiy of the shores, and soundings in Great South Bay, I. I., extended front Islip to Howell's Point. (See alao Section VI.)

\hline \& 16 \& Topography \& C. M. Bache, assistant; II. M. De Wees, subassistant; J. J. Evans, aid. \& Detailed surrey of the western shores of Barnegat Bay, N.J.

\hline \& 17 \& Hydrography \& W. I. Vinal, subasgistant; E. B. Pleasante, aid. \& Rarnegat Bay, N. J., thoronghls sounded; and lydrography of the ontrance and approaches to Little Egg Harbor. (See also Section IX.)

\hline \& 18 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { Reconuaiseance (in } \\
& \text { progress). } \\
& \text { Triangulation }
\end{aligned}
$$} \& Prof. L. M. Haupt \& Preliminaries for determining points by triangulation in the eastern part of Pennsslvania.

\hline \& 12 \& \& J. A. Sollivan, assistant; C. L. Garduer, aid. \& Triangulation across the Delaware River, in the vicinity of Liston`s Tree.

\hline \& 20 \& Hydrography.... \& F. F. Nes, assistant; C. I. Sinclair and K. B. Palfrey; aids. \& Soundings in the chanuel of Delaware River at Liston's Tree, and selection of poaitions for range-beacons as aids to navigation.

\hline \& 21 \& Mrdrography.... \& Charles Junken...................) \& Hydrographicresurve.y of the entrance to Schuyl. kill River, and positions determined for rangelights, as aids to navigation. (See almo Section V .)

\hline \multirow[t]{6}{*}{| A tlantic const and bays of Maryland and Virgisia, iucluding sea-ports and rivers. |
| :--- |
| Section IV. |} \& 1 \& Topography and bydrography. \& J. W. Donb, assistant ; F.C. Donn, F. H. Parsons, D. C. Hanson, and C. A. Ires, aids. \& Topographical survey of Craney Island, Va., for the Ordnance Bureau, Nary Department. Survey of the shores and bydrography of James River, Fa., from Sloop Point to City Point. Topograply of shores, and sonadings in Chickahominy River, Va., from Sbip-Yard upward to Forge Bridge. (See also Section I.)

\hline \& \multirow[t]{3}{*}{2} \& Hydrography \& J. B. Taylor, a \& Soundings in the channel between Craney Island and the Virginia shore.

\hline \& \& Tides \& W. J. Bodell \& Series of observations continued at Fortress Monroe with self-registering tide gauge.

\hline \& \& Magnetic observations. \& Charles A. Schott, assistant. \& Magnetic declination, dip, and intensity deiermined at the standard station on Capitol Hill, Washington, D.C.

\hline \& 3
4 \& Triangulation..... \& A.T. Mosman, bssistant; D.S.Wol cott, aid; C. L. Gardver, aid (part of season). \& Monnt Marehall and Fork Mountain occupied for primary triangulation in Viryinia. Obeervations in progress at Mumpbeck Mountain.

\hline \& 4 \& Recomnaissance... \& S. C. MeCorkle, assistant \& Selection of stations for a chain of triangles through West Virginia. (See also Seetion VLI.)

\hline \multirow[t]{3}{*}{| Atlantic coast anà sounds of North Carolina, includ. ing sea-ports and rivers. |
| :--- |
| Section V. |} \& 1 \& Triangulation..... \& G. A. Fairfield, assistant ; B. A. Colonna, subassistant; W. B. Fairfield, aid. \& Pamplico Sound triangulation extended north and east, and completed by connecting with the base line on Bodie's Island, N, C. Lighthonser at Cape Hatteras, at Croatan Sound, and at Currituck Beach, determined in position.

\hline \& 2 \& Topography \& C. T. Iardella assistant; H. W. Bacue, subassistant. \& Survey of the western shore of Pamplico Sound from Raanoke Marshes light-house gouthward to Jnniper Bay. (See also Section II.)

\hline \& 3 \& Hydragraphy \& Lient. H. O. Handy, U.S. C. assistant; Masters W. P. Ray and F. H. Lefaror, U.S.N. \& Hydrography of the westside of Pamplico Sound fron Shoal Point southward, and including Yesocking Bay. (See almo Section II.)

\hline \multirow[t]{2}{*}{Allantic coast and seawater channels of South Carolina and Georgia, including sounds, harbors, and rivers.} \& 1 \& Topography and bydrography. \& W. H. Dennis, assistant; S. N. Og. den aud W. S. Bond, aids. \& Topographical sarves of the cosst of South Caroliua from Cape Romain southward to Sullivan's Island, iacluding the shores of Bull's Bay, and sonndings in the sea-water chanuels adjacent to the coast. (See also Section 1.)

\hline \& 2 \& Topography \& Charles Junken \& Shore-line surrey dereloping the extent of sesencroachment at Huuting Island, Saint Helena Sound, S. C. (Sec almo Section II.)

\hline
\end{tabular}

APPENDIX No. 1-Continued.

Coast-sections.	Parties.	Operations	Persons conducting operations.	calities of work.
Section V -Continued.	No. 3	Triangu	Lieut. J. M. Hawley, U.S. N., assistant; Ensiges J. M. Wight and G. C. Hanns, U.S.N. C. O. Boutelle, assistant; H. W. Blair and J. B. Boutelle, aids.	Soundiogs in Sarannah River, Ga., developing: the bar and channel upward to the head of Elba Island. Geoletic observations at Grassy Mountain, Skitt Mountain, and Carrahee Mountain, Ga. Latitnde, azimuth, and the magaetie elements determiand.
	5	Reconuaissance...	S. C. MeCorkhe, assistant ; H. $\Delta \mathrm{n}$ derson, assistaut.	Statious selected in Northern Alabama to conneet with the chain of triangles in Upper Ceorgia. (See also Section III.)
	6	Reconnaissance (ib progreas).	Prof. W. B. Page	Preliminaries for determiaing points hy triangulation in the southenstern part of the State of Kentacks.
		Reconnaissadco..	R. E. Halter, assistant.............	Reeonmaissance in Northern Kentncky and Ohio fir points of triangulation near the Ohio River.
Alantic and part of the Gulf coast of the Florida peninsula, including reefy and keys, and tho seaports and rivers. Section VII.	1	Hyalrography	Lieut. R. D. Hitcheock, U.S. N., nssistant; Masters Jas. Franklin aud John Hublard, U.S. N.; Ensigns H. T. C. Nye and J.L. Hunsicker, U.S. N.	Coast-hy drography extended sonthward across Sifint Augustine entrance to Matanzas Inlet; apecial development of that inlet; and examination of the channel inta Saint Augnstine. (See also Section I.)
	2 3	Triangulation, to pograpliy, and bydrography.	Charles Hosmer, assistant; L. B. Wright, subassistant; J. Do Wolf and T. A. Tarrison, aids.	Detailed surver of the Florida coast and parts aijacent, and soundings in the water-passages south of Mosquito Inlet, including the head of Thdian River. (See also Section IT.)
	3	Triangrilation, to pograpley, and liydrograyhy.	E. G. Ogden, assistant; Toseph Hergeshoimer, subassistant; \mathbf{D}. B. Wainwright, G. A. Morrison, and W. B. French, aids.	Triangulation and topographical survery of the Tortugas Islands. Detailed survery of the shores and hydrography of Tampa Bay, Fla. (See also Section 1I.)
	4	Hydrography....	Acting Master Robsrt Platt, U.S. N., assistant; J. B. Adamson, aid.	Soundings completel in the vicinity of Tortugas Reef, includiag the Harbor. Hydrography of the entrance and Gulf approaches to Tampa Bay, Fla. (See also Section I.)
		Tides	M. Kruss	Thdal observations with self-registering gauge contiaued at Saint Thomas, West Indica.
Gulf coast and the sonnds of West Florida, inclutl. ing ports acd rivers.	1	Triangulation, topography, and bydrography. Hydrography. \qquad	F. W. Perkins, assistant ; J. F. Pratt, F. W. Ring, and A. G. Pendleton, aids.	Detailed survery of the coast of Flordda, and inshore soundings completed between Cedar Keys and Ochlla River. (See also Section I)
	2		Master Kossuth Niles, U. S. N., Ameistant; II. O. Rittenhouse, Alexander McCrackin, and H. W. Schaefor, mastors, U. S. N.	Hydrography of the Gulf coast from Saint George Iight-house to Saint Andrew's Point, including the shoals off Cape San Blas; and the hydrography of Saint Joseplis Bay (north). (See also Section I.)
Sertion VILI.	3	Triangulatio astronomic servations.	F. P. Weblet, assintant; F. D. Granger, subassistant; J. II. Chiristian and Charles Tappan, aids.	Pine Log Mountain, Lavender Mountain, and John's Mountain, Ga., oceupied as points in a chain of primary triangles westward of the Atlantic base-line. Latitude, azimnth, and the magnetic elements determined.
Gulf coast and bays of Alabama, and the sounds of Mississippi and of Louisiana to Vermition Eas, inclading the ports and riv-	1	Speeial snrveyand hydrograply.	Henty Mitchell, aseistant; H. Ls. Marindin, arsistant ; J. B. Weir ${ }^{*}$ and Bion Bralbury, aids.	Development of the physical hydrography of South Pass, ineluding observations on the density of water at the mouthe of the Missis. sippi, and on the carrents of the river and bar. (See alan Sections I and II.)
	2	Hydrography. ...	Coramander Tohn A. Howell, U. S. N., assistant (part of season); Lieut. Commander C. D. Sigsbec, C.S. N.. assistant; Liouts. C. T. Hntchine, F. W. Itagenman, and Jamen M. Grimes, V. S. N. ; Master R. G. Peck, U. S. N., and Eusigu W. E. Sewell, U. S. N.	Lines of soundings in the Guif of Mexico radiat. ing from the Mississippi Delta; and desp-sea lines rua froun Sonthwest Pass to the Rio Grande entrance, and from thence to the Tortugas. (Sce also Section I.)

APPENDIX No. 1-Continued.

APPENDIX No. 1-Continued.

Coast-sections.	Partios.	Operations.	Persons conducting operations.	Localities of work.
Saction X-Continued.	No. 12	Reconnaissance	A. F. Rodgers, assista	Region and snmmit of Monnt Shasta, Cal., ex. amined as a center available for primary triangulation.
Coast of Oregon and of Washington Terxitory, including the interior bays and the ports and rivers.	1	Hydrography.....	Lient.CommanderH. C. Taslor, U. S. N., assistant.	In-shore soundinge from the lower boundary of Oregon northward to Mack's Arch. (See also Section X.)
	2	Triangulationand topograpby.	J. T. Gilbert, assistant ; F. Westdahl, aid.	Triangulation and plane table survey of the const of Oregon from Point A danss southward to the entrance of Nehalem River.
	3	Topograpby Tides \qquad	Cheveland Rockwell, assistant; G. H. Whlson, aid.	Topographical survey of the shores of Coinmbia River, Oreg, extended upward from Oak Point to Smith's Island. (Seealao Section X.)
			Col. G. H. Mendell, United States Engineers; I. Wilson, observer.	Series of observations continued at Astoria, Orcg., with self-registoring tide-gauge. (Sce also Section X.)
*	4	Triangulation and topography.	James S. Lawson, assistant; T. P. Wootward, nid (part of season); F. A. Lawson, aid (part of season). Col. G. H. Mendell. United States Engibeera; L. Nessel, observer.	Detailed topographical survey of the eastern shores of Duwamish Bay, W. T., inclading the town of Seattle and part of Lake Union. Tidal and meteorological ohservations continuba at Port Townshend, W. T. (See also Sectiva X.)
		Tides		
SECTION XII.				
Coast, harbors, and islands of Alaska Territory.	1	Astronomical ob. servations, tri. angulation, to. pography, and hydrography.	W. H. Dall, acting assistant ; Mar. cus Baker, aid.	Surveys of numerons harbors and anchorages on the coast of Alaska; determinations of latitade, azimnth, and the magnetic elomenta, and of the heights of Mount Crillon, Mount. Fairweather, Moant Saint Elias, and other prominent landmarks.
Nagasaki, in Japan		Astronomical	Prof. George Davidson, assistant, chief observer; O. H. Tittmann, subassistant; W. S. Edwards, aici.	Observations recorded during the Transit of Venng, December 8, 1374; latitnile and longitude determined at the observiag-stalion, Nagasaki, Japaa.
Chatham Ifiand, in the South Pacific Ocean.		Astronomical	Edwin Smith, subassistant, chief observer; A. H. Scott, aid.	Observations recorded on the Transit of Venas December 8,1874 , at Chatham Ishand; latitude and longitade detcrmined at the obssrvingetation.

APPENDIX No. 2.
Statistics of field and office worlo of the Thited States Coast Survey during the year 1874.

	Description.

APPENDIX No. 2-Continued.

- Description.	Previons to January 1, 1874.	1874.	$\begin{aligned} & \text { Total to De- } \\ & \text { cember 31, } \\ & 1874 . \end{aligned}$
Iscordi-Continued.			
Sheets from self-registering tide-gauges, number of.	2, 142	108	2,250
Tidal redactious, number of volumes.	1,527	38	1,565
Total number of volumes of records.	19,517	1,00z	20, 525
mars and chaits.			
Topographical maps, originals	1,344	75	1,419
Hycirographic charts, origiuals..	1,232	92	1,324
Reductions from original sheeta.	749	16	765
Total number of manuscript maps and charts to and including 1874.	2,517	9	2,526
Number of sketches matc in ficld and office	2,785	50	9835
engraying and prenting.			
Engrared plates of finished cbarts, number of...	184	11	195
Eugraved plates of preliminary charts, sketches, and diagrams for the Coast Survey Reports, number of.	552	8	560
Elertrotype-plates made	1,043	47	1,090
Finished charts published.	168	9	177
Prelimioary charts and hydrograptical skotches published.	453	11	464
Printed sheets of maps and charts distributed.	300, 851	19,425	326, 276
Printed sheets of maps and charts deposited with sale-agents.	111, 455	7,697	119,152
lhbeaty.			
Namber of volames.	5,562	95	5,657
mastruments.			
Cost of..	891,41873	810,976 09	8102, 39482

APPENDIX No. 3.
 Information furnished from the Coast-Survey Office, by tracings from original sheets, de., in reply to special calls, to July, 1875.

APPENDIX No. 3-Continued.

Date.		Name.	Data furnisheal.
1875.			-
April	16	Bureau of Engineers, Dnited States Arm	Hydragraphic survey of eatrance to Mobile Bay, Ala,
	16	...-.do	Hydrographic survey of Savanualı River, Ga.
	16	do	Hydrographic surveg of New London Harbor, Contr.
	17	John Punnct, esq	Hydrographie sarvey of the Hackensack River, from Newark Bay to the town of Hackenanck.
	20	Justur Roe, esq	fiydrographic survey of Great South Bay, from Nicoll' Point to Howell's Point, Long Island, N. Y.
May	8	William W. Harding, esq., Philadelphia	Hydrographic survey of the Delaware Rivor, from Richmond to Brides. burg.
	13	Butcau of Yards and Docks, Navy Department.	Hydrographio survey of the Thames River, from naval station to Clark's Care, Conn.
	13	Mon. George A. Halsoy, Now Jersey	Hydrographic survey of the Passaic River, from Morris's Turnpike Bridge to and inchuling city front of Newark, N.J.
	14	Capt. W. S. Stanton, chief engineer, Department of the Platte.	Latitude and longitude of Omalia, Nebr.
	19	Advisory board on harbor of Norfolk, Va.............	Hyirngraphio survey of Norfolk Harbor and adjacent watere.
	19	Lieat. Col. F. W. Reynolds, light-house engluser, fourth district.	Hydrographic survey of the schuylkill River, from the bar to Penrose bridye.
	91	Frapklin A. Stratton civil engineor United States Navy.	Hyarographic snrvey of the Thames River, from upper limits of published chart to sonthern boundary line of naval station.
June	1	United States Light. Honse Board.	Hydrograpbic survey of the Solaylkill River, from the bar to Penrose bridge.
	9	L. B. Ward, esq	Topographical aurvey of Snake Hill. Hackensaok River, N.J.
	10	Franklin A. Stratton, oivil engineer, United States Nary.	Shore-line surveg of Thames Eiver, opposite naval station.
	23	Gulf Weatern Texas Railroad	Hydrographic survey of Pass Carallo, Tex.
	30	Marius Schoonmaker, New York..........................	Hydrographic survey of the Iudson River, from Tarkey Point to Saugerties Creek.

APPENDIX No. 4.

DRAWING DIVISION.

Charts completed or in progress from September 30, 1874, to July 1, 1875.

1. Hydrography. 2. Topography. 3. Drawing for photegraphic reinction. 4. Details in photographic nutlines. 5. Verifcation. 6. Lettering.

Title of cha t.	Scale.	Draughtsmen.	Remarka.
General coast chart No. I, Quoddy Head, Me., to Cape Cod, Mass.	1-400, 000	2. A. Lindenkohl.	drditions.
Coast chart No. 3, Petit Manan light to Naskeag Point, Me.	1-80,000	3. H. Lindenkohl. 3. C. A. Meuth. 4. P. Erichson. 5. P. Erichsen.	
Coast chart No. 4, Naskeag Point to White Head light, including Penobscot Bay, Me.	1-80, 0 co	1. A. Lindenkohl. 3. L. Karcher. 3. P. Erichsen. 3. C. A. Meuth. 4. P. Erichsen.	
Delfast 1ay and Penobscot River, Me	1-40,000	1. A Lindenkohl	
Coast chart No. 6, Seguin Island light to Wood Island light, Me.	1-80, 000	2. H. Lindenkoh	
Itichmoud Island Harbor, Mo	1-20, 000	1. A. Tindenkohl	New caition; completed.
Isles of Shoals, N. II	1-20, 000	1. F. Fairfdx	Do.
Rockland Harbor, Me	1-20, 0000	1, 2. A. Linderkohl. 5. P. Erichsen.	Do.
Newport and ricinity, I. I	1-12,000	1. L. Earcher. 1. P. Erichson. 2. C. A. Meuth.	Photolithograph.
Passaic River, near Nowark, N. J	1-6,000	1, 2, 6. C. A. Meuth.	Photolithograph; completed.
Raritan River, sheet No. 1. South Amboy to Crabb Island, N. J.	1-15, 000	1, 2, 6. H. Lindenkoh	Do.
Raritan River, shobt No. 2, Crabb Istaud to New Branswick, N. J.	1-15,000	1, 2, 6. H. Lindenkol	Do.
Coast ehart No. 20, New Fork Bay and Hathor.	1-80, 000	1. A. Linderikoh	New editiou of hydrography.
New Haven Harbor, Conn	1-20,000	1. C. Janken	Completea.
New York Bay and Harbor	1-40, 003	1, II. Liadeukohl. 2. C. A.	Additions; completed.
Fire Island Inlet, N. X.	1-30, 000	1, 2, 6. A. Lindenkohl	
Coast chart No. 2t, Saindy Mook to Barnegat light, N. J..	1-80, 000	2. A. Lindonkolil.	
Coast chart No. 22, Harnegat Bay to Albeecom light, N. J.		a. A. Liudenkoht. 2. H. Lindenkohl	
Potomae River, Iudian Head to Little Falls Bridgo		2. A. Lindenkoht. 6. H. Lindenkobl	Addition; completed.
Craney Island, Va	1-1, 200	2. P. Erichsen. 2. F. Fuirfax	Special map; completed.
Norfolk Harbor, Elizabeth Rivor and branches............	1-25, 000	1, 2. A. Lindenkohl. 1, 2, 6. H. Lindenkobl. 2. M. Augles.	Photolithograph; completed.
Coast chart No. 41, Albemarle Sound, (western part).....	1-80, 000	1. H. Lindenkoh1.	Additioss; completed.
General coast chart No. V, Cape Charles to Lookout. N. C	1-400,000	2. A. Lindenkohl	Adatitious.
Coast chart No. 12, Roanoke Island to Hatteras Inlet, N. C	1-80, 000	1. H. Liadenkoll	
Coast chart No. 43, Pamlico Soupd, Ocracoke Lalet, to mouth of Pamplico River, N. C.	1-80, 000	1. II. Lindenkohl. 2. II. Lindenkohl...	
Coast chart No. 44, Pamplico and Neuse Rivers, N. C.....	1-80,000	1. H. Lindenkohl	Additions; completed.
Core Sound and Straits	1-40, 000	1,2 H. Liodenkoh!	Do.
B anfort Harbor, N. C.	1-40, 000	1, 2, 6. A.LindenkohL, 2. F. Lindenkohl	New edition; completed.
Inside Passage between Broad and Coosaw Rivers, S. C.	1-40, 000	2. P. Erichaen	Additions : completed.
Atlanta base aud viciaity, Ga-, triangulation of	1-600, 000	A. Lindenkobl	Completed.
Sawpit and Sister Creels, Fla.	1-15, 00)	1, 2. F. Fairfax	
Const chart No. 90, Round Island to Grand Island, Mississippi Sound.	1-80,000	1. H. Lindenkohl.	Additions; completed.
Pass Cavallo, Tex	1-15,000	1, 2, 6. C. A. Meath	
Catalina Harbor and Isthmms Cove, Cal.	1-15, 000	1, 2, 6. H. Lindenkohl.......................	Photolithograph; completed.
Pacifio Const, No. 2, Point Fincent to Point Concepoion, Cal	1-200,000	H. Lindeakohl, engraviog topography	
San Franciaco Bay and entrance, Cal	1-50,000	1. L. Karcher. 2. A. Lindenkoin	Additions.
Saipt George's Reef and Croscent City, Cal	1-40,000	1. H. Lindenkohl.	Additions; completed.
Huater's Cove, Oreg	1-12,500	1. L. Karcher. 1. H. Lindenkohl. 2. H. Lindedkohl.	Photolithograph; completed.
Mack's Shelter, Oreg. ..	1-25, 000	L. L. Karchor. 1, \& M. Angles. \& H. Lindenkahl.	Do.
Columbia River, (sheet No. 1)	1-40, 000	2. L. Karcher	Additions.
Columbia River, (sheet No. 2)	1-46, 000	2. A. Lintenkoht...........................	Do.
Diagram of tides, coast of Alaska		2, 6. L. Karcher.	Completed.

APPENDIX No. 4-Continued.

APPENDIX No. 5.

ENGRAVING DIVISION.
Plates completed, continued, or commenced October 1, 1874, to July 1, 187.

1. Oatlines. 2. Topography. 3. Sanding. 4. Lettering.

APPENDIX No. 5-Continued.

Title of plates.	Scaie.	Engravers.
Harbor-charts-Continued,		
Whale Branch, Inside Passage, between Broad and Coosaw Rivers.	1-40, 000	3 and 4. J. G. Thompson.
Doboy and Altamaba Sound.	1-40, 090	3. E. H. Sipe.
Saint George's Reef and Crescent City.	1-10, 010	2 and 3. K. F. Bartle. 4. J. G. Thompson and W. II. Knight.
Columbia River No. 2	1-40,000	2. H.C. Evans. 4. J. G. Thompzon.
comuencrd. General coasi-chart.		
Pacific Coast No. VIII, from Point Arena to Cape Mendocino. Coast-charts.	1-200, 000	1 and 2. H. Lindenkohl.
No. 42, Pamplico Sound (eastern sleet)	1-80,000	1 and 2. H. C. Evans. 4. F. Conrtenay and A. Petersen.
No. 43, Pamplico Sound (middle sheet)	1-80, 000	1 and 2. II. C. Evans. 4. F. Courtenay and A. Petersen.
No. 87, Pensacola entrance to Mobile entrance.	1-80, 000	1. A. Sengteller.
Harbor-charts.		
Blae Fill Bay......	1-40,000	1. E. Molkow.
Bar Harbor	1-10,000	1, 2, 3, and 4. W. H. Knight.
New York entrance (1875 edition)	1-40, 060	4. E. A. Mredel.
Beaufort Harbor, N.C..	1-40, 000	1 and 4. E. H. Sipe.

APPENDIX No. 6.

REPORT UPON ELECTROTYPING AND PHOTOGRAPHING, BY DR. A. ZUMBROCK.

It became necessary during the year to replace the old vat, used in the electrotyperoom for holding the copper solution, by a new one. The new vat, twenty inches wide, forty-two inches deep and fifty-two inches long, holding about one hundred and ninety gallons, is made of threeinch white-pine boards, tongued and grooved. Both sides were covered with two coats of coal-tar, and just before being put together all of the joints were served with a hot cement of rosin, asphalt, and coal-tar; when fiuished the same cement was applied boiling lot to all of the joints on the inside.

The first trial of a plate in this new vat was made with the copper solution which had always worked well in the old one. It was found that the copper was deposited in regular vertical streaks or ridges, most of the ridges running from top to bottom of the plate, others stopping short at different heights, as though a viscid fluid had run down the plate. Some of the ridges were oneeighth of an inch wide, and there were often as many as five in the breadth of one iuch. Weakening and strengthening the copper solution, filtering and boiling it, had no effect upon this unusual action; neither had a stronger or weaker electric current. When the paper, through which some of the copper solution had been filtered, was digested with alcohol, the alcohol became brownisti, and left, after exaporation, au oily fluid of an empyreumatic odor. Ether shaken with the solution, left, after evaporation, a similar fluid. A new copper solution acted in the same way.

The effect was undoabtedly due to the fact that the coppor solution had dissolved some of the cement. A box of thin sheet-copper was then made to fit loosely in the rat, the narron space between this copper case and the vat was filled with melted paraffine, and with this arrangement the solution has worked very well.

Last year Congress made an appropriation for the engraving and printing of the plate of tho Centennial stock-certificate by the Engraving and Printing Burean of the Treasury Department. In order to print the number of impressions required for one million shares of stock, the Treasury Department requested the Coast Survey Office to have made twenty electrotype copies of the original plate. This plate is twenty-two by twenty-six inches, weighing about fifteen pounds.

To make so large a number of plates in addition to our own work it became necessary to put up new batteries. The number of good sharp impressions which can be taken from a copper-plate being limited to about twelve huodred, it is evident that the required number of impressions could not be taken from twenty copper-plates; it was therefore desired to have the plates "steel-faced"-that is, covered with a thiu layer of electrotype iron. After a number of experiments I succeeded with a solution recommended many years ago by Professor Böttger. I used a strong solution of one part of protosulphate of iron and one-half part of chloride of ammonium ; a plate of the best boiler-iron was employed as an anode and n weak electric carrent. In spite of the most carefal cleaning of the copper-plate there were always some spots which would not take the iron unless the plate was removed from the solution aud cleaned very frequently. If during the deposition of the iron there should be the slightest evolution of hydrogen on the copper-plate, the plate would be spoiled, for each little bubble of gas will canse a minute hole or pit which takes the ink and spoils the impression. This evolation of liydrogen must be prevented by the proper proportion between the streagth of the solution, size of the plate, and battery-power. As soon as the proper amount of iron is deposited, the plate must be washed and dried rapidly or it would immediately rust. This is best done by pouring hot water over the well-washed plate and drying it by means of a soft cloth while yet lot; it should then be covered by a film of paraffine.

The electrotype iron is quite hard and becomes a permanent magnet, the end of the plate which is lowest in the process becoming a north-pole. The amount of iron deposited I found to be
2.56 milligrams for each square centimeter, equal to a thickness of 0.033 millimeter, or about one-seven-hundredth part of an inch. The iron deposit can be dissolved from the copper by acids with the greatest ease and without injuring the engraving in the slightest degree. After ten thousand good sharp impressions had been taken from one of these plates, the iron deposit seemed as perfect as ever. But should it at any time show signs of wearing off, the iron could be removed and it new deposit made upon the same copper-plate; and as this process could be repeated over and over again, there is, by the method of "steelfacing," practically no limit to the number of impressions which can be taken from one copper-plate.

In the operations for photographing, seceral improvements have been made in the large camera and its stand; I also constructed an apparatus for measuring the photographic image on the wet plate. In consequence of these improvements, photographic reductions of charts are now made with moch more expedition and accuracy than heretofore. The collodion, varvish, and some of the other chemicals used in photographing and electrotyping were made by me.

During the autumn of 1874 some experiments were made in transferring drawings upon a copper-plate by photographisg and etching by perchloride of iron. A polished copper-plate was silvered, exposed to vapors of iodine in the dark, exposed to the light under an inverted negative, fixed by hyposulphite of soda and rarnished with a tongh transparent varnish. The drawing was then engraved with a dry point and etched with perchloride of iron. In the opinion of experts this process is quite a success.

APPENDIX No. 7.

List of original topographic sheets, geographically arranged, registered in the archives of the United States Coast Survey from January, 1834, to July, 1875. (Nos. 1 to 1378, inclusive.)

APPENDIX No. T-Continued.

Localities.	Stato.	Scale.	Dato.	Topograpber.	Registered number.
Rookland Harbor and vicinity.	Maine	1-10, 010	1870	W. H. Dennis	1160
South Thomaston, Weskeag River, \&e., Penobscot Bay (rejected).	do	1-10, 000	1261	C. Ferguson.	844
Tho western entranco to Penobscot Bay, including Saint George's Islant, Mohegan, and Matinicns.	...do	1-20,000	1864	F. W. Dorr	960
Seal, Tennant's, and Mosquito Harbor, Penobscot Bay (apjected).	...do	1-10,000	1862	C. Ferguson..............	904
Seal, Tendant's, and Mosquito Harbors, Penobecot Bay	...do	1-10, 000	1868	W. H. Deanis	1081
The Matinicne group of islands	...do	1-20, 000	1864	F. W. Dorr	938
The Green Ielands, off the mouth of Penobsent Bay...	. . do	1-20,000	1864	...do	59
Muscle Ridge Is'ands, Peuobscot Bay (ryjected). (See 1287.)	..do	1-10, 000	186.2	C. Ferguson.	$8: 7$
Mascle Ritige Islands, Penobscot Bay.................	. d o	1-10,000	871	W. H. Dennis	1287
Friendship, approacies to Medomak River	..d.	1-10,000	1867	Charles Hosmer	1058
Penobscot River from Indian Point to Parker's Point.	. do	1-10, 000	1×73	F. W. Dorr	1309
Penobscot River, Iodian Point to Sandy Point and eastern shore.	...do	1-10,000	1873-'4	C. T. Tardella	1357a b
Weakeag River aud vicinity	.io	1-10,000	1869	W. H. Dennis	1151
Stint George's River from Narrows to Thomaston (rejected).	..no	1-10, 000	1863	C. Ferguson	915
Saint Gearge's River from entranee to Narrows (rejected).	. .do	1-10,000	1864	C. Ferguson.	957
Saint George's River entrance.	. .do	1-10,000	1869	F. W. Dorr .	1117
Saint George's River	. ${ }^{\text {do }}$	1-10,000	1868	Charles Hosm	1116
Muscongta Bay, is? ${ }^{\text {ands }}$ and ledges	do	1-10,000	1865	F. W. Dorr	1001
Muscongas Bayr southere part.	do	1-10,000	1865	. .do	1002
Muscongus Bay from Round Pond to Hocamoc	...do	1-10, 0co	1266	C. Rock well	1023
Medornak River.	.do	1-10,000	1867-8	Charles Hosmer	1076
Medomak River, upper part	.do	1-10,000	1865	C. Ferguson.	184
Pemmaquid Neck, including Jobn's Bay and Pemmaquid River.	...do	1-10, 009	1265	F. W. Dort	1038
Pemmaquid Point, including Now Harbor and west shore Muscongus Bay.	$\ldots \mathrm{c}$. ${ }^{\text {do }}$	1-10,000	1366	. .do	10.33
Damariscotta River (upper part)	...in	1-10,000	$18 \pi \mathrm{a}$	S. A. Gilbert	994
Damariecotta River (lower part)	do	1-10,000	1865	. ${ }^{\text {do }}$	95
Linekin's Bay and Islands at month of Damariscotta River.	.do	1-10, 000	1865	F. W. Do	1000
Merry Meetlag Bar, inclading Androseoggin, Muddy, and Cathanco Kivers.	...do	1-10,000	1871	C. B. Boyd .	1214
Booth Bay Harbor and vicinity	. . do	1-10,000	1864	P.C.F. West.	961
Steepscot River	do	1-10,000	1864	R. E. McMath	954
Part of Sheepscot River and vicinity	do	1-10,000	1859	W. H. Denn	845
Sheepscot, Back, and Oved mouth E	do	1-10,000	1864	R. E. McMath	53
Sheepscot and Back Rivers	...to	1-10,000	1860	H. Adams, C. Ferguson.	801
Hack River and Montseag Bay ..	do	1-10, 000	1800-1	C. Fergneov, H. Adams	802
Hoackomoak Bay and islands sonth of Phipps' Point, Back River.	do	1-10, 000	1861	H. Adams, O. Henricks.	842
Kennobee River entrance and Cape Small Point	do	1-10, 000	18.56	Hall Adams	587
Cape Small Point and adjacent island	do	1-10, 000	1854-7	S. A. Gillsert, C. T. Imatella	463
Kenmebec River approaches.	. ${ }^{\text {d }}$	1-10, 000	1856	Hail Adams	583
Kennebec River (from Iudian Poiat to Cox	do	1-10, 000	1857	W. S. Gilbert	666
Georgetown Island and ticinity	do	1-10,000	1862	C. T. Iandella	8 EP
Kennebee River, from Bath to Jones' Eddy	do	1-10,000	1857	W. S. Gilbert	67
Kenneber River, vicinity of Bath.	-.do.	1-10,000	1858-9-60	R. M. Bache.	728
Peninsula formed by confiaence of Kennebec and Androacoggin Rivers.	...do	1-10,000	1864	. do	967
Westport and Arrowsic Isalands (part of	. do	1-10,000	1365	E. Hergenheimer.	982
Kennebec River (head of)	do	1-10,000	1859-'65	H. M. Bache.	1061
Kennebeo River (from Abegadascet Point to Richmond)	.do	1-10, 000	1369	C. H. Boyd	1115
Kenneber River (from Richmond to Gardner).	do	1-10,000	1870do	1158
Mouth of Now Mondow River	do	1-10,000	1857	C. T. Iardella	655
New Meadow River from Forster's Point to Naw Meadow Bridge.		1-10,003	1866	J. W. Doun	1021

APPENDIX No. 7-Continued.

Localities.	State.	Scale.	Date.	Topographer.	Remistered number.
Rygged Island and adjacent ishands near Cape Small Point.	Maine	1-10,000	1851-57	S. A.Gilbert, C. T. Iardella	466
Maquoit and Middle Bays, wilh adjacent shores of Freeport, Brunswick, and Harpswell Neck.	. . do	1-10,000	1863	A. W. Longfellow	923
Yarmouth and Freeport	do	1-10,000	1861-2	.	918
Part of Harpswell Neck, with the adjacent islands in Casco Bay.	do	1-10, 000	1860-1	do	817
Casco Bay (outer islands)	do	1-10,000	1856-58	do	737
Casco Bay (The Green Islands)	do	1-10,000	1256	do	756
Great Jebeig, Consins, and Little John's Islande, with smaller islands and part of the maln stiore.	.do	1-10,000	1364	.do	918
Casco Bay	do	1-10,000	1873	. do	9196
Presumpscot River, month of, and islands in Casco Bay.	do	1-10.000	1855-59	do	73
Canco Bay (from Middle Bay to New Mcadow River, including worth end of Sebaskahegan Island).	do	1-10,000	1867-'69	do	1129
Casco Bay (Sebaskahegan an 1 Orr's Islands).	do	1-10,000	1865	.do	1012
Casco Hay (sketch of Half.way Rock)	do	1-2,000	1867	C. H. Hoyd	1056
Portland Harbor and environs	do	1-10,000	1854-'58	A. W. Longfellow	735
Portland Harbor (reconnaissance of the environg and approaches to).	do	1-20,000	1862	F. W. Dorr	8.8
Portland Harbor (wharf and shore-line)	do	1-5,000	1867	A. W. Longfellow, II. W. Bache.	111i
Portland City and Harbor (special sarvey, sheet No. 1).	do	1-1,200	1868-9	A. Lindenkohl	1140a
Portland City and Harbor (special survey, sheet No, 2)..	.do	1-1, 200	186x-9	. .do	1140 b
Portland City and Harbor (special survey, sheet No. 3)	do	1-1, 200	1368-9	. do	1141a
Portland City aud Harbor (special survey, sheet No. 4)	do	1-1. 200	1869	Charles Hosmer.	1141 b
Portland City and Harbor (special survey, sheet No. 5)	do	1-1, 200	1869do	1142a
Portland City and Harber (special survey, sheet No. 6)	do	1-1,200	1869	J. W. Dour	$1142 b$
Portland City and Harbor (special snrvey, sheer No. 7).	do	1-1, 200	1869	. do	1143a
Portiand City and Harbor (special survey, sheet No.8).	do	1-1, 200	1869	Charles Hosmer	$1143 b$
Portland City and Harbor (epecial survey, sheet No. 9)	do	1-1,200	1869	J. W. Donn	1144a
Portland City and Harbor (apecial survey, theet No. 10).	do	1-1,240	1869	J. N. MeClintuok	11446
Part of Cape Elizabeth	do	1-10, 000	1852	A. W. Longfellow	414
Richmond's Island.	do	1-10,000	1850do	312
Saco Bay, north shore, including Stratton and Bluff Islamas and Proat's Neck.		1-10, 000	18.9	C. Fendall	759
Mouth of Saco Rirer and Biddeford Pool		1-10,000	1870	H. Adams.	1188
Samen River and towns of Biddeford and	. d o	1-10,000	1871	do	
Goose Fair Creek to Spurwink Riser	do	1-10,000	1871	...do	1224
Fleteher's Meck and vicinity	do	1-10, 000	1859	C. Feudall	760
Cape Porpoise and vicinity	do	1-10, 000	1839	-.....do	761
Kennebunk Port and Cape Porpoise to Hoyt's Neck	do	1-10,000	1870	H. Adams	1559
Welly Beach, included in oheet No. 1121.	do	1-10,000	1867do	1057
Coast from Oganquit, in Wells, to Mousam	do	1-10,000	1869°do	1121
Cape Neldick and Ogunquit.	do	1-10,000	18.54	A. S. Wadsworth	459
York and Cape Neddick Harbors, with intermodiate coast.	.do	1-10,000	1853	A. W. Longfellow.	440
Coast from Kittery to Fork.	do	1-10,000	1867	H. Adams.	1050
Coast from Boar's Head to Rye Harbor	New Hampsh	1-10, 000	1866	.-.do	1023
Coast from Rye Harbor to near Portsmou	... \mathbf{c}	1-10, 000	1867to	1047
Isles of Shoals.	do	1-10, 000	1859	C. Fendall.	762
From Hampton River to East Salisbury.	.do	1-10, 000	1835	I. L. Whiting	835
Newboryport and mouth of Merrimac River	Massachuse	1-10, 000	1852	A. W. Longfellow	355
Rowley River and part of Plum Island to Newburyport.	do	1-10, 000	1854	H. L. Whiting, H. Adams.	559
Ipswich, (antinished)		1-10,000		H. L. Wbiting............	467
Annisquam Harbor and vicinity, Cape Ann	do	1-10, 000	1832	H. L. Whiting 8. M. Bache	396
Cape Ann, northern shore, including Esser River.	.do	1-10,000	1855	H. L. Whiting............	556
Rockport, extremity of Cape Ann, from Milk Island to Lane's Cuve.	. ${ }^{\text {do }}$	1-10,000	1851	...do	341
Gloucenter Harbor and vicinity, Cape Ann.	. do	1-10,000	1851	H. L. Whiting, R. M. Bache	397
South thore of Cape Ann, from Danvers' new mails to ${ }^{\text {. }}$ Beverty farma.		1-10,000	1851	H. L. Whiting.............	304
Salem Harbor, from Deverly farms to Kethe Cove	...do	1-10,000	1851	. 10	340

APPENDIX No. T-Contiuned.

Localities.	State.	Scale.	Date.	Topographer.	Registered
Salem Harbor, Manchester (inclading the city and islands).	Massachusetts ...	1-10,000	1851	H. L. Whiting............	303
From Sangas River to Marblehead, nortbwest shore of Massachusetts Bay.	do	1-10,000	1849-50	..do	305
Nabant Neck and Tinker's Island	do	1-10,000	1847	do	235
From Point Shirley to Point Pines and Winnessimit Village.	do	1-10, 090	1847	do	234
Governor's Island and Castle Island, Roston Harbor...	do	1-5,000	1846	do	231
Thompson Island, Onter Breweter, and intermediate islands, Boston Harbor.	do	1-10,000	1847-9	J. S. Williams, H. L. Whit ing.	238
Cities of Boston and Charlestown	do	$1-5,000$	1846-7	H. L. Whiting	299
East and Sonth Boston	do	1-5, 000	1846-7	do	230
From Nepodset to Roxbury (interior)	. do	1, 10,000	1847do	232
From Roxbary to Malden (interior)	do	1, 10, 000	1847do	233
From Muton Mills to Hingham, southern shore of Botton Bay.	..do	1,10,000	1847	J. B. Glutic.	227
Part of Boston Harbor (inclading the outer and Brewster Islands.	do	1-5, 000	1860	H. L. Whiting	830
Part of Boston Harbor (including Gallop's, Lotell's, George's, Light-House, and Great Brewster Islands).	\ldots. do	1-5,000	1860	..do	831
Part of Roston Harbor (iucluding Long and Deer Kisands and Point Shirley).	do	1-5, 000	1860	do	833
Fart of Boston Harbor (including Thompson's and Spectacle Istands, Moonlead, and Squantum).	. .do	1-5, 0000	1860	..do	832
Part of Roston Harbor (Rainaford and Peddock's Island, and Nantasket).	. do	1-5, 000	1860	..do	823
From Nantasket Hill to Green Hill, Boston Bay	. ${ }^{\text {do }}$	1-10,000	1847	J. S. Williams.	237
From World's End Hill to Cohasset Harbor, Boston Bay.	. .do	1-10,000	1847	J. B. Glitck.	228
From Cohasset to Seitnate Harbor, eastern shore	..de	1-10,000	1847	H. L. Whiting, S. A.Gilbert	236
North River	do	1, 10,000	1838	A. M. Harrison	719
North River (sheet 1)	..do	1-5,000	1870	H. In. Whiting	1251a
North River (sheet 2)	do	1-5, 000	1870	. do	$1251 b^{*}$
Back River and vicinity, near Plymonth	. do	1-10,000	1856-7	R. M. Wache, A.M.Harrison	612
Kiugaton to Duxbury Beach	do	1-10,000	1853-'4	S. A. Gilbert, R. M. Bache .	425
Plymonth Harbor and vieinity.	.. do	1-10,000	1853	S. A. Giibert	453
Cape Cod Bay, westeru shore, from Fel River to Ship Pond.	...do	1-10,000	1866	P.C.F. West	1063
Cape Cod Bay, western shore, from Ship Pond to West Sand wich.	. . do	1-10,000	1867	. 60	1062
Cape Cod, part of, from Sandy Neck, neas Barnstable, to West Sandwich.	...do	1-10, (000	1860-1	A. M. Harrison.	901
Rarnetable Harbor and vicinity.	. . ${ }^{\text {do }}$	1-10,000	1899	..do	795
Cape Cod Bay, north ehore, from North Dennis to Brewster.	...do	1-10,000	1868	P.C. F. West.	1088
Cape Cod Bar, southern shore, from Orleans to Brewster.	...to	1-10,000	1868	H. Adams...	1078
Cape Cod Peninsula, from Bilingugate to Pamet River	. ${ }^{\text {a }}$	1-10,000	1848	H. L. Whiting	259
Wellfeet Harbor, Cape Cod Peuinsula	do	1-10,000	1851	J. B. Glick	368
Northera part of Cape Cod and Provincetown Harbor	..do	1-10, 000		H. L. Whtting	615
From Higland to Nansett Light..........................	. .do	1-10,000	1818do	260
From Naucetr Light to Orleans.....	\ldots	1-10,000	1856	C. T. Yardella	579
Cape Cod Bay, eastern shoie, from Pleasant Bay to Namett Harbor.	...do	1-10,000	1368	H. Adams	1077
Cape Cod, southern extremity, including village of Chatham.	..do	1-10,000	1888	H. W. Bache	10esa
Cape Cod, from Pleasant Poist to Monomacy Island	. do	1-10,000	1868	C. H. Boyd	10253
Cape Cod, routhern extermity of	. 10	1-10,000		J. B. Giack	41
Monornoy Point.	..do	1-20,000	1868.	P.C. F. West.	1090
Monomoy Island.	. d_{0}	1-20,000	1853-'56	S. A. Gmbert, C. T. Tardella	424
From Rasa Eiver eastward.	. .do	1-10, 000		J. B. Glitek ..	403
From Bass River to Hymnia, inoludizg Weat Yarmonth and Sonth Dennis.	...do	1-10, 000	1635	H. L. Whiting, J. A. SuMivan.	553

APPENDIX No. 7-Continued.

Localities.	State.	Scale.	Date.	Topographer.	Registered number.
Part of Sonth Yarmouth, Darnstable Connty.	Massachnsetts	1-10, 000	1852	A. W. Longfellow	356
From West Yarmonth to Hyannis Poin	do	1-10,000	1846	W. M. Boyce	06
From Hyaunis Point to Succonnesset	. do	1-10, 600	1846	-...-do	318
From Succonnesset Point to Falmouth Spi	do	1-10.000	1846do	289
Eastern part of Nantucket, Great Proint to Siasconsett. .	do	1-10,000		H. L. Whiting, W. E. Greemwell.	206
Western part of Nantucket, including Tuckanuc and Muszeget Islands.	.do	1-10,000	1846	H. L. Whiting	205
Martha's Vineyard, eastern part, from Cape Poge to East Chop.	d	1-10,000	1846	. do	804
Northern shore of Martha's Vineyard, from East Chop to Menemsha Bight.	do	1-10,000	1846	. .do	203
Southern shore of Martha's Vineyard, from Sampson's Eill to East Edgartown Harbor.	.do	1,10,000	1816-56do	202
Gay Head, part of Martia's Fineyard, and No Man's Land.	...do	1-10,000	1845-53	W. M. Boyce, H. L. Whit-ing-	362
Guttyhunk Ialand, with Sow and Pig	do	1-5,000	1853	H. 1. Whiting	437
Elizabeth Yalanda	do	1-10, 000	1845	W. M. Boyce	192
From Falmonth to Back River, eastern shore of Buzzard's Bay.	do	1-10,000	1845	do	191
From Great Hill Neck to Sconticut Neck, weatern shore of Buzzard's Bay.	do	1-10,000	1845	H. L. Whiting	196
From Back River to Great Hill Neck, northern part of Bazzard's Bay.	do	1-10,000	1845	...dc	195
From Sconticut' Weck to Clark's Neck, inclading New Bedford.	...do	1-10,000	1844	do	194
From Clark's Point to Mishaum (migsing)	do	1-10,000	1844	do	193
From Mishaum Point to Saughkonnei Point	do	1-10, 900	1844	W. M. Boyc	183
Tannton River, part of.	do	1-5,000	1874	A. M. Harrison	1373
Fall River, part of. (See No. 1053)	do	1-10,000	1861	.-do	885
City of Fall River and vicinity	...do	1-10,000	1867do	1033
Mount Hope Bay, inclading parts of Taunton, Lee, and Cole Rivers. (See KYo. 1024.)	Massachusettis and Rhode Ieland.	1-10,000	1861	A. M. Harrison, P. C. F. West.	886
Saughkonnett (or Seaconnet) River, from Charch's Point northward.	Rhode Island	1-10,000	1844	H. L. Whiting-..............	180
Saughkonnet Point	do	1-10,000	1870	Charles Hosmer.	1161
Saughkonnet Kiver, eastern pe	. do	1-10,000	1870do	1156
Mount Hope Bay, part of.	do	1-10,000	1861-65	A. M. Harrison.	884
Mount Hope Bay, northern par	. ${ }^{\text {do }}$	1-10,000	1865do	1024
Warren	. .do	1-10, 000	1869do	1120
Bristol Neck. (See 888)	do.............	1-10, 000	1864	A. M. Harrison, C. Hosmer	936
Monnt Hope and Bristol Baye, part of. (See 956)	. do	1-10, 000	1868	A. M. Harrison.............	888
Part of shore-Ine of Narragansett Bay and Providence River.	. do	1-10,000	1463do....................	91.3
Shore-line of part of Providence River.	. $\mathrm{do}^{\text {d }}$	1-10, 000	1863do	914
City of Providence, wharf-tine	do	1-5,000	1267	...do	1041
Seekonk River	- . do	1-10, 000	1865do	978
Part of the western shore of Narragainett Bay, inclading Greenwich Bay and Hope Island.	. . do	1-10, 000	1863do	912
Town of East Greenwich and vicinity	do	1-10,000	1863do	1079
Prudence Ialand, Narregansett Bay	. .do	1-10,000	1865do	1054
Prudonce İlend, Narraganeett Bay. (See 1054)	..do	1-10,000	1862do	887
Laland of Rhode Lsland, northern part.	. do	1-10,000	1870	-.-. .do.....................	1162
Shore-line of the western side of the weatorn passage of Narraganeett Bay.	. .do	1-10, 000	1863-'69do	811
Conmwicnt, Dutch, sid Gould Itards.	do	1-10,000	1869 do	1119
Conanicut Ialand, part of Narraganseft Bay. (See 1119)	-. .do	1-10,000	1861	. do	898
Coast of Rhode Island, trom Cross Mils oustward.	. . .do	1-10,000	1872	. do	1271
Coast of Khode Faland, from Crose Mills to Weet Pond.	.do . . .-...........	1-10,000	1873d do	1312
Newport and vicinity	...do	1-10,000.	1870-'1	do-.........	1198
Narraganiett Bay, inoluding Coneter's Ieland Harbor and adjacont bhorem.	...do	1-5,000	1862	H. L. Whiting.	869

APPENDIX No. 7-Continued.

Localities.	State.	Scale.	Date.	Topographer.	Registered number.
Entrance to Narragansett Bay, Eastern Rock to Beaver Taul.	Rhode Island .	1-10,000	1844	W. M. Boyce .	182
Island of Rbode Island, from Black Point to Easton Point.	...do	1-10,000	1870	H. G. Ogden. .	1163
Part of the west shore of Rhode Island, from Coddington Cove northward.	..do	1,10,000	1862	A. M. Harrison.	896
Part of the west blore of Rhode Island, from Bristol Bay southward. (See 1162.)a)	1-10,000	1861do	897
Narragansett Pier to South Ferrs....................	.do	1-10,000	1860	...do	1118
From MeSparral Hill to Point Judith	.do	1-10,000	1839	J. J. S. Hassle	92
From MeSparran Hill to Tifrs Hill, (int	.do	1-10,000		do	93
From Point Judith to Noyes' Point	. do	1-10,000	1839	. ${ }^{\text {do }}$	91
From Tiffr Hill westward, (interior)	. .do	1-20,000	1839do	94
Point Judith and vicinity.	...do	1-10,000	1871	A. M. Harrison	1226
Kingston, from Fairbanks's Cut northward.	do	1-20,000	1840	J.J.S. Hassler	128
Jobhua Charoplin Fairbanks'a Cut to Saud Hill southward.	...do	1-20,000	1840	...do	129
Block Island .	. .do	1-10,000	1839	..do	90
From Big Hill to North Stonington, (interior)	...do	1-10,000	1840	F. H. Gerdes	126
Milltown aud interior, from North Stonington to Niantio Village.	Comnectiont	1-14, 000	1840	. do	123
North Stonington and interior, from Eel's Hill to Quaquotogue.	...do	1-10,000	1840	.do	124
From Fort Hill to Mystio Riser......................	do	1-10,000	1838	Charles Renard	65
From Myatic Bridge to Noyes 'River on Fisher's Island	...do	1-10,000	1839	F. H. Gerdes	88
From Lantera Hitl to Thames River	do	1-10,000	1839do	89
From Fort Hill to Black Point, including Niautic Bay..	.. do	1-10,000	1838	Charles Renard	64
New London Harbor, esstern shore of Thames River.	do	1-10,000	1846	J. B. Gluck	85
Thames River, western shore.	...do	1-10,000	1816do	84
Thames River, (continned).	do	1-10,000	1841	F. H. Gerdes	87
Thames River, from New London to Mohicat	...do	1-10,000	1839do	86
Thames River, (Thomastille and city of Norwi	. .do	1-10,000	1874	H. G. Ogden	$1359 a b$
Navy-yard near New London	do	1-1, 200	1869	-....do	1107
Between Niantic and Thames Rivers, (interio	do	1-10, 000	1839	F. H. Gerdes	83
Fron Niantic River to IfanCity, (interior).	do	1-20,000	1838	Charles Preuse	78
From Leynn City to Westbrock, (interior)	do	1-20,000	1838	J. J. S. Hassle	79
From Black Point to Corufield Point, month of Con. necticat River.	do	1-10,000	1838	B. F. Sands.	81
Mouth of Connecticut Riverdo	1-10,000	1850	H. L. Whiting.	297
From Cornfleld Point to Hammonasset, Saybrook. and Clinton.	do	1-10,000	1838	J.J. S. Hassler	80
From Ensex to North Killingworth, including Clinton..	..do	1-10,003	1840	T. W. Werner	130
From North Killingworth to North Hill, East Havon, and Ham monasget.	..do	1-10,000	1839	..do	105
From Hammonasset Point to New Haven..............	..do	1-10,000	1838	W. M. Boyee	89
From New Haven to Fairbaven, Catron's Rock, and Whitueyville.	. do	1-10,000	1838	John Earley	76
New Haven Harbor...	do	1-10,000	1872	R. M. Bache.	1296
From West Haven to Black Rock, (bound shore).......	..do	1-10,000	1837	C. M. Kakin	22
From Cherhire and Mt. Carmel to Tashun and Mervin.	. do	1-20,000	1839-40	T. W. Werner	106
From Tashua westward, Chestant Hill to New Canaando	1-10,000	1839	T. A. M. Craven	107
From Centre Redding to Wilton, esst of Ridgefield....	...do	1-20,000	1810	H. L. Dickens	131
From Bridgeport to Sangatuck, Sherwood, and Gorham	...do	1-10,000	1838	T. A. M. Crav. n	51
From Black Roek to Norroton	do	1-10,000	1835	C. M. Eakin.	19
From Saugatuck and Weatbrook to Darien, (interior).	.de	1-10,000	1838	T. A. M. Craven.	50
Somfleld and viciuity, (interior).	do	1-10,000	1839do	108
From Round Hill to New Castle, (interior)	. ${ }^{\text {do }}$	1-10,000	1839do	109
From Dartan to Glenvilie and Horse Neck.............	. ${ }^{\text {do }}$	1-10,000	1838do	49
From Norroten Point to Delancy's Point, includiag Ryo	do	1-10,000	1836	C. M. Eakin	80
Late Champlain, from White's Landing to Apple Tree Point.	Vermont	1-10, 000	1870	F. W. Dorr.	1181a
Lake Champlain, inctuding eity of Burlington	do	1-10,000	1872	H. G. Ogden	11816

APPENDIX No. 7-Continued.

Localities.	State.	scale.	Date.	Topographer.	Registered number.
Lake Champlain, from Apple Tree Point to Hog Back Island.	Vermont.	1-10,000	1870	F. W. Dorr.	1182
Lake Champlain, from Tremblean Point to Port Jacksor	. .do	1-10,000	1870	..do	1183
Lake Champlain, from Trembleau Point to Ligonier Point.	. .do	1-10,000	1870	F. W. Dorr and Charles Hoamer.	1185
Lake Champlain, vicinity of Plattsburg	New York	1-10,000	1870	Charles Hosmer	1184 a
Lake Champlain, vicinity of Plattsburg	d	1-10,000	1872	H. G. Ogil	$1184 b$
Lake Champlain, vicinity of Plattsburg	Vernout	. 1-10,000	1870	Charles Hosmer	1186
Lake Cbamplain, vicivity of Mallet's Bay	. do	1-10,000	1871åo	1205
Lake Champlain shore-line surress	-	1-10,000	1871	do	1206
Lake Cbamplain shore-line survess	do	1-10,000	1871do	1207
Lake Champlain shore-line surveys	.do	1-10,000	1871do	1203
Lake Clamplain shore-line surveys	...do	1-10,000	1871	. .do	1209
Lake Cbamplain, from Cumberland He.d Point to Point-an-Roche.	New York	1-10,000	1871	H. G. Ogden	1217
Lake Champlain, the Gut and Point-aur Roche.	. ${ }^{\text {do }}$	1-10,000	1871	. do	1818
Lake Champlaid, from Point-an-Roche to Long Poi	do	1-20, 000	1871	. do	1219
Lake Champlain, La Mote and A hurgh Passages	. do	1-10, 000	1871	do	1220
Lake Champlain, from Islo La Motte to boundary-line. .	\ldots..do	1-10,000	1871	. .do	1221
Lake Champlain, part of Missiequoi Bay.	Vermon	1-10,000	1871do	1222
Lake Cbamplain, Missiequoi Bay soath of boundary-hit	..do	1-10,000	1*71	. do	1223
Lake Champlain, part next to Jones's Point sulbshett ..	Vermont and New Fork.	1-10,000	1873	.do	1319 ab
Lake Champlain, Bluff Point to Point Kemp	do	1-10,000	1873	A. Braid	1330
Lake Champlain, Fort Ticonderoga	. d o	1-2,500	1874	. do	1360 a
Lake Champlain, Plames Point to Kirby.	.do	1,10,000	1874	...do	13605
Lake Champlain, Kirby to Chipman's Point	..do		1874	. do	1360
Lake Champlain, Chipman's Point to Light-House No. 10, Light-House No. 10 to Whitehall.	...do	1-10,000	1834	do	$1361 a^{\text {b }}$
Lake Champlain, Sexton's Point to Hill's Puint, (Four BrotLers.)	...do	1-10,000	1874	C. T. Iardella	1366 ab
Lake Champlain, from Essex to Split Rock, Split Rock to Dickerson's Point.	..do	1-10,000	1874	. do	$1367 a b$
Lake Champlain, Dickerson's Point to Potash Point, Eim Point to Crown Point.	.do	1-10,000	1874do.	1368ad
Fisher's Island and others adjacent, Long Island Sound	New Y	1-10.000	1838	F. H. Gerdes	57
Plum Island and Gall Island, Loug Island Sound	do	1-10,000	1838	...do	56
Gardiner's Island, Long Island Sonnd.	do	1-10,000	1838	T. A. Jenkin	75
Sag Hrrior, Gardiner's Bay, and Three Mile Harbor	do	1-10, 000	1838-46	T. A. Jepkins and J. B. Glick.	72
Cooper's Hill and Oyster Pond Point.	do	1-10,000	1838	F. H. Gerdes	55
Sbetter Island, Peconic Bay, Long Islaud Sound.	do	1-10,000	1838	T. A. Jenkins	69
North Peconic Ray, from Catchoque to Halleck's Point	do	1-10,000	1838do	68
Peconic Bay; from Noyacis to Say Harbor.	...do	1-10,000	1838	. do	71
Peconic Bay, Riverhead to Littlo Hog Neek	. .do	1-10,000	1838do	${ }^{67}$
Peconic Bay, Good Ground to Nopack	do	1-10,000	1838	...do	70
Old Landing, Cooper's Hill, and Cypress Points	. do	1-10,000	1838	F. H. Gerdes	51
Friar's Head, River Head, and Old Landing	. .do	1, 10,000	1838	.do	53
Smith's Pofnt to Grod Gronad and Inlet West.	do	1-10,000	1833	Charles Rbiar	53
From Ruland's to Riverhead, (incerior).	do	1-20,000	1838	H. L. Dicken	77
Drowned Mcadow Harlor, Monnt Misery, and Friar's Head.		1-10,000	1838	F. H. Gerdes	58
Setauket City and Drowned Meadow, Old Field Roint and Monnt Misery.	. .10	1-10,000	1837do	32
From Stony Brook to Drowued Meadow, (interior)	do	1-20,000	1837	Charles Prens	43
Fron Old Field and Setanket to Stony Brook	.da	1-10,000	1837	F. H. Gerdes	31
From Sinithtown to Stony Brook, (interior)	do	1-10,000	1837	do	42
From West Hilis to Ruland's	do	1-20,030	1837	H. L. Dicken	45
Weat Hilly and vicinity, (interior)	. ${ }^{\text {do }}$	1-10,000	1836	..do	44
Nisanquaque River, Brithtown, and Stony Brook......	. .do	1-10,000	1837	F. H. Gerdes	39
Red Hnok, Bread and Cheese Hollow, and Smithtown, (interior.)	.do	1-10,000	1837	Charles Prones............	41
Lator's Neck to Smithtown, (interion)	...do	1-10,000	1537	F. M. Gerdes	29

APPENDIX No. 7-Continued.

Localities.	State.	Scale.	Date.	Topographer.	Registered namber.
From North Port to Red Hook (interior)	New York	1-10,000	1837	Charles Preuss.	40
Cow Harbor, North Port, and Eaton's Neck.	do	1-10,000	1837	F. F. Gerdes	96
Lloyd's Neek to East Neek and Lloyd's Harbor	do	1-10,000	1836	do	23
Hontington Bay	do	1-10,000	1837	do	24
Oyster Bay, Cold Spring, and Hog Laland	. do	1-10,000	1837	. .do	25
Glencove to Oyater Bay (interior)	do	1-10,000	1838	Charles Preuss	39
From Cold Spring to Glencove	do	1-20,000	1838	T. A. Jenkins	66
From Hog Island, Matinicock Point, and Red Spring	do	1-10,000	1837	F. H. Gerdes	26
Matiniceck and Hempatead Harbor	do	1-10,000	1837	. do	27
Cow Nock and Manhassit	.do	1-10,000	1837	T. W. Werner.	34
From Great Neck to Bowen Station.	...do	1-10,000	1837-50	T. W. Werner and H. L. Whiting.	33
Hewlett's Cove, Wilkins' Point, and Great Bay.	do	1-10, 00:	1837	Gharles Renard	14
Rye Point, Delaney's Point, and Rodman's Neck	do	1-10,000	1837	C. M. Eakin	21
From Horse Neck to Rye	do	1-10,000	1838	T. A.M. Cra	18
From Hewlett's Cove to Brooklyn	do	1-10,000	1837	Charles Renard	13
Thrag's Noek to Rodman's Point.	...do	1-10,000	1837	W. M. Boyce	46
Throg's Neck to Harlem River.	..do	1-10,000	1857-'59	F.W. Dort	604
Harlem River, east side, from High Bridge to King's Bridge.do	1-10,000	1859	C. hockwel	775
Harlem River and Throga Neck	do	1-10,000	1837	Charlea Renard	15
Fram Throg's Neek to Ward's Island	do	1-10,000	1255	F. H. Gerdes	488
From Little Neck Bay to Flushing Bay	do	1-10,000	1858	C. Rock well.	605
From Flushing Bay to Hunter's Poin	do	1-10,000	1858	H, L. Whiting	808
Hell Gate and vicinity.	do	1-5,000	1848	-....do	258
From Hell Gate to Brookly	do	1-10,000	1855	F. H. Gerdeb	483
Ward's, Randall's, N. and S. Brothere, and Recker's tshands.	.do	1-5,000	1357	H. L. Whiting	675
Part of Brooklyn, including Williambbarg and Green Point.do	1-10,000	1859	F. W. Dorr	789
Reconnaisance of Brooklyn, Williambburg, and Green Point.	. .do	1-10, 000	1863	F. H. Gerdes	917
New York, Brooktyn, and vicinity	do	1-10,000	1855-'57	A. Bonchke .	608
Long faland (ibterior) between Brooklyn, Flnshing, and Jamaica.	-...do	1-10,000	1862	H. L. Whiting.	924
From Brooklyn to Jamaica	.do	1-20,000	1837	T. A. Jenkins	36
From Brooklyn to Fort Hamilton ard Gowanan Island	do	1-10,000	1837	Charles Renaid	12
Vicinity ef Gowanus Ray	do	1-10,000	183	S. A. Gilbert	599
Vicinity of Gowanus Bay	do	1-10,000	1856	.do	598
Gowanue Ray and ricinlty	do	1-10,000	185	...do	597
From Gowanne Bay to Bath	do	1-10, 000	1855	- ...do	487
From Fort Hamilton to Conoy Ibland	do	1-10,000	183	Charles Renard	5
Coney Island and Dead Horse Inlet.	.do	1-10,000	1855-'56	S. A. Gilbert	586
From Coney Island to Rockaway Pavilion	do	1-20,000	1835	Charles Renar	4
Rarren Island, Reckaway Beach	do	1-20,000		S. A. Gilbert	535
Part of Far Rockawas, Long Ialand.	.do	1-9, 833	1860	F. W, Dorr	798
From Newlet's to Janaica and Hiekso	do	1-20,000	1837	T. A. Jenkine	38
Hickeville and Jamaica, Brubhville and M litham	. .do	1-20,000	1837	-....do	37
From Babslon to Fire Isjand and Rookaway	..do	1-20, 000	1835	Charien Henard	3
West end of Fire Island Beach, vicinity of Bay Share and Islip.	...do	1-10, $\mathbf{0 0}$	1873	C. Hosmer	1314
Fire Ialand Meach (a)	. .do	1-10, 000	1873-74	...do	1375 ab
Fire Ioland Beach (b).	do	1-10,000	1874do	
From Babylon to Patchoque and George's Neck.	do	1-10, 030	1834	Charlee Renar	1
Wert end of Fire Inland to Watch Mill (oopy).	do	1-10, 000	1834do	479
From Patchoque to Smith's Point.	.- do	1-10,000	1835do	2
Islip and Blue Point; Vleinity of Patchoque.	...do	1-10,000	1874	C. Hommer	1374 ab
Southampton, interior of Long Island..	do	1-10,000	1838	T. A. Jenkins	73
From Good Ground to Eist Hampton (southern shore).do	1-10,000	1838	Charles Renand.	59
Bridge Hamptor to Acabomock and Kabt Hampton...	. do	1-10,000	1838-46	T.A.JonkinsandJ.B.GRidat	34
Neapengue to Heant Hatopron		1-10, 000	1836	Charles Renard.	60
Neapeague Bay, vicinity of A maganett, Long Island	. ${ }^{\text {do }}$	1-10,000	1845	W. M. Boyce	61
Long Ieland, from Montauk Point to Neapeague Bay.	do	1-10,000	1838	B. F. Sauds, C. Romard	62

APPENDIX No. 7-Continued.

Localities.	State.	Scale.	Date.	Topographer.	Reglatured number.
Stateo Island	New York	1-10, 000	18.3-36	Charlis Renard	4
Tompkinsville, Staten Islant. (See No.9)	do	1-5,030	15.35	.do	6
From New Brighton to Great Kills, Staten Islan	.do	1-10,090	1855	A. S. Wadsworth	490
Staten Island, from New Brighton to Fresh Kills	do	1-10,000	1856	H. L, Whitiog	816
Raritan Bay, from Great kills to Wert's Point	. 10	1-10,000	185.5	A.S. Wadeworth	532
Staten I latn, from Ward's Point to Grat Kills	do	1-10,06,0	1851	H, L. Whiting	680 ab
	do	1-10, 000	185	- . do	751
	. do	1-5,000	185	Nobin Mechan	6\%\%
Bedhe's and Ellis's Islanda, New Fork Harbor	- . do	1-10,0.0	1855	F. H. Gercles	54.
New York City end Manhattan Istasd	. do	1-15,000	1<54-35	. do	47.
Manhattan Island, Eastern part of New York City to West Farms.	. . do	1-10, 000	1837	Charlen liepard.	${ }^{6}$
Manhattan Lalani, from Macomb's Dam to Spayten Duysel Creek, aud tracing.	$\ldots d o$	1-10,000	18.57	John Mechan	658
From Commanipaw to Palmipaw	do	1-10,000	1857	do	662
Hudson River, from Jersey City to Guttenbarg	- C do	1-10, 000	$1-5.5$	F. H. Gerdes	984
Madson River, from Guttenburg to Tublby hook	. do	$1-10,000$	185\%de	48.5
Hudson River, Guttenlurg to Jersex City	do	1-10,000	18.57	H. L. Whiting	610
Hudsou River, from Bulls' Ferry to Furt Washingtun	do	1-10,0,0	1837	. do	609
Hudson River, from Spuyten Duyvel Creek to Yonkens	-. .do	1-10, 010	1899	H. I. Whiting and C. Rockwell.	810
Madson Riter from Spuyten Dayrel Creek to Fort Wushington.	. . . ${ }^{\text {do }}$	1-10,000	1353	F. H. Gerdes.	418
Hadson Rirer, from Spuyten Dayrel Creek to Sounding Point.	do	1-10, 000	18.53	d	419
Hudson River, King's Bridge and vicinity	do	I-10,000	1839	T. A. M. Craven	113
From North Castle to Hudson River at Tarrytown	. .do	1-10,000	1839	. do	111
From Fiell West to Ronud Hill	. .do	1~10, 00.	1839	do	110
Hudson River, Greengbarah and vicinity	. . do	$1-10,060$	1839	. do	112
Hudaon River, from Fonkers to \#astings.	. do	t-10,000	1859	C. Rockwell	811
Hadson River, from Hastings to Tarrrtown	. . do	1-10,000	1253	r. II. Gercles	120
Hadson River, vicinity of Godwinsvilte	- . do	1-10,000	1 E 40	H. T. Dickell	132
Hudam River, Hastinge to Irviogton	. . do	1-10,000	1360	J. Mechan	800
Hudson River, from Irviogton to Paulias Hoik Mountain	- . do	1-10,000	18.9	do	750
Hadxon Fiver, from Sing Sing to Stony I'oint.	do	1-10,000	18.54	F. H. Gerdes	468
Hudson River, Tarrytown to Croton.	. $\mathrm{d}_{\text {do }}$	1-10, 000	18.33	. do	421
Hudson River, from near Tarrytown to Criton........	...do	1-10,000	1862-0. ${ }^{\text {d }}$	H. L. Whiting	963
Hadson River, west side, from Hoak Monutain to Haverstraw.	. . .do	1-10,000	1664do	969
Hudson River, from Croton Puint to Waker'e Hill and Bade Hill.	.. do	1-90,003	1239	H. I. Dickens.	95
Hudson River, from Haverstraw Bay to Anthony'e Nose	do	1-10,0.0	1234	F. IL. Gerdes	430
1udeon River, from Anthony's Noso to Cold Spring....	do	1-10,000	1861	Juhn Mechan	1014
Hudson River, frum Cold Spring to Newburgh	do	1-10, 000	1861	. 40	1011
Rondout Creek.	...do	1-5, 000	1858	C. Fendall	727
Esopus Creek	. . do	1-5,003	1853 do	741
Ifudabu River, fronn New Bal:imore to Ten Eyck	. do	1-5, 000	1856	A. Strausa	69\%
Hadena River, above Now Baltimore..............	. . do	1-10, 1.00	1856	A. S. Watsworth	5×6
Hudeon River, from Albany, No. 1	...do	1-10,000	1850do	533
Hudeon Rlver, from Albany, No. 2	. .do	1-10, 000	18.65do	514
Hudeon River, from Alunny, No. 3	. ${ }^{\text {do }}$	1-10,000	2856	. .do	50.5
From Fort Lee to Jersey City..	New dersey	1-10,000	1837	Charles Renard	17
From Jersey City to Caven Point	. do	1-10,400	$135 \overline{5}$	A. S. Wadsworth.	432
From Fort Lee to Boomper's Neok	do	1-10,000	1833	T. A. Jenking	96
From North Sualenburg to Pagatic Ri	. do	1-10, 000	1833 do	97
Passaic River and Newariz Neok	. .do	1-10,000	10.3	F. W. Dorr............	734
From Paterson to Weasel, (interior)	do	1-10,000	1839	T. A. Tenlins	98
From Weasel Monnt to Springfield, (interior)	. do	1-10,030	1534	. do	102
Springfleld, (interior)do	1-10,000	1839	.-.-. do	103
Bergen Neok to Centrevitle to New Jergey Railroad.	. do	1-10,000	1858	F. W. Dort	733
From Hackensack to Newark and Elizabethtown...	. do	1-10,000	1833	T, A. Jeakins	100
From Hackensack to Raterson, (interior)		$1-10,000$	1330 do...................	98
Wuatern pirt of Nowark Ray und Staten Iuland Sound H. Ex. 81-13	...do	1-10,000	1853	F. W. Darr.................	779

APPENDIX No. 7-Continued.

Localities.	State.	Scale.	Date.	Topographer. Pr	Repisiered number.
From Jersey Poiut to Constable Point.	New Jersey	1-19, 000	183	Chates Remard	18
From Caven Print to Coustable Point	do	1-10,0:0	1855	A. S. Walsworth.	489
Kill Von Kull and Newark 13x	do	1-10, 000	1855	. do	533
New Market, (interior)	do	1-10,000	1840	T. A. M. Сгатеп...........	131
Bound Isook, (interior)	do	1-10, OC0	1840	. do	135
New Branswiek and vicinit	do	1-10,000	1840	. do	136
Sand Hills and vicinity	do	1-20,000	184)-4.	do	137
Priuceton and vicinity, (interio	do	1-20,000	1840	F. H. Gerdes	127
Interior, between Princeton, Trenton, and Penmington	. do	1-20,000	1841	T. A. M. Craven	144
Between Shrewabury and Prioceton, (interior)	do	1-20,000	1241	H. L. Dickens	145
From Shrewsbury to New Branswick, (interior	.do	1-20, 900	1840	B. F. Sands	122
From Elizabeatown, eastward.	do	1-10, 100	1836	Charles Renard and T. H. Jenkina.	10
From Perth Amboy to Elizabetlitown	do	1-10, C00	18:36	Charles Renard	8
From Perth Amboy to Wuouliridge	do	1-10,000	18.35	Lull Adams	534
Haritan Valley, from Perth Amboy to New Brunswick	do	1-10, 000	1836	Chan los Renard	11
Elizabethport to Labway Creek	do	1-10, 000	1855	A.S. Walsworth	530
Helleville, (interior)	de	1-10,000	2e39	IT. A. Jenkius	101
Ralway, (interior)	. . do	1-10,000	1839	a	104
Suutin Rahway, (interio	do	1-10,600	1840	T. A. M. Craven	133
Fresh Kills, southrard	do	1-10,000	1855	A. S. Wadsworth	531
Raritan Ray, from East Point to South Amboy	. ${ }^{\text {do }}$	1-10, 000	18.5 .3	A. M. Harrigon	542
Maritan Bay, from Cowhead to Point Comior		1-10,000	10.5	do	541
Taritan and Sonth Rivers	to	1-5, CoO	1873	F. H. Gerdes	1354 a b
Navesink to South Amboy	do	1-20, 000	1 E36	Charles Renord	7
From Navesink to Pophar Creek	d	1-10,000	1839	B. F. Sands	114
Saudy Hook and Highlauds of Navesink	do	1-10,000	1855	A. M. Marriaon	486
Sandy Hook shoreline	do	1-10, 000	1753	F. H. Gerdes	413
Sandy Hook, nortli ward of Ocean	do	1-10, cos	1851	R. M. Bache	342
Sandy Hook	do	1-20,000	1850	H. L. Whitiv	275
sandy Fook	do	1-5, 000	1836	Charles Renard	23.
Sandy Hook, resurvey of	do	1-5, 000	12t?	H. L. Wbiting	894
Sandy Hook laland	do	1-20, 600	1843	S. A. Gilbert.	2.92
North and South Sheowshury Rivers	do	1-10, 000	1 c 65	C. IT . Baclse	1005
Shrewshury River, nombth	.do	1-10,010	1866	do	1022
From loplar Creek to Manasquam	do	1-10, 600	1839	B. F. Sanda	115
Coast between Deal and Squam Beach	do	1-10,000	$1867{ }^{*}$	C. M. Bacho	10 ± 3
Interior, in vicinity of Squam	do	1-20,000	1842	H. L. Dickens	158
Coast between Squam Village and Barnegat Bay		1-10, 000	1868	C. M. Bache	103t
New Jersey Coast, Bannegat to Toms Rive		1-20, 40	1874	. do	1371
Mannsquan to Metiticonck		1-10,000	1819	B. F. Sands	116
Metiticonck to Cedar Creek	do	1-10,000	1839do	117
From Metiticonk to Barnegrat Inlet	do	1-20,000	1849	Cbatlea Repard	178
New Jersey corst, from Manahswken to Marnegat....	do	1-90,000	1×73	C. 1I. Bache	13156
New Jersey coast, from Tuckerton to Manahawken.		1-20,000	1872	do	1315 a
Mullican River, from Port Repablic to Green Bank.	. l o	1-10, 000	1893	H. M. De Wee	1313
Littlo Egry Harbor and part of Mullican liver	. do	1-20, 000	1871	C. M. Bacho.	1333
Interior, Goose Creek and Goed Luck Poin		1-20,000	1842	H. L. Dickens	159
Ficinity of Goose Creek, (iuterior)	do	1-20, 000	1843	do	169
From Cedar Creek to Baruegat	do	1.10, 660	1839	IS. F. Samls	118
Barnegat Inlet	do	1-10,020	1866	C. Fendall	1015
From Bamegat Inlet to Great Swamp	do	1-20, 060	1839	Charice Renard, B.F.sands	121
From Rarnegat Bay to Little Egg Harlo	do	1-20,000	1F39-41	L3. F. Sands.	119
From Little Egis Harbor to Dry Iulet	do	1-20, 600	1 1841	.-. ${ }^{\text {do }}$	142
From Dry Inlet to Great Eigy Elarbor	do	1-10, 000	1291	. do	143
Alueconn Inlet	. . to	1-10,000	1864	H. W. Bache	958
Absecom Inatet and vicinity	do	$1-20.000$	1869-'70	C. M. Mache.	116
From Great Egg Harbor to Coreon's Inlet	do	1-10,000	1842	B. F. Sands.	148
From Corson's Inlet to Cape May Court-Honse.	. . do	1-10,000	1842	-.....do	147
From Cape May Couxt-House to Cape May Island.	do	1-10, 000	1242	G. 1. Wis	148
From Cape May Light to Cape Mas Court-House.	. . ${ }^{\text {do }}$	1-10,000	184?	George D. Wiso	149
From Cape May Court-House to Dennis' Creekdo	$1-10,000$	$1 \mathrm{et9}$	F. H. Gerdes................	153
From Goshen to Fishing Creek, peninsula of Cape May	. . . do	1-10,000	1842	2.....do	134

APPENDIX No. 7-Continued.

Localitics.	State.	Scale.	Date.	Topographer.	Recistered mamber.
From Ben Davig' Point to Demin Creek, Delaware May.	Neft Jersey	1-20, 000	1842	F. H. Gerdes	15.
From Greenwich Creek to Dennisville, (interior)	do	1-20, neo	18.42	H. L. Whiting	15.7
From Greenwich Creck and Cobansey to Salem Creek	d 1	1-29,000	1842	do	5
From Liston Point to Ben Daris' Point	New Jersey and Delaware.	1-10, 000	1841	F. H. Gerdes.	141
From Liston Point to Den Davis' Point, Delaware River	New	1-20,000	1841	...do	63
From Salem Creek to opposite Pemn Grove	..do	1-20, 000	1843	H. J. Whitin	156
From Salem Creek to I'enn Grove.	do	1-10.000	1896	T.J.S Hassle	163
Schaylkill River, from League 1 sland to Grey's Ferts, and from Grey's Ferry to Suspension Bridge.	Pennsrlvania	1-5,000	1873	H. Gr. Ogden	1313 ab
Lengue Island channel ami riciuity.	\ldots. do	1-9, 500	1265	R. M. Bache.	955
Stakes in the Gat east of the lritge Lragne Islant.	do	1-2, 500	1865	- do	
From Lazarelto to mouth of Scluylkill River.	Sen Jerey aud I'ennsylvania.	1-10, 6.00	1 ctz	W. M. Boyce	161
Lazareto to Dupants What		1-20, 000	124if	J. J. S. Hassl	112
From Penms Grove to Lazaretio	do	I-10, 000	1841-2	W. M. Boyc	101
Part of Pbiladelphia and New Jersey side of Delaware River.	do	1-5, 000	1843do	169
Part of Pliladelphia, Catuden, N. J., and ricinity.....	.. do	1-10, 060	1843-71	W. M. loyce, A. Livedeukohl.	165
From Cowperthwnite to Coorer's Point, Mancocnis Creek	.. do	1-10, 600	1833-44	J. J. S. Hassler .	168
From Rancocus Creek to mirlington and Bristol	do	1-10, 000	184:3-4	. ${ }_{0}$	167
From Bristol to New Cold Island	do	1-10, 600	1843-4	..	171
From New Cold Istand to White Hill	do	1-10,000	1e43'-4	do	173
From White Hill to Trenton.	do	1-10. 000	1843-4	George 1). Wiso	192
From Wilmington to Pea Patch Inland	New Jersey aud Delamare.	1-10, 000	$1 * 41$	F. H. Gerdes.	138
From Pea Patch Meland to Liston's Tree	do	1-10,000	1841do	140
Wilmington to Neweastle	Delaware	1-10, 000	1839	. do	139
Whimington to Iren Hill, (interior)	Delaware and Ma. ryland.	1-20, 000	1×43	T. W. Werwer	164
From Ash Signal to Rigg's Hill, (interior)	.	1-20,000	184	. ${ }^{\text {o }}$	170
Bumbay Hook Island to Mispillion Light.	Delawa	1-20,000	1842	F. H. Gerdes	150
From Mispilion Light to Cape Healopen	do	1-20, 000	1842	do	151
From Cape Henlopen to Indian River.	do	1-20, 000	1845	J. J. S. Hassle	226
Salt Point Beach to Dromedary Signal.	Delamareand Maryland.	1-20,000	1850	George D. Wise..........	2994
Beach Honse to Suuth Birch	Maryland.	1-20,000	1849	. ${ }^{\text {do }}$	20;
Head of Assateague Bay to Pope's Island. .	. do	1-20,000	1850	do	264
From Pope's Inland Beach to Lonesome Hin	...do	1-20,000	1850	do	311
Assateague Island and Parkers Eay	...do	1-20, 200	1859	C. Fetgneam	76.
Lonesome Hill to Chincotcague Iulet.	do	1-20,000	1849	George D. Wise	5×2
Coast southward to Little Inlet.	. do	1-20,000	1849do	504
Ckincoteague Inlet and Bay	Virginia	1-20, 000	1858	N. S. Finney	204
Chincoteague Bay .	do	$1-20,000$	1858	C. Ferguson	723
Chincoteague Inlet and vicinity	.do	1-20,000	1856	George 17. Wise	5×0
Wallop's Island and Asbarrawan Island	do	1-20,000	1851	W. M. Johnson	3 ¢7
From Wallop's Islaud to westward of Gargathy Inlet.-	do	1-20,000	1855	George D. Wise	492
From Garguthy to Wachapreague Intet.	...do	1-20,000	1852-4do	464
Wachapreague Inlet and vicinity ..	do	1-20, 000	1852	do	510
Little Machipongo, Paramore's Island, and Wachapreague.	do	1-20,000	1852do	51
Great and Litto Mathipongo Inlets....................	do	1-20, 000	1852	. do	511
Great Machipongo Inlet to Little Inlet.	do	1-20,000	1853	. .do	5
New Inlet, eonthward to Smith's Island Light.	do	1-20,000	1852 do	520
From New Inlet to Cape Charles.....	do	1-m, ofyo		. do	509
Entrance to Chesapeake Bay, (practice sheet)	...do	1-20,000	1233	S. A. Waiowright .	394
From Cherrystono Inlet southward to Corten's Station	. ${ }^{\text {do }}$	1-20,000	1852	John Sei	495
Oceobannoek, Naswaddox, and Hunger's Creeks	do	1-20,000	1251 do	350
From Sauty Point to Pungotragae Creok.	do	1-20, eco	1850	J. Stib, S. A. Wainwright	307
Pangoteagae Creek to Cheeconnessex and Onancock Creak.	..do	1-20,000	1850	. .do	308
Pocomoke Sound and Bay	d	1-20,000	1851	do	349

APPENDIX No. T-Continued.

Localities.	State.	Scale.	Date.	Topographer.	Registered number.
Tangier Island and Watts Ieland	Virginia	1-20,000	1850	J. Seib, S. A. Wainwright	$309{ }^{\text {i }}$
Pocomoke Sound, from Guilford Creek to Messang	do	1-20,000		S. A. Wainwright	5\%9
Pocomoho Sound, apes Hole Creek	Maryland	1-20,000	 do	528
From Fox Island to Little Annemessex River	do	1-20,000	1849-51	R. D. Cutts, J. Seil, and S. A. Wainwsight.	27.2
Deils Istand and Manokin Rivor	do	1-20,000	1849	. do	220
Smith's Island, Chesapeake Day	do	1-90, 000	1249	John Seib	231
Bloodsworth Island and South Marsh Island	do	1-50, 000	1849 10	20.9
Tangicr Sound and Wicomice hiver	do	1-20,000	1849	F. D. Catte, J. Seib, and S. A. Wainwright.	2 CB
Fishiog Day and part of Nauticoke River	.. do	1-20,000	1849 do	$2 \mathrm{C7}$
Part of Nanticoke River, vicinity of vienna	do	1-20, 003	1849	J. Seib. S. A. Wainwright	266
Mouth of Honga River and Hooper's Straits	.. do	1-20, com	1848	12. D. Cutts, J. Seib	265
Honga River, upper patt	.. do	1-20,000	1843	R. D. Cuts	255
Mebkin's Neck, (ibrluted in No. 259)	. ${ }^{\text {do }}$	1-20, 000	1654	H. L. Whiting.	451
Sharp's Island, Chesapeake Bay	.. do	1-20,000	1848	George D. Wise	231
Mouth of Choptank River, Cook's Point to Cambridge	.. do	1-20,000	1 c 47	12. D. Cutts.	225
Little Choptank River, from Meekin's Neck to Cook's Poiut.	do	1-20,000	1847-8	George D. Wise..........	250
Claptank River, from Handbrook's Point to Cabin Creek.	do	1-20,000	1818	R. D. Cutts..	233
Choptank River, from Cabin Creek to Wing's Landing	de	1-20,000	1248	do	254
Saint Miehael's Liver and Thirdhaven Creek	do	1-:0,000	1837	$\ldots .$. d	224
From Ward's Point to Locust Point, Sharp's Island, and Poplar Islad.	de	1-20,000	1846-7	George D. Wise.	215
Kent Island, Eastern Bay, Wye and Saint Michael's Rivers.	. do	1-20,000	1247	IR. D. Cutts........	223
Keut Island base and vicinity	do	1-10, 000	1844	H. L. Whiting.	181
Part of Kent Island	... do	1-20, 000	1847	R. D. Cutts.	$2 \cdot 1$
Mouth of Chester River	do	1-20,000	1846	J. C. Neilson	200
Shores of Chester Liver	do	1-20, 000	1346do	21
From Swan Creek to Eastern Neck Inlet	do	1-20,000	1846	R. D. Cutts	199
From Swan Point to Wharton Point and Pool's Ialand.	. do	1-20, 000	1845do	187
Sassafras River entrance	do	1-20,009	1554	H. L. Whiting	469
Sassafras River	do	1-20, 000	1846	J. J. S. Hassler	279
Eik River	. 10	1-20, 000	1860	H. Aulame.	789
Elh and Bohemia Rivers and Back Creek	do	1-20,000	1845-55	J. E. S. Hassler and H. L. Whiting.	186
North-East River ontran	..do	1-10,000	1844-5	J. J. S. Hassler	185
North-Eagt River	do	1-10, 000	1844-5do	184
Subquebanna River, Hatre du Graceand Port Deposit.	do	1-10.000	185	R. D. Cutts	189
Head of Chesapeake Bay, from Havre de Grace to Specntie Creek.	- . do	1-10, 000	1815do	188
Heal of Chesapeake lay, from Susquehanna River to Bush River.	. ${ }^{\text {do }}$.	1-80,000	1845	George D, Wise..........	512
From Swan Creeis to Bush Miver	. do	1-20,000	1845-6	R. D. Cutts.	190
Juash, Gunpowder, Bach, and Middle Rivers	do	1-20,000	1846-'7	George D. Wise.	213
From Bush River to Baltimore City.	. da	$1-20,000$	1846	R. D. Cutta.....	197
Back River	. do	1-20,000	1846-7	George D. Wise.	214
North chop of Back River, Miller's and Pool's Islauds.	. do	$1-20,000$	1854	H. I. Whiting ...	4.0
Patapsco Neck, Rear Creek to North Point	do	1-20,000	1853	. do	4.96
Patapeco River, eastern shore	. . do	1-20,000	1845-6	George D. Wise...	248
Patapsco River, eastern shore	..do	1-80,000	1845-6	...do	219
Patapsco River	.do	1-20,000	1847	...do .	221
Patapsco River, western ahore.	do	1-20,000	1846	...do.	220
Patapsco Lider, from Colgate Creek to Bear Creek....	. . . do	1-20, 000	1852	H. L. Whiting	401
Patapseo River, north shore, from Fort Marshall to Bear Creek.	...do	1-10,000	1866	C. T. Inrdella..............	1604
Patapeco River, south ehors.	. . . do	1-10, 000	1265	...do	083
Patapaco River	do	1-10, 000	1851-'55	J. B. Gliuck, II. L. Whiting	306
Balimore City	. . . do	1-10,000	1845	Gearge D. Wise...........	216
Ballimore City ...		1-10,000	1849	J. B. Glitek...............	217
Vicinity of Badtiumer, west eide	\cdots	1-10,000	1 ± 63	J. W. Donn	028

APPENDIX No. 7-Continued.

Localities.	State.	Scale.	Date.	Topographer.	Registered number.
Vicinity of Baltimore, northwest side	Maryland.	1-10,006	$1 \div 64$	C. M. Baclee.	936
Baltimore and ticinity, nortbeast side	. .do	1-10, 000	1864	C. T. Iardela	935
Vicinity of baltimore, west sile	do	1-10, 000	186.5	du	97
From Sandy Foint and Merrick to Bodkin Pojnt.	do	1-10,004	18.4	F. H. Gerdes	175
From Sandy Point to Thomas Point and mouth of Severn River.	. ${ }^{\text {do }}$	1-10, 000	1844	..do	174
Magothy River, Chesapeake Bay.	. ${ }^{\text {do }}$	1-1,000	1845	. d o	179
Severn River, Hackett's Point, to Celdar Point	do	1-10, 000	1×4da	176
S.verb River (included in No. 176)	do	1-10, 000	1844	. do	177
South River, Cherapeake Bay	...do	1-20,000	18.4	George 1. $\mathrm{Y}^{\text {ise }}$.	24.
South River (inchated in No. 24\%)	. ${ }^{\text {do }}$	1-20, 000	1847do	24
South River (inclabed in No. 12i)	do	1-13, 000	18.4	do	178
From Sarders' Point to CLew's and West Rire	do	1-20, 000	1 ffi	R. D. Cutts	148
From CLew s to Parker's Creek	co	1-20, 000	184	J. J. S. Massler	200
From Parker's Creek to Cove Puint	do	1-20, 006	1847	. .do	2 c
Cove Point and ricinity-	do	1-20,000	1852	Johat Seit	3×8
Patuxent River entrance, Core Point to Drum Point.	do	1-20, 006	1848	R. D. Cutt	256
Patuxent River, from Point Petermon to Rattle Creek	(1)	1-10. 000	1860	H. Adams	812
Patuxeut River, from Ratle Creek to Goils Grace Poini	do	1-10,006	1-60	do	813
Patuxent River, from God's Grave Point to Point Sullin.	. do	1-10,000	1859	. do	814
Patnxent River, fom Point Solin to Point Jones	no	1-10, (0)	15.5	. do	$8: 5$
Jinkius' Creek, Cambridge, Oyster Pcint, and Jamaica Point.	do	1~20,000	1048	1. D. Cutts, John Stib	259
Potomac River entrance	do	1-20, 600	1849- ² 6	do	458
Saint Mary's River	do	1-20, 100	1e5s-'9	H. Adams	76
Saint George's Island, Saint Mary's River	10	1-20,000	18.9d 0	814
Potomac River, from Saint George's River to Higgins's Point.	. do	1-20, 000	1 1eis	J. W. Doan	1103
Potomac River from Clement's fay to Swan Point ..-	. . do	1-20,0,0	1208	. do	1105
Potowac River, from Smith's Point to Fair Oaks.	Maryland and Fir. ginia.	1-20,000	1802	C. Hesmer	865
Potomat River, from Smith's Point to Nanjemoy Store	Maryland	1-20, 000	1262	A. W. Lungfellow	863
Yeocomico and Coan Rivers	Virginia	1-20, 000	1268	J. W. Doun	1102
Nomini and Currioman Bays	do	1-20, 000	1268	.. do	1104
Mattox Creek and part of Nomini Creek	do	1-20,000	1868do	1106
Potomac River, from Cobl Point to Swan Point	Maryland	1-20,004	1862	c. Hosmer	858
Potomac River, from Swan Point to the Trunk	. . do	1-20, 000	1262	d. Mechan	859
Potomac River, from Cedar Point to Nanjemoy Store..	do	1-20, 000	1862do	862
Potomac River, from Lone Point to Persimmon Point ..	Virginia	1-20, 600	1862	do	860
Potomac River, from Metomkin Point to Persimmou Point.	Maryland and Vir. ginia.	1-20, 000	1862	H. L. Whiting	806
Potomac River, from Metomkia Point to Aquia Creek.	Virginia	1-20, 000	1862	J. Mechan	804
Potomac River, from Shippiog Point to High Point....	...do ...	1-80, 000	1862do	867
Potomac River, from Fair Oaks to Iodian Head.......	Maryland	1-20), (1)0	1862	A. W. Longfellow	866
Potonac River, from Indian Head to Fox Ferry .	Maryland and Yirgiuia.	1-20, 009	1262	C. Hosmer	¢75
Potomac River, from Broad Creek to Oxen Hill	Maryland	1-10,000	1863	A. M. Marrism	908
Potomac River, vicinity of Rualer's Blaff	Virgiaia	1-5, 000	186:2	..do	895
Jones's Point, Potomac River.	do	1-10,000	$1 \mathrm{EG3}$	do	905
Jones's Point, near Alexandria, continuation of special survey.	. ${ }^{\text {do }}$	1-1, 0009	1863	C. M. Bache.	909
Potowac River, from Jones's Point to Little Falls Bridge	. do	1-15,000	1863	C. H. Boyd	910
Alexandria to Mount Vernon	do	1-15, 000	1861	J. Mechau	947
Alexandris to Briley's Cross-Roals	do	$1-15,060$	1864	F. W. Dor	941
Alexandria to Burke's Station	.. do	1-15, 100	18fi4	. . do	949
Arlington, part of, Sheet No. 1	. do	1-1, 200	12at	E. IIergerbiemer	1025
Arlington, part of, Shect No. 2	. ${ }^{\text {do }}$	1-1, 200	1864do	1026
Topography around Fort Lyou	. .do	1-10, 1000	1863	C. M. Dache	916
Balluy's Cross-Roads to Miner's Hill.	. do	1-15, 000	1264	C. Rockwell	91
Dogue Run to Fairfax road	...do	$1-15,000$	1861	J. Mecban	913
Manassas, rebel defences.	...do	1-10,0\%0	1862	II. L. Whiting and C. M. Bacbe.	848
Forte Ethan silen and Marcy, vicinity of..	...do	1-15, 000	1864	T. W. Robbias	931

APPENDIX No. 7 -Continued.

Localities.	State.	Scale.	Date.	Topographer.	Aegistered number.
Forts Chaplin, Mabab, mad Seldgwick.	Dist. of Columbia	1-10, of 0	1865	C. M. Bache	1036
Aqueduet to Chain Bridge (Little Fallis)...............do	1-15, 600	180	Dorr, Mechan, and Robbins.	943
Chain Bridge to Proapect Hill	...do	1-15,000	1864	F. W. Dorr	944
Potomac River, from Georgetown to foot of Tittle Falls	-..do	1-2, 500	1872	C. Jubkin	1340
Potomac Rivor, from Rashrille to Great Fulls.........	Maryland	1-10.c00	1865	John W. Dono	990
Potomac River, from Young's Island to Rushrille	.. do	1-10, 000	1265do	949
Potomac Tiver, from White's Ferry to Young's Island.	-. do	1-10, ceo	186.5	\ldots... dn	988
Phtomac River, from Hester's Island to White's Ferry	...do	1-10,000	1×65	. ${ }^{\text {d }}$	987
Potomac River, from Beilin to Hester's Islaud........	.. do	1-10,000	186	. do	9 ¢¢
Fotomae liver, from Sliarpsbarg to Berliu	d	1-10,000	1865	. do	985
Williamsport and vicinitydo	1-20, 000	1862	J. Mechan and C. Hosmer.	87
Upper Potomac, from Figh Knol to Shepherdstown ..	Maryland and Vir. ginia.	1-10, C00	1865-66	J. W. Donu	1014
Upper Potomac, from Locis No. 36 to High Knob	do	1-10,000	1806	. do	1013
Vicinity of District of Columbia (southeast portion)	Maryla	1-15,000	1863	do	925
From Bladensburg to Leesboro, adjacent to District of Columbia.	...do	1-15,000	1863	C. Fergusoz .	903
Northeast side of District of Columbia	do	1-15,000	1663-94	Ferguson and	950
Tedallytown to Great Falls	..do	1-15, 000	1864	F. W. Dorr	945
Tenallytown to Eockville.	10	1-15, 000	1864	Rockwell and Donn	946
Eutrasces to Great Wicamico and Potomac River	Virginia	1-90,000	1850-36	John Seib	500
Ingram's Bay, Dividing Creek, and Fleet's Bay	.. do	1-20, 009	1850	John Seil and S. A. Wainwright.	310
Rappaliannock River entrance	...do	1-20,000	1851-56	John Seit	521
Rappahannock River	do	1-10,000	1856	Hall Adaras	603
Trappahannock River, Machim's Creek to Stiff	...do	1-10, 000	1857	--..do	66
Jappabanneck River, Bailes's Bhaft to Machin's Creek	do	1-10, 000	1857	do	659
Rappabaunock River and Currotomau	do	1-10,000	18:7	. ${ }^{\text {do }}$	661
Rappahannock River, Lagrange to Punch Bowl	do	1-10,000	1856	do	602
Happahannock River, Puncl Bowl to Layton	do	1-10,000	1855	Jollu Stib and A. Stransz	520
Rappahannock River, Layton to Accaceek Point	. . do	1-10,000	1855	. ${ }^{\text {do }}$	519
Rappahannock River, from Accaceok Point to Ferry Margh.do	1-10,000	1855	. ${ }^{\text {do }}$	518
Rıppahanook River, from Ferry Marsh to Cliff	do	1-10,000	183	do	517
Happahannock River, from Cliti to Leeds.	do	1-10,000	1855	. do	516
Rappahanock River, from Leede to Brick Quarter...	.do	1-16, 0:0	18.5	. do	515
Rapphannock River, from Brick Quarter to Holland Point.	...do	1-10,000	1254	John Seils.	514
Rappabarnock River, from Holland Point to Lamb Creek.	.-. do	1-10,000	1833-34	. ${ }^{\text {do }}$	513
Rappahannock River, from Taylor to Falmouth........	do	1-10,000	1853do	434
Rappabannock River, from above Corbin's Neck	do	1-10,000	1853	.do	435
Rappakannock River, part of the left bauk in tho vicisity of Frederickaburg.do	1-10,000	1862	T. W. Robbins	872
Irredericksburg, vichnity of	do	1-10,000	1862	C. M. Bacho.	871
Rappabantock River, reconnaissance of roads, part of left bank.	...do	1-10,000	1262	T. W. Roblins	873
Accomack County, part of	. . do	1-20,000	1862	C. Hosmer	868
Line acrosa the Peninsula of Eastern Virginia, Accomack Connty.	do	1-20,000	1562	A. M. Harrison	690
East Sbore of Virginia, Droadrater, Sheet No. 1.	do	1-20,000	1869-70	J. W. Dom	1203
East Shore of Virginia, Broadwater, Sheet No. 2	do	1-20,000	1869-'70 do...	$1202 a$
East Sbore of Virginia, Breadwater, New Inlet and North Branches.	...do	1-20,000	1871	..do	1292 b
Eant Shore of Virginia, Broadwater ${ }_{\text {, }}$ Sheet No. 4		1-20,000	1851	do	1200
East Shore of Virginia, Broadwater, Sheet No. 3		1-80, 000	1869-70do	1201
East Shore of Virginia, head of Machipongo River.	. .do	1-20, 006	1871	..do	1204
Piankatank Rise	do	1-20,000	1269do	1100
Chesapeake Ray, from Woll Trap to Cherry Point	do	1-80,000	185	Julim Soib	503
Mobjack Bay, tributary of Chesapeake.	do	1-80,000	1853 do	504
Moljnek Ray, North, Ware, and Severn Rive	. . do	1-80, 600	1860-6E	G. D. Wiee and J. W. Denn.	1101
Mouth of York River	. . do	1-20,000	1853-34	Joim Seib..................	406

APPENDIX No. 7-Continued.

Lecalities.	State.	Scale.	Date.	Topographer.	himintered mamber.
York River, from Wurmley to Clay Bank.	Virginia	1-20, Nem	18.57	Jotin Seib	605
Yor: River, from Clay Bable to Mount Folls.	do	1-20, 000	183-3\%	do	6isf
Tork River, from Mount Foliy to Weat Point	do	1-20, act	18.5	do	212
Back River and Pocosin River entrances	. do	1-20, 000	1*53-54		499
Old Point Comfort, and entrances to Hampton Road	\ldots.. ${ }^{\text {d }}$	1-20,000	1453-54	Joln Seil	56.
Hampton Roads and viciuity	...do	1-20, 000	1853	do	501
Cravey Island	do	1-1, 200	1874	J. W. Donn	$13 \% 6$
Elizabeth River entrance	-. do	1-20, 600		. Fohn Sitib	
Hlans of confederate furtifications, Eliziboth River	do	1-2, 500	1862	A. M. Karisou	20\%
United States navy-yard, Gesport and Rebel battery at Saint Helena, opposite the wavy-yard.	do	1-2, 500	186\%do	80
Norfolk Earior	do	1-10, 000	1×56	John Seib	506
Norfolk, Portamenth, and Cosport	. 10	1-10, of:	18.4	C. M. Bache	13.
James River entradee	. . ${ }^{\text {do }}$	$1-20,000$	183	John Seib	497
Nansemond River, upper part	. .do			do	505
Nansermond River, sheets 4 and 5	...do	1-10,000	1374	C. M. Bache	135206
Nansemond River, sheet 1	. do	1-10,000	15.4	...do	133
Newport News Puint	- 610	1-10,000	186 G	E. Hergesheimer	100 -
Jumbes River, Newport News to Pagau Creek	do	1-20, m0	1871-72	J. W. Donu	1265
James River, Pagan Creck to Point of Shoal lighthouse.	.. do	1-20, 600	187\%-73	..do	1206
James River, Burwells Bay, (Point of Shoal lighthouse, to College Creek.	...do............	1-20,000	1373	do	1289
Jamea River, College Creek to Chicahominy River.	.. do	1-20. 000	187:-74do	1290
Chicaliominy River (e sfleets)	do	1-20,000	1273-34	..do	1331 at
James River, Maycos Point to City Point	do	1-10, 000	1×53	John Stil	431
James River, City loiat to Cuns' Neek	. . 10	1-10,000	18.3do	420
Jawes River, from Curls Necis to Duter	do	1-10,000	1853	- - - . ${ }^{\text {d }}$	4.
James River, Trent's Reach	do	1-5,000	18.3	S. A. Waineright	$3: 3$
James River, from Dutch Gap io	do	1-10, 090	1853	Tumu stilu	12
Jamea River, from Warwick Bar to Richmond Bar	do	1-5, 000	1833	S. A. Wainwnight	3012
Jamen River, from Drewry Ieland to Mayo's Bridge	do	1-5,000	18.3	. do	3.1
Richmond City.	...do	1-5,000	1857-5\%	1I. Sume	di
Appomatox River, from City Point to Walthall	...de	1-10,000	1853	Joban Seib	313
Part of Appomattox River and Petersburg	...do	1-10, 000	1453	John Seib, S. A. Wais. wright.	зє9
Lymon Haven Roads	..do	1-80,000	1352	J ohn Seib...	50%
Cape Henty	..do	1-20, 000	18	J. J. S. Hassler, v. Mechan	258
Back Bay .	. . do	1-20, 0.0	1859do	21.3
Nortil River	..do	1-80,000	1859	J. Meelan	
Head of Carrituck Sund.	Virginia \& Nortb Carolina.	1-20, 000	1858	J.J.S. Hassler, J. Mechau.	336
Currituck Sound.	North Casolina..	1-20,000	18.7	J. J. S. Massler	6\%
Carrituck Sound, from North Banks to Jonns's Hill...	do	1-80,000	1851-52ds	381
Curritack Sound, from Nortl Banks to North River..	.do	1-20,000	184--19	do	292
Pasquotank Miver, from entrance to Floating Bridge...	do	1-20,060	184	J. C. Neitson	cu
Camdeu and Wade'a Points, Albemarle Sumd..........	...de	1-20,000	1801	J. Mechan	43
Big Matty River, Alvemarle Sound .	do	1-20,000	1×47	J.C. Neilson	608
Little River and enrirome, Albentarle Sound	...do	1-20,003	1847do	203
Perquimons River, Albernarle Sound.	...to	1-20,000	1847dia	210
Albemarle Sound, from Smith's Point to Sands Peint..	do	1-60, 060	1843	J. J. S. Hassier	217
Albernarle Sound, from Lanrel Point to Stith's Point.	do	1-20,000	1818	for	211
Chowan River, month of, Albemarte Sound.	do	1-20,000	1260-31	J. Mrctan	82
Chowan River, from month to Culeraine..	. 10	1-20,000	1874	H. Adams	1335 n
Chowran Rivert Coleraine to Harrold's Landiag........	do	1-20,000	1874	do	1335
Troanoke River, mouth of, Albemarle Snuad..	do	1-20,000	1861do.	${ }^{36}$
Ronnoke, Fastmost, Middle, and Cashaj Rivers and riciaity.	. do	1-20,000	1864	I. E Halter	92
Albemarle Sound, from Lozg Sioml to Laurel Puint....	do	1-20,000	1848	J.J.S. Hawsler	246
Alligator River, from Cypress Creek to Long Shoal...	do	1. 20, 000	1249	A. W. Longfulor	284
Alligator River, from Cypress Point to Bear Point	do	1-20,000	1849do	2 5
Alhemarle Sound, Durant's Island, Holliver.	do	1-80, 000	1848-49	J.J.S. Hassler	293
Durant's Imand, Alberurie Sound	do	1-20, 000	1801	J. Mechan	- 823

APPENDIX No. 7-Continued.

Localities.	State.	Scale.	Date.	Topographer.	Regintered number.
Foanoke Sound, Eill Deril. Hills to Nay's Feal	North Carolin		1851	I.J. S. Hassler .	3.1
Roanoke Island, part of	do	1-20, 0:0	1261	J. Mechan	823
Croatan Sonnd and lower end of Roanoke Islaud.	do	1-20,000	1804	R. E. Halter	933
Jodie's Island, Nag's Head to Wreck	do	1-211, 000	1819	A. W. Longfellow.	3.4
Isodie's Islasel, part of.	do	1-30, 0c0	1260	J. Mechan	791
From Wrecte Statiord to Bay Surn	do	1-29, 000	18.9	Hull Adams	367
From Bay Signal to Cape Hatteras.	do	1-20,000	$1+52$do	374
From Cape Hatteras to Hatteras Inlet	do	1-20, 000	1-6il	I. Mechan	790
Cape Hatteras to Materas Iulet.	do	1-20, 600	$18 \% 2$	C. T. Iardella	1216
From Getteras Inlet to Great Swash	.do	1-20,000	1860	Jobn Mechan.	792
Hatteras Inlet	do	1-20,000	1452	Hull Δ dams	372
Hatteras Inlet	do	1-10, ${ }^{\text {coo }}$	1857	J. Mechan	623
Ocracoke Inlet	do	1-10, 000	1857	\ldots...do	022
Ocracoke inlet	do	1-20, 000	18.2	Hull Aulams	3 3 0
Pungo River		1-20,000	1872	F. W. Dorr	1273
Padgo River, upper pattof, Pungo Point to Leachivile.		1-20,000	18.3do	1310
Pamplieo Somal, Willow Point to Swanquarter..	do	1-20,000	1873-'	C. T. Iardeila	1355
Pamplico River, from Rumley Marshes to Ragged Point	do	1-20,000	1871	F. W. Dorr.	1210
Pamplico River, from Mauls Point to Rodman's l'oint	do	1-20,000	1871do	1211
Pamplicoriver, fom Adans's l'oint to Rumley Marshes	do	1-20,000	1 181	. ${ }^{\text {do }}$	1212
Pamplico River, from light-house to Indian Island	do	1-20, 000	1671	do	1213
Washington and itsenvirons.	to	1-10,006	1072do	1274
May River, Pampl'co Sound	do	1-20, 600	18 ¢9	. do	1094
Shore hine, from bay River to Pamplice Sound	do	1-20.000	1869do	1095
Cedar Island and vicinity.	do	1-20,000	18.2	C. T. Iardeila	127\% ${ }^{\text {b }}$
Portsurouh Lshund and part of Core Beach.	do	1-20, 600	1869	C. Fontall	1016
Main shore of Core Sound, from Hall's Point to Will. ie's Mill.		1-20, 600	1873	C. T. Iaxdella	1306
Core Sound, northeast part of	do	1-20,000	1866	W. H. Dennis	1020
Core Sond, southwest part of.	do	1-20, 010	186iodo	1017
Nense River, from Newbern to Johnson's Point. (See 488.)	* 13	1-10, 060	1866	F. W. Dorr.	1031
Nouse Liver, from Johnson's Point to Beard'a Creek.	do	1-20, ${ }^{\text {de }}$	1276	. d do	1018
Nense River, from Beard's Creek to Wilkiumen Point	do	1-20, 000	$1-67$do	1051
Nease River, from Withinson Point to Cedar Point	.do	1-20, 0:0	1867	do	1052
Neuse River, from Cedar Point to Brown'a Creek	do	1-20, 000	1863	d	1073
Nense River, from lifowns Point to Point of Marsh.	do	1-20,000	1868	..do	1074
Nense River, shore-line. (See 1031).		1-20, 000	1863-'4	A. Strausz	928
Goldstoro, western approaches, including itade fenses...	do	1-10, 003	1265	F. W. Dorr	970
Goldintme, eastern approaches to.	do	1-10,000	1865	C. Rock weil	971
Cape Lookont mad part of Core Sound.................	do	1-20,000	1853	A.S. Wadswortia	416
Seaufort Harbor.	. ${ }^{\text {do }}$	1-10, 000	1831	H. I. Whating	315
Beaufort Harbor	Ho	1-10,000	1851	Charles P. Bolles	348
Beanfort Harbor.	. ${ }^{\text {do }}$	1-20, 000	1254	A.S. Wadsworth	438
Beanfort Harher, reaurvey	do	1-10,000	1863	A. Buschie	874
North and Nowport Rivers	do	1-20, 000	1873	C. M. Bacle	1328
Bngres Sonnd, from Brand Creek to Queen's Creek	. .do	1-20, (1)0	$18: 1$	H. Adams.	. 1215
3ogae Sonnd, part of ...	do	1-10,000	1867	A. W. Longfellow	1110
Hear Inlet to New River Iulet, coast of North Carolina	. .do		1872	C. M. Bache	1291
New Inlet, including Federal roint, Zeck's and Smith's Islants.	do	1-10,000	1265	J. S. Bradford	999
New River and part of Stump Sound.		1-10,000	1830	A. S. Wadsworth. J. Me. chan.	538
Topnail Sound and Stump Sound		1-10,000	1856do.	565
Topaall Sound, from Water's Bay to Old Topsail Inlet	do	1-20,000	1857-3	J. Mechan	711
Rich Inlet and Toparil Sound.	do	1-10,000	1857	-....do	017
Middle Sonnd and Topsail Sound	...do	1-10,000	1857do	818
Masonturo Inlet and Middle Sound	. .do	1-10, 000	1857do	619
Myrtle Sound...........	...do	1-10, 000	1857	...do	620
Myrtie Sound aud Federal Point....	...do	1-10, 000	187do	621
Cape Fear entrance and Swith's Istands	...do ..	1-10, 000	123E-56	Charlee P. Bolle	34
Oak Island, Cape Four ontrance, and Sprithville	-.do	1-10,000	1451do	343
Cape Fear River, lower part and appromiches	do	1-10,000	1858	do	res

APPENDIX No. 7-Continued.

Localities.	State.	Scale.	Date.	Topographer.	Rexistered number.
Cape Fear River, lower part, includiag New Ialet....	North Carulina	1-10,000	1878	Charles P. B.lles	709
Cape Fear River, Bay Lights to Reeve's Point	...do	1-1:000	185!-2-236	..do	344
Cape Fear River, Reeve's Point to Hill Lane.	...do	1-10,000	1833	C. P. Bolles, J.W. Gregorit-	446
Cape Fear River and Campbell's Island	...do	1-10, 000	1883	Charles P. Boilea	419
Cape Fear River and mouth of Branswiok Creek	...do	1-5, 000	1833ds	441
Cape Fear River and mouth of Northwest River.	\ldots..do	1-10, 000	1853	..do	448
Cape Fear River entrance and westward	...d)	1-10,000	1852	..do	674
Lock wood Folly Inlet and vicinity	- . do	1-10,000	18 ̄6	-.do	675
From Lockwood Folly to Bacon's Inlet	...do	1-10, 000	18.7	..do	67.
Coast of Soith Carolina, North Island eastward.	South Carolina	1-20,000	1872	O. H. Tittmann	$1280 a^{\text {b }}$
Norih Inlaud toward Little River; Little River and vicinity.	...do	1-20,000	1873	..do	$1235 a b$
Part of Santee River and vicinity.	...do	1-20, 000	1873	W. H. Dendis	1308
Winyah Bay and vicinity	...do	1-20,000	1372	..do	1276
Winyah Bay and Georgetown Harbor.	..do	1-10,003	18.7	S. A. Waiawright, H. L. Whiting.	527
Winyah Bay and Georgetown Harbor	...do	1-10,000	18.7	..do	526
Georgetown Earbor	...do	1-20,000	1837-8	H. L. Whiting	834
Near Cape Romain	...do	1-20,0.0	1874	W. H. Dennis	1:47
Bulle Bay	...do	1-20, 000	1857	W. S. E lwards	772
Dewes and Caper's Islands	...do	1-2,000	1853-7	Lt. Conman'r J. N. Maffit	6 CL
Part of Long Island, Breach Inleti to Rattlesnake Inlet.	..do	1-20, 000	1354	1.. M. Bache	472
Charleston Harbor, north side, and Sullivan's Istand	...do	1-10,000	1849-38	S. A. Giltert, W. S. E 1 warils.	263
Charlostou Harbor, south side, to Light-House Malet	...do	1-10,000	1819	W. S. Elwards, S. A. Gilbert.	261
Charlestan City and vicinity	...do	1-10,000	1857-3	W. S. Elwards	710
Morris Island an 1 vicinity	...do	1-10, 000	1853	J:hul Seib	715
Part of Folliy Island	...do	1-20,000	1819-50	S. A. Gillbert	299
Folly Island and vicinity	. do	1-20,000	1858	Juhn Seib	714
Folly Island, west end to Kiawah Island	do	1-20, 000	1854	R. M. Bache	491
Morris Lsland and Folly Island	do	1-10, 000	1864	W. H. Dennis	964
Defenses of Charlenton	...do		1865	C. O. Boutelle	976
Stono River, month of, and rebel eartliworks of Cole's Island.	...do	1-20,000	1862	C. Rockwell.	699
Rebel oarthworke on Cole's Island and fort at Old $\}$ Battery, Stono River.	...do	$\left\{\begin{array}{r} 1-10,000 \\ 1-2,500 \end{array}\right.$	\} 1862	.do	900
North Edisto River, northeastern part	...do	1-20,000	1851	Gsorge D. Wise.	322
North Edisto Rivar, sonthwestern part	...do	1-20,030	1851do	32
Part of Edisto Island, and Jehossee Island.	...do	1-20,000	1856-7	John Seib	679
South Edisto River	...do	1-20,000	1852do	508
Saint Helena Sound	..do	1-20,000	1856-'67	John Seib, W. H. Deanis	611
Saint Helena and Lady's Islands	do	1-20,000	1872	Charles Hosmer	1275
Coosaw River and vicinity	...do	1-20,000	1865-67	W. H. Denuis	996
Pocotaligo Bridge, vioinity of	do	1-10,000	1865	F. W. Dier..	974
From Tripp's Inlet to Port Royal Sound	...do	1-20,000	1859-67	J. Seib, C. Rockwell, and W. H. Dendis.	840
Daw Island to Port Royal Suand	do	1-20,000	1859	J. Seib, C. R ckwell	839
Parry and Gane's Islands	do	1-20.000	1868	C. Hosmer	1070
Port Royal and vicinity..	do	1-20, 000	1865	W. K. Dennis	1006
Port Royal Island, Coosat River to Abhepoo River	do	1-10,003	1873	Charles Hos	1307 ab
Broad River, soathern part of	...do	1-20,000	1865	R. E. Halt	998
Broad River, shores of	. ${ }^{\text {dio }}$	1-20,030	1865	do	997
Between Broad sud May Rivera, containing hydrography	. 10	1-20, 000	1870-'1	C. Hosmer	1195
From Port Royal Sound to month of May River	do	1-20, 000	1859-60	C. R-ckw	809
From May River to Savannah River.	.lo	1-20,000	1853-'60	do	803
From Savangah River to Cooper River, west of Danfuskie Inlet, containing hydiography.	. . do	1-20,003	1870-1	C. Hosmer	1196
Savambah River, forts Jackson and Lee, batteries Tattnall and Barnwell.	. .do	1-5,000	1860	C.O. Boatelle, H. L. Marin din.	1027
Const of South Carolina	.do	1-20, 000	1872	0. Tittman	$1220 a$
Const of Sonth Carolina	...do	1-90,000	1872	do	12 e 0 b
Ssveanak River, mouth of.	Georg	1-5,030	1874	c. Hosmer	1349

APPENDIX No. 7-Continued.

Localities.	State.	Scale.	Date.	Topographer.	Registered number.
Satannah River, entrance to Fonr Mite Point.	Georgia.	1-10,000	1852	H. L. Whiting.	379
Cross Tides to Head of Isla Ielmat, Savanalin River.	.do	1-10,000	$18: 2$...do	380
Sàvanuah River, Elba Island, part of river	..do	1-5, 000	1874	Cbarles Hosmer.	1348 ab
Savannah River, City and Elloa Island	..ds	1-5, 003	1852	H. L. Whiting	38
Savanuah City and environs	. .do	1-10,000	1852do	343
Saranmah City and vicinity, northward	. .do	1-10, 000	$18: 20$. do	385
Savaunab, vicinity of	. d o	fin.tolm.	1865	W. II. Dennis	972
Wassaw Sound and vicinity	do	1-20, 000	186:3	. do	906
Witmington River and estuaries	do	1-25,000	1865	c. Fendall	992
Tomerly Marsh Creak	do	1-20,000	1869	C. Hosmer	1089
Ossabaw Sound and ricinity	. .do	1-20,000	1858	4. M. Harrison.	706
From Ossabaw Sound to Saint Catherine's Sound	do	1-20,000	1858-'9-60	H. S. Du Val	841
Ogeechee Sound and vicinity	do	1-10,000	1858	A. M. Harrison	707
Ogeechee, Vernon, and Barnside	do	1-20,000	1803	C. Fentall	991
Ogeechee to Medway Bay.	. . ¢o	1-20,000	1869	C. Hosmer	1109
Saint Catherine's Island and vieinity	do	1-20,000	1867	C. Rock well, J. A. Sullivau	1060
Between Medway and Julienton River	do	1-20,000	1869	C. Hosmer	1155
Sapelo Sound and vicinity	.do	1-20,000	185\% \%	A. W. Lungfillow	721
Sapelo 1sland (reconnaissance)	${ }^{1}$	1-10, 000	1857	H. S. Dn Val	678
Doboy Sound and vicinity.	. .do	1-20, 000	1868	W. II. Denuis	1060
Altamaha Sound and vicinity	do	1-20, 000	1869	do	1114
Darien City-	. .do	1-20,000	1869	. do	1114 bis
Siint Simon's Sound	\cdots	1-10, 000	1956-'7	A. W. Longfellow	750
S iat Simon's and Long Islands.	do	1-20,000	1869	C. T. Iatdella	1103
Blythe Island and Bt nuswick Harbor	do	1-10, 000	1856-'58	A. W. Longfellow	778
Mackay's River and vicinity	do	1-20,000	1869	W. H. Denaiz	1113
Suint Andrew's Sound and vicinity	.do	1-20,000	1869-'70	C. M. Pache	1143
Cumberland Island, part of.	do	1-20,000	1870	W. H. Denuis	1152
Cumberland Island, base site (reconuaissanc	do	1-10, 000	1857	A. M. Harrison	624
Chichamanga battle-feld.	do	1-20, 060	1864	C. H. Boyd	934
Summit of Lookout Mountain.	Georgia and Tennessee.	1-10,000	1865do	973
Saint Mary's Rifer and victnity Eastern coast of Florida	Georgiaund Florida Florida	1-10,009	1857	A. M. Karrison	614
Fernandina Harbor and vicinity		$1-40.00$	1857	do	1298 613
Amelia River and vicinity.	do	1-10,000	1857do	615
Nassau Sound and vicinity.	do	1-20,000	1871	W. H. Dennis	1232 a
Sisters Creek	.do	1-20,000	1871d0	1232 b
Saint John's River entrance	do	1-10,000	1864do	965
Saint Juhn's River and Fort Goorge Inlet.	do	1-10,000	1853	R. M. Bache	411
Saint John'a River, from entrance to Brown'a Creek	do	1-10,000	1855	A. M. Harrison	550
Saint John's River, Brown's Creek to Point Suarrez	do	1-10, 000	1855°	․do	551
Saint John's River, Point Suarrez to Jacksonville	.do	1-10,000	1855-'56	. do	552
Jacksonville and vicinity	do	1-10, 000	1864	W. H. Dennis	963
Sonth of Saint John's River, from entrance to Geueral E. Hopkins's plantation.	...do	1-10, 000	1858	J. Mechan	712
South of Saint John's River, from General Hopkins's to liego Plains.	...do	1-10,000	1853	...do	713
Diego Plains.	do	1-20,000	1861	F. W. Dorr	832
North and Gnano Rivers, part of	...do	1-20,000	1860	do	784
Saint A ugustine and vicinity	do	1-10,000	1859-60		783
Coast from Saint Augustine to Matanzas Inlet	.do	1-20,000	1867	C. M. Hache	1082
Matanzas River and vicinity..	do	1-20, 000	1872	A. M. Harrison	1268
Florida Peninsuia, from Polnt Padgett to Point Andrew (triangulation sketch).	..do	1-69, 000	1859	Capt. M. L. Smith	765
Mosquito Inlet and vicinity ${ }^{\text {do }}$	1-20,000	1874	A. M. Harribon.	1344
Hallfux River	...do	1-20,000	1874do	1343
Cape Canaveral	do	1-20,000	1850	Hull Admus	309
Indian River.	...do	1-10, 000	1861	C. Ferguson.	785
Coast of Florida, Minmi River, and Key Biscayne Bry	...do	1-20,000	1851	Hull Adams	336
Hent of Key Biscayne Bay	- do	1-20,000	1867	C.T. Inrdella	1049
Key Bisoayne, from Shoal Point to Black Point.	..do	1-20,000	1859do	74
Key bisay re, from Turtle Point to Fender Point	...do	1-20, 00.	1859	.do	745

APPENDIX No. 7-Continued.

Localities.	State.	Scale.	Date.	Topography.	Regintered number.
Card's Sound, from West Δ rsenicker to Jow Point....	Florida	1-20, 000	1859	C. T. $\mathbf{I}_{\text {ardell }}$	746
Barnes's Sonnd	do	1-20, 000	1859	...do	74
Darnes's Sound, part of	do	1-20,000	1859	. ${ }^{\text {do }}$	788
Barnes's Sound, part of	do	1-20, 000	1860	...dn	8.7
Barnes's Sound	do	1-40, 000	1870	J. G. Olmanns	1154
Shoro and keys of Barnes's Sound	do	1-30,000	1868	C. T. Iardella	1071
Eliotitr. Key, Soldier Key, and Ragged Key	...do	1-20,000	1859-3	Hull $\mathrm{A}^{\text {dams }}$	409
Elliotter Ecy, Cusar's Creek, and Old Rhodea' Koy	do	1-20, 200	1853	...do	408
Key Largo, Old Rhodes' to Basiu Hill.	. ${ }^{\text {do }}$	1-20,000	1854-5	S. A. Wainwright.	573
Key Largo, Basin Hill to Excelsior	. do	1-20, 000	1855	-.do	57
From Egan Creek to Iudian Rey	do	1-20,000	1857	...do	64
Long Island, Mud and Captain Key	do	1-20.000	1857	F. W. Dorr	690
Upper Matecumb and Windler's Island	do	1-29, 000	1838	C. T. Iardella	696
Buchanan and adjacent keys.	. ${ }^{\text {do }}$	1-20,000	1859do	743
Oyster and adjacent kers.	do	$1-20,000$	1259	do	749
Lower Matecnmb and Lignampite Keys	..do	1-20,000	1857	S. A. Waiuwright	641
Lower Matecumb and Long Key	. ${ }^{\text {do }}$	1-20,000	1258	C. T. Mardella	69
Duck Channel and Conch Keys and part of Long Key	...do	1-20, 000	1857	F. W. Dorr.	68
Crawl, Grassy, and Tom Harbor Keys, and part of Flat Deer Key.	...do	1-20,000	1857	...do	689
Vaccas Keye.	...do	1-30, 000	1857	...do	651
Bahia Honda, or Spanish Harbor.	..do	1-20, 090	1854	S. A. Wainwright	461
Bahia Honds Harbor, Pine Inland Signal	\therefore do	1-20,000	1851	Hull ddans	339
Little Pine Key, Johnson's Flat Key, and other adjacent keys.	...do	1-20,000	1657	C. T. Iardella	627
Howe's Key; Annetta, Spanish, and others	..do	1-20,000	1857	. ${ }^{\text {do }}$	620
Big Pine Key, Ramrod Key, and others adjacent.	...do	1-20,000	1857	do	625
Sugar-Loaf, Cudjoo, Summerland, and Laggerhead Kesk	...do	1-20,000	1856do	563
Content, Water, Raccoon, and Knock•em-down Keys	.do	1-20, 000	1857	F. W. Dorr	65.2
Johnston's and Sawyer's Keys.	do	1-20.000	1356	S. A. Wainwright	560
Snipe and Saddle-Buach Keys	. do	1-20,000	1855	Hall Adams	434
Mudd Keys	.do	1-20,000	1855do	493
Boca Chica ard adjacent keys.	...do	1-20,000	1853	R. M. Back	417
Keys north and east of Boca Chica	...dn	1-20,000	1853-4	Hull Adams	457
Key West, Stock Voland, and adjacont keys	...do	1-10,000	18.50do	291
Key off the harbor of Key West	. d 0	1-20,000	1850	do	302
Keysjand ledges, vicinity of Key West	...do	1-10,000	1850do	301
Marquesas Key and Boca Chica	. de	1-20,000	$18 \overline{1}$do	319
Charlotte Harbor, approaches to	...do	1-20,000	1359	F.W.Dorr and C. Fergusan	738
Charlotte Earbor, approaches to	do	1-20,000	1859do	739
Charlotte Harbor, from Boca Grande entrance to South Boca Nueva Pass.	do	1-20,000	1800	C. T. Iardelia	853
Charlatte Harlber, part of	.do	$1.80, \mathrm{col}$	1960do	854
Charlotte Harbor, from E1 Gabo to Peas Creek.	. .do	1-20,000	1860	.. do	835
Peas Creek, bead of Charlotte Harbor	do	1-20,000	1860	do	856
Pine Island Soavid, Charlotte Harbor	. do	1-20,000	1860-'7	. ${ }^{\text {do }}$	1043
Bayport and vicinity (weatern pert)	..do	1-90,000	1860	N. S. Finmey	962
Boca Cetga Bay, aouth part; Mullet, Egmont Pasagge, and north end of Palm Key.	.do	1-20,000	1872-3	A. Brald	1310 ab
Tampa"Bay; Pasgage Koy to Palmasola Point........?		1-20,000	1874	F. G. Ogden.	$1346 a b$
Tampa Bay; Palmasola Point to Piney Point......... \} Clearwater Harbor.	.do	1-20,000	1873do	1301
From Raccoon Point to Chaseshowitzka River.	..do	1-20,000 ${ }^{-}$	1859	N. S. Fianey	782
From Chaeeshotitrke Biver to Homosaosa River	. .do	1-20,000	18.0	..do	781
From Homosassa River to Green Point.	. do	1-20,000	1858-9	..do	79
Homobarsa River	. . do	1-10,000	1857do	691
Crystal Resefe and Rivers	d	1-20,600	1858	.do	80.5
From Crystal River to Withlacooblee Bay	. ${ }^{\text {do }}$	1-20,000	1859	7 F 0
Withlacoochee River (reconnaissance).	...do	1-10, 000	1856	A. M. Harrison	570
From the Wrocasassa to the Whilacoochee Retver	do	1-29,003	188	N. S. Finaey	690
Waccosana Reefa	...do	1-10, 000	1856.	A. M. Harrison	571
Waceasakga kiver (reconvaissance)	do	1-10, 000	1836do..................	569
Cedar Keys and viofinty, eastw		1-10,000	1856do	572

APPENDIX No. 7-Continued.

Localities.	State.	Scale.	Dato.	Topographer.	Registered namber.
Gedar Keys	Florida	1-10, 000	1852-'54	F. M. Gerdea	423
Ceilar keje	do	1-10,00n	18.2	...do	422
Ocilha hiver	..do	1-20,000	18.5	G. D. Wise	454
From Ocilla River to Saibt Mark's River	\ldots. do	1-20,000	1858-60	...do	19
Saint Mark's Rip	\ldots. do	1-20, 000	1856	. do	575
From Saint Mark's River to Oeklockody Bay	. .do	1-20,000	1859-'60		820
Ocklockony Bay	do	$1-20,060$	1859	G. D. Wis	771
Alligator Harior and Suint George's Sound	-..do	1-20, 000	1858	C. T. Iarde	695
Saint George's Sound from Royal Blaff, including DogIsland.	. . do	$1-20,000$	1858	G. D. Wise	697
From Green Point, Apalachicola Bay, to East Paso. Saint George's Sound.	.do	1-20,000	1856-7do	647
Apalachicola entrance	...do	1-20,000	1858	do	646
Delta of A palachicola River	\ldots..do	1-20,000	185do	648
Apalachicola River.	...do	1-20,000	1857do	601
Saint Vincent Sornd and Yoland.	..do	1-20, 000	1858	...'0	698
Saint Joseph's Bay, Cape San Blas and vicinity	...do	1-20, 000	1868	H. M. De Weea	1065
Saint Joseph's Bay to Saint Andrew's Point	. .do	1-20,000	1869do	1031
Saint Andrew's Bay, eastern and western branches	. do	1-20,000	1870	C. T. Mardella	1146
Saint Andrew's Bay and Sound.	\ldots	1-20, 000	1855	G. D. Wise	47
Saint Andrew's Bay, northern branch	do	1-20,090	1870	C. T. Iardella	1147 a
Saint Andrev's Bay, eastern branch	...do	1-20,000	1870do	1147 b
Wertern arnt of Saint Andrew's Ray	do	1-20,000	1871	H. M. De Wees	1187
Saint Andrew's Bay to Choctawhatchee Bay (3 bheets)	do	1-20,000	1872	F. W. Perkin	1358 abc
Choctawhatohee Bay, western part.	...do	1-20,000	1872	Herkert G. Ogden	1269
Chectawhatchee Bay, eastera part	...do	1-20,000	1872do	127
Choctawhatcheo Bay and Santa Rosa Sound.	...do	1-20,000	1871	. .do	1191
Santa Rosa Sound, from loygitude $86^{\circ} 43^{\prime}$ to $866^{\circ} 58^{\prime}$. .do	1-20,000	1871do	119
Santa Rosa Socnd, from longitude $66^{\circ} 58^{\prime}$ to $8797{ }^{7}$.	...do	1-20, 000	1871	...do	1193
Western part of Santa Rosa Sound, Pensacola Bay.do	1-10,000	1859	F. F . Gerdes	70
Pensacola Bay, entrance	...do	1-10,000	1856	. ${ }^{\text {do }}$	566
Pensacola Bay, west side.	...do	1-20,000	1858	do	700
Pensacola Bay, navy-rard to Krmmanuel's Point	do	1-10,000	1856dn	567
Part of Pensacola, Escambia, and East Bays.	do	$1-20,000$	1858	. do	71
Coast between Pensacola aud Mobile, west part of Btg Lagoon.	...do	1-10,000	1867	J. G. Oltmanns	1034
Santa Maria de Ga'vaez Baydo	1-30,000	1860	F. II. Gerdes	797
Coast betwreen Pensacola from Lagoon to mouth of Perdido Ialet.	Florida and alabama.	1-10,000	1867	J. G. Oltmanus	1035
Corat bet ween Pensacola frow Perdido entrance to East Gulf shore.	...do	1-10, 000	1867	...do	1042
Eutrance to Mobile Bay	Alabama	1-20,000	1863	...do	1066
Bun Secoar Bay, Little Point Clear to Cypress Point.	do	1-20,000	1849	W. E. Greenwell	276
Bon Seoour Bay, from Mullet to Oypress Point.	...no	1-20,000	1849do	277
Mobile Bas, Mullet to Ragged Point...................	do	1-20,000	1849do	296
Mobile Bay, Ragged Point to Veroel Point	do	1-10,000	1849do	294
Mobile Bay, upper part	. ${ }^{\text {do }}$	1-20,000	1850	-....do	298
Mobile City.	..do	1-20,000	1850	..do	995
Mobile Bay, Cboctaw Point to Deer Kiver	do	1-20,000	1850	...do	${ }^{88}$
Molile River, Deer River Point to Cedar Poiut	do	1-20,000	1849do	275
Mobile Bay entrance and Dauphin Islaud	do	1-20, 000	1847	...do	240
Dauphin Ieland, base-line and vicinity	. ${ }^{\text {do }}$	$1-10,000$	1846-51	F. H. Gendes	326
Dauphin Island Spit	..do	$1-10,000$	1853	W. If Greenwell	406
Misaisuippi Sound, Grand Batture to Grand Paint	Minsiseippi	1-20,000	1848	W. E. Greenwell, F. H. Gordes.	243
Missisaippi Soand, Grand Batture to West Pascagoula River.	...do	1-20, 000	1848	W. EL Greenwell	273
Petit Eoln Inland, Missiseippi Sonud.	...do	1-20,000	1848	...do	243
Horn Imlapd, entrance to Mississippi Soun	do	1-10,000	1847	. .do	241
Horn Lbland, Mississippi Sound	do	1-20,000	1849	ds	274
From West Pascagoula River to Biloxi Bay.	. .ado	1-20, 000	1831do	323
Bilosi Harbor, Town, and Buck Bry.	. ${ }^{\text {do }}$	1-10,000	1851	. do	324

APPENDIX No. 7-Coutinued.

Localities.	State.	Scale.	Date.	Topographer.	Repistered number.
Deer Island, Mississippi Sound	Mississippi	1-10,000	1858		384
Ship Island, Mississippi Sound	do	1-20, 000	1818	T. E. Greenwell	244
Ship Island, Missisgippi Sound	do	1-10,000	1853	.do	407
Cat Island and Isle au Pied.	do	1-80.000	1843	...do	242
From Mississippi City to Pitcher Point	do	1-20, 000	1852do	369
Harbor of Pass Cbristian	do	1-10, 000	1851	...do	325
Bay of Saint Lonis and town of Shieldstoro	do	1-20, 000	1852	...do	370
Malbeureanx Island, Peari River to Point Clear	do	1-20; 000	1852	do	371
Peari Island and vicinity	do	1-20,000	1856	R. M. Bache	633
\triangle pproaches to Vicksburg	do	1-10,000	1863	C. Fondall	935
Approaches to Grand Gulf	do	1-5,000	1864	F. H. Geriles	937
Mississippi Sound, Isle a Pitre to Nine Mile Bayou	Lonisiana	1-20, 000	1483	W. E. Greenwell	404
Eastern and mouthern shoreb of Lake Borgne	. do	1-20,000	1853	. .do	403
Lake Borgue, from Fort Wood to Proctorville	do	1-80,000	1857	W. S. Gilbert	629
Lake Borgne, frem Proctorville to Point an Marchett	do	1-20, 000	1857	. do	623
Lakes Borgne and Pontchartrain, passes connecting	do	1-20,000	1858	. ${ }^{\text {do }}$	773
The Rigolets.	do	1-20,000	1855	R. M. Bache.	656
Lake Poutchartrain, from Sult Bayou to Bryou Bonfuca	. 10	1-20,000	1859	W. S. Gilbert	774
Lake Pontchartrain, from Bayou Bonfuca to Ragged Point	- .do	1-20, 000	1860	M. Seaton.	796
Lake Pontchartrain, from Bayou Le Bar to Bajou Coushon	do	1-20,000	1260	M. Seaton, W. S. Gilb	799
Point anx Herbs	do	1-20,000	18:9	W. S. Gilbert	786
Chandeleur Sound, weatern shore from Sandfly to Crab. tree.	. .do	1-20, 0 co	1258**59	S. Harris.	768
Chancelear Sound, western shore from Barrel Koy to Point Chico.	.do	1-20, 000	1858-'59	do	769
Chandelenr Sound, west side from Morgan Harbor to Indian Monnd Bay.	...do	1-20,000	1871	C. H. Boyd	1198
Chandelear Islands, from Sunrise Shell Bank to Martin's Island.	...do	1-20,000	1857	J. E. Milgard.	651
Cbandelour 1slands, northorn part	do	1-10,000	1852	F. H. Gerdes	366
Chandeleur Islands.	do	1-20,030	1855	J. E. Hilgard, J. G. Olt manns.	548
Chandeleur 1slands	do	1-20, 000	1853	do	549
Isle au Breton Sound, Deep Water to Califurnia Point.	do	1-20, 000	1868-'69	C. H. Boyd	1090
Isle an Breton Sound, California Point to Mozambique Point.	. .do	1-20,000	1869do	1098a
Isle au Breton Soand, California Point.................	do	1-20,000	1869	do	$1098 b$
Isle an Breton Sound, south side.	...do	1-20,000	1869	do	109
Islc au Breton Soand, Gardner's to Otter Bayou.......	.do	1-20,000	1869-70	...do	1099
Isle au Breton Sound, Otter Bayou to Point Comfort...	...do	1-20, 000	1870	. do	114
Isle au Breton Sound, Etrol Island.	do	1-20,000	1869do	1093
Pasa a noutre	do	1-20,000	1859-60	F. H. Gervies	79
Mississippi Delta, Soathwest Pass, part of South Pabs, East, West, and Garden Island Bays.	. do	1-20, 000	1867	J. W. Donn	1037
Mississippi Delta, South Pres, Ruyou Grand, and Tast Pass.	...do	1-20,000	1967	..do	1038
Mississippi River.	. do	1-80, 000	1873	C. H. Boyd	1300
Miseisaippi River, frem Cubit Crevasse to the forts and Bird Lsland Sound.	...do	1-30, 003	1868	do	1069
Fort Jucknon, plan of, ehowing the effect of bombardment on 18th to 24th April, 1862.	..do	1-60.	1862	F. H. Gerdes, J. S. Hamis	870
Mississippi River, from the forts to Granil Prairie......	. ${ }^{\text {do }}$	1-20,000	1870	C. H. Boyd	1149
Miseisaippi Rirer, from Grand Prairie to Point à la Hache.	do	1-20,000	1871-do	1197
Miseissippi River, from Bohemia to Poverty Pointdo	1-20,000	1872	do	1858 a
Misaissippi River, Poverty Point to Jesuits' Church.	do	1-80,000	1872do	1258 b
I ale Dernière, western part.	do	1-10,000	1853	F. H. Gerden	410
Atchafalaya Bay, entrance	.do	1-10,000	1855	do	636
Atchafalaya Bay, eastern side	. ${ }^{\text {do }}$	1-10, 000	1855do ..	637
Atchafalaya, Ray, eatern side	.do	1-10,000	1855	do	638
Atchafalnya Rey, borth side	do	1-10, 000	1855	...do	639
Atchafalaya Bay, northwest part	do	1-20,000	18.7	. do	632
Cote Hlanche Bay, eastern part.	.do	1-20,000	1837do	631

APPENDIX No. 7-Continued.

Localities.	State.	Scale.	Date.	Topographer.	Registered number.
West Cote Blanche Bay, part of	Louisiana.	1-20,000	1859	F. H. Gerdes, J. Gr. Oitmanns.	764
West Côte Blanche Bay, part	dio	1-30,000	1860	- do	783
Sabina Pass	Texas	1-20,000	1874	J. N. MoClintock	1356
Galveston, East Bay, and Bolivar Peninsula	. A \%	1-20, 100	1851	J. M. Wampler.	329
Galveston entrance, harbor, and city	do	1-20,000	18.0	-.do	282
Qalveston Bay, Law rence Cove to Stevenson's	10	1-20,000	1851	...-do	330
Galveston Bay, Lawrenco Cove to San Jacinto Bay, inclusive.	. . .de	1-20,000	1851do	331
Galveston Bay, Highland Bryou to Harris's Signa	do	1-20,000	1859	do	283
Redinal Bar, Galveston Bay	.do	1-20,006	1850	- do	293
Gaiveston, West, Bay and part of Galees ton Isiand	do	1-20,000	1851	-....do	328
Gialreston, West Bay, Galveston Island, and Choeolate Bay.	. .to	1-20,000	1852	-...-.d0	374
Coast of Gulf, from San Laiw to fnpiter Station	do	1-20,000	1852	..do	375
From Brazos River to Matagorla Peninsula	do	1-20,000	1853	T. M. Wampler, J. S. Williams.	412
Matagerda Peninsula and main land opposite	do	1-90,003	1857	S. A. Gllbert	642
Matagorda l'eninsula and Deeros Point.	do	1-20,000	1857-io	643
Coast and part of Matagorda	.do	1-30,000	1855	J. A. Sullivan	557
Matagorda Bay	.do	1-20,000	1857	S. A. Gilbert	609
Matagorda Hay	do	1-20,000	1857	...do	645
Part of Matagorda Bay, from Trespalacios River to Karankaway Bay.	. .do	1-20, 000	1856	M. Seaton.	737
Lavaca Bay, from Henaio Creek to Cox's Bay	do	1-20,000	18.8	d	742
Lavaca Bay, from Garcitas Bay to Chocolate Bay	. . do	1-20, 000	1238do	740
Indianola and environs	. .do	1-26, 000	1859	W. H. Dennis, M. Seaton	752
Matagorda Island	. .do	1-20,000	$18: 9$	W. H. Dennis	1030
Matagorda anit part of Espiritu Santo Hay	do	1-20, 000	18.7	S. A. Gilbert	644
Kispiritn Santo Bay and part of San Aatonio Bay aud vicinity.	...do	1-20,006	1859	W. E. Denvis	766
From Matagorda entrance to Aransas Pass (reconnaissance).	. . .do	1-50, 000	1858	S. A. Gilbert	790
San Antonio Bay, part of, and ricinity	do	1-20,000	1859	W. H. Dennis	767
San Antonio Bay, part of, mad Saint Charlen Bay	. 10	1-50, 000	1860	W. S. Gilbert	898
Aranas Biy, northern part, and east end of Copano Bay.	...do	1-20,000	1861do	838
Copano Bay, west end, and Saint Mary's Town	-. do	1-20,000	1861	. . do	827
Arausae Bay, from Second Chain Lsland to Long Reef. .	. . do	1-20,000	1860	...do	787
Aransas Bay, part of, and entrance to Corpus Chriati Hay.	...do	1-20,000	1860-'1 do	823
Corpns Christi B3y, Corpus Chpisti to McGloin's Blaff	.do	1-20, 000	1867	C. Hosmer	1043
Corpne Christi Bay, MuGloin's Blaff bo Mustang Island	do	1-20, 000	1867	--..do	1044
Laguna Madre, eastern shore	do	1-20,020	1867	C. H. Boyd	10.45
Laguna Madre, western shore	. . d	1-30,000	1867	.-...do	1045
Heo Bravo del Norte, eutrance and vicinity.	. do	1-20,070	1854	W. E. G:	453
Lower part of Ohio Liver, between Mound Oity and Cairo.	Illinois	1-10, 000	1364	F. H. Gerdes, C. Fendall.	938
Environs of Saint Lonis (combined sheets)	Misson	1-10, 000	1862	R. M. Bacho, J. Meokran.	921
Saint Louis, military defenses of	do	1-10,000	1862	J. Mephaw	85
Vicinity and fortiflcations of Saint Louis	do	1-10,000	1862	Rin M. Bache	\%ot
Carondelet	do	1-10,000	1863	-..do	907
Strawberry Plains and vicinity	Tennersee	1-10,000	186	O. Rockwell.	940
Approachesand defenses of Knoxville eouth of Eolston River.	...do	1-10,000	1863 -	R. A. Talcott................	520
Appronches and defenses of Knoxville north of Holston River.	...do	1-10,000	1803-2'	C. Rookwell.	939
Chattanooga and its spproaches	do	1-10,000	1863	F'. W. Dort.	98\%
Lookoat Falley and part of Lookout and Raccona Mountains.	. ${ }^{\text {do }}$	1-10,000	1.664	J. W. Doon	968
Summit of Lookout Mountain	Tennersee Georgia	1-10,000	1365	C. H . Boyd	978
Nashville, appronches to, from south and west	Tennessee	1-20,000	1864	F. W. Dorr.	081

APPENDIX No. 7-Continaed.

