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PREFACE. 

In this publication an attempt baa been made to gather 
into one volume all of the investigations that appl to the B system of polyconic projections. This was un ertaken 
mainly for the reason that no such treatise has ever 
been produced in the English language. No adequate 
treatment even of the ordinary, or American, {ply- 
conic projection has been given in any separate pu hca- 
tion. The work b Thomas Crai entitled "A Treatise on 

f J  Projections," publshed by the nited States Coast and 
Geodetic Survey, 1882, gives almost no treatment of the 

olyconic projection as used by the Coast and Geodetic 
gurvey, but merely makes reference to the various I D ~ " " ~ Y  
reports of the Superintendent of the Survey for orma- 
tion regarding it. 
The subject of projections as a whole seems to have been 

considerably neglected b authors who em lo the English 
language. A small wor E by Arthur R. k g s ,  published 
by the Cambridge University Press in 1912, is an excellent 
introduction to the general subject, and ives promise of 

matics. 
P some awakened interest in this branch o apphed mathe- 

In  the preparation of this publication the followin 
works were especiall . consulted: The most excellent wor Y ft 
by M. A. Tissot, M moire sur la Re resentation des Sur- 
faces e t  les Projections des Cartes 660 aphiques, Paris, 
1881 ; Trait6 des Projections des Cartes 860eaphiques, by 
A. Germain, Paris, 1866 (?) ; Lehrbuch der Landkartenpro- 
jektionen by Norbert Herz, Leipzi , 1885; Notes on Stere- 
ographic !€'rorection by Prof. W. 2 Rendrickson, U. S. N. 

It is hope d that the treatment of the various classes of 
polyconic projections may be found complete enough to 
serve all practical purposes, 
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GENERAL THEORY OF POLYCONIC PROJECTIONS. 

By OSOAR S. ADUS, 
Geodetic Computer, U. 8. Coat  and Geodctic Survcy. 

DETERMINATION OF ELLIPSOIDAL EXPRESSIONS. 

I n  the consideration of the pub'ect of map construction, d the initial question to be declde is the manner in which 
the meridians and parallels are to be represented in an or- 
derly way upon the lane surface of the map. This is done 
by the adoption o ! some mathematical ex ression that g determines a one-to-one relation between t e meridians 
and parallels and their corresponding qurves in the plane. 
In the consideration of this dotermmation, the earth can be 
looked upon either as a s ~ h e r e  or asan ellipsoid of revolution. 
When especial accurac 1s desired, the eccentricity must be 
takon into account. d t h e  formulas are determined for the 
ellipsoid, they can be reduced to those for the sphere by 
setting the expression for the eccentricity equal to zero. 
Since the elli soidal form is to be taken as the basis of 
most of the ? ollowing discussions, a pfeliminary determi- 
nation of the necessary lines will be given. 

In  figure 1 let EPS represent a quadrant of the enerat- 
ing ellrpse. P and P' are contiguous oink; ~8 is the 
normal a t  P and P'K the same a t  P'. f f the equation of 
the ellipse be given in the parametric form 

x-a cos + 
y = b sin +, 

a will represent the equatorial radius 07 the semimajor axis, 
and b the polar radius or semlmillor axls; + is the eccentric 
arigle as indicated in figure 1 If (p is the latitude of the 
point P, i t  will be seen that 

but 
tan 9.t- h. G' 

ax= -a  sin d$ 

dy r. b oos 9 d$. 
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Hence 
a tan cp- tan J/. -z 

We denote the eccentricity by r and define it by the 
equation 

aa - ba ba ea=-=l--  
aa aa ' 

hence 
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By substituting this value, we obtain 

tan $= tan cp. 

sin $== 
tan =- dl-,~ tan9 41_-~@-~ 

,/I + tan2+ dl +tan29 - ea tm2p- 4-i 
1 

E 
1 - COB p 

cos $ = dl + tana+ 41 + trtnzcp- ra tan2cp- 41 - ea sin2cp 

If we denote'the radius of curvature PI< of the meridian 

bz p,, we have from the general theory of plane curves 
t e relation pmdP = ds. 

But 

Also 

' 41 - e2 c0sa+ = 
JI=2 

dl - P sin2cp 
and 

as= 
a (1 - 8) dcp 

(1 - eZ sinacp)'/i ' 
Hence 

The normals a t  an two points on the same parallel circle 
intemect in a point f i' of the axis of rotation. If we pass 
a plane through these two normals and then let the nor- 
mals approach each other until the finally coincide, we 
obtain a vertical plane tangent to t K e given parallel and 

erpendicular to the meridian a t  the point of tangency. 
s h e  radius of curvature of a small a rom this direction is 
given by PK' because the normals of two contiguous 
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E oints of this arc intersect in K'. If we denote this radius 
y pn, we have 

x a cos yl - a 
Pn=COSp= F- (1 - t2 sinacp)'l¶ ' 

If the element of length of the meridian is denoted by dm, 
we obtain 

a(1- ea) d p  
am- (1 - 2 sin:p)"* ' 

This is an elliptic integral that it is not necessary to 
evaluate in this place, since we shall have occasion to 
employ it only in the differential form. 

DEVELOPMENT OF GENERAL FORMULAS FOR THE POLY- 
CONIC PROJECTIONS. 

Tissot defines a polyconic projection as one in which 
the parallels of latitude are represented by arcs of a non- 
concentrio system of circles, with the centers of these 
various circles lying u on a straight line. This line of 
centers is generally o ad' ed the central meridian; but it is 
not necessaril the central meridian of any given map 
and in cases d' oes not appear upon the map at  all. 

In the following discussion the latitude will be denoted 
by 9, and the longitude out from the central meridian 
will be denoted by A. 

In figure 2 let Q M be the arc of a circle that represents 

a 8 iven X on the arallel of latitude Q, with radius S& 
an center at  S. E et RM' be an arc of e ual X on the 
parallel of latitude Q f dp ,  with radius S f R  an 8 center a t  8'. 
0 is the point of intersection of the central meridian and 
the Equator. Let OS be denoted by s. Then since s is a 
decreasin function of (P, SS' is equal to -as. If the 
angle QS% is denoted by 8, wo have 

' SP = -as cos 8. 

S'P = - d8 sin 8. 

M'N-S' M' x L M'S'N. 
But 

L MfS'N= L0S'M'- LOS'N ' 
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since 
L O S f N =  LOSNi-  LS'NS. 

But 
ae 

LOSf Mf - 1 OSN=-dcp. acp 
S'M'=SfN=p+dp,  

at  the limit 
S f P  - a s s i n e  LSfNS=-j-- S N -  p+dp ' 

no. 2-DitIerential elements of8 polyconio projection. 
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Theref ore 

or, a t  the limit 

M'N- p (g)g + ds sin 0. 

since a t  the limit 
SIN= PN. 

But 
s i w - s / ~ =  -ap. 

By substituting this value and the value of SP, we obtain 

If we denote L M'MN by $, we have at the limit 

be as -+- sin 0 
~ ' N - ~ b g  dg , tan y$=---- - 
MN ds d p  - cos e- - 

dp dv 

If we denote the change in scale or the magnification 
along the meridian by k, and that along the parallel by 
k,, we .shall obtain the following expressions for these 
quan tifxss: 

M t  M= MN sec = (as cos 8 - d p )  sec #. 

The arc of the meridian on the earth that is represented 
by M' M is given by 

Hence we bavo 

(1 - e2 sin2g)"~ 
g m -  , a ( l - e 2 )  (2 cog 0-Q) dv seo +. 
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The arc of a parallel on the map between the meridians 
of longitude A and X + d A  is equal to 

p (g) dh, since p is constant. 

This arc upon the earth is equal to the expression 

a dX cos v, 
pncos y~ d A  =. (1 - e2 sin2v,)'la' 

Therefore 
k, = 

(1 - ca ~in2~)~lg -. ae 
a c o s p  bX 

The ratio of increase of area, denoted by K, is given by 

K =  k,k, sin (; - #) = kmkp cos +, 
-- 

p (1 - ez ~ i n ~ ~ ) ~  (-cos ds B -9) as 
K=a2 (I -.e2) cos p dp dp  a' 

CLASSIFICATION OF POLYCONIC PROJECTIONS. 

The general division of polyconic rojections is sub- 

mutually exclusive : 
i! divided into the following classes whic are not, however, 

(1) Rectangular polyconic projections. 
(2) Stereogra hic meridian and horizon projections. P (3) Conforma polyconic y o  jections. 
(4) Equal area or e uiva ent polyconic projections. 'f (5) Conventional o yconio projections. 
(6) Ordioary, or lmerican, polyconic projection. 

The general differential formulas developed above will 
now be applied to these classes in the order named. 

RECTANGULAR POLYCONIC PROJECTIONS. 

The condition that must be fulfilled if the meridians and 
Parallels of the ma are to intersect a t  right angles is 3 expressed analytica y by 

$=O. 

