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PREFACE

In the twenty-fourth volume of the Quarterly Journal of Math-
ematics, 1890, A. C. Dixon, of Trinity College, Cambridge, ‘published a
paper, “On the doubly periodic functions arising out of the curve
2?+9*—3azy =1." On reading this excellent paper the thought was.
suggested that it might be of interest to consider in more detail the
case arising when « is taken as zero. The author at once started upon
an investigation, and some results were obtained that are considered
to be of rather general interest. The formulas developed for the
functions connected with the original curve are, in general, valid for
the curve z*+1y® =1, if the o in them is set equal to zero. These
results formed the starting data for the further investigations.

In 1864 H. A. Schwarz proved that a circle could be mapped
conformally upon a regular polygon of n sides by means of the integral

x dz
W= a=—mis

The same thing was shown by Weierstrass in 1866. Consideration
of this fact:ﬂgave an added reason for investigating the properties of
this particular class of Abelian functions which .. 3, in fact, elliptic
functions with rather unusual characteristics.

In the second volume (1879) of the American Journal of Mathe-
matics, C. S. Peirce, at that time an assistant in the United States
Coast and Geodetic Survey, published an account of a conformal
projection of the sphere within a square. He called this projection
the quincuncial (Frojection of the sphere. In Annales Hydro-
%iaplnques, second series, volume 9, 1887, Lieut. E. Guyou published
the theory of a related projection derived in an entirely different
manner. These were the first examples of the apﬁllication of elh}l)‘txc
functions to the construction of maps for geographic purposes. The
purpose of this publication is to illustrate a number of projections
most of which depend upon elliptic functions or elliptic mteﬁals,
although some are defined by Abelian integrals that have been
developed in series.

These projections are interesting applications of the theory of
functions of a complex variable to cartography. It is hoped that this
gﬁneral theory, both of the functions and of their agphcatlon to
the construction of maps, may be found of interest to those who are
working along this line of investigation.

n
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ELLIPTIC FUNCTIONS APPLIED TO CONFORMAL WORLD MAPS

By Oscar 8. Apawms, Geodetic Mathesmatician, United States Coast and Geodetic
urvey

ELLIPTIC FUNCTIONS CONNECTED WITH THE CURVE zf+3*=1

The theory of the elliptic functions is generally developed by use
of integrals connected with the tacnodal quartic

P =(1—~2%) (1—k2* (Jacobian theory),
or with the cubic
Y =42 - g,z —g; (Weierstrassian theory).

There are other cubic and quartic curves that could be used as a
basis for the theory; in fact the lemniscate functions are developed
from the curve y* =1—2*. It is interesting and instructive to make
use of some simple curve to serve as a basis for the theory. We shall
attempt a short development based upon the curve #*+y* =1.

Let us start with the Abelian integral of the first kind

= x@_ T de
] v | A=)
0 0

We shall now invert this integral by setting
& =sm w;

sm w being a function the properties of which we aim to investigate.
We shall also let y ~=cm w, cm w being an auxiliary function that
is to be investigated at the same time. The fundamental algebraic
relation between these functions is given at once as

sm® w+cemd w=1.

From consideration of the integral we have at once

sm (0) =0,
hence
cm (0) =1.
By differentiating the equation of the curve, we get
dxr dy

A
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x 1
therefore w, which equals the integral f Qy%’ also equals f %’1
y

0
Y e ‘ dy
Or W= (1-—-1’)’/' = i (lr—y’)’l'.

1
The definite integralf dz is a constant that we shall denote by K;
! ]

yl
sm K=1 and cm K=0.

1 1 y
, dy dy dy
Now let w =j: 5;=j; A=yP _f T=p

X
. . dz
If, now, y equals the z in the integral w= f —sap We shall
, %)%

have w’ = K—w and sm w =cm w’ =cm (K—w).
By setting w for K—w, we get cm w =sm (K—w).
By differentiating the expression

x 1
[o-[#

D) 3
Oy yx

W ==
we get
dfw”= 1
dz oy
and
dw= _1
dy~ &
or
d 2
P sm w=cm* w,
and

d 3
a‘&) cm w=-—38m’ w.

This last differential e?gation shows that cm w =sm (K-w) in
which K is the constant of integration. We have

-‘—i—cm'w
dw -1,

sm? w

-J;D-cmw

T—cm® w)?B ™ - L
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By integration sm™ (cm w) =A4—w, or cm w=sm (A—w). Now let
w'=0, then we have sm 4 =1, or A can have the value K, therefore
em w=sm (K—w).

Considered as functions of w, sm w and em w are uniform functions

of w. It is evident that sm w and E% sm w can not both be equal to

zero for the same value of w. Hence there are no branch points at
which this condition is fulfilled. The same is true of cm w. The
only other condition for branch points is that some one of the suc-
cessive differential coefficients should become infinite. ‘

But
d s
7 S0 w =cm* w,
and
d )
gop O W = — s’ .

_ Hence no differential coefficient of either can become infinite unless
either sm w or cm w becomes infinite. Also from the equation
sm® w+cm?® w=1, :
it follows that, if one of these is infinite, the other is infinite also and

. cm W, .
that in such case w8 finite.

sm
Also
d 1 cm w\?

dwsmw \smw)/
and

d emw 1

dwsmw  smw
H . . . , 1 cm w . :

ence, the differential coefficients of and are rational and
sm w sm w

. . 1 cm w
integral functions of S and T

Thus when sm w is infinite, it is still a uniform function. Hence,
sm w is everywhere uniform and by a similar process of reasoning the
same can be proved of cm w.

In the vicinity of w =0, sm w and ¢m w can be developed in series
of ascending powers of w. The series for sm w can be derived either
bg' reversion of the series for the integral or by differentiation and
the use of Maclaurin’s development. The series becomes:

1,2 13 23
St w =g wit gz W - oaes ¥ TR Y

For ¢cm w, we get

1 1 23 25
cm w=1 3 w’+~1—8~ w"-—i—z-—Gs w°+i§-€68- wh —



4 U. 8. COAST AND GEODETIC SURVEY

Also

and

These series can be considered as definitions of the functions in the
vicinity of w =0.

We have
d 1 (cm w\?
dosmw  \smw
or )
4 1 /7 cmwy
dosmw \ smw
while
cm w\? 1)\ .
‘ (—'smw + sm w) =1
Therefore
/8
[ (smw):r =_ZZ_ smw'
or
d ( 1
— dw= sm w
l (sm w I
and by integration
- w=sm“‘(sm -
or
1 _m (0-w)
sm w ’
O being the constant of integration.
Let w =K, then
m= sm (C— K),
or
sm (C— K) =1.
Therefore ¢ may have the value 2 K and
sm 2K—w) = T
It is evident then that
cm (2K—w) = — 22 ¥

sm w
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In these equations by putting K—w in place of w we obtain the
relations

sm (K+w) = c—ﬁ}—Tv’
and
em (K+w) = ——:3 z
Hence
sm (2K+w) = -0
and
om @E+w) ==
Finally
sm (3K +w) =sm w,
and

cm (BK+w) =cm w.

The functions are therefore periodic functions of w, the period
being 3 K.
In the expression

sm (K—w)=cm w,

put K+w in place of w and we get

sm w
sm (—w) =cm (K+w) =~ —
and from
cm (K—w) =sm w,
we get
em (—w)=sm (K+w)==cm -

1
The integral J; dyﬁ is many valued, since it can have any one of

the values K+3mK, in which m is an inte%er, either positive or
negative. By K we shall understand the result of inte%rating alon
the axis of reals from 0 to 1, just as we do in the case of the integra

f ~ 9z
0f1—2
It is thus seen that we have the following values:
sm K=1,
cm K=90,
sm2K= o,
em 2K= — o,
sm 3K=0,

em 3K=1.
26183—26t——2
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We therefore have the following results:

1
K=f§—f,
y
0

i
= J 7
o
or
dx
?‘2_,

also

or

J-

the integrals being taken over the real values of the variable in each
caseo.
If we denote the roots of the equation z*=1 by ¢, , and #*=1, ¢

will have the value——%+—‘/2—3 4, in which 7 denotes as usual 4/—1.

The equation z®+y*=1 is satisfied not only by sm w and cm w, but
also by ¢ sm w or # sm w together with cm w. The series for sm w
given on page 3 shows that ¢t sm w=sm tw and # sm w=sm *w,
since sm w=wP(w*) in which P(w®) denotes an integral power
series in ascending powers of w®. On the other hand, cm w is an
integral power series in ascending powers of w® (see p. 3), so that
cm fw=cm w and cm *w=cm w.
It can now be proved that 3tK is a period and that 3K is also a
period of the functions. It should be noted that these two complex
eriods and the real period are not independent; in fact, a uniform
unction of a single variable can not have more than two independent
periods. Itisobvious that, in this case, we have K+¢K+t* K=0, since

1+t482=0.
smtK=tsm K=t,
cmtK=cm K=0,
sm k=10 sm K=1,

cem PK=cm K=0.
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t t
sm (w+tK)=tsm (Pw+ K) = ——-= b
= 2 _ _smfw sm w
cm (w+tK)=cm Pw+ K) o P -p p
- 3 e mbw_  cmw
sm (w+2tK) =t sm (Pw+2K) ¢ T 8 et
1 1 t

em (w+2tK) =cm (t’w+2K)---sm T T

sm (w+3tK)=tsm (fw+3K) =t sm ffw=sm w,
cm (w+3tK)=cm (Pw+3K)=cm t*w=cm w.
In a similar way we may show that for the values with # we have

7]
sm (w+t2K) =T:I~QB
w
cm w

em (W4 K)=—t S

cm w

sm (W+28K) = —f —— p——

t2

cm (w+22K) = o

’

and

sm (w+ 32 K)=sm w,

cm (w+ 32 K) =cm w.

V3

If we denote %-i-? 1 by s, s will be a root 6f the equation z°%=1;

also s* =t, and 8=1+t=—1 We see then that 3sK is a period of

the functlons, since it is equal to 3K+3tK or to— 3£ K. e have

then

- PR o _ __,sm(K:tw)
sm (W+sK) =sm (w—*K) =¢t* sm (tw K) tm_tj
==_t,cmth__tcm'w

sm tw sm w’

cm (w+8K) =cm (w—#K) =cm (tw— K) “an*Cl??—ﬁb)

1 _ .’
smiw smw

2
sm (0 +23K) =sm (w- 28 K) =sm (w+1*K) =fo‘{o

sm w

K) = —OBEK) = -
cm (w+28K) =cm (w—20K) =cm (w+ B K) tcm’w’

sm (w+38K) =sm (w—3¢2K) =sm w,
em fw+3sK) =cm (w—3PK) =cm w.
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These functions, being uniform functions of w with two independent
periods and having no singularities except poles in the whole com-
plex plane, are ellif)tic functions of w. e note that the periods do
not divide naturally into halves and fourths, as is the case with the
trigonometric functions and with the Jacobi and Weierstrassian
elliptic functions, but into thirds corresponding to the three parts
into which the curve is divided by the three collinear inflections.
The curve cuts the axis of z at =1 and is perpendicular to the axis
with a point of inflection at the point of intersection. The same
thing is true in regard to theaxisof y. Theline 2+y =0is an asymp-
tote of the curve. The third real point of inflection is at infinity.
The form of the curve is shown in Figure 1.

v

I

F16. 1.—The curve of ud-f-pim]
We also have the following results:
4

Sm(tK"-U))=m== t cm w,
cm (K—w) =—# %%z(_:_zwv% =% sm w,

cm (—w)  #
gm (—w) smw’

sm (2tK—w) =—1

t cm w
cm (2tK—w) ~m = =
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sm (BK—w) =t cm w,
cm (P K—w) =t sm w,
t

2 -_ = ——

sm (28 K—w) o
em 20K—w) =—p BY,
sm w

Therefore we find the following relations:
sm (K— K) =smn (K~K)=sm (K~ K)=sm (*K—-tK)
=sm (K—tK)=sm (K—~#K)=0,
em (K— K) =em (K—#K) =cm (! K—tK) =8,
cm (K—tK) =cm (fK— K) =cm ¢(K—-t*K) =t,
sm (K- K+w) =sm (K—##*K+4+w) =sm (P K—tK+w) =t sm w,
cm (({K— K+w) =cm (K—8K+w) =cm ®K—-tK+w) =fcm w. .

Also
sm (K+tK+# K) =0,

cm (K+tK+8#K) =1.

NUMERICAL VALUE OF K

and

The numerical value of K can be computed by means of the beta
function. In the integral

1
K= dz ,
A (1-ant

let
z =zt
then
dz = % 24z,
and we get

1 H

' =
1( 4 3. 1lpfl1 1| (3)]

K=-3~J;z (1-atde=1B(31)-1 & :
I‘ =
3

By use of Legendre’s table of the gamma functions we can com-
pute the following values:
log K =0.24714775222484,
K =1.76663875,

log T (;) =0.42796274931426.
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GEOMETRICAL INTERPRETATION OF w

The guantity w has a geomsetrical intrepretation when z and y
are confined to real values. In the curve z*+y*=1 we have z=sm w

and y=cm w. The polar element of area is% (zdy —ydz); that is,

% (—sm?® w—cms3 w) dw or — %dw. If the angle 6 of the radius vector

is to turn counterclockwise or in the positive direction, we should let
y=sm w and z=cm w, the element of area which is now traced out

in the positive direction by the radius vector is equal to - % dw. The

quantity w is tHerefore twice the polar area from w=0 to the given
value of w. The quantity K is twice the area of the part includged in
the first quadrant, or twice the area between the curve and its
asymptote in either the second or the fourth quadrant.

ZEROS AND INFINITIES OF THE FUNCTIONS

"Let us take as fundamental periods for the functions sm w and cm w
the values 3K and 3tK. The E‘eriod parallelogram will then be such
as is illustrated in Figure 2. This period parallelogram is obviously

NANANAVANANAND
NANANAVNANAN
ANANAVAVR

AN
NAVARVANNANA
ARV NAVANAY

F1a. 2—The complex plane divided into period parallelograms

a rhombus, since the absolute values of the two Eeriods are equal;
that is, t K 1s just K turned about the origin through an angle of 120°.
We shall now investigate the zeros and infinities of the functions

in this fundamental parallelogram. Since ;- sm w=cm’ w and cm w

is given in terms of sm w by a cubic equation, the number of really
distinct arguments for which sm w has a given value is three, or sm w
is an elliptic function of w of the third order, and hence there must
be three zeros and three infinities in the period parallelogram. The

same reasoning is applicable to ecm w. If z=sm w, %’% has three
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values and therefore w has three noncongruent values for each value
of z. We know, therefore, that both sm w and cm w have three zeros
and three infinities that are noncongruent in the fundamental parallelo-
gram. For sm w we have the three zeros w=0,2 K+{ K, and K+ 2tK;
moreover, these three values of w are the only values in the period

arallelogram for which sm w=0. According to the theory of £liptic
unctions the sum of the w values for which the function sm w becomes
zero can differ from the sum of the w values for which it becomes
infinite only by integral multiples of the periods. That is, Zw, — Zwe
must be congruent to zero modulus 3 K, 3t K. For the zeros of sm w,
we have Zw,=3 K+ 3tK; that is, this sum is itself congruent to zero
modulus 3 K, 3t K, therefore, for sm w, we must have Zwe congruent
to zero modulus 3K, 3tK. We find that the infinities of sm w are
given for w=2K, 2tK, and K+tK; giving as it should the sum
3K+ 3tK, congruent to zero, modulus 3K, 3tK. The zeros of cm w
are given by w= K, tK, and 2K+ 2t K. The infinities of cm w are
the same as those of sm w. Therefore, with cm w, we have each of
the sums of the w’s congruent to zero, modulus 3K, 3tK.

The theory of elliptic functions also requires the sum of the
residues of the infinities to be equal to zero. A residueis the coefficient
of the term that has the first power of w in the denominator of the
dev}(ilopment in series in the neighborhood of the point. For sm w
we have

cm w 1
sm (w+2K)= - =t P W),
cm w ?
sm (w+2tK) = —t’mﬂ_w_*_tz P (w),
. cm w t
sm (w+ K+tK) = —t - — =—— +tP (w),

in which P (w) is an integral power series in the variable w. We
note that each of these infinities is of the first order and that the
residues are —1, — ¢, and —¢ with the sum —1—#—¢=0 as it should
be. In the same way it can be seen that the zeros of cm w are of the
first order, and that the residues of cm w are, respectively, 1, ¢, and £
with their sum equal to zero. Of course, a priori consideration would
show that each of these infinities must be of the first order, since an
infinity of the second order must be counted as two infinities. Since
sm w and cm w each have three zeros of the first' order, they can not
have more than three infinities in the fundamental ?eriod paral-
lelogram. We have found that there are three values of w for which
each of the functions becomes infinite; therefore each of these
infinities must be of the first order, since the number of zeros must
equal the number of infinities in the fundamental parallelogram.

ADDITION THEOREM

Since these functions are uniform elliptic functions, they must
have addition theorems. The curve z*+%*=1 has no node and no
cusp and its deficiency is equal to unity. (See fig. 1.) Hence,

the integral f 7 is an Abelian integral of the first kind which has
no points of discontinuity. Thus

nde (edr, (vdx v
J; y2+j; 37?+fo ~y—,==constant,
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if z,, 7, and z, be values of z that satisfly the equations Az+ By
+0=0and #*+y*=1. Now, in the equation

A sm w+ B ecm w+ C=0,

the left-hand member is an elliptic function of w of the third order.
It has, therefore, three zeros and three infinities in the fundamental
period parallelogram. We know that the sum of the w’s for which
1t becomes infinite is congruent to zero modulus 3K, 3tK; conse-
quently, the sum of the w’s for which it becomes zero must also be
congruent to zero modulus 3 K, 3t K.

Let w,, w,, and w, be the three arguments. Then

A sm w,+B cm w,+ C=0,
A sm w,+B cm w,+ C=0,
A sm w,+B cm w,+ (=0,
sm W, cm w,, 1 =0
Sm W,, ¢ W,, 1 ,

Sm Wy, M W, 1

with w, +w,+w, =0, mod 3K, 3tK.

We must now determine sm w, and cm w, so that they satisfy the
determinant and also the equation sm?® w,+cm® wy=1. To shorten
the work, let us denote sm w, by s,, cm w, by ¢, sm w, by s,, em w,
byI}:,, sm w, by s,, and cm w, f)y Cy.

Ps, +Qs Pe,+Qc
3=___I;+g ? and 6= =5+ 83,

the determinant will be satisfied. The value of the ratio of P and
@ can be determined by substitution in the equation 82+ ¢ =1.

Ps, +Qs, '+ Pe, +Qc, ‘1
P+@Q P+Q ’

P22 4 3PQs.28, + 3PQ?s,8,2 + Q38,3 + P2 + 3P*Qe %,
+3PQ%;,c,2 + Q@%b =P8+ 3P?Q + 3PQ* + Q*.
On canceling the equal terms and rearranging we get

P (83%,4c’c,—1)=—@Q (s,sz’ +c6r—1),

or
_P_sslttec’—1_86,+86+80
Q &’stclc,—1 86+8,6+80,

The second expression for—lj can be shown to be equal to the first
by cross multiplication; that is,

(8,8, +¢c,6*—1) (31011*' 8,6, +8,¢,) = (8,28, + ¢,%c, ~ 1) (8,¢,+8,¢.+8,¢,).
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By substituting the second value of g and reducing, we get

_ 8,°¢c; — 8,%¢,

8=
8,6, — 8,C,
and
_ 867 — 850"
84Cy — 826,
But
s
sm (w, +w;) =sm {—w,) = —E:’»
3
and
1
cm (w;, +w,) =cm (—w,) =
3
therefore
sm (4 +v) =sm2 % emoy—sm? v cmy
7 Tsmucmiv—smvem?w
and

Sm % cm % —sm v cmo
smu cm? v —smv cm?*u

cm (u+v) =

These addition formulas can also be verified by partial differentia-
tion. If 5% f(u,v) =3% J (u, v), the function f (u,v) must be a func-
tion of u+v. Denoting sm u by s, and sm v by s,, etc., we find

0 8’c,— 8%, ==ﬁ( 8,6 — 8\ _ 0 8,7¢; — 8%,
U 8,67 — 8,6, \8,6,7—8;¢,2 o 8,c, — 8§,¢,°

Hence, the given function is a function of w+w. Moreover, it
becomes sm % when v=0; therefore it represents the function
sm (u+v). By the same process of reasoning the formula for
cm (u+v) can be shown to be correct.

Letting v become negative and substituting the value of sm (—v)
and cm (—v) (see p. 5), we obtain

sm? % emy—sm?v cm
smu+smocmvcm? u’

sm (u—v) =

and
sSmoy+sm % cm % cm?® »

Sm %+smvcm v em® %

cem (u—v) =
By multiplication and use of the fundamental algebraic equation
sm® u+cm® 4 =1, we can prove the identity
(8 +8,6,6,)) (86,7 — 8,¢,%) = (8,%¢c, — 8,%¢,) (¢, +8,6,8,%).

This gives a second form for the addition formula for sm (% +4) from
which a third form can be obtained by the interchange of u and v.
Hence we have

sm? 4 cm v —smiv cm
sm ¥ em? v—sm v cm? %

sm (u+v) =

_Sm ¥+sm o cm v cm? %_Smv+sm % cm u cm? v
cmy-+sm % cm % SM?*Y cm %-+sme cm v sm? U
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These formulas also give

sm? 4 cm v—sm? v cm %
sm %+sm v cm v cm? ¥

sm (u—v) =

_smucm’y—smvcm’ Yy smycmu—smycemoy
cmv+4-sm % cm % Sm? v cm % cm?y—sm? ¥ smv

By using the relation sm (K — % —v) =cm (u +v) we can derive three
similar formulas for em (u +v) by replacing sm 4 by sm (K—u) =cm u
and em u by cm (K~ ) =sm » and by letting » become negative; or
we can merel y make the substitution for % in the addition formula for
sm (4—v). By this means we get the following three forms:

smuycecmu—smoycmo'

om (u+v) “smu cm?v—sm v cm? U
_cmycm?’yv—sm? usmy_cmoyem’y—sm?ysmu
TCmov+smucmusm’v cmu+smocmosm?u
Also
sm v+sm % em % cm? v
em (4—v) =

sSm %-+smv cm v cm? u

em u+smoyemysm?u cmocem®u—smPysmu
= == 1]
emo+sm u cm u sm*y cm % cm? Y —sm? usmy

FORMULAS RESULTING FROM THE ADDITION THEOREM

Let sm u=38,, cm u=c,, sm v=4,, and cm v=c, and we get

sm (u+v) sm (u_v)msf_"a:_’éfﬁ,
‘ . Cy+ 8,C,8,°

‘ cc — 8%
cm (u+9v) cm (u—v) =222,
€3+ 8,68,

8,+8,6,¢,?
2 1v¥1%2
sm \U+9) cm \(U—9p) =
( + ) ( ’U) c,+81018’2,
l 8,0, —85C,
cm (U4 sm (U —v) =——T7T5
( + ) ( ) Cz+3161822’
sm (¥ +v) _ 8 +8,6,¢,
sm (u—v) 8,07 —8,c7
cm (u+v) _ 6’ — 8%,
sm (u~v) 87— 8¢

' - 3
sm (¥+v) —sm (=) =110 G =& tac])

02 + 8161822
_(L+ep) (6, —6,6s+8,8,%)
cm (4—v) —cm (u+v) = C,+8,6,8,° ’
_ . (8,—¢,) (1—8,c,c, ~8,8,c,)
sm (u+v) —cm (u—~v) €3+ 8,€,8,2

e, —8;) (2+8,¢, +8,8,)
Cqg + 8101822

cm (4+v) —W'sm (u—v)= (
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We also obtain the following formulas in which sm @ =s, cm @ =¢,
Sm U4 =8,, CIN % =¢;, S ¥ =§,, and cm v =¢,.
cm (a—w) +sm (¢—u) cm (a+u) sm (a+v) sm (a—v)
¢ (148 (¢, 48,687
~ (e, +8cs?) (¢, +ses,y’
sm (a+wu) +cm (a+u) sm (a—u) cm (a4v) sm (a—v)
8 (148 (ey+8,68.")
= (e, +ses,?) (c; +scs)’
cm (@ —w) cm (¢ —v) cm (¢ +v) —sm (a+ %) sm (¢ +v) sm (a—)
_ (=8 (c,+5,¢,8%)
T (e, +8cs,Y) (c, +scs,?)’
sm (¢ +u) cm (¢—v)~sm (a+v) em (a—u)
- (c®~ 8% (8,¢y—8,¢5)
(e, +8cs.?) (¢, +scs;))
sm (a—v) cm (@—w%) cm (¢ +v) —sm (@a—u) em (a—v) em (g +u)
_ (148 (8,6, —8,¢,)
(c, +scs.)) (e, +scs,?)’
sm (¢ +u) sm (e—v) cm (a+v) —sm (a-+v) sm (a—u) cm (a+u)
_8(1+¢) (8,6,—80)
(e, +scs?) (¢, +scs,?)’