Localities.	State.	Scale.	Date.	Topographer.	Begistered namber.
Nashville, environs and approaches from the north, including the town of Edgefield.	Tennessee	1-10,020	1864	J. W. Donn .	932
Los Corouados Island	California		1831	R. D. Cutts	332
From sonthera boundary to San Diege Ray	. . do	1-10,000	1852	A. M. Harrison	365
San Diego Bay, from La Carbonina to Sweet Water Valley	- . do	1-10, 000	1852	. do	364
San Diego Bay, from Point Loma to New tow	- . do	1-10,000	1251	. . do	333
False Bay, dependency of San Diego Is	. .do	1-10, 000	1852 do	363
Catalina Island	. 10	1-10,000	1873	-. .do	1299ab
Santa Barbara Island	. ..du	1-10,000	18.1	A. W. Chae	1180
Point Fermin to Point Pedro	. . do	1-10,000	18.54	W. M. Johnson	470
Coast from Point Fermin eastward to Sun Gabriel River.	. . do	1-10, 000	1859do	893
Point Fermin to Point Saint Vincent	. .do	1-10,000	1870	A. W. Cha	1153
Foint Saint Vincent northward	do	1-10, 000	1871	-....do	1231
Coast east of San Fedro, inclading Wilusington.	do	1-10,000	18.2	. do	1383
New River to Bolsas Creek	- do	1-10,000	1873do	1345
Bolsas Creek to Santa Ana River	. . do	1-10, 000	1874da	1369
From Point Duma to Cañade de Isiqu	. .do	1-10,000	1857	W. M. Johuson	703
From Canaria de Isique to Punta Mugu	. .do	1-10,000	$185 i$. do	702
Cañada de Tajiguas to "Ram"Station	. do	1-10,600	1873	W. E. Greenwell	1333
"Rame'Station to Cojo Viego.	. . do	1-10, 000	1873	--..do	1339
Canada de los Pueblos to Cañada de Tajiguas	. . .do	1-10, 000	1871	. do	1247
Coast from Hueneme eastward to Punta Mugu	. .do	1-10, 000	1857	W. M. Johnson	¢9.3
From Hueneme Point to Sauta Clara River	. . do	1-10, 000	1855do	576
From Santa Clara River to San Bueuaventura	. . do	1-10,000	1855do	683
Town of San Buenaventara and ricinity	. do	1-10, 000	1870	W. E. Greenwell	1190
Punta Gorda, toward San Buenaventura	. . do	1-10,000	1870	-....do	1189
Punta Gorda and vicinity	do	1-10,000	1871	A.F Rodgers	1237
Panta Gorda and Shelter Cove	. do	1-10, 000	1871	-.... do	1238
Panta Gorda	. do	1-10,000	1871	. do	1239
Panta Gorde.	.do	1-10, 000	1871	.do	1240
Vicinity of Santa Barbara	- do	1-10, 00:	1851	W. M. Johnson	470
Santa Barbara and vicinity	. . do	1-10, 000	1852	A. M. Harrison	373
Santa Barbara town and vicinity	. . do	1-10,000	1870	W. E. Greenwell	1229
Santa Barbara to Sand Point	...do	1-10, 000	1869	...do	1128
Sand Point to Gorda Point	...d)	1-10, 000	1869	. . do	1127
Santa Barbara Channel, from Santa Barbara to Polican Point	. . do	1-10,000	1870	d	1230
Santa Barbara Channel, from Pelioan Point to Los de Puebloa.	. . . do	1-10, 0:0	1871	do	1967
Amacapa and part of Santa Croz Island.	. ${ }^{\text {do }}$	1-10, 000	1895	W. M. Johnson.	555
Santa Cruz and Santa Barbara Chansel	. do	1-10, ac. 0	1860	-....do	1003
Part of thrilalend of Santa Cruz, Santa Barbars Channel	...do	1-10, 000	1859	. 10	876
Santa Roea Island, Santa Barbura Clannel.	. . do	1-20,000	1372-3	S Forney	1325
Santa Roba Laland, east end., Sunts Barbara Channel...	. . do	1-20,000	1872-3 do	1326
San Miguel Isiand, Sante Barbara Clannel.do	1-20,000	1871do	1242
Point Conception (reconnaiseance) do		1850	A. M. Harriso	313
Point Conception and vicinity (two sheets)	do	1-10,000	1869	C. Rockwell	1122 ab
Point Sal, monthern whore	. . do	1-5, 000	1867	W. E. Greenwell	1053
San Luis Obispo 1bay.	. do	1-10, 000	1871-2	L. A. Songteller.	1321
San Simbon Bay and vicinity .	. do	1-10, 000	1871	G. Rockwoll	1975
Point Pinos, Monterey Bay	do	1-10,000	1851	A. M. Harrison	3\%0
Monterey Harbor	do	1-10, 000	1851-2	R. D. Cutt	357
Monterey Harbor ${ }^{\text {do }}$	1-10, 000	1854	W. M. Johu	554
Monterey Bay northward to Salinas Miver	...do	1-10,000	1854	. .do	478
Monterny Bay northward to Prjaro River	do	1-10,000	1554	-....do	473
Pajaro River and vicinity, Monterey Bay	do	1-10, 000	1853	A. M. Harrison	442
Sapquel Cove and ricinity, Monterey Bay	.do	1-10, 090	1853	...do	443
Santa Craz Harbor, Montarey Bay.	do	1-10,000	1833	do	444
Coast northward to Point Ano Nuevo.	. ${ }^{\text {do }}$	1-10,000	1853do	445
Point Anio Nuevo and Pante tel Bolsa	--do	1-10,000	1834	W. M. Johnsor	653
From Panta del Bolsa to Tanitas Croek	do	1-10,000	1834	d	682
Coast from Tunitise Creak northward	.do	1-10,000	1×65	A. F. Rodgers.	100
HalfiHoon 3ay do	1-10, 000	1861	W. M. Jobnson	933

APPENDIX No. 7-Continued.

Localitien.	State.	Scale.	Date.	Topographer.	Registered numier.
Point San Pedro to Pillar Point.	California.	1-10,000	1866	A. F. Rodgers	1019
Coast from Point Pedro northward to Point Lobos	. . .do	1-10,000	1853	A. M. Earrison.	305
Polnt Lobos and vicinity	do	1-10,000	1852do	38.2
Ficinity of Point Lobos.	.do	1-10,000	1853	A. F. Rodgers.	427
South Farallon Isiand		1-5, 000	1872	...do	1259
Fort Point to Alcatraz island	...do	1-10,000	1831	R. D. Catte	333
Golden Gate, entrance to San Francisco Bay	. .do	1-10,000	18.52do	359
San Francisco bay entrance.	-. do	1-10,000	1850	...do	314
San Francisco entrance.	...do	1-10,000	185%	A. F. Rodgers	663
San Franciseo City and vicinity	do	1-10,000	1852do	352
San Fraucibco City and vieinity	. . do	1-10,000	1852do	398
San Francisco City and vicinity	. . do	1-10,000	1857-'8do	63:
Land approaches to San Franciaco	- . do	1-10, 000	1867	A. W. Chase	1059
Approaches to San Francisco.	do	1-10,000	1867	C. Rockwell.	1067
Δ pproaches to $\mathrm{S}^{\text {n }}$ Francisco.	do	1-10,000	$18^{\prime} \mathrm{E}$do	1088
Yerba Buena Island, San Franciseo Iay	. ${ }^{\text {do }}$	1-10,000	18.51	A. F. Rodgers	353
San Francisco Bay, from Cañada de Vinitacion to Point San Mateo.do		1854	. .do	460
Point San Mateo to Guano Xaland, San Francisco Bay..	do	1-10,000	1853do	433
Angelo Creek to Redwood City. San Francisco Bay	...do	1-10,000	1857do	665
San Francisco Bay, Angelo Creek to Ravenswood	...do	1-10, 000	1857do	664
Puglas base and vicinity, San Francisco Bay	...do	1-10,000	1853	R. D. Cutts	432
San Franciseo Bay, Ravensw od to Aloise	. . do	1-10,060	1×57	A. F. Rodgers.	676
San Fraucisco Bay, Contra Costa.	...do	1-10,000	18.6	E. D. Cutts.	330
Contra Costa, San Francisco Bay.	do	1-10,000	1852do	378
Contra Costa, San Francisco Bay.	..do	1-10, 000	1853	A. M. Harrison	399
San Francisco Bay, Contra Costa to San Autonio Creek	.do	1-10,000	1856	A. F. Rodgers.	591
San Francisco Bay, San Antonio Creek and Oakand.	. ${ }^{\text {do}}$	1-10, 000	18.36do	592
Say Francisco Bay, Contra Costa to Beard's Creek....	.do	1-10, 000	1857	..do	635
San Francisco Bay, Beard's Creek to Mowrs's Creek....	do	1-10, 000	1857do	634
San Francigco B by, from San Antonio Creek southward.	do	1-10,000	18.53	..do	481
San Francisco Bay, north shore, vicinity of Blaff Point.	.do	1-10,000	18.33do	415
Richardsin'a Bay, dependenes of San Francisco Bay	do	1-10,0C0	1851	. do	334
San Francisce Bay, north side eutrance	..do	1-10,000	1.850do	321
Angel Island and Raccoon Straits, Sma Francisco Bay..	. do	1-10,000	1852	...do	361
Coast northward from San Francisco entrance	. do	1-10,000	1853do	400
Tamalpais Ponibsula and intorior	do	1-10,090	1872	...do	1284
Tamalpais Mountain	do	1-10,000	1873do	1302
Ballenas Bas and viciulty.	do	1-10,000	1854do	452
Coast adjacent to Ballenas Bluff	do	1-10,000	1854a	456
Drake's Ray, from Briones to Wild Cat.	...do	1-10,000	1859-60	-....do	807
Drake's Bay, from Wild Cat to Point No. 1.	. do	1-10,000	1859-60	..do	806
Drake's Bay, from Point No. 1 to Punta de Los Reyes..	..do	1-10.030	1859-60	...do	805
San Pablo Ray, fom Panole Point to Molate Rebf.	. ${ }^{\text {do }}$	1-10,000	1856do	561
San Pablo Bay. from Point Whimon to Lone Tree Point	do	1-10,000	1856do	562
Mare Inland and Karquines Straits, San Pable Ray	do	1-10,000	1850	E. D. Cutte.	316
Vicinity of Mare Inlaud, San Pablo Bay.	do	1-10,000	1856	A. F. Rodgers.	563
Karquines Strait, Saisun Bay, and city of Benicia	do	1-10,000	1856do	57%
Snisun Bay	. ${ }^{\text {do }}$	1-20,000	1866do	1029
Napa Creek and City.	do	1-10,000	1858	D. Fieer.	77
San Pablo Bay, from Long Pond to Petaluma Creek	. do	1-10,000	1836	A. F. Rodgers.	564
Tetaluma Creek, froms entranee to Lakeville.	...do	1-10,000	1860do	617
Petaluma Creek, from Lakeville to Petaluma City -	. do	1-10,000	1860do	818 \%
Petaluma Creek to San Pedro Point.	do	1-10,000	1854do	472
Punta de Los Reses, part of..........	\ldots..do	1-10,000	1862	A. F. Rodgere, D. Kerr	83
Coast north of Punta do Low Reyes, part of.	do	1-10,060	1862do	882
Tomales Bay entrance	\ldots. do	1-10,000	1853-'4	I. S. Lawson	439
Tomales Bay, part of.	. Cdo	1-10,000	1862	A. T. Rodyars, D. Kert	849
Tomales Ray, part of.	--do	1-10,000	1862do	88.
Tomales Ray Station (reconnaibsanco)	. . ${ }^{\text {an }}$	1-10, 00:	1856	C. B. EHis	578
Const from Tomalea Ruy to Salnoon Creok	...do	1810,070	1862	A. F. Roagers, D. Ker	883
Puint Reseas	...do	1-10,000	1852-3	J.S. Lawana	103
Point drana and vichity.do	1-10,000	1870	L. A. Sengteller	1988

APPENDIX No. 7-Continued.

Localities.	State.	Scale.	Irate.	Topographer.	hegintered pumber.
Alder Creek to Welch Station, north of Point Arena	California	1-10,000	1870	L. A. Sengteller	1279
Welch Station to Cuffey Cove, north of Point Arena.	...do	1-10,000	1871	. .do	1305
Cuffeg's Point to Stillwell Station, northward	do	1-10,000	1872	do	1362
Stikwoll Station to Point Carbillo, Point Carbillo to Pudding Creek.	.do	1-10,000	1872-3do	1363 ab
Shelter Cove and vicinity	do	1-10,000	1671	A. F. Rodgers.	1236
Sheltar Cove to Bear Hawhor	do	1-10, 000	1872do	1285
Bear Harbor to Timber Ridge	do	1-10,000	1873d ${ }^{\text {d }}$	1324
Timber Ridge to Soldier Frauk's Point.	. do	$1-10.000$	1873do .	1333
Soldier Frank's Point to Abalone Point	do	1-10, 000	1873do	1322
Cape Mendocino, south of	do	1-10,000	1871	. do	1241
False Cape to Cape Mendocino	do	1-10, 000	1869	. ${ }^{\text {d }}$	1134
Centreville to False Cape	do	1-10, 000	1860	. do	1135
Eel River and vicinity	. do	1-10, 0001	1869	. ${ }^{\text {d }}$	$1136 a$
Ecl River changes from 1869 to 1870	do	1-10, 0000	1864-70	. do	113 c b
Humboldt Bay eutrance	. do	1-10,000	1854	J. S. Lawson	474
Humboldt bay to Table Bluff	do	1-10,000	1869	A. F. Rodgers	1137
Huraboldt $\mathrm{B}_{\text {B }}$. .do	$1-10,000$	18\%0do	1174
Humboldt Ray	do	1-10,000	1870	...do	1173
Humboldt Bay	do	1-10,000	1870do	1176
Coast north of Humboldt Bay	do	1-10,000	1870	...do	1139
Coast sonth of Trinidad Head.	do	1-10,000	1870do	1178
Coast north of Triaidad	.do	1-10,000	1870do	1179
Klamath, vicinity of.	do	1-10,000	1874	A. W. Chase	1370
False Klamath to Rocky Point.	do	1-20,009	1873	...do	1378
From Crescent City southward	. do	1-10,000	1871	. do	$1248 b$
From Sister Rock to False Klamath.	...do	1-10, 000	1871do	1248a
Crescent City Harbor.	...do	1-10, 000	1859	J. S. Lawso	741
Point Saint George and Crescent City Reef.	do	1-10,000	1869	A. W. Chas	1132
From Point Saint George northward, (Lake Earl)	. .do	1-10, 000	1870	..do	1199
From Cone Station to near Oregon boundary	do	1-10, 000	1870	. do	1216
From Oregon bonndary to Chetto Rivor	Oregou	1-10,000	1870		1987
Smith's Hill to Mack's Reef.	...do	1-10, 010	1872	W.Cb	1317
Coast of Oregon near Port Orford, (reconnaissance)	. .do	1-20,000	1869do	1133
Port Orford or Ewing Harbor	...do	1-10,000	1851	A. M. Harriso	347
Orford Reef	...do	1-10,000	1869	A. W. Chase	1131
Cape Blance	. d o	1-10,000	1869	..do	1130
Eutrauce to Koor Bay	.do	1-10,000	1861	J. S. Lawson	846
Koos Bay, sketches of	...do	1-20,000	1863	. do	927
Goat Inland to Whate's Island.	...da	1-10,000	1871	A. W. Chaso	1260
Cape Foulweather and entrance to Yaquina Baydo	1-10,000	1868	d	1086
Point Adams and Sand Island, Columbia River	..do	1-10,000	1851	A. M. Harrison	335
Columbia River entrance.	...do	1-20, 762	1850-'51	W. B. McMu	317
Columbia River, from Point Adame to Yonng's Baydo	1-10,000	1868	C. Reckwell	1112
Columbia River, from Young's Ray to John Day's River-	...do	1-10,000	1868	. do	114
Colambia River, from John Day's River to Warren's Landing.	...do	1-10,000	1870	do	1234
Colutubia River, from Warren's Landing to Three-Tree Puint.	do	1-10,000	1870	...do	1235
Columbia River, from Three-Tree Point to Puget Island	do	1-10, 000	1871de	1250
Columbia River, from Cape Disappointment to Clineok Peint.	. d d	1-10, 000	1869do	1138
Columbia River, from Chinook Point to Gray's Point	do	1-10, 000	1269	. ${ }^{\text {do }}$	$1139 \boldsymbol{a}$
Columbia River, from Sandy Islaud to Chinook Spit.	...do	1110, 000	1869do	11396
Colurabia River, from Gray's Bay to Sung Island.	du	1-10,000	1870	do	1249
Columbia River, vicinity of Kathlamet and Westport. .	Wasbington	1-10,000	1872do	1331
Cape Disappoiatment	do	1-10, 000	1851	A. M. Harrison	337
Shoalwater Bay, Sheet No. 1	do	1-10, 000	1871	J.J. Gilvert	1261
Shoalwater Bay, Sheet No. 2	do	1-10,090	1871do	1*62
Shoalwater Bay, Sheet No. 3	do	1-10,000	1871	do	1243
Shoalwater Hay, Sheet No. 4	do	1-10,090	1871	do	1264
Shoalweter Ray, Sheet No. 5		1-10,000	1872	do	12
Shoalwater Bay, Sheet No. 6	. . do	1-10,000	1872	. 10	1203

H. Ex. $81-15$

APPENDIX No. 7-Continued.

Localities.	State.	Scale.	Date.	Topographer.	Regiatered number.
Shoaiwater Bay, sheet No. 7.	Wasbington Ter..	1-10,000	1872	J.J. Gilbert.	1994
Sboalwater Bay (mouth of Willopah River), sheet No. 8	do	1-10,000	1873	do	$1342 a b$
Shmalwater Bay, sheet Nos. 9 and 10	...do	1-10,000	1873	...do	$1341 a b$
Cape Flattery eastward to Nee-3b Bay	...do	1-10,000	1852	J.S. Lawaon	387
Strait of Juan de Fuca, from Cape Flittery to Nee-ah Bay.	...do	1-10,000	1252	. do	386
Now Dungeness, part ofdo	1-10,000	1870	.do	1168
New Dungeness, Strait of Juan de Fuca...............	...do	1-10,000	1855	do	539
Washington Harbor, Strait of Juan de Fuoa.	. do	1-10, 000	1870	. ${ }^{\text {do }}$	1105
Protection Isladd to New Dungeness	...do	1-10,000	1870	. do	1169
Purt Diacovery entrance, sheat No. 1.	...do		1866-69	...do	1124
Port Discovery, sheet No. 2.	do		1869do	1125
Port Discovery, sheet No. 3do		1869*'70	...do	1126
Port Townshend, ricinity of base	...do	1-10,000	1856do	589
Port Townshend	.do	1-10,000	1856do	582
Port Townshend, Admiralty Inlet	...do	1-10,000	1856do	581
Killesat Harbor	...do	1-10,000	1871do	1255
Oak Bay	do	1-10,000	1872do	1304
Mats Mats or Boat Harbor	. do	1-10, 000	1855do	540
Port Ludlow, entrance to Hood's Camal	..do	1-10,000	1855do	537
Entrance to Port Gamble	. do	1-10,000	1857do	671
Port Gamble, entrance to Hood's Canal	.do	1-10,000	1856do	585
Hocd's Caual, entrance to.	do	1-10,000	1857	. do	669
Admiralty Inlet (two sheeta)	...do	1-10,000	1872do	1303 ab
Part of Admiralty Inlet.	-.do	1-10,000	1857	do	688
Apple Cove; Admiralty Inlet.	...do	1-20,000	1856	George Davideon, J. S. Lawson.	583
Murden's Cove, Admiraluy Inlet	do	1-20, 000	1856	J. S. Lafson.	584
Fanutelroy, Admiralty Inlet.	...do	1-10,000	185%	George Davidson	670
Shilabole Bay, Admiralty Iulet	. .do	1-10,000	1867	J. S. Lawson.	1064
Admiralty Bay, Paget Sound	. do	1-10,000	1870do	1164
Dowamish Bay	...do	1-10,000	1856	George Davidson	590
Part Madieon	.. do	1-10,000	1868	J.S. Lawson	1087
Eudd's Inlet, (2 sheets).	...do	1-10, 000	1873do	1327 ab
Point Partridge to Eustward, Whidbey Island.	...do	1-10, 000	1871do	1254
Finger Station to Point Partridge, Whidley Inlaud.	..do	1-10.000	1871	...do	1253
Deception Pass to Finger Station	. .do	1-10, 000	1871do	1252
Smith's Yaland	- do	1-10,000	1870do	1170
Smith's Ieland, Rosario Stralt	do	1-10, 000	1855	do	533
Straw berry Bay, Cyprese Island, Rosario Strait	.do............	1-10, 000	1854	do	462
Gulf of Georgia, southern part, from Matia Island to Eant Foint.	.do	1-20,000	1858	...do	730
Gulf of Georgia, southern part, from East Point to Deep Bay.	...do	1-20, 000	1858	...do	731
Qulf of Georgia, bathern part, frem Deep Bay to Rocky Ialand.	..do	1-20, 000	1858do	73

APPENDIX No. 8.
List of hydrographic sheets, geographically arranged, registered in the archices of the United States Coast Survey from January, 1835, to July, 1875. (Nos. 1 to 144, inclusive.)

Localities.	State.	Scale.	Date.	Hydrograplier.	Registered nuruber.
Eclipse Harbor, Coast of Labrador		1-40,000	1860	A. Murras, U. S. N	818
Deep-sea soundings, Coast of Labrador, from Isle of Ponds to Cape Chudleigh.			1800	do	81%
Deep-sea sounding off Cape Sable.....................			1872-3	J. A. Howell, U. S. N	1278
Eastport Harbor and approaches, No. 1, south part	Maine	1-10,000	1861	C. O. Boutelle	847
Eastport Harbor and approaches, No. 2 , north part	.do	1-10,000	$18: 3$do	848
Quotdy Roads and Johnsou's Bay	do	1-10, 000	1866	H. L. Marindin	897
Off ehore, from Machias Bay to Eastern Point Ligbt..	Maine, New Hampshire, Massachusetts.	1-300, 003	1258-9	A. Murras, C. S. N.	700
Western entrance to Moose-a-beo Reach	Maine	1-10,000	1870-1	F. F. Nes. H. Anderson ..	1060
Morse-a-bec Reach.	...do	1-10,000	1870-1	. do	10.79
Indian River.	...do	1-10,000	1870-1do	1061
Winter Harbor and approaches	. . do	1-10,000	1867	H. Anderson	938
Frenchman's Ray, from Bunker's Ledge to Schooner's Head.	...do	1-10,000	1873	J. W. Donn	1215
Frenchman's Bay, from Schooner's Head to Bar Harbor	...do	1-10,000	1873	do	1216
Frenchman's Bay, from Bar Harbor to Sand's Point...	..do	1-10,000	1873	do	1217
Southwest Harbor, Mount Desert, western approachdo	1-11,000	1871	do	1120
Southwest Harbor, Mount Desert, eastern approach.	...do	1-10,000	1871	. ${ }^{\text {do }}$	1121
Somes Sound.	.do	1-10,000	1871	. do	1122
Placentia Bay, Mount Desert Island	..do	1-10,000	1872do	1164
Prospect Harbor.	...do	1-10,000	1871	H. Auderso	1127
Entrance to Isle an Haut Bay	-. -do	$1-20,000$	1576	F. I. Tebler	1074
Isle an Haut Bay	do	1-20,000	1869	Charles Junken	1098
Hurricane Island Sound and vicinity	.. do	1-10,000	1869	\cdots	109
The basin on vinal Haven Island.	...do	1-10,000	1870	F. P. Welbler	$10: 5$
Fox Inland Ray and ricinity	do	1-10,000	1870do	1073
Esat side of For Islands and Seal Bay	...do	1-10,000	1871 do	1142
Fox Islands Thorougbfare, eastern part.	...do	1-10,000	1868	Charles Jumen	98.3
Fox Ielande Thoroughfare, western part	. . do	1-10,000	1868do	982
Penobscot Bay, mpproaches to	...do	1-20,000	1866-'7-'8	do	10.7
Penobscot Bay, entrance to	...do	1-20,000	1860-7do	943
Penobacot Ray, entrance to	..do	1-10,000	1863	Edward Cordell	823 a
Metinic and Mouhegan Islands, (2 sheets) do	1-20, 000	1867	Charles Junken.	8236
Penobscot Bay, from Owl's Head to Ensign Islanddo	1-20, 000	1869	E. P. Webber	1086
Penobscot Bay, between Ofl's Head and Fox Isiands.	do	1-20,000	1869	Cbarles Junken	1030
Penobscot Ray, inlande nouth of Isiesborodo	1-10,000	1869	F. P. Webler	1087
Penobscot Bay, from Camden to Belfast Bay	do	1-20,000	1871do	$1: 43$
Belfast Ray .	. . ${ }^{\text {a }}$	1-10,060	1872	H. Anderson	1168
Gilkey's Harbor, Penobscot Biyy.................... do	1-10,000	1871	F. P. Webler	1144
Rockland Harbor	do	1-10,000	1863	W. S. Edwards.	819
Camden and Reckport Harbors	. do	1-10.000	1865	H. Anderson	$\varepsilon:$
Penobscot River, from Rangor to Hampden............	. .do	1-10,600	1867	J. A. Sullivan.	934
Muscle Ridge Channel	..do	1-10,000	1866-7	R. E. Halterand C. Junker	95:
Mancle Ridge Itiands.	.. do	1-10,000	1267	R E. Halter.	953
Saint George's River entrance	..do	1-10,000	1865	R. E. Ealterand C. Fendall	872
Salnt George's River (sheet No. 1)	do	1-10,000	1864-7	F. P. Wabler	858
Saint George's River (shoet No. 2)	do	1-10, con	1864do	859
Coast from Moequito Harbor to Seal Harbor.	-do	1-10, 000	186%	It E. Hather	907
Coast from Monbegan Island to Demiscove Point	do	1-20,000	1800	T.S Pice:ph, L. S. S......	746
Coust between Demiscove Islande and Cape Small.do	1-40,000	1859	J. Wilkinson, C.S. N.....	696
Masco-gus Ray	. .do	1-10,0c0	1267	R. E. Halter.	950

APPENDIX No. 8-Continued.

Localities.	Stato.	Scale.	Date.	Hydrographer.	Registered number.
Muscongus Bay	Maine	1-10,000	1268	R. E. Halter	986
Medincook River and Point Pleasant Gut	...do	1-10,000	1806-'7	. do	951
Modounak River	. . do	1-10,000	1866	H. Anderson	960
Medomak River, from Bremen to Havener's Ledge	do	1-5, 000	1866	...do	960 bis
John's Bay	do	1-10, 000	1867	K. F. Halter	920
Damarisootta River and approncles	do	1-10, 000	1860	J.P. Bankhead, U.S	791
Daroariscotta River, from Newcastle to Clark's Cove	do	1-10, 000	1866	E. Hergesheimer	903
Sheepscot Bay, botween Grifith's Head and Kennebec River.	. . .do	1-10, 000	1868	J.S. Bradford	971
Sheopscot River, from Hendricks Head light to Wiscasset.	do	1-10,000	1858	J. H. Moore, U. S. N.......	675
Sbeepseot River, from Hendricks Head light to Wiscasset.	do	1-10,000	1858	do	676
Mouth of Sheepacet River and Rooth Bay	do	1-20, 000	1860	T. S. Phelps, U. S. N	771
Wiscasset Bay, Back River, and Montseag Bay to Westport bridge.	. .do	1-10,000	1862	F. H. Gerdes	775
Etenecook Harluor, Town'y Eud Gut, Back River, \&c.	. . do	1-10,000	1366	E. Hergesheimer.	891
Hell Gate, Back River (2 sheets	do	1-10,000	1865.	H. Anderson	89.3
Great and Little Hell Gates and Goose Rock Pabsage.	do	1-5, 000	1867	J. S. Bradford	930
Hockomock and Kanuble Bays, Sasanoa River	do	1-10,000	1867	do	929
Hockomock Bay, including the river emptying into the Kennebec and Sheepacot Rirers.	...do	1-10, 000	1862	F. H. Gerdes	776
Morrymeeting Bay aud Kennebee Rive	do	1-10,000	1861	do	790
Kevnelbe Fiver entrance	do	1-20,000	18.56	S. D. Trenchard, U. S. N.	552
Kennebec River, northward from Bath	.do	1-10,000	1858	J. H. Moore, U.S. N	693
Kannebec River, from Coxe's Head to Bith	. do	1-10, 000	1857	S. D. Trenchard, U. S. N	639
Kennebec River, from Swan Island to Richmo	do	1-10,000	1869	C. H. Boyd	1064
Kennebee River, from Richmond to Gard	do	1-10,000	1870	. . do	1065
Vicinity of Cape Small Point	. do	1-10,000	1868	I. S. Bralford	972
New Maxdow River	do	1-10,000	1866	5. W. Donn	899
Head of Maquoit, Midde and Quohog Bays, Harps. well Sound.	. do	1-10, 090	1869	H. Anderson	$100{ }^{\text {1 }}$
Maquoit Bry, Mane Point Bay, aud Middle Bay........	do	1-10, 000	1363	F. H. Geries	840
Quolog Bay	...ds	1-10, 000	1864	A. Strausz	857
Mericoneag Sound	. . do	1-10,000	1863	F. H. Gerdes	839
Offshore soundinge from Segain Isle to Cape Elizabeth.	...do	1-10,000	1867	R. Platt, U.S. N	933
Alden's Rrack	. ${ }^{\text {do }}$	1-789	1853	M. Woodhnll, U. S. N.	824
Casco Bay	do	1-10,000	1856	S. D. Trenchard, U. S. N.	602
Casco Bay	. .do	1-10,000	1856do	614
Casco Bay	do	1-20,000	1862	E. Cordell.	820
Casco Bay	do	1-40,0c0	1857m'8	W. G. Temple, U.S. N.	664
Casco Bay (lower part)	...do	1-20,000	1861	C. A. Schott.	754
Casco Bay (part of)	do	1-20,000	1859	J. Wilkinson, U. S. N.	728.
Approachee to Portland Harbor	. do	1-40, 060	1864	T. S. Phelps, U.S. N .	860
Portland Harbor, appronches, and positions of rockd.	. do	1-20, 000	1863do	841
Portland Harbor, outaide of entrance	. . do	1-20, 000	1854	M. Woodhnll, E.S. N....	403
Portland Harbor	...do	1-10, 000	1854do	404
Portland Harbor, additional eoundings	. . do	1-20,000	1862	Ed. Cordell	788
Rockn off Fortland Harbor	- . do	1-20,000	1863	T. S. Whelpe, U. S. N	786
Bank off Union Wharf, Portland Harb	. . do	1-5,000	1859	J. Wilkineon, U. S. X.....	684
Jordon's Rock, near Portland Harbor	. do	1-5,000	1857	F. A. Rae, U. S. N .	601
Bank off Union Wharf, Portiand Harbor	...do	1-5,000	1857	S. D. Trenohard, U. S. N.	000
Portland Harbor....e.............	.do	1-5,000	1868	R. Platt, U.S. N	949
Portland City and Harbor, gheet No.	do	1-1,200	1868	F. Andereon .	1038
Portland City and Harbor, bheets No. 2 and 3	. ${ }^{\text {do }}$	1-2,400	189do	1033 ab
Portland City and Harbor, Sheets No. 4 and 5.	- . ${ }^{\text {do }}$	1-2,400	1869 do	$1034 a b$
Riohnomd's Island Harbor..	. 10	1-10, 000	1850	M. Woodhuil, U. S. N.....	243
Coast, from Cape Klizabeth to Kennebunk Port	.do	1-40,000	1859	A. Mnrray, V. S. N	699
From Kennebauk Fort to Trles of Shoals.	..do	1-40,000	1858do....	607
Cape Porpoibe and Stage Islani Harbor (a) $\}$					
Wood Inland, and approaches to Sace River (b) $\}$		1-10,000	1871	J. S. Bradford	$1117 a b$
Weod Island Harbor, reconnal ance of do	1-10,000	1849	A. Murray, U. S. N......	739

APPENDIX No. 8-Continued.

Localities.	State.	Scale.	Date.	Hydrographer.	Legistered number.
Stage Isi'dand Cape Porpoise Harbors,reconnaissance of	Maine	1-10,000	1859	A. Mur ray, U. S. N.	740
Saco River.	do	1-5,000	1860	G. Davidson	882
Saco River, from Saco to Chandler's Roin	. .do	1-5,000	186%	F. F. Nes.	441
Saco River up to Chandler's Point	. do	1-5, 000	1867do	942
York Harbor	.. do	1-10, 009	1853	M. Woodhuil, U. S. M	376
Boon Island and Fork Lsland (outside)	..do	1-20,000	1853	. do	366
Portsmouth Harbor and approaches	New Hampelire ..	1-20,000	1851do	294
Portemouth to Newbaryport	New Hampshire and Massachusetts.	1-20,000	18.57	C. R. P. Roulgers, C.S. N.	627
Isles of Shoals	New Hampshire ..	1-10, 000	1859	A. Murray, E. S. S	7418
Isles of Shorls Harhor.	New Hampshire and Mane.	1-10,000	1874	R. Platt, U.S	7416
Jeff ey's Ledge	New Hampshire..	1-150, 000	1863	T. S. Phelpe, U. S. N	7 Cl
Const of New Hampshire, from Pulpit Rock to Great Boar's Head.	...do	1-10, 000	1870	H. Anderson	1068
Coast of New Hampshire, from Great Roar's Head to Salisbury.	. .do	1-10,000	1370	do	1069
Burlington Harbor, Lake Champlain....................	Vormont	1-10,000	1871	F. D. Granger	1105
Mitchell's Fall's, Merrimack River	Massachusetts.	$\begin{aligned} & 200 \text { feet to } \\ & 1 \text { inch. } \end{aligned}$	126\%	II. Mitchell	1012
Newburyport Harbor	\ldots..do	1-10, 000	1851	M. Woochull, E. S	292
Cape Ann and Newbirsport.	do	1-20,000	1854	C.R.P. Rodgers, U.S. N.	594
Ipswich and Annisqaam Haris	\ldots. do	1-10,000	1852	M. Woodhul, C.S. N.	346
Annisquam and Tpswich.	. . do	1-20,000	1850	S. D. Trenchard, C. S. N.	$5 \mathrm{H4}$
Anniequam to Thatcher Is'and (Cape Ann)	...do	1-10, 000	1857	C. R.P. Kodgers, U. S. N.	597
Gloncester Harbor and approaches.	. .do	1-10,000	1853	H. S. Stellwagen, U.S. N	346
Emerson's Point and Milk Island	. . do	1-10,000	1873	J.S. Bradford	$3!64$
Salem Harbor and approaches	...do	1-10,000	1850-1	C. H. McBlair, U. S. N.	284
Salem Harbor.	...do	1-5, 000	1858	W. G. Temple, C.S.	651
From Lyan to Marblehead	...do	1-20,000	1353-4	H. S. Stellwagen, U. S. N	413
Lymi Harbor.	\ldots..do	1-10,000	1858	A. Murray, U.S. N......	662
Massachusetts Bay and Stellwagen Bank	. do	1-80,090	1854-5	H. S. Stellwagen, U. S. N .	516
Stellwagen Bank, Massachusetts Bay	do	1-100, 000	1854do	457
Stellwagen's and Cobasset Rocks	. .do	1-10,000	18.56do	5 Ez
Offshore, between New buryport and Munomoy... ...	\ldots. .do	1-300, 000	1857	C. R. P. Rodgers, U.S.N	593
Boston Harbor and approaches.	.. do	1-20, 000	1846-7-8	C. H. Davis, D. S. N.	221
Roston Harbor (the inner harbor)	\ldots. do	1-5,000	1846 do	135
Boston Harhor tho inner harbor) sarveg nnder United States Harbor Commisaioners.	...do	1-10,000	1861	A. Boschke	850
Boston Harber.	..do	1-10,000	1858	W. G. Temple, U. S. N.	6.5
Shirles's Gut, Boston Harbor	\ldots	1-5, 000	1858 do	643
Minot's Ledge, off Boston Harbor	..do	1,500	1853	H.s. Stellwazen, U. S. N	412
Town, Fore, and Back Rivers, Weymouth.	do	1-10,006	1869	J. S. Bradford .	1021
Philip's Ledge, Green Harbor Riverdo	1-40,000	1846	C. H. Davis, C. S. N ..	173
Duxbury Baydo	1-10, 600	1867-70	H. Anderson.	1035
Plymoath Harbor.	...do	1-10, 000	1833	M. Woodhall, U.S. N.	4%
Plymouth Harbor.	\ldots..do	1-10,000	1870	H. Anderson.	1067
Barastable Harbor	\ldots..do	1-10,000	1861	H. Mitchell .	-51
Part of Barnatable Bay	. .do	1-10,000	1260	J. Wilkinson, U.S. N....	76
Cape Cod, Race Point to Nausett light	...do	1-40,000	1855-6	H. S. Stellwagen, U. S. N	519
Previncetown Harbor, Cape Cod..	...do	1-40,000	1856do	578
Provincetown Harbor, Cape Cod	-..do	1-10,000	1868	A. Balbach.	578 bis
Cape Cod, Nanaett light to Monomoy	...do	1-40,000	1856	H.S. Stellwagen, U. S. N	570
Wellfeet Harbor.	...do	1-20,000	1849-50	C. H. McBlair, U.S. N....	249
Chathann Harbor	...do	1-10, 000	1851	M. Woodhull, U.S. N....	293
Monomoy Shonls.	\ldots. do	1-30,000	1853do	3 ET
Monomoy Shoalsdo	1-20, 000	1872	F. D. Granger	1149
Monomey and Nantucket Shuals........................	...do	1-20,000	1873 do	$1195 a b$
Monomoy Shoals, reconnaisanncedo	1-40,000	1868	F. F. Nes and G. S. Blake, U. S. N.	961
Cultivator'e Shoals, off Cape Cod	...do	1-20, 000	1272	J. A. Howell, U. S. N	
George's Shoals, off Cape Coddo	1-40,000	1873do	1207 b
Phelpw' Bank and Asia Rip, Nantucket Shoals, recontaissance of.	...do	1-100,000	1860-1	T. S. Phelps, C . S. N.......	745

APPENDIX No. 8-Continned.

Localities.	State.	Scale.	Date.	Hydrographer.	Registered number.
Nantncket Shoals (Davis Sonth Shoal).	Marsachusettr ...	1-40, 000	1847-'8-9	C. H. Davis, D. S. N......	223
Off Nantucket and Mar tha's Vineyard (ieep-sea soundings).	. . .do	1-400, 000	1853	H. S. Stellwagen, U.S. N.	406
Nautucket Shoals (off-dhore soundings)	do	1-300, 000	1853-4-'5	do	440
Nantucket Shoals.	. do	1-40,000	1846	C. H. Davis, U. S. N.	179
Nantucket Sound (entrance)	- . do $^{\text {d }}$	1-10, 000	1856	H. S. Stellwagen, U. S. N..	569
Nantucket Sonad, Nobska ligbt to Monomoy...........	. . do	1-40,000	1854	M. Woodhall, U. S. N.....	45.7
Nantucket Sound, Monomoy to Bishop's and Clark's light.	-. do	1-20,009	1874	F. D. Granger.....	1243
Nantucket Soun	de	1-30, 000	1852-6	C. R. P. Rodgers, D. S. N...	527
Bass River	-.do	1-20,000	1849	C. H. MeBlair, U. S. N	245
Hyaubis Harbor	. do	1-20,000	18.77	J. N. Mamt , U.S. N	184
Nantucket Harbor	. . do	1-20, 000	1846	C. H. Davis, L. S. N	181
Nantucket Haibor	. do	1-10,000	1846do	180
Nantucket Island (sonth side)	do	1-40, 000	1854	H. S. Stellmagen, F.S. S	445
Nantucket Upper Harbor	. ${ }^{\text {do }}$	1-20, 000	1872	F. D. Granger	1163
Muskeget Channel and approa	. ${ }^{\text {do }}$	1-20, 000	1851	C. H. MeBlair, U. S. N	239
Edgartown Harbor, Vineyard Sonnd	. . 10	1-20,000	1846	C. H. Darie, C.S. N	22.2
Edgartow n Harbur, Martha's Vineyar	. do	1-10, 000	1846	. do	182
Edgartowa Harbor and Catamy Hay	d	1-10, 000	1871	H. Mitchell	1126
Holmes's Hole and vicinity	- . do	1-10,000	1843	G. S. Make, U.S. N	161
Vineyard Haren Harbor	. .do	1-10,000	1871	H. Mitchell	1106
Martha's Vibeyard, sfuth aide	...de	1-40, 000	1853	H. S. Stellwagen, C. S. N ..	378
Lone Rock, \& c., betweon Gay Head and No Man's Land.	. . do	1-20,000	1852	C. H. McBlair, U.S. N	3.44
Cuttsbunk to Gay Head.	. . do	1-40,000	1857	C. R. P. Rodgers, U.S. N.	596
Naushom and vieinity	. .do	1-20,000	1857	--.. do	595
Buzzard's Buy, eastern side	-..	1-20, 000	1845	G. S. Blake, D. S. N	160
Buzzard's Day, western side	do	1-20,000	1845	. do	159
New Bedford Harlor	do	$1-20,000$	1845	. do	- 158
Buzzard's Eay and Martha's Vineyard Sourd...........	. . do	1-20, 000	1845	G.S.Blake and C.H. Davis, U.S. N.	163
Sow and Pigs Reef (off Cuttyhunk)	do	1-5,000	1853	M. Woodhull, U.S. N.....	357
Sow and Pigs Reef	do	1-120	1853	. . do	358
Sippican Harber (shert No. 1, west)	-. .do	1-5, 000	1863	H. Mitchell	826
Sippican Harbor (sbeet No. 2, east)	do	1-5, 000	1863	do	829
From Mishanm Point to East Reck	Massachusetts and Rhode Ialand.	1-20, 000	1844	G. S. Blake, D. S. N	154
Westport Fiarbor, Mass., and coast westward 10	1-10, 000	1844	do. .-....-. - .-.......	155
Hlock Island, Cuttyhunk, and Gay Head (off ahore) ..-	. do	1-20,000	1847-'8	R. Beche and J. R. Goldsborough, U.S. N	204
No Man's Land (afi-shore moundiega)	do	1-40, 000	1851	C. H. MeBlair, U.S. N	$2: 8$
Off Point Judith and No Max'a Land	. . do	1-100,000	1851	S. Swartwout, U.S. N	283
Watren River	Thode Esland	1-5,000	1865-6	F. P. Webber	888
Seekonk River	. do	1-5, 000	1865	A. M. Farrison	865
Narragansett Bay	. 10	1-20, 14.0	1861	W. P. Trowbridgo.	$792 a$
Tapnton Rirer	. do	1-10,000	1862	... do	792 b
Narragansett Bay ...	do	1-20, 000	1862	F. Mitchell	787
Narragancett Bay, from Quonset Point to Dutch Ialand	do	1-10,000	1868	F. P.Webber.	998
Narragansett Bay, from Hope Island to Patience Island	do	1-10,000	1867-8do	939
Greenwieh Bay	do	1-5,000	1867do	940
Narraganmett Bay, hrad of, and Proridence River....-do	1-10,000	1865-'7do	880
Providence Rirer, from city of Providence to Stargut Ialand.do	1-5,000	1865 do	878
Datoh Island Harbor	do	1-10,000	1882	H. Mitchell	786
Comater's Harbor	...do	1-10, 000	1863-45	H. Mitchell and F.P. Webber	785
Newpert Harbor	do	1-5,000	1865	F. P. Welbber	811
Saughkonnet River and vidinity	do	1-10,000	1848	J. R. Goldsborough, U. S. N	205
From Frst Rock to Point Judith.	- do	1-20, 000	1844	G. S. Blake, U. S. N........	153
Point Judith and esstward (off shore) do	1-20,000	1847-78	P. Bache and J. R. Goldisborough, U.S.N.	006
Point Jndith and eouthward to Block Lsiand...........	d	1-40, 000	1845	G. S. Biake, U. S. N.	162
Block Istand Sound, Point Joaith to Guonaentog........	. do	1-20, 000	1839	T. R. Gedney, U. S N......	84
Blcek Island and Fisher's Island to Gronacutog	. .do	1-90,000	1839	-....do	86

APPENDIX No. 8-Continued.

Lacalities.	State.	Scale.	Date.	Hydrographer.	hegistered number.
Additional soundings off Montaik Point, G reat Eastern tiock.	Rhode Island	1-20, 000	1863	T. S. Phelps, U. S. N	780
Pawcatuck River, near Storington.	Connecticat.......	1-10, 000	18.39		93
Watch Hill Reef, Block Island Sonnd.	...do	1-20, 000	1847	C.P. Patterson, U.S. S	85
From Gull leland to Wateh Hill, Bloek Island Sound.	...do	1-10,000	1×39	T. R. Gednet, C	91
Fisher's Island Sound.	\ldots..do	1-10,060	1839	G. S. Blake, U.S. N	99
Long Island Sound, vicinity of Fisher's	...do	1-10,000	1839	do	97
Fisher's Island Sonnd.	...do	1-80, 000	1879	. do	96
Thames' Ferry, Long Island Sound	. do	1-10,000	18.11	. do	115
Thames' River, from Gale's Ferry to New London	do	1-10,000	1830	.do	114
Thames River, near New London	do	1-1, 200	1269	Charles Junke	1006
Thames River, naval station to Norwich	do	1-10, 000	18.4	H: G. Ogden.	1242
From Bloek Point to New London Harbor	do	$1-10,000$	1839	G. S. Blake, U. S. N	92
New London Harbor, Long Istand Sound	do	1-10, 000 :	1839		93
Frank's Ledge, off New London Harbor.	..do	1-10, 000	1847	Richard Brche, U.S. N	94
From Griswold's to Black Point, Long Island Sound	. .do	1-10, 000	1638	G. S. Dtake, U. S. N	48
Connecticut River (resurver)	do	1-10,000	1849	J. R. Goldshorough, C.S. N	233
Connecticut River	ao	1-10, 000	1851	M. Woodhull, U. S. N.	276
Connecticut River Bar.	do	1-20, 000	1251do	275
From Fisherman's Crutch southward, Long Island Sound	do	1-10,000	1836	G. S. Blake, U.S. N	41
Hammonaseet to Cormorant Point	.. do	1-20,000	183 ?	.do	39
Tuck's Island and vicinity of Madison, Long Island sonnd.	...do	1-10,000	1838	. .do	38
From Bartlett to Tuck's 1slanddo	1-10, 000	1838	. do	37
Weat Branton and vicinity of Hoadley and Hammonasset.	...do	1-20,000	1838do	35
From Stratford light-house to Indian Neck	do	1-20,000	1838	do	29
From Saltall to Hoadley, Long Island Sonod.	...do	1-10, 000	1838	do	34
From Oyster River Point to Saltall, abreaat of New Ha ven.do	1-10,000	1838	-....do	38
Shoal off New Haven light hoasedo	1-5,000	1858	W. G. Temple, U.S.N.	647
New Haven Harbor.	do	1-10,000	1872	R. M. Bach	1180
Quinnipiack River at Fair Haven.	..do	1-10, 000	1838		33
From Charles Island to Orster River Point	do	1-10,000	1838	G.S. Bake, U.S. S	2*
From Mlack Hock to Charles Island	do	1-20, 000	1837do	24
From Charles Island to Black Rock	do	1-10, 000	1837	. do	23
Vicinity of Bridgeport, Long Island Sound.............	...do	1-5.000			25
Frous Sheffeld Island light to Black Rock..............	do	1-10,000	1835	G. S. Blake, U.S. N	18
From Black Rock to Froat Point. .	. .do	1-10, 000			$\underline{0}$
From Frost Point to Sbeffield Island light.	do	1-10, 000			19
From Sheffield Island light to Greenwich Point.	...do	1-10, 000			9
From Greonwich Point to Sheffield light..............	...do	1-10, 000	1836	G. S. Make, U. Si	8
General chart between Gay Head and Cape Henlopen	New York, New Jersey, Delaware.	1-400, 000	1859	A. Boschke	680
Montauk Point, Plum Island, and vicintty	New York	1-10,000	1845	C. H. Daris, T , S. N	88
Plura Island, Montank Point, and vicinity.	do	1-10,000	1845	. .do	80
From Fisher's Island to Plum Point, Long Itianddo	1-20,000	1839do	87
From Rave Point (Fisher's Island) to Ofster Point, Long Island Sound.do	1-10,000	1839 1838	G.S. Blake, U.S. N.	95 80
Gardneris Ray, Long Island Sound...		1-20,000	1838	T. R. Gedney, U. S. N	80
Bedford Reef. (See Nos. 87, 88, and 95).	.do	1-10.000	1847		90
From Plam Jsiand to Brown's Hill, Long Iasland Sound	do	1-10,000	1838	G. S. Blake, C . S. N....	43
From Brown's Hill to Manor light, Long Island Sound	do	1-20, 0c0	1838do......	40
Orient Bay, Long Island Sonnd...	. do	1-10,000	1839	T. R. Gedney, C. B. N..	81
Sonthhold and Orlent Bays, and Greenport Harbor	do	1-10,000	1838	...do	78
Greemport Harbor, Loak Island Sound	do	1-10,000	1838do	79
Sag Harbor, eattorn and of Long Island.	do	1-10,000	1839do	89
Sag Harber and velinity	do	1-10,000	1839	...do	83
Great and Litile Pecomio 13aya, Long Ialand.		1-20,000		..do	77
From Single Bul Station to Glover, Long Ieland Sound.	. do	1-20, 000	1838	G. S. Blake, U.S. N........	36
From Glover to Old Point, Long Inland Sownd.	do	1-80,000	1838	... ${ }^{\text {do }}$	30
From Old Point to Miller's Place, Loyg Island Sound		1-10,000	1838	.do	31
From Old Point to Eiton Point, Long Ieland Sound.	.do	1-30,000	1837do	21

APPENDIX No. 8-Continued.

Localities.	State.	Scale.	Date.	H_{5} drographer.	Kegistered number.
From Eaton Point to Oak Neck, Long Msland Sound....	New	1-10,000			10
From Smithtown to Oldfield Point, Long Island Sonnd.	do	1-10,000	1837	G. S. Blake, U. S. N	26
Hempstead Harbot	do	$1-10,000$	1859	'T. B. Huger, U.S. N	602
Stnny lrook and vicinity, Long Island	..do	1-10.000		G. S. Blake, D. S. N	$2{ }^{4}$
Fronu Smithtown to Eaton Point, Long Island Sound	do	1-10,000	1837 do	22
Cow Harbor, Long Ialand Sound	do	1-10,000			15
Cow Harbor, Long Island sound. (See No. 15)	. . ${ }^{\text {do }}$	1-3, 333			16
Huntington Earbor, Long Island.	do	1-10, 000			17
Ofster Bay and Cold Spring Harbor, Long Iola	do	1-3, 333			14
Cold Spring Harbor and Osater Bay, Long Island	...do	1-3, 333			13
Oyster Bay and Cold Spring Harber	do	1-10, 000			11
Oyater Bay and Cold Syring Harbor (daplicate)	..do	1-10, 000			12
whortleberry Island to Greeawich Point, Long Island Sound.	\ldots. do	1-10,000	1836-7	G. S. Blake, U. S. N.	4
From Minursen Igland to Greenwich Point, Long Ibland sound.	\ldots...do	$1-10,000$ $1-10,000$	$1836-7$ $1836-7$	do	5
From Captain's Island to Whortleberry Island.	do	1-10,000	1836-7	.do	5
From Sand light to Matinicock, Long Island Sound	do	1-10,000	1836-7	.do	7
Throg's Neek and Daveuport Point, Long Island Sound.	do	1-10,000	1837	. do	1
Hewlet's Point to Whortleberry Island, Long Island sound.	do	1-10,000			2
Matinicoek Point and Throg's Neck, Long teland Sound	do	3-10,000	1837	G. S. Blake, U	3
East River, Flushing Bay and vicinity	do	1-10,000	1841	G. M. Bache, U. S. N	67
Harlem River and Little Hell Gate		1-2, 500	1849	M. Woodhall, U.S. E	295
Hell Gate (resarvey)		1-2, 500	1848	D. D. Porter, U. S. N	224
East River, from Hell Gate to Throg's Neck, Long Island Sonnd.	. ${ }^{\text {do }}$	1-10, 000	1856	T. A. Craven, U.S.	580 646
Harlem River aud Spuyten Duyvel Creek	dn	1-10, 000	1856	do	646
East River, from south end of Blackwell's Island to Harlem River.	...do ...do	$1-5,000$ $1-1,280$	1856 1866	W.do	645 898
Frying Pan and Pot Rover (Holl Gate	..do	$1-1,280$ 11,250	1866	W.S. Edwatds	$\begin{array}{r}896 \\ \hline 1085\end{array}$
Wallabout Bay (East River)	. do	1-1, 250	1869	F. F. Nes...........	1085 748
Haltic Rock, New York Harbor	do	1-2, 500	1861	T. S. Pbelps, U. S. N	748
Diamonil Reef, New York Harbor	.do	1-5, 000	1859	J. Wilkinson, U. S.	698
Coenties Reef and Diamond Reef, New York Harbo	do	1-2, 000	1255	T. A. Craven, U.S. N	497
Diamoad Reef and Prince's Reef, New York Harb	. ${ }^{\text {do }}$	1-2,500	1849	M. Woodhull, U.S. N	226
Off the Battery, New York Harbor.	do	1-5,000	1359	T. A. Craven, U.S. N	678
Off ihe Battery, New York Harbor	. do	1-5,000	1859	J. Whkinson, U.S. N	697
Of the Battery, New York Harbor	. do	1-2,500	1367	W. S. Edwarde	910
Now York Harbor (vicluity of city)	. .do	1-10,000	1854	M. Woodhull, U. S. N	460
New York Harbor	-. do	1-10,000	1855	T. A. Craven, U. S. F	490
From Jereey City to Williamaburgh, New York Harbor	. ${ }^{\text {do }}$	1-10,000	1855do	$491 a b$
Of Nineteenth street, New York City, Kast River....	do	1-10,000	1873	F. F. Nee	491 c
From Governor's Ioland to Blackwell's Islaud, East River.	...do	1-10,000	1837	T. R. Gednes, U.S.	66
Buttermilk Cbannel, New York Bay ${ }^{\text {do }}$	1-5,000	1848	D. D. Porter, U. S. N	208
Communipaw Flate, Gowanus Bay, and Buttermilk Cbannel.	..do	1-10,000	1841	G. M. Bache, U. S. N	130
New York Bay, between Governor's Island and Robbins's Reef.do	1-10,000	1868	F. H. Cerdes	970
Additonal soundings in New York Bay	co	1-10, 000	1863	T. S. Phelps, U. S. N.	783
Gowanns Bay..	do	1-10,000	1872-3	F. F. NeB	1189
The Narrowe, entrance to New York Harbo	do	1-10,000		T. R. Gedney, U. S. N	63
New York Kay, The Natrows.	do	1-10,000	1872	F. F. Nos	1175
New Jersey Flats and Governor's Inland Shoals, New York Lower Bay.	.do	1-10,000	1871-'2	L. H. Marindin	$1145 a b$
New York Lower Bay	. ${ }^{\text {do }}$	1-20,000	1873	F. F. Nes..	1129
Swash Channel, examinatio	..do	1-20,000	1866	W.S. Edward	8974
New York Lower Bay	do	1-20,000	1872	F. F. Nes.	8976
Romer and Flyon Shouls, and Swanh Channela	. 10	1-20,000.	1853	M. Woodhall, U. S. N	356
Main channel between Sandy Hook and Flyan's Knoll, and Seotlend Shoal.	. ${ }_{0}$	1-20,000	1869	F. F. Nes.	1011
From Fort Hamittan to Sandy Hook, New Yors Harbor.	do	1-20, 600	1855	T. A. Crarem, U. S. N	806

APPENDIX No. 8-Continued.

Localities.	State.	Scale.	Date.	Hydrographer.	Registered number.
Rockaway and vicinity of Coney Island	New York	1-20, 000			54
Gravesend Bay and vicinity of Coney Islaud	do	1-20,000	1841	G. M. Hache, IR. C. Walsh, C.S.N.	59
Vicinity of Coney Island and Rockaway	. do	1-10,000			57
Gedney's Channel, verification chart	do	Large scale.			55
Graresend Bay	do	1-10,000	1841	G. M Dache, C. S. N.	128
South coast of Long Island	do	1-40, 000	1850	in. Woodhull, U.S. N......	232
From Montaral Point to Quogue	do	1-40,000	1838	T. K. Gedney, C.S. N	76
From Quogue to Montauk Point	do	1-20,000	1838 do	74
From Montank Point to Quogne	do	1-20,000	18:38	. . do	75
South side of Long Island, vicinity of Quour	do	1-40,000	1838	. do	73
Sonth side of Long Island, vicidity of Quogue	do	1-20,000	1838	do	79
From Gilgo Inlet to Quogue, ott-shore soundings	do	1-40,000	1848	R. Bache. U. S. N	203
From Smith's Poiut to Firo Istand, east l	. do	$1-20,000$	1835	T. R. Gedney, U.S. N.....	46
Great South Bay, eastern part	do	1-10,000	18.34 do	44
Great South Bay, wrestern part	de	1-20,000	1834	. do	45
Fire Island Inlet and part of Great South Bay	do	1-20, 000	1873	Charles Eosme	1198
From Fire Ialand Inlet, westward, eouth shoreLong Island	do	1-10,000	1834-5	T. R. Gedney, U.S.N.	48
Soath side Long Island, from Fire Island to Coney Island	do	1-40, 000	1835	...do	47
Gilgo Inlet, south side of Long Island	do	1-10, 000	1835do	49
New Inlet and Great Sont h Bay	do	$1-10,000$	1835do	50
From Rockaway to Sandy Hook, off-shore soundings	do	1-20,000	1815	do	51
Rockaway Inlet and part of Jamaica Bay	do	1-10,000	1841	G. M. Bache, I. S. N.	129
Hudson River, from Jersey City to Fort Washington	do	1-5, 000	1837	T. R. Gedner, T. S. N.	70
Hudson River, from Jersey City to Fort washingion	do	1-10,030	1837	do	71
Hudson River, from Fort Washington northward	de	1-10, 000	1853	R. Wainwright, U. S. N	475
Hidson River, from Castle Garden northward.	do	1-10,000	1855	do	471
Hudson River, from the Battory to Thirty fourth street.	do	1-10,000	1873	H. L. Marindin	1181
Hudson River, from Sixtieth street, New York City, to Tubby Hook.	do	1-10,000	18.55	R. Wainwright, U.S.N	496
Hudson River, from Becker's Landing to Pollock's Point	do	1-5, 000	1837	T. R. Gedney, U.S. N	63
Hudson River, from Becker's Landing to Pollock's Point	do	1-5,000	1837	. do	69
Hudson River	-- do	1-10,000	1853	R. Wrinwright, U.S.N	498
Hudson River	do	1-10,000	1854	. do	409
Hudson River	do	1-10, 000	1854	. do	410
Hndson River, from Toller's Point to	do	1-10,000	1854	. do	458
Hudson River	do	1-10,000	1854	. do	459
Hudson River, from Ft. Montgomery to Buttermilk Eill.	do	1-5, 000	1857	James H. Moore, U. S. N	630
Hudson River, from Buttermilk Hill to Stony Point,	do	1-5, 000	1857	do	631
Hudson River, from Stony Point to Whortleberr	do	1-10,000	1857	...do	632
Hudson River, from New Baltimore to Albany	do	1-5,000	1856	\%. Wainwright, V. S. N	549
Hudson River, from Albany to Troy	. do	1-10,000	1863	A. Strausz	843
Hudson River, from Newburgh to Barnegat	do	1-10,000	1859	C. M. Fauntleroy, U.S. N.	720
Hudson River, from Barnegat to Ponghkeepsie.	do	1-10,000	1859	.-. ${ }^{\text {do }}$	730
Hudson Rifer, from Poughkeepsie to Pell Island	.. do	1-10,000	1860	...do	725
Hudson River, from Pell Island to Rhinebeck	do	1-10,000	1860	...do	736
Hudson River, from Rhine Cliff to Glasoo.	do	1-10, 000	1861	J. Mechan	752
Hadson River, from Glasco to Tivoli	do	1-10, 1008	1861	.. ${ }^{\text {a }}$	703
Hudson River, from Fisopus Creok to Puddecart Point.	do	1-10, 000	1868	d	798
Hudson River, from Pudecart Point to Brandon Point	do	1-10, 000	1862do-.............	799
Hudson River, from Brandon Point to Coxsackie.	do	$1-10,000$	1862do	600
Hudson River, from Coxsackie to Houghtailing Island	. do	1-10, 000	1863	A. Strausz	844
Rondout Creek	. .do	1-5, 000	1858	A. Marray, U. S. N	665
Rondont Haibor, from entrance to Sleight's Ferry	do	1-2,500	1868	F. H. Gerdes and F. F. Nes	979
Rondout Harbor, from Sleight's Ferry to entrance of Delawrare and Hudeon Canal.	. do	1-2,500	1868do	978
Eropas Creek	do	1-5,003	1858	A. Murray, U.S. N........	666
Lake Champlain, from Cumberland Head to Valconr Island.	...do	1-20,000	1870	Charles Junken	1058
Leke Champlain, from Taloonr Taland to Tremblean Point.	. do	1-20,000	1881	F. D. Granger	11180
Lake Champlain, Colchester and Hozaback Reefs.	do	1-10,000	1871	. do	11180
Lake Champlain, from Tremblean Point to Ligonier. Point.	. . .do	1-50, 000	1871	..do	1119

APPENDIX No. 8-Continued.

Localities.	State.	Scale.	Date.	Hydrographer.	Registerea number.
Lake Champlain, from Cumberland heallight to Inle La Motie light.	New York and Yermont.	1-20, 060	1872	CLarles Junken.	1151
Lake Champhin, from Sand Bar Bridge to Butler's Islaud.		1-20,000	1872	L. B. Wright............	1162
Lake Champlain, from Butler's Island to Canada boundary.		1-20, 0.0	1873	Charles Tunken.	1182
Lake Champlain, from Canada boundary to Imle La Motte light.	do	1-10, 000	1832	..do	1173
Lake Champlain, from Brothers to Reck Harbor.....? Lake Champlain, from Crown Point to Rock Harbor. 5	...do	1-20,000	1873	L. B. Wright.	1244ab
Jersey Flats, New York Harbor	New Jeras	1-10, 000	1853	M. Woodhnil, U.s. N..	423
Hackensack	. do	1-10, 000	1841	G. M. Bache, T. S. N	131
Bar at month of Pa	..do	$1-5,000$		T. R. Gedney, U.S.N.	6_{5}
Pasmaic Rive	.do	1-5, 000	1871	F. H. Gerdes.	1167
Newark lay	ds	1-5,000	1871-2do	$1166 a$
Newarl Bay	. .lo	1-10,000	1872do	11665
Newark bay	do	1-10, 000	1855	R. Wainwright, U. S. N	493
Newark Bay	.do	1-10,000	1855-6	...do	547
Kill van Kull	- .do	1-10,000	1855do	492
Newark Bay, Kill van Kull, and Raritan Bay	.do	1-10,000		T. R.Gedncy, U. S. N.	61
Raritan Bay and Newark Bay	. .do	1-20,000	1836do	62
Staten Island Sonnd and part of Raritan Bay	ds	1-10,000	1841	G. M. Bache, D.S. N	127
Arthar Kill, vieinity of Elizabethport	. do	1-10, 000	1855	R. Wainwright, U.S.N.	494
Staten Island Sound	do	1-10, 000		T. R. Gedney, U.S. N.	64
Arthur Kill, vicinity of Perth Amboy	do	1-10,000	1885	R. Wainwright, U.S.N.	495
Raritan Kiver (shore-lines with tydrography)	do	1-3, 000	1872	F. H. Gerdes	1172
Raritan River, frow Marsh Island to New Brons	do	1-5, 000	1873do	1204
South Rive	do	1-5,000	1873 do	1205
Raritan Bay	do	1-20,000	1857	T. A. Craven, U. S. N.	572
Raritan Bay, Amboy to Fandy Hook	. do	1-10,000	1841	G. M. Bache, U.s. N	126
Middletown Creek, Raritan Ray	do	1-10,000	1841	. ${ }^{\text {do }}$	58
Shrewsbary River	. ${ }^{\text {do }}$	1-10,000	1840	..do	60
Shrewebnry River	do	1-10,000	1840	...do	107
Mail channel between Sandy Hook and Flynu's Knoll and Scotland Stoal.do	1-20,000	1869	F. F. Nes.	1009
Sandy Hook bar	do	1-10,00)	1835	T. R. Gedney	52
Sandy Hook Bar	do	1-10,090	1835	...do	53
Sandy Hook to Rockaway (old and new chanuele)	. H o	1-20, 000	1840do	54
Sandy Hook and vicinity (resurvey	. . do	1-10, 000	1843	R. Bache, U.S. N.	207
Examination of False Hook,	do	1-20,000	1850	A. Murray, U. S. N	769
Sandy Point (reaurvey).	do	1-5, 000	1863	H. Mitchell	784 c
Saudy Hook (resarvey of end)	do	1-5,000	1873	F. F. Nes.,	7846
From Sandy Hool to Barnegat (outer coast)	do	1-40,000	1840	T. R. Gedney, U. S. N	106
From Eighland light to Long Branch	do	1-20, 000	1840do	103
Frora Long Branch to Barnegat	.do	1-20,000	1840	...do	102
From Long Branch to Rarnegat..	do	1-20,000	1847	. .do	113
From Long Branch to Metiticonk	do	1-20,000		do	101
From Long Branch to Cape May.	do	1-40, 000		...do	118
From Jones's to Barnegat...	.do	1-20,000		do	105
Barnegat Inlet....	do	1-10,000	1868	C. Fendall	883
Barnegat Bay and Inlet and Toms Riv	do	1-10,000	1840	G. M. Bache, U.S.N.	108
From Barnegat to Little Egg Harbor	.do	1-20,000	1841	T. R. Gedney, U.S. N.	111
Littie Egg Harbor	. .do	1-10,000	1873	W. I. Vinal	1197 a
Barnegat Baydo	1-20,000	1874	..do	1197 b
Littie Kgg Harhor	. ${ }^{\text {do }}$	1-10,000	1873do	1196
Little Ege Harbor	do	1-10,000	1840	G. M. Bache, U.S. N.......	109
Little Egg Harbor	-do	1-10, 090	1840do.	110
New Inlet to Litile Erger Harbor.	...do	1-10, 000	1872	W. I. Final	1158.
New Inlet to Little Egg Rarbar	. do	1-10,000	1874do	1158 b
Great Bay	...do	1-10,000	1871	W. W. Harding.	1125
Mullicus River.	..do	1-10, 000	1672	W. I. Vinal	1159
Brigantine Inlet	. .do	1-10,000	1872do	1165
Absecom Inlet ajd adjacent waters.	do	1-10,000	1871-2	do	1180

APPENDIX No. 8-Continued.

Localities.	State.	Scale.	Date.	Hydrographer,	Registered number.
Absecom Inlet	New Jersey.	1-10,000	1864	T. S. Pbelps, U. S. N.	E37
Coast of New Jersey	do	1-40, 000	1847	T. R Gedney, U.S. N	112
Additional eoundinge off the coast of New J	do	1-200, 000	1861	T. S. Fhelps, U. S. N	749
Off Delaware Bay and Capes May and Henlopen	. do	1-40, 000	1817	T. R. Gedney, E.S. N.	117
From Cape May to Montank, N. Y.	New Jersey and New York.	1-400, 000	1842do	109
From Cape May to Montauk,	...do	1-400, 000	1842-4-7	..do	10.
Back Channel, Schuylkill and Delaware Rivers, League Island.	Pennsy:vania	1-2,500	1205	E. Hergeshoimer.	862
Schuylhill Iiver, League Island to Gray's	do	1-5, 000	1871	F. F. Nes.	1200a
Schuylkill River, Gray's Perry to Suspensiou	...do	1-5, 000	1871	. dn	120
Off Cape May and Capo Henlopen.	Delawareand Now dersey.	1-40, 000	1844	G. M. Bache E. S. N.	- 151
Delaware Ray, and river up to Trenton		1-80,000	1841-2 ${ }^{\text {-3 }}$	G. S. Blake, U.S. N	148
Delaware Bay, Overfalls, north and south shoals	...do	1-20,000	1847	R. Bache, V. S. N	125
Delaware Bay, Breakwater	do	1-5,000	1263	C. P. Patterson, bydrographic inspector.	801
Delaware Bay, Cape May hoads and Crow S	do	1-10,009	1847	R. Dacte,	157
Delaware Bay, Crow Shoals	. ${ }^{\text {do }}$	1-10,000		G.S. Blake, t	120
Delaware Ray, Fishing Credk and vicinity	do	1-10,000	1842do	123
Delaware Bay, Capes May and Henlopen to Fishing Creek and Miapillion.	d	1-20,000	$1842-3$	do	118
Uelaware Bay, Capes May and Henlopen to Miopilliou	...do	1-20, 000	1842	do	119
Delaware Bay, Clark'a Point and vicinity	do	1-20, 000	1842	do	122
Delaware Ray, Maurice, Cuhancy, and Duck Rivers...	...do	1-20,000	1843do	121
Dela ware Bay, from Egy Island light to Davis Poin	..do	1-20,000	1841	do	124
Delaware Bay, Joe Flogger Shoal and Doda River	do	1-20,000	1859	M. Woodhull, U. S	99
Delaware Bay, Donis and Mahon River	\ldots. ${ }^{\text {do }}$	1-10,000	1652do.	35
Delaware Bay, from Ben Davis Point to Liston's Tree	.do	1-10, 000	1841	G.S. Blake, U.S.	132
Delatrare Bay, from Liston's Tree to Newcastl	do	1-10,600	1840-'1	. do	13
Delaware Bay, from Newcastle to Liston's Tree (resur. rej).	do	1-20, 000	1843	do	134
Delaware Bay, from Newcastle to Reedy Foint.	do	1-10,000	1861	G. Daridson	808
Delaware Bay, Bulk head Shoals.	. .do	1-10,000	18:16-7	J.R. Goldsborough, U.S.N., W. P. Mesthar, U.S. N	156
Delaware River, river front of Neweastle.	do	1-1, 250	1873	Charles Jonke	1193 ab
Delaware River, from Newcastle to Dupont's Wharf...	do	1-10,000	1841	G. S. Blake, C.S	135
Delaware River, from Dupont's Wharf to Newcastle (duplicato).	...do	1-10,000	1841	.do	136
Delaware River, Chrietiana Creek......................	do	1-5,000	1841	.do	137
Delaware River, from Dupont's Wharf to Tonkins Island.	...do	1-10,000	1842	do	138
Delaware River, from Tonkins Island to Upper Tinicum.	Delamare and Pennsylvania.	1-10,000	1842	. . do	138
Delaware River, from Upper Tinicum to Fort Miffin.	Penneylvania and New Jerses.	1-5,000	1842	. ${ }^{\text {do }}$	140
Delaware River, from Fort Miflin to Philadelphia	...do	1-10,000	1243	. ${ }^{\text {do }}$	41
Delaware River, from Fort Miffin to Gloncester Point \} Delaware River, from Gloucester Point to Navy Yard	...do	1-5, 000	1871	F. Ne	11140
Delawars River, from Riley's Creek to Waleh Street Wharf.	. ${ }^{0}$	1-1,200	1870	Charl	1057
Delaware River, from Walsh Street Wharf to Carson Wharf.	...do	1-1,200	1870	.d	10576
Delaware River, from Pbiladelphia to Bridesburg	de	1-10,000	1843	G. S. Blake, U. S	142
Delaware River, opposite Pbiladeiphia.	.do	1-5,000	43	-....do	143
Delawave River, from Bridesbrirg to Dunks	...de	1-10, 000	1844	...do	144
Delamare River, from Dunks to Smith's	do	1-10,060	184do	145
Delapare River, from Smith's to Shives.	.. do	1-10,000	1844	do	146
Delaware River, from Rondentown to Trenton	do	1-10,000	1844	. . do	147
Off Cape Hexlopen.	Delaware	1-200, 000	1847	S.P. Lee, U.S.	189
Hen and Chicken Sboals	...do	1-20,060	1847do	152
From Cape Henlopen to Indian Rirer Inlet	do	1-20,0011	1944	G. M. Bache, U. S. N.......	149
Of Cape Fenlopen end sonthward to Cape Henry.	...do	1-40,000	1849-50	T. A.Jenkins, U. S. N	237

APPENDIX No. 8-Continued.

Localities.	State.	Scale.	Date.	Hydrographer.	Registered number.
Indian Bivex and Rehokoth Bay	Delaware	1-20,000	1247	F. Bache, IT. S. N.	150
From Indian Kiver İnlet to Beach Houso.	Delaware nud Ia. ryland.	1-49, 000	1848	S. P. Lee, D. S. ${ }^{\text {S }}$	218
From Beach House Station to North Bireh	-. do	1-40,000	1844	do	213
Sea-coast of Matyland.	Mary	1-40,000	1850	.do	251
Winterquarter Shoal	do	1-40,000	1863	1. S. Phelps, U.S. N	761
Cbesapenke Bay, Little and Big Annemessex and Manokin Livers, Morris Bay, and Wicomico River.	. . do	$1-20,000$	1858- ${ }^{-9}$	W. T, Mase, U, S. K	707
Chesapeake Bay, Nanticoke River, and Fishing Bay		1-20,000	1858	do	673
Chesapeake Bay, Wicomico River, Saint Clement's and Preton's Hays, and Saint George's River.	. do	1-20,000	1860-'8	W. T. Muse, U. S. N., J.W. - Donin.	969 ab
Chesapeake Ray, Saint May's River from Toint Lookout to Fordis Landing.	-	1-20,000	1857	W. T. Muse, U.S.N	610
Chesapeake Bay, Saint Mary's River, mouth and approaches.	do	1-20,000	1859-60	. .40	706
Chesapeake Bay, Eaint Mary's River		1-20, 000	1859	.. 60	695
Ghesapeake Bay, from Cove Point to Point No-Point, and entrance to Patuxent River.	... do	1-20,000	1848	S. P. Lee, C. S, N.	209
Chesupeake Bay, Patuxent Lirer, from entrance to Saint Leonard's Greek.do	1-20,000	1848	. . ${ }^{\text {do }}$	$\$ 10$
Chempeake Bay, Fat uxent River, from Holland ${ }^{\prime}$ Point No. 2 to Joncs"s Point.	do	1-20,000	1859	W. T. Muse, U. S. M.	704
Chempeake Bay, Paturent River	do	1-20,000	1857	do	641
Chesapeake Bay, Meekin's Nock, and vicinity of Cove Point.	--.	1-20,000	1847-8	W. P. MeArthar, E.S. N.-	199
Chesapeake Bay, Little Choptank River	do	1-20,000	1548	do	200
Cheampeake Bar, Choptank Rive		$1-20,000$	1848 do	202
Chesspeake Bay, Choptank River	do	1-20, 000	1848do	901
Chespeake Bar, Choptank Kiver, from Wing's Landing to Denton.	do	1-10,000	1870	W. W. Harding	1048
Chesepeake Bay, tribatarien to Tredhaten Creek		1-10,000	1870	do	1049 a
Chesapeake Bas, heads of Harris, Broad, and Terter's Cranks.	...do	1-10, 0c0	1870do	1049 b
Chesa poake Bay, tributarien of Wy River.		1-10, 000	1870	do	1050 a
Chearpeake Bay, tributaries of Saint Michael's River..do	1-10,000	1870 do	1050 b
Chesapeake Bay, Eastern Bay, and Wye and Miles Rivers.	o	1-20, 000	1847	W. P. MeArthur, U. S. N..	177
Chesapeake Bay, Thomas Point to Tilghman's Sisland..		1-80,000	1846	S. F. Lee, U. S. ${ }_{\text {H }}$	188
Chesapeake Kay, Annapolia Harbor.	o	1-20,000	1844	G. M. Bache, U. S. N.....	167
Cheeapeake Bey, head of Sovern Hiver do	1-20,000	1870	W. W. Harding	10776
Chesapeake Bay, tributaries of Severn and Sonth Rivers	de	1-20,000	18\%0-'1	W.W.	1077 a
Cberepenke Bay, from Sandy Point to Spy's Stand.do	1-20,000	1845	G. M. Bache, U. S. N........	166
Chesapeake Bay, Magothy River.	-...do-7.	1-10,000	1845	. . do	164
Chesapeake Bay, mouth of Chester R	. do	1-20, 000	1847	W. P. Med rthur, U. S. N	175
Chesapeako Bay, Chester River.	do	1-20,000	1846do...-...............	174
Chenapeake Bay, Cheater Miver No. 1, and Morgan's Creek.do	1-5, 000	1869-10	W. W. Harding	$1026 a b$
Cheanpeake Ray, Chenter River No. 2.	.	1-5,000	1869.70	-.....do	1027
Cheappeake Bay, Langford Creek. -		1-10,000	1870do	1078
Chemapeake Bay, entrance to Patapeco Riverdo	1-20,000	1854	E. Wainwright, U. S. N ...	415
Cheapeake Hay, Patapsco River at Bultimore.do	1-10,000	1843	G. M. Bache, U. S. N....	165
Cbesaperke Bay, Patapsco River from Rock Point to Sollers' Point.do	1-10,000	1859	C. H. MeBlair, U. S. N	335
Cbesapenke Bay, Belvidere Shrals, Patapsco River $\}$ entramee.do	$\left\{\begin{array}{r}1-5,000 \\ 1-20,000\end{array}\right.$, 1852	A.Boschke.	469
Chearpeake Bay, Patapseo River, month of..............	. .do	1-20, 000	1866	F. P. Wobber.	913
Chesapake Bay, Patapaco River, Breuster's Channel.	do	1-10,000	1806do	914
Cbemapake Kay, Patupaco River, Brewster's Chanuel (enlarged from No. 913).	...do	1-10, 000	1866do	915
Chesapenfe Bay, Patapeco River, erooks emptyinginto		1-20, 000	1869	J. W. Denn. .	$10{ }^{7} 7$
Chearparke Bay, Gnnpowder, Midale, and Back Rivers	...do-	1-20,000	1846	W. P. McArthar, U. \& N ..	169
Chempeake Bay, from Howeli's Point to Pool's Islanddo...............	1-10,000	1846	B. I. Leet, U. B. M	187

APPENDIX No. 8-Continned.

Localities.	State.	scale.	Date.	Hydrographer.	Registered number.
Cbesapeake Bay, Bueh River	Maryland.	1-20,000	1846	W.P. McArthar, U.S. N.	171
Chesapeake Bay, from Turkey Point to Howells Point	...do	1-10,000	1846	S.P. Lee, U. S. N	186
Chesapeake Bay, Romney, Tarley's, Stilpond, Churu, and Loyd's Creeks.	do	1-10,000	1870	W. W. Harding	1072
Chesapeake Bay, Sassafras River.	do	1-20,000	1847	W. P. McArthar, C . S. N	176
Chesapeake Bay, Sagbafras River.	. do	1-10,000	1870	W. W. Harding	1071
Chesapeake Bay, northern part down to Turkey Point	...do	1-10, 000	1846	S. P. Lee, U. S. N	185
Chesapeake Bay, Etk River	. ${ }^{\text {do }}$	1-10,000	1846	W.P. McArthur, U.S. N	172
Chesapeate Bay, Dohemia River and Eack Creek	. .do	1-10,000	1846	. ${ }^{\text {do }}$	170
Chesapeake Bay, Northeast River	...do	1-10, 0e0	1846	...do	133
Chesapeake Bay, Susquehanna River, mouth of	-..do	$1.10,000$	1867	F. P. Webler	898
Chesapeake Bay, Fusquehanna River	do	1-10,000	1846	W. P. McArtiur, U. S. N	168
Chesapeake Bay, Susquehanm River (daplicate of 168).	...do	1-10, 000	1852		326
Eastern Branch of the Potomac, from Anacostia Bridge to Benning's Bridge.	Dist. of Columbia	1-5,000	1865	A. Balbach .	463
Eastern Branch, from Benning's Eridge to Bladensburg.	Dist. of Colnmbia and Maryland.	1-5,000	1 165	.de	864
Potomac River, from Alexandria to Hunter's Point	Dist. of Colnmbia and Virginia.	1-10,000	1862	C. P. Patterson, U.S. N...	766
Potomac River, from Hanter's Point to Long Bridge, and Eastern Branch to Anacostia Bridge.	Dist. of Columbia	1-5,000	1 1egrdo	764
Potomac River, from Long Bridge to the Aqueductdo	1-5, 000	1868	.do	765
Potomac Fiver, from Analostan Island to Long Bridge	. . do	1-5, 000	1867	C. Fendall	11482
Chineoteague Shoals and Chincoteague Inlet.	Virginia	1-40,000	1851	J.J. Almy L. S. N	918
Chincoteagne Inhet and Chincoteague Shoals	..do	1-20,000	1851	d	297
Metomkin Iulet.	...do	1-10,000	1852do	349
Metonkin Inlet, sea-cosst of Virginia	do	1-90, 000	1862	A. M. Harrison	795
Wachapreague Inlet and Hog Island Harbor.	..do	1-40, 000	1892	J.J. Aling, U.S. N	348
Hog Island Harbor and Wachapreague Inlet	...do	1-20,000	1832	. do	354
Hrg Island and vicinity to Cape Heary.	. ${ }^{\text {do }}$	1-40,000	1853	.do	397
Little Machipongo, to head of Broadwate	do	1-20,000	1871	J. W. Donn	1104
Broadwater, Great Machipongo River, and brancheo...	. .do	1-20,000	1871	..do	1103
Broadwater, from Sand Shoal Inlet to Hog Island Ynlet	do	1-20,000	187	W. TV. Harding	1070 b
Broadwater, from Ship Shoal Inlet to Sand Shoal Inlet	. do	1-20,000	1870do	1070 a
Sand Shoal Inlet and Ship Shoal Inlet	...do	1-20,000	1853	J. J. Almy, U. S. N	388
Magothy Bay	.do	1-20,000	1869	W. W. Harding	1013
Entrance of Chesapeake Bay	do	1-80, 000	1831	B. F. Sands, T. S. N.	29
Cape Charlee and vielinity	do	1-20,000	1852	J.J. Almy, U. S. N	345
Cape Charles and vicinity of Cherrsstone Inlet	.do	1-40,000	1852-3do	364
Cherrystone Inlet, Chesapeake Bay	do	1-20,000	1252	. do	353
Cherrystone Iuiet, Cherapeake Bay	.do	1-10, 000	1873	J.S Bradford	1169
Hunger's Creok, Chesapeake Bay	do	1-20,000	1853	J. J. Almy, U.S. N	368
Hanger's Creek	. do	1-20,000	1868	C. Fendall	976 c
Naswaddox Creelr	do	1-20,000	1868	-... do	$976{ }^{\text {a }}$
Occobannock, Craddock, and Nandua Creeks.	. .do	1-20,000	1268	do	976 a
Oocohannock Craek and Heath's Landing	do	1-20,000	1853	J.J. Almy, U. S. ${ }^{\text {z }}$	367
Pangotaague Creek	. do	1-20,000	1851-'68	B. F. Sands, J. J. Almy, U. S. N.	332
Pocomoke Sound.	.do	1-40, $0 \% 0$	1855	J. J. Almy, U. S. N	515
Poconnoke Sound, oreeks from Messonge Creek to Onancoct Creek.	...do	1-20, 900	1869	W. W. Harding	903
Pocomoke Eiver, entravee	. do	1-10,000	1869	do	1004
Pocomoke River, sheets Nos. 1 and 2.	do	1-5,000	1869do	1029 ab
Pocomoke River, sheets Nos 3 and	do	1-5,000	1369do	$1023 a b$
Pacomoke River, sheets Nob. 5, 6 , and 7.	.do	1-5,000	1869	do	$1024 a b c$
Little Annemessex River	. do	1-10,000	1868-9		985
Smith's, Goose, and Fox Islands, Tangier Sound	do	1-20,000	1869	do	697
Taugier Sound	do	1-40, 600	1456	J. J. Almy, U.S. N	5 cr
From Point No. Point to Smith's Point Light, Chesapeake Bay.	do	1-20,000	189	S. P. Lee, U.S. N	211
Reconarisanace of White House and Lower Cedar Pointe, Putomac River.	...do	1-10,000	1861	W. R. Palmet, D. S. A	738
Potomichiver, from finey Polnt to Blakintone Ialand.	do	1-20,000	1860	W.T. Muse, U. S.	793

APPENDIX No. 8-Continued.

Localities.	State.	Scale.	Date.	Hydrographer.	Registered number.
Potomeo River, frorm Blakistone to Cob Point	Virginia	1-20, 000	1862	T. S. Phelps, E. S. N.	827
Potomac River, from Cob Point to Mathias Point	.do	1-20, 000	1862	do	778
Potomec River, from Mathias Polnt to Metombin Point.	. do	1-20,000	1862do	${ }^{4} 13$
Potomac River, from Metomkin Point to Shipping Point.	. .do	1-20,000	1862do	812
Potomac River, from Shipping Point to Hallowing Point.	\%o	1-20,000	1862:3	do	814
Potomac River, from Hallowing Point to Fort Washington.	...do	1-10,000	1863	do	815
Potomac River, from Fort Washington to Alexandria -	...do	1-10,000	1863	do	810
Nomina Bay, Lower Machodoc, and Mattox Creeks	du	1-20, 000	1868	I. W. Donn	967
Feocomico and Coan Creeks	do	1-20,000	1868	. . . do	968
Feocomico and Coan Creeks	. ${ }^{\text {ato }}$	1-20, 000	1860	W. L. Muee, U. S. N.	794
Great Wicomico River.		1-20,000	1869	J. W. Doun	1003
Little Bay, Nantepoison, Tapp's, Dimet's, Iudian, Dividing, and Mill Creeks.		1-20,000	1869	..do	1005
Chesapeake Bay, from Potomac to Rappabannock River.	...do	1-40, 000	1830	S. P. Lee, J.J. Alm. 5 , U.S.S.N	252
Chearpeake Bay, from Rappalannock River to Wolf Trap.	...do	1-40,000	1851	J.J. Almy, T. S. N.	285
Rappahanuock River, entrance.	do	1-10,000	1657	R. Wainwright, U.S. N....	610
Rappahannock River.	do	1-10,000	1857	. do	609
Rappabannock River.	do	1-10, 600	1857	. ${ }^{\text {d }}$	608
Rappahannock and Corratoman River	do	1-10,000	1857do	611
Estuaries of the Corratoman River	do	1-10,000	1869	J. W. Donn	1008
Estuarles of the Rappakannock River		$\left\{\begin{array}{l} 1-10,000 \\ 1-20,000 \end{array}\right.$	1869	.d	1001
Bowler's and Corner Rock, Rappahannock River	, 10	1-2,500	1867 do	937
Rappahannock River.	do	1-10, 000	1856	K. Wainwright, U.S. N.	607
Rappahannock River	do	1-10, 000	1856do	606
Rappahannock River	do	1-10,000	1856do	605
Rappaliannook River	do	1-10,000	1855	-....do	523
Rappahannock River	do	$1-10,000$	1855dio	592
Rappahannock River	...do	1-10, 000	18.5do	521
Rappahanuock River	do	1-10, 000	1854do	454
Rappahatnock River to Tobago Bay		$1-10,000$	1854do	453
Rappahannock River at Port Royal	do	1-5, 000	18.4	. do	452
Rappahanvock Riter	do	1-5,000	1854	do	451
Happahannock River	. do	1-5, 000	1854do	450
Rappahannock River	do	1-5, 000	1853-4do	400
Rappahannock River.	...do	1-5, 000	1853-4	\ldots...do	399
Rappahannock Eiver at Frederickaburgh	do	1-5,000	1853-4	$\therefore . . . d_{0}$	393
Piankatank Riret.	do	1-20,000	1869	J. W. Donn	988
Milford Haven (with topography	do	1-20,000	1¢68-'9do	987
Estnaries of Mobjack Bay.	.do	1-20, 000	1868do	984
York River, from ontrance to Bigler's Mill		1-20,000	1857	J.J. Almy, U.S. N	583
York River, from Bigler's Mill to West Point	do	1-80, 090	1857	R. D. Midor, U.S N......	584
Back and Pocosen Rivers	. do	1-20,000	1868	C. Fendall, W. W. Harding.	97%
James Rifer, entrance..	do	1-20,000	1854-5	J.N. Maflitr, U. S. N	599
James River, Newport News Pohnt.	do	1-10,000	1865	E. Hergesheimer.	877
Jamer River, Newport News to Point Shosi light-house.	. ${ }^{\text {do }}$	1-20,000	1872	J. W. Dona	1179 a
James River, Burwall Bay to Cobbam.	do	1-20,000	1873	. do	1179 b
James River, from Jamestown Island to Sandy Point.	. ${ }^{\text {do }}$	1-20,000	1874do	1229
Jamees River, Shoal Point to Jamestown Ieland	...do	1-20,030	1855	J. N. Maffit, U. S. N. .	530
James Kiv	do	1-20,000	1856	. do	615
Jamen River do	1-10,000	1857do	616
James River, from Little Brandon to W yanoke Whanf (recomnaissance).	do	1-10,000	1857do	634
James River, from Douthard to Westover West		1-10, 000	1859	W. T. Muse, U.S. N.......	703
James River, Harrimon's Bar		1-10,000	1852	R. Wainwight, U.S.N...	331
James River	do	1-5, 000	18:3	.do	395
James River		1-5, 000 n	1853	+.....do	394
James Rive	...do	1-5, 010	1853da	383

APPENDIX No. 8-Continued.

Lnoalities.	State.	Scate.	Date.	Hydrographer,	Registered number.
James River	Virginia	1-5, 000	1853	R. Wainwright, C.S. N.	392
James River	...do	1-5,000	1853	. do	391
James River, Trent's Heach Bar	\ldots..do	1-5, 100	18.30	do	341
Jances River	d	1-5, 000	1853	do	340
James River	...do	1-5, 000	1853	...do	390
James River at Warwick Ba	...do	1-5, 000	185:-'3	. do	$3+1$
James River at Richmond.	. 10	1-5, 000	1852-3	. do	312
Appowatiox River	do	1-5,000	1852	do	316
Apponattox River	do	1-5, 000	1852do	315
Appomattos River at Peterslu	do	1-5,000	1852	do	314
Apporat tox River	do	1-10,000	1851	...do	279
Chickahominy River, lower portion	do	1-20,000	1874	J. W. Donn	1225 a
Chickahominy River, from Ship. Yard Landing to Forge Bridge.	-..do	1-20, 000	1875	...do	1225 b
Nansemond Riper	...do	1-10,000	1874	R. Platt, U. S. \mathbf{N}	1213
Hampton Roads	do	1-20.000	1873	do	1188
Elizabeth River, East Branch and Tanner's Creek	do	1-10,000	1873	. do	$1187 \times$
Elizateth River, Weatern Branch	do	1-10,000	1873	. ${ }^{\text {do }}$	$1187 b$
Elizabeth Fiver, from Washington Point to navy yard.	...do	1-2, 500	1866	. do	891
Elizabeth River, Norfolk to nary yard	do	1-5, 0011	1873	do	1186 a
Elizabeth River, Craney Island to Norfolk	.do	1-5, 000	1873	do	1156
Elizabeth River, South Branch, base-line, to Chesapeake and Albemarle Canat.	...do	1-10,000	1873	.-do	1185 a
Elizabeth River, nars. yard to base-line.	...do	1-10,000	1873	..do	1185
Elizabeth River at Norfolk.	...do				
Hampton Roads and part of Elizabeth River	...do	1-20,000	1854	J.J. Almy, U. S. N	447
Lyum Haven Roade, Chesapeake Bay	.do	1-10,000	1854	do	449
From Cape Henry to Mobjack Ray.	do	1-40.000	1854	. do	446
Coast from Cape Heury, sonthward, to boundar	.do	1-40,000	1955	. do	520
Soundings off False Cape..	- da	1-40,000	1861	T. S. Phelps, U.S. N	750
Off shore from Cape Henry to Cape Hatteras	Virginia and North Carolina.	1-200, 000	1859	A. Murray, C. S. N.......	674
Off shore from Cape Henry to Cape Lookont..........	...do	1-500, 000	1860	. .do	76
Off shore from Sheephouse Hill to Killdevil Hillsdo	1-40,000	1268	E. Platt, D.S. N	965
Off shore from Killdevil Hills to Loggerhead Inlet ...	North	1-40,000	1870	...do	1053
Off shore from Loggerhead Inlet to Cape Hatteras....	...do	1-40,000	1869-70	..do	10.6
Off shore from Cape Hatteras to Federal Point........	...do	1-240, 000	1875-6	. do	884
Deep-sea soundings from Cape Lookout to Saint Augustine.	...do	1-500, 000	1860	A. Murray, U. S N.......	760
Off shore from Cape Hatteras to Cape Fear.	..do	1-200, 000	1859do	686
Const, from mouth of Cape Fear River to Tubiss' Inlet.	...do	1-40,000	1859	J. P. Bankhoad, U.S. N.	685
Carritack Sound.	...do	1-20,000	1851	B. Wainwright, T.S. N.	258
Currituck Sound, reconnatsanace of head ofdo	1-10,000	1859	J. Mechan	702
North River, bead of Currituck Sound, reconnaissance of	. do	1-20, 000	1359	...do	703
North River	do	1-20,000	1850	R. Waiuwright, U.S. N.	230
Pasquotank River, Albemarle Sotrad	do	1-20,000	$18 \% 4$	W. P. Mcarthar, U.S. N..	195
Little Riper.	do	1-20,000	1848	.to	197
Perquinans River	do	1-20,000	1848do	196
Albemarle Sound, Harvey's Creek to Hornblow Point.	do	1-20,000	1849	Jamea Alden, U.S. N	219
Albemarle Sonnd, Mackey's Creek to Roanoke L	do	1-20,000	1849	T. A. Jenkins, T. S. N	21
Chowan River (2 sheets).	.. do	1-20,000	1874	R. E. Halter	1230 ab
Middle, Ematmost, and pert of Rosnoke River	...do	1-10,000	1864	v. S. Bradford	23
Batchelor's Bay, Albemarle Sound	...do	1-10, 000	1864	.. do	828
Scuppernong River and Bulls Bay, Albemarlo Sounddo	1-20,000	1849	T. A.Jenkine, U.S. N....	21
Albemarle Sound, Mills Point to Pear tree Point.	. ${ }^{\text {de }}$	1-20, 000	1848	W. P. Mc.arthar, U.S. N..	198
Alligator River, A lbemarle Sound.	...do	1-20,000	1849	Jamas Alden, U.S. N	18
Haulover, Albemarlo Sound, and ricinity of Powell's Point.	...do	1-20,009	1849	do	220
Albemarle, Roanoke, and Croatan Sounds	...do	1-20, 000	$1850 \cdot 1$	R. Wain wright, U. S. N...	237
Croatan Sound, examination of obstructions in	do	1-20, 020	1861	J. S. Bradford	836
Croatan Sonnd and Pamplico Sound (2 sleets)	.do	1-20,000	1873	F. F. Nes	1180 ab
Pamplico Sound.	...do	1-40,000	1858	W. T. Muse, W. S. N .e....	672
Pamplico Sound.		1-20, 000	1857do	661

APPENDIX No. 8-Continued.

Localities.	State.	Scale.	Date.	Hydrographer.	Registeret namber.
Pamplico Sound, recomnaissance of Loug Shoal.	North Caxol	1-10,000	1866	J. S. Bradiord .	887
Pamplice Sound, Bell's Bay and Juniper Bay	do	1-20,000	1874	F. F. Nes	1226 ab
Pamplico Sound, Hog Islands	do	1-40,000	1874	. do	1227
Pamplico Sound, from Royal Shoal to Brant Island	do	1-40,000	1366-69-70	J. S. BradfordandF. F. Nes	1083
Pamplicu Sound, westera part	do	1-20,000	1869	F. F. Ne8	1010
Pungo River, apper and lower she	do	1-20,000	1872	do	$1140 a b$
Pamplico River, from Pamplico lipht-hoase to Indian Island.	do	1-20,000	:1869-70do	1088
Pamplico River, from Adams Point to Ramley Marshes	do	1-20,000	1871	do	1099
Pamplico River, from Ramley Marshes to Ragged Point	do	1-20,000	1871	. do	1100
Pamplico River, from Ragged Point to Washington.	. ${ }^{\text {do }}$	1-20,000	1871ds	1101
Pamplico River, from Cedar Grove to Tar River.	..do	1-10,000	1872	-....do	1132
Bay River	-. .do	1-20,000	186do	1014
Neuse River from Point of Marsh to Cedar Point	. . do	1-20, 300	1868	J. S. Bradford and F. F. Nee	974
Nense River, from Cedar Point to Wilkinson's Point.	do	1-20, 000	1868	J. S. Bradford	963
Nense River, from Cherry Point to Johnaon's Point.	..do	1-20, 000	1867-3	..do	956
Neuse River, from Johuson's Point to Fort Avderson	do	1-10,000	1866	. do	892
Nense Eiver, vicinity of Newbern	do	1-20,000	1863-'4	A. Straust	845
Sunth River, Turnagain Bay, and other tributaries to Nenge River.	. ${ }^{\text {do }}$	1-20,000	1868-'9	J:S. Bratiordand F. F. Ne日	975
Cedar Island, bay, and vicinits	do	1-20,000	1290	F. F. Nes.	1079
Oregon Inlet.	do	1-10,000	1862	H. Mitchell	762
Hatteras Shoals	do	1-20,000	1850	T. A. Jenkias, U.S. N	244
Cepe Hatteras Shoals	.do	1-20,000	1871-2	P. Platt, T.S. N	1135
Off-shore Suundigs, Hatteras	do	1-40,000	1871-2do	1136
Hatteras Inlet	do	1-10,000	1861	T. S. Phelps, U. S. N	763
Hatteras Inlet	do	1-10, 000	1852	R. Wainwright, U.S.N.	322
Hatteras Inlet, (reconnaissance)	.do	1-5, 000	1850	T. A. Jenkins, U.S. N.	235
Hatteras Inlet	do	1-10,000	1857	W. T. Muse, U.S. N	612
Hatteras Inlet, inner halkhead	.do	1-10,00a	1864	A. Stratigz	612 bis.
Coast, from Cape Hatteras to Ocracoko	do	1-40,000	1856	J.J. Almy, C.S. S	538
Ocracoke Inl	do	1-10, 000	1852	R. Wainwright, J.S. N.	321
Ocracoke Inlet (resurvey).	do	1-20,000	1857	W. T. Muse, U.S. N	613
The Straits of North Carolin	do	1-24, 000	1864	E. Cordell	854
Core Sount, from the Straits to Pamplico Sound	.do	1-40, 000	1864do	855
Cape Lookont Shoals (reconnaissance)	do	1-40, 000	1864	T. S. Pbelps. U. S. N	849
Cape Lookout Shoals.	do	1-40, 000	1865-6	R. Platt, U.S. N., and C. Juuken.	885
From Cape Lookout toward Bogue Sound.	${ }^{1}$	1-10,000	1857	C. R. P. Rodgers, U.S.N...	577
Beaufort Harbor and vioinity of Cape Lookout	. do	1-10,000	1854	J. N. Mafitt, U.S. N......	419
Beaufort Harbor.	do	1-10,000	1850	-.....do	259
Teaufort Harlor and Bar	.do	1-10,000	1857	C. R. P. Rodgers, U.S.N...	576
Beanfort Harbor (reararvey).	to	1-10,000	1862	A. Boschko	789
Beanfort Harbor, off Fort Macon	do	1-10,000	1863	A. Strausz	$789 \mathrm{bis}$.
Seaufort Harbor.	do		1850	J. N. Maffitt, U.S. N	246
Beaufort Harbor, entrance (resurvey)	do	1-10,000	1864	Ed. Cordell.	856
Beaufort Harbor and adjacent waters	do	1-80,000	1874	W. I. Vinal	1219
Nowport River and estuaries	do	1-20, 000	1874	W. I. Vinal.	1203
Hogue Soand, from Carolina City to Beanfort	do	1-10,000	1854	J. N. Maffitu, U.S. N.	418
From Flagstaff to New River Inlet.	do	1-40,000	1853-9	A. Murray, D. S. N........	644
New River and bar	do	1-10,600	1851	J. N. Mattit, U.S. N.	238
Now Inlet, Cape Fear entrance (reaurvey)	do	1-10, 000	1852do	370
Cape Fear Bar and New Inlet	do	1-10,000	1851do	278
New Inlet Bar, northern entrance of Cape Fear River	do	1-10,000	1856do	613
Now Inlet, northern entrance of Cape Fear River.	do	1-10,000	1858	T. B. Huger, U.S. N.	643
New Inlet bar, northern entrance of Cape Fenr River.	do	1-10,000	1857	J. N. Maffitt, U. S. N.	62 L
New Inlet, entrance to Cape Fear River.	do	1-10, 000	1865	J. S. Bradfora	875
New Inlet, Cape Fear River	do	1-10, 000	1872	W. I. Vinal.	1134
Cape Fear River.	do	1-5, 000	1852	J.N. Mafttt, U.S. N.......	375
Cape Fear River	do		1853	...do	410
Cape Fear Rivar.	do	1-10, 000	1353do	374
Cape Fear Riter-3ar.			1852do	372
Cape Fear Miver Bar.	do	1-10, 000	1858	T. B. Hnger, U.S.N.......	642

APPENDIX No. 8-Continued.

Loralities.	State.	Scale.	Date.	Hydrographer.	hecistered number.
Cape Fear River entrance, bars of Oak Istand and Bald Head Chamel.	North Carolina	1-5,000	1871	Charlen Junken..........	1024
Cape Fear kiver entrauce	do	1-17, 000	1865	J. S. Bradford	$8 \% 0$
Cape Fear River, botweon Forts Creewell and Johnson	do	1-10,000	1866	...do	876
Cape Fear River, western entradce	do	1-10,000	1872	W. I. Vinal .	1128
Caps Fear Piver, western entrance	do	1-10, 000	1874do	1128 b
Cape Fear River, resurvey of Seward Channel, western entrance.	do	1-10,000	1873do	1190 a
Cape Fear River, Dram Shoal to Rallat Rook.	do	1-10,000	1873	do	1190 b
Cape Fear River, Ballast Rock to Alligator Creek	. .do	1-10, 000	1873	d	1191 a
Cape Fear River, Alligator Creek to Wilmington	do	1-10,000	1873	do	$1191{ }^{\text {b }}$
Cape Fear River, inner bar.	do	1-10,000	1800	F. F. Kes	1014
Cape Fear River, southern bars of	do	1-10,000	1856	J. N. Matilt, U. S. N	619
Cape Fear Rifer, sonthern bars of	.. do	1-10,000	1857do............	604
Frying Pan Shoals.	. do	1-20, 000	1851	T. A. Jenkins, U. S. N	306
Frying Pan Shoals.	...do	1-20,000	1851	do	277
Off-shore sonnding from Cape Fear to Charleston Harbor.	North and Sonth Carolina.	1-300, 000	1×59	J. E. Rankhead, U. S. N.	694
Geargetown Harbor and Bar	Sonth Carolina	1-10,000	1853	J. N. Maftitt, C. S. N..	371
Winyab Bay and Georgetown Harbor	.. do	1-10, 000	1853do	373
Georgetown Bar (resurvey)	. do	1-20,000	1856	do	533
Santec Rivers, upper and middle sheets	...do	1-10,000	1873	W. H. Denais	1193 a ${ }^{\text {d }}$
Santoo livers, lower sheet	do	1-10,004	1873	. do	1194
Caye Romain	do	1-20, 000	1×52	T. A. Craven, U. S. N	350
Cave Romain.	. . do	1-10, 000	1874	W. H. Dennis	$1838 . a b$
Gape Romain to Charleston	. do	1-40,000	1857	J. N. Mafliti, U. S. N.....	626
Bulls' Bay	...do	1-20,000	1857	J. P. Baukhead, U.S. N.	683
Charleston Harbor aud Bat	do	1-10,000	1851	J. N. Maftitt, U.S. N...	254
Charieston Harbor entrance.	...do	$1-5,000$	1852	.d	336
Maffitt's Chaunel und North Channel, Charleston Harbor.	...do	1-5,000	1857	do	6,3
North Chanuel and Maftitt's Channel, Charieston Harbor	...do		185.5d.	476
Maffitt's Channel, Charleston Harbor	...do	1-10, 000	1854	. do	411
Mafitt's Channel (resurvey)	-. do	1-5,000	1856	1	532
Main ship-bar, Charleston Harbor	...do	1-10,000	1857	do	625
Charleston Harbor Bar (resurveg)	do	1-20,099	1863-4	W.S.Edwards, F. P. Webber	852
Main channel over Charleston Bar	. . . do	1-20,000	1269	R. E. Haiter	98.
Charleston Bar	. . . do	1-50,000	1865	C. O. Boutelie	874
Charleston Harbor	- do	1-10, 000	1865do	8×1
Maffit's Channel, Charlenton Harbor (resurvey)	.. do	1-10, 1000	1860	J. P. Bankhead, U.S.N.	713
Light-Honse Inlet, Charleston Harbor	. .do	1-10,000	1863-4	c. 0 . Boutelle	833
Stono Inlet and River, and part of Kiawah and Folly Rivers.	...do	1-20,000	1862do	803
Off shore, between Charleaton and Savanuah entrance	do	1-200, 000	1857	J. N. Maffitt, U. S. N......	622
From Charleaton to Savannah	. .do	1-10,000	1853-7do	649
North Edisto Harbor and Bar	.do	1-20, 000	1831d ${ }^{\text {d }}$	272
North Edieto Bar	do	1-20, 000	1856	-....de	534
Saint Felena Sound and Har, South Edisto River	..do	$1-15,000$	1856-7	. do	620
Passages between Port Ruyal Bay and Saint Helena Sound, shoet No. 1 .	. ${ }^{\text {do }}$	1-10,000	1863	W. S. Edwarils	832
Passages between Port Royal Bay and Saint Helena Sonnd, abeet No. 2.	. ${ }^{\text {do }}$	1-10, 000	1863	..do	833
Bull and Combabee Rivers	. ${ }^{\text {do }}$	1-10, 0006	1871	Charles Hosmer.....	1034
Combahee and Ashepoo Rivers and estuaries	do	1-10, 000	1873do	1206
Parrott Creel, from Coosar to Morgan River	do	1-10, 000	1260	J. P. Bankheat, [. S. S. N.	744
Coosaw Rivar, from Combahee River to Brickyard Creek.	...do	1-10,000	1260do	742
Rrickyard Creek, from Coosaw River to Beanfort.....	- do	1-10, 000	1860 do	743
Inland passages from Coosew River to Beaufort River	...do	1-20, 000	1872	Charles Hosmer	11530
Coosaw River to Broad River via Whale Branch......	.. do	1-10,000	1873do	11554
Port Royal entrance	.. do	1-20,000	1859	C. M. Fanntleroy, U. S. N	677
Beanfort River (reoonnaiasence)	. de............	1-10,000	1855	J. N. Maffith, U. S. N.	033
Port Regal entrndee and Beaufort Harbor	do	1-90,000	1855-6do	:35
Port Royal entrance.	1	1-90,000	1863	C. O. Bontelle	830
H. Ex. $81-17$					

APPENDIX No. 8-Contimned.

Localities.	State.	Scale,	Date.	Hydrographer.	Registered number.
Port Royal lay amd Bruad Rive	South Carolina	1-20,000	1862.3	C. O. Boutelle	831
Bruad Kiver	...do	1-10,000	1865	R. E. Hatter	869
Broad River and tributaries	...do	1-10,000	1:65	$\ldots .$. do	868
Reaufort River, from its mouth to Little Marsli Islanit	...do	1-10, cou	662	C. O. Boatelle	802
Beadfort River, from Marstislanl to Beaufort	...do	1-10,600	1862do	834
Jericho, Chowan, and Ballast Creeks, tributaries of Beaufort River.	...do	1-10,006	1868	Charles Hosmer	962
Chichessee and Colleton Rivers	...do	1-10,000	1859	C. M. Fanutleroy, U. S. N.	679
Calibogue Sound and part of Broad C	...do	1-10,000	1862	C. O. Boutells	804
Sknul Creek	do	1-10, 000	$1861-2$do	805
Savannah River Bar	South Caroliva anc Georgia.	1-20,000	1854	J. N. Maffite, U. S. N	439
Savannab Rifer Bar (reconnaissance)	- . do	1-20,000	1851	. do	269
Soranualk River entrance	do	1-10,000	1852	. do	317
Savannah Riverdo	1-10,000	1850	. do	67
Savannah River, Hatchinson and Ellar Island	do	1-5, 00:	1852	${ }^{\text {do }}$	31
Savannab River, Frobtand Hack Rivers	. do	1-10,000	1851do	266
Savannah River, part of Hutchinson and Argyle lislands.	do	1-5,000	1852	do	31
Savamoah River, Argyle, Onslow, and Isla Islands.	do	1-5,000	1852	do	20
Savannah River, opposite Fort Pulaski, slowing the position of obstructions.	do	1-10,000	1862	C. O. Bontelle	807
Off sbere soundings, between Winyah Bay and Amelia Island.	South Carolina, Georgia, and Hlorida.	1-300,000	1858	T. B. Huger, J. S. N	653
Offshore soundings between Winyah Bay and Amelia Ialand (replotted).	...do	1-300, 000	1858	. do	717
Offshope soundings, between Charleston Hasbor and Saint Andrew's Sound.	South Carolina and Georgia.	1-300, 000	1860	J. P. Bankhead, U. S. N ..	72
Off-shore sonadinge, from Port Royglentrance, to Wassaw Sound, Geskin and Joiner's Banke.	...do	1-40,000	1866	C. O. Buat-lle	966
Savanuat River entrance	Geotg	1-90, 1001	1866	. do	944
Lazaretto Creek and part of Tryee Roads	do	1-10, 060	1 e 63	W. S. Edwards	84
Savannah River, from Tybeo light to Eiba Inland	co	1-10,000	1866	C. O. Boutelle	945
Saranuah River, from Elba Island to Fig Island.	. ${ }^{\text {do }}$	1-10,060	1265-6	do	946
Savanuah River, city front	do.	1-5,000	1265-'6	. do	947
Savannah Kiver (with tepograpbs), 2 sheets	d_{0}	1-2, 400	1674	Charles Hosmer	$1222 a b$
Savannab River (with topography), 2 sheets	do	1-2, 400	1874	in	$1223 a b$
Wilmington River and egturies	d_{0}	1-20,000	1865	C. Fendall	ع66
Komerly Marsher		$1-5,000$	18.56	J. N. Mattitt, U. S. N	617
Entrance to Wassaw Sound	do	1-20,000	1864-6	C. O Boutelle	$904 a$
Coufluence of the Tybee and Wilmington Rivers.	. do		1263	W. S. Edwards	$904 b$
Ogeechee, Vermon, and Rurnside Rivers	do	1-50,000	1865	C. Fondalt	867
Ossabaw Sound and Vernon and Ogeecbee Rivers	do	1-20.000	186	O. M. Fanntleroy, U.S.N.	733
Saint Cathaine's Sound and estoaries	do	1-20,000	1 cfi 7	Charles Junke	916
Saint Caharives entrau	do	1-20, 60.0	1867	do	828
Sapelo Sourd	do	1-10,060	1858	J. H. Moore. U. S. N	659
Sapolo Sound and adjacent waters.	do	1-10.000	1838	do	660
Sapalo Rar and approaches.	do	1-20,000	1859	C. M. Fauntleroy, U.S. N.	691
Inland pessages between Sapelo aud Doboy Sounds	do	1-10,000	1868	Charles Junk	959
Doloy Bar and Sound (reconnaisbauce)	\cdots don	1-80, 000	1854	T. A.Craven, U. S. N	461
Tohory Inlet and approaches	..do	$1-20,000$	1868	Charles Junken.	857
Doboy Soand, with Darien and North Rivers and aljacent creeks.	.. do	1-10, 000	1868	. do	964
Dobey and Saint Simon's Sounds	do	1-20,000	1872	F. P. Webler	1146
Coast from Altammat Sound to Saint Simon's Soin	do	1-20,000	1889	J. P. Bankhead, U. S. N.	810
Saint Simon's entrance.	. do	1-10,000	1856-7	S. D. Trenchard, T. S. M.	590
saint Simon's Bar and Branswick Harb	. do	1-10, 000	1856 do	537
Saint Simou's Bar and Branswick Harbor	. ${ }^{\text {do}}$	1-10, 000	1856	.do	548
Brunswiek Harkor.	. .do	1-10,000	1256	..do	575
Branswick Harbor and Turtle River	do	1-10,000	1857 do	587
Saint Simon'a to Baint Andrew's Soundde	1-20,000	1869-72	R. E. Hatter and F. P. Webber.	1133
Seint Andrer'eand dekyl Sounds	.do	1-80,060	1870	B. E. Halter.	1020

APPENDIX No. 8-Continued.

Localities.	State.	Scale.	Date.	Hydrographer.	Registerid number.
Coast from Saint Andrew's Bar to Saint Mary's Bar	Georgia .	1-20, 0 (k)	1.70	Chater Tunken	1062
Florida Passage, from Saint Andrew'a Sonnd to Cumberland Imand.	. (1)	1-20,000	1870	do	1063
Saint Mary' Bar and Feruandina Harbor.	Georgia and Florida.	1-10,000	1855-6-7	S. D. Trenchard, V. S. N. .	591
Saint Mary's Bar (reeurvey)	. . do	1-10,000	1857	do	571
Saint Mary's Bar and Fernandina Harbor	- . . do	1-20,000	1855	R. Wainwright, V.S. N	479
Saint Mary's entrance and Fernandina Harbor	. ${ }^{\text {coio }}$	1-10,000	1855-6-7	S. D. Trenchard, U.S. N	579
Saint Mary's River	. . . do	1-10,000	1550	10	592
Part of Saint Mary's River up to Saint Mary	. . .do		1856	do	5.50
Off-shore soundings from Fernandina to Cape Florida.	do	1-400, 000	1860	A. Murrar, U.S. N.	76
Main ship-channel over Saint Marye River Bar	Florida	1-20,000	1869	R. E. Halter	980
Saint Mary's River Bar (2 slueets)	. . .do	1-10, 0007	1874	F. D. Granger	$1218 a b$
Saint Mary's River and estnaries	. .do	1-10,000	1871	F. P. Webber	1112
Nascau Sound and estuaries	. do	1-10,000	1871	do	1113 a
Part of Nassad Sound	do	1-10,000	1871	. do	$1113 b$
Coast from Saint Mary's to Saint John	. do	1-90.000	1871	. . do	1110
Fernandina to Saint John's River	- do	1-17,000	1471	do	1111
Nassau Sound to Saint John's River	. do	1-10,000	1872	do	1147
Saint John's Hiver entrance and Fort George Inlet	do	1-10, 100	1853	T. A. Cravers, $\mathrm{C} . \mathrm{S}$. N	351
Saint John's Bar and vicinity (eurrent-chart)	do		1855	R. Wuinkiarle, U. S. N. s D. Trenchard. C. S. N.	511
Saint John's River Bar (resurvey	do	1-10, 000)	1857	S D. Jrenchard, U. S. N.	586
Saint John's River, Mayport Mills to Brown's Creek	...do	1-10, 1009	18.5	R. Wainwijht, C. S. N	481
Saint John's River, Brown's Creck to Six Mile Creek	do	1-10,000	1.55 .3	do	482
Saint John's River, Jacksouville and vicinity	do	1-10, 000	1855	do	484
Coast between Saint Jobn's and Augustine Bars.	do	1-20,000	1874	F. D. Granger	$12 \cdot 4$
Saint Augustine and vieinit	do	1-10,000	1870	IH. Anderson	1036
Saint Auguetine Har bor approach	do	1-10,000	1860	A Murras, U.S. N	719
Saint Augustine Harbor, ant North and Matapas Rivers.	. . du	1-10,000	1860	. do	711
North and Guano River	do	1-10,000	1870	I. Avdergon	1046
Matanzas River	. do	1-10,000	1870	do	1047
Matanzas Rive	-.do	1-5, 600	1872	A. M. Hanriso	1148 a
Matangas River and Inlet	- . do	1-5,000	1872	do	$1198 b$
Part of Halifax River (3 aheets)	do	1-5, () 0	1874	de	1232 abe
Part of Halifar River (2 sheets)	do	1-5,000	1874	do	1233 ab
Halifax River and tributaries (2 sheete)	do	1-5,000	1874	do	$1234{ }^{\text {a }}$
Morquito Inlet (reconnainsance)		1-20,000	1851	John Rodgers, U. S. N	260
Cape Canaveral Shoals (reconnaissance)	do	1-50,000	1850	. . clo	204
Key Biscayne and vicinity	do	1-20,000	1852 do	407
Key Bibcayne and Card Sound	.. do	1-20,000	1854	T. A. Craven, E.S. N	444
Florida Reef, Trinmph Keef, and Old Rhodes Bank. .-	do	1-20.000	1853	do	369
Pacific Reef to Carysfort Reef	do	1-20,000	1854	. do	443
Caryafort Reef to Grecian Sboal	do]-20,000	1855	. . da	568
Florida Reefs, Grecian Shoal to Frewch Reef.	do	1-20,000	1856 do	553
Florida Reefa, between Alligator and French Keels...-	do	1-40, 000	1863	E. Cordel	377
Floridm Keefs, abreast of Upper and Lower Mato ambe Keys.do	1-20,000	1862	G. Davidson	774
Florida Reefs, from Coflin's Patches to Tennessee Reel	do	1-20,000	1860	J. Wibkinson, U. S. N	773
Coffin's Patches, Flarida Reefs.	do	1-20, 000	1854	T. A. Craven, U.S. N.	417
Floride Reefs, from Coftin's Patohes to Boot Key	. ${ }^{\text {do }}$	1-20, 000	1859do	714
Florida Reefs, from Rahia Honda to Key Vaceas	do	1-20,000	1658	W. G. Temple, U.S. N...	6103
Florida Resfs, from American Shoal to Sombrerodo	1-20,000	185%	T. A. Craren, L. S. N.	669
Florida Rebfr, from East Sambo to Loggerhead Key	do	1-20,000	1456	do	650
Additional soundings off Boca Chica	do	1-20,000	1863	E. Cordell	779
Keg West Harbor and vicinity.	do	1-20,000	1851	John Rotgere, U. S. N ...	281
Approacbes to Key West from the northwest	. . do	$1-10,000$	1672	Robert Platt, U.S. N.	1131
Key Weat Harbor.		1-5, 000	1850-1-'2	Jobu Rodgets, U. S. N.	338
Marquesws Keys and vicinity of Boca Grande	do	1-20, 0.00	1e51-9 do-...............	282
Buen Grande, Marquesat Keye and vicinity		1-20, 000	1852	. do	359
Rebeecm Shoalm, (reconnaiseance)	...do	$\left\{\begin{array}{l} 1-10,060 \\ 1-30,000 \end{array}\right.$	1852	..do...-	313

APPENDIX No. 8-Continued.

Localities.	State.	Scale.	Date.	Hydrographer.	Registered number.
Tortugas Harbor, part of	Florida	1-5, 000	1873	J. A. Howell, U.S. A	1199
Off-shore soundings from Sambrero to Sand Kers	do	1-100, 000	1868	R. Platt, U.S.N.	1066
Off-shore sonndings, straits of Florida westward	do	1-400, 000	1869	do	1090
Off-shore sonndings, Straits of Florida eastward	. do	1-400, 000	1869do	1091
Off-shore soundings from Key West to Charlotte Harbor.	do	1-400, 000	1867	...do	911
Off shore soundings from Sand Keys to Marqueana Keys	do	1-40, 000	1867	do	12
Off-shore soundings from Marquesas Keys to Rebecea Shoals.	. do	1-40,000	1870	.. 10	1052
Off-shore soundings, afproaches to Dry Torrugas Kegs	do	1-40, 000	$18677^{\circ} 8$	do	955
Florida Reefs, from Marquesas to Dry Tortugas Keys	. do	1-80,000	1867-8	. do	954
Florida Reets, westorn end Marquesas to Dry Tortugas Keys.	...do	1-80,000	1871	. do	1076
El Moro to Playa de Mariadao, north coast of Cuba....	Cuba	1-10, 000	1867	W. S. Edwards.	900
Xucatan Channel, from Cape San antonio, Cuba, to Catoche, Yucatan.	Mexico	1-200, 000	1872	R. Platt, U. S. N	1137
San Carlos Bay and Caloosa entrance	Florida	1-20, 0001	1866-7	W. S. Edwards	917
Pioc Island Sound, part of, and approaches to the Caloosabatchee.	. do	1-20,000	1866	C.'T. Lardella.	903
Charlotte Harbor, main entrance.	...do	1-40,000	1863	E. Cordell.	797
Taropa Bay (recounaissance)	..do	1-60, 000	1855	O. II. Berryman, U. S. N	478
Tampa Bay (2 sheets)	do	1-20,000	1874	A. Braid	$1235 a b$
Boca Ceigo Bay, from John's Fass to Tampa Bay	do	1-20,000	1873	H. G. Ogden	1178 a
Beca Ceigo Bay, from Indian Pass to John's Pass	d	1-20, 000	1873	...do	1178 b
Clearwater Harbor	do	1-20,000	1873	...do	1174
Waccasagea Bay	do	1-20, 000	1857	J. K. Duer, U. S. N	581
Waceanassa Bay	do	1-20, 000	1856do	531
Cedar Keys (reconnaissance of Channel No.4)	do	1-10,000	1852	F. H. Gerdes	304
Codar Keys	do	1-20, 000	1854	O. H. Merryman, U.S.N	424
Cedar Keys	. do]-20, 000	1855	. do	513
Cedar Keys	. .do	1-20, 200	1855do	512
Cedar Keys (resurrey)	do	1-10, 600	1860	J.J. Guthrie, U. S. N	713
Cedar Keys, Northweat Channel, and Sea Horse Chan nel Rars.	. do	1-10, 000	1860do.	716
Cedar Keys, resurrey of Main aud North Keys.	do	1-10,000	1858-9	T. B. Huger, U. S. N...	668
Cedar Keys, main chamel	do	1-10, 000	1871	F. P. Webler	1080
Ocilta River		1-10, 0c0	1855	O. H. Berryman, U. S. N	517
Saint Mark's Lii rer	do	1-10,000	1856	...do	541
Saint Mark's River Bar	do	$1-20,000$	1856 do	540
Saint Mark's River Bar and Chanuel (reconnaissance).	do	1-20,000	1852	F. H. Gerdea	305
Saint George's Sound, Saint Joseph's and Saint Mark's (reconnaiseance).	do		1852de	307
Saint George's Sound, new channel	do	1-20,000	1858-9	J. K. Duer, U.S. N	688
Saint George's Sound, eastern part	do	1-20,000	1260	T. S. Phelps, U. S. N	734
Saint George's Sound, east pass	do	1-20,000	1858	J. K. Daer, U.S. N	655
Saint George's Sound, west pase.	do	1-20,000	1858do	654
Off eastern part of Saint George's Sound, from East Yass to Southwest Cape.	...do	1-20,000	1872	H. Anderson .	1156
Saint George's Sonnd	do	1-20,006	1871	do	1092
Saint George's Sound.	do	1-40,000	1873	. .do	1184
Appalachicola River, mouth of	do	1-20,000	1859	J.K. Duer, T. S. N	687
Appalachicola Bay	do	1-20,000	1860	T. S. Phelps, U.S. N.	747
Saint Vincent 8 mond	. ${ }^{\text {do }}$	1-20,000	1874	H. Anderson.	1241
Saint Andrew's Ray	do	1-20,000	1856	O.H. Berryman, U.S.N	518
Saint Androw's Bay	do	1-20,000	1855do	514
Choctawhatehes Bay.	do	1-20,000	1872	H. O. Ogden.	1141
Santa Rosa Sound, The Narrowe, and west end of Chectawhatchee Bay.	...do	1-20,000	${ }^{1871}$do	1107
Santa Losa Scund, from Deer Point to Long Pritchard Point.	.. do	1-20,000	1871do	1108
Santa Maria de Galvaer lay	do	1-20,000	1860	T.S. Phelpa, U.S. N	731
Ercambia Bay	do	1-20,000	1860do	732
Pensacola Harbor, uhonl eyot off navy-yard	...do	1-10,000	1860	T. A. Crav n, U. S. N.	719
Pensacola lar nud Bay entrance	do	1-20,000	1856	J.K.Duer, T.S. ${ }^{\text {N .. }}$	585

APPENDIX No. 8-Continued.

Localities.	State.	Scale.	Date.	Hydrographer.	Registered number.
West coast of Florida	Florida	1-600, 00\%	18.2	S. A. Howell, U.S. N	1138
Key West to Delta	do	1-120, 000	1857-8	B. F. Samis, U. S. N	599
Gulf of Mexico, soundings and temperatures			1856 do	528
Gulf of Mexico, deep-sea temperatures		1-1,200, 000	1854-5to	483
Gulf of Mexico, deep-sea soundings and timperature.			1855	O. H. Berryman, C.S. N.	$46{ }^{\circ}$
Soundings from Movile Bay to Mississippi Deita.	Alabama	1-600, 000	1854	B. F. Sands, C. S. N	420
Mobile Bay, eastward from Fort Morgan	do	1-20, 000	1851	do	262
Pelicar Channel (resurvey)	do	1-20,000	1853do	661
Pelican Channel (resurveg)	do	1-20, 080	1855	do	467
Mobile Bay, north of Diuphine Island	do	1-20,000	1847	Q. P. Patterson, C. S. N	191
Mobile Bay, approaches and entrance	do	1-20, oan	1847-8	do	192
Mobile Bay, lower part	do	1-20, 000	1848do	193
Mobile Ray, lower part	...do	1-20,000	1×49	dn	215
Bonsecour Bay	. 10	1-20,000	1851	James Alded, U. S. N	263
Mobile Bay, mielde and upper part.	. do	1-20, 000	1850	..de	227
Mobile Bay, upper part and Dog River Bar	. ${ }^{\text {do }}$	1-10,000	1849	C. P. Patterson, U. S. N	214
Mobile Ray. Delta aud Mobils Cits	do	1-10, 000	1450	James Aldev, U. S. N	298
Mobile Bay, Upper Delta.	...do	1-10, 000	1850do	
Tensaw, Spawish, and mobile Rivers, and Dog River Bar (rosurvey).	. . . do	1-10, 000	1860	J. Wilkinson, E. S. N	737
From Murder Point to Granè Bay, Mississippi Sumd..	Mississippi	1-20,000	1852	B. F. Sands, ©.S. N	329
Off ahore, westward from Fort Morgan, Mississippi Sound.	...do	1-20,000	1851	...do	261
Horn Island Passage to Pascagnula, Mississippi Soand	\ldots..do	1-20, 000	1852-3	. do	328
From Pascagoula River to east evd of Horn Island..	do	1-20, 010	1833do	365
Horn Island Channel, Mississippi Sound	...do	1-20, 000	1816	C. P. Patterson, C. S. N	190
Horn Leland Pass	.. do	1-20,000	1852	B. F. Sands, C. S. N	327
Horn Island Pase (resurveg)	-do	1-20, 000	1853do	362
Southward of Horn and Ship Islands	. ${ }^{\text {do }}$	1-20,000	1854do	430
Between Horn Island and Ship Island	do	1-20, 000	1855do	489
Biloxi Bay.	do	1-20,000	1855	do	485
Missiasippi Sound, from Cat Island to Mississippi City	do	1-20,000	1855	. do	488
Misaisalppl Sound, Cat and Ship Imlands.	do	1-20, 000	1848	C. P. Patterson, U. S. Ǹ	194
Saint Louis Bay and part of Mississippi Sound	. do	1-20,000	1856	B. F. Sands, U.S. N	546
Pass Christian.	do	1-10, 000	1851	do	22.6
Pass Christian and part of Miseissippi Sound (resurvey)	do	1-90,000	1857	. do	589
Part of Chandeleur Sound and Nassau Roads..	Mississippi Louisiana		1857do	598
Grand Island Pass and Pearl River entrance	.do	1-20,000	1856	. ${ }^{\text {d }} 0$	545
Grand Gulf.	Misaissippi	1-5, 000	1864	F. H. Gerdes	846
Ship Istand Shoal	Lonisiana	1-20,000	1853	B. F. Sauds, C.S. N	360
Nassan Roads, north of Chandeleur Island	do	1-20,000	1852	...do	363
Chandeleur Sonnd	...do	1-40, 000	1873	F. D. Granger	1171
Lake Borgne.	do	1-40,000	1870	F. 1. Webler	$1055 a$
Eastern part of Lake Pontchartrain	. do	1-40,000	1870	...do	$1055{ }^{\text {b }}$
The Rigolets.	do	1-20,000	1870do	1054
The Rigolets.	do	1-10,009	1859	W. S. Gllber	071
Lake Pontchartrain	do	1-40,000	1871	J. S. Bradford	1115
Isle au Breton Bay.	do	1-40,000	1869	F. P. Webber	999
Isle an Breton Sound, eontherst part	..do	1-40,000	1869	.. do	1000
Dolta Missiesippi River (reconnaissance)	do	1-20,000	1831	B. F. Sunds, U. S. A	255
Approsehes to Mississippi Eiver	do	1-40,000	1871	J. S. Bradford	1116
Approachee to Miselssippi River.	...do	1-40,000	72	F. D. Granger	1152
Pass a Lontre, Mississippi Delta		1-20,000	1860	J. J. Guthrie, U.S. N	715
Pasa a Lontre and Southeast Pass	. do	1-20,000	186;	F. H. Gerdes	989
Pags a Loutre and bar	...do	1-10,000	1867	. do	927
Northeast and Southeast Passer	...do	1-10,000	1867	. do	926
Weat East, and Garden Ialand Bays	do	1-40,000	1868	F. P. Webber	991
South Pase	...do	1-20,000	1867	F. H. Gerde	990
Sonth Pase Bar		1-10,000	1867	do	925
South west Pass	do	1-20, 000	1867	do	923
South weat Pamen and Rar	. .do	1-10,000	1867	. do	924
Southwest and fouth Passes		1-20,000	1352	B. F. Sands, U. S. N	330

APPENDIX No. 8-Continued.

Localities.	State.	Scale.	Date.	Hylrographer.	Registered number.
Mississippi River, part of	Louisiana	1-10,000	1866	F. H. Gerder...............	929
Misaiasippi Eiver, from North Base to Grand Prairie.	. . ${ }^{\text {o }}$	1-20, 000	1872	F. D. Granger	1153
Mississippi River, from Grand I'rairie to Bohenta...	. . do	1-20, 000	1871	C. II. Boyd	1093
Miasissippi Liver, from Bohemia to Poverty Point...	do	1-20,000	1872	do	11.4
Mississippi Kirer, from Poverty Point to Scarsdale...	- do	1-20, 1000	1873	do	1192
Barataria Farbor and Bar (reonmaiesance)	. . do	1-10,000	1833	F. H. Gerdes	441
From Southwest Pass to Atchafalaya Bay (reconnaissance).	- . do	1-20,000	1853	do	442
Atebatalaya Bay	do	1-20, 000	1858	I. F. Sands, U.S. N	658
A tehafalaya approaches	do	1-20, 000	1859	T. B. Huger, U. S. N	680
Atchafalaya Bay	. do	1-80, 000	1859do	681
Côte Blanche Bay,	. do	1-20,000	1859	do	682
Vermillion Bay entrance (reconnaissance)	. do	1-20, 000	1855	B. F. Sands, U. S. N.	486
Calcasien River (reconuaissance)	- . do	1-20,000	1855	do	487
Trinity Sboal	. do	1-40, 000	1872	F. D. Granger	1139 a
Trinity and Tiger Shoals	. do	1-80,000	1872do.	$1139 b$
Off shote from Timballee' Bay to Galveston Bar	Louisiana and Texas.	1-635, 000	1858	J.K. Duer, U.S. N	657
Galveston Pay, vpler part, Turtle Bay to Smith's Point.	Texas	1-20,000	1.855	E.J. De Haven, U.S. N...	470
Galveston Bay, fuom Smith's Pont to Edward's Point.	.. do-......	1-20,000	1852	T. A. Craven, U. S.	324
Galveston Bay, from Bolivar Point to Hanna's Islan	. do	$1-20,000$	1852	. ${ }^{\text {a }}$	383
Galveston Eay, westutn part.	. . do	1-20,000	1853-4	H. S. Stellwagen, D. S. N., E.J. De Haven, U.S. N.	414
Faet Galveston Bay	do	1-90,000	1854	E. J. De Haven, U.S. N.	425
Off Galveston Har aud westward	do	1-20,000	1855	- do	4.71
Galveston Bar, ontsid	do	1-20,000	1851	T. A. Craved, U.S.N......	265
Galveston Harhor	. do	1-20, 060	1851do	264
Galveston Earbor.	do	1-20, 0C0	1850	A.S. Baldrin, U. S. N	247
Galvegton ontrance and b	. .do	1-10,000	1867	F. F. Nes	906
Galveston Bay, resurvey	. do	1-10,000	1867do	918
Galveston Bay, resurvey	. do	1-10, 000	1267	C. H. Boyd	919
Gaiteston Harlor, comparative chart showing chauges from 1ns1 to 186%.	. . do	1-10,000	. 1867	\|......do	919 bis.
Galverton Bay, western entrance	do	1-90, 000	1867	F. F. Nes....................	931
West Gal reston Bay	do	1-20,000	1867	-do	932
Westward of Gal veston Bar and Ga	. . do	1-20, 000	1855	E.J. De Haven, U.S.N...	472
Weatward from Galreston Island	do	1-20,000	1855 de....................	473
San Luis Pass	do	1-10,000	1853	H. S. Stellwagen, U. S. N .-	389
Brazoe Rirer Bar...	do	1-10,000	1858	J. K. Duer, U. S. N........	656
From Velasco westward, along the co	do	1-20,000	1855	E. J. De Haven, U.S. N....	474
Gulf Coast, from Quintana westward	do	1-20, 000	1856	..:...de	539
Matagorda Pay, from Matagorda to Palac	do	1-20,000	1859	J. K. Duer, U. S. M	689
Matagorda Ray, northeast part.	. . do	1-10,000	1871-'2	L. B. Wright	1161
Matagorda Bay, northwrest part do	1-20,000	1860	W. Ropakendorff, U.S. N..	727
Trespalacios and Turtle Baysdo	1-20,000	1871	F. D. Granger	1094
Carancaliua Bay do	1-20,000	1871	.-. do	1095
Lavaca Bay and vicinity	... do	1-20, 000	1871	-.... do	1098
Matagorda Bay entrance, Paso d	do	1-20,000	1858	A. Balbach	635
Pass Carallo	. . do	1-20, 000	$18 \% 1$	F. D. Granger	1097
Pass Cavallo Bax.do	1-10, 000	1874	L. B, Wright	12.31
Matagorda Bay, part of.	. . . do	1-20,000	1866-71	F. P. Webber and F. D. Granger.	1031
Espiritu Santo Bay and part of San Antonio Bay......	. . do.......	1-20,000	1871-'2	F. D. Granger and L, B. Wright.	1098
Aranaza Pasa	. ${ }^{\text {d }}$	1-10,000	1854	H. S. Stellwagen, U. S. N ..	386
Araneas Pass	do	1-10, 000	1868	F. F. Nes.....	996
A rameas Iray.	to	1-20,000	1869	H. Anderson.	90.7
Corpus Caristi Pass.	do	1-10,000	1869 do	994
Corpus Christi Bay do	1-20,000	1868	F. F. Nea.....................	- 958
Entrance to Brazos Santiago and Lagma Madre	...do	1-20,000	1867	C. H. Boyd	909
Rio Grande River and Bar (reconnaissance)		1-10, 0 N0	1853	John Wilkisson, U.S.N..-	377
Sonndinga in the Lower Ohio River, between Caire and Mound City.	Interior States, Illinois.	1-1.0, 000	1864	F. H. Gerdes and C. Fendall.	851

APPENDIX No. 8-Continued.

Localities.	State.	Scale.	Date.	Hydrograpber.	Regigtered number.
San Diego, Califurnia, to Panama (3 sheets and 5 plans).	Mexico	1-400, 000	1873	P. C. Julnnen, U. S. N	1202abe
Magdalena Bay, from the Narrows to Cayuco Core	Lower California	$1-20,000$	1871	G. Bradford	1123
Magdalena lay, Man-6-war Cove to the Narrows	...do	$1=40,000$	1871do	1124
San Diego bay atd viciuity	California	1-10,000	1856	James Alden. U.S. N	564
San Diego Bay	do	1-10, 000	1856do	565
San Diegu Bay	do	1-10,000	1836	. do	566
San Diego Bay	do	1-10,000	1856	do	367
San Diego Harbor (reconnaissance)	do	1-10,000	1851	R. D. Cutt	268
Coast, from San Diego to Puint Conception (recounaitsance).	. .do		1851	James Aldeu, U.S. N.	289
Cortez Bank, shoal southwest of San Diego	do	1-5, 000	1853	T. H. Sterede, U. S. N	355
Cortez Bank, sboal monthwest of San Diego	do	1-50, 000	1856	James dlen, E.S.	54.
San Clemente Anchorage, southeast end of island.	...do	1-10,000	1856	do	543
San Clemente Auchorage, northwest end of island.	da	1-10, 0 co	1852	...do	312
Catalina Island Anchorage, northeast side	do	$1-5,000$	1852	do	308
Catalina Harbor and Anchorage, northeast side	do	1-5,000	185do	291
Catalina Harbor and Isthmus Cove	do	1-10,000	1873	P. C.Johison, D.S. N	1310
San Pedro and vicinity of Los Angeles	. ${ }^{\text {do }}$	1-10,000	1852	James Alden, U. S. N	310
San Pedro Anchorage	do	1-10, 2001	1854	l. II. Stereas, U. S. N	437
San Pedion Harbor and approaches	do	1-10,0\%0	1859	James Alden, U.S. ${ }^{\text {F }}$	506a
Sau Pedro Hazbor, Winmington Breakwa	...do	1-10, 090	1873	A. W. Chase	:06 4
Off shore soundinge, Point Pedre, Sunta Cruz	do	1-100, 000	1865	E. Cordell	81
Shoo.Fly Landing.	...de	1-10, 0 00	1873	1. C. Johusot, U.S. N	121
Anacapa and eastern ead of Santa Cruz Island	do	1-10,000	1855	J ames Alden, U. S. I	¢01
Prisoner's Harbor, Santa Cruz Island.	...do	1-10, 000	1852	do	303
Santa Cruz Channel.	do	1-20,000	1873-'4	P.C.Johnson, U. S. N.	12210
Santa CruzIaland, north side, from Weat Pomet to Punta Diablo.	...do	1-20,000	le't 4	H. C. Taylor, C.S. N.	12213
Point Hueneme and vicinity, Santa Barbara Channel	do	1-10, oro	1856	James Alden, C.S. A.....	554
Harbor of Buedaventura	. . do	1-10,000	1870	W. E. firetawell	10 E
San Buenaventura and vicinity	. . do	1-10,000	1855	James Alden, C. S. N.	503
Santa Bar bara and vicinity	do	1-10,000	1852	. do	311
Santa Barhara	do	1-10, 000	1854	T. H. Sterene, U. S. N .	436
Santa Barbara Cbanuel, inshore soundinge, No. 1	.. do	1-10,000	1869	E. Cordell, G. Farquhar	103
Santa Barbara Chanuel, inshore soundings, So. 2	.. do	1-10,000	1809 do	1039
Santa Rarbara Chaunel, inshore sonndings, Ne. 3	do	1-10, 600	1869		104
Santa Barbara Clannel, inshore oundingt, No. 4	do	1-11.000	1869	...do	1041
Santa Barbara Cbannel, inshore soundings, No. 5	...co	1-10,000	1869	. do	1042
Santa Barbara Channel, inshore soundings, No. 6	. do	1-10,000	1869do	1043
Santa Barbara Channel, inshore soundings, No. 7	.- do	1-10, 090	1×69	do	1044
Santa Rarhara Channel, off-shore acundings.	do	1-100, 0000	1869	do	1045
Santa Barbara Cbannel, entrance Coxo Δ ncthorage	.. do	1-10,000	1 E 69	do	1037
Cayler's Harbor, istand of San Miguel	do	1-10,000	1852	Jawes Alden, U.S. N	309
Point Conetpeion and vicinity of Coxo	. do	1-20,000	1852do	295
Coast from Point Conempeion to Sall Fracciecoentrance	do	1-375, 000	1851	du	290
Roadstead umder Point Sal	. do	1-5, 000	1667	E. Cordell	921
San Lais Obispe and vicinity	do	1-t0, 0000	1852	Jame Alden, U.S.N	302
San Simeon bay and vicinity	..do	1-10,000	1852do	301
Const fiom Point Pidos to Cape Mendocino (reoonnaisEancel.	...do	1-1,000, 000	1851	W. P. McAithur, U. S. N .	241
Sanquel Cove, Monterey Bay	do	1-10,000	1855	James Alded, U.S. N..	504
Santa Cruz Harbor, Monterey Bay (reconnaiseance) ...	do	1-10,000	1858do	00
Santa Cruz Harber, Mouterey Bay	do	-1-10, 000	1853do	373
Monterey Bay	do	$1-20,001$	1851	do	96
Monterey Bay	. do	1-40,000	1856	.do	55.8
Mouterey Bay	. do	1-10,000	1856do	59
Monterey Bay	.. do	1-10,000	1856 do	560
Monterey Bay	.do	1-10,000	1850	...do	561
William's Landing and vicinity, Monterey Bay	do	1-10, 090	1855	do	505
William's Lending and westward, Monterey Bay	do	1-10,000	1855ds	06
Point Año Nnevo mad monthward	do	1-10,000	1853de	3301
Point Año Nuovo and nerthward	do	1-10,000	1856	do	555
Const north ward of Pigeon Point.	. do	1-10,000	5do	356

APPENDIX No. 8-Continued.