Since this condition requires, whatever the value of s and p,  
that 

tan $59 0, 
we must have 
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Let us introduce as a new variable a function of p  
denoted by u and defined by the equation 

But 
I as 1 ae --=----- 
p a p  sin 8  b p  

hence 
1 ae - 1 du 

- - - - - w e  

sin 0  b p  u d p  

By integrating this partial differential e uation with respect 
to p, we obtain the required relation. h i s  integration may 
be carried through in the following manner. 

e 

sin 0 b p  

. e cos - 
2 be dp J% 

. e e log xm --log cosZ= -log u+log r(h).* 
2 

Log T(h) is a function of X that is added since the integration 
is partial with respect to p. The function F(h) is as yet 
undetermined. 

e (XI 
log tan 2 =log - 

U 

*This function hns no oonnoction with the grimma funotion defined by the second 
Euler~an integral. 



Sinoe for h=O, 0 must also be zero, the function r(h) must 
vanish with A. This is the only condition that is required 
to ive a rectangular olyconic projection. 8 we choose an ar ! itrar functlon for r (h)  that van- 
ishes with X and another ar<itrary function of p for u and 
set 

0 r (h)  tan -=-j 
2 u 

then the net will always be rectangular provided that 

in which s is also an arbitrary function of (p, or provided 
that 

- 
with p arbitrary. 

Since in this case of the rectangular polyconic projec- 
tion $ = 0 and sec $ = 1, we have 

k, = 
p(1- ca sin2 v)'h rf (h) 

a cos p r(h) 
sin 8, 

since 

If we wish the parallel of latitude (p to lie on the developed 
base of the cone tangent to the earth at  latitude (p, we 
lnust have 

a cot u, 
P ' (1 - €3 (p)'lr' 

If, besides, the parallels are to be spaced along the central 
meridian in proportion to their true distances, we must 
also take . 

a cot q a c 1 - w :  + 

8-J -- 
o (1 - ea sina,p)la (1 - 6' sins-* 
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With these values we obtain 

ds a(1-t2) -- - a cosec2 cp a e2 cos2 cp 
dcp- (1 - e2 sin cp)'/%- (1 - 62 sin2 cp)llz+ (1 - €2 cp)" 

hence 

Theref ore 

by integration, we obtain 

log u = -log sin cp =log cosec cp, 

. or, passing to exponentials, 

u = cosec cp. 

But - 4  

tan 1 =a) =r(h) sin cp. 
2 26 

The length of an arc of the developed parallel is given by 

2a cot cp e 
2a cos cp e 

e 2 
- 

tan - ---- = 
2 pe= 2 e r(N 7. (1 - e2 sin2 cp)'/* tan 5 (1 - e2 sin2 cp)'li tan - 

On the equator, since cp = 0 and 0 = 0, we obtain for an arc 
from X = 0 to X the value 

equatorial arc = 2a J? (A). 

If we now add the condition that the e uatorial arcs are 
to be preserved in their true length, welave 
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This value gives 
8 X tan - =- sin (o. 

This gives the full determination of the projection. With 
these values wo shall now determine the magnification 
along the mcridians and parallels. 

and 

Substituting these values in the Merentid formulas on 
pages 12 and 13, we obtain 

sin 0 
kP =mP' 

The formula for k, shows that the value of 7cm don the 5 central meridian is e u d  to unity; that is, the sca e is 
maintained constant Qong this meridian as waa provided 
by the choice of the value for s. This means that the 
parallels are spaced along the central meridian in pro- 
portion to their distances apart upon the earth. Slnce 
this is true, with the known radii we can construct the 
parallel arcs either by drafting or by plotting by means of 
computed coordinates. The only things remaining to be 
determined are the points of intersection of the meridians 
with these parallels. 

In  order to determino these points, we have fbt 

e ah cos p . 
p tan -3 2 2 (1 - ea sina (p) '13 
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But the right-hand member of this equation is equal to 
onehalf the arc of the parallel of latitude (p from X =  0 to 
the value X. If then in figure 3 we lay off the distance MN 
on the tan ent to the parallel drawn from the point where 
i t  crosses t 8 e central meridian and take i t  equal in length 
to onehalf the arc of this parallel up to the iven lon itude 
A, the an le MOfl will be equal to one-hd of 8. $0 do- 
termine t % e point of intersection, from M as center with a 
radius N M  construct an arc intersecting the arallel at  MI. 

with the p. 
E The point M is then the intersection of t e meridian X 

This pro'ection has been much used by the English War 
Office for t h e construction of maps. 

Fro. 

y e  can easily determine the radius of curvature of the 
meridians in t h s  projection. In  figure 2 

since in this case cos #= 1. 

The angle between two successive radii of curvature is the 
angle between the tangents to the parallels of cp and q +ap 
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at  the points M and MI, respeEtively, since the projection 
.is rectan ular. This angle is evidently. equal to de. 

By di # erentiation wo obtain 

ode x 
sec5 -j- =z cos p dp, 

since X is a constant for a given meridian. 
Hence 

X cos p du, 
de = X2 1 -1- - sin2p 

4 

The radius of curvature of the meridian, denotcd by p,. 
is given in the form 

(as 
a p  X2 4 C o s 0 - ~ ) ( 1 . + ~ s i n 2 p )  

P " = T =  X cos p 

By ~ubstituting tho values of dB, dp, and cos 0 and redur. 
dp d~ 

ing, we find 
X2 X2 

a [I- e2 + (1 - e2Iq sin2 p + 3 cos2 p (1 - e2 sin2 
Ps = 

X cos p (1 - e2 sina (p)W2 

The magnification of area becomes 

E= 
cosec2 p r2 [l  + cos2 (p] - 1 - e2 sin2 p sin 8 

1-2 1-e2 

But 

and 

XZ 
1 - - sina p 

cos 0 = 
4 

1 + sin2 p 3- 

X sin p 
sin 8 = X2 1+-s inap . 

4 
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By substituting these values we obtain 

or, on reduction, 

this to unity, we shall find the e uation of a 

equation becomes 
1 there is no exaggeration o area. On 

which is satisfied by X=O, or by the equation 

The areas of all sections north of this curve are diminished 
and those lying south of i t  are increased in their represen- 
tation on the map. 

If we confine ourselves to the consideration of the sphere 
R may be expressed in the form 

The differential olement of area of ,the representation is 
given in the form 

2 2 

1 +t+;m.p 
dS = aa cos dp d ~ .  

(I +;sinzp)l 
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If the whole area of the sphere is represented on one con- 
tinuous map, one-fourth of the area of the representation 
will be given by integration of this expression from X = O  

-It- to X = T  and from cp=O to cp=- 
2' 

To obviate the use of the fractions, i t  is better to let X = 2y; 

y will then range from 0 to f and dX= 2 dy. 2 
The total area S is given by 

r l+y2+y2 cos2 cp 
s -8a21;  cos cp d p l  a (l+ya sin2 cp)= d~ 

+ cosecS p tan - sin cp . (2" 1 
s = 4 i a z L : [ -  cp + Z  Sosec 'p cot $7 

(1 + 2 sin 2cp) 

tan -1 (g sin cp )] dcp. 

S = 4a'([; cosec cp - cosec" tan - sin cp 2 

+('5+2) tan 
( >If 

The quantity in brackets has to bs evaluated for the lower 
limit, since it takes the form oo - m a t  this point. Let US 

write i t  in the form 

7r - sin cp - tan -' 2 
sina cp 

0 
which, takes the form - a t  the lower limit. 0 

sin cp - tan 

, c p ~ 0  sina cp 
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'IT 

- sin p 
- lim -- 16 
cpA0 2 sin cp cos cp 

Therefore, 

s = a2[ (4 + sa) t a r 1  2+2n']. 'IT 

This value is greater than the surface of the sphere in the 
ap roximate ratio of 8 : 5. 

!he length of the outer meridian for the representation 
of the sphere is given by four times the integral of a k ,  d p  

n' 
from = 0 to = with X = n' in the value of 8. 

For tho sphere k,= cpsec2 cp - cota Q cos 8, 
and for the outer meridian 

The length of the meridian is, therefore, given by 

. By means of a table of integrals we find that the value of 
this integral is given in the form . 

The length of a reat circle a t  the outer limit of the map B i8 increased in t e ratio 

(4 + r2)% - I : 1 or about 2.72 : 1. 
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STEREOGRAPHIC MERIDIAN PROJECTION. 

In the discussion of the stereographic meridian and 
horizon projection, i t  is probably best to consider first the 
s here and later to indicate the manner in which the 
e f lipsoidal sha e can be taken into account. To employ 
the diierentia P formulas given before, we need only to 
set E equal to zero. 