If we divide any one of these equations by a,n})I7 other with or
without changing the sign of either u or v, the right-hand side will be
expressible in terms of 2a, u +v, and «—v; for we have

8 (1+¢% ct— gt
e (1+s) 2nd em 20=rr o

This process gives relations amongkthe’ sm'’s and cm’s of u,, u,, U, u,,

Uy + Uy, Uy +Ug, and u, +u,, if we take the sum of the four u’s equal to

zero; for we may take u, =a+u, u;=a—u, uy=—a+v,andy, = —a—v

as the four arguments the sum of which is identically equal to zero.
As an example we have

cm (a+u)—sm (a—u) sm (—a+v) sm (~a—v)

cm (a+u) em (a+v) cm (@—v) —sm (@—u) sm (@) sm (@ —v)
= cm (@ +v) cm (a—v)

_(e— 8% (e %c,— 8,8,7) G tscs?  (*—-4) (%, — 8,8,))
(e, +808,%) (c, +8cs;%) ~Pe,—s8, (e, +8c8,”) (Pc,—8s,%)’

em (a—u) —sm (¢ +) sm (~a-+v) sm (—a—0v)
cm (a—u) em (a+v) cm (a—v) —sm (@ +u) sm (¢ +v) sm (@—v)
= cm (g +v) cm (a—v)
_(—8") (ey+s8087) ¢ +8cs? _ () (¢;+8,6,8,7)
" (e, +8cs?) (c;+scs?)  cPe,—s8s? (¢, +8cs?) (c°c,— 88,7

sm 2a=
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By division we get
(=8 (e ’c,—~ 8,87 (¢ +8c8,?) (¢, —88,%)
(c, +scs?) (cPc,~88,)  (c*—38%) (¢,+8,c,8,%)
_cm (a+w) —sm (a—u) sm (—a+v) sm (—a—v)
cm (a—u)—sm (a+%) sm (—a+v) sm (—a—v)

or
¢’c,—8,8" cm u —sm u, Sm u; SM U,
C,+8,0,8,° €M u;—Sm %, SIM 4, SM u,
But
c_l’_cﬂls_z’__cm (w+v) em (w—v)
¢, +8,6,8° !
also
u +’0 =u1 + ug,
°U—v =u,+ U,
Therefore

e %, — 8In U, SI U, SM U,
cm 1, — 8m u, Sm %, Sm U,

cm (w,+u,) em (u, +u,) =

A great variety of such formulas could be derived.
If u, +u, +uy; =0, we have

_ slzcz - 82201

&y = [
? 8,6, — 8,0,

€= 8,6, — 8201’.
8,0, — 8,0,
Hence, we have
€1C1C3 1 818,83 =1, (a)
8,63+8263+sac,=0, (b)
8,6, + 846, +8,¢,=0. (¢

Of these relations (c) comes from (a) by putting — K—u,, K—u,,
and —wu, for u,, u,, and wu,, respectively, of which the sum of the
arguments is still equal to zero.

rom (b) and (¢) we get

Sy 8 . & _ 8,2 — 8,84 L]
O =8y € —Cyly e —CiCy e (e + ¢t et —Be,c,e,)

8161+ 85C, 1+ 8404 ={ 85+8,2+8,"—38,8,8, }
el +e’ e’ — 3,005 (8,61 +8,6,+84y) (¢ + 6,2+ ¢ —3c,c,e,)

_8 8 8~ 38,8,85
(84C1 4 85C5+ 84C4)?

Also we have as proof of the last value the following analysis:

(81+18,+1285) (o, + 1%, +teg) = 8,61+ 8,6, + 844,
(81118, +18y) (Cy+1C;+1s) =8,C1 + 8,6, + 8,4,
(8,438,438, (c,+c,+c,)==slc.+s,c,+s,c,,,
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therefore we get

(8,3 + 8.2 +82—88,8,8,) (c2+ e+ —3ec,e) = (8, +18,+ sy (8,
+128,+t8y) (8,+8,+8y) (¢, +8e;+1ey) (c,+Hteg+1t2y) (c,+¢,+c¢y)
= (8,6, +8,€,+ 85C4)°.

FORMULAS FOR om u EQUAL TO A CONSTANT

If we let cm % assume a certain value, we shall have cm u,=cm u,
=cm u, and sm % will be determined by the cubic equation

sm?® u=1-—cm? u.
Therefore,
81+83+83=0,
8,8, 18,83+ 8,8, =0,
818’83=1—03=813,
8,83 =8,
8+8=—8,,
8,—8y= £ v/3is,,
8,=18, or s,
33=t28l or tSI.
Also,
8;, €4, ll=c¢ =0.
83, Cqy 1
84y €y 1

8, 1,1
8, 1,1

8 1,1

Therefore, u,+u,+u, is congruent to zero modulus 3 K, 3¢K, since
the three points fie on a straight line. If we take the sum as equal
to zero and not merely congruent to zero, we shall have

Uq =, OF MU,
Uy =12, OT tU,.

Let us use the first values since the second pair merely interchange
u, and ;. We have then

Uy + Uy + Uy =u, + U, +Pu =u, (1t +2) =0,
SIMILAR FORMULAS FOR sm u EQUAL TO A CONSTANT

On the other hand if we wish to let sm u equal a constant, we may
take the relation

cm (K—u)=sm u,
and

sm (K-~-u)=cm u.
We have now

8;=28,=28y,
and
C, + 03 + ca = 0,
€46+ CaCy+ €13 =0,
CC6y=1—8"=¢c},
hence,

e, =1¢,,
¢, =1t%,.
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We shall then have

u:z =K—u,,

wly= K—tu,,

u'y= K—tu,,
and the sum is congruent to zero modulus 3 X.
To make the sum equal to zero, we may take

w = K—u,

!
w = K—tu,,
uw'y=—~2K—tu,,

the sum of which is evidently equal to zero. The equation K+¢K +
K is a particular case of cm % equaling a constant, namely, that in
which em u is equal to zero.

FURTHER ADDITIOR FORMULAS

We can now derive some new forms of the addition formulas. Let
us take the case of ¢,=cm v=constant; then sm v,=s,, sm v,=1s,,
sm v,=128;. Let us denote sm u by s, and cm u by ¢, We have
then ‘

(8,07 —t8,e,?) (8,6, —18,0,%) = 8.2 ¢,* + 8,8, ¢,’¢,* + ¢,

8,2, — 8% | 8,2¢*+8,8,6°¢, + '8’
8,62 —8,02 8%t +8,8,0.°C%+ '8}

sm{y +v) =
- (e =) (8,6, +8,6,2~ 8,78, ¢,C,)
(ef~c®) (el +80¢c,?)

_ 862 +8,07—8%8,%¢,c, .
618 + 813623

1
smK—~u—v)=sm (K—~u+ K—v) = W)’
813 + 013823 .
€,8,2 + C,8,> — 8,8,¢,%¢?

sm (u+v)=

By other similar transformations we get finally the six forms, as.
follows:

sm (u+v) = 8,67+ 8,6 —8,%8.%¢c,c, 8% +¢lsf
¢’ +8.%¢? €18,% -+ €,8,% — 8,8,¢,%¢,”
_ 1—cte? _8c’+8,cl—8% ¢,

8,2c, 1+ 8,%¢, ~ 8,8, ¢,°¢,? 1-8,°

_ 8¢ (+e”)+80 (1+¢) _ (8,6+8:0) ¢,6,+8,%8°
T 2¢6,+8,8, (8,62 +8,¢2)  (8,6,+8,C,) 8,8+,

Also we have the corresponding formulas for em (u+v), as follows:

8
1€, — 8,8,°C,) — ¢°8,’8, _ ¢ —gb
el +8ct c’c? + 8,8,°c, + 88,0,

cem (u+v)=
_ 860 +8%¢0°— 8,8, €0, —8 18,6,° — 818,°¢,°
8,%c, + 8,°C, — 8,8,,%¢C,’ 1—38%,°

_ 2%, — 8,8, (8,6, +8,0) _ (8¢, +8,%¢,) €6, — 88,
2¢,0,+ 8,8, (8,C,° +8,6,") 8¢, + 8,°¢, — 8,8;¢,°C;”
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In all of these formulas we may interchange w and v which would
give 12 formulas from the 6. Also by substituting —v for v we can
get formulas for u—v or by substituting K—u in a formula for
sm (u+v) we can get the correspondin%formula for em (u—w), since
sm (K—u+v)=cm (u—v); also cm (K—u+v)=sm (u—») and we
can make a similar substitution in the formulas for em (u+v) and
get the formulas for sm' (u—v).

FURTHER RESULTS OF THE ADDITION FORMULAS
By use of these formulas we derive the following results:

2
3s,c,

sm (u+v)+sm (u+tv)+sm (u-+8v) = 1sic
1 1 V3

sm (u4tv) sm (u+Evy+sm (u+#v) sm (u+v)

3c,82
. - 2°1
+ sm (utv)sm (uttv) = o525
sm (u+v) sm (u+1tv) sm (u+#v)= 1——:-6‘8—6":
0x8+31’023
om (u+v)+em (@+t0) +om (W+Ev) = —i%—,
cl +81 c2
em (u+tv) em (u+£v)+om (@+20) ecm (u+v)
3e2e,?
L
+em (u+v) em (u+v) = 5
" czs__slﬂ
cm (u+v) em (u+tw) cm (u+ )= PREwErEl
sm (u—v)+sm (u—tv)+sm (u—t"v)=~—§'—g‘—cl-—’
818+ctﬂc’8
sm {(u—1tv) sm (u—*fv)+sm (u—#v) sm (u—v)
+sm (u—v) sm (u—t0)= 5750
sm (u—v) sm (u—£) sm (u~—#v) = i /sl
& +clic?’
em (w—v)+cem (u—tv)+cm (u—t’v)=~~3~c‘~c”
813+Claczu

cm (u—tv) em (u—2v)+em (u—£v) cm (u—v)
3e¢,e,?

+cm (u—v) cm (u—tv)=mr

cm (u—v) em (u—tv) cm (u—#v) = 1=8le’ ,
: 818 + 6‘8023

sm (u+v) cm (U + ) em (u+£v) +om (@ +v) sm (w+tv) cm (u+ 2v)
3s8,¢,%¢,

+cm {(u+v) em (w+tv) sm (u+t3v)=m,
1 1 %2
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cm (w+v)sm (w+tv) sm (u+£v)+sm (u+v) em (u+1v) sm (u+#v)
2 2
+sm (u+v) sm (u+{v) cm (u+t’v)=~§,{s—‘~ﬁ§—’—;,.
c’+8’c,
sm (u+tv) em (w+#v)+sm (w+#v) em (u+tv)
+sm (u-+v) em (u+)+sm (u+v) em (u+2v)
+em (u+9) sm (u+#v)+cem (u4o0) sm (u+20)
_38, (1+¢?)
- 013+S,3(323

In the last three formulas by changing v to —v we can derive the
corresponding formulas for u —v, u—t, and v —v. .

To derive formulas for which sm » is a constant we can substitute
K—v, K—tv, and K-t for v, tv, and #v since it is not necessary
that the arguments should sum up to zero. These formulas give
nothing new, since they are merelgr special relations which can be
derived from the arguments for which cm v equals a constant. We
shall give one example to illustrate the procedure.

sm (u+ K—v)+sm (u+ K—tv)+sm (u+ K—tv)

1 1 1
“em (u-—v)+cm (u—-tv)+cm (u—*Fv)

_om (u—tw)em (u— ) +cm (u—#v) em (u—v) + cm(u —tv) cm(u —v)
- em (uw—v) em (u—tv) cm (u—7#v)

N
1 - 818023

Now, denoting K—wv by v,, K—tv by v,, and K—#v by v, we shall’
have to replace v by A —wv, in the right-hand member which merely
interchanges the functions with subscript 2.

Therefore
38,02
sm (u+v,)+sm (@+v,)+sm (u+v,) =1t
12

In a similar way a great number of other formulas can be developed.
A number of interesting products can be derived such as the

following:
[1—sm (u+v)] [1—sm (u+tv)] [1 ~sm ("”’”)]:5(’52—“:%’
1 V2 1
(c,—t8,)?

[1—tsm (u+v)]{1—tsm (w+tv)][1—¢tsm (u+t’v)]=my

(1—e.,)?
8,'6,’ ¥ cls’

(1 - tc162)8
813023 + cls 4

fl—em (@w+4v)] [1—cm (@+iv)] [1—cm (u+£v)]=

[1—tem (u+v)][1 —“tcm (u+1tv)] [1 ~f cm (u+£v)]=
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[em (u+v)+sm (w+2)] [em (u+tv) +sm (u+#w)] [em (u+2v)
(e 8,6,)° c’+2scc+sc
. l+ 4Ca 1 1142 173
+sm (u+v)]= sf’c”+c’ c? —slclcz+8103

[cm (w+v)+ sm (u+v)] [em (u+tv)+# sm (u+tw)] [em (u+ o)
+2 sm (u+20)] = (e, + s,c,)® c,’-+-2t’slclcz+tsl c,

¢’ +8%¢,° T8 16162+ tslzcz
[1—sm @—v)] [1—sm (u—tv)] [1—sm (u—0)]= (l,c ,sf;),
(1 —ts,0,)*

[1—¢sm (u~v)] [1—t sm (u—1tv)] [1—¢ sm (u—tzv)]=csca+ss’

(1—om (w=v)] [1-om @w=to)] [1—om (w—po))= 2505,

[1—tem w—v)][1—tem w—tv)][1 ~tem (uw—Bv)]= “L““(csc 5 f:;_)_s,

[em (u—v)+sm (uw—o)] [em (u—tv) + sm (uw— tv)] [em (u—#v)
(8, +¢,6,)° - 8+ 28,66, +¢/’¢)?
83Fele} 8 —8,6,6,+C2C?

+sm (u—2v)]=

[cm (4 —2) +¢sm (w—2)] [em (u—t) +& sm (u—t)] [em (u— )

(8, +1t%¢,c,)® 82+ 28%,¢,¢, + tc2c;?

— 3, = = .
+¢sm (u—t)] s +ecle’ 8,7 — t%,c,¢, + tc,%c,?

By a substitution similar to that above we can derive such formulas
for »,, v,, and v, for which sm v is equal to a constant.

FORMULAS FOR MULTIPLE ARGUMENTS
If we let =" in the ordinary addition formulas

8, + 8;¢,¢
sm (u+v L——-————L
( )= C,+ 8,687
and
€07 — 8,8,

cm (u+v) =
(u+v) ¢+ 8,68,

we get the values for sm 2u and em 2«
s(1+¢%)
c+s)’
-8
c(1+8%
Again, if we let v=2u and then substitute the values of sm 2u and
cm 2u, we get

sm 2u=

cm 2y =

8¢ (1+c+8°+c®—c3s®+ %)
A+3P -+
¢® —s®—3s%c® —c3s°

c’+3c’s‘—s°+c°s’

sm 3u=
and
cm 3u=
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We can show by induction that sm nu .nd cm nu are rational
functions of ¢ and ¢® multiplied, respectively, by

sc and 1 if n=0 (mod. 3),
¢ and ¢ if n==1 (mod. 3),

2 and lif n= —1 (mod. 3),
c ¢

n being any whole number either positive or negative.

DIFFERENTATION AND INTEGRATIOK
A complete algorithm for the functions must include the con-
sideration of differentiation and integration. We have

i sm u=cm?u
du ?

i em Y= —sm?u
du !

then
(»% (sm % em %) =cm?® u—sm? 1,
%—sg=§+so=sm u cm u—~sm (~u) cmv(—-u),
qu 8 g %
d
e (c+38)=(c+8) (c—83),
d )
75 108 (c+8)=c—s,
d ! s
au g (c+18) =tc—1t%,
2 28) = o~ to
7u 108 (¢ + t28) == t3c ~ts.
Therefore
(t—t) c= L [ log (o #a) —t log (c-+19)]
and

t—1) s=% [t log (c+8) —1* log (c+1s)].
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Hence, the integral of cm u du and sm u du, as also cm? w du and
sm? u du, may be expressed in terms of elementary functions. Thus
du du cmu sm % du

’ ' du, 3

3 . cm 4 Sm U Sm U cmu cm?y
w cm?y sm? ¥
sm? u sm® ud » and cm’ud

If we wish to integrate any rational integral function of sm » and
cm wu, it may be brought down to the second degree in ¢cm u by means
of the fundamental cubic equation. Hence, we need only to consider
the integrals of sm® 4 em? 4 du, sm® u cm % du, and sm® % du. The
first of these is integrable at once as follows:

also we can integrate du, as also

u 1
sm® % cm? ¥ du=—— sm® qy,
0 n+1

The other two ixitegrals have reduction formulas which we shall now
give. '

u ' 1 ' n—2 (8
J; sm“ucmudu=—;bsm""’ucm’u+Tf sm>* 4 cm u du,
. ) 0

and

fusm" u du= -1 sm™? 4 cm u+t—2— fusm"“‘a u du
0 n—1 n—1Jo )

By means of these formulas any one of the forms can be integrated
with no more complicated functions than logarithms, except those
that result in sm » cm % du. This form can result only from the re-
duction of the integral of sm® w cm u du. Let us denote this irreduci-
ble integral by f (u). We have then

f @ -J;usm % cm % du.

From inspection we note that the integral of sm® « cm™ » du will
result in this form if m==1 (mod. 3) and if m=n (mod. 3).

If we wish to integrate any rational fractional function of sm u
and cm u, we can first reduce the denominator to the form P+ ¢ cm
+R cm? u by means of the fundamental cubic, P, @, and R being
rational integral functions of sm w. If we now multi;ly both numer-
ator and denominator by (P + @t cm u + B# cm?w) X (P + Qf* cm u + Rt
cm? ¢), the denominator will take the form P*+@® cm® v+ R® cm® «
—3 PQR cm® 4. :

If we now substitute for cm® u its value 1 —sm? u, the denominator
becomes a rational integral function of sm u. We can then reduce
the numerator so that 1t will contain only cm % and em?® u. The
integrand can next be broken up into partial fractions. If an integral
part occurs, it can be integrated as already indicated. Thus, the
only new forms that we need to consider are the following three:

cm?u du - f cm w du ndf du
Gmut+a)® J Gmuta® * (sm u +a)®
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Let us denote these by the symbols Py, ¢y, and R,, respectively.
We have then the formulas

1
(n-1)(smu+a)*?

P, =constant—

P, =constant+log (sm u+a)

(n—1)(1+a®) R,=constant —(Eﬁ%ﬁ
+(@Bn—4) a*Ry_,—~ (3n—5) aRp ,+ (n—2)Ry_,

cm? ¥
(smu+a)**

+(Bn—5) a*Qp_,— B3n—T7) aQn_,+ (n—3) Qu_s.

(n—1)(1+a®) Q,=constant—

By means of these reduction formulas we can express Qn, and R,
in terms of Q_,, R_,, @,, R,, @, and R,, of which thelast two are the
only new irreducible forms. Thus, we have only to add to the

former irreducibles the integral f%—i—g du, in which A and B
" are constants.
PROPERTIES OF f(u)
" The functions sm w and cm u are uniform continuous functions
having no other singularities except poles; hence the function smu
cm v 18 also uniform, all the infinities of which are of the second

order. Hence, the integral of this product is a uniform function of
with poles of the first order. We have then

fw) =J;u sm % cm ¥ du.

To derive the addition theorem, let us suppose that w-+v equals a
constant.

Then du = —dv,

and % [f(u) +f('v)] —Sm ¥ cm % —sm v cm
=cm (u+?) (sm % em? v—sm v cm? u)
= —cm (u+9) a% (sm u sm v).
By integration we get
J@)+fw) —f(u+v) = —cm (u+v) smu smo,

since % +v is a constant and f(u) vanishes with u.
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We have the following examples of the addition theorem:

sm?

fy+f~u) =222,
fu) +f(K—u)=f(K)=Ek, let us say,

sm? u
SE+u)=k+f(u)— o
1 sm? vy cm?
f(2K+u)=2k+f(u)+sm wemu  cmu =2k +flw)+ sm ¥

f(BK+u)—f(u) =3k, a constant.
fu)+fEK—u)=f¢K)=F', we shall say,
R +u) =k +fu)— i‘::g

cm?® u
smu’

F@UK +u) =2k +flu) +

fBtK+u)—flu)=3k,
Su)+f(PK—u)=fEK)=Fk", let us say,
sm? %

cmu’

fEK+u)=k""+fu)—

cm? u
smu

fREK+u)=2k"" +f(u)+

fB3PK +u)—flu)=3k"".
We also have
ftK—~ K+u)=k'—k+f(u),

and so on.
The function f(u) becomes infinite of the first order for the values

2K, 2tK, and 28 K of u.

The addition theorem shows that we have
fRK—u)+f2K+u)=f(4K)=4k,

with similar formulas for 2t K and 28 K.

If u, +u, +u,=0, we have
g —
) +f ) +f () =TI B
sm? u, —8sm %, S U,
- cm u,
_ 8m? 4, —SmM %, SM U,
- cm U,

fu) +f(tu) +f(*u) =0,
k+k'+k”=0. .

Then

and consequently



26 U. 8, COAST AND GEODETIC SURVEY

INTEGRALS OF THE THIRD XIND

cm u+Bd
smu+A

us consider the formfA1 em v + B, sm u + du, which includes the

The other irreducible integral was the formf u. Let

A, ecm w4+ B, smu+C,
former integral as a special form.
- The integrand generally becomes infinite for three values of u
the sum of which is congruent to zero, modulus 3K, 3tK. But we
know from the theory of Abelian functions that it can be expressed in
terms of v and of two integrals, each of which has but two points of
discontinuity. The most general form of such an integral is

cm u, em a,, ¢n @,

sm w4, sm @,, Sm a,
L1, 1 g,

cm u, cm b, em b,

sm %, sm b, sm b,
L 1

in which a, +a,=b, +b, (mod. 3K, 3tK), the discontinuities being for
the values b, and 5, of . We need to take only one particular pair
of values of a, and a,, for if Ube the integral for any one pair @, and a,,
and U’ that for a’, and a’,, there is a relation U’ =AU+ Bu.