Localities.	State.	Scale.	Wate.	Hydrographer. ${ }^{\text {a }}$	Registered number.
Part of coast sonth of Half Momil Hay	California.	1-10, 000	1663	A. F. Rodgers.	825
Half-Moon Bay	.- do .	1-10,000	1863do	881
Point Pedro to Half-Moon Baty	do	1-10, 000	1863do	835
San Francisen, entrance and westward	do	1-80, 000	1857	Jamos Alden, U.S. N	562
Conat from San Franciseo northward to Crescent City	do		1854	. do	401
Sau Francisco Bay, approaches and entrance.		1-100, 000	1858-9-'60	do	721
San Francisco entraLce, and bar	\cdots	1-20,000	1855do	456
San Francisco Bar and part of entrance	do	1-10,000	1873	G. Bradford	1:201
San Francisco Bay..	do	1-20,000	1873do	1214
San Francisco lay, from Point Bonita to Angel Island	do	1-10,000	1855	James Alden, U.S. N	462
San Francisco Ilay, Angel Istand to Point Avisadera	do	1-20,000	1855	. do	464
San Francisco Bay, Point Avisadera to Point Bueno..	do	1-10,000	1854do	421
San Francisee Ray, Point A visallera to Coyote Hill Creek	do	1-20,000	1857-8	J.Alden,R.M.Cuyler, U.S.N	628
San Franciaco Bay, Steinbergen and Redwood City Creeks.	do	1-10,600	1858	R. M. Cuyler, E.S.N....	637
San Francisco Bay, from havenwood to Coyote Creek.	do	1-10,000	1857-8	. do	636
San Francisco Bay, Coyote Hill and Caion City Creeks	do	1-10,000	1858	. do	638
San Francises Bay, San Antonio Creek	...do	1-10, 000	1857	James Allen, U.S. N	573
San Francisco Harbor, vicinity of thercity	...do	1-10,000	1853do.	347
San Franciseo Bay..... do	1-10,000	1857-8	R. M. Cugler, U. S. N	629
San Francisco city front (resarvey)	do	1-10,000	1857do	cos
Richmond Bay and Raccoon Strait, San Francisco Bay.	...do	1-10, 000	1855	James Alden, U.S. N	463
San Francisco Bay, from Angek Inland to Richmond Point.	do	1-10, 000	1855	do	463
San Francisco Bay, from Point San Pablo to Point San Quentio.	...do	/ 1-10, 000	1855	do	466
Petaluma Creek, from entrance to Lakeville	do	1-10, 000	1860do	724
Petahuma Creek, from Lakeville to Petahuma City	do	1-10,000	1860	dr	725
San Pablo Bay.	. ${ }^{\text {do }}$	1-20,000	1256	do	524
Channel off Point Wilents, San l'ablo Bay	do	1-20.000	1863	A. F. Rodgers.	781
Resurvey of chaunel off Point Wilson. San Pablo Lay	. do	1-20,000	1862	B. F. Sands, U. S. N.	758
Naja Creek	do	1-10,000	1860	- Tames Alden, C.S. N	223
Resarvey of approaches to Mare Ialav	do	1-10, 000	1862	B. F. Saride, U.S. N...	759
Mare Imland Strait (recounaisannce)	. . do	1-5, 000	1849	W. P. Medrthur, U.S. N ..	288
Mare Island Strait (reconnaissance)	-. do	1-5,000	1850co	236
Mare Island Struit.	- . do	1-10,000	1856	James Aldod, U. S. N......	544
Mare Is'and Strait (reanrver)	do	1-5, 000	1864	Rodgers, Lawson, Ehwards	833
Carquines Strait..	do	1-10,000	1857	James Aldeu, U. S. N.......	563
Resurvey of part of Carquines Strait	do	1-10,000	1862	B. F. Sands, U.S. N.	760
Part of Carquines Straits...	do	1-20, 000	1863	A. F. Rodgera	782
Part of Carquiner Straitos..	. .do	1-10,000	1866	E. Curdell.	879
Suisun Bay, Cordelia, Suisun, and Montezuma Creeks.	. ${ }^{\text {d }}$	1-20,000	1867	do	948
Suifen hay wilh coulluence of Sacrametito and San Joaquin Rivers.	. .do	1-20, 000	1866-7	...do	\%05
Sacramento and San Joaquin Rivers	do	1-10,000	1867do	935
Ballenas Bay and Duxbury Reef..		1-10, 000	1854	James Alden, U. S. N	438
Point Reyee and Drakeis Bay	...do	1-10,000	1854do	435
Drake's Bay ..	do	1-40, 060	1×60	.. do	720
Off-shore soundings from Print Reyes to Bodega Head.	. do	1-100, 000	1866	E. Cordell	889
Off-shore soundings from Point Reyes to Tomales Point.	${ }^{1}$	1-20,000	1866do	890
Tomales Bay, entrance and yart of..	do	1-10,000	1861	B. F. Sunds, U. S. N	756
Tonales Bay, from Tow's Point to head of uavigation..	do	1-10,000	1861 do	757
Bodega Bay, roadstead from Badega Head to Tomales Point.	...do	$1-10,000$	1862 do	806
Mendocino Bay ${ }^{\text {do }}$	1-10, 000	1872	L. A. Seugteller	1288
Mendocino City Harbor (reconnalssance)	...do	1-10,000	1853	Jamee Alden, U. S. N.....	384
Shelter Cove (reconnaissance)	do	1-10,000	1853	-.....do...................	385
Blant's Reef, off Cape Mendocino..	do	1-10, 000	1872	G. Bradford................	1150
Humboldt Bay, entrance and part of.	. . do	1-10,000	1859	James Alden, U. S. N.....	710
Humboldt Bay.	.. do	1-10,000	1651 do...................	290
Humboldt Bay..	... do	1-10,000	1851do	271
Humboldt Bay (Nos. 1 and 2)	do	1-10,000	1871	G. Farquinar	$1176 a b$

APPENDIX No. 8-Continued.

Localities.	State.	Scale.	Mate.	Hydrograpber.	Registered number.
Humboldt Bay (No.3).	California	1-10,000	1871	G. Farquhar.	1174
Humboldt Bay, bar, entrance, and approaches to	..do	1-10,000	1871	do	11720
Trinidad Bay	do	1-5,000	1851	James Alden, U. S. N.	274
Trinidad Harbor	do	1-11, 000	1872	G. Bradford.	1137
Crescent City Harbor and approaches	do	1-10,000	1899	James Alden, U. S. N .	690
Crescent City Harbor (resurvey)	do	1-10,000	1855	. do	430
Crescent City Harbor.	do	1-10,000	1853	. do	383
Creacent City Reef.	do	1-20,000	1899	A. W. Chase.	$1025 a$
Rock Ledge, examination of	do	1-10, 000	1871	. do	1025 6
Crescent City Reef to False Klamath	do	1-20,000	1873-4	H. O. Taylor, U.S. N.	1236
Crescent City Reef to Smith's River	do	1-20,000	1873-4do	1237
Coast from Smith's River to Larnacle Rock, Oregou	do	1-20,000	1874do	1239
Coast from False Klawath to Columbia River.	do		1854	James Aldeu, U. S. N	402
Coast from Table Bluff, Cal., to Coqnille River, Oregon.	Califoruia and Oregon.		1850	W. P. Medrthar, U.S. N.	942
Chetzo Cove	Oregon	1, 10,000	1873	P. C. Johnson, U.S.N.	1212 a
Hunter's Cove	do	1, 10,000	1873	-....do	1212 b
Coast from Goat Island to Mack's Arch	do	1,20,000	1874	H. C. Taylor, T. S. N.	1240
Port Orford or Ewring Harbor	do	1-10, 000	1853	James Alden, U.S. N	381
Coquille River, entrance and part of (recon	..do	1-10,000	1860	do	722
Koos Bry, entrance and part of.	...do	1-10,000	1861	J. S. Lawson	755
Koor Bay	...do	1-10,000	1865	...do	901
Koos Bay	.do	1-10,000	1865	.do	902
Umpquah River entrance	do	1-10,000	1853	James Aldun, U. S. N	38\%
Coast from Umpquah Head to Columbia River	do		1851	W.P. Mcarthar, U.S.N.	240
Taquina Bay	. do	1-10,000	1868	A. W. Chaso	998
Tillamook Ray.	do	1-10,000	1866-7	J. Kineheloe	036
Nehalem River entrance	do	1-5, 000	1868	E. Cordell, G. Farquhar	973
Columbia River entrance	do	1-20,000	1850	W. P. MoArthar, U.S. N.	250
Columbia River entrance	do	1-20,000	1851do	273
Columbia River entrance	do	1-20,000	1854	James Alden, U. S. N	42 x
Columbia River entranc	do	1-20,000	1852	...do	330
South Channel Bar, mouth of Columbi	..do	1-10,000	1854	do	429
Columbia River entrance	do	1-20,000	1868	E. Cordell	101
Columbia River, from Three-Tree Point to Gray's Bay.	do	1-10.000	1807-8	. do	1015
Columbia River, from Cathlamet Head to Settlers' Point.	do	1-10,000	1868	do	1016
Columbia River, from Settlers' Point to Tongue Point.	..do	1-10,000	1868do	1017
Colnmhia River, from Tongue Point to Cape Disap. pointment.	...do	1-20,000	1868	...do	1016
Coast from Colnmbia River to Point Grenville, Washington Territory.	do		1852	James Alden, U.S. N....	334
Coast from Columbia River to Admiralty Inlet, Wualtington Territory.	. .do		1852do .	333
Coast from Columbia River to Cape Flattery.	Washiagton Ter.		1852	...do	427
Shoalwater Bay.	do	1-18, 818	1855	do	498
Shoalwater Bay.	do	1-20,000	1852	. ${ }^{\text {do }}$	335
Eatrance and part of Gray's Harbor	do	1-20,000	1862	J. S. Lawson .	809
Grenville Harbor	do	1-10,000	1854	James Alden, U. S. N	426
Jebtrnction Ieland and vicinity.	.do	1-10,000	1856	J. S. Lawson.	886
Nee-ah Harbor, Straits of Juan de Frea.	do	1-10,000	1852	James Aldin, U. S. N.	337
False Dungeness, Straits of Juan do Faca.	do	1-10,000	1832do	325
False Dungeness, Straits of Juan de Fuca	do	1-10,000	1855	do	500
Port Towashend.	do	1-10,000	1854	d	434
Port Ludlow, entrance of Hood's Canal	do	1-10,000	1855	do	08
Admiralty Inlet.	do	1-100,000	18.5	--...do	510
Port Gamble, entrance of Hood's Canal.	do	1-10, 000	1855do	509
Port Madisan	.do	1-10,000	1868	J.S. Lawson.	1102
Blakely Harbor.	. ${ }^{\text {do }}$	1-10,000	1856	James Alden, U. S. N.	525
Tuwamish Bay	do	1-10,000	1854do	432
Stailacoom Harbor and vicinity of Paget's Sound		1, 10,000.	1855	do	499
Olympia Harbor, Puget Sound	...do	1-10,000	1855do	507
Partridge Eank, Stralt of Juan de Fucn.................	..do ?	1-20,000	1871	J. S. Lawson	1130
Lawson Reer, Roasrio Strates.	..do	1,10,000	1871do	1129

H. Ex. $81-18$

APPENDIX No. 8-Continued.

Localities.	State.	Scale.	Date.	Hydrographer.	Registered number.
Smith's or Blunt's Island, Rosario Straits..	Washing ton Ter.	1-10,000	1854	James Alden, U. S. N	431
Haro and Losario Straits, south ontrancesdo		1853do	405
Fosacio and Haro Straits, south ontrances	...do	1-100, 000	1854	. do	433
Haro and Hosario Straits, north entrances	. do	1-20,000	1858do	708
Gulf of Georgia, and northentrances to Haro and Rosario Straits.	. ${ }^{\text {do }}$	1-100,000	1858-'9	..do	709
Bellingham Pray..	do	1-20.000	1855do	502
Somi-ah-moo Ray.	do	1-20,000	1857	F. M. Ouyler, U.S.N.	603

APPENDIX No. 9.
REPORT ON THE TELEGRAPHIC DETERMINATION OF THE LONGITLDE OF KEY WEST, BY CHARLES A. SCHOTT, ASSISTANT IN TIIE COAST SURVEY.

Dear SIR: In compliance with four direction, a second compatation and rerision of the difference of longitade between Washington and Key West bas been made, and the following report on the results is herewith respectfully submitted:

INTRODUCTION.

The trigonometrical survey of the islands and reefs skirting the southern shore of Florida has depended, since $\mathbf{1 8 4 9}$, for its standard longitude on a number of moon-culminations and on a chronometric determination-means which it was desirable to have superseded by the more accurate method of employing the electric telegraph. This would afford a check on the old work, and furuish a precise determination of the longitude of an extreme southern point of the triangulation, both for the immediate use of the Coast Survey as well as, prospectivels, for the extension of the telegraphic system of longitudes over the regions of the Gulf and Caribbean Sea.

The telegraphic determination of the longitude between Washington aud Ker West was executed jointly by the United States Coast Survey and the Cuited States Naval Observatory, and under the direction of their respective superintendeuts. The observations at the Naval Observatory were made by Profs. W. Harkness and J. R. Eastman, U. S. N., and Assistant Observer E. Frisby ; those at Key West by Subassistant Edwin Smith, United States Coast Survey. Professor Eastman made the computation of the transits at Washington, the results of which were commonicated by Rear-Admiral C. H. Davis, Superintendent, under date of November 6,1874 ; a second computation was mado by myself; the first computation of the transits at Key West was made by the observer and by Prof. R. Keith, of the United States Coast Survey, and the second computation by Mr. James Main, of the Compating Division, Ooast Surver Office.

The arrangement for the telegraphic connection of the two stations was made by G. W. Dean, Assistant in the Coast Survey. The Survey is indebted to General Thomas T. Eckert, general superintendent of the Western Union Telegraph, for facilities given while using the line.

Automatic and arbitrary siguals were transmitted by means of break-circuit arraugements. Exchanges took place on seven nights between the dates December 24, 1873, and January 11, 1574.

DESCRIPTION OF OBSERVING-STATIONS AND OF INSTRUMENTAL OUTFIT.

The station at Washington is the site of the transit-circle, 77.8 feet, or $0^{6} .066$, west of the center of the dome of the Observatory. This instrument is in latitude $+38^{\circ} 53^{\prime} 38^{\prime \prime} .8$, and in longitade $5^{\mathrm{h}} 08^{\mathrm{m}} 12^{\mathrm{s}} .16$ west of Greenwich, as determiued, by means of transatlantic cables, in 1866, 1870 , and 1872. A description of this transit-circle, made by Pistor and Martins, of Berlin, is contained in the Washington Observations for 1865 ; a briefer account of it is found in the introduction to the Washington Observations for 1873 (p. xviii and following). It suffices here to state that the telescope has a clear aperture of $8 \frac{1}{2}$ inches, and a focal longth of 145 inches nearly; the magnifying power habitually used is 186 diameters. Of subsidiary apparatus connected with it, there are a pair of collimators mounted in the meridian of the instrument and placed within the observingroom. The position of the axis is reversed at the beginning of each calendar year, and the line of collimation is determined at suitable intervals. During 1873, the clamp-end was east; during 1874, it was west; a reversal therefore took place while the longitude work was in progress, a circum-
stance which could only be farorable to the accuracy of the result. The standard sidereal clock, made by Kessels, of Altona, is in electric connection with a barrel-chronograph, the speed of which is regulated by a Hipp vibrating spring. The beats of the clock are registered in consequence of the pendulum making contact throngh a globule of mercury. The chronograph works with one pen, recording antomatic and arbitrary signals, and revolves once each minute. The electro-mag; netic apparatus used for sending and receiving longitude-signals is entirely automatic. (See description in the Washington Observations for 1867, Appendix 1.)

At Key West, Fla., the Coast Survey established a temporary observing-station in front of the United States naval depot. It is marked by a brick pier, 24 feet north and 6 feet west of the center of the soldiers' monument in Clinton Place. The pier was left standing; it is capped with a flagstone baving a cross-cut marking its center. This site is also 471.50 feet south and 295.04 feet east of Tift's Observatory, or lookout, one of the trigonometrical stations of the Survey, hence position of astronomical station, in latitude $24^{\circ} 33^{\prime} 26^{\prime \prime} . \overline{5}$ and in approximate lovgitude $5^{\mathrm{L}} 27^{\mathrm{m}} 13^{\mathrm{g}} .84$ west of Green wich.

The transit-instrument was one of the pattern known as meridian telescope (No. 13 of the Survey); it has a clear aperture of $1 \frac{3}{4}$ incbes, and a focal length of 26 inches. The maker, Mr. W. Wiirdemann, states that, with the diagonal eye-piece, the magnifying power is about 70 diameters. The eye-piece has no parallactic motion, in cousequence of which only the three iuner tallies of the glass diaphragm were used at Key West. The horizontality of the axis was ascertained by means of a striding.level; the pivot inequality is very small. In connection with the instrument, there was used a Hipp fillet-chronograph, Coast Survey No. 5, using one peu, and two break-circuit sidereal chronometers, Frodsham No. 3477. as standard chronometer, and Parkinson \& Frodsham No. 2795, as an auxiliary instrument. No. 3477 beats half-seconds and breaks every second; No. 2795 beats four tenths of a second and breaks every even second. The observer remarks that the instrument did not prove quite as steady as expected; it is ascribed to the immediate proximity of the sea, and to its small (a few feet) eleration above its level.

RELATIVE PERSONAL EQUATIONS.

The observations for personal equation are meager, and not of a very satisfactory character. The preparations which were then in progress for obserring the transit of Venus were interfering, to a considerable extent, with a more precise determination of the personal equations between the several observers. The observers are indicated by the initial letters of their names.

The following three equations were taken from the volume of the Washington Observations for $1873, p$. lii of introduction. Since they refer to clock-correction, the sigus of the constants have been changed, in order to refer them directly to clock-time, which is the thing actually observed or noted:

$$
\begin{array}{ll}
\text { July } 30,1873, & 0=+0^{5} .18+\mathrm{H}-\mathrm{F} \\
\text { Sept. } 30,1873, & 0=-0^{8} .06+\mathrm{E}-\mathrm{F} \\
\text { Nor. } 5,1873, & 0=+0^{0} .16+\mathrm{H}-\mathrm{E}
\end{array}
$$

The following equation was derived from transit-observations at the United States Naval Observatory, each observer using his own instrument.* A correction for small difference of meridians was applied, and the personal equation refers, as above, to clock-time:

$$
\text { April 27, 29, May 3, 11, 1874, } 0=-0^{\mathrm{s}} .11+\mathbf{E}-\mathbf{S}
$$

Observations made by H about this time led to no satisfactory results.
The following two equations are the results of comparisons made with a portable personalequation apparatus \dagger at the Coast Survey Office:

$$
\begin{array}{ll}
\text { May 20, } 1874 \ldots & 0=+0^{s} .07+F-S \\
\text { May 20,21, 1874 } & 0=-0^{\mathrm{B}} .01+E-S
\end{array}
$$

* This method has two drawbacks: first, its excessive labor, both of observing and cemputing; secondly, its indirectness, by necessarily including or mixing up with the quantity songht a number of so-called instromental coustants.
\dagger Observations made April 8, 9, 10, 1874, with an inferior apparatas, are not intruduced.

Now, referring for convenience all observations to the Key West observer, as standard observer, we put $\mathrm{S}=0$, and form the following normal equations:

$$
\begin{gathered}
0=+0.34+2 \mathrm{H}-1 \mathrm{~F}-1 \mathrm{E} \\
0=-0.05-1 \mathrm{H}+3 \mathrm{~F}-1 \mathrm{E} \\
0=-0.34-1 \mathrm{~B}-1 \mathrm{~F}+4 \mathrm{E} \\
\text { Whence }\left\{\begin{array}{l}
\mathrm{H}=-0^{\mathrm{s}} .164 \\
\mathrm{~F}=-0^{\mathrm{s}} .025 \quad \text { and }\left\{\begin{array}{l}
\mathrm{S}=\mathrm{H}+0^{\mathrm{b}} .164 \pm 0^{\mathrm{s}} .040 \\
\mathrm{~S}=\mathrm{F}+0^{\mathrm{s}} .025 \\
\mathrm{E}-+0^{\mathrm{s}} .038
\end{array} \quad 0^{\mathrm{s} .035}\right. \\
\mathrm{S}=\mathrm{E}-0^{\mathrm{s} .038} \quad 0^{\mathrm{s} .030}
\end{array}\right.
\end{gathered}
$$

which corrections have been applied directly to the indicated clock-times of the Washington observers,* as seon further on. The above probable errors are mere approximations.

METHOD OF REDUCTION OF OBSERVATIONS FOR LOCAL TIME.
Referring, in general, for notation and method of reduction of transits to Coast Survey Reports for 1866,1868 , and $1872, t$ it suffices to state that, for the observations with the Washington transit-circle, the corrections to the observed clock-time for level, collimation, and personal equation were applied at once. Conditional equations and normal equations were then formed for the determination of the clock-rate, the azimuthal deviation, and the final clock-correction. Weights were introdnced, depending on the number of wires observed, and upon the star's declination.

EQUATORIAL INTERVALS OF STANDARD SET OF WIRES OF THE TRANSLT-CLRCLE.

The following values are taken from Table II, on page xxix of the Washington Observations for 1873 ; the intervals refer to clamp east and to the nive wires habitnally used.

Wires.	Equatorial intervals.	
I or B,	$\begin{array}{r} 8.255 \\ +12.255 \end{array}$	s.
H1 or B_{2}	+ 9.708	
III or B_{3}	+ 8.183	
IV or C_{2}	+2.049	$\mathrm{C}_{1}+4.005$
V or C_{3}	- . 004	
VI or C_{4}	- 2.058	
VII or D_{1}	- 8.181	$\mathrm{C}_{5}-4.102$
VIII or D_{2}	- 9.685	
IX or D_{2}	- 12.963	

The pionts of the instruments are sensibly round and equal in diameter (p. zxxiii, Ols. of 1873) ; the value of one division of the hanging level equals $0^{5} .058$ (p. xxxviii). The collimation. correction includes the term $\pm 00^{5} .021 \cos \varphi \sec \delta$, representing the effect of the diurnal aberration. The level-constants b and the collimation-constants c for the dates in 1873 are taken from page lxxxiv, Obs. of 1873, and from a MS. communication for dates in 1874. They are as follows:

1873.	b.	c
Dec. 94	+.74	-.13
Dec. 26	+.74	-.18
Dec. 30	+.74	$\ldots .12$
Dec. 31	+.74	-.10
1874.	Cirole reversed.	
Jan.	2	+1.10
Jan. 1	+1.08	+.00
Jan. 11	+.88	+.05

[^0]The weights to broken transits are computed from formulæ given in Coast Survey Report for 1872, Appendix No. 12. They are:

Number of wires observed.	Weight for tran- sit-circle.	Weight for me. ridian telescope. (in umber of lines* observed.	
$\mathbf{1}$.45	.41	1
2	.65	.61	2
3	.77	.73	3
$\mathbf{4}$.83	.80	4
5	.89	.86	5
6	.93	.91	6
7	.96	.95	7
8	.98	.98	8
9	1.00	1.00	9

To determine the clock-correction $\triangle T_{0}$ for an assumed middle epoch T_{0}, the azimuthal deviation, and the clock-rate, we obtain, from the general expression $\alpha=\mathbf{T}+\Delta t+r\left(\alpha-\mathbf{T}_{0}\right)+a \mathbf{A}+b \mathbf{B}$ $+c \mathrm{C}$, by putting $t=\mathrm{T}+b \mathrm{~B}+c \mathrm{C}$ and $\triangle \mathrm{T}_{0}=\triangle \mathrm{T}+\delta \mathrm{T}$, where $\delta \mathrm{T}$ is a correction to an approximate value $\triangle T$, the form of the conditional equations:

$$
\delta \mathrm{T}+a \mathrm{~A}+r\left(\alpha-\mathrm{T}_{0}\right)=\alpha-t-\Delta \mathrm{T}
$$

Besides the weights introduced from number of wires observed, each of these expressions is specially weighted, depending on the declination of the star. These latter weights, p, are taken from the table given in Appendix No. 12, Coast Survey Report of 1872 (p. 223); they are deduced from the expression of the probable errors of observation -

$$
\varepsilon=\sqrt{(0.063)^{2}+(0.036)^{2} \tan ^{2} \delta} \text { and } \varepsilon=\sqrt{(0.080)^{2}+(0.063)^{2} \tan ^{2} \delta}
$$

for large and small transit-instruments, respectively. Normal equations are then formed, from which result the values of $\delta \mathrm{T}, a$, and r.

In the case of the Key West observations, they are reduced by the method explained in the Report of 1872 (p. 225); the stars observed with clamp W are treated by themselves, and furnish two normal equations determining $\delta \mathrm{T}$ aud a_{j}; similarly the stars observed with clamp E give two normal equations determining $\delta \mathrm{T}$ and a_{11}; now for the same middle epoch T_{0}, the two values found for $\delta \mathrm{T}$ must be identical; if not, small changes in assumed values of r and c must be introduced until they become identical. Each night's work, therefore, furnishes two sets of normal equations. The conditional equations were weighted as before, but, to save space, are not given here. The correction for diurnal aberration is introduced by itself. The equatorial intervals of the lines of meridian-telescope No. 13 are as follows: For clamp west

Lines.	Equatorial intervals.
	8.
\mathbf{C}_{1}	+18.79
\mathbf{C}_{2}	14.46
\mathbf{C}_{3}	10.51
\mathbf{D}_{1}	4.36
\mathbf{D}_{2}	+0.08
\mathbf{D}_{3}	-4.23
\mathbf{E}_{1}	10.59
\mathbf{E}_{2}	14.67
\mathbf{E}_{3}	-18.77

The value of one divinion of the striding-level B equals $1^{\prime \prime} .01$ as determined by means of a level-trier at the Coast Survey Office in 1879. The pivot inequality has been ascertained from three sets of observations taken August 29, 1873, at Colorado Springs, Colo., and March 21, 1874, at Atlanta, Ga., which give for clamp west

$$
p=+0^{8} .006 \pm 0^{\mathrm{s}} .002
$$

The effect of this is included in the level-correction.

[^1]The following table contains the adopted mean places in right ascension for 1873 or 1874 of the stars observed at both places. They are those taken from the American Ephemeris, with corrections from Table C, p. lxxxr, Washington Observations of 1873. The correction of : Cassiopere is from the catalogue of the Astronomiscie Gesellschaft, and of 22 Camelopardalis from the same catalogue combined with the two Greenwich seven-year catalogues.

Adopted mean places in right ascension of stars observed at Washington and hey West.

PROBABLE ERROR OF CLOCK•CORRECTIONS.

The probable error of a resulting elock-correction from transits of a single star over nine wires, and referred to the equator, is found by

$$
\varepsilon=0.675 \sqrt{\frac{\Sigma(\Delta p)^{2}}{[m]-\lfloor u]}}
$$

and of a resulting clock-correction from a number of stars in a set $\varepsilon_{0}=\varepsilon \sqrt{\bar{q}}$, where q is found by means of the usual weight-equations. $\dagger m$ equals the number of stars in a set; $[m]$, the number of stars in all sets; and μ the number of unknown quantities in a set of normal equations, and [$\mu]$ their sum total. For the Washington observations we have-

$$
\begin{aligned}
2(4 p)^{2} & =.1054 \\
{[m] } & =57 \\
{[\mu] } & =20
\end{aligned}
$$

hence,

$$
\varepsilon= \pm 0^{\mathrm{s}} .036
$$

For the Key West observations, we have-

$$
\begin{aligned}
\Sigma(\Delta p)^{2} & =.4344 \\
{[m] } & =143 \\
{[\mu] } & =36 \\
\varepsilon & = \pm 0^{5} .043^{*}
\end{aligned}
$$

bence,
The probable errors of the resulting clock aud chronometer corrections on each night are given further on.

WASHINGTON, UNITED STATES NAVAL OBSERVATORY.
Reduction of transits of stars for clock-correction.
December 24, 1873.-E. Frisby, observer.-Transit-airele, clamp east.

Star.	Clock time over mern of wires.	Red. to m. of wires.	Corr. for p . eq.	Level corr. $b \mathbf{B}$	Coll. corr. c C	Corr. for rato. T	Δ zim. corr. \boldsymbol{a} A	Seconds of obs'd trans	Seoonds of app't R. A.	Clock corr. $\Delta \mathrm{T}_{0}$	$\begin{gathered} \text { Diff. } \\ \Delta \end{gathered}$	Equat'1 diti. $\boldsymbol{p} \boldsymbol{\Delta}$
	h.m. 8.	ε.	8.	8.	8.	8.	-	8.	8.	8.	8.	8.
a Arietis	15956.83	. 00	+ . 02	+ . 77	. 14	. 00	. 07	57.41	64.14	+6.73	-. 05	. 05
ξ^{\prime} Ceti	20612.11		+ . 02	+ . 64	- . 13	- . 01	- . 12	12.51	19.21	+6.70	- . 02	. 02
- Cassiopem.	1834.25	. 01	+ . 02	+1.66	- . 33	-. 03	+. 28	35.8	42.4			+ . 05
5 Ursac Minoris, S.	2742.36			-1.32	+ . 55	$-.05$	-. 89	40.6	47.2			+. 02
$\gamma \mathrm{Ceti}$.	23639.47		+ . 02	+ .60	- . 13	- . 06	- . 14	39.76	46.43	$+6.67$	+ . 01	$+. .01$

December 26, 1873.-J. R. Eastman, observer.-Transit-circle, clamp eabt.

γ Tauri	41231.50		. 04	+ . 70	. 2		. 04	- . 12	31.96	37.81	+5.85	-. 03	. 03
- Tauri	2109.73		-. 04	+ .73	- . 13		.03	$-.10$	10.22	16.00	+ 5.78	+.04	$+.04$
a Tauri	2835.69		04	+ . 71	. 13		. 02	-. 12	36.13	41.92	+ 5.79	$+.03$	+ . 03
β Orionis	50823.70		. 04	+ . 51	. 12		.01	- . 22	23.82	\%9.62	+5.80	$+.02$	+ . 02
β Tauri	1813.80		. 04	+ . 83	- . 14		. 01	- . 06	14.38	20.21	+5.83	-. 01	. 01
5 Orionis	25 28.70		- . 04	+ . 58	-. 12		. 02	- . 18	28.92	34. 80	+5.88	-. .06	-. 06
- Orionis	2943.80		. 04	+. 57	. 12		. 02	- . ra	44.00	49. 83	+5.83	-. 01	-. 01
a Orionis.........	$\begin{array}{r}4815.58 \\ \hline 1159\end{array}$			+ . 64	-. 12		. 04	$-.15$	15.87	21. 62	+5.75	$+.07$	$\pm .07$
¢ Uram Minoris, S	61139.75	+ 63.64		- 7.25	+ 2.03		. 06	- 3.98	34.1	39.9			. 00

*In the determination of the telegraphic difference of longitude between New Orleans and Galveston two other Coast Survey observers gave $\varepsilon= \pm 0^{0.054}$ and $\pm 0^{8.055}$, using transit-instruments of 46 inches focal length.

$$
\begin{aligned}
+[a a] q+[a b] q_{1}+[a c] q_{4}+\cdots & =+1 \\
{[a b]+[b b]+[b c] } & =0 \\
{[a c]+[b c]+[c c] } & =0
\end{aligned}
$$

Reduction of transits of stars for clock-correction-Continned.

December 30, 1873.-J. R. Eastman, observer.-Transit-circle, clamp east.

Star.	Clock-time orer mean of wires.	Red. to m. of wires.	Corr. for p. 6q.	Level corr. \& B	Coll. conr. $c \mathrm{C}$		Axim, corr. a A	Seconds of obsil trans.	Seconts of app't I. A.	Clock corr. $\Delta \mathrm{T}_{0}$	$\begin{gathered} \text { Litt. } \\ \Delta \end{gathered}$	Equat'l diff. $p \Delta$
	h.m. 8.	8.		8.	ε.	8.	s.	8.	8.	8.	\&.	8.
11 Orionis	45717.60		4	70	. 12	. 01	. 13	18.02	22.71	+ 4.69	- . 06	. 06
f Orionis	50824.93		. 04	$+.51$. 12	. 01	. 24	25.05	29.63	+ 4.58	+ . 05	$+.05$
a Orionis	4816.80		- . 04	+ .64	- . 12	. 00	- . 17	17.11	21.65	+4. 54	+ .09	+ . 09
¢ Urem Mineris, s .	61245.00	+ . 04		- 7.25	+2.03	. 00	- 4.3	35.5	39.8			. 00
μ Gominorum	1515.73		. 04	+ 77	- . 13	. 00	$-.10$	16. 23	20. 14	+ 4.71	$-.08$. 08
γ Geminorum	3021.59		. 04	$+71$	- - 13	. 00	- . 13	21.99	26.64	+ 4.65	- . 02	-. 02
51 Cephei	4051.20	. 04		110.21	- 2.49	00	+ 4.91	63.8	67.2			+ . 01
- Canis Majoris	C 5337.01		04	+ . 32	- . 13	. 01	- . 33	$3 \mathrm{3f}$.	41.44	+ 4.62	+. 01	$+.01$
¢ Canis Majoris	70312.59		. 04	$+.35$	- . 3	.	-. 32	12.44	17.01	+ 4.57	+ 060	. 06
S Geminorum	1231.34		- . 04	+ . 77	- . 13		$-.10$	31.83	36. 50	+ 4.67	-. 04	-. 04

Decemmer 31, 1-73.-J. R. Eastman, observer.-Transiteirele, clamp tast.

e Pisciam	05618.59		04	+ . ${ }^{3}$	10	$+.02$	- . 23	18.87	23. 72	+4.85	- . 08		. 08
a Urese Minoris	11158.10	. 09		+20.18	- 4.22	+ .02	+14.08	22.1	26.7				00
${ }^{\prime}$ Ceti	1738.40		04	+ . 51	- . 10	$1+.01$	- . 33	3 H 45	43.21	$+4.76$	+. 01		+ . 01
η Pisciamm	2438.93		. 04	+ . 70	. 10	+ . 01	- . 19	39.31	4408	+ 4.77	. 00		0
β Arietis	4735.33		04	+ . 75	- 11	. 00	-. 35	35. 78	40.53	+ 4.77	. 00		. 00
a Arielis	15958.84		04	. 77	. 11	. 00	- . 13	59.33	64.08	+ 4.75	$1+.02$		+.02
ξ^{\prime} Ceti	20614.5		- . 04	+ . 64	-. 10	00	-. 23	14. 47	19.16	+ 469	+ .08		+.08
11 Orionis	45717.58		04	+ . 50	. 10	. 06	-. 18	17.90	22.71	+ 4.81	-.04		. 0
a Aurigre	50718.10		. 04	+ 1.06	-. 14 \|	-. 07	+ .08	18.89	23.76	+ 4.77	. 44		. 00
O	50835.07	- 10. 15	. 04	+	. 10	-	-. 32	24.90	99.64	+4.74	+ . 03		

Januaky 9, 1874.-W. Harkness, obserter.-Transit-circle, clamp west.

γ Geminoram	63019.61		+. . 16	$+1.06$. 00	+	. 03	+ . 34	21. 50	26.73	$1+5.53$	+ .01		+ 01
a Canis Majoris	39.20 .34		+ . 16	+ .65	. 00		. 02	$1+.73$	30.90	36. 43	+5.53	+ .01		- . 01
51 Cephei	4143.00	42. 48		+15. 17	00	+	. 02	-13 20	025	08.0				00
δ Geminorum	71290.25	0.24	+ . 16	+ 1.14	00	-	. 01	+ . 26	31.04	36.65	+5.61	- . 07		. 07
\mathbf{a}^{2} Geminorum	2627.32	00	$+.16$	+ 1.29	. 00	-	. 03	+ . 12	28.86	34. 44	+ 5.58	- . 04		-.04
a Canis Minoris	3235.90		1.36	+ . 02	. 00	-	. 03	+ +.47	37.51	43.05	+ 5.54	. 00		. 00
β Geminorum	3730.18		+. 16	+ 1.23	. 00			$+.18$	31.69	37. 15	+ 5.46	+ . 08		. 07

Janvairy 10, 1874.-W. Harkness, observer.-Transit-circle, clamp west.

a Orionl	54814.71		$1+.16$.93	+ . 02	. 04	$+.33$	16. 11	21.71	+5.60	- . 04	. 04
22 Camelopardalis	60452.40	- . 01	+ 16	+ 2.64	$+.06$. 02	. 91	54.32	59.94	+562	$-.06$	- . 02
d Urse Minuris, 5 .	1147.28	+ 49.55		-10.59	-. 34	-. 01	+8.72	34.6	39.9			. 00
μ Geminorum	1594.90	- 10.88	$+.16$	+ 1.12	$+.02$. 01	+ . 19	15.50	21.03	+5.53	$+.03$	$+$
γ Gemingrim	3019.74		. 16	+1.04	+.02	. 00	+ .25	21. 21	26.74	+ 5. 3	+. 03	+ .08
a Canis Majoris	39 29.60		16	. 64	02	$+.01$	+ . 54	30.97	36.4	+5.47	+ . 09	+ . 09
- Canie Majoris	65334.53		16	47	. 02	+.02	+ . 67	35.87	41. 53	$+5.66$. 10	10
δ Camia Majoris	70310.12		16	+ . 51	+ . 02	$+.03$	+ + 64	11.48	17.11	$+5.63$. 07	-. 07
¢ Geminoram	12929.61		. 16	+ 1.12	$+.02$	+ . 04	+ . 20	31.15	36. 66	+ 5.51	$\div .05$	+ . 05

Janvary 11, 1874.-W. Harkners, observer.-Transit-circle. clamp uest.

H. Ex. $81-19$

Conditional equations and normal equations to preceding reduction.
Dec. 24, $\left.1873 \quad T_{0}=2^{12} \quad\right\lrcorner T=+6^{s} .60 \quad r=-0^{\text {b }} .100$

$.09 \delta T+.296 a=+.06$ and $p=$.07	
$1.00+.515$	-.02	1.00
$.94-1.120$	+.21	.36
$1.00+3.809$	-.93	.16
$1.00+.591$	-.07	1.00

Dec. $26,1873 \quad T_{0}=5^{12}$

$1.00 \delta T+$	$.415 a-.79 r=+.07$ and $p=. .99$	
1.00	$.361-.64$	+.01
1.00	$.401-.52$	-.01
1.00	$.742+.14$	-.13
1.00	$.206+.30$	+.06
1.00	$.633+.43$	-.02
1.00	$.645+. .50$	-.08
1.00	$.627+.81$	-.14
.99	$13.609+1.20$	+3.93

Dec. 30, $1873 \quad T_{6}=6^{\text {h }}$

$1.005 T+.416 a-1.05 r=+.07$	and $p=.99$	
$1.00+. .442-.86$	-.15	1.00
$1.00+. .527-.20$	-.13	1.00
$.94+12.921+.20$	-4.29	.011
$1.00+.304+. .5$	+.11	.97
$1.00+.397+.51$	+.02	.99
$.94-14.574+.64$	+3.61	.007
$1.00+1.055+.89$	-.22	.92
$1.00+1.011+1.05$	-.26	.94
$1.00+.310+1.21$	+.06	.96

Dec. 31, $1873 \quad T_{n}=2^{\text {h }}$

1.0082		.529a-1.06r	$+.04$	1.00	$+8.466{ }^{\text {a }}$ T	$+3.633 a+5.269$	$=-.292$
. 94	-3	30.282-.75	+13.32	. 002	$+3.633$	$+3.938+1.296$	-1.149
1.00	$+$. 748 - . 71	. 16	1.00	+5.269	$+1.290+25.716$	-. 229
1.00	$+$	$.424-.59$. 01	. 99			
1.00	$+$. 341 - . 21	$+.02$. 98			
1.00	$+$.299 .00	+ . 02	. 97			
1.00	$+$	$.515+.10$. 14	1.00	8.		
1.00	$+$	$.416+2.96$. 03	. 99	$r=-.02$		
1.00	-	. $174+3.12$	$+.18$. 76	$a=-.43$		
. 88	$+$	$.653+2.76$. 2	1.00	$\delta T=+.167$		
			Jan. 9	$T_{0}=7^{\text {b }}$	$\Delta T=+5^{8} .7$		
1.008		. $397 a-.50 r$	$+.20$		$+5.531 .2$	$+2.264 a+.817 r$	$+.992$
1.00	$+$. $859-.34$	+ .58	. 99	+2.264	$+2.626+.062$	$+1.871$
. 88		13.644-.28	-11.80	. 007	+.817	$+.062+1.215$	-. 162
. 91	$+$	$.282+.19$	$+.15$. 96			
. 96	$+$	$.132+.42$. 03	.89	$r=-.0$		
1.09	$+$.552 + . 54	+ .28	1.00	a $=+.85$		
1.00	$+$. $208+.63$. 10	. 93	$\cdots T=-.1$		

Jan. 10, 1874			$T_{0}=6^{4} 30^{\mathrm{m}}$	$\Delta T=+5^{6} .70$	
1.00st+ . $2727-.70 r=+.19$ and $p=1.00$				$+6.825 \delta T+3.961 a+.715 r=+1.612$	
. 94	$-1.353-.39$	$-.95$. 30	$+3.901+5.581+.945$	+3.0.7 7
. 91	$+12.509-26$	$+7.55$. 011	$+.715+.945+1.517$	+ . 583
. 88	+ . $268-.22$	+. 01	. 97		
1.00	+ .397 .00	+. 08	. 99		
1.00	+ . $859+.16$	$+.32$. 99	${ }_{6}$	
1.00	$+1.055+.39$	$+.65$. 92	$r=+.054$	
1.00	$+1.011+.55$	$+.60$. 94	$a=+.63 \overline{3}$	
1.00	$+.310+.71$	$+.05$. 96	$\delta T=-.138$	
		Jan. 11, 1874	$T_{0} 6^{\mathrm{h}} 30^{\mathrm{m}}$	$\Delta T=+6.20$	
$1.00 \% T$	+ 1.155a-.92r	$=+.22$ and p		+5.790sT+3.501a-.906r	$r=-.159$
1.00	+ . $527-.70$	-. 06	1.00	$+3.501+4.343-1.058$	+.624
. 94	$+12.921-.27$	$+3.79$. 011	$-.906-1.058+1.797$	+.299
1.00	$+.304-.25$	$-.10$. 97	s.	
1.00	+ .397 .00	$-.09$. 99	$r=-.058$	
1.00	$+.859+.16$	$+.01$. 99	$a=+.310$	
1.00	$+.310+.71$	-. 16	. 96	$\delta T=-.224$	

Synopsis of results for correction and rate of clock.

The above probable error to the clock-correction does not include the uncertainty arising from variation in personal equation.

Apparently, the rate of the Kessels clock nudergoes very rapid changes, especially noticeable January 9 and January 10, when the daily rate was almost zero, yet the hourly rate at the time of observation was large and of opposite sign on the two nights. Whether all of this is real or attributable in part also to diurnal changes in the condition of the instrument, especially in collimation at a time when the temperature changes rapidly, or to a diarnal variation in the observer's personal equation, cannot be decided from the present observations. The subject has received attention at the United States Naval Observatory.*

[^2]KEY WEST, COAST SURVEY ASTRONOMICAL STATION.
Reduction of transits of stars for chronometer-correction.
Observer, Edwin Smith. Instrument, merldian telescope, Coast Survey No. 13.
December 24, 1873. $r=-0^{5} .20 . \quad e=+^{28} .16 \mathrm{~W} . \mathrm{T}_{0}=3^{\mathrm{n}} 38^{\mathrm{m}}$ chronometer. $\Delta T=-1^{\mathrm{h}} 00^{\mathrm{m}} 22^{\mathrm{s}}$.

Star.	Chron time ove! mean of lines.	Red. to mean of lines.	Rato corr'n.	Level corr'n. b 13	Coll'n. corr'n. $c \mathrm{O}$	Dinr'l. aberr'n.	Azim. corr'n. a A	Seconds of obs'd tranbit.	Seconds of apy't R. A. α	Seconds of ebron. corr'n. ΔT.	Diff:		uat' ff. Δ
Clamp bast.	h.m. \quad s.	8.	8.	8.	s.	8.	8.	8.	8.	8.	8.		8.
η Pirciam	22505.86	$+0.58$	+0.24	$+0.06$	-0.16	-0.02	$+0.01$	06.57	44.15	220 42	$+004$	$+$	0.04
- Piscian	3006.66		$+0.20$. 03	. 16	. 02	$+.02$	06.67	44. 21	22.46	+ . 03	$+$. 08
50 Cassiopere	5305.47		+0.15	. 18	. 51	. 06	. 14	04. 73	42.41	29.32	. 06	-	. 01
a Arietis	30026.59		$+0.13$. 10	.17	. 02	. 00	26. 43	04.14	22 24	. 09	-	. 08
ξ^{\prime} Ceti	16.41 .78		+ 0.07	. 10	. 16	. 02	+ .02	41.59	19. 22	22. 37	. 01	-	. 01
a Cassioper	19 05. 47		+ 0.06	. 16	. 41	. 05	. 10	04. 21	42.35	22.46	+ .08	+	. 02
ξ^{2} Ceti	2150.20		$+0.05$	$\bigcirc 10$	-. 16	- . 022	+	49.99	27.58	2241	+ .03	$+$. 03
CLAMP WEST.													
a Ceti	5604.16		-0.06	. 14	$+.10$. 02	+ .07	04.17	41. 78	22.39	$+.01$	$+$. 01
48 Cephei	40548.81		- 0.09	. 45	+ . 73	. 09	. 71	48.28	25. 77	42.43	$1+.05$	+	. 01
6 Arietis	0302.11		-0.10	. 18	$+.17$. 02	+ . 01	01.99	39.73	22.26	. 12	-	. 11
a Persei	15 42.98		-0.12	. 2×1	+ . 25	. 03	- . 13	42.67	20.27	22.40	+ 102	$+$. 01
$\boldsymbol{r}^{\mathbf{1}}$ Eridaui	52.32 .18		-0.25	- .1.1	$+.16$	$-.02$	$+.13$	32.05	09.63	22.42	$+.04$	+	. 04

+0.04	-	12	+ 0.55	-	. 02	$+$	27
+0.04	-	. 27	+ 1.57	-	. 05		. 98
$+0.04$	-	. 13	+ 0.50	-	. 02	+	09
$+0.03$	-	. 12	+ 0.55	-	. 02	$+$	13
+0.02	-	. 12	+ 0.58	-	. 02	t	.04
+0.02	-	. 30	+1.76	-	. 03	-	1. 14
$+0.02$	-	. 15	+ 0.60	-	. 02	$+$	0.01
$+0.01$	-	. 12	+ 0.55	-	. 02	$+$	6. 13
0.00	-	. 32	1. 40	\cdots	. 05		0.55
- . 01	-	17	- 0.55	-	. 02	$+$	0.12
-. 02	-	. 14	0. 35	-	. 02	$+$	0.12
--.02	-	. 42	- 2.50	-	. 09	-	1.14
- .013	-	. 16	0. 59	-	. 02	+	0.02
- . 03	-	21	0.85	-	. 03	-	0.21
$-.04$	-	. 24	- 0.82	-	. 03	-	0.18

10.95	43.26
19.61	52.03
11.71	44.13
11.82	44.19
8.16	40.59
10.07	42.31
31.57	04.12
46.88	19.20
09.79	42.29
13.93	46.41
09.29	41.77
53.09	25.67
07.46	39.73
47.90	90.25
25.53	57.77

27.69	+	.18	+	.03
27.58	-	.03	-	.01
27.58	-	.03	-	.03
27.63	+	.02	+	.02
27.57	-	.04	-	.04
27.76	+	.15	+	.03
27.45	-	.16	-	.14
27.68	+	.07	+	.07
27.50	-	0.11	-	.03
27.52	-	.09	-	.09
27.52	-	.09	-	.09
97.42	-	.19	-	.02
27.73	+	.12	+	.11
27.65	+	.04	+	.02
27.76	+	.15	+	.09

December 30, 1873. $r=+0.07 . \quad c=+0.10 \mathrm{~W} . \quad \mathrm{T}_{0}=2^{\mathrm{b}} 35^{\mathrm{m}}$ chrrnometer (2795). $\quad \Delta \mathrm{T}=-1^{\mathrm{s}}$.

Reduction of transits of stars for chronometer-correction-Contiuned.

December 30, 1873. $r=+0^{8.07 .} \quad c=+0^{\mathrm{s}} .10 . \quad \mathrm{T}_{0}=5^{\mathrm{n}} 57^{\mathrm{m}}$ chronometer. $\quad \Delta \mathrm{T}=-1^{\mathrm{s}}$.

Star.	Uhron time orer mean of lines.	Red. to mean of lines.	Rate corr'n.	Level corr'n. b B	Coll'n. corr'n. e C	Diar'l. aberrin.	Axim. corr'n. a A	Seconds of obed transit.	Seconds of app't R. A. a	Seconds of chron. corr'u. ΔT	17 Δ	Equat'l diff. $p \Delta$
clame east.	h.m.	8.	6.	ε.	8.	8.	s.	8.	s.	6.	8.	8.
966 Groombridge	59258.77		. 04	. 12	. 38	. 07	. 24	57. 92	50.62	1.30	. 05	. 00
δ Orionis	52541.20	4. 77	. 04	05	. 10	. 02	+ . 03	36. 25	34.83	1.42	+ . 07	+ .07
a Leporis	2712.67		. 04	. 04	. 10	. 02	$+.06$	12.53	11.23	1.30	. 05	. 05
ε Orionis.	2351.34		. 03	- . 05	- . 10	- .02	+ . 04	51. 18	49.85	1.33	- . 02	. 02
mp west.												
a Orionis	4823.59	0. 55	. 01	.13	$+.10$. 02	. 10	23. 08	21.65	1.43	+ . 03	. 08
22 Camelıpard	60501.91		. 01	. 24	+ .20	. 05	. 69	01. 22	59.84	1. 38	+ . 03	. 01
μ Geaninorum	1522.23		+ . 02	. 13	+ . 11	0:	. 01	22.22	20.94	1.28	- . 07	. 0
γ Geminorum	3027.89		+ . 04	- . 11	$+.10$. 02	$+.05$	27.95	26.63	1.32	. 03	. 03

December 31, 1873. $r=-0$.02. $\quad c=+0^{8.01} \mathrm{~W} . \quad \mathrm{T}_{0}=3^{\mathrm{h}} 35^{\mathrm{mi}}$ chronometer. $\quad \Delta \mathrm{T}=-1^{\mathrm{h}} 00^{\mathrm{m}} 27^{\mathrm{s}}$,

Drcember 31, 1873. $\quad r=-0.02 . c=+0^{0.01} W . T_{0}=7^{\mathrm{L}} 05^{\mathrm{m}}$ chronometer. $\quad \Delta T=-1^{\mathrm{in}} 00^{\mathrm{ma}} 28^{\mathrm{s}}$.

Reduction of transits of stars for chronometer correction-Continned.

Jandary 9, 1874. $\quad r=-0^{*} .01 . \quad c=-0 \mathrm{~s} .01 \mathrm{~W} . \mathrm{T}_{0}=4^{\mathrm{L}} 15^{\mathrm{m}}$ chronometer. $\quad \Delta \mathrm{T}=-1^{\mathrm{h}} 00^{\mathrm{mI}} 33^{\mathrm{s}}$.

Star.	Chron. timu over mean of lines.	Ked, to mean of lines.	Rate corr'u.	Level corr'n. b B	Coll' corr'n. $c \mathrm{O}$	Dinr' aberrin.	Arim. corr'n. \& A	Seconds of obs'd transit.	Seconds of app't R. A. a	Seconds of chron. cort'n. ΔT	Diff. Δ	Equat' diff. $p \Delta$
Clamp east.	h.m. 8 .	8.	8.	8.	8.	8.	s.	8.	s.	8.	E.	8.
β Arietis......	2481281		$+.01$	$+.30$	$+.01$. 02	+ . 02	13. 13	40.44	32.69	. 00	. 00
50 Cassiopea.	5314.99		.01	$+.65$	+ . 03	. 06	- . 70	14. 22	41.59	32.63	. 06	. 01
c Ariotis.....	30036.21		. 01	$+.33$	$+.01$. 02	$+.01$	36. 5.5	03.97	32.58	. 11	. 10
ξ^{1} Ceti	e6 51, 39		. 01	+ .85	+ . 01	. 02	+ .08	51.72	19.07	32.65	. 04	. 04
¢ Cassiopers	1914.76		. 01	+ . 37	$+.03$. 05	. 51	14. 61	41.81	32.80	+ 11	+ .03
γ Ceti	3718.75		$+.01$	$+.12$	$+.01$	- . 02	$+.11$	18.98	46.30	32.68	. 01	. 01
a. Ceti	5614.87		. 00	$+.12$	+ . 01	. 02	$+.11$	14. 49	41.68	32.81	+ 12	$+\quad .12$
48 Cephoi.	40453.31		. 00	+ . 24	$-.05$	- . 09	- 1.01	57.40	24. 84	32.56	. 13	. 01
ζ Arietis.	0 ± 12.21		. 00	$+.10$. 01	. 02	+ .02	12. 30	39. 63	32.67	, 02	. 02
a Persei..	1552.87		. CO	$+.13$. 02	. 03	. 18	52.77	20.08	32.69	00	. 00
δ Persei.	3430,53		. 00	+ +.09	. 01	. 03	. 16	30.42	57.64	32.78	$+.00$	+ .05
η Tauri	4032.46		. 00	+ . 07	. 01	. 02	+ . 01	32. 51	54.94	32. 57	. 19	. 11
5 Persei.	4045.83		. 01	+ .01	. 01	. 02	$-.04$	45.76	13.05	32. 71	$+.02$	+ .02
\boldsymbol{r}^{1} Eridani	5242.19		. 01	. 00	. 01	. 02	$+\quad .18$	42, 33	09.55	32.78	$+.09$	$+\quad .09$
γ Tauri	5131010,44		- . 01	01	. 01	. 02	$+.05$	10. 44	37.70	35.65	. 04	. 04
a Tauri	89 14.57		. 01	. 02	. 01	. 02	$+.04$	14.55	41.91	32.64	. 05	. 05
0 Camolopard.	4206.69		. 01	$-\quad .02$	- . 02	- . 05	- . 46	06. 13	34.34	32. 79	+. . 10	$+.03$

Reduction of transits of stars for chronometer-correction-Continued.
Jandamy 11, 1874. $\quad r=-0.02 . \quad c=+0.05 \mathrm{~W} . \quad \mathrm{T}_{0}=5^{\mathrm{h}} 16^{\mathrm{m}}$ chronometer. $\quad \triangle \mathrm{T}=-1^{\mathrm{h}} 00^{\mathrm{m}} 33^{\mathrm{n}}$.

Normal equations from which azimuthal deviations and chronometer corrections were deduccd.
1873, December 24.

December 20.

$$
\Delta \mathrm{T}=-1^{\mathrm{h}} 00^{\mathrm{m}} 27^{\circ} \quad\left\{\begin{array}{r}
a=+0^{\circ} .484 \\
\delta \mathrm{~T}=-\quad .61 \\
a_{1}=+\quad .32
\end{array}\right.
$$

December 30.

$$
\left\{\begin{array}{c}
6.1 \delta T+.51 a=-3.75 \\
.51+2.43+.25 \\
\text { and } \\
\left\{.20 \mathbf{T}-.26 a_{1}=-4.74\right. \\
-. .26+3.33+.80
\end{array} \quad \triangle \mathbf{T}=-1.0(\mathrm{chr} .2795) \quad\left\{\begin{array}{l}
a=+0 . .236 \\
\delta \mathbf{T}=-.64 \\
a_{1}=+.190
\end{array}\right.\right.
$$

Second set for epoch $5^{\mathrm{h}} 57^{\mathrm{nI}}$ by chronometer.

$$
\begin{aligned}
& \left\{\begin{array}{l}
3.1 \delta T+1.27 a_{1 \prime}=-.97 \\
1.27+1.75-.30
\end{array}\right. \\
& \text { and } \\
& \left\{\begin{array}{c}
3.1 \delta T+.09 a_{m}=-1.05 \\
.09+.01
\end{array}\right. \\
& \Delta \mathbf{T}=-1^{\mathrm{B}} .0 \quad . \quad\left\{\begin{array}{l}
{ }^{\prime}{ }_{1 /}=+\quad .08 \\
\delta^{T}=-\quad 1.35 \\
a_{1 / \prime}=+\quad .34
\end{array}\right.
\end{aligned}
$$

Chronometer comparisons as read off from the fillet.

December 31.

$$
\begin{gathered}
\left\{\begin{array}{c}
6.2 \delta \mathrm{~T}+.52 a=-4.86 \\
.52+2.43 \\
\text { and }
\end{array}\right. \\
\left\{\begin{array}{c}
6.68 \mathrm{~T}+.08 u_{1}=-5.15 \\
.08+3.13
\end{array}\right. \\
\left\{\begin{array}{c}
0.18
\end{array}\right.
\end{gathered}
$$

Secoud set for epoch $7^{\text {h }} 05^{\text {n. }}$.
$4.905 \delta \mathrm{~T}+1.55 a_{11}=+.16$
$1.55+2.50-.28$
1874, Jannary 9.
$\{5.3 \delta \mathbf{T}+.13 u=+1.69$
$.13+2.34+.74$
and
$\left\{\begin{array}{cc}7.2 \delta T-.65 a= & +2.09 \\ -.65+3.04 & +.65\end{array}\right.$
January 10.
) $7.0 \delta \mathrm{~T}-.26 a=-1.92$

$$
-.26+3.33+1.35
$$

and
$\left\{\begin{array}{c}12.0 \delta T+2.73 a_{i}=-2.14 \\ 2.73+3.84+.65\end{array}\right.$
January 14.

$$
\left\{\begin{array}{c}
5.8 \delta T-.16 a=-3.68 \\
-.16+2.78+.55
\end{array}\right.
$$

and

$$
13.1 \delta T+2.89 a=-7.95
$$

$$
2.89+3.56-1.45
$$

Second set.
$\left\{\begin{array}{c}2.2 \delta \mathrm{~T}+.05 a_{1 \prime}=-1.39 \\ .05+.91+.10\end{array}\right.$
$\Delta T=-1^{14} 00^{\circ+1} 27^{\circ} \quad\left\{\begin{array}{l}a=-0^{8 .} 055 \\ \delta \mathrm{~T}=-\quad .78 \\ u_{1}=-.038\end{array}\right.$
$\triangle \mathrm{T}=-1^{11} 40^{\mathrm{n}} 28^{8}$

$$
\left\{\begin{aligned}
a_{u} & =-0 \mathrm{os} .164 \\
\delta \mathrm{~T} & =+.08
\end{aligned}\right.
$$

$$
\Delta T=-1^{\mathrm{h}} 00^{\mathrm{m}} 33^{\mathrm{B}} \quad\left\{\begin{aligned}
a & =+0^{\mathrm{s}} .30 \\
8 \mathrm{~T} & =+.31 \\
a, & =+.281
\end{aligned}\right.
$$

$$
\Delta \mathrm{T}=-1^{\mathrm{n}} 00^{\mathrm{n}_{\mathrm{i}}} 33^{\mathrm{s}} \quad\left\{\begin{array}{l}
a=+0^{\mathrm{m}} .385 \\
\delta \mathrm{~T}=-. .26 \\
a_{i}=+\quad .353
\end{array}\right.
$$

$$
\Delta T=-1^{11} 00^{\mathrm{m}} 33^{s} \quad\left\{\begin{aligned}
& a=+0^{\mathrm{s}} .162 \\
& \delta \mathrm{~T}=- \\
& a_{t}=+ .63 \\
& \hline
\end{aligned}\right.
$$

$$
a_{1}=+.145
$$

Synopsis of results for correction and rate of chronometer.

About December 2 t , the chronometer changed its rate rapidly ; thus the difterence in $\Delta \mathrm{T}$, for the $22 d$ and 24 th is $1 \frac{3}{4}$ seconds and for the 24 th and 26 th $5 \frac{1}{4}$ seconds nearly; after this, the rate was tolerably steady.

TELEGRAPHIC CONNEOTLON AND EXOHANGE OF TIME-SIGNALS.

The line connecting Washington and Key West passed througb Angusta, Ga., Lake City, Fla., and Punta Rasa, Fla., at each of which intermediate placas there were antomatic repeaters. The direct distance between the terminal stations is nearly 1,100 statute miles, and by wire and cable 1,432 miles.* The same circuit was used on every night of exchanges. For transmissions of signals, the Washington clock was made to break the circuit every second for about fire minutes; the Key West chronometer caused the circuit to be broken every second (and anotber chronometer every other second) for about three minutes. There were also trausinitted arbitrary signals from both ends. The following scheme exhibits the times (first and last minute breaks) of exchanges:

H. Ex. 81 - 20

For the determination of the difference of longitude, we have the following simple formulx: Let
$\Delta \lambda=$ difference of longitude, west longitude being reckoned positive;
$t_{\text {, }}$ and $\Delta t_{c}=$ the clock-time and the clock-correction at the eastern station when sending a signal;
t_{w} and $\Delta t_{w}=$ the clock-time and the clock-correction at the western station wheu receiving the signal;
t_{r}^{\prime} and $\Delta t_{w^{\prime}}^{\prime}=$ the clock-time aud the clock-correction at the western station when sending a sigual;
t_{e}^{\prime} and $\Delta t_{e}^{\prime}=$ the clock-time and the clock-correction at the eastern station when receiving the signal ;
$x=$ transmission time of electric inpulse inclusive of all canses of delay:
then, supposiug the clock-times corrected for personal equations, and the transmission time between the two stations the same either way, we have from the eastern signals

$$
\Delta \lambda-x=t_{e}+\Delta t_{e}-\left(t_{w}+\Delta t_{u}\right)=\lambda_{e}
$$

and from the western signals

$$
\Delta \lambda+x=t_{e}^{\prime}+\Delta t_{e}^{\prime}-\left(t_{w}^{\prime}+\Delta t_{w}^{\prime}\right)_{t}=\lambda_{w}
$$

also,

$$
C \lambda=\frac{1}{2}\left(\lambda_{e}+\lambda_{n}\right) \text { and } x=\frac{1}{2}\left(\lambda_{w}-\lambda_{e}\right)
$$

Telegraphic difference of longitude between Washington and Key West, 1873-1874.
i.-From Washington or eastern signals.

* A set of arbitrary signals gave precisely the eame result, wiz: $19^{\mathrm{m}} 01^{2} .40$.

IL.-From Key Wiesion weetern signals.

* From a set of twenty-five arbitrary signala.

To obtain some tolerable approximation for probable error and weight to each of the seven values for difference of longitude, there were combined for each night the probable errors of the clock-correction, of the chronometer-correction, and, of the personal equation, the resulting yalue $\varepsilon=\sqrt{\varepsilon_{1}^{2}+\varepsilon_{\prime \prime}^{2}+\varepsilon_{m}^{2}}$ was taken to answer to $\lambda_{c} \lambda_{w c}$ and $\Delta \lambda$; the weight giveu equal $\frac{1}{\epsilon^{2}}$.

Results for difference of longitude, Washington and Key West, with approximate probable errors and relative weights; also uave and armature time.

This last combination would free the result from any possible residual error in the assigned collimation constants for the transit-circle in the two years, and, by applying the weights given, we shall produce the most probable value for our final difference of longitude, viz:

4λ from 4 nights in 1873	$19^{\mathrm{m}} 01^{\mathrm{s} .404} \pm 0^{\mathrm{s} .019}$
Δ \& from 3 uights in 1874	$19 \quad 01.573 \pm 0.027$

The wave and armature time is given in the column headed x; the separate values are sufficiently accordant, and, comparing the mean with the greater calue found by Professor Hark. ness in the telegraphic determination of the difference of longitude between Washington and Havaua in 1868 (see Appendix I, Washington Astronomical Observations of 1867, printed in 1870), the difference, $0^{\mathrm{f}} .36-0^{s} 20$, is sufficiently accounted for by the fact that in the Havana line there was one more repeater and about 100 statute miles of additional cable in the circuit. The apparently large value of x in each determination is no doubt due to the resistance offered by the submarine cable, and, unless the electrical 1 esistance was the same at Washington and Key West, the simple mean $\frac{1}{2}\left(\lambda_{e}+\lambda_{x p}\right)$ would not represent the true difference of longitude; the records give no information on this point.

RESULTING LONGI'UDE OF KEX WEST AND OF LIGHT-HOUSES IN ITS VICINITY.
According to Coast Survey Report of 1872, p. 234, (printed in
1875), the telegraphic longitude of the dome of the United

States Naval Observatory is .
$5^{\mathrm{h}} 08^{\mathrm{m}} 12^{\mathrm{s} .09} \pm \mathrm{V}^{5} .06 \mathrm{~W}$. of Gr.
Rednction to transit-circle $+0.066$
Difference of longitude, Wasbington and Key West......... $+1901.488 \pm 0.017$
Lungitude of Key West astronomical station.............. $\begin{array}{ccc}5 & 27 & 13.644 \pm 0.062 \\ 810 & 48^{\prime} & 24^{\prime \prime} .66 \pm 00^{\prime \prime} .93\end{array}$
Referring this, by means of triangulation, to Tifi's Observatory or Lookont, the longitude of the latter becomes $81^{\circ} 48^{\prime} 27^{\prime \prime} .86$. In the Coast Survey Report for 1851, pp. 164 and 410, the longitude of this station is given as $81^{\circ} 48^{\prime} 30^{\prime \prime} .73$, showing that this old determination, and consequently also the triangulation up to date, was only in error $2^{\prime \prime} .87$, or 08.19 , as compared with the present result.

Respecting the older determinations, we may, in the first place, compare the results of the moon-culminations observed in 1849, by Assistant J. E. Hilgard, at Sand Key ($0^{\prime \prime} .02$ east of the light), with the telegraphic result for the same, viz: The observer reports in 1851 the result of 18 moon culminations observed in July and August, 1849 , from Professor Pendleton's reduction, and corrected for error of Nautical Almanac place, $5^{\mathrm{h}} 27^{\mathrm{m}} 27^{\mathrm{s}} .1$; Mr. Main deduces, in March, 1857, from 19 moon culminations, the improved result, $5^{\mathrm{h}} 27^{\mathrm{m}} 28^{s .} .7 \pm 1^{. .2}$ (I), (which inclades one case previously rejected). The value resulting from the present investigation is $5^{1 / 2} 27^{\mathrm{mm}} 30^{\mathrm{s}} .08$, indicating
a personal equation of about 08.07 . Secondly, we can compare the chronometric result of 1852 with the telegraphic result. Uncer date of December 10, 1852, Assistant J. E. Hilgard reports the result of his chronometric determination of the longitude of Key West as follows:
Longitude of Professor Gibbes' observatory, at Charleston, S. C...............
From transportation of 10 chronometers between Charleston and Key West and return, in February, March, and April, 1852, the difference of longitude

$$
\begin{array}{r}
5^{1 \mathrm{l}} 199^{\mathrm{m}} 44^{\mathrm{s}} .0 \\
\begin{array}{r}
7 \quad 29.65 \\
\hline 5 \quad 27 \quad 13.65 \\
\hline
\end{array}
\end{array}
$$

Hence, longitnde of Key West, transit-station of 1852
Geodetie difference, Key West transit of 1852 and Sand Key astronomical station
Hence, longitude of Sand Key astronomical station... $\left\{\begin{array}{ccc}5 & 27 & 30.90 \\ 81^{\circ} & 52^{\prime} & 43^{\prime \prime} .5\end{array}\right\}$ II. which is the basis (omitting fraction) of the value given in Coast Survey Report for 1851, 1.164 , and which corresponds to the longitude of Key West light, $81^{\circ} 48^{\prime} 07^{\prime \prime} .13$, showing the excess $9^{\prime \prime} .87$, as stated above.

The preference was given to the chronometric result, for the reasou that it is less liable to be affected with a constant error than results by moonculminations; moreover, it lies between the first-named and another previous determination, which earlier result is as follows: From a chron ometric determination by Prof. J. H. C. Coffin, U. S. N. (now superintendent of the American Ephemeris), the longitude of the Key West light, depending on the meridians of the Morro Castle, Havana, and the Balize, is stated, in a report by the Bureau of Ordnance and Hydrography, Navy Department, in 1843 , to be
$5^{\mathrm{h}} 27^{\mathrm{um}} 14^{\mathrm{s}} .0$ or $81^{\circ} 48^{\prime} 30^{\prime \prime}$ and reducing to

In conclusion, I append the geographical positions of the Ker West light, the Sand Key light, and the Northwest Channel light,* giving the corrected longitudes, viz:

	Latitude.			Longitude.					
Key West light	24°	$32{ }^{\prime}$	$58^{\prime \prime} .09$	81°	48^{\prime}	$04^{\prime \prime} .26$	or $5^{\text {h }}$	$27^{\text {m }}$	12.28
Saud Key light.	24	27	10.00	81	52	40.15	5	27	30.68
Northwest Chanuel light	24	37	04.05	81	53	57.97	5	27	35.86

I remain, sir, yours, most respectfills,

Hon. Carlile P. Patterson,

CHAS. A. SCHUTT,
Assistant, Coast Surcey. Superintendent United Stutes Coast Survey.

[^3]
APPENDIX No. 10 .

REPORT ON MOUNT SAINT ELIAS, MOUNT FAIRWEATHER, AND SOME OF THE ADJACENT MOLNTAINS BY WILLIAM H. DALL, ACTING ASSISTANT IN THE UNITED STATES COAST SURVEY.

I.-HISTORICAL NOTES.

On the 20th of July, 1741 (old style), Bering and his associates made the continental shore of Northwest America, and, in what they estimated as latitude 59015 and longitude 124° 40' west from Ferro, they saw a great mountain, and under it a point, whicb they named after Saint Elias, the patron saint of the day. It is probable tbat they saw about the same time all the other high peaks of the adjacent region, though the fact is not mentioned in the imperfect records existing of this expedition.

On the 3d of May, 1778, Capt. James Cook, in search of a nort heast passage, saw a beautiful peak, which he named Monnt Fairweather, and which he placed in latitude $58^{\circ} 52^{\prime}$ north and longitude 138° west from Greenwich. The next day, he raised a great peak to the northward, and, belifving it to be that seen by Bering, he placed it on his chart as Mount Saiut Elias, in latitude $60^{\circ} 27^{\prime}$ and longitude 141° west.

Considering the great advance in nautical instruments and tables since the days of Cook, these results are extremely creditable. Cook did not attempt to measure the heights of either of these mountains, as far as we can learn from the authorized edition of his voyage.

In 1786, the celebrated La Pérouse saw Saint Elias on the $23 d$ of June, and his astrouomer, d'Agelet, essayed to measure it with sextant angles from the ressel. The height resulting from his observations was 1,890 toises, or about 12,600 feet. As the latitade assigned for the vessel's position, however, was indubitably ten or twelve miles in error, no weight can be assigued to his result. His assumed base-line was hardly less than fifteed miles too short.

Shortly afterward, he saw Mount Fairweather, and another high mountain, which he named Mount Crillon, after the Freuch minister of marine; but it does not appear from his narrative that the height of either was determined by his party. The positions he assigned to them are, nevertheless, quite near to the latest determinations.

In 1787 , Donglas saw Mount Saint Elias, on the 20 of August; and in this year the first Rus. sian explorations of this part of the coast were made by Bechareff and Ismyloff. They are not recorded as passing to the south of Lituya Bay, where they had already been preceded by La Pérouse. About this time, numerous Euglish and American tradivg-vessels were fitted out for commercial operations in this region. Though much incidental geographical information was thus obtaiued, I have discovered nothing of importance relative to the present subject.

On the 19th of June, 1791, Señor Don Alessandro Malespina saw Saint Elias, and attempted from on shipboard to mensure its height. He found it to be 17,851 feet, which in the round unmbers of 17,800 and 17,860 feet has been adopted on many charts, and is nearer the truth than the estimates of any other navigator which have been published. For Fairweather he obtained a height of 14,695 feet, which is also not very far from the truth.

On the $28 t h$ of June, 1794, Vancouver saw Saint Elias, and gives in his voyage the first view of it which was ever published. This was taken from the vicinity of Icy Bay, and bears some resemblance to the mountain, though mach seems in the plate to have been sacrificed to artistic effect. Vancouver placed the peak in latitude $60^{\circ} 22^{\prime} .5$ and longitude $140^{\circ} 39^{\prime}$ west, being rery near the recent determinations in latitude, but too far to the eastward. The same may be said of his position for Mount Fairweather, which be located July 25,1794 , in latitude $58^{\circ} 57^{\prime}$ and longitude 137013^{\prime} west. He appears to hare made no attempt to measure the elevation of either peak.

Sir Edward (now Admiral) Belcher, in 1837, was the next navigator of importance to visit this region, and from his narrative it would seem that he placed special importance on the determination of the position and height of Saint Elias. He failed, however, to get observations of precision from on shore at Point hiou, as he had intended; and that his results were satisfactory we may donbt, as he does not give anc elevation or position for the monntain in his narrative, and even omits it eutirely from his chart. This, notwithstauding bis mention of having obtained sat. isfactory observations. Whatever the results may have been, most unfortunately they do not appear to have been male public under his name, except a view which be gives of the mountain, which is Lardly more satisfactory than that of Vancouver.

Tebenkoff visited this region in 1847, and from his hydrographic notes we learn that be placed the peak in latitude $60^{\circ} 22^{\prime} .6$ and longitude $140^{\circ} 54^{\prime}$ west, with a height of 17,000 feet. He mentions that Vasilieff from his ressel determined the height of Mount Fairweather as 13,946 feet, and placed it in latitude $55^{\circ} 57^{\prime}$ and longitude $137^{\circ} 27^{\prime}$ west.

Since that time the coast bas been anuually visited by whalers and traders; but their observations, if any, have not been made public; and it has been reserved for the Coast Survey, through one of its parties, to make the latest, and, we have reason to beliece, the most precise contribution to our knowledge of the subject.

The United States Coast Survey schooner Yukon, under my charge, with Mr. Marcus Baker as astronomical observer, left Sitka on the 1th of May, 1874. We rated our eight chronometers on the 5th by means of very satisfactory observations of equal a. m. and p. m. altitudes of the sun. On the 131 h , we ubtained forenoon sextant altitudes from a sea position on Mounts Fairweather and Crillon; similar observations in the afternoon and on the following day. On the 15th we entered Lituya Bay, where we remained until the morning of the 19 th . Here an astronomical position and azimuth wete well determined on shore with the sextant, vertical circle, and theodolite, and con nected with a triangulation including Mounts Fairweather and Urillon. Vertical angles for the altitude of these mountains were obtained with the theodolite.

On leaving Lituya Bar, while becalmed in its immediate viciuity, and with our position well fixed by bearings on known points of the shore, additional sextant-altitudes were obtained on Mounts Crillon, Fairweather, and Saint Elias.

On the 20 th , in the vicinity of Dry Bay, with a position well fixed by a large series of observations for time aud latitude, additional observations with the sextant were obtained on Mount Saint Elias.

On the 21 st, we entered Port Mulgrave.
On the $22 d$, a series of observations similar to those mentioned at Lituya were obtained, and completed on the 23d, together with the remainder of the triangulation on Mount Fairweather, and a portion of one on Saint Elias. A tull and carefnl series of double-zenith distances, ou Mounts Saint Elias, Fairweather and several other mountains, was obtained and connected with the astronomical azimutb line.

On the 24th, additional astronomical observations were made-the 25 th being occupied with a reconnaissance survey of the port-and on the 26 th we sailed from Port Mulgrave. On our way out, iutersections on Mounts Cook and Vancouver were made by compass-beariugs, from a position fixed by bearings on the land. At the same time a sketch was obtained of Monnt Saint Elias.

On the 27 th, from a position at sea determined by sextant-observations for time and latitude, we obtained a series of sextant altitudes on Mount Saint Lias; and an azimuth was observed directly between the mountain and the sun with the same instrument.

On the 7th of June we were enabled to sate our chronometers again with good success at Saint Paul, Kadiak.

From the material thus obtained, the results, tabulated with previous measurements, below have been arrived at.

Mount Saint Elias.

Date.	Authority.	Height.	Latitude.	Longitude.
		Feel.	c : "	\bigcirc :
1786	La Perouse	12,672	601500	1401000
1791	Maleapina	17, 851	?	?
1794	Vancoaver	None.	602230	1403940 W .
1847	Rus. Hydr. Ch., 1376	17, 2.54	602100	1410000
1847	Tebenkoff (notes) .	16,938	604236	14054 (10
1849	Tebenkoff, Chart VII	15,434	602130	1405400
	Buch. Canı Inseln	16.755	601730	1405100
1872	Eng. Adm. Cb, 2172	14, 970	6020100	1410000
1874	United States Coast Surver	$19,500 \pm 400$	602045	1410012

Mount Fairweather.

Date.	Authorits.	Height.	Latitude.	Longitude.
		Feet.	- "	\bigcirc
1791	Malespina.	14,589	?	!
1894	Fancouver	None.	585800 N.	1371300 W.
1847	Vaeilieft	13,946	?	?
1847	Tebenk off (Hydr. notes)	14,000	58570 01	137850
1848	Rus. Hydr. Ch., 1396...	14,708	585800	1373200
1849	Tebenkoff, Ch. No. VII	13.864	$55^{5} 5700$	1372700
1855	Eng. Adm. Chart	14, 708	585800	1373200
1874	United States Coast Surver.	$15,500=120$	$55^{4} 5424$	1373059

Other mountains.

U.S.C.S.	Name.	Height.	Ifatitude.	Longitude.
		Neet.	c	\bigcirc
1874	Mount Crillon	$15,900 \pm 500$	5840	$13 \pi 027 \mathrm{~W}$.
1874	Mount Cook, approximate	16,000	6015	14000
1874	Monnt Vaucouver, approximate	13, 100	f0 13. 7	13943
1874	Mount La Póroure, approximate	11,300	58.14	136,58

Mount Cook and Mount Vancouver are two high peaks of the Saint Elias Range, to the songhward and eastward of Mount Saint Elias; and by the autbority of the Superintendent of the United States Coast Survey, as they have been hitherto without distinct appellations, are now named in bonor of those distinguished navigators.

In like manner, to a high peak near the sea at Icy Cape, just south and east of Litnya Bay, is now applied the name of La Perouse. Of this, we were only able approximately to fix the position and height.

GENERAL CONSIDERATIONS.

The olevation beretofore assigned to Mount Saint Elias has varied greatly. When the circumstances under which previous observations have been obtained are considered, this is not surpising. No publication has beeu made of any angles for elevation taken with any instrument but a sextant. These were almost invariably obtained from on shipboard, with no means of estimating the refraction, and with positions often greatly in error, especially in longitule.

Thus, Tebenkoff gives a height of 16,938 feet; but we know that his position at Port Mulgrave was about six miles in error. La Péronse, with a position now known to be teu miles in error in latitude alone, obtained 12,672 feet. Tbe Admiralty chart gives the height of 14,970 , and others vary between 16,700 and 17,800 feet. Since the data by which all these results were obtained are
inaccessible, and in most cases only the result of the original computations was preserved, it is hardly worth while to attempt any further reconciliation of these discrepancies. It is possible, howerer, that part of them may be due to a bitherto unsuspected cause, namely, that of mistaken identity.

Off sbore, Mount Saint Elias is ummistakable. Rising above the fogs, which at some seasons envelop its base, it may be seen when all other land is far below the horizon. But in approaching the coast at Port Mulgrave, it is often lost sight of before its position, relatice to the port, can be recoguized. This was the case on the occasion of our visit. After being a few bours in port, the fog cleared up considerably, and we saw a very high peak in about the direction in which we supposed Saint Elias to bear. My sailing-master identified it as that mountain, as be bad seen it for several weeks on a previous visit. Judge, then, of our surprise when, later, the distant haze disappeared, and the majestic peak of the true Saint Elias became visible. He then declared that during his prerious stay at Port Mulgrave, hazs weather prevailing, he had never seen the real mountain at all, and had ascribed the difference in its appearance from that of Saint Elias, as seen from the sea, to his different point of view.

The error might easily occur, as the second mountain (Mount Cook) seems to be upward of 16,000 feet in height. It is also uearer Port Mulgrave, and its position more easterly than that of Monnt Saint Elias, as is the position giveu by some of the authorities for the great peak, to the eastward of its true position. Some details as to the appearance of Mount Saint Elias and Monnt Fairweatber, and the characteristics of this great uplift, may not be out of place here.

Mount Saint Elias, from the eutrance of Yakutat Bay, as represented in the accompanying sketch, (No. 22), rises from a confused mass of broken wountains behind an elevated table-land.*

This plateau is apparently two or three hundred feet in beight, and, as mentioned bs La Pérouse, in some places the sea breaks against its base, and in others a low and narrow strip of flat beach, formed by streams cutting through the escarpment, intervenes between the cliff and the sea. These flats are greeu, and often covered with spruce and alders. The top of the table-laud appears quite destitute of vegetation, resembling a plowed field, with heaps of bowlders and gravel irregularly distributed upon it. This is probably glacial detritus. The face of the cliff on the northwest shore of the Bay of Yakutat is evidently composed of nearly horizontal stratified rocks. These we supposed to be similar to the borizontal Tertiary strata found at various points near Port Mulgrare, on the opposite side of the bay. Large patches of clean, undisturbed snow lay in various plates on the top of the table-land; but we saw nothing resembling a glacier there.

The surface of the platean rises a little from the edges of the cliffs, and then falls to the axis of a valley parallel with the trend of the monntains, which is interposed between the table-land and the base of the range. In this valley several small glaciers terminate, having their sonrces on the lower part of the monutain-sides. A considerable stream, the waters of which are probably defived from the melting of the glaciers, falls bence into the bay. At the head of the Bay of Yakutat is a small inlet called Disenchantment Bay, where glaciers come down to the sea, and send their floating fragments, laden with earth and stones, out into the sea. But from the mountains which border on the Bay of Yakutat itself no such ice comes down.

To the east of the peak the range is continuous with Saint Elias, and also apparently to the northwest of it, reaching to at least two thirds the beight of the peak itself.

Separated from Elias by a deep trough, in which two large beds of snow and ice lie, one somewhat below the other, and with their axis in a northwesterly direction, some small, rather ronded monntains descend toward the platean.

Toward the bottom of the east-southeast flank of Saint Elias is a great rocky amphitheater, with bigh, ragged sides, open to the south and east. In this is a similar snow-bed. These beds, being destitute of lateral or other moraines, and apparently auable to move, from the peculiarities of the topography, we supposed were not true glaciers, and, iudeed, from our position we could see nothing on the flanks of the peak which was unmistakably a glacier.

The great amphitheater may be the crater of an extinct volcano; bat the fact that bedded strata, withoat the curves usial in beds of igneous rocks, were plaiuly visible in the face of its cliffs, and conformable with those on the adjacent rock-face of Elias, rendered this donbtful. The impression it left on our minds was that it was not a crater.

* On the plate the distances are in nantical miles, and the boariuge sagnotic.

Pre-eminent in grandeur is the southern face of the mountain. With few and but insignificant foot-hills, it rises abraptly from the valley; and, at about five thousand feet above its base, the entire side of the mountain is for med of an immense rock-face, inclined at an angle of 45° to the sea, rising eight or ten thousand feet without a break in its continuity. It terminates somewhat irregularly above, and the upper contours of the peak remind one of the granite peats of the Californian Sierras. The apex is pyramidal, sharp, and clearly cat, leading to the inference that it is precipitous on the invisible northern side.

The whole of the great rock-face is marked by straight, rigid lines of bedding, which are inclined uniformly to the eastward, at an angle of about ten degrees.

There seemed to be but little snow on the upper portions of the mountain, though the lower peaks to the eastward were of a uniform white. We ascribed this to the tonographical features which afford the wind every facility for carrying away any snow almost as rapidly as it falls. At the apex, there was no crater, nor any appearance of one; nor did any sign of smoke or steam appear in the vicinity of the mountain during the whole time it was visible to us.

Mount Fairweather presents somewhat similar characteristics. Like Elias, it is separated from the sea by a plateau, with a valley behind the latter parallel with the shore and the trend of the range. But the upper surface of this table-land is more irregular, and is covered in parts with a dense forest, which creeps up the side of the mountain for four thousand feet, and fades away near the snow-line. The mountain is more extended east and west than Saint Elias, and consists of a small, angular peak, with a long, high shoulder on either hand. The sides are seamed with rifts and valleys of denudation in whose lower parts at least fur large glaciers were evident. The angular eliffforming structure so marked in the Yosemite region of California, seemed especially to characterize this and its adjacent mountaius. Their upper portions were abundantly supplied with snow; but here, again, was nothing which, by any stretch of the imagination, could be taken for a crater.

By a reference to the map, it will be seen that the portion of the range in which these great elevations occur is at the apex, so to speak, of a deep curve in the shore of the continent, forming what has been termed by the Coast Survey the Gulf of Alaska. The carve of the range is sharper than that of the coast, as lowlands intervene between the mountains and the shore. The greater pressure occurs in the region of sharper curves in all mountain-building, and here we have, as might naturally be expected, the greatest elevations on the continent in the region of unsurpassed mount-ain-folding.

The extraordinary roughness of the topography is, in a general way, the result of two systems of plication, subsidiary to the greater flexares of the rang as a whole. One, the primary system, is of plications parallel to the axis of the range; and the other, a secondary system, with plications at right angles to that axis. The fissure valleys of the second series are less conspicuous than the more extensive but proportionately shallower folds of the first series. The main direction of the coast-line is coincident with the primary series. The chief features of the local topography are determined by the secondary series. Ouly the strongest of these cross, from the mountains, the inner primary folds, and form bays in the shore-line beyond.

Most of the glaciers for which this region is remarkable take origin in the snows of the higher elevations; are molded in the upper portion of the secondary valleys, and arriving at the first primary valley, are turned aside, and for the rest of their course run parallel with the axis of the mountains and the trend of the shore. A few, invariably the largest, find a path ready hewn for them in the stronger secondary valleys above mentioned, which conducts them across the first primary fold to the sea-shore. None of those on the main coast, betwen Cape Spencer and loint Rion, appear to cross the beach.

When the terminus of the secondary fold is sufficiently pronounced to form a deep bay, then the glacier may reach the water, and its cast-off fragments appear as mimic bergs. In these cases the slope is always mach steeper and sharper than when the furrow is too wide to form a marked indentation of the shore-line.

In front of all glaciers which reach the sea, white discolored water is to be observed, but extensive shoals are not formed, the detritus being too fine to sink before being widely distribated. Where only

$$
\text { H. Ex. } 81-21
$$

the torrents from the island glaciers are discharged, shoals are invariably present. This generallzation is of wide application, and important in its bearings on the question of glaciation in general.

The character of the topography is such that it is inconceivable that a continuous glacier, moving in any direction, could bave ever covered the western slope of these mountains. That it did not, we have abundant proof, which may more properly find a place elsewhere.

We are able to contribute some facts of importance to the knowledge of the material of which this rauge was built, and to the character of its peaks.

Wherever we were able to reach the bed-rock of the range, as at Lituya Bay and Port Mulgrave, we found it to be syenite, often associated with garnets. Here and there, as at Point Fairweather, apparently at points of greatest lateral pressure, were small, low craters, rarely conical, usually partaking more or less of the character of fissures, from which basalt and recent red lavas have been sparingly emitted. These small vents are near the bases of the mountains, and seldom greatly disturbed the horizontal Tertiary beds of sandstc nes and conglomerates which border on the mountain masses of sserite unconformably. The bare lowland which has been formed by subaerial and glacial wear, is often tinged with red by the lavas. The detritus overlies the Tertiary strata, but where the bed-rock of the range comes down to the sea, volcanie material is entirely absent from the talus. At Port Mulgrave, the lower portion of the foot-hills contains beds of limestone, metamorphosed into coarsely crystalline marble, such as was found farther south by the . Coast Survey party of 1867 under Assistant George Davidson, and is not infrequeut in the Sierras. There are also quartzites, much metamorphosed, unde rlying the nearly-horizontal and sparinglyfossiliferous Tertiary beds.

The conclusions, then, to which these facts would seem to lead us are as follows: That these Alps are, like the high Sierra of California, mainly composed of crystalline rocks, and in their topography, their small, pustular, basaltic vents, their associated marbles, quartzites, and later conglomerates, exbibit a close parallel to the Sierras; that parallelism in structure and composition implies parallelism in age and method of formation; and, finally, that the volcanic origin of the high peaks is opposed not only by analogy, bat by the known facts. A glance at the accompanying sketches will lead any one familiar with the types of mountain structure toward the conclusion that these peaks are not of the volcanic type, and, even without confirmatory evidence, would lead to the suspicion that they were composed of crystalline rocks.

I do not doubt that small eruptions have taken place in comparatively recent times from the vents alluded to, which may have led unscientific observers to suppose that the peaks themselves were rolcanic, especially if they examined only the detritus, which in some localities is largely composed of basalt and lava.

With regard to volcanic activity, I find no recorded osservations of any relating to thesomeaks, except Saint Elias, and that only as follows. In a manuscript translation of Tebenkoff's hydrographic notes on this region (most of which, by the by, are incompatible with recent observations), I find this statement: "In 1839, Saint Elias peak began to send forth, occasionally, smoke and ashes from a crater on its northeast side. According to reports collected by Tebenkoff, during the earthquake in Sitka, in 1849, the peak of Saint Elias sent forth flame and ashes."-(Notes on Chart VII.)

Now, no civilized man has yet beheld the northeast side of Mount Saint Elias, and, therefore, if smoke and ashes appeared from that quarter, it could not have been determined whether they came from that mountain, or some lower peak beyond. But as there were at that time no civilized inhabitants at Yakutat, I agree with Grewingk, who had all the material before him, in placing no credence in the statements above quoted. After thorough search, I have been able to find no trust worthy account of any eraption. I was informed by one Russian that he had, on a royage fromSitka, seen smoke and flame issuing from the peak of Saint Elias, and he gave a glowing account of the magnificent spectacle it presented. Another person, a passenger on the same voyage and vessel, afterward told me that indeed he had seen the mountain very plainly, but that the story of an eruption was a complete fiction. It is, therefore, not impossible that Tebenkoff might have been similarly deceived.

Grewingk, discussing the same question, argues that since no trustworthy account exists of an eruption, it becomes unsafe to assert that it has occurred, and suggests that it may be placed in the same category with a volcano reported by Spanish uavigators on Oape Mendocino, which has long
since been proved to bave no existence. He says: "Though Saint Elias stands in the volcanic line of Iliamna, Nunivak, and Saint Mathew's Island, nevertheless we believe its rolcanic nature may justly be doubted, since the absence of a crater or conical form, aud its ragged erest, make it very probable that it has never been penetrated by a volcanic chimues."

* * * "The proximity of the active volcano of Wrangell to Saint Elias renders it improbable that the subterranean fires would seek, so near, an indubitably difficult egress through the giant of American mountains."

The great height of Saint Elias is also opposed to its asserted volcanic nature, and the recent determination of the sedimentary (Crntaceous) structure of Aconcagua and other high peaks of South America, which have always hitierto ranked among volcanoes, is worthy of being noted in the present connection.

We mas, therefore, say, at least, that the presumption is in favor of the non-volcanic character of Saint Elias, and that the burden of proof rests with those who may still be inclined to assert its volcanic origin.

II.-DISCUSSION OF THE DATA.

In the computations accompanying this report are given, first, all the data necessary to the computer, followed by the computations of the positions of the peaks in question; and, lastly, the compatations of the heights, resulting from the vertical angles and doublezenith distances measnred on the several peaks, and their computed distances from the points at which the observations were taken.

Hence, any one, with the data here furnished, can pursue the computations according to the method he may prefer, and have all the material necessary for forming an independent judgment on the value of our results.

The monntains referred to are Mount Crillon, Mount Fairweather ; two peaks of great height in the range to the eastward of Mount Saint Elias, now first named by the United States Coast Survey Mount Cook and Mount Vancourer, respectively, and Mount Saint Elias itself. The means by which the positions of these mountains were obtained are of different values. Mount Crillon was determined by a triangulation from Lituya Bay, connected with a measured base and an astro-nomically-determined azibuth line. The angle at the peak was of course unobserved, and being very small, I regard the results as of only secondary value.

Mount Fairweather was determined by aorizontal angles, referred to an astronomical azimuth from the astronomical stations at Lituya Bay and Port Mulgrave. The angle of intersectiou, though not observed, being not far from a right angle, the included error cannot greatly affect the computation for position, and I believe the result $ヶ$ to be as satisfactory as the method will allow.

The positions of Mounts Cook and Vancouver were determined by horizontal angles, referred to the azimuth line from the astronomical station at Port Mulgrave, and intersected by bearings taken from the vessel when in a well-determined position in the western portion of the Bay of Yakutat. The intersecting angles are moderately large, but the method is much less satisfactory than if both angles had been measared with the theodolite, and I regard the results as approximate only.

The position of Mount Saint Elias was fixed by horizontal angles connected with the azimuth ine at Port Mulgrave, by azimath observations taken directly on the peak from a well-determined sea-position, aud by confirmatory bearings from a very well determined sea-position at Dry Bay. The latter, however, have not beeu used in the computations.

The unobserved angle being nearly 60°, the liability to error is reasonably small.
Our position for the mountain is within a third of a mile of that assigned to it by Captain Cook, and is, in my opinion, sufficiently satisfactory to remove any doubt as to the probability of serious error arising in the results from uncertainty of position.

The vertical angles for elevation are also of different classes.
The first of these comprises sextant-angles. Except under the most favorable circumstances, and especially unless within a comparatively short distance of the object measured, I do not consider these as being of any great value.

The uncertainties of position and refraction are so great as to render the result in most cases off only the most general character. I have, therefore, rejected a large number of these observatious. Those which I have admitted, in most cases, I do not consider of sufficient precision to unite with the results of rertical circle or theodolite observations for the purpose of obtaining a mean.

In one case only-that of Monnt Fairweather, where the elevation was measured from welldetermined positions close to the base of the mountain, and not far from the stations at which the other class of observations were obtained-have I ventured to use them in such a manner.

I have inserted some computations of such observations in separate columns; but, with the exception already noted, rather as a matter of curiosity than as a source of reliable information.

Mount Crillon was measured from five or sis different points with the sextant. I have given the best of these observations, but place no confidence in them. It was also measured from Lituya Bay with the theodolite, and were it not for the ertremely small angle of intersection, which throws some doubt on the position, I should be tolerably well satisfied with the resulting beight. The impression made on our minds from viewing this mountain from a multitude of positions was that it is slightly higher than Mount Fairweather. I think it probable that when better observations are practicable it may be found a few hundred feet lower than our theodolitedetermination.

Mount Fairweather was measured from Litura Bay by theodolite and from Port Mulgrave by vertical-cirele observations of donble-zenith distances; also, from a number of points close to Lituya Bay by sextant-angles.,

The mean of all the Lituya Bay observations is........ 15, 462 feet.
The mean of all observations with sextant is........................... . 15, 443 feet.
The mean of vertical-circle and theodolite observations is............. 15, 388 feet.
The meau of all observations is. $15,423 \pm 120$.
And this result, I am convinced, is not far from the truth.
The altitudes of Mounts Cook and Vancouver were determined by a series of double-zenith distances, observed at the Port Mulgrave astronomical station, and the resulting heights are regarded by me as approximate only, because of the doubt resting on the precision of the compassbearings, by which, partly, their positions were determined.

Mount Saint Elias was measured by a particularly large series of double-zenith distances from Port Mulgrave, and also by a large number of sextant observations from various localities. Part of the latter have been computed for the sake of showitig that all the observations point to a greater height than has been previously claimed for the monntain. I give them no weight in the result, as they were all taken at great distances from the peak, and sulject to various disturbing infuences and uncertainty in most of the positions.

It bas occurred to me, in view of the unanimity in the Lituya Bay observations, that we might apply the difference between the height of Mount Fairweatber, as there obtained, and that obtained from Port Mulgrave, in the ratio of the square of the distauces, as a correction for the undetermined error of the refraction in the case of Mount Saint Elias.

All the Port Mulgrave observations were tak en about the same time, at the same place, with the same instrument, and subject to the same influences. As the mean of the Lituya observations on Fairweather is greater than the result of the Port Mulgrave observations, the correction for Mount Saint Elias would be additive. The ratio being $147,907.24^{2}: 111,212.1^{2}: 192: 108.5$, which is the resulting correction for Saint Elias, 192 feet being the difference between the two series on Mount Fairweather. The height of Saint Elias, as obtained at Port Mulgrave, being 19,464 feet, when corrected it would be 19,572 feet.

Unfortunately, Port Mulgrave is so completely encircled by land as to bare rendered it impossible to obtain a back sight at the opposite sea-horizon, which would have given us an approximation to the true refraction. In the following comprtations, 0.08 has been taken as the coefficient, which is nearly the average found in the ordni nce surver of Great Britain, with a not very dissimilar latitude and climate. The observations of all kinds have been computed by Coast Survey methods. The heights have been computed by a special formula supplied by Assistant C. A. Schott, chief of the computing division. The formulas for the computation of distances are from Appendix

No. 36, Coast Survey L. M. Z. tables, computed inversely; the radias of curvature from Appendix No. 11, Coast Survey Report 1871, carried out to 60° north latitude.

The computations have been made by Mr. Marcos Baker and reviewed by Mr. Schott.
I would recommend for adoption the following values :

> Mount Cook 16, 000 feet approximately.
> Mount Vancouver .. 13, 100 feet approximately.
> Mount Fairweather . 15,500 feet ± 150 feet.
> Mount Crillon. 15,900 feet ± 500 feet.

The accompanying sketch-map will facilitate the comprehension of the data for computation and the method employed.
reduction of observations made in 1874 by acting assistant w. h. dall and party, to deternine the heights of mount saint elias, cook, crillon, fairweatiter, and vancouver.

All the longitudes used in these reductions depend upou 6 chronometers, rated at Sitka May 5 , and again at Kadiak June 6, 1874. The rates of the chronometers are assumed uniform during this interval.

The corrections to the chronometers at Sitka depend upon 24 pairs of equal altitudes of the sun, - measured with the sextant and artificial horizon.

The corrections to the chronometers at Kadiak depend upon 46 pairs of equal altitudes of the sun, measured with the sextant and artificial horizon.

1. Lituya Bay. Time depends upon 33 pairs of equal altitudes of the sun; latitude depends upon 44 single altitudes of the sun with the sextant and artificial horizon; azimuth depends upon 7 sets, of 6 each, of observations upon the sun with C.S. theodolite No. 97. Five of these sets were observed and reduced by the method given in $\mathbb{T} 16$. Appendix 11, to the Coast Surrey Report of $\mathbf{1 8 6 6}$, by Assistant Schott, and two sets by $\| 19$ of the same Appendix.
2. Port Mulgrave. Time depends upon 33 pairs of equal altitudes of the sun; latitude depends upon 18 altitudes of the sun with the sextant, and 32 double zenith distances with Gambey verti-cal-circle No. 75 ; azimuth depends upon 8 sets, of 6 each, of observations upon the sun, with C.S. theodolite No. 97, and by method 16 of the Appendix above referred to.
3. Station "At sea," upon which the position of Mount Saint Elias depends. Time depends upon 12 altitudes of the sun from sea-horizon; latitude reckoned by \log from noon; determined at uoon by the usual sextant-observations; azimuth depends upon two sets, of 5 each, of observations upon the sun. The angalar distance of the sun from Mount Saint Elias was measured with the sextant, and the time noted. From the known latitude and hour angle the altitude and azimuth were dednced, and from these the azimuth of Mount Saint Elias.

In all the observations with the sextant the index-correction has been determined in connection with each series of observations and properlv allowed for, and, also, proper allowance has been made for dip, parallax, and refraction, including the barometric and thermometric factors.

In all the sextant-work the sextant used is No. 95, by Troughton \& Simms, of London.
The adjustments of all the instruments used have been constantly examined and found correct, and the instruments kept level whenever used. And wherever the principle of reversal has been available for the elimination of error, it has been employed.

Mounts Cook and Yancouver are determined in position only approximatels. The determination was made as follows: The true bearing of the magnetic mark from the astronomical station was determined astronomically, and the angles between the mountains and the mark measured with theodolite No. 97. This gave the true bearing of the mountains from Ast. \triangle, Port Mulgrave. When the vessel left Port Mulgrave and had reached the mouth of Yakutat Bay, its position was fixed by compass bearings upon objects determined by us on shore, and at the same time the com-pass-bearings of Monnts Cook and Vancouver were taken.

From these datil, the mountains were platted upou a chart made from our own observations, and the resulting latitndes and longitudes were used in detecmining the distances of the monntains.

REDUCTION OF OBSERVATIONS FOR ALTITUDE OF MOUNT FAIRWEATHER.

The astronomical station at Lituya Bay is in longitude..................... 1374004.6 ± 10.6 and latitude.................... $+583657.0 \pm 1.1$	
The azimath of the line Astronomical \triangle to Village \triangle is $\ldots \ldots \ldots \ldots \ldots . .+17.54108 .0 \pm$	
The angle at Astronomical Δ, between Villasa \triangle and Woods Point Δ, is. +982115.	
The azimuth of the line Astronomical Δ to Woody Point Δ is +2740283.	
The azimuth of the line Woody Point Δ to Astronomical Δ is..........	
weather, is .. 970555. The azimuth of the line Woody Point \triangle to Mount Fairweather is +1911020.6	
The azimuth of the line Woody Point Δ to Astronomical Δ, Port Mulgrave, is.	
The distance from Woody Point Δ to Monn ${ }^{+}$Fairweather is............ The vertical angle of Mount Fairweather from Woody Point Δ is....... The vertical angle was measured at 2 p. m., May 15, 1874: Barometer, 30.11 ; attached thermometer, 75° Fahrenheit ; exterual thermometer, $59{ }^{\circ}$ Fabrenbeit.	
The astronomical station at Port Mulgrave is in longitude................ $+1394615.9 \pm 18.3$ and latitude.. $+593342.0 \pm 2.1$	
The azimuth of the line Astronomical \triangle, Port Mulgrave, to Magnetic Mark, is	
The angle at Astronomical \triangle, Port Mulgrare, between Mount Fairweather and Magnetic Mark, is	
The azimuth of the line Astronomical \triangle, Port Mulgrave to Mount Fairweather, is 29833	
The azimuth of the line Astronomical Δ, Port Malgrave to Woody PointΔ, is 3094307.3	
The distance from Astronomical \triangle, Port Mulgrave, to Woody Point \triangle, is. The distance from Astronowical \triangle, Port Mulgrave, to Mount Fairweather,	
The distance from Astronowical Δ, Port Mulgrave, to Mount Fairweather, is	

The zenith distance was measured with Gambey vertical-circle No. 75, at 6 p. m., May 23, 1874 : Barometer at 6 p. m., 29.92 ; attached thermomet r, 63° Fahrenheit; external thermometer, 64° Fabreuheit.

Triangulation at Lituya Ray.

Determination of position of Woody Point Δ.

Computation of distance from Woody Point Δ, Lituya Bay, to Astronomical \triangle, Port Mulgrave.

SOLUTION OF TRIANGLE MOUNT FAIRWEATHER, WUODY POINT A, AND ASTRONOMICAL A POR'T MULGIAVE.
Z Woody Point \triangle to Astronomical Δ, Lituya Bay 940425.6
\angle Astronomical \triangle and Mount Fairweather
$9705 \quad 55$
Z Woody Point \triangle to Mount Fairwenther . 19110 20. 6
Z Woody Point \triangle to Astronomical \triangle Port Mulgrave 1313326.44
\angle At \because Vody Point \triangle between Astronomical \triangle Port 0 , " Mulgrave and Mount Fairweather (A) 59 . 3654.2
Z Astronomical \triangle to Magnetic Mark, Port Mulgrave... $133 \quad 3457.5$
\angle Magnetic Mark and Mount Fairweather 1650835.
Z Astrouomical \triangle Port Mulgrave to Mount Fairweather............. 2983333.5
Z Astronomical \triangle Port Mulgrave to Woody Point \triangle, Litnya Bay.... 3094307.34
\angle At Astronomical \triangle Port Mulgrave between Woody Point \triangle, Lituya Bay, and Mount Fairweather. .. (B) 110934.8

Denomination.	Plane angles and distances.	Logarithme.
Woody Point Δ to Astronomical Δ Port Mulgrave	$1618955^{\text {m }} 50$	5. 2092349
Mount Fairweather (C)	$1090{ }^{13} 13^{\prime} 31^{4} .0$	0.0249216
A atronomical \triangle Port Mulgrave (B)	$11 \begin{array}{lllllllll}11 & 09 & 34\end{array}$	9. 28867792
Woody Point Δ (A)	59364.8	0.9358399
Astronomical a Port Mulgrave to Mount Fairweather	147907m. ${ }^{\text {a }}$	5. 1699894
Monnt Fairweather to Woody Point	33184. 53	4. 5209357

II. Ex. 81-22

Determination of position of Mount Fairweather.

Computation of distance from Mount Fuirweather to "Off Cape Spencer."

Computation of distance from Mount Fairweather to "Off Lituya Bay.

Computation of distance from Mount Fairactather to "Ol' Lituya, May 19."

Computation of height of Mount Fairweather.

not.	Ufir Cape Spen. cis.	Offlituya buy.	Off Lituya. May 19.
	1	2	3
5	$87^{\prime} 01^{\prime} 54^{\prime \prime} .3$	$888^{\circ} 53^{\prime} 02^{\prime \prime} .7$	$84^{\circ} 17^{\prime \prime} 51^{\prime \prime} .0$
loge	4.9289217	4. 5622782	4. 6502950
$\log \cot \zeta$	8. 7147660	9. 0963493	8. 9993600
$\log 1 \mathrm{st} \mathrm{terin}$	3. 6436 ms 3	3. 6586275	3. 6496750
$\log \frac{1}{2}(1-2 m)=\log \cdot 42$	9. 6232493	9. 0332493	9. 6232493
$\log 8^{2}$	9. 8578434	9. 1245364	9. 3405460
a.c. $\log p$	3. 195012	3. 194946	3. 194823
logr 2 derm	2. 6761047	1. 9427517	2. 1186623
$\log (1-m)=\log .92$	9. 9637878	9. 9637978	9. 9637878
\log [1st term] ${ }^{2}$	7. 2873766	7. 31725550	7. 29838500
a.c. $\log p$	3, 195012	3. 194946	3. 194823
$\log 31$ term	0. 4461764	0.9759888	0.4579608
1stt term	4402.:388	4556,459	4463.495
ad terin	474.354	87. 650	131.420
3 d term	2.794	2.992	2. 870
h	4879.53E	4647.101	4.597 .785
$\log h$	3. 6833767	3.6671821	3. 6625487
constant	0. 5159929	*. 5159929	0.5154929
$\operatorname{logh} h$ in feet	4. 2043710	4. 1831750	4.1785416
h in fuet	16009.	15247.	15085.

Set.	Woody Point Δ Lituya.	Astronomicala. Port Mulgrave.
	- 4	5
ζ	$82^{\circ} 01^{\prime} 20^{\prime \prime} .0$	$88^{\circ} 45^{\prime} 17^{\prime \prime} .1$
$\log 8$	4. 5909357	5. 1609894
$\log \cot \zeta$	9. 1465787	8. 3372023
$\log 1 \mathrm{st}$ term	3. 6675144	3. 5071917
$\log \frac{f}{2}(1-2 m)=\log .42$	9. 6232493	9. 6232493
$\log s^{2}$	9.0418714	0.3399788
a.c. $\log \mu$	3. 194988	3. 194392
$\log 2 \mathrm{~d}$ term	1. 8801007	3. 1576201
$\log (1-m)=\log .02$	9.9637878	9.9637878
$\log [1 s t \text { term }]^{2}$	7. 3350288	7. 0143834
a.c. $\log p$	3. 194988	3. 194392
$\log 3 \mathrm{~d}$ term	0. 4938046	0.1725632
1st term	4650. 658	3215.079
2d term	72.462	1437.540
3iderm	3. 117	1.488
h	4726.237	4654. 107
$\log h$	3.6745155	3. 6078963
constant	0.5159929	0.5150929
$\log h$ in feet	4. 1905084	4.1835292
h in feet	15506.	15270.

Set 1. Mean of sis nltitudes from eea-horizon with Troughton sextant. No. 95. Instrument in adjustonent.
Sot 2. One altitude from sea-horizon with Tronghton sextant, No. 95. Instrament in adjustment
Sot 3. Mean of eight altitudes from sea-torizon with Troughton sextant. No. 95. Instrument in adjustment.
Sct 4. Mean of twelve altitudes, six direct and six reversel, with Cabella theodolte, No. 3300 , in adjustmentand leve.
Set 5. Mean of nine double-zenith distances, with Garbbey vertical-circle, No. 75, in edjustment and level.
Reduction of observations for height of Mount Crillon.
triangulation at lituya bay.

Denomination.	Oiserved angles.	Corr.	Plane angles and distances.	Logarithms.
Woody Point Δ to Village \triangle			2419. 590	3. 3837122
Mount Crillon	1em. 180°		$1^{0} 32^{\prime} 34^{\prime \prime}$	1. 5698717
Woody Point 4	$1: 55^{\circ} 59{ }^{\prime \prime} 40^{\prime \prime}$		15550	9. 6094079
Vilage 4	$22 \quad 2746$	- ${ }^{\prime \prime}$	22876	9. 3821579
Village \triangle to Mount Crillon			36561.3	4. 5630218
Mount Crillon to Wrondy Point			34332, 75	4.535718

[^4]Determination of position of Mount Crillon.

Computation of distance from Mount Crillon to "Off Cape Spencer."

Computation of distance from Mount Crillom to "Off Lituya."

H. Ex. 81-23

Computation of distance from Mount Orillon to "Off Lituya May 19th."

Computation of height of Mount Crillon.

Set.
ζ log s \log cot ς $\log 1$ st term $\log 1(1-2 m)=\log .48$ $\log 8^{2}$ a. c. $\log \rho$ $\log 2 d$ term $\log (1-m)=\log .92$ $\log (1 \mathrm{st} \operatorname{term})^{2}$ a. $c . \log p$ $\log 34$ term 1st term ed term 31 term h $\log h$ const. $\log h$ in feet h in feet

Ot Cape Speracer.	Off Lituya Day.	Off Litusa Day May 10.
1	58	3
$86^{\circ} 00{ }^{\prime} 52^{\prime \prime} .7$	$83{ }^{\circ} 2952^{\prime \prime} .7$	45 $5^{\circ} 19$ 30:. 1
4. 76699433	4. 51949214	4. 7086151
8. 8430462	9.6.67996	8.9126215
3. 10099805	3.6517175	3. 2216368
9. 0252103	9.6232493	9. 6×54403
9. 53388466	9. 1293498	9. 4:72302
3. 195003	3. 194263	3. 19.4273
2. 35213409	2. 007355	2. 2347525
9. 9637878	9. 9637878	9.9637874
7. 2109;90	7. 30343\%0	7. 2424736
3. 195003	3. 194263	3. 194:73
0. 3787698	0. 4614858	0. 4005334
4073. 70	4484. 54	4180.58
4224. 3 B	101. 71	171.69
2.39	2.89	2.51
4301.07	4580.14	4354. 78
3. 6335765	3. 6617313	3. 6389662
0. 5159924	0. 5159929	0. 51599929
4. 1495694	4. 17:7242	4. 1549591
14111.	150\%6.	14267.

Set.	Woody I'oint A. Lituya. \qquad 4
ζ	
$\log 8$	4. 5357516
log eots	9. 1482:43
$\log 18 t$ term	3. $63845+61$
$\log \frac{1}{2}(1-2 m)=\log , 44$	9. 6.52143
loge s^{2}	9. 021893t,
a.c. $\log \rho$	3. 194251
$\log 2 \mathrm{~d}$ term	1. cetthatis
$\log (1-m)=\log .92$	936.78 E
$\log \left(1 a t\right.$ term) ${ }^{2}$	7. 3591422
a.c. $\log p$	3.194251
$\log 3 \mathrm{~d}$ term	0.5171310
1st term	47E1. 30
2d term	77.45
34 term	3. 29
h	4862. 04
$\log h$	3. 6868186
const.	0.5159929
$\log h$ in feet	4. 2028115
h in feet	15952.

Set 1. Mean of six altitudea from sea-horiagn with Troughton sextant, No. 95, in adjustment.
Set 2. One altitude from sea-horizon with Troughton sextant, No. 95, in adjustment.
Set 3. Mean of eleven altitudes from mea-horizon with Troughton sextant, No. 95, in adjuatuent.
Set 4. Mean of twelve altitudes, six direct and six reverved, with Casella theodolite, No. 3300 , in adjustment and level.

(C) $5912 \quad 50.97$

Denominatiou.	Plane angles and distances.	Logarilhme.
Astronomical a Port Mulyrive to a At sea.	176030m. 1	5. 24555870
Monnt Saint Elias(C).		0.0059832
Astrononical a Port Mulgrave (b)	$875452.6{ }^{\text {a }}$	9.0937123
A At ввя (A)	\% 52 l 16. j	9. 7346018
\triangle At sea to Mount Saint Elias.	2047080.4	5. 3112625
Mount Saint Lliazto Astronomical A Port Mulgrave	114212 1	5.04615*0

Computation of distance from Δ At sea to Astronomical Δ Port Mulgrave.

Detcrmination of position of Mount Saint Elias.

Computation of aistance from Mount Saint Elias to "Off Lituya Bay."

Computation of distance from Mount Saint Elias to "Off Dry Bay."

[^5]Computation of height of Mount Saint Elias.

Set.	Off Lituya Bay.	Off Dry Bay.	$\triangle \mathrm{t} \mathrm{soan}$ May 27.	Set.	Astronomical Δ Port Mulgrave.
	1	2	\$3		4
ζ	$89^{\circ} 5 \theta^{\prime} 54^{\prime \prime} .9$	$89^{\circ} 09^{\prime} 51^{\prime \prime} .0$	$89^{\circ} 122^{\prime \prime} .0$	ζ	$88^{\circ} 21^{\prime} 54^{\prime \prime} .0$
$\log 8$	5. 4309569	5. 3230108	5.3112625	$\log 8$	5.0461520
$\log \cot \zeta$	7. 4220521	8. 1638979	8. 1410566	$\log \cot \zeta$	8.6627350
$\log 18 t$ term	2. 8530090	3. 4919087	3. 4523191	$\log \mathrm{g}$ 1st term	3. 7088870
$\log \frac{1}{5}(1-9 m)-\log .42$	9. 693249	9. 623249	9. 623249	$\log \frac{1}{2}(1-2 m)=\log .42$	9.623249
ing 8^{2}	0. 861914	0.656022	0.622525	$\log 8^{2}$	0.092304
a.c. $\log p$	3. 194587	3. 194563	3. 194885	A. c. $\log \rho$	3.194660
log 2d tarm	3.679750	3. 473834	3. 440659	$\log 2 \mathrm{~d}$ terim	2910213
$\log (1-m)=\log .92$	9.963788	9.963788	9. 963788	$\log (1-m)=\log .92$	9.963789
$\log \left[\right.$ [ft term] ${ }^{2}$	5. 706018	6.983817	6. 904038	$\log [1 \mathrm{lt} \text { term }]^{2}$	7. 417774
a.c. $\log p$	3. 194587	3. 194563	3. 194885	a. c. $\log \rho$	3. 194660
$\log 34$ term	8.864393	0.142168	0.063311	log 3d term	0.576222
1st term	712.86	3103.91	2833.47	list term	5115.49
2d term	4783.55	2977. 38	2758. 41	2d term	813. 23
31 term	. 07	1.39	1. 16	3 d term	3.77
\boldsymbol{h}	5496.48	608268	5593.04	h	5932.49
$\log h$	3. 7400846	3. 7840950	3. 7476479	$\log h$	3. 7732370
constant	0.5159929	0. 5159929	0. 51 19929	constant	0.5159929
$\log h$ in feet	4. 2560775	4. 3000879	4. 2636408	Ing h in feet	4.2892499
h in feet	18033.	19956.	18350.	h in feet	19464.

Set 1. Mean of nine alditudes from sea-horizon with Tronghton sextant, No. 95, in adjustment.
Set 2. Mean of six altitudes from sea-horizon with Troughton sextant, No. 05 , ic adjustment.
Set 3. Mean of eight eltitudes from sea-horizon with Troughton sextant, No. 95 , in adjustment.
Set 4. Mean of eighteen double-zenith distances with Gambey vertical circle, No. 75, in adjustment and level.
H. Ex. 81 - 24

Computation of distance from Astronomical D Port Mulgrave to Mount Cook.

Computation of distance from Astronomical \triangle Port Mulyrave to Mount Vancouver.

Computation of heights of Mounts Cook and Vancouver.

Set.	Mount Cook.	Monnt Vanconver. \qquad \qquad 2
	1	
ζ	$86^{\circ} 40^{\prime} 11^{\prime \prime}, 6$	$87 \times 10^{\prime} 20^{\prime \prime} .2$
$\log 8$	4. 8906466	4.8707869
$\log \cot \zeta$	8. $76482-5$	8.6936669
$\log 1$ st term	3.6554721	3.56445388
$\log (1-2 m)=1 \mathrm{log}_{6} .42$	9. 623249	9.623249
$\log 8^{2}$	4. 781203	9.741574
a. c. $\log \rho$	3. 194922	3.194940
log 2 d term	2. 599464	2. 559763
$\log (1-m)=\log .92$	9.963788	9.963788
log [1st term]	7. 310944	7. 128908
a. c. $\log p$	3. 194922	3. 194910
$\log 301$ term	0. 469654	0.285336
1st term	4523.47	3668. 21
9d term	397. 62	362.88
311 term	2.95	1.94
h	4924.04	4033. 03
$\log h$	3. 6923916	3. 6056314
constant	0. 5159929	0. 5159929
$\log h$ in feet	4. 2083145	4. 1216243
h in feer	16155.	13232.

Set 1. Mean of four double-zenith distances with Gambey vertical-cirole, No. 75, adjusted and leveled. Sut 2. Mean of eix double-zenith distances with Gambey vertical-circle, No. 75, adjusted and leveled

APPENDIX No. 11 .
 REPORT CONCERNING RECENT OBSERVATIONS AT SOUTH PASS BAR, MISSISSIPPI RIVER, BY HENRY MITCHELL, ASSISTANT IN THE UNITED STATES COAST SURVEY.

Boston, March 10, 1875.
The original programme for this work contemplated the determination of transverse and ver. tical curves of velocity, from point to point, along the course of each pass and out over the bars to the sea. These observations were to be, as far as practicable, simultaneons from section to section, and were to be repeated at different periods of the tide. Among other questions we hoped to answer by this course of inquiry were the following :

1st. In what manner does the outflowing stream expand as it approaches the sea, and how is this expansion related to depth and velocity?

2d. How does the meeting of fresh and sea water densities affect the channel depth, or how are these related?

3d. Is there any indication of a littoral current beyond the bar ?
The observations at the mouth of the South Pass have been made somewhat in accord with the pre-arranged plan, and appear to have been made under farorable condltions; but they are few in number, so that our conclusions are by no means final. Mr. Marindin, the assistant of the Const Survey having immediate clarge of the party, and Mr. Weir, his principal obserrer, as well as several other members of the party, were familiar with our methods, baving had long previous experience elsewhere.

I, therefore, have full confidence in the work done, although I left the locality before the party were fully engaged. I shall refer to the statistics of the work hereafter in some detail.
§ 1. Expansion.-As the stream approaches the sea after passing the contraction in the neighborhood of the South Pass light-house, it expands at the expense both of its depth and relocity. The bauks, on both sides below the light-house, are covered with thick growth of reeds which extend much further seaward upon the right than upon the left shore. If we view the scene at high water, we find the right bank exposed to view for a distance of 9,420 feet below the light-house, while the left bank is visible only to a distance of 1,987 feet below a point opposite the light-house. But at extreme low water the flats are exposed quite out to the bar and the two banks are seen to be essentially of the same length. At the time of our observations the low banks above referred to were mostly submerged and there seems to have been sowe escape of the water orer them. In a distance of 8,000 feet below the light-house the river increases its superficial width five fold, i. e., from 712 feet at section A (see sketch No. 24) to 3,400 feet at section B. Section A represeuts the pass just within its visible mouth, and section B the outlet-channel just within the crest of the bar. The areas of these sections show an increase of 36 per cent., i. e., from 18,270 square feet at A to 24,600 square feet at B. The mean depth has diminished from 24.44 feet at A to 3.03 feet at B, or in mach less ratio than the width has increased.

As the velocity (mean) should vary iuversely as the section, and as the depth (representing scour) should vary as the squares of the velocity, we should expect, under ordinary circumstances, that the depths should be inversely as the squares of the sections. But from the figures above you will observe that the depths from section A to section B rary as 3 is to 1 , while the squares of the sections vary as 2 is to 1 . We might argue from this that some lifting force has been at workthe denser water of the sea, for instance-and thus discover in our results a confirmation of the statement upon page 445 of the Physics and Hydraulics of the Mississippi River, that "this lifting force of the salt-water must widen the river current." But from the best reductions we can make of the velocities in the two sections which were not occupied by current-stations simultaneously, except for the axis of the stream, the mean velocities were 1.30 feet per second against 0.66 , giving for the ratios of their squares 3.65 to 1 , which is not widels different from the ratio of mean depths.

Again, if we compare the vertical curves of velocity simultaneously observed in the thread of the stream for both sections, we find the axial scour at $(1.71)^{2}:(1.09)^{2}=2.46: 1$, and the channel-depths to which they correspond $29: 11.5=2.52: 1$, from which I think we must conclude that as far as our evidence may cover the case, the depths vary with the squares of the velocity, leaving no room for the interference of auy other element. And our curves of specific gravity taken at the same time indicate only a slight introsion of sea-water at the seaward section B. When it is considered that our observations were made at the low stage of the river, it will be admitted that for the permanent order of things our sections must be regarded as those of fresh-water conduits, and since the levels alter but little, from low stages to hood, we may couclude that the axial velocities will preserve much the same ratios.

Thus far 1 am inclined to regard the expansiou of the stream as primary and the loss of depth dependent. This granted, the increase of sectional area is seen to be a necessity growing out of the increase of wetted perimeter, which reduces the velocity by friction.

At other periods of the tide than that at which we observed the sections, brackish water was found higher up the stream, but to no great extent.
§ 2. I submit that the exclusion of the sea-water from the South Pass at the time of our observatious was due mainly to the presence of the bar as an antecedent obstruction. The velocity of the outflow at the light-house corresponded to a fall in space of 0.03 foot, and the eleration of the actual river surface above the sea could not have been measured, probably, because so small. The dynanic pressure due to the impulse of the issuing stream cannot exceed twice the weight of the head due to velocity; so that a stratum of sea-water having a thickness of 7 feet (the depth on the crest of the bar) would by its greater specific weight bave very much overbatanced the river as it Howed through the light-house section. One may easily see that if at the time of our observations the bar had been taken away, the sea-water would have poured in along the bed of the pass with a velocity near the bottom very much greater than that of the surface outfow observed. We must conclude, then, it seems to me, that the bar had been built by floods when the river was issuing at a higher velocity and at a higher surface elevation, so that it overmastered the sea, and that the office which the bar filled in the low-river season, when we made our observations, was that of a bulwark holding back the sea.

We may expect that so long as the proposed jetties serve to dissipate the bar there will be an influx of the sea during the low-river season, and some tendency to fill up the pass, but the mate rial brought in must be small; and since the surface fresh-water velocity must be increased at some stages of the tide, and will be scarcely diminished at any other stages, deposits of much sediment need not be anticipated.

I call your attention to the rertical curves of specific weights given ingour table and sketch, and also to the diagram (sketch 24) showing a "section of South Pass along the channel-way." Our observations made shortly after low tide probably give the minimum of sea-water for the day.
§ 3. At the same time that the transverse curve of velocities was being determined at section B, another trausverse curve was being determined just outside the bar. This outer curve depends upon three stations, and unfortunately the maximum velocity falls upon the most western instead of upon the central station (as was designed) ; in other words, our curve is too far to the castward, so that its apex does not fall iu the middle, leaving some doubt whether the position of the thread of the stream was reached.

Nevertheless, for the purposes in view these three stations are highly important, since they reveal the presence of a current in excess of the discharge from the South Pass. Assuming that the section in motion is limited by our extreme stations-which, of course, it is not-we find the passing volume nearly 107,596 cubic feet per second, or over four times the discharge given by our corrected curve at section A, off the light-house in the Sonth Pass, and over five times the volume passing ovar the bar as given by the simultaneous observations at section B. At this outermost section the depth is not only greater in the average from side to side than at the sections above, but the average velocity from surface to bottom is some 30 per cent. greater than at the lightbouse section, and the maximum velocity of the 6 feet-surface stratum is double that found at the section just within the bar. Moreover, a change in the direction of the current is obseryed

deflecting to the westward; so that no doubt exists in our minds that at the time of our observations there was a strong littoral current, or race of the sea, along the outer slope of the South Pass bar.

In our sketch, (No, 24,) which accompanies this report, we have not given the "outer" curve of velocities above mentioned, because it was incomplete, as we have stated, and because it was not transverse-the currents being deflected from their anticipated conrse. The weather at the time of these observations was quiet ; the wind, being light from north and northeast, could not have had any measurable influence, but for several days previous the weather had been windy, and considerable sea was runuing on the day of the observations.

The water issued from the South Pass in a southeasterly direction, but after crossing the bar was turned to the southward and southwestward. At one of the outside stations occupied on the same day but at a different hour from those which formed our curve, the observer, Mr. Weir, made a special note in his record to the effect that the submerged floats moved to the westward, while the line upon the surface was carried southward.

Whether this morement along the outer slope of the bar is a race of the sea or a littoral current, we have not enough data to determine; suffice it to say, we found it steady at the depth of 24 feet, and have no adequate reason for supposing that it was the result of anomalous or unnsual circumstances.

South Pass bar is not salient to the geveral sweep of the delta frontage. I called attention last year to the fact that a circle conld be drawn which would pass through four of the bars, viz : Southwest Pass, South Pass, Southeast Pass, and Pass a Loutre, and fall only 2,300 feet within a fifth bar-that of Northeast Pass. This circle has a radius of $21 \frac{1}{2}$ statute miles, and its center lies about $2 \frac{1}{2}$ miles to the sonthward of the Jump, in latitude $29^{\circ} 14^{\prime} 20^{\prime \prime}$, longitude $89^{\circ} 20^{\prime} 15^{\prime \prime}$, and 81 miles above the head of the passes, as found upon the printed chart of the Coast. Surver.

Nevertheless, the South Pass bar lies nearer to those deep contours of the Gulf, which seem not get to have been reached by the aproning of the delta, than any of the others, and must therefore be regarded as the salient point of the delta as regards the Gulf and its movemeuts. This is among the reasons why the experiment of jetties at this pass seems to me more likely to be successful than at the others, and within a reasonable cost.

The new deposits, after the jetties are built, are likely to be swept away to some extent by the coast-current and the race of the sea. It does not compare farorably with the two other passes in width, depth, and previons good character, as regards freedom from obstructions.

Respectfally submitted.
(Signed)
HENRY MITOHELL, Cnited States Coast Survey.

Carlile P. Patterson, Superintendent United States Coast Survey.

The tables which follow have been computed from three determined points in the Lorizontal and vertical.

Specific wcights of water－Mouth of South Pass．

$\begin{aligned} & \stackrel{\rightharpoonup}{8} \\ & \stackrel{y}{3} \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$		Remarks．
0	1． 0000	
6	1． 0110	
12	1.0215	Midula station at gection C，ontside of bar．
18	1． 0250	
24	1.020	）
0	1． 0002	
6	1． 0050	Middle station at section B，on inner slope of bar．
10	1.0080	
0	1．0003	－
12	1.0005	Middle station at section A，off light－house．
24	1.0015	）

Section A．
South Pass of Mississippi River at light－house．

Distance from right bank in feet．						
0.	0.00	0.40	0.00	0.00	0.00	0.00
110	1.94	1.98	1． 86	1． 77	0.00	0.00
900	1.94	1.96	1． 89	1． 83	0.97	0.00
300	1． 96	1.94	1.89	1.84	1.15	0.34
400	1.96	1.93	1.88	1.74	0.30	0.00
500	1.77	1． 81	1．54	1． 30	0.00	0.00
600.	1.37	1． 43	0.93	0.00	0.00	0.00
700	0.80	0.17	0.08	0.00	0.00	0.00
712	0.00	0.00	0． 00	0． 00	0.00	0.00
Mean relocity in feet per second．	1.28	1.36	1.40	1.47	0.76	0.34
Area of stratum in square feet．．	4272	4272	4176	3264	1420	116
Volumo passing in culvio feet per second	5893	5893	5846	4798	1079	38

Total voluute passing per secand $=23,547$ eubic feet：

SECtion B．

South Pass Mississippi River，on the inner slope of the bar．

0	0.00	2.0			
300	0． 17	3.5	70		
600	0.36	4． 5	318		
900	0.71	7.0	923		
1200	0.90	E． 5	1449	0.31	81
1500	1.09	10.5	1791	0.54	446
1800	1.21	11.5	2070	0． 65	893
2100	1.21	11.5	7178	0.61	1089
2400	1． 21	10.5	2208	0.46	802
2700	1． 23	8． 5	2214	0.25	373
3000	1． 01	6.5	2016	0.03	63
3300	0.34	2.5	911		
3425	0.00	1.5	102		
Sums			16950		3697

Total volume passing through section $=19,947$ cobic feet per second．
Section C．
Outside of South Pass Bar，January 30， 1875.

	Velocity in feet per second．						
Dindance from first gtation．							Remarks．
0.	21	2 I	2.1	2.0	1.5	．．．．	The section lies across the
500．．．．．．．．．．．．．．．．．．．．．．．．．．	2.2	2.1	2.0	2.0	1.5	0.6	stream just seawrat of
1000.	2.1	1.9	1.8	1.8	1.4	0.6	South Pass ber，i．e．，upon
1500.	1.9	1． 7	1． 6	1． 7	．	．	fore slope of asid ber．Tho
2800.	1．7	1.7	1.6	1.3	0.4	－	blanks are loft when the
2284．	1.6	1.7	1.6	1.2	0.7		depths fall off．
Means	2.0	1.9	1.8	1． 8	1.3	0.6	
Sectional arean of strata	13344	13334	13344	13344	1974	8250	
Passing volumes in cubic foet	26688	25354	24019	24019	2566	4350	

APPENDIX No. 12.
 DISCUSSION OF TIDES IN NEW YORK HARBOR.

United States Coast Survey Office, Washington, June 30, 1875.

Dear Sir: I have the honor to submit the following report of the discussion of the tidal observations of Governor's Island in New York Harbor.

1. The observations used embrace a series of 19 years, from 1856 to 1874, inclusive. There are some interruptions in the continuity of the series, especially in the first part of it, arising from the freezing up of the tide-gauge and from storms; but these are mostly of short duration, and do not serionsly impair the value of the observations, or affect sensibly the accuracy of the results deduced from them.

In this discussion, the first reductions of the observations made by the Coast Survey were furnished to me for the purpose. These comprise the times and heights of the bigh and low waters of the tide, together with the apparent times of the moou's meridiau transit immedately preceding the times of high water, and the corresponding lanitidal intervals.

THE GENERAL PLAN AND MMMEDIATE OBJECT OF THE DISCUSSION.
2. The general plan adopted in this discussion is the same as that of the discussion of the tidal observations of Boston Harbor, the deviations being merely in some of the details. This plan is found to work well and give very accurate results. It is not claimed, however, that, by methods involving a much greater amount of labor, a slight inprovement in the accuracy of the results might not have been obtained. By the method used, the probable error in the mean amplitude of the tide, or in the co-efficient of any of its inequalities, dependiug upou abuormal disturbances, errors of observations, and imperfections in the methods of reductions and of the discussion, is not more than one-twentieth of an inch, and, in the case of the lunitidal interval, not more than one-quarter of a minute. Of course, errors of these orders are of no consequence in any practical applications of the results; and even in the nicest comparisous between theoretical relations and those deduced in the discussion of the observations, these errors are so much smaller than those of auy tidal theory which we now have, ur cau ever hope to have, that it would hardly seem to be worth while to expend a great amount of additional labor in order to dimiuish very slightly these small probable errors.
3. The immediate object of the discussion of the observations is the determination of the mean amplitude and Innitidal interval of the tide, and the co-efficients and epochs of their principal inequalities, and the first step in the plan atopted consists in gronping all the observations of the lunitidal intervals and of the heights of high and low waters with reference to the arguments of the inequalities taken two and two. so that each group shall give the averages of the observations within certain small ranges of each one of these two arguments; as, for instance, the twenty-fourth part of the argaments corresponding to the periods of the inequalities. From these averages, the effects of all abmormal disturbances of the winds and of barometric pressure, and also the other normal inequalities, are very nearly eliminated, since in both the plas and minas etfects must very nearly counteract each other, and we have simply the averages as affected for the most part by the two inequalities merely songht to be determined. The averages of these groups being entered into tables with double arguments, and being summed each way, we get other arerages, affected by only one of the inequalities. This method shortens very much the amount of work, since the observations can be grouped with reference to two argunents in very nearly the same time that they could
with reference to one simply; and thus, when we have obtained the averages as affected br one inequality, it requires bat little additional labor to sum the averages of the groups, and obtain averages affected only by the other inequality; and we thus save the trouble of grouping all the observations again with reference to the argument of the second inequality. Wheu the averages bave been obtained, affected only by the inequalities having the same argument, by comparing these averages with their known form of expression, we can make ont as many equations of condition as we have avarages, for determining the unk nown amplitudes and epochs of the inequalities, as will be explained as we proceed.

ADOPTED NOTATIONS.

4. The notation of the arguments adopted in this discussion is the same as that used in the development of the tidal forces io § 19 of Tidal Researches, published as an apmodix to the Coast Survey Report for 1874 ; aud that, of the lanitidal intervals and heights of high and low water is the same as that adopted in varions parts of those Researches. The notation is as follows:-
$\varphi_{1}=$ the angular distance between the moon and sun, expressed either in are or in time, being, in the latter case, denoted by the apparent time of the moon's meridian transit;
$\varphi_{2}=$ the moon's mean anomaly;
$\varphi_{3}=2 \lambda$, in which λ is the moon's longitude;
$\varphi_{4}=$ the longitude of the moos's ascendiug node;
$\varphi_{6}=$ the sun's true anomaly;
$\varphi^{7}=$ the sun's true longitude;
$\varphi_{11}=2 \varphi_{1} ;$
$\varphi_{12}=2 \varphi_{2}$.
The other arguments not given here belong to very small inequalities, which we have not attempted to determine in this discussion, and which consequently we have had no occasion to use. We also put-
$H_{1}, \lambda_{1}=$ the height of the first high water after the moon's upper transit, and the corresponding lunitidal interval, respectively;
$H_{2}, \lambda_{2}=$ the same for the following low water;
$H_{3}, \lambda_{3}=$ the beight of the high water next following the moon's lower transit, and the corresponding lunitidal iuterval;
$H_{4}, \lambda_{4}=$ the same for the following low water.
We shall also pat for convenience-

$$
\left.\begin{array}{rlr}
\boldsymbol{H}_{1}^{\prime} & =\frac{1}{2}\left(\boldsymbol{H}_{1}+H_{3}\right) & \dot{\prime}_{1}=\frac{1}{2}\left(i_{1}+\lambda_{3}\right) \\
\boldsymbol{H}_{2}^{\prime} & =\frac{1}{2}\left(\boldsymbol{H}_{2}+\boldsymbol{H}_{4}\right) & \nu_{2}^{\prime}
\end{array}\right)
$$

AVERAGES DEDUCED DIRECILY FROM THE OBSERVATIONS.
5. With the preceding explanations of the notations used, together with the additional explanations following, the following tables of averages will be understood.

TABLE I.
Containing average values belonging to the argument φ_{1}.

Obs.	ϕ_{1}	$\lambda^{\prime \prime}$	$\lambda^{\prime}{ }_{2}$	$\boldsymbol{H}^{\prime}{ }_{1}$	$B^{\prime}{ }_{2}$	L_{2}	A_{1}	H_{0}	δB_{0}	$x^{\prime}=-x_{1}$
	h. m.	h.	h.	Feet.	Feat.	h.	Feet.	Feet.	Feet.	h. \boldsymbol{n}.
560	$\begin{array}{ll}0 & 15.1\end{array}$	12. 2	$14 \quad 50.0$	9.008	3. 657	1131	12675	6. 332	+. 015	37.8
525	0 44.5	85	1442.4	9.001	3. 711	$11 \quad 25.4$	2645	6. 356	+.039	$6 \quad 33.9$
544	1 14.6	3.1	$14 \begin{array}{ll}14 & 38.8\end{array}$	3.895	3. 638	1121.0	2.628	6. 266	-. 051	635.7
545	144.5	0.2	$14 \quad 99.9$	8.862	3. 732	$11 \quad 15.0$	2.565	6. 297	. 020	$6 \quad 29.7$
555	$2 \begin{array}{ll}2 & 14.8\end{array}$	58.2	14.23 .9	8. 789	3. 838	1111.1	2.475	6. 313	. 004	6 25.7
535	244.5	56.1	1416.1	8.686	3.940	116.1	2373	6. 313	. 004	620.0
558	$\begin{array}{ll}3 & 14.8\end{array}$	57.3	1411.4	8. 564	4. 023	114.3	2.270	6. 493	-. 024	614.1
533	$3 \begin{array}{ll}3 & 44.3\end{array}$. 5	$14 \quad 8.7$	8. 507	4. 250	$11 \quad 0.6$	2 128	6. 378	+. 061	616.2
562	414.3	53.4	$14 \quad 5.9$	8. 495	4. 40 E	1059.7	2.043	6. 451	13	612.5
540	444.3	51.3	$14 \quad 76$	8.413	4. 502	1059.4	1.955	6. 457	140	616.3
582	$\begin{array}{lll}5 & 14.7\end{array}$	53.0	$14 \quad 16.3$	8.337	4. 567	1114.7	1.885	6. 452	. 135	$6 \quad 23.3$
549	5 44.6	752.7	$14 \quad 280$	8.253	4. 590	$11 \quad 10.4$	1. 831	6. 121	. 104	$6 \quad 35.3$
5682	614.5	\%	1435.8	8.121	4.590	1114.3	1. 760	6. 355	. 038	$6 \quad 43.0$
559	6 44. 4	$7 \quad 57.0$	14 46. 2	8. 168	4.605	$11 \quad 21.6$	1. 781	6.386	$+.069$	$6 \quad 49.2$
571	714.9	3.3	$14 \quad 524$	8.101	4. 450	11187	1. 625	6.275	-. 042	649.1
543	744.6	\& 10.2	1457.0	8.185	4. 314	1133.6	1.935	6. 2	. 067	6 46.8
565	814.0	18.9	$\begin{array}{ll}15 & 0.7\end{array}$	¢. 072	4. 236	11139.8	1.918	6. 154	. 063	641.8
54	844.7	828.5	15	8. 389	4. 157	$11 \begin{array}{lll}11 & 46.5\end{array}$	2.116	6.2	04	636.0
552	914.9	6	$15 \quad 3.9$	8.407	3. 973	1146.7	2.217	6. 190	. 127	6 34.3
53.6	944.4	$8 \quad 29.2$	15 4. 3	8. 584	3. 894	11186	2345	6. 239	. 078	635.1
549	10 14.4	826.3	15	8. 72	3. H_{2}	11	2.453	6. 27	. 043	36.6
546	10 44. 5	22.6	$14 \quad 50.5$	8. 795	3. 744	1141.0	2. 565	6.270	. 047	636.9
555	1115.0	820.2	1458.6	8. 863	3.718	1113 38. 9	2.572	6. 290	. 0	$6 \quad 37.4$
525	$\begin{array}{lll}11 & 44.8\end{array}$	15.7	1453.0	8.946	3. 717	11.34 .4	2.614	6. 331	+. 014	$6 \quad 37.3$
Means		7.2	$14 \quad 39.9$	8.550	4. 088	$11 \quad 23.5$	2.231	6.317		6327

TABLE II.
Containing average values belonging to the argument φ_{2}.

Obs.	${ }_{4}$	λ_{1}	$\lambda^{\prime}{ }_{2}$	\boldsymbol{H}_{1}	$H^{\prime}{ }^{2}$	\mathbf{L}_{2}	A_{2}	H_{0}	${ }^{1} H_{3}$	$\lambda^{\prime} z_{2}-\lambda_{1}$
	\bigcirc	$\boldsymbol{\lambda}$.	h. m.	Feet.	Fer	A. m.	Feet.	Feet.	Feer.	h. m.
549	15	57. 7	1441.5	00_{4}	3.	1119.6	2675	6.3	+. 059	6.13 .8
544	30	8 1.2	14.43 .1	8.891	3.644	11222	26×3	6. 267	-. 058	641.9
541	45	$8 \quad 3.6$	14 41. 7	8.950	3. 742	11826	2804	6. 346	$+.026$	$\begin{array}{lll}6 & 38.1\end{array}$
543	60	$8 \quad 6.1$	1443.8	8.845	3.810	1125.0	2517	6. 387	+.007	6 37.7
548	75		14.44 .7	8.742	3. 8664	1128.2	2.439	, 303	-. 017	6370
550	90	$8 \quad 9.4$	1444.9	8. 6332	3. 974	1127.1	2.329	6. 303	$-.017$	635.5
551	103	812.4	14 45, 2	8. 5550	4.141	11.8	2205	6. 345	+.025	632.8
551	120	814.2	1444.0	8.423	4. 181	1129.1	2.121	6. 302	-. 01	29.8
559	135	816.1	14423	8.353	4.235	1120.2	2.049	6. 304	-. 016	686.2
540	150	818.4	1440.5	8. 290	4. 372	1129.4	2.959	6. 331	+. 011	622.1
556	165	815.6	1430.7	8250	434	1127.7	2.808	6. 342	+.022	6.24 .1
544	180	$8 \quad 15.9$	14.29	8.231	4. 390	11829.4	2920	310	-. 010	27.0
548	185	${ }^{-8} 815.2$	1438.8	Q. 19.9	4. 520	1127.0	2.837	6. 357	$+.037$	623.6
54	210	812.2	1438.7	8. 269	4. 441	1125.5	2914	6. 355	+.035	26.5
549	225	$8 \quad 10.7$	1438.8	8.194	4. 111	1124.7	289	6. 302	-.018	688.1
548	24	8	1434.4	8. 264	4. 354	1121.5	2.95	C. 309	. 011	25.8
553	255	$8 \quad 5.7$	1435.0	8. 391	4. 314	1180.4	2. 00	6. 317	-. 000	699.3
556	270	$8 \quad 4.6$	1434.1	8.429	4. 244	1119.3	2092	6. 336	$+.016$	29.5
548	285	$8 \quad 3.7$	14.33 .4	8. 520	4. 121	1118.6	2200	6. 380	. 000	-20.7
548	300	759.9	14 37.2	8.614	4.016	1118.5	21298	6.315	-. 005	37, 3
552	315	759.4	1437	8. 67	3.984	1118.5	2.396	6. 280	. 040	638.3
548	330	757.5	1435.7	6. 776	3. 783	1116.6	2.442	6. 984	. 036	38.8
540	345	757.4	14 38.7	8.840	3. 7×8	1118.0	2356	6. 884	-. 036	- 41.3
526	360	758.8	143303	9.000	3.788	11 -9.1	2.639	6.307	$+.047$	(40.5
Meama .		878	$14 \quad 39.8$	8. 555	4.080	11235	2.238	6. 320		6325

TABLE III.
Containing average values belonging to the argument φ_{3}.