Any stereographic projection is a perspective projection 
of the sphere, either upon a tangent plane or u on a dia- P metral lane, with the center of the projection ying upon 
the suJace of tho sphere in such a way that the diameter 
through the point of projection is perpendicular to the 

FIG. 5.-Radius from contor on steroographIo projeotion. 

plane u on which the rojection is made. We shall make 
use of t % e diametral p P ane since there is only a difference 
of scale between that and tho tangent lane. 

I n  figure 5 let tPle circle Q M R P  t e a plane section 
of the sphere determined by the diameter PQ and the 
projecting line PM. P is the point of projection, O R  is 
the trace of the diametral plane upon wllich the map is to 
be constructed, and the oint Q pro'ected into 0 forms 1 the center of the map. Eet the ang e QOM be denoted 

bf E ; then the arc Q M  is the measure of p. All points 
o t e sphere a t  the arc distance from Q will lie upon a 7 circle the plane of which is paralle to the plane OR. The 
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lines that project the oints of this circle will all lie upon 
a right oircular cone t B a t  will cut the lane OR in a cirole 
the radius of which will be equal to o&. O P  is equal to a, 

and the angle OPN is equal to $ 9  

Hence 
O N a p = a  tan $. 

If we denote the angle between p and the X axis in the 
mapping plane by w, we have 

a sin p cas w 
x = p  cos w=a tan $009 w =  1+cos p 

a sin p sin w 
y=p sin w=a tan f sin w -  1 +cos p 

Fro. 6.-T~nsfonnstion tdsngle for meridian sterwgsphic projection. 

If the point of rojection lies on the Equator as it does 
in the stereograp !I ic meridian pro ection, the values of 
the functions of yp and w must be d etermined in terms of 
(P and X. 

* 

In figure 6, let WQV be the E uator and T the pole 
and let T& project into the centra 9 meridan of the map. 
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P is the point that we were considering in the previous 
figure. 

P Q - p  

From the trigonometry of the spherical triangle we 
have the relations 

cos p=cos X cos cp 

sin p sin o =sin cp 

sin p cos w =sin X cos p. 

If these values are substituted in the equations for x 
and y, we obtain 

a sin X cos 9 
$2 +cos X cos cp 

a sin +e 
y=1 +cos X cos +e* 

From these equations, by solving for sin X and cos X, 
there result 

sin x=: tan q 
Y 
a sin ~p-y. 

00s X =  
Y cos 9 

Hence 
x3 (a sin ~p-y)~  - tana(p+ 
ya ya cOsa(p "1, 

or, by reduction, 

a?+ya-2ag coseo p= -as 

or, as usually written, 

x2 + (y - a cosec p)= =.a2co tZcp. 
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This equation shows that the parallels are circles, and that 
the parallel of latitude (p has the radius a cot p, and that 
the center lies at  the point x = 0, y = a cosec cp. The paral- 
lels are therefore circles, nonconcentric, but having their 
centers on the line x= 0. The projection is thus seen to 
be a pol conic rojection in the sense of Tissot's definition. 

By sofving t%e original equations for sin p and cos (p we 
find 

y sin X 
sin V =  a sin A-x cos h 

x cos cp= a sin X-x cos X' 

By squaring and adding, the equation of the meridians is 
.obtained. 

ya sidX x2 
(a sin h - x cos A)'+ (a sin X - & cos A)'" 

or, on reduction, 

xa+ya+2ax cot X=aa 

or, as usually written, 

(x+a cot X)a+y2=aa cosecaX. 

The meridians are thus seen to be circles also; the circle for 
the longitude x has the radius a cosec A, and the center lies 
at the point x = a cot A, y = 0. 

I n  this projection we have, therefore, 

p=a cot v 
. s=a cosec cp 

x sin X sin cp . 
sin 8 - - =  

p 1 + cos X cos cp 

be -= sin X 
bcp 1 + cos A cos cp 

as -- -a cot cp cosec q 
dv - 

be ds asinhcotcp as inXcotp  
p- +- sin 8-  - = 0. acp l+cos Xcos $9 l+cos X cos cp 
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Therefore 
tan $ = 0, or 9 = 0, and the projection belongs in the class 

of the rectangular polyconic pro'ections. 
The equations for the magdoation along the parallels 

and along the meridians, respectively, are for the sphere 

But 

($ cos e-e) 
7c,= drp a cos 9 

- cos X +cos q' 
'=l +cos h cos rp 

and 
e 

-=I 
sin rp 

bh 1 + cos h cos q~' 

By substituting these values in the formulas for l&, and k, 
we obtain 

-a cot rp cosec q (cos X + cos rp) 
1 + cos X cos q + a  cosec2p 

k& = 
a 

1 = -------- 
1 +cog h cos cp 

a cot rp k, = ----- sin co - 1 
a c o s q ' 1 f c o s X c o s c p - l f c o s ~ c o s p '  

The projection is therefore conformal, since the meridians 
and parallels form an orthogonal net and the magnifica- 
tion along the meridians and along the parallels is the same. 
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ma. 7.--ljltereographlo meridian projection of a hemisphere. 
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DERIVATION OF STEREOGRAPHIC MERIDIAN PROJECTION 
BY FUNCTIONS OF A COMPLEX VARLABLE.a 

The element of length upon the sphere is given in tho 
form 

&S2 = a2 (dp2 + dX2 cos2p) = az cos2p 

If we set 
da=da, 

cos q? 
dS becomes 

dS2 = a2 cos2 p (da2 + dX2). 

Any conformal rojeption may then be ex ressed as a 
function either o u + z X or of a - i X, in whic i denotes as 
usual JX 

P f 

c r = +  logesin (1 -+- g) -log,cos q+- (" 3 
u=lop. tan 

a See General Theorv of the Lambcrt Conformal Conio Projectfon, Special Publication 
No. 63, U. 8. Coast and GcodetioBurvey. 
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or, on passing to exponentials, 

eu+e-u= tan (z+o+ cot(:+;) 

sin2 (i + z )  + cos2 ( z  + 9 
- - 

sin (i+f)cos(i+;) 

=I 
2 2 -  2 -- 

2 sin (2  + g) cos (,z + g) =sin (: + ip) cos cp9 

cosh a = sec q~ 

e+u - e-u 

2 =sinh a 

sinh u = dcosha u - 1 

sinh a = 4sec2cp - 1 = tall cp. 

sinh i h  = i sin h. 

cosh ih = cos A. 
If W e  take 

a; re+% (u-iX) - e-% ("-'A) 

x+ iy = ,+H ( u - ~ x )  + ,-n (--i;h) 
I 

We obhin the stereographic meridian projection. 
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This can also be written in the form 

x + i y = a i  tanh - (03 
a-iX 

a i  sinh (-2-) 
x + i y =  

cosh (*) 
a - i X  a+iX 

a i  sinh (T) cosh (T) 
- - 

a-iX a+iX 
cosh (T) cosh (--Z-) 

- - a i  (sin h a - sinh 41) 
cosh a + cosh i X  

' ai (sinh a - i sin A) - - 
cash a + cos X 

n sin X + ai sinh a 
cosh a + cos X 

- - a sin A + a i  tan v, 
sec cp + cos A 

- - a sin X cos cpf a i  sin v, 
1 + cos X cos cp .* 

By equating the real parts and the imaginary parts this 
becomes 

a sin X cos p 
x =  1 +cos X cos $0 

a sin p 
Y=1+cos xcos $9' 

We thus b this method arrive. at the same values that 
were obtaine $ before by expressing analy'tically the results 
of the direct projection. The fact that the projection can 
be derived by the use of functions of a complex variable 
establishes the conformality of the projection." 

*See Coast and Gccdctlo Survey Special Publication No. 53,TheGencrnlTheory of the 
Lsmbert Conformal Conic Projection. 
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In order to take into consideration the ellipsoidal shape 
ef the earth, we proceed in the followinfi. way. If we 
dcnote the element of length upon the e lpsold by dZ, 
we have 

19 CEl.98 In th' 

dQ ta cos Q dp 
E=-- 

cos Q 1 - t2 sinzp 

t5; dp - ~ ( L C O S Q ~ Q  s c o ~ p d p  
sin (z + cp) 2 1 - e s i n ~ + l + e s i n p  

[cos2 (: + ;) + sin2 ($ + E)] dp 
= 

2 sin (f + 5)  cos (i + $) 
e e cos p a p  e cos pdq  

-2(1-e sin c p i l + e  sin p ) 
COB (; + 5 )  dp 

- 
sin (:+ ;) +S sin (i + ;) dp 

cos (; +;) 2 

t J e  cos rdp-tJr  cos -- 
2 l -es inp  2 l + e s i G  

o =loge sin (:+$)-log. cos (:+$) +$ log. (1 - t sin p) 

e - - log, (1 + e sin (p) 2 

u c loge [tan ( E  4 + f) 2 . (1 - sin 3$] 
1 + e  sin cp 

-€sin Q ;, eu = tan (I + g) (Imn7) 
1 12948"-1- 
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We can now map the ellipsoid conformally upon the 
sphere by the relations 

h'=h 
and 

tan (:+$)=tan (:+;) (ii: 2: ;)$- 

The latitudes cp' are computed for the parallels that we 
may wish to map; that is, for lo0, 20°, etc., or for what- 
ever interval we may choose. This sphere may then be 
conformall;p mapped upon the plane, the values of cp' bein 
employed m the computation. Each step is conformat 
hence the plane map ~s a conformal representation of the 
elli said. 