Let us then write b,=a +b, b,=a—b, and take ¢, =a+ K—tK, a,=
a— K+tK. ,

The numerator then becomes
cm y,tecma,t? cma

sm u, {? sm a, t{ sm a
1, 1, 1

which is a constant multiple of
SM ¢ cM % +cm @ SM % +Sm @ Cm a.

The denominator becomes the determinant

cm %, em (2+b), em (a—D)

sm u, sm (a+b),sm (a—b)
1, 1, 1

which on development, after multiplication by a constant, becomes

(1—cm?b) (Sm ¢ cm w-+cm ¢ sm w+sm @ ¢cm @) +sm b (1+cm b)
b (cm?acm u+sm?asmu—1).

Neglecting constant factors, we can adopt the form for the integral

du
em?aomu-4+sm?gsmu—1 +l—cmb
smacm'u+cma,smu+smacma smb
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But we have

em? g cm v +sm?asmu—1 - cm*ucma4sm?usma—1
Smacmu-+Cmasmy-+smacng smycmda--cimusmd-+smuyem

_cm’ a cm u+sm? @ sm 4—cm? w cm a—sm? ¥ sm @
sSm a cm a—sm 4% cm Y

cmacm?u—sm?’asmu cmucm?a—sm?usmae
smacmao—smycmy sSmucmUu—smaecma
1 1
= —— — =
sm (@—u) sm(u—a)
Also

—sm (u—a— K)—cm (u—a— K).

1 em b

ey S il b—K)+sm (b- K).

Hence, if we put K+b for b and u +a + K for u, we have brought the
third kind of Abelian integral to the form

du
ecm % +sSm u—cm b—sm b

which is discontinuous for the values b and K—b of u. :

The integral reduces to the second kind if d=2K, since the dis-
continuities coalesce. Since cm 2K 4+sm 2K =0, the integral of the
second kind becomes

a 4 '
fcm ud:"_smugf(cm’u+sm’u—smu’cmu)du-smu—cmu—f(’u»)-
0 0 ‘

By multiplying both numerator and denominator by the same
factor we get

+sm ¥ +cm b+sm b)(cm b+sm b)

emPu+sm®u +3 cmusmu (cm b
+sm b) — (cm b+sm b)?

f(cm b—sm b) (cm? u—-sm % cm % +sm? u)+ (cm %

du

fcm’u—-smucmu+ sm*u + (cmu

du -
cmu+smuy—cmb—smbd

1

- +sm ¢w+cm b+smb) (cm? b~sm? b) du
cmb—smb

3(cm b+sm b) (sm % cm u—sm b cm b)

1 jfcm’b+smbcm b+sm? b

“3(cm b+sm b) | smuw em w—sm b em b du—u]

1 du cm (u—Db) du
+3(cm’b-—sm’7)) {fsm u-—b)+fsm (u—b) du +fcm(u+5)
sm (u+b)
+fcm (u+b) du}

- 1 U‘cm’b+smbcm b+sm’bdu_u]
3(cm b +sm b) Sm 4 cm % —smbem b

+3(cm’ bl__smrb)[f[cm @K+u—-b)—sm QK+u—b)] du

+JSlem (—u—~0)~sm (—u—b)] du}
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_ 1 { cm2b+smbcmb+sm’bd _ }
“3(mb+smbd)|) smucmu—smbembd U

+ 1 cm 2K+u—b)+sm (2K+u—b)
3(cm? b —sm? b) em (—u—b)+sm (—u—b)

Putting 2K+b for b in the integral in the above expression, it
uw

log

becomes a constant multiple of the integral G b TemTl smucny

Hence, the integral of a rational function of sm u and em u can be
du

expressed in terms of sm u, cm %, f(u) and .
P ! » Jw) cmb+sm?bsmucmu

THE FUNCTION g(u)

Let us assume a function of % such that

and therefore X ’
g_((%_,) _ofo twau
If 4 be very small, we have
sm (2K+u) cm QK+4+u)=sm (2tK+u) cm (2tK+u)=sm (2 K+u)
em CK+u)= ——gi%—g
Hence, if f(u) becomes infinite for any value ¢ of u, f(u) behaves
in the neighborhood of a like 51%—3’ and therefore g(u) behaves in
the same neighborhood like a constant multiple of w —a. Therefore

g—((qé—)) does not become infinite for any finite value of u, and it is,

= —sz+positive powers of u.

moreover, a uniform continuous function of u, since f(u) is such a
function. It can therefore be expanded in a series of ascending
owers of u, which is unconditionally convergent for all values of u.
his development will be given later in this publication.
By integrating the expressions containing f(u) on page 25, we
get the following formulas:

g(—u)

T o

gw) g(K)=g (0) g(K—u) e,

g(K+u) ., 9(K)

——F(u) =gk cmuzl—(-o—),

g2K+u) _ ,x g@BK)
9@) e )"smug(K),

IBE+) _ yy 9B,

©g(u) g(0)
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In these formulas we may throughout put tK and &’ or # K and &*’
for K and k, respectively, provided that-in the fourth formula we
multiply the left-hand side y t or #* as the case may be.

We have also o N

Q(u+ -(Kg K,) = glki—ks) U Q(K( )Iﬁ,)
g(u)

in which K, and K, denote any two of the periods K, tK, andit’K

and smﬂarfy k, and k, denote any two of the quantltles k, k’ andjk’’.

In
=6 cm u gw(K)

g(0)’
g(—-u)
glu).

g(K+u)
glu)

substitute the value of cm u=

and we get

. 9(K)
g(E+u)=e g(— -u) oM

Now let u= ) K and we have

(g K)=ebe "(2 ol

g (K) = el ¢ (0).

Therefore

In the expression cm u=lg£—(—)) let w= —-g K,

om(—3K)=— 1 °m(2K)
S C TR

om (3 K)-sm (3 ).

therefore

AG)--o(-15)

Now, in the formula

g (8K+wu) esk“g(3K)
9w ON

but

let u= -—§ K and we get

9(2 K) _,kxg(aK) _1,

)

26183—251—38
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therefore
g BK) = —e*Kg(0).

We have defined f(u) by the integral

f(u)=-j;usm % cm u du,
then
S @u) -J;ut sm u cm tu du—t’J;usm u cm 4 du,
therefore

o J(tu) =2f(u);
in like manner
. S @) =tf (u).
In particular
k' =3k and k” = tk.
Hence
k+tk+th=0.
We can now find the values
g (LK) =¢t*E g (0),
g (P K) = eixX g (0),
g(BtK) =g (3P K)=g(3K) = — 6K g (0),
g ( K‘ — K') - gk K+kiKs g (O).
We note in particular that
g (tu) = g (Pu) =g (w).

The Abelian function g(u) must therefore bela series in u?.

We have already shown that ;
(=w)

c U= g u) ’
but ,

g (u) = exv ﬁ(—%g(K—u).
hence '

' 9(—-u)-=e""“g((0) g(K+u).

But

_.”TE(O% - g~ XK,

9
so that
- 9(~w) = ¢rumiiEg (Kt u),

ence

cm Y == g—ku—4kK (gK:)u) ’

- g~tku—3kK _(_.;_ K'i 1':‘ %) ,

== e-—tku—;kK M.
gu)
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Also we have

(u— K)
g(E-u)’
— -k (U K)

g(u

= {etku—3kK ﬂ%%‘zty@ ,

= 3etku~3kK gu-tK)

8m %= cm (H—u)=

g (u)

We have

g (u) =g (K, ~ u)ekmu—iK,
hence

1 1 X

g §K,+u =g §K,—-u ehiu,
or

e"i‘““g(% K +u nd**“g(% K,-—u)v

therefore - ,
| g—iku q(% K1+u> is an even function of u.-

ABELIAN FUNCTIONS CONNECTED WITH sm u AND om u

Let us denote the function
8K g (y~ K) by h (),

sm u= h(w) .
g ()
and :

g(—wu)
cm U= g(u) .

These functions are Abelian functions which can be expanded
into series that are convergent for all values of . They can also be
expressed as Fourier series, or as infinite products. KFrom the
fundamental algebraic equation between sm u and cm u we get

B (u) + g*(— u) = g*(u).

and we have

Also from
JZ% sm w=cm? u,
we get
gk’ (u) = h(u)g’' (w) = g?*(—w),
and from

d o

gw) 9’ (=u) +g(=u) g’ (u) =h¥(w),
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From the addition formula of f(u) (see p. 24), we have
f@) +f@) ~ f(u+a) = —cm (u+0a) sm u sm a,

F@+f (=0 =fumq)= 4 RUTD UL,

By subtraction we get
f@)—f(-a)—fu+a)+f(u—a)

R [em (u+a) ecm a+cm (u—a)]

cm a
L _Smucmusma/ 1+cm?a
cm a cmae+smucm usm?a /)’

but

F@)+f(~a)= 222,

hence, by addition, we get
2f(a) —f (w+a) +f (u—a)

_ _sm a,(sm % cm U-+Sm ucmucm"a_sma'
cma\ cma+smucmusm?a

2sm v cm ysmgcm? a—8m?a

cm a+sm vy cm %sm?a

= — éiabg {cm ¢ +sm u cm‘ u sm? a).

By integrating this equation with respect to ¢ from 0 to a we get

g(u+a) gu—a) ¢g*(0)
# (@) g*(u)

=g(—a)+h(u) g(=w) W(a)

g@) " glw) glu) ¢a)

=cm ¢+8m % cm u sm?a

}xence » ;
glu+a) glu—a) P(0) =g(—a) g(@) P +h(w) g(—u) k(a).
If we denote t’he iiitegml

u
f2smucmusmacm”a-—sm’a du
0

sm % cm % sm® ¢+cm a

by Q(u, a), we have

Q(u, a)‘r-ﬁl[lf(u+a) —f(u—a)—?f(a) Jdu

=log %{—3— ~2uf (@) +log cm a.

Hence, any rational function of cm « and sm u may be integrated by
means of the function g(u) and its derivative ¢’(u).
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RELATIONS BETWEEN THE ABELIAN FUNCTIONS

We have defined & (u) as

h{u) =exu-4xKg(y— K),
hence
h(u+ K) = exu+ixKg(y),
Also
g(u+ K) = ¢®u+ixKg (—qg),
‘ g(—u— K) = —ekn+ikKp (y),
_In the formula

g(u+a) glu—a) g’(O)

cm a-+8m % cmusm?ag=

§(a) ¢*(u)
if we multiply both sides by :
h(u+a)
sm (u+a) “gluta)
we get
sm\u +sm acmacm?u= hlu+ ‘;’2 (ﬁug;‘(:g 720
or

h(w) gu) ¢*la) +h(@) g(—a) P(~u)=h(u+a) glu—a) ¢*(0),
g(u+a) h(u—a) ¢?(0)

sm 4 cm?a—sma cm? % 7@ ¢ '

or
hu) giw) ¢*(—a)—h(a) g(a) ¢*(—u) =g(u+a) h(u—a) ¢#(0),

g(—u—a) glu— a)g’(O)
7 @) ¢*(w)

cm 4 em? ga—sm? 4 sm a=

or
g(~u) gw) ¢#(—a)—h*(w) hia) gla)=g(—u—a) glu—a) ¢*(0),
g(—u—a) h(u—a) ¢(0)

sSm a4 cm U—8sm a cm (L= gq—g’(u)
or
hu) g(—u) g*(a) —h(a) g(—a) ¢*(u) =g(—u—a) h(u—a) g*(0),

h(u+a) h(u—a) g’(O)
g*(a) ¢*(u)

sm? 4 cm a-—-sm? ¢ cm U=
or

W) g(—a) gla)—h*a) g(—u) gw) =h(ut+a) h(u—a) ¢*(0).
We have
f@+f(a)—f(u+a)=—-cm (u+a) sm v sm a,
)+ (@) —f(u+ta) = —t cin (u+ta) sm v sm a,
f(w)+tf (@ —f (u+ta) = -~ cm (u+1a) sm u sm qa,
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hence, by addition, we get
2
3 ()~ (u-+0) —f (u-+12) = (u+00) = + S0

—3¢c,’8,° +3s,%c %" _ da s . .
3 F 870, 7, log (cm® u+sm® % cm® a).

Integrating with respect to w from 0 to w and remembermg that
g 12~ @ and g (#a) = (@), we gt

em? 4 +smd u om? a=LEF VI (‘;‘*{;‘)’y ((a“) +2a) g*(0)

Also
smucm?a+8m acm? 4 —sm* usm?acm y cm a
_hu+ta)g(u+ta) g(uttia) g*(0)
g () ¢* (a)

In a similar way we may continue to develop relations between these
Abelian functions.

THE FUNCTION ( (u, a), ADDITION OF ARGUMENTS
We have derived the formula

Q (u, @) =log gluta) 2uf (a) +log cm a;

gu—a)
hence
. Q , a) =log %——E) 2vf (@) +log cm a,
an

Q@ (u+v,a)=log %% -2 (w+v) f(a) +log em a.

Thus we get

‘ guta)gw+a)glu+v—a)g(—a)
Qu,a)+Q W, a)—Q (u+v,a)=log 16— g0—-a) gaivia g @

In the formuls

cm g-8sm % cm % sm? a g(u+a)(z)(1; (:3 g’(O)’

set
a=l (u—v)
2 H
1
u=5 (u+v) +a,
and we get
1 1 1 1
em 5 (u~v) +m® 5 (u—0) om (3 @) +a om (5 w+) +]

g(u+a)'g (v+a) g*(0)
g’% (u-v) g* [% (u+v) +a}
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Again set
1
a= 3 (u +v),
1
U=z (u+v)+a,
and we have
cm % (u+v) +sm? % (u-+v) sm {% (w+v) +a} cm {% (u+v) +a}.

__Jutv+a)g@ ()
9’% (u+v) ¢ {% (u+v)+a}

Also ,
cm; ('u,+v)+sm’ 1 (uw4v) sm [1 (u+v)——a} cm [% (u-}-v)-—a}
- g(u+v—a) g( a) g*(0)
g § (u+v) ¢ [2 (w+v) — }
{

and
cm% (u—v) +sm’% (u—v) sm % (u+v) —-a} cm {% (u+v)—-a}_
(u a) g w—a) ¢* (0)
¢l ¢ [ wro—d

Hence

b
(e

cm%(u—-'v)+sm’% (u—v) sm{ (u:i-v)+a} cm{ (u+v)+a]

Do = 0Of
[T )

cm% (u-v)—{-sm’-% (u—v) sml (u+'o)-a] cm{ (u+v)-—a}

cmz(u+v)+sm= (u4v) sm{ (u4v) — a}cm{%;(u+'v)—a]

X
em 5 (u+v) +sm’ 5 (u +v) sm {~2— (u+v) +a] em {% (u+v) +a}

_guta) gw+a)gutv—a) g(—a)
g(u—a) g(v a) g (ut+vta)gla

Hence

Q (u, a)+Q(v, a) —Q (u+v, a)=-
: cm—;— (u—v)+sm’%— (w—v) am [—;— (u+'v)+a] cm[ (u+v)+a,}
log

m—;- (w—v) +sm? —;« (u—v) sm {% (u+fv)—al cm {§ (u4v) — ]

X

cm %— (u+v)+sm’% (u+v) sm {% (u+v)—a} cm [—;— (u+v)—a,} :
m% (u+v) +sm’>—;- (u+9v) sm [—21— (u+wv) +a} cm {% (@+v) +a}



36 U, 8. COAST AND GEODETIC SURVEY

=llo I:cm w—a)+sm? v—a) sm (u—a) cm (u—a)
2 cm W+a)+sm? w+a) sm (u+a) cm (u+a)

cm a+sm? a sm (u+v+a) cm (u+v+a) mal
cm a+sm? asm (u+v—a) cm (u+v—a) e

This last form can be verified in the same way as the preceding one.
Now we have |

1—sm (u;—u,) cm (u;+u,) sm (u,+u,) sm (u, —u,)
1—sm (u,—u,) cm (u,+u,) sm (4, +%) sm (4, —u,)

G+t 8503857 €, +8,6,8.%,
cl +8,6,8,2 7 €y + 8,68’

in this expression let u‘=—; (u+w), u,=% (u+v) +a,

1
Uy=5 (u—2), u‘=-;- (u+v) —a.

With these values we see that

Cyt84785Cy, € +8,8,6, _1—smacm (utv+a)sSmusmy
G+ 8,28,6,” €, +8,28,¢, 1—sm (—a) cm (u+v—a) sm usm v

Hence
Q, a) +Qw, a) —-Qu+v, a)
=lo [ 1—sm ¢ cm (u+v+a) sm usm ]
8| T—sm (—a) cm (u+v—a) sm % sm v
: Cy+ 88,0, €y 88,6, ; ; :
since log is the complicated axpression given

Cy+8,28,6,7 €+ 8,°8,C,
above for Q(u, a) + QW, a) ~Q(u+v, a).

INTERCHANGE OF ARGUMENT AND PARAMETER

cm a
cmuw

Qu, a) — Q(a, u) =log ggz W _ 2uf(@) + 2af () +log ——

=log %ﬂd 2eflo) % 2of).

Hence
Qu, @) +Q(u, b) —Q(%, a+b) =Q(a, w)+Q((b, w)—Q(a+Dd, w)

em(u—a) cm(u~b) ecmacm b
cm % cm {(a+b) cm (u—a—>b)

+log +2u cm{a+b) sm a sm b,
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or

cm(u—a) cm (u—b)emacm b
cm u cm (@+b) cm (u—a="0)

Qu, &) +Q(a, 8) ~ Ql, a-+t) ~log[

1—-sm u cm{u+a+b) smasmb
1—-sm(—u) cm{a+b—w) sm a sm b

X +2ucm (e+b) sm asm b.

This gives the theorem for the addition of paremeters.
NUMERICAL VALUES

From the expression S
gm (K—u) =cm 4,

we get

sle lK~

g amcmg i,

hence :

2sm‘%K—‘l,‘
and g

| smzK cmzK 2-t,

Also

m (35)-sm (£ 8)- e
cm® (gK)=1—sm‘—g— K=1-2=-1,
cm (g—K)a -1 |
k-J: Sm % cm % duwf-sm uzz': du-ﬁl uz_d:'_y{
PP IORICIG)
IR OO

From Legendre’s table we have

log r(%) =0.13165649168402,
and as already given
log r(%)= 0.42796274931426.

Hence
’ log % = 9.83535023405378 — 10

k=0.6840634.
26183—25}—4
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We have

1\ /1 2\ (2 |
1 ) TR0y 0) -4 o

BEONE O

TRANSFORMATIONS

We have already listed several transformations which give the
values of ¢cm u and sm » for‘ various combinations of one-third of

the periods. If we denote ¢® by s, then 3sK is a period for the
functions, since 38 K=3 K+ 3t K= —3t* K. To investigate the behavior
of the functions for an argument su, we have

smiy__ ,8mu _ smu
cm cmu cmu
1 .
cmu cmu

sm 8% =sm( — t2y).=
1

cm 8% =cm(—u) =

This transformation tells us some facts re%ardiqg the Abelian
functions A(u), g(u), and g(—v). In the first place since g(u) is not
equal to g(—~u), we know that in the series of powers of u* that ex-

resses ggu) the odd powers are present as well as the even powers.
ince 8= —1, we have '

g(ou) =g(—u),

g(—su) =g(u),
hence C
g(—sw) _ gw) _ 1
glew) g(—w) cmu

cm sy=

The function A(u), which is zero for 4= 0, must be ‘of the form uP(u*),
in which P(u®) denotes a power series in u®. It results that h(su) =
8h(u) and we have :

o)
h(sw)  h{w) glu) smu
.8m 8u=g7w)=og<_u)=‘8 (__“ "‘semu'

g(w)

We know then that A(u) is an odd function of u. The product
g(u) X(-—u) must be an even function of . The fundamental periods
could be taken as 3K and 3s K, although in some respects 3K and
3tK are preferable as sides of the fundamental parallelogram. It
, sh%uld be noted that the area of the rhombus would be the same in
either case. ‘
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TRANSFORMATION FOR THE ADDITION OF A HALF PERIOD TO THE ARGUMERNT

Another transformation that might be noted is that for the addition
of the half period.

3 4
om u+§21_f>=sx*n u+2% cm u
2V ecm*yu—~-smu

_sm u—-2* cm? u
2* smucmu—1

=2*+sm Y cm U

]
cm u—2* sm? u

$

om u+§2g)nsm ucm*u+2
smu—2"cm?® 4
_cm»u—‘z*em'u
2’sm‘womu.-.-1

; =ém’ u+2’sﬁ1 a_
otgm? y—cm u

Evidently the argument u—%‘lgshould give the same transformation

or a second application of the transformation should restore the
original functions. ‘

TRANSFORMATION FOR A PURELY IMAGINARY ARGUMENT

An imaginary transformation can be applied by noting the identity

Hence we have

t—1) sm % em 32
BT

1+t cm’v%

(
sm iume(t%— t’v§>=

. " u
_J?t.sm;ﬁcm;r?f |
‘1+t’sm'-‘l/l'§

U

— . %
NEY) sm7§0m7§

= y
cem? u -t sm? M
V3 V3



40 U. 8. COAST AND GEODETIC SURVEY

%
t+em? —p=
+c 1/3

em 4 =sm (t‘l—t’-—’l—l’->=
‘/3 ‘/3 1+tcm? A
ﬁ

1+¢smd—
_ J

1+t2 smsl"’__

cm?® ff— —t? sm® 73

%
cm®—=— t sm? —=
R

A second application of this transformation will give sm (—wu) and
cm (—u) expressed in terms of the functmns with the argument -3-»

or by multiplying the argument by 3 we shall have sm (—~ 3v) and
cm (—3u) expressed in terms of sm u and cm %. This imaginary
transformation will be found very useful when we come to discuss
the use of the function for mapping purposes.

TRANSFORMATION POR THE ADDITION OF ;K TO THE ARGUMENT

As another transformation we have

_2¥sm? u—cm u
sm\%+5 )
: “sm u— 2% cm? u
2t sm u+om? u
T2 fsm % cm %

_2*+sm % cm u

Nem w+sm? u’

K 2‘ gm ucm u—1

2 sm u— 2t cm? u
_°omu— 2t sm? 4

T2 Ysm v cm %

=_2* om? 4 —sm u,

2 em u+sm? u

U+-5

SECOND TRANSFORMATION FOR A PURELY IMAGINARY ARGUMENT

We shall now note some transformations that change the curve
2*+y*=1 into the more general curve 2°+y*— 3axy==1

Let us start with the expressions

5 ( ) om %-+smu—1
m V3 t’cmu+tsmu-—1

cm( ) tcmu+t’smu-—1
t’cmu+tsmu 1
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It will be found that these expressions satisfy the equation

sm? _zg,__ -+ cm? }ﬂi_ —6 sm _’ﬁ‘_ cm f—i =1,
NE V3 V3 V3
so that a=2,
‘We should have then

d% sm (—:’%) =cm? (%) —2sm (%)1
fon()- e ()22 n ()

It can easily be verified that these relations are valid. Itlshould be

noted that if a is present in the original functions this transforma~
tion is expressed as

and

sm{iu (1+a)‘ 2—a}

‘/3- ’1+a’

and
mfit (o), 20
V3 I+a ,
in which Ll):_: denotes the new alpha. Since the alpha to start with in

this case was zero, we have as above

sm %,2).
om(%, 2)- :

If we apply the same transformation a second time we shallfget

and

sam U

sm (—u, O)a—cm %

and

1
cm (—~wu, 0)-0m e
It is easy to verify this fact and it gives a good check on the trans-
formation.

It is interesting to note that we have alreadﬁ deduced an imaginary
transformation that keeps the functions in the class of «=0. This
particular one could not be derived in a similar manner.