λ	Obs.	λ_{1}	λ_{2}	n_{1}	H_{z}	Obs.	λ_{3}	λ_{4}	H_{a}	H_{4}
\bigcirc		h. m.	$h . \quad m$.	Fe	Feet,		h. m.	h. m.	Fett.	Feet.
7.5	279	14.9	$14 \quad 51.6$	9. 006	4. 093	273	$8 \quad 7.7$	14.32 .2	8. 368	3.997
22.5	274	$8 \quad 13.4$	1452.1	9. 036	4. 117	27%	- 80	$14 \quad 29.4$	8.303	4. 078
37.5	269		14 48. 3	8. 966	4. 138	201	8.9	14 24.7	8.190	4. 152
52.5	267	$8 \quad 1.0$	1448.0	8.940	4. 109	272	5. 0	1420.5	8.114	4. 262
67.5	275	7 55. 4	14847	8801	4. 103	273	$8 \quad 3.5$	$14 \quad 20.3$	E. 161	4. 355
82.5	276	53.1	$14 \begin{array}{ll}14 & 35.8\end{array}$	8.827	4.09\%	276	5.2	$14 \quad 19.6$	8.122	4. 288
97.5	266	$7 \quad 53.3$	14 45.	8. 788	3. 944	274	6. 2	1423.2	R. 158	4.231
112.5	277	7 55. 1	$\begin{array}{lll}14 & 45.7\end{array}$	8.814	4.01 :	273	8.6	$14 \quad 27.6$	E 394	4.320
127.5	274	7 54.6	1443.4	8. 750	3. 924	278	11.1	1434.7	e. 531	4. 224
142.5	273	759.5	14.44 .1	3. 10	3.884	272	$8 \quad 15.2$	1440.0	8. 641	4. 174
157.5	275	3.7	1444.5	8.513	3.853	271	$1 \times .8$	1444.4	8. 782	4.092
172.5	276	5. 6	1443.1	8.440	3.934	275	821.2	$14 \quad 50.3$	8. 83 ¢ิ	4.071
187.5	275	8. 3	1437.0	8. 324	4.039	274	22	$14 \quad 51.0$	8.943	4. 125
202.5	273	889.3	1434.7	8. 243	4.090	875	18.8	1454.2	8.982	4.089
217. 5	271	$8 \quad 10.1$	$14 \quad 28.5$	127	4. 223	272	15.2	$14 \quad 51.6$	8. 972	4.137
2325	278	8 8.8	1428.7	8. 066	4. 371	270	7. 4	1451.8	9.001	4. 116
247.5	271	$8 \quad 4.5$	$14 \quad 25.3$	8. 100	4. 418	271	4.0	1451.2	8.929	4.158
262.5	274	$8 \quad 0.2$	$14 \quad 28.3$	8.083	4. 290	272	758.8	$\begin{array}{ll}14 & 49.7\end{array}$	8.874	4.010
277.5	26.5	2.7	1482	8.187	4. 28.9	274	1.0	$14 \begin{array}{ll}14 & 45.2\end{array}$	8.809	3.963
292.5	273	$8 \quad 4.2$	1433.3	8. 307	4. 297	270	759.7	$14 \quad 45.0$	8. 753	3. 909
307.5	271	$8 \quad 7.7$	1436.8	8. 507	4. 196	272	81.5	14 42.2	8. 273	3. 859
322	278	8 11.2	14 42. 1	8-686	4. 137	274	83.2	1440.5	8. 731	3. 823
337.5	277	813.6	14478	8. 800	4. 113	274	$8 \quad 8.2$	1438.4	8. 719	3. 900
352.5	266	8814.8	$14 \quad 51.3$	8.918	4. 062	274	$8 \quad 7.5$	1437.0	8. 554	3.915
	Mean8	88.7	$14 \quad 40.9$	8. 530	4.115		$8 \quad 8.7$	1438.5	8.610	4.094

TABLE IV.
Oontaining average values belonging to the argument φ_{3}.

λ	Obs.	$\lambda_{1}{ }_{1}$	$\lambda^{\prime}{ }_{2}$	H^{\prime}	\boldsymbol{H}^{\prime}	L_{2}	A_{2}	H_{0}	¢ H_{0}	$\lambda_{T} \lambda^{-\lambda_{1}}$
-		h. m.	h. m.	et.	Feet.	h. m.	Feet.	Feet.	Feet.	h. 9 m.
7.5	552	$8 \quad 11.3$	1441.9	8. 687	4. 045	$11 \quad 26.6$	2.321	6. 360	+. 016	630.6
22.5	551	$8 \quad 11.1$	$14 \quad 40.7$	8. 660	4.097	1125.9	2.281	6. 381	. 031	29.6
37.5	530	$8 \quad 8.3$	$14 \quad 36.5$	8. 578	4.145	$11 \quad 22.4$	2217	6. 361	. 011	6 28.2
52.5	539	$8 \quad 3.0$	1434.2	8. 527	4.185	11186	2. 171	6. 351	. 006	6.31 .2
67.5	348	$7 \quad 59.4$	1434.0	E. 531	4.229	11.16 .7	2.151	6.380	$+.030$	634.6
82.5	552	759.1	$14 \quad 32.7$	8. 475	4.193	$11 \quad 15.9$	2. 141	6. 334	$-.016$	633.6
97.5	540	759.7	1434.4	8.473	4.088	. $11 \quad 17.0$	2. 192	6.281	-. 069	$\square 34.7$
112.5	550	$8 \quad 1.8$	1436.6	8. 604	4. 166	$11 \quad 19.2$	2.219	6. 386	+.036	634.8
. 1187.5	552	$8 \quad 28$	1439.0	8.643	4.074	1120.9	2. 285	6. 359	+.009	636.2
1425	545	- 7.1	$14 \quad 12.0$	8.681	4.029	$11 \quad 24.5$	2. 296	6.325	-. 085	634.9
157.5	346	811.2	1444.5	8.647	3. 973	11278	2.337	6. 310	. 040	$6 \quad 33.3$
172. 5	551	$8 \quad 13.4$	14 46.7	8.639	4.002	1230.9	2.318	6. 320	-. 030	$6 \quad 33.3$
187.5	549	$8 \quad 15.5$	14 44.0	8.634	4. 182	118	2. 276	6. 358	+.008	$\mathrm{f}_{6} 38.5$
2035	544	814.1	1444.5	8.613	4. 094	$11 \quad 29.3$	2260	6. 356	. 006	630.4
217.5	543	8126	1440.0	8. 550	4. 180	$11 \quad 26.3$	2. 185	6. 365	. 015	637.4
233.5	548	88.1	14 40.2	8.533	4.243	11.24 .2	2.145	6. 328	. 038	$6 \quad 32.1$
247.5	542	$8 \quad 4.3$	$14 \quad 38.3$	8. 512	4.2e3	1121.3	2.112	6. 400	$+.050$	634.0
262.5	546	$7 \quad 39.5$	$14 \quad 39.0$	8. 478	4. 150	1119.2	2.164	6. 314	$-.036$	639.5
277.5	639	$8 \quad 1.8$	1436.4	B. 498	4.126	1119.1	2.186	6. 312	038	${ }_{6} 34.6$
292.5	543	$8 \quad 20$	1439.1	8. 530	4.103	1120.5	2.213	6. 316	. 034	637.1
307.5	54,3	$8 \quad 4.6$	$14 \quad 39.5$	8. 640	4. 027	1122.0	2.307	6. 333	. 017	634.9
3322.5	552	$8 \quad 7.2$	14.41 .3	8. 708	4.980	11.24 .2	2.364	6. 343	$-.007$	634.1
337. 5	551	$8 \quad 10.9$	$14 \quad 43.2$	8.760	4.006	1127.0	2.377	6. 388	+.038	632.3
3525	540	811.1	14 44.1	8. 736	4. 988	$11 \quad 27.6$	2. 374	6. 363	+.013	633.0
	Means .-	88.7	1439.7	8. 595	4.104	11.83 .2	2.245	6. 350		${ }_{6} 633.0$

TABLE V.
Containing yearly averages, or those belonging to argument φ_{4}.

Ybar.	ϕ_{4}	$\lambda^{\prime}{ }_{t}$	$\lambda^{\prime}{ }_{2}$	H^{\prime}	\boldsymbol{H}_{1}	L_{2}	\boldsymbol{A}_{2}	\boldsymbol{H}_{9}	$\lambda^{\prime}{ }_{2}-\lambda_{1}{ }_{1}$
	\bigcirc	h. \quad m.	h. m.	Feet.	Feet.	h. m.	Feet.	Feet.	h. m.
1856	20.5	$8 \quad 2.4$	$14 \quad 37.4$	9.675	5.340	$11 \quad 19.9$	2.107	7. 507	635.0
1857	1.2	$8 \quad 0.0$	14 31.6	9.821	5. 460	$\begin{array}{lll}11 & 15.8\end{array}$	2. 180	7.640	631.6
1858	341.8	$8 \quad 5.7$	$\begin{array}{ll}14 & 37.6\end{array}$	9.744	5. 438	1121.6	2. 153	7. 591	631.9
1859	322.5	$8 \quad 4.4$	14 34.0	9.815	5.418	11 19.2	2.199	7.616	6 29.6
1860	303. 1	8 6.7	14 33.7	9. 764	5.387	11 20.2	2. 189	7.575	627.0
1861	283. 8	$8 \quad 7.3$	$14 \quad 32.3$	0. 317	4. 860	$11 \quad 19.8$	2. 2229	7. 088	6 25.0
1852	264.5	$8 \quad 5.0$	$14 \begin{array}{ll}14 & 38.7\end{array}$	8. 764	4.225	11 21.8	2. 270	6. 404	6 33.7
1863	245.1	89.0	$14 \begin{array}{ll}14 & 39.7\end{array}$	8. 773	4. 223	11 24. 4	2. 275	6. 498	630.7
1864	225.8	$8 \quad 8.5$	14 44. 4	8. 701	4. 240	$11 \quad 26.5$	¢. 330	6. 570	635.9
1865	200.4	$8 \quad 9.8$	14 42.0	8.812	4.141	$\begin{array}{ll}11 & 25.9\end{array}$	2.335	6. 476	6 32.2
1866	187.1	87.2	1443.3	8. 797	4. 139	11 20. 2	9. 329	6. 468	6 36. 1
1867	167.8	84.4	1439.2	8.938	4. 292	11 21. 8	[2. 323	6. 615	6 34. 8
1868	148.4	8 180	14 48..	8. 852	4. 262	$\begin{array}{ll}11 & 33.4\end{array}$	2. 295	6.557	630.8
1869	129.1	$8 \quad 14.7$	$14 \quad 45.3$	¢. 702	4. 169	1130.0	2. 265	6. 435	630.6
1870	109.7	$8 \quad 10.0$	14 44.0	7. 977	3. 413	1127.0	2. 281	5. 693	$6 \quad 34.0$
1871	90.4	$8 \quad 5.3$	1441.0	6. 715	2. 230	11 23. 2	2.242	4. 472	6 35.7
1872	71.0	$8 \quad 3.5$	14 40.E	6. 696	2.241	$11 \begin{array}{ll}11 & 22.1\end{array}$	2. 227	4. 468	6 37, 3
1873	51.7	8 6. 1	1440.0	6. 696	2. 337	$11 \quad 23.0$	2. 180	4. 516	6 33. 9
1874	32.4	757.8	1438.1	6. 565	2. 151	1118.0	2. 207	4.358	6 40.3
Mebls...		86.6	$14 \quad 39.6$	8. 596	4. 103	$11 \quad 22.8$	2. 246	6. 349	633.0

TABLE VI.
Containing monthly averages, or those belonging to arguments φ_{6} and φ_{7}.

Month.	ϕ_{6}	\$7	Obs.	λ_{1}^{\prime}	$\lambda^{\prime}{ }_{2}$	\boldsymbol{H}^{\prime}	H^{\prime}	L_{2}	Δ_{2}	H_{0}	$\delta \boldsymbol{H}_{0}$
	-	-		h. m.	h. m.	Feet.	eat.	7. m.	Fest.	Feet.	Feet.
January.	15	230	1066	810.5	$14 \quad 39.6$	8. 344	3. 974	1126.4	2.185	6. 159	-0.183
February	45	290	999	$8 \quad 9.0$	1438.6	8. 295	3.933	24.4	. 181	6. 114	. 228
March	75	351	1118	$8 \quad 6.5$	1438.5	8. 420	4.019	22.4	. 200	6. 220	$-.122$
April.	105	51	1089	$8 \quad 3.4$	14.36	8. 704	4.272	21.5	. 216	6. 488	$+.146$
May	135	110	1138	82.0	$\begin{array}{lll}14 & 35.7\end{array}$	8. 842	4.385	19.9	. 228	6. 814	. 972
June	165	168	1086	$8 \quad 4.0$	14.37 .7	8. 786	4.324	21.9	. 231	6. 550	. 208
July	194	226	1112	$8 \quad 5.2$	$14 \quad 39.5$	8.680	4. 200	28.7	. 240	6. 440	. 098
Auguet ...	283	284	1127	$8 \quad 6.5$	14 41.2	8. 685	4. 185	24.3	. 285	6. 435	. 093
September	252	344	1044	89.5	$14 \quad 43.4$	8.675	4. 197	26.6	. 239	6. 436	. 094
October	282	44	1128	8.8 .9	$14 \quad 42.6$	8.674	4. 208	25.8	. 233	6. 441	+ . 099
November..	313	106	1072	8.8 .0	$14 \quad 41.5$	8. 478	3. 994	25. 2	. 242	6. 236	$-.106$
December	344	168	1080	810.2	$14 \quad 41.7$	8.178	3.762	24.8	. 208	5. 975	-0.367
Means				$8 \quad 7.0$	$14 \quad 39.7$	8. 563	4. 121	1123.8	2. 221	6. 342	

6. The observations were first grouped with reference to the arguments φ_{1} and φ_{2}, each group comprising observations belonging to one of 24 equal divisions of each argument. The divisions of φ_{1}, expressed in times of transit, were from $0^{\mathrm{h}} 0^{\mathrm{mm}}$ to $0^{\mathrm{h}} 30^{\mathrm{m}}$, from $0^{\mathrm{h}} 30^{\mathrm{m}}$ to $1^{\mathrm{h}} 0^{\mathrm{m}}$, \&e., so as to make the averages correspond to the values of $0^{\mathrm{h}} 15^{\mathrm{m}}, 0^{\mathrm{h}} 45^{\mathrm{m}}$, \&c., or very nearly. The divisions of φ_{2} were such as to make the middle of the divisions correspond to $15^{\circ}, 30^{\circ}, \& \mathrm{c}$. ; and it was assumed that these medinm values of the arguments in the case of so many observations would correspond so nearly with the actual average values that they conld be adopted instead of the latter withont any sensible error. It shonld be remarked that the values of φ_{1}, used in the discussion, were those of the moon's transit over the meridian of Washington, instead of the meridian of the port, as is usual ; and consequently the values belong to that time, and not to the time of high or low waters, and that a correction must be introduced into the epochs of the resalts on this acconnt, where the argument is taken for the time of transit over any other meridian, or
for the time of high or low water. The values of φ_{2} used were those corresponding to the times of high water.

By summing the averages of the groups in two ways, so as, first, to eliminate the inequalities depending upon φ_{2}, and, secondly, so as to eliminate the inequality depeuding upon φ_{1}, the average values contained in Tables I and II, belonging to the corresponding values of the arguments, were obtained.
7. In the second place, the observations of each year were grouped with reference to the moon's lougitude, with a view of determining the inequalities in the semi diurnat tide depending upon the moon's longitude, and also the amplitude of the diurnal tide, which likewise depeuds upon the moon's longitude. The observations of each year were grouped separately, in order to determine the inequality in the semi-diurnal tide depending upon φ_{4}, the longitude of the moon's ascending node. The value of φ_{4} belonging to the midule of the year was taken as the value for the groups embracing each year. The value of the moon's Iongitude, λ, in Tables III and IV, are those belouging to the transit C over the Washington meridian, according to Lubbock's notation; that is, to the fourth transit preceding the time of high water. This arrangement was adopted so that the arguments of longitude which had been used in the discussiou of the tidal observations of Boston Harbor, in which the lunitidal intervals were referred to transit C, could be also used in this discussion. All that will be necessary to correct for this will be to introduce a corresponding change in the epochs of the angles in the final results obtained. In order to obtain the amplitade of the diurnal tide, it was necessary to keep the observations of upper and lower transits separate in this case. By first summing and taking the average of the groups belonging to each of the years for each value of λ, the averages in Tables III and IV were obtained; and by summing and taking the arerage of all the observations belonging to each year, the results of Table V were obtained.
8. The results in Table VI are the averages of all the observations for the whole series belong. ing to each month; the values of φ_{6} and φ_{7}, being those belonging to the middle of each mouth. These results are to be used in determining the inequalities depending upon the sun's longitude and true anomaly.

SEMI-DIURNAL TIDE.

9. We shall now determine from the preceding tabular results, the unknown co-efficients and epochs in the theoretical tidal expressions of the amplitude and lunitidal interval of the semidiurnal tide, and show with what degree of accuracy these expressions, with the unknown constants thus determined, represeut the observations. These expressions are (Tidal Researches (97) and (99):-

$$
\left\{\begin{array}{l}
A_{2}=\Delta_{0} \Sigma_{i} R_{i} \cos \left(\varphi_{i}-a_{i}\right) \tag{1}\\
L_{2}=\Sigma_{i} B_{i} \sin \left(\varphi_{i}-\varepsilon_{i}\right)
\end{array}\right.
$$

in which A_{2} is the amplitude of the tide and L_{2} the lunitidal interval, the subscript 2 in the geueral expression common to all the several oscillations being the characteristic of the semidiurnal tide; also A_{0} is the amplitude of the mean tide, and R_{i} is the ratio between the coefficients of the inequalities of A_{2} and the mean amplitude. The expression is put in this form for the purpose of comparing these ratios in the tidal expression with the corresponding ratios in the forces denoted by P_{i}, the values of which are given in Tidal Researches, § 19.
10. Half-monthly inequality.-In the averages of Table 1 , the effect of the diurnal tide is eliminated, and the effect of the ter-diurnal deep-water tide is always extremely small. The mean ralue, therefore, of ($\lambda_{2}^{\prime}-\lambda^{\prime}$) in Table I, if the results were not affected by a quarter-liumal and other tides of shorter period, arising from the shallowness of the water, and therefore called shal-low-water tides, would be exactly the fourth part of a mean lunar day, which is $6^{\text {h }} 12^{\mathrm{m}} .6$; and the inequality in these values depending upon the values of φ_{1} would be very small. It is seen, however, that the mean in the table differs from the fourth of a lunar day about 10 minutes, and that this differeuce for different values of the argument φ_{1} is very different. In deep-water tides also the value of H_{0}, which is the mean sea-level as determined from the means of the heights of high and low water, would be constant since there is no half-monthly inequality in this mean height in such tides. We see, however, from the column headed δH_{0} that this is not the case. The tides of New York Harbor are therefore affected by large shallow-water components, so that the asual
formule, based upon the theory of deep-water tides, cannot be used in determining, from the results of Table I, the semi-diurnal tide and its half-mouthly inequality without incurring some risk of baving the results slightly affected by these shallow-water components. The mean difference of nearly 20 minutes between the intervals from high to low and from low to high waters is cansed mostly by the supposition of a quarter-diurnal upon the semidiurnal tide, which, it is readily conceived, must cause a difference in these intervals, unless the epochs of the semi-diurual and quarter-diurnal tides are such as to make oue of the high waters of the quarter-diurnal tide coincide with a high water of the semi-diurnal tide, in which case the intervals from high to low and from low to high waters wonld be exactly equal. This is the case in the tides of Boston Barbor, although there are indicatious of a small quarter-diurnal tide, as shown by a small difference in the mean level of the sea at the times of the syzygies and quadratures as determined from the averages of the heights of high and low water.

It is seen (Tidal Researches, 360) that there are six of these shallow-water components, three of which are lunar, solar, or lunisolar quarter diurnal tides, and one one-sixth diurnal, which have periods which are commensurable with the period of the half-monthly inequality; and hence they cause not only the mean difference between the intervals from high to low and from low to high waters, but also a half montbly inequality in these differences.
11. With the observations of the times and heights merely of the resultant of all the sballowwater terms combined with the diurnal and semi-diurnal tides, it is impossible to so analyze these tides as to determine the amplitudes and epochs of each one, and thus to determine the effects of the shallow-water tides upof the values of A_{2} aud L_{2} in Table I, from which we deduce the amplitude and lunitidal interval of the semi-diurnal tide and their half-monthly inequality. If the heights of high and low water were observed exactly at the interval of one-fourth of a lunar day, the effect of the quarter-diurnal tide upon A_{2} in Table 1 would be eliminated, but it would still affect the value of H_{0}, but where a high water of the quarter-diurnal tide does not coincide with a high water of the semi diurnal tide, these intervals, we have seen, are not exactly one-fourth of a lunar day, and hence the difference between H_{1} and $H^{\prime}{ }_{2}$, which is the value of A_{2}, may be slightly affected from this canse. The best we can do, however, in this discussion is to neglect the consideration of these effects, which we have reasou to think are very small. We here see, however, the importance, at least in shallow-water tides, of using the harmonic analysis in the discussion of tidal observations, by means of which all these small components can be determined from the observations.
12. We have (Tidal Researches, 333), for the expressions of A_{2} in (1), 一

$$
A_{2}=\frac{1}{4}\left(H_{1}-H_{2}+H_{3}-H_{4}\right)=\frac{1}{2}\left(H_{1}^{\prime}-H_{2}^{\prime}\right)
$$

In this expreasion, however, the values of H_{1}, H_{2}, \&c., being functions varying with the time, must be taken for the same time; but the values of $H^{\prime}{ }_{1}$, in Table I, are for high water, and of \boldsymbol{H}^{\prime} for low water; but, instead of reducing them to the same time, we can take the value of A_{2}, given by the expression above, as belongiug to the intermediate time half-way from high to low water, the corresponding lunitidal interval of which is $L_{2}=\frac{1}{2}\left(\lambda^{\prime}+\lambda^{\prime}\right)^{\prime}$, given in the table. The values of A_{2} and L_{2} in the table, then, can be regarded as the averages of the amplitudes of the tide at this intermediate time, and L_{2} those of the corresponding lunitidal intervals.

Where the averages are for short intervals of the arguments, these averages can be tuken as the true value of the functions belonging to the mean values of the argaments withont sensible error; but where the intervals are large, a correction is required. If the values of A_{2}, in Table I, could be taken as the correct values belonging to the corresponding average values of φ_{1}, we should have, from the first of (1),

$$
\boldsymbol{A}_{2}=A_{0}\left\{1+\boldsymbol{R}_{1} \cos \left(\varphi_{1}-a_{1}\right)+\boldsymbol{R}_{11} \cos \left(2 \varphi_{1}-a_{11}\right)\right\}
$$

all the other inequalities in the general expression having been eliminated from the averages of Table I. The correct general expression in this case, applicable where A_{2} is made to represent the averages for any limits of the argaments whatever, is (Tidal Researcher, 316):-

$$
\begin{equation*}
A_{2}=A_{0}\left\{1+k R_{1} \cos \left(\varphi_{1}-a_{1}\right)+k^{\prime} R_{11} \cos \left(2 \varphi_{1}-a_{11}\right)\right\} \tag{2}
\end{equation*}
$$

in which, expressing $\varphi_{i}-\varphi$, in terms of the radius,
(3) . . .

$$
k=\frac{2 \sin \frac{1}{2}\left(\varphi_{1}-\varphi_{1}\right)}{\varphi_{11}-\varphi_{1}}
$$

$$
k^{\prime}=\frac{\sin \left(\varphi_{1}-\varphi_{1}\right)}{\varphi_{\prime \prime}-\varphi_{1}}
$$

In these last expressions, φ, and $\varphi_{1 \prime}$ are the values of the argument at the two limits of the group, of observations, and the space between these limits may be of any extent whaterer.

The angle $2 \varphi_{1}=\varphi_{11}$, in the notation of $\S 5$, being a multiple of φ_{1}, the inequality corresponding to it has not been eliminated from the averages of Table I, and hence this term must be retained. It would likewise be necessary to include, in the expression, terms having the angles $3 \varphi_{1}, 4 \varphi_{1}, \mathbb{\&}$. , if there were any sensible terms having such arguments. But we know from theoretical considerations, as well as from an inspection of the residuals where the results belonging to the expression where ouly two terms are retained are compared with observation, that all terms beyond the second in the expression are insensible. Of course, sensible co-efficients are brought out in the discussion where such terms are retained; but these are merely of the order of the probable errors of the arerages used, and do not indicate reak terms. If we had 24 average values of A_{2}, and should retain so may terms in the expression of (2) that the number of co-efficients and epochs in the expression should amonnt to the same, we should probably get sensible co-efficients for every term; but, instead of this expression being more correct, it would be less so than where fewer terms are retained, for it would evidently be an expression which would represent all the errors of observation. A too great attempt at refinement, therefore, in this direction, only leads to error.
13. The preceding expression of A_{2} may be pat in to the form-

$$
\begin{equation*}
\text { 1) } . \quad . \quad . \quad A_{2}=A_{0}+M \cos \varphi_{1}+N \sin \varphi_{1}+M^{\prime} \cos 2 \varphi_{1}+N^{\prime} \sin 2 \varphi_{1} \tag{4}
\end{equation*}
$$

from which, when M, N, M^{\prime}, and N^{\prime} are determined, we have, for the co-efficients and epochs,-
(5) $\left\{\begin{array}{l}\mathrm{A}_{0} R_{1}=\frac{1}{k} \sqrt{M^{2}+N^{2}}=\frac{M}{\cos a_{1}} \\ \tan \alpha_{1}=\frac{N}{M}\end{array}\right.$

$$
\begin{align*}
& \mathrm{A}_{0} R_{11}=\frac{1}{k^{\prime}} \sqrt{M^{\prime 2}+\bar{N}^{\prime 2}}=\frac{M^{\prime}}{\cos \sigma_{11}} \tag{5}\\
& \tan \alpha_{11}=\frac{N^{\prime}}{M^{\prime}}
\end{align*}
$$

With the 24 values of A_{2}, in Table I, and the corresponding values of φ_{1}, we get, from the preceding expression of $A_{2}, 24$ equations of condition for determining A_{0}, M, N, M^{\prime}, and N^{\prime}. The solution, by the method of least squares, gives:

$$
\begin{array}{lll}
\mathrm{A}_{0}=2.231 \mathrm{ft} . & M=.4328 & N=.0838 \\
& M^{\prime}=-.0052 & N^{\prime}=-.0087
\end{array}
$$

Since the limits of the groups in Table I are at 24 equal intervals of φ_{1}, we have, in (3) $\varphi_{11}-\varphi_{1}=15^{\circ}$; and hence we have, in this case, -
(6) $k=.997$

$$
k^{\prime}=.989
$$

Hence, the averages of the groups might have been used in this case for the true values belonging to the averages of the arguments, since these values differ but little from unity, especially the first, which belongs to the principal term.

With the preceding values, we get, from (5),-

$$
\begin{array}{lll}
\mathrm{A}_{0} R_{1}=.4422 \mathrm{ft} . & R_{1}=.1982 & \alpha_{1}=10^{\circ} 57^{\prime} \\
\mathrm{A}_{0} R_{11}=.0102 \mathrm{ft} . & R_{11}=.0046 & \alpha_{11}=2399^{\circ}
\end{array}
$$

This latter may be put in the form-

$$
\begin{array}{lcc}
\mathrm{A}_{0} R_{11}=-.0102 \mathrm{ft} . & K_{11}=-.0946 & \alpha_{11}=59 \circ \\
\text { H. Ex. } 81-26 & \cdot &
\end{array}
$$

This makes the sign of R_{11} correspond with that of the corresponding value of P_{11} in the forces, and makes the value of the epoch α_{11} in the tidal expressions correspoud more nearly with that of the forces, which is 0 .

With the preceding values, the expression of A_{2}, (2), represents the average values of Table I, from observations with a main residual of .016 foot and a maximum one of .065 foot.
14. The general expression of L_{2}, (1), when applied to the values of L_{2} in Table I, can be put, for reasons already given in the preceding case, into the form-

$$
(7) \cdot \quad \cdot \quad \cdot\left\{\begin{aligned}
L_{2} & =B_{0}+k B_{1} \sin \left(\varphi_{1}-\varepsilon_{1}\right)+k^{\prime} B_{11} \sin \left(2 \varphi-\varepsilon_{\varepsilon_{1}}\right) \\
& =B_{0}+M \sin \varphi_{1}+N \cos \varphi_{1}+M^{\prime} \sin 2 \varphi_{1}+N^{\prime} c
\end{aligned}\right.
$$

in which-
(8) . $\cdot\left\{\begin{aligned} B_{1} & =\frac{1}{k} \sqrt{M^{2}+N^{2}}=\frac{M}{\cos \varepsilon_{1}} \\ \tan \varepsilon_{\mathrm{L}} & =-\frac{N}{M I}\end{aligned}\right.$

$$
\begin{aligned}
B_{11} & =\frac{1}{k^{\prime}} \sqrt{M^{\prime 2}+N^{\prime 2}}=\frac{M^{\prime}}{\cos \varepsilon_{11}} \\
\tan \varepsilon_{1 b} & =-\frac{N^{\prime}}{M^{\prime}}
\end{aligned}
$$

With the 24 values of L_{2}, in Table I, the second of the preceding forms of expression gives 24 equations for determining, by the method of least squares, -

$$
\begin{array}{lll}
B_{0}=11^{\mathrm{h}} 23^{\mathrm{a}} .5 & M=-20^{\mathrm{m} .5} & N=10^{\mathrm{m} .6} \\
& M^{\prime}=1^{\mathrm{m} .7} & N^{\prime}=-1^{\mathrm{m} .4}
\end{array}
$$

By means of (8), we get from these values and the preceding values of k aud $\boldsymbol{k}^{\text {in }}$ (6),

$$
\begin{array}{ll}
B_{1}=-23^{\mathrm{nn}} .1 & \varepsilon_{1}=27^{\circ} 20^{\prime} \\
B_{11}=2^{\mathrm{m}} .2 & \varepsilon_{11}=38^{\circ} 7^{\prime}
\end{array}
$$

With these values, the first form of (7) represents the observed average values of L_{2}, in Table I, with a mean residual of $0^{\mathrm{m}} .8$ and a maximum residual of $2^{\mathrm{m}} .2$.
15. In Table 1 , the values of φ_{1} are those at the time of the moon's transit over the meridian of Washington next preceding the time of high water, while the corresponding values of A_{2} and L_{2} are those belonging to the time of the middle phase of the tide between high and the following low water, which is $11^{\mathrm{h}} 23^{\mathrm{m}} .5+12^{\mathrm{m}} .3=11^{\mathrm{h}} 3 \overline{5}^{\mathrm{m}} .8$ later; the $12^{\mathrm{m}} .3$ being the difference between Washington and New York time. Hence, the preceding epochs must be increased by the amounts by which the angles φ_{1} and $2 \varphi_{1}$ increase in $11^{\text {h }} 35^{\text {m. }} .8$. The values a_{1} and ε_{1} must, therefore, be increased by-
and the values of a_{11} and ε_{11} by twice this amount. We tberefore get, for the corrected values,-

$$
\begin{array}{ll}
a_{1}=22^{\circ} 44^{\prime} & \varepsilon_{1}=39 \circ 07^{\prime} \\
a_{11}=83^{\circ} & \varepsilon_{11}=62^{\circ} .3
\end{array}
$$

These corrected epochs are to be used in all theoretical comparisons of the expressions; but, for practical purposes, the time for which the values of the angles are taken is entirely arbitrary, provided the valnes of the angular epochs always correspond with it. If this time be the time of transit over the meridian of W ashington, then the former values of these epochs, $a_{1}, \varepsilon_{1}, \& c$., must be used in the tidal expressions.

For the value of B_{0}, which is the mean of L_{2}, belonging to high water, we must deduct oneeighth of a mean lnnar day, which is equal to $3^{\mathrm{h}} 6^{\mathrm{m}} .3$; and hence we get for the corrected value of the lunitidal interval of bigh water, reckoned from the lanar transit over the meridian of New York,

$$
B_{0}=11^{\mathrm{h}} 23^{\mathrm{m}} .5-3^{\mathrm{b}} 6^{\mathrm{m}} .3=8^{\mathrm{h}} 17^{\mathrm{m}} .2
$$

This is for the mean high water of the semi-diur nal tide unaffected by the quarter-diurnal and other tides, which make mean high water occur still 10 minutes earlier.
16. Lunar parallactic inequality.-In Table II, all the inequalities except that depending upon the moon's parallax, or mean anomaly, φ_{2}, are eliminated from the arerages. The general form of the expression of A_{2}, (1), in this case becomes of the form of (2) or (4), except that we must put φ_{2} for φ_{1} and α_{12} for α_{11} in this case. With the 24 values of A_{2}, in Table II, given by observation, we get, from (4), with the modification just stated, 24 equations for determining, by the method of least squares, -

$$
\begin{array}{lll}
A_{0}=2.232 \mathrm{ft} . & M=.3712 \mathrm{ft} . & N=.1200 \mathrm{ft} . \\
& M^{\prime}=.0365 \mathrm{ft} . & N^{\prime}=.0172 \mathrm{ft} .
\end{array}
$$

With these values, and the values of k and k^{r} in (6), we get, from (5)-

$$
\begin{array}{lll}
\mathrm{A}_{0} R_{2}=.3913 \mathrm{ft} . & R_{2}=.1753 & \alpha_{2}=17055^{\prime} \\
\mathrm{A}_{0} R_{12}=.0405 \mathrm{ft} . & R_{12}=.0185 & \alpha_{12}=950.2
\end{array}
$$

With these values, the expression of the form of $A_{2},(2)$, putting φ_{2} for φ_{1} in this case, represents the observed ralues of A_{2}, with a mean residual of .015 foot, and a maximum residual of .045 foot.

By proceeding in the same manner with the ralues of L_{2} in Table II, using the Equations (7) and (8) in this case with φ_{2} and ε_{2} instead of φ_{1} and ε_{1}, we get 24 equations, which give:-

$$
\begin{array}{lll}
B_{0}=11^{\mathrm{h}} 23^{\mathrm{m}} .5 & M=3^{\mathrm{m}} .87 & \boldsymbol{N}=-4^{\mathrm{m} .53} \\
& M^{\prime}=-0^{\mathrm{m}} .11 & \boldsymbol{N}^{\prime}=0^{\mathrm{m}} .06
\end{array}
$$

With these values, we get, from (8), modified as above to suit this case, -

$$
\begin{array}{ll}
B_{2}=5^{\mathrm{m} .99} & \varepsilon_{2}=530.8 \\
B_{12}=-0^{\mathrm{m} .13} & \varepsilon_{12}=299^{\circ} .0
\end{array}
$$

With these values, the expression of L_{2}, (7), with the subscripts 1 and 11 changed to 2 and 12 , represents the observed values of A_{2}, iu Table II, with a mean residual of $0^{m} .6$ and a maximum residual of $1^{\mathrm{m}} .5$.

In Table II, the values of the argaments belong to the time of high water; but the values of A_{2} and L_{2}, as deduced from the averages of the table, belong to a time $3^{h} 16^{\mathrm{m}}$ later. Hence the preceding epochs mast be increased by the amount by which the angles φ_{2} and φ_{12} change in that time; that is, by-

$$
\frac{3^{\mathrm{b}} 16^{\mathrm{m}}}{24^{\mathrm{l}}} \cdot 13^{\circ} .18=10.31^{\prime}
$$

for the epochs a_{2} and ε_{2}, and $3 \circ$ for α_{12} and ε_{12}. With these corrections, we get, for the corrected epochs,-

$$
\begin{array}{ll}
u_{2}=19^{\circ} 20^{\prime} & \varepsilon_{2}=55^{\circ} .3 \\
\alpha_{12}=28^{\circ} .2 & \varepsilon_{12}=32^{\circ}
\end{array}
$$

17. Mean lunar declinational inequality.-In the averages of Table IV, the diurnal tide and all the inequalities of the semi-diurnal tide, including the inequality depending upon the moon's node, are eliminated, except that depending upon the moon's longitude, λ. Besides the term dependiug upon $\varphi_{3}=2 \lambda$ in the general expressions of A_{2} and $L_{2},(1)$, of the semi-diurnal tide, there is also a small component depending upon the fourth power of the moon's distance from the earth, of which the argament is the moon's longitude, λ, the effect of which is to cause a slight difference in the tides belonging to north and sonth declinations of the moon. To the terms, therefore, in the general expressions of (1) depending upon the moon's longitude, the principal term of which has the argument $\varphi_{3}=2 \lambda$, we must also add a term of which the argument is λ, to represent the term depending upon the fourth power of the moon's distance. Neglecting the term, therefore, in

- the general expression depending upon $2 \varphi_{3}$ as being iusensible in this very small inequality, the expression of the averages of A_{2} in the table in this case may be put into the following form :-

$$
\begin{aligned}
A_{2} & =A_{0}\left\{1+k R_{3} \cos \left(\varphi_{3}-\alpha_{3}\right)\right\}+a k^{\prime} \cos \left(\lambda-\alpha^{\prime}\right) \\
& =A_{0}+M \cos \varphi_{3}+N \sin \varphi_{3}+M^{\prime} \cos \lambda+N^{\prime} \sin \lambda
\end{aligned}
$$

By proceeding as in the preceding cases, the 24 values of A_{2} give 24 equations, which give-

$$
\begin{array}{lll}
\mathrm{A}_{\mathrm{f}}=2.245 \mathrm{ft} . & M=.0845 \mathrm{ft} . & N=-.0647 \mathrm{ft} .
\end{array}
$$

In this case, the gronps of observations include one-twelfth instead of one twenty-fourth of the argument of the principal term, of which the argument is φ_{3}, and hence the expressions of (3) give, in this case, $k=.989$ and $k^{\prime}=.997$. With these, and the preceding values of $M, N, \& c$, the formulæ of (5) give-

$$
\begin{aligned}
\mathrm{A}_{0} R_{3} & =.1047 \mathrm{ft.} & \boldsymbol{R}_{3}=.0467 & \alpha_{3}=-36^{\circ} 8^{\prime} \\
a & =.0214 \mathrm{ft} . & & a^{\prime}=3 \circ .4
\end{aligned}
$$

With these values, the expression of A_{2} above represents the average values of A_{2} in Table IV, obtained from observation, with a mean residual of .012 foot and a maximum residual of .026 foot. The probable error of the principal co-efficient $A_{0} R_{3}$ is $\pm .0030$ foot, or about $\frac{1}{28}$ of an inch. The reason for estimating the probable error in this case only will be explained farther on. But, the residuals being about of the same order, the probable errors do not differ much from that given above in all the other cases.

The expression of the averages of L_{z} in Table IV may be put into the form-

$$
\begin{aligned}
\mathbf{L}_{2} & =B_{0}+k B_{3} \sin \left(\varphi_{3}-\alpha_{3}\right)+k^{\prime} b \sin \left(\lambda-\varepsilon^{\prime}\right) \\
& =B_{0}+M \sin \varphi_{3}+N \cos \varphi_{3}+M^{\prime} \sin \lambda+N^{\prime} \cos \lambda
\end{aligned}
$$

With the 24 values of L_{2} in Table IV, and the corresponding values $\varphi_{3}=2 \lambda$, we get, as in preceding cases, 24 equations, which give-

$$
\begin{array}{lll}
B_{0}=11^{\mathrm{h}} 23^{\mathrm{m}} .3 & M=5^{\mathrm{m}} .60 & N=0^{\mathrm{m}} .13 \\
& M^{\prime}=-1^{\mathrm{m} .33} & N^{\prime}=-1^{\mathrm{m} .58} .5
\end{array}
$$

These values give, by the formulæ of (8),

$$
\begin{array}{cl}
B_{3}=-5^{\mathrm{m}} .56 & \varepsilon_{3}=888^{\circ} .7 \\
b=2^{\mathrm{m} .05} & \varepsilon^{\prime}=130^{\circ}
\end{array}
$$

The values of the arguments in Table IV, as has been explained in § 7, belong to the transit C of Lubbock's notation, and bence to a time preceding the time to which the values of A_{2} and L_{2} belong by one and a half mean lonar days plas B_{0} plas the difference between Washington and New York time; that is, by-

$$
37^{\mathrm{h}} 12^{\mathrm{m}} \cdot 7+11^{\mathrm{h}} 23^{\mathrm{m}} \cdot 2+12^{\mathrm{m}} \cdot 3=48^{\mathrm{h}} 48^{\mathrm{m}} \cdot 2
$$

The preceding epochs must, therefore, be increased by the amounts by which the angles increase daring this time. The artount of change of φ_{3} in 24 hours being $26 \circ .36$, the epochs α_{3} and ε_{3} must be increased by $63 \circ 47^{\prime}$, and those of a^{\prime} and ε^{\prime} by half this quantity. We therefore get, for the corrected values of the epochs,-

$$
\begin{array}{ll}
\alpha_{3}=17 \circ 39^{\prime} & \varepsilon_{3}=142 \circ .5 \\
a^{\prime}=30^{\circ} & \varepsilon^{\prime}=156^{\circ}
\end{array}
$$

18. Lunar nodal inequality.-In the averages of Table V, all the inequalities have been eliminated except that depending apon the longitude of the moon's node, φ_{4}. Taking in only one term of the small inequality depending upon φ_{4} in this case, the general expression of (1) becomes-

$$
\begin{aligned}
A_{2} & =\mathrm{A}_{0}\left\{1+k R_{4} \cos \left(\varphi_{4}-a_{4}\right)\right\} \\
& =\mathrm{A}_{0}+M \cos \varphi_{4}+N \sin \varphi_{4}
\end{aligned}
$$

With the values of A_{2} in Table ∇, and the corresponding valnes of φ_{4} belonging to the middle of the years, this equation gives 19 equations of condition for determining-

$$
\mathrm{A}_{\theta}=2.246 \mathrm{ft} . \quad M=-.0764 \mathrm{ft} . \quad N=-.0064 \mathrm{ft}
$$

Since in this case the period of the argument is divided into equal parts of 18.6 years, the value of $\varphi_{11}-\varphi_{1}$ in (3) is $19^{\circ} 20^{\prime}$, and hence we get, from (3), in this case $k=.094$.

With these values, we get, from (5),-

$$
\Delta_{0} R_{4}=.0770 \mathrm{ft} . \quad E_{4}=.0343 \mathrm{ft} . \quad a_{4}=-4 \circ 50^{\prime}
$$

With the preceding values, the preceding expression of A_{2} satisties the ralues obtained from observation, with a mean residual of .012 foot and a maximum of .027 foot. This is the usual order of residuals, and hence there is no sensible term depending upon $2 \varphi_{4}$.

We, in like manner, get for the expression of L_{2} in this case,-

$$
\begin{aligned}
\mathrm{L}_{2} & =B_{0}+k B_{4} \sin \left(\varphi_{4}-\varepsilon_{4}\right) \\
& =B_{0}+M \sin \varphi_{4}+N \cos \varphi_{4}
\end{aligned}
$$

With the valnes of L_{2} in Table V, and the corresponding values of φ_{4}, this gives 19 equations of conditions, from which we get-

$$
B_{0}=11^{\mathrm{h}} 22^{\mathrm{m}} .8 \quad M=-3^{\mathrm{m}} \cdot 63 \quad N=1^{\mathrm{m}} \cdot 60
$$

These give, by (8), using the value of k above,-

$$
B_{4}=-4^{\mathrm{n} .2} \quad \varepsilon_{4}=-30^{\circ}
$$

With these values, the expression of L_{2} above represents the average values from observation, with a mean residual of $2^{\mathrm{m}} .2$ and a maximum of $7^{\mathrm{m}} .0$. If we compare these residuals with those of all the preceding cases, we find that, while all the others are nearly of the same order, these are about three times larger. By comparing also the values of L_{2} in Table V with those of the other tables, it is found that the former are much more irregular. These irregularities must be caused by errors in the time used, which causes the averages of the different years to be several minutes in error in some cases. A part may also be due to personal errors in making the reductions, whicin were probably made by different persons in different years. All such errors would be eliminated mostly from the arerages in all the other tables, and would show themselves only in the yearly averages.

By applying Peirce's criterion to the residuals, it is found that it rejects two of the yearly averages, regarded as one observation; and, from the remaining 17 , we then get, instead of the above values,-

$$
B_{4}=-3^{\mathrm{m} .3} \quad \varepsilon_{4}=-170.6
$$

There is no sensible correction of the epochs in this, as in the former cases, on account of the very slow rate of change of the angle φ_{t} in this case.
19. Solar declinational and parallactic inequalities.-The averages of Table VI contain two inequalities; the one depending upon the sun's anomaly, and the other upon its longitude, or declination. The period of the former is seusibly double that of the latter. These inequalities are very small, and the general expression of $A_{2},(1)$, in this case, becomes-

$$
\begin{aligned}
A_{2} & =A_{0}\left\{1+k R_{6} \cos \left(\varphi_{6}-a_{6}\right)+k^{\prime} R_{7} \cos \left(\varphi_{7}-\alpha_{7}\right)\right\} \\
& =A_{0}+M \cos \varphi_{6}+N \sin \varphi_{6}+M^{\prime} \cos \varphi_{7}+N^{\prime} \sin \varphi_{7}
\end{aligned}
$$

With the 12 values of A_{2} in Table VI, and the corresponding values of φ_{6} and φ_{7} belonging to the middle of the months, we get from this 12 equations for obtaining-

$$
\Lambda_{0}=2.221 \mathrm{ft} . \quad M=-.021 \mathrm{ft} . \quad N=-.020 \mathrm{ft} . \quad M^{\prime}=.004 \mathrm{ft} . \quad N^{\prime}=.008 \mathrm{ft} .
$$

In this case, each of the 12 monthly groups of observations include 30° of the angle 96 and 60° nearly of φ_{7}; and hence, by the first of (3), we get $k=.988$ and $k^{\prime}=.953$. The corrections, however, depending upon these quantities, although larger than usual proportionally, are of no consequence on account of the smallness of the inequalities to which they are applied.

With these values, we get, from (5), -

$$
\begin{array}{lll}
\Delta_{0} R_{6}=.029 \mathrm{ft} . & R_{6}=.013 \\
\Delta_{0} R_{7}=.009 \mathrm{ft} . & R_{7}=.004 & a_{6}=224^{\circ} \\
a_{7}=1170
\end{array}
$$

With these values, the preceding expression of A_{2} represents the observed values, with a mean residual of .006 foot and a maximum of .012 foot. The co efficient of the last inequality in the preceding expression is so nearly of the order of the residuals that it can scarcely be regarded as a real inequality.

In like manner, we get, in this case, for the expression of $L_{2},-$

$$
\begin{aligned}
L_{2} & =B_{0}+k B_{6} \sin \left(\varphi_{0}-\varepsilon_{6}\right)+k^{\prime} B_{7} \sin \left(\varphi_{7}-\varepsilon_{7}\right) \\
& =B_{0}+M \sin \varphi_{6}+N \cos \varphi_{6}+M^{\prime} \sin \varphi_{7}+N^{\prime} \cos \varphi_{7}
\end{aligned}
$$

With the valnes of L_{2} in Table VI, and the corresponding values of the angles, we, in like manner, obtain 12 equations for determining the values of-

$$
B_{0}=11^{\mathrm{h}} 23^{\mathrm{m}} .8 \quad M=-1^{\mathrm{m}} .22 \quad N=1^{\mathrm{m}} .72 \quad M^{\prime}=-0^{\mathrm{m}} .95 \quad N^{\prime}=0^{\mathrm{m}} .33
$$

With these values we get (8),-

$$
\begin{array}{ll}
B_{6}=2^{\mathrm{m}} .2 & \varepsilon_{6}=196^{\circ} \\
B_{7}=1^{\mathrm{m} .0} & \varepsilon_{7}=-19^{\circ}
\end{array}
$$

20. Mean sea-level.-The average of high and low waters, denoted by H_{0}, in the tables of averages, are not the heights of the true mean sea-level, as has been stated, when the tides are affected by shallow-water terms. Theory does not give any half-monthly inequality in the beight of mean sea-level in deep-water tides; and all the other inequal ties, depending upon parallax and declination, are so extremely small that it is impossible to deduce them from the preceding tables of averages which are affected by large shallow-water terms. There is a theoretical shallow-water component, with a half-monthly period, which would affect the mean level, and this may, in some cases, be sensible; but the column in Table I headed δH_{0} does not represent this inequality, but is the effect mostly of the quarter-diurnal components which are not eliminated in the averages of high and low water.

The column headed H_{0} in Table ∇ shows that there was a cbange of more than three feet in the zero-plane of the tide-gauge between the beginning and the end of the series. An abrupt change of about 1.1 feet seems to have been made about the middle of the year 1861, and another of nearly two feet some time during the year 1871. On account of these changes, we cannot determine whether there has been any secular change of sea-level during the time of the series of observations.

DIURNAL TIDE.

21. The diarnal tide can be determined from the averages of Table IV, which are given separately for each of the high aud low waters of a lanar day. If there were no ter-diurnal tide, or quarter diurnal and other shallow-water components, we should have, for the mean values at the bottom of that table, $k_{1}=\lambda_{3}, \lambda_{2}=\lambda_{4}, H_{1}=H_{3}$, and $H_{2}=H_{4}$. In obtaining the values, therefore, of $\frac{1}{2}\left(\lambda_{1}-\lambda_{3}\right), \frac{1}{2}\left(\lambda_{2}-\lambda_{4}\right), \frac{1}{2}\left(\boldsymbol{H}_{1}-H_{3}\right)$, and $\frac{1}{2}\left(\boldsymbol{H}_{2}-\boldsymbol{H}_{4}\right)$, due to the effects of the diurnal tide alone, we can correct in a great measure for the effects of all the other components of short period by subtracting from each of these differences the differences of the means at the botton. For instance, we must diminish each of the 24 values of $\left(\lambda_{1}-\lambda_{3}\right)$ by $-4^{m} .0$; and so of the others. Since, moreover, the averages belonging to low waters belong to a time equal to six lunar hours later than those of high waters, and it is necessary, in determining the amplitude of the diurnal tide, to have these quantities for the same absolute time, we have applied a small correction by means of proportional parts of the difierences to those of the low waters, in order to reduce them to the times of high waters. With the preceding corrections or reductions applied to the differences of Table IV, we obtain those of Table VII.

TABLE VII.
Containing averages from which the diurnal tide is deduced, and also the corresponding theoretical values.

λ	Oloservation.						Theory.			
	$\frac{1}{2}\left(\lambda_{1}-\lambda_{3}\right)$	$\frac{1}{2}\left(\lambda_{2}-\lambda_{4}\right)$	$\left.{ }^{(1)} H_{1}-H_{3}\right)$	$\frac{1}{2}\left(H_{2}-H_{4}\right)$	\boldsymbol{M}_{1}	Δ	$\frac{1}{2}\left(\lambda_{1}-\lambda_{3}\right)$	$\frac{1}{8}\left(\lambda_{2}-\lambda_{3}\right)$	\boldsymbol{M}_{1}	Δ
-	m.	m,	feet.	feet.	feet.	0	m.	m.	feet.	\bigcirc
7.5	+ 5.6	± 8.2	+0.334	+ 0.046	0.386	7.9	+1.2	+ $\times 6$	0. 306	12.4
22.5	4.3	10.1	. 381	+. 018	. 382	2.7	$+0.5$	9.8	. 367	3.5
37.5	+ 3.4	10.6	. 403	-. 008	. 403	352.8	-0.2	10.3	. 410	35\%. 1
52.5	0.0	12.1	-424	. 073	433	350.3	1. 9	11.0	. 429	351.6
$66^{6} .5$	-2.0	12.5	. 385	. 129	. 405	341.4	3.3	9.9	. 421	346.4
82.5	4.0	120	. 367	. 100	. 381	344.7	2.6	9. 4	. 389	340.5
97.5	4.5	10.4	-330	150	. 353	335.4	4. 0	8.5	. 335	832.9
112.5	4.7	8. 2	- 225	. 163	. 276	324.0	4. 2	5.8	. 26%	321.9
1275	6.2	4.0	$+.101$. 162	. 191	302.1	4.2	+26	. 196	301.7
142.5	5.0	$+1.2$	--. 005	. 159	. 159	272.0	4.1	-0.1	. 151	269.6
157.5	5.5	-0.6	. 120	. 134	. 180	228.0	3. 4	3. 0	. 170	230.8
172.5	5.8	4. 1	. 184	. 086	. 203	205.0	2.2	9. 7	. 235	206.8
187.5	4.7	7. 5	. 294	062	. 360	191.9	1. 6	7.6	. 306	192.4
202.5	2.7	10.5	. 354	- . 014	. 355	182.3	-0.4	9.1	. 367	183.5
217.5	-0.5	12.3	. 407	+ .02\%	. 409	176.7	$+0.6$	10.8	. 410	177. 1
239.5	+2.7	127	. 452	. 108	. 469	166.5	2.8	11. 7	-429	171.6
247. 5	23	13.9	. 397	. 112	. 413	164.2	29	10.2	. 421	166.4.
262.5	2.7	12. 1	. 380	. 124	. 400	161.9	3. 2	9.8	. 389	160.5
277. 5	2.9	10.4	. 296	. 149	. 331	153.2	3. 8	7.6	. 335	152.9
292.5	4.2	7.5	. 208	. 182	. 276	138.7	4.7	5. 3	. 267	141.8
307. 5	5.1	4.4	. 118	. 158	. 197	126.7	4.0	3.0	. 196	121.7
322.5	6.0	-1.0	-. . 007	. 150	. 150	929	3.8	-0.2	. 151	89.6
337.5	4.7	+ 2.6	+ .055	. 100	. 114	61.0	26	+1.4	. 170	50.8
352.5	+5.6	+5.4	$+0.197$	$+0.070$	0. 209	19.6	11.8	+ 5.1	0. 235	26.8

By putting the sines of small arcs, or those differing but little from 180°, equal to the ares themselves, or their differences from 180°, and likewise the cosines of arcs differing but little from 90° or 270°, equal to the differences, and also veglecting the terms depending upon A_{3}, the amplitude of the ter diurual tide, since the effect of this has been corrected for, together with those of the shallow.water components in the tabular results above, we get, from Tidal Researches, (161), (162), and (325),-

$$
\begin{aligned}
\frac{1}{2}\left(\lambda_{1}-\lambda_{3}\right) & =\frac{M_{1} \sin \Delta}{4 A_{2}} \\
\frac{1}{2}\left(H_{1}-H_{3}\right) & =M_{1} \cos \Delta
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{2}\left(\lambda_{2}-\lambda_{1}\right) & =\frac{M_{1} \cos \Delta}{4 A_{2}} \\
\frac{1}{2}\left(H_{2}-H_{4}\right) & =M_{1} \sin \Delta
\end{aligned}
$$

in which M_{1} is the amplitude of the lunar diurnal tide; A is the time, expressed in arc, by which the high water of the diarnal tide follows that of the semi-diurnal tide next following the moon's upper transit; and A_{2} (=2.31 feet) is the mean amplitude of the semi-diurnal tide. The small inequality of \boldsymbol{A}_{2} depending upon longitude can be neglected in these expressions, since the quantities are all small. The expressions of $\frac{1}{2}\left(\lambda_{1}-\lambda_{3}\right)$ and $\frac{1}{2}\left(\lambda_{2}-\lambda_{4}\right)$ are in terms of the radius, and must be reduced to time.

With the values of $\frac{1}{2}\left(H_{1}-H_{5}\right)$ and $\frac{1}{2}\left(H_{2}-H_{4}\right)$ in the preceding table, the last two of the pre ceding equations give the corresponding values of M_{1} and Δ in the table. With these valnes of M_{1} and J, the first two of these equations give the computed values of $\frac{1}{2}\left(\lambda_{1}-\lambda_{3}\right)$ aud $\frac{1}{2}\left(\lambda_{2}-\lambda_{4}\right)$ in Table VII. These could not be expected to agree exactly with the observed values, since the latter, and likewise the data from which the former were computed, are all affected by the various irregularities not completely eliminated by the number of observations. But, besides these irregalar differ-
ences, a very small systematic difference is observable between the observed and compated values, which was to be expected, since the corrections for the shallow-water components were necessarily only partial and incomplete.
22. The values of M_{1} in the preceding table give an extraordinary result, which has never been brought out before in the discussion of the observations of any tidal station. The lunar diurnal tide has always been supposed to vanish at or near the time of the moon's crossing the equator; but the result obtained here shows that, in New York Harbor, the diurnal tide never vanishes, but that there is a minimum diurnal tide, with an amplitude of abont two inches, near the time of the moon's crossing the equator, while the amplitude of the maximum tide near the time of greatest declination is less than six inches. The theoretical explanation of this will be given farther on.

If, in Table VII, we put-

$$
M_{1}=A_{v}+A_{1} \sin \left(2 \lambda-a_{1}\right)+A_{2} \sin \left(4 \lambda-a_{2}\right)
$$

and determine, by methods heretofore adopted, the most probable values of the constants, we get-

$$
A_{0}=.306 \mathrm{ft} . \quad A_{1}=.141 \mathrm{ft} . \quad A_{2}=.018 \mathrm{ft} . \quad a_{1}=210.6 \quad a_{2}=29 \circ
$$

With these values, the preceding expression represents the observed values of M_{1} in Table VI, with a mean residual of .011 foot and a maximum one of .030 foot. This is the usual order of the residuals, depending upon the aneliminated irregularities of the observations; and both the smallness of the residuals and the small value of A_{2} show that the above expression represents very accuratels the true values of M_{1}.

Since the values of 2 in Table VII belong to the transit C over the Washington meridian, which is $45^{\mathrm{b}} 42^{\mathrm{m}}$ before the time of high water next following the moon's upper transit, to which time the values of M_{1} belong, the preceding epochs must be increased by the amount by which the angles change in that time, which, for 2λ, is 500.2 , and, for 4λ, twice that amount. With the preceding values of the coustants, and these corrections in the epochs, the preceding expression of M_{1} becomes, in feet,-

$$
M_{1}=.306+.141 \sin \left(2 \lambda-71^{\circ} .8\right)+.018 \sin \left(4 \lambda-129^{\circ}\right)
$$

This expression gives $M_{1}=.429$ foot for the maximum value, and $M_{1}=.147$ foot for the minimum value.

From the epochs in this expression of M_{1}, it is seen that the maximum of the diarnal tide occurs before the time of greatest declination, which is another unusual result in connection with this tide; for generally the maximum of the tide follows the time of the maximum of the force upon which it depends.

The first and principal periodic term in the expression above is a maximum when $\lambda=80^{\circ} .9$; and hence, as λ changes $13^{\circ} .18$ in a day, we have-

$$
\frac{90^{\circ}-80^{\circ} .9}{130.18}=0.690
$$

for the time in the decimal of a day by which the maximum occurs before the greatest declination, that is, before the maximum of the force; and the effect of the other small term does not change sensibly the time of maximum of the whole expression, since the epoch is such as to make it either a maximum or a minimum almost at the same time that the other is a maximum.

From an inspection of the values of Δ in Table VII, it is seen that the high water of the diurnal tide at the time of maximum and near the time of greatest declination, occurs very nearly at the time of high water of the semi-diurnal tide, but that near the time of the moon's crossing the equator, when this tide is a minimum, it occurs near the time of the low water of this tide; and hence it has a range of about six hours with regard to the time of the moon's transit.

COMPARISONS OF THEORY WITH OBSERVATION.

23. The potential of the disturbing forces giving rise to semi-liurual tides may be put into the form of (Tidal Researches, (35))-

$$
\boldsymbol{F}_{2}=\boldsymbol{N}_{z} \cos (2 \varphi+2 \pi)
$$

in which both the co-efficient, N_{2}, and the angle, φ, have inequalities depeading upon the time. The expression of the co-efficient is of the form (Tidal Researches, (34))-

$$
N_{2}=B_{2} C_{2} \Sigma_{i} P_{i} \cos \varphi_{i}
$$

in which B_{2} is a function of the latitude of the place, and C_{2} a known constant if the mass of the moon is known, and P_{i} expresses the ratios between the co-efficients of the several inequalities and the constant and mean co efficient to which $P_{0}=1$ belongs. Corresponding to these, we have the tidal expression (Tidal Researches, (96))-

$$
Y_{2}=A_{2} \cos \left(2 \varphi_{1}-I_{0_{0}}\right)
$$

in which the amplitude, \boldsymbol{A}_{2}, is expressed in the form-

$$
A_{2}=A_{0} \Sigma_{i} R_{i} \cos \left(\varphi_{i}-a_{i}\right)
$$

as already given in (1). The expressions of N_{2} and A_{2}, it is seen, are similar in form, and \boldsymbol{R}_{i} expresses the ratios between the co efficients in the inequalities of A_{2} and the mean constant amplitude, A_{0}, as P_{i} expresses the corresponding ratios in the forces. The values of α_{i} indicate the differeuces in the epochs of the angles of the inequalities in the forces and those of the corresponding tidal expressions.

The values of R_{i} and α_{i} belonging to the principal inequalities in the preceding expression have been obtained for New York Harbor, and it will now be interesting to compare them with the corresponding values in the forces; the values of P_{i} being given below, and the epochs to which a_{i} corresponds being 0. As the tidal observations of Boston Harbor and of Brest have also been discassed upon the same principle, and the values of R_{i} and a_{i} have likewise been determined for the principal inequalities, it will be interesting to have all in the same connection, for the sake of comparisons with each other and with the corresponding quantities in the forces. We therefore give the following values of P_{i}, belonging to a mass of the moon equal to $.012 \tilde{5}$, with the corresponding values of R_{i} and α_{i}, for New York, Boston, and Brest; those of New York being collected from the preceding pages, those of Boston being taken from the Coast Survey Report for 1868, and those of Brest from Tidal Researches, p. 184. The epochs of the two latter have been reduced to the times of high water, for which those of New York are given, by means of reductions similar to those in the preceding pages.

Values of P_{i}, and of R_{i} and α_{i} for New Fork, Boston, and Brest.

By comparing the values of R_{1}, R_{3}, R_{4}, and R_{11} with those of the corresponding values of P_{i}, it is seen that they are smaller for each of the three ports, and that those of New York and Boston are very much smaller, while those of Brest differ very much less. But the values of \boldsymbol{K}_{2} for each of the three ports are a little greater than that of P_{2} belonging to the forces.

H. Ex. 81 - 27

The values of the epochs, a_{i}, of the principal inequalities being positive, indicate that the maxima of the inequalities occur atter the corresponding maxima in the inequalities of the forces. By dividing the valnes of a_{i} by the daily change of the corresponding angles, we get the amount of this delay in the times of the maxima of the inequalities in the tides, from which it is seen that this is very different in the different inequalities of the tides of the same place, as well as very different in the same inequality for tides of different places. This amount of retardation, in the case of the first and principal inequality, has been called the retard, and, by Dr. Whewell, the age of the tide, upon the hypothesis that our tides are derived from those of the Southern Ocean, and that this delay in the time of the maximum is simply the time required for it to arrive as a free tidal wave to the ports of the North Atlantic. The great difference, however, in the retard of Boston and New York, now shown by the preceding results, entirely disproves this hypothesis.
24. The theoretical relation between R_{i} and P_{i} for deep-water tides, neglecting terms.of the third order, is (Tidal Researches, (97))-

$$
R_{i}=\frac{P_{i}+m_{i} E Q_{i}}{1+\bar{F}}
$$

in which E and F are unknown eonstants, to be determined from observation for each port. With the values of P_{i}, m_{i}, and Q_{i}, belonging to the first fuar inequalities, and introducing a correction of P_{i}, which has beet omitted above, for the correction of the moon's mass, μ, we get, for New York Harbor, with the values of \boldsymbol{R}_{i}, from observation,-

$$
\begin{aligned}
& .1982(1-F)=.4433-28.0 \delta \mu+\left(.1827-15.5 \delta_{\mu}\right) E \\
& .1753(1-F)=.1496+3.8 \delta_{\mu}-.0501 E \\
& .0467(1-F)=.0982+1.0 \delta_{\mu}+\left(.0479-0.5 \delta_{\mu}\right) E \\
& .0343(1-F)=.0370
\end{aligned}
$$

The first three of these equations are sufficient for the determination of the unknown constants and the correction of the moon's mass, and their solution gives-

$$
\begin{aligned}
& \mu=\frac{1}{66} \\
& E=-.963 \\
& F=-.245
\end{aligned}
$$

This value of μ we know is much too large, and its error is not due to errors of observation, but arises from the preceding conditions, which hold only for deep-water tides, not being applicable to the New York tides, which we have seen are affected by large shallow-water components. The large value of F, also, which is obtained in some places, is due to the effect of the shallow-water components; for it has been shown in Tidal Researches that the effect of these componeuts is to smooth

- down in some measure all the inequalities, which effect is represented by \boldsymbol{F}^{\prime} in the preceding expres. sion when it has a negative value. In deep-water tides the value of F is, perhaps, insensible, and it is very small at Brest.

The declination-inequality at New York Harbor, upon which the third of the preceding conditions is based, is very small, being little more than an inch; and the probable error (\$17), as dednced from the observations, amounts to one thirty-fifth part, and this would affect the determination of the moon's mass in about the same ratio; so that the probable error in the preceding determination from this source is probably not very large; and in ports where the declination-inequality is six times as large, as it is at Brest, the error in the determination of the moon's mass, arising from srrors of observation, would be proportionally decreased, and hence would be quite small. Almost
the whole weight of the determination is thrown upon this inequality, and it is little affected by small errors in the values of R_{1} and R_{2} obtained from observation. We hare reason, therefore, to think that the moon's mass would be accurately given by the preceding conditions, in the case of deep-water tides, having a large amplitude and consequently a large declination inequality; for the absolute amount of the probable error of this inequality as obtained from observatiou does not depend much upon the amplitude of the tide.

The shallow-water components affecting the preceding conditions are so numerous, and their relations to each other and to the components depending directly upon the forces, with regard wo amplitude and epoch, may be so different in different ports, that we do not know what their general tendency is; but it seems to be to make the moon's mass too great geverally, though they may no doubt have the contrary effect sometimes.

The preceding value of E is large, as in the case of the Boston tides, and has the same sign. The effect of this is to diminish the first and third inequalities, indicated by the values of R_{1} and R_{3}, and to increase the luoar parallactic inequality, of which the ratio to the mean tide is \boldsymbol{R}_{2}. The value of F is negative, as in the tiles of Boston Harbor, but much less. The effect of this is to diminish all the inequalities in the same ratio; but it does not diminish the parallactic inequality as much as it is increased by the term depending upon E, and the difference leaves the value of R_{2} a little greater than P_{y}. In the case of the first and third inequalities, the effects of the terms depending upon E and F are both iu the same direction, and heuce R_{1} and R_{0} are very moch less than P_{1} and P_{3}. The value of F, as has been stated, depends mostly, if not entirely, upon the effect of the shallow-water terms, and represents in the preceding expression of R_{i} only approximately the effect of those terms; and hence the preceding conditions, from the theory of deep-water tides, in the case of the New York tides, affected by shallow-water components, are best satisfied with a mass of the moon which is too large.

The value of F, obtained from the first three of the preceding equations, substituted in the last one, gives $R_{4}=-.0300$ instead of -.0343 , as obtained from observation. The difference corresponding to $.0043 \mathrm{~A}_{0}$ in the absolute co-efficient of the inequality, heing about only one-eighth of an iuch, may be regarded as falling within the limits of the possible errors of observation.
25. The values of the epochs, a_{i}, being positive in the first tbree principal inequalities indicates that the maximum of the tide follows some time after the maximum of the forces. The daily rate of increase of the angles φ_{i} being respectively $24^{\circ} .38,13^{\circ} .18,026^{\circ} .36$, by dividing the preceding values of α_{1}, a_{2}, and α_{3} by these quantities, we get, respectirely, $1.922,1.45$, and 0.61 days for the times that the maximum of the several inequalities in the tides follows that of the forces. These times differ very much among themselves, and are all moch smaller than in the case of the tides of Boston Harbor, in which, on the average, they amount to about two days. By the equilibriam-theory, these times should vanish, and by the theory of deep-water tides, neglecting quantities of a third order, which must be generally very small, these times should be the same for all the inequalities. These epochs, then, as well as the co-efficients of the inequalities, are no doubt much affected by the shal low-water components, aud the large differences observed are not due alone to these neglected quantities ol a third order in the theory of deep-water tides.

The value of a_{4} should be seusibly 0 , on account of the very long period of the fourth inequality ; and the small value, -40.8 , obtained from observation, falls within the limits of the possible errors of observation, for the epoch cannot be very accurately determined on account of the smallness of the inequality.
26. In the case of the sixth and seventh inequalities, the values of \boldsymbol{R}_{6} and \boldsymbol{R}_{7} differ but little from those of P_{6} and P_{7}, all being very small; but when we consider the epochs which in these inequalities of long period should by theory be sensibly 0 , we see that there is no correspondence between theory and observation; and this has been found to be the case generally at all tidal stations. The results obtained from observation have been supposed to be due in a great measure to meteorological causes connected with the different seasons; for, since the very small theoretical inequalities have a yearly and half-yearly inequality, the effects from meteorological causes would not be eliminated from the results in the discussion of the observations; but still it is not very clear how the mere range of oscillation of the tides should be affected sensibly by the different seasons.

By referring to the column headed δH_{0} in Table VI, it is seen that the height of the mean level of the sea is greater during the summer than the winter. This same anuual inequality iu the leight of the sea-level has been obtained in the case of the tides at Boston and at Brest, except that the maxima at the latter places seem to come later in the fall. A similar result has been also obtained in the case of the tides at Key West, Fla. The observed anuual inequality in the atmospheric pressure accounts for only a very small part of this inequality of the height of sea-level ; but the balance is probably caused by aunual changes in the winds and in the ocean-currents, which have an effect upon the mean sea-level.
27. From Tidal Researches, (99), we have, for the expression of the lunitidal interval,-

$$
L_{2}=\Sigma_{i} B i \sin \left(\varphi i-\varepsilon_{i}\right)
$$

We give below the ralues of B_{l} and s_{i} for the principal inequalities, as determined from observation for New York Harbor, and collected frow the preceding pages; and likewise the corresponding values for Boston Harbor and Brest, for the sake of comparison:-

New Tork.	Boston.	Brest.	New York.	Boston.	Brest.
$\boldsymbol{B}_{1}=-23^{\mathrm{m}}$. 1	-22m. 6	$-43^{\mathrm{m} .0}$	$\varepsilon_{j}=+380.9$	+ 490.5	+ 45.7
$B_{2}=+6^{\text {m. }} 0$	$+6^{\mathrm{m} .2}$	$+5 \mathrm{~m} .8$	$r_{2}=+550.3$	+ 720	$+83^{\circ}$
$B_{3}=-5^{\mathrm{m} .6}$	$+5^{\mathrm{m}} 3$	+ $3^{\mathrm{m} .8}$	$\varepsilon_{3}=+149^{\circ}$	$+60$	-580
$D_{4}=-3^{\mathrm{m}} 3$	- $2^{\text {w. }} 5$		$\varepsilon_{i}=-18^{\circ}$	- 50°	
$\boldsymbol{B}_{0}=-2^{m} .2$	- $3^{m} .9$	+ 0 m .5	$\varepsilon_{i j}=-54^{\circ}$	-73°	-53°
$B_{7}=+1^{\mathrm{m}}, 0$	$-0^{\mathrm{m} .6}$	- $\mathfrak{S m}^{\mathrm{m} .0}$	$\epsilon_{7}=-10^{\circ}$	- 10°	-60°
$B_{11}=+2^{m} .2$	+ 2×0	$+8 \mathrm{~mm} .1$	$\varepsilon_{11}=+52^{\circ}$	$+112^{\circ}$	$+85^{\circ}$
$\boldsymbol{B}_{12}=-0^{\mathrm{m}} .1$	+ $\mathbf{1 m}^{\mathrm{m}} 0$	+ $1^{\omega 0} 0$	$\varepsilon_{12}=+54^{\circ}$	$=50{ }^{\circ}$	-62°

The value of B_{1}, which is the co efficient of the half-monthly inequality, is very nearly the same at New York as at Boston, but is very much less than the value at Brest, which is very nearly the value for European ports generally. By comparing the value of a_{1}, given on a preceding page, with that of ε_{1} above, it is seen that the former is little more than half as great as the latter; and hence what has been called the age of the tides from the heights is much less than the age from the times, the former being, as has been found, 0.922 day, and the latter may be readily found to be 1.48 days. A like difference is seen in the case of the tides at Boston and Brest, but it is much less.

We have the following theoretical relatious, expressed in minutes, for the first three inequalities of L_{2} (Tidal Researches, (132,) (133)), which should be satisfied by observation:-

With the preceding values of B_{i}, ε_{i}, and a_{i}, obtained from observation, and also the preceding values of E and $\delta \mu$, obtained from the theoretical relations of the inequalities of the amplitudes of the tides, these equations are satisfied with the residuals annexed. But these relations, based upon the theory of deep-water tides, as those in § 24 , require too large a mass of the moon to satisfy them.

From the values of B_{4} and ε_{4} above, it is seen there is a small inequality in the Iunitidal interval, depending upon the moon's node, both at New York and Boston, and that the co-efficients and epochs of the inequality do not differ rery greatly at the two places. There is no correspond. ing inequality in the theoretical expression, unless it depends upon friction, which is as a greater power than the first power of the velocity; and, even upon this hypothesis, the epochs of the observed inequality, especially in the case of the New York tides, are not what theory would require. This inequality, therefore, which seems to be clearly brought out from the observations both of New York and Boston, does not seem to be satisfactorily explained by theory.

From the values of B_{6} and ε_{6}, it is seen that there is a considerable annual inequality at both New York and Boston in the lunitidal interval; while, in the theoretical expression, the aunual inequality is scarcely sensible, and the epochs do not at all correspond with those of observation. This inequality, therefore, as the corresponding one in the amplitude of the tides, must depend in some way upon meteorological causes. The theoretical semi-anoual inequality is also very small; but for this, observation gives likewise a rery small inequality.

The values of B_{11} at New York and Boston are small, while at Brest its value is four times as large. This is merely an inequality of the second order, iuchuded under the same argument with that of the half-monthly inequality, and the values of B_{1} and B_{11} show that the expression is much nore convergent at New York and Boston than at Brest.
28. In the averages of Table ILI, the effect of the solar diarnal tide is elininated, and the diurnal tide obtained belongs entirely to the moon. Neglecting the parallactic and nodal inequalities, which are also eliminated from the averages, the potential of the lunar force producing the dinmal tide may be resolved iuto two harmonic components of the form $K \cos i t$ and $K \cos i^{\prime} t$, to which correspond the tidal components (Tidal Researches, (164))-

$$
A \cos (i t-\varepsilon) \text { and } A^{\prime} \cos \left(i^{\prime} t-\varepsilon^{\prime}\right)
$$

in wbich-

$$
\begin{array}{lll}
A=\Delta_{0}(1+u E) & i=i_{0}+u & \varepsilon=L_{0}+u G \\
A^{\prime}=\Delta_{0}(1-u E) & i^{\prime}=i_{0}-u & \varepsilon^{\prime}=\mathbf{L}_{0}-u G
\end{array}
$$

In these expressions, the origin of t must bs taken so as to make $u t=-\frac{1}{2} \pi$ when the moon's longitude, λ, equals 0 , or $u t=0$ whea the moon has its greatest n orthern declination, and $u=.230$ in terms of the radius, has such a value that the period of $u t$ is equal to the period of the moon's tropical revolution. The values of $A_{0}, L_{0}, \boldsymbol{E}$, and \boldsymbol{G} can only be determined from observation.
29. By combining the preceding tidal components by means of the general formula (Tidal Researches, (22)), we get, by puttiug M_{1} for the resulting amplitude of the diurnal tide,-

$$
A \cos (i t-\varepsilon)+A^{\prime} \cos \left(i^{\prime} t-\varepsilon^{\prime}\right)=M M_{1} \cos (i t-\varepsilon+E)
$$

in which, since $(i t-\varepsilon)-\left(i^{\prime} t-s^{\prime}\right)=2 u t-2 n \theta-$

$$
\begin{gathered}
M_{1}=A_{0} \sqrt{2} \sqrt{1+u^{2} \varepsilon^{2}+\left(1-u^{2} \varepsilon^{2}\right) \cos 2(u t-u G)} \\
\tan E=-\frac{A^{\prime} \sin 2(u t-u \theta)}{A+A_{1} \cos 2(u t-u G)}=-\frac{(1-u \varepsilon) \sin 2(u t-u G)}{1-u \varepsilon+(1-u \varepsilon) \cos 2 u t-u G)}
\end{gathered}
$$

The value of M_{1} is a maximum when $u t=u G$ or $t=G$, and a minimum when $u t-u G=90^{\circ}$ The maximum of the tide, therefore, occurs at a time $t=G$ after the maximum of the forces. It has been found ($\$ 22$) that the value of G is negative in the New York tides, and equal to 0.00 of a day. From the preceding expression of M_{1} we get, for the maximum, $M_{1}=2 A_{0}$, and for the minimum, when $2(u t-u G)$ equals $\pm 180^{\circ}, M_{1}= \pm 2 u E A_{0}$. This occurs G days after the moon has passed the equator, which, in this case, is before it has passed, since G is negative. The diurnal tide, therefore, never vanishes when circumstances are such as to give a value to E, which makes the term $2 u E A_{0}$ sensible. The general expression, therefore, A_{s}, in Tidal Researohes, (97), when applied to the diurnal tide, is not strictly correct, since it neglects this quantity of a second order, and assumes that the tide vanishes when the moon is near the equator, as has always been supposed. This term, however, must generally be very small, if not entirely insensible, aud it was so found to be in the case of the tides of Boston Harbor. Peculiar local circumstances, however, may be such as to give E a very large value at some stations, and this must be the case in New York Harbor.
30. It was found from observation ($\$ 22$) that the maximum value of the amplitude of the lunar diurnal tide is $M_{\mathrm{I}}=.463$ foot, and the minimum value is $M_{1}=.185$ foot. Hence we have $2 A_{0}=.429$ foot and $\pm 9 u E A_{0}=.147$ foot. These, with the value of $u=.230$, already given, give $A_{0}=.214$ foot and $E= \pm 1.50$, which is very moch greater than the value of s in the semi-diurnal tide of New York Harbor ; aud this latter value is very much greater than the value belonging to European ports generally.

The preceding conditions do not determine the sign of E, and consequently they do not determine whether A or A^{\prime} is the greater amplitude. This can only be determined by comparing the epochs denoted by Δ in Table VII with those of the preceding expression, $M_{1} \cos (i t-\varepsilon+E)$, the resultant of the two harmonic components of the lunar diarnal tide, to which the results of Table VII belong; the solar diurnal tide and the inequalities of parallax, \&e., having been eliminated from the averages by the grouping of the observations. With the preceding values of i and ε, we have-

$$
M_{1} \cos (i t-\varepsilon+E)=M_{1} \cos \left(i_{v} t+u t-L_{0}-u G+E\right)
$$

The expression of the mean semi-diurnal tide being $A_{0} \cos 2\left(i_{0} t-L_{0}\right)$, we shall have, for the time by which the diurnal tide follows the semi-diurnal, expressed in arc,-

$$
\Delta=L_{0}+u G-E-\lambda+\frac{1}{2} \pi-L_{0}
$$

patting for $u t$ its equivalent $2-\frac{1}{2} \pi$. In these expressions, the true longitudes may be used instead of the mean without seusible error where the observations belong to true longitudes. The value of Δ given by this expression should agree with that in Table VII, given by observation. The value of L_{0} in time, which is the mean lunitidal interval of the semidiurual tide, has been found to be $8^{\text {h }} 7^{\mathrm{m}} .2$.

It is found by trial that the results given by this expression of 4 above cannot correspond with those of Table VII unless $A>A^{\prime}$ in the preceding expression of $\tan E$, which enters into A; and hence that the preceding ralue obtained for E must be positive. By putting L for the constant part of the expression of A, we have-
in which-

$$
A=L-E-\lambda
$$

$$
L=\mathrm{L}_{0}+u G+\frac{1}{2} \pi-L_{u}
$$

If we now compute the values of E by means of the preceding expression of $\tan E$ for each of the 24 values of λ given in Table V1I, putting $E=1 . \overline{50}$, and substitute them in the preceding expression of Δ, and compare the results with the 24 values of Δ in Table VII, we obtain 24 equations for determining the value of the unknown quantity L; and this being determined, each of the 24 values given by the preceding expression of Δ should agree with those in the table within the limits of the possible errors of observation. In this manner, we obtain $L=71^{\circ} .3$. With this value of L, and the computed values of E for each of the 24 values of λ, we get the computed values of Δ in Table VII. The values of λ to be used in these computations are those of Table VII, corrected for the time from transit C, to which those in the table belong, to the time of high water, which, as shown in § 22 , is $25^{\circ} .1$. It must be remembered, also, that in the values of $u t=\lambda-\frac{1}{2} \pi$, this corrected value of λ of Table VII must be used in both the expressions of M_{1} and $\tan E$ preceding. With the value $\varepsilon=1.50$, before determined, and the other known quantities in the preceding expression of M_{1}, we get, for the 24 values of $u t=\lambda-\frac{1}{2} \pi$, the 24 computed values of Δ in Table VII.
31. By comparing the values of M_{1} and Δ in Table VII, computed from the preceding formula, with those which had been obtained from the differences of the observed times and heights of upper and lower transits, the differences between these values of M_{1} and Δ are mostly those only depending upon the uneliminated errors of observation. In the comparisons of the two sets of values of Δ, a small systematic difference is discernible, with a maximum of about 20 . This, no doubt, depends apou small errors in A, as determined from observations, resulting, as has been stated, from the effects of the shallow-water tides not having been completely corrected for; for
an error of 2° in the epoch of a tide, with an amplitude of only about three inches in the mean, implies an error only equivalent to about 0.1 inch in amplitude. The result completely verifies the truth of the preceding theory of this singular tide of New York Harbor, as well as the correctuess of all the formule used in the preceding development and explanation of $i t$.

With the preceding values of A_{0} and E, and the known value of u, we get, from the expres sions of A and $A^{\prime}(\S 28),-$

$$
\begin{aligned}
& A=.214 \mathrm{ft} .(1+.230 \times 1.5)=.288 \mathrm{ft} \\
& A^{\prime}=.214 \mathrm{ft} .(1-.230 \times 1.5)=.140 \mathrm{ft}
\end{aligned}
$$

32. The value of $E=1.5$, determined from the lunar diurnal tide, enables us to determine the solar diurnal tide, which has not beeu deduced from the discussion of the observations. In the case of one barmonic component of the solar diurnal tide, the value of u is the same as in the lunar, and the two exactly coincide. The value of u for the other component, on account of the very slow motion of the sun in longitude, differs but little from it, and is .196 (Tidal Researches, § 28). Denoting, therefore, the amplitudes of the two solar components by a and a^{\prime}, and putting the ratio between the lunar and solar forces equal 0.45 , we shall have-

$$
\begin{aligned}
& a=.214(1+.230 \times 1.5) \times 0.45=.130 \mathrm{ft} . \\
& a^{\prime}=.214(1+.194 \times 1.5) \times 0.45=.124 \mathrm{ft} .
\end{aligned}
$$

When the two components coincide at the times of the sun's greatest declination, we have a solar diurnal tide with an amplitude of $a+a^{\prime}=.254 \mathrm{ft}$., and at the time, or very nearly, of the sun's crossing the equator, a diurnal tide with an amplitude only of $a-a^{\prime}=.006 \mathrm{ft}$. The solar diurnal tide, therefore, sensibly vanishes when the sun is on the equator.

PRACTICAL APPLICATIONS.

33. We have now, in the preceding tables of average quantities, and the constants determined from them in the preceding pages, all the necessary data for constructing tables for the computation of a tidal ephemeris of the heights of high aud low waters and the times of their occurrence. We shall give here, however, on! y tables for the higb waters, since the heights and times of bigh water merely are given in the tidal ephemeris published by the Coast Survey. In constructing these tables, we shall neglect the most of the small inequalities of the secoud order, since these inequalities are always very small, and are especially so in New York Harbor, since the amplitude of the tide there is small, and these inequalities are proportional to the whole amplitude of the tide. Neglecting these numerous inequalities, and giving tables for high waters only, we shall be able to make the tables and the whole method of computing the tidal ephemeris very much more simple than that which has been given for the tides of Boston Harbor. In the latter case, a method of computing the tidal ephemeris as accurate as possible was needed for making accurate comparisous between theory and observation. The following tables and metbod being designed merely for computing a tidal ephemeris for practical purposes, the neglect of the small inequalities referred to above, which, in the case of New York Harbor, can rarely, in the aggregate, amount to more than one inch in the heights of the tides, or to more than one or two minutes in the times, can be of no consequence, especially as the abnormal inequalities of winds and changes of barometric pressure, which cannot be taken into account in the predictions of the tides, frequently amount to ten times these neglected quantities.
34. The following tables are so arranged as to include in the same table the inequalities in both the amplitude of the tide and the changes of mean level, and likewise the effects of the shal-low-water terms, so far as they affect the heights and times of high water. They also include all the inequalities of a second order depending upon the same argument in the tables of siugle entry. The principal inequality of the second order in the lunitidal interval depends upon the moon's transit and parallax. This is an inequality of about three minutes at the maximum, and this has been taken into account by means of a table of double entry (Table I, Appendix).

By making the lunar parallax and declination the arguments in the tiables, we are enabled to iucluding a great number of terms of a second order of the inequalities which arise in developments into expressions with circular arguments. In this way, the effects of all the terms in the expression
of the lunar parallax are included in the tables having the parallax for an argument; and the effects depending upon the longitude of the moon's node are included in the tables having the declination for the argument. In these convenient arrangements, however, some slight sacritices of theoretical accuracy have to be made; but they are too small to be of any cousequence.
35. In the tables given in the Appendix for compating the tidal ephemeris,-

Arg. I is the apparent time of the moon's transit over the meridian of Washington next preceding the time of high water;
Arg. II is the moou's parallax one lunar day preceding the time of the moon's transit, used as Arg. I;
Arg. III is the moon's declination one lunar day preceding the time of transit, as in Arg. II; Arg. IV is the moon's parallax 1.5 lunar days after the time of transit, used as Arg. I; Arg. V is the moon's right ascension at the time of transit, as taken in Arg. I;
Arg. VI is the moon's declination 1.5 lunar days after the time of transit thus taken.
The mean height of sea-level used in the following tables is $\mathbf{4 . 4 5}$ feet, which is the average given for the last four years in Table V, and therefore corresponds to the zero plane at the close of the series, supposing that it remained unchanged these four years.

DIREUTIONS FOR COMPUTING A TIDAL EPHEMERIS.

Directions for computing a tidal ephemerif will be best understood in connection with the example given in the Appendix. The column headed A, is the mean time of the moon's transit over the meridian of Washington, taken from page 330 of the American Ephemeris. The column a contains the equation of time for the time of transit, taken from page 324 of the Ephemeris. $A-a=$ Arg. I, omitting the days, is the apparent time of the moon's transit. Arg. II is the moon's parallax at the time of transit, obtained by interpolation from page 337 of the Ephemeris, and entered in the column one day in adrance; that is, the parallax belonging to $1^{\text {d }} 3^{\text {h }} 57^{\mathrm{m}} .6$ is entered in the next place opposite $2^{4} 4^{\text {li }} 40^{\text {ru }} .7$, and so on ; so that the parallax used is that belonging to the time preceding the time of trausit by one lunar day. Arg. IV is the parallax, taken 2.5 lunar days in advance, as it is entered in the column headed Arg. II; that is, one and a half lunar days after the time of transit. This is obtained with sufficient accuracy from Arg. If by means of interpolation, taking into account first differences only. Arguments III and V are the moon's declination and right ascension at the time of transit, taken from page 6 of the American Ephemeris for Greenwich, adding $5^{\text {h }}$ to the time of Washington transit used as an argument, for reduction, approximately, from Washington to Greenwich time. Thus, for the first date in the example, in the column A add 5^{h}, and we bave, approximately, $1^{\mathrm{d}} 9^{\mathrm{h}}$, corresponding to which, we get from the Ephemeris, page 6, the declination and right ascension in the columns headed Arg. III and Arg. V; but the declina. tions are placed one day in advance, as in the case of Arg. II. Arg. VI is Arg. III taken 2.5 lunar days in advance, as in the case of Arg. IV with regard to Arg. II. With Arg. I and Arg. II, take a from Table I; and with Arg. IV and Arg. V, take from Table II the parallactic and declination inequalities, denoted by b and c in the headings of the columns in the example. With the month as an argument, then take from Table II the annual inequality, and place it in the column headed d. The numbers in the table are for the middle of the months, and, for other parts, small corrections can be made by means of the differences. Then take the sums of $A+a+b+c+d+19^{4}=S$, and enter them in the colnmn headed N, leaving intermediate spaces tor the interpolations to lower transits. The 19^{b} is composed of 12^{h}, to reduce the astronomical time in A to civil time, and of 7^{h}, which, together with the constants in the tables, make out $8^{1 /} 7^{\mathrm{m}} .2$, the mean lunitidal interval. The column S, therefore, is civil time; and, when the hours exceed 12 , the time is in the afternoon. The larger figures in d^{1} and Δ^{2} are the differences by means of which the interpolations are made. The interpolated numbers are obtained by adding $\left(\frac{1}{2} \Delta^{1}-\frac{1}{8}{ }^{2} d\right)$ to the preceding number. The smaller figares in J^{1} and J^{2} are the two terms of the preceding expression used in the interpolation. The columns headed δ are the differences after interpolation. In these differences, the day and the half day, or $12^{\text {h }}$, are not writteu in the example of computation, but borne in mind in making the interpolations.

From the latter part of Table II, with Arg. V now take the effect of the huar diurnal tide, and enter it in the column m; and, from Table IN, with the bour of transit as one argament and the month as the other, take the effect of the solar diurnal tide, and enter it in the column n. The sum of $m+n=s$ is then interpolated for the intermediate values belonging to the lower transit, and these, it must be borne in mind, must be taken with the contrary sigus; that is, where s is added to S for upper transits, it must be subtracted for lower transits, and viee versa. In this way, the columu headed t. h. v. is obtained, which, taken in connection with the days and hours of S, is the time of high water, the decimals of a minute being neglected.

In precisely the same manuer are the accented quantities talien from the same tables, using the columns headed "Heights" instead of "Times", except that n " is taken from Table III instead of Table IV. We then enter $a^{\prime}+b^{\prime}+c^{\prime}+d^{\prime}+5.00 \mathrm{ft} .=S^{\prime}$ in the column headed s^{\prime}, and then procedd with the interpolations for lower transits, and with the corrections for the effects of the diurnal tide, in the same manner as in the case of the times. The constant 5.00 ft ., together with the constants in the tables, is the mean height of high water above the zero-plane. The final result, in the column headed $h . h . w$. , is the height of high water above the zero of the tide-gauge, as it stood at the close of the series of observations.

Of course, no tidal theory or tide-tables can take into account the abnormal meteorological disturbances of winds and changes of barometric pressure, which are frequently quite large, and differ very much in different ports for the same metcorological changes. The results obtained, therefore, by the preceding directions, although desigued to be near approximations to the true times and heights of the tides in an undisturbed sea, will necessarily differ considerably from the observed times and heights in iudividual cases.

Very respectfully, yours,
Capt. C. P. Patterson, Superintendent of the United States Coast Survey.
H. Ex. $81-28$

APPENDIX CONTAINING PRACTICAL TABLES FOR COMPUTING THE HEIGHTS AND TIMES OF HIGH WATER.

TABLE 1.
For obtaining the half-monthly inequalities in the height of high water and the lunitidal interval.

Moon's transit.	Inequallty in beight: Arg. I.	Inequality in the lunitidal interval: Arg. I and II.							
		Moon's parallax.							
		540	55	50°	57°	\$8 8°	59°	60°	61°
h. m.	Feet.	n.	m.						
0.0	1. 00	25.8	25. 4	25.0	24.6	24.3	24.0	23.6	23.2
(1) 30	1. 01	21.0	21.0	20.9	50.7	20.6	20.4	20. 2	20.1
10	0. 97	16. 6	15.6	16, i	16. 8	16.9	17.0	17,0	17.1
130	0.90	12.6	12.8	13.0	13.3	13.5	13.7	14.0	14.4
20	0. 82	9.0	9.4	9. ह	10.5	10.9	11.3	11.7	12.0
930	0.75	6.3	6. 8	\%. 3	7.9	8.4	9.0	9.5	10.0
30	0.67	4.0	4.6	5.3	6.0	6.6	7.3	7.9	8.5
330	0.59	2.2	3.0	3.7	4. 5	5. 2	6. 0	6. 7	7. 4
40	0.52	1.3	2.0	2.8	3. 6	4.4	5.2	6.0	6.7
430	0. 46	0.8	1. 6	2.4	3.1	3. 9	4. 6	5.4	6. 3
50	0.38	0.4	1. 2	2.0	2. 8	3.6	4.4	5.2	6.1
530	0.20	0.1	1.0	1. 8	2.6	3. 4	4. 2	5.1	6.0
60	0. 20	0.6	1.4	2.3	3.1	4.0	4.8	5.7	6.6
is 30	0.14	3.3	4.0	4.8	5.5	6.2	7.0	7.7	8.4
70	0.11	9.0	9.4	9.8	10.3	10.7	11.1	11.5	12.0
730	0.12	18.0	18.0	18.0	18.0	18.0	12. 0	18.1	17.9
- 0	0.17	27.8	27.3	26.8	26. 3	25.3	27, 3	24.8	24.4
830	0. 25	36.0	35.1	34. 2	33. 3	324	31.5	30.6	29.7
\% 0	0. 36	41.5	40.4	39.3	38.2	37.1	36. 0	34.9	33.8
(1) 30	0.43	43.2	49.0	40.8	39.6	38.5	37.3	36.1	35.0
100	0. 62	42.2	41. 2	40. 2	39.2	38.1	37.1	36.1	35.0
1030	0. 75	39. 5	38.6	37.7	36. 7	35.8	34. 9	34.0	33.0
110	0.85	35.4	34.6	33.8	33. 0	32.2	31.4	30.6	29.7
11 3n	0.94	30.7	30.1	29.5	28.9	28.3	27.7	27.1	26. 5
120	1.00	25.8	25. 4	25.0	24. 6	24.3	24.0	27.6	23.2

TABLE II.
For obtaining the lunar parallactic and declinational inequalities and the annual inequality of the height and time of high water, and the effects of the lunur diurnal tide upon the same.

Note.-When the dechation is south, or the right ascension more than $12 h$, the sigus of the inequalitios must be reversed. When the right ascension is more than $12 h$, the table is entered with the exeess over $12 h$ as the argument. The sign of the eflect of the diurual tide must be reversed for the high water immediately following the lower trangits of the moon.

TABLE III.

For oltaining the effect of the solar diurnal tide upon the height of high water for every hour of the moons transit, and the first of each month, expressed in hundredths of a foot.

Montle.	Hours of moon's trausit in astronomical time.																								
	0	1	$\dot{2}$	3	4	5	6	7	8	9	10	11	12	13	14		16		17	18	19	20	21	22	23
Jan			+20	$+15$	+10	-		-10	15	-20	-23	-25	-25	--23	-20	-15	-10		3	+3	$+10$	+15	$+20$	+23	-25
Fob					7	2			12	14		20	30	18		12	7		2	2	7	12	14	13	20
March			$+6$	5	+3	+1	-1	3		-6	- 8	9	-9	-8					- 1	+1	$+3$	$+5$	$+6$	+8	+ 9
April.			- 4		-1	- 1	$+1$	$+1$		$+4$	$+5$	$+5$	+ 5	$+5$	+ 1	$+3$	+		$+1$	-		3		- 5	- 5
May...	15	14	13	10	6	2		6	10	13	14	15	15	14	13	10	6		2	2	6	10.	13	14	15
June	24	23	18	14	9	3	3	9	14	18	${ }^{23}$	24	24	23	18	14	9		3	3	9	14	18	23	24
July ..	25	23	20	15	10	3	3	10	15	20	${ }^{23}$	25	25	23	20	15	10		3	3	10	15	20	23	25
Aug...	20	18	15		ح	-	2	7	12	15	18	21	20	18			7		2		7	12	15	18	20
Sept....	-9	8	6		- 3	- 1		+3		$+6$	+8	+9	+9	+8	+6	$+5$	$+3$		$+1$	-	- 3	-5	-6	-	-9
get....	$+5$	4	3		$+1$		- 1				-4	- 5	-5			-2	-1		1	-1	\div	+2	+3	$+5$	+5
Nor...	15		12		6	2					14	15	55	14			6		2	2	6	10	12	14	15
Dec...	+24	23	$+1{ }^{+}$	+14	+ 9	$+3$	- 3	- 0	-14	-18	- 3	-24	-21	-23	-18		-9		- 3	+ 3	$+9$	+14	+18	+23	+24

* Nore.-For lower transits, the signs must be reversed.

TABLE IV.
For obtaining the effect of the solar diurnal tide upon the time of high water for every hour of the moon's transit, and for the first of each month, expressed in tenths of a minute.

Mouth.	Hours of moon's transit in astronomical time.																							
	0	1	2	3	4	5	6	7	\otimes	9	16	11	12	13	14	15	16	17	18	19	20	21	22	23
Jan.	- 6	-17	-24	-27	-29	- 30	-30	- 29	\cdots	-24	-17	- 6	+ 6	+17	$+24$	+27	+29	+30	$+30$	+29	$+27$	$+24$	$+17$	+ 6
Feb. .		12	18	2	24	24					13			13	18	22	24	24	24	24	22	18	12	
March.		j	- 7		$-^{-10}$	-10		${ }^{-10}$		- 7	- 5	-2	+ 2	$+5$	+ 7	$+9$	$+10$	+10	+10	+10	$+9$	+ 7	$+5$	+2
April	+1	$+3$	4		+ 6		6	+6	+5	$+4$	+3	$+1$	1	3	-	5	-6	-6	-6	-6			- 3	1
May..		9	13	16	19	20	20	20	19	16	11	4	4	11	16	19	20	20	20	19	16	13	9	4
Jume	5	15	22	2	27	28	93	28	26	22	16	6	6	16	22	26	28	28	28	27	25	22	15	5
July	6	17	24	27	29	30	30	29	27	24	17	6	6	17	24	27	29	30	30	29	27	24	17	6
Ang.	5	12		22	24	24			22	18	13	5	5	13	18	22	24	24	24	24	22	18	12	5
Sept...	+2	$+5$	+ 7	+9	$+10$	$+10$		$+10$	$+9$	+ 7	+ 5	$+2$	-2	-5	-7	-9	-10	-10	-10	-0	-9	-	-	2
Uct....	-1													+ 3	+ 4	$+5$	+	+ 6	+6					+1
Nov.	4	5	13			9									16	19	20	20	20	19	16	13	9	
Dee	5	-15	-22	-25	-27	-28	-28	-23	-26	-22	-16	-	6	+16	+22	+2	+28	$+$	+28	+27	+25	+20	$+15$	+6

Note.-For lower trabsits, the signs mast be reversed.

EXAMPLE OF THE COMPUTATION OF A TIDAL EPHEMERIS FOR TUE FLRST PART OF JANUARY, 1876.

APPENDIX No. 13.

REPORI ON THE TRANSI' OF VENUS EXPEDITION TO JAPAN, BY GEORGE DAVIDSON, ASSISTANT IN THE UNITED STATES COAST SURVEY.

United States Coast Survey Service, Suboffice, San Francisco.

Dear SIR: In compliance with your request, I make the following report to you in relation to my work on the Transit of Venus Expedition to Japan in December, 1874.

I was ready to leave San Francisco by the second steamer of July, but, in accordance with your instructions to leave a plan of operations for all the parties on this coast during my absence, I was detained until the end of August, and reached Yokohana on the 24 th of September. This delay compelled the abandonment of my project to observe the transit from a high monutain and in a locality where the chances for good weather were the greatest, and I determined to occupy a station at Nagasaki, where I could immediately connect with one end of the cable between Nagasaki and Wladivostok, for the determination of the telegraphic difference of longitude. The organizatiou of the party was as follows: Prof. George Davidson, United States Coast Survey, chief astronomer, in charge of the party; Mr. O. H. Tittmann, United States Coast Survey, first assistant astronomer ; Mr. W. S. Edwards, United States Coast Survey, second assistant astronomer; Mr. S. R. Seibert, United States Treasury Department, ehief photographer; Mr. H. E. Lodge, Boston, first assistant photographer ; Mr. F. H. Williams, Boston, second assistant photographer; Mr. Uyeno, of Nagasaki, third assistant photographer; Mrs. George Davidson, recorder ; Master George F. Davidson, recorder. The three last named were in addition to the original organization, as I was too short-handed.

To the Japanese government I had proposed that several of the younger Japanese officers or students should accompany my party to witness the operations and study the methods and means employed in such work. The following gentlemen were appointed to accompany me: Lieut. K. Otomo, Imperial Japanese Navy; Midshipman K. Isono, Imperial Japanese Navy; Mr. T. Magome, Mombusho, Tokio. It was also arranged that Prof. David Murray, LL.D., Ohief Conncillor of the Educational Department of Japan, and Mr. Y. Hatakeyama, director of the Imperial College, should join the party December 1. Previous to that date, Oapt. Narvo Yoshi Yanagi, Chief of the Burean of Hydrography of the Navy Department, came from Tokio to witness the transit and longitude-experiments. Captain Yanagi is esteemed one of the most learned men in Japan.

Messrs. Yanagi, Murray, Hatakeyama, and Magome were required by their government to make special reports of the observations of our work; and from Captain Yanagi I received authority to procare for his department the instruments necessary for a small observatory at Tokio.

Through the kindness of Dr. Murray, I readily obtained the necessary aathority from the government to examine and locate my station in any part of the empire, and to use the telegraphic lines for the business.

I arrived at Nagasaki October 6. Here the cable connects with Wladivostok and the southern parts of China. The previous three months had been characterized by continuons rains and heary typhoons, one of which was very disastrous; but the weather seemed changed for the better.

After an examination of the hilly country immediately surrounding the bay upon which Nagasaki is sitoated, I selected a steep hill, 850 feet above the bay and about one mile soath of the southern part of the town. I obtained permission from Miyagawa, Kenrei of Nagasaki distriet, to open a road to the top of the hill. The records contain the detailed description of the locality, and the chart shows its general relation to the bay of Nagasaki.

I put eighty-five men at work upon this road under the direction of Messrs. Tittmann and Edwards, and so soon as it was completed the houses and instruments were carried up. Piers for the transits and equatorial were built, and the iron piers for the photographic apparatus placed in position. The atmost care was exercised in building the foundations.

Although my instructions contemplated the execution of the telegraphic work after the traasit, I cheerfully assented to the request of Professor Hall, at Wladivostock, to undertake it in adrance, as otherwise the lateness of the season might cause him to be frozen in all winter.

For reasons not necessary to enumerate, I selected a transit-station for this longitude-work in the ground occupied by the telegraph company. $\overline{1}$ was informed that no arrangement had been made with the company for this work and no plan of operations bad been proposed or agreed upon. Upon representing the whole matter to Mr. Th. Russell, the manager of the Great Northern Telegraph Company, he promised me the free use of the cable and placed me in communication with Mr. Carl Nielson, the electrician. I urged upon him the advantages of sending the clock-siguals through the cable; and upon examining the instrumental comnections and methods of work he reported favorably, and I was enabled, through the insulated armature of the clock-helix, to break circuit directly on the main line. But as the clock-signals were too short for transmission, the armature was held back at certain definite breaks in each minute. With more time and additional means I should have beeu able to leugthen the break through the instrument itself.

Of course, there were many little incidental difticulties in the way; but within ten days three nights were obtained wherein several hundred clock-signals were successfully sent and received from each station. I should hare preferred two nights more, but Professor Hall expressed himself satisfied.

Mr. Russell, on behalf of the company, gave me the use of the line for one or two hours each night; and Mr. Nielson, when not on duty, gave his time wholly to our assistance. To the other gentlemen of the company we are also indebted for kind assistance in our operations. The telegraph longitade-work at this station was done with the United States Coast Surver meridian. instrument No. 2 (Davidson's) by Würdemann, and the double-pen curonograph 4848, and relays used by me in the San Francisco-Cambridge longitude-work of 1869 by the Coast Surver. Without these duplicates, I should have been compelled to execute this work after the transit.

The operations were completed ou the 7 th of November, and on the 8th I transferred all $m s$ time to the transit of Venus station.

Subsequently, this telegraph-station was connected with the transit of Fenus station by triangulation, which also embraced the French transit station ; but Professor Janssen never made any request to connect our stations, \&c.

Up to November 14, fifteen observations of occultations of stars by the moon were made to compare with Pekin, but there was a blank in the list furnished from that date to December 2 . However, I soon found the labor of the day and the regular work of preparation, practice, and observing was as much as conld be done.

In order that I might be familiar with the phases of Venus, I had large painted boards placed on the Meridian Hill, three miles to the north of the transit-station. These phases were to repre-

sent the cusps (I) ; Venus when 40 seconds on (II) ; Venus when 10 seconds on (III); Venus when 40 seconds after second contact (IV). These were made of a size to show Venus as sle would
really appear in the teleseope. I recorded the practice upon these objects in the regular "daybook ", observing upon them whenever practicable in all sorts of weather.

The regular observations for latitude and time were made by Mr. Tittmann, assisted by Mr. Edwards. Some delay was occasioned in this work by discorering that the levels of the Stackpole transit-instrument 1507 were useless from inferior workmanship; but, fortunately, I had the United States Coast Survey meridian-instrument with extra levels, which, after moch trouble, I fitted in the transit.

I determined the valne of the micrometer of this instrument, and also the equatorial intervals. Mr. Edwards determined the inequality of the pivots of the transit-axis, which was found exceptionally large.

The photographic apparatus was in good working order early in November, but for nearls two weaks there was not sufticiently clear weather for drill and practice. Upon the first favorable day, experiments were made for the best focns, and satisfactory results gave us a focus one inch shorter than that assigned to the lens. After this adjustment, the lens and reticulated plate never required changing.

The value of the level-scale on the reticulated plate, and that of the engineer's level, were determined by Mr. Tittmann. For the quick photographs proposed near I and IV contacts, I had made frames for holding half a dozen plates, each to obtain half the san's disk. It would give six pictures per minute, but with proper mechanical means would give twelve pictures per minute. Mr. Seibert devised a method of getting a small part of the sun's border and the center, and to this I added means to get the electrical record; by this arrangement we could get a photograph every second. Messrs. Lodge and Williams effciently aided all these preparations.

To make this branch of the transit labors a success, I directed Mr. Seibert to spare no means for its accomplishment. The observatory was enlarged, photographic material was procured, and additional photographers for the day of transit.

Upoa the arrival of Dr. Murray, he cheerfully assumed the duty of recorder in the photographic room, besides assisting in other operations.

Everything was in good working order before December, and I felt that, so far as the means at our disposal were concerned, nothing had been overlooked or slighted.

The instructions bad been carried out as systematically as practicable. The only deviation I made was in not taking down the heliostat every night of transit-work aud directing the middle transit-thread on the reticulated plate before and after testing trausits. The very act of remoring and replacing such a beavy and unwieldy mass was, in my judgment, risking the safety of the reflector, and was nearly sure to jar the iron pier, if anything would. But the transit was always referred to the meridian-mark before the examination of the photographic-plate adjustments, and every evening and morning it was referred to the mark, so that we must know its deviation from the meridian very closely.

Notwithstanding my being in readiness, we had many annoyances to hinder uniformly smooth results, in the character of the instruments.

With the heliostat I had coustant trouble, and was compelled to alter it and to clean it several times.

The chronograph ran irregularly in spite of attention and care, and was a source of constant annoyance with its frightful noise; but on the day of transit both chronographs were running well.

The spring governor of the equatorial broke, and no spare springs had been furnished with it; no instrument-maker was to be found in Nagasaki, and I took the instrument apart and replaced the broken spring. After running a short time, I had to take it apart and clean a second time; then the second spring broke, and again I replaced it, obtaining my springs from a Chinese watch dealer. After more trouble from the spring, and another cleaning, I got it running well about two weeks before the transit.

The value of the screw of the double-image micrometer I determined by the trausits of Polaris And here it may be mentioned that there were several nights when the equatorial with the donble. image micrometer and highest power would not show the companion of Polaris; and at all times the star was irregular aud deformed.

Whenever the sun was risible I examined it, to judge of the general character of the limb and of the spots, with reference to their apparent sharpness of definition and steadiness, and for the facula, in comparison with my observations upon it in the Sierra Nerada in the summer of 1872. The conclusions from those observations are fully verified and confirmed.

A few days before the 9 th, the weather was thickening-the nights were partially clear, the days heavy and threatening.

On the 8 th, I obtained good transits for time, and repeated them at $4 \mathrm{a} . \mathrm{m}$. on the morning of the 9 th, Suddenly, the clear bright starlight morning was wholly covered with clouds, that grew denser until sumrise, and continued after it.

About 8 hours a. m. all the adjustments of the photographic apparatus were examined, the distance between the objectire and reticulated plate measured, and soon after, through a break in the clouds, the reversed photographs were successfully made. Then the weather changed; tro strata of clouds were seen to form, an upper stratum of cirrus and cirro-stratus forming a tolerably homogeneous screen; below that, and resting on the monntain-top, two or three miles sonth of us (and 1,950 feet eleration), was a dense stratum of cumulostratus coming up from the southward with slow, steady movement.

At $9.30 \mathrm{a} . \mathrm{m}$., this lower stratum became deuse and destroyed our hopes; but abont 10 minutes after 10 o'clock a break occurred in it, aud the sun was visible through the upper stratum with variable distinctness. At intervals it was too bright to observe with the unprotected eye at the equatorial, and, unfortunately, the shades of coloreil glasses were too few, and at every change had to be unscrewed, \&e. I had an extra set furnished by the Coast Survey, but on preliminary examinations three had been cracked by the sun's heat.

I used the lightest shade furuisbed with the instrument (not the thin ones), and when I commenced steady watching, about two minutes before the predicted time (so as to include the time of the English prediction and to watch if Venus were visible off the sun's limb), the outline of the sun was moderately steaty, yet not sharply cut and defined; and I would have liked a great deal more light.

As I kept up the beat of the chronometer, I felt sure that the predicted time was long passed, when the clouds suddenly thickened, and the faintest ontline of the sun was visible; yet I had no time to unscrew the colored glass, and before I conld have done so the sun's limb brightened, and the limb of Venus was seen just entered upon the sun at the exact spot which I had been steadily watching for over three minutes. From my practice with the artificial Venus I judge the planet was two seconds on at the time noted; at any rate, Mrs. Davidson made the record of the time I announced, with the necessary remarks. About 7 or 8 seconds thereafter I called to the photographers to commence.

The sun's limb was quite unsteady just before the first contact, and at the brightest intervals I could not see any approach of Venus nor any different indications at the point of contact other than existed at adjacent parts of the limb at which I occasionally glanced.

The epoch noterl after the first contact was $1^{m} 36^{s}$ later than the predicted time.
Mr. Tittmann was observing with the Coast Survey Hassler telescope of 3.1 inches aperture, and when I called ont to the photographer, he noticed that Venus was already on the sun's limb, aut then noted the time. Captain Yanagi, with the Uuited States Coast Survey reconoitering telescope No. 35 of $1 \frac{1}{2}$ inches objective, took his eje from his instrument as if he had not seen the planet.

I prepared to obtain measures of the distance of the planet from the sun's limb, as I had practiced, bat, though visible, it was then too faint to admit of observations of precision. I tried again, as I had before the first contact, to observe with the unshaded eye, but sudden openings in the clouds rendered this too full of risk to my evesight.

When about half the image of the planet had entered apou the sun's disk, the images lengthened, and I made fourteen micrometer-readings of the cusps under rarying conditions of brightuess. The cusps were not so bright as I could desire; a lighter shade-glass or other meaus for regulating the amount of light would have enabled me to get more certain and more numerous measures.

When near the second contact, I turned the donble-image micrometer to zero for that observation. Second contact.-This I obtained as well as such an observation can be made, and although I thiuk
H. Ex. 81-29
it was noted exactly, yet I feel satisfied that it has not an error of 2 seconds; it occurred about 2 minutes after the predicted time. There was no black-drop or true ligament or band, ouly slight disturbance of the limbs that prevented such a sharp separation as I had observed in the total solar eclipse of 1869 in Alaska.

But this disturbance was exactly similar to what I have been accustomed to meet with in twenty-nine years' experience on the Coast Survey at small elevations. It was similar to the dis. turbance that I had noticed in the artificial Venus; but upon this subject I will add an appendix.

Mr. Tittmann reports that he observed the second contact well. The son was seen through the haze or thin clonds of the upper stratum, and the limb was not disturbed. The line of light broke clearly and in an apparent true continuation of the limb of Venus. He reports that when be took his eye from the telescope to catch the tens of seconds on the chronometer, Captain Yanagi called out " time" to his assistant, thus noting it about four seconds later than Mr. Tittmann.

After the second contact, I commenced measures of the separation of the limbs of the planet and sun, and with varying phases of brightuess and unsteadiness until the images were too faint. I obtained seventy-eight micrometer-readings.

I had mounted the United States Coast Survey meridian-instrument No. 2 to observe the passage of the sun and Venus at meridian transit, and also arranged for Mr. Tittmann to observe the difference of declination of the upper limb of the sun and of the limbs of Venus in transitinstrument No. 1507.

Near culmination, the sun was partially obscured, and I used the light shades of the sextant, giving a light-orange image of the sun. The record was made on the fillet of the Coast Survey chronograph 4848 under the watching of George F. Davidson, and I observed the first limb of the sun over 9 threads, the first limb of Venus over 8, and second limb over 8 threads, and the secoud limb of the sun over 6 threads.

Mr. Tittmann made nineteen micrometer-readings of the sus's appareut upper limb and the upper and lower limbs of Venus, the time being noted by Mr. Elwards.

Clouds again intervened; but at ten minutes after meridian I commenced measaring the diameter of Venus with the double-image micrometer with varying phases of visibility. In this work I obtained forty-four micrometer-readings, and good results. Mr. Tittmann made nine measures and Dr. Murray six, when the clonds obscured the sun completely.

The observations for the meridian passage of the sun, and of Venus when projected thereon, for differences of declination and for the diameter of the planet, are not mentioned in the instructions of the commission.

The clouds increased, and nothing now seemed possible. There was a slight break when Venus was one diameter from the third contact; then more clonds.

Third contact.-At the third contact there was an opening in the clouds, and ten or fifteen seconds before contact I saw the clear separation of the limbs with little or no unsteadiuessbetter even than at second contact; no ligament or band-when clouds suddenly covered it at the time of contact, and again broke away just after contact. But I felt that contact had not occurred more than five seconds, and noted the time of the reappearance of brightness, with proper remarks. There was a clear, sharp outline ; no distarbance. The sharp points of the casps were almost touching, and were very delicately-pointed objects. This epoch is only eighteen seconds from the predicted time. For this observation I was asing the unprotected eye, and in the sudden gleams of brightness was almost compelled to desist. Mr. Tittmann observed with the unshaded eye, and noted the contact, but recorded that "clouds passing interfered with the exactness of the determination, but apparently the clouds caused the only uncertainty. Observer cannot form an estimate of the error of his observation."

After the third contact there was a slight opening in the clouds, and without sumshade I tried to get measures of the cusps, but succeeded in obtaining only three micrometer-readings with cusps' points.

Fourth contact.-At the time of the fourth contact the sky was hidden by dense clouds, and about 4 p. m. rain commenced.

During the observations at the equatorial I was assisted by Mr. Tittmann, who noted the times for the micrometer-measures. Mrs. Davidson and George F. Davidson assisted in recording other observations and attending to the chronograph.

PHOTOGRAPHIC WORK.
After I notified the photographers to commence, the phates for frequent exposures near first contact were run through, but no indentation of Venus is exhibited. This was when I failed to get measures for the casps. When the san came out sufficiently bright for me to observe, impressions were obtained, and the negatives were exposed whether there was sun or clouds; of course, many plates show nothing whatever; but by this plan views were obtained at intervals when there was an opening of a minute or two.

Had there been a clear day, the operations were so systematic and consecutive, from ny employment of extra photographers-Japanese-that not less than four hundred plates could have been made.

About one hundred and sixteen plates were exposed up to the time wheu the sun wholly disappeared, and probably one-balf of that number furnish as fair photographs as could be obtained nnder the circumstances, and with collodion films.

Mr. W. S. Edwards remained at the heliostat throughout the day to direct it in case of derangement. He had been well practiced to have taken Mr. Tittmann's or my place in case of our illness or of accident.

Time-observations.-At dark, after the transit, there was a narrow break in the rain-clouds for half an hour or more, and I fortunately succeeded in getting a good set of transit-stars for time. Then the night shut in, thick and raining.

Having been informed by the Secretary of the Commission that the funds of the Commission were low, that the telegraph-work hence to Melbourne was abaudoned, and that I should close operations as soon as practicable, I made my preparations accordingly; but carried on photographic experiments for one week louger, as instructed.

The instruments were dismounted, and such as were ordered home were shipped, while others were deposited in the United States naval storehouse, as directed; bat a receipt for the same was refused me by the United States naval storekeeper.

The work of preparation and observation had given me a fair opportunity for judging of the capacity of the instruments and methods, outfit, and personnel for working, and I proposed to the Commission to make a special report thereon. Some of my views of the instruments have been embodied in my general report to sou.

On bebalf of the members of my party I can speak with freedom, because there has been no jar, want of harmony, or sbrinking from duty, and they gained the respect of the Japanese ofticials and people.

And it is a pleasant duty to report my gratitude and hearty thanks to the Japanese authorities for assisting my labors and intercourse with the people, for affording me use of the goverument telegraph from Nagasaki to Tokio for subsequent telegraphic longitade-work, and for assigning officers of rank, position, and qualification to accompany the expedition and assist in the final work, and to report upon its appliances and methods, \&c.

In connection with the transit-work, a short series of magnetic obserrations was made to include the declination, horizontal force, and inclination.

And to connect the telegraph and transit stations, as well as to include the French station, a short base was measured, signals erected for triangulation, aud azimuth obserrations made sufficient for the parpose.

The records of all the transit-work and the day-books were duplicated and forwarded to the President of the Commission, before my leaving Nagasaki.

You will recollect that I appealed to you and to the President of the Commission for permission to determine the telegraph difference of longitude between Nagasaki and Tokio, at the expense of the Commission or of the Coast Survey.

At the request of Captain Yanagi, Dr. Murray, and others, and the promise of their assistance, I determined to bear the cost of this uudertaking myself after all the transit-work was done. On their return homeward, Messrs. Tittmann and Edwards voluntarily offered to give their services at Tokio, instead of taking a short leave of absence which I had granted them.

For this work, a small observatory was erected in the extensive grounds of the Imperial Nary Department at Tokio, and a loop of the main telegraph-line was run from the telegraph main sta. tion. A loon was also run into the Mexican transit of Veuns station at Yokohama, whereby Señor Don Dias Corrubias was enabled to receive my signals passing between Nagasaki aud Tokio; and some of the details of ms plan were made to accord to his wishes, as he was not in reality prepared with instruments for this work.

My signals passed through the main line at Kobi (Hiogo), where the second French station was located; but Professor Janssen was engaged for several weeks in determining the telegraphic difference of longitude between Nagasaki station and Kobi.

Every assistance was rendered to the party at Tokio, by Captain Yanagi, Chief of the Bureau of Navigation, and by Mr. Tanaka, Vice-Minister of Education, seconded by Mr. Morris, the Chief of the Telegraph-liues.

At Nagasaki, I recoived the hearty support of the Japanese superintendeut and his native and European assistants. For recorder in this work I had the services of my son, George F. Davidson.

This hearty co-operation at both ends of the line, and moderately good weather, euabled me to obtain the transmission of clock-signals on secen nights between December 20, 1874, and January 2, 1875 ; with a field computed result of $30^{\mathrm{m}} 30^{4} .2$ for the difference of longitude instead of $39^{\mathrm{m}} 40^{5}$ from the charts. This result I commnnicated to Captain Yanagi. Want of time has prevented my further reduction of this special work.

In this work, the weakness of the single pen ehronograph was made evident. A two-pen chronograph was ased at Tokio, and a one-pen chronograph at Nagasaki. Upon two nights the Tokio clock broke so nearly coincident with mine that I could inare gotten only an approximate result if I had not resorted to unnsual expedients. Had a mean-time chronometer been arailable at one end of the line for the transmission of signals this tronble would have been obviated. My letter to jou of Jauuary 14, 1875, utentions this and correlative matters.

While I was engaged in this work, Dr. Valentine, the chief of the German transit-party at Chufoo, China, arrived with chronometers on a German man-of-war for the determination of the difference of longitude between that station and Nagasaki. I gare him the use of my observatory when I should finish; but before that be compared with my chronometer for time. He did not move his chronometers from the vessel, but compared his pocket-chronometer with my observing chronom. eter and then compared with the chronometers on the vessel. During the Tokio telegraph longi-tude-work we observed for personal equation.

I may here mention that upon the twenty four day voyage from San Francisco to Japan I made observations for magnetic rariation, and in midocean the steamship was swang to correct my observations. Having no special instruments, I used the ordinary Schmalkalder compass. I also observed the dip daily; bat, unfortunately, the axis of the observing-needle was broken the day before arriving at Yokohama.

OBSERVATIONS AT GREAT ELEVATIONS.

Before closing this report I desire to add a few words of my experience on the subject, of direct interest in the transit of Venus observations.

The judgment which I expressed about four years since of the importance and necessity of great elevations from which to make astronomical obsercations of precision, and subsequeatly, of the importance of olserving the trausit of Feuus at great elevations (Special report and letter to the late Superintendent), was amply confirmed by my experience at Nagasaki.

At no time whatever liad I been able to see with the Clark 5 -inch No. 862, the limb, spots, penumbre, facule, sce, of the sun with the same definiteness with which I daily observed it with the 3 -iuch Hassler, and a smaller telescope, on the Sierra Nevada at an elevation of 7,250 feet. I did not see a sharp border to the sun at Nagasahi up to January 4, 1875 (elevation 850 feet); was not able to trace the apparent inflowing toward the centers of the sun spots; and did uot see the faculx on any part of the san. The limb of the sun was always blurred and unsteady.

On some nights the seeing was occasionally almost as good with this equatorial as with the Hassler on the Sierra; the serrations of the moon's limb and all the irregalarities were well defined;
the border was exhibited with sharpness, and the fine points of the cusps were generally good objects.

The division of Saturn's rings was better here upon one or two nights with the Clark 5-inch than on the Sierra with the Hassler 3-iuch, according to my recollections of the latter. So was the companion of Polaris at times, when 1 used the highest power astronomical eye-piece.
black drop, de-Having also expressed the conviction that the ligament, or black drop, of Venus was due to the same cause that produces Baily's beads, I am induced to give you a short account of my experiments before the transit of Venus.

Referring to the rough sketch already given to illustrate the artificial Venus on Meridian Hill, at Nagasaki:-these were made of the same size as the planet would actually appear in the telescope, and I practiced upon the different measures under nearly all couditions of weather, and made the record as if it were actual transit-work. In these experiments I experienced appearances such as occur to us almost daily in the geodetic work of the survey, and which in astronomical observations have been desiguated the " black drop," \&c.

Upou some cloudy days, when the atmosphere was quiet, the outlines of the artificial Venus were comparatively sharp and steady; but when the sun shone ont fiercely after a rain the outlines were confused and the objects unfit for observation. Early in the morning or late in the afternoon was the period when the objects were best suited for good work. Wheu ther were very unsteady and confused the border of the sum and the spots of the sun were also unsteady, boiling, and blured and unfit for observations of precision. A fter such a day the moon frequently had a confused border and the ragged edge was ill defined and unsteady.

I had two meridian-marks for the transit-instrument near the artificial Venns, and on one of them was a board pierced with several holes. Under ordinary circumstances, the atmosphere was so unsteady, and the mark apparently so unstead 5 , that the holes could not be distinguished; but when the atwosphere became steady so that the artificial Venus and sun were moderately good objects for observation, then the boles in the meridian-mark could be seen distinctly. During the state of unsteadiness the sides of the adjacent holes were in fact apparently connected by the socalled ligament.

Lest there be doubt about that effect of the unsteadiness, I may mention that in my experience in geodetic work on the Pacific coast I hare sometimes had my sigual, as seen from certain direc. tions, apparently almost touching a light-colored tree (say a dead, barked tree) near it. Whenever the atmosphere was steady, there was no doubt in the observer's mind about the separation of the two oljects, but whenever the atmosphere became unsteady the two objects would become so coufused as ta apparently coalesce and separate throughout their lengths, and also join and separate in parts of their lengths. Again, poles standing out clear of surrounding objects become, when the atmosphere is unsteady, unusually diffused and broad, and frequently they can be seen flying away in parts as the unequally disturbed (refracted) atmospheric waves break up the image. Similar phenomena are seen with heliotrones, and especially when the objects are much elongated vertically. A similar phenomenon is exhibited by objects on the bottom of shallow water whose surface is greatly agitated by the wind.

What I wituessed in the experiments with the artificial Venus and sun I have experienced through thirty-two years' work. And on the 9 th of December similar appearances, in a moderate degree, were exhibited between the limbs of Venus and the sum.

There were to me no new phenomena, although I was acutely alert to detect such, and I had no more difficulty in deciding than I bave daily in geodetic work, or in transits of the sun or moon. There was a slight disturbance between the limbs of the sun and Yenus exactly similar to the disturbance in the artificial Venus and sun, and of the same character that gives rise to the Baily's beads, and to the confusion of the images of double stars upon uights when the atmosphere is unsteady. There was a ligament at this station as depicted and described by some of the observers of the transit of Venus of 1761 and 1769 ; and even reported by observers at Yokohama, in 1874. Certainly there was no such phenomenon as black drop. Nor was there to my rision any distortion of the planet's disk.

At the third contact, or rather about 5 or 10 seconds after it (for a cloud hid the actual contact),
the sun and planet were observed without colored glass; the atmospbere was then quite steady (threatening rain), and the cusps were very sharply defined. During these observations, I was oluserving through two strata of clouds, the upper one of which seemed to prevent the passage of heatrays so that the lower body of air was not disturbed, i. e, unequally and irregularly refracted. I had a somewhat similar experience in observing the total solar eclipse of August, 1869, in Alaska; the day was cloudy and at times rainy, the atmosphere was exceptionally quiet, and the disappearing limb of the sun at totality (seen through a rift in the clonds) was a line of the sharpest, clearest character, withont a wave or a break in it. (Vide report to the Superintendent.)

In conclusion, from these and other observations and experiences, 1 have no hesitation in saying that all the phenomeua of black-drop, ligament, de., betweeu Venus and the san, as well as the phenomena of Baily's beads at total solar eclipses, are due to the unsteadiness of the atmosphere at the time and place of observation.

And it appears to me highly probable that the phenomenon which I have twice observed and reported, of Antares being projected upon the bright body of the moon for $2 \frac{1}{2}$ seconds after apparent contact with the limb and before the sudden disappearance of the star, may be due to the same cause-the moon's bright limb being so disturbed by irregular atmospheric refractions as to become blurred, coufused, and apparently enlarged.

Therefore, to obtain the best results in all astronomical observations, we should make them at great and isolated elevations, where the atmospheric disturbance is a minimum. But if the high elevation be a plateau or only on the general level of the surrounding mountains we cannot expect so good results as on peaks or ridges rising high above them. Under such favorable couditions, and with equatorials of 8 inches, I believe we shall see Venus at the next transit long before the first and long after the last contact with sufficient definition to measure her distance from the san, and that at contacts sharp limbs will be exhibited and closer times be observed.

Moreover, I suggest at the next transit of Mercury, in May, 1878 , observations be made at great altitudes, as well as at low, with similar instruments, to obtain further resnlts in this examination.

During the coming season, I hope to make test-observations upon the high summits of the Sierra Nevada, when occupying them for the geodetic purposes of the Coast Surver.

Yours, respectfully,
GEORGE DAVIDSON, Assistant in the United States Coast Survey.
Mr. C. P. Patterson, Superintendent United States Coast Survey, Washington, D. C.

APPENDIX No. 14.

REPORT ON THE TRANSIT OF VENUS EXPEDITION TO CHATHAM ISLAND, BY EDWIN SMITH, SLBASSISTANT IN THE UNITED STATES COAST SURVEY.

Washington, D. C., June 30, 1875.
SIR: I have the honor of submitting the following report of my duties under the Transit of Venus Commission, in conformity with your instructions, dated April 21, 1874:

I reported to the Honorable Secretary of the Navs, April 22, and received iustrnctions to report to the President of the Transit of Venus Commission for further orders.

I reported officially to the President of the Commission at the Naval Observatory, Washington, D. C., April 2̄, but had already been at work there for several dass. Mr. Albert H. Scott, of the Coast Surver, who had received instructions to report in the same manner as myself, but as assistant in my party, had done so, and was also at work at the observatory.

From this time to June 1, the time was occupied in testing the instruments, becoming familiar with the methods of observation, and in organizing the party.

During this time, I also observed for personal equations with the various observers at the observators, for the longitude-work in the South, of the past winter.

On June 3, I received instructions from the Chief of the Bureau of Navigation to report to the Vice-Admiral at the nary-yard, New York, which I did, and received orders to, report to Commander Ralph Chandler on board the Swatara, which I also did on the same date. My party also reported to me on board the Swatara, on Jane 3, in conformity with their instractions from the President of the Transit of Venus Commission.

When we left Washington, the organization of the party was as follows, viz: Edwin Smith, Sabassistant in the United States Coast Survey, chief of the party ; Albert H. Scott, Uuited States Coast Survey, assistant astronomer; Louis Seebohm, chief photographer; Otto Buehler, first assistant photographer; W. II. Rau, second assistant photographer ; and Sumner Tainter, intstru-ment-maker to the expedition, although attached to the party of Prof. Wilham Harkness, U. S. N., was to remaiu at Chatham Island.

On June 6, the party was on board the United States sloop of war Swatara, under the command of Commander Ralph Chandler, U.S. N., lying off the Battery at New York. In New York, Mr. Louis Seebohm appeared to be in good health, but we had scarcely left the harbor when he began to suffer from sea-sickness, and continued to get worse. When we reached the equator, July 4, he was barely able to walk without assistance. By the advice of Captain Chander and the surgeons of the Swatara, Drs. Kershner and Kidder, Mr. Seebohm was left at Lahia, Brazil, with money and instructions to return to the Uuited States. Mr. Scebohm died at Bahia, of yellow fever, about ten days after the Swatara sailed. By instrnctious afterward received from the president of the commission, Mr. Buehler was made chief photographer, and Mr. Ran first assistant photographer.

At Hobart Town, Tasmania, agreeable to Oaptain Chandler's instructions from the honorable Secretary of the Navy, I took charge of the twenty chronometers for longitade, on board the Swatara. Their corrections on Hobart Town time had been determined and furnished me by Irof. William Harkness, U. S. N., chief of Hobart Town party. The Swatara sailed October 10, and frequent comparisons of the chronometers were made while at sea between Hobart Town and Ohatham Island.

On the evening of October 19, the Swatara anchored in Whangaroa (Long Bar) Harbor, north side of Petre Bay, Chatham Island. The next day, the sites for the station and camp were selected, and work immediately begun. On the evening of October 21 , camp was settled and the transit pier and house built ready to mount the instrument. The weather, however, did not admit of satisfactory observations till October 25, when the chronometers on board the Swatara were compared,
and turned orer to Lieut. G. F. Wilkins, U. S. N., navigating officer of the Swatara. The Swatara sailed from Whangaroa at six o'clock on the morning of October 26.

Chatham Island is of small extent, being included in a circle of about thirty-five miles in diameter. The southern, western, and northern shores of the island are rocky, and rise abruptly about thirty or forty feet; the eastern shore is a long, low sand-beach, near which heary seas continually break. Petre Bay is a large open bay on the western side of the island, and Whangaroa Harbor, a small bay on the north side of Petre Bay, is the only harbor on the island. It is small but perfectly safe for two or three vessels. (See sketch.) In the northern part of the island, several hills rise to the height of five and six houdred feet, the most prominent of which are Maungauui and Iwa Kawa, or Mount Dieffenbach. The latter is about five miles from Whangaroa, and had been selected for the station before leaving the United States, but it was impossible to get the instruments there and mounted in the limited time we had before the day of transit. The rocks are mostly basaltic, and pamice is fonnd in considerable quantities, indicating the volcanic origin of the island. The soil in many places is rery rich, and produces fine vegetables and grain. In other places it is clay covered with a peaty earth, which raries from a few inches to sereral feet in thickness. In the low parts this peat seems to be floating on water, and after a heary rain it is impossible to cross it for several days. In some higher portious this peat has been burning for some thirty years. The grazing is very good in most parts of the island, and many sheep and cattle are raised. Few trees are found, and these only near the shores. The Chatham Island lity is a plat peculiar to the island. A great number of seeds and bulbs were brought to the United States, but were destroyed in transportation.

There are from two handred and fifty to three hundred iuhabitants on the island, about one. half of whom are Europeans. Of the remaining number about one-half are Moriories, the aborigi. nes of the island, and the other half Moaries, from New Zealand. Several skulls of both these races were brouglit to the United States, and the most valuable sent to the Smithsonian Institu. tion. The Europeans are mostly English and German, who performed various kind offices for us.

STATION.

The instruments were placed quite near the top of the hill, on the west side of Whangaroai Harbor, thus being protected from the strong westerly winds which prevail at Chatham Island, and still allowing a good view of the sun at the time of last contact, the sun then being only about 10 degrees ahove the horizon. They were nearly in the same meridian, the equatorial being 228 feet south of the transit-instrument. The transit and photographic instruments were about 65 and the equatorial about 85 feet above the level of the sea. (See accompanying sketch No. 25.)

FOUNDATIONS.

The soil in which the fonndations were made is of clay. At the point where the photographic plate-holder pier was set the clay was so hard that the hole was made with considerable difficulty; but at the points where the photographic objective and transit piers were set the soil was so soft and wet that deep holes were made, drained, and foundations of stone and cement of over two feet n thickness made for the piers to rest upon. With the photographic objective, particularly, we had much difficulty. A bole more than five feet square abont the pier was flled to the surface with stone and cement. The transit-pier was built of brick above the foundation, and capped with a single brownstone brought from America. Having no rain for two or three weeks, the soil all about became rery hard.

Owing to our small force and the difficulty of getting the material to the station, the work progressed slowly. Not a moment was lost, but still the equatorial was not ready for work till November 13, and regular practice in photography not begun till November 17.

INSTRUMENTS.

The following instruments were used at Chatham Islaud:
Stackpole trausit No. 1506 .
Clark \& Son's equatorial telescope No. 861.

A Hipp cylinder chronograph.
Chronometer Negus No. 1527, sidereal time and break circuit.
Clironometer Bond \& Son No. 243, mean time.
Chronometer Bond \& Son No. 387, sidereal time and break circuit (United States Coast Survey).

Zeuith-telescope No. 6 (United States Coast Surrey).
A clock was furnished, but not used.
Photographic apparatus with plate holder No. 2.
Objective No. VII, reflector No. 1, heliostat No. 1.
Measuring-rod and an engineer's level.
Set of magnetic instruments, magnetometer No. 5, and dip-circle No. 105.
The records of each particular class of work contain all necessary information about the instruments used. The Hipp cylinder chronograph and the levels of the transit were not satisfactory.

obsERVATIONS.

Previous to December 8, all the astronomical observations were made by myself; but after that date they were mostly made by Mr. Albert H. Scott.

All observations for latitade and errors of chronometers were made with the Stackpole transit No. 1506. For errors of chronometers, 172 observations were made on 59 stars on 21 nights. For latitude, 80 observations were made on 16 pairs of stars on 6 nights. The value of one revolution of the micrometer-serew was determined by four sets of observations on B. A. C. No. 4790 , L. C., and ρ Octantis, L. C., on two nights. The value of one division of the level-scales and the inequality of the pivots had been determined at Washington.

The chronometers were compared twice each day, and, near December 8, three times. They were carefully protected from great changes of temperature, and their temperatures always recorded. After the transit, the value of one revolution of the screw of the double-image micrometer with highest power of the equatorial was determined from 38 observations of β Hydra and 10 observations on $\gamma \mathrm{H}_{\mathrm{y}} \mathrm{dr} x$ on three nights. The weather would admit of no occultations being observed. The United States Coast Surrey zeniti-telescope No. 6 was mounted, and an attempt made to get observatious of equal altitudes on the moon and a star, but on one night only were we successful. This makes the longitude of Chatham Island depend entirely upon the chronometers on board the Swatara, which were compared twice at the island, on October 25, 1874, and January 3, 1875.

PHOTOGRAYIIY.

The adjustments of the apparatus were frequently examined, and their errors determined. These observations show the instruments to have remained very steady. When practice was first begun, the image of the sun was very much blurred. It was soon discovered that both the reflector and objective were held too firmly in their cells, and by loosening the inner ring of the cells we obtained a much sharper image.

A contrivance was made to make twenty exposes on one plate of those small portions of the sun's limb where Veuus should enter and leave the disk. It worked well, and we expected to get twenty sach plates at both the beginning and ending of the transit. For some reason all the photographs obtained at CLatham are much thinner than is desirable. I endearored to impress upon the photographers the necessity of the negatives being more dense, and for this reason, together with climate, some slight changes were made in the chemicals. A statement by Otto Buebler, chief photographer, to be found in the record, will explain.

DAY OF TRANSIT.

The duties of the members of the party on the day of the transit were as follows: Mr. Albert H. Scott, assistant astronomer, kept the record, and had general charge of the photographic opera. tions; W. H. Rau, assistant photographer, prepared the plates and put them into the holder; Mr. Sumner Tainter, instrament-maker, made the exposnres and-read the level; Mr. Otto Buehler, H. Ex. $81-30$
chief photographer, developed and finished the negatives, and was responsible for the good working of the chemicals; one of the men, mamed Turner, looked out for the beliostat and chronograph; assisted by Mr. W. Bouke, a German resident of the island, I observed with the equatorial.

On the 6th of December, fine obserrations for time were obtained and the azimuth of the photographic telescope carefully examined. These were the last observations previous to the transit. December 7 was a dark, dull, rainy day. The morning of December 8 was still cloudy. The instraments were carefully examined, however, and everything put in readiness for work. About noon, a few clear places were seen. At 1 p . m ., one hour before first contact, every man was at his post in the photographic house. A moment later, on going to the equatorial, the spring goveruor of the driving clock was found broken. I immediately sent for Mr. Tainter, and by his skill and coolness the clock was taken off, spring repaired, and the instrument again in order at $1^{\mathrm{h}} 40^{\mathrm{m}} \mathrm{p}$. m., twenty minutes before first contact. Anxiously we now waited, hoping the contact might be seen through some of the thin clouds flying abont. About sixteen minntes after first contact, a thinner cloud passed over the sun, and I obtained nine readings of the micrometer for measurements of cusps, though Venus and the sun could scarcely be seen, no shade glass being ased. At the photographic house, no reflection could be seen during this time. Had the reflector been silvered, perhaps we might hase obtained contact-pictures. Nothing more was seen of the sun till fourteen minutes after second contact, when 1 obtained nineteen readings of micrometer to measure the shortest distance between the limbs of Venns and the san. During this time a namber of plates were exposed in the photographic house, but few are good. About twenty eight minutes after second coutact the sun came out bright, but not perfectly clear. Ten more micrometer-measures were made, and several very good photographs obtained. About forty minutes later the sun again appeared faintly, and eleven good measures of the diameter of Venus were obtained and more plates exposed. About one hour aud sixteen minutes before third contact heary clonds passed over the sun, and, shortly after, it began to rain. Rain ceased shortly before third contact, and when Venus was about half-way off the sun, I had a glimpse of her for about one second. Thirteen minutes after last contact the sun came out for a few miuutes, after which it was not again seen from Chatham Island for several days. No more observations were possible tin Decenber 20 . In the photographic operations twenty plates were exposed, thirteen of which show an image, but only eight are good. At no time was the sun perfectly clear of clonds, and in all the exposures the slide was moved by hand.

WORK AFTER THE TRANSIT.
A survey of the station and surroundings was made by myself, and afterward by Mr. S. Tainter, to include the entire harbor of Whangaroa. We had not the means of doing the hydrographic work necessary to make a complete chart. The tides, however, were observed. It is to be regretted that the hydrographic work was not done by the officers of the Swatara. This survey has been plotted and the map photolithographed by the Uuited States Coast Survey, a copy of which accompanies this report.

A complete set of magnetic observations was made by Mr. Albert H. Scott; and after the transit the observations for inteusity were repeated by myself.

The Swatara arriced on the morning of January 3, 1875. Observations for time were obtained, and the chronometers on board the Swatara compared for longitude that same night. By noon on January 5, all the Chatham Island party and instruments and equipage were on board the Swatara. The Swatara sailed a second time from Whangaroa Harbor on the morning of January 6.

The Swatara arrived at Port Chalmers, New Zealand, on January 10, and a copy of the Chatham Island records was immediately sent to Washington. The party remained together on board the Swatara till she arriced at Melbourne, February 19. Here, in conformity with instructions received through Captain Chandler, I advanced to each member of the party a sufficient sum of money to return to their homes liy the mail-route, via San Francisco, with instructions to report by letter to the president of the Transit of Venus Commission. I left Melbonrne on February 25, and arrived, via Europe, at New York, June 15, but a short time after the Swatara. Soon after my return, the original records of the Chatham party were sent to the commission.

On June 21, I reported in person to you at the Coast Survey Office, after which a few days were passed in settling $m y$ accounts and other work with the commission.

A complete copy of the Chatham Island records has been deposited at the Coast Survey Office, in conformity; with your wishes.

COMPUTATIONS $\triangle N D$ RESULTS.

Preliminary and partial computations of the observatious for time, latitude, longitude, and magnetics were made while at Uhatham Island.

In cousequence of my going on duty in the Coast Surves very soon after my return to the United States, these unfinished computations were sent to the office, where the latitude and magnetic observations have been recomputed. These results are given in this report.

It is impossible to gire the final result for longitude at present, as it depends upon observations at other stations and data which I have not at hand. From the preliminary computation of the first comparison of chronometers on board the Swatara at Chatham Island, the longitude of the station is $176^{\circ} 39^{\prime} 50^{\prime \prime}$ west.

> LATITUDE-OBSERVATIONS.

The following observations for latitude were made with the Stackpole transit No. 1506. This instrument has a focal length of about thirty inches and a clear aperture of two and a half inches. A prism is placed in the axis and the eye-piece at one end of the axis similar to the Rassian portable transits. The power used was sixty (very nearly). The micrometer has three parallel wires, called I, II, III. The distances between these wires in revolutions of the screw were accarately determined. Wire Il was generally used. Whenever either of the other wires was used a note was made-a small correction being required to reduce it to wire II. The value of one division of the level-scales was determined with the Coast Survey level-trier in May, 1574, before leaving Washington. The value of one division of scale of level C used in these observations is $1^{\prime \prime} .418$ This level was very unsatisfactory.

The value of one revolution of the micrometer-screw was determined by the following series of observations:

WHANGAROA, CHATHAM ISLAND, SOUTH PACIFIC OCEAN,
Value of micrometer of Stackpole transit No. 1506.
Observen, Edwin Smith.
Nowember 23, 1874.-Chromometer fast, $\Delta T=-26^{n}, \overline{5}$.

No. 4790 B. A. C. (L.C.) : $a=14^{\mathrm{h}} 23^{\mathrm{m}} 311^{\text {c. }}$; $\delta=-87037^{\prime} 48^{\prime \prime}$.6.														
No.	Mier. m.	Observed time by 130nd 387.	No.	Mier. m.	Observed time by Jond 3s7.	No.	Mier. m .	Observed time by Bond 387.	No.	Micr. m.	Observed time by Bond 387.	No.	Micr. m.	Oluserved time by Bond 387.
	39.	$\begin{array}{ll}\text { L. } 4.8 \\ 2 & 1 \\ 2 & 2\end{array}$		32.5	h. m. 8. 2138.		26.	h. m. 8 . 22533	40	19.5	h. m. 8. 23736.		t	h. өn. 8.
2	39. 38.5	 2 1	145	32.5	21327. 1423.5	27 28	${ }^{26.5}$		41	19.	23336.5 3831.5	54		
3	38.	314.	16	31.5	1520.	29	25.	2725.5	42	18.5	3926.5	55		
4	37.5	410.	17	31.	1617.5	30	24.5	2821.	43	18.	4022.	56		
5	37.	56.5 ,	14	30.5	1713.5	31	24.	2917.	44	17.5	4119.	57	11.	25322.5
6	36.5	(2.5	19	30.	1810.	32	23.5	30125	45	17.	4213.5	58	10.5	5417.5
7	36.	658.	20	29.5	194.5	33	23.	318.	46	16.5	439.	59	10.	5514.5
ε	95.5	754.	21	29.	200.	34	22.5	322.	47	16.	444.5	60	9.5	5611.
9	35.	850.	22	28.5	2055.5	35	22.	3257.	48	15.5	450.5	61	9.	57 7.
10	34. 5	945.5	23	22.	2151.	36	21.5	3351.5	49	15.	4556.5	62	8.5	58.
11	34.	10 90.5	94	27.5	2246.	37	21.	3447.	50	14.5	4652.	63	ε.	5859.
12	33.5	1137.5	25	27.	2341.5	38	20.5	3542.5	51	14.	4749.	64	7.5	5953.5
13	33.	1231.5	26	26. 5	2437.	39	20.	3639.5	52	13.5	4845.5			
1	40.	3316.	12	34.5	3720.	23	29.	31123.	34	23.5	31528.	45	18.	31930.5
2			13	34.	742.	24	28.5	1146.	35	23.	$15^{*} 49.5$	46	17.5	1952
3	39.	40.3	14	83.5	85.5	25	28.	1288	36	22.5	1612.5	47	17.	2012.5
4	30.5	422.8	15	33.	828.	26	27.5	1230.5	37	22.	1634.5	48	16.5	2035.5
5	38.	445.3	16	32.5	849.5	27	27.	1252.	38	21.5	1655.5	49	16.	2058.5
6	37.5	57.	17	32.	911.	28	26.5	1314.5	39	21.	1718.	50	
7	37.	528.5	18	31.5	934.	29	26.	1336.	40	20.5	1741.5	51	15.	2142
8	36. 5	551.	19	31.	955.5	30	95.5	1358.	41	20.	$18 \quad 23$			
9	36.	612.5	20	30.5	1017.5	31	25.	1421.	42	19.5	1324.			
10	35.5	635.	21			32	24.5	1443.5	43	19.	1846.			
11	35.	658.	22	29.5	111.	33	24.	$15 \quad 5.5$	44	18.5	19.8. 5			

WHANGAROA, CHATHAM ISLAND, SOUTH PACIFIC OCEAN.
Value of mierometer of Stackpole transit No. 1506.
Observer, Edwin Smitil.
Norember 27, 1874,-Chronometer fast, $\Delta \mathbf{T}=-\mathbf{2 7} .0$.