$he magnification upon the sphere is given by 

dS 
a= a cos cp [ (1-d)"p2 +dh2-J 

(1 - e2 sinzv)% cos2p (1 - d ~ i n ~ c p ) ~  

- - cos cp' (1 - ea sin2cp)x 
cos $9 

The total magnification is equal to the product of the 
valuos obtainod for the ellipsoid upon the sphore and for 
the sphere u on the plane. The total magnification, 
which we shal P denote by k without subscript, since it is 
the same a t  any point in all directions, is given in the form 

cos cp' (1 - e2 sin2cp)'4 k= cos cp (1 + cos h cos 'cp') ' 

CONSTRUCTION OF STEREOGRAPHIC MERIDIAN PROJECTION. 

It is a very e p y  matter to construct a stereographic 
meridian projection graphically. Divide the meridian 
circle into equal arcs a t  whatever interval i t  is desired 
to construct the meridians and parallels. I n  fi ure 8 the 
divisions are made at  30' intervals. QR' = 30° ; t % e tangent 

at R' i: ives the radius S'R' and the center St for the 
paralle of 30"; a similar arc with center distance to the 
south epud to OS' and with radius equal to S'R' gives 
the prolection of the parallel of 30' S. The tangent a t  
R or SR gives the radius for 60" of latitude, and the 
same arc transferred to the south &C/R the projeotion 
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for 60' S. The cedter distance 0 T= SR with radius TP' = 
TP gives the projection of meridian 60' west and OT' 
gives 60° east; also the center distance OU=S'B' per- 
mits the construction of 30" W. and 0 U' = S'R' gives tho 
meridian of 30' E. 

Wa. 8.-Constmction of storcogrephic meridian projection. 

Probably the most satisfactory wa to construct the 
Projection is by' mcans of a compute 6* tablo of radii and 
of coordinates of the canter. The centers of the parallels 
all lie on the Y =is and those of the meridians lie on the X 
@&. The rgdii and tho distances of tho centers of the 
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parallels become, reshectively, the distances of the centers 
and the radii of the meridians. In the table p,  and p, 
denote, respectively, the radii of the meridians and of the 
parallels ; 8, and a,, the distances of the centers; 6, and 
6 , the distances of the intersections of the meridians with 
tpe Equator and of the parallels with the central meridian. 
The table, of course, applies to the sphere and not to the 
elli soid. The values are given in terms of the earth's 
raJu.4, or they are the values for a sphere of unit radius. 

TABLE FOR THE STEREOGRAPHIC MERIDIAN PROJECTION. 

[In units of tho e:rrlhJs radius.] 

STEREOGRAPHIC HORIZON PRO JECTXON. 

In a stereographic projection the center of tho map may 
lio a t  an point upon the earth's surface. We have just 1 treated t e case in which the center lay upon the equator. 
If the center is to be in latitude a, we stnrt with the same 
equation in terms of the arc distance from the center and 
the azimuth reckoned from the great circle perpendicular 
to the meridian through the center. 

a sin p cos w x=-------- 
1 +cos p 

a sin p sin w 
Y= l+cosp  ' 



TREORY O F  POLYCONIO PROJECTIONS. 37 

hfi$ 
re 9 let Tbe the pole, Q the center of the projection, 

and et P be any given point. 

ha. 9.-ksnsforrnatioll trinuglc for storcographic horizon projection. 

prom tho trigonometry of tho spherical triangle we have 

cos p=sin a sin cp+cos a cos X cos cp 

sin 2 -sin X - -- or sin p cos w =sin X cos cp; 
cos cp coso' 

sin p sin o=cos ci sin cp-sin a cos X cos cp. 
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On the substitution of these values we obtain as defini- 
tions of the coordinates of the projection 

a sin X cos u, 
x= 1 +sin a sin p+cos a cos X cos cp 

a(cos a sin cp - sin a cos X cos cp)  
Y=l+s in  as in  u,+cos a cos x cos cp' 

From these equations, by solving for sin u, and cos (p, w0 
find 

x sin a cos X+y sin X 
S"cp=acos asinX-xcosX-ysin as in^ 

x cos cp 
COS (p = a cos a sin X-x cos X - y  sin a sinh' 

By squaring and adding there results 

(xsin a cosX+ysinX)a+x2~0s2 a 

=(acosasinX-xcosh-ysin a sin 

By erforming the operations and collecting, we obtain 
finaiy 

Z +y2 + 2az sec a! cot X + 2ay tan a = a2, 

which may also be written 

(x+a sec a! cot X)2+ (y +a tan a)2=a2 sec2 a cosec2 X. 

This is the equation of the meridians and they are thus 
seen to be circles. The meridian of iongitude h has the 
radius 

pm -a  seo a cosec X, with its center a t  the point, 

x= -asec a cot X, 

y =  -a  tan a. 

The centers, therefore, all lie on the line 

y- - a  tan a. 
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By solving the original equations for sin X and cos X we 
get 

x (sin a + sin cp) 
sin A = a sin a cos cp+y cos a cos cp 

a cos a sin cp- y- y sin a sin co 
COSA= a s i n a ~ o s c p + ~ c o s a c o s ~ ~ '  

By squaring and adding we obtain 

x3(sin a +sin cp)Z + (a cos a sin cp - y - y sin a sin cp)= = 

cosa cp(a sin a -t- Y cos a)a, 

or, on developing and arranging, 

xa(sin a + sin cp)2 + y2 (sin a + sin (p)2 - 2ay cos a (ski a.f sin (p)  

.= a2 (sina a cosa cp - cos2 a sina cp) 

or, finally, 

a2 cosa cp 

+ (Y - sina:Tsk cpy = (sin a + sin c p ) ~ .  

The parallels are, therefore, circles with their centers all 
lying on the Y axis. The parallel of latitude 9 has tho 
rt~dlus 

a cos cp 
Pp = sin a + +in cp' 

with its center at  tho point 

a cos'cr 
'lJ= -. sin a -t- sin cp 

Tho pardlel of latitude -a is evidently a straight line, 
since the radius becomes infinits for this d u e ,  as does 
U ~ J O  the distance of tho center from the center of the 
Pro'ection. 

'dhe projection is seen to bo a polyconio projection in 
accordance with the definition of %sot. 
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For the parallels we have 

a cos p 
'=sin a+sin p 

a cos a S= sin a + sin p 

x . sin X (sin a +sin p) 
sin B = - =  

p 1+sina!sin~+cosa!cosXcoscp 

s-?j-cos Xfcos a cos cp+sin a cosX sin p 
C 0 3  B=-- 

P l+s inas inp+cosa !  cosX cosp ' 

s in this case is not reckoned from the Equator; but, 
since we need only the derivative of s with res ect to p, P it will answer the purpose to leave it as it .is. n fact, s 
could be reckoned from any k e d  point m the line of 
centers and in this case it IS reckoned from the origin 
which lies a t  latitude a. 

be -- cos a sin X 
bp- l f s in  a sin p+cos a cos cos p 

be -= sin a + sin cp 

bX l+sinasincp+cosacosX cosp 

as  a cos a cos cp 
&= - (sin a+sin cp)2 

dp a (1 +sin a sin p) . 
6 = - (sin a i- sin cp)2 

Thoso values may now be substituted in the general dif- 
ferential formulas and by that means we obtain the follow- 
ing results: 

gp+d? sin B= 
a cos a sin X cos p 

(sin a +sin c p )  (1 -t- sin a! sin p + cos a cos x cos p) 

- a cos a sin X cos cp 

(sinafsin p) (l+sin a! sin p+cos a cos X cos p)=O* 

Therefore 
tan $=O 

or 
h=n 
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The parallels and meridians form, then, an orthogonal net 
of circles. 

= -  COS a COS cp k,,, = a cos rC, (sin a + sin cp)a 
X 

- 
1 +sin a sin cpfcos a cos X cos p 

P -- 
P-a cos cp 

- - 1 sin a! + sin p 

sinai-sincp l+sinasinp+cosaoosXcoscp 

I - - 
1 $sin a sin q+cos cr cos x cos cp' 

11~. 10.-Storoogmphio horizon projootion of a homisphore-horizon of Paris. 
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The rojection is thus shown to be conformal, since the 
meri $ 'ans and parallels are orthogonal and the magnificrlr 
tion along both is the same. We might have taken this 
for granted since we found that the stereographic meridian 
projection was conformal and the nature of the projec- 
tion is not changed by moving the polnt of projection to 
a different point upon the sphere. 