We can derive the relation between the new f and g functions and
those of the original functions,

1T, z)uﬁ"osw, =

.;_z:_fv<c+.-‘» D (e4fo=1) 5
V3Jo {c+is—1)? '
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It oan easily be verified that

_Ll(ete—1) (etts—1) 1 d t—t
3 Bc+ts—1)7 3 dutctis—1"

and therefore
T 1 tc? —12g? 3
ML A At R T

A second integration gives

%%71——2?)2&%% e'*"”’?ll_’a:u [t’ cm u+¢sm u— 1]-

Two other transformations may be derived from these by putting u
equal either to tu or to . Such formulas could be written down
at once. -
TRANSFORMATION OF THE SECOND ORDER
We have seen that om gKa —1 and that sm® ~32-K 2. Let b

represent the real root of this equation. Then from the transforma-
tion formulas on page 39, putting s, ¢, ¢/, ¢/ for em u, cm u,

em (u +—g K) and cm (u +~3 K ) respectively, we have
s+8'+bec’ =0,
c+c'+bss’ =0,
sc’+8’c=b.
From these results it ie seén that
(8+8")8+ (c+¢")*=2+3cc' (c+c') +3s8' (3 +8") =b°— g (8+8)(e+¢').

Therefore
(88")* + (cc’)* —3 bss’ce’ +1=0,
while we also find

j%, (—88") = —Db(ce’)? +b%ss’.

Furthermore, when
u=0, —88’ =0, —¢c'=1.
Hence
2 3
sm (—bu,—b) = —sm % sm u+§2§)=%2p
’ 3
o (—buy—b) = — cm u cm u+—§1—1>— —gags—_c%;—,@-
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There are three such transformations, one for each of the roots of
the equation b*=2.

We find that
m( 3b#? =—sm3—f-’2£sm<—§t§— _,_sz.3_21¥=_2|=._1,=.

When an a is present, this transformation is expressed as

sm( bu,ba 2)

that is, the new « is Z’——b_{—?-

Now we shall transform sm (—bu, —-b) or sm (—2iy, —2%) with the
new b= —21, then

sm (—2u) = —sm(—2h, —24) sm (-2m—§ AP K, —2c>

= —smusmiut f)sm(u+ Issm(u+

gince the new a is zero. We can thus duplicate the argument by
two sécond-degree transformations followed by a negative trans-
formation.

We have, further, *
f(=bu, —b)= -—bﬁgs’cc’dua- -éj;(s+s’) (c+c) du

1 u ' 1 2 B
== Bf[sc+s’c'+sc'+s'c] du=— '5f(sc+s'c’+b) du

_--B[f(u)+f<u+ (3K>+b ]

From the formulas on page 25 it may be seen that

A second integration gives the formula

g(~bu,~b) 9‘“’9“+2K) (G )
908 q0(3%)
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TRANSFORMATION OF THE THIRD ORDER

Let us suppose that we wish to construct functions with the
periods K and 3tK. The functions sm % sm (u+ K) sm (u+2K)
and cm % em (u+ K) em (u+2K) are each equal to —1, and hence
are not available for our purpose. If we set

z=sm v+sm (u+ K)+sm(@u+2K),
and
y=cemu+cm(u+ K)+em(u+2K),

then z and y are such functions as we want.

1 ¢
Z=g+ = ——
8+c 2’

1 s
y=c+—8- —-z-

so that we get y from z by the interchange of s and ¢.

dz |

a—&=c’+z—,+;,=y’+2z,

d A |

az—bls_‘gz_-s—z-—?:_x’_zy.
Hence

dz d dy , dz

x’%+y'a—gu+2<za—a+yaa>=0, |
or

'+ 1° + 62y = a constant.
To find the value of this constant, let

u=%K, then x=y=71§— 142, 2+ + 6y =223z +3)

-2(‘7}3 -1 +\‘/§)’(\,/i§+2+\’/§)=9.

9 z\* 6z a1l z* 1
o+ (=3) -1 =Gy

Thus

while, when
u=0, L =0and— % =1,
'y Y
Then
2 3ige
3T =P +sc?

i 2 —8+¢c—8%¢c
e\ 3tu, — 33 )= e ee

sm (3*11,, -
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Two other similar transformations could be made starting with the
expressions

sm u-+sm (u+tK)+sm (u+2tK),
and

smu+ sm (u+#K)+sm (u+28K),

~mch, however, have no added interest.

Transformations of higher orders could be obtained, but since
they all lead to functions other than those with a=0 they are rather
beside our present purpose. It is more directly in line with our work
in hand to derive the transformations that reduce the functions
sm ¥ and cm u to the Weierstrassian functions and to those of
Jacobi. Such transformations will now be given.

TRANSFORMATIONS REDUCING sm u AND ¢cm &« TO THE CONGRUENT
WEIERSTRASSIAN FUNCTIONS

We note that sm « cm u has a double infinity for the value 2 K as
also for 20K and 20 K. At 2K the infinity behaves like— (‘271:7)»

Let us appl{) the transformation u=2K+wu, so that the double
infinity may be transferred to the origin,

sm (2K+u) em (2K+u)=—scmu

1
—rn—,;,;-—"a;“}'P(u)y

Pu) denotin%l an integral power series in 4. The Weierstrassian
function p‘u) has a double infinity at the origin, and in this neighbor-

hood it i of the form p@)=-%+Q(), @), denoting an integral
power sertes in . This would lead us to suspect that p(u) might be

equal to s%!ili% + To verify this supposition, let

cm U
sm® %

x

dz 14cm?u

du- smPu |
4 em® 4 +sm® u_4 em? u+ (1—cm? u)"__= (1 +em?® ¥)?*

4 +1= sm® u sm® u sm® u

Therefore

%’j=—\/4x3+1.

We have then

w= f ©_ dz__
x \drf+1
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and
z=p W), (g3=0, gy=~—1)

&= —-2—*, 6= ——2_§t, &= -2,

Hence we find that p(u) does equal the given function %—z )

or
M

sm’

p(u) =

The right-hand member has the real period 3 K; hence w, ==g K,

e[ g [0 n
) ViRl Jo Y1 J_1 Jarr 41
ot ot -

In the first integral, in the right-hand member, let 42* =,

1
=23 —— '}
z oF uty
dxzwl-— widu,
3.2%

and we have

f oy dy - B(
44z°+1 3. 2* 0o 14wt 3 2%

From the definition of p(u), we see that

p(K) =0; hence F(g) (6)
(3 6/ 3. 2* r( )

In the second integral, in the right-hand member, let
498 = —u,

1
T e e }
z 514

1
B ——
da 3.5 widu,



ELIIPTIC RUNCTIONS APPLIED TO WORLD MAPS 47

then

o, de 1 g 1 11
h,/z;rﬁ"ﬁ."z"%ﬁ - bdue g B(g g

-4
1 1
1 “(ﬁ)r(é),
3.9% g)
r(g
If we call this value 2, we have
1 1
B OL0),
2 ) _[rG)]
z r(g _[Pz LT
ROLORONOES
sin
w5 1()
2
Therefore, as already stated
w=EK+ =3 K.

(=]

For the complex period, we shall take the definite integral
© _dz _[* _d= J‘w da. [ _de . o
W*‘f_g Vi +1 fz Iy i P gl S/ P
2t gt

ok

In the first part of the right-hand member set z =tz, and we have

o dx 0 dz 1
f 44x=+1’tf__1_ NrF i A
ot

Therefore
oy K+% tK,
and the full period is
| 2w, =2K+tK.

A Weierstrass p function constructed with the periods 3 K and 2 K+tK
will be congruent with the functions sm % and cm u. The relation
of the period parallelograms is shown in Figure 3, in which the funda-
mental periods for sm » and cm % are taken as 3K and 3sK. It
should be noted that the area of the parallelog‘ram for p (u) has one-
third the area of that for sm 4 and cm u. This is evidently theo-
retically required, for each zero of sm w is ‘a double infinity for p (v);
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also p(u) has but the single double infinity in the fundamental paral-

lelogram. The six infinities of g::‘: due to the duplicate infinity for
each zero of sm u are divided into the three double infinities in the
three parallelograms of p (u).

-
s s - ”, -
Z ” >
P
. e s ’4’ id
> - :
z
g P
- -, P r
) - P - -
" - - - .

“ < - - - . . P
wpr b fm e Z oy .+_-_,:.. Tl C LR A AT
4 e PR . - - -~ -

- P z -
TN A Ay P S AP LA 4
// 4’ // ll -
- ” - r o -
P

s - - -
OO A AT WY Sy SNV A T4 vl
" o Lol z

-

-
& a8
- P P - -
z - ~ - Pl -’ R
% = e o T T et T f e T
pre - - 4 Pid -
e [ . - -
T L ol et AT
-, - Pad - Pid -7 -
& A - .

-
2
7 4 -7 A -7 7

Fia. 3—Relation of the period paullel%rznr:t of the ll)ixon ’:lgiptic functions to those of the congruent
oferstrassian functions .

IDENTIFICATION OF THE ABELIAN FUNCTIONS WITH KNOWN
WEIERSTRASSIAN FUNCTIONS

__This relation that we have established gives us the means of
identifying many of the functions already employed. We have used
the relation

sm u=h(u)
g’
log sm u=log h(u) ~log g(w),

d d 3
7= log h(w) - 7= log g(w) =

2
gu——, log h(u)—guf; log gr(u)s*:;;:i-—sm % em wu,

but by definition

@
P og g(u) =sm u cm %,

hence
TN U

&,
da? log i(u) = —scm’ w
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In the Weierstrassian theory we have

dz

T log o(u) = —p(w).
Therefore '

d d?

T log h(w) =T log o(u); -
by one integration this gives |

d : d :
Tu log A(u) =-7u log o(u) + 4,

and a second integration gives
log 2 (u) =log o(u) + Au+log B,
W) =Beo(u),

or

in which A and B are constants to be determined.

Whatever expression we adopt for ¢(u), we can make ¢(0) equal to
unity, for it would only be necessary to divide the adopted expression
by the constant g(0), and then the valuq of the resulting expression
would be unity for »=0. Hereafter we shall consider g(0) to be
sm %

m

unity unless a special note is made to the contrary. Now
converges to unity as u converges to zero. But
)
sm u=‘—q@7,

hw)
sm o u -

v g’

hu)

hence .27(1:‘:) must converge to unity for u=0, and since g¢(0)=1,

[@_(uyl] must equal 1. We know that ”—%—) equals unity when
U=y

% equals zero. Therefore

h(w) _ g 2@
U u

becomes B=1 for u=0.
Hence
h(u) =erv o).

From the Weierstrassian theory we have

a(u+w)

— p2nu
clu—w) e
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Now w=g~ K, but we must determine the relation between 4 and k.
We have

p(2K—u)=—sm v cm v,
agd hence, by multiplying by du and integrating from 0 to u, we
obtain

—tRE-w)+:2K)=Ff(w.

Let u= K and then % K and we obtain the results
~$(K)+$Q2K) =k, _
3 1
~t(38)+teB) -7(3E)
On page 25 we have the formula
f(u) +f(K""u) =‘k)

| 2f(3E)=%,

or

1 k
(z%)-z
Also from above
2t(2K) =f(4K),
but ’
FBK+u)—f(u) =3k,
fUE) ~k=3k,
or
f(4K) =4k,
hence
2¢ (2 K) = 4k,
Since 3 K is a half period
f(% K) =M
hence
~n+2k= % k,

or

3
1=5k
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Returning to the Weierstrassian formula

we see that it becomes

Now let u=% K and we have

¢(2K) = gikK
o(K) )

But
o(2u)

A Ok

, o(2K)
p'(K)= oK) = -1,

since p’ (K) is equal to—1.

Hence V ‘
0c(2K)=0'(K),
which combined with the expression above gives
o*(K) = e*K,
or "
o (K) = ef¥K,

Returning now to the formula

h(u)=eA? g(u),
and remembering that

h(u+ K) = gkaHEK g(y),
we get ‘

h(K)=e*E =g ( K),
hence

h(K)=erK ¢(K),
or '
, eAEml,
and
A=0,

We have finally established the fact that h(u) and o (u) are identical.
We have
W) _o(K+u)o(E—u) cm usg(u)g(—-u).
PU="G)A(E) = smwu k@)
Since h(u) and o(u) are identical, we have

g() g(—w) "G(Ktq:g%f()K‘u) =¢XK (K +u) o (K—u).
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We have defined g(u), such that

dz
o log g(u) =sm u cm wu.

Hence
gu)g”’ ) —[g’ @)P=hu) g(—u).
Also
I log hiw) = - S22,
and so
)b’ (u) — (B’ W) = — g(u) g(—u).
From
(=) _ w
g) !
we have
d? ] m %
7w 108 g(—u)— Tu ,log g(u) cm’ —sm u cm
Therefore
20 (— _smu
au 08 9 u)= cm?u’
or

—g(—w) g (—w) +[g' (~wP=h@) g(u)
From the formula

p(’ll«)+2l]=‘;z‘l—%gr
we have
y(u)g(—u)+§1—, o?(u) =a2(u).
Also
P+ 4=,
or
g(u)g(—u)+2—a o*(u) =, (u),
and
p(u)+gé,=="—;,—((»:g,
or

9w) g(~w) +5 ) =0 (W),

From these we see that
0, (Pu) = a,(u),

d; (tu) = da(“)’

since o (fu) = h(Pu) = #hiu) = o (u),
and so also for tu.



ELLIPTIC FUNCTIONS APPLIED TO WORLD MAPS 63

SOME NUMERICAL VALUES OF THE ABELIAN FUNCTIONS
We have already seen that with g(0) =1

g(K) = et K,
h(K) =0 (K) =¥k,

9(- K)=0,

92Ky =0,
k(2 K) = ¢*K,
9(—2K) = —€*X,

kK

9(3K) h "eT;
h(3K)=0,

kK

g(—8E)=—c7,
(R-1GR- %"

' (G8)-74(38)- \,-g'm
1(-3R)=-o(3K) -~ o ¥,
()R-
o(3E)=van (3 E)=32 enx,

o(~2B)=59 (3 K)=g5 =

DEVELOPMENT IN SERIES
Let us assume the series

S U =ayU + Ut + a,u? +au’+aut+ ... ,
emu=b,+bud+but+bu+dul+ . ..o L. .,
then
8=n
(Bn+1) Ga= sZ;J blbn—u

s=n—1

3nbn""' E Ty Opmg—yy

s=0
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n being & whole number greater than zero and a@,=1, b,=1. This
ves recurring formulas from which the successive ¢’s and b’s can
e computed.

We have
d? 1 1 1 3
Eq—;,log g(u) =sm u cm u=u-—zutt -,?u"— 5§u‘°+ 364 Wy

which by one integration from 0 to u becomes

d 1 1 1 1 3
Jdlogg(u)siu’—ﬁu“+ ggu’-—é———osu“-l- Boog U » v v - )

and by a second integration

1 1 1 1 1
log g(u)=6u’—- B—au"+ 5—0;4—u°— 3696u"-f— 25480“1‘— ...... ,
(u)-1+lu'— ROV S S
g 6% " 360" "4sae0" T vttt '

Sl Loer 1
g(—u)=1 g’“’"‘ 360%' + 25360 T v 0

In a similar way, we find that
h(u)=u+g%(—)u’— Ce ey

or h(u) can be written down from the known development of o(u)
forTq,-=0 and g,=—1. ) o :

'hese series confirm our former conclusion that ¢(u) was a g‘ower
series in u4* and that h(u) was u times a power series in u°, hpse
developments are not particularly important, since for computation
it is more convenient to use trigonometric series.

TRIGONOMETRIC DEVELOPMENTS

. Since A(u) is identical with o(u) we can adapt the expressions
given for o(u) to serve for h(u)
. %x+ 1/25 K

2K+tK
3K =¢€ 3K

—erl ol
g=erg =e

o« LA L} L -

=¢? 2yimele 378 =i¢ 2

e

ol

If we take g=¢ 243 and then substitute ig for z in the expressions
for o (u), we shall have the correct expression for A (u).

", wu © 1—(~1)m2¢™ 065-23—"% +qim

3K
h(u) Lo —;—e sin §K 1 [1__ (_ 1)m qu ’
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g(u) =e ~ka=iK h(ut K),
v (27U 2
(rux i.i1--(—1)m2q=m cos (—”K+ 3")+q*“n
SIM\3EK73) - (=1)=g=p ’
1—( 1)m2q’mcos(2r 2y >+ o
o= 2K (3 0 D

h(u)=?3g :;ZQ* sm3K 2q*sm7 +2q’t‘sm—K—-
_ -3¢ +5¢%— . ... ...

Now substitute iq for ¢ and drop the factor (ig)! from numerator
and denominator and we get

3K xS gRtd sin 7~ sin T~ -

h(“)‘? ez T13¢—B6¢— - .. ... .. ’
31ru 3w 57u | 5
,sm( +5)+¢ sm( ) ¢ sm(—?-}- -~
glw) = E e’{,—‘i 3K ) 3/
o 1435 = e

These expressmns glve

sm~—K+q sm 3K q sm—K q sm——z+g smT
. 1lmu ain 13ru o 157u
+g3°sm 3K q“ 3F—qu 7+ ........

sm 4=
3ru 3w Sru , br Tru
sm(3K+ 3)+ sm<3K+ 3 sm(3—2+ 3 q- sm(
7 Oru |, 97 117ru 111r
+ 31r> + ¢* sin (—-—K + 5 )+e® sm(
— g9 sin (131ru+lgr> ¢ i (15wu+lg1r

™ 3r 3mru 5r &wu
sin(§ - 730)+¢ (5 -3~ (T -3 > g* s“’(_
71ru +¢® sin 91r 91r’u> ¢® sin l_llr 1]1r'u
. {187 137u 157 157w

—g" sm(———-ﬁ—>-—g‘ (——-—-——3~K—>+ -

. ° . 3 3ru 51r 5 () W4
sm(% + 31r_l_( +¢? sin( 5 + ) g° si ( w -¢* 'Bm<’3"*r
71r'u)+ ¢ sm(gw Omru +¢* sin _1__1__1_r + 11xu

—g* sin gg+1§? —¢* sin @+1-——K—5"u + .

cm y=

in which g=e ~5v3
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SOME CONSTANT RESULTS

3K_ 1430 —5¢°—Tq" +9¢" +11¢®~13¢7~15¢" + . . . . .
T B8 Vg V3 V3ga

or

3V3K_1+3¢*—5¢"—7¢" +9¢™ +11¢* ~13¢" — 15¢% 4 ... .. .
2x 142 —g¥—q?— . .. ..

g 1L+ +P -
v2=j , 1, 1 "1, 1

+¢— 50 +3¢" ' 50" —5¢°~ ¢+ - - -
2 14+2¢°— P +q2—2¢°—¢®—¢2—2¢"+ . . . . .
31/31( 1434 —5¢°—7¢% +9q’°+11q’°——13g" 5%+ . .. .. !

2% ool__( l)m )m+q4m
sVaR T - (-DR@=p

A SECOND TRANSFORMATION TO WEIERSTRASSIAN FUNCTIONS

sm
The function {—emu

we shall examine its behavior. Let us set it equal to y,

has a double infinity at the origin, and hence

=' sm »
_ ¥=i—emw’
then
dy (1—cmu) cm?u—sm?u
;l%s (1—cm u)?
- em? u—1 14+cmu
I-cmu? 1—cmu
and -

4 sm® 4 — (1 —cm u)?
dy-1-= (1<cm u)®

4sm"u, 143 cemu—3 cm? u+cmd u
(11— cmfu)8

3dsm*u+3cmu—3 cm?u
(1—cm u)®

3 (l1+cmu+cm?*u)+3 cmu
(1—cm u)?

=3 (1+cm 'u,)’.
"(1—cm u)?
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Therefore 7
wy_ _ ry ]
W__ sy,
and
X f“__dL_,
V3 Jy viyr-1
so that ,

y=’p(:/% )

(_“):J*Ei_..
P 3/ l—cmu

This functionlgives us the means of expressing sm « and em u in
terms of the p function.
We have

and we have

I4cm u

1 r(.}i),___m

BP\yE) " T T=m
1 M) __2cmu

1+ 73 4 (1/3‘) “1—cm o’
1 ! .'_.'qln ’)—'-—_2___..

1“7§ 4 (4‘3)‘1-cm w

so that by division we get

p'(v'%>+ V3

v (J5)-+3

smu=(1—cmu)p (—;}%) \‘

- u
23 (Js) .‘
a_n' (% .
V3-p ( 1/3)
This is the solution in Weierstrassian form of the problem considered
by Cayley ‘“ On the elliptic function solution of the equation z*+y*=1""

(Collected Mathematical Papers, vol. 12, p.35). Weshall give further
consideration to this problem later in this publication..

cm u=

Moreover

The roots of the equation 42°—1=0, are xéyél—,r »2—{,’ and %; When
P (:%) has any one of these values, then p" (—:/%).—:0; but when

P ( 1%) equals zero cm w=—1. The solution of this equation will
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therefore give the half periods for the function p (71%) The values
of u for which em %= —1 in the fundamental parallellogram are -g— K,

gtK, and %t’K. The periods for this function are therefore the same

as those for the functions sm « and cm w. The fundamental periods
can be taken as 3 K and 3s K if it is desired. Of course, if the function
is expressed as p(v), then v must be increased by /3 K and +/3sK to
make the perio£ We have then

u+3

ANvea "P(:/%+J§K)=P<$§>’
()2 (J5+V3eE)=» (J5)

This transformation is not as interesting in itself as the former
one, but it is important as furnishing a means for comgut a table
of the functions sm u and cm u. A table of the p and p’ functions
for this case of the Weierstrassian functions was computed by A. G.
Haddock and published by A. G. Greenhill in connection with an
article entitled “On the trajectory of a particle for the cubic law
of resistance” (Proc. Royal Artill. Instit., vol. 17, pp. 1-36, 1889).
The table is also given by Jahnke und Emde in “Kunktionentafeln
mit Formeln und Kurven,” pages 73 to 75. By using the tabulated
values for p and p’ a table was computed for sm u and em u by
employing the relation just established. Two serious errors were
noted in the Weierstrass table; the value of p(u) for r=23 should be
1537.9625 instead of 1468.820 and the value of p'(u) for r=35
should be —75.9603 instead of —73.4302, as given in the table both
in the Artillery Journal and in the Jahnke und Emde publication.
It should be borne in mind that »=120 is the value corresponding
to K for which value p(u) =0.

TRANSFORMATIONS OF THE FUNCTIONS sm u AND ¢cm u TO THE
JACOBI FORMS

Let us consider the form

Viz=—1+ 3 cot? g.
. T onp @ ¢
\/433=-—\/3 cot ;5 cosec? 5.

4% +1 =3+/3 cot? g~9coﬁ‘ g+3\/§ cot® —g.