No.	Micr. m.	Observed time by Bond 387.	No.	Mier. m.	Observed time by Bond 387	No.	Micr m.	Observed time by Bond 387.	No.	Micr. ta.	Observed time by Bond 387.	No.	Micr. m.	Observed time by Bond 387.
	t.	h. m. \quad 8.		t.	h. m. s.		t.	h.m. s.		t.	h.m. 6 .		t.	h. m. s.
1	30.	15922.5	14	23.5	21129.5	27	17.	29333.5	40			53	4.	24740.
9	29. 5	2 O	15	23.	12945	2 L	1 1. 5	2429.5	41			54	3.5	4836.
3	29.	115.	16	22.5	1320.5	29	16.	2522.5	42	9.5	23728.	55	3.	4930.
4	28.5	210.5	17	22	1417.	30	15.5	2619.5	43	9.	3822.5	56	2.5	50 26.5
5	28.	37.	18	21.5	1514.	31	15.	2715.	44	8.5	39 18. 5	57	0.	5121.5
6	27.5	42.5	19	21.	109.5	32			45	8.	4015.	58	1.5	5247.5
7	27.	459.5	20	20.5	175.	33			46	7.5	4110.5	59	1.	5314.5
8	26.5	554.5	21	20.	$18 \quad 1$.	34			47	7.	$42 \quad 5.5$	6.6	0.5	5411.
9	26.	650.	2%	19.5	1856.	35	13.	3059.	48	6. 5	431.	61	0.	55 5.
10	25.5	747.5	23	19.	1950.	36	12.5	3156.	49	6.	4350.			
11	25.	843.5	24	18.5	2047.5	37			50	5.5	4451.5			
12	24.5	940.	25	18.	2143.	38			51	5.	4547.			
13	24.	1035.	26	17.5	2239.	39			52	4.5	4644.			
1	40.	3290.4	13	34.	3648.4	25	28.	31112.0	37	22.	31537.2	49	16.	32050
2	39.5	243.6	14	33.5	710.0	26	27. 5	1134.6	38	\$1.5	$16 \quad 0.1$	50	15.5	2025.3
3	39.	36.0	15	33.	732.6	27	27.	1157.5	39	21.	1623.0	51	15.	20.46 .6
4	38.5	329.1	16	32.5	754.4	28	26.5	1219.7	40	20.5	1f 45.2	52	14. 5	$21 \quad 9.7$
5	38.	350.5	17	32.	815.7	99	26.	1241.6	41	20.	$17 \quad 6.5$	53	14.	2130.7
6	37.5	412.7	18	31.5	838.4	30	25.5	13 3, 9	42	19.5	1729.9	54	13.5	2155.5
7	37.	434.3	19	31.	-90.8	31	25.	1325.2	43	19.	1751.8	55	13.	2217.2
8	36.5	455.6	20	30.5	921.8	32	24.5	1346.8	44	18.5	1814.0	56	12.5	2238.8
9	36.	518.7	21	30.	944.1	33	24.	1410.3	45	18.	1835.2	57		
10	35.5	540.0	22	29.5	106.7	34	23.5	1431.6	46	17.5	1858.3	58		
11	35.	62.5	93	29.	1027.9	35	23.	1455.4	47	17.	1919.3	59	11.	23 46.9
12	34.5	625.6	24	28.5	1050.5	36	22.5	1516.7	48	16. 5	1943.3	60	10.5	248.5

The above observations were reduced by the method of least squares, giving the following results:

result.

4790 B. A. C., November 23	$68^{\prime \prime} .064 \pm 0^{\prime \prime} .007$	
4790 B. A. C., November 27.	$.970 \pm 0.006$	$68^{\prime \prime} .967 \pm 0^{\prime \prime} .007$
μ Octantis, November 23	$.913 \pm 0.017$	
ρ Octantis, November 27	. 935 ± 0.012	68.024 ± 0.015
Result	± 0.011	68.946 ± 0.011

The following are the observations and results for latitude; observer, Edwin Smith :

Whangaroa, Chatham Island, South Paciflo Ocean.
Latitude.-Stackpole transit No. 1506.

1rate.	Star.		Micrometerreadinge.	Level.		Meridiandistance.	Declination.	Corrections.				Latitude.	Δ	Δ^{2}	Remarks. ${ }^{\dagger}$
	$\begin{aligned} & \text { No. } \\ & \text { B. A.C. } \end{aligned}$	$\begin{array}{\|c} \mathbf{N} . \\ \mathbf{S} . \end{array}$		N.	S.			Mierom.	Lovel.	Refr.	$\begin{gathered} \text { Wire } \\ \text { merid. } \end{gathered}$				
$1874 .$ November 2	8178	S.	R. 28. 28. 1	31.4	18.1	8.	451138.03	' "	,	,	"	- "	"	"	
	8192	N.	2833.5	11.9	25.2		- 422648.03	- 00.17	+ 4.40	0.00		- 4348 [68.80]	1. 44	2.07	
3		\ldots	2849.5	29.7	16.4		38.19								
		\ldots	2839.5	16.4	29.9	48.19	+ 03.45	-0.07	0.00		69.81	0.4.7	0.18	
5		\cdots	280.5	25.7	12.0	38.51								
		\ldots	2873.5	12.0	25.7	4 e .51	+0207	0.00	0.00		71.44	1.20	1.44	
6		..	2874.5	25.4	11.4		38.67								
		\ldots	2861.5	12.0	25.1		48.67	+ 04.48	--0.46	0.00		69.65	0.59	0.35	
8		.-	27 22.	25. 1	11.0	38.99								
		\cdots	2715.	9.9	24.0		48.99	+ 0241	+ 0.78	0.00		70.80	0.56	0.31	
9		...	2838.5	23.1	9.9	39.15								
		\cdots	$28 \% 9$.	10.0	23.1		49. 15	+03.27	- 0.04	0.00		70.92	0.68	0.46	
November 2	8220	s.	1303.	26.6								- 4348 i0.24			
	8258	N.	4268.5	12.7	26.3	-405244.46	- $17 \quad 2.30$	+ 0.28	-0.29		-4343 57.63	1.01	1.02	
3			1266.	23.5	9.9		6. 34					- 4043 -7.03			Wire I observed at $23^{3} 30 \mathrm{~mm} 45^{3}=+0^{\mathrm{m}} .5 \mathrm{mt}$.
		.-	4235.5	8.8	22.2	44. 63	- $17 \begin{array}{ll}3.68\end{array}$	+0.85	-0.29	+1.71	56.90	1.74	33.03	Wire I observen at $23^{\mathrm{s}} 30^{\mathrm{m}} 49^{5}=+0^{\mathrm{m} .50}$.
5		\ldots	1431.	25.9	12.1	\cdots	6. 68								
		\ldots	4403.	12.0	25.9	,	44,97	-174.55	+ 0.04	- 0. 20	$+1.41$	59.22	0. 58	0.34	$\left\{\begin{array}{l} \text { Wite } I=+0^{m} .050 \mathrm{I} \\ \text { Wire } \mathrm{III}=-0.009 \end{array}\right\}=+0^{\mathrm{m} .041 \mathrm{~L}} \text {. }$
6		\ldots	12.71 .5	26.0	11.9	6. 85								
		\ldots	4242.5	11.0	25.1		45.14	- $17 \quad 4.20$	+ 0.64	- 0.29	$+1.41$	58.43	0.21	0.04	
8		1385.	\$4.6	10.5		7.20							0.04	Wire I
		\ldots	4353.	10.5	24.7		45. 49	- $17 \quad 3.17$	-0.04	-0.29	+1.41	58.44	0.20	0.04	Wire III.
9		...	1287.5	87.4	14.4	7. 37								Wire I.
		...	4271.	10.4	23.8		45.66	-178.51	+2.69	-0.29	+1.41	61.21	2 57	6.60	Wire III.
												-4348 58.64			
November 2	8332	N.	2208.5	7.0	20.8		-30110.14					-434858.64			
	8369	S.	2732	19.5	5.6		-573988.65	+ 30.48	-0.96	$+0.05$	-4352			
5		.-	2480.	12.0	25.7		0. 59								
		\ldots	2997.5	25.1	11.4		9. 28	+ 319.08	- 0.43	+0.06					
6		...	2441.5	11.8	26.0		0.79								
		\ldots	2919.5	25.4	11.4	9. 49	+ 319.25	-0.35	$+0.06$		-			
8		.	2481.5	7.8	22.3		1.04								
			2280.5	29.2	7.8	9. 90	+ 319.24	-0.04	+ 0.06					
9		...	2504.5	11.4	25.0	1.19								
			2980.		10.8	10.11	+ 3 20.46	-0.43	+ 0.006					

REPORT OF THE SUPERINTENDENT OF

Whangaroa, Chatham Island, South Pacific Ocean-Continued.
Latitude.-Stackpole transit No. 1506.

Whangaroa, Cbatham Island, South Pacific Odean-Sontinued.
Latitude.-Stackpole transit Nu. 1506.

Dute.	Star.		Micrometerrewings.	Level.		Meridian. distance.	Declination.	Correotions.				Latitude.	3	$4^{ \pm}$	Remarks.
	$\begin{gathered} \text { No. } \\ \text { B. А. } \mathrm{C} . \end{gathered}$	N. s.		N.	S.			Mterom.	Level.	Refr.	Whe merid.				
1874.	$\begin{aligned} & 461 \\ & 460 \end{aligned}$	$\begin{aligned} & \mathrm{S} . \\ & \mathbf{N} . \end{aligned}$	R. ${ }^{\text {b. }}$		$\begin{aligned} & 11.9 \\ & 97.6 \end{aligned}$	8.	- 494326.62 -373033.00	, "	7	,	"	O. ${ }^{\prime}$	"	"	
November 2			1903.5 4005.5	24.6 12.0				${ }_{-12} 12.57$	-0.04	-0.20		- 43 48 64, 62	0.74	0. 5.5	
5			1842	25. 7	10.0	27.40								
			3948	7.8	23.7	33.66	-12 5.95	+ 1.49	-0.20	-0. 57	65. 76	0.40	0.16	Wire III observed at $1^{11} 27^{\mathrm{m}} 45^{\circ}$.
6		\cdots	1884.5	28.0	14.0	87.65								
			3985.	13.8	47.9	33. 88	-12 4.05	$+0.11$	-0.20	-0.31	65.21	0.15	0.02	Wire $\mathrm{ILI}=-0^{\text {m }}$.009\% .
8		\ldots	1894.	26.1	11.		88. 18								
			$39^{\prime} 86.5$	14.7	26.9	34.34	-12 1, 98	$+0.57$	-0.20	-0.31	64.32	1.04	1.08	Wire III.
9		\cdots	. 1766	25.4	12.4	28.45								
		-	3874.	9.9	23.0	34. 56	-12 6,64	+1.74	-0.20	-0.31	66.91	1.55	2.40	Wire III.
												- 4348 65.36			
November 2	489	N.	3418.	3.1	18.9		- $3032 \mathrm{S6.17}$								
	521	S.	2083.	18.8	3.1	……....	- 564950.77	-740.22	-0.04	-0.13	--434863.86	0.04	0.00	
5		...	3412.5	8.0	23.9	${ }^{28}$	56.78								Wire III observed at $1^{\text {l }} 30^{\mathrm{m}} 30^{\circ}+10^{4}=$
			2073.5	27.9	12.0	51.60	- 741.60	+2.84	-0.13	+0.22	82. 86	0. 96	0.92	+0m.009t.
6		\cdots	3339.	12.0	26.0		36.96								
			2008.	26.0	12.0		31.87	- 738.84	0.00	-0.13		63. 39	0.43	0. 18	
9		\cdots	3407.	12.0	25.0	57.58								
			2072.	25.5	12.5		52.72	-740,22	$+0.35$	-0.13		65.15	1. 33	1. 77	
												-43 48 63.82			

Mean places of stars observed for latitude of station. Whangaroa, Chatham Island, South I'acific Ocean.

No. B. A. C.	B. A. C.	12Y.C.	6Y.C.	7 Y.C.	7 7.C.	Rad. 2.	Armagh.	Wash	Mel. bourne.	Cape.	$\begin{gathered} \text { Mean N. l' } \mathrm{D} . \\ \text { 1eit. } 0 . \end{gathered}$
8178	135 11 42, 90										
8192	1322653.80							54.50			54.15
<220	1361112.06										12.06
c258	13052 t 1.98								52. 24		52.11
833:	1201116.25							11.60			11.60
8352	12042585.83	20. 86	22. 02					21.69			21.49
8:369	1473914.18										14. 18
8377	1473152.10										52.10
31	1454616.10										16. 10
43	1220845.27							47.68			46. 48
93	1342855.94								42. 58		42. 38
94	1325919.24								23. 92	25.22	24.57
119	1385441.26										41.26
144	1294133.59								33. 59
150	1384131.67										31.67
192	12909 11. 23							10.15	16. 59	. . . -	16.37
202	1290659.68							58.96		59.32
212	1381453.18										53.18
236	$165 \quad 3630.42$								34.28		34. 28
260	1015657.53				58.44	60.40	57.57	57.58			58.50
272	1200221.14	20. 49		21. 42				20.00		20.87	20.80
279	1473614.00										14.00
292	1474044.22										44. 22
296	1201146.04					69.82		68.69			69.90
340	14; 53 27. 23								10.04	12. 20	11.12
3 fic	1212806.41								11. 10		11.10
380	1361211.01									18. 95	18.95
423	1313644.57										44.57
461	1394345.30								40.45	41. 24	40. 70
468	1273048.97										48.97
489	1203313.56										13.56
521	1464955.60								64. 53		64.53

The proper motions given in the B. A. C. of many of the stars observed are derived from at comparison of their places in Lacaille's Catalogue (reduced to 1750) with their places in Brisbane's Catalogue (1825) and Taylor's Catalogue, and are little reliable. This appears from the wildness of several of the results for latitude where the places of the stars hare only the B. A. C. authority. By omitting the proper motions altogether of such stars, resalts for latitude are obtained much more accordant with those obtained from pairs of stars, the places of which are found in the Melbourne and Washington Catalogues.

A correction has therefore been applied to several of the results for latitude based on the omission of proper motion.

Mean of epochs of Brisbane's and Taylor's Catalogues, 1831.

No. B. A. C.	B. A. C. p. m. in N. P. D.	Catalogues used iu B. A. C.	Number of yuars to 1875.	Aruonat of - D. m. to be deduated.	Corrs to lat.
	"			"	${ }^{\prime}$
8178	+0.37	B. 'T. R .	44	+16.28	+8.14
8220	-0.26	E. T.	44	-11.44	-5.72
8377	-0.54	B. T. R.	44	-23.76	-11.88
31	+0.19	B.	50	+ 7.50	+ 4.75
119	$+0.36$	B. T.	44	+ 15.84	+ 7.92
912	+0.34	B. \mathbf{T}.	44	$+14.96$	$+7.49$
279	-0.44	3. 2. 4	44	- 19.36	- 9. fiN
42	-0.19	13. T. It.	44	- 8.30	-4.18
466	+0.14	B. T.	44	+ 6.26	$+3.08$

Results for latitude of transit of Venus.
Station Whanganoa, Chatham Island.

Pair.		Latitude.	Corr to lat.	Corrected lat.	Δ^{\prime}	$\Delta^{\text {r }}$
B. A. C.						
		O ' "	"	$\bigcirc 1$		
8178	8192	-43 4910.24	+8.14	-434902.10	J. 14	1.30
82:0	8258	4858.64	- 5.72	04. 36	1.12	1.25
8352	83:	4850.32	-11.88	02.20	1.04	1.08
31	43	4906.88	$+4.75$	02.13	1.11	1.23
93	94	4902.41		02, 41	0. 83	0.69
119	144	4911.33	+ 7.92	03.41	0.17	0.03
150	192	4902.8		02.78	0.46	0.91
202	212	49 11. 10	$+7.48$	03.62	0.38	0.14
236	260	490294		02.94	0. 30	0.69
272	279	4854.50	-9.68	04. 18	0.94	0.88
. 292	296	4858.95	-4.18	03.13	0.11	0.01
310	362	4904.19		04. 19	0.95	0.90
380	423	4904.09		04.99	1. 75	3.06
461	466	4905.36	$+3.03$	02.28	0.96	0.92
489	521	4903.82		03.82	0.58	0.34
Mean				-434903.24		

Latitude.... .. $43^{\circ} 40^{\prime} 03^{\prime \prime} .24 \pm 00^{\prime \prime} .16$
Number of pairs. .. $=15$
Number of observations... .. $=75$
Average number of observations upon a pair .. $=5$

$$
\begin{aligned}
& \Sigma \Delta^{2}=83.45 \\
& \Sigma \angle^{\prime 2}=12.13
\end{aligned}
$$

$e_{\theta}= \pm 0^{\prime \prime} .80$ probable error of a single observation.
$e_{\frac{* *}{2}}^{\frac{*}{2}}= \pm 0.51$ probable error of declination.
$\varepsilon^{2}=\dot{ \pm} 0.16$ probable error of fiual result.
The final result for latitude is satisfactory, and far within the limit of accuracy required. The probable error of a single observation ($\pm 0^{\prime \prime} .8$) is about double that I usually get with the Coast Survey meridian-telescopes, made by Wuirdemann, which have a focal length of only 26 inches and a clear aperture of only 13 inches, with a power of about 60. The large probable error with the Stackpole transit was probably due to the bad level.

MAGNETIC OBSERVATIONS.
The following determinations of the maguetic elements were made at a point $S W$. by S. from the camp, about 200 feet from the shore of Whangaroa Bay and just at the foot of a low hill covered with a dense growth of coarse grass and heath. In all this part (western) of Chatham Island, the rocks are basalts and micaceous clay-slates; this latter being largely reined with quartz. There are no rocks in the immediate vicinity of the magnetic station, the nearest being the micaceous slates which crop ont along the shores of the bay.

Latitude of magnetic station . $43^{\circ} 49^{r} 03^{\prime \prime}$
Longitude of magnetic station.............................. $12^{\text {h }} 13^{\mathrm{m}} 21^{\mathrm{s}}$ east of Greenwich.
The instruments used at Chatham Island have already been mentioned. They aro very similar to the instraments that have been ased by the Coast Survey for many years. They were new, and had never been tested before being used at Chatham Island.

The magnets had been badly magnetized, and we had no means of properly correcting this fault.

Magnetometer No. 5 was furnished with two collimator-magnets, marked T. V. No. 9 and T. V. No. 10. They were both about three-quarters of an inch in diameter, No. 9 being one and nine-tenths inches and No. 10 one and four-tenths inches long. Both magnets have scales divided
from 0 to 160. During the observations for a eclination the value of one division of the scale of each magnet was determined to be as follows: For No. 9,1 division $=2^{\prime} .374$; for No. 10,1 division $=2^{\prime} .728$. At the same time, the reading of the axis of magnet No. 9 was found to be 114.63 divisions.

Observations to determine the temperature co-efficient (q) of magnet No. 9 were made, but the changes of temperature were too rapid to give reliable results; q has been assumed to be 0.0003 .

Inertia-ring No. 5 belonging to this instrument was weighed and measured at the Coast Survey Office April, 1874, but the temperature was not given.

Weight of ring No. 5 . 1,351.05 grains.
Outer diameter 2.594 inches.
Inner diameter . 2.007 inches.
Thickness . 0.298 inches.
The methods of observation and reduction are those now used by the Coast Survey, and are given in a paper by Charles A. Schott, assistant in the Coast Survey, in the report of 1872.

Magnetic declination.
OBSERVATIONS ON SUN FOR AZIMUTH.
Obgerver, A. H. Scorr. Theodolite attached to magnetometar No. 5.

Dato.	Chron time of obser.	Chron. corr'n.	Mean time of obser.	Azimuth of sun from north.	Circle rearlinge on sun.*	Circle read ingof N. meridian.
1874.	h. m. c. $^{\text {c }}$	m. 8.	h. m. 8 .	- , "	\bigcirc	\bigcirc
December 2, P. M.	45403.7	$+131.3$	45.535 .6	$\begin{array}{llll}97 & 34 & 39\end{array}$	$\begin{array}{lll}51 & 21 & 27\end{array}$	1485600
December 3, P. M.	44453.8	+ 131.1	44624.9	$\begin{array}{llll}96 & 08 & 49\end{array}$	$\begin{array}{llll}52 & 47 & 40\end{array}$	56.29
December 3, P. M.	45341.8	+ 131.1	45512.9	9734 4*	$51 \quad 22 \quad 25$	57. 13
Decennber 3, P. M.	5 5 0.338 .2	$+131.1$	$5{ }_{5}^{5}$	$\begin{array}{llll}99 & 11 & 10\end{array}$	$49 \quad 4608$	$148 \quad 57.18$
Mear						148 56. 8

* Mean of six obsorrations.

DECLINATION.
Observer, A. H. Scort. Magnet No. 9 suspended. Reading of axis, 114.63 div.

Date.	Mean ecaly-	Reduction to axis.		Reading of circle.	Circle read. ing of mag meridian.	Marnetic declination east of north.
	olongation.	Divisions.	Arc.			
* 1874	d.	d.	-	-	-	\bigcirc
December 1	83. 60	31.03	113.6	$165 \quad 17.0$	16403.4	1506.6
December 2	85.37	29. 26	109.4	$165 \quad 17.0$	164 07. 6	15 10.8
December 3	85.77	28.86	$1 \begin{array}{ll}1 & 08.5\end{array}$	$165 \quad 17.0$	$164 \quad 08.5$	$\begin{array}{ll}15 & 11.7\end{array}$
Mean.						15.09 .7

Magnetic dip.

The dip was observed at three stations (see sketch). A, B, U, the latter being the true magnetic station.

* Mean of gixteen readinge with circle west and east, face west and east. Mean of the two needles, -65 $5^{\circ} 9^{\prime} .1$. (The minus sign indicates the souih ond dippinf.)

Horizantal intensity.

deflections.
Observer, A. H. Scotr. Magnet No. 9 deflecting in mag. prime vertichl and magnet No. 10 suspend di. Dectmber 7, 78.4.

Horizontal intensity (Scott) . 5.2083
(Smith) 5.2130

Final result for dip . $65^{\circ} 59^{\prime} .1$
Total intensity . 12.803
Vertical intensity 11.695
The above are in absolute measure, and expressed in English uuits.
Magnetic declination... $-15^{\circ} 09^{\prime} .7$
In the report upon these compatations by Charles A. Schott, in charge of computing division of the Coast Survey, to the assistant in charge of office, I find the following: "Oomparing the above results with those obtained by Capt. Sir James Ross near the island in the Erebus and Terror expedition, between May, 1841, and August, 1842 (Lieut. Gen. Sir Edward Sabine's Contribations to Terrestrial Magnetism No. XI, Trans. Royal Society, Juue, 1868), we may deduce the fullowing apparent annual change during the interval of thirty-three years:
"Declination, $1841-242$, latitude $=-43 \circ 37^{\prime}$, longitude $=183^{\circ} 05^{\prime}$ east of Green wich, $-14^{\circ} 46^{\prime}$ Annual increase, - 0 . 7 .
" Dip, 1841-'42, latitade $=\left\{\begin{array}{c}-43^{\circ} 32^{\prime} \\ -43^{\circ} 52^{\prime}\end{array}\right\}$, longitude $=\left\{\begin{array}{c}183^{\circ} 03^{\prime} \\ 183^{\circ} 05^{\prime}\end{array}\right\}$ east of Greenwich $-64^{\circ} 48$ and $-65^{\circ} 16^{\prime}$. Mean, $-65^{\circ} 02^{\prime}$. Annual increase, $\mathbf{1}^{\prime \prime} .7$.
"Intensity, 1841-42, positions nearly as above. Corrected total intensity, 12.55 and 12.56. Anuual increase, 00075.
" Respecting the annual variation of these magnetic elements, we possess very little informa. tion; but by comparing the values of $1841-42$ with the charts for 1870 appended to Capt. F. I. Evans' Manual for the Deviation of the Compass in Iron Ships, London, 1870, we find that the east declination has been increased, as well as the south dip and the total intensity; all of which is in conformity with our results."

Before closing this report, I wish to extend my thanks to the commission for the completeness with which everything was provided for our health and comfort. While on the island, we lived in tents, and no serious illness was known to any of the party. On the Swatara, the party was treated with kindness and courtesy by the captain and officers.

Very respectfully, yours,
EDWIN SMITH, Subassistant in the United States Coast Survey.
Capt. C. P. Patterson,
Superintendent United States Coast Survey, Washington, D. C.

APPENDIXNo. 15.

DESCRIPTION OF AN APPARATUS FOR RECORDING THE MEAN OF THE TIMES OF A SET OF OBSERV ATIONS, BY C. S. PEIRCE, ASSISTANT IN THE UNITED STATES COAST SURVEY,

The object of the contrivance is to enable an observer, after he has tonched a key at each one of several observations, which succeed at a constant interval of a few seconds, immediately to read off on a dial the mean of the times of the observations to hundredths or thousandths of a second, thus avoiding the delay, labor, and error involved in reading chronograph-sheets.

Suppose the number of observations in a set is n. Then, if t_{i} is the time of the i th observation the mean time is-

$$
\frac{1}{n} \Sigma_{i} t_{i}
$$

Let S_{i} be double the number of whole seconds in t_{i}, and let s_{i} be the fraction of a second. Then-

$$
\frac{1}{n} \Sigma_{i} t_{i}=\frac{1}{n} \Sigma_{i} S_{i}+\Sigma_{i} \frac{s_{i}}{n}
$$

The problem thas divides itself into two, to determine each term of the second member of this equation. This division of the problem constitutes the first essential character of the method here to be described.

If the observations occur at irregular and unknown intervals, the observer may separately note S_{i} for each observation, without any particular apparatus, and so calculate the first term. But if the observations occur it intervals approximately known, the first term can be determined with less trouble. Snppose, for instance, that the observations, like transits of stars, are known to occur at intervals nearly symmetrical about the middle one. Then, if there exists any easy means of determining the time of this one accurately to the one nth part of a second, this will be equal to the first term, provided the observations follow one another with sufficient regularity. But if n be too great for this, or if it be an even number, the observer may note, by any simple means, the times of the first aud last observations. These times need then only be noted to two aths of a second, and so for any larger numbers. A transit-observer may convenieutly use seven wires, and note the times over the second and sixth wires to a quarter of a second. When n is greater, a marking-watch may be conveniently used. In using this instrament, the observer need not seek to distinguish the different observations of a set, as their order does not affect the mean value.

I have now to describe the means by which I would determine the value of the second term-

$$
\Sigma_{i} \frac{s_{i}}{n}
$$

Supposing that we have the meaus of registering the sum of the fractions s_{i}. Then to register, nstead, their mean, we may use one of the following methods: First, we may regulate the registoring apparatus by a "regulateur Villarcean." This may be made to run at any desired rate Within certain limits with great accuracy; and it should be made to run at one nth of the rate required for the registry of the sum of s_{i}. Second, we may have a frictional condection between two solids of revolntion. Third, we may perform the required division by the graduation of the dial by changing from one dial-face to auother. But the simple division of 28 by n is so very basily performed that it woald bardly be worth while to make the necessary adjustment of the apparatus to put any of these methods into practice. I will, therefore, proceed at once to describe a contrivance for registering $2 s$.
H. Ex. 81-32

We require for this purpose three special pieces of apparatus besides the usual break circuit chronometer. The first is a Hipp's chronoscope. Only, it would generally be better to have an instrument on a similar plan but registering handredths instead of thousandths of a second, and runuing for five minutes at least. The essence of the instrument is a train of clock-work, ruuning rapidly and regulariy, and a dial with a hand connected with wheels, which are thrown into gear witb the train when a certain galvanic circuit is made (or broken), and which are thrown out and stopped when the circuit is broken (or made). The second instrument needed is an observing-key, made something like a piano-forte key, with a metallic bammer, for making a very short galvanic counection. The third iustrument is a peculiar relay, constructed as follows:

0 is a fixed axis, abont which turns a lever, $A B$, which is provided with a vertical arm, 00 . Upon this arm, there is a movable counterpoise, 1 , for raising or lowering the mass. On the arm A there is another weight, E , to adjust the balance of the lever. At the end B there is a platinnm point, which dips into a mercury-cup, the height of which is adjustable by a screw. At F and G are armatures, and below each a small electro-magnet. The lever will turn to a limited extent, and is so balanced that it will remain with either end down when it is thrown from one position to the other.

Four batteries are now to be arranged in three connections, as follows:*
1st, Copper; mercury-cup; chronoscope; zinc.
2d, Copper; electro-maguet G; key; zinc.
3d, $\left\{\begin{array}{l}\text { Copper, first battery } ; \\ \text { Zine, second battery } ;\end{array}\right\}$ electro-maguet $F ;\left\{\begin{array}{l}\text { chronometer; zinc, first battery. } \\ \text { copper, second battery. }\end{array}\right.$
Before the observations begin, the A end of the relay will be down, and there will be no current through the chronoscope, and the hauds will be still. Wheu the key is touched, the electromagnet G is made effective, the B end of the lever goes down, the first current is made, and the chronoscope-hand moves. This continues until the next chronometer-second, when the circuit through the first battery of the third connection is broken so that the secoud battery is no longer neutralized as it should have been at first; the electro maguet F is made, the B end of the relay goes down, the circuit throngh the mercury cap is broken, and the chronoscope stops. By reading the dial of the chronoscope before and after the set of observations, we have the quantity-

$$
n-\Sigma_{i} s_{i}
$$

The interference of the observer's signal with the chronometer-second may produce either of two effects: it will either add one secoud to the recorded sum or will cause the omission of one observation. Either effect is easily detected in the result.

I have had constructed a relay of the sort described above, only replacing the magnet F by an agate which cau be struck by a pendulum tor determining gravity.

In the Coast Survey Report for 1870, page 212, I have shown the existence of a correction to the times as given by Hipp's chronosoope, owing to the inertia and friction of the wheels connected with the hands, in consequence of which, as soon as they are geared in, the movement begins to be retarded and they move slower aud slower during three-fourths of a second. As the

[^6]
instrunent is regulated by a vibrating reed striking the teeth of a revolving wheel, we shonld expect the retardation to vary as the velocity, so that-
$$
\mathrm{D}_{t}^{2} s=a-v \mathrm{D}_{\mathrm{t}} s
$$
the integral of which is of the form-
$$
s=\mathrm{A} t+\mathrm{B}\left(1-6^{-c}\right)
$$

Here t denotes the time and s the reading of the chronoscope. The existence of this correction is also shown by attentively listening to the note of the reed, which is distinctly heard to be lowered when the hauds are geared in. It must be confessed, bowever, that the measured times of known intervals are not accounted for by this correction; for example, at Berlin, in 1876, May 10 and 11, I experimented on the fall of a ball. The length of the seconds' pendulum at Berin, according to Bessel, as stated by Bruhns, is $0^{\mathrm{m} .9942318 \text {. This is for the level of the sea; for my }}$ point it is .994223 . The reciprocal of this, or 1.00581 , is the square of the time in mean seconds of the vibration of a metre-pendulam. The square root of this, or $\mathbf{1 . 0 0 2 9 0}$, is the time itself. Multiplying by $\frac{366}{365}$ we get 1.00565 , the time in sidereal seconds. The square of this, or 1.01133 , is then to be multiplied by $\frac{1}{\alpha^{2}}$ or, 101321 to get the velocity square in sidereal seconds after a fall of one metre. This is $.10 \div 469$. If, therefore, the true squares by the chronoscope of a fall though it centimetres be divided by .0102469 , we get the square time by the chronoscope divided by the sidereal seconds. Now, then, A being nearly 40.1 millimetres and B being nearly 19.6 millimetres, I fonnd-

Heights.	Chronoscope.	(Chron. ${ }^{2}$	Δ	$\frac{\Delta}{.01025}$	$\begin{aligned} & \text { Chron. } \\ & \text { Sid. sece } \end{aligned}$
- A.	. 0919	. 00845	. 01090	1.064	1. 033
A +5 con.	. 1391	. 01935	. 01037	1. 012	1.006
$A+10$ cen.	. 1724	. 02972	. 01076	1. 050	1.025
$A+15$ cen.	. 2012	. 04048	. 01010	. 986	. 993
$A+90$ cen.	. 2249	. 05058	. 01048	1.023	1.011
$A+25$ cen.	. 2471	. 06106	. 01098	1.003	1. 001
$A+30$ cen.	. 2671	. 07134	. 01097	1. 071	1.035
$A+35$ cen.	. 2889	. 08231	. 00986	. 962	. 981
A +40 cen.	. 3036	. 09217	. 01094	1. 068	1. 084
$\Delta+45 \mathrm{cen}$.	. 3211	. 10311	. 01046	1. 021	1. 010
$A+50$ cen.	. 3370	.11357			
B.	. 0637	. 00406	. 00101	. 986	. 993
$\mathrm{B}+5 \mathrm{~m}$.	. 0712	. 00507	. 00108	1.074	1.027
$\mathrm{B}+10 \mathrm{~m}$.	. 0784	. 00615	. 00104	1. 015	1.007
$\mathrm{B}+15 \mathrm{~m}$.	. 0848	. 00719			

I also measured some clock-intervals, with the following results :

Interval in sid. вec.	Chroneseope.	Δ	Chron.
1	.996	.496	0.996
2	1.993	.997	0.997
10	9.956	7.963	0.9954
50	49.745	39.789	0.9947

If we take the times of falling throngh A and B, we have-

Maight.	(Chron. ${ }^{\text {P }}$	$\frac{\text { (Chron. }{ }^{2} \text {) }}{\text { Helghi. }}$	$\frac{(\text { Chron })^{2}}{205 \text { beight. }}$	$\frac{\text { Cbron. }}{\text { sid. bec. }}$
. 0401	. 00084	. 211	1.03	1.02
. 0196	. 00406	. 207	1.01	1. 01

If we compare the time of falling $A+50$ cen. with the record of 1 second, we have $54.01 \times$ $.00205=.1083=(.3291)^{2}$. Hence the difference of time is 0.6709 sidereal second. The difference of the chronoscope results is 0.650 , and the ratio is only .982 .

That there really is a retardation is certain both \dot{a} priori and from the sound; and it is shown by the rates from the clock-seconds. But this can hardly account for the discrepancy between the measures with the clock and fall-apparatas, for the last given rate connecting the two is too small. I am inclined to think that there may be a correction of the fall-experiments, proportional to the momentum at impact, and, therefore, to the time. Experiments should be made with pendulums of different lengths. The relay above described, with the addition of a circuit-reverser, will render such experiments easy.

In regard to the accuracy of Hipp's chronoscope, I may mention that the chronoscope-times given above for the falls are the means of ten observations cach. It may, then, be calculated from the agreement of the resalting ratios in the last colnmn that the probable error of a single observation but slightly exceeds one thousandth of a second. In using the instrument for the automatic record of pendulum-transits, then, it will be quite sufficient to have ten observations in a set. This will give the intervals accurately to a thousandth of a second, or as accurately as the method of coincidences.

Let us now briefly consider the effect of the resistance of the lever shown in the plate upon the motion of the pendulum. Owing to the elasticity of the material, we may consider the impact to be instantaneous and to produee a reduction of the velocity of the pendulum in a fixed ratio. Let t be the variable time which is occupied by the pendulum in swinging from the vertical position to one having an angle, φ, from the vertical; let v be the angular velocity at that instant; T, the period of oscillation; Φ, the amplitude of oscillation; ∂, the ratio of the circumference to the diameter, and $\frac{1}{1+i}$ the ratio of v just before the impact to v just after. Let δt and $\delta \Phi$ denote variations of t and Φ produced by the impact. Then we have, from the common theory of the pendulum-

$$
\begin{aligned}
& t=\frac{T}{\partial} \arctan \frac{\varphi \partial}{v T} \\
& \Phi=\sqrt{\frac{v^{2} \mathbf{T}^{2}}{2}+\varphi^{2}}
\end{aligned}
$$

In these equations we are to multiply v by $(1+i)$ and subtract from the products the above unchanged values to obtain δt and $\delta \Phi$. Developed by Taylor's theorem, and neglecting all bat the first two terms, we have-

$$
\begin{gathered}
\delta \Phi=\frac{v^{2} \mathbf{T}^{2}}{\Phi \partial^{2}} i=\Phi\left(\cos \frac{\partial t}{\mathbf{T}}\right)^{2} i=\frac{\phi^{2}-\varphi^{2}}{\Phi} i \\
\delta t=\frac{\frac{\varphi \partial}{v}}{\sqrt{1+\left(\frac{\varphi \mathrm{T}}{v \mathrm{~T}}\right)}} i=\frac{\mathrm{T}}{\partial} \sin \frac{t}{\mathrm{~T} \partial} \cdot i=\frac{\mathbf{T}}{\partial} \sqrt{1-\frac{\delta \phi}{\Phi i}} \cdot i=\frac{\mathbf{T}}{\partial \phi^{2}-\varphi^{2}} \delta \Phi=\frac{\varphi}{\partial} \frac{\varphi}{\Phi} i
\end{gathered}
$$

The quantity i is twice the ratio of the virtual mass of the lever to the sum of those of pendulum and lever. By the virtual mass, I mean the square of the moment of the momentum divided by the moment of inertia. It is safe to say that i does not exceed $\frac{1}{1000}$. And as $\frac{\varphi}{\Phi}$ can easily be reduced to $\frac{1}{20}$, the effect of the resistauce can hardly in teu vibrations be perceptible. However, its amount may be calculated by observing φ and $\delta \Phi$.

It will be observed that the resistance shortens the time of oscillation if the impact occurs while the pendulum is moving upward, and lengthens it in the reverse case. Hence, there would be no accamulation of the effect in ten transits over what there would be in two, were it not for the thickness of the agate.

The following results of successive series of 298 swings each, measared with the abovedescribed instrument, by ten transits every five minutes, are a fair specimeu of the results obtained.

APRIL 8.

Heavy end up.	Heavy end down.
299.9463	299.9162
299.9436	299.9153
299.9457	299.9147
299.9427	299.9129
299.9439	299.9132

April 7.

Heary end down.	Heavy end up.
299.9215	299.9549
299.9176	299.9552
299.9167	299.9564
299.9179	299.9513
299.9176	299.9025

The weights to be assigned to successive intervals of a set of 5 are $5,8,9,8,5$, and this gives for April 8-

Heavy end up $\quad T_{2}=1^{s} .006525 T_{2}{ }^{2}=1.013093$
Heavy end down $T=1.006424 \mathrm{~T}^{2}=1.012889$
T^{2} (corr'd for resistance of air, etc.) $=\frac{39 \mathrm{~T}_{1}{ }^{2}-17 \mathrm{~T}_{2}{ }^{2}}{22}=1.012731$
For April 7-

$$
\begin{gathered}
\mathrm{T}_{1}=1.006436 \mathrm{~T}^{2}=1.012913 \\
\mathrm{~T}_{2}=1.006558 \mathrm{~T}_{2}{ }^{2}=1.013159 \\
\mathrm{~T}^{2}\left(\text { corr }^{\prime} d\right)=1.012731
\end{gathered}
$$

This is expressed in chronograph-seconds. The results of the two days are identical to the ast figure.

APPENDIX No. 16.

TERRESTRIAL MAGNETISM.

INSTRUCTIONS FOR MAGNETICAL OBSERVATIONS. BY CHARIES A. SCHOTT, ASSISTANT IN THE UNITED STATES COAST SURVEY.
[Reprinted with additions from Appendix No. 14, Report of 1872.]
The measure of the magnetic force at any place on the earth's surface comprises the determination of its direction with reference to the planes of the meridian and of the horizon and of the value of the intensity with reference to a fixed standard adopted as the unit of force.

Observations of this kind are known as absolute measures, and are made with instruments specially designed for the purpose. They are the only ones here considered Some remarks will be made on relative measures. For differential measures; usually made at permanent or fixed observatories, and employing instruments altogether different in principle and constrnction from those mentioned above, the reader may be referred to observations made at Girard College, Philadelphia, between 1840 and 1845, by Dr. A. D. Bache,* and at Key West, Fla., between 1860 and 18016, by Prof. W. P. Trowbridge, assistant in the Coast Survey, and Mr. S. Walker.t

To the scientist, the measures of the direction and of the intensity are of equal importance; in fact, they are closely connected in theory. To the sarvesor and navigator, however, the horizontal direction or magnetic declination (variation of compass) is of special interest. Surveyors are frequently called upou to retrace old magnetic courses, which requires a knowledge of the present decliuation and of the law of secular change. \ddagger Navigators are constantly ander the necessity of converting proposed true bearings into corresponding magnetic bearings, or vice versa. We shall here consider only those instruments and methods of observation designed for use on land, and which admit of far greater accuracy than any observations which can be made on board ships. In the latter case, moreover, the intensity observations are not absolute, but relative to some shore station.

We shall first exhibit the measure of the two components of the direction, viz, the declination (or the direction of a horizontal magnetic needle) and the inclination or dip (or the direction of a vertical magnetic needle), and conclude with the measure of the horizontal and vertical compo. nents of the total magnetic intensity.

1. DETERMINATION OF THE MAGNETIO DECLINATION.

The magnetic declination at any place, being the angle contained between the astronomical and magnetic meridians, requires for its measure two distinct operations, namely : The determination of the astronomical meridian, which is generally done by means of a theodolite, and the determination of the magnetic meridian (at a given epoch) by means of the declinometer (or unifilar magnetometer). The former of these planes is fixed, the latter variable, and the observations may have for their object the determination of the declination at various hours of the day, or its mean value for any one day, month, or year.

Respecting the determination of the astronomical meridian by means of observations of the azimuth of the sun or of a star, full information will be found in the paper on "The Determination of an Astronomical Azimuth," in Coast Survey Keport for 1866, Appendix No. 11, pp. 86-99; § the

[^7]
example of observations and reduction given at the end of that paper is taken from a record made in connection with magnetic work. It may be stated that a determination of the meridian which is correct withiu 1^{\prime} fully suffices for magnetic work in general, since it is difficult to determine the maguetic meridian within the same limit, on account of its continued fluctuations. We shall sup. pose that the azimuth of some mark (any concenient distant object) is known, and that we have merely to find the magnetic azimuth of this mark in order to obtain the declination, which is gen erally distinguished by a + sign if the magnetic meridian is west of the true north meridian, and by a - sign if east of it. These signs apply to the northern as well as the sonthern hemisphere.

Adjustment of the declinometer. A station having been selected, apparently free from local magnetic attraction, the instrument is mounted with the sides of the box, containing the magnet, directed nearly north and sonth (maguetic), which may be conveniently done by means of a pocketcompass; the instrument mast be leveled and the theodolite or telescope adjusted.* Iu that form of construction of the instrument \dagger which has the magnet-box monnted over the azimuth-circle, the observer may face either the north or south end of the magnet; but in the more complete form of the magnetometer, with attached theodolite, the observer wonld better face the north end of the magnet, in order to admit more readily of observing the sun for time and azimuth (also for latitude if needed). The change, if desired, can be made by exchanging the lens and plane-glass of the collimator-maguet; but if the same magnet is also used for the intensity determination, it must not be disturbed after the constants bave once been determined.

The motion of the magnet is controlled by the observer by means of a swall piece of magnetized steel (a small screw-driver, for instance), its magnetism (at its free end) beiug the same as that of the eud of the maguet facing the observer, so as to repel it wheu brought near. It must neither be too strong, nor be brought too close to the magnet, otherwise the position of the magnetic axis might be disturbed. The suspension-tube should carry at its top a rack and pinion to admit of an easy vertical movement of the magnet. With a piece of cloth at the bottom of the box, the magnet can be let down, and come to rest, by friction, on the fibers of the cloth, and can theu be raised and quickly steadied by the magnetized screw-driver, all without opening the box, which in windy weather must be avoided. The sides of the box, if of glass sliding in grooves, must have pasteboard covers to darken it, and the width of the slit facing the mirror mast be specially regulated for the best definition of the scale; the shade placed over the object-end of the telescope should nearly tonch the box, in order that all stray light may be excluded. The special adjustments to be made are the following :

Suspend the torsion-cylinder, which is of the same weight precisely as the magnet, and take out the twist of the suspeusion-fibers, of which there should not be more than are absolutely needed to support the weight withont risk of breaking-say about 4 or 6 for the older leavy magnets, and 1 or 2 for the light ones. With the aid of the rack-motion and the friction ou the cloth, the whole turns of twist are readily taken out, and then the line of detorsion mast be placed in the magnetic meridiau, in which position the axis of the torsion-weight must be parallel with the side of the box. \ddagger In packing, the suspension should be kept free of twist, so that at any new station only the small changes developed in the twist need attention. The weight should be removed, the magnet suspended, and the telescope pointed nearly to the middle of its scale, or to the axis of the magnet. The axis of the collimator and the line of collimation of the telescope should then be, as nearly as possible, in the same straight line. To render the scale distinct, the telescope must be set to sidereal focus. The azimuth-circle is then read; the reading, when pointing to the mark.s naving previously been recorded. The relative position of the theodolite and magnet is, of course, invariable, both being supported by the same stand.

The scale-reading of the magnetic axis of the collimator is determined by readings with scale erect and inverted, as shown in the following example:

[^8]

Nowh.-It is recommended to make these observations about the epoch of the day when the magnet is nearly stationary, between 7 and 8 a. m., from May to Septem. ber, inclasive; in March, April, and October about 8 a. ni., and in January, February, November, and Decem. ber ainuit 9 , zlso aluout 1t p. m. in any month and in any part of North America.

The angular value of a division of the scale is determined by saccessive pointings on the principal divisions, and woting the corresponding readings of the azimuth-circle, and repeating the operation in the reverse order. With that form of the instrument which has the box of the magnet connected with the azimuth-circle, the combination of the results will correct for change of deelination during the measures, but a small correction for torsion may be needed; for the other form of construction the maguet may be fastened in its normal position during the scale-measures. The usual value of a scale-division is between 1^{\prime} and 3^{\prime}, and tenths may be estimated. It is only for those instruments which give primarily the amount of deflection, in the intensity-measures, expressed in scale-divisious, that an accurate deterinination of the scale-value is needed.

Hence one division of ecale $=2.797$.
Nork-If the namber of perntings is odd, instesid of even, ad above, the mean reading corresponding to the widdle division motet fouind wnd wabtraoted from eash separate value. The differences so obtained must be added, and their sum (irrempective of signt, when diviaed by the correesponding namber of somb-divisions, will furnish the desired value.

For an example of the amount of torsion, as measured from four twists of each, sed "Observations for Intensity-Oseillations" further on. Moisteuing the fibers with a drop of glycerine will greatly reduce and equalize the torsion.

It appears from observations of the daly fluctuation of the declination that the mean of the extreme easterly and westerly positions in aby one day approaches nearls (within half a minute) to the mean position of the day, as derived fiom hourly observations continued day and nigbt. Since corrections to observed declinations to refer them to the mean of the day are generalls rery unsat. isfactory, it is recommended to observe the derlination for any one day at the epochs of the eastern maguetic elongation and of the western magnetic elongation, and to take the mean position as representing the declination for that day. The epochs of extreme positions, as observed at Philadelphia, Washiugton, and Key West, appls, with comparatively small changes, to aearly all places within the United States, and may be stated to be as follows: Reforing to the north end of the magnet, the morning easteris elongation occurs, on the average, from May to September, inclusive, about $7 \frac{1}{2}$ a. m.; in March, April, and October, about $8 \mathrm{a} . \mathrm{m}$. ; in November, about $8 \frac{1}{2} \mathrm{a} . \mathrm{m}$. and in December, January, and February, about 9 a. m. ; earliest time in August, about $7 \frac{1}{4}$ a. m.; latest in Jannary, about $9 \mathrm{a} . \mathrm{m}$. These epochs, however, are subject to great fluctuations and cannot be depended upor in any one case within one hous, and frequently they cannot be recognized at all, either on acconnt of the small range of the daily finctuation-the amount of which in winter is but one-half, wearly, of the amonnt in summer-which is easily disguised by small irregularities, or on account of disturbances, which reach their maxima in September aud October, and generally are more predominant in winter than in summer. The afternoon western elongation occurs, on the average, about $1 \frac{1}{4} \mathrm{p} . \mathrm{m}$. from May to November, inclusive, and about $1 \frac{3}{4} \mathrm{p} . \mathrm{m}$. in the remaining months ; also, earliest in September-some minutes before 1 p . m.-and latest in Janaary, about 13 p. m. The afternoon epoch is subject to less fluctuation than the morning epoch.

The obserratious for declination, which consist in noting the scale-readings, may be made, say, every ten minutes or quarter of an hour, commencing at a sufficiently early time in the morning to make sure of preceding the eastern plongation. Wheu this phase is fairly passed, and consequently the north end of the magnet has commenced its westerly motion, the observations may be discontinued, to be resumed again shortly after noon for the second epoch, and to include the western elongation, as shown in the following example :

MAGNETIC DECLINATION.
Station, Washington, D. C. Date, June 15, 1871. Instrument, declinometer No. 7. Observer, O. A. S. Mark reads at $6^{2} 10^{m}, 242050^{\prime} .5$ and $69^{\circ} 49^{\prime} .5$. Line of detorsion, 276°. Magnet A suspended, scale erect.-Azimuth-circle set to $944^{\circ} 85^{\prime} .0$ athd $64024^{\prime} .5$.

	Time.	Scale-readings.		Mear.	Lemaths.
		Left.	Right.		
	A. m .				
	h. m.	d.	d.	a.	
	630	11.0	12.8	11.90	aud cuanymed mognot.
	45	11.8	12.2	12.00	
	700	12.0	12.3	12.15	
	15	12.2	12.5	12.35	
	30	12.4	12.5	12.45	Maximma.
	45	123	12.5	12.40	
	$\begin{aligned} & 800 \\ & \text { r. m. } \end{aligned}$	12.1	12.3	12.23	Suspenditi tussina-wight after this oheseration.
	h. m.	d.	d.	a.	
	015	5.9	6.9	6. 40	Bef re commoncisg atteruom seriesturned toreinn-circle to 64°; azimuth-cirece as before.
	30	6.0	6.6 .	6. 30	
-	45	6.2	6.5	6. 95	
	$\begin{array}{ll}100 \\ & 15\end{array}$	6.2	6.3	6. 25	\} Minimbus.
	15	6.2	6.3	6.2 .5)
	(3)	6.3	6. 7	c. 50	
			Heg 01	arb	t25 5x.4and 623 44.5.

d.			
Mean reading of E. and W. elongations.	9.35,	nd difference of	6.20
Axis of magnet reads.	7.30		
Reduction to axis.	$+2.05=$	5.0	
Azimuth-circle reads		$244^{\circ} 24^{\prime} .8$	
Magnetic meridian reads .		244029.8	
Mark reads.		$242 \bigcirc 49 \%$	
Mark, west of north		$4^{\circ} 36^{\prime} .1 \pm 0^{\prime} .1$	
Astronomical meridian reads.	$247^{\circ} 26^{\prime} .0$	
Magnetic declination		$+2056.2$	
Reduction to mean of day.	+ 0.2	
Resulting maguetic declination, Jume 15,		2056.4 W.	

We have, also, on this day the daily range $15^{\prime} .1$, and the turning hours aboat $7^{\mathrm{h}} 3 \mathrm{o}^{\mathrm{m}}$ a. m., and $1^{\text {b }} 0 \tilde{5}^{\mathrm{m}} \mathrm{p}$. m. Unless tiuse be wanting it is customary to observe for declination, as above, on thee, generally consecutive, days.

The observer's attention should be specially directed to the frequent examination of the line of detorsion, since every change in the temperature or moisture of the air is apt to develop twist, which, if not removed, will injure the accuracy of the observations.

MEMORANDUM ON THE ORDINARY ADJUSTMENTS OF THE THEODOLITE, OR PORTABLE AL'SAZIMUTH INSTRUMENT, FOR THE MEASUREMENT OF HORIZONTAL AND VERTICAL ANGLES, AND FOR ASTRONOMICAL OBSERVATLONS.
The various operations for placing the parts of a thecdolite in proper condition for observing in order to eliminate, as far as possible, sources of error arising from instromental defects, may be briefly stated as follows:

To adjust the levels.-After properly setting up the stand, clamping it, and mounting the instrument, adjust the most sensitive of the levels attached to it by bringing two of the foot-screws of the theodolite in line with the direction of the level, and, after leveling, turn the azimuth-circle 180°, correct any defect, one-half by means of the foot-screws (always working them in opposite directions), the other half by means of the adjusting-screws of the level; turn the circle back to tirst position and repeat the correction as before as often as may be necessary. If, during this operation, we turn the circle once or twice at right angles to the former position, and make the bubble play in the middle by turuing the third foot-screw of the theodolite, there may be no need of using the graduation to effect the adjustment of the level, the turning of 180° by estimation being sufficient to effect the purpose. If there is a second level attached to the circle at right angles to the former, it may be adjusted like the first, or, more expeditionsly, by placing it in the same direction as the first (wheu in adjustment), and correcting any defect by its correcting-screw. Cirealar levels must be adjusted upon the same principles; they are, however, generally of inferior accuracy.

To place the axis of the azimuth-orccle vertical.-By means of the adjusted level we place the vertical axis in position by leveling the instrument with the two foot-screws parallel with the direction of the level, and then turning the circle 90°, and bringing the bubble again to the middle by turning the third foot-screw. The verticality of the axis is tested by the steadiness of the bubble in the middle of the tabe when the instrument is slowly revolved in azimuth.

To adjust the threads of the telescope.-Place the threads in the focus of the eye-piece where their best detinition is obtained, and test the position by pointing to a distant well-defined object to which the focus of the object-glass is adjusted for distinct vision; and if by moving the eye sidewise the object appears to move off the thread or pointing in the same direction as the eye, the diaphragm must be slightly pushed in, and pulled out in the contrary case. If there are two threads intersecting in the middle of the field at right angles, the vertical thread mas be set vertical by sighting a plumb-line suspended at a proper distance, or the vertical edge of a house may be used instead.

The whole diaphragm (after loosening its four screws) is to be tarned around the optical axis to effect the coincidence. The precediug adjustment must not be disturbed. The horizontal thread may also be tested by pointing to an object, and then turuing the azimuth circle, previously set horizontal, when the object should remain bisected; it may also be effected by pointing on the seahorizon.

To adjust the line of collimation of the telescope.-If the horizontal axis of the telescope admits of being reversed in its supports, a distant object is pointed to ; and if, after reversal of the axis in its V's, the pointing remain perfect, the line of collimation is at right angles to the axis; if not, half of the difference is to be corrected by the azimuth-screw and half by the two adjusting-screws of the diaphragm (its former adjustsments remaining undisturbed). If the axis does not admit of reversal in the V 's, it must be reversed by reversal of the circle, using the graduation; and if the second reading, after reversal, should differ from it a little more or less than 180°, the difference must be corrected as before, and the process is to be repeated until the readings, direct and reversed, differ by 180° exactly. For greater accuracy, we may use a collimator instead of the distant object. In some instruments the telescopes are mounted on one side instead of in the middle of the azimuthcircle; their collimation may be corrected by two distant marks separated exactly by twice the eccentricity of the axis of the telescope from the vertical axis of the theodolite. The process of adjustment is then the same as described, only changing the mark with a change of the telescope from one side to the other. For oblique intersections of the threads, the point of intersection must be brought into the optical axis of the telescope, the adjustment for collimation being the same as described. In this case, a collimator with a vertical thread is used to advantage.

To place the horizontal axis of the telescope in position. -This axis must be at right angles to that of the azimuth-circle, and if in position or horizoutal the line of collimation, when revolving the telescope, must pass through the zenith of the observer. It is effected by placing an adjusted level on the axis and correcting the whole error with the adjusting screw of the pivot. If the level is fixed or uncorrected, it must be adjusted at the same time with the axis by leveling and then turuing the azimuth-circle 180°, and correcting one-half of the defect by the pivot-screw and the other half by the level-screw. The process also requires repetition for its perfection.

The instrument is now ready for the measurement of horizontal angles, either by "directions" or by "angles," with or without repetitions, according to the construction of the instrument or the requirements of the case. In either method one-half of the measures must of course be made with "circle direct," the other half with "circle reversed" by 180°, which process corrects the angles for any remaining defeet, after adjustment in the verticality of the axis, in the height of the V 's, in the form of the pivots, and in the collimation. If the telescope is placed eccentrically, this reversal will at the same time refer the resulting measures to the axis of the circle, or, what should be the same, to the vertical of the station.

In repeating angles it suffices to record the readings of the circle at the commencement and at the end of the operation, the telescope being reversed after half the number of repetitions are secured. Daring the reversal of the telescope the circles remain firmly clamped until after the new pointing is made. With non-repeaters, or when used as such, the records for telescope " D " and for telescope " R " are kept separate.

The eccentricity of a circle is corrected by taking the mean of the readings of two opposite verniers or microscopes, or the mean of the readings of any number of verniers or microscopes, provided they are so placed as to divide the whole circumference into equal parts.

To adjust the level required for vertical measures.-The measures of vertical angles depend, among other things, on the accuracy of the adjustment of the level. It is effected by leveling aud reversing the azimuth-circle 180°, using one of the level-screws for correction, provided the former adjustment of the vertical axis has not been disturbed. This level may either be attached to the azimuth-circle or to the arms carrying the verniers or microscopes of the altitude-circle; in the former position it is of course placed parallel to or in the plane of the altitude-circle.

The instrument is now in the proper condition for the measure of vertical angles. Generally, double zenith-distances are measured, by means of which the reading of the zenith (or nadir) point on the circle becomes known, and consequently also the reading of the horizon. If there is any index-error, it may either be corrected (many instruments admit of such a correction) or it may be
allowed for as a constant when single altitudes are measured. This index-error is of no consequence if donble zenith distances are taken (involving positions, circle right and circle left).

Owing to the great diversity in the construction of theodolites, depending upon the particular use and the degree of perfection required of them, rules cannot be given to apply alike to all constructions; but the preceding notes will suffice in all ordinary cases of the use of the portable instrument. To test the graduation, its eccentricity, systematic and irregular errors; to adjust the reading-microscopes (for ron and focus); to test the coincidence of the two horizontal axes, also of the two vertical axes, in repeating-instruments; to examine the perpendicularity of the planes of the circles (graduation) to their respective axes; to measure the flexare of the telescope, and other circumstances, will require the attention of the observer when engaged in the more refined geodetic or astronomical use of the alt-azimuth.

The prineiple of repetition applies most advantageously when the optical power of the telescope exceeds relatively the accuracy of the graduation; in other words, when the pointing-error is less than the graduation-error. If the optical power is inferior, or not commensurate with the perfection of the graduation, we may still save time by using this method, the number of readings being less; or it may be utilized by giving position to the instrument, to spread the readings over the graduation. Although the principle of repetition is an elegant one, iu practice it has been found frequently to introduce a vew source of error, namely, a constant or slowly variable error depending on friction, the imperfection of the clamping, and general instability of the instrument. Unless the clamps are perfect, repeating will introduce a constant error, which cannot be eliminated from the result by the forward and backward movement of one circle upon the other, and the observer shonld carefully test whether or not his pointing will be preserved when repeatedly clamping and unclamping ; this especially applies to the clamps upon which the movement of the inner circle depends (for repeaters). The clamps shonld never be at the circomference of the circle of graduation, but near the axis, nnless for inferior instruments. Before observing its general stability, the clamping apparatus should be examined as well as the proper amount of friction of the moving parts and the balancing of weights. Instruments with light spokes to their azimuth-circles (though they may otherwise be high or thick enongh), and having a, heary superstructure (vertical circle and connterpoise), frequently show so much flexure or spring as to affect injuriously all horizontal measores, while full thin plates are not liable to this defect.

Azimuths in connection with the maguetic declination, where an accuracy of a fraction of a minute suffices, may be obtained with a small alt-azimuth instrument (say of four or five inches diameter). Supposing the latitude given, but the time ouly approximately known, the sur's zenithdistance and azimuth may be observed as follows: reading of mark, three readings of the sun's upper and first limb, noting the chronometer-time at contacts; instrument reversed, three readings of the sun's lower and second limb, reading of mark.

Let $h=$ altitude, corrected for refraction, parallax (semi diameter and dip, if necessary), and $p=$ the sun's or star's polar distance, then-

$$
\tan ^{2} \frac{1}{2} \mathbf{A}=\frac{\sin (s-\varphi) \sin (s-h)}{\cos s \cos (s-p)},
$$

in which expression $s=\frac{1}{2}(4+h+p)$. If the time should also be desired, it may be computed by

$$
\tan ^{2} \frac{1}{2} t=\frac{\cos s \sin (s-h)}{\sin (s-\varphi) \cos (s-p)}, \text { or by } \tan \frac{1}{2} t=\cot \frac{1}{2} \mathrm{~A} \frac{\sin (s-h)}{\cos (s-p)}
$$

If the sun's. limb is observed, the correction to the azimuth for reduction to center is $\pm \frac{r}{\sin ?}$, where $r=$ sun's radius; whether + or - is to be used, will readily be known in each particular case. t is the hour-angle.

If the local time is known, we may observe Polaris for azimuth and latitude, computiog the former by the fundamental formola, in which the azimuth A is counted from the north-
and the latter by-

$$
\tan A=\frac{\sin t}{\cos \varphi \tan \delta-\sin \varphi \cos t},
$$

$\varphi=h-p \cos t+\frac{1}{2} \sin 1^{\prime \prime}(p \sin t)^{2} \tan h$.
For greater accuracy, we may observe the star direct and reflected in mercury.
The following two examples will serve to illustrate the methods:

Example of record and reduction.

Station, Washington, D. C., in pare East of the Caiptol.
Sun near prime vertical. Angust 15, about $8^{\text {b }}$ a. w., 1 E5t. Observer, C. A. S. Instrument, five-inch magnetie theotolite. Sidereal chronometer.

	Maan ehronom-eter-time.	Mean reading horizontal circle.	Mesn reading vertical circle.	Correction for parallax in alvitude mul refraction.	Corrected
		- 1 "	- , "	' $/$	0 , "
Set I .	50748.1	255640	611702	$+134$	611836
Set 11	51622.2	278317	593800	+197	593927
Set III.	52544.1	285930	575007	$+191$	57518

	Set 1.	Set II.	Set III.
ϕ	\circ $\prime \prime$ 38 11 8 18	$\begin{array}{ccc} 5 & 1 & 11 \\ 38 & 53 & 18 \end{array}$	385318
h	284124	302033	320832
p	760427	760437	760444
A (from north)...	950606	963234	980854
Circlo reads	255640	272317	285930
South meridian reads.	1105034	1105043	1105036

Hence the north meridian reads, $290^{\circ} 50^{\prime} 38^{\prime \prime}$.
We shall also find the chronometer slow of sidereal time $16^{\mathrm{m}} 05^{\mathrm{s}} .1$, the results by the sets agreeing within a fraction of a second.

Example 2.--Station, Magnetic Observatory, Capitol Hill, Washington, D. C. Polaris near lower calmination. May 23, 1873 (observations made during eveniug twilight). Observer, C. A. S. Instrument, 23 -inch Casella theodolite No. 3524; sidereal chronometer Kessels 1287. Noon-ball at United States Naval Observatory dropped on May 17 at $4^{\mathrm{h}} 55^{\mathrm{m}} 32^{\mathrm{g}} .5$, and on May 24 at $5^{\mathrm{h}} 23^{\mathrm{m}}$ $15^{\mathrm{B}} .5$ chronometer-time. The latitude of the magnetic station is $38^{\circ} 53^{\prime} .1$ and the longitude $11^{\mathrm{s}} .6$ east of the United States Naval Observatory.

Object.	坒	Chronometertime.	Azimuth circle.		Fertical circle.	
			A.	B.	A.	B.
Mark.	R.	$h . \quad m .8$.	$\begin{array}{lc} 0 & 1 \\ 0 & 00 \end{array}$	$\begin{array}{cc} \circ & 6 \\ 180 & 03 \end{array}$	$\begin{array}{cc} 0 & \\ {[177} & 61] \end{array}$	$\left[\begin{array}{ll} 357 & 02 \end{array}\right]$
Mark	L.		18005	$0 \quad 03$	$\left[\begin{array}{ll}3 & 00\end{array}\right]$	$\left[\begin{array}{ll}182 & 57\end{array}\right]$
Polaris	L.	Dif. 131646	16958	34955	3736	21739
Polaris	L.	Ref. 2455	16959	34958	32229	14224
Polaria	R.	$\begin{array}{llll}\text { Dir } & 13 & 40 & 20\end{array}$	350 08	17006	21730	3729
Polaris	R.	Ref. $\quad 45 \quad 37$	35006	17007	14223	32225
Mark	R.		0	12004		
Mark	L.		180005	004		

[^9]Computing for circle left and circle right, separately, we find-

With these data we find-

$A=\quad 00028^{\prime} 42^{\prime \prime}$ and 0018				
Star reads,	$169^{\circ} 57^{\prime} .5$	and $170^{\circ} 06^{\prime} .8$		
Meridian,	$170{ }^{\circ} 26^{\prime} .2$	and $170{ }^{\circ} 25^{\prime} .8$	Mean,	$170^{\circ} 26^{\prime} .0$
			Mark reads,	$180^{\circ} 03^{\prime} .2$
			Mark E. of N	9037.2

> Also, $\varphi=38^{\circ} 53^{\prime} .5$ and $38^{\circ} 52^{\prime} . \overline{5}$
> Latitude, $\quad 38^{\circ} 53^{\prime} .0 \pm 0^{\prime} .4$

The following table will be found usefnl for correcting or reducing au observation of the declination taken at any time between $6 \mathrm{a} . \mathrm{m}$. and $6 \mathrm{p} . \mathrm{m}$. to the mean of the day (or to the mean of 24 hourly observations). It is, however, only approximate, since the tabular values are slightly variable in the eleven-year or solar-spot cycle; moreover, they are varying irregularly from day to day. For interpolation for any place in the United States we may consider that, roughly speaking, the greater the horizontal force the smaller the tabular values, or the range of the daily variation is inversely proportional to the horizontal force. We have the horizontal force H at Toronto 3.50, at Philadelphia"4.16, and at Key West 6.74, nearly. No notice is taken of the annual inequality, which may amount to about one minute and a half, in maximo.

Solar diurnal variation of the declination at Toronto, Canada, at Philadelphia, and at Key West, FLa
$A+$ sign indicates a deflection of the north end of the magret to the westward. A - sign, to the eastward.

			6 am,			7 a. m.			8 a.m.			9 a. m.			$10 \mathrm{a} . \mathrm{m}$.			11 a. m.		
			T.	P.	K. W.	T.	\mathbf{F}.	K. W.	T.		K, W.	T.		K. W.	T.	P.	E. W.	T.	\mathbf{P}	K. W.
January			*									'								
			-0.7	-0. 6	+0. 1	-1. 3	-1.2	0.0	-2.7	-2.1	-1.1	-2.9	-2.5	:-2. 4	-1.5	-1.6	2. 7	+0.4	$+0.3$	-1.4
Februar			-1.6	-1.2	-0.1	-2.0	-1.9	-0.3	-2.9	-2.5	-1.1	-2.8	-2.5	;-2.0	-1.5	-1.5	-20	+0.5	+0.2	-1.2
March			-2.3	-1.8	-0.8	-3.5	-2.9	-1.9	-4. 7	-3.7	-2.4	-4.5	-3.4	-2.2	-2.5	-1.8	-1. 4	+0.7	+0.6	-0.1
April			-3.4	-2.6	-1.5	-4,6	-3.5	-2.8	-5.0	-4.0	-3.1	-4.0	-3. 4	-2.2	-1.3	-1.5	-1.1	+2.0	+1.1	-0.4
May			-5. 2	-3.7	-2.0	-6.0	-4.7	-3.4	-5.8	-4. 7	-34	-4.2	-3.2	-2.1	-0.6	-0.8	-0.4	+3.1	+1.9	+1.1
June			-5.3	-3.9	-2.2	-6.4	-5.0	-3.5	-6.2	-5.1	-3.6	-4.7	-3.8	-2. 4	-1.7	-1.2	-0.9	+2.0	$+1.7$	+0.9
July.			-4.5	-4. 2	-2.3	-6.5	-5.4	-3.6	-6. 3	-5.4	-3.6	-4.9	-4.0	--2.5	-1.8	-1.5	-0.7	+1.8	+1.5	$+0.9$
Augost			-5. 2	-4.7	-2. 3	-6.9	-5.7	-4.5	-6.9	-5.5	-4.4	-4.8	-3.7	-2. ε	-0.5	-0.6	-0. 4	+3.1	+2.9	$+1.6$
September			-3.9	-3.5	-1.8	-5. 2	-4.5	-3.6	-4.8	-4.5	-3.6	-3.0	-2.4	-2. 3	-0.6	$+0.1$	-0. 4	+3.7	+3.2	+1.5
Octol r			-1.8	-1.3	-0.6	-2. 7	-1. ${ }^{\text {i }}$	-1.9	-3.7	-2.2	-2.3	-3.0	-1.9	-1.8	-1.1	-0.8	-0.5	$+1.7$	+0.8	-0.7
Novernber.			-1.3	-1.2	0.0	-1.8	-1.7	-0.5	-2.9	-1.9	-1.4	-2.8	-1.5	-1.7	-1.3	-0.4	-1.3	+1.1	+1.1	-0.3
Necember			-0.6	-0.7	+0.3	-0.9	-1.0	$+0.2$	-1.5	-1.4	-0.9	-2.0	-1.6	-2.0	-1.6	-1.1	--8. 2	+0.3	+0.3	-1.4
	Noon.			$1 \mathrm{p} . \mathrm{m}$.			$2 \mathrm{p} . \mathrm{m}$.			$3 \mathrm{p} . \mathrm{m}$.			$4 \mathrm{p} . \mathrm{m}$.			5 p. m			$6 \mathrm{p} . \mathrm{m}$	
T.				P.	K. W.		P.	F. W.	T.		K. W.	T.	P	W.	T.	P.	K. W	T.	P .	K. W.
				1	1.6		13.		12.	$1{ }^{5}$	' ${ }^{1}$		+15				6		,	${ }^{1}$
Jan... +2.5	$+2.3$	$+0.4$	+3.3	+3.4	+1.6	+3.1	$+3.3$	+1.9	+2. 4	+25	+1.7	+1.6	+1.5	+1. 1	. 9	-0.9	$+0.6$	+0.3	$+0.6$	$+1.3$
Fub... +2.4	+2.0	+0.1	$+3.3$	+3.0	$+1.1$	$+3.3$	+3.0	+1. 5	+2.5	+2. 4	+1. 4	$+\mathrm{t} .7$	+1.7	+1.1	+1.4	+1.2	$+0.8$	+0.8	+0.8	+0.5
Mar .. +3.7	+2.7	+1.1	+5.2	+3.9	$+1.9$	$+5.4$	+3.9	+22	+4.8	+3.2	+1.8	$+3.4$	+23	+1.1	+2.2	$+1.6$	+0.7	+1.1	$+1.0$	+0.6
Apr .. +4.5	$+3.6$	+1.6	+6.0	+5. 1	+9.5	+5.8	+5.2	+29	$+5.0$	+4.3	+2.6	$+3.3$	$+3.0$	+1.9	$+1.2$	+1.8	+0.9	+0.8	+0.9	-0.5
May .. +5.2	+4.1	+2.1	+6.3	$+5.1$	+2.6	+6.1	+4.9	+2.6	+4.8	$+3.3$	+2.3	+3.1	$+2.5$	$+1.5$	+1.3	+1.2	+0.8	+0.4	+0.4	+-0.5
June.. +4.7	+4.0	+2.1	+6.2	+5.0	+2.6	+6.3	+4.8	+28	+5.3	+3.8	+2.5	$+3.8$	+2.6	$+1.7$	$+1.7$	$1-1.6$	$+1.0$	+0.6	+0.9	+0.5
July .. +4.2	$+3.9$	+1.9	$+5.9$	+5.3	+2.5	$+6.0$	$+5.4$	+26	+5. 1	+4.5	+2.3	+3.7	+3.3	$+1.6$	+1.9	+2.0	$+1.0$	+0.7	+1.2	-0. 0.5
Ang . +6.0	+5. 4	+2.7	+7.2	+6.3	-3. 2	+6.5	$+5.5$	+3.2	+5.5.0	+3.8	+2. 4	+2. 7	+8.0	$+1.5$	11.0	-0.9	+-0.7	$+0.2$	+0.5	+0.4
Sept .- +6. 3	+5.2	+26	+6.4	+5.5	-2.9	$+5.4$	+4.5	+2.5	+3. 4	$+3.0$	+1.7	+1.2	+1.7	+0.8	+0. 4	+0.e	+0.5	-0.1	+4.3	+0.5
Oct ... +3.7	+2.6	+1.5	$+4.2$	+3.2	+1.6	+3.9	$+3.0$	+1.3	+2.7	+22	$+1.0$	$+1.8$	+1.1	+0.8	+1.2	$+0.3$	+0.8	+0.7	-0.4	+0.5
Nov. +3.0	+2.3	+0.7	+3.8	+2.8	+1.2	+3.3	$+26$	+1.1	+2.5	+1.9	+0.9	$+1.8$	+1.2	+0.6	+1.1	+0.6	+0.4	-0.1	-0. 1	0.0
Dec... +1.9	+1.9	-0.1	$+3.0$	$+3.0$	+0.9	+3.4	+3.0	$+1.4$	+2.4	+23	+1.4	+1.7	+1.3	$+1.0$	$+0.8$	+0.6	+0.5	0.0	-0. 1	$+0.1$

The Toronto resulte are derived from observations of five years ending June 30,1848 .
The Philadelphis results are derived from observations of five yeare onding June $30,1845$.
The Koy West results arb derived from observations of aix years ending April, 1866.
For reducing observations to mean of day (24 hours) the signs of the tabular quantities must be reverred.

2. DETERMINATION OF THE MAGNETIO INCLINATION.

The inclination, or dip, is measured in the vertical plane passing throngh the magnetic meridian of the place, and is the angle contained between a horizontal direction and the direction of a magnetic needle moving freely about a horizontal axis directed east aud west maguetically. It is measured by means of a dip circle, and is considered + when the north end of the needle dips below the horizon. Thus in the north magnetic hemisphere the dip will be + and in the south magnetic hemisphere -.

In a plainly-constructed circle, the graduation, which is directly read off at the ends of the
needle is generally not closer than quarter-degrees or ten minates, and subdivisions are to be estimated.* In the more elaborate instrnments, ${ }^{\dagger}$ as used at Kew, for instance, the needle does not swing in the plane of the graduated circle, and the pointing at end marks on the needle is done by the aid of two microscopes, with threads in the focus, and the circle is read off to the nearest minute or half-minute by means of two verniers. The latter construction is advantageous only with well-balanced needles, haviug as perfectly cylindrical axles as can be made.

To place the dip circle in the plane of the magnetic meridian, we have two ways, either by the aid of an ordinary long compass needle, which is supported between the agate plates, or by means of the dipping needle, which will point vertically in the plane of the magnetic prime vertical. The former method is more expeditious; the latter can always be resorted to, and consists in four readings of the azimutb-circle of the instrument when placed successively in the position: face of circle south (maguetic), with face of needle south and face of needle north; next, face of circle north, with face of needle north and face of needle south; the mean readiug $+90^{\circ}$ and -90° will gire the settings of the circle for the measure of the dip. A more precise value will be found if the process is repeated, with the polarity of the needle reversed.

In adjusting the dip-circle preparatory to observing, the following conditions should be attended to, and the observations shculd be arranged so as to eliminate any small outstanding defects in the perfect condition of the instrument ; the instrument must remain level when turned about a vertical axis; the agate or steel plates supporting the needle should have their upper surfaces level, should be of equal height, and a horizontal tangent plane should pass below the center of ${ }^{\bullet}$ graduation of the circle at a distance equal to the radius of the axle of the needle. The zero graduation of the circle should lie in a horizontal plane; also the plane of the suspended needle and that of the circle should be truly vertical; and, finally, the prolongation of the axle of the needle should pass through the center of graduation. For instruments provided with microscopes, the following additional conditions should be satisfied: The microscopes must be focused and collimated; their threads should be 180° apart, and if produced should pass through the center of graduation.

The needles, before magnetization, should balance perfectly, and those intended for the relative measure of total intensity, according to Dr. Lloyd's method, should be guarded as much as possible against any change in their magnetism.

Reversal of poles of dipping-needles.-The needles which are exclusively used for the measure of the inclination should have their poles reversed at each place of observation, and the results with polarity north and polarity south must be combined to a mean value. If exceptionally the polarity should not have been reversed at a station, the difference in results between polarity north and south, as found at statious which have nearly the same dip, may be applied as a correctiou. To reverse the polarity, we may proceed as follows: fasten the needle in the reversing block, and, holding a har-mageet in each hand, bring the opposite poles of the two bar-magnets close together at the middle of the needle so as to tonch the same on both sides of the axle; the needle is supposed to be on a level plane, and the bars are to be inclined ontward about 45° to the horizon. They are then drawn slowly and steadily over the needle, carrying them over its ends, and, after lifting them some inches above the level of the needle, bring them back to the middle position and move them again over the surface. This process may be gone through three times, when the upper face of the needle is turned down, in which position the magnetization is repeated as before. Care should be taken to have the motion exactly in the direction of the geometrical axis of the needle; the magnetizing-block usually has a ledge, along which the magnet can be drawn, closely tonching it, which will insure a movement parallel to the axis of the magnetic needle. If its north end is to be changed to a south end, place the north (or marked) end over trat end of the needle when magnetizing. The polarity as well as the face may be desiguated by means of tre number or letter usually cut on the end of the needle. The reversing-bars should be carefully handled, and should not be allowed to tonch each other except at opposite poles, and when placed in the box their ends of opposite polarity shonld be connected by a softiron armature. If the reversal of the needle is to be repeated a short time after the operation, the method is only changed by using four

[^10]

M是

DIP GREEE
YGW OBE
instead of three passes over each face of the needle; if another reversal is needed shortly after, five passes would be required. This is done in order first to neatralize the existing magnetic polarity, and then to give it the opposite polarity desired; if, however, one or more days have elapsed between a reversal, enough of magnetism is lost to render any increased number of passes unnecessary. Their number depends primarily on the strength of the bars and the relative size of the bars and needles. Should the bars hare too much intensity and the needles be long, an irregular distribution of maguetism might bo produced. Should the bars be of unequal intensity, it is recommended to exchange them in the hands, after performing one half of the operation of reversal, tursing them at the same time end for end, and completing the operation in the new position. When not in use and when observing for dip, the bar-magnets should not be kept nearer to theobserver than about ten meters; but when observing for declination they should we bept at a greater distance.

The following example of a record of ordiuary observations of the dip will sufficiently show the general arrangement. The readings in the second line are independent of those of the first, and between them the needle has always been lifted off its supports. If the position of the needle is recorded while slowly oscillating, it is customary to record the lelt and right extreme excursions, and, in order to correct for diminution of arc, the mean of the reading of the first extreme and of its next return to it should be taken before combining with the reading of the opposite extreme. In this case, the mean for the first extreme positions may be taken mentally, and the second extreme is recorded under it; then follow two more such readings after the needle has been lifted off and let down again on the agate supports.

It is recommended to observe the needle while slowls oscillating in preference to noting its position at rest, in which case the equilibrium may be influenced by any small irregularity in the axle at the point of contact, which would be passed over by an oscillating motion. Defects in the figure of the axle may also be recognized by irregularities in the motion of the needle.

The introduction of position needles having a movable axle, which may be turned by means of a key to different positions witb a view of eliminating small defects in the figure of the asle, has, so far, not proved as satisfactory as was antieipated, owing to the diffeults of perfectly figuring the axle and centering the movable arbor; if such needles are used their polarity, after the first set of observations, must be reversed, and the observations be concladed before turving to a new position.
H. Ex. 81——34

Magnetic Dip.

Station, Washingtou, D. C. Date, November 10, 1853. Six-inch Barrow Dip-Circle No. 2. Needle
No. 1. Observer, S. H. Time, commenced $10^{\mathrm{h}} 15^{\mathrm{m}}$ a. m. ; concluded $10^{\mathrm{h}} 33^{\mathrm{m}}$ a.m.

Circle east.				Circle west.			
bace enst.		Face west.		Face east.		Face west.	
S.	N.	S.	N.	S.	N.	S.	N.
$\begin{array}{cc}0 & 1 \\ 71 & 24 \\ & 26\end{array}$	$\begin{array}{cc}\circ & 1 \\ 71 & 08 \\ & 03\end{array}$	$\begin{array}{cc}0 & 1 \\ 71 & 08 \\ & 08\end{array}$	$\begin{array}{cc}\circ & 6 \\ 71 & 31 \\ & 31\end{array}$	$\begin{array}{cc}0 & \prime \\ 71 & 08 \\ & 00\end{array}$	$\begin{array}{cl}0 & 1 \\ 70 & 50 \\ & 58\end{array}$	$\begin{array}{cc}\circ & 1 \\ 70 & 56 \\ & 54\end{array}$	$\begin{array}{cc}0 & \\ 70 & 42 \\ & 42\end{array}$
$71 \quad 25$	7105	71.08	7131	7104	$70 \quad 54$	$70 \quad 55$	$70 \quad 42$
$71 \quad 15$			9. 5	70		70	8.5
71.17 .3				- $70 \quad 53.7$			
$71 \quad 05.5$							
Polarity of marked end bouth.							
Circle weat.				Circle east.			
Face west.		Face erst.		Face wert.		Face east.	
S.	N.	S.	N.	s.	N.	S.	N.
\%1 12	${ }^{\circ} \mathrm{O} 117$	$\stackrel{\circ}{\circ} \mathrm{C} 1$.	\circ 71	0 71 1	$\begin{array}{cc}\circ & 1 \\ 71 & 30\end{array}$	\% 71	$\begin{array}{cc}\circ \\ 71 & 18\end{array}$
7111	717	71.05	7104	$71 \quad 43$	71.27	71.43	7119
	14		4. 5	71	5	71	31
	$71 \quad 09.2$			$71 \quad 33.0$			
$71 \quad 21.1$							

Note,-Magnetic meridian obtained by horizontal needle, which was removed before commencing dip-obeervations.
Specimen of record for finding magnetic meriaian.

	Azimuth-circl
Circle south, needle south	$9900{ }^{\prime}$
Circle south, needle north.	$970{ }^{58}$
Circle north, needle sonth	$278{ }^{\circ} 52^{\prime}$
Circle north, needle north.	$278{ }^{\circ} 28^{\prime}$
Setting: $8^{\circ} 40^{\prime}$ and $188{ }^{\circ} 40$	$98^{\circ} 40^{\prime}$

It is desirable that in the various positions of the circle and needle the extreme readings should keep within a range of 10 or 2°; the closer the better the inal result.

For the purpose of testing the regularity of the figure of the axle of the needle and the freedom of the metal of the circle from any magnetism, we may observe dips in various azimuths; if $\theta_{a}=$ observed dip in magnetic azimath a, then the true inclination is found by-
$\tan \theta=\tan \theta_{a} \cos \alpha$
The values of a may be successively changed by intervals of about 10°.

We may also obtain the true inclination, without the knowledge of the magnetic meridian, by observing the dip in any two vertical planes at right angles to each other, and find the inclination by the formula-

$$
\cot ^{2} \theta=\cot ^{2} \theta_{\mathrm{I}}+\cot ^{2} \theta_{\mathrm{II}}
$$

But the best method would seem to be that of Mayer (proposed in 1814), which is peculiarly fitted for eliminating the effect of an irregularits in the figure of the pisots, since the dip can be found on almost any part of the circumference of the axle. This method consists in loading the needle (near its axis), and thus changing its direction. The new position is conditioned by the equilibrium of the magnetic force and that of gravity. The tilt may amount to 90° or more ; and should the needle be deflected into the adjacent quadrant, the algebraic sign of the observed dip changes, and must be attended to. For want of a better contrivauce, a drop of sealing-wax may be applied to the side of the needle near its axle, and obsercations may be made with the needle variously deflected by changing its quantity, or by letting it act at a different leverage. The ordinary rules for observing dip are adbered to, but special care must be taken that the weight be not changed in position in the act of reversing the polarity. This method of reduction may also be followed if ordinary needles differ as much as 3° or 4° in any of their separate results, due to change of face or polarity.

Let $\theta_{\mathrm{I}}, \theta_{\mathrm{II}}, \theta_{\mathrm{III}}, \theta_{\mathrm{III}}$, be the observed dips, say, with face of needle \mathbf{E}, face W, and after change of polarity, with face W and face E, respectively, and-

$$
\begin{array}{ll}
\mathrm{M}=\cot \theta_{1}+\cot \theta_{\mathrm{II}} & \mathrm{~N}=\cot \theta_{\mathrm{III}}+\cot \theta_{\mathrm{IIII}} \\
m=\cot \theta_{\mathbf{I}}-\cot \theta_{\mathrm{II}} & n=\cot \theta_{\mathrm{III}}-\cot \theta_{\mathrm{IIII}}
\end{array}
$$

Then-

$$
\cot \theta=\frac{M n+N m}{2(m+n)}
$$

The record, as given in the following example to this method, shows that the dip was noted while the needle was oscillating, and that between the second and third horizontal lines the needle was lifted off the agates and let down again.

Magnetic Dip.

Station, Washington, D. C. Date, September 23, 1856. Dip-Circle Barrow No. 5. Needle No. 2, loaded near axle. Observer, C. A. S. Time, commenced $11^{\mathrm{h}} 30^{\mathrm{m}}$; concluded $11^{\mathrm{h}} 55^{\mathrm{m}}$.

Azimuth-circle.
Magnetic prime vertical..................... 69000^{\prime} by north polarity.
Magnetic prime vertical................... $247^{\circ} 50^{\prime}$ by south polarity.
Mean \qquad $68 \circ 25^{\prime}$
Determined before needle was loaded.

Computalion.

3. ABSOLUTE AND RELATIVE MEASURES OF THE MAGNETIC FORCE.

It is usual, when accurate results are desired, to measure the horizontal component of the magnetic force by means of a portable magnetometer, and the dip by means of a dip circle, and to derive the total force by combining these. In high magnetic latitudes, where the horizontal component is feeble in comparison with the vertical component, Llogd's statical method is to be preferred. To measure the horizontal force, two distinct operations are required, known as "Observations of Deflections" and "Observations of Oscillations." Their combination will enable us to separate, in the observed force, that part which is due to the magnetism of the nagnet from that which is due to the earth's maguetism. Either of these operations, but especially the latter, will determine relative horizontal intensity, and, when used in connection with a base-station where the magnetic force is known, absolute results will also be obtained. In this case the observer should return to the base-station after the completion of his magnetic survey, and again measure the magnetism of his magnet, which, in the interval, must be carefully guarded against changes, and the results must be corrected, if necessary, for loss of magnetism.

The magnetometer.-There are two forms of unifilar magnetometers in use: those with a complete astronomical theodolite, or alt-azimuth, mounted to the maguetie north or south of the box in which the collimator-magnet is suspended, and on the saine stand with it; and those which hare the box with suspended magnet mounted centrally orer, and firmly connected with, an azimuthcircle, the reading-telescope being mounted eccentrically ou supports. The first form (supposed to have been devised by Ganss) is the preferable one in feld use; it admits of greater expedition, allows of greater ease in observing, and is almost indispensable when the astronomical meridian has to be determined. With the magnet to the south of the theodolite, it readily admits of observations of the sun, for the determination of time and azimuth (also of latitude, if required) without interfering with the magnetic work proper. Deflections are read off on the scale of the collimatormagnet, and must be converted into angular measures. The second form* (supposed to have been given by Dr. Lamont) is capable, perbaps, of greater accuracy, aud is better suited for a fixed observatory, especially when declination disturbances also are to be observed, or at stations where there is a large daily range in the declination. The angles of deflection are at once read off. In order to observe the azimuth-mark, the magnet and box have temporarily to be removed, which is unnecessary in the first form of the instrument. When observing deflections, the bar, and consequently the deflecting magnet, remain fixed in the magnetic prime vertical, in the magnetometer, with attached theodolite; but in the second form of the instrument the deflecting and deflected magnets always remain at right angles to each other. \dagger Improvements have been made at the Coast Survey Office in the construction of magnetometers, with a special view of making them more portable than the older instruments, which were found unnecessarily large and heary. In 1871, a three-inch Casella theodolite was utilized for this purpose. The magnet (3 inches long and $\frac{1}{4}$ inch in diameter) and light box, with glass tube, were first attached to the upper frame of the theodolite; afterward to its stand, by which greater steadiness was secured. The relative horizontal intensity only could be measured by means of oscillations. In October, 1874, a similar instrument was fitted up with 2 magnets, inertia-ring, and deflecting bar for absolute measure, the magnets being ouly about $1 \frac{1}{3}$ and $1 \frac{1}{2}$ inches in length. In the present year several instruments were coustructed with 4 -inch theodolites and magnets, 1.50 and 1.84 inches in length, respectively; diameter, 0.3 inch. One of these instruments is presented in the accompanying plate. The upper part of the theodolite can be removed and the magnet-box placed on its azimuth circle. The operation for either construction of the instrument is exsentially the same, and the simple modifications necessary in using one or the other form in observing and computing will be specially noted under the appropriate heads of the work. When observing for time and for duration of oscillations, a mean-time box-chronometer is most convenient for use; the observer will himself ftake up the beat (halfsecond) and estimate fractions of seconds. For a traveler, who dislikes to be mucl incumbered, a pocket-chronometer is much to be preferred, but the counting of the beats, generally five in two

[^11]seconds, requires some previous practice. It is recommended to take up an even beat-say at 0 , $10,20,30, \& c .$, seconds-and count only the even beats, repeating the letters $a b c d$ in the intervals; thus, $10 a b \in d, 12 a b c d, 14 a, \& c$. The letters are afterward converted into their equivalents of time; thus, $14 c$ would be $15^{5} .2$.

Observations of deflections.-The instrument being adjusted as for observations of declination, attach the deflecting bar, suspend the shorter of the two magnets generally supplied for each instrument; the line of detorsion haring been placed in the magnetic meridian, insert the copper damper, raise the suspended magnet to the horizontal level of the deflecting (or long) magnet, put the carrier at the proper distance on the bar, and, after placing the intensity (or long) magnet* centrally on it, commence making the observations as indicated in the following scheme:

HORIZONTAL INTENSITY.
DEFLECTIONS.
Form 1.

- Magnetometer with attached theodolite. Deflecting magnet in the magnetic prime vertical.

Station, Hampton. Date, July 11, 1862. Magnet C_{32} deflecting. Magnet S_{8} suspended.
Observer, N. N.

Notr.-The order of time indicated above is ferigued to correct for changea in declination during the obervationg of deflections.
*A vertical plane passing throngh its axis shonld also pase through the line of saspansion of the shorter magnat.

Form 2.

Theodolite magnetometer. Deflecting and deflected magnets at right angles to each other.
Station, Washington, D. C. Date, May 16, 1867. Magnet A deflecting. Maguet B suspended. Distance, $r=1 \frac{1}{6}$ feet. Log $r=0.06695$. Observer, C. A. S.

The preceding forms are arranged for determining the angle of deffection (u) by which ${ }^{-}$the intensity-magnet, acting at a given distance, r (expressed in feet), deflects the suspended maguet from the magnetic meridian, and for determining the ratio of the magnetic force (n) of the deflecting magnet to that of the earth's horizontal component (H). For the case of the deflector remaining in the magnetic prime vertical, we have, with sufficient precision-

$$
\frac{m}{\overline{\mathbf{B}}}=\frac{1}{\mathbb{Z}^{2}} r^{3} \tan u\left(1-\frac{\mathbf{P}}{r^{2}}-\frac{Q}{r^{4}} . \quad . \quad .\right)
$$

for the case of the magnets remaining at right angles-

$$
\frac{m}{\mathbf{H}}=\frac{1}{2} r^{3} \sin u\left(1-\frac{\mathbf{P}}{r^{2}}-\frac{\mathrm{Q}}{r^{4}} \quad . \quad . \quad .\right)
$$

where the terms $\frac{Q}{r^{-1}}$, etc., may be omitted as too small to affect sensibly ordinary observations.
The first form requires the torsion of the suspension to be measured and to be corrected for; in the second form, no twist is developed. The co-efficient P, depending upon the distribution of magnetism within the deflecting magnet, mast be ascertained experimentally by means of deflections at two or three distances, and at least twenty-five independent measures should be made for its nomerical value; it will generally be found to have a negative sign, provided the magnets have their proper proportions of length, viz : short magnet to long magnet, as 1 to 1.224 .

[^12]To find P, let $A=$ value of $\frac{m}{\bar{H}}$ for the shorter distance r, and $A_{1}=$ value of $\frac{m}{\bar{H}}$ for the longer distance r_{1}; then-

$$
\mathbf{P}=\frac{\mathbf{A}-\mathbf{A}_{1}}{\frac{\mathbf{A}}{r^{2}}-\frac{\mathbf{A}^{1}}{r_{1}^{2}}}
$$

If for any two consecutive sets of observations the temperature of the intensity-magnet is not the same, a correction for difference of temperature has first to be applied* to the observed angle of deflection. It may be done by means of the expression-

$$
\sin u=\frac{\sin u_{0}}{1-\left(t_{0}-t\right) q}
$$

where $u_{0}=$ observed angle of deflection of first set at temperature t_{0};
$u=$ corrected angle in order to refer it to the standard temperature t of the second set;
$q=$ temperature coefficient, to be determined from a series of observations of deflections, at a fixed distance, but at various temperatures.
The co-efficient Q, depending on the fourth power of r, may be neglected. The two distances r and r_{1} (to be measured from the middle of the magnets) may be in the ratio of 1 to $\sqrt{\overline{2}}$ nearly, but not to exceed 1 to $\sqrt{\overline{3}}$; or, for convenience, the second distance may be one-half greater than the first, but the shorter distance should not be less than about four times the length of the deflecting magnet. The correction for induction in Form 2 may be neglected in all cases where extreme accuracy is not required. In observing with the magnetometer and attached theodolite, we may save time by noting the two extreme scale-readings of an oscillation, instead of waiting for the magnet to come to rest; and, in Form 2 , we can also reduce the time of observation by setting the azimuth circle beforehand nearly to the reading corresponding to the particular position of the magnet, and afterward perfecting the pointing on the middle division by the azimuth-screw. The scale of the deflecting bart shonld be examined for graduation and eccentricity errors, and corrected for them if necessary. When using a magnetometer with theodolite, the angular value of the scale of the deflected magnet must be ascertained with great precision, and, in general, special attention is to be paid to the temperature of the intensity-magnet, which must be the same, or be reduced to the same, temperature during the observations of deflections and oscillations. These two operations should, therefore, always immediately follow each other.

Observations of oscillations.-The instrument being adjasted, and the intensity (long) magnet \ddagger suspended without twist, with scale horizontal, and the copper damper removed, the observer will arrange his scheme for observing the duration of a certain number of oscillations, from which the time of one oscillation is to be dedaced. Theibulb of the thermometer to indicate the temperature of the magnet is put iuside the box, the stem projecting outside. The mean-time chronometer, \S whose rate must be known, is placed at a safe distance below the telescope, allowing, however, the observer to take $u p$ the time without changing his place.

With the magnet at rest, the vertical thread of the telescope should point nearly to the reading on the scale of the magnetic axis, or to the center divisiou. Uare mast be taken that the magnet have no up and down vibrations; a horizontal motion is then given to it by means of a small magnetized piece of steel, sufficient to make it oscillate for about twenty or twenty-five minutes before coming to rest. The oscillations are counted as follows: Suppose the center division of the scale to pass from apparent right to left, call its first transit over the line of collimation of the telescope 0 , and note the time (the minute having previously been noted, the second is added without taking the eye off the telescope); its next transit will be from left to right and is called 1, the next following one from right to left is called 2, and so on until the tenth transit is observed, when the time

[^13]is again noted, for which purpose the beat of the chronometer has to be taken up in the usual manner. The duration of ten oscillations boing thus approximately known, the intervals and whole number of oscillations to be observed can be properly arranged. With the light magnets now in use, two fibers, and for those used in connection with three-inch Casella theodolites, even a single fiber suffices for the suspension. The best arrangement yet devised for ordinarily observing oseillations is the following: Begin with apparent motion of the magnet, say, from right to left, and note the times of, say, three transits; then take an equal number from left to right, to be followed, after an interval of a few minutes (of rest to the observer), in order to get the duration for, say, oue hundred oscillations, by a similar set of transits from right to left ; aud conclude finally with an equal uumber of transits from left to right. It will be noticed that for even numbers of oscillations the apparent motion is from right to left, for odd numbers the reverse. We thus provide experimentally for any effect of a change in the declination during the observations, the final meau duration of one oscillation being unaffected by any such change. It is advisable not to extend the entire time consumed in a set of observations beyond a quarter of an hour, and to make the interval between any two consecutive observations (the magnet swinging in the same direction) between one-third and two-thirds of a minute. This gives ample time to take up the beat of the chronometer, which is done, say, ten seconds before the expected time of transit, and to await it deliberately. The arrangement for a particular case is shown in the form given below; here the three intervals (rongh ones only) of $39^{\mathrm{s}}, 43^{\beta}$, and $3^{\mathrm{ma}} 12^{\mathrm{g}}$ are known beforehand, and must be meutally added to the observed time in order to be prepared for the next following transits. With the time of a transit only roughly known, the observer will not be biased in his estimation of the observed fraction of a second. For each particular magnet, depending mainly on its mass and maguetic intensity, a special scheme must be devised, guided by the principles as explained above; but the same scheme may be adhered to for a number of stations, unless the survey exteuds over a space within the limits of which the earth's horizontal force has widely different values. Special attention is to be paid to the correct noting of the temperature, and the observations must be accompanied by measures of the torsion. The correction for induction may be omitted except when great accuracy is demanded; it arises from the fact of the magnet having greater force, by induction, when sus pended in the maguetic meridian, than in the position at right angles to it (as in deflections). On the subject of induction, see Coast Survey Report of 1860 , Appendix No. 9 .

H Ex. 81-35

HORIZONTAL INTENSITY.

OSCILLATIONS.
Station, Washington, D. C. Date, August 12, 1871. Magnet A suspended. Inertia-ring, No. - (not used). Chronometer, Park. \& Frod., 1216. Daily rate, $-1^{\mathrm{s}} .75$ on mean time. Observer, C. A. S.

Calculation by-

$$
\mathbf{T}^{2}=\mathrm{T}^{2 / 2}\left(1+\frac{l}{f}\right)\left(1-\left(t^{\prime}-t\right) q\right)
$$

Observed time of 100 oscillations	391.17
Time of oue oscillation	3.9117
Correction for rate	0.0001
T^{\prime}	3.9116

Let $H=$ the horizontal component of the earth's magnetic force; $m=$ the magnetic moment of the intensity-magnet; $K=$ its moment of inertia (inclusive of stirrup and balancing-ring, \dagger if any) ; $T=$ the time of one oscillation : then, from observations of oscillations, we have the expression for the product-

$$
m \mathbf{H}=\frac{\pi^{2} \mathbf{K}}{\mathbf{T}^{2}}
$$

where $\pi=3.14159$
The observations of deflections give the ratio ${\underset{H}{m}}_{m}^{\text {and the observations of oscillations the pro- }}$ duct $m \mathrm{H} ; m$ and H can therefore be eliminated from the two equations, as shown in the preceding example.

To determine K, a truly-turned brass or bronze ring of known dimensions and weight (about equal to that of the maguet) is placed on the magnet. It is correctly centered by meaus of two centering-blocks, and when suspended must remain in a horizontal plane. The nomber of suspen-sion-fibers must be doubled for the purpose. In this position a set of oscillations is observed similar in arrangement to that already explained; and if T_{i} be the time of one oscillation of the loaded magnet, and K_{i} the moment of inertia of the ring, then-

$$
\mathrm{K}=\mathrm{K}_{1}\left(\frac{\mathrm{~T}^{2}}{\mathrm{~T}_{1}^{2}}-\mathrm{T}^{2}\right)
$$

A series of not less than twelve sets of observations of oscillations, with the magnet altornately unloaded and loaded, is to be made, each set duly corrected for torsion, rate of chronometer, and difference of temperature, from which the value of K is deduced. These results are to be combined with a view of eliminating the effect of changes in H during the observations; thus the mean of sets 1 and 3 is used with set 2 , the mean of 3 and 5 with 4 , \&c., the first and last sets being alike either with magnet unloaded or loaded. As the torsion changes with the weight, observations for torsion must also be made with the loaded magnet. To find K_{1} let r and r_{1} represent the inner and outer radii, expressed in decimals of a foot, and w the weight of the ring in grains, then-

$$
\mathbf{K}_{1}=\frac{1}{2}\left(r^{2}+r_{1}^{2}\right) w
$$

The values of $\log \pi^{2} \mathrm{~K}$ for different temperatures should be tabulated. It suffices to assume the ordinary co-efficient of expansion for brass (0.000010).
\dagger This small balancing-ring mast remain in the same position as in the observations for intensity; but its use should be avoided, if at all possible.

The reduction of the time of an oscillation to an infinitesimal are is generally so small as not to affect the magnetic results. If a and a^{\prime} express the initial and terminal semi-arcs of an oscillation (in parts of the radius), then the corrected value for T^{2} will be-

$$
\left(1-\frac{a a^{\prime}}{16}\right)^{2} \mathrm{~T}^{2}
$$

This correction can be avoided by swinging only through small ares.
To reduce the measures of deflections and oscillations to the same temperature, let $t=$ the temperature of the magnet when deflectivg; $t_{1}=\mathrm{its}$ temperature when oscillating; $q=$ the change in magnetic moment of magnet for a change in temperature of 10 Fabrenbeit, then the co-efficient to be applied to T^{2} is equal to $1-\left(t^{\prime}-t\right) q$, as shown in the example. The ralue of q is not constant, but, for a moderate range of temperature, may be taken as constant; it must be obtained experimentally, either from oscillations or from deflections, at various temperatures, but the magnet should not be subjected to a greater range of temperature than from about 32° to 1000 Fahrenbeit. These observations must be conducted by the alternate use of a jacket of ice and of hot water, or by the aid of extreme natural temperatures; ample time must, however, be given to the magnet to establish again an equilibrium in its magnetism; all rapid changes from cold to hot (or vice versa), will give decidedly erroneous values for q.

Supposing not less that three consecutive series of observations of deflections for finding a. value of q, and the first and third series to be at nearly the same temperature, with their results combined to a mean, and the second or intermediate series at a greatly different temperature, then q may be found, with sufficient precision, by the expression-

$$
q=\frac{a n \cot u}{t-t_{0}}
$$

where $a=$ the arc value of one division of the scale of the suspended magnet in terms of the radius; $n=$ the difference of scale-readings corresponding to the difference of temperature $t-t_{0}$; and $u=a n g l e$ of deffection at the lower temperature t_{0}. In every case the arrangement must be such as to eliminate, as far as possible, any effects of changes in declination and intensity during the observations. If other instruments are available, it is best to correct the readings for observed changes in declination and intensity.

Example to observations of deflections for value of q of magnet H.
Washington, D. C. Magnetic observatory. J.S. H., observer. April 14, 1856. Maguet C_{17} suspeaded. Magnet H deflecting at a distance of 21 inches to the east of suspended magnet Mean declination-reading of the day, $62^{\text {a }} .4$. One scale-division of $\mathbf{C}_{17}=2^{\prime} .80$.

Reading of \mathbf{C}_{17} during deflection . 28.0
Reading of C_{17} after removing $\mathrm{H} . .$. 149.3
Angle of detlection.. . $5^{\circ} 39.6=121.3$

The above partial results, which form but a portion of the observations taken, may be arranged as follows:

Set num-ber-			Differencea in-	
			Tempera. ture.	Scale-divis ions.
	\bigcirc	d.	\%	d.
1 and	43.4	97.64	¢2. 2	0.51
2 and 6.	57.3	27.97	8.3	0.18
3 and 5	73.7	23. 37	\%. 1	0. 2
	87.9	28.61	223	0.45
Mean..	65.6	2-15	Sum, futy	1.33

$$
\begin{aligned}
& \text { Log a....... ... } 0.447 \\
& \text { Co. Iog rad. in minutes } 461 \\
& \text { Log n................................... } 0.137
\end{aligned}
$$

$$
\begin{aligned}
& q=0.000185
\end{aligned}
$$

If it is desirable to check the preceding result, we can also find the value of q from three or more consecutive series of oscillations (always combined in accordance with the principle ofeliminating changes in intensity) at different temperatures. Let T and T_{4} be the observed times of one oscillation (corrected for rate of chronometer and effect of dilatation of magnet) at the temperatures t and t_{0}, then-

$$
q=\frac{\mathbf{T}^{2}-\mathbf{T}_{0}{ }^{2}}{\mathbf{T}_{0}{ }^{2}\left(t-t_{0}\right)}
$$

If the maguctic moment m of the magnet has been determined at a number of stations, the different values may be reduced to a standard temperature. Let $m_{0}=$ magnetic moment at the standard temperature $t_{0} ; m=$ the magnetic moment at any other temperature t, then-

$$
m_{0}=m\left[1+\left(t-t_{0}\right) q\right]
$$

If the values of m_{0} are arranged according to time, the gradual loss of magnetism will become apparent in a few weeks, unless the magnet be an old oue, when yearly determinations of m indicate but a slight loss. A new magnet is not well suited for intensity-determinations until the lapse of a month or two. See Coast Survey Report of 1857 , Appendix No. 32.

If $F=$ total magnetic force; $H=$ its horizontal component ; $V=$ its vertical component; and $\theta=$ the angle of the dip (reckoned from a horizontal line), then-

$$
\mathbf{F}=\mathrm{H} \sec \theta=\mathbf{V} \operatorname{cosec} \theta
$$

To convert measures of intensity expressed in British units into their equivalents expressed in the metric system, in which the millimeter $=0.00328087$ foot and the milligram $=0.0154323$ grain are adopted, we multiply by the factor 0.46108 (\log factor $=9.60378$). Its reciprocal is 2.1688 ($\mathbf{l o g}$ reciprocal factor $=0.33622$), by which intensity-measures expressed iu metric units are to be mul. tiplied to give their equivalents, according to the British weights and measures.*

[^14]Concluding remarks.-The degree of accuracy attainable in the magnetic measures can only be estimated, chiefly on account of the almost incessant changes in the action of terrestrial magnetism. With well-constructed instruments, such as have been supposed in this article, and with fair observations, the resulting declination for any one day may, in our magnetic latitndes, be affected with no greater probable uncertainty than about $\pm 1^{\prime}$ to $\pm 3^{\prime}$, and correspondingly less if the observations extend over more than one day. The dip may be affected with a probable uncertainty between $\pm 1^{\prime}$ and $\pm 5^{\prime}$, according to the perfection of the needles and the number of observations made; and the horizontal intensity, in general, may become known withiu about its ${ }_{40}^{10}$ part from any one day's observations. To find the eftect on the total force, we have the relation-

$$
d \mathrm{~F}=d \mathrm{H} \sec \theta+\mathrm{F} \tan \theta d \theta
$$

To secure uniformity and completeness of record, the Coast Survey observers are furnished with blank forms, Nos. 1 to 5.*

Washington in 187\%, what is moant is that this force is equal to a pressure of a mass of 4.35 grains when under the influence of an attractive force which would produce during one second a velocity of one foot. The same, if expressed in ordinary units of gravitation-force, would be $\frac{4.35}{32.17}$, or 0.135 grain of pressure under the earth's attraction.

The unit of magnetic force in the metric system is $\frac{1}{9806}$ of that of gravity; hence the anit of magnetic force in the British sfstem is to that of the metric system as $9806: 32.17$, or nearly 305 times greater than tho latter. To change numerical measures of intensity expressed in units of the metric system into their equivalente expressed in C. G. S. measure (or in units of the centimetre, the grampe, and the second), we have only to shift the decimal point one place to the left.

The earth's magnetic energy acts upon a magnet as a couple, the attractive force exerted on one-half of the magnet heing equal and opposite in direction to the repulsive force on the other half.

* Por further information on the subject of this paper the reader may consult the following works:

Magnetical Instructions for the use of portable instruments, etc., etc., by Lient. C. J. B. Riddell, R. A., F. R. S., London, 1844; with supplement, London, 1846.

Handbach des Erdmagnetismus, Dr. J. Lamont. Berlin, 1849.
Manual of Terrestrial Magnetism, by Major-General Sir E. Sabine. Extracted from the Admiralty's Manual of Scientific Enquiry, third edition, 1859.

Terrestrial and Cosmical Magnetism. The Adams Prize Essay for 1865, by E. Walker, M. A. Cambridge (England), 1866.

A treatise on magnetism, by Sir G. B. Airy. London, 1870.
A treatise on magnetism, general and terrestrial, by H. Lloyd, D. D., D. C. L. London, 1874.

APPENDIX No. 17.

METHOD OF CLOSING A CIRCUIT OF TRIANGULATION UNDER CERIAIN GIVEN CONDITIONS, BY CHARLES A. SCHOTT, ASSISTANT, AND M. H. DOOLITTLE, UNITED STATES COAST SURVEY.
It has been deemed desirable to preface this paper by some general and explanatory remarks on the adjustment of triangulations by application of the method of least squares.

First, with respect to directions or angles measured at any station. Such measures will exhibit small discrepancies, which are caused by the unavoidable imperfections of measure. They are indicated by the want of identity in the ralue of any angular space resulting from the difference of its two directions when deduced in more than one way from different combinations or series of measures.* If angles are measured directly by means of repeating-instruments (now only used in subordinate triangulations), we find discrepancies in the sum of two or more angles given separately when compared with the whole space measured.t To this kind of conditions also belongs that of
" ;or method of treatment and example, see Coast Survey Report for 1854, Appendix No. 3ty, pp. 71 to 76, Art. A; and for the determination of the probable error of a resulting direction, Coast Survey Report for 1864, Appeulin No. 14, pp. 120 to 124, Art. 3.

+ For ireatment and example, see Report for 1854, Appendix No. 33, pp. 76 to 79, Art. B; and the briefer method with tho aid of correlations, in the Report for 1868 , Appendix No. 8, pp. 141, 142. The probable error of each angle is deduced in the nsual way; but, as triangulations are now generally adjusted " by directions" aud not "by angles," we require to know the probable error and weight of each direction. The process given in the Report for 1864, pp. 124, 125 , Art. 4, has been superseded, since 1868 , by the simpler one of treating an angle as the differcuce of two directions; and since no example has yet been given, the following one will suffice to indicate the process.

Suppose but two angles measured, and each individual measure to consist of an equal number of repetitions, we subtract the mean (or resulting angle from adjustment, as the case may be) from each measure, and arrange as fol lowe:

STATION, BURDEN.
Abstract of remaining errors. Errors and their squares.
[N. B.-To avoid the negative sign, we subtract from $60^{\prime \prime}$.]

closing the horizon, or the requirement that the whole measured angular space around the station equal 360. Existing conditions of this kind, either among directions or angles at a station, may be termed "local conditions;" and the equations established for dispersing the errors may be termed " local equations."

A second source of discrepancies is found in the fact that certain geometrical conditions existing in the figure of the triangulation remain unsatisfied. Thus, the sum of the angles in each triangle must equal two right angles plus the spherical excess. Also, all directions intended to radiate from or to converge to certain stations must really do so. The former conditions give rise to what have been called angle equations; the latter, to side equations. If both kinds of conditions are satisfied we shall find the same length and direction for any side, no matter through what series of triaugles it may be computed. These equations are, in a measure, exchangeable; thus, in the adjustment of a quadrilateral, for which four conditions are necessary, we may employ in the process three angle and one side equation, or two angle and two side equations, or one angle and three side equations; but all four equations cannot be of the same kind. These geometrical conditions may be called "internal conditions" of a triangulation.*

Theoretically, the local and interual conditions should be satisfied together ; but practicaily the number of equations is, in nearly all cases, so great that they must be solved separately. The internal conditions, especially, rise rapidly to an unmanageable number, when primary series or chains of triangulation have an extent of several hundred miles.

A third kind of errors, to which the title of this article specially refers, involves those external conditions which, for instance, require a secondary triangulation to fit exactly in the space left for it by a primary triangulation, or those conditions for any triangulation forming a circait and returning into itself, which are needed for identity of position of the starting and terminating lines. These conditions have been termed "external conditions;" and these demand now our special attention. They exist in all cases when a triangulation forims a circuit or returns into itself, and

The probable error of a dircetion is found by-

$$
r=\sqrt{(s-1) \text { diagonal co-efficient. }}
$$

In this case, the ahove results may be verified as follows: Probable error of first anghe (Pine Mt., Doakyne) $r-\sqrt{\frac{0.455 \times 32.6}{14 \times 13}}= \pm 0^{2} .28 ;$ and of the second angle (Deakyne, Buck) $r=\sqrt{\frac{0.455 \times 38.2}{12 \times 11}}= \pm 0.36$; as found by the ordinary expression-

$$
\sqrt{\frac{0.45 \infty \Sigma}{n(n-1)}}
$$

Hence, probable error of the first direction (Pine $M t$.) $\frac{+0.28}{\sqrt{2}}= \pm 0^{\prime \prime} .20$; and of the third direction (Buck) $\frac{ \pm 0.36}{\sqrt{2}}= \pm 0^{\prime} .26$; and with consideration of the snm of the weights derived for the middle or common direction, the probable crror of Deakyne $=\frac{1}{\sqrt{2}} \cdot \frac{r}{V}= \pm 0^{\prime \prime} .16$ as above.

Having found $\varepsilon_{\text {, }}$, the determination of weights for each of the directions of the sides of a triangle is carried out as shown in the Report for 1664, p. 129, Art. 9.
${ }^{*}$ For method and example, see Const Survey Roport for 1854, Appendix No. 33, pp. 79 to 86 , Art. C ; also, Heport for 1804, Apperdix No. 14, pp. 129 aud foll., Art. 11.
incloses an area bounded by a spherical polygon; also in cases where a given triangulation joins two others, relatively, fixed; also, when a given triangulation is required to terminate on a given line or at a given station, tixed (say astronomically) in position.

In general, a point on the earth's surface, in order to be fixed, requires the knowledge of two co-ordinates. Hence a given line, to be determined in length and position, will require four data. In any single circuit, the number of "external conditions" therefore cannot exceed fonr. To fix our ideas, we may refer to the case of triangulation presented in the survey which, starting from Cape Henlopen, proceeds up the Delaware Bay to near the head of Chesapeake Bay, and thence down its whole extent to Cape Cbarles, from which a tertiary triangulation skirts the sea coast, and finally re enters at Cape Henlopen.* The distance through the axis of the priveipal triangulation from Cape Henlopen to the head of Ohesapeake Bay and down to Cape Charles is 283 statute miles, and the distance between the capes connected by subordiuate triangulation is 127 statute miles. The whole circuit, therefore, extends over 410 miles. In this case, the errors must be dis. persed over the subordinate work only, the principal triangulation being relatively perfect. The geodetic position of the line Cape Charles to East Smith is fixed by the principal triangulation, and after computing successively the latitudes aud longitudes of the trigonometrical points along the sea-coast, the geodetic position of the line Cape Henlopen to Lewes Entrance is reached, aud the condition to be satisfied is to make the position of this line ifentical with that assigned to it in the prineipal triangulation of Delaware Bay.

The four conditions to be satisfied for closing a circuit may be represented by the following equatious: (1) The length equation, which secures the reproduction of the original length of the junction line, after compating through the circuit; ($\left.{ }^{(}\right)$the azimath equation, which secures the identity in direction of the line; (3) the latitude equation and (4) the longitude equation, which secure the identity in geographical position of one terminal point of the junction line, and consequently, by previous conditions, also of the other terminal point, and hence of the whole line.

The equations (1) and (2) have been frequently employed, especially (1), which euters whenerer two or more base-lines have to be brought into accorl, and is referred to in the Report for 1854 (p. *81). \dagger Equation (2), which comes into use when azimuths are to be adjusted, is fully explained and illustrated by an example in the Report for 1868 , Appendix No. S, pp. 140 to 143 . In all cases where extreme accuracy is not needed, and after equations (1) and (2) bave been satisfied, together with all the "internal" conditions of a re-entering triangulation, it is quite sufficieut, especially when the outstanding differences in latitude and longitude or constants of equatious (3) and (4) are small, to make simply a proportional distribution of these respective discrepancies; that in latitude according to the longitudes of the intervening points, and that in lougitudeaccording to the latitudes of the intervening points, or it may be done as in the case referred to in the Report for 1868. When such an approximate process is not admissible, the four external equations must be treated together with the internal equations.

Let
$\varphi=$ the latitude of a starting point;
$\lambda=$ the longitude of the same;
ψ_{n} and $\lambda_{n}=$ corresponding quantities for a terminal point.
Then, in accordance with our usual formula for the computation of the geodetic latitudes and longitudes (Report for 1860, Appendix No. 36), after owitting terms iuvolving the square and higher powers of the distance k,

$$
\begin{aligned}
& d \varphi=\varphi_{n}-\varphi=-k \mathrm{~B} \cos a \\
& \Delta \lambda=\lambda_{n}-\lambda=k \mathbf{A}_{n} \sec \varphi_{n} \sin \alpha
\end{aligned}
$$

where $\mathrm{B}=\rho^{-1}\left(\operatorname{arc} 1^{\prime \prime}\right)^{-1}$ and $\mathrm{A}_{n}=\mathrm{N}^{-1}\left(\text { are } 1^{\prime \prime}\right)^{-1}$, both tabular quantities.
Conforming to the notation \ddagger in use in the survey, the establishment of the latitude and longi-

[^15]tude equations, as developed* by Mr. M. H. Doolittle, together with his methods of facilitating the joint solution of all the equations, is as follows:
"The latitudes and longitudes of the points 1,2 , and 8
 are supposed to be established; and those of the intermediate points to require adjustment, the computed position of 8 differing from the established position.
"The corrections in latitude and longitude required to be made to the computed position of the terminal station may be regarded as functions of appropriate corrections 8 to the logarithms of the lengths and to the azimuths of the portions of a broken line connecting the terminal point with the initial base. These corrections to the log. arithins of lengths and to the azimuths are fanctions of corrections to observed directions.
"For distinction, let corrections required as functions of corrections to logarithms of lengths be denoted by d; and those reguired as functions of corrections to azimaths by J^{4}.
"Suppose that errors requiring corrections $=-\binom{2}{3}+\binom{1}{3}$ aud $-\binom{3}{1}$ are made in observing the angles 2.3 .1 and 3.1 .2 respectively, whereloy the ratio of lengths $\frac{2 . .3}{1 . .2}$ is vitiated. All distances and differences of latitude and longitude depending therenpon are also thereby vitiated in direct proportion to their magnitudes. Accordingly, employing $\lambda\left(\varsigma_{8}-\psi_{2}\right)$ and $\lambda\left(d_{8}-i_{2}\right)$ to denote corrections required on account of this vitiation, we have
$$
\frac{\varphi_{3}-\varphi_{2}}{\frac{2.3}{1 . .2}}=\frac{d\left(\varphi_{8}-\varphi_{2}\right)}{J\left(\frac{2 . .3}{1 . .2}\right)} \quad \text { and } \quad \frac{\lambda_{8}-i_{2}}{2 . .3}=\frac{1\left(\lambda_{8}-\lambda_{2}\right)}{1 . .2}\left(\frac{2 . .3}{1 . .2}\right)
$$
"It will be sufficiently precise to take $\epsilon_{8}-\varphi_{2}$ and $\lambda_{8}-\lambda_{2}$ in minutes in the left hand members of these equations. Let accents be attached to these and similar quantities to show whether they are taken in minutes or seconds. Then, since
$$
d\left(\frac{2 \ldots 3}{1 \ldots 2}\right)=\frac{2 . .3 \Delta \log \frac{2 . .3}{1 \ldots 2}}{1 \ldots 2 \times 0.4343}
$$
we shall hare
\[

$$
\begin{align*}
& \Delta\left(\varphi_{8}-\varphi_{2}\right)^{\prime \prime}=\frac{60\left(\varphi_{8}-\varphi_{2}\right)^{\prime} \Delta \log \frac{2 \ldots 3}{1 . .2}}{0.4343} \tag{i}\\
& \Delta\left(\lambda_{8}-\lambda_{3}\right)^{\prime \prime}=\frac{60\left(\lambda_{8}-\lambda_{2}\right)^{\prime} \Delta \log \frac{2 \ldots 3}{1 . .2}}{0.4343} \tag{2}
\end{align*}
$$
\]

"Denoting by Dif. \log sin the tabular difference of \log sin for $\mathbf{1}^{\prime \prime}$, we bave-

$$
\Delta \log \frac{2 \ldots 3}{1 \ldots 2}=\text { Dif. } \log \sin 3.1 .2\left[-\binom{3}{1}\right]-\text { Dif. } \log \sin 2.3 .1\left[-\binom{2}{3}+\binom{1}{3}\right]
$$

and this ralue of $j \log \frac{2 \ldots 3}{1 \ldots 2}$ being substituted in (1) and (2), we have expressions for corrections in latitncle and longitude in terms of corrections to directions.
"If a length equation following the same broken line has already been formed, the process may be abridged. Equations (1) and (2) readily reduce to

$$
\begin{align*}
724 \Delta\left(\varphi_{\mathrm{B}}-\varphi_{2}\right)^{\prime \prime} & =\left(\varphi_{\mathrm{B}}-\psi_{2}\right)^{\prime} \times 100000 \Delta \log \frac{2 \ldots 3}{1 \ldots 2} \tag{3}\\
724 \Delta\left(\lambda_{\mathrm{B}}-\lambda_{2}\right)^{\prime \prime} & =\left(i_{\mathrm{B}}-\lambda_{2}\right)^{\prime} \times 100000 \Delta \log \frac{2 \ldots 3}{1 \ldots 2} \tag{4}
\end{align*}
$$

[^16]and if, in forming the length equation, all terms have been moltipled, as usual, by 10000 , the proper expressions for $1000004 \log \frac{2 . .3}{1 . .2}$ may be obtained by simply prefixing to each of the cor-rection-symbols $\binom{3}{1},\binom{2}{3}$, and $\binom{1}{3}$ the same co-efficient and algebraic sign that it has in the leugth equation.
" In like manner
\[

$$
\begin{aligned}
& \left.794 d\left(\varphi_{8}-\varphi_{5}\right)^{\prime \prime}=\left(\varphi_{8}-\varphi_{5}\right)^{\prime} \times 100000\right\lrcorner \log \frac{3 \ldots 5}{2 \ldots 3} \\
& \left.794\left(\lambda_{3}-\lambda_{5}\right)^{\prime \prime}=\left(\lambda_{8}-\lambda_{3}\right)^{\prime} \times 100000\right\lrcorner \log \frac{3 \ldots 5}{2 \ldots 3}
\end{aligned}
$$
\]

$$
\begin{aligned}
\Delta \log \frac{3 . .5}{2 \ldots 3} & =\text { Dif. } \log \sin 3.2 \cdot 4\left[-\binom{3}{2}+\binom{4}{2}\right]-\text { Dif. } \log \sin 3.4 .2\left[-\binom{2}{4}+\binom{3}{4}\right] \\
& + \text { Dif. } \log \sin 3.4 .5\left[-\binom{3}{4}+\binom{5}{4}\right]-\text { Dif. } \log \sin 4.5 .3\left[-\binom{4}{5}+\binom{3}{5}\right]
\end{aligned}
$$

and the proper co efficients and algebraic signs can be taken from the length equation.
"All the azimuths between 2 and 8 are vitiated equally by an error in observing the angle 1.2 .3 ; and the effect on the computed position of 8 is the same as though 8 had been observed directly from 2 with equal error. Suppose, then, that these two points are jomed by a straight line (or great circle are). Denote its length by $2 . .8$ and its azimuth by ${\underset{y}{c} .}_{8}^{4}$ Then, omitting small terms, we have

$$
\begin{align*}
& \varphi_{8}-\varphi_{2}=-\mathbf{B}_{2} 2 \ldots 8 \cos _{2}^{8} \quad . \tag{5}\\
& \lambda_{8}-\lambda_{2}=+\Delta_{4} \sec \varphi_{8} 3 \ldots 8 \sin _{2}^{8}
\end{align*}
$$

" Differentiating,

$$
\begin{aligned}
& d\left(\varphi_{8}-\varphi_{2}\right)=+B_{2} 2 \ldots 8 \sin _{2}^{8} d_{\underline{2}}^{8} \\
& d\left(\lambda_{8}-\lambda_{2}\right)=+A_{8} \sec \varphi_{8} 2 \ldots 8 \cos _{2}^{8} d_{2}^{8}
\end{aligned}
$$

"Passing to finite differences with a unit of 1 ", and substituting the correction $+\binom{3}{2}$ for $工 ⿻ \begin{gathered}8 \\ 2\end{gathered}$

$$
\begin{align*}
& \Delta^{\prime}\left(\varphi_{8}-\varphi_{2}\right)=+B_{2} 2 \ldots 8 \sin {\underset{2}{8}}_{\sin } 1^{\prime \prime}\binom{3}{2} . \therefore . \\
& \Delta^{\prime}\left(\lambda_{8}-\lambda_{2}\right)=+A_{8} \sec \varphi_{B} 2 \ldots 8 \cos _{2}^{8} \sin 1^{\prime \prime}\binom{3}{2} . \tag{8}
\end{align*}
$$

"Combining (7) with (6) and (8) with (5), and taking the factors $\varphi_{3}-\varphi_{2}$ and $\lambda_{3}-\lambda_{2}$ in mioutes,

$$
\begin{align*}
& \Delta^{\prime}\left(\varphi_{8}-\varphi_{2}\right)^{\prime \prime}=+60 \frac{\mathrm{~B}_{2}}{\mathbf{A}_{8}} \cos \varphi_{8} \sin I^{\prime \prime}\left(\lambda_{8}-\lambda_{8}\right)^{\prime}\binom{3}{2} . \tag{9}\\
& \Delta^{\prime}\left(\lambda_{8}-\lambda_{2}\right)^{\prime \prime}=-60 \frac{\mathbf{A}_{8}}{B_{2}} \sec \varphi_{8} \sin 1^{\prime \prime}\left(\varphi_{8}-\varphi_{2}\right)^{\prime}\binom{3}{2} . \tag{10}
\end{align*}
$$

"In like manner

$$
\begin{aligned}
& \Delta^{\prime}\left(\varphi_{8}-\varphi_{5}\right)^{\prime \prime}=+60 \frac{\mathrm{~B}_{5}}{\mathbf{A}_{8}} \cos \varphi_{8} \sin 1^{\prime \prime}\left(\lambda_{8}-\lambda_{5}\right)^{\prime}\left[-\binom{2}{3}+\binom{5}{3}\right] \\
& \Delta^{\prime}\left(\lambda_{8}-\lambda_{5}\right)^{\prime \prime}=-60 \frac{\mathbf{A}_{8}}{\mathrm{~B}_{5}} \sec \varphi_{8} \sin 1^{\prime \prime}\left(\varphi_{8}-\varphi_{5}\right)^{\prime}\left[-\binom{2}{3}+\binom{5}{3}\right]
\end{aligned}
$$

"In order to obtain general formule, let n represent the computed position and n^{\prime} the correct position of the terminal station; and let c, d, e represent successively every case of three consecutive stations on the line 1..2 n. Also, let

$$
+43430 \frac{B}{A_{n}} \cos \varphi_{n} \sin 1^{\prime \prime}=a_{1} \text { and }-43430 \frac{\mathbf{A}_{n}}{\mathbf{B}} \sec \varphi_{n} \sin 1^{\prime \prime}=a_{2}
$$

"We shall then have

$$
\begin{equation*}
0=+724\left(\lambda_{n}-\lambda_{n^{\prime}}\right)^{\prime \prime}+\Sigma 724 \Delta^{\prime}\left(\lambda_{n}-\lambda_{d}\right)^{\prime \prime}+\Sigma 724 \Delta^{\prime}\left(\lambda_{n}-\lambda_{d}\right)^{\prime \prime} \tag{16}
\end{equation*}
$$

"Or,
$0=+724\left(\varphi_{n}-\varphi_{n}\right)^{\prime \prime}+\Sigma\left[\left(\varphi_{n}-\varphi_{d}\right)^{\prime} \times 100000 \Delta \log \frac{d \ldots \epsilon}{c \ldots d}\right]+\Sigma\left\{a_{1}\left(\lambda_{n}={ }^{\prime} d\right)^{\prime}\left[-\binom{c}{d}+\binom{e}{d}\right]\right\}$.
$\left.0=+724\left(\lambda_{n}-\lambda_{n^{\prime}}\right)^{\prime \prime}+\Sigma\left[\left(\lambda_{n}-\hat{\lambda}_{\alpha}\right)^{\prime} \times 100000\right\lrcorner \log \frac{d \ldots e}{c . . d}\right]+\sum\left\{a_{2}\left(\varphi_{n}-\varphi_{d}\right)^{\prime}\left[-\binom{e}{d}+\binom{e}{a}\right]\right\}$.
"In these equations, $\varphi_{n}-\varphi_{n^{\prime}}$ and $\lambda_{n}-\lambda_{n^{\prime}}$ are taken in seconds, and $\varphi_{n}-\varphi_{d}$ and $\lambda_{n n}-\lambda_{d}$ in minutes or seconds, as the accents indicate.
"The values of a_{1} and a_{2} are as follows:

| ϕ | 24° | 280 | 320 | 36° | $4 n^{\circ}$ | 44° | 480 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a_{1} \ldots \ldots$ | +0.193 | +0.187 | +0.179 | +0.171 | +0.162 | +0.152 | -+0.141 |
| $a_{2} \ldots \ldots$ | -0.229 | -0.237 | -0.247 | -0.259 | -0.274 | -0.292 | -0.314 |

"These formulæ are perfectly general, and apply to any broker line connecting a terminal point with an initial base. The more direct line $1 \ldots 2 \ldots 4 \ldots 5 \ldots 8$ might be chosen with the adrantage of diminution in the number of stations; but on account of the increased length of expressions for $A \log \frac{4 . .5}{2 . .4}$, \&c., it is somewhat more convenient to employ the same line which is most conveniently emplosed in forming the length equation.
"Note.-In the azimuth equation, when the longitade error is known the azimuth error shonld be increased by $+\sin \varphi\left(\lambda_{n}-\lambda_{n}\right)$.

$$
\begin{align*}
& \left.724 \Delta\left(\varphi_{n}-\varphi_{d}\right)^{\prime \prime}=+\left(\varphi_{n}-\varphi_{d}\right)^{\prime} \times 100000\right\lrcorner \log \frac{d \ldots e}{c . . d} \tag{11}\\
& 724 \Delta\left(\lambda_{n}-\lambda_{d}\right)^{\prime \prime}=+\left(\lambda_{n}-\lambda_{d}\right)^{\prime} \times 100000 \Delta \log \frac{d \ldots e}{c \ldots d} \tag{12}\\
& 724 A^{\prime}\left(\varphi_{n}-\varphi_{d}\right)^{\prime \prime}=+a_{1}\left(\lambda_{n}-\lambda_{d}\right)^{\prime}\left[-\binom{c}{d}+\binom{e}{d}\right] \tag{13}\\
& 724 d^{\prime}\left(\lambda_{n}-\lambda_{d}\right)^{\prime \prime}=+a_{2}\left(\varphi_{n}-\varphi_{d}\right)^{\prime}\left[-\binom{e}{d}+\binom{e}{d}\right] \tag{14}\\
& 0=+724\left(\varphi_{n}-\varphi_{n^{\prime}}\right)^{\prime \prime}+\Sigma 724 \Delta\left(\varphi_{n}-\varphi_{d}\right)^{\prime \prime}+\Sigma 724 d^{\prime}\left(\varphi_{n}-\varphi_{d}\right)^{\prime \prime} \tag{15}
\end{align*}
$$

ILLUSTRATION.
"In the surrey on Long Island from Ruland-Tashua to MeSparran-East Rock (United States

Coast Survey Report, 1868 , p. 140, plate 6), the broken line may be taken as connecting Ruland with MeSparran. Observe that Ruland, though at the beginning of the line, is denoted by 2 , the
more appropriate number 1 having been given to Tashua. The length and azimuth equations head p. 143 of the Report for 1808 . The latitude and longitnde equations are formed as follows:

a	$r^{2} 4 \Delta\left(\lambda_{n}-\lambda_{d}\right)^{\prime}$	
1	2. $32\binom{3}{2}: 10.8\binom{1}{3}-10.8\left(\begin{array}{l}\left.\frac{9}{3}\right)\end{array}\right.$	$-3.9\binom{3}{1}$
3	+12.2($\left.\begin{array}{l}4 \\ 1\end{array}\right)-12.2\binom{3}{1}-46\binom{3}{7}+4.0\binom{1}{4}$	+88 $\left(\frac{1}{3}\right)-88\binom{4}{3}$
4	+6.1(4)-0.1(3)-6.8(3)+6.8(4)	$\therefore 2.0\binom{3}{4}-2.0\binom{5}{4}$
:		- $0.0\left(\frac{4}{5}\right)-80(5)$
7	+0.5 ($\left.\begin{array}{l}7 \\ 5\end{array}\right)-0.5\binom{8}{5}-11.4\binom{5}{8}+11.4\binom{7}{8}$	$+1.6\binom{5}{7}-1.6\binom{4}{7}$
8	$+3.5\binom{19}{7}-3.5\binom{8}{7}-0.5\binom{8}{10}+0.5\binom{7}{10}$	$+7.2\binom{5}{8}-7.2\binom{10}{8}$
10		$\therefore 0.1\binom{8}{10}-0.1\binom{11}{10}$
11	$+1.0\binom{13}{10}-1.0\binom{11}{10}-0.3\binom{10}{13}-0.3\binom{11}{13}+0.6\binom{14}{13}-0.6\binom{11}{14}+0.6\binom{13}{14}$	- $5.4\binom{10}{11}-5.4\binom{18}{11}$

Equation TXVIT. (¢.)

$$
\begin{aligned}
0=+5.068 & +0.4\binom{3}{9}+10.8\binom{1}{3}+1.4\left(\frac{2}{3}\right)-5.0\binom{4}{1}-12.9\binom{3}{1}+14.1\binom{3}{4}-1.9\binom{1}{4} \\
& -12.8\binom{4}{3}+0.6\binom{5}{3}+0.6\binom{3}{5}+5.1\binom{4}{5}-6.5\binom{6}{4}-5.5\binom{5}{4}-0.5\binom{7}{6} \\
& -2.5\binom{5}{6}+3.0\binom{4}{6}+10.4\binom{5}{7}-2.0\binom{6}{7}-8.8\binom{7}{5}+0.1\binom{8}{5}+1.3\binom{5}{8} \\
& +3.0\binom{7}{8}-3.4\binom{10}{7}-5.0\binom{8}{7}+5.0\binom{8}{10}-0.5\binom{1}{10}-4.5\binom{10}{5}+0.2\binom{11}{8} \\
& +0.1\binom{8}{11}+1.0\binom{10}{11}-2.3\binom{13}{10}-2.4\binom{11}{10}+0.5\binom{10}{13}+0.8\binom{1}{13}-1.5\binom{14}{13} \\
& +1.3\binom{11}{14}+1.3\binom{13}{14}-1.3\binom{14}{11} .
\end{aligned}
$$

Equation NTVIIT. (i.)

$$
\begin{aligned}
0=+27.512 & -3.2\binom{3}{2}+19.6\binom{1}{3}-10.8\binom{2}{3}+19.9\binom{4}{1}-10.1\binom{3}{1}-9.6\binom{3}{4}+1.6\binom{1}{4} \\
& -2.7\binom{4}{3}-6.1\binom{5}{3}-6.5\binom{3}{5}+13.8\binom{4}{5}+14.1\binom{6}{4}-16.1\binom{5}{4}+1.1\binom{7}{6} \\
& +5.4\binom{5}{6}-6.5\binom{4}{6}-2.7\binom{5}{7}+4.3\binom{6}{7}-6.5\binom{7}{5}-0.5\binom{8}{5}-11.4\binom{5}{8} \\
& +18.6\binom{7}{8}+3.5\binom{10}{7}-5.1\binom{8}{7}-0.1\binom{8}{10}+0.5\binom{7}{10}-4.9\binom{10}{5}-2.3\binom{11}{8} \\
& -2.0\binom{8}{11}+7.4\binom{10}{11}+1.0\binom{13}{10}-1.1\binom{11}{10}-0.3\binom{10}{13}-0.3\binom{11}{13}+0.6\binom{14}{13} \\
& -0.6\binom{11}{14}+0.6\binom{13}{14}-5.4\binom{14}{11} .
\end{aligned}
$$

"While the preceding formula are theoretically correct and complete, there are systematic autagouisms which necessarily render the equations difficult of solution. For example, the side co efficient between the length equation and the longitude equation is equal to
$\leq\left(\lambda_{a}-\lambda_{d}\right)^{\prime}$ (length eq. co.ef. $)^{2}+\Sigma\left\{a_{2}\left(\varphi_{n}-\varphi_{a}\right)^{\prime}\left[-\binom{e}{d}+\binom{e}{d}\right]\right\}$ (length eq. co.ef. $) ;$
and unless the stations are nearly equally distributed on both sides of the meridian of station n,
($i_{m}-\lambda_{A}$)' will have predominantly the same algebraic sign; and the first term of the above expression will be very large. The secoud term is as likely to increase it as to diminish it. In any case, the side co-efficients of the length equation with the latitude and longitude equations cannot both be small.
"The following artifices obviate this and some similar difficulties.
"Let the line $1,2 \ldots 3 \ldots \ldots$ include both points of the terminal as well as of the initial base. The length equation will then be of the form

$$
\begin{equation*}
0=\lrcorner \lambda+=100000\lrcorner \log \frac{d \ldots \epsilon}{c \ldots d} \tag{19}
\end{equation*}
$$

and the azimuth equation following the same line will be of the form

$$
0=\Delta a+\left[-\binom{c}{d}+\binom{e}{d}\right]
$$

" Determine a point h of approximate mean Iatitude and longitude in regard to all the stations except 1 and n. (It need not be on any line of the survey.) Multiply (19) by ($\left.\varphi_{n}-\varphi_{n}\right)^{\prime}$, and (90) by $a_{1}\left(\lambda_{n}-\lambda_{n}\right)^{\prime}$; and add the products, giving

$$
\begin{align*}
& 9=\left(\varphi_{n}-\varphi_{n}\right)^{\prime} \Delta k+a_{1}\left(\lambda_{n}-\lambda_{n}\right)^{\prime} \Delta \alpha \\
& +\Sigma\left[\left(\varphi_{n}-\varphi_{n}\right)^{\prime} \times 100000 \Delta \log \frac{d \ldots e}{c \ldots d}\right]+\Sigma\left\{a_{1}\left(\lambda_{n}-\lambda_{n}\right)^{\prime}\left[-\binom{c}{d}+\binom{e}{d}\right]\right\} . \tag{21}
\end{align*}
$$

"Also multiply (19) by $\left(\partial_{n}+\lambda_{n}\right)^{\prime}$, and (20) by $a_{2}\left(\varphi_{n}-\varphi_{n}\right)^{\prime}$; and add the products, giving

$$
\begin{align*}
0 & =\left(\lambda_{n}-i_{1}\right)^{\prime} \Delta k+a_{2}\left(\varphi_{n}-\varphi_{n}\right)^{\prime} \Delta u \\
& +\underline{r}\left[\left(i_{n}-i_{n}\right)^{\prime} \times 100000 \Delta \log \frac{d \ldots e}{c \ldots d}\right]+\leq\left\{a_{2}\left(\varphi_{n}-\varphi_{n}\right)^{\prime}\left[-\binom{e}{d}+\binom{e}{d}\right]\right\} . \tag{2}
\end{align*}
$$

"Subtracting (21) from (1i), and (22) from (18)-

$$
\begin{align*}
0 & =7 Q 4\left(\varphi_{n}-\varphi_{n}\right)^{\prime \prime}-\left(\varphi_{n}-\varphi_{h}\right)^{\prime} \Delta k-a_{1}\left(\lambda_{n}-\lambda_{h}\right)^{\prime} \Delta \alpha \\
& +\underline{V}\left[\left(\varphi_{h}-\varphi_{d}\right)^{\prime} \times 100000 \Delta \log \frac{d \ldots e}{c . a}\right]+\Sigma\left\{a_{1}\left(\lambda_{h}-\lambda_{d}\right)^{\prime}\left[-\binom{c}{d}+\binom{\epsilon}{d}\right]\right\} . \tag{23}\\
0 & =724\left(i_{n}-\lambda_{n}\right)^{\prime \prime}-\left(\lambda_{n}-\lambda_{h}\right)^{\prime} \Delta k-a_{2}\left(\varphi_{n}-\varphi_{h}\right)^{\prime} \Delta a \\
& +\underline{\Sigma}\left[\left(\lambda_{h}-\lambda_{d}\right)^{\prime} \times 100000 \Delta \log \frac{d \ldots e}{e \ldots d}\right]+\Sigma\left\{a_{2}\left(\varphi_{h}-\varphi_{d}\right)^{\prime}\left[-\binom{c}{d}-\binom{c}{d}\right]\right\} . \tag{24}
\end{align*}
$$

"These equations are to be substituted for (17) and (18).
"There is a systematic antagonism between the angle equatious and the azimuth equation as commonly established, which becomes very troublesome wheu length, latitude, and longitude are also to be adjusted.

$$
\begin{aligned}
& 1 \ldots 3 \ldots 5 \ldots 7 \ldots 9 \\
& 2 \ldots 4 \ldots 6 \ldots 8 \ldots 10 \\
& 1 \ldots 4 \ldots 5 \ldots 8 \ldots 9 \\
& 9 \ldots 3 \ldots 6 \ldots 7 \ldots 10
\end{aligned}
$$

the sum of these four equations will form an equation by which the azimuth will be adjasted withont changing the sum of the three angles in any triangle. The side coefficients will each $=0$.
Fig. 4.
 ions be formed with the following routes:

$$
\begin{aligned}
& 1 \ldots 3 \ldots 5 \ldots 7 \ldots 0 \\
& 2 \ldots 4 \ldots 6 \ldots 8.10 \\
& 2 \ldots 3 \ldots 4 \ldots 5 \ldots 6 \ldots 7 \ldots 8 \ldots 9
\end{aligned}
$$

In a string of triangles like this, if three azimuth equa-
the snm of the third + twice the first + twice the second will adjust the azimuth withont affecting the angle adjustment of any triangle except the first and last of the series.
"It is a general principle that the combination of routes shoubl inclose each triangle, as a river
 forks and incloses an island. Pursuing this simile, imagine a triangie encompassed by tro "channels;" denote the number of routes in each channel by arrows, repeated when the same route passes along two sides of the triangle. If the number of arrows in one channel in equal to that of those in the other, the side co-efficient $=\mathbf{0}$. If they are neanly equal, it is small.
"The diagonal co-efficient derived from the azimuth equation increases rapidly with the number of routes; and if it should not be practicable by this
Fig. 5. method to extinguish the side co-eflicients in a complicated figure, they may
still be rendered comparatively insignificant.
Fig. 5. method to extinguish the side co-effcients in a complicated figure, they may
"By the following general method, any side co-efficients may be extinguished:
"Suppose giveu the four conditional equations-

$$
\begin{aligned}
& 1.0=a_{1}+a_{1} r_{1}+a_{2} r_{2}+a_{3} r_{3}, d c . \\
& \because .0=b_{0}+b_{1} r_{1}+d_{2} r_{2}+b_{3} r_{3}, \delta c . \\
& \text { 3. } 0=c_{0}+c_{1} r_{1}+c_{2} r_{2}+c_{3} r_{3}, \text { de. } \\
& \text { 4. } 0=\vec{a}_{11}+d_{1} r_{2}+d_{2} c_{2}+d_{3} r_{3}, d e .
\end{aligned}
$$

"From these, three other equations are to be obtained and substituted fur equations 2,3 , and 4 . Distinguishing the substitutes and their eo efficients by aceents, let

$$
\begin{aligned}
& \mathrm{Eq}_{\mathrm{q}} \cdot \boldsymbol{2}^{\prime}=\mathrm{E}_{\mathrm{q}} \cdot 2+u \mathrm{E}_{\mathrm{q}} .1 \\
& \mathrm{Eq} .3^{\prime}=\mathrm{Eq} .3+v \mathrm{Eq}_{\mathrm{q}} .1+v \mathrm{E}_{\mathrm{q}} .2
\end{aligned}
$$

and the values of u, x, u, x, y, and \approx are to be so determined as to render $\left[a b^{\prime}\right],\left[u c^{\prime}\right],\left[b^{\prime} c^{\prime}\right],\left[a d^{\prime}\right]$, $\left[b^{\prime} d^{\prime}\right]$, and $\left[c^{\prime} d^{\prime}\right]$, each $=0$.
"We shall theu have

$$
\begin{aligned}
& 0=\left[a b^{\prime}\right]=[a(b+a u)]=[a b]+u[a a] \\
& 0=\left[a c^{\prime}\right]=[a(c+a v+b v)]=[a c]+v[a a]+w[a b] \\
& 0=\left[b^{\prime} c^{\prime}\right]=[(b+a u)(c+a v+b w)]=[b(c+a v+b u)]+u[a(c+a v+b w)]
\end{aligned}
$$

"The last term $=0$ by the last preceding equation. Hence

$$
\left.0=\left[b^{\prime} c^{\prime}\right]=[b(c+a v+b w)]=[b c]+v \mid a b\right]+w[b b .]
$$

" In like manner

$$
\begin{aligned}
& 0=\left[\begin{array}{ll}
a & \left.d^{\prime}\right]=[a d]+x[a c]+y[a b]+z[a c] \\
\mathbf{0}=\left[\begin{array}{ll}
b & d^{\prime}
\end{array}\right]=[b d]+x[a b]+y[b b]+z[b c] \\
\mathbf{0}=\left[c^{\prime}\right. & \left.d^{\prime}\right]
\end{array}\right]=\left[\begin{array}{ll}
c & d]+x[a c]+y[b c]+z[c c]
\end{array}\right.
\end{aligned}
$$

"Since x, y, and z are independent of u, x, and u, the original eqnations 2 and 3 , with $|a b|,|a c|$, aud $[b c]$, may be retained, if more convenient, still reduciug $\left[a d^{\prime}\right],\left[b^{\prime} d^{\prime}\right]$, and $\left[c^{\prime} d^{\prime}\right]$ to 0 .
"For the purpose of illustration, it will be best to consider the discrepancics of the Lang lamd survey, as they existed before the adjustment of azimuth and leugih; and East Rock will now be regarded as the terminal station a.
"The error in azimuth from East Rock to McSparran was +2 " 92 . The errorin longitude at East Rock was $+0^{\prime \prime} .049$. Hence, $\Delta \alpha=+2^{\prime \prime} .927+0^{\prime \prime} .049 \sin \varphi=+2^{\prime \prime} .959$.
"The following seven azimuth routes hare been selected:

$$
\begin{aligned}
& 1 \ldots 4 \ldots 6 \ldots 7 \ldots 10 \ldots 13 \ldots 14 \\
& 2 \ldots 3 \ldots 5 \ldots 8 \ldots 11 \ldots 15 \\
& 2 \ldots 3 \ldots 5 \ldots 8 \ldots 11 \ldots 15 \\
& 1 \ldots 3 \ldots 6 \ldots 5 \ldots 7 \ldots 10 \ldots 11 \ldots 13 \ldots 16 \ldots 14 \\
& 1 \ldots 3 \ldots 6 \ldots 7 \ldots 8 \ldots 12 \ldots 11 \ldots 14 \\
& 1 \ldots 4 \ldots 5 \ldots 9 \ldots 10 \ldots 11.14 \\
& 1 \ldots 4 \ldots 5 \ldots 8.10 \ldots 13 . .14
\end{aligned}
$$

H. Ex. 81-37

Giving the azimuth equation: .

$$
\begin{aligned}
0=+20^{\prime} .713 & +2\binom{3}{1}-2\binom{1}{3}+3\binom{4}{1}-3\binom{1}{4}+2\binom{3}{2}-2\left(\frac{3}{3}\right)+2\binom{5}{3}-2\binom{3}{5}+2\binom{6}{3} \\
& -2\binom{3}{6}+2\binom{5}{4}-2\binom{4}{5}+\binom{6}{4}-\binom{4}{6}+\binom{7}{5}-\binom{5}{7}+3\binom{8}{5}-3\binom{5}{8} \\
& +\binom{9}{5}-\binom{5}{9}+\binom{5}{6}-\binom{6}{5}+2\binom{7}{6}-2\binom{6}{7}+\binom{8}{7}-\binom{7}{8}+2\binom{10}{7} \\
& -2\binom{7}{10}+\binom{10}{8}-\binom{8}{10}+2\binom{11}{8}-2\binom{8}{11}+\binom{12}{8}-\binom{5}{12}+\binom{10}{9}-\binom{9}{10} \\
& +2\binom{11}{10}-2\binom{10}{11}+2\binom{13}{10}-2\binom{10}{13}+\binom{13}{11}-\binom{11}{13}+2\binom{14}{11}-2\binom{11}{14}+2\binom{15}{11} \\
& -2\binom{11}{15}+\binom{11}{12}-\binom{12}{11}+2\binom{4}{13}-2\binom{13}{14}+\binom{16}{13}-\binom{13}{16}+\binom{14}{16}-\binom{16}{14}
\end{aligned}
$$

"This gives a diagonal coreflicient $=164$; while ten of the seventeen necessary side co-efficients with angle equations $=0$; and the other seven $=$ either +2 or -2 .
"For adjustment of latitude and longitude we find $\varphi_{n}=+41^{\circ} 15^{\prime}$ and $\lambda_{h}=+72015$; and construct the following tables:

$$
\begin{aligned}
& \varphi_{n}=\varphi_{15}=410.27^{\prime} .0 . \quad \varphi_{n}-\varphi_{n}=+19^{\prime} .0 . \quad a_{1}=+0.16 . \\
& \lambda_{n}=\lambda_{15}=71^{\circ} 11^{\prime} .3 . \quad \lambda_{n}-\lambda_{h}=-63^{\prime} .7 . \quad a_{2}=-0.28 . \\
& \left.\Delta \alpha=+2^{\prime \prime} .959 . \quad\right\lrcorner k=-0.40 . \quad \varphi_{n}-\varphi_{n^{\prime}}=-0^{\prime \prime} .030 . \quad \lambda_{n}-\lambda_{n^{\prime}}=+6^{\prime \prime} .049 . \\
& 72 \pm\left(\varphi_{n}-\varphi_{n^{\prime}}^{\prime \prime}\right)^{\prime \prime}-\left(\varphi_{n}-\varphi_{h}\right)^{\prime} \Delta k-a_{1}\left(\lambda_{n}-\lambda_{h}\right)^{\prime} \Delta \alpha=+6.722 . \\
& 724\left(\lambda_{n}-\lambda_{n}\right)^{\prime \prime}-\left(\lambda_{n}-\lambda_{n}\right)^{\prime} \Delta k-a_{2}\left(\varphi_{n}-\varphi_{h}\right)^{\prime} \Delta \alpha=+19.938 .
\end{aligned}
$$

${ }^{\text {d }}$	$100000 \pm \log \frac{d \ldots e}{c \ldots d}$	$-\binom{c}{d}+\binom{e}{d}$
	+0.03($\binom{3}{2}-0.010\binom{1}{3}-9.10\binom{2}{3}$	$+\binom{3}{1}$
3	-0.10($\binom{4}{1}+0.16\binom{3}{1}+0.06\binom{3}{4}-0.00 f\binom{1}{4}$	$-\binom{1}{3}+\binom{4}{3}$
4	-0.08($\left.\begin{array}{c}4 \\ 3\end{array}\right)+0.08\binom{5}{3}+0.09\binom{3}{5}-0.04\binom{4}{5}$	$-\binom{3}{4}+\binom{5}{4}$
5	-0.26 ($\left.\begin{array}{c}6 \\ 4\end{array}\right)+0.26\binom{5}{4}-4.02\binom{7}{6}-0.10\binom{5}{6}+0.12\binom{4}{6}+0.08\binom{5}{7}-0.08\binom{6}{7} \ldots \ldots$	$-\binom{4}{5}+\binom{7}{5}$
7		$-\binom{5}{7}+\binom{8}{7}$
8	-0.13($\binom{10}{7}+0.13\binom{8}{7}+0.02\binom{8}{10}-0.02\binom{7}{10} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.	$-\binom{7}{8}+\binom{10}{8}$
10	- $-0.08\binom{10}{8}+0.08\binom{11}{8}+0.07\binom{8}{11} \cdots 0.07\binom{10}{11} \ldots \ldots \ldots \ldots \ldots$	$-\binom{8}{10}+\binom{11}{10}$
11	$-0.12\binom{13}{10}+0.12\binom{11}{10}+0.04\binom{10}{13}+0.07\binom{11}{13}-0.88\binom{14}{13}+0.07\binom{14}{14}-0.08\binom{13}{14} \ldots \ldots$	$-\binom{10}{11}+\binom{14}{11}$
14		$-\binom{11}{14}$

Equation XXTIT. (ヶ.)

$$
\begin{aligned}
0=+0^{\prime \prime} .722 & -0.0\binom{3}{2}+4.6\binom{1}{3}-0.1\binom{2}{3}-2.7\binom{4}{1}-0.8\binom{3}{1}+5.0\binom{3}{4} \\
& -1.0\binom{1}{4}-3.9\binom{4}{3}-0.6\binom{5}{3}-0.7\binom{3}{5}+1.7\binom{4}{5}-2.7\binom{6}{4} \\
& -1.9\binom{5}{4}-0.2\binom{7}{6}-1.0\binom{5}{6}+1.2\binom{4}{6}+1.5\binom{5}{7}-0.8\binom{6}{7} \\
& -0.9\binom{7}{5}-0.1\binom{8}{5}-2.0\binom{5}{8}-1.4\binom{7}{8}-1.4\binom{10}{7}+0.7\binom{8}{7} \\
& -2.5\binom{8}{10}-0.2\binom{7}{10}+4.4\binom{10}{8}-1.0\binom{11}{8}-0.9\binom{8}{11}-5.5\binom{10}{11} \\
& -0.5\binom{13}{10}+3.5\binom{11}{10}+0.2\binom{10}{13}+0.2\binom{11}{13}-0.4\binom{14}{13}-7.3\binom{11}{14} \\
& -0.3\binom{13}{14}+11.8\binom{14}{11}-5.4\binom{15}{11}-2.2\binom{11}{15}
\end{aligned}
$$

$$
\begin{aligned}
0=+19^{\prime \prime} .938 & -1.5\binom{3}{2}+10.7\binom{1}{3}-6.0\binom{2}{3}+4.5\binom{4}{1}-4.3\binom{3}{1}-3.8\binom{3}{4} \\
& +1.7\binom{1}{4}-2.4\binom{4}{3}-2.3\binom{5}{3}-2.6\binom{3}{5}+5.5\binom{4}{5}+1.6\binom{6}{4} \\
& +0.5\binom{5}{4}+0.1\binom{7}{6}+0.6\binom{5}{6}-0.8\binom{4}{6}-3.0\binom{5}{7}+0.5\binom{6}{7} \\
& -2.9\binom{7}{5}-0.0\binom{8}{5}-0.9\binom{5}{8}+4.0\binom{7}{8}-2.7\binom{10}{7}+5.2\binom{8}{7} \\
& -3.1\binom{8}{10}-0.4\binom{7}{10}-4.6\binom{10}{8}+1.5\binom{11}{8}+1.3\binom{8}{11}+0.0\binom{10}{11} \\
& -4.8\binom{13}{10}+8.3\binom{11}{10}+1.6\binom{10}{13}+1.6\binom{11}{13}-3.2\binom{14}{13}-1.3\binom{11}{14} \\
& -2.8\binom{13}{14}-19.0\binom{14}{11}+17.7\binom{15}{11}+7.2\binom{11}{15}
\end{aligned}
$$

"The following may serve for an illustration of the general method of extinguishing side co-efficients:

Eq. 1. $\quad 0=0-\binom{2}{3}+\binom{1}{3}-\binom{3}{1}+\binom{3}{2}$
Eq. 2. $\quad 0=0-\binom{1}{3}+\binom{4}{3}-\binom{3}{4}+\binom{1}{4}-\binom{4}{1}+\binom{3}{1}$
"Let $\mathrm{Eq} . \mathrm{XXVHI}=\mathrm{Eq} . \mathrm{XXVIII}+x \mathrm{Eq} .1+y \mathrm{Eq} .2$.
"The side co-efficient between Eq. 1 and Eq. XXVIII $=+19.2$; and that between Eq. 2 and Eq. XXVIII $=-16.4$. The diagonal co-efficient from Eq. $1=[a a]=+4$; that from Eq. 2 $=[b b]=+6$; and thẹir side co efficient $=[a b]=-2$. Hence, in order to extinguish their side co-efficients with Eq. XXVIII, we have

$$
\begin{aligned}
& 0=+19.2+4 x-2 y \\
& 0=-16.4-2 x+6 y
\end{aligned}
$$

"Solring these equations, we obtain $x=-4.1 ; y=+1.4 . \quad$ Henco the equations

$$
\begin{aligned}
& 0=+4.1\binom{2}{3}-4.1\binom{1}{3}+4.1\binom{3}{1}-4.1\binom{3}{2} \\
& 0=-1.4\binom{1}{3}+1.4\binom{4}{3}-1.4\binom{3}{4}+1.4\binom{1}{4}-1.4\binom{4}{1}+1.4\binom{3}{1}
\end{aligned}
$$

are to be added to Eq. XXVIII."