In taking account of the spheroid we proceed as in the 
case of the stereographic meridian rojection. The magni- 1 fication at  a point (the same in all rections) would then be 

cos (1 - e2 ~ i n ~ ~ ) " 2  
k=cos (1 +$in a' sin r' +cos a' cos h cos r')' 

DERIVATION O F  STEREOGRAPHIC HORIZON PROJECTION 
BY FUNCTIONS O F  A COMPLEX VARIABLE. 

The rejection, being a conformal pro'ection, can be ex- 

of a +ih or of a-ih. Let us take 
i presse%in terms of a function of a comp ex variable either 

a-ih-p 
aisinh( ) 

x +iy = 
cosh ('-ttB) 

-ih-8 a+iX+P 
- 

ai sinh ) cash ( ) 
- 

a-ih+P a+ih+B 
cosh ( ) cash ( ) 

= ai [sinh a - sinh (ih + j3)] 
cosh (a + 8 )  + cosh i h  

a.i[sinh - a - sinh i h  cosh B - cosh i h  sinh 81 - . . 
cosh a cosh /3 + sinh a sinh p + cosh zh 

But 
cosh a=sec p 

sinh a = tan y, 

sinh i h  = i sin X 

cosh i X  = cos A. 
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By substituting these values we obtain 

ai (tan cp - i sin cosh P - cos A sinh p)  
xfiy= seccpmshP+tanpsinhP+cosh 

- - a sin X cosh j3 + ai (tan cp- cos A sinh 0) 
seccpcoshp+tancpsinh~+cosA 

By equating the real parts and the imaginary parts, we get 

a sin X cosh B 
x =  sec cp cosh 0 + tan cp sinh P + cos h 

a (tan cp - cos X sinh p)  
Y=sec cp cosh p + tan-p sinh P + cos A' 

Let 
cosh P = sec a, . 

then 
sinh P = tan a. 

Substituting these values we obtain 

a sec a sin X 
2 =  sec a sec cp + tan a tan cp + cos A 

a(tan p- tan a cos A) -- 
y-sec aseccpftan a tan cp+cosX' 

On multiplying both numerator and denominator by cos a 
C0s p, we dorive 

a sin A cos cp 
x =  1 +sin a sin cp+cos a cos h cos cp 

a(cos a sin cp 7 sin a cos X cos cp) -- -- 
=T-t- sin a sin cp + cos a cos h cos cp' 

We thus arrive a t  the same equations that were ob- 
tained before. 

PROOF THAT CIRCLES PRO CT INTO CIRCLES IN STEREO- 
GRAPHIC g ROJECTIONS. 

It can be proved in a general way that, in any stereo- 
graphic projection, any circle upon the sphere is projected 
mto a circle upon the plane of tho map. Straight lines 
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must, of course, be considered as circles of infinite radii, 
with centers a t  infinity. Any circle either great or small 
which passes throu h the polnt of projection will be pro- f jected Into a straig t line, since all of the projecting lines 
will lie in the plane of the circle and will cut the mapping 
plane in a straight line, which is formed by the intersection 
of the plane of the circle with the mapping plane. 

Let us now take any other circle upon the sphere. Make 
a great-circle section of the sphere containing the point of 
prosection and the ole of the given circle. This great 1 P circ e necessarily wil also pass through the point that pro- 
jects into the center of the map, i. e., the point antipodal to 

no. 11.-Proof that cir010~ project into c;rolos on stereograpl~o pmjections. 

the point of projection. After this is done turn the reat 
circle section in to the lane of the page. The plane o this i f 
section will cvidcntly e perpendicular to the plane of the 
given circle, since the plane of any great circle containing 
the pole of the given c~rcle would partake of this property. 

In  figure 11 lot 0 be the oint of projection, IiL the trace 
of the mapping lane, ~8 the trace of the plane of tho 
circle, and let A g e the point that pro ects into the center 
of the map. The lines that project t I, e circle under con- 
sideration will evidently form an oblique cone that has the 
given circle as a circular section. An plane parallel to K the plane of this circle will also cut t e cone in a circle. 
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w e  shall now prove analytically that any such oblique cone 
that has one system of circular sections has also another 
8 stem of circular sections. If we have a cone passing 
t&ough the circle z = 0, x2 + y2 =a2, it will be a perfectly 
general one if we take the apex a t  the g?int.x=f, y.=O, - h in the plane y = 0. A line through t 1s polnt ~s given 
by the equations 

X-f=a(~-h)  

This line intersects the plane z = 0 in the point the coordi- 
nates of which are 

x,=f - a7~ 

Since this point is to lie on the circle, we have 

But 

BY substituting these values we obtain 

(fz- I ~ X ) ~  + 7b2y2 = a2(z- h)a. 

This is the equation of a cone bearing the same relation to 
the lane y = 0 that the projecting cone bears 40 tl~e~plane 
Of t t. e great circle. This equation may be wrltten in the 
form 

Bence, if the conical surface is cut by either of the planes, 

2f7u + (a2 -? + 7b2)z - 27& = 6, 

the points of intersection will satisfy an equation of the 
f 0rm 
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for all values of y and 6, and the sections will therefore be 
plane sections of a sphere. Therefore, there are two series 
of circular sections made by two systems of parallel planes, 
and both systems are parallel to the lane y = 0. 

The trace of the cone upon the p ane y = 0 has for its 
equation : 

P 
( f ~ - h x ) ~ - a ~ ( z - h ) ~ = O .  

This is, therefore, the equation of the two generating lines 
which lie in that plane.. Tne equation of the two planes 
in opposite systems giving the circular sections is 

By adding these two equations we get an equation of the 
form 

x2+z2+A'.x+B'y+C'=0. 

This shows that tho four points in which the two enerating 
lines in the plane y = 0 meet tho lanes forming t e circular HP R 
sections lie u on a circle. ence the first system of 

lanes makes t 1 e same angle with the one of the generating Eries that the second system makes with the other. We 
fulfills the conditions 

sections. The mapping 
plane of the great 

the first condition. The 
further condition is that i t  must make the same angle with 
one of the elements of the cone lying in the plane of the 
great circle that the plano of the circle on the sphere makes 
with the other element in this plane. In figure 11 

1 1 1 L CBO=% arc O L A C = ~ ( ~ ~ C  OI;B +arc AC) =;-kHarc AC 

1 1 
LXFO=2 (arc 0X+arc   LAC)=^+^ arc AC, 

Therofore 
L CBO = L KFO 

and 
LBCO= LFGO. 

It is thus seen that the points B, 0, B', and O lie upon rt 
circle and all the conditions are fulfilled for a circular 
section. 

Construct tho tan ents BD and CD, draw BM parallel 
to CD, and draw E &r parallel to BD. 
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Then 
DC: EM=DO : EO-DB: EH, 

but 
DC-DB. 

Therefore 
EM = EH, 

1 
= n - - (arc OLACB K- arc BX) 2 

3 1 7T 1 
-r-*t+n arc B K  =-+-arc BK. 4 2 

Therefore 
EQH= L EBQ 

and 
EH- EG. 

In a similar way it  can be proved that 

EM = EP'. 
But, since 

ER= EM, 

EG - EF, 

therefore the pr~jection of D is the center of the circle that 
maps the given circle. D is, of course, the apex of the cone 
tan ent to the sphere along the given circle. d s toreographio horizon projection can bo constructed 

computation of the radii and centers or directly 
ic construction. Tho formulas for computation 

p, = a sec a cosec X 
xm= -asec a cot X 
ym= -a tan a 
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and for the pardels 

a cos (o - a cos (0 

 sin a +sin (0- f f + ~  2 sin ( T )  cos c+) 
a cos a a GOS a 

Y~"sin a + ~ i n  p= 2 sin c9) cos (7). 
The forms last given should be used for logarithmic com- 
putation. 

CONSTRUCTION OF STEREOGRAPHIC HORIZON PROJECTION. 

The method of graphical construction for the parallels 
is as follows: Let us su pose that we wish to ccnstruct a 
projection for u = 30". % figure 12 the point of projection 
1s supposed to be in the perpendicular to the plane of the 
papor a t  E. Let the plane of the central meridian (that 
throu h the oint of projection) cut the mapping plane or 
the p!?ane o&he paper in the line YY'. This central 
meridian section is then turned upon Y Y' as an axis until 
i t  fallsill the lane of the paper. The eye will then be at  
0, and A will % e the point that pro'ects into the center of 
the map. Construct tho angle A ~ ' Q  equal to 30"; then 
QQ' is the traco of the equitorial plane upon the plane of 
the central meridian. The diameter PPf perpendicular to 
QQf is the axis of the earth turned with the plane of the 
central meridian. Y Y' is the projection of the central 
meridian, since the plane was turned upon this line as an 
axis; hence, if any point is projected u on this line the 
corresponding point upon the map wi lf' be determined. 
P and P' are the poles; draw O P  and OP'. Then p is the 
Nortli Pole of the map and p' is the South Pole of the 
same. 