Viz¥i-st cotg cosec? g\/sin‘ g-— /3 sin? gcos’ g—%- cos* go
vVidz de
4$’+1’ ) 1 3 il
v \/5\/; (1—cos ¢)’—~‘;/f- (1~ cos? ¢)+211(1 +cos ¢)?
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2d¢
f\/2+2 cos? ¢ — /3 + /3 cos? ¢
_ 2d¢
V3V2— 3+ (2+3) cos® ¢
_ 2d¢
V3vV4— (2++/3) sin? ¢
do

\‘/5\/1—?——1——@ sin? ¢

hence

©  dg
f44z=+1 \/4\/3f ‘/1_2 smi¢

If we start with

il :c‘ i’
we have shown (p. 46) that
(1—g%)t
y=—""0r5
reduces the integral to
o0 d,y
y Vi@ +1
and the further transformation
J 3 1+cos ¢

y=- \/4 V4 T—cos ¢

Viviu= [ o
A -\/1—2+41/3sin’¢

¢=am V4V 3y,
cos ¢ =cnv4V'3 u.
The transformation therefore becomes

W =—~-L V3 l+en VivV3u
p= vz Vil—on Vav3 u

gives the result

so that

and

with
, 2+4/38
x Y i, §
4
or _
V3+1

K-—2~7§—'Sln 76°,

59
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If L denotes the half period of the Jacobi functions, the fraction is

equal to zero when V4 V3 u=2L; however, when the fraction is
3K

Zero u=-5-" Therefore we have

2L=\'/zc/§§21‘7,

%
=%k
4

Legendre’s table shows that this result is correet.
e can express sm® % and cm® ¥ in terms of p’(u). We find

p 2
e SO}

, _pw)+1
cm? u—p——~—~, (u) 1

However, we can not express sm % and cm « in rational real values in
terms of this p function. ' B

On the other hand, we can express cn v/4 V'3 u rationally in terms
of p(u) as also of sm 4 and cm wu.

YR Vs =\'/ZP(U)+1—'J§
cn vV4vV3u \‘(Zp(u)+l+‘/§’

and J
yrwm  Viemu+(1—+/3)smiy
on V4 \/3’“_\'/3 cmu+ (1++/3) sm?w’

and finally, after substituting the value of p’(u) in the above ex-
pressions, we get

_ 2(1~-cn \'/3 V3 u)?
2.3% dn V4 v3u (1+con ¥4 V3 u)+(1—cn V4 V3u)h

sm? u
2.3% dn V4 V3 u(l4+cen V4 V3w — (1—cn V4 V3 )M
2.3 dn V4 V'3 u(l+cn V4 V3w (1—onvgv/3u)?

TRANSFORMATION OF THE SEF%%I;&) p FUNCTION TO THE JACOBI

cm® =

We shall now transform the other p function to the Jacobi form.
Viz=1++/3 cot’;2
Vidz=—+/3 cot g cosec? g de,

42— 1=3+/3 éoﬂ% +9 coi&‘%f +3+/3 cot"%’»
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Vdz*—1=23t cot,gcosec’%.\/sin‘%-h@ sm? ¢cos’ g+cos‘¢

dz 1 ﬂd’
T V-1 V3va /sm‘ 24 f sin? <I"cosss"t’ +cost 5 ¢

1 de
\/3\/4\/ (1—cos ¢)34 ‘/3(1 cOS’¢)+ (1+cos ¢)*

Vi dé

\/3\/2+2cos’¢+1/3 Y3 cos? ¢

_ vVide

V3y2++3+(2—+3)dos*'¢

_ V4 do

V34— (2~/3)sin? ¢

.1 do

V3V4 2—4/3
=

sin? ¢

U d .
W4z3 1 \/3\/4f\/1__ "/3smz

We have already seen (p. 57) that starting with

we | dz
0.(1-_—:::’)*'

foam
T={@=a9t
;reduces the integral to

hence

_dz
i | V-1
‘and the final relation
Vip (?’/%)..1 + V3 cot? %

reduces the lntegral to

\/3 —“7‘f

|—A
I
°°|

sm2 ¢
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or
g ¢ d¢
Yt u- 7- 3
3 ; 1- 3 sin?¢.
Hence :
¢ =am1./—éu
V3
and B
cos¢=cn%—%u.
Hence
l1+cn —’—Zu
" u\ . V3
Van(j5) =1+ Vi——gp
l1—cn \.—7§u
with
x’==2_4‘/§;
or
K= 2‘/_5 = gin 15°.
In this case
V43
2L= 738 K,
or
31
L=;“§ K,

which can also be tested by means of Legendre’s tables of the first
elliptic integrals.

CAYLEY’S PROBLEM

This is the function which Cayley used in the memoir referred
to on page 57. The same transformation is given as a problem in
Whittaker and Watson’s Modern Analysis, second edition, page 526.
There are two mistakes in ‘the statement as there given, so that
the student would have difficulty in proving the exercise. These
errors will be pointed out in the course of the analysis that will
now be given. :

We have already derived the formulas

2437 (Js)
5-#(5)

sm U=
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and
u —
()
cm u= C\Y3/ V7 .

()
But

V3
so that

\ (‘/_)__—2 3*sn\/éu dnzé4

1- cn‘_\l’/3 u)?

By substituting these values we get

,\f
. ‘—\/"<1 cn\/_ )+\/2w/3< —on’ )
m U= \/— f (]
(l—cn:./zé.u) +2v3 sn7=u dn\/‘
2\/3sn\\;gudn:;; 1-— cnzguy

2\/3311531@ dn\\;éu +(1 cnggu .

cm U=

To make the expression simpler, we shall replace v

~\.7§ubyu and we get
\/3
mya

V2 (—cnw[14++/3+(y/3—1)cnu]
2 v¥3snudnu+(l—cnu)? ’

and
m§‘{3 243 snw dh u— (1 —cn u)?
v T 2V3smudnu+t (I—cnw)?'
The first expression can also be transformed as follows:

1
sml‘/;?;u V2 (Y3+1)(1- cnu')(1+1/3+lcnu)
va© o 2V/3 snudnu+(1—cnu)? ’

but
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and
cog T 341
0S8 12'— 2—‘/2~ ’
or
- ™
V3 +1=2%cos 9’
and
V2 (/3 +1) =2 cos 'I%

Now the expression becomes

- 3 T (11— I
V3 2 cos 12(1 cnu)(1+tan12cnu>

vatT T 2v/3snudn u+(1—cnw)?

This is the form in which, the solution is given in Whittaker and
Watson previously referred to. It should be noted that i{ in their
expression corresponds to the sm function as given here. It may be
seen that in t‘hgir expression for y the factor 2t should be 2% and the

sSm

u should be %% times the integral instead of \/2V/3 as given by them.

In Cayley’s memoir hlready referred to the ‘coordinates are given
in the form

v 2\‘/f:'§sn‘»u dnu— (1 4enuw)?*
2v3snudnu+ (1+cnw)?’

_ V2 (1+4cn u)[{/§+41_—’(\”/3—1) cn u)
Y= oV3snudnu+(1+enu)’ ’

This result is obtained from the former result by.increasing u by 2L,
which changes the sign of cn v and sn u. 'We must then set  equal to

L and y to — sm, which, of course, is a transformation of the z
em . .t ooem R

and y. In Cayley’s collected papers there is a mistake of sign in the
formula for y at the top of page 36 of volume 12; it can be checked
up by the correct form for yg given near the bottom of the page.
’I‘k)lere are several other typographical errors in this memoir in the
collected papers. )

Various other forms could be given for z and y by transformations
of the elliptic functions. We shall list a few.

_2V@3snudnut(l+enw)’?
2 V3snudnu—(1+cnu)?

x

- P ¥ *
- 2% cosﬁ(H-cn u)(l—ta.nﬁchu>
(1+enw)?—2+¥3snudnu

. LI T 2
2 V3 cos jpcn u—-(dn u+cosT§snu)
z=

- T r 3
2 v/3 cosygen u+(dn u+cosi—2*snu)
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2% cos —(dn u+cos 590 u) (dnu sin 12sm u)

Y

’

3
2vV3 cosgcn u+(dn u+costnu>

_2 v3isnudnu—(cnu—1)?
2 V3isnudnu+(cnu—1)2’

m
2% cos 13 (cnu—l)(cn %+ tan 112)
2+v/34snudnu+(cnu—1)?

In the last set of values, we have
x=sin 75°

in place of sin 15° as in the other sets. This last set of values could
be derived from the expressions for sm® u and ¢cm?® u given on page 60.
Many more values could be derived, but enough have been listed to
illustrate the various ways of posmbie expression.

IMAGINARY TRANSFORMATION OF p(u) INTO p(;/%:

The function
cm i

sm? u

p(uw) =

is the imaginary transformation of the function

( ) sm u
P V3 I—cmu’

We can show this directly; it is known that p(—z‘/—li) = — p(%) with

¢s chan ﬁed into—g, since ¢,=0. Now, substituting for sm wu and
cm tu their values given on pages 39 and 40, we get

(t—-t’) sm % cm *_‘75

142 sm?® —=
1/

n(t-—t)sm“/“_cm\/

3

2 Ll
=) st
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or
(ﬁuﬁ) o (43>
e ()
V3
We can now replace f/% by u and we have

(u) _ cmau
p sm? u
TRANSFORMATION OF p (%) TO p(u)

In the formula for the imaginary transformation of em u let us
replace u by v3u and we get

=, 14¢tsmdu
cm /3 du=y piy e
hence _
. 1-cm /3% 1—cm /3 u
sm* u = 5 —=
fem /3iu—1  t(tem /3 iu—1)
and

—t(-m\/3’z,u—|—t2 t—~cm\/3w‘
t2 em /3 u—t tCm\/Szu 1

cm? u=

With these values let us make the-substitution in

cem?d
sm® u

pHu) =

_- (cm /3 iu—1t) £2(t cm /3 u—1)
(1 —cm +/3 1u)?

_l4em 1,/3m+cm2 1/3@7/
(1—ecm +/3in)?

T (1—-cm 1/3'),11)a

or
sm +/37u

P = e V3

Now, replace /3 iu by u and put in place of p(—%) its value

—p(—:/%)’ in which g, is now equal to — 1 instead of +1 as in the
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former p(u), and we get

( ) _smu
p NE I—cmu’

The imaginary transformation can be applied direcﬂy to the formula
( + /3 1 +cos 1+cosd
‘/3> 2§ 2% I—cos ¢’

but we must remember that 7 cha.nges to u just the same as L changes

into L’ in the Jacobi or Legendre form,

( _1 .3 3 1+cos i¢
2§ 2§ 1—cos ’ld)
=_1_+\/§ 14cosh ¢

2§ 25‘ l—COSh ¢

Now, by the Mercator transformation we can write cosh ¢ =sec 6

_ V3 cos0+1
p(u)—;/—;l /4 cosf—

_ 1/§1+cos0
PO ==t Vi 1=cos 0"

This is the formula for transformation of the Weierstrassian form for
9,=0, g,=1into ¢,=0, gy=—1.

Hereafter we shall call the functions sm u and em u the Dixon
elliptic functions of u, since Dixon has written such an excellent
memoir upon the whole series of functions connected with the curve
#* +9°—~3azry=1. Much use has been made of his work in deriving
the theory of the special class of such functions treated in this
publication. :

or

APPLICATION OF THE DIXON ELLIPTIC FUNCTIONS TO MAP
PROJECTIONS

As has already been stated, H. A. Schwarz, of Halle, in 1864, called
attention to the fact that a circle could be mapped conformally upon
a regular polygon of n sides by means of the function

J"‘ dz
W= | ———p
0 (1 —gM)u

In 1866 Weierstrass gave the same function in a memoir to the Berlin
Academy. In 1879 the first %;mgraphlc map depending upon a
function of this kind was made C.'S. Peirce of this survey. We
shail now show in what manner the general function can be adapted
for a particular series of projections.
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We start with the function sm w, but for computation purposes the
real and the imaginary parts of the function must be separated. To
attain this end, let w=u+4 and @<=« —iw. Then w and & are con-
jugate comlplex quantities. Let us suppose that sm w=Re'°; then
sm W=Re, Let us further assume that c¢cm w=re™d and then
cm 5 =re'd,

The values of » and d can be computed from the relation

cmdw=1-smdw,
73¢g81d = | — R3edlo,

Taking the Naperian logarithms of both members we get

or

31og 7~ 3id = log [(1—B* cos 3¢)*+ R sin® 3c]
— R?sin 3¢ )
1—~R?® cos 3¢

B{y equating the real parts and then the imaginary parts we obtain
after reduction

r®=1-2R* cos 3c+R",
R? sin 3¢ .
1—R® cos 3¢

1--2R?® cos 3¢+ R®
(1—=R¥cos 3¢)? ’

+14 tan~y(

tan 3d =

1+ tan? 3d =sec? 3d =

or

s 1
(1—R® cos 3¢)? cos® 3d’
hence
r,_l—-R" cos 3¢
cos 3d
After d is determined from its tangent it is more convenient to
compute r from the form last given. en r and d are determined

numerically, we know the values of cm w=re™? and cm % =re!d
Now we have

sm w+cm? w sm W ¢m @
cm D4sm w em w sm? B

sm (w+ W) =sm 2u=
or
Re'°+ Brde~i(o+d)
reld + R3re—i(uetd)
R (el(o——d) + rse—l(0+1d) + R3e1(2c+d) + Rs,.a)

r[1+2R® cos (c+2d) + R
Since sm 2u is entirely real the imaginary &art of the right-hand
member must be identically equal to zero, e have, therefore,
Rlcos (¢c—d)+7* cos (c+2d)+ R? cos (2¢+d) + R*r?)
r[1+2R? cos (c+2d)+ R '

sm 2y =

sm 2u =

as also the identity
gin (¢c—d)—7sin (¢+2d)+ R® sin (2¢+d) =0,
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This identity is a consequence of the relations already established
between the various functions. Again we have

sm (w—17) =s 27:,vmsm“w cm? @—cm? w sm D
m — ) =sm ot et
cm W+sm w cm w sm? w

Rr2el(c+2d) . Rp2g—i(c+3d)
réd  R3pe—i(ctd) ’

2iRr sin (c+2d)
&4 | Rg o) *

sm 2iv=

But from the imaginary transformation given on page 39 we have

sm 2=

.
m m
-\/g 78 ‘/3 () ‘/3
H
1412 sm? 5=
1/
therefore

1/3 1 sm 2?_ cm — 2v
V3 43 2iRrsin (c+2d)

v edf Rie-i(ere) ?
2 s =
14 sm N
or by dividing by ¢ and equating the reciprocals, we get
1 20 +/3 2v
Tt
3 sm — cm
V8 4 «/3

cosd-H, sin d + R® cos (¢ + d) — R% sin (c+d)
2Rr sin (c+2d)

I‘{)ow, by equating the real parts and then the imaginary parts we
obtain

1
l_ﬁ :/5 _ cos d+ R cos (c+d)
2v _  2Rrsin c+2d) '
‘\/3 sm s \[‘ cm _‘/3
and
sm? 2"1
V3 _ _sind~R'sin (c+d)

20~ Rrsin (c+2d)
cm ;F3

26183—251—6
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Since both of these equations are valid, we can divide the first]by
the second and thus obtain ,

1 1 cos d+ R cos (c+d)

V3 sm® :2/2_2¢3=2[R8 st (c+d) —sin )’
3

or
1 l/2§cos d-—%sin d+ R? l/2§cos (c+d)+%sin (c+d)—|
W R*sin (c+d)—sin d

sin (%r—d)+R3 sin (—g+c+d>
- R?sin (c+d)—sind ’

hence finally this becomes

s 20 R?sin (¢c+d)—sin d
s V3 ” T )
R? sin (§ +c+d>+sin (g—d)

4

L

Fia. 4.—Relation of the Dixon rhombus to the axes of coordinates

If the numerical value of sm w=sm (x4 +) is given, we can com-
pute cm w, and hence r and d; with these values by means of the
above formulas we can compute the value of sm 2u and that of

sm 27; - Then, by means of a table of the functions we can determine

u and v which are the coordinates of the projection. These rec-
tangular coordinates, v and v, are laid off along the axes as illustrated

in Figure 4. Thé relation of the rhombus to the axes of coordinates
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is illustrated in the same diagram. If sm w is equated to any analytic
funétion of the isometric coordinates of the sphere, the resulting
projection will be conformal, as was proved by Gauss and the proof
of which is given in any treatise on the general theory of conformal
projections.! Any analytic function of the complex variable in the
stereographic projection plane will serve the purpose in this case and
will of necessity give a conformal projection of the original sphere or
of a part of it, as the case may be.

The formulas for the computation of sm 2u and sm —3% are some-

what involved, and the amount of calculation required is consider-
able, although it is all easy logarithmic work including the trigo-
nometric functions. For all coordinates lying moderatg near the
origin it is more convenient to use & series development of the integral.

_(* Q4 _ , 21,251, 2581 , 25811 1 ,
w”fo -zt %335 T367% t36970° T36912°13° T

581114
691215

VLR

or

Ly 25 e

w=1u+w=Reic+ 33

Therefore

2
34

2
3

u=RF cos ¢+ 5 ~1~R4 cos 4c+2---}R7 cosTe+. « o v v v v ,

= 1 1 4 g1 25_1 7 o
v=R sin ¢+ -4R sin 4c+3-6.7R sln CH+. « v v 0.

The logarithms of the coefficients of the above series are as follows,
beginning with the second:

log a;=9.2218487—10
log a;=28.8996294—10
log a,=8.6935749— 10
log a;=8.5418430—10
log @s=8.4217031—10
log a;=8.3222459—10
log a3=8.2373875—10
log ay=28.1633868 — 10
log a10=8.097778—10
log a,;=8.038851 10
log a,;,="7.985370—10
log a;3==7.936413—10
log a;4=7.891274—10

log QA 3= 7.849400—10
log a,6==7.81035—10
log a17=7.77377—10
log a]a=7‘73936“ 10
log a;,="7.70688 —10
108 Aa0= 7.67613—10
log a3, =7.64693—10
108 022—1761913 —10
log ayi=7.59261—10
log a34=7.56724—10
log as="7.54294—10
log a=7.51962—10
log ay="7.49721—-10

In all of the (Projections depending upon the Dixon elliptic func-
tions the period parallelogram is a rhombus with one pair of the
angles equal to 120° and the other pair equal to 60°. In fact, any

t See General Theory of the Lambert Conformal Conic Projection, United States Coast and Geodetic
8urvey Spec. Pub. No. 63.
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x
——'—Z—ﬂ—.‘,, will be con-
* (1-23
nected with a rhombus which becomes a square in case n =4. This
class of projections has accordingly been given the generic name of
rhombic projections. An indefinite number of individual conformal
projections belong to the rhombic class. A few of the most interesting
members of this class have been computed for this publication, the
analytical development of which will now be given.

projection defined by the Schwarz integral,

PROJECTION OF THR SPHERE IN A REGULAR HEXAGON

If sm w is placed equal to the complex variable in the polar stereo-
graphic plane, we shall have the Northern Hemisphere mapped within
an equi ateral triangle, and the Southern Hemisphere will fill the
remainder of the regular hexagon separated into three distinct parts
of 120° of longitude each. e have then

sm w =tan 123 e,

in which f) is the complement of the latitude and X is the longitude
reckoned from some chosen point. In the general formulas £ becomes

equal to tang and ¢ becomes equal to \.

We have, therefore,

tan? 22) sin 3\
tan 3d = (see p. 68),

1 —tan? ZE) cos 3\

1 —tan?® 222 cos 3\

= 005 3d (see p. 68),
tan g [cos (N—d) +7° cos (A +2d)
+ tan® 129 cos (2n+d) +r* tan® g]
sm 2u = —= (see p. 68),
r [1 +2 tan® g cos (A +2d) + tan® 122]
tan® £ sin (\ +d) —sin d
20 2
sm? V_ - - - (see p. 70),
3 tan* L sin (»- +A +d)+sin (-- —-d)
2 50\3 37¢
and the series development becomes
—tan 2 2.1 ane P cos 4)
Y tanzc:)s)\+3 4’can‘2cos 3 N ,
. 2 1 .
v=tan g sin A+3 - 7 tan! g sind\+. . ... ... (see p. 71).
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The meridian for A=60° projects into the straight line drawn to

the second vertex of the regular hexagon, the first vertex lying upon
the axis of . When A=60° ,

sm w’ =g tan g

Now, place sw in place of w’ in which case w lies along the straight
line drawn from the origin to the second vertex; then

sm W’ =sm sw=g tan 'ZQ”

but
1 g Y
S 8 em wy
hence
smw_.. P
cm w 2
This gives us
1 P\t
om w==(1 +tan? 2) ’
or
| (1 +tan? g)*

This is the most convenient form for computing the values along
this meridian, and the analysis proves that the meridian is repre-
gented by the straight line. ~After w is determined by this formula

we have u=~21— w and v=12?5 w.

The Equator in the first of the three rhombuses is represented by
the long diagonal; that is, the straight line joining the first vertex
of the hexagon with the third vertex. Along the Equator the com-
plex variable becomes ¢*; that is, the E?uator is represented in the
stereographic projection by the circle of unit radius. In this case

sm w’ =k,
Now let )
w' = K+ siw,

in which case w is reckoned along this long diagonal, and we have

sm w’ =sm (K4 siw)=e,
But

. 1+tsm‘:/w=
sm (K 4+ siw) = — = CTI) iw==+———-————3~.
cm stw 148 sm 2.

7
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To investigate whether we were justified in assuming this equality, we

must see whether the absolute value of this expression is e&ual to unity.

l;VVe see that the numerator is the conjugate of the denominator;
ence

1+tsm3-7w§ 14-# srn‘"—:%=1

(absolute value)? = - >
1+ sm®—= 1+¢sm®—
TrEmE TR

We are therefore justified in assuming the equality

w
1+¢sm?® —-
3 _on,

1+ sm? %
It follows that

Furthermore, we get

—3'c;m°}g—*~
2 ‘/3 =1-—cos A
1 3..?1_}_.*. u_z{). ) ’
—8sm ‘/3 sm V3
and
2 1 sin A A
w3 T-cosh — 0ta?
x/3sm3:/“§
or

1. N, 43 N (1r })
és1n~2<+—2~cos2-sm 3+2 ’
- . A

w L N
sms3 7‘5 sin 5 sin 5




ELLIPTIC FUNOTIONS APPLIED TO WORLD MAPS 5

so that finally we have

sin 5
sm,% S ,_?.x_ .
3 gin( T4
sin (3 + 2)
After w is determined by this formula we have

u-K——-’é—g-w

v= 1w
2

oo
1]

FI1G. 5.—Rhombic projection of the world in a regular hexagon

The projection is shown in Figure 5. It will be seen that in each of
the three rhombuses the four sections formed by the diagonals are
symmetrical; each of the diagonals is a line of symmetry in the
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rhombus and the intersection of the diagonals is a center of symmetry
for the whole rhombus. It is therefore necessary to compute the
coordinates for only one of these four sections and then the others can
be constructed from consideration of symmetry. This similarity of
the sections of the rhombus is found in all of the projections computed
wxiltlah it as basis, and hence we shall prove the fact %or this projection
only.

f g, M are the spherical coordinates of a }}l)oint in the first quarter of
the rhombus, p, 120° —\ will be the point that should be symmetrical
with respect to the first point. Then we shall have

sm w= tanzz-).e“,

and
2
sm w’ =tan g e ’
={ tan g et
=1{8m W,
=8sm {w.
Therefore
' w’ = 1,

and this evidently locates a point in the second quarter symmetrical
to the first point with respect to the short diagonal of the rhombus.