APPENDIX No. 18.

OBSERVATIONS ON CERTAIN HARBOR AND RIVER IMPROVEMENTS COLLECTED ON A VOYAGE FROM HONG-KONG, VLA SLET, TO NEW YORK, BY GEORGE DAYIDSON, ASSISTANT IN THE CNITED STATES COAST SURVEY.

NOTE.

The following paper resultediucidentally from the assignment of Prof. George Davidson, assistant in the United States Coast Survey, as chief astronomer of the party sent by our Government to obserce the trausit of Venus in December, 1874, at a station iu Japan.

With the sanction of the Secretary of the Treasurs and by his own consent, Mr. Davidson, in returning home, passed along the coasts of Asia and Europe, and examined incidentally the chief public works on the route, such more particularls as had been devised for promoting the interests of agricultare, or to further the purposes of commerce and navigation. His observations on some of the great structures for land reclamation aud fer inrigation have been printed by order of the United States Senate. The notes on harbor and ricer improvement which here follow were recorded daring the same period, in conformity with the following items in the instructions which issued from the Coast Surrey Office, addressed to Professor Davidson, iu July, 1874:
"ds the construction of breakwaters on the western coast of the United States is of growing importauce while commerce increases, you will examine such works of that class as you can conveniently risit on gour jonrney, and obtain such personal information and newly-published facts as may have bearing in the descriptions for prospective works of the kind.
"Examine the hydraulic conditions of the Suez Canal, especially at the Mediterranean end; note what changes, if any, have taken place, and the causes of change: also collect information in regard to littoral drift aloug the const, and inquire particularly in reference to the progress of material accumnlating on the west side of the great pier of Port Said."

In the Uuited States practical iuterest, especially in what relates to facilities for commerce in transit from place to place and concerning the improvement and preservation of harbors and rivers, cannot lessen. The review on that subject, which follows, is therefore teudered in the belief that it is well to have the means for compariug our own condition on similar lines of adrancement with the expedients found necessary, and which have been brought into requisition, in older uationalities.

C. F. Patterson,

Superintendent United States Coast Surrey.

On certain harbor and river improvements in China, Egypt, Italy, Holland, and Great Britain.
The drawbacks are such in foreign ports that travelers journeying around the world will hardy find, after learing the United States, a harbor where the ocean-steamship can at once go directly to a wharf or leave one, to disembark or embark passengers.

Leaving San Francisco from the wharf the steamship, after traversing the Pacific Ocpan, is compelled to anchor off Yokohama, in the Bay of Yeddo; again, off Kobi, in the Inland Sea; and off Nagasaki, in the bay of the same name. But the American and some of the coasting steamers proceed directly to the wharf at Shanghai. Leaving there, however, by the English or French mail-steamers, passengers must find the vessel in the stream ; they anchor in the Bay of Hong-Kong; go to the wharf at Singapore, and anchor at Penang, Point du Galle, off the surf-landing at Madras or any other coast port, and anchor in the Hoogly at Calcutta.

Again, at Bombay, at Suez, and eren in the canal at Port Said, they do not go to the quay. The steamer anchors in the bay at Alexandria; so, also, in the Bay of Naples and at Trieste; and

294

IREPORT OF THE SUPERINTENDENT OF
by small boats only do passengers enter tho ports thence eastward to Constantinople. Even in leaving Eugland or Irelaad the steamer must be boarded in the stream at Liverpool, or in the Cove of Cork at Queenstown, no matter how boisterous the weather. At New York, Pliladelphia, or other American ports the steamer lands its passengers at the wharf under cover. And ret in many other respects the harbor improvements in most of the European ports are far superior to those in America. At Yokohama there are but limited improrements along the water-front, yet all of them have been built by the foreign community. Tessels lie in the bas, and all passengers and freight are landed and embarked by means of small boats and lighters. In typhoons, vessels are torn from their anchorages and much damage is done.

Nagasaki.-The harbor of Nagasaki is very fine, and capable of sheltering a moderately large fleet, except wheu typhoons blow from the sonthward. In January, 1875, the city had not recovered from the destructive effects of the typhoon of Angust, 18.4. Vessels lie in the bay, and passengers and freight are landed and cmbarked by means of sampans and lighters. There is an excellent bund or quay on the east or city side, and several hetobas for landing and customs inspection. The principal and most commodious one is well np the eastern side of the bas, above the foreigu settlement.

- Shanghai.-The river is not rery wide and the currents are moderately strong. There are quays along the left bank below the principal part of the foreign settlement, and quay-landings for the ricersteamers higher up toward the native town. Shanghai has nade cousiderable progress in the last twenty jears, and the improvements along the river are creditable under the adverse circumstances which attend any progressive morements in that country.

Hong-Kong.-Vessels anchor in the roads, and passengers and freight are landed and embarked by boats and lighters. Quay accommodations for landing, \&e., and for smaller vessels, and the steamers for Macao, Canton, de.

Canton.-Up the Pearl River there are no improvements; the old forts remain as dismantled by the British men-of-war, and steamships of light draught go as high as Canton and anchor or moor in the stream abreast the upper part of the city.

Singapore has timber quays, where steamships land and embark passengers and freigbt.
Penang.-Vessels lie at anchor off the town. One modern quay for boats and lighters.
Calcutta.-I:nprovements in the river are such that ressels do not now anchor in Diamond Harbor, but proceed direct to Calcuta. Toward that city the banks of the river are protected where destructive action by the currents takes place. All vessels are moored in double or triple lines along the left bank, and landing and embarkation are effected by lighters. A great desideratum has been a bridge across the river abore the city. The principal difficulty seems to be the want of good founda. tion, as the depth of diluvial deposit is very great. They have now a very large ponton-bridge for all ordinary traffic, but fears are expressed for its safety if any of the shipping should break away from its moorings during eyclones and be driveu upon the bridge. Nevertheless, it appears quite feasible to protect it from such dauger by powerful booms. The improvements in the drainage of Calcutta and its water-supply have been quite effective; and the death-rate is now almost as low as in the most farored European cities.

Bombay.-Tessels anchor in the bay, and are loaded and unloaded by a class of large boats peculiar to this region. The quays are of stone and very substantially, built, but ressels do not come u_{p} to them. There are several large dry docks, in which everything is constructed in the most substantial and euduring manner.

Suez and the Suez Canal.-The want of a good chart for courses through the Red Sea is a drawback to its secure navigation. The town of Suez, on the sonthern edge of the desert, which stretehes thence to the Mediterranean Sea, is so low as to be not distinguishable natil nearly up with it. Mount Altaka, however, on the west, is easily recognizable, having an elevation of 2,200 feet. It is a good landfall, and visible from the canal when well north of Kantara. Some of the harbor improvements of Suez can be seen from the nsual anchorage. A long jetty of pierre perdue has been projected from the eastern shore just south of the eutrance to the canal and crossing its prolongation. From the large and readily-distinguisbed deposit of sand on its southern face, it would appear as if there was a preponderance of littoral drift along that shore from the southward, and therefore its tendency is detrimental to the entrance of the canal.

Suez Canal.-We entered the canal at nearly low water, in a vessel of 1,267 tons burden, 976 feet in length, of 38 feet beam, and drawing $18 \frac{1}{2}$ feet forward and $19 \frac{1}{2}$ feet aft. Four menwere at the wheel. The time of tide was nearls dead low water, and had fallen apparently three feet, but the current was still runuing strongly ebb. At this stage, the water was off the broad low slope of the upper section of the canal, and we could see not only the narrowness of the channel of deep water, but the condition and slope of the section beneath the water for ten or twelve fect. The course of the canal appeared more irregular than that laid down on the chart in hand, and from some cause or other the vessel's bow took the bank eight times within an hour and a half, and we advanced only a mile and a half in that time. Toward Suez, on the left, and to the north of it, the low tide had exposed the broad flats with narrow lines of water through them. The exposed banks showed thin strata of fine sand and clay alternating, bat the clay predominating, so that the walls of the canal below low-water mark were without apparent slope. Where there is sand predominating on the surface of the apper flat section it appears to have been blown in. The stratification of the sand and clay affords capital matural material for preserving the integrity of the inferior sections. Where the action of the adrancing waves, formed by the progressive displacement of the ressel, had fair opportmity to exhibit their destructive effects, the sand had mostly been washed away and the clay remained as a soft, sticky mud on the long slopes of the uper section. The channel near Snez and at the turns is too narrow, unless very skillful pilots and reatily-mabaged vessels are used. Of course, the difficulty of steering is increased toward low water.

For ten miles of the first cighteen, from the entrance to the sonthern point of the lithe hasin, the cutting above the surface of the water averaged but a few feet, and the surface sand appears to be rery little moved by the winds, and even then to move parallel with the line of tho canal. Certainly it is not a hondredth of the movement of the sand on the peninsula of Califomia or at any other point on the California or Oregon coasts.

In the next twenty-three or twenty four miles the line passes through the small and large basins called the Bitter Lake. For nine miles through the Grand Basin, between the two irou light-houses, there was needed no excavation, as the level of the bottom of the basin was below the bottom of the canal. It is asserted that since the admission and flow of water into and from the basin, the depth has increased on the line of the steamers, the bottom of salt batiog been carried away in solution. The light-houses are not used, as ships are not permitted to pass through the canal at night. Along the steamer's course throngh the lake are inexpensive iron angled tripods with iron disks at right angles on top, anchored and furnished with elaborate ladders to the top. Thence to the sinty-second mile the caual is throngh a moderate cutting, the highest spoilbank being about fifteen to twenty feet above the surface of the canal. There are a few bushes upon the immediate banks of the canal, and occasionally some on the cast side upon the spoil-bank. On the west slope, there is some slight saud-drifting. (See illustratiou No. 30, sketeh 1.)

The distance throngh Lake Timsah is three miles, in a curve running well to the westward. Vessels do not stop at Ismaïlia; which lies on the northwest bank, upon ground abont thirty feet above the lake. It is a pleasantly laid out town, with fine dwellings, large offices of the company, and a good hotel. The gardens are bright with tropical plants and trees, but they are wholly dependent upon the Nile water, which is bronght by the Fresh-water Canal from Cairo. Just north of Lake Timsah, some bad turns in the canal are not fairly exhibited upon the map.

Cben followed the deepest cutting seen on the whole canal; only, however, for a short dis. tance of the six miles through fast land. Here* the entting appears to be abont thirty five to forty feet deen, with spoil-bauks of fifteen feet above them. (See illustration No. 30, sketeh 2.)

The line of the old surface is well marked, so that no dificulty would be foind in getting its exact beight and breadth. The slope of the section of the spoil-banks is too great, being about one to one. Un the west side there is evidently sand-drift from above, and the stairs on the west side, near the deepest cutting, are covered in places. Along the edge of the caaral, bushes, reeds, \&c., are sparsely growing in single line. These will prevent the washing away of the bank to some small extent, but cannot keep back the sand falling from above. The remedr should be applied above if at all practicable.

[^17]Eren in this cut the signs are well marked of the fine clay and sand stratification; and the narrowness and slope of the surface section indicate that the least possible aggregate of material was removed.

With this high cutand apparently contracted section it is fortunate that the prevailing wind is nearly parallel with the line of the canal, which, howerer, has a direction, at this reach, of about ten degrees east of north, so that the west side is the one liable to encroachments from driving sand. Bat the adjacent desert is not wholly sand ; in many places the surface appeared to be of heavier material that had been left during centuries in which the lighter material had been blown away. There were localities of sandy sarface, and of course there is much sand to be blown from the spoilbanks themselres.

Lake Ballah is reached at about the seventietl mile from Suez, and thence the canal passes through the shallow lake and in its course for eleven miles it is cut through seceral low points and islets. Thence by a very low cut of two miles to Kantara, on the line of the old cararan-route from Cairo to Syria. Here the spoil-banks are already hard, and the sand so indurated in layers with the clay that pieces of it cannot readily be broken by the hand. It appeared to have chemical constituents, which, when acted upon by the air, were favorable to the solidification of the mass. At the water-line this was not the case, but above it there was little loose sand to be drifted.

From Kantara to Port Said the distance is 98 miles, or a total of 111 miles from Port Suez. In this last reach the caual was excarated beneath the surface of the water, but there is now no water visible on the east side of the canal, and the fast land stretches several hundred yards toward the westward; about half-way to Port Said this strip is three-quarters of a mile wide. And to ward Kantara a mile or two of low, flat, rich alluvial soil borders the canal and needs only the water of irrigation to make it yield good crops. Along the last stretch of twentry fire miles the land slopes away so gradually from a low, narrow spoil-bank, that the question naturally suggests itself, where the excavated material has been placed.

Throughout this line the canal, as a rule, has apparently its full section, and the channel is marked on each side by a series of buoys, which hare chains leading to the shore, so that their position can be changed. It is said that about the seventh or eighth mile from Said there is frequently a difficulty experienced in the channel shoaling, and the popular opinion is, that it arises from the bottom of the canal pressing in; but elsewhere reference will be made to another probable canse. There are one or two points of contraction of the canal section, notably between posts thirty-three and thirty four, but the banks are hard indurated clay and steep to below water. At several points the spoil-bank is indurated and the sand is crawling in from the westward over it. In some places there are a few bushes, bat evidently no persistent effort is made to cultivate them.

At the different stations, where the canal is widened so that vessels may pass, the piles at the laudings are eaten by small worms upon the outside. No action of the teredo was observed, but destraction by the worm is great, as some of the new piers have the piles covered with zinc.

Destructive action by vessels passing through the canal.-All of one day was spent, and part of another, in passing through, at a rate of five and a half statute miles per hour. Apparently, a current was against the course of the ressel throughont, but was very slight toward Port Said. On this long line of low banks and full width of section, the action of the waves of displacement caused by steamers was marked and destructive. Parties were at work in laying low, dry, vertical walls. With large ressels, and especially of greater dranght, the action must be much greater.

The small blocks of soft stone were brought down the canal by Nile boats. This was about all the repairs going on throughout the length of the canal. Two or three small dredges were at work, and one at Port Said; and one of the largest class was being put in working order just south of the port.

The extreme width of the canal at the surface of the water may be taken at 130 feet; it contracts to a width of 77 feet at 5 feet below the surface, so that its cross-section would represent about 1,750 feet. But this is not the cross-section in the heavier cuts, where the surface breadth is smaller.

The vessel in her progress continuously displaces a body of water, in the aggregate equal to
her own displacement; but the primary action of this displacing is forward of the midship section of the vessel, which acts as a piston in forcing a part of the water ahead. The rise of this part of the displaced water is not readily detected from the vessel, unless well-marked objects are on the line of water; at a point abaft the midship-section, about two-thirls the length of the ressel from the bow, there is a distinctly-marked rush of water aft on both sides the ship, from the higher level in front to the lower level aft, to supply in part the volume of displacement. The difference of level is very marked, and is of course more where the canal is contracted. From this higher level the water rushes strongly down and along the sides of the banks until it is met by a wave advancing astern the ressel, and following ber to supply in part the volume of displacement. This wave rose from two to thee or even four feet high from the lowest part of the trough, and, curling and breaking as it struck the bank, it did far more damage than the previous receding wave. Aloug the canal between Kantara and Port Said, where the section exhibits a broad band of shoal water under either bank, the destructive action of this wave was noted. There was a series of five descending and retreating and fire of the ascending and returning waves, not reckouing the first wave in front of the ressel. From the first for second, if we inchude the wave preceding the vessel) to the last wave the distance was about two hundred feet, or over two thirds the ship's length. There is no difficulty whatever in deciding which wave is the most destructive; where the bank was sand, there would be a heary washing away along the whole bank, except where the small vertical stone wall had been built; but eren this was in many places washed down, donbtless by being undermined, and wherever the bank was fairly protected by rushes or by bushes, the destructive effect was very small.

In returning from Port Said to Ismailia in a small steamer sixty feet in length, similar effects were produced whenever she ran close under either bank; but when she was in mid-channel there was little or no damage done to the banks.

The destructive effect of the water disturbed by the screw mar be regarded as nothing compared with that of the waves of displacement. These observations are noted in some detail, because they exhibit a constant and destructive agency at work far greater than the drifting of the sand by the wind, and in every case aiding it. They may be investigated by decreasing the speed of the steamers, which are now permitted to ran ted kilometers (five and a half statute miles) per hoar, whatever their size. Either a much smaller speed should be established or the speed mate to depend upon the displacement; in which case the larger vessel would go through at a lower speed than the smaller ressel, and yet produce as injurious effects upon the banks.

Current through the canal; saltness of the water; tides.-The rise and fall of the tide at Suez is about three feet, and at Port Said about one foot, the latter depending in large measure upon the wind. And when the north wind blows very strongly down the Gulf of suez and Red Sea continuously for a week, as it did upon our trip, the water is driven ont quite sensibly. Fortunately, the basin of the Bitter Lake is a great reservoir to equalize the effects of the couflicting tides and currents. Nevertheless, there appeared to be a general morement to the southward, and as we approached the north end this was verified by the presence of the decayed regetable matter from the Nile along the banks of the canal.

The littoral current along the shores of the Delta, or at least from the Damietta mouth across the mouth of the canal, toward the Gulf of Pelusa, is four kilometers per hour. The engineer of the company at Port Said gave reiterated assurances that such was the result of their observations. This current carries with it vast quantities of decaying vegetable matter from the Nile, and when the dredge was at work near Port Said, the excarated material coutained abundauce of large and small roots, branches, leaves, \&o., and the odor was quite offensive. Along the canal-banks the line of the lighter decaying vegetable matter is well marked. On the return to Ismailia, aud at every station, the same material was noticed for many miles within the canal.

At Port Said and off that month the presence of the fresh water from the Nile is very readily detected by the salinometer. The engineer of one of the Anstrian Lloyds states that his numerons determinations of the quantity of salt in solution gave the following results with great uniformity: In the Red Sea, eight ounces of salt to the gallou of water; in the Suez Canal, eight and a half onnces; and at the Port Said mouth of the canal, seven and a half ounces. The increased salinity
H. Ex. 81-38
of the canal is readily accounted for by the excessive evaporation going on, and by excess of salt from the bottom of the Bitter Lake, \&c.

Breahocater at Port Stid; dredging.-The western mole or breakwater at Port Said indicates that no riolent storms occur in that locality. A few lhours' action of the Pacific coast swell would spread that breakwater over the bottom of the sea. This west mole is a long line of beton blocks dropped at random, so as to form a pier with a cross-section, having the side slopes of 45°, with the top fise meters in breadth and two meters above the sea. About one-third the way out upon the pier the water was washing throngh the wide interstices in many places, from the westward. Many blocks are broken across and irregularly; all are more or less worn, say two and a half inches deep, and exhibit sand and shells in the material as if from the beach. The wash of the sand throngh the wide interstices of the mole is so great that a dredger is constantly at work removing it. From the imner end of the pier the formation of the sand-beach, now about three feet above the water, has progressed outward six hundred yards, and is constantly working to seaward.

From the regular observations of the company, it appears that the restern point of this formation is at the beach; three miles from the pier, and the cye plainly traces the line of disturbed water, with its load of Nile matter in suspension, from a point apparently half a mile off the beach in that direction to the extremity of the pier. The law of deposit seems regular, and already the pier has been prolonged, and will be farther carried seaward as the necessity arises.

The sand of this new beach, when dry, is drifted by the northwesterly winds into the canal, because there is no elevated line of bulk-head or fence continued landward on the line of the pier. This drift has formed so large a deposit within the canal that the mass above the water is gathered in heaps and sold as ballast to the outgoing coal-ships.

Althongh there was no dredger at work at the mouth of the canal, the engineer stated that the littoral drift carried the Nile matter across the extremity of the pier and formed a bar, which is removed by dredging to thirty feet of water.

The material dredged from the canal is carried six miles eastward of the mouth and dropped into the sea. The machine observed at work takes np 1,430 cubic yards per day, and each steamscow carries away 150 tons. The dredger at work was bringing op only two-thirds of the buckets full of material. The eastempier is not parallel with the western, nor is it so long. It appears even of less dimensions than the other, and there is no intention to increase its length or size. So far as can be judged from the present effects of the littoral drift, and from the prevailing moderate northwest winds, there is no absolute necessity for this eastern mole.

Béton blocks; manufacture; character; size; cost.-The engineer of Port Said attended at a risit to the Beton Works, which are on the east side of the canal, nearly opposite Port Said. The sand and cement are incorporated in a series of large iron arastras, each with four iron wheels for thoroughly mixing the material. Power is transmitted bs shafting from steamengines under a large shed. When the sand and cement are sufficiently incorporated, two closed rectangular openings in the bottom of each arastra are opened, and the contents are dropped into a wooden box about four feet square by two feet deep, placed on a truck, which is moved about twenty or thirty feet to a position where its contents are deposited in the mould. This mould is on wheels, and moves by rail parallel with the series of arastras, so that it may be moved under eact of the boxes and receice their contents, until the required amount is in the mould. The blocks, wheu a little worn, show lines separating the layers, and these appear to be aboat ten inches thick. The béton blocks contain 353 cubic feet and weigh 20 tons. They are a little more than 10 by $6 \frac{1}{2}$ feet in length and breadth, and 5 feet thick. The material "sets" at once, and then the blocks are parked ready for use. When they are needed a large iron bridge on two sets of rails is run over the block, which i_{s} hoisted in slings by hydraulic power on the bridge, and then moved to another rail at right angles, on which runs a heary track. When this track is loaded it is moved to the shipping.point, where similar hydraulic power on a second iron bridge lifts it and deposits it on the vessel. At first, these blocks were made out of beach-sand, \&e., but they were found to disintegrate badly, and now the company obtains the sand from Kantara, because it contains so great a percentage of silica, and no salt. As elsewhere mentioned, the sand excarated from the canal at Kantara had become hardened in the spoil-banks by simple exposure.

These béton blocks cost 340 francs each ($\$ 63.75$) when laid on the mole. Tp, to May 12, 1875, the company had made 13,000, and had a stoek remaining on hand. The total cost of the two piers at this rate would therefore be $\$ 828,750$.

The light-house, near the inner end of the westen mole, a graceful octagonal structure about one handred feet high, is built of beton of the natural color, and is surmounted by an electric light, on a range for entering the canal between two moored lights in the canal. The lighthonse bild. ings are surrounded by a béton wall.

CONCLUSIONS.

Estimate of cost.
As a great artery of commerce, the canal is a success. The largest class of steamships and men-of-war pass through it; on an average, seven vessels are in transitu at one time. It has given rise to new forms of vessels resembling enormous canal boats, and known to the profession as "canallers." Financially, no opinion is here intended upon the subject, but so far as could be learned, the tonnage transit duties arerage $\$ 375,000$ per month. As an engineering work, aud putting aside unknown questions of diplomacy and finance, there have been no extraordinary difticulties to orercome. The question of ronte was within very narrow limits, aud the surveys neces. sary for determbing the most fasible line could not admit of doubt in the location. The southern part, from the Bitter Lake to Snez, follows the line of canal of the Pharaohs, and does not diverge much from it to Lake Timsah. The northeru terminus may or may not be in exactly the best location. The direction of the littoral drift would greatly affect that question.

The material through which the canal has been caried is of a very favorable character, for facility of removal, formation of spoil-banks, and the preservation of the section.

Alexandria.-The new breakwater protects the harbor from all winds from the northward and eastward. It is constructed of "pierve perdue" apparently without, with a sufficient section to withstand such seas as arise here. But the efficiency of the whole harbor is reduced by the old mole which runs out northward from the southern shore of the harbor, and gives an area much too limited for the present demands. This mole stretches so far toward the north shore of the harbor as to cramp the passage between them for long ressels. The new mole, if projected farther to the northward, would have given a larger area for the harbor. If heavy seas should ever attack the mole, it is, perhaps, too high to withstand them. The bottom was of yielding material, as might readily be supposed.

Naples; Genoa.-Nothing need be said of the former, with its small mole. At Genoa, the new great breakwater affords a good anchorage for a large bods of shipping in deep water; but the vessels principally crowd inside the imner or old mole, and are moored in tiers very close together. Passengers and freight are landed and disembarked by small boats and lighters. Large vessels also lie moored under the shore hence to the light-house, which is situated at the inner end of the onter breakwater. The breakwater is finished with masonry on the top and inside, and when visited there was a very strong breeze and moderately large swell rolling in, which threw its spray over the breakwater. From the light-house a view was obtained of the new and old breakwaters, and of the coast line to the east and westward. The new mole might have been located farther out, with its western end anchored upon the extremity of the promontory upon which the lighthouse is built. The light-house is a plain substantial structure of stone upon a rock, and perhaps not less than three hundred feet above the sea. The light is of the first order of Fresuel.

Sucinemunde; breakwaters; improvements in channel.-Stettin lies on the Oder, thirty miles south of Swinemunde, with which it has water communication for ressels drawing sixteen feet. The line of steamers that bad been runuing for a short period thence to New lork was withdrawn on account of a lack of patronage. The Oder at Stettin is quite narrow; nevertheless, it admits of a large Baltic trade. The stream in many of its characteristics bears a strong resemblance to the larger bayous of Texas, especially toward its mouth, which opens not direetly opon the Baltic, but into the Stettiner Haff, a fresh-water sound about seventy-five miles in circumference, and bearing much the same relation to the coast-hine as Pamplico and Albemarle

Sounds bear to the coast of North Carolina. This body of water is divided into the Grasses Haff ou the east and the Kleines Haff on the west; and the water of the Oder and of other streams tinds three passages hence to the Baltic, by the Dienow at the eastern extremity, the Swine in the middle, and the Pune on the west; the sound mouths of the extreme passages are thinty miles apart, and their courses are long, but the course of the Swine is only about twelve miles.

Swinemunde lies directly upon the Baltic, on the left bank of the Swine, and is a modern sea-port, where heary and deeply laden vessels for Stettin receive and discharge their cargoes. For the desired examinations, kind and prompt assistance was rendered by Mr. Pantel, the United States consular agent.

The improvement in the depth of the narrow entrance, by artificial means, is very noteworthy. Formerly, the entrance to the chanuel was protected by short moles constructed of blocks of stone thrown upon a base-work of fascines. These were destroyed by the gales of every heavy winter. The depth of water on the bar was then (1828) six feet, and there is no rise and fall of tide except what may be occasioned by the prevalence of strong winds, which, in northeast storms, bank the water over the streets of Swinemunde. But there is a constant current out from the Stettiner Sound, which is mainly supplied with fresh water from the rivers Oder, Ihna, and Ucker; but the current here is not strong on account of the other outlets already mentioned. The narrowest part of the artificial passage is 350 jards, but this does not represent the cbanuelway, which is not quite half that width between the 24 -foot curves. As nearly one-half of the western side of the passage has less than six feet of water, it is inteuded to coustruct a new bulwark over the shonl line, and thus contract and doubtless improve the artificial channel. Within the 24 -foot liues, two ocean-steamers can pass each other without diffeulty. The artificial channel is formed of two nearly parallel moles of nnequal length, running out, not in a straight line, but curving well to the westward. In fact, the outer or eastern mole, and the shore-line inside, is 115 degrees of a circle having only 2,000 yards radius; and for two miles the deep water scours directly under its wall. The mouth of the channel is thus caused to open to the northwest by north (true), and vessels ruming for refuge, in northeast storms, must run under all sail for the extremity of the pier, round it within a ship's length, and haul up sharp on a southeast by south course, or go upou the western point of sauds and be lost. Last winter there were fonr vessels lost by not conforming to these requirements; one losing all hands, because neither the tug nor life-boat could reach her. From the East Fort on the right bank the distance to the light-house on the extremity of the east pier is 2,600 yards, of which the oater two-thirds is the recent stone pier extendiug from the present beach line. The extremity of the western pier (built in the same manner, but without parapet) is 600 yards inside the eastern pier, bat the line of shoal water extends on the line of its prolongation far beyond the extremity of the eastern pier.

The section of the eastern or principal pier is fairly illustrated by the accompanying sketch (illustratiou No. 30, sketch 3). It has to withstand the heavy northeast gales, is quite small, and very low; but the blocks of stone are laid securely in cement. The swell broke completely over it in winter, and it was decided to build the five and a half foot parapet all along the pier, on the seaward face. Notwithstanding the masoury of this wall was very good, its section proved too small, for the gales of 1874 - 75 carried 250 feet of it bodily into the channel. The piers have been prolonged several times as the deposits have taken place off the beach, which was formerly inside the present brick forts. The beach has, therefore, made not less than 1,050 yards to seaward; and the indications from the soundings are that it is merely a question of time when additional length shall be given to the piers. A study of this case indicates that the prolongation of the west pier is not necessary, but that the prolongation of the east pier may be necessary, and should be carried out in a straight line, or rather in a curve of gradually-increasing radius. What littoral drift there is seems to prevail from the eastward, and the deposit on the prolongation of the west pier is partly from the sound and partly from the littoral drift. But the increased depth of water in the channel is not wholly due to the piers, but in part to the constaut use of a swall dredger. The cost of maintenance of the piers and of the dredger is quite moderate, and the results are the most favorable as yet seen upon a coast subject to very heavy gales.

[^18]Kiel; German naval dock-yard on the Baltic.-Misistohe, the great German naval dock yard of the Baltic. It is at the southwestern extremity of Kieler Bay, opposite the town of Kiel, and between the villages Wilhelminenhohe and Ellerbeck. The approaches along eath shore of the bay show rolling land of slight elevation, cultivated and dotted with houses and villages. The defenses are good and have been moch enlarged and strengthened.

The extent of the dock-yard is about 1,160 yards frontage by 660 yards in depth, giving an area of about 160 acres. The greater part of this area was not only solid ground, but the liills to the eastward have been cut down 95 feet to bring them to the level of the works. There are to he two large basins for construction, repairs, and outfitting. The outer one is 315 yards by 248, with an entrance 133 yards wide aud 210 yards long.* This dock is to be comected with the inner one, or buiding-basin of 240 yards square, by means of a passage 25 yards wide and 68 yards long. At the farther side of this basin are four large graving-docks, the largest of which is 200 yards long.

Then come the extensive establishments necessary for a first-class dock-yard, but of which hardly a commencemeat has been made. The graving-docks have iuverted arch bottoms and solid brick walls between each other. The foundation for the walls is good gravel, and requires no piling, although sheet-piling was being driven for the sides of the cross-walls between the two large basins. These walls are 15 feet thick. Orer the gravel is laid beton to give a level contimuous surface for the wall, which is coped with stone. The bricks used are slightly larger than American bricks; yellow, very herd, well burned, and, when strack, ewit a metalic ring. They are brought twenty-five miles by water.

Hamburg; docks.-No notewortby improvements. One or two small dredgers were noticel in the river between Hamburg and Blankenese. The right bank of the river is a blaff about sixty feet in elevation; the left bank low, and the country between the north and south branches of the Elbe is flat, low, swampy, aud cut up by many broad sloughs. When there is any tendency to cut away the right bank, frequent narrow, low lines of stakes and stones are carried ont at right angles to the beach for twenty to thirty-five yards, and they appear to be sufticient. The ressels along the main quay of Hamburg are arranged in tiers of two and three deep, with passages for barges to load and unload. These barges receive and discharge freight at cranes along the quay-frout, or at the warehouses on the numerous canals running throagh the city. In the latter case, theie is no pavement bordering the canal. The "Sandthorhafen" had only large steamers, principally English, loaded with coal. There is a great line of brick sleds with iron roofs down each wharf; with the fronts toward the water opeu; but on the onter or street side they are closed with great doors. Between each line of sheds and the dock there are laid two lines of rails; the outer guite broad for carrying movable steam-cranes, the inver one, of the ordinary breadth, for cars; but apparently none are used, as the freight is discharged by the cranes directly into the shed, and thence it is shipped into the oars on the outside of the shed, where there are four lines of track between it and the street, which is railed off by an iron-wire fence.

Bremerhafen; old and new docks.-There being nothing of interest at bremen, the route was continued to Bremeruafen, to examine the great docks alrealy built and those in progress.

There are two docks at Gestemunde opening into the small stream Geste, where it debouches into the Weser with a rapid current on the ebb-tide. Below the Geste are the two finished ducks of Bremerhafen, and the third one under construction. These are all on land subject to overffow at high water, but diked in with the material excavated. The soil is a stift blue clay sixty feet thick over sand and gravel. Piles are driven sixty feet, or antil they penetrate two feet into the gravel, when they can be driven no farther. Over the piling is laid a grillage, and upon that the walls of brick are laid in cement. The bricks are red and good, but not equal to those at Kiel. The walls are coped with stone. The depth of water orer the sills of the docks is twenty-sereufeet; and there are two sets of gates at each entrance; the outer one is the higher, to keep out Hood-waters. The docks of Bremerhafen open up stream, but those of Gestemunde open into the Geste. This arrangement of the lower docks is made because the vessels enter at three-quarters flood, and the

[^19]pilots can therefore better handle the vessel against the current. But this form is particularly favorable for the deposit of silt, especially as the river brings down a very large amount of material i_{n} suspension. The deposit in the entrance is two inches each tide, or four inches daily ; of course, there is not so much inside the gates, as they are ouly open oue and a half hours before high water and for a short time after. This deposit is removed every eight days, when it has reached a depth of two to three feet, by scouring. When the water on the outside is six feet below the surface of the water in the docks, the inner gates are opened, and the scour cleans the entrance, which is a smooth flooring of masoury laid over grillage and piling.

In winter, the ice forms to an aggregate thickness of six feet, and is kept broken in the docks by small steamers plying constantly. When it becomes too heary it is carried out in the same manner as for scouring the entrance. Mr. Ihlder, the United States consular agent, states that the river-ice has not damaged the pier-Leads (of timber) at the entrance to the docks, but what seems to be a local eddy is noticeable in that vicinity, that sweeps the ice away from the diking and the piers; otherwise, they would offer a coustant obstruction to it. This, however, instead of an eddy, may be the outpouring ebb-waters of the Geste, opening at right angles to the river just above the first or upper dock, which throws the ice off the immediate shore-line. The Weser does not become frozen fast in winter at Bremerhafen, but about two miles above Gestemnude it does, and thence there is sleighing on the river to Bremen. Bremerhafen is a great entrep $\hat{t} t$ for petroleum, and vast sheds are stored with it beyond the third or lower dock. In the second dock, sixteen of the large steamers of the Bremeu Line were laid up on account of depression in commerce.

Wilhelmshafen; German naval dock-yard.-This is the new German naval dock-yard upon the North Sea. It is neither so extensive nor so important as that at Kiel. The site is on the reclaimed land near the village of Heppens, on the west point at the narrowest part of the Jade Bay. The inner harbor is 400 yards by 240 , and has three drydocks and two slips for the construction aud repair of ironclads. This harbor is 700 yards from the extreme point of entrance; aud the canal and receiving-harbor are executed in heavy granite masonry. In the entrance harbor was lying a dredger, evidently needed to keep the required depth in the approaches. Additional reclamation is being made to give more dockage on the southwest side of the entrance. The soil is a stiff black clay, and is used for forming the dikes withont the use of fascinage or other helps. The railroad connects Wilhelmshafen, which is quite a pleasant place, with Oldenburg; and a large canal is being opened close under the embankment.

The Amsterdam Canal; enlargement; protection of banks; North Sea Harbor; dredging; break-waters.-There are already two or more printed descriptions of the details of this work, so that reference here need be made only to some of the changes deemed necessary, and to the points that more especially attract attention. The canal west of Velsen and the North Sea Harbor were visited with Mr. Datton, the executive engineer for the contractors Of the party were also Messrs. Waldrop, Rose, and Siemens. From Mr. Dirks, the chief engineer, copies were received of all the specifications of the work, and the maps exhibiting the lands reclaimed, \&c.

The sand-dunes, bordering the coast-line for an average breadth of two miles, are about fortyfive feet above the sea; and from Velsen westward the heaviest and only cutting of importance has been effected. These dunes are not naturally covered with vegetation. The cut through these dunes was finished 203 feet wide at the surface of the water; but as new projects for a great ceutral railroad station were commenced at Amstordam, and the city needed material for filling, it granted a subsidy of $\$ 2,400,000$ to the Canal Company for sand, upon the condition that the surface width of the canal should be increased to 230 feet; the depth to be 27 feet for a bottom width of 115 feet, giving a slope of one to one for the sides. This widening is now in progress along the sonth side of the caual.

To protect the banks against the destructive effect of the wave of displacement of the steamers, they will be pitched below and above the surface of the water with blocks of one, two, or three cubic feet dimensions, of hard limestone, or of basalt from the Rhine. They will not be smooth laid; the idea is that rough pitching will break the wave and retard it; but unless the stone is deep, the sand will probably be washed from between and from below the stones, as may be seen at some parts of the newly-made wall on the Suez Canal. At present, the protection is a
wooden bulk-head, which is about two feet above the surface of the water. Eugineer Waldrop says the best defense is a reed, that is indigenous. Near Amsterdam it was observed that a fringe, four feet wide, of this reed, tive feet high, completels smoothed the top of the principal adrancing ware, which had been combing and tearing along that part of the bank of one of the canals protected by stone. Among the reeds the wave was as high as along the sloping stone wall, but it bad little or no bank-destroying power. The reed was then (August 27) nearly in seed, and looked like a carex. It is not, however, propagated for this work by seed, but transplanted, and in a sandy soil, on the edge of the canal, is put 18 inches deep, in a muddy soil about 10 inches. It would be even better than the tule of California, becanse it grows much like a tall, coarse grass or millet, with a stalk half an inch in diameter, and with many leaves. Along the canal, through the danes, these reeds are planted inside the present wooden bulk-head. The duues for a good distance on each side of the canal, and the slopes of the canal, are planted with a coarse grass, $2 \frac{1}{2}$ feet high, which grows well, and effectaally protects the sand from drifting. It will grow from the seed, but in that case tho sand may be driven away, and leare the seed exposed. The transplanting costs one cent per square yard, and the growth is thick from fallen seed. From this thick matting, the plants are taken for transplanting. It seeds at the end of Augnst. The slopes of the canal-banks above the water are one to one and a balf, and this grass bolds them perfectly. It would be a capital covering for the saud-dunes of Califonia and Oregon. It is locally known as the trelm.

The dredger, costing from $\$ 15,000$ to $\$ 17,000$, places in the scows an arerage of between 600 and 800 tons of material daily; but 1,500 have been removed in one day. Each seow carries from 100 to 110 tons, and is towed seaward to 15 fathoms of water and discharged. The means of closing the six shutters of each scow, so that each shall have the same strain to keep it closet, is quite simple and ingenions, and very effective. Inside the canal the small dredgers, of the ordinary scoop form, were removing only 400 tons daily; but the dredgers are quite small. The sand is raised to the top of the south bauk, and carried hence br tram-way to Amsterdam.

The depth of water now (August 27,1875) in the canal is reported at 16 feet, and the com. pany are under contract to have that depth through the harbor and the canal by April, 1876; io be inereased to 27 feet (8 meters) throughont by 1877.

The entrance locks and sluices.-The two locks and the sluices near the seaward entrance to the canal are simple, fine looking pieces of brick-work, withont the least indication of cracking or settling. The longest lock will receive a vessel of the largest class. It has three gates (for protection) built of iron, with air-chambers, and is balanced so as just to be bnosant. The first gate, toward the sea, is the strongest and highest, as a guard against storm flodis, and yeighs 57 tons. The middle one is lower, and weighs 45 tons. The inner is the lowest, and weighs 33 tons. The brick walls separating the locks decrease in height with the gates. These piers are built upon a grillage, resting on piles, and no difficulty was experienced with the side piers; but some trouble was encountered with the central one, where a stream of 10 inches had to be led off until the work was nearly done, when it was closed up without difficulty. The bottom of the lock chambers and the aprons, and the bottom of the side channels, consist of fascinage, broken bricks, and basalt-rock pitching.

The béton blocks.-It is claimed that the béton works are the most extensire in the world. The concrete is composed of sand, shingle, and cement, in proportions specified in the contracts. The sand here does not make good beton, so it is brought a distance of 100 miles. The blocks range from 4 to 10 tons, with sizes $3 \frac{1}{2}$ feet thick, 4 feet wide, and from 5 to 13 feet in length. At the contractor's office it was intimated that they had been found too small, especially along the exposed faces of the piers, where the heavy waves tended to lift them up. It was in contemplation to increase the size of some of them to 20 tons. When brought from Velsen, they are first stored on the north side of the canal near the shore. Subsequently, they are carried bs rail across a wooden trestle-work to the inner end of the sonth pier, where they lie until needed. Thence they are moved on a tram-way laid on a pier, in pairs, and stored near the outer end until needed, when they are lifted by the crane and placed in situ.

North Sea harbor breakwaters; design; method of building.-While landing on the inner side of the south breakwater or pier, a swell was running square on the line of the pier, from the
effects of the last gale. The work is out to 4,723 feet (1,440 meters), and the foreman stated that he was working in 30 feet of water (11 meters) ; although the piers are intended to go ont to only 27 feet (8 meters). The experience gained in the construction of these piers is valuable. The original design appears to have been somewhat similar, if not identical, with that of the Admiralty pier at Dover. This consists, at the inshore end, of a solid sea-wall (having a hearting of concrete) with a slight batter on each side, but changing to nearly vertical sides as it progresses outward, and abandoning the hearting of concrete. This (the Dover) pier rests upon the bard, chalky bottom which is not torn away by storms; but the case is wholly different at the North Sea Harbor, where the bottom is coarse sand liable to shift, and very quickly carried away when any large body is placed upon it, around which irregular currents are gencrated. Therefore, when this Dover plan was adopted here, the sand was washed away from the base of the breakwater, which by its weight again pressed out the sand beneath it; and this was in turn washed away, so that the pier settled and gave way. Without abandoning this method, the lowest layer of béton blocks was allowed to settle until it was embedded in the sand; it settled irregularly, but was leveled off near the low-water line to serve as a fonndation for the upper courses. This was necessarily slow and expensire, and it is donbtful whether it was not, in great measure, liable to subsequent underwashing in great storms. Then two outer and boundary lines of concrete blocks were laid with the interspace filled with basalt blocks; a pierre perdue as a foundation. But it is evident that the process of undermining the marginal blocks is identical with that attacking the pier itself, and then the loose basaltic foundation must yield.

After abandoning this, a base has been tormed by throwing in basaltic and limestone rocks npon the sand to the depth of one meter, for a breadth of 33 feet on each side of the base of the breakwater; beyoud that, they take the nataral slope. These rocks are approximately leveled by a diver, who then spreads a layer of spall (of pieces 6 by 2 inches, or thereabouts) so as to fill the interstices of the larger blocks. The leveling of this riprap is done by means of an iron bar swung horizontally from the end of the crane by a double chain. The betou block is then lowered to its position over this leveled part, and trial made of its horizontality by means of an iron disk, 15 inches in diameter, suspended by a chain from the cranc. This disk is moved over different parts of the block until the required accuracy is attained. The work is quite tedious, because the seeing is always difficult ou account of the discolored water.

After the lower blocks are laid, basaltic blocks similar to those of the foundation are laid along each side of the breakwater to the top of the first course. It is found that there is a heary scour at the end of the breakwater as it is being carried out, so that the foundation-bed of riprap is really placed on a depression of 3 or 4 feet, if not more, thereby giving some advantage to the foundation.

Some of the ablest Dutch engineers express grave doubts about the foundation of the breakwaters, and insist that it should have been made of fascibage. The béton blocks are carried up to the low-water line without cement; and it is found that the blocks are, at that height, generally level, as required by specification. For the joints at the low-water line a quick-setting bydraulic cement is used; above that, Portland cement. In examining the whole length of the pier, the surface was found to be irregular and apparently sunk in places, and cracked across quite frequently. In fact the first crack across was within 20 or 30 fards of the pier end, and was continned below the water-line. The general appearance of the pier is unfarorably light and not of superior material; $2 \frac{1}{2}$ inch iron rods had been laid in grooves of the upper end outer course of blncks about $2 \frac{2}{2}$ feet from the seaward edge, and then covered with concrete; but frequently the concrete was gone, and the rods exposed and badly oxidized. The damage, or danger of dislocation or fracture of the outer blocks, increases toward the shore end, and cross iron tie-rods, round and square, have been introduced to meet emergencies caused by fracture. The introduction of this cramping is a new article in specification No. 5 g , being the seventh modification of the original plan, Augast 6, 1873 .

The surface blocks are badly weathered. About half the way ont to the breakwater a continuous concrete parapet wall has been built along the south edge of the south pier. It is about $5_{\frac{1}{2}}$ feet high and 6 feet wide; but the material is already badly worn, and in places is brokon throagh. No examination was made at the north pier, but specification No. $5 g$ says that both breakwaters
shall be similar in construction. It will be recollected that an attempt was made to construct this north pier by commencing seaward and working toward the beach, and that the plan failed on account of the scouring away of the bottom from around and under the pier, and between it and the shore. This scouring process was so destructive that it endangered and finally carried away the scaffolding for the rails, by washing away the sand from around the serew-piles. The breakwaters are each to be 5,058 feet in length, and at the extremities the breadth of the top of the north pier will be $27 \frac{1}{2}$ feet (8.35 meters), and that of the south pier $26 \frac{1}{2}$ feet (8.05 meters).

The dredging of the North Sea Harbor, formed by these two breakwaters, will be completed by the first of April, 1876 , to give the following bottcm widths and depths along the center line of the harbor:

At the entrance, 284 yards wide; $20 \frac{1}{2}$ feet water at low tide :
At 550 yards inside the entrance, 909 yards wide; 243 fees water at low tide :
At 1,090 yards inside the entrance, 305 yards wide; $23 \ddagger$ feet water at low tide:
At 1,210 yards inside the entrance, 82 yards wide; 23 feet water at low tide: and thence the same depth throngh the canal to Amsterdam.

As already mentioned, it was originally intended to carry out the breakwater as a solid wall, but in addition to all the modifications which have been specified, it has been found necessary to protect it by a line of beton blocks thrown in a piere perdue along the south or seaward face of the south pier to the level of the water, in order to break the force of the southwest swell upon the wall, and probably to protect the base. But it seems not altogether improbable that in very violent gales the southwest seas may drive these loose blocks against the wall and parapet to their injury. Specification No. 39, of April 25,1875 , prescribes that these "wave-breakers" shall be carried for certain named distances along the sea-face of each pier, and around the pier-heads to the inner facing. The cross-section of this loose material is fourteen feet on top, at ten feet above low water, with the outer slope of one to one; and the material comprises 162,000 cabic yards of concrete and basalt blocks, the latter being in comparatively small masses, and some of the former condemned material.

The tides rise 4 feet, and it is said that by a peculiarity of the tides meeting here, littoral drift is prevented; but in the green water a well-marked line of current rips was noticed, which indicated a current then setting to the northward, while the discolored water was only half a mile out from the south pier, but spread out much farther to the northward of the harbor. That may hare been on account of the previous day's strong sonthwesterly wind, which raised sufficient swell to prevent the laying of any blocks.

Dam at Schellingwonde; the eastern extremity of the Amsterdam Canal; difficulties of construction; how overcome.-A description of the work of the Amsterdam Canal and the North Sea breakwaters would be incomplete without reference to the dam across the Ij (or Y) at Schellingwonde, near Amsterdam, although it comes partly within the subject of land-reclamation.

When the Great North Sea Caual (the Amsterdam Canal) was originally proposed there was a multitude of objections to it, among which was the liability of the canal to fluctuatious of waterlevel from storm-changes in the level of the Zayder Zee. Then also it was demanded that the adjacent waters of the Wijkermeer and the $I j$, which are the sonth westerly termination or arm of the Zuyder Zee, should be drained in order to make the undertaking commercially (financially) suc cessful. But after some years of waiting and discassion this project was considered essentially a part of the scheme. To overcome the first objection it was decided to dam the Ij just east of Amsterdam, and between Schellingwonde on the north side, and Paardenhoek, near Leeburg, on the sonth. The hostility to this essential feature of the great idea was eventually overcome, and this remarkable dam was constructed under unusual difficulties.

The dam or embankment is 1,482 yards in length, and is built upon fascinage in depths from 5 to 25 feet, upon a bottom of soft mad about 40 feet deep, resting upon sand. The usual rise and fall of the tide is 14 inches, but storm-tides reach 10 to 15 feet, at which times the current through this channel-way is two and a half miles per bour. The breadth of the base of the dam is 140 feet, except the closing part which is about 150 . The assumed settlement of the center line of the dam was 13 to 14 feet, and the line of the crown is 15 feet above ordinary low water.
H. Ex. 81-39

The first operation in building the dam was to cover the entire site with a strong fascine-mattress, worked in pieces of 200 feet in leugth, 30 inches thick, and overlapping each other about 3 feet. Then upon each edge of this floor-mattress, long narrow mattresses, at first 25 feet broad, are laid at low water, each superior mattress being narrower, and receding from the lower edges of the one below, so as to give a sbarp slope on both sides of these parallel lines of marginal mattresses. These are brought $u p$ to bigh water. Between these rows of fascinework the space is filled with sand and clay, resting upon the floor-mattress. As the work sinks in the soft mud, the marginal fascinage is added and the sand and clay filled in. Above the high-water line, the proper cross-section is given to the work both with fascines and filling. The details of the mannfacturing of these mattresses and other fascinage are not necessary.* The substratum of mattresses, when loaded, sinks in soft mud with moderate regularity and gradually, unless the mattress is weak, and becomes ruptured lengthwise, as happened in the Schellingwonde dam. In this case, the mattress split longitudinally, and the halves separated. The ouly remedy was to fill the cavity with clay and sand until the settling ceased. It was originally intended to ase a doublefloor mattress, but the plan was abandoned, lest water should penetrate the dam through such a thickness of fascinage. In sandy soil there is little or no danger of this, as in a few days the saud finds its way in the interstices of the fascinage and makes a solid mass of the whole. But it would appear reasonable to suppose that when the floor-mattress was laid in this case, a thin layer of sand might have worked sufficiently through it, and then a second mattress over this might have been similarly treated; or they might have been separated by several feet of sand and clay, and thus have given a strong fascinage flooring that would necessarily have sunk, but would not have been ruptured. There is one great advantage in the nse of fascines in snch an undertaking, and that is in closing the water-way. In the Schellingwonde dam the opening was 328 feet, and this was closed over the whole width simultancously; but of course the small rise and fall of tide and weak current were favorable circumstances. The principal difficulty in the construction of this dam was in building the foundations for the sluices and locks near the north side, now called the "Orange sluices." The north wing at the dam stretches three bundred and twentyeight yards from the Schellingwonde side; and then the abntments for both sides of the sluices, the drainage sluices for the pumps, the three locks for navigation, and the outlet-sluice occupy 136 yards. For the construction of these sluices and abutments an immense coffer dam, 175 yards in diameter, was made of two concentric rows of heavy shect-piling, each pile being from 75 to 80 feet in length. It was unsuccessful; various failures were overcome, and it required three years before the work was completed. The masonry works rest upongrillage laid upou a forest of 9,000 piles, averaging 75 feet in length, and which have been driven into the sand. Memoranda concerning the pumps, \&c., will be found under the head of land-reclamation.

Cherbourg; commercial and naval docks; breakwater.-This artiticial harbor was visited ander letter from "le Ministre Secrétaire de la Marine et des Colonies." The entranco-dock and the commercial dock at the mouth of the small stream on the east front of the town showed good masonry, in large blocks of granite, with no sigus of settling or breaking joints. The docks are badly silted. The large naval docks, workshops, magazines, and arsenals are well constructed. The docks were, in part, cat out of the rock, and have been walled with granite. Apart from this fine naval dockyard, which has an extreme length of 2,000 yards and an average breadth of 850 , the principal object is the great break water, which stretches across the roads about 2,000 yards north of the dock-yard, but 3,300 yards north of the piers at the entrance to the commercial dock. This breakwater is laid in water from 33 to 46 feet in depth, with a good passage at either extremity. The western passage is 2,000 yards in width, and the eastern passage is 1,050 . The length of the breakwater is $4,120 \mathrm{yards}$, or two and one-third miles. It protects the anchorage from all winds coming from the northwest to the northeast, and a large fleet may lie under it in safety. The construction was commenced abont 1784 , by placing large wooden caissons, filled with rocks, on the line of the breakwater. This was found to be unsatisfactory, too expensive, and too slow; and after four or five years the system of a breakwater made of riprap, or "en pierres perdues," was adopted, This appeared to have been successful, especially when coped with a thin line of masonry; but in February, 1808, during a beavy tempest, one part of the breakwater, upon which was the "Batterie

[^20]Napoleon," was torn away, and over two hundred soldiers were drowned. The strength of the work was sabsequently increased until the breakwater had a base about 300 feet in breadth; and in 1838 it was decided to build a wall of masoury along its crest. Whether this was absolutely necessary as a protection against storms or to sustain the water-batteries that extend its whole length, is not certain on casual observation. The work was finished in 1853, and the total cost of the breakwater proper, excluding the four casemat d forts, is reported at nearly $817,000,000$. This is one and a half times greater, per linear sard, than the Holyhead breakwater; two and a half times greater than that at Portland; but one-quarter less than that at Alderney. It is only onesixth less, per linear gard, than the Admiralty pier at Dorer. The brealth of the base of the breakwater is about the same as that at Portland and Holyheal, and it probably would have suffered less than it has done from the destructice action of the seas had it been constrncted in deeper water; but as the whole idea of Napoleon was solely to protect a naval and not a commereial port, it is more than likely that the position was made subservient to the protection afforded by the adjacent forts on the east and west of the passages and on the surronnding heights. The four forts on the breakwater itself mount 174 guns, and the intermediate water-batteries add 96 more.

Brest; naval and commercial docks.-The naval docks and depots of Brest on each side of the Penfeld have an average width of 110 yards. The rise of the banks is quite sharpand about 100 to 150 feet above the water. Both sides of the stream, which is really a very narrow arm of the sea are occupied on the banks and heights with arsenals, workshops, docks, ship-building slips, depots, hospitals, casernes, \&o., of the second naral dock-yard of France.

The high iron bridge-the Pont Imperiale-over the Penfeld, is the first special object to attract attention. It is composed of two flying wings, each pivoted upon a to wer or pillar of masonry about 80 feet above the water. The distance between supports is about 444 feet, and the approaches to carry the counterbalancing weight each about 100 feet. The breadth is 25 feet. It is a light, graceful structure, easily moved by three men at each wing, and although the vibration of a few persons passing it is felt, the weight is 750 tons, and its strength has been amply tested; nerertheless, in the form of the angle-iron of the lower chord, there appears an erroneous application of material. The iron-work of the bridge cost 8282,000 , and the masoury, buildings removed, approaches, \&c., cost nearly an equal amount. Another object of interest was the economy-crane, for lowering the heaviest machinery and masses directly into the ressel from the workshops on the heights above the right bank. A viaduet has been carried over a single arch of 100 feet span to the pillar containing the machinery for moving the crane. The largest dry-dock is situated one and a half miles inside the entrance to the Peufeld, on the right bank. It is 715 feet in length and 80 feet in width, divided into two parts by a middle gate so as to be used as two dosks, if necessary. All the gates are of iron, and are so constructed as to be floated and moved about in a vertical position. The condition of the masonry of the quass along both banks of this naval port indicates that the foundations are not good; and at two of the ship-building slips the foundations had, at one time, actually slipped away in part; but by going to the "bed-rock" for foundation no difficulty is experienced.

Bat the most instructive work visited was for the improrement of the commercial harbor and docks just eastward of the Penfeld, and founded in 1858. The road of Brest not being capacious, it has been deemed necessary to build a breakwater in front of the new commercial quays and docks. But this protection is crowded so close upon the quays, that at the western head there is a passage way of only ninety yards between it and one of the quays. The passage at the westeru lead is but a little wider, and the dockage for vessels is very limited in extent.

The bottom of the road or bay under the shore line is mud of several meters in depth, as uarked on the accompanying rough sketch (illustration No. 30 , sketeh 4 A .) In constructing the front wall of the quay, a considerable depth of this mud was dredged away, but a depth of 10 feet was left above the hard bottom. Upon the inner line of this dredged section a base of riprap was laid, having a breadth of 33 feet and a height of 12 feet. Upon this was then built the masonry wall, as shown in the same sketch, which exhibits a cross section of the work. Earth was then filled in behind this retaining wall to the required level. The mud nuder the earth, yielding to the superincumbent mass, was foreed against and under the retaining-wall and carried the wall forward with it.

At one place, part of the wall was 325 feet from its position. The progress of this movement was regularly observed and measurements were taken to exhibit the canting of the wall and its actual change of place.

To remedy this mistake, the mud was dredged to the solid bottom of the bay, and a riprap laid having a breadth of base 131 feet (illustration No. 30, sketch 4 B) and a greater depth than the first one. The retaining-wall was then built upon the outer edge of the upper part as before.

To the end of 1873 , the total cost of improvements had been $\$ 3,072,000(16,383,000$ francs). According to the plans, the present works exbibit 3,380 yards of dock and quay frontage, and at the foregoing rate of expenditure will certainly reach $\$ 1,000$ per yard of frontage before the work is closed. It is the most expensive piece of work examined in Europe; but it has already been proposed to eularge the scheme, and to continue the docks and quays to the eastward, without a prolongation of the breakwater. Along the quays railroad-tracks are to be laid, and turn-tables at every change of direction, and large store-honses are to occupy the quays.

The Admiralty pier, Dover; a breakwater of masonry; how constructed; illustrations; cost.At Dover, Mr. Druce, the resident engineer of the Admiralty pier, exhibited sections of the pier as modified during the last twenty-five rears. The pier, as it now projects from the western part of the old contracted harbor-pier, is but one part of a yet undetermined project to build a great artificial harbor. In ordinary south westerly winds, small steamers find protection on its northeasterly side; but in heavy northeasters they must seek shelter under the southwesterly side. The main idea in building this breakwater is that it shall be of solid masonry, and present a nearly vertical wall to the action of the waves. It is constructed in the very best manner, and at the close of each season's work the unfinished extremity of the pier is left without special protection until the next spring. The first section of the work has an outer shell (A) of gran: ite (illustration No. 30, Sketch 5), of which shell the blocks below low water were not cemented; next inside this is a line of rubble (B), and within that a hearting of concrete (O), all carried down to the hard chalk. The plastic chalk orerlying the hard, although so tough as to make its removal comparatively expensive, was cleared away. The batter of the walls was 1 foot in 4 , and has been gradnally changed until it is now 1 foot in 12, with more satisfactory results in regard to the action of the water; practically, the walls may be considered rertical. The form of construction of the three parts, A, B, and C, was modified as the pier advanced; and the rubble (B) was replaced by solid masonry, and the inner faces toward the hearting were made vertical. As the work advanced, the hearting was abaudoned, and the whole pier is being carried ont with solid blocks of sandstone, but faced with granite. The work was advanced during wiuter below the low waters, so as to be beneath the reach of the heavy wave-action. During summer, the opper part is carried forward; but at present the work is suspended.

Divers in armor are only employed incidentally on account of the turbid waters and the strong current from the northeastward, especially during heavy weather. All the blocks are set, and nearly all the work is done by the aid of the diving-bells, which are of such size as is found by experience to be the most advantageous, and the blocks are of such size that they can be readily managed from the diving-bell. Even in heary weather the work can be carried on in this way at the greater depths by first rapidly lowering the diving-bell with the men and the blocks through the troubled water, and then lowering more slowly toward the bottom. Instead of large blocks the engineers especially favor smaller and more readily handled blocks below the water-level. They can be better set and cemented. The cement is one part Portland to three of lime, and is very hard. The scaffolding from which the bells and blocks are lowered has been gradually increased as the pier advanced so as to be above the reach of the waves; since the abandonment of the work, the seaffolding has been removed.

The extremity of the pier is now 700 yards out, and just includes the enlargement on the inner face for an iron turret-fort with two heavy gaus. It is in 45 feet water at low tide, and there is not a sign to indicate settling or rupture. The top breadth is 45 feet, and the top of the parapet is 40 feet above the level of low water, the tides rising 19 feet. The parapet, which was to be solid masonry, has been modified so as to admit traffie in combination with the two railroad termini upon the pier; it now has the general section indicated in illustration No. 30, sketch 6. The upper footway of stone flooring upon iron plates is supported on one side by the wall,
and on the other by a line of iron pillars; and the space beneath is open for traffic. There is an irou railing on the inner side of the parapet footwalk, and also upon the edge of the pier. This open space was to have been solid, but the engineer thinks the modification quite strong enongh. The parapet is finely dressed granite from Cornwall, this extra finish being added by order of the Admiralty. It is estimated that the ordinary smooth work on the inner edge and the top of the blocks adds only 2 per cent. to the cost of ordinary work; but the additional expense upon the parapet must be much greater. The roadway is in Belgian blocks of about 3 inches by 12 on the surface; they are well laid, and the interstices small. The beton works are at the inner edge of the pier.

Uost.-The work is unquestionably good, but the cost is vers great. Exclusire of $\$ 120,736$ paid for work on the fort, the 700 yards already completed to 45 feet at low water has cost $\$ 3,361,433$, or $\$ 4,802$ per linear yard.*

According to a scheme presented to Parliament, in the session of 1874 , for the completion of the whole Dover harbor-works, piers of a total length of 2,317 yards additional are required. Should they cost at the same rate as that alrealy built, the whole work would demand an expenditure of $\$ 14,500,000$.

Although the wares and heavy driving spray frequently cover the parapet in southwesterly winds, it is never exposed to such seas as are experienced on the Northern lacific coast in winter, or even to the heavy groundswell of northwesters.

Portland breakwater ; riprap; description ; illustrations of cross-section ; cost.-This work differs totally in character from that at Dover. This is a great dike of pierre perdue (riprap) dumped upon a given line until raised above the level of the sea, and having its cross-section shaped by the action of the waves. The first impression received is that the seas which fall upon this breakwater are not such as fall on the Northern Pacitic coast in winter, or even like seas raised by our strong northwest winds; because the comparatively small blocks would be torn away and driven or rolled over into the harbor, and the very pillar-scaffilding, which remains just above the stones along the water-edge, would be broken off, notwithstanding their shortness; and yet it is said at Portland that a very heary swell does break upon and over, and at times lifts the blocks. On the seaward face, exposed to the southeast or line of greatest exposure, the finer material of the breakwater is driven out; but on the inuer slope this is packed in with the larger. The irregular masses of rock appear to average barely $1 \frac{1}{2}$ cubic yards. As taken from the quarry, they range in weight from one ton to fise tons.

The breakwater stretches from the northeast part of the Great Head of Portland toward the eastnortheast into 10 fathoms of water, and then stretches to the north in about the same depth. The total length of the outer breakwater is 6,500 feet, and of the inner 1,900 feet, with a $9 \frac{1}{2}$ fathom passage 400 feet in width between them and just inside of the curve. It is a successful work. The original project contemplated the building of a line of masonry and parapet on the inner edge of the breakwater, from low water to nearly 30 feet above high water. But there is ouly a line of this parapet-wall on the inner breakwater, and it is not intended to add anything to the outer length. Upon the inner side of the wall of the inner breakwater there is a coaling-station for men of war, but it is not now used. So far as the lines of scaffolding remain in the line of the breakwater, and as the cross-sections show, there has been very little change in the pier; but additions were made to the sea-face as the whole cross-section fell into shape. A good proof of stability is seen in the small amount of yearly expenses, the pay of men, repairs, and maintenance being only $\mathbf{\$ 2 , 4 2 5}$. The annual appropriation for "storm-repairs" is only $\$ 970$. At Plywouth breakwater the annual repairs cost from $\$ 25,000$ to $\$ 30,000$; and they are much more at Alderney.

Along the iuner side of the breakwater a tram-way is to be laid above high water to permit a movable crane to readily traverse its length and replace blocks that may be driven inward by the storms. The heaviest effects of the gales are upon the bend of the outer length of the breakwater, but no special widening has been found necessary. The walls and the masoury foundation of the fort have been badly cracked, but the plans show that this heavy mass of masonry, 100 feet in diameter, was built upon the riprap deposits made between April, 1862, and June, 1893 . The riprap is 20 feet thick under the masonry at low water.

Cost of breakwater. -The breakwater was rirtually completed about 1565 , and up to 1869 its

[^21]cost had been $\$ 4,478,000$, or $\$ 1,742$ per linear yard. This is a little more than one third that of Dover pier and two thirds that of the Holyhead breakwater. But it should be borne in miud that the stone was quarried in the hill directly over the works; that the loaded dump-cars were carried down by gravity, and the empty ones drawn up by those descending, and that a large amount of convict-labor was utilized, as it is there to-day. Two cross-sections are here given of the breakwater (illustration No. 30, sketches $7 \& 8$), exhibiting the satisfactory manner in which it has maintained its form. That numbered one hundred is taken near the bend where the heariest seas break upon and over it; that numbered two hundred and sixty is very near the fort. At both points, the depth of water outside the breakwater is 10 fathoms at low tide. These may be advantageously compared with the cross-section of the Holyhead breakwater. The noteworthy, almost identical, form indicates that the same general laws have been at work shaping the masses, notwithstanding the latter has slightly the larger cross section and the wall of masonry. From these and other examples it may be possible to deduce the law of cross-section for riprap breakwaters, and the most favorable depth of water for building, under varying couditions.

Refuge.-While examining this structure, a count showed thirty-three large vessels at anchor from the bad weather ontside; on the day before, there had been abont one hundred and fifty craft of all sizes.

Holyhead brealuater; riprap and wall of masonry ; description; cost; illustration.-This great break water is similar to that at Portland, except that it carries a wall and parapet of masonry its entire length upon the barbor side. From a full deseription of the work by Mr. Harrison Hayter, for the institution of civil engineers of London, only the main features of the work and a tracing of the cross-seetion will here be given, as kindly furnished by that gentleman (see illustration No. 30, sketch 9). The breakwater has a total length of 7,860 feet, and embraces a sheltered roadstead of 400 acres, besides the inner or "New Harbor" of 267 acres. The original conception of the work was due to Rendel, and although embracing only the 267 acres just mentioned, was considered a very bold and even wild undertaking. Yet this was found inadequate for the necessities as a harbor of refuge for which it soon became invaluable. The original breakwater stretched 5,360 feet into 8 fathoms of water ; the recently finished prolongation of 2,500 feet runs into 9 fathoms of water. Very fortunately for such a great andertaking the stone used in the construction of the work was obtained as at Portland, from an adjoining hill, and was readily conveyed to the line of the work. The material is a quartzrock. The operations in quarrying, among the largest and most interesting that bad been undertaken, need uot be detailed here. The stone was dumped into the sea from 250 Iron tipping-cars, running over a temporary wooden scaffolding. The inclination given to the foreshore was 1 in 7 , and this was supposed to continue 10 feet lelow the low-water level, after which the material would assume a slope of 1 in 2 for the next 15 feet of depth; and then 1 in $1 \frac{1}{2}$ to the bottom. On the harbor side, the slope was 1 to 1. At the lower-water line the breakwater was to have a breadth of no less than 250 feet; and in 50 feet of water the breadth of the base was 400 feet, or 80 feet more than that of Portland in 60 feet of water. These conditions have become sowewhat modified, and the existing foreshore slope between high and low water is 1 in 12 . The breakwater contains $7,000,000$ tons of rubble-stone, and after it had become consolidated the superstructure was erected. The main object of this wall is to shelter the inner harbor more effectually, and to prevent the loose rocks from washing into the harbor. Of coarse, the seas cannot be so great here as at Alderney, where rocks of 10 tons are lifted over the 40 feet wall and deposited inside. The wall has been designed so that jetties may be thrown out therefrom in order to afford con venient wharfage space if this is ever needed. It is a solid central wall of masoury built of quartz-stones, many of them of very large size, some weighing upward of 15 tons, and the work is set in lias lime mortar. The foundations are laid at the level of low water, for which parpose the rubble had to be excavated; and it was built as near the inner edge of the break water as practicable in order to allow as long a foreshore as possible. This solid barrier is carried to a height of 39 feet above low water; npon this is a handsome promenade, protected on the seaward side by a massive parapet. At a lower level, 27 feet above low water, there is on the harbor side of the main wall a terrace or quay 40 feet broad, formed by an inner wall built at a distance from the main wall, and the interspace is filled with suitable material.

The head of the breakwater is a massive structure 150 feet long and 50 feet broad. It is
founded upon the rubble at a level varying from 20 feet to 28 feet below water, and is built of ashlar masonry. The blocks composing it are of limestone, and were laid by divers with helmets. Upon this head is placed a red revolsing dioptric light of the third order. An average of 3,500 ressels yearly seek this harbor for refuge against storms. Few harbors possess greater facilities for entering and learing; and the holding-ground is good.

The cost of this north breakwater and the works connected therewith, including land, has been $\$ 6,232,250$, or $\$ 2,608$ per linear yard, being nearly $\$ 1$ per ton of rock in the riprap. There are no extensive repairs required, and there has been very slight wear up to date. There is a slight littoral morement to the northeastward along the line of the extension.

The present Holyhead and Dublin packet-service leaves the pier at the old harbor, where there is only 14 feet of water, but the western part of the inner or "new harbor" has 30 feet at low tide.

The general cross section of the breakwater is very nearly identical with that of Portland; but there are certainly heavier and more violent seas at Holyhead, as indicated by the necessity for the masonry wall and by the nattening of the foreshore, from which part of the material has been driven to the wall, and part washed down into deeper water.

Aderney breakwater.-In regard to this breakwater the general opinion of engineers is that the whole riprap has settled or sunk irregularly, so that the superstructure which was built upon it has been brokeu. This result has been partly aided or hastened by the peculiar shape of the cross-section, but the lower courses of masonry in the wall were laid without cement. Drawings of the cross and longitudinal sections (illustration No. 30, sketches 10 and 11) exhibit the peculiar form of the bottom upon which it was laid, and the exceptional form and relative smallness of the cross-section.

Even when the wall was under construction, "subsidence was the inevitable result of setting eren a single course on the top of this great embankment. The walls by their weight compressed like a sponge the mass of loose stones below them."* But the form of this wall is singularlydefective; " the part of the superstructure above low water is solid; the part below low water consists only of two side-walls, the sea-face of which batters at a very considerable angle." "Between these walls is loose rubble not consolidated even by the action of the waves." "There is, therefore, a solid wall standing upon two props, as it were; and these props rest on a spongy mass."* Not only did the settlement of the riprap tend to split this wall vertically in its length as well as crossways, but, as if to accelerate the destruction, it appears that the large stones intended to form a covering to the dike of stone upon which the wall is laid, as well as to otber additions to the dike, were thrown from the top of the wall into the sea, and in falling strnck the projecting courses of the wall, cemented and uncemented, and loosened them. It only required the destructive action of the sea to liasten the dislocation of the whole wall.

The manuer in which the great dike of rubble-stone was laid was wholly different from that at Portland and Holyhead. Here the stone was of all sizes, from four tons to less than an ounce; brought in "hopper barges" from the quarries on the island, and dropped on the line of the breakwater. From reliable data, the resident engineer calculates that the interstices in the great mass are equal to one third of the whole volume. From the manaer in which it was dropped, this material took the natural slope from a surface breadth of 156 feet, at a depth of 12 feet below the low tides. At this beight it remained until it was supposed to be consolidated by the sea. This Leight for the rubble embankment was decided upon from observing that the beaviest seas rarely disturbed the surface of the rubble. Upon this surface the masonry was laid and built as described, and the effect of the superstructare has been to sink an average of 4 feet into the loose mass beneath it; and the irregular subsidence has broken the wall in every direction.

At the same time it must not be overlooked that the position and locality of the breakwater are particularly and peculiarly exposed. The whole ground-swell of the Atlantic breaks fairly and squarely upon it with great fury, and for months at a time it has been impossible to carry on any work. For four hours near high tide the greatest weight of the green seas comes over it, but the damage to the wall does not then take place, as they pass clean into the harbor with a

[^22]leap. For four hours toward the last of the low tide the heaviest blows are given to the wall; the waves throw sheets of water a mile in length and 300 feet high as they strike the wall. And such is the power of the down-falling mass of water that the rails laid upon the wall, with only one inch exposed, are torn away. Large blocks are "drawn out" of the seaward face of the wall, and the heariest stones are swept bodily orer the parapet into the harbor.

The action of the sea upon the rubble embankment, when it was carried 600 yards in advance of the wall, was wholly different. When the ground-swell (even without wind) was heary, the rollers began to comb in 50 feet of water on the west slope of the breakwater, and they broke in 30 feet from end to end. But the breakers on top of the embankment, when its level was 12 feet below the surface, were overbanging walls of green water from 12 to 15 feet in lieight, and they died out gradually from 100 to 150 yards to the eastward of the termination of the wall.

Various projects have been proposed to remedy the inherent defects of construction, but none has been decided upon. The principal remedy is doubtless more material to the foreshore, up to the height of the top of the wall, until it acquires the natural slope under such circumstances: the removal of the parapet and additional material to the inside. The principal stress for this failure has been laid upon the settling of the rubble embankment and the weak section and construction of the wall and parapet; yet the longitudinal section must not be overlooked, showing the irregular slope of the bottom, and the extraordinary depth of 132 feet at low water (and 150 feet at high water), to which it has been carried with such a minimum of poor material. In the Holyhead and Portland breakwaters, the depth may be said to be nearly uniform; here the grade is larger, and there are irregularities of bottom. In the latter cases, the wave-action must be more uniform in character; in the former, the reverse will be the case. The present breakwater appears to be one of six schemes proposed, the fifth and sixth carrying the work to great depths; but progress was arrested, and ouly such additional work done as to preserve what had been built. In order to provide greater strength at the extremity of the pier, the masonry for 60 feet in length bas been founded 30 feet below the low-water line. It is faced under water with granite headers round the extremity and on the harbor side, with backers of Portland cement blocks, built solid across, between the sea and the harbor walls. The total length of the breakwater is 4,827 feet, and, so far as conld be learned, it had cost not less than $\$ 8,500,000$, or $\$ 5,480$ per linear yard.

CONCLUSIONS.

The practical question that naturally suggests itself after an examination of the foregoing harbor works, and looking at them with special reference to the construction of harbors on the Pacific Coast, is: What is the best and most readily-applied form of breakwater for the smallest amount of money? Those who know the Pacific coast can readily understand that a perfectly safe breakwater of any form that wonld satisfy the conditions required for a breakwater in the Bay of San Pedro would not fulfill the couditions demanded at Crescent City or Port Orford.

At the first-mentioned roadstead, the only disturbing gales are from the southeast during the rainy season; and very moderately-sized vessels with good ground-tackle can ride them out with safety. In that latitude the gales are not severe, nor are they of very long duration.

At San Pedro, or at almost any point south of San Francisco, the form of breakwater at Portland would suffice, and it could be readily constructed. But at Port Orford, where very heavy December storms prevail from the southeast of one and two weeks' duration, the proper form would be that of the Portland breakwater, developed to a much greater section and of larger materials; or that of Holyhead, also of larger section and with its expensive superstructure of masonry. And in case a wall were necessary, no vertical face whatever should be exposed to the sea-front if the wall is liable to rupture.

Withont considering the matter of cost, if the foundations were perfectly reliable, in almost every case the nearly vertical solid masonry wall, as at Dover, would give the greatest degree of safety for the least amount of material. But when questions of expense and of facility and rapidity of execution are involved, the riprap forms have great claims to be considered. For instance, there is hardly a southerly-exposed anchorage on the Pacific coast of the United States that is not commanded by high, rocky heads, from which material can be readily and cheaply obtained, and transported by gravity to the works. There is a comparative scarcity of granite and lime-
stone at these same localities for building walls, if these are necessars, yet other hard stones are in abandance for the main balk of the embankment. And it should not be overlooked that the peculiar qualities of the rock, including the forms it takes in quarrying, have an imporant bear. ing upon the wear and tear of the foreshore, and especially the liability of the blocks to be readily tom awas.

The foundation for solid walls must be perfect, otherwise they should never be used in great works. The piers of the North Sea harbor of Amsterdam demonstrate the weakness of the solid vertical pier when the foundation is unreliable: the pier at Dover shows its full adrantages when over a satisfactory bottom.

The North Sea harbor piers have become merely a retaining-wall for the riprap of concrete blocks upon the seaward face; and should their integrity be further injured, they will become, in time, part and parcel of the rubble-work itself. If the predictions of competent engineers be weighed, the wall upon the Alderney breakwater, unless protected and constantly repaired, will, in time, also be so broken and dislocated as to become part of the pierre perdue formation.

The item of expense is vital upon such an extensive seaboard as that of the United States, and especially upon the exposed coast of the Pacific; so that althongh theoretical demonstrations might point to the nearly vertical solid pier as the best, yet if two safe breakwaters of riprap, or riprap properls coped, can be built for the cost of only one like the Dover pier, there can be no besitation which form to adopt.

It should not be forgoten that the piers mentioned and partially described, have, in every case but that of Cherbourg, one end anchored to the shore. This does not include Brest, because it partakes more of the character of an inside-harbor work. Although that is a great adrantage in the execution of the work, it cannot always be adopted along the Pacific coast, becanse the littoral drift carries its load of sand invariably to the northward, as has been pointed out in a discussion of the law governing the formation of the bars and channels of the harbors and rivers on the Pacific, from latitude 24 to latitude 49.

The depth of water in which breakwaters should be built is a very important question in regard to their stability, and in the wear and tear. For instance, a breakwater in $5 \frac{1}{2}$ fathoms, on the bar of San Francisco, or on that of the Colambia River, would be almost impracticable. It could hardly be made of sufficient strength. In 7 fathoms of water it would be on the line of the heaviest breakers on the coast, although very heavy northwesterly and southwesterly groundswells have been known to break in 9 fathoms. Looking also to the future, when our commerce will have largely developed, the safest and most advantageous depth in which to found a breakwater of the first class, is probably not less than 10 fathoms at low tide.

Fascinage for breakater foundations. - The fascinage-work of the Dutch engineers has necessarily played an important part in all their works of reclamation, and has been introdued in the foundations for moles, \&c.; but it must be recollected that it has not been adopted from choice, but from necessity. The Netherlands is a vast allurial deposit, in many places below the level of the sea. Stone for works of construction cannot be had except at immense expense and time; and timber is not found in sufficient quantity or size to be employed so larishly as in the Uuited States. Basalt is bronght from the Rhine, granite from Norway, limestone from Bolgium, and timber from the shores of the Baltic. Thus the engineers have been compelled to use fascinage, and with great success, too, in many of their undertakings; but it is yet an open question how it will last in extensive works of engineering, such as that carried on at the mouth of the scheur to connect Rotterdam with the sea by a channel capable of admitting the largest ocean-vessels. Where they become thoroughly silted up with sand they may not be liable to destruction by animal life, but they are liable to decay. And we have yet to learn the effects that may be wrought on them by great storms with heavy ground-swell, and by strong currents.

As foundations of great works projected into the sea upon the Pacific coast, little or no faith would be accorded to fascinage, except as partially preventing scouring during the laying of foundations under peculiar circumstances. No wall could be built upon it withont eertainty of fracture. For river corrections of all classes, and for reclanation in quiet waters, it would be, no doubt, very efficient, if not subject to decar.

The docks of the maritime cities of Europe are a feature of which we have no example in the H. Ex. 81- 40

United States; but they are there necessitated by the limited harbor area and by the excessive rise and fall of the tides. The structures seem built for a thousand years, and the cost of their repairs is surprisingly low. In 1865 it was stated by the chief engineer of the Liverpool docks, that with a yearly expendicure of $\$ 3,600,000$ for new works, the annual outlay for repairs upon all the existing docks was less than $\$ \mathbf{5}, 000$.

Each and every proposed change or addition to a harbor or water-course audergoes the severest scrutiny of a goverument commission before it is sanctioned by Parliament; and whatever is in the least detrimental to the integrity of the harbor or stream is rejected.

River improvements.-Opportunity did not offer for examining the great improvements at the mouth of the Danabe or of the Rhone. In the former, the system of prolonging the natural banks by artificial means is reported successful; at the Rhone, similar means were unsuccessful, and the system of side canals has been substituted.

The two rivers are essentially different in their constitution. The Danube is not a river that forms deltas rapidly; with its course of 1,700 miles, and a drainage area of 300,000 square miles, it has formed a delta of only 1,000 square miles, and it discharges into a tideless sea. Moreorer, the works of the Sulina are chosen upon that ramification where there is but one mouth, through which ouly one-fourteenth of the Dauube waters pass; so that even if the materials in suspension were broughl down this branch, very little wonld be deposited in the mouth Compared with large delta-forming rivers, the material in suspension is very limited in quantity, and the bars appear to be the combined effects of the littoral drift and the river detritus, as in most of the harbors of Ualifornia. Part of this bar material is brought from the Georges branch across the Sulina mouth by the drift from the southward.

On the contrary, the Rhone is emphatically a delta-forming river like the Nile, the Ganges, $\& c$., as demonstrated by the rapid progress which the bar made seaward when the moles were projected beyond its mouth. On this account, the prolongation of the natural banks by artificial means was abandoned, and the side canals adopted with success.

Throughout the countries visited, evidence was everywhere present of the systematic endeavor to preserve the river-courses withiu their legitimate bounds. On the Po, on the Ticino, Sesia, and other torrential streams of Italy, aud even among the mountain-streams, provision has been made to prevent the wearing away of alluvial banks, and as far as practicable the overflowing of arable lands. So through Austria and the German Empire. Even where the Danube is little more than a creek, its banks are in many places revetted with stone; and in some cases the bottom is paved roughly with stone to prevent erosion where the fall is considerable. From Linz to Vienna the banks are well protected wherever there is danger of abrasion. At Vienua, a few months after the official opening of the improved channel, the engineer-in-chief was preparing a full set of plans and models to illustrate the improvements and works, for the Austrian section of the Centennial Exhibition at Philadelphia.

On the Elbe, the Moldau, and the Rhine, on the Oder and the Weser, the integrity of the banks and the preservation of the channels are paramount objects of solicitude to the government and to the people. The improvements (corrections) have evidently been made at comparatively small expense, and yet with such good judgment and foresight as to lead to the happiest results.

The improvements of the Seine at Paris and of the Thames at London, more especially the embankment upon the latter, are not only works of utility, but are also public ornaments. Thronghout all no timber is used where permanency is demanded.

A PPENDIX No. 19.

When we know the geographical co-ordinates of latitude and longitude of a point on the earth's surface, and the distance and azimuth to another point, we may treat the problem of computing the latitude and longitude of the second point and the reverse azimuth in two different ways.

We may either solve the spheroidal triangle formed by the two points and the pole as a whole, arriving at trigonometrical functions of the sought co-latitude, azimuth, and difference of longitude; or we may seek expressions for the differences of the sought from the given data.

The former or direct method has the inconvenience of requiring the use of tei places of decimals in the computation, in order to give the positions with a degree of exactness corresponding to that of the known distance between the two points, while the second leads to very convenient expressions, on account of the smallness of the differential arcs in most cases of triangulation.

When, however, the are between the two points reaches several degrees in length, the direct metbod must be resorted to. This solution has been very completely and elegantly performed by Bessel, and is given in Astronom. Nachrichten, No. 86, 1826.

Adopting the second method, we follow in the main Puissant (Traité de Géodésie),* in the development of the difference of latitude of two points on the spheroid in terms of the distance, azimuth, and latitude of the given point. It will be convenient first to recall the expressions of several lines of an ellipse in terms involving the latitude, L, which is the angle that the normal to any point on the ellipse makes with the major axis.

Designatiog the major or equatorial semi-axis by a, the minor or polar semi-axis by b, then the ellipticity or ratio of their difference to the former is-

$$
\varepsilon=\frac{a-b}{a}
$$

The eccentricity e is expressed by-

$$
e^{2}=\frac{a^{2}-b^{2}}{a^{2}}
$$

being shown in the figure by $c f$, the distance from the centre to the focus;

The normal-

$$
n l=\frac{a\left(1-e^{2}\right)}{\left(1-e^{2} \sin ^{2} \mathrm{~L}\right)^{\frac{1}{2}}}
$$

The normal $n m$ produced to the minor axis-

$$
\mathrm{N}=\frac{a}{\left(1-e^{2} \sin ^{2} \mathrm{~L}\right)^{\frac{1}{2}}}
$$

The abscissa-

$$
o d=n o=N \cos L
$$

this is the radius of a parallel on the spheroid;
The tangent $n t$ ending at the minor axis $=N \cot L$
The ordinate-

$$
n d=\frac{a\left(1-\frac{\left.e^{2}\right) \sin L}{\left(1-e^{2}\right.} \sin ^{2} L\right)^{\frac{1}{2}}}{\text { in }}
$$

*Traite de Géodésie. Par L. Puisbant. Third edition. Tom. I, Chp. XV. Paris, 1842.

The reduced or geocentric latitude being λ, we have-

$$
\tan \lambda=\frac{b}{a} \tan \mathrm{~L}
$$

The radius rector-

$$
\rho=a\left(1-e^{2} \sin ^{2} \lambda\right)^{\frac{1}{2}}
$$

The radius of curvature, $r p, r^{\prime} p^{\prime}, r^{\prime \prime} p^{\prime \prime}$, at any point on the ellipse, is-

$$
\mathbf{R}=\frac{a\left(1-e^{2}\right)}{\left(\mathbf{1}-e^{2} \sin ^{2} L\right)^{2}}
$$

The termiual points, $f, p^{\prime}, p^{\prime}, p^{\prime \prime}, q$, form an evolute; at the equator, where $\sin \mathrm{L}=0 \quad \mathrm{R}=\frac{b^{2}}{a}$ and the centre of curvature is in the focus; at the pole, where $\sin L=1, R=\frac{a^{2}}{b}$

The radius of curvature, R , and the normal, N , are the principal functions used in geodesy. It will be observed that radii of curvature for different latitudes do not intersect unless produced, and that when they lie in different meridian planes on the spheroid they will not intersect at all.
A, B, in Fig .2 , are two points on a spheroid of revolution, having the latitudes L, L, and joined by the geodetic line $A B=s$, makiag the angles with the meridian, $P A B=180^{\circ}-Z, P B A=$ $Z^{\prime}-180^{\circ}$. The azimuths, Z, are reckoned from south around by west in consequence of the latitudes being reckoned from the equator toward the poles, by settled custom, without which the meridional co-ordinate of a point would be more properly measared from the pole, and the azimuth of a line reckoned from the north. The angle $A P B$, between the two meridional planes passing through A and B, is the difference of their longitudes, M, M', which being reckoned positive to the westward, we have $\mathrm{M}^{\prime}-\mathrm{M}=d \mathrm{M}$. Furthermore, $A n, B n^{\prime}, A r, B r^{\prime}$, indicate the normals $\mathrm{N}, \mathrm{N}^{\prime}$, and the radii of curvature in the meridian, $\mathrm{R}, \mathrm{R}^{\prime}$, at the points A and B.

This being premised, and the latitude L of the point A being given, as well as the length K of the geodesic line $A B$, and its azimuth Z, we propose to find the latitude L^{\prime} of the point B, the angle $d M$, and the reverse azimuth Z^{\prime}, by solving the geodetic triangle $A B P$. Writing $\lambda, \lambda^{\prime}$, for the co-latitudes, ξ for $180^{\circ}-Z$, and s for the arc $A B$, referred to radius $=1$, we have, in a spherical triangle, for λ^{\prime} the following equation:

$$
\cos \lambda^{\prime}=\cos \lambda \cos s+\sin \lambda \sin s \cos \xi
$$

Observing now that s is always a small are, rarely exceeding 1°, and generally less than 30°, we can develop the increment of λ with reference to that of s in a rapidly converging series, and will have, by Taylor's theorem-

$$
\begin{equation*}
\lambda^{\prime}=\lambda+\frac{d \lambda}{d s} s+\frac{1}{2} \frac{d^{2} \lambda}{d s^{2}} s^{2}+\frac{1}{6} \frac{d^{3} \lambda}{d s^{3}} s^{3}+\cdots \tag{a}
\end{equation*}
$$

In order to determine the differential coetficients, we consider a differential spherical triangle having the sides $\lambda, d s$, and $\lambda+d \lambda$, in which-

$$
\cos (\lambda+d \lambda)=\cos \lambda \cos d s+\sin \lambda \sin d s \cos \xi
$$

and, by the known processes of the differential calculus, we find-

$$
\frac{d \lambda}{d s}=\cos \xi \quad \frac{\bar{d}^{2} \lambda}{d s^{2}}=-\sin ^{2} \xi \cot \lambda \quad \frac{d^{3} \lambda}{d s^{3}}=-\sin ^{2} \xi \cos \xi\left(1+3 \cot ^{2} \lambda\right)
$$

Introdacing these values in (a), we obtain-

$$
\lambda^{\prime}-\lambda=s \cos \xi+\frac{1}{2} s^{2} \sin ^{2} \xi \cot \lambda-\frac{1}{6} s^{3} \sin ^{2} \xi \cos \xi\left(1+3 \cot ^{2} \lambda\right)+\ldots
$$

and substituting L, L^{\prime}, and Z into this expression, we have, for the difference of latitude-

$$
\begin{equation*}
L-L^{4}=s \cos Z+\frac{1}{2} s^{2} \sin ^{2} Z \tan L-\frac{1}{6} s^{3} \sin ^{2} Z \cos Z\left(1+3 \tan ^{2} L\right)+\ldots \tag{b}
\end{equation*}
$$

It will be readily seen that the first term expresses the distance on the meridian $P B$ from B to p, the foot of the perpendicular from A; the second term, the distance very nearl y from p to the parallel passing through A; while the third term is a further approximation, and so on.

Referring now our case to an imaginary sphere, having the radius equal N, or its centre at the point where the normal $A n$ intersects the polar diameter of the spheroid, we have-

$$
s=\frac{\mathbf{K}}{\mathbf{N}}
$$

substituting which we hare-

$$
\begin{equation*}
L-L^{\prime}=\frac{K \cos Z}{N}+\frac{1}{2} \frac{K^{2} \sin ^{2} Z \tan L}{N^{2}}-\frac{1}{6} \frac{K^{3} \sin ^{2} Z \cos Z}{N^{3}}\left(1+3 \tan ^{2} L\right)+\ldots \tag{c}
\end{equation*}
$$

This difference of latitude is, however, referred to a sphere whose radius is N, and requires still to be transformed by referring it to one whose radius is the radius of curvature in the meridian for the middle latitade, R_{m}. Since we do not at first know the middle latitude, it is more conrenient to refer to the radius of curvature R of the starting-point, the latitude of which is known, and then seek the small correction due to the ratio of R to R_{p}

Multiplying, then, equation (c) by $\frac{N}{\mathbf{R}}$, and dividing, moreover, by arc $1^{\prime \prime}$, in order to express $d \mathbf{L}$ in seconds of arc, we get-

$$
-d L=\frac{K}{R \operatorname{arc} 1^{\prime \prime}} \cos Z+\frac{1}{2} \frac{K^{2}}{R N \operatorname{arc} 1^{\prime \prime}} \sin ^{2} Z \tan L-\frac{1}{6} \frac{K^{3}}{\mathrm{R} \mathrm{~N}^{2} \operatorname{arc} 1^{4 \prime}} \sin ^{2} Z \cos Z\left(1+3 \tan ^{2} L\right)+\ldots(d)
$$

The computation of this series is facilitated by tables giving the logarithms of the following factors to the argament of L , riz:

$$
\mathrm{B}=\frac{1}{\mathrm{R} \operatorname{arc} 1^{\prime \prime}} \quad \mathrm{C}=\frac{\tan \mathrm{L}}{2 \mathrm{~N} \mathrm{R} \operatorname{arc} 1^{\prime \prime}}
$$

moreover, substituting in the third term the value of the first term, designated by h, we can write it-

$$
\frac{1}{6} h \frac{K^{2} \sin ^{2} Z}{N^{2}}\left(1+3 \tan ^{2} L\right)
$$

and tabulate another factor-

$$
\mathbf{E}=\frac{1+3 \tan ^{2} \mathrm{~L}}{6 \mathrm{~N}^{2}}
$$

when our formula for computation becomes-

$$
\begin{equation*}
-\delta \mathrm{L}=\mathrm{K} \cos \mathrm{Z} \cdot \mathrm{~B}+\mathrm{K}^{2} \sin ^{2} \mathrm{Z} \cdot \mathrm{C}-h \mathrm{~K}^{2} \sin ^{2} \mathrm{Z} \cdot \mathrm{E}+\ldots \ldots \tag{e}
\end{equation*}
$$

In order, finally, to obtain the true $d \mathrm{~L}$ referred to \mathbf{R}_{m}, we mast increase $\delta \mathrm{L}$ by $\frac{\mathbf{R}-\mathbf{R}_{\mathrm{m}}}{\boldsymbol{h}_{\mathrm{m}}} \dot{\delta} \mathrm{L}$ Now-

$$
\begin{aligned}
\mathrm{R}-\mathrm{R}_{\mathrm{m}} & =a\left(1-e^{2}\right)\left(\frac{1}{\left(1-e^{2} \sin ^{2} L\right)^{\frac{1}{2}}-\left(1-e^{2} \sin ^{2} \mathrm{~L}_{\mathrm{m}}\right)^{\frac{2}{2}}}\right) \\
& =a\left(1-e^{2}\right) \frac{\frac{3}{2} e^{2}\left(\sin ^{2} \mathrm{~L}-\sin ^{2} \mathrm{~L}_{\mathrm{m}}\right)}{\left(1-e^{2} \sin ^{2} \mathrm{~L}\right)^{\frac{2}{2}}\left(1-e^{2} \sin ^{2} \mathrm{~L}_{\mathrm{m}}\right)^{\frac{2}{2}}}
\end{aligned}
$$

by developing and neglecting terms involving bigher powers of e^{2}; but-

$$
\sin ^{2} L-\sin ^{2} L_{m}=\sin \left(L-L_{m}\right) \sin \left(L+L_{m}\right)=\delta L \sin L \cos L \text { very nearly }
$$

because-

$$
\frac{1}{2} \sin 2 L=\sin L \cos L
$$

hence we write-
making-

$$
\mathrm{D}=\frac{\frac{3}{2} e^{2} \sin \mathrm{~L} \cos \mathrm{~L}}{\left(1-e^{2} \frac{\left.\sin ^{2} L\right)^{5}}{\sin ^{5}}\right.}
$$

we get, for the desired corrective term,-

$$
\frac{\mathbf{R}-\mathbf{R}_{\mathbf{m}}}{\mathbf{K}_{\mathrm{m}}} \delta \mathrm{~L}=(\delta \mathrm{L})^{2} \mathbf{D}
$$

and we finally have, for the true difference of latitude

$$
\begin{equation*}
-d \mathbf{L}=\mathrm{K} \cos Z \cdot \mathrm{~B}+\mathrm{K}^{2} \sin ^{2} Z \cdot \mathrm{C}+\delta \mathrm{L}^{2} \mathrm{D}-h \mathrm{~K}^{2} \sin ^{2} \mathrm{Z} \cdot \mathbf{E} \tag{1}
\end{equation*}
$$

which formula, although of a somewhat complicated derivation, is very simple and convenient in practical computation, with the aid of the tabulated factors, $\mathbf{B}, \mathbf{O}, \mathbf{D}, \mathbf{E}$. (${ }^{1}$) The term $(\delta L)^{2} \mathrm{D}$ is here interposed between the second and third terms of the series proper, because the latter is frequently not required, being inseusible when the distance K is less than about 10 miles, or $\log K$ in metres less than 4.23 The term ($\delta \mathrm{L})^{2} \mathrm{D}$ should be used whenever $\log h$ exceeds 2.31 , and h^{2} may be used for $(\delta L)^{2}$ in all cases where $\log \mathrm{K}$ does not exceed 4.93

The term depending on the fourth differential co-efficient, neglected in equation (a), never exceeds $0^{\prime \prime} .001$ for $s=10$, or $K=100,000$ metres, and may therefore be safely neglected in practice.

For secondary triangulation, aud when the sides do not exceed about 12 miles, or 20,000 metres, the formula (1) may be advantageously reduced to the following :

$$
\begin{equation*}
-d \mathrm{~L}=\mathrm{K} \cos \mathrm{Z} \cdot \mathrm{~B}+\mathrm{K}^{2} \sin ^{2} Z \cdot \mathrm{C}+h^{2} \mathrm{D} \tag{2}
\end{equation*}
$$

In order next to deduce the angle $A P B$ between the meridional planes passing through A and B and intersecting in the polar axis, or the difference $d \mathrm{M}$ of the longitudes M and M^{\prime} of the points A and B, counted from east to west, we avail ourselves of the latitude L^{\prime} of B, which has become known by the previous calculation, and have simply, using the same notation as before-

$$
\sin \lambda: \sin \xi=\sin 8: \sin d M
$$

Referring s to a sphere the radius of which is the normal $B n^{\prime}=N^{\prime}$, we have $s=\frac{K}{\mathbf{N}^{\prime}}$ and assuming for the present the small arcs 8 and $d \mathrm{M}$ proportional to their sines, we obtain-

$$
\begin{equation*}
d \mathrm{M}=\frac{\mathrm{K} \sin Z}{\mathrm{~N}^{\prime} \cos \mathrm{L}^{\prime} \operatorname{arc} 1^{\prime \prime}} \tag{3}
\end{equation*}
$$

[^23]dividing by are $1^{\prime \prime}$ in order to obtain $d M$, expressed in seconds of arc. The table gives the logarithm of the factor $\mathrm{A}=\frac{1}{\mathrm{~N} \text { are } 1^{\prime \prime}}$, which must be taken out for L^{\prime}.

In order to correct for the assumption that the small ares s and $d M$ are proportional to their sines, we use a table giving the differences of the logarithms of the ares and sines. This table is given on page 365 ; in using it, take out the differences for the arguments $\log \mathrm{K}$ and $\log d \mathrm{M}$, the first with a negative, the second with a positive sign, and add their algebraic sum to $\log d \mathrm{M}$.

We obtain, fiually, the reverse azimuth Z^{\prime} by considering that in the spherical triangle $A P B$ (fig. 2) we have the following relation :

$$
\cot \frac{1}{2}\left(\xi+\xi^{\prime}\right)=\tan \frac{1}{2} d M \frac{\cos \frac{1}{2}\left(\lambda+\lambda^{\prime}\right)}{\cos \frac{1}{2}\left(\lambda^{\prime}-\lambda\right)}=\tan \frac{1}{2} d M \frac{\sin \frac{1}{2}\left(L+L^{\prime}\right)}{\cos \frac{1}{2}\left(\mathrm{~L}^{\prime}-\mathrm{L}\right)}
$$

but-
therefore-

$$
\xi=180^{\circ}-Z
$$

or-
$\cot \frac{1}{2}\left(180^{\circ}-Z+\xi^{\prime}\right)=-\tan \frac{1}{2}\left(\xi^{\prime}-Z\right)$

$$
-\tan \frac{1}{2}(d Z)=\tan \frac{1}{2}(d \mathbf{M}) \frac{\sin \frac{1}{2}\left(\mathrm{~L}+\mathrm{L}^{\prime}\right)}{\cos \frac{1}{2}\left(\mathrm{~L}^{\prime}-\mathrm{L}\right)}
$$

Assuming the tangents of $\frac{1}{2} d Z$ and $\frac{1}{2} d M$ proportional to their arcs, and writing 2 for the middle latitude, we have-

$$
\begin{equation*}
-d Z=d \mathbf{M} \frac{\sin \lambda}{\cos \frac{1}{2} d L} \tag{4}
\end{equation*}
$$

and-

$$
Z^{\prime}=Z+180^{\circ}+d Z
$$

When the difference of longitude is very large, it may be necessary to correct for the error in the assumption that $\tan \frac{1}{2} d Z: \tan \frac{1}{2} d \mathrm{M}=d \mathrm{Z}: d \mathrm{M}$. By an obvious transformation, we find the correction to be $+\frac{1}{12} d M^{3} \sin \lambda \cos ^{2} \lambda \sin ^{2} 1^{\prime \prime}$, for which we write $+d M^{3} F$, where F is to be taken from a special table, given on page 360 . This term is only $0^{\prime \prime} .01$ when $\log d \mathrm{M}=3.36$ and need never be used for secondary triangulation. A convenient table for finding $\cos \frac{1}{2} d \mathrm{~L}$ is given on page 365 .

The tables are based upon the supposition that the earth is a spheroid of revolution, having its equatorial semi-diameter-
its polar semi-diameter-

$$
\begin{aligned}
& a=6377397.2 \text { metres } \\
& b=6356070.0 \text { metres }
\end{aligned}
$$

and, consequently-

$$
a: b=299.153: 298.153
$$

as derived by Bessel, in Astronom. Nachrichten, Nos. 333 and 438,1834 , from the arcs measured up to that time. All geodetic computations hitherto made in the Coast Survey Lave been based upon those elements. Very considerable additions have, however, since been made to our knowledge of the figure and magnitude of the earth. Their latest combination is that made by Col. A. R. Clarke, R. E., of the British Ordnance Survey, and published in "Comparisons of Staadards of Length, made at the Ordnance Office, Southampton, 1866." He finds-

$$
\begin{aligned}
& a=6378206.4 \text { metres } \\
& b=6356583.8 \text { metres }
\end{aligned}
$$

consequently-

$$
a: b=294.98: 293.98
$$

He also finds, by elaborate comparisons, that-
1 metre $=39.370432$ inches
which may well be taken as the most accurate value now known.
The tables of the factors A, B, C, D, E, may be readily conformed to the Clarke spheroid by applying the corrections given on pp. 366 and 367 ; and differences of latitude and longitude may at once be transformed to the same by the ase of the subsequent table.

The following examples will further illustrate the use of the formola and tables.
L. M. Z.-FORM FOR PRIMARY TRIANGULATION.

L. M. Z.-FORM FOR SECONDARY TRIANGULATION.

L \angle	Tomales Bay to Sonoma. Sonoma and Bodega .	\circ 244 -83	o8 14	$\begin{gathered} 1 \prime \\ 27.3 \\ 36.8 \end{gathered}$
$\begin{gathered} Z \\ d Z \end{gathered}$	Tomales Bay to Bodega	160	53 2	$\begin{aligned} & 50.5 \\ & 02.0 \end{aligned}$
180		180		
Z^{\prime}	Bodega to Tomales Bay	340	51	48.5

H. Ex. 81-41

The inverse problem.-There are cases when it is required to compute the distance and azimuth between two points that are given by their latitudes and longitudes. This problem is of comparatively rare occurrence, and it has not been found necessary to construct special formula and blank forms for it since it can readily be solved by using those provided for the case heretofore treated. This is done by dividing $d \mathrm{M}=\mathrm{K} \sin Z . \mathrm{A}^{\prime}$ by the first term for $a \mathrm{~L}, h=\mathrm{K} \cos \mathrm{Z} . \mathrm{B}$, when we get, $\tan Z=\frac{d M}{h} \cdot \frac{B}{A}$, which would give us the azimuth at once if we knew $h, d m$ being given. We therefore seek to compute the smaller terms for the difference of latitude, in order to obtain h by subtracting them from the kuown $d \mathrm{~L}$. The only addition to the usual form is the term, $\log \tan Z=\log (K \sin Z)-\log (K \cos Z) . K$ will best be taken from the term h when $\sin Z$ is greater than $\cos Z$, and from the term $d M$ when the reverse is the case. When the distance K is large, as in primary triangulation, it will be necessary to introduce the correction for $d \mathrm{M}$ due to difference of ratio between sine and are, using the form for primary L. M. Z. inversely, as indicated above.
L. M. Z.-FORM FOR INVERSE SOLUTION.

LATITUDE $\mathbf{2 3}{ }^{\circ}$

Lat.	$\begin{gathered} \log \mathbf{A} \\ \text { difi. } \mathbf{1}^{\prime \prime}=-0.05 \end{gathered}$	$\begin{gathered} \log \mathbf{B} \\ \text { diff. } \mathbf{1}^{\prime \prime}=-0.15 \end{gathered}$	$\log \mathbf{C}$ diff. $1^{\prime \prime}=+0.5^{8}$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathbf{1}^{\prime \prime}=+0.04 \end{gathered}$	$\log \mathbf{E}$ diff. $\mathbf{1}^{\prime \prime}=+0.04$
-					
2300	8.5095603	8.5120259	1.03398	2.2426	
	8.5095597	50	463	29	5.8000
2	8.5095597 94	40 31	468 503	31 34 3	03 0
4	91	22	538	36	08
	88	13	573	39	10
6	85 82 88	8.5120195 ${ }^{0}$	608	41	13
8	82 78	8.5120195 86	643 677	43 46	15
9	75	77	7^{12}	48	20
10	$8.509557{ }^{2}$	8.5120167	1.03747	2.2451	5.8023
11 12	69 66		${ }^{782}$	53	25
13	${ }_{6}^{66}$	49 40	817 851	50 58	27 30
14	60	3^{19}	886	60	$3{ }^{3}$
15 16	57	22	921	63	35
17	51	12 03	${ }_{9}^{956}$	65 68	37
18	48	8.5120094	1.04025	70	$4{ }_{4}$
19	45	85	о60	72	45
20	8.5095542	8.5120076	1.04094	2.2475	5.8047
21	39	66	129	77	50
22 23		57 48	163 198	80 82	52 55
24	29	39	232	84	57
25	26	29	267	87	60
26	23	20	302	89	62
27 28	20 17	${ }_{02}^{11}$	336	91	${ }_{65}^{67}$
29	14	8. 5119993	405	94 96	70
30	8.5095511	8.5119983	1.04440	2.2499	5.8072
31			474	2.2501	75
32 33	-05	65	508	03	77
33 34	8.5095499	55 4	543 577	\bigcirc	88
35	96	37	6 II	10	85
36	92	28	646	13	87
37 38	89 86	18 09	680	15	90
39	83	09 00	714 749	17 20	92 95
40	8.5095480	8.5119890	1.04783	2.2522	5.8097
41	77	81	817	24	5.8100
42	74	72	85	27	02
43 44	71 68	62 53	885 919	29 31	05 07
45	64	44		34	10
$4{ }^{46}$	${ }_{58}^{61}$	34 25	988 1.05022	36 38	12
48	55	25 16	1.05022 056	${ }_{41}$	17
49	52	06	090	43	20
50	8.5095449	8.5119797	1.05124	2.2545	5.8122
51			158	48	25
52 53	43 46	78 69	192 226	50 52	27 30
54	36	60	260	55	32
55	33 30	50	294 328	57	35 37
57	30 27	3_{31}	328 368	${ }_{6} 59$	37 40
58	24	22	396	64	42
59	21	13	43°	66	45
60	8.5095418	8.5119703	1.05464	2.2568	5.8148

LATITUDE $\boldsymbol{2 4}{ }^{\circ}$

Lat.	$\log A$ diff. $\mathrm{I}^{\prime \prime}=-0.05$	$\begin{gathered} \log \mathbf{B} \\ \text { diff. } I^{\prime \prime}=-0.16 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathbf{I}^{\prime \prime}=+0.5^{6} \end{gathered}$	$\log \mathbf{D}$ diff, $\mathrm{I}^{\prime \prime}=+0.04$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathbf{r}^{\prime \prime}=+0.04 \end{gathered}$
	8. 5095418			2.2568	5.8148
24	8. 5095415	8.5119694	1.05464 498	2.2581 7	5.8148 50
2	11	84	532	73	53
3	o8	75	565	75	55
4	05	65	599	77	58
5	02	56	633	80	60
6	8.5095399	47	667	82	63
7	96 92	37	700	84	65
8	92 89	28 18	734 768	87 89	68 70
10	8.5095386	8.5119609	1.05802	2.2591	5.8173
11	${ }_{8} 8$	8.5119599	835	93	75
12	80	90	869	96 98	78 8
13	77	80	903	98 2.2600	81 83
14	74	71	936	2.2600	83
15	70	61	970	02	86
16	67	52	1.06003	05	88
17	64	43	037	07	91
18	61	33	071	${ }^{\circ} 9$	93
19	58	24	104	11	96
20	8. 5095355	8.5119514	1.06138	2.2614	5.8198
21	51	05	171	15	5.8201
22	48	8.5119495	205	18	03
23	45	85	238	20	06
24	42	76	272	23	09
25	39	66	305	25	II
26	36	57	339	27	14
27	32	47	372	29	16
28	29 26	38 28	405 439	31 33	19
30	8.5095323	8.5119419	1.06472	2.2636	5.8224
31	20	$\bigcirc 9$	506	3^{8}	27
32	16	800	539	40	29
33	13	8.5119390	572	42	32
34	10	80	605	44	34
35	07	71	639	47	37
36	04	61	672	49	39
37	00 8.5095297	52	705	51	42
39	8.5095297 94	33	738	53 55	44 47
40	8.5095291	8.5119323	1.06805	2.2558	5.8250
41	88	13	838	60	52
42	84	$8{ }^{04}$	871	62	55
43	81	8.5119294	904	64	57
44	78	84	937	66	60
45	75	75	970	68	63
46	72	65	1.07004	71	65
47	68	56	037	73	68
48	65	46	070	75	70
49	62	36	103	77	73
50	8.5095259	8.5119227	1.07136	2.2579	5.8275
51 52	$\frac{56}{52}$	$\begin{aligned} & 17 \\ & 07 \end{aligned}$	169 202	81 84 88	78 81
52 53	$\begin{aligned} & 522 \\ & 49 \end{aligned}$	8.5119198	202 235	84 86 88	81 83
54	46	88	268	88	86
55	43	78	301	90	88
56	39	69	334	92	91
57	36	59	366	94	94
58	33	49	399	96	96
59	30	40	43^{2}	99	99
60	8.5095227	8.5119130	1.07465	2.2701	5.8301

LATITUDE $\mathbf{2 5}{ }^{\circ}$

Lat.	$\log \mathbf{A}$ diff. $\mathbf{I}^{\prime \prime}=-0.06$	$\begin{gathered} \log \mathbf{R} \\ \text { diff. } \mathbf{1}^{\prime \prime}=-0.16 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathrm{I}^{1 /}=+0.54 \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathbf{I}^{\prime \prime}=+0.03 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathbf{1}^{\prime /}=+0.04 \end{gathered}$
2500	8.5095227	8.5119130	1.07465	2.2701	5.8301
1	23	20	498	$\bigcirc 3$	04
2	20	10	531	05	07
3	17	O1	504	07	09
4	14	8.5119091	596	09	12
5	10	81	629	11	14
6	07	72	662	13	17
7	04	62	695	16	20
8	OI	52	728	18	22
9	8.5095197	42	760	20	25
10	8.5095194	8.5119033	1.07793	2.2722	5.8327
11	91	23	826	24	30
12	88	13	858	26	33
13	84	$\bigcirc 3$	S91	28	35
14	81	8.5118994	924	$3{ }^{\circ}$	38
15	78	84	956	32	40
16	75	74	989	34	43
17	71	64	1.08021	37	46
18	68	55	054	39	48
19	65	45	087	41	51
20	8.5095162	8.5118935	1.08119	2.2743	5.8354
21	58	25	152	45	56
22	55	15	184	47	59
23	52	$8.510{ }^{05}$	217	49	61
24	48	8.5118895	249	51	64
25	45	86	282	53	67
26	42	76	314	55	69
27	39	66	346	57	72
28	35	56	379	59	75
29	32	47	411	61	77
30	8.5095129	8.5118837	1.08444	2.2763	5.8380
31	26	27	476	66	82
32	22	17	508	68	85
33	19	8. ${ }^{\circ}$	541	70	88
34	16	8.5118797	573	72	90
35	12	87	605	74	93
36	09	78	638	76	96
37	06	68	670	78	5.898
38	8 - 03	58	702	80 82	5.8401
39	8.5095099	48	734	82	04
40	8.5095096	8.5118738	1.08767	2.2784	5.8406
41	93	28	799	86	$\bigcirc 9$
42	89	18	831	88	11
43	86	08	863	90	14
44	83	8.5118698	895	92	17
45	79	89	928	94	19
46	76	79	960	96	22
47	73	69	992	98	25
48	70	59	1.09024	2.2800	27
49	66	49	056	O2	3°
50	8.5095063	8.5118639	1.09088	2.2804	5.8433
51	8.50	29	120	06	35 38
52 53	56 53	$\begin{aligned} & 19 \\ & 09 \end{aligned}$	152 184	08 10 10	38 48
54	50	8.5118599	217	12	43
55	46	89	249	14	46
56	43	79	281	16	49
57	40	69	312	18	51
58	36	59	344	20	54
59	33	49	376	22	57
60	8.5095030	8.5118539	1.09408	2.2824	5.8459

LATITUDE $\mathbf{E 6}^{\circ}$

Lat.	diff. $\mathrm{I}^{\prime \prime}=-0.06$	$\begin{gathered} \log \mathbf{R} \\ \text { diff. } \mathbf{I}^{\prime \prime}=-0.17 \end{gathered}$	$\log C$ diff. $\mathbf{1}^{\prime \prime}=+0.53$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathbf{r}^{\prime \prime}=+0.03 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathrm{I}^{\prime \prime}=+0.04 \end{gathered}$
2600	8.5095030 26	8.5118539 29	1.09408 440	2.2824 26	5.8459 62
2	23	19	472	28	65
3	20	09	504	30	67
4	16	8.5118499	536	3^{2}	70
5	13	89	568	34	73
6	10	79	600	36	75
7	06	69	631	38	78
8	03	59	663	40°	81
9	8.5095000	49	695	42	83
10	8.5094996	8.5118439	1.09727	2.2844	5.8486
1 I	93	29	759	46	89
12	90 86	19 9	790	48	91
13	86	09	822	50	94
14	83	8.5118399	854	52	97
15	80	89	886	54	99
16	76	79	917	55	5.8502
17	73	69	949	57	- 05
18	70	59	981	59	07
19	66	49	1.10012	61	10
20	8.5094963	8.5118339	1. 10044	2.2863	5.8513
21	60	29	076	65	15
22	56	19	107	67	18
23	53	-189	139	69	21
24.	49	8.5118299	170	71	24
25	46	88	202	73	26
26	43	78	234	75	29
27 28	39	68	265	77	32
29	36 33	48	297 328	79 89	34 37
30	8.5094929	8.5118238	1.10360	2.2883	3.8540
31	26	28	391	84	42
32	22	18	423	86	45
33	19	8.0818	454	88	48
34	16	8.5118197	486	90	50
35	12	87	517	92	
36 37	09 06	77 67	548 580	94	56
38	-02	67 57	680	96 98	59
39	8.5094899	47	643	2.2900	64
40	8.5094895	8.5118137	1.10674	2.2902	5.8567
41	92	26	705	03	69
42	89	16	737	05	72
43	85 82	8.5118006	768	07	75
44	82	8.51180 .96	799	09	77
45	78	86	831	11	80
46	75	76	862	13	83
47 48	72 68	65	893	15	86
48	68 65	55 45	924 956	17 18	88 91
50	8.5094862	8.5118035	1. 10987	2.2920	5.8594
51	58	25	1.11018	22	96
52	55	14	049	24	99
53	51	8 - 04	081	26	5.8602
54	48	8.5117994	112	28	05
55	45	84	143	30	07
56	41 38	74	174	32	10
57	38 34	63 53	205	33	13
59	3 I	43	268	37	18
60	8.5094827	8.5117933	1. 11299	2.2939	5.8621

LATITUDE $\mathbf{2} 7^{\circ}$

Lat.	diff. $\mathrm{I}^{\prime \prime}=-\mathbf{0 . 0 6}$	$\begin{gathered} \log \mathbf{B} \\ \text { diff. } 1^{\prime \prime}=-0.17 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathbf{I}^{\prime \prime}=+0.5 \mathbf{1} \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathbf{1}^{\prime \prime}=+0.03 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathbf{x}^{\prime \prime}=+0.05 \end{gathered}$
01					
2700	8.5094827	8.5117933	1.11299	2.2939	5.8621
1	24	22	330	41	24
2	21	12	361	43	26
3	17	02	392	44	29
4	14	8.5117892	423	46	32
5	10	81	454	48	35
6	07	71	485	50	37
7	04	61	516	52	40
8	8. 00	50	547	54	43
9	8.5094797	40	578	55	46
10	8.5094793	8.5117830	1. 11609	2.2957	5.8648
11	90	20	640	59	51
12	86	09	671	61	54
13	83	8.5117799	702	63	57
14	79	89	733	65	59
15	76	78	764	66	62
16	73	68	794	68	65
17	69	58	825	70	68
18	66	47	856	72	70
19	62	37	887	74	73
20	8.5094759	8.5117727	I. 1 igi 8	2.2975	5.8676
21	55	16	949	77	78
22	52	06	979	79	81
23	48	8.5117696	1.12010	81	84
24	45	85	041	83	87
25	42	75	072	84	90
26	38	65	103	86	92
27 28	35	54	133	88	95
28	3 3	44	164	90	88
29	28	34	195	92	5.8701
30	8.5094724	8.5117623	1.12226	2.2993	5.8703
31	21	13	256	95	06
32	17	02	287	97	∞
33	14	8.5117592	318	99	12
34	10	82	$34{ }^{8}$	2.3000	14
35	07	71	379	02	17
36	03	61	410	04	20
37	8, ${ }^{00}$	50	440	06	23
38	$8.5094697{ }^{\circ}$	40	471	07	25
39	93	30	501	09	28
40	8.5094690	8.5117519	1. 12532	2.3011	5.8731
41	86	09	563	13	34
42	83	8.5117498	593	15 16	36
43	79	88	624	16	39
44	76	78	654	18	42
45	72	67	685	20	45
46	69	57	715	21	48
47	65	46	746	23	50
48	62	36	776	25	53
49	58	25	807	27	56
50	8.5094655	8.5117415	1. 12837	2.3028	5.8759
51	51	8.5117394	868 808	$3{ }^{3}$	61 64
52	48	8.5117394	898	32	64 67
53	44	83 73	928 959	34	70 70
		6	959 989	37	
55 56 5	37	63 52	1.13020	37	75
57	30	42	050	4 I	78
58	27	31	080	42	8
59	23	21	111	44	84
60	85094620	8.5117310	I. $1314{ }^{1}$	2.3046	5.8787

LATITUDE 28°

Lat.	$\begin{gathered} \log \mathbf{A} \\ \text { diff. } \mathrm{x}^{\prime \prime}=-0.06 \end{gathered}$	$\begin{gathered} \log \mathbf{B} \\ \text { diff. } \mathrm{I}^{\prime \prime}=-0.18 \end{gathered}$	$\log \mathbf{C}$ diff. $\mathbf{1}^{\prime \prime}=+0.50$	$\begin{gathered} \log \mathbf{D} \\ \operatorname{diff.} \mathbf{1}^{\prime \prime}=+0.03 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathbf{I}^{\prime \prime}=+0.05 \end{gathered}$
- '					
2800	8.5094620	8.5117310	$1.1314{ }^{1}$	2.3046	5.8787
1	16	00	171	47	89
2	13	8.5117289	202	49	92
3	09 06	79 68	232 262	51 53	95
5	02	58	293	54	5.8800
6	8.5094599	47	323	56	503
7	95	36	353	58	06
8	92	26	383	59	09
9	88	15	414	61	12
10	8. 5094585	8.5117205	1. 13444	2.3063	5.8814
11	81	8.5117194	474	64	17
12	78	84	$5{ }^{5} 4$	66	20
13	74	73	535	68	23
14	71	63	565	70	26
15	67	52	595	71	28
16	64	42	625	73	31
17	60	31	655	75	34
18	57	20	685	76	37
19	53	10	715	78	40
20	8.5094550	8.51r7099	1. 13746	2.3080	5.8843
21	46	89	776	81	45
22	43	78	806	83	48
23	39	67	836	85	51
24	36	57	866	86	54
25	32	46	896	88	57
26	28	36	926	90	59
27	25	25	956	91	62
28	21 18	14	986	93	65
29	18	04	1.14016	95	68
30	8.5094514	8.511693	1. 14046	2.3096	5.8871
31	11	83	076	98	74
32	07	72	106	2.3100	76
33	04	61	136	Or	79
34	oo	51	166	03	82
35	8.5094497	40	196	O_{4}	85
36 37	93 90	29	226	06	88
37 38	90 86	19 08	256 285	08	90 93
39	82	8.5116897	315	11	93 96
40	8. 5094479	8.5116887	1. 14345	2.3113	5.8899
41	75	76	375	14	5.8902
42	72	65	405	16	05
43	68	55	435	17	07
44	65	44	465	19	10
45 46	61 57	33	494	21	13
46	57 54	23 12	524 554	22	16
48	50	OI	584	26	22
49	47	8.5116791	614	27	24
50	8. 5094443	8.5116780	1.14643	2.3129	5.8927
51	40 36	69	673	30	30
52	36	59	703	32	33
53	33	48	733	34	36
54	29	37	762	35	39
55	25	26 16	792 822	37	42
56 57	22 18	16 05	822 851	38 40	44
58	15	8.5116694	881	42	50
59	11	83	911	43	53
60	8.5094407	8.5116673	1.1494°	2.3145	5.8956

LATITUDE 29°

Lat.	$\begin{gathered} \log A \\ \operatorname{diff.} r^{\prime \prime}=-0.06 \end{gathered}$	$\begin{gathered} \log \mathbf{B} \\ \text { diff. } \mathbf{I}^{\prime \prime}=-0.18 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathbf{1}^{\prime \prime}=+0.49 \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathbf{1}^{\prime \prime}=+\mathbf{0 . 0} 3 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } 1^{\prime \prime}=+0.05 \end{gathered}$
$\begin{array}{cc} \circ & \prime \\ 29 & 00 \end{array}$	8.5094407	8.5116673	1. 1940	5	8956
,	8. 04	8.5162	1.1970	2.3145 46	5.8956 59
2	-0	51	1. 15000	48	61
3	85094397	40	029	50	64
4	93	30	059	51	67
5	80	19 08	089	53	70
7	82	8.5116597	118	54	73
8	79	8.5187	178	56 57	78
9	75	76	207	59	81
10	85094372	8.5116565	115236	2.3161	5.8984
11	68	54	266	62	87
12	64	44	295	64	90
13	61	33	325	65	93
14	57	22	354	67	96
15	54	11	384	68	99
16	50	8.100	413	70	5.9002
17	46	8.5116490	443	72	${ }^{5} 04$
18	43	79	472	73	07
19	39	68	502	75	10
20	8.5094336	8.5116457	1.15531	2.3176	5.9013
21	32	46	561	78	16
22	28	35	590	79	19
23	25	25	620	81	22
24	21	14	649	82	25
25	18	03	678	84	27
26	14	8.5116392	708	85	30
27	10	81	737	87	33
28	07	70	766	89	36
29	03	60	796	90	39
30	8.5094299	8.5116349	1.15825	2.3192	5.9042
31	96	38	854	93	45
32	92	27	88_{4}	95	48
33	89	16	913	96	50
34	85	05	942	98	53
35	8 8		972	99	56
36	78	83	1. 16001	2.320 .1	59
37 38 38	74	73 62	030 059	02	62 65
39	67	51	089	05	68
40	8.5094263	8.5116240	1.16118	2.3207	5-9071
41	60	29	147	08	74
42	56	18	176	10	76
43	52	8.8107	206	11	79
44	49	8.5116196	235	13	82
45	45	85	264	14	85
46	418	74 64	293 322	16	98
48	34	53	351	19	94
49	30	42	381	20	97
50	8.5094227	8.5116131	1.16410	2.3222	5.9100
51	23	20	439	23	03
52	20 16	8.5116098	468	25 26	05
53	16	8.5116098 87	497 526	26	11
55	$\bigcirc 9$	76	555	29	14
56	05	65	584	31	17
57	OI	54	613	32	20
58	8.5094198	43	642	34	23
59	94	32	671	35	26
60	8.5094190	8.5116021	1. 16700	2.3237	5.9129

H. Ex. $81-42$

LATITUDE 80°

Lat.	$\begin{gathered} \log \mathbf{A} \\ \operatorname{diff.} \mathbf{I}^{\prime \prime}=-0.06 \end{gathered}$	$\begin{gathered} \log \mathbf{B} \\ \operatorname{diff.} \mathbf{1}^{\prime \prime}=-0.18 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } x^{\prime \prime}=+0.48 \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathbf{1}^{\prime \prime}=+0.02 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathbf{I}^{\prime \prime}=+0.05 \end{gathered}$
0 '					
3000	8.5094190	8.5116021	1. 16700	2.3237	5.9129
1	87	10	729	38	3^{2}
2	83	8.5115999	758	40	34
3	79	88	787	41	37
4	76	77	816	42	40
5	7^{2}	66	845	44	43
6	68	55	874	45	46
7	65	44	903	47	49
8	61	33	932	48	52
9	57	22	961	50	55
10	8. 5094154	8.5115911	1.16990	2.3251	5.9158
11	50	8.50	1.17019	53	61
12	46	8.5115889	048	54	64
13	43	78	077	56	67
14	39	67	106	57	69
15	35	56 45	135	78	72
	32	45	164	60	75
18	24	23	221	63	81
19	21	12	250	64	84
20	8.5094117	8.5115801	1.17279	2.3266	5-9187
21	13	8.5115790	308	67	90
22	10	79	337	68	93
23	06	68	365	70	96
24	02	57	394	71	99
25	8.5094098	46	423	73	5-9202
26	95	35	452	74	05
27	91 87	24	4^{81}	76	08
28 29	87 84	13	509	77	10
29		02	538	78	13
30	8.5094080	8.5115690	1.17567	2.3280	5.9216
31	76	79	596	81	19
32	73	68	624	83	22
33	69	57	653	84	25
34	65	46	682	85	28
35	62	35	710	87	3 I
36	58	24	739	88	34
37 38	54	13	768	90	37
39	4^{7}	8.5115591	797 825	91 92	40
40	8. 5094043	8.5115579	1.17854	2.3294	5.9246
41	39	68	883	95	49
42	36	57	911	97	52
43	32	46	940	98	55
44	28	35	968	99	58
45	24	24	997	2.3301	61
46	21	13	- 1.18026	02	64
47	17	02	054	04	66
48	13	8.5115490	083	05	69
49	10	79	111	06	72
50	8.5094006	8. 5115468	1.18140	2.3308	5. 9275
51	8.5093999	$\begin{array}{r}57 \\ \hline 46\end{array}$	169 197	09	78
52	8.5093999	46	197	10	8 8
53	95	35	226	12	84
54	91	23	254	13	87
55	87	12	283	14	90
56	84 -80	8. ${ }^{\text {O1 }}$	311	16	93
57	-80			17 19	96 99
58 59	76 72	$\begin{aligned} & 79 \\ & 68 \end{aligned}$	368 397	19 20	99 5.9302
60	8.5093969	8.5115356	1. 18425	2.3321	5.9305

LATITUDE 81°

Lat.	diff. $I^{\prime \prime}=-0.06$	$\begin{gathered} \log B \\ \text { diff. } \mathbf{I}^{\prime \prime}=-0.19 \end{gathered}$	$\begin{gathered} \log \mathrm{C} \\ \operatorname{diff.} 1^{\prime \prime}=+0.47 \end{gathered}$	$\log D$ diff. $1^{\prime \prime}=+0.02$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathbf{a}^{\prime \prime}=+o .05 \end{gathered}$
3100	8.5093969	8. 5115356	1.18425	2.3321	5.9305
1		45	454	23	08
2	61	34	482	24	II
3	58	23	510	25	14
4	54	12	539	27	17
5	50	8.90	567	28	20
6	46	8.5115289	596	29	23
7	43	\% 78	624	31	26
8	39	67	652	32	29
9	35	56	681	33	32
10	8.5093931	8. 5115244	1.18709	2.3335	5.9335
II	28	33	738	36	38
12	24	22	766	37	41
13	20	8. 11	794	39	44
14	16	8.5115199	823	40	47
15	13	88	851	41	50
16	09	77	879	43	53
17	05	66	908	44	56
18	$\xrightarrow{O I}$	54	936	45	59
19	8.5093898	43	964	47	62
20	8.5093894	8.5115132	1.18993	2.3348	5.9365
21		21	1.19021	49	68
22	86	09	049	51	71
23	83	8.5115098	077	52	74
24	79	87	106	53	76
25	75	76	134	55	- 79
26	7 I	64	162	56	82
27	68	53	190	57	85
28	64	42	219	58	88
29	60	31	247	60	9 I
30	8.5093856	8.5115019	1.19275	$2 \cdot 3361$	5.9394
31	53	8. 08	303	62	97
32	49	8.5114997	331	64	5.9400
33	45	85	360	65	O_{3}
34	41	74	3^{88}	66	06
35	37	63	416	68	09
36	34	51	444	69	12
37	30	40	472	70	15
38	26	29	501	71	18
39	22	17	529	73	21
40	8.5093819		1.19557	2.3374	5.9424
41	15	85114895	585	75	27
42	11	83	613	77	31
43	07	72	641	78	34
44	04	61	669	79	37
45	00	49	697	80	40
46	8.5093795	38	725	82	43
47	92	27	753	83	$4{ }^{\circ}$
48	88	- 15	781	84	49
. 49	85	04	809	85	52
50	8.5093781	8. 5114793	1. 19838	2.3387	5.9455
51	77	$8 \mathrm{i}$	806	88	5^{8}
52	73	70	894	89	61
53	69	59	922	90	64 67
54	. 66	47	950	92	67
55	62	36	978	93	70
56	58	25	1.20006	94	73
57	54	13	034	-95	76 79
58 59	51		062	$\begin{array}{r}-97 \\ \hline 98\end{array}$	79 82
59	47	8.5114690	090	98	82
60	8.5093743	8.5114679	1.20118	2.3399	5.9485

LATITUDE $\mathbf{3 2}$

Lat.	$\log A$ dif. $\mathbf{1}^{\prime \prime}=-0.06$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } 1^{\prime \prime}=-0.19 \end{gathered}$	$\log \mathbf{C}$ dif. $\mathrm{I}^{\prime \prime}=+0.46$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathbf{I}^{\prime \prime}=+0.02 \end{gathered}$	$\log \mathbf{E}$ diff. $\mathbf{x}^{\prime \prime}=+0.05$
-					
3200	8.5093743	8.5114679	1.20118	2.3399	5.9485
z	39 35	68 56	145 173	2.3400 02	$\begin{aligned} & 88 \\ & 91 \end{aligned}$
3	32 32	56 45	${ }_{201}$	${ }^{02}$	94
4	28	33	229	04	97
5	24 20	11	257	$\stackrel{0}{0}$	5.9500
6 7	20 16	8.5114599	285 313	07 08	${ }_{0}^{03}$
8	13	8.511498	$3{ }_{31}$	09	\bigcirc
9	09	76	369	10	12
10	8.5093705	8.5114565	1.20397	2.3412	5.9515
112	8.5093697	54 42	425 42	13	18 21
12 13	8.5093697 93	${ }^{42}$	452 480	14 15	21 24
14	${ }_{90}$	19	508	16	27
15	86	${ }^{08}$	536	18	30
16	82	8.5114496	564	19	33
17	78	85 74	592 620	20 21	36 39
19	${ }_{71}^{74}$	74 62	647	23	42
20	8.5093667	8.5114451	1.20675	2.3424	5.9545
21 22	63 59	39 28	$7{ }^{731}$	25 26	49 52
23	59	16	731 759	27	5
24	51	05	786	29	58
25 26	44	8.5143393	814 842	$3{ }_{31}$	61 64
27	$4{ }_{4}^{44}$	70 70	842 870	31 32	67
28	36	59	897	33	70
29	32	47	925	35	73
30	8.5093629	8.5114336	1.20953	2.3436	5.9576
31	25 21	24	981 1.21008	37 38	79 82
32 33	21 17	${ }_{1}^{13}$	1.21008 036	38 39	
34	13	8.5114290	064	40	88
35	09	78	091	42	9 r
36	${ }^{06}$	67 5	119	43	94
37 38	8.5093598	55 44	147 174	44 45	97 5.9600
39	8. ${ }^{\text {d }}$	32	202	46	5
40	8.5093590	8.5114221	1.21230	2.3448	5.9607
41		8.5114198	257 285	49	10
42	83 79	8.5114198	285 312	${ }_{51}^{50}$	13 16
44	75	75	340	52	19
45	71	63	368	53	22
46	${ }_{6}^{67}$	52	395	54	25 28
478	63 59	40 29	423	57	38
49	56	17	47^{8}	58	34
50	8. 5093552	8.5114106	1.21506	2.3459	5.9637
51 52		8.5114094	533 567		
52 53	44 40	83 71	561 588	61 63	43 46
54	36	59	616	64	50
55	33 29	${ }_{36}^{48}$	${ }_{644} 67$	65 68	53
57	25	25	699	67	59
58	21	13	726	68	62
59	17	02	754	69	65
60	8.5093513	8.5113990	1.21788	2.3471	5.9668

LATITUDE $\mathbf{3 3}^{\circ}$

Lat.	$\log A$ diff. $\mathbf{r}^{\prime \prime}=-0.06$	$\log \mathrm{B}$ diff. $\mathrm{I}^{\prime \prime}=-0.19$	$\log \mathbf{C}$ diff. $1^{\prime \prime}=+0.45$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathbf{x}^{\prime \prime}=+0.02 \end{gathered}$	$\log \mathbf{E}$ diff. $\mathbf{I}^{\prime \prime}=+0.05$
-					
33 oo	8.5093513	8.5113998	1.21781	2.3471	5.9668
1 2	09 06	78 67	809 876	72 73	71 74
2 3	$\stackrel{\text { O6 }}{\text { O2 }}$	67 5	836 864	73 74	74
4	8.5093498	44	891	75	80
5	94	32	919	76	83
	86	20 09	946 973	77 79	87 90
8	$8 \mathbf{8}$	8.5113897	1.22001	89	93
9	79	${ }^{86}$	028	8 I	96
10	8 E093475	8.5113874	1. 22056	2.3488	5.9699
112	71 67		083	${ }_{8}^{8}$	5-9702
12	6_{3}	51 39	11 138 138	84 85	05 08
14	59	28	165	86	11
15	55	16	193	87	14
	51	04	220	89	17
18	$4{ }_{4}^{47}$	8.5143793 81	248 275	${ }_{91}^{90}$	21 24
19	$4{ }^{0}$	69	303	92	27
20	8.5093436	8.5113758	1.22330	2.3493	5.9730
21	32 28	46	357 385	94	33
22 23	28 24	35 23	385 412	${ }_{96}^{95}$	3
24	20	11	439	97	42
25 26	16	00 8.5113688	467	${ }^{98}$	45
26	13	8.5113688	494	2.3500	48
27 28	19 09	76 65	521 549	$\xrightarrow{\text { OI }}$	5
29	OI	53	576	-3	58
30	8.5093397	8.5113641	1.22603	2.3504	5.9761
$3 \mathrm{3I}$	83	30	${ }^{63} 8$	05	
32 33 3	89 85	${ }_{06}^{18}$	658 685	${ }^{06}$	67
34	81	8.5113595	712	o8	73
35	78	83	739	09	76
	74 70	71 60	767	10	80
37 38	66	48	794	15	86
39	62	36	848	14	89
40	8.5093358	8.5113525	1. 22876	2.3515	5.9702
$4{ }_{42}$	5	13 01	903	16	95
43	${ }_{46}$	8.5113489 ${ }^{11}$	930 957	17 18	5.9808
44	42	7^{8}	984	19	05
45	39	66	1.23012	20	${ }^{1} 8$
46	35	54	039	21	11
478	31	43	066	22	14
48	27 23	31 19	093 120	23 24	17 20
	8.5093319	8.5113407	1.23148	2.3525	5.9823
51		8.5133396	175	26	26
52	1 I	${ }_{8}{ }^{8}$	202	27	30
53	${ }^{0} 7$	${ }_{6} 7$	229	28	33
54	${ }^{0} 3$	60	256	29	36
55		49	283	$3{ }^{\circ}$	39
56 57	8.5093296 92	37 25	310 337	32 33	42
58	88	14	305	34	48
59	84	02	392	35	$5{ }^{1}$
60	8.5093280	8.5113290	1.23419	2.3536	5.9855

LATITUDE 54°

Lat.	$\log A$ diff. $\mathbf{1}^{\prime \prime}=-\mathbf{0 . 0 7}$	$\begin{gathered} \log \mathbf{B} \\ \text { diff. } \mathbf{1}^{\prime \prime}=-0.20 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } I^{\prime \prime}=+0.45 \end{gathered}$	$\log \mathbf{1 D}$ diff. $\mathrm{I}^{\prime \prime}=+0.02$	$\log \mathbf{E}$ diff. $\mathrm{I}^{\prime \prime}=+0.05$
0					
34×1	8.5093280 76	8.5113290	$\begin{array}{r}1.23419 \\ \hline 446\end{array}$		5.9855 58
${ }_{2}$	72	78 67	446 473	37 38 38	${ }_{6}{ }^{58}$
3	68	55	500	39	64
4	64	43	527	$4{ }^{\circ}$	67
5	60 56	31	554	$4{ }_{42}^{11}$	70
6	56 53	19 08	581 608	${ }_{43}^{42}$	73 77
8	49	8.5113196	$6: 5$	44	80
9	45		662	45	83
${ }^{10}$	8.5093241	8.5113172	1.23689	2.3546	5.9886
${ }_{11}$	37	61	$7{ }^{76}$	47	89
${ }_{12}^{12}$	33 29	49	743 770 7	48 49	92
14	25	25	797	${ }_{50}^{49}$	95 99
15	21	13	884	51	5.9902
16	17	$8{ }^{02}$	851	52	05
17 18	13 09	8.5113090 78	878 905	53 54	${ }_{1}^{18}$
19	05	66	932	55	14
20	8.5093201	8.5113055	1.23959	2.3556	5.9918
21	8.5093198	43	986	57	21
22 23	${ }_{90}^{94}$	31 10	1.24013 040	5	24 27
23 24	86	19 07	040 067	¢9	27 3
25	82	8.5112995	094	6_{62}	33
26	78		121	62	36
27	74	72 60	148	${ }_{6} 6$	$4{ }^{\circ}$
28 29	70 60	60 48	175 202	64 65	43 46
30	8.5093162	8.5112936	1. 24229	2.3566	5.9949
31 32	5	24	256 283	68	52 55
32 3	54 50	13 01	283 309	68 69	55 59
34	$4{ }^{6}$	8.5112889	336	70	62
35 36	${ }_{38}^{42}$	77 65	363 390	71	65 68
37	34	53	390 417	73	71
38	$3{ }^{3}$	42	444	74	75
39	27	30	471	75	78
40	8.5093123	8.5112818	1. 24498	2.3576	5.998 I
4 4	19	8.06	524	78	${ }^{8} 8$
42	15 11	8.5112794 82	$\begin{array}{r}551 \\ 58 \\ \hline 8\end{array}$	78 78	87 90
4	11 07	82 70	605	79	90 94
45	${ }^{0} 3$	58	632	80	97
46	8.5093099	47	659	81	6.0000
47	95	35 23	685 712	82 83	${ }^{03}$
48 49	$\begin{aligned} & 91 \\ & 87 \end{aligned}$	23 11	712 739	83 84	06 09
50	8. 5093083	8.5112699	1.24766	2.3585	5.0013
51	79	87	793		${ }^{16}$
52 53	75 71	75 63	819 846	87 88	19 22
54	67	52	873	89	25
55	63	48	909	90	29
56	59 55	28 16	${ }_{9}^{926}$	${ }_{92}^{91}$	${ }^{32}$
58	51	${ }_{0}$	985	92 93	$3{ }^{38}$
59	47	8.5112592	1.25007	94	41
60	8.5093043	8.5112580	1. 25033	2.3595	6.0045

THE UNITED STATES COAST SURVEY.