To determine the circle that forms the projection of any 
parallel, lay off the arc CQ e ual to tho latitude; in tho 
figure CQ = 45'. Construct d B perpendicular to PPf and 
construct tan ents at  B and C meeting in the axis pro- 
duced at  D. % raw OB, OC, and OD; then B f  and c f  are 
oints on the circle, and D' is the center of the same. k ith D' as center and with radius D'Bf or D'c' construct 

the circle, and the circle so drawn in the figure is the 
projection of the parallel of 45" of latitude. 0Q deter- 
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es the point on the Equator, and O F  drawn arallel 
fl locates t o center at  F; with the radius 4 draw 

he arc OqA; this arc is the projection of the Equator. 

fro. 12.4onstruction of parnllols on stetoographio horfzon projection. 

In a similar manner the projections of any desired p?r!aralleh 
be drawn. I t  is evident that any two of the pomts B', c ' 

8 and D' will be sufficient to determine the circle, since 
11294~~--19-4 
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we know that the center lies upon YY:.  The circle 
which represents the parallel of latitude - a has an inhit6 
radius wlth center at  infinity on the line Y Y'; it is there: 
fore a straight line pe endicular to Y Y'. The lowei 
point at  whch the para el crosses the central meridian id 
given by 

3 
I a(cosa-coscp) -. 

Yp-4 '  Sina+Sin 'p 

This takes the form 010 for 'p= -a, and the limit must 
be determined for this point. 

a(cos a-cos cp)- asin'p - lim -- !im sinai-sinp -a tan a, 
'P= -a cos p 

or, otherwise, 

a (cos a! - cos lo) 1 
sin a +sin p -a  tan 2 (P-4 ,  , 

which for cp = - a! becomes -a tan a. 
The straight line parallel, therefore, conicides with the: 
line of centers for the meridians; and henca must be the: 

e endicular bisector of pp'. I t  is the line RR' dram; 
% X e  figure 

In figure i 3  the details of the construction of the merid., 
ians arg given. p and p' are determined in the same wa$ 
as in figure 12. To determine the coordinates of p and: 
of p', we set s=O in the equation of the meridian and: 
solve for y. We thus find that 

y = -a tan af asec a; 
therefore 

E p =  -a tan a+asec  a 
and 

Ep' = -a tan a-a  sec a. 

The middle point of ppf is given by 

1 +Ep + Ep')  = -a tan a. 

t 
The perpendicular bisector of pp' is, of course, the line ofj 
centers of the meridians, since they must all pass through 
the points y and p' and they thus have p' as a commoflt 
chord. T h ~ s  line of centers is the line I! 12' in the figure11 
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The length of F is equal to the length of Ep' mfnus the 
length of EF; ience the length of Fpl=o sec a. The 
center for the arc that is the rejection of the meridian 
of longitude X lies on the line b' a t  the point zm = -a  
8ec a cot A. With p' as a center and with any convenient 
radius construct a circle; divide this circumference into 

I 

equal arcs for whatever interval it is desired. to constr!ict 
the meridians, the initial point of the subdlvlsion bemg 
the oint where this circle Intersects the central meridian. h tge figure we have 

but 
BF=Fpf tan L Bp'F; 

Fpl = a  sec a. 
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r 
I f  then the angle Bp' F= 2 - X, we shall have 

BF- a sec CY cot X. 

The arc GIir must be taken as the complement of the 
lon itude, for which we wish to construct the meridian. 
G f i s  30'; therefore C is the center of the meridian for 
h=GOO. The meridians all ass through p and p', so 
that they may be constructe f as soon as we have located 
the centem. P is, of course, the center for the meridian 
of X=90°. 

WG. 14.-Elements 01 o smnll circle on storoographic projection. 

SOLUTION OF PROBLEMS IN STEREOGRAPHIC PROJECTIONS. 

We shall now give the demonstration of the solutions 
of a few problems connected withstereo raphic projections. 

d f The plane of the pro'ection is called t e prim~tive plane, 
and the circle forme by the intersection of the primitive 
plane with the s here is called the primitive circle. The 
polar distance of a point on the s here is the angular % distance on the sphere from one of t e poles of the primi- 
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tive circle. The polar distance of a circle is the angular 
distance of any oint of its circumference from either of 
iQ own poles. h e  inclination of a circle is the angle 
between ~ t s  plane and the primitive plane. It is meas- 
ured by the arc distance between the pole of the given 
circle and the pole of the primitive circle since this 
Qeasures the angle between the perpendicdars to the 
planes of the two circles. 

In figure 14 let NE8W be the primitive circle and let 
QR be the trace of the plane of a small circle with P as  
!ts ole; them PR = PQ is its polar distance and PN is its 
W$nation. The diameter WE is called theline of measures 
of the circle QR; NS is perpendicular to WE a t  the center 

&Q. 15.-Detormination of the arc distance from the cantor On stero@gaphic projection. 

the primitive circle. S is the oint of projection and P Q' and R' are the projections of t le extreme or principal 
elements of. the obhquo circular cone SQR which is formed 

the projectin lrnes of the points of the circle QR. 
%noting the po f ar distance of the circle by n and the 
'Qchation by t ,  we have 

1 ORf=a  tan % ( K - [ )  

1 o Q / = a  tan i - ( ~ + E ) e  

Problem I .-To determine the shortest distance between 
oenter of the map and another point the projection of 

Yhich is giveno that 'is, to determine the arc of a great 
Circle between them : 
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Fro. 16,-Projection of a clrcb with glven rojection of pole md given polar distance oU 
storeograpi3c projection. 

Problem 2.--;To construct the p j ec t ion  of a given circle, 
its polar distance and the projection of its pole being 
given : 

In figure 16 let P' be the rojection of the pole, NESW 
is the rimitive circle wit I! NS passing throu h P' and 
with $E pe endicular to 88; NS is then t % e line of 
measures, wi'% W as the point of pro'ection. Draw 
WP'P and from P lay off the arcs Pp and equal to the 4 given polar distance. Draw Wp and Wq, hus locating 
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p' and q' in the line of measures. A circle constructed 
on pfq' as diameter is the required .projection, since 

q is the projection of the diameter of the circle on the g' 
e of measures. This circle can be determined in another 

Way by locating p and p f  4s before; tho11 a t  p draw the 

tan ent p Q  meeting OF produced a t  ; then WQ locates q t i e  center of the required circle. I% ith C as center and 
\Y'th Cp' as tho radius, we can construct the circle. If P' 
bes on the primitive circle, P and P' will coincide, and the 
Construction is evident from figure 17. 
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ProbZem 3.-To project a great circle, the projection of 
the pole being given: 

In this case the polar distance is and Pp = Pq -; in 

figure 18. The circle asses through W and E; hence it is 
suilicient to locate eit P ier p' or g'; IVC is parallel to OP, 

FIG. 18.-Projection of a grent circle with given polo projeotion on stereographic projection. 

and in this manner Ccan be located; with Cas center, with 
CE as radius, the circle can be constructed. 

Problem ,$.-TO find the locus of centers of all great circles 
passing through a given point : 
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h. 19.-1,ocus of renters of groat circles through a given point on stereographic projoctiou. 

In  figure 19 lot P' be the projection of the givon 
through which the great circles are to pass; draw the goint iam- 
?ter NP'S and the perpendicular diameter WE. The pro- 
jections of all great circles through P' must also pass 
through a oint a t  the distance of 7T from P'; accordingly 
draw the dP iameter PQ and draw WQ, cuttiu NS the line 

i? of measures in Q'; then Q' is the projection o the antipode 
of P. Since all the required circles ass through P' and F Q', their centers must lie on the straig ~t line perpendicular 
to P'Q' a t  its middle point c; this line is called the line of 
ten ters. 

Since a great circle may always be drawn through the 
Points TV, P', and El tho point c may be found by drawing 
a Perpendicular bisector to WP' intersecting NS in c. 
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Tho triangle WP'c is isosceles, and the angle P' Wp equals 
1 n 

the angle WP'S, which is measured by 3 (2+ arc P N )  
1 

= 3 arc P N  W; that is, the arc PEp = arc P N  W. Hence lay 
off the arc PEP = arc P N  W and caw Wcp. This is the 
same as laying off a polar distance P N  W from P; thus the 
line of centers is the projection of* a small circle 
throu h the line of si h t  and havln the polar ]stance 
PN#=T-~ f P dpmsing 

, whore E enotes the inc ination of the circle. 
From fi re 19 WQ = PE; QSp = n- (pE+ WQ) =a- PE~=~-FNW= WQ; hence lay of f  WQp-ZPE, and 

draw IVp, thus locating c. 
w$ 

is evidently perpend~cular 
to PQ, so that c can be locate in that way. 