Again, if 12r —¢, \ represents a point north of the Equa,t’,ox',"—2r +¢, A will
be the symmetrical point south of the Equator. This gives us

= T_9\oir
sm'w—tan(4 3 et
and
’ T, P
sm w’ =tan <‘—1+—>e“
Then
o T_?) - i
pe— tan 3”5 )¢ =smuw,
or
amw' = — .
sm W
But
sm (K4 #w) 8 s st 1

sm (e K+st'D)=s (K+¢fw) smPw Psmw  smw smw

and consequently
sm w’'=sm (sK+ st*w),
or . o
' w’ =s K+ st =s K—tw.
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This point in the rhombus is the reflection of the point w on the long
diagonal, and hence the two points are symmetrical with respect to
the long diagonal. In a similar way we can prove that the fourth
quarter is symmetrical to the third with respect to the long diagonal
or to the second quarter with regpect to the short di on:ig, or finally
to the first quarter with respect to the intersection of the diagonals.
If wis any point in the first rhombus that has the spherical coordinates
P, N then p, 120°+X should be a corresponding point in the second
rhombus.
Now we have

Sm W= ta.nge"\,

el g
5 th

sm w' = tan ge '

=t tan £t

=1 8m w

=sm tw,
or
w’ = tw,

Therefore, the first rhombus turned about the origin through an
angle of 120° gives the second rhombus, just as it should do.” The
third rhombus is again the first thombus turned about -the origin
through an angle of 240°. This is the projection referred to by
H. A. Schwarz, and we see that the Northern Hemisphere is mapped
within the equilateral trlan%le, just as his theorem stated that it
would be. Inreality the circle representing the Northern Hemisphere
has been mapped from the stereographic plane within the triangle.
We can also map the whole sphere in the triangle, but such a pro-
jection would not be especially important for geographic purposes,
so that no computations were made for it.

To find an expression for the ratio of scale, we may start from
the expression of definition of the projection. The scale is the
same in all directions at any point, since the projection is conformal.
If, therefore, we get the ratio of w to p at any point, this value can
then be taken for the general scale ratio at that point. We have
then

sm w=tan 222 e
hence
cm? w %-% soc? g e,
or
awr 1 %oh
%~ o
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The symbol ! % ' is used to denote the absolute value of the ratio of

scale, and ‘will so be used in the other projections.

But we have ‘

cm v em? w—sm? twsm u
cm w+sm % cm % sm?

cm (u+w) em (u—w) =

(l—sm”—%-%sm”%)cm’u%—Bsmusm’:/%cm’%
- 1—-sm3—v—+sm°~v——.—3smucmusm’l’::cm’-’v: '
V3 V3 V37 43

Hence we have finally
v v v v
1—smé—=+sm® —=—3 sm u cm % sm? —= em? —=
p V3 1 43 V3 V3

5( v v v v
1 —sm? ~—:+sm"——=) cm? u+3smusm?——cm?—=
V3T A8/ : V3 43

[‘h”i—lsec2
dp| 2

We know, however, that

cm w=re 9,
and
cm @ =reld,

hence
cm wem W=r2;

this gives the above expression in the form

dw| 1 .,
E{ol g3 56€ g

In any event it would be more convenient to compute r rather than

use the complicated expression given above. (

The points of discontinuity are found on the perimeter of the
hexagon starting with the vertex lying on the positive section of
the axis of w and including every other one; that is, the first, third,
and fifth vertices. At these points r becomes equal to zero, so that

‘ g’—; becomes infinite. Thefactor secgbecomes infinite in the second,
fourth, and sixth vertices, but r is also infinite at these points and
such that %secg is finite. These points are, therefore, ordinary

points in which the conformality is preserved.

This projection is shown in Figure 5, from which it will be seen
that it 1s not particularly well fitted for mapping the whole sphere.
The projection is, however, an interesting case and even for geographic
purposes the Northern Hemisphere is pretty well represented.
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PROJECTION OF A HEMISPHERE IN IAIIIWEG IIg:ISOMBUS WITH THE POLES IN THE 120°

If the projection is defined by the expression

3 . 2
sm w=tan3 g-e 3y
2iN
the hemisphere will be mapped in the rhombus. WhenA=180°¢% =t

and
2
smw' =t tan3 ¢

o3

=} sm w=sm lw

infwhich w is the value for A=0. Hence, w’=1tw, or if the axis of
w 1s turned about the origin through an angle of 120° we shall have
t{le second side of the rhombus adjacent to the origin and w’ is mapped
along 1t.

In the general formulas R becomes equal to tan? 22? and ¢ becomes

%},,so.hhat. we have

tan? g sin 2\
tan 3d = (see p. 68),

1—tan? g cos 2\

1—tan? 12) cos 2\

ri= cos 34 (see p. 68),
. I N 2 )
tan? 9 [cos <3)\ d>+r3cos (3)\+2d

+ tan? g cos (%)\+d)+r’ tan? g:l
sm 2u = 5 - (see p. 68),

r| 142 tan? P cos (—)\+2d)+t&n‘ P

2 3 2

2% tan? 22—) sin (§~7\+d)—sin d
(see p. 70).

sm3;/—_— = — — -
3 tan £ sin (3 +§x+d) +sin (§~d)

The series expression follows at once from R=tant g and c=-§)\. By

analysis similar to that on page 73, we find that along the short
diagonal the relation becomes

sm w=sint g,
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with
1
Uu ==§ w,
V3
A -—é— w.
Along the long diagonal we have
.1
, W sin g)\ |
sm’ 7§= '—'——‘—"“—. T 1 1]
s (5 +§k)
with
u= K-—l? w,

-1
v=35 W,

The symmetry of the four sections of the rhombus is the same &s in
the case of the first projection. . )
We can find the expression for the ratio of scale at a point by differ-
entiating the expression of definition
2l

sm watan*geixy

cm’w%-gtan 2sec’2e8 ’

dw? 1 ~tp P
E?) =-§r—,tan 2860‘2y

or

d 1 t
’EI’ "W cot g sec? g'

This expression becomes either infinite or zero for each one of the
vertices of the rhombus; hence these points are critical points of
discontinuity for the functional relation. This fact is evident since
180° is represented by each one of the angles.

This projection is shown in Figure 6. The representation of the
Western Hemisphere is shown in a fairly exact manner by the projec-
tion. - The exceedingly bad distortions in the 60° angles are thrown
in the ocean areas and hence do little harm to the land areas.
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h, 038

Fia. 6.~Rhombic projéction of the Westérn Hemispliere, poles in the 120° angles
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PROJECTION OF A HEMISPHERE IN TA%%II}EHSOMBUS WITH THE POLES IN THE 60°

If in place of using latitude and longitude as the spherical coor-
dinates we employ the great circle distance and azimuth computed
from a chosen point, we can locate the pole wherever we may wish
within the rhombus. In the United States Coast and Geodetic Sur-
vey Special Publication No. 67, Latitude Developments Connected
with (greodesy and Cartography, there is published a table of such
coordinates computed from a point on the Equator. By using these
coordinates and by reckoning the azimuth from the pole we can
}t;)cate the poles in the 60° angles. The definition of the projection

ecomes

sm w = tant % elie

in which ¢ is the great circle distance and « is the azimuth reckoned
from the pole. The formulas are the same as those for the last pro-
jection, with ¢ replacing p and « replacing \. The projection is
shown in Figure 7, from which it will Il))e seen that the representation
of the Western Hemisphere is fairly good. The great distortions in
the 60° angles lie in the polar regions which are in general of but little
interest. The critical points again lie in the vertices of the rhombus.

PROJECTION OF A HEMISPHERE IN THE RHOMBUS WITH ONE POLE AT THE
INTERSECTION OF THE DIAGONALS

If the projection is defined as in the one last described in terms of
the great circle distance from a point on the Equator and of the
azimuth of this line, a pole can be located at the intersection of the
diagonals of the rhombus. In this case the azimuth must be reckoned
from the Equator as zero, so that the pole will have a=90°. In all of
these projections it is more convenient to reckon the azimuth counter-
clockwise, as is usual in plane coordinates.

The definition of the projection is exactly the same as that of the
last projection, but for tEe computation a new table of » and d would
have to be calculated. If the series development is used, the «
would be different in the two projections. This ﬁrojection is shown
in Figure 8. As might be expected it gives a rather distorted repre-
sentation of the Northern Hemisphere. In all three of these projec-
tions of a hemisphere in the rhombus the intersections on the diagonals
are the same and do not have to be recomputed. It is only a question
of rearranging them in the new table to fit the new condition of
projection. This fact saves a considerable amount of recomputation.

PROJECTION OF THE WHOLE SPHERE IN THE RHOMBUS WITH THE POLES IN THE
120° ANGLES

Just as we succeeded in mapping a hemisphere within the rhombus,
so we can arrange to map the whole sphere within the same area.
Let us define the projection by the expression

sm w =tan® 72’ e
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\ i

<ETTS

F1a. 7.—Rhombie projection of the Western Hemisphere, poles in the 60° angles
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Now when A =360°, ¢! =t and we shall have reached the second
gside of the rhombus adjacent to the origin. The Equator will be
represented by the long diagonal, but the 360° of longitude will be

mapped upon it. With this definition B becomes tant g and ¢

becomes {_’1> .

The general formulas now become as follows:

tan 22—) sin \
tan 3dm ——— (see p. 68).
1—tan g cos A

1—tan g cos A\
cos 3d

tan? g[cos (%k - d) +1% cos (% A +’2d)
+tan g cos (g 7\+d>+r‘ tan g]

= (see p. 68),

sm 2u = I , , (see p. 68),
r[1+2 tmg cos (§X+2d)+tm'g]
N p. (1 .
an 5sin{ zA+d)—sind
smt 22 - = 13 : (see p. 70),
V3 tangsin (§+§x+d)+ain(§—d)
tant? cosin+2. 1 tant? cosd
u =tan 2c0s3>\+3 4tnm 2cos3)\+ ........ )
~tant? gin 2x+2. Yiant? gin 2
v=tan 2sm3>\+3 4ta.n 5 sm3>\+ ........ (see p. 71).

By analysis similar to that given on page 73 we find that along the
short diagonal we have '

o tan*g _ sing ¢
Nl e (z 17) '
(1+tan 2) 42 sin ath
1

u=§ w,

with

'v==——2—w.
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Along the long diagonal the expression becomes

sin %)\

with

Again, we can find the ratio of scale by differentiating the expres-
sion of definition

sm w= ta‘n‘}g et

dw_1. -3p P ir
cm’wdp —-Bytan 9 sec? 2 [
dwi?_ 1 $P_ WP
dp| 36r* cot” 5 sects

or
dw|_1 3P 2P
;dplz(irzcOt gsecy:

This expression becomes either zero or infinite in each one of the
vertices of the rhombus, but it is finité and different from zero at all
other points. These four points are therefore the critical points for
the projection and are the points of discontinuity for the representa-
tion of the functional relation. This projection is shown in Figure 9.

CONFORMAL MAP OF THE EARTH IN A SIX-POINTED STAR
The function defined by the integral

z
dz

(1—at

0

belongs to the class mentioned by Schwarz in his memoir. If we
assume the relation

r=tan ]2) e
one hemisphere will be conformally mapped in a regular hexagon, as
Schwarz stated; the other hemisphere is conformally mapped on the
six triangles that complete the star.
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Fi6. 9.—Rhombic projection of the world; poles in the 120° angles
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On the other hand, if we assume the relation
ix
z=tan? g e3

the hemisphere will be mapped within the rhombus, with the poles
in the 60° angles. This would give, except for the matter of scale,
%le same projection that we have given on page 82 and illustrated in
igure 7.
%‘he value of the integral from 0 to 1 is easily seen to be equal to the
following result:

f i _1,02.170)00)
| (1—m1T87\6'3)78 r(g)
If we denote this constant by M, we find from Legendre’s tables the
values log M =0.04646108844886
o M=1,11291268.

For computation purposes the integral may be developed in series.

* dz 11,,141 ,.1 47 1,
w ﬁ(l—x‘)i x+3-7x +3 8 134: +3 ) 19“’ U, ’
but
w=1u+1v, andx-tan—ge“,
hence
= P 1 1. 4P
u tanzcosk+3 7tan2cos7k+ ........ ,
~tan 2 si 11 2P
v tanzsmk +3 7tan25m.7h+ ........

The logarithms of the coefficients of the series as far as it was found
necessary to extend the values for computation are as follows:

log a; =8.6777807—10 log a;1="7.11519—10
log a; =8.232844 ~—10 log a13="7.04730—10
log a; =7.958889 —10 log a13=6.9852 —10
log a5 =7.76052 —10 log a1,=6.9281 —10
log ag =7.60495 10 log a;s=6.8751 —10
log a; =7.47696 —10 log a;s=6.8258 —10
log a3 =7.36822 —10 log a,7=6.7795 —10
log ay =7.27371 —10 log a13==6.7361 —10
log a,0=7.19012 10

The projection is shown in Figure 10. It will be seen that the
Il\llorthem ﬂlemisphere is fairly well represented within the regular
exagon. :
By starting with a similar function of the fifth degree we can map
the sphere in a five-pointed star; with the eighth degree we get an
eight-pointed star, and so on.
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From the symmetry of the Figure 10 it will be seen that we need
to compute only coordinates for 30° of longitude north of the Equator.
These values are given in the table on page 116; the other sections are
re[,’)ll‘ica of this quarter of one of the six rhombuses.

his integral can be inverted in terms of elliptic functions, but. the
expressions are so compligated that it is more convenient t6 usé the
series 'for computation purposes. The amount of comphtation
required is very small because of the symmetry of the various sec-
tions, as has already been pointed out.

F16. 10.—Rhombic projection of the world, in a six-pointed star

CONFORMAL PROJECTIONS IN A SQUARE

We have stated that C. S. Peirce was the first one to compute a
‘conformal projection for -geographic purposes based upon elliptic
functions. This work was first published in the Report of the Super:
intendent of the United States Coast and_Geodetic Survey for 1877
and later was published in the American Journal of Mathematics in
1879, as has already been stated.
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_ This projection, called the quincuncial, is connected with the
integral

GJ“ dz
W=)o G=on’

which is a member of the Schwarz type of integrals in which = is
e%ua_l to 4. In fact we get this identical projection if we assume the
relation

z=tan g e .
We can also map a hemisphere within the square by the definition
=tan?2 L e
z=tan 5 €

in which the poles lie in two of the angles of the square. This projec-
tion is shown in Figure 16. Although the projection could be com-
puted with this definition in the usual way, we shall give the interesting
method of Lieutenant Guyou which was actually used in the compu-
tation of the table for the projection.

ELLIPTIC ISOMETRIC COORDINATES

If an attempt is made to develop conformal projections that
depend upon elliptic functions directly from the complex variable in
the Mercator plane or in the stereographic plane, in general the
formulas obtained for computation are comparatively complicated
and require long and laborious calculations. A set of isometric
coordinates for the sphere can be determined that will admit of trans-
formations that are easily applied. Attention was first called to the
existence of these coordinates by Lieutenant Guyou in Annales Hydro-
graphiques, second series, volume 9, 1887.

F16. 11.—Elliptic coordinates for Guyou’s projection

A spherical ellipse is the locus of points on the sphere such that
the sum of the two great circle arcs which join them to two fixed
points is constant. %he two fixed points are called the foci of the
ellipse. Let us consider two such ellipses which have one focus in
common- and the other foci at the opposite.ends of o diameter. In
Figure 11 let F be the common focus and let ¥’ and F, be the other
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foci. Place the sphere so that P, the pole, bisects the great circle
arc joining F and F’'. Let F’M=a and FM=b, then F,M=x—a; let
PF=PF’'=c. If )\ represents the longitude reckoned out from the
central meridian PAP’, the plane of which is perpendicular to the
plane of FPF’, and if ¢ represents the latitude of M, we have

COS @ =08 ¢ 8il ¢ —sin ¢ cos ¢ sin A,
and . .
cos b =cos ¢ sin ¢ +sin ¢ cos ¢ sin A.

If ¢ and N are the parameters, the equations of the coordinates of
the unit sphere are '

z =cos ¢ sin A,
Y =CO0S ¢ COS A,
2 =gin ¢.

Since ¢ is taken as constant, we obtain

cos a+ cos b=s a+bco a-b
2= =860 € C08 —5— €08 —5—)
_cos b—cos @ _ cosec ¢ ina,+b . a—b’
r 2s8lnc¢ 8 2 sin 2
Now let
a+b== nda—-«b’=
—5—=u and ~—5—=v.
Then

z =cosec ¢ sin u sin v,

Z2=86C € CO8 U CO8 Y,

y =+/1—cosec? ¢ sin® u sin? v—sec? ¢ cos® u cos? v

=+/(1—sec? ¢ cos® u) (1 —cosec® ¢ sin? v),

The radical can of course assume either the plus or minus sign. This
sives the coordinates of the sphere with u and v as curvilinear coor-
inates.
We can now express the element of arc upon the sphere in terms
of these parameters.

ax .
3y, COSec ¢ cos u sin v,

oz .
5;)—==cosec ¢ sin u cos v,

0z .
— = — S€C € 81N % COS
ou Y

0z .
et —S§ec ¢ CO8 U SIN v,
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dy _ —cosec® ¢ 8in . ¢o8 ¥ sin? v+ 8ec? ¢ sin % co8 U Cos? v

: 2 > )
du +/1—cosec? ¢ sin® 4 siniv—sec? ¢ cos’ u 008? v

3y _ —cogec? ¢ sin? v sin v cosv4-sec? ¢ cos’ u sin v cos v
ov 1 —cosec? ¢ sin’ u sih* v—gec? ¢ cos? u cos? v

_[97\? | (3y\* , (982 _ (sin’ u cos?® v—cos® u sin® v)
B=(5a) + (o) +(3) -

sin? 4 —sin® ¢

_8in (x+v) sin (y—v) _ sin g sin b
sin? u—sin? ¢ sin? u—-sin? ¢

oz 0n dydy, 00z
P oo gudw

G- (?3_:)’ + (gg)’ + Qg)’ _ (sin? 1u cos? v— cos? u sin? v)
%) EY) 2 sin? ¢ —sin? v

_sin (u4v) sin (u—v) _ sina sin b
sin? c—sin®y sin? c—sin? v

Therefore

ds? =sin @ sin b( = . v v)'

sin? u—sin® ¢ + sin? ¢— sin?

Since F is zero, the v curves are the orthogonal trajectories of the

family of u curves.
Now, in Figure 11, let AC be denoted by n and AB by m, WAE
representing the Equator. Then

FO=23% -y,

F\M=nr—a,
FB=; (FM+F,M)=1- ‘%_”)%_v

Let 4 be the interseetion of the Equator and the meridian, the plane
of which is perpendicular to the plane of the meridian WPEP, hen,
from the right spherical triangle FCP, we have.

sin n=sec ¢ Co8 U,

and from the right spherical triangle /,BE we get
sin m = cosec ¢ sin v.

By differentiating this equation, we obtain

cos m dm = cosec ¢ cos v dv,

but e
¢0s m = cosec c+/sin? ¢ —sin? v,



ELLIPTIC FUNCTIONS APPLIED TO WORLD MAPS 93

hence
cos v dv
dm = e e
+v/sin? ¢ —sin? v
But
co0s.v=+/1—sin? ¢ sin? m,
therefore

dv dm
ysinf c—smnZv  4/1 —sin? ¢ sin? m

Now, by differentiating the equation for sin n, we get

cos n dn= —sec ¢ sin u du,
but
COS 1 =s8ec ¢~/cos? ¢ — cos? U =sec c+/sin? u— sin® c,
hence
sin © du
d'n E ke
4/sin? u—sin? ¢
But o
sin 4 = +/1—cos? ¢ sin? n,
therefore ’
du _ dn .
Vsin? u—sin? ¢ - +/1—cos® ¢ sin? n.

The expression for the differential length of arc now becomes:
dm?  dn? )
n

— - + -
—sin? ¢ sin? m 1 —cos? ¢ sin?

ds?=sin a sin b (1

We can now obtain a set of isometric coordinates by the following
relations

v dv m dm
= P X = —— = —— -
P 0 +/sin? ¢—sin®v o Y 1—sin®¢sin* m

and
3 du 0 dn o dn .
‘1=L m‘~f ﬁza‘sz—m‘ﬁ J1—cos csim' m
The differential element of arc now becomes
ds*=sin a sin b (dp?+dg*).
p and g are expressed as elliptic integrals of the first kind; that is,
p=1F (m, sin ¢),
qg=F (n, cos c).

After m and n are computed the values of p and ¢ can be taken from
Legendre’s table. As a check on the computation we. have .the

relation

COS T COS N = /(1 —cosec? ¢ sin?v) (1 —sec? ¢ cos? u) =Y = oS ¢ COBA.
20183 —25+——7
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F and ¢ form a set of isometric coordinates for the sphere and a con-
ormal maFl of the sphere upon the plane can be determined by
e

assuming the relation ) )

r+iy=f(p+iq),
the symbol f denoting any analytic function of the complex variable
p+ig. The simplest map of this kind is given by the equation

2+ =p+1g,
or
z=p,
y=q.
PROJECTION OF LIEUTENANT GUYOU
The most interesting case, and the one especially treated by Lieu-
tenant Guyou, is that in which c=—z .

In this case
cos a=-;/}—§— (sin ¢ — cos ¢ sin ),

1 . .
cos bsv—ﬁ (sin ¢ + cos ¢ sin \),

sin m= 2 sin v,

sin n=+/2 cos u,
m dm
z-ﬂ 1 ]
;/ —= sin?
1 3 sin’ m
. dn

y - f ——eer——— &
0 ‘/ 1 —% sin® n
Therefore, z and y depend upon the same integral and the hemisphere
is mapped within a square, the side of which has the value 2F (%':/1—_5)

and

or the 2K value for k= 12- This givés the map as constructed by

Lieutenant Guyou. (See fig. 12.) The poles are in the middle of
two opposite sides of the square.. . :

From the expression for the differential element of arc it can be
seen that the ratio between the element in the plane and that on the
sphere becomes infinite for the points taken as foci and their antip-
odal points. At these points either a or b becomes 0 or ». These
points are represented by the corners of the square, and these are
the oritical points for the projection at which the conformality fails.

These critical points may be located anywhere upon the sphere;
that is, the system of spherical ellipses can be related to the meridians
and parallels in any way that we may choose. It is merely necess
to express a and b in terms of ¢ and A for the new position of the foci.
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F1a. 12.—Lieutenant Guyou's projection

AR



96 U. ‘8. COAST AND GEODETIC SURVEY
PEIRCE'S QUINCUNCIAL PROJECTION

Let us make the transformation that will place the foci on the
Equator in place of upon a meridian. (See fig. 13.) Let P and P,
be the poles and WAE the Equator; also suppose the planes of the

eat circles PEP, W and PAP, perpendicular to each other. Let A

e reckoned out from PAP, and let F and F’ be two foci so that

AF=AF'=¢=7.
Then
cos F'M=cos F'P cos MP+sin F'P sin MP cos F'PM,

Fia. 13.—Elliptic coordinates for Peirce’s quineuncial projection
but
F'P=3%)
MP=3 -,
LF'PM= g +\,
therefore
CO8 @ ==CO0B ¢ cos(‘—q +>\)‘
Similarly -
cos b=cos ¢ cos(% - )\)-
The angles m and » are computed as before, as are also the values

of z and y. This projection places the pole at the center of the
square, and the four sides of the square represent the Equator. (See

fig. 14.) If A increases from 0 to E, we obtain the values for one-
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eighth of a hemisphere; the symmetrical image of this with respect to
the y axis completes one quarter.of the hemisphere; the other three
quarters are just replicas of this quarter. In this position just one-
eighth of a hemisphere has actually to be computed. This is the

uincuncial projection devised by Cy S. Peirce and first published in
ghe United States Coast and Geodetic Survey Superintendent’s
Report for 1877, as has already been stated. In this derivation the
axes are differently situated from what they were in the development
given by Péirce. In this case they ard taken perpendicular to the

F1a. 14.—Peirce’s quincunolal projection

sides of the square, but in the former development they were taken
along the diagonals, The formulas for the expressions of the coor-
dinates were complicated in the earlier development because of this
fact. Peirce’s table can be-checked from values derived as above
by the relation

, —2
v=5%
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z and y being the coordinates as expressed above and z’ and ¥’ being
Peirce’s values and K being expressed in the form,

e (5% .
A \/1-—%sin’0

In this transformation it should be noted that \ is differently reckoned
in the two cases. It is reckoned out from the z axis in both cases, so

that there is a difference of % in the position of the prime meridian.