LATITUDE $\mathbf{3 5}^{\circ}$

Lat.	$\begin{gathered} \log \mathbf{A} \\ \operatorname{diff.} \mathbf{1}^{\prime \prime}=-0.07 \end{gathered}$	$\log 18$ diff. $\mathrm{r}^{\prime \prime}=-0.20$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathbf{1}^{\prime \prime}=+0.44 \end{gathered}$	$\begin{gathered} \log \mathbf{I} \\ \operatorname{diff} . \mathbf{I}^{\prime \prime}=+0.0 \mathbf{I} \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathbf{I}^{\prime \prime}=+0.05 \end{gathered}$
0 -					
3500	8.5093043	8.5112580	1.25033	2.3595	6.0045
	39	68	060	96	48
2	35	56	087	- 96	51
3	31	44	113	97	54
4	27	32	140	98	57
5	23	21	167	99	6 f
6	19	09	194	2.3600	64
7	15	8.5112497	220	01	67
8	12	85	247	02	70
9	08	73	274	03	73
10	8.5093004	8.5112461	1. 25300	2.3604	6.0077
11	00	49	327	05	80
12	85092996	37	354	06	83
13	92	25	380	07	86
14	88	13	407	07	89
15	8_{8}	OI	434	08	93
16	80	8.5112389	460	09	96
17	76	8.57	487	10	699
18	72	65	514	11	6.0102
19	68	53	540	12	05
20	8.5092964	8.5112341	1.25567	2.3613	6.0109
21	60	29	593	14	12
22	56	17	620	15	15
23	52	06	647	16	18
24	48	8.5112294	673	16	21
25	44	82	700	17	25
26	40	70	726	18	28
27	- 3^{6}	58	753	19	31
28	32	46	779	20	34
29	28	34	806	21	38
30	8.5092924	8.5112222	1. 25833	2.3622	6.0141
31	20	8.510	859	23	44
32	16	8.5112198	886	24	47
33	12	86	912	24	50
34	08	74	939	25	54
35	04	62	965	26	57
36	00	50	992	27	60
37	8.5092896	38	1. 26018	28	63
38	92 88	26	045	29	67
39	88	14	072	30	70
40	8. 5092888_{4}	8.5112102	1. 260098	2.3631	6.0173
41	80	8.5112090	125	3 I	76
42	76	78	- 151	32	79
43	72 68	66	177 204	33	83 86
44	68	54	204	34	86
	64	42	230	35	89
46	60	30	257	36	92
47	56	18 06	283 310	37 37	96 99
48	52 48	8.5111994	310 33^{6}	37 38	6.0202 ${ }^{99}$
50	8.5092844	8.5111981	1.26363	2. 3639	6.0205
51	$4{ }^{\circ}$	69	389	40	09
52	36	57	416	41	12
53	32	45	442	42 42	15
54	28	33	469	42	18
55	24	21	495	43	22
56	20 16	8.5111897	521 548	44	25 28
57	16	8.5111897 85	548 574	45	3 l
59	08	73	601	47	35
60	8. 5092804	8.5111861	1. 26627	2.3648	6.0238

LATITUDE 36°

Lat.	$\begin{gathered} \log \mathbf{A} \\ \text { diff. } \mathrm{x}^{\prime \prime}=-0.07 \end{gathered}$	$\begin{gathered} \log \mathbf{B} \\ \text { diff. } 1^{\prime \prime}=-0.20 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \operatorname{diff.} \mathbf{1}^{\prime \prime}=+0.44 \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathbf{I}^{\prime \prime}=+ \text { o.or } \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff: } \mathbf{I}^{\prime \prime}=+\mathbf{o} .05 \end{gathered}$
$\bigcirc 1$					
3600	8.5092804	8.5111861	1. 26627	2.3648	6.0238
1		49	654	48	4 I
2	8.5092796	37	680	49	44
3	92	25	706	50	48
4	88	13	733	51	51
5	83	01	759	52	54
6	79	8.5111789	785	52	57
7	75	77	812	53	61
8	71	65	838	54	64
9	67	52	865	55	67
10	8.5092763	8.5111740	1.26891	2. 3656	6.0270
11	59	28	917	57	74
12	55	16	944	57	77
13	51	04	$97{ }^{\circ}$	58	80
14	47	8.5111692	996	59	83
15	43	80	1.27023	60	87
16	39	68	049	61	90
17	35	56	075	61	93
18	31 27	44	102	62	6.96
19	27	32	128	63	6.0300
20	8.5092723	8.5111619	1.27154	2.3664	6.0303
21	19	8.07	181	65	06
22	15	8.5111595	207	65	09
23	11	8_{3}	233	66	13
24	07	71	259	67	16
25	03	59	286	68	19
26	8.5092699	47	312	69	23
27	95	35	338	69	26
28	8 9	23	365	70	29
29	87	10	391	71	32
30	8.5092683	8.5111498	1.27417	2.3672	6.0336
31	79	86	443	73	39
32	75	74	470	73	42
33	71	62	496	74	45
34	66	50	522	75	49
35	62	38	548	76	52
36	58	26	575	76	55
37	54	13	601	77	59
38	50	${ }_{5101}^{\text {O1 }}$	627	78	62
39	46	8.5111389	653	79	65
40	8.5092642	8.5111377	1.27680	2.3680	6.0368
41	3^{8}	65	706	80	72
42	34 30	- 53	732	81 82	75
43 44	30 26	41 28	758 784	82 83	88
	22	16	810	83	85
46	18	04	837	84	88
47	14	8.5111292	863	85	92
48	10	80	889	86	95
49	06	68	915	86	98
50	8. 5092602	8.5111255	1.27941	2.3687	6.0401
51	8.5092598	43	968	88	05
52	94	31	994	89 89	08
53	98	19	1. 28020	89	11
54	86	07	046	90	15
55	81	8.5111195	072	91	18
56	77	82	o98	92	21
57	73 60	$\begin{aligned} & 70 \\ & 48 \end{aligned}$	124 150	92 93	25 28
58 59	69 65	$\begin{aligned} & 58 \\ & 46 \end{aligned}$	150 177	93 94	28 31
60	8.509256I	8.5111134	128203	2.3695	6.0434

LATITUDE 87°

Lat.	$\log \mathbf{A}$ diff, $\mathbf{1}^{\prime \prime}=-0.07$	$\begin{gathered} \log \mathbf{8} \\ \text { diff. } 1^{\prime \prime}=-0.20 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathbf{I}^{\prime \prime}=+\mathbf{0 . 4 3} \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathbf{1}^{\prime \prime}=+0.0 \mathbf{x} \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } I^{\prime \prime}=+0.06 \end{gathered}$
- '					
370	8.509256I	8.5111134	1. 28203	2. 3695	6.0434
I		21	229	95	3^{8}
2	53	${ }_{8}^{89}$	255	96	41
3	49	8.5111097	281	97	44
4	45	85	307	97	48
5	41	73	333	98	51
6	37	60	359	99	54
7	33	48	386	2.3700	58
8	29	36	412	Oo	61
9	25	24	438	or	64
10	8.5092520	8.5111012	1. 28464	2.3702	6.0467
11	16	8.5110999	490	03	71
12	12	$8_{7} 7$	516	03	74
13	o8	75	542	04	77
14	0_{4}	63	568	05	81
15	00	51	594	05	84
16	8.5092496	38	620	06	87
17	92	26	646	\bigcirc	91
18	88	14	672	08	94
19	84	02	698	08	97
20	8.5092480	8.5110890	1.28724	2.3709	6.0501
21	76	77	750	10	04
22	72	65	776	10	07
23	68	53	802	11	11
24	63	41	828	12	14
25	59	28	855	12	17
26	55	16 04	881	13	21
27	51	04	907	14	24
29	43	8.5110792 79	933 959	15	27 31
30	8.5092439	8.5110767	1. 28985	2.3716	6.0534
31	35	55	1.29011	17	37
32	31	43	036	17	41
33	27	30	062	18	44
34	23	18	088	19	47
35	19	06	114	19	5.7
35	14	8.5110694	140	20	54
37	10	81	166	21	57
38	06	69	192	21	61
39	02	57	218	22	64
40	8.5092398	8.5110645	I. 29244	2.3723	6.0567
4 I	94	32	270	23	71
42	90	20	296	24	74
43	86	08	322	25	77
44	82	8.5110595	348	25	81
45	78	83	374	26	84
46	74	71	400	27	87
47	69	59	426	27	91
48	65	46	452	28	94
49	61	34	478	29	97
50	8.5092357	8.5110522	1.29504	2.3729	6.0601
51	53	8.10	530	$3{ }^{\circ}$	04
52	49	8.5110497	555	31	07
53	45	85	581	31	II
54	4 I	73	607	32	14
55	37	60	633	33	18
56	33	48	659	33	21
57	29	36	685	34	24
58	24	23	711	35	28
59	20	11	737	35	3 I
60	8.5092316	8.5×10399	1.29763	$2.373{ }^{6}$	6.0634

H. Ex. 81 - 43

LATITUDE $\mathbf{3} 8^{\circ}$

Lat.	diff. $\mathbf{x}^{\prime \prime}=-0.07$	$\log R$ diff. $\mathrm{I}^{\prime \prime}=-0.21$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathbf{I}^{\prime \prime}=+0.43 \end{gathered}$	diff. $\mathbf{I}^{\prime \prime}=+0.01$	$\log \mathbf{E}$ diff. $\mathrm{I}^{\prime \prime}=+\mathbf{0 . c 6}$
- '					
$3^{8} 00$	8.5092316	8.5110399	1.29763	2.3736	6.0634
	12	87	788	37	38
2	08	74	814	37	41
3	04	62	8_{846}	38	44
	00	50			48
5	8.5092296	37	892	39	51
6	92 87	25	918	40	54
7	87 83	13 00	944 969	$4{ }^{40}$	58 61
9	79	8.5110288	995	42	65
10	8.5092275	8.5110276	1.30021	2.3742	6.0668
11	7 I	63	047	43	71
12	67	51	073	44	75
13	63	39	099	44	88
14	59	26	124	45	81
15	55	14 02	150 176	45	85 88
17	46	8.5110189	202	47	92
18	42	77	228	47	95
19	3^{8}	65	253	48	98
20	8.5092234	8.5110152	1.30279	2.3748	6.0702
21	30	40	305	49	${ }^{0} 5$
22	26	28	33 I	50	08
23	22	15	357	50	12
24	18	03	382	51	15
25	13	8.5110091	408	52	19
26	09	78	434	52	22
27	05	66	4^{60}	53	25
28	O1	54	486	53	29
29	8.5092197	41	511	54	32
30	8.5092193	8.5110029	1.30537	2.3755	6.0736
31 32	89 85	17 04	563 $-\quad 580$	55 56	39
32	85 81	8 O4	- 589	56	42
33	81 76	8.5109992	614 640	56 57	46
35	72	67	666	57	52
36	68	55	692	58	56
37	64	42	717	59	59
38	56	30	743	59	63
39	56	18	769	60	66
40	8.5092152	8.5109905	1.30795	2.3760	6.0769
41	48	8.5109893	820	61	73
42	43	81	8_{846}	62	7^{6}
43	39	68	872	62	80
44	35	56	898	63	83
45	31	43	923	63	86
46	27	31	949	64	90
47	23	19	975	64	93
48	19	8.5109794	1.31000 026	65 66	997 6.0800
49	I	8.5109794	026	6	6.0800
50	8.5092110	8.5109782	1.31052	. 2.3766	6.0803
51	06	69	077	- 67	07
52		57	103	67	10
53	8.5092098	44	129	68	14
54	94	32	155	68	17
55	90	20	180	69	21
56	86	8.07	206	69	24
57	82	8.5109695	232	70	27
58	77	82 70	257 283	71	31
59	73	70	283	71	34
60	8.5092069	8. 5109658	1.31309	2.377^{2}	6.0838

LATITUDE 39°

Lat.	$\begin{gathered} \log \mathbf{A} \\ \text { diff. } \mathbf{1}^{\prime \prime}=-0.07 \end{gathered}$	$\log \mathrm{E}$ diff. $\mathbf{1}^{\prime \prime}=-0.2 \mathbf{1}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathbf{x}^{\prime \prime}=+0.43 \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathbf{z}^{\prime}=+0.01 \end{gathered}$	$\log \mathbf{E}$ diff. $\mathbf{1}^{\prime \prime}=+0.06$
c ${ }^{\text {c }}$					
3900	8.5092069	8.5109658	1.31309	2.3772	$6.088_{3} 8$
2	65 61	45	334	2	$4{ }^{41}$
3	61 57	${ }_{20} 33$	360 386	3 3	$4{ }_{4}^{41}$
4	53	o8	41 I	3	51
5	48	8.5109596	437	4	55
	40	71 7	${ }_{488}$	5	62
8	36	58	514	6	65
9	32	46	539	7	68
10	8.5092028	8.5109533	1.31565	2.3778	6.0872
11	24	${ }_{21}$	591	8	75
12	19	${ }^{\text {09 }}$	616	8	79
13	15	8.5109496 ${ }_{8}$	642 668	9	88
15	07	71	693	2.3780	89
10	${ }^{0} 3$	59	719	0	92
17	8.5091999	$4{ }^{46}$	744	1	96
18	95 90	34 22	770 796	2	6.0993
20	8.5091986	8.5109409	1.31821	2.3782	6.0906
21		8.5109397	847 847	3	${ }^{10}$
22	78	84 72 7	872 898 88	3	13 16
23 24	74 70	72 59	898 924	4	${ }_{20}$
25	66	47	949	5	23
26	61	35 22	975 1.32000	5	27 30
27 28	57 53	22	1.32000 0.0 0	6	30 34
29	49	8.5109297	051	7	37
30	8.5091945	8.5109285	1.32077	2.3787	6.0941
31	41	7^{2}	${ }^{123}$	8	44
32 33	37 3	60 47	128 154	8	47 51
34	28	35	179 179	9	54
35	24	22	205	2.379°	58
36	20	10	23°	\bigcirc	${ }_{6} 6$
37 38	16	8.5109198 85	258 282	1	65
39	${ }^{1} 7$	73	307	2	72
40	8. 5091903	8.5109160	1.32333	2.3792	
41	8.5091899	48	358 384 8	3 3	78 82
42	95 95	35 23	384 409	3 4	82 85
44	87	ro	435	4	89
45	83 78	8.5109098 8	460 486	5	${ }_{96}^{92}$
47	74	73	512	6	99
48 49	78 66	60 48 48	537 563	6 7	6.1003 06
					6.1010
51	8. ${ }_{5}$	$8{ }^{23}$	1. 614	2.3888888	13
52	53	${ }^{11}$	639	8	17 20
53 54	49	8.5108998	669	9 9	24
54	45		690		
55	41	73 68 68 8	716 741 767	2.3800 0	27 30 34
57	38	48	767	1	34
58	28	36	792 818	1	31
59	24	23			
60	8.5091820	8.510891 r	1.32843	2.3802	6.1044

LATITUDE 40°

Lat.	$\begin{gathered} \log \mathbf{A} \\ \text { diff. } \mathbf{I}^{\prime \prime}=-0.07 \end{gathered}$	$\log 1 B$ diff. $\mathrm{I}^{\prime \prime}=-0.21$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathbf{1}^{\prime \prime}=+0.42 \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathbf{1}^{\prime \prime}=+\mathbf{o} .0 \mathbf{I} \end{gathered}$	$\log \mathbf{E}$ diff. $\mathbf{1}^{\prime \prime}=+\mathbf{0 . 0 6}$
- 40 00	8.5091820	8.5108911	1.32843	2.3802	6.1044
1	${ }^{16}$	8.5108898	-369	${ }_{2}$	${ }^{68}$
2	12	86	894	3	51
3	08	73	920	3	55
4	03	61	945	4	58
5	8.5091799	$4{ }^{8}$	970	4	62
6		36	996	5	65
7	91 87 8	${ }_{11}{ }^{2}$	1.33021 047	5	69 72
9	83	8.5108798	${ }_{072}$	6	76
10	8.5091778	8.5108786	1.33098	2.3806	6.1079
11	74	73 61	123 149	7	83 86
12	${ }^{7}$	61 48	149 174	8	go
14	62	36	200	8	93
15	58	23	225	9	97
16	53	11	251	9	6.1100
17	49	8.5108698	276	${ }^{9}$	04
18 19	45	86 73	327 327	2.3810 0	${ }_{11}{ }^{7}$
20	8.5091737	8.5108661	1.33352	2.3811	6.1114
${ }^{1}$	33	48	378	I	18
22	28	36	403	2	21
23	24	23	429	2	25 28
24	20	11	454	2	28
	16	8.5108588	480	3	32
26	12		505	3	35
27 28	08 08	73 60	530 56	4	39 42
29	8.5091699	48	$5{ }_{5} 5$	${ }_{5}^{4}$	46
30	8.5091695	8.5108535	1.33607	2.3815	6.1149
31	91	${ }_{23}$	${ }_{6} 63$	5	53
32 33	87 83		657 683	6 6	56 50 6
34	78	8.510845	708	7	63
35	74	73	734	7	${ }_{7}^{67}$
36 37	${ }_{66}$	$\begin{array}{r}60 \\ -\quad 48 \\ \hline\end{array}$	759 784	7	70 74
38	62	- 35	88	8	78
39	57	23	835	9	81
40	8.5091653	8.5108410	1.33861	2.3819	6.1184
$4{ }_{4}^{41}$	49 45	8.5108398	886 911		
43	45	85 72	911	2.3820	${ }_{95}^{91}$
44	37	60	962		98
45	32	47	${ }^{987}$	I	6.1202
46	28 24	35 22	1.34013 038	1	$\stackrel{9}{09}$
$4{ }_{4}^{47}$	24	22 10	-064	2	12
49	16	8.5108297	089	3	16
50	8.5091611	8.5108285	1.34114	2.3823	6.1219
51	${ }^{07}$	72 60	140 165	3	23 26
53	8.5091599	60 47	195	4	30
54	95	34	216	4	33
55	91 86	${ }^{22}$	241 267	5	37
57	82	8.5108197	267 292	5	44
58	78	${ }_{84}$	317	6	47
59	74	72	343	6	51
60	8.5091570	8.5108159	1. 34368	2.3827	6.1255

LATITUDE $4 \mathbf{1 0}^{\circ}$

Lat.	$\begin{gathered} \log \mathbf{A} \\ \text { diff. } \mathrm{r}^{\prime \prime}=-0.07 \end{gathered}$	$\begin{gathered} \log \mathrm{B} \\ \text { diff. } \mathrm{I}^{\prime \prime}=-0.2 \mathbf{1} \end{gathered}$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } \mathrm{I}^{\prime \prime}=+0.42 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } \mathrm{I}^{\prime \prime}=+\mathbf{0 . 0 1} \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. }!^{\prime \prime}=+0.06 \end{gathered}$
0 ,					
4100	8.5091570	8. 5108159	1. 34368	2.3827	6.1255
1		46	393	7	58
	61	34	419	7	62
3	57	21	444	8	65
4	53	09	469	8	69
5	49	8.5108096	495	8	72
6	44	84	520	9	76
7	40	71	545	9	79
8	36	59	571	2.3830	83
9	32	46	596	\bigcirc	86
10	8.5091528	8.5108033	1.34621	2.3830	6.1290
11	34	21	647	1	93
12	19	08	672	1	97
13	15	8. 5107996	697	1	6.1301
14	11	83	723	2	04
15	07	71	748	2	08
16	03	58	773	2	11
17	8.5091498	45	799	3	15
18	94	33	824	3	18
19	90	20	850	3	22
20	8.5091486	8.5107908	1. 34875	2.3834	6. 1325
21	82	8.5107895	900	4	29
22	77	83	925	4	32
23	73	$7{ }^{\circ}$	950	5	36
24	69	57	976	5	40
25	65	45	1.35001	5	43
26	6 F	3^{2}	026	6	47
27	56	20	052	6	50
28	52	$8{ }^{07}$	077	6	54
29	48	8.5107794	102	7	57
30	8.5091444	8.5107782	1.35127	2.3837	61361
31	$4{ }^{\circ}$	69	153	7	65
32	35	57	178	8	68
33	3 I	44	203	8	72
34	27	31	229	8	75
	23		254	9 9	
36	19	$8{ }^{06}$	279	9	82
37 38	14	8.5107694 81	304 330	9 2.3840	86 89
38 39	10 06	81 68	330 355	2.3840 0	89 93
40	8.5091402	8.5107656	1.35380	2.3840	6.1397
41	8.5091398	43	406	0	6.1400
42	93	31	431	1	04
43	89	18	456	1	07
44	85	05	481	1	11
45	81	8.5107593	507	2	14
46	77	88	532	2	18
47	72 68	68	557	2	22
48	68 64	55 42	582 608	3 3	25
50	8.5091360	8.5107530	1.35633	2.3843	6.1433
51	56	17	658	3	36
52	51	805	683	4	40
53	47	8.5107492	709	4	43
54	43	79	734	4	47
55	39	67	759	5	$5{ }^{\circ}$
56	35	54	784	5	54
57	30	42	810	5	58
58 59	26 22	$\stackrel{29}{16}$	835	5	65
60	8.5091318	8.5107404	1.35885	2.3846	6.1468

LATITUDE $4 \mathbf{I E}^{\circ}$

Lat.	$\begin{gathered} \log \mathbf{A} \\ \operatorname{diff.} \mathrm{I}^{\prime \prime}=-0.07 \end{gathered}$	$\begin{gathered} \log \mathbf{B} \\ \text { diff. } \mathbf{x}^{\prime \prime}=-0.2 \mathbf{1} \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathbf{I}^{\prime \prime}=+0.42 \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathbf{x}^{\prime \prime}=+0.00 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \operatorname{diff}, \mathrm{r}^{\prime \prime}=+0.06 \end{gathered}$
42∞	8.5091318	8.5107404	1. 35885	2.3846	6.1468
1	14	8.5107391	911	6	72
2	09	78	936	7	75
3	05	66	961		79
4	Or	53	986	7	83
5	8.5091297	41	1.36012	7	86
6		28	037	8	90
7		15	062	8	93
8	84	03	087	8	97
9	80	8.5107290	113	8	6.1500
10	8. 5091276	8.5107277	1.36138	2.3849	6.1504
11	72	63	163	9	08
12	67	52	188	${ }^{9}$	11
13	63	40	213	2.3850	15
14	59	27	239	0	19
15	55	14	264	-	22
16	50	02	289	0	26
17	46	8.5107189	314	1	29
18	42	76	33 n	1	33
19	38	64	365	1	37
20	8. 5091234	8.5107151	1. 36390	2.3851	6.1540
21	29	39	415	2	44
22	25	26	440	2	48
23	21	13	466	2	51
24	17	OI	49 I	2	55
25	13	8. 5107088	516	3	58
26	-8	75	541	3	62
27	04	63	566	3	66
28	${ }^{\circ}$	50	591	3	69
29	8.5091196	38	617	3	73
30	8.5091192	8.5107025	1. 36642	2.3854	6.1576
31	8.58	12	667	4	80
32	83	8. 5107000	692	4	84
33	79	8. 5106987	717	4	87
34	75	74	743	5	91
35	70	62	768	5	95
36	66	49	793	5	
37	62	36	818	5	6.1602
38	58	24	843	6	05 09
39	54	11	869	6	09
40	8.5091149	8.5106898	1.36894	2.3856	6.1613
41	45	86	919	6	16
42	41	73	944	6	20
43	37	61	969	7	24
44	33	48	994	7	27
45	28	35	1.37020	7	3.
46	24	23	045	7	35
47	20	8.5106797	-070	8	38
48 49	16	8.5106797 85	095 120	8	4^{42}
50	8.5091107	8.5106772	1.37146	2.3858	6.1649
51	$0{ }^{0}$	59	171	8	53
52	8.5091099	47	196 221	8 9	56 60
53 54	95 90	34 21	221 246	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	60 64
54	90	21	246	9	64
55	86 82	09 8.5106696	271	9 9	67
57	78	8.51	322	$\begin{array}{r}9 \\ \hline\end{array}$	75
58	73		347	2.3860	78
59	69	58	372	O	82
60	8.5091065	8.5106645	1.37397	2.3860	6.1686

LATITUDE $\mathbf{4 3}^{\circ}$

Lat.	$\begin{gathered} \log \mathbf{A} \\ \text { diff. } \mathbf{1}^{\prime \prime}=-0.0 \end{gathered}$	$\begin{gathered} \log 1 B \\ \operatorname{diff.} 1^{\prime \prime}=-0.21 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathbf{I}^{\prime \prime}=+0.42 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \operatorname{diff} . \mathrm{I}^{\prime \prime}=+0.00 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \operatorname{diff.} \mathbf{1}^{\prime \prime}=+0.06 \end{gathered}$
	8.5091065 ${ }_{61}$	8.5106645	1.37397	2.3860	6.1686
4300			422	0	89
2	61	20	447	0	93
3	5248	8.07	473	1	$\begin{array}{r} 97 \\ 6.1700 \end{array}$
4		8.5106595	498		
5	44	82	523548	1	6.1700
6		6957			04 08
7	3531		573	1	11
8		44		2	15
9		32	624	2	19
10	8.5091023	8.5106519	I. 37649	2.3862	
11	19	8.5106 06	674	2	26
12	14	8.5106494	699	2	30
13	1006	8168	724	2	33
14			749	3	47
15	$\begin{array}{r} 02 \\ 8.509 \circ 998 \end{array}$	56	774	3	
16		4330		3	44
17	83		825850	3	
18	89	18		3	48 52
19	85	05	875	3	55
20	8.5090981 ${ }_{76}$	8.5106392	1.37900	2.38644	6.175963
21			925950		
22	76 72 78	80 67		4 4	66
23	68	54	950 97	4	70
24	64	42	1.38001	4	
25	60	29	026	4	77
26	55	16	051076	4	
27 28	51	8.5106291 ${ }^{04}$			8
28	43		101	5	88
30	8.5090938	8.5106266	1.38152		6.1796
31	3430	534048	$\begin{array}{r} 177 \\ 202 \end{array}$	2.386555	$\begin{array}{r} 99 \\ 6.1803 \end{array}$
32					
33	26	28	227	5	07
34		15	252	6	
35	$\begin{aligned} & 17 \\ & 13 \\ & 09 \\ & 05 \\ & 00 \end{aligned}$	028.5106189	277		$\begin{aligned} & 14 \\ & 18 \\ & 22 \\ & 25 \\ & 29 \end{aligned}$
36 37			302 327	6	
38		64	353	6	
39		51	378	6	
40	8.5090896	8. 5106139	I. 38403428	2.3866	$\begin{array}{r} 6.1833 \\ 36 \end{array}$
41	$\begin{aligned} & 92 \\ & 88 \end{aligned}$	2613			
42			428	7	36 40
43	83	8.5106088	478	7	44
44	79		503	7	
45	7571676258	$\begin{aligned} & 75 \\ & 63 \\ & 50 \\ & 37 \\ & 25 \end{aligned}$	$\begin{aligned} & 528 \\ & 554 \\ & 579 \\ & 604 \\ & 629 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 51 \\ & 55 \\ & 58 \\ & 62 \\ & 66 \end{aligned}$
46					
47					
48 49					
49					
50	8.5090854	8.5106012 8.5105999	1.38654	2.3868	6. 1870
51	50		679	8	73778184
52	45	87	704	8	
53	41 3	74	729	8 8	
54	37	61	754	8	84
55	33	49		8	88
56	29	36	805	8	92 96
57	24	23	830	8	90
58 59	20 16	8.5105898	855 880	9 9	6. $\begin{array}{r}99 \\ \hline 903\end{array}$
60	8.5090812	8.5105885		2.3869	6.1907
	8.5090812	8.5105885	1.38905	2.3809	6.1907

LATITUDE 44°

Lat.	$\begin{gathered} \log \mathbf{A} \\ \text { diff. } \mathrm{i}^{\prime \prime}=-0.07 \end{gathered}$	$\begin{gathered} \log \mathbf{B} \\ \text { diff. } 1^{\prime \prime}=-0.21 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathbf{1}^{\prime \prime}=+0.42 \end{gathered}$	$\log 1$ diff. $\mathbf{1}^{\prime \prime}=+0.00$	$\log \mathbf{E}$ diff. $\mathbf{1}^{\prime \prime}=+0.06$
- '					
44	8.5090812 ${ }_{\text {a }} \mathbf{0 7}$	8.5105885	1.38905	2.3869	6.1907 10
2	07 03	73 60	930 955	9 9	10 14
3	8.5090799	47	980	9	18
4	95	35	1.39006	9	22
5	$8{ }^{9}$	22 09	O3I 056	9 9	25 29
7	82	8.5105796	-81	9 9	33
8	78	${ }^{8}{ }^{5}$	106	2.3870	36
9	74	71	135	0	40
10	8.5090769	8.5105758	1. 39156	2.3870	6.1944
11	${ }_{65}^{69}$	46	181	\bigcirc	48
12	6 6	33	206	-	51
14	52	${ }^{20}$	232 257	\bigcirc	55 59
15	48	8.5105695	282	\bigcirc	63
17	44	82 70	307 332	$\stackrel{\square}{\circ}$	70
18	36	57	357	\bigcirc	74
19	31	44	382	\bigcirc	78
20	8.5090727	8.5105632	1. 39407	2.387 I	6.1985
21		19	432	1	85
22	19 14	8.5105504	458	${ }_{1}^{1}$	89
23 24	14 10	8.5105594	483 508	1	92 96
25	06	68	533	1	6.2000
26	8.5090698	45	558 583	1	04 07
28	8.509093	43 30	608	1	11
29	89	17	633	1	15
30	8.5090685	8.5105505	1. 39658	2.3871	6.2019
31 32 3	81 76 7	8.5105492	683	,	22
32 33	76 78	79 67	709. 734	1	26 30
34	68	54	759	1	34
35	${ }^{64}$	41	784	1	37
36	59	29	889	1	41
37	55	16 03	834 859 88	1	45
39	47	8.5105391	884	2	52
40	8.5090643	8.5105378	1.39909	2.3872	6.2056
41	38	65	934	2	60
42	34 30	52 40 20	960 985	2	64
43 44	26	47 20	1.4005	2 2	${ }_{71}^{68}$
45	21	14 02	035 060	2	75
47	13	8.5105289	-800	2	89
48	${ }^{\circ} \mathrm{O}$	${ }^{76}$	110	2	86
49	${ }_{4} 4$	64	135	2	90
50	8.5090600	8.510525 x	1.40160	2.3872	6.2094
51	8.5090596	38	185	2	98
52 53	92 88	26 13	210 236	2	6.2101 05
54	83	-0	261	2 2	05 09
55	79	8.5105187	286	2	13
50 57	${ }_{71}^{75}$	75 62	311 336	2	17 20
58	66	49	336 3	2	
59	62	37	3^{86}	2	28
60	8.5090558	8.5105124	1.40411	2.3872	6.2132

LATITUDE $\mathbf{4 5}^{\circ}$

Lat.	$\begin{gathered} \log \mathbf{A} \\ \operatorname{diff} .1^{\prime \prime}=-0.07 \end{gathered}$	$\begin{gathered} \log \mathbf{B} \\ \text { diff. } \mathrm{x}^{\prime \prime}=-0.2 \mathrm{I} \end{gathered}$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } \mathrm{x}^{\prime \prime}=+0.42 \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathbf{x}^{\prime \prime}= \pm 0 . \infty 0 \end{gathered}$	$\log \mathbf{E}$ diff. $1^{\prime \prime}=+0.06$
- ,					
4500	8.5090558	8.5105124	1.40411	2.3872	6.2132
,	54	111	436	2	35
2	49	8.5105099	461	2	39
3	45	86	485	2	43
4		73	512	2	47
	37	61	537	2	51
6	33	48	502	2	54
8	28 24	35	587	2	58
9	24 20	10	612 637	2	66
10	8.5090516	8.5104997	1.40662	2.3872	6.2170
11	11	84	687	2	73
12	07	72	712	2	77
13	03	59	738	2	81
14	8.5090499	46	763	2	85
15	94	34	788	2	89
16	90	21	813	2	92
17	86	08	838	2	96
18	82	8.5104896	863	2	6.2200
19	78	83	888	2	04
20	8.5090473	8.5104870	1.40913	2.3872	6.2208
21	69	58	938	2	11
22	65	45	963	2	15
23	61	32	989	2	19
24	56	19	1.41014	2	23
25	52	07	039	2	27
26	48	8.5104794	064	2	30
27	44	81	089	2	34
28	39	69	114	2	38
29	35	56	139	2	42
30	8.5090431	8.5104743	1.41164	2.3872	6.2246
31	27	38	189	2	49
32	23	18	214	2	53
33	18	8.05	240	2	57
34	14	8.5104693	265	2	
35	10	80	290	2	65
36	06	67	315	2	69
37	8.5090397	55	340	2	72 76
38 39	8.5090397 93	42 29	365 390	2	80
40	8.5090389	8.5104616	1.41415	2.3872	6.2284
41	85	04	440	I	88
42	80	8.5104591	465	1	$9 \mathrm{9I}$
43	76	8 79	491	1	95
44	72	66	516	1	99
45	68	53	541	1	6.2303 6.2307
46	63	48	566	1	6.2307 11
47	59	28	591 616	I	14
48	55 51	15 02	616 641	1	148
50	8.5090346	8.5104490	1.41666	2.3871	6.2322
51	4.5	8.517	691	1	26 30
52	38	64	717	$\underline{1}$	30
53	34	52	742	1	34
54	30	39	767	1	37
55	25	26	792	1	41
56	2 I	14 01	817 842	1	49
57	17	8.5104388 ${ }^{\text {O1 }}$	887	0	53
59	08	8.515	892	0	57
60	8.5090304	8.5104363	1.41917	2.3870	6.2361

H. Ex. $81-44$

LATITUDE 46°

Lat.	$\begin{gathered} \log \mathbf{A} \\ \operatorname{diff} . \mathbf{I}^{\prime \prime}=-0.07 \end{gathered}$	$\begin{gathered} \log \mathrm{B} \\ \text { diff. } \mathrm{x}^{\prime \prime}=-0.21 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathbf{x}^{\prime \prime}=+0.42 \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \operatorname{diff.} \mathrm{I}^{\prime \prime}=-0.00 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathrm{I}^{\prime \prime}=+0.06 \end{gathered}$
$\bigcirc 1$					
4600	8.5090304	8.5104363	1.41917	2.3870	6.2361
		50	943	0	64
2	8.5090296	37	968	0	68
3		25	993	0	72
	8_{7}	12	1.42018	0	76
	83			0	
6	79	8.58	068	\bigcirc	84
8	75	74	${ }_{9}^{03}$	0	88
8	70	61	118	\bigcirc	91
9	66	49	143	0	95
10	8.5090262	8.5104236	1.42169	23869	6.2399
11	58	23	194	9	6.2403
12	53	11	219	9	07
13	49	8.5104198	244	9	11
14	45	85	269	9	15
15	41	73	294	9	18
16	37	60	319	9	22
17	32	47	344	9	26
18	28	35	370	9	30
19	24	22	395	9	34
20	8.5090220	8.5104109	1.42420	2.3868	6.2438
21	15	8.5104096	445	8	42
22	11	84	470	8	46
23	07	71	495	8	49
24	03	58	520	8	53
25	8.5090198	46	545	8	57
26	94	33	571	8	61
27	90	20	596	8	65
28	86	08	621	8	69
29	82	8.5103995	646	8	73
30	8.5090177	8.5103982	1.42671	2.3867	6.2477
31	73	70	696	7	80
32	69	57	721	7	84
33	65	44	746	7	88
34	60	32	772	7	92
35	56	19	797	7	$6{ }^{96}$
36	52	8.06	822	7	6.2500
37 38	48	8.5103894	847 872	6	04 08
38 39	44 39	81 68	872 897	6	08 12
40	8.50901 35	8.5103856	1.42922	2.3866	6.2515
41	31	43	948	6	19
42	27	38	973	6	23
43	22	18	998	6	27
44	18	05	1.43023	6	31
45	14	8.5103792	048	5	35
46	10 06	80 67	073	5	39 43
478	06 01	67 54	O98	5	43
49	8.5090097	42	149	5	51
50	8.5090093	8.5103729	1.43174	2.3865	6.2554
51	89	16	199	5	58
52	84	8 - ${ }^{18}$	224	4	62
53	80	8.5103691	249	4	66
54	76	78	274	4	70
55	72	66	300	4	74
56	68	53	325	4	78
57	63	48	350	4	82
58 58	59 55	28 15	375 400	3 3	86 90
60	8.5090051	8.5103602	1.43425	2.3863	6.2594

LATITUDE $\mathbf{4 7}^{\circ}$

Lat.	$\log A$ diff. $1^{\prime \prime}=-0.07$	$\begin{gathered} \log \mathbf{B} \\ \text { diff. } \mathbf{x}^{\prime \prime}=-0.21 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathrm{I}^{\prime \prime}=+0.4^{2} \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } 1^{\prime \prime}=-0.00 \end{gathered}$	$\log \mathbf{E}$ diff. $\mathrm{I}^{\prime \prime}=+0.07$
- '					
4700	8.5090051	8.5103602	1.43425	2.3863	6.2594
1	46	8.5103590	451	3	67
2	42	77	476	3	6.2601
3	38	64	501	3	05
4	34	52	526	2	09
5	30	39	551	2	13
6	25	26	576	2	17
7	21	14	602	2	21
8	17	${ }^{181}$	627	2	25
9	13	8.5103488	652	2	29
10	8.5090008	8.5103476	1.43677	2.3861	6.2633
11	04	${ }^{5} 6$	702	1	37
12	Oo	50	727	1	41
13	8.5089996	38	753	1	45
14	92	25	778	1	49
15	87	12	803	0	53
16	83	-o	828	0	56
17	79	$8.51033{ }^{8} 7$	853	0	60
18	75	74	878	\bigcirc	64
19	71	62	904	0	68
20	8.5089966	8.5103349	1.43929	2.3860	6.2672
21	62	37	954	2.3859	7^{6}
22	58	24	979	9	80
23	54	11	1.44004	9	84
24	49	8.5103299	030	9	88
25	45	86	055 080	8	92 96
26 27	41 37	73 61	080 105	8	98 6.2700
28	33	48	130	8	04
29	28	35	155	8	08
30	8.5089924	8.5103223	1.4418 r	2.3858	6.2712
31	20	810	206	7	16
32	16	8.5103197	231 256	7	20
33 34	11 07	85 72	256 281	7	24 28
	O3	59	307	6	3 I
36	8,5089899	47	332	0	35
37	95	34	357	6	39
3^{8}	88	22	382	6	43
39	86	09	407		47
40	8.5089882	8.5103096	1.44433	2.3855	6.2751
41	78	${ }^{8} 4$	458	5	55
42	74	71	483	5	59
43	69	58	508	5	63
44	65	46	534	4	67
45	61	33	559	4	71
46	57	20	584	4	75
47	53	${ }^{08}$	609	4	89
48	48	8.5102995 83	634 660	4 3	83 8
49	44	83	660	3	8
50	8.5089840	8.5102970	1.44685	2.3853	6.2791
51	36	57	710	3	95
52	31	45	735	3	99 6.2803
53	27	32	761	2	6.2803
54	23	19	786	2	${ }^{07}$
55	19	07	811	2	11
56	15	8.5102894	836	2	15
57	10	82	861	1	19
58	06	69	887	1	23
59	02	56	912	1	27
60	8.5089798	8.5102844	1.44937	2.3851	6.2831

LATITUDE 48°

Lat.	$\log A$ diff. $\mathbf{1}^{\prime \prime}=-0.07$	$\begin{gathered} \log 18 \\ \text { diff. } 1^{\prime \prime}=-0.21 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } I^{\prime \prime}=+0.42 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } \mathbf{1}^{\prime \prime}=-0.00 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathrm{I}^{\prime \prime}=+0.07 \end{gathered}$
01					
4800	8. 5089798	8.5102844	1. 44937	2.3851	6.2831
1	94	3 I	962	0	35
2	89	18	988	-	39
3	85	06	1.45013	o	43
4	81	8.5102793	038	0	47
5	77	81	063	2.3849	51
6	73	68	089	9	55
7	68	55	114	9	59
8	64	43	139	9	63
9	60	30	164	8	67
10	8.5089756	8.5102717	1.45190	2. 3848	6.2871
11	52	05	215	8	75
12	47	8.5102692	- 240	7	79
13	43	80	265	7	83
14	39	67	291	7	87
15	35	54	316	7	91
16	30	42	341	6	95
17	26	29	366	6	99
18	22	17	392	6	6.2903
19	18	04	417	6	07
20	8.5089714	8.5102591	1.45442	2.3845	6.2911
21	09	79	467	5	15
22	05	66	493	5	19
23	${ }^{01}$	53	518	4	23
24	8.5089697	41	543	4	27
25	93	28	569	4	31
26	88	16	594	4	35
27	84 80	8.5102400	619	3	39
29	76	8.5102490 78	644 670	3	43 47
30	8.5089672	8.5102465	1.45695	2.3842	6.2951
31	67	53	720	2	55
32	63	40	746	2	59
33	59	27	771	I	63
34	55	15	796	1	67
35	51	02	821	I	71
36	46	8.5102390	847	1	75
37	42	77	872	-	79
38	38	64	897	-	83
39	34	52	923	\bigcirc	87
40	8.5089630	8.5102339	1.45948	2.3839	6.2992
41	25	27	973	9	96
42	21	14	999	9	6.3000
43	17	O2	1.46024	8	O_{4}
44	13	8.5102289	049	8	08
45	09	76	075	8	12
46	04	64	100	7	16
47	${ }^{00}$	51	125	7	20
48	8.5089596	39	150	7	24
49	92	26	176	6	28
50	8.5089588	8.5102213	1.46201	2.3836	6.3032
51	84	8.101	226	6	36
52	79	8.5102188	252	5	40
53	75	76	277	5	44
54	71	63	- 302	5	48
55	67	51	328	4	52
56	63	38	353	4	56
57	58	25	378	4	60
58	54	13	404	3	65
59	50	OO	429	3	69
60	8.5089546	8.5102088	1.46454	2.3833	6.3073

LATITUDE 49°

Lat.	$\log A$ diff. $x^{\prime \prime}=-0.07$	$\log \mathrm{E}$ dif. $\mathbf{1}^{\prime \prime}=-0.2 \mathrm{I}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } 1^{\prime \prime}=+0.42 \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathrm{r}^{\prime \prime}=-\mathbf{0 . 0 0} \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathbf{1}^{\prime \prime}=+0.07 \end{gathered}$
$\begin{array}{cc} 0 \\ 49 & \prime \\ \hline 9 \end{array}$	8.5089546	8.5102088	1. 46454	2.3833	6.3073
1	42	75	1.480	${ }_{2}$	77
2	37	62	505	2	81
3	33	50	531	2	85
4	29	37	556	1	89
5	25	25	58 I	1	93
6	21	12	607	1	97
7	16	\bigcirc	632	\bigcirc	6.3101
8	12	8.5101987	657	-	05
9	08	75	683	0	09
10	8.5089504	8.5101962	1.46708	2.3829	6.3113
11		49	733	9	17
12	8.5089496	37	759	9	22
13	91	24	784	8	26
14	87	12	810	8	30
15	83	8.5101899	835	8	34
16	79	87	860	7	38
17	75	74	886	7	42
18	70	61	915	6	46
19	66	49	936	6	50
20	8.5089462	8.5101836	1.4696z	2.3826	6.3154
21	58	24	987	5	58
22	54	11	1.47013	5	62
23	49	8.5101799	$0{ }_{0}{ }^{8}$	4	67
24	45	86	063	4	71
25	41	74	-89	4	75
26	37	61	114	3	79
27	33	49	140	3	83
28	29	36	165	3	87
29	24	23	190	2	91
30	8.5089420	8.5101711	1.47216	2.3882	6.3195
31	. 16	8.5101698	24 L	2	99
32	12	-86	267	1	6.3203
33	08	73	292	1	08
34	03	61	3^{18}	-	12
35	8.5089399	48	343	\bigcirc	16
36	95	36	368	0	20
37	8 g	23 11	394	2.3819	24 28
38 39	87 83	$8.5101598{ }^{11}$	419 445	8	28 32
40	8.5089378	8.5101586	1.47470	2.3818	6.3236
41	74	73	496	7	41
42	70	61	521	7	45
43	66	48	546	7	49
44	62	35	572	6	53
45	58	23 10	597	6	57
46	53 49	$\begin{array}{r} 10 \\ 8.5101498 \end{array}$	623	5	61 65
47	49	8.5101498 85	648 674	5	69
49	41	73	699	4	74
50	8.5089337	8.5101460	1.47725	2.3814	6.3278
51	33	48	750	3	82 86
52	28	35	$7{ }^{76}$	3	80
53 54	24 20	23 10	801 827	2	90 94
	16	8.5101398	852	2	98
56	12	85	877	I	6.3303
57	07	73	903	1	11 11
58 59	03 8.5089299	$\begin{aligned} & 60 \\ & 48 \end{aligned}$	928 954	- ${ }_{0}^{\circ}$	115
	8.5089299		954		
60	8.5089295	8.5101335	1.47979	2.3809	6.3319

LATITUDE 500

Lat.	$\begin{gathered} \log \mathbf{A} \\ \text { diff. } \mathbf{1}^{\prime \prime}=-0.07 \end{gathered}$	$\begin{gathered} \log \mathbf{B} \\ \text { diff. } \mathbf{1}^{\prime \prime}=-0.2 \mathbf{1} \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathrm{I}^{\prime \prime}=+-0.43 \end{gathered}$	$\begin{gathered} \log D \\ \text { diff. } \mathrm{I}^{\prime \prime}=-0.01 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathrm{I}^{\prime \prime}=+0.07 \end{gathered}$
$\bigcirc 1$					
5000	8.5089295	8.5101335	1.47979	2.3809	6.3319
I		23	1.48005	9	23
2	87	10	030	9	27
3	82	8.5101298	056	8	32
4	78	85	081	8	36
5	74	73	107	7	40
	70 66	60	132	7	44
7	66	48 35	158 183	6	48 52
9	57	23	209	5	56
10	8.5089253	8.5101210	1.48234	2. 3805	6.3361
11	49	8.5101198	260	5	65
12	45	85	286	4	69
13	40	73	311	4	73
14	36	60	337	3	77
15	32	48	362	3	81
16	28	35	388	2	86
17	24	23	413	2	90
18	19	10	439	$\underline{1}$	94
19	15	8.5101098	464	1	98
20	8.5089211	8.5101085	1.48490	2.3801	6.3402
21	07	73	515	\bigcirc	07
22	8.03	60	541	\bigcirc	11
23	8.5089199	48	566	2.3799	15
24	95	35	592	9	19
25	90	23	618	8	23
26	86 82	$8.11{ }^{11}$	643	8	27
27 28	82 78	8.5100998	669	7	32
29	74	85 73	694 720	7	3^{6}
30	8.5089170	8.5100960	1.48745	2.3796	6.3444
31	65	48	771	5	48
32	61 57	35	797	5	53
33	57	23	822	4	57
34	53	10	848	4	61
35	49	8.5100898	873	3	65
36	45	85	899	3	69
37 38		73 60	924	2	73
38 39	36 32	60 48	950 976	2	78 82
40	8.5089128	8.5100835	1.49001	2.3791	6.3486
41	24	23	027	0	90
42	20	$8{ }^{10}$	052	${ }^{\circ}$	94
43	15	8.5100798	078	2.3789	99
44	11	85	104	9	6.3503
45	07	73	129	8	07
46	8.5089099 ${ }^{\text {O7 }}$	61 48	155	8	11
47 48	8.5089099 95	48 36	180 206	7	16
49	90	23	232	6	24
50	8.5089086	8.5100711	1.49257	2.3786	6.3528
51	82 78	8.5100699	283	5	32
52	78	86	309	5	37
53 54	74 70	74 61	a $-\quad 364$ $-\quad 360$	4	4 4
54	65			4	45
55 56	62	49 37	411	3	49 54
57	58	24	437	2	58
58	53	8.12	463	2	62
59	49	8.5100599	488	I	66
60	8.5089045	8.5100587	1.49514	2.3781	6.3570

LATITUDE 510°

Lat.	$\log \mathbf{A}$ diff. $\mathbf{x}^{\prime \prime}=-0.07$	$\log 18$ diff. $\mathbf{1}^{\prime \prime}=-0.21$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathbf{x}^{\prime \prime}=+0.43 \end{gathered}$	$\log 1 D$ diff. $\mathbf{1}^{\prime \prime}=$ ——o. 01	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathbf{I}^{\prime \prime}=+0.07 \end{gathered}$
\bigcirc -					
51 00	8.5089045	8.5100587	1.49514 540	$2.378 \mathbf{8}$ 0	6.3570
2	37	62	565	\bigcirc	79
3	32	50	591	2.3779	83 87
4	28	37	617	9	87
5	24	25	642	8	${ }_{66}$
6	20	13	668	7	
8	16 12	8.5100488 ${ }^{\text {O2 }}$	694 719	7	6.3600 04
9	08	8.5	745	6	\bigcirc
10	8.5089003	8.5100463	1.49771	2.3775	6.3613
12	8.5088999	51	796	5	${ }_{21}^{17}$
12	95	${ }^{36}$	${ }_{84} 82$	4	26 26
13 14	$8{ }_{7}$	13	873	3	3°
15	83	${ }^{01}$	899	3	34
16	79	8.5100389	925	2	3^{8}
17	75	76 64	951 976	${ }_{1}$	43
19	66	51	1.50002	-	51
20	8. 5088962	8.5100339	1.50028	2.3770	6.3655
21	58	27	053	2.3769	6
22	54	$\begin{aligned} & 14 \\ & 02 \\ & 02\end{aligned}$	079 105	9	64 68
23 24	$4{ }_{4}$	8.5100289	13^{1}	8	72
25	42	77	156	7	87
26 27	$3{ }^{88}$	55	182 208	6	85
27 28	34 29	40	234	5	89
29	25	27	259	5	94
30	8.5088921	8.5100215	1.50285	2.3764	6.3698
31	17	${ }^{\circ} \mathrm{O}$	311	4	6.3702
32	13	8.5100190 78	337 363	3 3	${ }_{11}{ }^{7}$
33 34	09 0	78 66	388 388	3	15
35	or	53	414	1	19
36	8.5088897	$4{ }^{41}$	446	O	24 28 28
37 38	83	29 16	460 491	${ }_{0}^{0}$	32
39	84	04	517	2.3759	37
40	8.5088880	8.510009 I	1.50543	2.3759	6.3741
41	76	79	569		45
42	72 -68	57	595	7	${ }_{54}^{49}$
43	-68 63	${ }_{42}{ }^{54}$	646	6	58
	59	29	672	6	62
46	55	16	698	5	67
47	51	${ }^{0} 4$	724	4	71
48	47	8.5099991 79	775	4	79
50	8.5088838	8.5099967	1.50801	2.3753	6.3788
51	34	55	887	2	
52	$3{ }^{3}$	42	853 879	1	${ }_{97}^{92}$
53 54	26 22	30 17	879 905	$\stackrel{1}{0}$	6.3801
	18		931	0	05
55	14	8.5099893 ${ }_{81}$	956	2.3749	10 14
57	10	81 69	[.51008	8	18
59 59	- ${ }^{\circ} \mathrm{O}$	56	${ }^{1} \mathrm{O} 34$	7	23
60	8.5088797	8. 5099844	1.51060	2.3747	6.3827

LATITUDE 玉º

Lat.	diff. $\mathbf{I}^{\prime \prime}=-0.07$	$\begin{gathered} \log \mathbf{B} \\ \text { diff. } 1^{\prime \prime}=-0.20 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathbf{1}^{\prime \prime}=+0.43 \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathbf{I}^{\prime \prime}=-0.0 \mathbf{1} \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathrm{I}^{\prime \prime}=+0.07 \end{gathered}$
$\begin{array}{cc} \circ \\ 52 & 00 \end{array}$	8.5088797		1.51060		6.3827
5200	8.5088797 93	8.5099844 32	1.51060 086	2.3747 6	6.3827 31
2	89	19	112	5	36
3	85	07	138	5	40
4	81	8.5099795	163	4	44
5	77	82	189	3	48
6	73	70	215	3	53
7	69	58	241	2	57
8	65	46	267	2	61
9	61	33	293	1	66
10	8.5088756	8.5099721	1.51319	2.3740	6.3870
11	52	$8{ }^{09}$	345	0	74
12	48	8.5099696	371	2.3739	79
13	44	8_{4}	397	8	83
14	40	72	423	8	88
15	36	60	448	7	92
16	32	47	474	6	96
17	28	35	500	6	6.3901
18	24	23	526	5	05
19	20	10	552	4	09
20	8.5088715	8.5099598	1.51578	2.3734	6.3914
21	11	86	604	3	18
22	07	73	630	3	22
23	8.8088	61	656	2	27
24	8.5088699	49	682	1	31
25	95	37	708	1	35
26	91	25	734	0	40
27	87	12	760	2.3729	44
28 29	83	${ }_{0}^{0}$	786	9	48
29	79	8.5099487	812	8	53
30	8.5088674	8.5099475	1.51838	2.3727	6.3957
31	70	63	864	7	62
32	66	50	890	6	66
33	62	38	916	5	70
34	58	26	942	5	75
35	54	14	968	4	79
36	50	$8{ }^{02}$	994	3	83
37 38	46 42	8.5099389 77	1.52020 046	3 2	88
39	38	77 64	046 072	1	92
40	8.5088633	8.5099352	1.52098	2.3721	6.4001
41	29	40	124	0	05
42	25	28	150	2.3719	10
43	21	15	176	888888	14
44	17	03	202	8	18
45	13	8.5099291	228	7	23
46	09	79	254	6	27
47	05 01	67	280	6	32
48	8. 5088597	54 42	307 333	5 4	36 40
				4	
50	8.5088593	8.5099230	1. 52359	2.3714	64045
51	89	18	385	3	49
52	85	06	411	2	54
53	81	8.5099193	437	2	58
54	77	8 I	$4{ }^{63}$	1	62
55	72	69	489	\bigcirc	67
56	68	57	515	2.3709	71
57	64	45 32	541 567	8	80
59	56	20	593	7	84
60	8.5088552	8.5099108	1.52620	2.3707	6.4089

LATITUDE 53°

Lat.	diff. $\mathbf{I}^{\prime \prime}=-0.07$	\log It diff. $\mathbf{r}^{\prime \prime}=-0.20$	$\log \mathbf{C}$ diff. $1^{\prime \prime}=+0.44$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } \mathbf{I}^{\prime}=-0.01 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathbf{I}^{\prime \prime}=+0.08 \end{gathered}$
$\bigcirc 1$					
5300	8.5088552		1.52620	2.3707	6.4089
	48	8.5099096	646	6	93
2	44	8_{4}	672	5	98
3	40	$7 \mathrm{r}$	698	4	6.4102
4		59	724	4	07
5 6	32 28	47	750	3	11
	28	35	776	2	15
8	24 19	23 10	803 829	2	20 24
9	15	8.5098998	855	\bigcirc	29
10	8.5088511	8.5098986	1.52881	2.3699	6.4133
11	07	73	907	8	37
12	$8{ }_{5088}{ }^{\circ 3}$	61	933	8	42
${ }^{3}$	8.5088499	49	960 986	7	46
14	95	37	986	6	51
15	91	25	1.53012	6	55
16	87	13	0.038	5	60
17	83	O1	064	4	64
18	79	8.5098889	091	4	68
19	75	77	117	3	73
20	8.5088470	8.5098864	1.53143	2.3692	6.4177
21	66	52	169	,	82
22	62	40	195	1	86
23	58	28	222	${ }^{\circ}$	9 m
24	54	16	248	2.3689	95
25	50	04	274	8	6.4200
26	46	8.5008789	300	8	04
27	42	79	327	7	08
28	38	67	353	6	13
29	34	55	379	5	17
30	8.5088430	8.5098743	1.53405	2.3685	6.4222
31	26 22	318	438	4	${ }_{3}^{26}$
32 33	22 18	18 06	458 484	3 2	31 35
34	14	8.5098694	510	1	40
35	10	82	537	i	44
36	06	70	563	${ }^{\text {c }}$	49
37	${ }_{8}{ }^{02}$	58	589	2.3679	53
38	8.5088398	46	616	8	58
39	94	34	642	8	62
40	8.5088390	8.5098621	1.53668	2.3677	6.4267
41	86	0.09	694	6	71
42	82	8.5098597	721	5	76
43	78	85	747	5 4	80 85
44	74	73	773	4	89
45 46	70 66	61 49	800 826	3 2	93
47	61	37	852	1	98
48	57	25	879	1	6.4302
49	53	13	905	-	$\bigcirc 7$
50	8.5088349	8.5098500	1.53938	2.3669	6.43116
51	45	85098488	958	8	16 20
52	41	${ }^{76}$	984	7	25
53 54	37	64 52	1.54011 037	7	25 29
	29	40	063	5	34
56	25	28	090	4	38
57	21	16	116	3	43
58	17	${ }_{8}{ }^{\text {O4 }}$	142	3	47
59	13	8.5098392	169	2	52
60	8.5088309	8.5098379	1.54195	2.3661	6.4356

H. Ex. $81-45$

LATITUDE $5 \mathbf{4 0}^{\circ}$

Lat.	$\begin{gathered} \log \mathbf{A} \\ \text { diff. } \mathrm{I}^{\prime \prime}=-0.07 \end{gathered}$	$\begin{gathered} \log \mathrm{B} \\ \text { diff. } \mathbf{1}^{\prime \prime}=-0.20 \end{gathered}$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } \mathbf{x}^{\prime \prime}=+0.44 \end{gathered}$	$\begin{gathered} \log D \\ \text { diff. } x^{\prime \prime}=-0.01 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathrm{I}^{\prime \prime}=+0.08 \end{gathered}$
54 1	8.5088309 05	8.5098379 67	1.54195 222	2.3661 0	6.4356
2	01	55	248	2.3659	65
3	8.5088297	43	275	9	70
4	93	31	301	8	75
6	89	19	327	7	79
6	85 81	8.5098205	354	6	84 88
8	81 77	8.5098295 83	380 407	5	88
9	73	71	433	4	97
10	8.5088269	8.5098258	1. 54460	2. 3653	6.4402
11	65	46	486	2	06
12	6 T	34	513	1	11
13	57	22	539	0	15
14	53	10	565	2.3649	20
15	49	8. 5098198	592	9	24
16	45	86	618	8	29
17	41	74	645	7	33
18	37	62	671	6	38
19	33	50	698	5	43
20	8.5088229	8. 5098138	1. 54724	2.3644	6.4447
21	25	26	751	4	52
22	21	14	777	3	56
23	17	02	804	2	61
24	13	8.5098090	831	1	65
25	09	78	857	0	70
26	05	66	884	2.3639	74
27	OI	53	910	8	79
28	8.5088197	41	937	8	83
29	93	29	963	7	88
30	8.5088189	8.5098017	1. 54990	2.3636	6.4493
31	85	05	1.55016	5	- 97
32	81	8.5097993	043	4	6.4502
33	77	81	070	3	06
34	73	69	096	3	11
35	69	57	123	2	15
36	65	45	149	1	20
37	61	33	176	\bigcirc	25
38 39	57 53	21 09	202	2.3629	29
39	53	09	229	8	34
40	8.5088149	8.5097897	1. 55256	2.3627	6.4538
41	45	85	282	6	43
42	41	73	309	6	47
43	37	6 I	336	5	52
44	33	49	362	4	57
45	29	37	389	3	61
46	26	25	415	2	66
48	18	1	442	1	75
49	14	8.5097789	495	2.3619	80
50	8.5088110	8.5097777	I. 55522	2.3619	6.4584
51	06 02	65 53	549	8	89
52	8.02	53	575	7	93
53	8.5088098	411	602	6	98
54	94	29	629	5	6.4603
55	90	18	656	4	07
56 57	86 82	8.5097694	682 709	3	12
98	78	88	736	2	21
59	74	70	762	0	26
60	8.5088070	8.5097658	1. 55789	2.3610	6.463°

LATITUDE 5s

Lat.	$\begin{gathered} \log \mathbf{A} \\ \text { diff. } \mathbf{x}^{\prime \prime}=-0.07 \end{gathered}$	$\begin{gathered} \log \mathbf{B} \\ \text { diff. } 1^{\prime \prime}=-0.20 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } 1^{\prime \prime}=+0.45 \end{gathered}$	$\begin{gathered} \log D \\ \operatorname{diff.} 1^{\prime \prime}=-0.02 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \operatorname{diff} . \mathbf{1}^{\prime \prime}=+0.08 \end{gathered}$
0 -					
5500	8.5088070	8.5097658	1.55789	2.3610	6.4630
		46	816	2.3609	35
2	62	34	843	8	39
3	58	22	869	7	44
4	54	1 I	896	6	49
5	50	8.5097599	923	5	53
6	46	87	950	4	58
8	42	75	${ }^{976}$	3	62
8	38	63	1.56003	2	67
9	34	51	030	1	72
10	8.5088030	8.5097539	1. 56057	2.3600	6.4676
11	26	27	083	2.3599	88
12	22 18	15	110 137	8	86
13	18 14		137	8	90
14	14	8.5097492	164	7	95
15	10	80	191	6	6.4700
16	06	68	218	5	04
17	8. ${ }^{02}$	56	244	4	09
18	8.5087998	44	271	3	13
19	94	3^{2}	298	2	18
20	8.5087990	8.5097420	1.56325	2.3591	6.4723
21	86	8.08	352	${ }^{\circ}$	27
22	82	8.5097396	379	2.3589	32
23	78	85	405	8	37
24	74	73	432	7	41
25	70	61	459	6	46
26	67	49	486	5	51
27	63	37	513	4	55
28	55	25 13	540 567	3 3	65
30	8.5087951	8.5097301	1.56594	2.3582	6.4769
31	47	8.5097290	620	,	74
32	43	78	647	-	79
33	39	66	674	2.3579	83
34	35	54	701	8	88
35 36	31 28	42	728	7	93 97
37	24	18	755	5	6.4807
3^{8}	20	06	809	4	- 07
39	16	8.5097194	836	3	11
40	8.5087912	8.5097182	1.56863	2.3572	6.4816
41	08	71	890	,	21
42	04	59	917	\bigcirc	26
43	$8.50{ }^{\text {00 }}$	47	944	2.3569	30
44	8.5087896	35	971	8	35
45	92 88	23 11	998 $\times \quad 57025$	7	40
46 47	88 84	8.5097099	I. 57025 052	5	44
48	80	87	079	4	54
49	76	75	106	3	58
50	8.5087872	8. 5097064	1.57133	2.3562	6.4863
51	68	52	${ }_{160}$	1	68
52	64 60	41	187	$\stackrel{0}{ }$	73
53 54		29 17	214	$\begin{array}{r}2.3559 \\ \hline\end{array}$	77
54	56	17	241		82
55	52	05	268	7	87
56	49	8. 5096993	295	6	91
57	45	81	322	5	96
58	41	69 58	349	4	6.4901 06
59	37	58	376	3	O
60	8.5087833	8.5096946	1.57403	2.3552	6.4910

LATITUDE 56°

Lat.	$\log A$ diff. $\mathbf{1}^{\prime \prime}=-0.07$	$\log \boldsymbol{B}$ diff. $\mathbf{1}^{\prime \prime}=-0.19$	$\log \mathbf{C}$ diff. $\mathbf{I}^{\prime \prime}=+0.45$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathbf{1}^{\prime \prime}=-0.02 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathrm{I}^{\prime \prime}=+0.08 \end{gathered}$
$\begin{gathered} \circ \\ 56 \\ \hline \end{gathered}$	8.5087833	8.5096946	1.57403	2.3552	6.4910
1	29	34	431	1	15
2	25	22	458	-	20
4	21 17	8.5096899	485 512	2.3549 8	24 29
5	13	87	539	7	34
6	$\bigcirc 9$	75	566	6	39
8	${ }_{0}^{05}$	63 52	593 620	5 4	438
9	8.5087798	40	648	4	53
10	8.5087794	8.5096828	1.57675	2.3542	6.4958
11	90 86		702 729	I o	62 67
12	86 82	8,5096793	729 756	$\begin{array}{r}\text { 2 } \\ \hline\end{array}$	67 72
14	78	${ }_{81}$	784		77
15	74	70	811	7	81
17	70 66	$4{ }_{4}$	838 865 86	5	86 91
18	62	34	892	4	96
19	58	23	919	2	6.5000
20	8.5087754	8.5096711	1.57947	2.3531	6.5005
21	50 46	8.5096688	1.58001	2.3529	10 15
23	43	8.76	${ }_{0} 028$	- 8	19
24	39	64	056	7	24
25	35	53	${ }^{08} 3$	6	29
26	31	41	110	5	34
27	27	29	137	4	39
28 29	23 19	+18	165 192	3 2	43 48
30	8.5087715	8.5096594	1. 58219	2.3521	6.5053
31	11		${ }^{247}$		
32 33 3	07 03	71 59	274 301	$\begin{array}{r}2.3519 \\ \hline 8\end{array}$	62 67
33 34	${ }^{0} \mathrm{O}$	${ }_{4}{ }^{8}$	301 329	8 7	67 72
35	8.5087696	36	356	6	77
36	88	24	383	5	82 86
37 38	88 84	${ }_{\substack{12 \\ 01}}$	411 438	3 2	86
39	80	8.5096489	465	2	${ }_{96}$
40	8.5087676	8.5096477	1.58493	2.35 ro	6.5101
41	73	65	520	2.3509	${ }^{06}$
42	69	54	547	8	10
43 4	65 61	42 31	575 602	7	15 20
45	57	19	630		25
46	43	8.5096305 ${ }^{07}$	657	4	30
48	49	8.5096395 83	684 712	3 2	35
49	41	72	739	1	44
50	8.5087637	8.5096360	1.58766	2.3499	6. 5149
51	34 30	49	794	8	54
52 53	30 26	37 26	821 849	7	59 63
54	22	14	876	5	68
55	18	$8{ }^{02}$	904	4	73
57	14 10	8.509629 I	931	3	78
58	${ }_{06}$	67	9886	$\stackrel{2}{1}$	88 88
59	02	56	1.59014	2.3489	92
60	8.5087598	8.5096244	1. 59041	2.3488	6.5197

LATITUDE 57°

Lat.	$\begin{gathered} \log \mathbf{A} \\ \text { diff. } \mathbf{r}^{\prime \prime}=-0.06 \end{gathered}$	$\begin{gathered} \log \mathbf{B} \\ \text { diff. } \mathrm{I}^{\prime \prime}=-0.19 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathbf{1}^{\prime \prime}=+0.46 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } \mathbf{I}^{\prime \prime}=-0.02 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } x^{\prime \prime}=+0.08 \end{gathered}$
$\bigcirc 1$					
5700	8.5087598	8.5096244	1.59041	2.3488	6.5197
I	95	33	069	7	6.5202
2	91	21	096	6	97
3	87	8.89	124	5	12
4	83	8.5096198	151	4	17
5	79	86	$\times 79$	3	21
6	75	75	206	2	26
7	71	63	234	1	31
8	68	51	261	2.3479	36
9	64	40	289	8	41
10	8.5087560	8.5096128	1.59317	2.3477	6.524^{6}
1 I	56	17	344	6	51
12	52	05	372	5	55
13	48	8.5096093	399	4	60
14	44	82	427	3	65
15	40	70	455	1	70
16	37	59	482	o	75
17	33	47	510	2.3469	80
18	29	35	537	8	85
19	25	24	565	7	90
20	8.5087521	8.5096012	1.59593	2.3466	6.5294
21	18	${ }_{8}{ }^{\text {OI }}$	620	5	99
22	14	8.5095989	648	3	6.5304
23	10	77 66	676	2	09
24	06	66	703	1	14
25	02	54	731	0	19
26	8.5087498	43	759	2.3459	24
27 28	95	31	786	8	29
28	81	20 08	814	6	34
29	87	08	842	5	39
30	8.5087483	8.5095897	1.59870	2.3454	6.5343
31	79	85	897	3	48
32	75	74	925	2	53
33	71	62	953	1	58
34	67	51	981	2.3449	63
35	63	39	1.60008	8	68
36	60	28	036	7	73
37	56	17	064	6	78
38	52	05	092	5	8
39	48	8.5095794	119	4	88
40	8.5087444	8.5095782	1.60147	2.3442	6.5393
41	41	71	175	1	97
42	37	59	203	0	6.5402
43	33	48	231	2.3439	07
44	29	3^{6}	259	8	12
45	25	25	286	6	17
46	21	13	314	5	22
47	18	02	342	4	27
48 49	14 10	8.5095690 79	370 398	3 2	32 37
50	8.5087406	8.5095667	1.60426	2.3430	6.5442
51	102 8.5087398	56	453	2.3429	47
52	8.5087398	44	481	8	52
53 54	$\begin{aligned} & 95 \\ & 91 \end{aligned}$	33	509 537	7 6	67
55	87	10	565	4	67
56	83	8.5095599	593	3	72
57	79	87	621	2	77
58 59	75	76 64	649 677	1	87
60	8.5087368	8. 5095553	1,60705	2.3418	6.549 I

LATITUDE 58°

Lat.	$\begin{gathered} \log \mathbf{A} \\ \text { diff. } \mathbf{x}^{\prime \prime}=-0.06 \end{gathered}$	$\begin{gathered} \log 18 \\ \text { diff. } \mathrm{I}^{\prime \prime}=-0.19 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathbf{z}^{\prime \prime}=+0.47 \end{gathered}$	$\log D$ diff. $\mathrm{I}^{\prime \prime}=-0.02$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathbf{1}^{\prime \prime}=+0.08 \end{gathered}$
\bigcirc					
5800		8.5095553	1.60705	2.3418	6.5491
1	64	42	733	7	96
2	60	30	${ }_{7} 78$	6	6.5501
3	57	19	789	5	06
4	53	07	817	3	11
5	49		845	2	16
6	45	85	873	I	21
7 8	41 38	73	901	$\stackrel{0}{0}$	26
8	38	62	929	2.3409	31
9	34	50	957	7	3^{6}
10	8.5087330	8.5095439	1.60985	2.3406	6.5541
11	26	28	1.61013	,	46
12	22	16	041	4	51
13	19	05	069	2	56
14	15	8.5095393	097	1	61
15	11	82	125	0	66
16	07	71	153	2.3399	71
17	03	59	181	7	76 81
18	0	48	209	6	81 86
19	8.5087296	36	237	5	86
20	8.5087292	8.5095325	1.61265	2.3394	6.5591
21	88	14	294	2	${ }^{96}$
22	84	02	322	1	6.5601
23	81	8.5095291	350	0	06
24	77	80	378	2.3389	11
25	73	68	406		16
26	69	57	434	6	21
27	65	46	463	5	26
28	62	35	491	3	31
29	58	23	519	2	37
30	8.5087254	8.5095212	1.61547	2.3381	6.5642
31	50	OI	575	${ }^{\circ}$	47
32	47	8.5095189	604	2.3378	52
33	43	78	632	7	57
34	39	67	660	6	62
	35	56	688	4	67
36	32 28	44	717	3	72
37	28	33	745	2	77 82
38 39	- 24	22 10	773 801	2.3369	82 87
40	8.5087217	8.5095099	1.61830	2.3368	6.5692
41	13	88	858	7	6. 97
42	09	76	886	5	6.5702
43	06	65	915	4	07
44	02	54	943	3	12
	8.5087198	43	${ }^{971}$	2	17
46	94	31 20	1.62000	$\stackrel{\circ}{0}$	22
47	90 87	20 09	028 056	2.3359 8	27 32
48	87 83	8.5094997	056 085	8 6	32
50	8.5087179	8.5094986	1.62113	2.3355	6.5743
51	75	75	141	4	48
52	72	64	170 108	2	53
53	68	52	198	1	58
54	64	41	227	\bigcirc	63
	60	30	255	2.3348	68
56 57	57	19 08	284 312	7 6	73
57	53	8.5094896	312 340	6	78
58	49 46	8.5094896 85	340 369	4 3	83 88
60	8.5087142	8.5094874	1. 62397	2,3342	6.5793

LATITUDE 59°

Lat.	$\begin{gathered} \log \mathbf{A} \\ \text { diff. } \mathrm{I}^{\prime \prime}=-0.06 \end{gathered}$	$\begin{gathered} \log \mathrm{B} \\ \text { diff. } \mathbf{1}^{\prime \prime}=-0.19 \end{gathered}$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } \mathrm{I}^{\prime \prime}=+0.48 \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathbf{1}^{\prime \prime}=-0.02 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \operatorname{diff.} \mathbf{I}^{\prime \prime}=+0.09 \end{gathered}$
\bigcirc -					
5900	8.5087142	8.5094874	1. 62397	2.3342	6.5793
1	38	63	426	-	- 99
2	35	52	454	2.3339	6.5804
3	31	40	483	8	09
4	27	29	511	6	14
5	23	18	540	5	19
6	20	07	568	4	24
7	16	8.5094796	597	2	29
8	12	8_{4}	625	1	34
9	09	73	654	0	40
10	8.5087105	8.5094762	1. 62682	2.3328	6.5845
11	01	51	711	7	50
12	8.5087097	40	740	6	55
13	94	28	768	4	60
14	90	17	797	3	65
15	86	06	825	2	7°
16	82	8.5094695	854	0	75
17	78	84	88	2.3319	81
18	75	72	911	7	86
19	71	61	94°	6	91
20	8.5087067	8.5094650	1. 62968	2.3315	6.5896
21	63	- 39	997	3	6.5901
22	60	28	1. 63026	2	06
23	56	17	054	1	11
24	52	06	083	2.3309	17
25	48	8.5094594	112	8	22
26	45		140	6	27
27	41	72	169	5	32
28	37	6 I	198	4	37
29	34	50	227	2	42
30 31	8.5087030	8.5094539	1.63255	2.3301	6.5948
31 32	26 23	28 17	284 313	0 2.3298	5
33	19	06	34.	2.3298 7	6
34	15	8.5094495	370	5	68
35	11	84	399	4	74
36	08 04	72	428	3	89
37 38	O4	61 50	457 486	1	84 89
39	8.5086997	39	514	2.3288	94
40	8.5086993	8.5094428	1.63543	2.3287	6.5999
41	89	17	57^{2}	6	6.6005
42	86	06	601	4	10
43	82	8.5094395	630	3	15 20
44	78	84	659	1	20
45	75	73	688	$\stackrel{0}{8}$	25
46	71	61	716	2.3278	31 36
47 48	67 63	50 39	745 774	7	36 41
49	60	28	803	4	46
50	8.5086956	8.5094317	1.63832	2.3273	6.6051
51	52	8.5096	861	1	57
52	49	8.5094295	890	\%	62
53	45	84	919	2.3268	67 72
54	41	73	948	7	72
55	38	62		6	78 83
56	34	51	1.04006	4	88
58	30 27	40 29	-064	1	93
59	23	18	093	0	98
60	8.5086919	8.5094207	1.64122	2.3258	6.6104

LATITUDE 60°

Lat.	$\begin{gathered} \log \mathbf{A} \\ \text { diff. } \mathbf{1}^{\prime \prime}=-0.06 \end{gathered}$	$\begin{gathered} \log E \\ \text { diff. } \mathbf{1}^{\prime \prime}=-0.18 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathbf{1}^{\prime \prime}=+-0.49 \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. }:=-0.02 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathbf{1}^{\prime \prime}=+0.09 \end{gathered}$
60 00	8.5086919	8.5094207	1.64122	2.3258	6.6104
1	16	8.5094196	151	7	$\bigcirc 9$
2	12	85	180	6	14
3	09	74	209	4	19
4	05	63	238	3	25
5	$8.5088{ }^{\text {Or }}$	52	267	1	30
6	8,5086898	41	296	0	35
7	94	30	325	2.3248	4 4
8	90	19	354	7	46
9	87	08	383	5	51
10	8.5086883	8.5094097	1.64413	2.3244	6.6156
11	79	86	442	2	62
12	76	75	471	1	67
13	72	64	500	2.3239	72
14	68	53	529	8	77
15	64	42	558	6	83
16	61	31	588	5	88
17	57	20	617	3	93
18	53	8.89	646	2	99
19	50	8.5093998	675	1	6.6204
20	8.5086846	8.5093987	1.64704	2.3229	6.6209
21	43	76	734	8	14
22	40	65	763	6	20
23	36	54	792	5	25
24	32	43	821	3	30
25	28	33	851	2	36
26	25	22	880	0	41
27	21	11	909	2.3219	46
28	17	-	939	7	52
29	14	8.5093889	968	6	57
30	8.5086810	8.5093888	1. 64997	2.3214	6.6262
31	06	67	1.65027	3	68
32	8.06	56	056	1	73
33	8.5086799	45	085	0 2.3208	7^{8}
34	96	34	115	2.3208	84
35	82	24	144	6	89
36	88	13	173	5	6 94
37 38	85	02 8.5093791	203	3 2	6.6300 05
39	77	8.5093 80	262	0	10
40	8.5086774	8.5093769	1.65291	2.3199	6.63 \% 6
41	70	58	320	7	21
42	67	47	350	6	26
43	63 60	37 26	379 409	4	32 37
44	60	26	409	3	37
45	56	15 04	438	1	42
46	52 49	$8.5093{ }^{\text {r }}$ \% 4	468 497	2.31888	48
48	45	8.5	527	2.38 7	58
49	42	72	- 556	5	64
50	8.5086738	8.5093661	1.65586	2.3184	6.6369
51	34	50	-615	2	75
52	31	39	645	${ }^{\circ}$	80
53	27	29	675	2.3179	85
54	24	18	704	7	9 x
55	20	8.5093506	734	6	96 6.6401
56 57	16	8.5093596	763	4 3	6.6401 07
58	09	75	823	1	12
59	06	64	852	-	18
60	8.5086702	8.5093553	1.65882	2.3168	6.6423

LATITUDE 61°

Lat.	diff. $1^{\prime \prime}=-0.06$	$\log \boldsymbol{B}$ diff. $\mathrm{I}^{\prime \prime}=-0.18$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathrm{I}^{\prime \prime}=+0.50 \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \operatorname{diff.} 1^{\prime \prime}=-0.03 \end{gathered}$	$\log \mathbf{E}$ diff. $\mathbf{I}^{\prime \prime}=+0.09$
-					
6100		8. 5093553	1.65882	2.3168	6.6423
I	8.5086698	42	912	6	28
2	95	31	941	5	34
3	91	21	971	3	39
	88	10	1.66000	2	45
5	84 80	8.5093499	030 060	\%	50
7	80 77	88 77	060	2.3158 7	56 61
8	74	67	119	5	66
9	70	56	149	4	72
10	8.5086666	8.5093445	1.661 79	2.3152	6.6477
11	62	34	209	. ${ }^{1}$	83
12	59	24	238	2.3149	88
13	55	13	268	7	93
14	52	02	298	6	99
15	48	8.5093391	328	4	6.6504
16	44	81	358	3	10
17	41	70	387	1	15
18	37	59	417	2.3139	21
19	34	49	447	8	26
20	8.5086630	8.5093338	I, 66477	2.3136	6.6531
21	26	27	507	5	37
22	23	17	537	3	42
23	19	06	567	1	48
24	16	8.5093295	597	\bigcirc	53
25	12	85	626	2.3128	59
26	08	74	656	6	64
27	05	63	686	5	70
28	${ }^{\text {OI }}$	52	716	3	75
29	8.5086598	42	746	2	81
30	8.5086594	8.5093231	1.66776		6.6586
31	98	20	806	2.3118	92
32	87	10	836	7	697
33	83	8.5093199	866	5	6.6603
34	80	89	896	3	08
35	77	78	926	2	14
36	73	67	956	u	19
37	69	57	986	2.3108	25
38	65	46	1.67017	7	30
39	62	36	047	5	36
40	8.5086559	8.5093125	1.67077	2.3104	6.6641
41	55	14	107	2	47
42	52 48	04	137	\bigcirc	52
43	48	8.5093093	167	2.3099	58
44	45	83	197	7	63
45	42			5	69
46	38	61	258	4	74
47	34	51	288	2	80
48	30	$4{ }^{\circ}$	318	\bigcirc	85
49	27	3°	348	2.3089	91
50	8.5086523	8.5093019	1.67378	2.3087	6.6696
51	20	8. 08	409	5	6.6702
52	17	8.5092998	439	4	07
53 54	13	87 77	469 499	2	13 18
	06	66	530	2.3079	24
56	O3	55	560	7	30
	8.5086499	45	590	5	35
58	96	34	620	4	4 4
59	92	24	651	2	46
60	85086488	8.5092913	1.6768 1	2.3070	6.6752

H. Ex. $81-44$

LATITUDE G8O

Lat.	$\log \mathbf{A}$ diff. $\mathrm{x}^{\prime \prime}=-0.06$	$\begin{gathered} \log \mathbf{8} \\ \text { diff. } \mathbf{1}^{\prime \prime}=-0.17 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \operatorname{diff.} \mathbf{I}^{\prime \prime}=+0.5 \mathbf{1} \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathrm{r}^{\prime \prime}=-0.03 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } \mathrm{I}^{\prime \prime}=+0.09 \end{gathered}$
0 c					
6200	8. 5086488	8.5092913	1.67681	2.3070	6.6752
1	85	03	711	2.3068	57
2	81	8.5092892	742	7	- 63
3	78	8.5092	772	5	68
4	74	71	802	3	74
	71	61	833	$\stackrel{2}{8}$	80
6	67	51	863	8	85
7	64	40	894	2.3058	9 F
8	60	29	924	7 7	6.986
9	56	18	955	5	6.6802
10	8.5086453	8.5092808	1. 67985	2.3053	6.6808
11	49	8.5092798	1.68015	1	13
12	46	87	046	\%	19
13	42	77	076	2.3048	24
14	39	66	107	6	30
15	36	56	137	4	36
16	32	45	168	3	4 r
17	29	34	199	1	47
18	25	24	229	2.3039	$\stackrel{52}{58}$
19	22	13	200		58
20	8.5086418	8.5092703	1.68290	2.3036	6.6864
21	15	8.5092693	321	4	69
22	11	82	351	2	75
23	08	72	382	1	80
24	04	61	413	2.3029	86
25	${ }^{01}$	5 I	443	7	92
26	8.5086397	41	474	5	6.97
27	94	$3{ }^{\circ}$	505	4	6.6903
28 20	80	20	535	2	09
29	87	09	566	-	14
30	8.5086383	8.5092599	1.68597	2.3018	6.6920
31	80	89 788	627	7	26
32	7^{6}	78	658	5	31
33	- 73	68	689	3	37
34	69	57	720	1	43
35	66	47	750	2.3009	48
36	63	37	781	8	54
37	59	26 16	812 843	6	60
38 39	56 52	16 05	843 873	4 2	65 71
39	52	05	873	2	71
40	8.5086349	8.5092495	1. 68904	2.3001	6.6977
41	46	85	935	2.2999	82
42	42	74	966	7	88
43	39	64	997	5	94
44	35	53	1.69028	3	99
45	32	43	059	2	6.7005
46	29 25	33	090	- ${ }^{\circ}$	116
47	25	22 12	120	2.2988 6	16
49	18	OI	182	5	28
50	8. 5086315	8.5092391	1.69213	2.2983	6.7034
51	12	81	244	1	39
52	08	70	275	2.2979	45
53	05	60	305	7	51
54	OI	50	337	6	56
	8.5086298	43	368	4	62
56	94	29	399	2	68
57	91	19	$43{ }^{\circ}$	O	74
58 59	87 83	8.5092298	461	2.2968 6	79 85
59			49		
60	8.5086280	8.5092285	1.69524	2.2965	6.7091

LATITUDE $\mathbf{6 B}^{\circ}$

Lat.	$\begin{gathered} \log \mathbf{A} \\ \text { diff. } 1^{\prime \prime}=-0.06 \end{gathered}$	$\begin{gathered} \log \mathbf{B} \\ \text { diff. } 1^{\prime \prime}=-0.17 \end{gathered}$	$\log C$ diff. $\mathbf{I}^{\prime \prime}=+0.52$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathrm{I}^{\prime \prime}=-0.03 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathbf{1}^{\prime \prime}=+0.10 \end{gathered}$
6300	8.5086280	8.5092288	1. 69524	2.2965	6.7091
1	77	78	555	3	97
2	73	67	586		6.7102
3	70	57	617	2.2959	08
4	66	47	648	7	14
5	63	37	679	5	20
6	60	26	710	4	25
8	56	16	742	2	31
8	53	${ }^{106}$	773	$\stackrel{\circ}{8}$	37
9	49	8.5092195	804	2.2948	43
10	8.5086246	8.5092185	1. 6983.35	2.2946	6.7148
11	43	75	866	4	54
12	39	65	898	3	60
13	36	54	929	1	66
14	32	44	960	2.2939	72
15	29	34	991	7	77
16	26	24	1.70023	5	8
17	22	14	054	3	89
18	19	03	085	1	6.95
19	15	8.5092093	117	0	6.7201
20	8.5086212	8.5092083	1.70148	2.2928	6.7206
21	$\bigcirc 9$	73	179	6	12
22	05	63	211	4	18
23	${ }_{5085}^{02}$	52	242	2	24
24	8.5086198	42	274	\bigcirc	30
25	95	32	305	2.2918	35
26	92	22	337	6	41
	88	12	368	4	47
28	85	OI	399	3	53
29	8 I	8.5091991	431	1	59
30	8.5086178	8.5091981	1. 70462	2.2909	6.7265
3 I	75	71	494	7	$7{ }^{7}$
32	$\begin{aligned} & 7 I \\ & 68 \end{aligned}$	61 51	525	5	76 82
33 34	68 64	51	557 589	3	82 88
35	61	31	620	2.2809	94
36	58	20	652	7	6.7300
37	54	10	683	5	05
3^{8}	5 I	8°	715	4	11
39	47	8.5091890	746	2	17
40	8.5086144	8.5091880	1.70778	2.2800	6.7323
4 I	8.5086 41	70	8810	2.2888	29
42	37	60	841	6	35
43	34	50	873	4	41
44	3 I	40	905	2	47
45	28	30	937	0 88	52
46	24	19	968 1.71000	2.2878 6	58
47	21	09	1.71000	6	70
48	18	8.5091799	032 064	$\stackrel{4}{2}$	70 76
49	14	89	064	2	
50	8.5086111	8.5091779	1.71095	2.2870	6.73888
51	08	69	127	2.2869	88 94
52	04	59	159	7	98 6.7400
53	8.5086007	49	191	5 3	6.7400 05
54	8.5086097	39	223	3	
55	94	29 19	254 286	2.2859	11
57	87	-9	318	2.285 7	23
58	84	85091699	350	5	29
59	80	89	382	3	35
60	8.5086077	8.5091679	1.71414	2.2851	6.7441

Lat.	$\begin{gathered} \log \mathbf{A} \\ \text { diff. } \mathbf{I}^{\prime \prime}=-0.05 \end{gathered}$	$\begin{gathered} \log \mathbf{B} \\ \operatorname{diff} .1^{\prime \prime}=-0.16 \end{gathered}$	$\begin{gathered} \log \mathbf{C} \\ \text { diff. } \mathbf{I}^{\prime \prime}=+0.54 \end{gathered}$	$\begin{gathered} \log \mathbf{D} \\ \text { diff. } \mathrm{x}^{\prime \prime}=-0.03 \end{gathered}$	$\begin{gathered} \log \mathbf{E} \\ \text { diff. } \mathbf{I}^{\prime \prime}=+0.10 \end{gathered}$
0 ,					
6400	8.5086077	8.5091679	1.71414	2.2851	6.7441
1	74	69	446	2.2849	47
2	70	59	478	7	53
3	67	49	510	5	59
4	64	39	542	3	65
	60	29	574	,	71
6	57	19	606	2.2839	77
8	54	8.89	638	7	83
8	51	8.5091599	670	5	89
9	47	89	702	3	95
10	8.5086044	8.5091579	1.71734	2.2831	6.7501
11	41	- 69	765	2.2829	07
12	37	59	798	7	13
13	34	49	830	5	19
14	31	39	862	3	24
15	27	30	894	- 1	30
16	24	20 10	927 959	2.2819 7	$3{ }^{36}$
18	18	-0	991	5	48
19	14	8.5091490	1.72023	3	54
20	8. 5086011	8.5091480	1.72055	2.2811	6.7560
21	08	70	088	2.2809	66
22	04	60	120	7	72
23	OI	50	152	5	78
24	8.5085998	$4{ }^{\circ}$	184	3	84
25	94	31	217	1	9 9
26	$9 \mathbf{}$	21	249	2.2799	97
27	88	11	281	7	6.7603
28	85	OI	314	5	-9
$2)$	81	8.5091391	346	3	15
30	8. 5085978	8.5091381	1.72378	2.2791	6.7621
31	75	71	411	2.2789	27
32	71	61	443	7	33
33	68	52	476	5	39
34	65	42	508	3	45
35	61	32	541	1	51
36	58	22	573	2.2779	57
37	55	12	606	7	63
38	52		638	5	69
39	48	8.5091293	670	3	75
40	8.5085945	8.509123_{3}	1.72703	2.2770	6.7681
41	42	73	736	2.2768	87
42	3^{8}	63	768	6	93
43	35	54	801	4	99
44	32	44	833	2	6.7706
45	28	34	866	0	12
46	25	24	899	2.2758	18
47	22	14	931	6	24
48	19	05	964	4	30
49	15	8.5091195	996	2	36
50	8.5085912	8.5091185	1.73029	2.2750	6.7742
51	09	75	062	2.2748	48
52	06	65	095	6	54
53	8.802	55	127	3	60
54	8.5085899	$4{ }^{6}$	160	1	67
	96	36	193	2.2739	73
56	$9{ }^{9}$	26	226	7	89
57	90	16	258	5	85
58	86	8.07	291	3	97
59	83	8.5091097	324	1	97
60	8.5085880	8.5091087	1.73357	2.2729	6.7803

tABLE OF CORRECTIONS TO LONGITUDE FOR DIFFERENCE IN ARC AND SINE.

$\log \mathrm{K}(-)$	Log đifference.	$\log \mathbf{d} \mathbf{M}(+)$	Log K (-)	Log difference.	$\log \mathrm{d} \mathbf{M}(+)$	$\log \mathrm{K}(-)$	Log difference.	$\operatorname{Logd~M~}(+)$
3.871	0.0000001	2.380	4.732	0.0000052	3.241	5.033	0.0000206	$3 \cdot 542$
3.970	O_{0}	2.479	4.746	056	3.255	5.040	213	3. 549
4.115	03	2.624	4.761	059	3.270	5.047	225	3.556
4.171	04	2.680	4.774	063	3.283	5.054	228	3.563
4.221	05	2.730	4.788	067	3.297	5.062	236	3.571
4.268	06	2.777	4.801	07 I	$3 \cdot 310$	5.068	243	$3 \cdot 577$
4.292	07	2.801	4.813	075	$3 \cdot 322$	5.075	251	3.584
4.309	08	2.818	4.825	080	$3 \cdot 334$	5.082	259	3.591
4.320	09	2.839	4.834	084	$3 \cdot 343$	5.088	267	3.597
4.361	10	2.870	4.849	089	$3 \cdot 35{ }^{\circ}$	5.095	275	3.604
4383	$1{ }^{1}$	2.892	4.860	094	$3 \cdot 369$	5.102	284	3.611
4415	12	2.924	4.871	098	3.380	5. 108	292	3.617
4.430	13	2.939	4.882	103	$3 \cdot 391$	5.114	300	3.623
4.445	14	2.954	4.892	108	3.401	5.120	309	3.629
$4 \cdot 459$	15	2.968	4.903	114	3.412	5. 126	318	3. 635
4.473	16	2.982	4.913	119	3.422	5.132	327	3.641
4.487	17	2.996	4.922	124	3.431	5.138	336	3.647
4.500	18	3.009	4.932	130	3.441	5.144	345	3.653
4.524	20	3.033	4.941	136	3.450	5.150	354	3.659
4.548	23	3.057	4.950	142	3.459	5. 156	304	3.665
4.570	25	3.079	4.959	147	3.468	5.161	373	3.670
4.591	27	3.100	4.968	153	3.477	5.167	383	3.676
4.612	30	3.12I	4.976	160	3.485	5.172	392	3.681
4.631	33	3. $14{ }^{\circ}$	4.985	166	3.494	5.178	402	3.687
4.649	36	3.158	4.993	172	$3 \cdot 502$	5.183	412	3.692
4.667	39	3.176	5.002	179	3.511	5.188	422	3.697
4.684	42	3. 193	5.010	186	3.519	5.193	433	3.702
4.701	45	3.210	5.017	192	3.526	5.199	443	3.708
4.716	48	3.225	5.025	199	3.534	5.204	453	3.713

TABLE of values of log $\frac{\text { I }}{\cos \frac{1}{2} d L}$

$d L$	$\log \frac{1}{\cos \frac{1}{2} d L}$	$d L$	$\log \frac{1}{\cos \frac{1}{2} d}$	$d L$	$\log \frac{1}{\cos \frac{1}{2} d L}$	${ }^{\text {d }}$ L	$\log \frac{1}{\cos \frac{1}{2} d L}$	$d L$	$\log \frac{1}{\cos \frac{1}{2} d L}$
,		1		,		\%		,	
10	0.000000	28	0.000004	46	0.000010	64	0.000019	82	0.000031
11	I	29	4	47	10	65	19	83	32
12	1	30	4	48	11	66	20	84	32
13	1	31	4	49	11	67	21	85	33
14	1	32	5	$5{ }^{\circ}$	11	68	21	86	34
15	1	33	5	51	12	69	22	87	35
16	1	34	5	52	12	70	22	88	36
17	$\underline{1}$	35	6	53	13	71	23	89	36
18	1	36	6	54	13	72	24	90	37
19	2	37	6	55	14	73	24	91	38
20	2	38	7	56	14	74	25	92	39
21	2	39	7	57	15	75	26	93	40
22	2	40	7	58	15	76	26	94	41
23	2	41	8	59	16	77	27	95	4 I
24	3	42	8	60	16	78	28	96	42
25	3 3	43	8	61	17	79 80 80	29	97	43
26	3	44	9	62	18	80 85	29	98	44
27	3	45	9	63	18	81	$3{ }^{\circ}$	99	45

SUBSIDIARY TABLE FOR REFERRING VALUES OF COEFFICIENTS A, $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ FROM BESSEL'S TO CLARKE'S ELLIPSOID.

Lat.	From $\log \mathbf{A}$ subtract.	From log B subtract.	From $\log \mathrm{C}$ subtract.	To $\log \mathbf{D}$ add.	From $\log \mathbf{E}$ subtract.
\bigcirc	0.0000582	0.0000233	0.00008	0.0061	0.0001
24	- 584	241	$\bigcirc 8$	61	I
25	587	249	08	61	1
26	590	258	08	61	1
27	593	266	09	61	1
28	596	274	09	61	1
29	599	283	09	61	I
3°	602	293	09	61	I
31	605	302	O9	61	I
32	609	312	09	61	I
33	612	321	09	61	I
34	615	331	09	61	1
35	619	34^{2}	10	61	I
3^{6}	622	35^{2}	10	61	I
37	625	$3{ }^{62}$	10	61	1
38	629	372	10	61.	1
39	632 636	383 393	10	${ }_{61} 1$	1
40	636	393	10		
41	639	404	10	61	1
42	643	415	11	61	1
43	647	425	11	61	1
44	650	436	11	61 61	I
45 46	654 657	4478	11	61	1
47	661	468	11	61	1
48	664	479	11	61	1
49	668	490	12	61	1
50	672	501	12	61	1
51	675	511	12	61	1
52 53	678 681	521	12	61	1
53 54	681 685	531	12	61	1
55	688	551	12	61	1
56	692	561	12	61	1
57	695	571	13	61	I
58	699	581	13	61	1
59 60	702 705	590 600	13	61 61	1
61	708	609	13	61	1
62	711	618	13	61	1
63	714	627	13	61	I
64	717	636	14	61	1
65	720	645	14	61	1

TABLE OF LOG F.

Lat.	Log F	Lat.	Log F	Lat.	Log \mathbf{F}	Lat.	Log \mathbf{F}
0		0		0			
23	7.812	34	7.877	45	7.840	56	7.706
24	23	35	77	46	32	57	7.688
25	32	35	77	47	24	58	69
26	41	37	76	48	14	59	49
27	49	38	74	49	04	60	27
28	35	39	72	50	7.792	61	05
29	61	40	69	51	80	62	7.581
30	66	41	64	52	67	63	56
31	70	42	60	53	53	64	29
32	73	43	54	54	38	65	01
33	75	44	48	55	23		

AUXILIARY TABLES FOR CONVERTING ARCS OF THE bESSEL ELLIPSOID INTO AkCS of the CLARKE ELLIPSOID.
[All corrections are negative.]

	Corrections to $d M T$.						Arguments L^{\prime} and $d M$.						
$d M$	60^{\prime}	50^{\prime}	$4^{0^{\prime}}$	30^{\prime}	20^{\prime}	10^{\prime}	$60^{\prime \prime}$	$50^{\prime \prime}$	$40^{\prime \prime}$	$30^{\prime \prime}$	$20^{\prime \prime}$	$10^{\prime \prime}$	$5^{\prime \prime}$
Lat.													
\bigcirc	"	"	"	"	"	"	,	"	"	"	"	"	"
23	0.481	0.401	0.320	0.240	0.160	0.080	0.008	0.006	0.005	0.004	0.003	0.001	0.0006
24	. 48	-403	. 322	. 242	.161	. 080	. 008	. 006	. 005	. 004	. 003	. 001	. 0006
25	. 486	. 405	. 324	. 243	. 162	. 081	. 008	. 006	. 005	. 004	. 003	. 001	. 0006
26	-489	-407	. 326	. 245	. 163	.081	. 008	. 006	. 005	. 004	. 003	. 001	. 0006
27	-491	. 409	. 327	. 246	.164	. 082	. 008	. 006	.005	. 004	. 003	. 001	. 0006
28	. 494	. 411	. 329	. 247	.165	. 082	. 008	. 007	. 005	. 004	. 003	. 001	. 0006
29	. 496	-413	. $33{ }^{\circ}$. 248	. 166	. 083	. 008	. 007	. 005	. 004	. 003	. 001	. 0006
30	. 497	-416	$\cdot 332$. 250	. 167	. 083	. 008	. 007	. 005	. 004	. 003	. COI	. 0006
31	. 502	. 418	. 334	. 251	. 168	. 088	. 008	. 007	. 006	. 004	. 003	. 001	. 0006
32	. 505	. 420	. 336	. 253	. 169	. 084	. 008	. 007	. 006	. 004	. 003	. COI	. 0006
33	. 507	. 422	. 338	. 254	. 169	. 085	. 008	. 007	. 006	. 004	. 003	. Col	. 0006
34	. 510	. 425	- 340	. 255	. 170	. 085	. 008	. 007	. 006	. 004	. 003	. 01	. 0006
35	. 513	. 427	- 342	. 256	. 171	. 086	. 008	. 007	. 006	. 004	. 003	. OOI	. 00066
35	. 516	-43 ${ }^{\circ}$	-342	. 258	. 172	. 086	. 009	. 007	. 006	. 004	. 003	. 001	. 0006
37	. 518	-432	- 345	. 259	. 173	. 087	.009	. 007	. 006	. 004	.003	. 001	. 0007
38	. 521	. 434	- 347	. 261	A74	. 087	. 009	. 007	. 006	. 004	.003	. 001	. 00007
39	. 524	. 436	-349	. 262	.175	. 088	. 009	. 007	. 006	. 004	. 003	. 0101	. 0007
40	. 527	-439	.351	. 264	. 776	. 088	. 009	. 007	. 006	. 004	. 003	.001	. 0007
41	. 530	. 441	-353	.265	.177	.089	. 009	. 007	. 006	. 004	. 003	. 001	. 0007
42	. 533	. 444	- 355	.267	.178	. 089	. 009	. 007	. 006	. 004	. 003	. 601	. 0007
43	. 536	. 446	. 357	. 268	- 179	.090	. 009	. 007	. 006	. 004	. 003	. 001	. 0007
44	. 539	. 449	. 359	. 270	. 180	. 090	. 009	. 008	. 006	. 005	. 003	.001	. 0007
45	0.542	0.451	0.361	0.271	0.181	0.091	0.009	0.008	0.006	0.005	0.003	0.001	0.0007
	Corrections to $d L$						Arguments $\frac{L+L^{\prime}}{2}$ and $d L$						
$d Z$	60^{\prime}	$5{ }^{\prime}$	4^{\prime}	30^{\prime}	20^{\prime}	10^{\prime}	$60^{\prime \prime}$	$50^{\prime \prime}$	40'1	$30^{\prime \prime}$	$20^{\prime \prime}$	$10^{\prime \prime}$	$5^{\prime \prime}$
Lat.													
-	"	"	"	"	"	"	"	"	"	"	"	/	"
23	0. 193	0.160	0. 129	0.096	0.064	0.032	0.003	0.003	0.002	0.002	0.001	0.001	0.0003
24	. 200	.165	. 133	. 099	. 066	. 033	. 003	.003	. 002	. 002	. 001	. 001	. 0003
25	. 206	. 171	. 158	.103	. 068	. 034	. 003	. 003	. 002	. 002	. 001	. COI	.0003
26	.213	.177	. 142	. 106	. $07{ }^{\circ}$. 035	. 003	. 003	. 002	. 002	. 001	. COI	. 0003
27	. 220	.183	-147	-110	. 073	. 037	. 004	.003	. 002	. 002	. 001	. 001	. 0003
28	. 227	- 189	. 515	.113	. 075	. 038	. 004	. 003	. 002	. 002	. 001	. OOI	. 0003
29	. 234	. 196	. 156	. 117	. 078	. 039	. 004	. 003	. 002	. 002	. 001	. 001	. 0003
30	. 242	. 202	. 161	. 121	.080	. 040	. 004	. 003	. 002	. 002	. 001	. 001	. 0003
31	. 250	. 209	. 167	.125	.083	. 042	. 004	. 003	. 003	. 002	.001	. 001	. 0004
32	. 258	. 216	. 172	. 129	. 086	. 043	. 004	. 003	. 003	. 002	. 001	. 001	. 0004
33	. 267	. 223	$.177^{3}$. 133	.089	. 045	. 005	. 003	. 003	. 002	. 002	.001	. 0004
34	. 275	.230	.184	.137	.091	.046	. 005	. 003	. 003	. 002	.002	. 011	. 0004
35	.283	. 237	. 190	.141	. 094	. 047	. 005	. 004	. 003	. 002	. 002	. 001	.0004
36	. 291	. 243	. 195	. 145	. 097	. 048	. 005	. 004	. 003	. 002	. 002	. 001	. 0004
37	. 300	.250	. 201	.150	. 100	. 050	. 005	. 004	. 003	.002	. 002	. 01	. 00004
38	-308	.257	. 206	.154	.103	.051	. 005	. 004	. 003	. 002	. 002	. 001	. 0004
39	-317	. 264	. 212	. 158	. 106	. 053	. 005	.004	. 004	. 003	. 002	. 001	. 0004
40	. 325	.271	. 217	.162	.108	.054	. 005	. 004	. 004	.003	. 002	. $\times 1$. 0005
41	. 334	. 278	. 223	.167	. 111	. 056	. 006	. 004	. 004	. 003	. 002	. 001	. 0005
42	. 343	. 286	. 229	. 171	. 114	. 057	. 006	. 004	. 004	. 03	. 002	. 001	. 0005
43	. 352	. 294	. 236	.176	. 117	. 059	. 006	. 005	. 004	. 003	. 002	. 001	. 0005
44	. 362	. 302	. 242	. 1818	.120	. 060	. 006	. 005	. 004	. 03	. 002	. 01	. 0005
45	0.372	0.310	0.249	0.186	0.124	0.062	0.006	0.005	0.004	0.003	0.002	0.001	0.0005

FORMULA AND TABLE FOR COMPUTING THE SPHERICAL EXCESS OF TRIANGLES.

In every spherical triangle the excess of the sum of the three angles over 1800 bears the same ratio to eight right angles as the area of the triangle bears to that of the whole sphere. Putting r for radius, ε for the excess, we have $\frac{\varepsilon}{4 \pi}=\frac{\text { area }}{4 r^{2} \pi}$, hence $\varepsilon=\frac{\text { area }}{r^{2}}$. In order to express ε in seconds of arc, we must divide the expression by sin $1^{\prime \prime}$. The area of the triangle, when it is small in relation to the whole sphere, as is the case in all geodesic triangles, may be expressed with sufficient accuracy for this purpose by $\frac{1}{2} \Delta B$ sin c, where ΔB are two sides, and c the included angle. We have then

$$
\varepsilon=\frac{\mathrm{AB} \sin c}{2 r^{2} \sin 1^{\prime \prime}}
$$

In estimating ε in a triangle on the terrestrial spheroid, we can refer it to an osculating sphere, the radius of which is taken as the mean of the radii of curvature in the meridian and prime rertical at the center of the triangles. These are respectively-

$$
\mathrm{R}=\frac{a\left(1-t^{2}\right)}{\left(1-\epsilon^{2} \sin ^{2} \mathbf{L}\right)^{\frac{3}{3}}}, \quad \mathrm{~N}=\frac{a}{\left(1-e^{2} \sin ^{2} \mathrm{~L}\right)^{\frac{1}{2}}}
$$

using the notation of the $\mathbf{L}, \mathrm{M}, \mathrm{Z}$ formnlæ.
The mean of these two expressions developed, but embracing only terms below the fourth power of e, is $\frac{1}{2}(\mathrm{R}+\mathrm{N})=a\left(1-\frac{1}{2} e^{2} \cos 2 \mathrm{~L}+\ldots\right)$

We have, therefore, for the spheroidal triangle,

$$
\varepsilon=\frac{\mathrm{AB} \sin c}{2 a^{2}\left(1-\frac{1}{2} e^{2} \cos 2 \mathrm{~L}\right)^{2} \sin 1^{\prime \prime}}
$$

for which we write $\varepsilon=A B \sin c \times m$, and tabulate the logarithms of $m=\frac{1}{2 a^{2}\left(1-\frac{1}{2} c^{2} \cos 2 L\right)^{2} \sin 1^{\prime \prime}}$, for different latitudes.

TABLE OF LOG m.

Latitude.	Log m.	Latitude.	Log m.	Latitude.	Log m.	Latitude.	$\log m$.
- ,		0 ,		0 ,		\bigcirc	
2400	1.40596	$3^{1} 30$	1.40533	3900	1.40461	4630	1.40385
2430	592	3200	528	3930	456	47 \%	380
2500	588	3230	524	4000	45 !	4730	375
2530	584	3300	519	4030	446	4800	369
2600	580	333°	514	4100	441	4830	364
2630	576	34 00	509	4130	436	4900	359
2700	572	3430	505	4200	43 I	4930	354
2730 2800	568	3500	500	4230	426	50 00	349
28 28 28	564	35 36 30	495	4300	420	5030	344
2830 2900	559	36 36 36	491	4330	415	5100	339
2900	555	3630	486	4400	410	5130	334
$293{ }^{\circ}$	551	3700	481	4430	405	5200	329
3000	547	37.30 3800	476	450	400	5230	324
30 31 30		3800 $38 \quad 30$		4530 4600	395 1.40390	5300	319
3100	1.40537	3830	1.40466	4600	1.40390	5330	1.40334

The above table is computed for Clarke's spheroid; to refer it to Bessel's spheroid, increase $\log m$ in the 5th place of decimals

by 9 for latitude 25°	by 10 for latitude 40°
by 9 for latitude 30°	by 11 for latitude 45°
by 10 for latitude 35°	by 12 for latitude 50°

APPENDIX No. 20.

METEOROLOGICAL RESEARCHES FOR THE USE OF THE COAST PMOT.

PREFATORY NOTE.
United States Coast Survey Office, Washington, D. C., July 21, 1877.
The great storms which yearly traverse with terrible energy some portion of the vast extent of sea-coast that bounds the United States on the Atlantic and Pacific Oceans aud the Gulf of Mexico have caused in the aggregate the loss of many thousands of lives and the destruction of an immense amount of property.

The most violent of these storms are the cyclones that originate commonly in the Atlantic Ocean near the equator. They pass over the West Iudies, curve around by the Gulf of Mexico and Florida, and then sweep the entire coast of the Atlantic in a northeasterly direction.

The frequency of recurrence, and the marked force exerted along the same general course, suggest that these cyclones result from the operations of laws that control the general motions of the atmosphere, and that some understanding in regard to the canse and time of their occurrence might be gained by research, exteuded so as to include an area commensurate with the developed phenomena; but, until now, it is believed that no attempt directed to that end has been made. Any knowledge in advance respecting the direction and rate of motion of these storms would be of incalculable benefit to commerce and navigation, as well as to the people living aloug the seacoasts. Their investigation has, therefore, been undertaken in the hope that the exact knowledge of the configuration of the coast and of its dangers, given to the mariner in the Coast Pilot, may in time be supplemented by information concerning the atmospheric disturbances to which the same region is subject: Mr. Willian Ferrei, to whom this discussion bas been intrusted, and whose previons studies and special ability peculiarly qualify him for the proposed research, presents, in the following paper, the results of an investigation of the mechanics and the general motions of the atmosphere. This preliminary inquiry will be followed by his investigation of the effects of various disturbances that are local, as compared with those upon which general motions depend. Such disturbances give rise to local cyclones, due to unequal distributions of temperature in the northern and southern hemispheres. It will be shown also that local disturbances of equilibrium are the occasion of progressive cycloues.

The principles and results developed in the leading part of the discussion will, in a separate paper, be applied for perfecting the formulat and methods to be used in the determination of barometric heights ; and, as all the general principles applicable to atmospheric motions probably apply also to those of the ocean, the discussion will be supplemented by a chapter on the subject of ocean currents.

These researches will embody conclusions from the most important parts of a memoir published by Mr. Ferrel in 1859 and 1860 in the " Mathematical Monthly." The memoir appeared necessarily as small detached papers, separated by other matter, in two volumes of that journal, and honce the views of the author attracted little notice until extracts from his memoir were quoted in the publications of the United States Signal Service. The reader of the first paper by Mr. Ferrel upon this subject will notice a few slight changes; but it was to be expected that, in a matter so complex, additional years of stady would offer both new and improved views.

Carlile P. Patterson,
Supcrintendent.
H. Ex. 81- 47

PARTI.
 ON THE MEUHANIUS AND GENERAL MOTIONS OF THE ATMOSPHERE.
 CHAPTER I.
 general equations of the motions and the pressure of the atmosphere.

1. In making out equations of condition for the motions and pressure of the atmosphere or the sea, where the part under consideration comprises the whole or a considerable part of the earth's surface, it is very important that the rotation of the earth on its axis should be taken into account. This can be most conveniently done by referring each particle at any time to three rectangular co-ordinates whose directions are fixed in space, and thus making out equations between the motions, forces, and pressures for each of these directions. These co-ordinates thus become a function of the earth's rotation and the motion of the particle relatively to the earth's surface; and by transforming the rectangular to polar co-ordinates, and expressing the equations in functions of the latter, we obtain equations containing very important terms, depending upon the earth's rotation on its axis.
2. Let x, y, and z be three rectangular co-ordinates having their origin at the center of the earth, x corresponding with the axis of rotation; also let-
$\nabla=$ the potential of the attractive force of the earth;
$\mathbf{P}=$ the pressure of the fluid; and
$k=$ its density:
then $\mathrm{D}_{x} \mathrm{~V}, \mathrm{D}_{y} \mathrm{~V}$, and $\mathrm{D}_{z} \mathrm{~V}$ are the accelerating forces arising from the earth's attraction, and $\frac{1}{k} D_{x} \mathrm{P}, \frac{1}{k} \mathrm{D}^{y} \mathrm{P}$, and $\frac{1}{k} \mathrm{D}_{z} \mathrm{P}$ those arising from the pressare of the flaid in the reverse directions respectively of x, y, and z; and heli θ we bave, for the equations of the absolute motions of the flaid, regarding the center of the ewth at rest, -
(1) $\left\{\begin{array}{l}\mathrm{D}_{t}{ }^{2} x+\mathrm{D}_{x} \mathrm{\nabla}+\frac{1}{k} \mathrm{D}_{x} \mathrm{P}=0 \\ \mathrm{D}_{t}{ }^{2} y+\mathrm{D}_{y} \mathrm{~V}+\frac{1}{k} \mathrm{D}_{y} \mathrm{P}=0 \\ \mathrm{D}_{t}{ }^{2} z+\mathrm{D}_{z} \mathrm{~V}+\frac{1}{k} \mathrm{D}_{z} \mathrm{P}=0\end{array}\right.$

Putting $\mathbf{P}=0$, these become the equations of a projectile.
3. Let-
$r=$ the distance from the earth's center ;
$\theta=$ the polar disiance;
$\varphi=$ the longitude;
$n=$ the angular velocity of the earth's rotation on its axis.
We then have-
(2)

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta \cos (n t+\varphi)=r \sin \theta \cos \omega \\
z=r \sin \theta \sin (n t+\varphi)=r \sin \theta \sin \omega
\end{array}\right.
$$

by putting, for brevity, $n t+\varphi=\omega$, aud making the origin of t such as to make $\sin (n t+\varphi)$ vanish in the plane of x, y.

From these expressions of x, y, and z, we get-

$$
\begin{aligned}
& \mathrm{D}_{\imath} x=\cos \theta \mathrm{D}_{\imath} r-r \sin \theta \mathrm{D}_{t} \theta \\
& \mathrm{D}_{t} y=\sin \theta \cos \omega \mathrm{D}_{t} r+r \cos \theta \cos \omega \mathrm{D}_{t} \theta-r \sin \theta \sin \omega \mathrm{D}_{t} \omega \\
& \mathrm{D}_{t} z=\sin \theta \sin \omega \mathrm{D}_{\imath} r+r \cos \theta \sin \omega \mathrm{D}_{t} \theta+r \sin \theta \cos \omega \mathrm{D}_{t} \omega
\end{aligned}
$$

Taking the second derivatives, we get-

$$
\begin{aligned}
& \left(\mathrm{D}_{t}^{2} x=\cos \theta \mathrm{D}_{t}{ }^{2} r-2 \sin \theta \mathrm{D}_{t} r \mathrm{D}_{t} \theta-r \cos \theta\left(\mathrm{D}_{t} \theta\right)^{2}-r \sin \theta{ }^{2} \theta \mathrm{D}_{t}{ }^{2} \theta\right. \\
& \mathrm{D}_{t}^{2} y=\sin \theta \cos \omega \mathrm{D}_{t}^{2} r+2 \cos \theta \cos \omega \mathrm{~B}_{t} r \mathrm{D}_{t} \theta-2 \sin \theta \sin \omega \mathrm{D}_{t} r \mathrm{D}_{t} \omega+r \cos \theta \cos \omega \mathrm{D}_{t}^{2} \theta \\
& \text { (3) } \quad-r \sin \theta \cos \omega\left(\mathrm{D}_{t} \theta\right)^{2}-2 r \cos \theta \sin \omega \mathrm{D}_{t} \theta \mathrm{D}_{\theta} \omega-r^{r} \sin \theta \sin \omega \mathrm{D}_{t}^{2} \varphi-r \sin \theta \cos \omega\left(\mathrm{D}_{t} \omega\right)^{2} \\
& \begin{aligned}
\mathrm{D}_{2}^{2} \approx= & \sin \theta \sin \omega \mathrm{D}_{t}^{2} r+2 \cos \theta \sin \omega \mathrm{D}_{t} r \mathrm{D}_{t} \theta+2 \sin \theta \cos \omega \mathrm{D}_{t} r \mathrm{D}_{t} \omega+r \cos \theta \sin \omega \mathrm{D}_{i}^{2} \theta \\
& -r \sin \theta \sin \omega\left(\mathrm{D}_{t} \theta\right)^{2}+2 r \cos \theta \cos \omega \mathrm{D}_{t} \theta \mathrm{D}_{4} \omega+r \sin \theta \cos \omega \mathrm{D}_{2}^{2} \theta-r \sin \theta \sin \omega\left(\mathrm{D}_{\theta} \omega\right)^{2}
\end{aligned}
\end{aligned}
$$

Since x, y, and z are fanctions of r, θ, and φ, we have-

$$
\left\{\begin{array}{l}
\mathrm{D}_{x} \mathrm{~V}=\mathrm{D}_{r} \mathrm{~V} \cdot \mathrm{D}_{x} r+\mathrm{D}_{0} \mathrm{~V} \cdot \mathrm{D}_{x} \theta+\mathrm{D}_{\phi} \mathrm{V} \cdot \mathrm{D}_{x} \varphi \tag{4}\\
\mathrm{D}_{y} \mathrm{~V}=\mathrm{D}_{r} \mathrm{~V} \cdot \mathrm{D}_{y} r+\mathrm{D}_{0} \mathrm{~V} \cdot \mathrm{D}_{y} \theta+\mathrm{D}_{\phi} \mathrm{V} \cdot \mathrm{D}_{y} \varphi \\
\mathrm{D}_{z} \mathrm{~V}=\mathrm{D}_{r} \mathrm{~V} \cdot \mathrm{D}_{z} r+\mathrm{D}_{\theta} \mathrm{V} \cdot \mathrm{D} \theta+\mathrm{D}_{\phi} \mathrm{V} \cdot \mathrm{D}_{z} \varphi
\end{array}\right.
$$

We also Lave-

$$
\begin{aligned}
r^{2} & =x^{2}+y^{2}+z^{2} \\
\tan \theta & =\frac{\sqrt{x^{2}+y^{2}}}{x} \\
\tan \omega & =
\end{aligned}
$$

From these we get-

$$
\begin{aligned}
& \mathbf{D}_{x} r=\frac{x}{r}=\cos \theta \\
& \mathbf{D}_{y} r=\frac{y}{r}=\sin \theta \cos \omega \\
& \mathbf{D}_{z} r=\frac{z}{r}=\sin \theta \sin \omega \\
& \mathbf{D}_{x} \theta=-\frac{\sqrt{y^{2}+z^{2}}}{r^{2}}=-\frac{\sin \theta}{r} \\
& \mathbf{D}_{y} \theta=\frac{x y}{r^{2} \sqrt{y^{2}+z^{2}}}=\frac{\cos \theta \cos \omega}{r} \\
& \mathbf{D}_{z} \theta=\frac{x z}{r^{2} \sqrt{y^{2}+z^{2}}}=\frac{\cos \theta \sin \omega}{r} \\
& \mathbf{D}_{x} \varphi=0 \\
& \mathbf{D}_{y} \varphi=-\frac{z}{y^{2}+z^{2}}=\frac{\sin \omega}{r \sin \theta} \\
& \mathbf{D}_{z} \varphi=\frac{y}{y^{2}+z^{2}}=\frac{\cos \omega}{r \sin \theta}
\end{aligned}
$$

By means of these equations, equations (4) give-
(5) . . $\cdot\left\{\begin{array}{l}\mathrm{D}_{x} \mathrm{~V}=\cos \theta \mathrm{D}_{r} \mathrm{~V}-\frac{\sin \theta}{r} \mathrm{D}_{\theta} \mathrm{V} \\ \mathrm{D}_{y} \mathrm{~V}=\sin \theta \cos \omega \mathrm{D} \mathrm{V}+\frac{\cos \theta \cos \omega}{r} \mathrm{D}_{\theta} \mathrm{V}-\frac{\sin \omega}{r \sin \theta} \mathrm{D}_{\phi} \mathrm{V} \\ \mathrm{D}_{r} \mathrm{~V}=\sin \theta \sin \omega \mathrm{D}_{r} \mathrm{~V}+\frac{\cos \theta \sin \omega}{r} \mathrm{D}_{\theta} \mathrm{V}+\frac{\cos \omega}{r \sin \theta} \mathrm{D}_{\phi} \mathrm{V}\end{array}\right.$

By putting P for V in (4), we obtain in like manner-
$(6) \cdot\left(\begin{array}{l}\mathrm{D}_{x} \mathrm{P}=\cos \theta \mathrm{D}_{r} \mathrm{P}-\frac{\sin \theta}{r} \mathrm{D}_{\theta} \mathrm{P} \\ \mathrm{D}_{i} \mathrm{P}=\sin \theta \cos \omega \mathrm{D}_{r} \mathrm{P}+\frac{\cos \theta \cos \omega}{r} \mathrm{D}_{\theta} \mathrm{P}-\frac{\sin \omega}{r \sin \theta} \mathrm{D}_{\phi} \mathrm{P} \\ \mathrm{D}_{z} \mathrm{P}=\sin \theta \sin \omega \mathrm{D}_{r} \mathrm{P}+\frac{\cos \theta \sin \omega}{r} \mathrm{D}_{\theta} \mathrm{P}+\frac{\cos \omega}{r \sin \theta} \mathrm{D}_{\phi} \mathrm{P}\end{array}\right.$
By substituting the ralues of the first members of equatious (3), (5), and (6) in equations (1), and then multiplying both members of the equations respectively by $\cos \theta$, $\sin \theta \cos \omega$, and $\sin \theta \sin \omega$, and adding, we obtain the first of the following equations. Again, multiplying them respectively by $r \sin \theta,-r \cos \theta \cos \omega$, and $-r \cos \theta \sin \omega$, and adding, we obtain the second of those equations. Finally, multiplying the last two respectively by $r \sin \theta \sin \omega$ and $-r \sin \theta \cos \omega$, and adding, we get the last of the following equations :-

$$
\left\{\begin{array}{l}
\frac{1}{k} \mathrm{D}_{r} \mathbf{P}=-\mathrm{D}_{t}^{2} r+r\left(\mathrm{D}_{t} \theta\right)^{2}+r \sin ^{2} \theta\left(n+\mathbf{D}_{t} \omega\right) \mathrm{D}_{t} \varphi+r n^{2} \sin ^{2} \theta-\mathrm{D}_{r} \mathbf{V} \tag{7}\\
\frac{1}{k} \mathbf{D}_{\theta} \mathbf{P}=-r^{2} \mathbf{D}_{t}^{2} \theta-2 r \mathrm{D}_{t} r \mathbf{D}, \theta+r^{2} \sin \theta \cos \theta\left(n+\mathrm{D}_{\imath} \omega\right) \mathrm{D}_{t} \varphi+r^{2} n^{2} \sin \theta \cos \theta-\mathrm{D}_{\theta} \mathrm{V} \\
\left.\frac{1}{k} \mathbf{D}_{\phi} \mathbf{P}=-r^{2} \sin ^{2} \theta \mathrm{D}_{t}^{2} \varphi-2 r \sin ^{2} \theta \mathrm{D}_{t} r \mathrm{D}_{t} \omega-2 r^{2} \sin \theta \cos \theta \mathrm{D}_{t} \theta \mathrm{D}_{t} \omega-\mathrm{D}\right)^{\psi} \mathrm{V}
\end{array}\right.
$$

4. Let us now put-

$$
\begin{aligned}
& h=\text { the height above the earth's surface ; } \\
& u=\text { linear distance south } ; \\
& v=\text { linear distance east ; } \\
& g=\text { the accelcrating force of gravits. }
\end{aligned}
$$

By regarding the cosine of the angle between the directions of r and h, which is extremely small, equal to unity, and neglecting the small terms depending apon the motions of the fluid, which are multiplied into the sine of the very small angle between the directions of r and h, and putting for $D_{t} \omega$ its equal, $n+D_{\varepsilon} \varphi$, we shall have-

$$
\begin{aligned}
& \frac{1}{k} \mathrm{D}_{k} \mathrm{P}=-\mathrm{D}_{t}^{2} h+\frac{\left(\mathrm{D}_{\cdot} u\right)^{2}}{r}+\sin \theta\left(n+\mathrm{D}_{t} \varphi\right) \mathrm{D}_{t} v+r n^{2} \sin ^{2} \theta-\mathrm{D}_{k} \mathrm{~V} \\
& \frac{1}{k} \mathrm{D}_{n} \mathrm{P}=-\mathrm{D}_{t}^{2} u-2 \mathrm{D}_{t} h \mathrm{D}_{t} u+\cos \theta\left(2 n+\mathrm{D}_{t} \varphi\right) \mathrm{D}_{t} v+r n^{2} \sin \theta \cos \theta-\mathrm{D}_{n} \mathrm{~V} \\
& \frac{1}{k} \mathrm{D}_{v} \mathrm{P}=-\mathrm{D}_{t}^{2} v-2 \sin \theta\left(n+\mathrm{D}_{t} \varphi\right) \mathrm{D}_{t} h-2 \cos \theta\left(n+\mathrm{D}_{t} \varphi\right) \mathrm{D}_{t} u-\mathrm{D}_{v} \mathrm{~V}
\end{aligned}
$$

5. In the case in which the fluid is at rest relatively to the earth's surface, we have

$$
\begin{aligned}
& \frac{1}{k} \mathrm{D}_{h} \mathrm{P}=r n^{2} \sin ^{2} \theta-\mathrm{D}_{k} \mathrm{~V}=-g \\
& \frac{1}{k} \mathrm{D}_{n} \mathrm{P}=r n^{2} \sin \theta \cos \theta-\mathrm{D}_{u} \mathrm{~V}=0 \\
& \frac{1}{k} \mathrm{D}_{v} \mathrm{P}=-\mathrm{D}_{v} \mathrm{~V}=\mathbf{0}
\end{aligned}
$$

Hence, in the case of the motions of the fluid, we have-

$$
\cdots\left\{\begin{array}{l}
\frac{1}{k} \mathrm{D}_{\iota} \mathrm{P}=-\mathrm{D}_{\imath}^{2} h+\frac{\left(\mathrm{D}_{t} u\right)^{2}}{r}+\sin \theta\left(n+\mathrm{D}_{\iota} \varphi\right) \mathrm{D}_{t} v-g \\
\frac{1}{k} \mathrm{D}_{u} \mathrm{P}=-\mathrm{D}_{\imath}^{2} u-2 \mathrm{D}_{t} h \mathrm{D}_{t} u+\cos \theta\left(2 n+\mathrm{D}_{t} \varphi\right) \mathrm{D}_{t} v \tag{8}\\
\frac{1}{k} \mathrm{D}_{v} \mathrm{P}=-\mathrm{D}_{t}^{2} v-2 \sin \theta\left(n+\mathrm{D}_{t} \varphi\right) \mathrm{D}_{t} h-2 \cos \theta\left(n+\mathrm{D}_{t} \varphi\right) \mathrm{D}_{t} u
\end{array}\right.
$$

6. In these equations, there are several terms which are so small that they may be neglected in all cases without sensible error. The value of the term $D_{1}^{2} h$ is of the same order, in comparison with g, as the rate with which an ascending or descending particle of air is accelerated or retarded in comparison with the rate with which a falling body iu vacuum is accelcrated; since, putting $P=0$ in the first of the equations (8), we get $g=-D_{t}^{2} h$. In all ordinary conditions of the air, the vertical velocities are so small, and these velocities are accelerated or retarded so gradually, that the value of $D_{t}^{z} h$ corresponding to these accelerations or retardatious, in comparison with the rate of acceleration of a falling body, is so small that it may be neglected. In the case of a tornado, the value of this term might be sensible through some part of the height of the atmosphere; but, as the velocity of an ascending body cannot be accelerated in one part of its ascent without being retarded in another part, the integration of this term through the whole height of the atmosphere would be naught, and hence it would not affect P at the surface of the earth.

If any part of the atmosphere has a vertical acceleration or retardation of velocity egual to g in 100 seconds, or a little less than two minates, then the pressure or value of P arising from this part of the atmosphere is affected the one-bundredth part; and, in such a condition of the atmosphere, in determining heights from barometric pressure, the results would be serionsly affected. But such conditions could only take place under some extraordinary disturbances of the atmosphere, when any such determinations would not be attempted. It is seen from the first of (8) that the pressure is diminished when the ascending velocity is accelerated or descending celocity retarded, and vice versa.
7. We have, neglecting $D_{t} \varphi$ in comparison with $n,-$

$$
\frac{\sin ^{2} \theta\left(n+\mathrm{D}_{1} \varphi\right) \mathrm{D}_{t} v}{g}=\frac{r \sin ^{2} \theta n \mathrm{D}_{t} \varphi}{g}=\frac{r n^{2}}{g} \cdot \frac{\mathrm{D}, \varphi}{n} \sin ^{2} \theta=\frac{1}{289} \sin ^{2} \theta \frac{\mathrm{D}_{t} \varphi}{n}
$$

But $\mathrm{D}_{t} \varphi$, the angular eastward motion of the air relatively to the earth's surface, is always very small in comparison with n, and hence, even at the earth's equator, where $\sin ^{2} \theta=1$, the ratio between $\sin ^{2} \theta\left(n+\mathrm{D}_{t} \varphi\right) \mathrm{D}_{t} v$ and g is extremely small, and the former may in all cases be neglected in connection with the latter. The value of the term $\frac{\left(\mathbf{D}_{1} u\right)^{2}}{r}$ is evidently very much smaller than $\sin ^{2} \theta\left(n+\mathrm{D}_{\ell} \varphi \mathrm{D}_{\iota} v\right.$, and hence its effect is always entirely insensible.

In the last two of equations (8), the terms containing $D_{c} h$ as a factor may both be neglected in comparison with the terms which follow them, since the vertical velocity D, h is always very much smaller than the borizontal velocities $\mathrm{D}_{t} u$ or $\mathrm{D}_{t} v$, where these latter are such as to give a sensible value to the terms containing them as factors.
8. The density of dry air is as the pressure and inversely as the amount of absolute temperature. But the atmosphere always contains a certain amount of aqueous vapor which is lighter than air, and affects the density of the atmosphere in proportion to the amount of this vapor contained in it. This effect is expressed by $(1+f(e))$ in the denominator of the expression for the density , in which e is the relative amount of aqueous vapor contained in the air. We therefore put-
(9) $k=a \mathbf{P}$
in which, putting a_{0} for the value of α when $t=0$ and $e=0$,

The average value of e varies with the temperature, but is very different at different times and in different localities for the same temperature. As an average value of $f(e)$ for all locailies and seasons, we can put-

$$
f(e)=0.00154+0.000341 t^{*}
$$

With this value of $f(e)$, we get-

$$
\begin{equation*}
\alpha=\frac{a_{0}}{1.00154+0.004 t} \tag{11}
\end{equation*}
$$

[^24]This latter expression of a may be used in all cases in which the preceding equations are applied to the atmosphere generally, in which local and temporary deviations must be neglected; but, in local applications, the former must be used, the value of e being determined from observation for the particular time and locality.
9. So far we have neglected to consider the effect of friction, which is an important element entering into equations where the motions of fluids, either elastic or inelastic, are concerved, and one which is most difficult to treat. In the preceding equations, therefore, we must have a term to represent the resistance which each particle suffers from friction, and this term cannot be expressed by any function of the velocity simply, as is sometimes supposed, but it depends rather upon the differences in the velocities of the different strata, and upon the differences of pressure. If a stratum lie between two other strata, all having the same velocity, it suffers no resistance from friction, however great the velocity may be; and the same is the case where the relative velocities of the strata are such that the action of the stratum above upon the intermediate stratum is exactly equal to the reaction of the lower one upon it in the contrary direction. This may require the relative velocities of the different strata to be different on account of the differences in the amount of pressure, and it, no doubt, requires them to increase as the pressure diminishes, that is, with the height. The amount of resistance, therefore, which any particle suffers, requiring extraueous forces to overcome, is generally an unknown quantity, and all that we can do, therefore, is to introduce unknown functions into the equations representing the resistances from friction in the directions of the co-ordinates, and leave these to be determined approximately, where it can be done, from a comparison of the final results deduced from the equations with observation. If we, therefore, put F_{u} and F_{v} for the forces acting in the directions respectively of u and v necessary to overcome the resistances of friction, and substitute for k its valne in (9), we get from (8), neglecting the insensible terms pointed out in $\$ \leqslant \begin{aligned} & \text { and } 7,\end{aligned}$

$$
\cdot \quad . \quad\left\{\begin{array}{l}
\mathbf{D}_{h} \log \mathrm{P}=-g \alpha \tag{12}\\
\mathbf{D}_{u} \log \mathrm{P}=-\alpha \mathbf{D}_{t}^{2} u+a \cos \theta\left(2 n+\mathbf{D}_{c} \varphi\right) \mathrm{D}, v-\alpha \mathbf{F}_{u} \\
\mathrm{D}_{*} \log \mathrm{P}=-\alpha \mathbf{D}_{t}^{2} v-2 \alpha \cos \theta\left(n+\mathrm{D}_{t} \varphi\right) \mathrm{D}_{t} u-\alpha \mathrm{F}_{v}
\end{array}\right.
$$

In the case of a homogeneous fluid, it is readily seen that we must put \mathbf{P} for $\log \mathbf{P}$ and k instead of α.

The value of g is nearly constant; but, when great accuracy is required, it must be regarded as a function of h and θ, and we may put-

$$
\begin{equation*}
\text { } g=g^{\prime}\left(1-\frac{2 h}{r}+0.00284 \cos 2 \theta\right) \tag{13}
\end{equation*}
$$

in which g^{\prime} is the value of g at the sea-level and on the parallel of 45°.
10. By regarding g as independent of h, equation (12) gives, by integration,-

$$
\begin{aligned}
(14) . \log \mathbf{P}^{\prime}-\log \mathbf{P} & =a^{\prime}(g h+f(k))+a^{\prime} \int_{u}\left(\mathbf{D}_{t}^{2} u-\cos \theta\left(2 n+\mathrm{D}_{t} \varphi\right) \mathrm{D}_{i} v+\mathbf{F}_{u}\right) \\
& \left.+\alpha \int_{v}\left(\mathbf{D}_{t} v+2 \cos \theta\left(n+\mathrm{D}_{t} \varphi\right) \mathrm{D}_{i} u+\mathbf{F}_{v}\right)\right)
\end{aligned}
$$

in which P^{\prime} and a^{\prime} are the values of P and a respectively at the earth's surface, and $f(h)$ is a small function of h depending upon the decrease of temperature with the height, which may almays be neglected, especially when h is small, except in accurate hypsometrical determinations. Where common tabular logarithms are used, the last number of this equation must be maltiplied into the modulus $\mathrm{M}=0.4342945$.