L WE = LPOE= L WOQ; hence a line joining E and p 
is arallef to PQ; this gi~es~another method for locating c. 

$rohlen 6.-'llo draw a great circle through P, making a 
given angle wilh NS: 

I n  figure 19 the tangent to the required circle a t  P lnalres 
the given angle (m) with P'OS; the perpendicular to the 

P tangent makes with P'OS the angle 2 - m. Hence con: 

struct SP'R =?- m with P'R intersecting the line of cen- 2 
ters at R, the center of the required circle. 

The projection of a great circle always meets the primi- 
tive circle a t  the extremities of a diameter as MMt in 
figure 19. 

Problem G.LTo find the projection of a pole of a given 
. . 

circle : 
I n  figure 18 lot WptE be a reat circle; draw the per- 

pendicular diameters W E  and ??AS, and draw iVptp; lay off 

pP equal to and draw WP, thus locating P', the required 

pole. 
I n  figure 16 let p' ' be a iven small cirole; through ite, 

center c draw NS. an% draw ~ V E  a t  right angles; draw Wp' 
to locate p and W ' to locate q; bisect the arc qNEp, locat- 
ing P, and draw %P, thus locating P', the projection of 
the re uired pole. 

~ r o i e m  7.-To construct the projection of a great circle 
passing through the projections of two given points: 
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ha. a.-projection of a mat circle through the projcotions of two givon poilit8 on stereo- 
graphlo projection. 

I n  figure 20 let ORO'S be the primitive circle and let 
P and Q be the projections of the two iven points, and 
let A be the center of the projection. ~ ~ e ~ l i i n e s  that pro- 
ject any two antipodd points are perpendicular to each 
other; we can then easily determine the pro 
the poiiltv antipodal to I-' and Q through 
jected circIe must necessariIy pass. Draw 
I t  beyond A; a t  A erect the perpendicular AO, intersecting 
the primitive circle a t  0; draw O P  and erect upon it the 
Perpendicular 0P"intorsecting P A  produccd in P'; P' is 
then the rojsction of the point antipodal to P. The tri- 
angle OF$' IS the projecting triangle turned on the pro- 
pcted line PP' as an axis into the plane of the paper. 
n a similar way Q' can be determined, but a circle assed 

through P, Q, and P' is the required projoction. 8 may 
be seen that tho construction is correct from the considera- 
tion that AP' mnst be a third proportional to A P  and AO. 
@ the point of which P is the projection has the polar dis- 
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As a basis for the next problem we shall prove that if a 
plane passes through the poles of two groat circles it cuts 
off equal arcs on the two circles. 

In figure 21 let P be the ole of the great circle CEO' 
and let P' be tho pole of  ED' with the center of the 
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sphere a t  0. The triangle OPP' is isosceles; therefore, the 
line PP' is equally inclined to the planes of the great 
circles, since i t  is equall inclined to their perpendiculars 
OP and OP'. Produce J P' in both directions to intersect 
the planes of the circles, the one a t  Q and the other a t  Q'. 
The triangle OPQ = the triangle OP'Q', since OP = OP', 
L OPQ = L OP'Q', and L POQ = L P'OQ'. Therefore, 
QO = Q '0 and Q D = Q' C'. Pass a lane through PP' and F let QGHG' be its trace on the p ane of DED' and let 
Q'FfHFbe the trace on the plane of CEC'. Then L 0QH = 
L OQ'H, since the corresponding right trianvles are equal. 
The aro DG will therefore equal the arc C'#, and the arc 
G'D' will equal the arc OF, since Q and Q' are the same 
distance from their respective great circles. But the arc 
GEG' =?r- (DG+ D'Gf)andthearc FEFf=n.- (F'Cf+ OF). 
Therefore, the arc GEG' is equal to the arc FEF', and the 
pro osition is proved. 

&oblem ,!?.-To determine the shortest distance between 
two points whose projections P and are given; that is, 
to determine the arc of a great circle &, etw~en them: 

Ro. 22.-Groat oirolo aro botwoon two points on storeogr'aphio projoction. 
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In  *re 22 construct the projection of the great circle 
passing through P and Q, the rojections of the two iven P points, by the method of prob em 7. Draw NS the %ism- 
eter determined by the Ftersections of this great circle ro- 
'ection with the rirnitive circle and draw the perpen 8 ICU- 
iar diameter  WE^ This diameter is then the line of meas- 
ures. Locate the projection of the pole of SRN by drawing 

SR T and by laying off T U= $ 9  and by then drawing S U, 
thus locatin hl; the projection of the pole. Draw lilP and 
KQ and pro '7 ong them to intersect the rimitive circle in R P' and Q , respectively; then P' 1/V&' is t e great circle arc, 
between the glven points of which P and Q are the projec- 
tions. KF' and KQ' are the projections of circles passing 
through tho point of projection and through the polo of the 
great circle of which SPQN is the projection. But the 
point of projection is the pole of the primitive circle; hence 
the planes that do tormine the projections I.P' and KQ' 
cut off equal arcs on the great cucle, whose pro~ection is 
SPQN and the primitive circle. Therefore, the arc P'Q' 
is o ual to the arc of which PRQ is the projection. TL~ problem can be ~olned, togathor with that of dotor- 
mining the projection of the great cjrcle passing through 
the projections of the two given, polnts m the following 
manner : 
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no. 23.-Sphoro showing intcrsoction of givoll1inm. 

In figure 23 lct Z be the zonith and C the center of tho 
sphere and let NM' be the arc of a great circle joining the 
Points M and Mr. If li: is t l ~ e  point of projection m and 
mr are evident1 the projections of di and Mr. firoduce 7 the chord MM until it meets mm' produccd in R; then 
n0 is evidently in the plane of the groat circle MM', and 
also in the primitive plane. Therefore, tlio points 0 
and Off lie on the rojection of tlre p e a t  circle and the 
Projection is fully i' etermined, sinoe it is a circle passin F through m, m', 0 ,  and 0'. If MM' is parallel to mm , 
then evidently 00' is also parallel to each of these lines. 
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Now, in fifinure 24 let NESW be the primitive circle and 
let WE be tb line of measures; also let m and m' be the 
projections of the given points. Take On'-Om' and 
On=Om; draw Snr to intersect the primitive circle in pf  
and Sn to intersoct it in p. On mm' construct the tri- 
angle Dmm', having mD = Sn and m'D = Sn' ; prolong 
Dm' to q', making m'q' = n'p; and prolong Dm to q, mak- 
mq=np. Then pt 1s the chord distance between the 
given points, anf this chord being laid off anywhere on 

N 

S 

FIG. 24.-Projection of great circle through two points and length of aro between them 
on stereographic projection. 

the primitive circle will'give the great-circle-arc distance. 
The triangle Dpp' is evidently the triangle EiV1K' of 
figure 23 turned on mm' as an axis into the plane of the 
projection or into the primitive plane. Prolong mm' and 
gp' until they intersect at  R, and draw RO intersecting the 
primitive circle in C and 0'. A circle made to 
through C, m, mf , and C', is the required projection o pass the 
great circle through the points M and X' of the sphere. 
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Thii same problem can be solved by the method of 
descriptive geometry in tho following way: 

T+---*- 
I 
I --- 
I 7-------* 
I I -F---- 

$1 I Is ---+--u 

h~. 25.-Profeation of great oircle through two points on stereographic projection, 
second method. 

In figure 25 RO is the trace of the great circl'e plane on 
the horizontal plane; we need to determine, then, this ' 
trace of the plane of M, H f  and the center of the s here. 
n and n f ,  p and p' are determined as before; from p f st fall 
the erpendicular pq upon WE and from pf ,  the perpen- 
dicdar p1gf; prolong Om to r ,  making Or=Op, and pro- 
Ion Omt to c f ,  makin Orf= O p f .  r and r f  are then the % Opt o raphic horizonta f projections of the iven points M %' on the sphere. Draw Sf  U para f el to WE; let 
'41 the er endiculars ctsf and TS and prolong them, 
Qaking $TP= 'qf  and S T= pp. T and Tt are the ortho- 
graphic verticafprojections of Y and dl', and TT' is the 

112048°-19-6 
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vertical projection of the line MM' and rr' is the hori- 
zontal projection of the same line. Prolong TT' until it 
intersects the line S'S a t  '17 and erect the perpendicular 
UR intersecting r'r rolonged in R. R is the trace of the 
line MM' on the g orizontal plane, which is here the 
primitive plane. R0 is then the trace of the reat circle 
plane on the horizontal or primitive h i s  deter- 
mines the points C and 0, thmugh g ~ i h e  projection 
of the great circle must pass. A circle made to pass 
through the points C, m, m', and C' is the required pro- 
jection. Note that m'm produced passes through the 
point R, as it should. 