It will be evident to those who have computed any of the coordinates
for Peirce’s projection that this method of approach is by far the
simpler. In this position the check on the computation is found in
the relation

¢os m cos n=sin ¢.

PROJECTION IN A SQUARE, POLES IN A PAIR OF THE ANGLES

As a third example let us place one focus.at the pole and one on the
Equator. (See fig. 15.) '

-]
P
F16. 15,~Eiptic coordinates for the rhombio projection in ¢ square, poles in a pair of the angles

In this position if we reckon A out from the central meridian
PAP, we get

Q= PM—%—d:,

b=EM,
cos b=cos ¢ sin \.

The angles m and n are computed in the same way as before. The
check on the computation is given by the relation cos m cos n=cos ¢
cos A. 'The directions of the axes in this position are determined by
the great circles through A bisecting the angles PAFE and PA W; that

is, the planes of these circles a.reinclinedg and _;_r to the plane of the

Equator. The axes in the plane will be as before parallel to the sides
of the square, and the origin will.be at the center of the square. One
of the diagonals of the square represents the Equator and the other
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the central meridian, both of which are straight lines on the projec-
tion. The four quadrants of the hemisphere are symmetrical, so
that it is sufficient to compute one quadrant. With the axes placed
as indicated above part of the z coordinates will be positive and part,
of them negative. For convenience in drafting it 1s better to turn

the axes through an angle of E- If z and y represent the values as

computed and z’, y’ the new values, we obtain by the transformation
of axes the new values

z'=% (y+2),

re -

A

Fi6. 16,—Rhombic projection of the Western Hemisphere in a square, poles in a pair of the angles

A table of these coordinates for 10° intersections of meridians and
parallels computed for one quadrant of a hemisphere is given on page
116. The complete hemisphere is given by all possible combinations
of signs of these coordinates. It i1s believed that this arrangement
of the map in the square is new at least in its application to geographic
maps. The projection is shown in Figure 16.
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PROJECTION IN A SQUARE WHICH WOULD BE SUITABLE FOR THE UNITED STATES

The four points that are to become the critical points can be placed
upon any great circle of the sphere. The best map for any particular
region could be computed by adopting the central point of the region
to 'be mapped as the pole of the great circle upon which the critical

ints are to be located. Assuming that the cente® of the United

tates is approximately at the intersection of the fortieth parallel
with' the ninety-fifth meridian, we could get a satisfactory map b
assuming the foci at latitude 32° 47’ 5179 south and one on eac
side of the ninety-fifth meridian distant 57° 16’ 0374 in longitude
{;rom this central meridian. In this position the formula for ¢ would
e
cos a=cos (122° 47’ 5179) sin ¢ +sin (122° 47’ 5179) cos ¢
cos (A\—57° 16’ 0374),
and for b
£08 b=cos (122° 47’ 5179) sin ¢ +sin (122° 47’ 5179) cos ¢
cos (\+57° 16’ 0374).

These can be put into better shape for logarithmic computation by

assuming in the first equation

tan f=tan (122° 47’ 5179) cos (\—57° 16’ 0374),
upon which the first equation becomes

cos a=cos (122° 47’ 5179) sec fsin (¢ +f).
Similarly, the assumption

tan g=tan (122° 47’ 5179) cos (A +57° 16’ 034),
reduces the second equation to the form

eos b=cos (122° 47’ 5179) sec g sin (¢ +¢).

Consideration of symmetry show that it would be sufficient to
compute the half on either side of the central meridian, since this line
is an axis of symmetry. The angles m and n are computed as in all
of the other cases from the computed values of a and b.

FURTHER CONSIDERATION OF PEIRCE'S QUINCUNCIAL PROJECTION

The formulas that Peirce used for the Quincpncial {)rojectiox_l may
be derived from the coordinates as given 1n this development in the

following way: By turning the axes through the angle g' we get
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2’ and y’ being coordinates for Peirce’s projection. From this rela-
tion, we obtain

cnxcny——snxsnydnzdny,

en+/2 2’ =cn (y+2)= i
1—3 sn? z sn? ¥

sn z=sin m=+/2 sin (a;b

sn y=sin n= /2 cos (@_;_i’),

cn z=\/1——2 sin? ‘?‘2“"

. ,a—b a-b
dn z=+/1—sin 5~ =C08 —5—»

= fcos (a— D),

T a+b
cn y=,\/l—2 cos? @2—_—= +—cos Za+5),

dn y= 1—-cos2 +b mw-
2 2

Substituting these values we obtain

vV —cos(a+b) cos(a—b) ¥—2sina_b(':osa+bcosa—bsina+b
L2 .2 2 2
a

on2a'= 1——2sin’a bc g2 +b
2 2

+—cos (a+b) cos (a,—b)——l sin (a+b) sin (e—b)

1——— (sin a—sin b)?

’\/ 1—cos? a—co:s2 5-141 (cos? b—cos? a)

=

1——— [2—cos? a—cos? b—2 v/ (1—oo0s a) (1—cos b)j

Since A is to be reckoned out from a meridian passing through one of
the critical points, we must subtract :{from the old . We therefore

have
€08 @ =CO08 ¢ CO8 ]\,

cos b =008 ¢ sin \.
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When these values are substituted, we get

+/1—cos?¢ cos® A — cos® ¢ SIn® \ -+ 1 (cos®¢ sin?\ — cos? ¢ cos?))
cn+/2 ¢/ = 2

1—5[2-—cosz ¢ cos® A—cos? ¢ sin? \

—2+/(1—cos? ¢ cos® \) (1—cos® ¢ sin? \)]

sin ¢—-% cos? ¢ cos 2\

1 ——;— I:l +sin='4>---2‘/sin2 <j>+711 cost ¢ sin? 2)\_'

sin ¢—% cos? ¢ cos 2\

,1; cos? ¢+-\/sin’ ¢+7} cos* ¢ 8in? 2\

2 sin ¢ — cos? ¢ cos 2\
= = + ’
cos® ¢ + /4 sIn? ¢ +cost ¢ s1n? 2\

- 2 tan ¢ sec ¢—cos 2\
14+ +/(2 tan ¢ sec ¢)*+s1n? 2\

_ (2 tan ¢ sec ¢ —cos 2)\)[1 — /(2 tan ¢ sec $)* +sin? 2)]
- 1—4 tan? ¢ sec? ¢ — sin? 2\

/(2 tan ¢ sec ¢)*+sin® 22— 1 .
cos 2\ +2 tan ¢ sec ¢

Symmetry shows us that when )\’=7§r —\, 2’ changes into ¥’ and ¥y’

into 2’. Making this substitution and dropping the prime on A, we
get the value of y’.

, /(2 tan ¢ sec ¢)%+sin? 22—1
en2 y= 2 tan ¢ sec ¢ —cos 2\

This value may be checked by direct development if it is desired.
If we assume the auxiliary angles

v(2 tan ¢ sec ¢)?+sin® 22 —1
cos 2\ +2 tan ¢ sec ¢

+/ (2 tan ¢ sec ¢)?+sin® 2A—1
2 tan ¢ sec ¢ — cos 2\

CO8S a =

cos 8= ’

the coordinates become
1 1
SRTUCEY,
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This is sufficient if we are willing to let the coordinates be expressed
directly in the values of the elliptic integrals. Peirce’s table 1s com-
puted with the length of the semidiagonal of the square as unity.

The abové values must therefore be divided by +/2 K, since this is the
length of the semidiagonal in terms of the integral. This gives, on
dropping the primes,
1 1
XL u- 2—2 F a, "‘75)9
1 1
w327 (5 3)

RATIO OF SCALE FOR THE SQUARE PROS]ECTION, POLES IN A
PAIR OF THE ANGLE

To determine the ratio of scale in the projection illustrated in
Figure 16, it is better to make use of the definition in the form

z =tan} g etih,
By differentiation with respect to p, we get

%%=% cot? g sec? g et |

But o
ggf VI=at=q/1- ta;l;g e,
hence
dw % cot? g sec’ g eih
v ‘/ 1‘— tan? 223 e ,
and so
dw|’_ %écotgsec‘g
ap . \/1—2_ tan? 12’ cos 2)\+ta,n‘é2
or .
dw ' icot*gsec‘g

dp | (1—2 tan® 121 cos 2\ + tant 12’)

This expression shows that the points of discontinuity lie in the angles
of the square; it is evident, a priori, that these points are such since
the co ormaiity fails in each of them, 180° being mapped in a 90°
angle.
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CONFORMAL PROJECTION OF THE SPHERE IN AN ELLIPSE

We shall now give consideration to a grojaction that':does not
belong to the rhombic class but which bears some relation to it
in that it depends upon a projection that is defined in terms of ell(ig-
tic functions. In the seventieth volume of Crelle’s Journal fiir die
reine und angewandte Mathematik, page 115, H. A. Schwarz mentions
the fact that an ellipse with foci at w= +1 can be conformally map-
ped within a circle by the function

. 2K .
g=sin am( —— are sin u

in which 8 =0 is the center of the circle with the radius of the circle
equal to —‘}—E

It was at once noted that conversely the circle could be mapped
within the elliﬁe by the same relation. It seemed desirable to map
the sphere within an ellipse such that the major axis would be about
twice the minor axis. I}tj was found that this end could be attained
if k were taken equal to sin 65°. ’
; Accordingly, the full definition of the projeotion was taken in the

orm

. 2K I D P TR TNy
sin am[(—ﬂ_—arc smw>+2'bK] th g€ A

in which w=u—. ‘

It was found most convenient:/to make the computation step by
step; and so, in accordance with this plan, a projection was computed
with the definition »

n & 1 am?
= o= tant s gdr
sin am z ,ktanze .

This definition maps the sphere within a rectangle with base 2 K and
altitude K’'. The Equator is represented by the line y=% K'; the

oles lie on the axis of y, one at the origin and the other at y= K’.

his projection is illustrated in Figure 17. The projection is very
much elongated and of course has no further interest than being
the basis of the projection within the ellipse. As could be foreseen,
the four quadrants of the rectangle are symmetrical images of any
one of them. The table given on page 117 gives the coordinates for
the first q}tlmrter of the projection. ) . .

From this table a new set of ¥ values was derived by subtracting

each of the y’s of the table from %K'. The effect of this process

was to move the axis of 2 up to the point y=% K’, with the coordinates



1
H
Fi6. 17.—Conformal projection of the world in a mctmde k
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ﬁ:ven for the section of the rectangle in the first quadrant of coor-
inates. If we denote this new complex variable by 2’, we have

2= g~I—{arc sinw + }iK’,
T 2

or
2—1—{&1@ sinw=2z— L iK',
L 2
and
2K e sinw=z+ LiK =2/,
7" 2
or finally
w=sin =, 2’
U 2KT
This gives us
ol L . ;au
U + 1w =8In (ZKQ;.Hﬁy),
if we let

2'=x+y.

This gives us the final definition of the coordinates within the ellipse
=sin Sz cosh ;5
w=sin 55z cosh 55y,

v==cosﬁx sinh i%y.

This projection is shown in Figure 18. The ellipse is about the
same as the one used by Mollweide for his equal-area projection of
the sphere. Since this projection is conformal, it avoids the violent
angu.gu' distortions that are present in the equal-area projections.
The same ellipse is used in the projection that has been called the
Aitoff equal-area projection but which should rather be called the
Hammer projection, since it was Dr. E. Hammer, of Stuttgart, who
called attention to the fact that an equal-area projection could be
so constructed. (Petermann’s Geogmp%jsche Mittheilungen, Bd. 38,
1892, p. 85 et. seq.) We are glad to take this opportunity to state
that we were somewhat at fault in using the name Aitoff in pre-
vious publications when the originator of the equal-area map of the
world was Professor Hammer, as is shown by the article cited above.

An expression for the ratio of the linear arcs is so complicated
that it is of ve(xiy small practical value. We shall derive it to help
in locating the discontinuous points.

If we differentiate the general expression of definition of the
projection with regard to p we get

cn [(?_Ig arc sin w>+ 1 iK’] dn [(&K arc sin w>+1 iK’]
T 2 T 2
2Kdw 1 11 P 0l .
X dp Jicw A JEeOH e e
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F16. 18.—Conformal projection of the world in an ellipse
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Therefore
dwip = 1 cot g sec! g VI —w? +07)% + du?
dp| 64Kk '

P Jl—%tangcos )\'+% tanzg

\/1 -2k tangcos N+ k2 tan? g
or
[dw s cotd 3 sec’ 1’2—’ [(1 =2 +02)% + 4wt
d_.P =8’ kK 2 ‘ 1 T
v (1—75 tangcos )‘+7£5 tan? g)

Y
(1 —2k tan 222 cos A+ k? tan? g) .

The critical points are thus seen to lie at.p=0° and p = 180°,

ANALYSIS FOR THE PROJECTION OF THE SPHERE IN A RECTANGLE

We shall now indicate the method used in the computation of the
rectangular projection. We have the definition

sn zavlz tan? g e,

and
. 1 P
- ] -~

sn z 7k tan g e
Now assume ,

cnz=re~Y,
and

dn z=r,e-it,
then

cn Z=pyel,

dn Z=r,ls,
But.

cn®z=1-—sn?z,
or

rle~ =] —i tan 22? e,
hence

2 P 1 P
4.0nf.2 2

ri=1 A tan 5 €08 k+7E; tan 5

and

i tan 223 sin A
tan 2f = —
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By an obvious reduction, we get

sec? 2f =
(1— tan cos)‘)
or
1 p
rz_l—ztan—zcos)\.
t cos 2f

Again we have
dn? z=1-%? sn? 2,
or

rye~28=1—F tan g e,
Hence we get as before

rt=1-2k tan £ cos A+ 12 tan? L,

k tan 223 sin N\

tan 2¢= s
1—-k tan g cos A
or
1'—k tan g cos A

cos 2¢

ri=

After f and g are computed it is more convement. to use the second
expression for r, and r,.

ow we get

snzenfdnzZz+snzenzdnz
1—%%*sn?zsn?z

sn 2x=sn (2+3) =

—_tani? e*"‘ relf relft o 1

w/75 vk
l—k’,?l,tan’g

tant 223 =M p o~ M gl

Vli tan? g rlrz[em+i!+l¢ +e—(m+u+i¢)]

1-tan? £
:77? tan? 12-’ Ty cos(—;-)\ +f+ g)

1 —tan’g

26183—251-—S8
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Also we have
snzenzdnz— snzcnzdnz
1-%2sn?2zsn? 2

sn(27y) =sn(z—2z) =

or
2 P ( )
. en(2y, \/k tan 5 Tifs sin 2)\ +f+g
on(2y, k ) 1-—tan? g
hence finally

—j—i_ tan? g rr, sin(%)\ +f +g)

tan am(2y, k') =
1 —tan? P

With these formulas we can compute am (2z, k) and am (Zg &’ ),
then from Legendre’s table with k=sin 65° we get u and wit
sin 25° we get v. The computations are not so formidable as they

— tanil)

appear at first sight. A table of the values vE__ 2 can be made

— 2L
1 tan2

for the various latitudes and this table may be used in the compu-
tation of the coordinates.

On the Equator and the central meridian the formulas can be sim-
plified. On the Equator, we have

sn(a +§i K) = W etih
or
1+k%
\/E sna+1/kcnadna 1 1 i " 1

T+% sn, \/E CO8 5 7\ E x

Hence
(14+k)sna 1
Tiksnia ~ %8 3h
and

cnadna 1

Wsm"

'(11{%%—2 n[(1+7c)a,?1/k]=cos SA.

But

Since some of the interpolations required by this formula with
%egeﬁldre s table are rather laborious, we can compute sn a from the
ormula

1+k~+1-2k cos M +F*

8D 0= i
2k cos §x
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which is, of course, derived from

(1+%) sn @_ oos 1)\
l1+ksn?a 2™

On the central meridian we have

. 1 P
== e [
sn ia 1/70 tan 5

or

tan am (a, &’) =—j—7§ tan? g

CONCLUSION

This concludes the list of projections that.we wish to discuss at this
time. It is believed that practically all of the varieties developed in
this publication for which tables are given are new, at least as to appli-
cation to geographic cartography. Many other varieties could be
deduced from the principles laid down in these gages, but we have
included enough to fully illustrate the methods developed. A pro-
jection of the whole world within the 60°-120° rhombus with the
poles symmetrically looated on the long diagonal was considered for
a time, but the amount of work required for the computation seemed
excessive in view of the small usefulness of such an example. Tables
for the necessary coordinates of the various projections are added
to this work so that they will be available for immediate use. The
other points of the projections for which coordinates are not given
must be plotted from consideration of symmetry. The amount of
computation for the various tables was considerable. The author has
had the pleasure, if such it be, of personally carrying out most of these
computations. He is sure that the work will be useful in many prac-
tical applications.
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Dizon elliptic functions for a=0

TABLES

u Sm % cmu Sm % l—cmu u sm % cm % sm % ~Ccm U
cmy cmu
. 0. 1.0000 |  0.0000 [0, 0.8833 | 0.7937 | 0.7937 | 1.0000
. 0147 L0147 | 1.0000 . 0147 | . 00000106 .8980 | .R029| .7843 | 1.0236
. 0204 .0204 [ 1.0000 . - 00000851 (0128 [ .8LI8 JTT47 | 1.0479
(%6 | osk| oo | 0sos | Ocaoms: | .ofms| sme| id| Lo
. 0589 . 0589 . . . 1 .8 . 1
. 0736 0736 L9998 | . 0736 | . 0001329 . 9560 ,8373 L1447 | 11244
(J00| 030 | owo| 2091|0003t | oese| .emE| 79| I i
1 . 1030 . .1 . . . . 1
1178 177 . 9995 .1178 | . 000! 1, 0011 .8608 [ .7128 | 12078
L1325 1325 L9992 L1325 | . 0007754 1.0158 L8681 7018 | 12370
L1472 L1471 . 9989 . 1473 | . 001063 1,0306 .8753 .6006 | 1.2673
L1619 . 1618 . 1621 | . 001415 10483 | .8822| .6793 | 12088
1767 . 1765 . 9982 . 1768 | . 001836 1. 0600 .8880 | .8677 | 1.3312
L1914 (1012 Leery .1916 | . 002338 1. 0747 .8953 .6560 | 1.3648
. 2061 .2088 L9971 . 2004 | . 002914 1. 0894 .9015 L6441 | 1.3096
. 2208 . 2204 . 9964 .2212 | . 00358 11042 | . 0075 .8321 | 14358
- 2356 . 2350 L9957 . 2361 | . 00435 11189 |  .9133 L6190 | 1.473¢
. 2503 . 2496 . 9048 . 2509 | . 00621 11336 | .9189 | .6075 | 1.5125
- 2650 . 2842 . 9038 . 2668 | . 00618 1. 1483 19242| L5080 1 1.5332
. 2797 287 . 9927 L2808 | . 00727 11630 |  .9203 |  .5824 | 15957
. 2544 . . N 1.1778 .9342 |  .5698 | 18401
JSowe | (37| o | ity |.ooso || Liees| e8| a7 | 1 gses
. 3239 Jgom . 9887 7 | - 01126 1.2072 . 9433 -5436 | 1.7351
. 3386 . 3364 L9871 01286 1. 2219 9475 . 5305 1. 7861
3533 L3507 . 3550 | . 01460 1. 2366 . 9518 5173 1. 8399
1.2514 . 9554 .5038 | 1.8063
ol a0l -Es) G -Olods 12661 | .0500| .4003 | 1 0580
- : . : 1.2808 | .9635 | .4767 . 2.0189
.3976 .3034 L0794 L4017 | . 02072 1 2085 9057 5 0850
S4122{ 4075 . 8763 .4171 | . 02308 13108 . 403 | 21560
- 4269 L4215 L9749 L4326 | . 02561 g - 9688 .
.8250 | .9T17 . 4354 231
. 4417 L4354 9717 . 4481 | . 02831 } 3307 . 0744 L4215 22" 3118
- 4564 -493 1 . - 4637 (. 03119 1. 3544 . 9769 L4075 | 23975
&é '2‘7’%‘7’ gggg -ggg -%ﬁ 1. 3602 . 0793 .3034 | 24894
. . . . . . 2 3
. 5006 4903 .9500 | .5113 | . 04005 1.3839 9815 878 | 2.5873
1.3086 . 9835 L3650 | 2.6044
L5153 o654 | 5273 | . 04459 14133 | .9854 | 3507 f . 5004
. L5172 .9516 5435 | . 04842 14280 L0871 .3364 | 2.9341
L5447 5305 L9475 5509 | . 05248 1. 4428 . 9887 .3221 | 30701
.g;g; ggﬂag . 0433 5763 ’32?9 1.4575 | .9002| .3076 | 3.2i86
’ ’ ’ ’ 1 4723 . %‘2 . 22%? g g}s
6097 1. 486 . . , 5619
:% :‘é‘gg‘;’ ;3% . 6267 0as84 1. 5018 . 9938 .2842 | 3.7620
L6183 . 5950 . 9242 . 8438 1. 5164 . 0048 L2496 | 3.9851
. 8330 " 8075 0189 C 8612 1.5311 . 9957 2350 1 4. 2360
6478 .6199 9133 L6787 L5458 . 33761 'g?;‘;g ‘ : 332’5
1. 5605 . . .
foa | EMIl dorb)  -goe veTsz|  leeT7 (12| 52192
1801 R I B 1.5000 | .9082 1765 | 5. 6550
17067 ‘8677 3389 ‘7512 1. 8047 . 9986 1618 6.1708
Li1a| e | [ssaz| 7700 ' Lows| o | e
. 634 . 1325 . 5157
- 7361 - 8906 - 8753 - 7891 } 243851) . 9995 L1177 | 8.4887
608|708\ .s08l | 8084 ‘ L owe | 1080 | o70u
. . . .8 1.8783 . 9998 0883 | 11.3187
- 7803 . 7237 .8532 | L8482 ]
- 7950 - 7343 - 8454 . 8686 1 1.6930 . 9099 .0736 | 13.5850
1. 7077 L9080 |, 0589 16. 9821
. 8007 L7447 .8373 . 8893 17225 | 1.0000 .0442 | 22,6423
L8344 L7549 .8 . 0106 il 17372 1.0000| .0204 | 339552
.8392 . 7649 .8 . 9322 L7519 1.0000{ .0147 | 67.9221
8530 | l7m7| 8ns| 9543 (
. 8686 L7843 .8020 | .9769 | L7ees| 10000 .0000|
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Entire sphere in a regular hezagon
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Longitude| Longitude Longitude Longitude Longitude Longitude Longitude
0° 10° 20° 30° 40° 50° 60°
Lati-
tude T
r y z v z v z v z v T v z v
0 |1, 0678 |0.4035 (0, 8833 0. 5100 (0. 7497 {0. 5871 |0. 8382 {0, 6515 |0, 5376 |0. 7096 |0. 4418 0. 7650
0| .8013 | . 2317 | . 7782 | .3764 | .6714 | ,4747 | . 5730 | . 5504 | . 4793 | .6138 | . 3868 | .6700
0|.7210 | . 1552 | [a586 | .2823 | .5816 | .3805 | .5007 | .4583 | .4179 | .5222 | .3328 | . 5764
0 |.5833 | . 1140 | .5443 | . 2187 | . 4804 { .3037 | .4252 | . 3750 | . 3562 | . 4357 | . 2802 | . 4853
0| .4654 | .0864 | .4302 | .1675 | .3006 | . 2398 | ., 3409 | .3021 | . 2027 | .3546 | . 2204 | . 3073
0|.3606 | 0651 | .3425 | .1274 | .3187 | .1845 | .2761 | . 2349 | .2313 | .2778 | . 1806 | .3128
0.2647 | .0471 | . 2510 | . 0025 | . 2316 | . 1347 | . 2045 | . 1725 | . 1714 | . 2050 | .1335 | . 2313
0| .1738 | .0307 | .1657 .0606 L1520 | , 0883 | 1340 | . 1134 .1132 . 1350 | . 0881 | . 1526
0| .0862 0152 L0822 | .0200 | .O758 | . 0438 | . 0670 | .0562 | .0862 | . 0670 | . 0437 | . 0758
Hemisphere in the rhombus, poles in the 120° angles
\
Longitude 0° | Longitude 10° | Longitude 20° | Longitude 306° | Longitude 40°
Latitude T
z v z ) z v z v z 1
01,1566 | 0.3522 | 0.9066 | 0.4445 | 0.8833 | 0.5100 | 0.7910 | 0.5633
0] 1.0013 | .2034 | .9055 | .3 L8170 | .4164 | 7365 . 4819
0 8465 | .1371 | ,7087 | .2514 | .7370 | .3395 | .6728 . 4005
0 7278 | .1038 | 6062 | .1979 | .6525; .2784 | .6027 . 3461
0 6183 | .0818 | 5985 | .1587 ; .5668 | .2285 | .52809 . 2001
0} .5160 | .0648 | .5028 | .1274 | .4805 | .1858 | .4516 . 2304
0| .4170 | .0506 | .4073 | .1000 | .3013 | .1471 34868 L1913
0| .3138, .0373 | .3069 | .0740 | .2058 | .1001 | .2805 . 1427
0! .1960 | . L1919 | .0457 | .1853 1 0648 | 1762 . 0887
0| .0000 0000 0000 | .0000 0000 | .0000 | . . 0000
Longitude 50° | lLongitude 60° | Longitude 70° | Longitude 80° | Longitude 90°
Latitude
z v z v z v z v z v
0.8515 | 0.5702 | 0.6907 | 0.5053 | 0.7282 | 0.4416 | 0. 7650
L5830 | . L6283 | .4670 1 .6844 | 4049 L7014
L5171 7 . 4881 | | 5611 4282 | .6007 | .3670 . 6372
L4537 | 4422 | 4075 | .3868 | .5364 | .3300 . 5716
.3020 | .3028 4340 | .3428 | .4600 | .2908 . 5037
L3300 | .3302| .3691 | .2061} .4020 | .2406 . 4324
.2688 | 2815 | .3017 | .2442 | .3807 | .2054 . 3558
L2027 | L2145 | ,2285 | .1865| .2513 | .1564 L2710
L1268 | 1380 | 1438 | .1178 | .1580 | .0084 L1704
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Hemisphere in the rhombus, poles in the 60° angles