The preceding expression gives the difference of the pressure between any two assumed points. If these two points are in the same vertical, the terms depending upon $\mathrm{D}_{t} u$ and $\mathrm{D}_{t} v$ vanish, and the expression is confined to the first term; but, if these points are in verticals a considerable distance apart, the integration of the last two terms, depending mostly upon the earth's rotation and the motions of the atmosphere relative to the earth's surface, may give a considerable difference of pressure at the sea-level, or for any two assumed points at equal heights above it.
11. Where P and P^{\prime} are in the same vertical, we get from (14), by neglecting the small term $f(h)$ in connection with $g h$, and regarding g constant, -

$$
\begin{aligned}
& \mathbf{D}_{u} \log \mathrm{P}^{\prime}-\mathrm{D}_{t} \log \mathrm{P}=g h \mathbf{D}_{u} a^{\prime} \\
& \mathbf{D}_{v} \log \mathrm{P}^{\prime}-\mathrm{D}_{v} \log \mathrm{P}=g h \mathbf{D}_{v} a^{\prime}
\end{aligned}
$$

By means of these equations, we get from (12)-

$$
\left\{\begin{array}{l}
\frac{1}{a^{\prime}} \mathrm{D}_{u} \log \mathbf{P}^{\prime}=-\mathbf{D}_{t}^{2} u+\cos \theta\left(2 n+\mathrm{D}_{i} \varphi\right) \mathrm{D}_{\imath} v-\mathrm{F}_{n}+g h \mathrm{D}_{v} \log a^{\prime} \tag{15}\\
\frac{1}{a^{\prime}} \mathrm{D}_{v} \log \mathbf{P}^{\prime}=-\mathbf{D}_{v}^{2} v-2 \cos \theta\left(n+\mathbf{D}_{v},\right) \mathrm{D}_{\imath} u-\mathbf{F}_{z}+g h \mathrm{D}_{\imath} \log a^{\prime}
\end{array}\right.
$$

At sea-level, we have $h=0$, and cousequently the last term of these equatious vauishes, and they then give the gradients of barometrical pressure in the directions of u and v, depending upon the motions of the atmosphere at the earth's surface, friction, inertia, and the earth's rotation on its axis. In this case, the small neglected function $f(h)$ also ranishes.
12. If we put h^{\prime} for the value of h belonging to a stratum of the atmosphere of equal density, or pressure, we shall have, for this stratum, $\mathrm{D}_{v} \mathrm{P}=0$ and $\mathrm{D}, \mathrm{P}=0$; and we get in this case from the first of (14), neglecting the small fanction $f(h)$ in comparison with $g h,-$

$$
\begin{aligned}
& \mathbf{D}_{u} \log \mathbf{P}^{\prime}=g h^{\prime} \mathbf{D}_{n} a^{\prime}+g \alpha^{\prime} \mathrm{D}_{u} h^{\prime} \\
& \mathbf{D}_{v} \log \mathbf{P}^{\prime}=g h^{\prime} \mathbf{D}_{r} \alpha^{\prime}+g \alpha^{\prime} \mathrm{D}_{r} h^{\prime}
\end{aligned}
$$

With these equations, we get from (15), by putting $h=0$, -

$$
\left\{\begin{array}{l}
g \mathbf{D}_{u} h^{\prime}=-\mathbf{D}_{t}^{2} u^{\prime}+\cos \theta\left(2 n+\mathbf{D}_{t} \varphi\right) \mathrm{D} v^{\prime}-\mathrm{E}_{r^{\prime}}-g h^{\prime} \mathrm{D}_{v^{\prime}} \log \alpha^{\prime} \tag{16}\\
g \mathbf{D}_{v} h^{\prime}=-\mathbf{D}_{t}^{2} v^{\prime}-2 \cos \theta\left(n+\mathbf{D}_{t} \varphi\right) \mathrm{D}, u^{\prime}-\mathrm{F}_{r}^{\prime}-g h^{\prime} \mathrm{D}_{r}^{\prime} \log a^{\prime}
\end{array}\right.
$$

in which u^{\prime} and v^{\prime} are the values of u and v at the earth's surface. These equations give the gradients of the strata of equal pressure in the directions of u and v; and, by integration, they give the differences of level of any two points in such a stratum. This, at the earth's surface, when $h^{\prime}=0$, depends simply upon the motions of the atmosphere at the earth's surface, friction, and inertia; but the last terms of these equations show that these gradients are increased or diminished, as the case may be, in proportion to the height.
13. From (12) we get, for the part depending upou the earth's rotation,

$$
\begin{aligned}
& \mathrm{D}_{v} \log \mathrm{P}=2 \alpha n \cos \theta \mathrm{D}_{t} v \\
& \mathrm{D}_{v} \log \mathrm{P}=-2 \alpha n \cos \theta \mathrm{D}_{t} u
\end{aligned}
$$

If we now put s for the resultant of u and v, and q a perpendicular to s on the right-hand side of the direction of motion, we shall have-

$$
\begin{aligned}
\mathrm{D}_{q} \log \mathrm{P} & =\mathrm{D}_{u} \log \mathrm{P} \cdot \mathrm{D}_{q} u+\mathrm{D}_{v} \log \mathrm{P} \cdot \mathrm{D}_{q} v \\
& =\mathrm{D}_{u} \log \mathrm{P} \cdot \cos \frac{q}{u}-\mathrm{D}_{v} \log \mathrm{P} \cdot \sin \frac{q}{u} \\
\mathrm{D}_{t} s & =\mathrm{D}_{t} u \sin \frac{q}{u}+\mathrm{D}_{t} v \cos \frac{q}{u}
\end{aligned}
$$

From these and the two preceding equations, we get-
(17) . . . $\mathrm{D}_{q} \log \mathrm{P}=2 \alpha n \cos \theta \mathrm{D}_{\iota} s$

The direction of s is entirely arbitrary, and $\mathrm{D}^{\prime} s$ represents velocity in that direction, and $D_{q} \log P$ represents an ascending gradient in the direction of q to
 the right of the direction of s, and consequently the force depending upon the earth's rotation which causes this gradient, expressed by the last member of (17), is a force acting in that direction, and is positive in the northern hemisphere, and the contrary in the southern, according to the sigu
of $\cos \theta$. Hence, in whatever direction a body moves upon the surface of the earth, there is a force arising from the earth's rotation which tends to deflect it to the right in the northern hemisphere, but to the left in the southern hemisphere.

This important principle, useful in explaining so many of the relations between the motions and the barometric gradients of the atmosphere, was first published in my former paper on this subject in the "Mathematical Monthly" in the year 1860. It is a generalization of the principle upon which the theory of the trade winds has been based, according to which this deflecting force, arising from the earth's rotation, takes place only in the case of motions north or south. But, by the true and more general principle above, it is seen that this deflecting force is exactly the same for motions in all other directions.

Influenced by the usual theory upon this subject, observers have imagined that they have seen evidences of a tendency in rivers ruming north and south to wear away the banks, and also to deposit drift-wood on the right- rather than on the left-hand side, and likewise a tendency in the cars of railroads extending north and south to be thrown off the track on the right- rather than the left-hand side, while in the cases of rivers or of railroads extending in other directions no evidences of such effects could be seen. But we now know that if auy sensible effects of this sort arise from this deflecting force in the case of rivers or of railroads running north or south, the very same effects must take place where they ran in any other direction.

The amount of this force as deduced above, from the true principles of mechanics, is exactly double of that which has been obtained from the erroneous principle adopted by Hadley, and brought down through text-books to the present time. This latter principle assumes that the moving body in approaching or receding from the earth's axis must retain the same linear motion east or west, whereas, by the principle of the preservation of areas, which must hold in this case, the linear motion east or west must be increased in the former case and diminished in the latter in such proportion as to make the deflecting force double of that given by the principle of equal linear east or west motions for all distances from the earth's axis. This matter has been explained in detail in " Nature," vol. v, p. 384.
14. The accelerating force in the direction of q which is adequate to produce a gradient repre. sented by $\mathrm{D}_{q} \mathrm{P}$ is-
(18) $\frac{1}{k} \mathrm{D}_{\eta} \mathrm{P}=\frac{1}{x} \mathrm{D}_{q} \log \mathrm{P}=2 n \cos \theta \mathrm{D}_{t} s=\frac{2 \cos \theta}{r n} \cdot r n^{2} \mathrm{D}_{t} s=\frac{2 \cos \theta}{r n} \cdot \frac{1}{289} g \cdot \mathrm{D}_{t} s=\frac{2 \cos \theta}{289} \cdot \frac{\mathrm{D}_{t} s}{r} \cdot g$

The coefficient of g in this expression shows the ratio between this deflecting force and the force of gravity.

Let us put at sea-level, on the parallel of 45°, -

$$
\begin{aligned}
r & =6366252^{\mathrm{m}} \\
n & =\frac{2 \pi}{(23 \times 60+56) 60}=0.000072924 \\
g & =9^{\mathrm{w}} .805307 \\
r n & =464^{\mathrm{m}} .25
\end{aligned}
$$

$$
\log r=6.8038838
$$

$$
\log n=-5.86287
$$

$$
\log g=0.9914612
$$

$$
\log r n=2.66675
$$

With $\mathrm{D}_{\iota} s=13.889$, which is equal to a velocity in the direction of s of 50^{km} per hour, and with $\theta=45^{\circ}$, corresponding to the parallel of 45°, we get $\frac{1}{6839} g$ for the acceleratiug force in the direction of q arising from the earth's rotation, and hence the lateral pressure of a body moving with the assumed velocity in any direction on that parallel is equal to $\frac{1}{6839}$ of its weight. In the southern hemisphere, where $\cos \theta$ is negative, of course the lateral pressure is in the contrary direction, that is, to the left of the direction of motion. Where a body is free, this deflecting force produces motion in a curved line. In the case of a fluid, as air or water, this force causes a disturbance of the static level surface, and the amount of gradient resulting from it is expressed by the coefficient of g in (18). For instance, with the assumed velocity above and on the parallel of 450 , the gradient would be one meter in the distance of 6839 meters.

If a river has a velocity of $5^{k m}$ per hour, the ascending gradient to the right of direction in the
northern hemisphere is one meter in 6839 meters; and hence, if the river is one kilometer in width, the water stands about $\frac{1}{\overline{6} \overline{8}}$ of a meter higher on the right than on the left bank.
15. In the case of the atmosphere, in which the gradient is usually measured by the differences of barometric pressure, we get from (9) and (18) for this gradient-

$$
\begin{equation*}
\mathbf{D}_{\psi} \mathrm{P}=0.00014595 \alpha \mathrm{P} \cos \theta \mathrm{D}_{4} s \tag{19}
\end{equation*}
$$

In order to have a numerical expression of the gradient in terms of the pressure and temperature, and independent of the density, it is necessary to determine the value of a_{0} in (11), from which we thus obtain the value of α corresponding to any given temperature t, and that of α^{\prime} corresponding to the value of a at the earth's surface, which occurs in most of the preceding expressions, and of which, therefore, it is important to have a determination.

The value of u_{0} is the value of a in (9) belonging to dry air, with the temperature at zero ($32^{\circ} \circ$ F.). If we put l equal to the height of a homogeneous atmosphere of temperature 00 , and pressure, measured by the height of the barometrical column, of $0^{m} .76$, we have for such an atmosphere-

$$
\mathrm{P}=g k_{0} l=g k^{\prime} \times 0^{m} .76
$$

in which k_{0} is the density of dry air under the assumed pressure, and k^{\prime} the density of mercary. Putting $k_{11}=\alpha_{\theta} P(9)$, we get, since the heights of the homogeneons atmosphere and mercury are inversely as their densities-

$$
1=g u_{0} l=g a_{0} \frac{k^{\prime}}{k_{0}} \times \theta^{\mathrm{n} .76}
$$

With $k^{\prime}=13.6001$ and $k_{0}=\frac{1^{*}}{772.9}$, we finally get-

$$
\begin{equation*}
\text { } a_{0}=\frac{1}{g l}=\frac{1}{g \times 7989^{11}} \tag{20}
\end{equation*}
$$

With this ralue of a_{v}, we get from (11) the approximate value of α for any given temperature, to be used in (19) fir determining the barometric gradient belonging to the deflecting force arising from the velocity $D_{t} s$. For the temperature of 0°, α in (10) becomes α_{0}; and, with the preceding value of a_{0}, we get in this case-
(21) $\mathrm{D}_{q} \mathrm{P}=0.0000000014162 \cos \theta \mathrm{D}_{t} s$
in which $D_{t} \&$ must be expressed in meters per second.
If we wish to express the gradients by the change in millimeters belonging to the distance of a mean degree of the meridian, equal 111111111 millimeters, we mast multiply the second member above by 111111111 , and then, representing the gradient by G, we get-
$\left(21^{\prime}\right)$. $\mathrm{G}=\mathbf{0} \mathbf{1 5 8 9 3} \cos \theta \mathrm{D}_{t} s$
16. In many cases, it is necessary to have the equations of the motions and pressures in terms of polar co-ordiuates, in whicb the pole does not coincide with the pole of the earth's axis.

[^25]Let-
$\psi=$ the arc between the pole of the earth's axis and the new pole of the co ordinates; $f=$ the distance in arc from the new pole; " $=$ the angle between ρ and the meridian;
$u=$ linear distance in the direction of ρ; and
$v=$ linear distance in a direction perpendicalar to ρ.
In the case in which the earth h as no rotation on its axis, the pole of the co-ordinates in the preceding equations cau be taken at pleasure, and therefore, instead of N, the pole of the earth's axis in the annexed figure, we can put it at P, aud hence by potting μ, μ, n, and v for θ, φ, u, and v respectively, we get from (15) in this case, by putting $n=0,-$
${ }_{a^{\prime}}^{1} \mathrm{D}_{n} \log \mathrm{P}^{\prime}=-\mathrm{D}^{2} \mathrm{u}+\cos \varphi \mathrm{D}_{t}{ }^{\prime \prime} \mathrm{D}_{i} \mathrm{v}-\mathrm{F}_{\mathrm{a}}+g h \mathrm{D}_{\mathrm{n}} \log a^{\prime}$

${ }_{\mu^{\prime}}^{1} \mathrm{D}_{v} \log \mathrm{P}^{\prime}=-\mathrm{D}^{2} \mathrm{v}-2 \cos \varphi \mathrm{D}_{t} \mu \mathrm{D}, \mathrm{a}-\mathrm{F}_{\mathrm{v}}+g h \mathrm{D}_{\mathrm{v}} \log \alpha^{\prime}$
We must now ald to these equations the terms arising from the deflecting forces depending apon the earth's rotation belonging to the velocities $\mathrm{D}_{t} \mathrm{u}$ and $\mathrm{D}_{t} \mathrm{v}$, which are forces in directions respectively perpendicular to n and v. From (17) we get, for the parts of $\frac{1}{a^{\prime}} D_{u} \log P^{\prime}$ and $\frac{1}{a^{\prime}} D_{v} \log P^{\prime}$, -

$$
\begin{aligned}
& { }_{\alpha^{\prime}}^{1} \mathrm{D}_{u} \log \mathrm{P}^{\prime}=2 n \cos \theta \mathrm{D}_{t} \mathrm{~V} \\
& { }_{\alpha^{\prime}}^{1} \mathrm{D}_{v} \log \mathrm{P}^{\prime}=2 n \cos \theta \mathrm{D}_{t} \mathrm{u}
\end{aligned}
$$

Adding the right hand members of these equations to those of the two preceding ones, we get for the equations in the case in which the earth rotates on its axis-
(22) . $\left\{\begin{array}{l}\frac{1}{\alpha^{\prime}} \mathrm{D}_{n} \log \mathrm{P}^{\prime}=-\mathrm{D}_{t}^{2} \mathrm{u}+\left(2 n \cos \theta+\cos \rho \mathrm{D}_{t} \mu\right) \mathrm{D}_{t} \mathrm{v}-\mathrm{F}_{\mathrm{n}}+g h \mathrm{D}_{\mathrm{n}} \log \alpha^{\prime} \\ \frac{1}{a^{\prime}} \mathrm{D}_{\mathrm{v}} \log \mathrm{P}^{\prime}=-\mathrm{D}_{t}^{2} v-2\left(n \cos \theta+\cos \rho \mathrm{D}_{t} \mu\right) \mathrm{D}_{t} \mathrm{u}-\mathrm{F}_{v}+g h \mathrm{D}_{v} \log \alpha^{\prime}\end{array}\right.$

We have, from the trigonometrisal relations of a spherical triangle, -

$$
\cos \theta=\cos \psi \cos \rho-\sin \psi \sin \rho \cos \mu
$$

Where the range of μ is so small that we can neglect the second terin of this expression in comparison with the first, and put $\cos \rho=1$ without material error, (22) becomes-
(23).$\left\{\begin{array}{l}\frac{1}{a^{\prime}} \mathrm{D}_{\mathrm{u}} \log \mathrm{P}^{\prime}=-\mathrm{D}_{\imath}^{2} \mathrm{u}+\left(2 n \cos \psi+\mathrm{D}_{t} \mu\right) \mathrm{D}_{t} \mathrm{v}-\mathrm{F}_{\mathrm{u}}+g h \mathrm{D}_{\mathrm{u}} \log a^{\prime} \\ \frac{1}{a^{\prime}} \mathrm{D}_{\mathrm{v}} \log \mathrm{P}^{\prime}=-\mathrm{D}_{t}^{2} \mathrm{\nabla}-2\left(n \cos \psi+\mathrm{D}_{t} \mu\right) \mathrm{D}_{\imath} \mathrm{u}-\mathrm{F}_{\mathrm{v}}+g h \mathrm{D}_{\mathrm{v}} \log a^{\prime}\end{array}\right.$
17. Besides the preceding equations (15) and (23) showing the relations between the motions and pressure of the fluid, there is still another condition, which must al ways be satisfied in the case of motions of the atmosphere, which is, that the volume of air which occapies any given space must be the same, and the amount of air directly proportional to its density, and the motions of the atmosphere mast always be such as to satisfy these conditions. The mathematical expression of this condition in any case where such can be formed, is called the equation of continuity.

CHAPTER II.

THE TEMPERATURE AND PRESSURE OF THE ATMOSPHERE AT THE EARTH'S SLRFACE OBTAINED FROM OBSERVATION.
18. In most of the equations of the preceding chapter there are found two functions, a^{\prime} and \mathbf{P}^{\prime}, which it is necessary to determine for all parts of the earth's surface from observation. It is seen from (11) that α is a function of t the temperature, α^{\prime} being the value of α corresponding to the temperature of the atmosphere at the earth's surface. With the value of t, therefore, for all parts of the earth's surface, we obtain from (11) the expression of a^{\prime} in a function of θ and c, and consequently of u and v. from which we obtain the functions $\mathrm{D}_{n} \log x^{\prime}$ and $\mathrm{D}_{n} \log u^{\prime}$.

The general equations of motion and pressure of the atmosphere contained in the preceding chapter are of such a character, on account of their complexity, and the unknown friction terms entering into them, that they do not admit of a complete solution, and it is therefore important to obtain from observation as many as possible of the functions entering into those equations. If the general equations conld be completely solved, we should need only the temperature from observation, and the solution of the equations wonld then give the atmospheric pressures for all parts of the earth bclonging to this temperature, and we should not need the pressures from observation, except for a verification of theory. But as it is, we also need the observed pressures in the different parts of the earth's surface, in order to enable us to obtain other unknown quantities depending upon these pressures, which cannot be obtained from the solution of the equations.

The following tables, I and II, of approximate temperatures for the two extremes, January and July, have been obtained by interpolation from Buchau's Charts of Isothermal Lines, with some corrections first applied, to make them agree with recent obserrations. The anthority for these corrections is derived mostly from the "Contributions to our Knowledge of the Meteorology of Cape Horn and the West Coast of South America," published by the authority of the Meteorological Committee of Loudon. These contributions give temperatures generally from four to six degrees higher for these parts than those indicated by Buchan's isothermal lines for July, and three or foar degrees higher than those indicated by his lines for January. As the temperature of the latitude of Cape Horu must be very nearly the same for all longitudes, the temperatures of the extreme southern latitudes in the following tables have been increased accordingly all around the globe. The last columns of these tables contain the means of the temperature for all the different longitudes. Although the numbers given for the different longitudes are onls approximate, and may in some instances be considerably in error, yet the means of so many longitades must give very nearly the averages of the different latitudes of the globe, and will be sufficiently accurate for our parpose. And the local variations of temperature independent of latitude will be only needed approximately for explaining in a general way the phenomena depending upon them, aud not for any accurate comparisons of theory with observation.

Table I.-Showing the approximate mean temperature in degrees of Fahrenheit for the differen of the earth's surface in

JANUARY.

Table IL.-Showing the approximate temperature in degrecs of Fahrenheit for the different parts of the earth's surface in

JULY.

害	Longitudes west.																		
	180	170	160	150	140	130	120	110	100	90	e0	70	60	50	46	30	20		0
80	34	33	32	32	32	32	32	32	32	33	34	34	34	32	30	30	30	31	32
70	40	40	40	46	50	50	46	44	42	40	38	40	12	42	38	$3 \times$	38	40	4:3
60	48	50	52	54	58	62	62	60	56	52	43	45	46	45	48	50	54	55	66
50	60	58	56	56	60	62	68	70	70	63	60	60	60	60	60	62	64	64	64
40	60	60	64	62	60	62	68	74	E 4	84	76	72	70	70	70	70	70	72	T4
30	72	69	66	66	67	68	70	80	88	88	8.4	$\times 2$	E0	7 e	76	7%	7 T	E1	81
20	40	76	76	76	76	76	76	80	84	85	e4	82	82	81	80	e*	84	86	90
10	80	80	80	80	80	81	R2	82	82	83	84	84	84	82	81	81	82	84	88
0	76 :	77	78	78	\%	78	78	79	co	41	82	22	84	82	T8	78	7	7	\%
-10	74	64	74	73	75	74	73	74	75	74	75	76	66	\% 5	74	74	74	74	74
-20	66	68	68	68	68	68	68	69	68	6	66	68	0	22	72	20	68	6	68
-30	60	60	60	60	60	60	60	60	60	89	5	58	60	04	64	64	64	00	62
-40	52	51	52	53	54	54	54	3.3	52	50	50	48	$4{ }^{4}$	49	50	52	54	55	50
-50	45	45	45	45	45	44	43	43	43	43	43	43	43	44	45	45	45	4.5	45
-60	34	34	33	33	33	:32	32	32	31	31	32	33	32	: 3	34	$3 \pm$	34	33	33
$\underline{0}$									ngitud	es eas									
ت	10	20	30	40	50	60	70	B0	90	100	110	120	130	140				170	茳
80	33	34	64	34	33	32	32	32	33	34	35	36	37	38			36	35	34.1
70	46	50	48	44	40	$3{ }^{3}$	40	42	46	50	50	59	52	52			50	4t;	44.3
60	60	62	63	64	64	64	64	65	65	65	65	65	64	60			\checkmark	52	57.0
50 :	65	66	68	70	72	74	74	74	74	78	71	30	67	64			60	60	65. 5
40 :	76	78	Te	78	78	78	80	22	22	82	e0	28	74	70			$6 i$	Cis	73. 0
30	82	85	E6	88	90	99	90	89	88	87	2)	2	80	78		6	74	71	80.0
90	91	02	99	91	90	90	89	88	87	87	86	85	83	89		1	E0	80	84. 2
10 :	90	90	90	88	86	54	82	82	82	83	83	83	82	82		2	82	81	83.2
0	80	84	84	80	78	78	78	78	79	80	81	80	78	76		6	36	76	70.0
-10	78	80	80	78	77	76	76	76	76	76	76	76	75	74		4	74	3	75. 2
- 20	70	74	74	74	74	74	72	70	69	68	63	68	68	68		${ }^{\prime}$	68	69	69.
-30	61	60	60	60	60	60	60	60	00	60	59	58	56	54		6	50	ig	60. 1
-40	55	54	54	54	53	52	52	52	52	52	51	50	50	50			50	52	520
-50	45	45	45	45	44	43	4.3	43	42	41	41	41	41	41			42 -	13	43.5
-60				30		30	31	31	32	32	32	32	32	32		2	31 !	32	32.0

Tables III and IV give the approximate mean annual temperatures for each tenth degree of latitude and longitude aud the approximate mean annual range of temperature, and likewise the means of all the longitudes. The former hare been obtained by taking simply the mean of the extreme mean temperatures of January and July, and the latter by taking the differences of these extremes. Any one must be struck, from an inspection of Table IV, with the great differences between the mean annual ranges of temperature of the northern and southern hemispheres, arising from the unequal distribution of land and water in the two hemispheres.

Table III.-Shoving the approximate mean annual temperature in degrees of Fahrenheit for the different parts of the earth's surface.

	Longitades wrest.																		
	180	170	160	150 .	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
80	0	0	0	0	- 1	-1	-2	-3	-4	-3	-1	3	5	5	5	6	8	10	11
70	7	B	9	11	13	12	9	7	5	4	4	8	13	19	21	23	25	29	32
60	29	30	32	33	35	34	99	24	18	14	13	14	23	29	34	39	45	45	45
50	50	49	48	48	50	49	47	46	40	36	30	32	35	43	49	52	54	53	51
40	53	57	57	50	56	57	57	58	60	58	53	52	54	59	62	63	62	62	56
30	66	64	62	61	61	61	62	67	71	71	69	70	71	72	72	72	71	72	71
20	76	74	73	72	72	71	71	73	75	82	78	77	78	77	77	78	79	$E 1$	82
10	78	78	78	78	78	78	79	79	79	80	81	81	81	80	N0	80	81	83	86
0	78	78	79	79	79	79	79	80	81	81.	22	82	83	82	70	79	79	79	79
-10	-8	78	78	77	76	77	77	71	77	77	78	79	80	80	79	78	76	76	76
-20	73	73	73	73	73	73	72	7%	72	72	72	74	76	77	76	74	72	72	71
-30	67	67	60	66	60	66	65	65	65	64	64	65	67	69	69	69	69	69	66
-40	58	28	58	58	59	58	58	58	57	56	5 5	56	57	58	59	60	60	59	59
-50	48	48	48	48	48	48	47	47	47	47	49	49	49	49	50	50	50	50	48
-60	:36	36	36	36	35	35	35	35	34	34	35	37	37	37	38	38	38	37	36
*									ngitud	des eas									
$\underset{\underset{y}{\leftrightarrows}}{\underset{\sim}{\leftrightarrows}}$	10	20	30	40	50	(10)	70	80	90	100	110	120	130	140	150		0	170	要
80	11	12	12	12	12	11	10	8	6	5	4	2	2	2	2		1	1	4. 5
70	35	34	87	19	15	14	14	13	14	14	12	10	8	7	6		7	B	14.4
60	45	43	40	37	35	32	30	28	20	25	c1	17	17	18	21		27	32	29.3
50	- 50	47	46	44	42 !	40	39	37	37	36	35	35	35	37	40		42	47	43.4
40	61	61	60	59	57	54	55	56	56	56	53	49	48	50	52		53	54	56.5
30	70	70	70	71	71	71	71	70	68	66	64	61	62	64	65		65	65	67.6
20	82	83	82	80	78	79	79	80	$\varepsilon 0$	60	79	78	76	77	77		76	76	77.6
10	89	90	88	84	83	82	82	82	81	80	80	80	79	79	79		79	78	81.0
0	82	87	87	83	81	80	80	80	80	80	80	80	79	78	78		78	78	80.1
-10	82	85	85	82	80	79	79	79	79	79	79	79	79	78	78		78	77	78.7
-20	76	80	80	79	79	78	77	76	75	75	75	75	75	75	75		75	74	74.7
-30	68	69	69	69	69	69	69	68	67	67	66	65	64	63	64		65	66	66.7
-40	5 B	59	59	59	59	58	58	58	58	58	58	57	57	57	57		57	57	57.9
-50	48	48	48	48	48	47	47	47	47	46.	46	46	46	46	46		46	47	47.8
-60	35	33	33	33	33	34	33	33	33	34	35	35	35	34	34		34	35	35. 3

Table IV.-Showing the approximate mean annual range of temperature in degrecs of Fahrenkeit for the different parts of the carth's surface.
(July - January.)

The numbers in Tables I and II being averages for the months of January and July, aud not the extremes of the average mean daily temperature, the results of this table require a small correction, which is the difference between the arerages of the month and the extreme of the average mean daily temperatures, in order to obtain the absolute mean range of temperature; but this correction is quite small.

19．By reducing the mean temperature in the last columns of Tables I，II，and III to centi－ grade degrees，we get the second，third，and fourth columns in－

Table V．

θ	Temperature．				
			Mean．		
	菖 总	\％	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { E } \\ & \text { E } \end{aligned}$	要 E 豆 $=$	
${ }_{0}$	0	5	0	${ }^{\circ}$	\bigcirc
10	－31．9	1.0	－15．5	15.8	＋0．3
20	26． 5	6.9	9.8	10.2	＋0．4
30	16.9	13.8	-1.6	－2．2	＋0．6
40	-6.0	18.6	＋6．3	＋6．5	－0．2
50	$+4.5$	22.8	13．6	14.4	-0.8
60	12． 9	26.6	19．e	20.4	-0.6
70	21． 7	29.0	25.3	24.3	$+1.0$
80	25． 9	98． 4	27． 2	26.4	＋0．8
90	27.3	26.1	26.7	26． 8	－0．1
109	27． 9	24.0	25.9	26.0	-0.1
110	26.6	20.8	23.7	23.8	-0.1
120	23.0	15.6	19.3	20.2	-0.9
130	17．6	11.1	14． 4	14.9	-0.5
140	11.1	6.4	8.6	8． 2	$+0.6$
150	＋ 3.6	0.0	$+1.8$	$+0.9$	$+0.9$
100				-5.8	
170				10.6	
180				－12．4	

If we put for the mean annual temperature－
（24）．．．．．$t=t_{0}+a \cos \theta+b \cos 2 \theta+c \cos 3 \theta+a \cos 4 \theta$
we get from this equation，with the fifteeu observed ralues of t ，and the corresponding values of a in the first column，fifteeu equations of condition for determining，by the method of least squares， the values of t_{0}, a, b, c ，and d ．With the values so determined，we get－
（25）．．$t=80.50-10.75 \cos \theta-20^{\circ} .95 \cos 2 \theta-10.00 \cos 3 \theta-20.66 \cos 4 \theta$
From this expression of t we get the computed values of t in the third column of the preceding table，which satisfies the observations with the residuals contained in the last column．Although this expression may represent the observations best for the latitudes for which they have been made，yet it cannot be regarded as representing the temperatures very accurately at or near the poles，especially the south pole．

20．In order to obtain the mean temperature of the earth＇s surface，we must integrate the expression obtained from（24）by multiplying it into $\sin \theta$ and integrating with regard to θ ，by which we get－

$$
\begin{aligned}
\int_{\theta} t \sin \theta= & \int_{\theta} \sin \theta\left(t_{0}+a \cos \theta+b \cos 2 \theta+c \cos 3 \theta+d \cos 4 \theta\right) \\
= & -\left(t_{0}-\frac{1}{2}\right) \cos \theta-\frac{1}{4}(a-c) \cos 2 \theta-\frac{1}{6}(b-d) \cos 3 \theta-\frac{1}{8} c \cos 4 \theta \\
& -\frac{1}{10} d \cos 5 \theta+C
\end{aligned}
$$

in which-

$$
\mathrm{O}=\left(t_{0}-\frac{1}{2} b\right)+\frac{1}{4}(a-c)+\frac{1}{6}(b-d)+\frac{1}{8} c+\frac{1}{10} d=t_{0}+\frac{1}{4} a-\frac{1}{3} b-\frac{3}{8} c-\frac{1}{15} d
$$

This integral gives for the northern hemisphere, using the values of t_{0}, a, b, c, and d in $(25),-$

$$
\int_{\theta} t \sin \theta=t_{0}+\frac{1}{2} a-\frac{1}{3} b-\frac{1}{2} c-\frac{1}{15} d=15^{\circ} .30
$$

and for the southern hemisphere,-

$$
\int_{\theta} t \sin \theta=t_{0}-\frac{1}{2} a-\frac{1}{3} b+\frac{1}{2} c-\frac{1}{15} d=160.05
$$

The mean of these two results gives $15^{\circ} .67$ for the mean temperature of the whole surface of the earth.

From Dove's Charts of Isothermal Lines, which do not extend beyond the middle latitudes in the sonthern bemisphere, it has been inferred that the southern hemisphere is colder than the northern, and this has been the accepted view ever since his charts were first published, in the year 1852; but, from the results obtained abose, it is seen that the mean temperature of the southern bemisphere is the greater of the two. If, bowever, we compare the values of t in the preceding table for the two hemispheres between the parallels of 30° north and south, we find that the southern hemisphere is the colder of the two between these parallels; but beyoud the parallels of about 35° the temperatures of the sonthern bemisphere become greater than those of the corresponding latitudes of the northern hemisphere, so that the average temperature is also greater, as shown above. The cause of this is found in the unequal distribution of land and water in the two hemispheres; for we now know, both from theory and observation, that there is a constant, though very slow, interchange of the water of the ocean between the equatorial and polar regions, which tends to diminish in some measure the difference of temperature between these regious, so that in the southern hemisphere, where there is mostly water, the temperatures of the higher latitades must be greater than those of the same latitudes in the northern hemisphere, and the reverse for the lower latitudes. The small differences above between the mean temperatures of the txo hemispheres is perhaps only of the order of the possible errors of these results, so that we cannot infer that there is any real difference in the averages of the two hemispheres.*
21. We now come to the subject of atmospheric pressure on the different parts of the earth's surface, upon which the values of $\mathrm{D}_{u} \mathrm{P}^{\prime}$ and $\mathrm{D}_{v} \mathrm{P}^{\prime}$ in the general equations of the preceding chapter depend. This pressure cannot be determined from theory, on account of the complexity of the equations and the uncertain element of friction entering into them, and we shall, therefore, endeavor to determine $i t$, so far as possible, from observation. The very valuable and exhaustive paper by Buchan on this subject, the "Mean Pressure of the Atmosphere and the Prevailing Winds over the Globe, for the Month and for the Year," published in the year $1869, \dagger$ left nothing undone which could have been done at the time in the way of detcrmining the atmospheric pressure from observation on the different parts of the globe; but since that time there has been so great an accumulation of barometrical observations from almost all parts of the world, that it does not seem proper, in our present researches on the subject, not to avail ourselves of these observations, at least in some measure, iu determining this pressure still more accurately for all places from which additional and more recent obsorvations have been obtained. It is also thought that the koowledge which we now hare of the relations between the barometric pressures and the velocities and directions of the winds, obtained from theory and corroborated by observation, can be now used in laying down isobaric lines for those countries and the vast expause of ocean from which we have none, or at least ouly a very few, observations, much more accurately than has been done heretofore,

[^26]H. Ex. $81-49$
since much may be inferred with regard to the barometric pressures from the known forces and directions of the winds. We shall, therefore, andertake to make out new charts of isobaric lines, not for each month, but simply for the mean annual pressures of the globe, and for the two extremes of January and July in the northern hemisphere, using for this parpose all the observations on hand, except in some parts of Europe, where there is so great an accumulation of them that all were not considered necessary for our purpose, since, in a general system of isobars for the whole globe, in which, from the scarcity of observations in many parts, there is much that is necessarily hypothetical and conjectural, it is not worth while to aim at extreme accuracy in certain comparatively very small parts of the surface of the globe. We shall also make out charts showing the annual variation of the atmospheric pressures over all parts of the globe, so far as this can be determined from observation, so that, with the meau annual pressure and the annual variation, the mean monthly pressures may be readily obtained, even with greater accuracy than they can be obtained from charts laid down from monthly averages, for it will be shown that all other neglected inequalities are generally either insensible, or at least smaller than the probable errors of monthly arerages. These charts will be given on polar projections of the two hemispheres, since each hemisphere contains a complete system of winds and harometric pressures which are similar, and because in such projections there is luss distortion of the parts in the bigher latitudes, where, in the northern hemisphere, there are some features in the winds and barometric pressures, and their annual variations, which it is desirable to have more accurately represented than they can be in the usual projections.
22. For our purpose, we bave put for each station for which we have observations of the pressure P -
(26) $P=B_{0}+B_{1} \cos \left(\varphi-\varepsilon_{1}\right)+B_{2} \cos \left(2 \varphi-\varepsilon_{2}\right)+8 c$.
$$
=\mathbf{B}_{0}+\mathbf{M}_{1} \cos \varphi+\mathbf{N}_{1} \sin \varphi+\mathbf{M}_{2} \cos 2 \varphi+\mathbf{N}_{2} \sin 2 \varphi+\mathbb{E} c
$$
in which-
\[

$$
\begin{gathered}
M_{1}=\mathbf{B}_{1} \cos \varepsilon_{1} ; \quad \mathbf{N}_{1}=\mathbf{B}_{1} \sin \varepsilon_{1} \\
\mathbf{M}_{2}=\mathrm{B}_{2} \cos \varepsilon_{2} ; \mathbf{N}_{2}=\mathbf{B}_{2} \sin \varepsilon_{2} \\
\tan \varepsilon_{1}=\frac{N_{1}}{\bar{M}_{1}} ; \tan \varepsilon_{2}=\frac{\mathbf{N}_{2}}{\mathbf{M}_{2}} \\
\mathbf{B}_{\mathrm{J}}=\frac{\mathbf{M}_{1}}{\cos \varepsilon_{1}} \text { or } \frac{\mathbf{N}_{1}}{\sin \varepsilon_{1}} ; \quad \mathbf{B}_{2}=\frac{\mathbf{M}_{2}}{\cos \varepsilon_{2}} \text { or } \frac{\mathbf{N}_{2}}{\sin \varepsilon_{2}}
\end{gathered}
$$
\]

In the preceding expression of P -
$\mathrm{B}_{0}=$ the mean annual barometric pressure;
$B_{1}=$ the coefficient of the annual inequality ;
$\mathrm{B}_{2}=$ that of the semi-annoal inequality ;
$\varphi=$ an angle increasing in proportion to the time at a rate, on the average, of 30° per month;
$\epsilon_{1}=$ a constant which is the value of φ at the time of the maximum of the annual inequality; and
$\varepsilon_{2}=a$ constant which is the value of 2φ at the time of the maximum of the semi-an. nual inequality.
If we put S_{n} for the monthly mean of the barometer for the nth month and the epoch of φ in the middle of December, we bave, by regarding each month as the twelfth part of a year,

$$
\begin{aligned}
B_{0} & =\frac{\Sigma_{n} S_{n}}{12} \\
6 M_{1} & =\binom{S_{1}-S_{7}}{S_{11}-S_{5}} \cos 30^{\circ}+\binom{S_{2}-S_{8}}{S_{10}-S_{4}} \cos 60^{\circ}+\left(S_{12}-S_{6}\right) \\
6 N_{1} & =\binom{S_{1}-S_{7}}{S_{5}-S_{11}} \sin 30^{\circ}+\binom{S_{2}-S_{8}}{S_{4}-S_{10}} \sin 60^{\circ}+\left(S_{3}-S_{8}\right) \\
6 M_{2} & =\left(\begin{array}{l}
S_{1}-S_{4} \\
S_{5}-S_{8} \\
S_{7}-S_{10} \\
S_{11}-S_{2}
\end{array}\right) \cos 60^{\circ}+\binom{S_{12}-S_{3}}{S_{6}-S_{9}} ; 6 N_{2}=\left(\begin{array}{l}
S_{1}-S_{4} \\
S_{2}-S_{5} \\
S_{7}-S_{10} \\
S_{8}-S_{11}
\end{array}\right) \sin 60^{\circ}
\end{aligned}
$$

With the values of M_{1}, M_{2}, N_{1}, and N_{2}, given by these formulæ, we get from the preceding expressions the values of $B_{1}, B_{2}, \varepsilon_{1}$, and ε_{2}.

The preceding expression of P is simply a transformation of what is usually called Bessel's formula, in which sines are used, instead of the cosines in the form of expression here adopted. This form is preferable to the other, since from the valnes of ε_{1} and ε_{2} the times of the maxima of the inequalities are more readily obtained, and this is made still more convenient by haring the constants ε_{1} and ε_{2} of the angles in the expression negative, as is usual in all tidal expressions of this sort, for in this case we have merely to add to the assumed epoch of the time-angles the time which is requiredjfor the angles to change by the quantity ε_{1} or ε_{2} in order to have the time of the maximum of the inequality. For the annual inequality, we divide ε_{1}, expressed in degrees, by 30 , and for the semi annual inequality ε_{2} by 60 , in order to get the time in months by which the maximam follows the assumed epoch of the middle of December.

The preceding formule for obtaining M_{1}, M_{2}, N_{1}, and N_{2} follow directly from the determination of these quantities by the method of least squares in the special case of twelve equal divisions of the period of the principal inequality. The values, therefore, of the constants $B_{1}, B_{2}, \varepsilon_{1}$, and ε_{2} thas obtained are the most probable values of these constants.

The form of (26) can likewise be applied to represent the temperature of the earth or atmosphere at any place, in which case the principal inequality has an annoal period. In the case of both atmospheric pressure and temperature, more than two inequalities need not be considered; for if those of a lower order have sensible coefficients, they are of an order moch smaller than the probable errors of the constants determined from observation, unless the period of observation embraces a very long series of years.
23. More convenient formula for the determination of the constants in (26) may be obtained upon the principle of averages, and the results obtained upon this principle, thongh differing a little from the most probable results given by the preceding formula, are sufficiently accurate in all meteorological researches, and the differences between the results of the two sets of formula will generally be found to be much less than the probable errors of the determinations.

If we put-
$a=$ the arerage of all the observations of P within the limits of $\varphi=\varphi$, and $\varphi=\varphi_{1}$,
$\varphi^{\prime}=$ the mean value of φ betreen the limits φ^{\prime} and $\varphi^{\prime \prime}$,
by considering ouly the first two inequalitios in $\mathbf{P}(26)$, and supposing the observation t equally distributed in time, we have-
(27)

$$
a=\mathbf{B}_{0}+k \mathrm{~B}_{1} \cos \left(\varphi^{\prime}-\varepsilon_{1}\right)_{2}^{\prime}+k^{\prime} \mathbf{B}_{2} \cos \left(2 \varphi^{\prime}-\varepsilon_{2}\right)
$$

in which-

$$
\left\{\begin{array}{l}
k=\frac{2 \sin \frac{1}{2}\left(\varphi_{1 \prime}-\varphi_{1}\right)}{\varphi_{\prime \prime}-\varphi_{1}}=2 \sin \frac{1}{2} c \tag{28}\\
k^{\prime}=\frac{\sin \left(\varphi_{1}-\varphi_{1}\right)}{\varphi_{1}-\varphi_{1}}=\frac{\sin c}{2 n \pi+c}
\end{array}\right.
$$

c in the last form of expression of k and k^{\prime} being the excess of $\varphi_{\prime \prime}-\varphi_{,}$over an equal number of periods $2 n \pi$ of the inequality.*

Where $\varphi_{1 \prime}-\varphi,=2 n \pi$, that is, where any number of eren multiples of the period of the angle φ is used in taking the average, a, the arc c, and consequently k and k^{\prime}, vanish, and we have $a=B_{n}$. The same is sensibly true in the case of a long series of observations, since c, and consequently $2 \sin \frac{1}{2} c$ and sin c, then becomes rery small in comparison with $2 n \pi$ in the denominator, in which n denotes the number of periods of the inequality used.

If we take the observations within the limits of the half-period $\varphi_{1 /}-\varphi_{1}=\pi$, since silu $\pi=0$, we then have $k^{\prime}=0$, and (27) becomes-

$$
a=\mathbf{B}_{0}+k \mathbf{B}_{1} \cos \left(\varphi^{\prime}-\varepsilon_{1}\right)
$$

[^27]The same is of course true if we take any number of successive half-periods within the same limits of φ. If we take the average for the other alternate half-periods, we get-

$$
a=\mathbf{B}_{0}-k \mathbf{B}_{1} \cos \left(\varphi^{\prime}-\varepsilon_{1}\right)
$$

If we therefore reverse the signs of the observations for the latter, we get for the arerage-

$$
\begin{align*}
a & =k \mathbf{B}_{1} \cos \left(\varphi^{\prime}-\varepsilon_{1}\right) \tag{29}\\
& =k \mathrm{M}_{1} \cos \varphi^{\prime}+k \mathrm{~N}_{1} \sin \varphi^{\prime}
\end{align*}
$$

If we put $S_{n}=$ the monthly arerage of the nth month, and assume the epoch of the angle φ at the beginning of January, and take the limits φ, and $\varphi_{I \prime \prime}$, so that $\varphi^{\prime}=0$, and put-

$$
\left\{\begin{array}{l}
A=S_{1}+S_{2}+S_{3} \tag{30}\\
\mathbf{B}=S_{4}+S_{5}+S_{6} \\
\mathbf{C}=S_{7}+S_{8}+S_{9} \\
D=S_{10}+S_{11}+S_{12}
\end{array}\right.
$$

we get from (29), since in this case $\cos \varphi^{\prime}=1$ and $\sin \varphi^{\prime}=0,-$
$12 a=12 k M_{1}=S_{10}+S_{11}+S_{12}+S_{1}+S_{2}+S_{3}-S_{4}-S_{5}-S_{6}-S_{7}-S_{8}-S_{9}=(A+D)-(B+C)$
If we now assume the limits so that φ^{\prime} falls on the 1 st of April, we have in (29) $\sin \varphi^{\prime}=1$, and $\cos \varphi^{\prime}=0$, and we get-
$12 a=12 k N_{1}=S_{1}+S_{2}+S_{3}+S_{4}+S_{5}+S_{6}-S_{7}-S_{8}-S_{9}-S_{10}-S_{11}-S_{12}=(A+B)-(C+D)$
With the value of $k=\frac{1}{\pi}$ from (28), since $\varphi,-\varphi$, in this case is equal to $\frac{1}{2} \pi$, these give-

$$
\left\{\begin{array}{l}
M_{1}=0.1309(A+D-B-C) \tag{31}\\
\mathrm{N}_{1}=0.1309(A+B-C-D)
\end{array}\right.
$$

With the values of M_{1} and N_{1}, we obtain B_{1} and ε_{1} by the formulæ in $\S 22$.
If we now take the arerages for intervals of the angle, or $\varphi_{1 \prime}-\varphi_{1}$, equal to $\frac{1}{2} \pi$, or $90{ }^{\circ}$, changing the signs of the observations for each second alternating interval, it is readily seen that the first inequality in (27) is eliminated, since in this case (28) gives $k=0$, and we get, instead of (29), 一

$$
\begin{equation*}
a=k^{\prime} \mathrm{M}_{2} \cos 2 \varphi^{\prime}+k^{\prime} \mathrm{N}_{2} \sin 2 \varphi^{\prime} \tag{32}
\end{equation*}
$$

In this case, the half-period of the angle embraces only three months; and, in order to obtain the value of M_{2}, we must ase intervals of two months only, so as to have φ^{\prime} fall in the middle of the interval, and we thus get, since $\cos 2 \varphi^{\prime}=1$ and $\sin 2 \varphi^{\prime}=0$,

$$
8 a=8 k^{\prime} \mathbf{M}_{2}=\mathbf{S}_{12}+\mathbf{S}_{1}-\mathbf{S}_{3}-\mathbf{S}_{4}+\mathbf{S}_{6}+\mathrm{S}_{7}-\mathrm{S}_{9}-\mathrm{S}_{10}
$$

In this case, we have the range between the limits $\varphi_{\prime \prime}-\varphi_{1}=60^{\circ}$, and bence we get from (28), -

$$
k^{\prime}=\frac{\sin 60^{\circ}}{\frac{1}{3} \pi}=0.827
$$

If we now take the limits of the alternate intervals φ, and $\varphi_{1,}$, so that φ^{\prime} of the first falls on the middle of February, we shall have $\sin 2 \varphi^{\prime}=1$ in (32) and $\cos 2 \varphi^{\prime}=0$, and consequently-

$$
12 a=12 k^{\prime} N_{2}=S_{1}+S_{2}+S_{3}-S_{4}-S_{5}-S_{6}+S_{7}+S_{8}+S_{8}-S_{10}-S_{11}-S_{12}
$$

Since we have in this case $\varphi_{, \prime}-\varphi_{1}=90^{\circ}$, (28) gives-

$$
k^{\prime}=\frac{1}{\frac{7}{2} \pi}=\frac{2}{\pi}
$$

We therefore get from the preceding expressions of $8 k^{\prime} \mathrm{M}_{2}$ and $12 k^{\prime} \mathrm{N}_{2}$, with the corresponding values of k^{\prime} for each, -

$$
\left\{\begin{array}{l}
\mathbf{M}_{2}=0.1511\left[\left(\mathrm{~S}_{1}-\mathrm{S}_{3}\right)+\left(\mathrm{S}_{6}-\mathrm{S}_{4}\right)+\left(\mathrm{S}_{7}-\mathrm{S}_{9}\right)+\left(\mathrm{S}_{12}-\mathrm{S}_{10}\right)\right] \tag{33}\\
\mathbf{N}_{2}=0.1309[(\mathrm{~A}+\mathbf{C})-(\mathrm{B}+\mathbf{D})]
\end{array}\right.
$$

With the values of M_{2} and N_{2} given by (33), we get, by the formule in $\S 26$, the values of B_{2} and ε_{2}.

It is very convenient in practice to obtain by (31) and (33) the values of M_{1}, N_{1}, and M_{2}, N_{2}, from observation, and the values so found are very accurate when the expression of $\mathrm{P}(26)$ is so convergent as to make the inequalities after the first two vers small or entirely insensible, as is the case in meteorology. In a comparison of the ralues of B_{1} for thirty cases, obtained from series of meteorological observations by both of the methods which have beeu given, the average of the differences by the two methods, taken without regard to signs, was ouly 0.13^{mw}, the maximun being 0.39^{mm}, and in the case of the values of B_{2} the differences were of the same order. Eren in cases in which it is desirable to use the former more accurate formula of the preceding section, these latter will be found a very convenient check within very narrow limits.

Where the range of avgle $\varphi_{i},-\varphi_{i}$, belonging to a gronp of observations of which the arerage a is taken, is small, the values of k and $k^{\prime}(28)$ do not differ sensibly from unity, and, by comparing (26) with (27), it is seen that the average can be used as the value of the function belonging to the middle of the interval, in which the value of φ is φ^{\prime}. If, Lowever, the range shonld be considerable, this average must be corrected in order to obtain the ralue of the function for the middle of the group of observations. From (26) and (27) we get-
(34) . . . $\mathrm{P}=a+(1-k) \mathbf{B}_{1} \cos \left(\varphi^{\prime}-\varepsilon_{1}\right)+\left(1-k^{\prime}\right) \mathbf{B}_{2} \cos \left(2 \varphi^{\prime}-\varepsilon_{2}\right)$

The last two terms, therefore, will be small corrections to the average a in order to get the value of the function P for the middle of the group, for which $\varphi=\varphi^{\prime}$. For instance, if we had monthly averages, we should have $\varphi_{1 \prime}-\varphi_{i}=30^{\circ}$, and (28) would give $1-k=1-0.9886=0.0114$, and $1-k^{\prime}=1-0.9549=0.0451$, and the correction is-

$$
\mathbf{P}-a=0.0114 \mathrm{~B}_{1} \cos \left(\varphi-\varepsilon_{1}\right)+0.0451 \mathrm{~B}_{2} \cos \left(2 \varphi^{\prime}-\varepsilon_{2}\right)
$$

The last term, on account of the smallness of B_{2}, is generally very small in monthly arerages. When the range $\varphi_{11}-\varphi$, is larger, of course these corrections become of more importance.
24. The constants in the last columns of the following table hare been deduced, by means of the preceding formulx, from the monthly means reduced to sea-lerel and the gravity of the parallel of 45°, contained in Rikatcheff's paper entitled " La Distribation de la Pression Atmosphérique dans la Russie d'Europe," published iu the Repertorium für Meteorologie, Band iv, Heft 1, S. 46, 47.

Table VI.

Place.	Latitude.	Longitude.	Altitude.		B_{0}.	\mathbf{B}_{1}.	B_{2}.	s_{1}.	ε_{2} 。
			m.		mm.	mm.	mm.	-	\bigcirc
Kem	6457	3439	13.7	7	757.3	1.7	1.1	123	22
Archangel	6433	$40 \quad 32$	10.7	19	757.5	0.7	0.5	151	219
Helsingfors	$60 \quad 10$	2457	11.6	15	759.6	0.5	0.5	86	192
St. Petersburg.	$59 \quad 56$	$30 \quad 16$	4.5	50	759.9	0.6	0.5	35	197
Boyolorsk	5945	$60 \quad 1$	193. 7?	16	761.6	3.6	0.5	19	187
Reval \qquad	5926	$24 \quad 45$	(7)	17	759.7	0.3	1.3	143	248
Port Baltic	59 21	243	8.5	33	759.8	0.2	0.5	145	260
Dorpat....	$58 \quad 23$	2643	68.3 © 43.0 ?	22	760.3	0. 2	0.3	225	180
Nijne Taguilsk ...	5756	$60 \quad 5$	189.4 ?	26	762.3	4. 4	1.7	11	159
Kostroma.......	$57 \quad 47$	4055	106. 2 ?	21	761.4	2.3	1.0	11	185
Riga.	$56 \quad 58$	$24 \quad 6$	16.6 ?	21	760.5	0.5	0.4	6	236
Catherinebrirg	$56 \quad 49$	$60 \quad 35$	283.8	31	762.8	4.5	0.9	14	190
Mitan.........	5639	2344	4. 9	19	760.5	0.8	0.6	354	206
Kazan	5547	$49 \quad 8$	71.1	17	762.4	4.2	1.1	20	193
Moscow.	5546	3740	145.1	48	762.3	2. 3	0.8	359	162
Slatovgk	$55 \quad 10$	5940	415.47	33	763.0	5.4	0.2	10	21
Kalouga	5430	3615	162.6?	13	762.3	2.7	0.8	354	221
	$52 \quad 57$	$36 \quad 5$	165.23	8	762.3	2.9	1.4	349	190
Tambow	5244	4128	165. 5?	14	762.9	3.2	0.3	12	212
Warsaw	5213	$21 \quad 2$	119.4	35	761.3	1.4	0.2	346	106
Orenbarg	5146	556	103.5	28	763.8	5.9	0.7	8	182
Orenburg	$\begin{array}{ll}51 & 45\end{array}$	368	209.4 4	25	769.6	2.8	0.7	350	189
Oaralek Fortreas	$48 \quad 37$	6116	108. 9 ?	8	762.9	7.6	1.6	6	192
Lougan	$48 \quad 35$	3920	62.67	31	762.9	4.0	0.5	0	226
Nikolaief	$46 \quad 58$	3158	55.0 \& 19.0	26	762.4	3.1	0.1	356	259
Odesse...	$46 \quad 29$	3044	$53.3 \& 65.3$	18	762.4	2.9	0.3	352	248
Astrakhan	$46 \quad 31$	$48 \quad 2$		12	763.0	4.6	0.5	2	304
Stavropol.	$45 \quad 3$	4159	555.7	27	762.3	4.4	0.5	10	345
Stavropor	4143	$44 \quad 47$	459.9 \& 409.3	26	763.2	4.0	0.9	0	310
Bakou	$40 \quad 22$	4950	-16.0	18	761.6	4.4	0.8	2	266
Hammerfert	$70 \quad 40$	¢64 46	6.4	13	756.4	3.9	1.1	177	262
Happaranda	6551	2411	11.6	12	758.5	1.0	0.5	126	224
Stykisholm	654	-2243	11.3	23	754.0	4.5	2.0	174	222
Reykjarik.	6440	-220	11.0	17	752.7	5.3	0.7	167	283
Christian Sound.	637	745	19.8	8	750.7	2.9	1.3	168	253
Heernösand.....	6238	$17 \quad 57$	19.2	12	758. 7	2.6	0.9	135	272
Christiania.	5955	$10 \quad 41$	22.7	35	759.0	0.5	0.6	105	220
Upsala.....	$\begin{array}{ll}59 & 52\end{array}$	$17 \quad 38$	24.0	18	758.3	0.3	0.5	124	278
	5541	1235	3.6	11	760.5	0.4	1.0	238	284
Stralsound.	54.29	12.20	14.9	28	761.0	0.7	0.4	324	267
Stettin....	5335	1434	21.8	10	761.2	0.7	0.3	297	11
Götersloh	5154	823	81.2	22	761.2	0.3	0.4	243	54
Dablin.	53.22	-621	49, 8	33	760.3	1.2	0.3	170	354
Berlin	5230	1323	46.8	32	761.9	0.3	0.3	305	59
Utrecht.	$52 \quad 5$	57	13. 4	20	761.9	0.3	0.5	241	3
London	51 20	00	0.0	.	761.2	0.7	0.5	155	57
Breslau.	517	$17 \quad 2$	147.5	39	762.7	1.7	0.5	342	25
Brasaels	5051	422	56.7	35	761.6	0.4	0.7	262	0
Prague	$50 \quad 5$	$14 \quad 23$	201.2	19	762.3	1.6	0.8	335	17
Cracow	50	1957	215.7	12	7623	1.7	0.4	326	58
Breszew	503	220	213.7	11	7624	1.7	0.1	328	148
Paris.	$48 \quad 50$	280	65.8	15	762.4	0.3	1.1	4	26
Vienua	$46 \quad 55$	1620	191.3	17	762.1	1.7	0.8	335	36
Triest.	$45 \quad 39$	1344			761.1	0.9	0.5	341	47
Bordeanx	4450	-0 35	22.9	10	763.1	0.8	0.8	297	48
Orauge...	448	448	45.4	36	760.1	0.9	0.5	311	36
	4337	-128	198.1	22	763.2	1.0	1.1	338	40
	410	2859	(?)	28	763.0	2.6	0.6	355	15
Constantinople	$40 \quad 52$	1415	146.9	11	763.9	0.8	1.5	269	27

Table VI-Continued.

25. The results contained in the following table have been deduced in the same manner as those of the preceding table from the monthly means of observations given from time to time in the "Zeitschrift der österreichischen Gesellschaft für Meteorologie." These observations hare been, in most cases, collected, revised, and discussed, and, iu many cases, corrected, by Dr. Hann, who has spent much time and labor upon them, and to whom, therefore, much credit is due, and the references in the following table are to the "Zoitschrift für Meteorologie" alone, where references will be found to the original sources from which the observations have been obtained, and due credit giveu. These observations include many of those used by Buchan, and also most of the observations made in all parts of the world since the publication of Buchan's paper, already referred to. These obsercations as given were not reduced to sea-level, nor to the gravits of the parallel of 45°. For the former reductions, we have used mostly the table on page 91 of Guyot's Hypsometrical Tables; but for all places of considerable altitude, the reductions have been made by the following formula:-
(35) $\log \mathrm{P}^{\prime}-\log \mathrm{P}=\frac{h}{18428(1+0.004 t+0.00001 h)}$
in which the coefficient of the temperature t is taken so as to include approximately the effect of moisture, and in which the temperature is supposed to decrease 00.5 for each 100 meters of altitude. The altitude h in the formula must be expressed in meters.

In a few cases, the altitudes were not given, and, where given, there was some uncertainty with regard to the manner in which they may have been obtained. If obtained barometrically, as is sometimes the case with altitudes thus given, then the reduced pressures to sea-level are simply the assumed pressures at sea level used in determining the altitudes, and hence are worthless. In drawing isobars on the charts, however, those results obtained from observations at considerable altitudes, in which there was considerable uncertainty in the redactions, were not allowed much, if any, weight.

Instead of reducing the monthly means to sea-level, this reduction was applied merely to the mean of the barometric pressures B_{0} given in the following table, using the mean temperature. This leaves an inequality in the reduction to sea-level, depending upon the annual inequality of temperature, uncorrected, which requires a correction to be applied to the coefficient B_{1}. The formula for this correction, as deduced from (35), is-

$$
\begin{equation*}
\cdots A_{c} \mathbf{P}=\Delta \mathrm{B}_{1}=\frac{\hbar}{18428} \times 0.004 \Delta t \times \frac{\mathrm{P}}{0.4343}=\frac{P h \Delta t}{2001280} \tag{36}
\end{equation*}
$$

in which Δt is the variation of the extreme of the mean monthly temperatures in Jauuary or July from the mean temperature, and in which the value of P at the height of $\frac{1}{2} h$ should be used when \boldsymbol{h} is great. The corrections given by this formula under the head ΔB_{1} in the following table must be applied to B_{1}, in order to hare the coefficient of annual inequality at the sea-level.

Table VII.

Table VII-Continued.

*Inoluding prerions one year, R. v, S. 67.
H. Ex. $81-50$
H. Ex. $81 \longrightarrow 0$

+ Inclading the previons two years, B. vi, S. 28.

Table VII—Continued.

Table VII-Continued.

26. The results in the following table are deduced from the monthly means contained in Buchan's paper on the Mean Pressure of the Atmosphere and the Prevailing Winds on the Globe,* for places not contained in the preceding tables.

Table VIII.

Place.		華			B_{11}.	B_{1} -	\mathbf{B}_{2}.	ε_{1}.	c_{2}	
	0	01	m.		mm.	mm.	mm.	0	0	\bigcirc
Armagh, Ireland	5421	- 0 49	64	11	752.7	1.4	0.9	191	312	759. 1
Belfast, Ireland	$54 \quad 36$	-556	0	11	759.0	1.3	1.0	174	315	750.6
Cork, Irelenad	5153	-8 28	8	11	759.5	1.4	1.0	190	347	760.7
Aberdeen, Scotlaud	$57 \quad 9$	-2 7	34	11	754.9	1.8	1.4	170	292	758.8
Glasgow, Seotland	$55 \quad 3$	-418	55	11	752, 6	1.5	1.3	179	996	758
Milue-Graden, Scotland	550	-2 12	31	11	755.9	1. 6	1.3	173	298	759.4
Liverpool, England	5385	- 259	0	11	759.2	1.2	1.3	178	321	759.7
Norwich, England	$52 \quad 38$	110	0	11	760.5	0.6	1. 5	198	321	761.0
Helaton, England	507	-516	32	20	759.0	0.6	0.7	163	49	762.2
Geneva, Switzerland	$46 \quad 12$	69	407	25	726.4	1. 1	1.1	273	36	
Turis, Italy	454	741	279	74	339.1	1.7	0.6	214	55	764.0
Rome, Italy	4154	12×8	0	15	761.7	0.2	1. 8	301	58	761.5
Malta, Ttaly.	$35 \quad 51$	1431	0	6	762.5	0.3	0.2	876	68	761.9
Bologna, Itsly	4430	1121	74	40	755.1	0.6	0.6	330	323	761.8
Krakau, Anstria	50 4	1985	216	19	742.5	1.3	0.6	290	335	762.5
Kremsmünster, A ustria.	483	146	283	19	728.0	1.1	0.9	285	20	762.4
Szegedin, Anstria	$46 \quad 15$	206	84	12	754.0	2. 0	0.2	324	312	761.8
Tesina, Austria	43 11	$16 \quad 25$	19	9	759.1	0.5	0.3	300	0	760.6
Manich, Bavaria	489	1134	511	10	716.0	1.2	1.1	254	2	761.3
Königsberg, Prussia	$54 \quad 43$	20.29	22	10	758.5	0.1	1.0	225	239	761.2
Dantzic, Prassia.	5421	1841	9	32	760.3	0.4	0.8	45	148	761.7
Corfia, Greece.	3939	1955	0	6	761.8	1.2	0.4	331	217	761.5
Barnaul, Russia	5380	83 57	122	19	749.3	8. 1	1.5	15	183	761.2
Jakntsk, Russim	62.2	12914	87	1新	753.8	7.2	0.3	0	120	763.3
Bogolovek, Rassia	$\begin{array}{ll}59 & 45\end{array}$	602	181	26	741.4	3.2	1.0	1	181	759.4
Ayansk, Russia	$\begin{array}{lll}56 & 27\end{array}$	13826	(?)	8	756.3	2.0	2.0	33	168	
Peterpanalshaven, Russia	5310	15832	(3)	1	753.8	3. 2	2.3	176	56	

*Transactions of the Royal society of Edinburgh, vol. xxv.

Table VIII-Continued.

27. The results of the following table have been deduced from the monthly means of barometric pressure given in the reports of the Chief Sigual Officer of the United States for the years 1872-76 inclusive. The means as given in the reports are reduced to sea-level, but the results here given are also reduced to the gravity of the parallel of 45°.

Table IX.

Place.	Latitude.	Longitude.	Altitude.	$\mathrm{B}_{i 1}$.	B_{1}.	B_{2}.	ε_{1}.	\boldsymbol{E}_{2}
	-	\bigcirc	Feet.	mm.	mm.	mm.	\bigcirc	0
Angusta, Ga	3328	-81 53	172	763. 6	1.9	0.8	350	20
Baltimore, Md	$\begin{array}{ll}39 & 18\end{array}$	$76 \quad 36$	45	763. 2	1.8	0. 2	346	33
Boston, Mass.	$43 \quad 20$	713	142	761.8	0.9	0.4	308	44
Breckenridge, Mind	4616	$96 \quad 38$	966	762.1	3.9	0.8	5	93
Baffalo, N. Y	$42 \quad 53$	$78 \quad 55$	666	761.1	1.2	0.3	351	126
Bariington, Vt	4429	7311	241	761.5	1.f	0.3	329	58
Cairo, Ill	370	890	36%	763.3	2.6	0.5	346	29
Cape May, N. 5	390	$74 \quad 58$	14	763.0	1.5	0.4	344	24
Charleaton, S. C...........	3245	$79 \quad 57$	61	763.5	1.6	0.8	353	20
Chicago, Ill	4152	$87 \quad 35$	668	761.9	2.0	0.5	354	6.5
Cincinnati, Ohi	$39 \quad 6$	8430	596	763.1	2. 4	0.4	346	38
Cleveland, Ohio	4130	8136	688	761. ${ }^{\text {c }}$	1.5	0.3	358	82
Darenport, Iow	4130	$90 \quad 36$	603	762.4	2.8	0.6	352	5
Detroit, Mich	4218	830	644	761.5	1. 7	0. 5	359	94
Duluth, Minn	$46 \quad 48$	926	643	761.5	2.3	0.4	10	134
Escanaba, Mich	4036	876	619	761.3	1.4	0.6	1	104
Fort St. Michael's, Alaska (2 years' observations).	$63 \quad 28$	16145	0	759.8	2.1	1.5	34	70
Gaiveston, Tex	2919	9446	39	762.3	1.9	0.8	353	7
Grand Haven, Mich.	435	8613	610	761.4	1.6	0.3	350	90
Indianapolis, 1nd	3942	$86 \quad 6$	747	762.2	2.3	0.3	346	57
Jacksonville, Fla	3015	820	23	763.5	1.6	0.9	2	11
Keokuk, Iow	4018	9130	584	761.4	2.8	0.4	333	6 e
Key West, Fla	$24 \quad 36$	8148	32	7623	1.1	1.0	35	25
Knoxville, Tenn	$35 \quad 56$	8358	993	763.2	9.3	0.6	347	12
Lake City, Fla. (3 years) observations)	$30 \quad 6$	8242		762.9	1.4	0.9	359	0
Leavenworth, Kans......	$39 \quad 21$	94	813	761.5	3.6	0.5	350	49
Louisville, Ky	380	85 25	496	762.5	2.4	0.4	348	46
Lynchburg, Va...........	$37 \quad 18$	$85 \quad 54$	651	763.3	2.1	0.5	344	12
Marquette, Mich	4633	87 23	666	761.3	1.5	0.7	27	95
Memphis, Tenn	358	880	299	763.5	2.6	0.5	34:	20
Milwaukee, Wis	43 3	$87 \quad 57$	672	762.0	1.6	0.4	346	84
Mobile, Ala	3042	$87 \quad 59$	39	763.6	1.9	0.8	0	5
Nashville, Tenn	$36 \quad 10$	8649	504	763.4	2.6	0.5	346	24
New London, Conn	$41 \quad 22$	729	38	762.5	1.0	0.3	323	63
New Orleane, La	$\begin{array}{ll}29 & 57\end{array}$	900	56	762.9	1.8	0.7	358	\checkmark
New York, N. Y	$40 \quad 12$	741	166	762.7	1.3	0.4	339	49
Norfolk, V	$36 \quad 51$	$76 \quad 19$	56	763.2	1. 4	0.4	350	30 e
Omaha, Nebr	4126	96	1055	760.6	3.6	0.5	356	6
Oswego, N. Y	$43 \quad 28$	76 '55	299	761.7	0.9	0.5	343	194
Phtladelphia, Pa	3957	$75 \quad 12$	47	763.2	1.6	0.3	344	35
Pittsburgh, Pa	40 32	$80 \quad 2$	741	7620	2.2	0.7	357	63
Portiand, Me	$43 \quad 40$	$70 \quad 14$	584	761.9	0.4	0.4	297	50
Portland, Oreg	4530	1228	90	764.4	0.4	0.6	45	960
Punta Rassa, Fla	270	6218	17	763. 2	1. 1	0.8	24	24
Rocheeter, N. Y............	438	7751	584	761.2	1.2	0.4	340	320
San Diego, Cal	3244	1176	62	761.8	1.8	0.4	37	998
San Francisco, Cal	3748	125	60	762.5	1.6	0.2	32	290
Savannah, Ga.	325	818	71	763.6	1.8	0.8	356	9
Shreveport, La............-	3230	$93 \quad 45$	229	76\%. 5	2.2	0.5	359	11
Saint Lrouis, Mo	$\begin{array}{lll}38 & 37\end{array}$	$90 \quad 16$	557	762. 5	2.5	0.5	342	55
Saint Panl, Minn	4453	935	794	761. 0	2. 7	1.0	358	116
St. Paul's Laland, Alaska (4 years' observations)	$57 \quad 3$	1700	0	755. 9	3.0	1.6	159	73
Toledo, Ohio	$40 \quad 39$	$83 \quad 32$	531	761. 7	1.9	0.3	346	36
Vicksburg, Mlsi	32.94	910	9880	764. 1	24	0.6	350	351
Warhington, D. C..........	3453	771	106	763.0	2.0	0.3	355	340
Wilmington, N. C.........	3411	$-78 \quad 10$	74	763. 5	1.6	0.7	353	0

28. With the values of B_{0} in the preceding tables, Charts I and II have been constructed, showing the mean barometric pressure, reduced to the gravity of the parallel of 45°, for the northern and southern hemispheres, by giving the positions of the isobars for each 2 mm . These isobars represent the mean pressures very accurately in Earope and the United States of America, the greater part of the North Atlantic, and many other places where the observations suffice to lay them down accurately; but throughout all the interior of Asia, Africa, and Sonth America, and the greater part of the great oceans, where there are but few observations, and these not reliable in many cases on account of the uncertainty of altitude above sea-level, and the lack of comparisons of the barometers used with any standard of comparison, of course the true positions of these lines are uncertain, but nowbere- entirely conjectural, since we can derive mach aid from theory and analogy in laying down these lines for those parts of the earth's surface for which we have few or no observations. As reliable observations multiply, and are obtained for those parts of the earth for which we have yet no observations, of course the positions of the lines as laid down in these charts will be found to be somewhat in error for all places for which we have not yet sufficient observations to determine them; but it is thought that the errors in general will be found to be small.

The arrows on these and the following charts denote the prevailing directions of the wind These are given, not from observation, but from theoretical considerations of the relations between the gradients and the directions and velocities of the winds, to be explained in a subsequent part of this work. The winds, as represented on these charts, are the resultants of all the winds for the whole year, which can now be laid down more accurately from a knowledge of the isobaric lines than from observations, which in most parts of the earth consist merely in the observation of the relative frequency of the winds from the different points of the compass. The prevailing direction of the wind, as obtained from such observations, may be very different from the resultant obtained by Lambert's formula from observations of the true velocities and directions of the wind through the year.
29. With the values of B_{1} in the preceding tables, reduced to sea level by means of the values of $\lrcorner \mathrm{B}_{1}$ where the monthly means of the observations were not given for sea-level, Charts III and IV have been constructed, representing the coefficients of the annoal inequality of barometric pressure over the whole globe. These coefficients are accurately represented by the charts for all portions of the eartl where the observations were sufficient for their determination; but, of course, there is the same uncertainty with regard to them where few or no observations bave been made which there is with regard to the mean pressures.

Where the signs of these coefficients as given on the charts are positive, the maximum of the barometric pressure occurs in the winter and the minimom in the summer. It is seen from the chart of the northern hemisphere that these signs are mostly positive on land and negative ou the ocean, especially on the middle parallels of latitude. This arises from the higher temperature of the air in summer and lower temperature in winter on land than on the ocean. The liue of no annual inequality of barometric pressure passes over Norway and Swedeu and a little east of London, touching upon France and Portugal, having its most southern point in the middle of the Atlantic, a little south of the parallel of 20°, and then, carring north ward, passes over the eastern part of New England in America.

On account of the great extent of continent and the great extremes of temperature in the interior of A sia, this coefficient of the annual inequality amounts to about 10^{mm}, or a range of 20^{mm} between winter and summer, while in America it amounts at the maximum to only about oue third as much. This difference between Asia and North America does not depend so much upon the difference in the extremes of temperature of the two countries, which is inconsiderable, as upon the difference in the extent of the two continents.

The lines on Charts III and IV represent the gradients which in winter have to be added to the gradients given on Charts I and II to obtain the gradients for that season, and these in summer are completely rerersed, and bence the steeper these gradients the greater are the monsoon influ. ences in the different parts of the globe. These, it is seen, are very great in the southern part of Δ sia.

In the southern hemisphere, on account of the small extent of land and the small range of temperature between winter and summer, the coefficient of the annual inequality of barometric pressure is small and negative so far as we have observations to determine it, and nearly the same in all longitudes on the same parallel of latitude. Its being negative shows that the maximum

THE UNITED STATES COAST SURVEY.

occurs in winter, that is, during the sammer of the northern hemisphere. About the parallel of 55°, this coefficient seems to vanish, beyond which it probably becomes positive, making the maximnm of pressure in the summer as in the northern parts of the Atlantic and Pacific Occans of the northern hemisphere.
30. The values of ε_{1} in the preceding tables are very various, depending upon the want of sufficient observations in many cases to eliminate the abnormal inequalities and bring out the true value, especially in such cases as give a small value of the coefficient B_{1}, which is often less than the possible error of observation, when the value of ε_{1} is of course indeterminate, and may have any value whatever. Taking the average of all the values of ε_{1} in Table VI belouging to coefficients greater than 3.0^{mm}, we get $\varepsilon_{1}=9 \circ$, which makes the maximum of barometric pressure in Europe occur about the 9 th of January, a little earlier than the minimum of temperature. This is perhaps the most prohable value of ε_{1} for all stations in Enrope, the variations from this value of ε_{1} in the different stations being merely possible errors of observation, though they may possibly depend in some measure upon local causes. To this value, the values of ε_{1} for other places in Europe in the other tables seem also to point in cases in which the coefficient is sufficiently large for the values of ε_{1} to be determined approximately from observation.

Where stations have great altitude above sea-level, as in the case of Höhenpeiseuburg in Table VII, the value of ε_{1} is such as to make the maximum of the barometric pressure occur in summer instcad of winter, in which case we can change ε_{1} by 180°, and consider the value of B_{1} as negative. Applying the correction then in the column headed by ΔB_{1} to reduce this coefficient to sea-level, it becomes positive, and makes the maximum of pressure fall in the winter. In the case of Höhenpeisonburg, we get $-1.9^{\mathrm{man}}+3.3^{\mathrm{man}}=1.4^{\mathrm{mm}}$ for the coefficient of annual inequality, with tie value of $\varepsilon_{1}=228^{\circ}-180^{\circ}=48^{\circ}$, making the maximum occur after the middle of February. In applying the reduction to sea-level, $J B_{1}$, it is supposed for convenience that the maximum of pressure coincides with the minimum of temperature, which, we have seen, is not strictly correct, bat the errors in these small reductious arising from this cause are generally very small.

In all cases in which the values of ε_{1} are such as to throw the maximun of barometric pressure into the time of summer of the northern hemisphere, as in the northern parts of the Atlantic and Pacific Oceans and in the southern hemisphere generally, the values of B_{1} as entered in the Charts III and IV are considered negative, and in all such cases the values of ε_{1} must be dimimished by 180°, or the negative sign of the coefficient on the chart changed to the positive sign if used with the average value of ε_{1} given by the tables in such cases, which does not generally differ mach from 200°, throwing the maximum of barometric pressure in July.

If we take the average of all the values of s_{1} in Table IX, deduced from the observations of the Sigual Service of the United States, giving them weights in proportion to the magnitades of $\mathbf{B}_{1,}$ and excluding the stations on the Pacific coast, we get $\varepsilon_{1}=353^{\circ}$ for the stations north of the parallel of 40° and $\varepsilon_{1}=3510.1$ for the stations south of that parallel; and hence we may put for the United States, except the Pacific coast, $\varepsilon_{1}=3520$. This makes the maximum of barometric pressure occur about the 23d of December, and about sixteen days earlier than in Europe, and in both places considerably earlier than the time of the minimum of temperature. This is most probably caused by the greater amount of aqueous vapor in the atmosphere in the spring than in the fall, which canses the maximum of barometric pressure to be earlier.
31. In addition to the annual inequality of barometric pressure, there is also a very small semiannual inequality, as may be seen from an inspection of the columns in the preceding tables beaded by B_{2} and ε_{2}. The values of B_{2} as given are mostly of the order of the probable, or, at least, possible, errors of the results, as may be seen from the scattering values of ε_{2}, and hence do not indicate real terms; but if we examine all the larger values of B_{2}, we find that the corresponding values of ε_{2} are such as to indicate real terms, and give a maximum of inequality in the middle of winter and summer, and a minimum in the spring and fall. The coefficient of this inequality seems to be generally less than 1.0^{mm}, but in some places, especially toward the north pole, it appears to be much greater.

The average of these coefficients in Table IX, from the observations of the Sigaal Service of the United States, excluding the stations on the Pacific coast, give for the stations south of the parallel of $35^{\circ}, B_{2}=1.02^{\mathrm{mm}}$, and the corresponding average of the values of ε_{2}, giving each weight in proportion to the magnitude of the coefficient, is 8°, indicating maxima about the 4 th of January and July. In the same manner, we get for the stations between the parallels of 35° and 40°,
$B_{2}=0.53^{\mathrm{mm}}$, and $\varepsilon_{2}=19.6$. For those stations north of the parallel of 40 , we get $\mathbf{B}_{2}=0.48^{\mathrm{mm}}$ and $\varepsilon_{2}=45^{\circ} .4$. The coefficient, therefore, seems to diminish in the United States with the increase of latitude, and the times of maxima to become later, being, in the nortbern part of the United States, about the $23 a$ of January and July.
32. If we take from Charts I and II the mean barometric pressures for each fifth parallel of latitude and each tenth degree of longitnde, and take the averages with regard to the different longitudes, we get the results contained in the first column, headed B_{0}, in Table X, which are the mean pressures for the corresponding latitudes in the first column. It is seen that there is a minimnm pressure about 6° north of the equator, a maximam in the northern hemisphere near the parallel of 35°, and in the southern hemisphere near the parallel of 28°. There is also a minimum at the parallel of 65° in the northern hemisphere, arising from the two great depressions of barometric pressure in the northern parts of the Atlantic and Pacific Oceans.

From the differences of B_{0}, with the irregularities a little smootherd off, the gradients in the column headed G are obtained, which express, in millimeters, the differences of barometric pressure, corresponding to a distance of one degree of a circle baving the mean radius of the earth, or 111111 meters.

By taking the averages of all the values of B_{1}, taken from Charts III and IV, for each tenth degree of longitude, we get the lesults contained in the fourth column of Table X, from the differences of which, smoothed off a little, we get the corresponding gradients in the column headed by g. These latter results, added to those of the mean pressures, give the pressures and gradients for Jannary, and subtracted give those for July. From what we have seen in § 30 , the maxima and minima for the average of all longitudes occur about the first of these months, and before the maxima and minima of temperature.

Table X.

Lat.	Annual mean.		Annual inequality.		January.		July.	
	B,	G.	E_{1}.	g.	\mathbf{B}_{0}.	G.	\boldsymbol{E}_{6}.	G.
\bigcirc	m	mm.	mm.	mm.	mm.	mm.	$m m$.	mm .
${ }^{8}$	760.5		-0.06		760.4		760.6	
75	760.0	-0.19	+0.19	$\div 0.04$	760.2	-0.15	758.8	-0. 23
70	758.6	-0. 14	0.36	0.05	759.0	-0.09	758.2	0.19
65	758.2	+0.01	0.63	0.06	758.8	+0.07	757.6	-0.05
60	753.7	0.15	0.97	0.06	759.7	0.21	757. 7	+0.09
55	759.7	0.20	1.26	0.05	761.0	0.25	758.4	0.15
50	760.7	0.18	1.41	0.03	762.1	0.21	759.3	0.15
45	761.5	0.15	1.53	0.02	763.0	0.17	760.0	0.13
40	762.0	+0.07	1.61	$+0.01$	763.6	$+0.08$	760.4	+0.66
35	762.4	-0.03	1.66	0.00	764.1	-0.03	760.7	-0.03
30	761.7	0.18	1. 66	-0.01	763.4	0.19	760.0	0.17
25	760.4	0. 25	1.61	0.03	762.0	0. 28	758.8	0.22
20	759.2	021	1.41	0.06	760.6	0.27	757.8	0.15
15	758.3	0. 13	1.05	0.09	759.3	0.22	757.3	-0.04
10	757.9	-0.03	+0.50	0.11	758.4	0.14	757.4	+0.08
5	758.0	+0.01	-0.05	0.12	758.0	0.11	757.9	0.13
0	758.0	0. 0.4	0.63	0.12	757.4	-0.08	758.6	0.16
- 5	758.3	0. 11	1.18	0.11	757.1	0.00	750.5	0.22
10	759.1	0. 20	1.70	0.08	757.4	+0. 12	760.8	0.28
15	760.2	0. 26	200	0.06	758.2	0. 20	\%62. 2	0.32
20	751.7	0. 29	2.22	-0.0.3	759.5	0.26	763.9	0.32
25	763.2	+0.18	2.30	0.00	760.8	+0. 18	765.6	+0.18
30	763.5	-0.03	222	+0.03	761.3	-0.05	765.7	-0.11
35	762.4	0. 30	1.85	0. 06	360.6	0.25	764.2	0.35
40	760.5	0.51	1.41	0.67	759.1	0.44	761.9	0.58
45	757.3	0.73	1. 00	0.09	756.3	0.64	758.3	0.82
50	753.2	0.91	-0. 50	0.10	752.7	0.81	753.7	1.01
55	748. 2	0.97	0.00	+0.10	748.2	-0.87	748.2	i -1.07
00	743.4	0.83						
65	739.7	-0.56						
-70	738.0							

With the values of G in this table, the values of $D_{v} P$ contained in equations (15), and in expressions deduced from them in the following chapter, are readily obtained.
33. Cbart V shows, by isobaric lines, the mean pressure of the atmosphere in the northern hemisphere for January, in millimeters, reduced to the gravity of the parallel of 45°, and, by arrows, the prevailing directions, or rather the directions of all the resultants for the month. These latter are inserted, as in the case of Charts I and II, from theoretical considerations of the relations between the winds and the isobars, and not from results deduced from actual ${ }^{\text {en }}$ observations.

Chart VI shows the same for the month of July. The epochs of maxima and minima on the earth's surface generally, from what has been stated, are nearly the 1st of January and Jnly respectively, and not at the times of the least and greatest temperatures.

On the first of these charts there are two areas of great barometrical depressions over the northern parts of the great oceans, and two areas of high barometer over each of the continents, and consequently having the isobars mostly crowded closely together, with corresponding strong prevailing winds. On the last of these charts, for July, in consequence of the reversal of the amual inequality, it is seen that these areas of low and high barometers are very much smoothed off, and consequently the isolors are much separated, with corresponding small velocities of the prevailing or resultant winds; for the winds in the same latitudes are very uearly inversely as the distances between the isobars, as will be explained in the second part of this work.

As the barometric pressures given on the chart are the observerl pressures reduced to those of the gravity of the parallel of 45°, in comparing observed pressures in any part of the world with those given by the charts, the same reduction must first be made. ${ }_{4}$ The part of gravity depending upon latitude is expressed by the last term in the expression of g in (13). The effect upon the height of the mercurial column is inversely as that upon gravity, and hence the observed column is too low toward the poles and too bigh toward the equator. The correction, therefore, to be applied to the observed height for the pressure of $0.76^{\prime \prime \prime}$ is $0.76^{\prime \prime} \times 0.00284 \cos 20$, which ean be used for all parts of the earth's surface without material error. This reduction is given for each fifth degree of latitude in the following-

TABLE.

Latitude.	Reduction.	Latitude.	Roduction.	Latitude.	Reduction.
\bigcirc	mm.	0	mm.	0	mme.
0	-2.16	30	-1.08	60	$+1.08$
5	2.12	35	0.74	65	1.39
10	2.03	40	-0. 0.37	70	1. 65
15	1.87	45	0. 00	75	1.87
20	1.65	50	+ 0.37	80	2.03
25	- 1.39	55	+0.74	85	+212

H. Ex. $81-51$

CHAPTER III.
 THE GENERAL MOTIONS OF THE ATMOSPHERE.

34. Under the head of "The general motions of the atmosphere" are included all those motions which extend as a system over the whole globe, and depend upon differences of temperatare between the equatorial and the polar regions at all seasons, and hence they comprise not only the mean motions of the atmosphere, but likerrise the changes in these motions depeuding upon the seasons; but they do not include those motions or disturbances depending apon permanent differences, for the time, of temperature in different longitudes, upon local disturbances of temperature or of density from any canse, or upon the irregularities of the earth's surface. The conditions to be satisfied in this case are those of equations (15), in which, since differences of temperature in longitude are not considered, $D_{r} \log a^{\prime}$ vanishes, and consequently the last term of the second equation. The complete solution of these equations is impossible, both on account of their complexity and the nncertain element of friction entering into them, the laws and the amount of which are unknown. Many important results, however, may be deduced from their consideration and solution in special cases, from which approximate results may be obtained by neglecting the effects of friction, and the latter, with the aid of observation, may be shown in most cases to be very small.

If the temperature and amount of aqueous vapor upon which a depends were the same over all parts of the earth's surface, $\mathrm{D}_{u} \alpha^{1}$ and $\mathrm{D}_{v} a^{1}$ in (15) would vanish, and it is readily seen that the conditious of (15) in this case are satisfied with $\mathrm{D}_{t} u=0$ and $\mathrm{D}_{t} v=0$, and consequently with a state of rest and of uniform pressure over the whole globe. And if the atmosphere were set in motion by any exterual impulse, this motion, in the case of friction, would be speedily destroyed, and a state of rest ensue. There can be no winds, then, without a disturbance of the static equilibrium by means of a difference of temperature or of aqueous vapor in different parts of the atmosphere.
35. In the case of no friction, where a is indepeudent of longitude, it is evident that P^{\prime} is likewise independent of longitude, and the first member of the second of (15) must vanish, as well as the last two terms of the second member, and the equation is reduced to-

$$
0=\mathrm{D}_{t}^{2} v+2 \cos \theta\left(n+\mathrm{D}_{t} \omega\right) \mathrm{D}_{t} u
$$

Since we have $u=r \mathrm{D}_{t} \theta$ and $v=r \sin \delta \mathrm{D}_{t} \varphi$, this equation may be expressed in the following form:-

$$
2 \sin \theta \cos \theta\left(n+D_{t} \varphi\right) \mathrm{D}_{t} \theta+\sin ^{2} \mathrm{D}_{t}^{2} \varphi=0
$$

The integral of this equation is-

$$
\sin ^{2} \theta\left(n+\mathrm{D}_{t} \varphi\right)=e
$$

in which c is a constant depending upon the initial east or west velocity, or value of $D_{t} \varphi$, of the particle supposed to be not influenced in its motions by contiguous parts, as implied by putting $\mathbf{F}_{v}=0$ in the original equation in (15).

If we put θ^{\prime} and v for the initial values of θ and $\mathrm{D}_{i} \varphi$, we have-

$$
c=\sin ^{2} \theta^{\prime}(n+v)
$$

We stall therefore hare, if we suppose the particles to have such an action upon each other as to reduce, in time, the motions of all the particles of the atmosphere upon the same parallel of latitude to the same, and that there is no resistance between the earth's surface and the atmosphere,-

$$
(37) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \int \sin ^{2} \theta\left(n+\mathrm{D}_{t} \varphi\right)=\int_{m} c=\frac{2}{3}\left(n+v^{\prime}\right) m
$$

in which m is the mass of the atmosphere, and-

$$
v^{\prime}=\frac{1}{m} \int_{m} \sin ^{2} \theta v
$$

If the initial state of the atmosphere is that of rest relative to the earth's surface, we have x, and consequently $v^{\prime},=0$.

The first member of (37) expresses in terms of the earth's radius the sum of all the areas described in a unit of time by a line drawn from the earth's axis to each particle of the atmosphere, and this sum must always remain the same since no mutual actions of the particles upon each other can change it, and the velocity of each particle at the same distance from the earth's axis, that is, upon the same latitude, must always be the same after they have been brought to this state by their mutual actions upou each other. We shall then have-

$$
\begin{equation*}
\text { }\left(n+\mathrm{D}_{6} \varphi\right)=\frac{2 n\left(n+v^{\prime}\right)}{3 \sin ^{2} \theta} \tag{38}
\end{equation*}
$$

The first member of this equation represents the angular velocity of a particle of atmosphere around the earth's axis depending upon the velocity of the earth's rotation n and the angular velocity $\mathrm{D}_{t} \varphi$ relative to the earth's surface, and this velocits, it is seen, as the particle moves toward or from the pole, must be inversely $\operatorname{as~}^{\sin ^{2} \theta \text {, and consequently inversely as the square of }}$ the distance from the axis of rotation, and this is independent of any law governing the motion toward or from the pole, just as in the case of the planets, or the motions of any free body controlled by a central force, whatever may be the law of that force. Multiplying both members of (38) by $r \sin \theta$, it becomes the expression of the linear velocity.

From (38) we get, in the case of a state of initial rest relative to the earth's surface, in which case $v^{\prime}=0$,

$$
\left\{\begin{array}{l}
\mathrm{D}_{t} \varphi=\left(\frac{2}{3 \sin ^{2} \theta}-1\right) n \tag{39}\\
\mathbf{D}_{t} v=r \sin \theta \mathrm{D}_{t} \varphi=r n\left(\frac{2}{3 \sin \theta}-\sin \theta\right)
\end{array}\right.
$$

The first of these expresses the angular and the second the linear velocity of eastward motion relative to the earth's surface.

If we put $D_{l} \varphi=0$, the first of (39) gives-.
(40) $\sin \theta=\frac{2}{3}$
from which we get $\theta=54^{\circ} 44^{\prime}$, corresponding to the parallel of $35^{\circ} 16^{\prime}$, where there is no east or west motion to the air. All velocities between this parallel and the pole are positive, aud those between this parallel and the equator negative.

If we substitute the preceding value of $\mathrm{D}_{t} \varphi$ in the first of (15), and neglect the effect upon \mathbf{P}^{\prime} of a difference of density, and of the inertia of the fluid represented by $D_{\varepsilon}^{2} u$, we get, since $r D_{n} \log$ P^{\prime} is equal to $\mathrm{D}_{\theta} \log \mathrm{P}^{\prime}$, and $\mathrm{F}_{\boldsymbol{v}}$ vanishes in the case of no friction, -

$$
\frac{1}{\alpha^{\prime}} \mathrm{D}_{\theta} \log \mathrm{P}^{\prime}=r^{2} n^{2} \sin \theta \cos \theta\left(\frac{4}{9 \sin ^{4} \theta}-1\right)
$$

By integration, regarding a^{\prime} as constant, we get-

$$
\frac{1}{\alpha^{\prime}} \log \mathbf{P}^{\prime}=-\boldsymbol{r}^{2} n^{2}\left(\frac{2}{9 \sin ^{2} \theta}+\frac{1}{2} \sin ^{2} \theta\right)+\mathbf{C}
$$

in which, if we put $P^{\prime \prime}$ for the value of P^{\prime} at the equator, we have-

$$
\mathrm{C}=\frac{1}{a^{\prime}} \log \mathrm{P}^{\prime \prime}+\frac{13}{18} r^{2} n^{2}
$$

Hence,-
(41) $\log P^{\prime}=\log P^{\prime \prime}+M a^{\prime} r^{2} n^{2}\left(\frac{13}{18}-\frac{2}{9 \sin ^{2} \theta}-\frac{1}{2} \sin ^{2} \theta\right)$
in which the factor M, the modulus of common logarithms, must be used when these are used.
In inelastic tluids we have merely to substitute $\mathrm{P}^{\prime}=g h$ for $\log \mathrm{P}^{\prime}$ in all the preceding equations. Hence, in this case, we get from (41), by putting the first member equal 0 , a condition for determining the latitude where the pressure, and consequently h, the height of the fluid, vanishes, and bence a condition for determining the polar limit of the flaid. This limit depends upon the value of $P^{\prime \prime}$, the pressure or the height of the tluid at the equator, and the greater this is the higher the latitude, where h, the height of the fluid, becomes 0 .

With the value of $r n(\S 14)$, and the value ot $a^{\prime}=a_{0}$ given by (20), which is the value belonging to the temperature of 0 , we get $\mathrm{M} \alpha^{\prime} r n^{2}=1.1946$. With this value, and the special value of $\sin ^{2} \theta=\frac{2}{3}$ in (40), belonging to the latitude where the pressure is a maximum, we get-

$$
\log P^{\prime}=\log P^{\prime \prime}+0.06636
$$

If we suppose $\mathrm{P}^{\prime \prime}$, the pressure or value of P^{\prime} at the equator, equal to 0.76^{m}, we get for the maximum pressure near the parallel of 35°.

$$
\log \mathrm{P}^{\prime}=9.88081+0.06636=9.94717
$$

Hence, at this parallel, $\mathrm{P}^{\prime}=0.8854 \tilde{\sigma}^{\mathrm{m}}$, or 0.12545^{m} greater than at the equator. There is, therefore, in this case a great depression or diminution of the pressure at the equator, an accumulation having its maximum near the parallel of 35°, and almost a vacuum near the poles.

With the value of $r n$ in § 14 , the second of (39) gives at the equator, where $\sin \theta=1$,

$$
\mathrm{D}_{t} v=-154.76^{\mathrm{m}}
$$

for the velocity per second of the atmosphere at the equator in this case, or a westward velocity of about 557 kilometers per hour. Toward the poles, where $\sin \theta$ in the denominator of one of the terms in the expression of $\mathbf{D}_{i} v(39)$ becomes small, the eastward velocity becomes very great.
36. We know from observation that in the case of nature in which there is friction, the value of $\mathrm{D}_{t} \varphi$, the angular velocity of the atmosphere relative to the earth's surface, is very small in comparison with n, the angular velocity of rotation, and hence may be neglected in comparison with it. In the case, therefore, under consideration now, in which the tirst member of the second of (15) vanishes, and also the last term of the second member, we have very nearly-

```
(42) . . . . . . . . . 2n cos 0 D)}u=-(\mp@subsup{\mathbf{F}}{v}{}+\mp@subsup{\mathbf{D}}{t}{2}v
```

The first member expresses the deflecting force depending upon the earth's rotation on its axis, and upon $\mathrm{D}_{z} u$, the velocity along the meridian, and it is this force alone which orercomes the friction and inertia of the air represented by the two terms in the second member. At the equator, where $\cos \theta=0$, we have-

$$
\mathbf{D}_{t}^{2} v=-\mathbf{F}_{v} \quad \text { or } \quad \mathbf{D}_{t} \boldsymbol{v}=-\mathbf{F}_{v} t
$$

As F_{v} is negative, it tends to destroy all motion which the air might have at the equator, and bence there can be no east and west motion there in the case we are now considering, in which only differences of density between the equatorial and polar regions are considered. Since D, u in (42) becomes very small toward, and vanishes at, the poles, we must for the same reason have a calm about the poles.
37. If the motions of the atmosphere were not resisted by the earth's surface, the results of the preceding section for the case of no friction could be at once applied to them without any modificatious; bence toward the poles there would be a very rapid motion of the atmosphere eastward aud in the equatorial regions toward the west, and the atmosphere would be rery much depressed at the equator, and almost vanish from the polar regions, and become very protuberant about the parallels of 35°. Although these results, when applied to the atmosphere, must be very much modified on account of the resistances of the earth's surface, yet they will be of great advantage in explaining its geueral motions; for as there can be no resistance uutil there is motion, the atmosphere must have a tendency to assume, in some measure, the same motions and figure of outline as in the case of no resistances. Hence toward the poles, the general motions of the atmosphere at the earth's surface must be toward the east, and in the torrid zone toward the west ; but as these motions, in consequence of the resistances, are small in comparison with those in the case of no resistances, iustead of the atmosphere having a great depression at the equator, and almost entirely receding from the poles, there are only comparatively small depressions, as represented in Uhart VII, in which the outline of the part representing the atmosphere must be regarded merely as a stratum of equal density in the upper regions. That there are really such depressions at the equator and the poles is shown by the barometric pressures given in Table \mathbf{X}, for the pressures are less at the equator and toward the poles, especially the south pole, thau in middle latitudes, although the density of the atmosphere at the poles is much greater on account of the lowness of the temperatare, and hence there must be considerable polar depressions in the strata of equal density.
rt VII is intended to represent the mean annual vertical or horizoutal surface motions of the atmosphere in the case of a homogeneous surface orer the whole globe, of either all water or all land of the same unevenness, and with the same temperatures at corresponding parallels of the two hemispheres. Hence the equatorial calm-belt coincides with the equator, and the other two calm-belts are found on corresponding parallels, and the whole system of the winds in the two hemispheres is exactly similar. On account, however, of the unequal distribution of land and water in the two hemispheres, these calm-belts are somewhat displaced, being all moved a little toward the north pole; and on account of the unequal distribution of temperature in the different longitudes corresponding to the same parallels of latitude in the same hemisphere, arising from the anequal distribution of land and water, these calm-belts and the general system of the winds are very much deranged, especially in the northern hemisphere, as represented in Cbarts I and II.
38. As the motion of the atmosphere is east toward the poles and west near the equator, somewhere between the equator and the poles there must be a parallel of latitude where there is no east or west motion. This, in the case of no resistance, and upon the hypothesis of an iuitial state of rest, we hare found to be nearly the parallel of 35°; but, in the case of nature, in which there are frictional resistances at the earth's surface to the motions of the atmosphere, this parallel depends upon the law of the resistances and the velocities of motion, and bence it cannot be accurately determined from theory. It is evident, however, that the east and west motions of the atmosphere at the earth's surface most be such that the sum of the resistances of each part of the earth's sur. face multiplied into its distance from the axis of motion must equal 0 , else the velocity of the earth's rotation would be continually either accelerated or retarded, which canuot arise from any mutual action between the earth's surface and the surrounding atmosphere. Now, as the part of the earth's surface where the motion of the atmosphere is west is much farther from the axis than the part where it is east, it is reasonable to suppose that the parallel of no east and west motion must be nearer to the equator in this case than the parallel of 35°, unless the eastward velocities toward the poles were very much greater than the westward velocities toward the equator. This is known to be the position of this parallel from observation. In speaking of the east and west motions of the atmosphere, of course only one component of the real motions is understood.
39. Since there is an eastward motion of the atmosphere in the polar regions and a westward motion nearer the equator, the protuberance of the outline of the atmosphere and the increase of pressure in the middle latitudes, with a maximum near the parallel of 30°, is readily explained by the principle given in § 13 ; for, according to this principle, the eastward motions in both hemispheres give rise to a deflecting force, arising from the earth's rotation toward the equator, and the westward motions nearer the equator to a deflecting force toward the poles, and hence there must be an accumulation of atmosphere having its maximum between these east and west motions.
40. The increase of pressure arising from the accumulation of atmosphere near the parallels of 30° gives the atmosphere at the earth's surface a tendency to flow from beneath this atcumulation both toward the equator and the poles, since the motions, and consequently the deflecting forces arising from these motions, and causing this accumulation, are much less near the surface, where friction is greatest, than in the higher strata. But on account of the greater density of the atmosphere toward the poles, it has a tendency also to flow, at the earth's surface, from the poles toward the equator. Between the parallel of greatest pressure and the equator these tendencies combine and produce a strong surface current which, combining with the westward motion there, gives rise to the well-known northeast wind in the northern and sontheast wind in the southern hemisphere, represented on Chart VII, called the trade-winds. But between the parallels of greatest pressure and the poies, these tendencies are opposed to each other, aud the oue arising from the accumulation of atmosphere being the greater in the middle and polar latitudes and near the earth's surface causes the atmosphere there to flow toward the। oles; and this motion, combining with the general eastward motion of the atmosphere in these latitudes, gives rise to the south west winds in the northern and the northwest winds in the southern hemispbere, which prevail in these latitudes, as represented on Chart VII.
41. Since the atmosphere at the parallel of greatest pressure has no barometric gradient, it can have no north or south motion there at the surface, and consequently $\mathrm{D}_{\boldsymbol{\prime}} u$ in (33) vanishes, and there is no force arising from the earth's rotation to overcome the friction at the surface; and hence
there can be no east aud west motion there, and we hare what are called the tropical calm-belts. These calm-belts, therefore, must coincide with the belts of maximum pressure, which, for the average of all longitudes, it is seen from Table X, is near the parallel of 35°, being a little farther from the equator in the northern hemispbere than the southern, on account of the nnequal distribution of land and water; the land with high mountain-ranges diminishing the east and west motions in the northern hemisphere, upon which the positions of these calm-belts depend.

From what precedes, the mean motions of the atmosphere, unobstructed by inequalities of surface, such as contineuts and mountain-ranges, would be at the earth's surface nearly as represented in Chart VII, and the calm-belts have positions very uearly as there represented.
42. From the first of (15), we get, by neglecting $\mathrm{D}_{\epsilon} \varphi$ in connection with $n,-$

$$
\mathrm{D}_{\varepsilon} v=\frac{\frac{1}{a^{\prime}} \mathrm{D}_{u} \log \mathrm{P}^{\prime}-g h \frac{\mathrm{D}_{n} a^{\prime}}{a^{\prime}}+\mathrm{D}_{i}^{2} u+\mathbf{F}_{u}}{2 n \cos \theta}
$$

With regard to the value of $D_{t}^{2} u$ arising from the inertia of the atmosphere, we know that in all the general motions of the atmosphere it is very small. The interchanging motions of the atmosphere between the equatorial and the polar regions arising from the distarbance of static equilibrium on acconnt of a difference of temperature consist, except near the earth's surface, of a motion in the upper regions toward the poles, and in the lower regions of a motion from the poles, the whole circuit of this motion being performed in a long period of time. Hence the rate of increase or decrease of velocity in any part of the circuit, upon which the value of $D_{t} u$ depends, is very small.

The greatest velocity of these motions is perbaps not more than 10 kilometers per hour, or 2.778^{m} per second, and if we suppose all this velocity to have been generated in 24 hours, or 86400 seconds, we shall have, by putting G for the force required to overcome the inertia, -

$$
\mathrm{G}=\mathrm{D}_{t}^{2} u \quad \text { and } \quad \mathrm{D}_{t} u=\mathrm{G} t
$$

With the value of $D_{v} u=2.778^{\mathrm{m}}$, above, and $t=86400$ seconds, we get-

$$
\mathrm{G}=\frac{2.778^{\mathrm{m}}}{86400}
$$

Now we have g, the accelerating force of gravity, equal to 9811^{mm}, and hence we have-

$$
\frac{\mathrm{G}}{g}=0.00000032775
$$

This is the ratio between the horizontal force required to overcome the inertia of the atmosphere and the vertical force of gravity, and corresponds to a gradient in the atmosphere of $0.364^{\text {m }}$ in the distance of one degree, or 111111^{n}. This multiplied into the ratio between the density of air and mercury, $\frac{1}{10511}$, gives a barometric gradient of nearly 0.0035^{nmm}, a quantity which might generalls be neglected in comparison with the gradients upon which velocities generally depend.

With the preceding value of G, if we put $\Delta D_{t} v$ for the effect of this term upon $D_{\imath} v$, we get-

$$
J \mathrm{D}_{s} v=\frac{2.778^{\mathrm{m}}}{86400 \times 2 n \cos \theta}
$$

With this expression, we get, on the parallel of 45°, with the value of n in $\S 14, \Delta \mathrm{D}_{t} v=1.126^{\mathrm{km}}$ per hour. Even this quantity would be of little consequence in estimating the approximate velncities of the general motions of the atmosphere; but the effect of the term in question must be very mach less than this, siuce, in the slow interchanging motions between the equatorial and polar regions, the time in which a particle at rest in its extreme northern or southern position arrives at its maximum velocity mast be very much more than 24 hours, as supposed above. The effect of this term then must be extremely small. Of course, this applies only to the slow general motions between the equatorial aud polar regions, and not to those belonging to cyclonic disturbances of the atmosphere.

For the same reasons, the term $D_{t}{ }^{2} v$ is always very small, and in the general motions of the atmosphere may be neglected without seusible error. Equatiou (42) therefore furnishes us with a measure of the amount of friction when we know the value of $D_{s} u$.

If we pat-

$$
s=\text { the motion of a particle of atmosphere }
$$

$\mathrm{F}_{v}=$ the frictional resistance in the direction of that motion; and
$i=$ the inclination of s to x, the eastward motion:
we have-

$$
\begin{array}{rlrl}
\mathbf{F}_{v} & =\mathrm{F}_{s} \cos i & \mathbf{F}_{u} & =\mathrm{F}_{s} \sin i \\
\mathrm{D}_{t} v & =\mathrm{D}_{t} s \cos i & \mathbf{D} u & =\mathrm{D}_{t} s \sin i
\end{array}
$$

By means of these equations and (42), putting $\mathrm{D}_{i}^{2} v=0$, we get-

$$
\mathrm{F}_{u}=2 n \cos \theta \mathrm{D}_{t} u \tan i=2 n \cos \theta \mathrm{D}_{t} v \tan ^{2} i
$$

With this value of F_{u} we get from the preceding equations for the eastward component of velocity-
(43)..
$\mathrm{D}_{i} v=\frac{\frac{1}{a^{\prime}} \mathrm{D}_{u} \log \mathrm{P}^{\prime}-g h \frac{\mathrm{D}_{n} \alpha^{\prime}}{\alpha^{\prime}}+\mathrm{D}_{t}^{2} u}{2 n \cos \theta} \cos ^{2} i$

Hence we get for the velocity of motion-
(43'). $\mathrm{D}_{t} s=\frac{\frac{1}{a^{\prime}} \mathrm{D}_{u} \log \mathrm{P}^{\prime}-g h \frac{\mathrm{D}_{u} a^{\prime}}{\alpha^{\prime}}+\mathrm{D}_{t}^{2} u}{2 \pi \cos \theta} \cos i$
In the case of no friction, or where the effect of friction is neglected, we must put $\cos i=1$.
When the direction of the wind, or, in other words, the value of i, is known from observations, the effect of friction in the preceding expressions is known ; but when this direction is not known, we most neglect this effect, and put cos $i=1$. At the earth's surface, especially in the trade-wind zones, the value of i may be consilerable; but here the value of $\mathrm{D}_{t} v$ is small, and hence the effect of friction, and in the upper regions of the atmospbere where friction must be very much less, the value of i must be small, aud cos i differ hat little from unity.
43. In order to compute the expression of $\mathrm{D}_{t} v(43)$, it is necessary to know first the value of a^{\prime}, and this is obtained from (11) with the value of α_{0} in (20), a^{\prime} being the value of α at the surface of the earth, and hence the surface-values of t must be used in (11).

In the case of the mean annual temperatures, we can use the expression of t in (24), and with this we get from (11)-
(44). $\quad\left\{\begin{aligned} a^{\prime} & =\alpha_{0}(0.968+0.007 \cos \theta+0.079 \cos 2 \theta+0.004 \cos 3 \theta+0.007 \cos 4 \theta) \\ \frac{1}{a^{\prime}} & =\frac{1}{\alpha_{0}}(1.035-0.007 \cos \theta-0.084 \cos 2 \theta-0.004 \cos 3 \theta-0.010 \cos 4 \theta) \\ \frac{\mathrm{D} a^{\prime}}{a^{\prime}} & =\frac{-0.007 \sin \theta-0.163 \sin 2 \theta-0.012 \sin 3 \theta-0.028 \sin 4 \theta}{1+0.082 \cos 2 \theta}\end{aligned}\right.$

With the value of $\frac{1}{a_{0}}=g \times 7989^{\text {wa }}$, obtained from (20), the second of these equations gives the values of $\frac{1}{a^{\prime}}$ for any given value of the polar distance θ, and the last one gives the values of $\frac{\mathbf{D}_{\theta} a^{\prime}}{a^{\prime}}$, from which we get the values of $\frac{\mathbf{D}_{n} a^{\prime}}{a^{\prime}}$, or its equal $\frac{\mathbf{D}_{\theta} a^{\prime}}{r a^{\prime}}$.

In the case of the January and July temperatures, the valnes of a^{\prime} and $\frac{1}{a^{\prime}}$ must be computed from (11) and (20) with the temperatures or values of t in (11), contained in Table V, for each tenth degree of latitude, interpolated to every fifth degree, and then, by means of the differences, the values of $\mathrm{D}_{\theta} a^{\prime}$ and of $\frac{\mathrm{D}_{\theta} a^{\prime}}{a^{\prime}}$ can be approximately obtained.

In order to express the value of $D_{u} \log P^{\prime}$ in terms of the gradients in Table X, we must put-

$$
\mathbf{D}_{t} \log \mathbf{P}^{\prime}=\frac{\mathbf{D}_{n} \mathbf{P}^{\prime}}{\mathbf{P}^{\prime}}=\frac{\mathbf{1}}{\mathbf{P}^{\prime}} \cdot \frac{\mathbf{G}}{11111111}
$$

In this way, the values of \mathbf{D}, v have been computed from (43), putting $\cos ^{2} i=1$, for each fifth degree of latitude, so far as the data suffice for the purpose, except near the equator, where the formula is not applicable on account of the smallness of $\cos \theta$ in the denominator, and the results are given in the following table. The values of G and $P^{\prime}=B_{0}$ in Table X have been used for the purpose. The velocity $\mathrm{D}_{t} \boldsymbol{v}$ is giveu in kilometers per hour.

Table XI.

Lat.	D_{t} v.		
	Mean temperatures.	January.	July.
\bigcirc	km	km .	1 m .
+ 75	$-4.4+4.8 \mathrm{~h}$.	$-1.9+4.4 \mathrm{~h}$.	$-5.7+5.11$.
70	$-3.36 .0^{\prime \prime}$	-1.1 7.5"	$4.85 .8 \times$
65	+0.2 $7.7{ }^{\prime \prime}$	+1.6 9.6"	-1.25.9*
60	3.9 8.3"	$5.510 .9{ }^{\prime \prime}$	+23 5.6"
55	$5.58 .5 "$	7.0 11.6"	4.05 .4 \%
50	$5.48 .6{ }^{\prime \prime}$	$6.412 .1{ }^{\prime \prime}$	4. 45.1 "
45	4.9 8.e "	$5.512 .6 "$	$4.15 .0{ }^{\prime \prime}$
40	+2.6 9.0"	+ $2.812 .9{ }^{\prime \prime}$	+2.4 4.8"
35	$-1.29 .3{ }^{\prime \prime}$	-1.0 13.8*	-1.4 4.6"
30	$8.69 .5 "$	9.1 14.7"	$8.14 .3{ }^{\prime}$
25	14.4 9.4"	16.0 15.2 ${ }^{\text {a }}$	12.2 3.6"
20	$15.19 .0{ }^{\prime \prime}$	$20.215 .0^{\prime \prime}$	11.72.4"
$+15$	$12.55 .6{ }^{\prime \prime}$	$21.8 \quad 10.5 *$	3.8 0.6 *
-- 15	25.0 8.2"	18.7 4.9 ${ }^{4}$	31.0 11.7"
20	$80.97 .8{ }^{\prime \prime}$	18.8 5.8 ${ }^{4}$	23.0 10.0 ${ }^{4}$
25	-10.3 7.6 ${ }^{\text {a }}$	-10.4 $6.6{ }^{\prime \prime}$	-16.1 8.7 "
3)	+3.8 $7.5{ }^{*}$	+23 7.3"	+5.9 $7.8{ }^{14}$
35	$12.47{ }^{\prime \prime}$	10.0 7.8 ${ }^{4}$	14.4 7.1"
40	$18.77 .4{ }^{\prime \prime}$	16.0 8.2"	$21.46 .7{ }^{4}$
45	$24.0 \quad 7.5^{\prime \prime}$	$21.088 .6{ }^{4}$	27.0 6.4 ${ }^{\text {4 }}$
50	27.5 7.5"	24.58 .9 :	30.5 6.1"
55	$2 \mathrm{C} .3+7.5{ }^{\text {\% }}$	+24.6+9.1"	$+30.0+5.9{ }^{\prime}$
-60	+21.9		

44. Since h vanishes at the earth's surface, the first term in the expression of $\mathrm{D}_{\ell} \boldsymbol{v}$ in this table represents the surface-velocity of the east or west component of motion at the surface. This is a little less than what is usually obtained from the gradients; for the barometric pressures having been reduced to the gravity of the parallel of 45°, the gradients in the middle latitudes are diminished on this account about 0.07^{Tm}, which, by (21^{\prime}), for the temperature of $0{ }^{\circ}$, corresponds on the parallel of 45° to $2.16^{k m}$ per hour. This shows the importance of having all barometric pressures reduced to a fixed measure instead of being expressed in measures which vary with the latitude.

Since h vanishes at the earth's surface, the easterly component of the velocity of the wind there is represented by the first term in the expression of $D_{t} v$ in Table XI. Between the parallels of 36° and 66° in the northern hemisphere, and south of 29° in the southern hemisphere, as far as baro. metric observations have been made, the winds, according to the results of this table, have an easterly component, and between the parallels of $36^{\circ} \mathrm{N}$. and $29^{\circ} \mathrm{S}$. there is a westerly component. North of the parallel of $66^{\circ} \mathrm{N}$. there is also a westerly component. By a glance at Plate 3 of the late Prof. Ooffin's great work on the "Winds of the Globe," it is seen that this is exactly in accordance with observation, except that the dividing line between the two systems of winds in the southern hemisphere is a little south of the parallel of 29°. But the observations in this zone are not sufficient for determining the position of this line very accurately, and the position obtained from the barometric gradients is, without doubt, the more correct one.

Again, according to the authority of Mr. Laughton,* "In both hemispheres to the north or south of the parallels of 35° or 40°, a strong westerly wind blowe with great constancy all aronnd the world.

[^28]In the southern hemisphere, more particularly, it blows with a persistence little less than that of the trade-winds, but with a strength which, although fitful, is very much greater. From a fresh, strong breeze, it rises frequeutly into a violent gale, and, as such, blows for days together, the mean direction being nearly west, from which it seldom varies more than a couple of points on either side. South of the Atlantic, sonth of the Iudian Ocean, sonth of Australia, in the higher latitudes of the Southern Pacific, and to the southward of Cape Horn, we find it still the same, a westerly gale, whose strength and constancy combined bare enabled Australian clippers to make passages which seem to border on the fabulous. In the northern bemisphere, it has not the clear range which it has in the southern; but there, too, it prevails in the most decided manner."

From the results of Table XI, it is not only seen that the velocities in the bigher latitudes of both hemispheres are eastward, but that they are very much greater in the southern than in the northern hemisphere, which is exactly in accordance with observation according to the preceding quoted paragraph.

The smallness of the eastward components of velocity in the northern hemisphere compared with those of the southern is due to the greater amount of land and mountain-ranges in the northern hemisphere than in the southern, which increases the resistances to the eastward motions, and cousequently the greater eastward motions of the southern hemisphere, by means of the deflecting force arising from the earth's rotation, canses a greater depression there, and a great part of the atmosphere to be thrown into the northern hemisphere. This also accounts for the mean position of the equatorial calm-belt being, in general, a little north of the equator. For the same reason, the tropical calms of the northern hemisphere are farther from the equator than those of the southern hemisphere.

The easterly components for the northern hemisphere are known, from observation, to be very small; but estimates of the actual velocities have been made but for a very few places around the globe. Prof. Coffin obtained* for the average velocity for the whole of the United States, estimated by the Smithsonian scale, 2.0 miles ($3.2^{\mathrm{km})}$ per hour, with a resultant direction nearly from the west, making the eastern component sensibly the same. This result agrees almost precisely with tie result given for the meau of the year in Table XI for the average latitude of the Uuited States; but it must be remembered in these comparisous that the theoretical results are those of the average all around the globe, and that various disturbing causes, to be considered hereafter, may canse considerable deviations from this average in different longitudes on the same latitude. The effect of friction at the surface, which has been neglected in the formula (43), is to make the actual velocities less than those given in Table XI by the formula.

The westward velocities in the trade-wind zones, as given in Table XI, are greater in the southern than the northern hemisphere. This is in accordance with observations of the trade-winds of the Atlantic Ocean, on which the southeast trade-winds are observed to be much stronger than the northeast ones. The theoretical results, however, in these zones are probably considerably too large on account of the neglect of the friction term in (43), which in these zones is very much magnified near the equator from the smallness of $\cos \theta$ in the denominator of the formula.

The parallels of 36° in the northern and of 29° in the southern hemisphere, being parallels on which there is no east or west motion on the average around the globe, and where, on account of there being no barometric gradient, there can be no north or south component of velocity, represent the mean position of belts in which calms abound, called tropical calm-belts.
45. From a comparison of the eastward and westward velocities at the earth's surface in both hemispheres, contained in Table XI, it is seen that the winter velocities in each hemisphere are greater than those of summer. We have but few results deduced from observations to confirm this result, but it is completely confirmed so far as they go. From Prof. Coffin's "Wiuds of the Globe" (pp. 648-653), we extract the following mean directions and true velocities in mean direction for winter and summer, and have computed the corresponding components of velocity contained in the following table.
*Winds of the Glohe, p. 641.
H. Ex. 81-52

Table XII.

Region or place.	Mean direction.	True velocity.		Eastcomponent.	South component.\qquad
			$\begin{aligned} & \text { 场 } \\ & \text { E } \\ & \text { 品 } \end{aligned}$		
	$0 \quad 0$	Miles.	Miles.	Miles. Miles.	Miles. Miles.
Red River Settiement	S. 72 W. S. 85 W.	0.60	1.12	$+0.57+1.12$	$-0.18-0.10$
Pacific coast	S. $3 \mathrm{~W} . \mathrm{N} .80 \mathrm{E}$.	1. 64	1. 51	$0.09 \quad 1.48$	$-1.64+0.26$
Northern Lake Region	N. 59 W. S. 55 W.	2. 32	1. 33	2051.42	+1.23-0.99
Canada and Nova Scotia	S. 87 W. S. 64 W.	3. 49	2.30	3. 49 2.07	-0.18 - 1.01
New England States	N. 52 W. S. 66 W.	5.41	2.67	$4.26 \quad 2.44$	+ $3.33-1.09$
Region of the Miesouri.	N. $73 \mathrm{~W} . \mathrm{S} .37 \mathrm{~W}$.	2. 26	1. 69	2.16 1.02	+ $0.66-1.35$
South of the Great Lakes	S. 77 W. S. 68 W .	2. 86	2.13	$2.79 \quad 1.98$	-0.64-0.80
Indimas. Ilinois, and Ohi	S. 72 W. S. 69 W.	2.64	1. 67	2.51 1.56	-0.82:0.60
Now York to North Carolina went of Appalachian Range.	S. 79 W. S. 77 W.	3. 52	2.04	$3.45 \quad 1.99$	$-0.67-0.46$
Middle States east of the Appalachian Range.	N. $72 \mathrm{~W} . \mathrm{S} .69 \mathrm{~W}$.	3. 42	1. 67	3.25 1.56	$-1.05-0.60$
Kontucky and Tennessee	S. 60 W. S. 79 W.	2.35	1. 00	2.15 0.98	$-0.96-0.19$
Atlantic coast (latitude 31° to 38°)	N. 70 W. S. 25 W.	2. 68	1. 87	$2.52+0.77$	+0.92-1.65
Texas (latitude 30\%)	N. 3 W. S. 43 E .	3. 59	3.78	$0.19-2.57$	$-3.59-2.76$
Gulf States	N. $45 \mathrm{~W} . \mathrm{S} .22 \mathrm{E}$.	1. 25	1. 00	$0.88-0.38$	$+0.88-0.94$
Northern Florida	N. $15 \mathrm{~W} . \mathrm{S} .5 \mathrm{~W}$.	1.78	1. 47	$+0.46+0.13$	$+1.72-1.40$
Salt Ponda of Florida (latitude 25°)	N. $30 \mathrm{E} . \mid$ S. 70 E .	8. 11	8.84	$-0.40-8.60$	$+0.70-2.13$
City of Mexico	S. 9 W. N. 78 E.	3. 19	0.88	$+0.50-0.86$	$-3.16+0.18$
Catharina Sophia, Guiana	N. 58 E. N. 83 E .	4.73	4. 86	$-7.41-4.83$	$+4.63+0.59$
Horta Fayall, Azores.	S. 78 E. S. 43 W.	1.63	2.14	$-1.59+1.45$	$-0.34-1.56$
Sand wich Manse, Orkney Islands	S. 62 W. S. 62 W.	6. 33	2.86	$+5.59+2.52$	$-3.00-1.34$
Port Foulke, Arctic Ocean	N. $42 \mathrm{E} . \mathrm{S} .82 \mathrm{~W}$.	17. 21	0.47	$-11.51+0.46$	$+12.78-0.06$
Port Kennedy, Aectic Ocean	N. $44 \mathrm{~W} . \quad$ N. 31 W.	13. 08	8. 74	+ 9.10 + 7.60	$+9.40-4.40$

By comparing the east components of winter and summer above, it is seen that thronghout the United States, except on the Pacific coast and in the extreme southern States, and at the Orkney Islands, the winter component is in every case greater than the summer component. The extreme southern States are so near the parallel of the calm-belt that the velocities in the direction of the resultant, and the direction itself, are so uncertain that the ratios between the components for winter and summer are very various, and the signs of the components even change in some cases.
46. The effect of the second term in the expression of $D_{t} v$ in Table XI is to increase very much the velocities of the eastward motions in the upper strata of the atmosphere over those at the surface in the higher latitudes; and, in the trade-wind zone, the westward velocities near the surface are at a very moderate elevation changed to eastward velocities. Thus, on the parallel of 45°, and at an elevation of 5 kilometers, we have, for the mean temperature of the year, $\mathrm{D}_{i} v=4.9^{\mathrm{km}} \times 8.8^{\mathrm{h}}$ $=48.9^{\mathrm{km}}$ per hour, and at greater elevations this velocity becomes still much greater. On the parallel of 25°, we have $D_{t} v$ at the surface equal to 14.4^{km} west, and at the elevation of only 3^{km} it becomes 13.8^{km} east, and hence at the elevation of only about 1.5^{km} there is no motion east or west. These results are in accordance with observation, for travelers have experienced a strong westerly wind, at great elevations, on Mauna Loa, on the passes of the Rocky Mountains and the Andes, on the top of Pike's Peak and Mount Washington, on the Peak of Teneriffe, and at every very elevated position in either hemisphere all around the globe, except in the calm-belt near the equator, even when there is an easterly wind in the same latitude in less elevated positions. It is seen from Table XI that in the trade-wind zones, where at the surface the wind is easterly, at a very moderate elevation there is a very strong current from the west; and this is especially the case in the winter. This accounts for the transportation of volcanic ashes through long distances eastward when in the trade-wind belt at the surface there was a strong current from the east. On the $18 t$ of May, 1812, the island of Barbadoes was suddenly obscured by a dense clond, and its surface quickly covered by a shower of ashes from an eruptive volcano of St. Vincent, more than a hundred miles to the westward. Also, on the 20th of January, 1835, the volcano of Cosequina, lying in the belt of the northeast trade-winds, sent forth great quantities of lava and ashes, and the latter were borne in a direction just contrary to the surface-wind, and lodged on the island of Jamaica, 800 miles to
the northeast. This latter happened at a season when, according to the results of Table XI, the upper currents have a very great easterly tendency, and bence at a time very favorable for the transportation of the ashes to so great a distance. The great eastward velocitios of the upper currents are also established by the observations of the clouds, especially of the cirrus clouds, which are supposed to bave an altitude generally of 7 or 8 kilometers. The eastward velocity of these
 pens that they have no eastward tendencs. The average, therefore, according to this somewhat uncertain kind of observations, may be put at nearly 100^{km}. This eastward velocity is a little greater than that given by Table XI at the height of the cirrus clouds in the middle latitudes for the mean temperature of the year, but corresponds with that belonging to Januarc.

The eastward motion of the atmosphere in the latitude of the trade-winds is also confirmed by observations made on the directions of the clouds at Colonia Torar, Venezuela, latitude 10020^{\prime}, as given in the Report of the Smithsonian Institution for 1857 (p.254). While the motion of the lower clouds was in general from some point toward the east, the observed motion of nearly all the higher clouds was from some point toward the west.
51. From a comparison of the expressions of $\mathrm{D}_{t} v$ in Table XI, for January and July, it is seen that the eastward velocities of the upper strata of the atmosphere are very much greater in winter than in summer. On the parallel of 45°, in the northern hemisphere, we hare for an altitude of $5^{\mathrm{km}} \mathrm{D}_{t} v$ equal to 66.1^{km} in January and equal to only 29.1^{km} in July. Results deduced from the discussion of observatious made at elevated places for both seasons are needed for comparison with this theoretical result.

On the parallel of 25°, in the northern hemisphere, the leight at which there is no east or west motion of the atmosphere by Table XI is 1.1^{km} in Januars, but 3.4^{km} in July. North of this parallel, the e heights, where there is no east or west motion, gradually diminish until at the parallel of 36°, the parallel of the tropical calm-belt, this plane touches the surface. Hence there is an oscillation with the seasons of the height of this plane dividing the west or southwest from the cast or southeast winds. This explains the winds of the Peak of Teneriffe, which at the top blow in general from the south west, while lower down they blow alternately from the northeast and southwest, changing with the seasons. In the summer season, the dividing plane between the two systems of winds blowing in nearly contrary directions, is highest, and is found on the Peak of Teneriffe from observation to be about 1.5 miles high. Prof. Piazzi Smyth, who spent several months ou the peak making astronomical observations, on leaving his station at Alta Vista, at the height of 10,700 feet above the level of the sea, on the 25th of August, experienced a southwest breeze, but at an altitude of 6,700 feet it changed to one from the nortbeast. Returning again on the $30 t h$ of August, he experienced a similar change at the same height, the strength of the wind increasing as he ascended, and blowing from the southwest at Alta Vista, as when he left.
47. Since each upper stratum acts upon the one beueath it by means of friction, and that upon the next one, and so on, down to the earth's surface, the force which orercomes the friction between the atmosphere and the earth's surface is the sum of all the deflectiug forces depending upon the earth's rotation and apon inertia, and putting F_{r}^{\prime} for F_{r} at the earth's surface, we get from (33)-

$$
\mathrm{F}_{r}^{\prime}=\int_{m}\left(2 n \cos \theta \mathrm{D}_{t} u-\mathrm{D}_{t}^{2} v\right)
$$

in which m is the mass of the atmosphere. But since the condition of continuity must be satisfied, we must have, at any latitude, just as much air moving south as north, and hence for the whole atmosphere from the surface to the exterior we must have-

$$
\int \mathrm{D}_{i} u=0
$$

The first term, therefore, of the preceding equation vanishes, and we have-

$$
\begin{equation*}
\text { } \mathbf{F}_{v}^{\prime}=-\int_{m} \mathbf{D}_{t}^{2} v \tag{45}
\end{equation*}
$$

For any unit of surface, this must be integrated with reference to the mass of a column of atmosphere having this unit for a base. Now, we have seen that the eastward velocities of the
atmosphere are much greater above than below, and hence, as the atmosphere of the upper currents approaches the poles, it gradually sinks down, to return, toward the equator, nearer the surface, and $D_{t} v$, in order to satisfy the conditions, mast gradually decrease, and in this case the last member of (45) is positive, that is, the sum of the forces tends to overcome the frictional resistance at the earth's surface to the eastward motion of the atmosphere, and the observed amount of motion depends upon these forces. In the equatorial regions, where the atmosphere ascends, of course the reverse of this is the case, and we have these forces tending to overcome the frictional resistance at the earth's surface to the westward motions there. The force, then, which overcomes the frictional resistances, at the earth's surface, to the eastward motion of the atmosphere, depends upon the sum of the moments of inertia, or of the amounts of velocity lost, of the particles of atnosphere, in passing toward the poles, in the upper regions, where the eastward velocity is greater, and returning toward the equator nearer the earth's surface, where the eastward velocity is less. The force, likewise, which overcomes the resistances to the westward motions at the surface in the zones of the trade-winds, is the moment of inertia lost in the decreasing westward velocities of the atmosphere as it ascends and commences to return in the upper regions toward the poles.
48. The eastward velocity $D_{u} v$ in Table XI is that which satisfies the conditions of the problem in the case of no friction, in which case $\mathrm{D}_{\imath} u$, the interchangiug velocity between the equatorial and polar regions, vanishes, and consequently the deflecting force overcoming friction in the case of friction. Where there is friction there must be a force to overcome $i t$, and hence $D_{\imath} u$ must have a value, that is, there must be a gradual interchange of atmosphere between the equatorial and polar regions, and this motion must be just sufficient to give rise to a force sufficient to overcome the friction and the inertia of the eastward motions. If the velocity of the motion of the upper strata of the atmosphere toward the poles were a little too great, it would give rise to an increased eastward velocity, which, by means of the deflecting force depending upon the earth's rotation ($\$ 13$), would at once diminish the velocity, and reduce it to that which satisfies the conditions of the problem.

The difference between the atmospheric pressure at the equator and the poles, at the earth's surface, depends almost entirely upon the eastward motion, or value of $\mathrm{D}_{t} v$, at the earth's surface, as may be seen from the first of (15), since h in the last term vanishes at the surface, and consequently this difference is entirely independent of the difference of temperature, which affects only the last term of this equation. Hence, in the northern bemisphere, where there is a difference of 30° or more in the higher latitudes, between winter and summer, the difference of barometric pressure amounts to only about $2^{m m}$. The reason of this is that the increased eastward velocities in winter, as shown in Table XI, give rise to a force depending upon the earth's rotation by the principle of § 13 , which tends to prevent the flow of the atmosphere in the upper regions from the equatorial to the polar regions, as the volume there is contracted by diminution of temperature, and the height of the atmosphere is decreased toward the poles, nearly in the same proportion that its density is increased by the diminution of temperature, so that there is scarcely any change in the mass of the atmosphere, and cousequently in the barometric pressure, between winter and summer.

If the earth had no rotation on its axis, this deflecting force depending upon its rotation would not exist, and then, if this great difference of temperature between the equator and the poles could be maintained, there would be a very great difference of pressure and a very rapid interchanging motion between the equatorial and polar regions.

LIST OF ESKETCHES.

PROGRESS SKETCHES.

No. 1. General progress.
2. Section I, Northeru part.
3. Section I, Primary triangulation between the Hudson and Saint Oroix Rivers and Lake Champlain.
4. Section II, Triangulation and geographical positions in Section II, from New York City to Point Judith.
5. Section II, Triangulation and geographical positions in Section II, from New York City to Cape Henlopen.
6. Section III, Chesapeake Bay and tributaries.
7. Section IV, Coast of North Carolina, inclading Albemarle and Pamlico Sounds.
8. Section III, Primary triangulation between the Maryland and Georgia base-lines (northern part).
9. Sections IV and V, Primary triangulation between the Maryland and Georgia base-lines (southern part).
10. Section V, Coast of South Carolina and Georgia.

11a. Section VI, East Const of Florida (Amelia Island to Halifax River).
11b. Section VI, East Ooast of Florida (Halifax River to Cape Canaveral).
12. Section VI, West Coast of Florida (Tampa Bay and vicinity).
13. Section VII, West Coast of Florida (Saint Joseph's Bay to Mobile Bay).
14. Section VIII, Coast of Alabama, Mississippi, and Louisiona.
15. -_ Geodetic connection of the Atlantic and Pacific coast triangulations (Section from Saint Louis westward).
16. Section IX, Coast of Texas.
17. Section X, Coast of Califoruia (lower sheet), from Sau Diego to Point Sal.
18. Section X, Coast of California (middle sheet), from Point Sal to Tomales Bay.
19. Section X, Coast of California (upper sheet), from Tomales Bay to the Oregon line, and Section XI (lower sheet), from the California line to Tiltamook Bay,
20. Section Xl (upper sheet), from Tillamook Bay to the Boundary.
21. Section XII, Explorations in Alaska.

ILLUSTRATIUNS.

22. Mount Saint Elias aud Coast Rauge to Cape Spencer.
23. Mount Saint Elias. Mount Fairweather.
24. Ourves of Velocity and Density and relative position of Sea and River Waters. South Pass Bar. (See Appendix No. 11, page 190.)
25. Whangaroa Harbor. Chatham Island. (See Appendix No. 13, page 232.)
26. Recording Relay. (See Appendix No. 15, page 250.)
27. Theodolite Magnetometer. (See Appendix No. 16, page 255.)
28. Alt-Azimith and Magnetometer. (See Appendix No. 16, page 259.)
29. Dip Circle. (See Appendix No. 16, page 264.)

29 bie Dip Circle (Kew observatory). (See Appendix No. 16, page 264.)
30.* Illustrations of Harbor and River Improvements. (Appendix 18.)

31 to 37. Charts I to VII, to illustrate Appendix 20. Meteorological Researches.

National Oceanic and Atmospheric Administration Annual Report of the Superintendent of the Coast Survey

Please Note:

This project currently includes the imaging of the full text of each volume up to the "List of Sketches" (maps) at the end. Future online links, by the National Ocean Service, located on the Historical Map and Chart Project webpage
(http://historicals.ncd.noaa.gov/historicals/histmap.asp) will includes these images.
NOAA Central Library
1315 East-West Highway
Silver Spring, Maryland 20910

[^0]: * Professor Harkness remarked that be observes habitually about a quarter of a second earlier than Profossor Eastman, a statement sufficiently borne out by the above equations, which make $\mathrm{H}=\mathrm{E}-0^{\circ} .20$. It is also stated that several series of observations indicate that Professor Eastman and Mr. Frisby have approximately the same personal equation,
 t These and other papers on latitudes and azimuths have lately been repriated (March, lsta) wader one cover and uader the titto "Professiousl Papers."

[^1]: * Ruled on a glass diaphragm, and comprising tallies $\mathbb{C} 1,2,3, D 1,2,3$, and $E 1,2,3$. Tallies B and F are not ubed; they appear blurred in cousequence of a want of parallactic motion.

[^2]: * The reader may be referred to Appendix III, Wasbington Observations for 1867 (printed in 1070). Sce also Appendix I, Washington Oloservations for 1867, note, p. 25. In the manuscript containing the rosults deduced at the observatory, hourly rates greator than those giveu above have bsen admitted.

[^3]: * In connection with these lizhis, the longitude of Mono light, Havana, may le given, hased upon the latest telegraphic longitade of the Washington Observatory and the results reported by Professor Harkuess in his paper above referred to.

 Longitude of Morro light.... 5 29 25.52
 with an unknown correction for personal equation.
 or $82^{\circ} 21^{\prime} 9 z^{\prime \prime} .80$
 It will be interesting to compare this with the result deduced from observations made early thid century, at Havana, by Don J. J. de Ferrer. The meridian of Havana was then the best astronomically determined meridian in the Gulf of Mexico. Don Ferrer's elahorate paper is coutained in volume IV of the Memoirs of the Astr nomical Society of London, 1830 , No. XXXI, p. 569 at seq. Fron 20 observed occulations, hetween 1808 and 1812 , he gives fimallyHavana, Don Antonio Kobredo's observatory............................. $5^{11} 38^{m} 47^{4} 7$ W. of Parin.
 Difference of longitude, Paris and Greenwich.................................. 9 . 21.1
 Longitade of Havaua olservatory .. $\overline{5} 2986.6$ W. of Greenwich.
 Reduction to Grat Tower of Morro.. 1.6
 Longitude of the Tower of Morro, (probably very vear the light).... $\overline{5} \quad 89898$
 a result probably correct within the limit of 3 .
 Admitional note.-In a letter dated Juue 23, 187\%, Capt. F. W. Green, U. S. N., commanicated to me the remalt of his new determination of Lieutenant. Puyazon's pier of 1868 , as connected with the Coust Survey station at Key West. It differs 0.42 from Profengor Harkuess's result, and the difference is no doubt due to the fact that the chronometer had to be carried, in 1868, some distance between the observing and the telegraph statious. This new determination, of November, 1875, gives the longitude of the Morro light $5^{\text {h }} 29^{m 0} 25: 94$ W. of Greenwieh.

[^4]: Woody Point Δ is in longitude
 $\begin{array}{ccc}0 & & 3 \\ 137 & 37 & 40.9\end{array}$

 Tle anglo at Woody loiat Δ betwen Astronomical Δ and Mount Crillon io............ 165 a 09. The vertical angle on Mount Crillun from Werdy Peint Δ is.. $\quad 7 \quad 55 \quad 37.5$
 Measured at 2.30 p. m., May 15, 1874. Barometer, 30.11 ; athached thormometer, 75 Fahrobheit: cxternal themometel. 5y- Fahroaboit.

[^5]: Noteon Halaspinc's Observations on Mcunt St. Klias.-A copy of Espinosa's "Memorias," \&c. (1809), baving part of the datansed by Malaspina has come to hand since this memoir was first pablished, and enabled us to recompute on his basis the height of Mount St. Elias. Though
 his position for fort Mulgrave was $59^{\circ} 34^{\prime 2}$ morth latitude, and $133^{\prime} 42^{\prime} 12^{\prime \prime}$ weat longitude from Greenwich, according to his own deternina nantical m les. His vertienl angie for the peak was $2^{\circ} 38^{\prime} 06^{\prime \prime}$; being $05^{\prime \prime}$ greater than that measured by the United States Coast Surrey, rather remarkable agreement. 2 computation by Coast Survey methods from bis data gives a beight of 17 , 664 feet, bie own approximatecaleu fation being 17, Beo feet. The dopht liee wholly with bis distance. We do pot know exactly where his astronomical statinn was aituated. Hjs results wronld point to s position somewhat north and past of the United States Coast Surfey station, but in any case the distance bet ween either his or our own astronomical atation and the monatsin would be nearly the same. We do not know the length of his buse nor how it was measnaxi; We only know that the patare of the conntry would not admit of a measured base of more than a mile iv length, if er on eo cortainty fito ithe disiance as compareat with thefangle of abont 60° obiained by us. Computed with the Coast Survey distance and Mataspias's data (excopt for distance) the beight obtained is 19,473 feat, ageint 19,464 from our orn observations. It is probable that a final elimi nation of all meertaintieg at gome futare time will result in a height not greatly varying from $19,00 \mathrm{feet}$. W. H. D., Febraary, 187 E .

[^6]: * A still better arrangement would be to have a make-circuit ofronometer.

[^7]: * Rednction and Discnmsion, in XLI parts; Coast Survey Reports of 1859, 1860, 1862, 1863, ant 1864.
 t Cosst Survey Report of 1874 , Appendix No. 9. Discussion by Charles A. Bchott.
 \ddagger Coast Survey Report of 1874, Appendix No. 8. New discussion by Charlen A. Schott.
 § Reprinted in 1876 under the title "Professional Papers. Determination of Time, Latitade, and azimath."

[^8]: "See annexed paper on "The Adjnstment of the Portable Alt-azimuth Instrument."
 \dagger Known as the Theodolite Magnetometer.
 \ddagger This process may require repetition until the observer is assured that there is no torsion when the collimatormagnet is suspended.
 $\$$ The beet position of the mark is in or near the horizon.

[^9]: Star seen throngh thin clonds, occasionally interfering with observations. Atmospheric pressure, 29.85 inches; atmospheric temperature, 70° Fahrenheit.

[^10]: * See plate No. 29, illustrating this form of dip-circle.
 \dagger See plate No. 29 bis, illustrating the form of instrument as now made by Casella.

[^11]: - See plates containing representations of magnetometers, No. 27 of a large-sized and No. 28 of a emall-sized instrument.

 In this case, the bar and box turning on the center of the azimuth-circle, a measarable amount of induced magnetism is developed in the deflector when inclined to the magnetic prime vertical.

[^12]: *For mothod of determining the effect of induction and example of its application, see Coast Survey Report of 1869, Appendix No. 9.

[^13]: - For greater accuracy, the values of A and A_{1} require also to be corrected for effect of indaction in that form of instruments giving the deffection-angle directly. See "On Induction," Coast Survey Report of 1869, Appendix No. 9.
 + A wooden bar is preferable to one of brass, on accomnt of its greater lightnese and less variability in length with change of temporature.
 \ddagger This magnet generally serves also for observations of declination.
 $\$$ If aidereal, we simply consider it as a menn-time chronometer with a large rate, and correct for it accordingly.

[^14]: *The units for the measure of the earth's magnetic force are the second of mean time, the foot (or, in the motric system, the millimetre) and the grain (or, in the metric system, the milligram). In statical measure the unit of magnetic force is the pressure of a unit mass under the influence of a unit force, which would produco, if the mass be frce, during one second a velocity of one unit, and not a volocity g (which in latitude 45° is equal to 32.17 feet, or 9 m .80 m), as is commonly adopted in works on dynamics. This adopted unit of measure, cousidered dynamically, implies that the unit of acelerative force will produce the velocity 1 in the time 1 . This unit of force is therofore g times smaller than the unit of gravitation-force. Thas, supposing the horizontal force of the earth's magnetism to be (in British units) 4.35 at

[^15]: * See, for instance, Sketch No. 4 in Coast Survey Report for 1870 , where, Lowever, the triangulation of Delaware Bay is not shown, for which the report for 1851 may be consulted.
 \ddagger See, also, Puissant's Geodesy, 3d edition, Vol. I, Art 207. Paris, 1842.
 \ddagger Au angle 1.2 .3 is desigeated by the difference of its two aximuthal directions $-\frac{1}{2}+\frac{8}{2}$ A correction to the angle is designated by the difference of the corrections to its directions, or by $-\binom{1}{2}+\binom{3}{2}$, the brackets indicating a correction. The length of a side, 4 to 5 , is indicated by two points placed between the numbers, thus $4, .5$; and a correction to its length by (4..5).

[^16]: * In Gctobeŕ, 1874.

[^17]: * Judged to be the 39th geographical mile-post from Port Said.

[^18]: Copenhagen.-There are no recent barbor improvements here, and nothing requiring special notice.

[^19]: *These numbers are taken by scale from a plan of the docks.

[^20]: *See Watson "On the nse of fasciner in the public works of Holland."

[^21]: * Dover pier.-Return to an order of the House of Commons dated $22 d$ April, 1875 , for copy of quarterly report, de.

[^22]: * Report from the select committee of the House of Lords on the Lharbor and defenses of Alderney, \&c.; session 1872; Blue-book, 56.

[^23]: (') This term was devibed by the writer of this article in 1846, while arranging the formulas for use in the Coast Survey, and patting them into the form above given, in which they have been employed ever since.-J. E. H.

[^24]: " See a paper by Dr. J. Hann, entitled "Zar barometrischen Höhenmessung," in "Band LXXIV der Sitzu. der kaiserlichen Akadenie der Wissenschaften."

[^25]: * Prof. F. A. P. Barnard, Metric System, p. 171, has obtained, from the average of the weights of a culic inch of dry air given by several anthorities, $0.001 \geqslant 228315$ for the specific gravity of dry air at a temperature of 62 F . and a barometric pressure of 30 inches. This reduced to the temperature of 0° C. and barometric pressure of 0 an. 760 gives the value above.
 H. Ex. $81-48$

[^26]: * See two papers on this subject by Dr. Hann in the "Zeitsehrift der österreichischen Gesellschaft fir Meteorologi't," Band vii, S. 261, and Baud xii, S. 100, which were not seen nntil after the preceding results were obtained, and in which these results are corroborated. If, however, the observations upon which the results olitained by Dr. Hann are based hal been on hand at the time, the values of t in Table Y would most probably have been diminished a very little in the extreme southerm latitudes, and then the resalts obtained for the average temperatares of the two hemispheres might have been about equal.
 \dagger Transactione of the Royal Society of Edinburgh, vol. xxv.

[^27]: *The preceding results of this section are demonstrated in my Tidal Researehes, p. 158, published as an appendix to the United States Coast Survey Report for 1874.

[^28]: * Physical Geography in its Relation to the Prevailing Winds and Carrents, p. 101.