Longitude 0° | Longitude 10° | Longitude 20° | Longitude 30° | Longitude 40°
Latitude ‘ S
z v z \ ) z v z y z 1
0. 0000 0 0.0984 ! 0.1704 | 0.1564 | 0.2710 | 0.2054 | 0.3558 | 0.2496 | 0.4324
.1973 0] .2153 ! .1236 | .2500 | .2260 | .2874 | .3138 | .3246 . 3924
. 31681 0| .3235 | .1010 | .3452 | .1946 | .3728 | .2798 | .4027 . 3588
. 4207 0| .4258 | ,0874 ] .4308 1 .1716 | .4500 | .2510 | .4842 . 3257
. 5219 0 .5254 | .0774 | .5353 ) .1533 | .5608 | .2264 | 5708 . 2988
. 6257 0] .6285 | .0689 | .6360 | .1371  .6484 | .2039 | . . 2686
L7307 0 .7414 | .0609 | .7470 | .1216% .7576 | .1811 | .7712 . 2395
. 8752 01 .8768 | .0523 | .8817 | .1044 | .8897 | 1560 | .8 . 2087
1.0817 | 01.0628 | .0411 | 1.0674 | .0820 ) 1.0725 | .1226 | 1.0810 . 1628
1.7066( 0117666 | .0000| 1.7666 | ,0000 | 1.7666 | .0000 | 1.7666 0000
Longitude 50° | Longitude 60° | Longitude 70° | Longitude 80° | Longitude 90°
Latitude —_
z ¥ z i T ; v z i z ¥y
0.2908 | 0.5037 | 0.3300 | 0.5718 | 0.3670 | 0.6372 | 0.4040 | 0.7014 [ 0.4416 | 0. 7660
L3611 | .4651 | .3074 | .5341 | .4333 | .6003 | .4602 | .064% | 5053 . 7282
4345 | 4207 | L4672 | .4084 | 5007 | .5641 | .5351 | .6280 | 5702 . 6907
.5114 | 3061 | .5375 | .4633 | 5717 | .5278 | .6042 | .5004 | 6382 6515
L5938 | .3687 | .6197 | .4283 | .6481 | .4906 { .6786 ( .5508 | .7107
.6843 | .3313 | .7071 | .3918 | .7328 | .4508 ] .7607 | .5078 | 7910 5633
L7874 | 2066 | .8070 | .3522 | .3305 | .4063  .8554 | 4580 | 8833 5100
L0142 | .2564 | ,9308 ! .3053 | .9503 | .3520 | .8723 | .3004 | 0066 4445
S| 1.0915 | 2024 | 11066 [ 2412 | 1.1197 | .2792 | 1.1369 31687 | 1.1566 3522
1.7666 | .0000 | 1.7666 1.7666 | .0000 | 1.7666 1. 7666

Hemisphere in the rhombus, pole at the intersection of the diagonals

Longitude 0° | Longitude 10° | Lougitude 20° | Longitude 30° | Longitude 40°
Latitude --
z v z v z v T 1 ¥ z v

SO PO PO — " —

0.3161 | 0.0000 | 0.4207 | 0.0000 | 0.5219 | 0, 0000

.32 L1977 L4224 .1010 L5201 . 1010

L3364 | .2084 | .4264 | .1088 | .5162 . 1998

.3536 | .3012 | .4811 | .2014 | .5005 . 2020

L3707 .3864 | .4353 | .3790 . 5007 . 3812

. 3869 .4676 L4383 .4618 | 4004 . 4645

L4018 | (5448 | L4403 ’ L5400 | 4790 | .5434

.4158 . 6196 L4412 | . 6169 | 4669 .6192

L4280 | .6928 | .4416 | .6015 L4544 . 6920

L4416 | .7650 | .4416 | .7650 | .4416 . 7650

Longftude 70°

Latitude e I ——
z ¥ z P z | ¥

0.0000 | 0.7367 | 0.0000 | 0.8752 | 0.0000

1068 | 7200 | .1203 | .8638 | .1474

L2004 | 7040 | .2315 | .8036 | .2714

3053 | 16668 | .3305 | .7486 | .3710

.3939 { .6280 | .4183 | .6009 | .4539

4760 | .6012 | . 48_19_2 .6378 | 5258

.5527 | 5640 | 5615 | .5870 | 5007

L6255 ; .b5154 . 6363 . 5369 .6510

6041 | .4785 | .7012 | .4889 | .7085

.'7650 . 4416 . 7650 . 4416 . 7650

Longitude 80°

Longitude 90°

z v

1.0617 | 0.0000 | 1.7666 | 0, 0000
1.0028 | .2073 | 1.1566 . 3822
L0086 | 3391 | 9906 . 4445
.8220 | .4300 | .8833 .5100
L7468 | .5028 | .7910 . 5633
6783 | .5640 | .7107 . 6086
6150 | .6188 | .6382 8518
5656 6693 | 5702 . 6907
L4980 | . 7177 | .50B3 . 7282
.4416 | .7650 | .4416 . 7650
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Entire sphere in the rhombus, poles in the 120° angles
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Longitude 0°

i Longitude 10°

Longitude 20°

Longitude 30°

Longitude 40°

Latitude ;
4 ] l z v z v z v z ]
0 1.2087 | 0.2874 | 1.1566 | 0.3522 | 1.0678 | 0.4035 | 0.9966 | 0.4445
0,1.16800 | .1618 [ 1.0030 | .2630 | 1.0152 | .3312 | 0543 . 3840
0,1.0405 | .1107 | .0997 | .2020 | .9518 | .2727 | .0029 . 3200
0 0306 | .0845 ! .9160 | .1612 | .8833 | .2270 | .8476 . 2825
0 8406 | .0679 | .8345 1323 | .8123 | .1008 | .7865 . 2431
0| .7648 | .0B58 | .75836 | 1000 .7382 | .1609 | .7185 . 2081
0| .6736 | .0460 | .6688 | .0Q11 | .6580  .1344 | .6437 . 1759
0, .5773 | .0371| .5727 | .0737 | .5658 | .1004 | .5563 . 1440
0, .4497 | .0274 4469 | ,0547 | .4422 | .0815 | .4358 . 1078
0| .0000 | .0000 0000 | 0000 . 0000 . 0000

Longitude 50°

Longitude 60°

Longitude 70°

Longitude 80°

Longitude 90°

Latitude
z v z v T v z Yy z Y
0.8833 | 0.5100 { 0.8352 | 0.5377 | 0.7910 | 0.5633 | 0.7497 | 0.5871
.8520 | .4615| .8073 | .4028 | .7646 | .5214| .72566 . 5476
L8144 | 4148 | .7706 | .4497 ! .7370 | .4807 | .6083 . 5089
L7781 | L3718 | .7370 | .4080 | .7010 | .4406 ; .6877 4702
L7265 | .3304 ) .6845 . .3666 | .6634 | .4005 | .6326 . 4308
L6711 | .2006 | .6452 | .3268 | .6185 ) .3584 | .5013 . 3896
.8074 | .2500 | .5865 | .2846 | .5643 | .3159 | .5411 . 3450
L5287 | L2088 ( 5125 | .2388 | .4050 | .2671 .4752 . 2038
L4181 1 . 1584 | .4070 . .1823 | .3046 | .2054 | .3810 L2274

- 0000 |

Longitude 110°

Longitude 120°

Longitude 130°

Longitude 140°

Latitude

k4 v z v x Vv x ¥ z v
0.6096 ; 0.6737 | 0.6310 | 0.6382 | 0.6515 | 0.6038 | 0.6713 | 0.5702 | 0.8907
5721 | .6522 ! .5950 | .6174 | .6168 | .5837 | .6376 | . . 8677
5340 | .6283 | .5501 | .5053 | .5823 | .5622 | .6036 | .5301 . 6241
4974 | .6019 | 5226 | .5609 | .5462 | .B385 | .5684 | 5075 | 5805
L4686 | (5717 | 4844 | 5417 | .5085 | .5188 | .5311 | .4821 . 5525
4175 | .5388 | .4434 | .5085 | .4675 | .4806 | .4901 | .4526 | .55
L3721 L4028 | L3972 .4678 | L4210 | .4424 | . 4432 ¢ 4167 4642
3190 | 4358 | .3426 | .4144 | 348 | .3023 | .3857 | .36068 | .4053
2484 | . 3506 | .2684 | .3340 | 2873 3166 | .3052 | .2084 . 3220

Longitude 150° | Longitude 160° | Longitude 170° | Longitude 180°
Latitude

z v z v z v z v
O 0.5376 | 0.7096 | 0.5053 | 0.7282 | 0.4733 | 0.7467 | 0.4416 | 0.7650
51868 | .6771 | .4866 | .6069 | .4540 | .7147 | .4233 . 7332
4984 | .6441 | .4670 | .6634 | .4357 | .6821 | .4044 [ .7004
4767 | .6097 | .4460 | .6201 | .4153 | .6478 | .3845 . 6659
4525 | 5727 | .4228 | .5921 | .3920 | .6106 | .3628 . 6284
N L4245 | .5316 | .3961 | .5507 | .3674 | .5688 | .3384 . 5862
80. —— L3005 | .4837 . .8840| .5022| .3370| .5198] .3006 . 5362
0. e e mmmamammm—m—mm———————— L3462 | 4238 | .3212 | .4411 | .2078| .4573 2727 A7
80 L2795 | .3378 | .2509 | .3526 | .2397 | .3663 2189° 3791

90._. . 0000 0000 | ,0000 | .0000{ .0000 | .0000 .
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Entire sphere in a sixz-pointed star

Longitude 0° ‘ Longitude 10° | Longitude 20° { Longitude 30°
Latitude . -
z y z z v z y
0 | 0.9838 | 0.2239 | 0.9051 | 0.3509 | 0.8347 | 0.4819
0] .8207, .1600| .7778 | .2043 [ .7169 . 4133,
0| .6008 | .1254 ( .6560 { .2410 | .6031 . 3482
0| .5689 | .1012 % ,5418 | ,1981 | .4091 . 2882
01 .4593 | .0812 | .4380 | .1598 [ .4036 . 2330
0 .3584 | 0832 .3420 .1245| .3152 . 1820,
0! .2639 .0465 | .2518| .0916 | .2321 . 1339
0| .1736 | .0306 | .1657 | .0603 | .1527 . 0882:
0 .0862 | .0152.{ .0822) ,0209 .0758 . 0437
6| .0000 L0000 | .0000 | .0000 . 0000,
Hemisphere in a square, poles in a pair of the angles
Longitude 0° Longitude 10° Longitude 20° Longitude 30° Longitude 40°
Latitude : —
z y z v z y z v z y
5 ......... 0| 0.00000 | 0,17458 | 0.00000 | 0.35269 | 0.00000 | 0. 53618 | 0.00000 ; 0.72923 | 0. 00000
0. ae 0| .17458 17363 | .17630 | .34983 | .18041 | .53151 | .18776 | .72196 . 19940
20 ....... 0] .35269 16953 | .356624 | .34124 | .36311 | .51742 | .37713 | .70062 . 39886,
30._.__._.. 0| .53618 16267 | .53974 | .32092 | .55073 | .46425 ( .57005 { .66617 . 50938
40 ... 0| .72023 15305 | .73369 | .30667 | .74672 | 46209 | 76957 | .61960 . 80349,
50.. . ... 0 . 93713 . 13097 . 94182 L28190 | .95780 | .42005 | 98071 . 56145 1. 01589
60, .. ... 0 116817 | .12541 | 1.17289 | .24672 | 1.18673 | .36002 | 1,21079 | .49042 | 1, 24475
(| 0 1.43804 . 10200 | 1.44221 . 20347 | 1.45479 | . 30387 | 1.47583 40304. | 1.50494
80 ... .. 0 1.78611 ) .07264 | 1.78023 | 14479 | 1. 79868 | .21502 | 1.81415 28562 | 1.83581
90 ool 01262205 | .00000 | 2.62205 | .00000 | 2. 62205 | .00000 | 2.622056 P 2.62205,
Longitude 50° Longitude 60° Longitude 70° Longitude 80° Longitude 90°
Latitude
z v z Y z v z v z v
6 ......... 0.93713 | 0.00000 | 1. 16817 { 0.00000 | 1.43804 | 0.00000 | 1, 78611 ; 0. 00000 | 2. 82205 ) O, J
02503 | .21710 | 1.15001 | .24474 | 1.40448 | .29140 | 1.70379 | .38283 | 2.03027 . 69178
.80382 | . 43117 | 1. 10024 . 47923 | 1.32228 55265 | 1.55618 | .66788 | 177059 . 84248
.843156 | .64235 | 1.02818 | .70081 | 1.21717 78330 | 1.40490 | 89628 | 1.57012 ; 1. 04203
L7752 | 85054 | .94073 | . 91349 | 1. 10094 99540 | 1,25564 | 1.00870 | 1.39852 | 1.22354
70182 | 1,06355 | .84050 | 1.12479 | .07579 | 1.20086 | 1.10454 | 1.20230 | 1.22354 | 1.30852
. 60094 | 1. 28034 72647 | 1,.34502 | . 1. 41206 . 94472 1 1.49031 | 1.04203 1. 57912
. 49889 | 1. 54358 591096 | 1.50030 | .68088 | 1.64546 | .76467 | 1.70870 | .84246 | 1.77950
.35303 | 1.8635 41706 | 1.80608 | .47970 | 1.93612 | .53791 | 1, 98061 50178 | 2.03027
. 00000 | 2, 62205 2. 62205 2. 62205 | . 00000 | 2, 62205 2. 62205,
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Entire sphere in a rectangle, poles at the middle points of the long sides

. ' Longitude 0° | Longitude 10° | Longitude 20° | Longitude 30° | Longitude 40°
Latitude . .

z v T y z y I y z v
0.8245 | 1.6063 | 0.8245 | 1.2887 | 0.8245 | 1.0598 | 0.8245 | 0.9084 | 0. 8245
{1 I 1.4596 | .4300 | 1.2181 | .5852 | 1.0334 | .6552 8931 . 6937
0 12182 | .2442 | 1.0024 | .4002 | .9647 | .5006 | .8499 L5729
0 1. 0241 L1818 1 .0564 | 2057 | .8730 [ .3806 | .7885 . 4675
0 . 8642 1161 . 8261 L2209 | L7709 | .3084 | .7114 . 3786
0 L7264 | .0864 | .7037 | .1879 | .6686 | .2405 | .6309 . 3082
0 L5952 | 0646 | .5833 1 .1267 | .5611| .1847 | .5325 . 2370
0 . 4673 L0466 | . 4588 | L0921 | .4451 ( .1356 | . 4287 . 1764
0 L3188 | .0208 | .31427 .0389 | .3067 | .0874 | .2005| 1149

Longitude 350° | Longitude 60° | Longitude 70° | Longitude 80° | Longitude 90°
Latitude

L5863 | .4770 | .5264 | 5111 .4692 . .8381 | .4147 . 5598

3224 |
2686 1647 2524 1862 | . 2330 2077 2139 2258
0000 0000 | .0000 | .0000 0000 0000

Longitude 110° | Longitude 120° | Longitude 130° | Longitude 140°
Latitude

0. 8248 0.%2& 0.8245 | 0.2868 | 0.8245 | 0.1870 | 0.8245

7685 715 | (2885 .7738 | .1861 | .7756
7116 | .2837 | [7175) 2328 | .7221| .1838 | 7287
6520 | .2788 | .6615| .2267 | .€688 | .1796 | .6736
5010 | .2647 | 6022 | .2183 | .6110| .1737 | .6178
56| .2498 | .5382 | .2083 | .6481| .1630 | .5563
4510 | . 2978 (1888 | 4760 | 1505 | 4861

1960 | (3700 .1035] .3017 | .1308 | .4012
2504 | L1465 | .2687 | 12 0088 | 2873

Longitude 1560° | Longitude 160° | Longitude 170° | Longitude 180°

Latitude
z v z v T |y z v

0.0920 | 0.8245 | 0.0458 ' 0.8245 0| o825
L0016 L7778 | 0457 | L7784 0 .7785
.0008 | .7301 | .0451 @ .7312 ol .7315
.0886 | .6801 | .0442 ' .6817 0 .68
.0856 | .6283 | .0427 .6284 ol .6200
L0813 | .5688 | .0405 5092 6] .5700
L0751 1 .497B | .0374 . 5006 0 .5018
0654 | .4135 | 0326 .4185 0| .4175
. 0498 L2084 . 0249 . 3012 0 . 3021

0000 | .0000 | .0000 . 0000 0/ .0000

28183—25t——9
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Entire sphere in an ellipse

Longitude 30°

Longitude 40°

Longitude 0° | Longitude 10° | Longitude 20°
Latitude 7
z y z ¥ z v T v z v
0.7599 | 0.0000 | 0.6601 | 0.0000 | 0.5704 | 0.0000
L74861 L1108 | .6508 | .0881 ! 5732 .0732
. 7040 2100 | .6243 | .1710 | .38545 . 1441
64641 . . 5844 2488 5203 2108
5785 | .35874 | 5319 3102 4870 2736
L5075 | L4008 | .4745| .3664 | 4426 . 3283
L4310 | . 4545 | 4083 4187 | . 3831 . 3888
L3460 | .4941 7 .3316 7 .4639 | .3145 . 4363
L2418 | .5324 | .2333 | .51144 .2241 . 4918
L0000 | .5908 | .0000; .5909  .0000 . B
Longitude 50° Longitude 70° | Longitude 80° | Longitude 80°
Latitude ;
z v z v z v z v z 4
O eeemmeeaaaes 0.5115 | 0.0000 | 0.4525 | 0.0000 | 0.4002 | 0.0000 | 0.3527 | 0,0000 | 0.3092 | 0.0000
.5069 | 06291 .4492 | .0853 | .3976 | .0497 ' .3508 ) .0453 3078 . 0419
.4938 | . 1247 4391 1104 | .3001 | .0996 34501 .0012 | 3031 . 0844
L4722 1 1850 4228 1688 | .3772 | .1499 3348 1 . 1379 { 2050 . 1281
L4421 . 2430 3904 | .2199 | .3585 | .2012 3108 1862 2829 . 1739
.4033 | .2097 | .3670 2748 | .3331 | .2540| .2090| .2368 | .2650 . 2226
3560 ) .3562 | .3279 | .3305 | .2004 | .3093 | .2706 | .2013 | ,2421| 2761
L2055 | 41151 .2747 | .3889 | .2535 | .3695! .2313| .3524 | .2085 .3374
L2130 | .4734 | .2008 | .4564 | .1872| .441B6| .1719| .4268) .1572 . 4142
0000 | .5000 | .0000; .5009: .0000| .5900 | .0000 | .5000 . 5609
Longitude 100° | Longitude 110° | Longitude 120° | Longitude 130° | Longitude 140°
Latitude - e
z v z v z v z v z v
0.2688 | 0.0000 | 0.2300 | 0,0000 | 0.1948 | 0.0000 | 0.1602 | 0.0000 | 0.1269 | 0.0000
2876 | 0392 | .2200| 0371 | .1040 | .0354 ! .1506 ' .0341 | .1264)| 0380
.2640°1° 0703 1 2270} .0749| .1016| .0716°1 .1577 {- .0680 | .1250 . 0687
. 2574 1 .1204 | .2218 114) 18751 .1092 | .1545] .1062 | .1225 .1021
L2475 L1640 | . 2139 1545 .181271 .1493 1408 | . 1442 1191 . 1401
.2341 | .2108 | .2025| .2018| .1724 | .1082 | .1423 [ .1873| .1131 | 1824
.2141] .2633 | .1863 | .2526] .1588 | .2439| .1317 | .2367: .1049 . 2310
L1885 | .32481 . 1% L3135 .1390( .3044 | 1188 .2069 | 0020 . 2008
L1405 . 4032 .1 .3935{ .1067 | .3863 | .0893 | .3783| 0717 L8728
. 5900 | .0000| .5909) .0000 | .5909 | .0000; .5900 ] .0000 ) .5809
Longitude 150° | Longitude 160° | Longitude 170° | Longitude 180°
Latitude '
z v z v z v z v
0. 0.0626 | 0.0000 { 0.0312 | 0.0000 0] 0.0000
.0323 | ,0623 | .0817 | .0311| .0314 0| .0318
0656 |- .06817 | .0641 | .0308 0636 0 . 0638
0999 | 0606 | .0982 | .0302  .0073 0 0070
1371} .0587 | .1850 | .0204 | .1337 0 1324
1786 | .0561 | .1746| .0280 | .1745 0 1741
.2207 | 0628 | .2238 | .0260 | 2221 0 2218
L2883 ! .0462 | .2830 | .0231 | .2811 0 . 2808
.3685 | .0361| .3654 | .0180 | .3635 0 . 3620
L5909 | 0000 [ .5009 | .0000 | 5900 0| .5000