Problem $.-To lay off on a great circle an arc of given 
len th from a iven point P: E 8etermine t e projection of the pole of the given grent 
circle rojection. In figure 22 let E be the ro jection of 
the po P e of the great circle of which the arc S 5 R Q N  is the 
rojection; draw Z P  intersecting the primitive circle in . La off the given arc P'Q' on the primitive circle and 

draw I 9 Q' intersecting the projection of the reat circle 
in Q; then PQ is the projection of the require f arc. 

Problem 10.-The projoction of a great circle and that 
of a point being given, to construct the projection of the 

eat circle passing through the given point and perpen- 
gcular to the iven g e a t  circle: 

Determine t % e projection of the pole of the given great 
circle and then construct the rojection of the great circle 
passing through this pole an%the given point; this is the 
re uired projection. 

8 r o b ~ m  11.-To construct the projection of a great 
circle which passes through a given point and which is 
inclined a t  a certain angle z to the primitive plane: 



. . 

S 
h o .  26.-Projection of pent circle with given inclination to tho primitlvo plnno 

on stereographic projection. 

In fi re 26 if tho iven point lies on the primitive circle, 
as N, g a w  NS and %E, the line of measures. Construct 
the angle ON0 oqual to the given angle z; thon C is the 
center and CN the radius of the requlred projoction. If 
the projection of the given point is not on the primitive 
cwcle, but is a t  some other oint, as P, construct the arc 
0 .  with 0 as a center wit % 00 as a radius.- Construct 
Itnother arc with P as a centor and with CN as a radius 
lntersecking the first arc in D; then with D as a center 
and with DP as a radius construct the re uired projoction. 
(R~mark.-~f tho given point does not 3 ie on the 

P f'?" tlve circle, the construction is not always ossib e, m 
fact, tho angle z can not be loss than the ang a WOA.) - 

Problem 12.-To determine the inclinatioil of two great 
circles with respect to each other: 

!his problem is solvod by dotermining the projections 
Of the poles of the given clrcles, and then by measuring 
the great-circle-arc distance between them. Apply the 
uethod of problem 6 and then that of problem 8. With 
@eat circles the inclination of the planes is oqual to the 

betwoen the radii of the two circles drawn to the 
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point of intersection, since the inclination is equal to the 
angle between the given circles. The method of the 
problem can, however, be applied to any circles, either 
great or small. Even with small circles we may draw 
the projections of the parallel great circles and then deter- 
mine their inclination with respect to each other by the 

of the inclination of the planes of 
stereographic projection. 

two great circles on 

radii drawn to the point of intersection. In  fi re 27 
let S R N  be the projection of a eat cikcle, wit11 F a s  the 
center for the arc; also let E'I y ' W' be the projection of 
another great circle with Of as the center for the arc. 
The an Is between the arcs is then equal to CKnC', since S the ang e between the radii is equal to the angle between 
the tangents, and, the projection being conformal, the 
angle between the circles is preserved in their ro rssenta- 
tions. Locate the projection of the pole of ea& of the 
given great circles; K is the projected pole of the first 
circle and Kf is that of the second circle, A great circle 
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passing through the pole of a given great circle has its 
plane necessarily erpendicular to that of the iven reat 
circle; therefore t k' e great circle which asses tLou f the 
poles of the two great circles has its Yane erpendcular 
to the plane of each of the given circ&s. 8'' must then 
be the projection of the pole of this great circle of which 
IKK'I' is the ro'ected arc. GG' is therefore the greet 
circle arc of wKici KK' is the pro'ection; or the an le 
GOB' is the angle that measures t h e inclination of t % e 
planes of the given great circles. The angle GOB' should, 
therefore, equal the angle OX'' C' ; the impossibili.ty, of 
making a erfect construction ma c a m  pome doviation 
from e ua f' ity in the constructed d gure. 

~rob?em 13.-The projection of a point bein given, to 
construct the meridian and parallel passing t lrough the 
point : 

B 
If the problem is to be determinate, we must b v e  the 

Primitive circle given and the projection of one of the 
poles. 

28 let NES W be the primitive circle and lot 
- 

ole; locate the south pole by 
erpendicular to WP; RR' is 

of $PI) and is therefore the line 
Let Q be the pro'ection of d the given point; pass a circle through P, Q, an P', and 

this is the projection of the meridian through the given 
point. Construct a tangent to PQP' at Q, mooting NS 
In T; then T is the center of the rojection of the parallel 
and TQ is the radius; this fully $ etermines the projection 
of the parallel which is the arc QQ'. 
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Ra. 28.-Projection of the meridfan and parnllol through a given poht on staroographio 
proloction. 
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Problem 14.-To construct the projections of the circles 
pmallel to a given circle: 

I 

S 
Ffo. 20.-l'rojoction of circles purallol to givon clrcle on 

storooguphic projection. 

In fi re 29 let p' with center a t  0 be the given circle. 
Draw %CS and t f~ e perpendicular diameter WE; draw 
WfJpr and WpP; bisect the arc PP', thus locatin Q the d Po e of the given circle. From Q lay off the polar istance 

- 

Of the required parallel circle. In  the figure QR = QRt=;; 
d ? a ~  WE and WRf,  thus locating the extremities of the 
diameter of the given circle r r f ;  the center is given by 
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bisecting this line. For the parallel great' circle take 
Q T ~ .  

2' WT locates t and WU parallel to OQ locates U, 
the center of the required great circle projection. 

CONFORMAL POLYCONIC PROJECTIONS. 

Since we are to have a conformal projection, it is best 
to treat the case for a sphere and then to take into account 

same way that we did in treat- 

polyconic projec- 

e r(x)* tan - =-, 2 u 

and for the sphere that 

P r ' (h) sin 0; k,=- . - 
a c o s  r(i) 

also 

If the pro'ection is to be conformal, i t  must be rectangular, 
and, in a dition, the scale a t  any given point must be the 
7 . .  

d 
same along the meridian that i t  is along the parallel, or 
km = kp. 

Hence 
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But 
e 

2 tang 
sin O= 

2u r (A) 
e =uZ+rz(x> 

1 + tan2-- 2 

8 
1 - tan22 

ua - ra (x) 
cos e= e = u z + ~ ~ ( A ) .  

1 + tanz9 

Substituting these values and the value of 

as pau ---- 
dP-u dcp' 

we obtain 

r'(x) = 
[ U ~ + ~ ~ ( A ) ] C O ~ ~  p a ~ ~ 2 - r 2 ( ~ )  ap 

~ P U  (ii uz+rz (A) -~)  

cos cp dp =COS'& [u2-PO\)I-- - [ ~ 2 + r 2 ( ~ ) 1  
2ua dcp 2pu dcp 

cos cp au cos cp d p  cos v dP cos rp 
+U2 

r 2 A (  + ) ( 2u2 drp 2pu & 

Since r(h) is independent of rp, I" (A) is also independent 
Of v; consequently the two ex ressions dopendent upon cp 
Nust reduce to constants. d e can set one of them equal 

unity, because u can be multi lied by any constant 
?l 'Qthout changing the value of eit er s or p; and if SO, 

'(1) would be multiplied by the same constant, so that 
would not bd changed thereby. 
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Accordingly let 
dp du 

u--p- 
u2 dp dp- dp du-I' 

%&+P& 
or 

ap au l a p  au u-- -=-- +-- dp Pdp u d p  u a d v  

by integration 

in which the constant of integration is taken in the form 

loge It determides the scale of the projection. Passing 
to exponentials, we obtain 

But 

substituting the value of p, we get 
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Therefore, by integration, 

in which the constant of integration may be taken as 
zero, since the addition of any quantity would only serve 
to change the point from which s is reckoned. 

From these results we obtain 

or, by multiplication, 
s 2 - p 2 , c 2 .  

This equation shows that the circle with the origin as 
center, constructed with the radius c, cuts all the parallels 
at right angles. Any circle dr'awn through the two points 
of intersection of this circle and the line of centers of the 
Parallels will also cut the pardols orthogonally, for the 
tangents drawn to i t  from any point in this line of centers 
are equd. Therefore, these circles, since they form the 
orthogonal trajectories of tho parallels of the. map, are 
none other than the projections of the meridians. The 
two common points in the line of centers of the parallels 
are the poles of the map. 

If, then, we take two arbitrary points to represent the 
two poles, the meridians of the map will be the arcs of 
circles which pass through these two points and the 
Parallels will be other arcs of circles having their centers 
at various points of the prolongation of the line of 
and each passing through the point of contact o f t i :  
tangent drawn from the center to any one of the merid- 
lam; for example, to the circumferenc~ described upon the 
line of oles as diameter. 

We f w e  yet to find the expressions for u, p) and e in 
terms of p, and that for I' (A) in terms of X, by whch expres- 
Qom we may be able to tell, in the first series of arcs, 
;the one that corresponds to a given meridian X and, 
'n the second series of arcs, the one that corresponds to 
the parallel of latitude p. 



76 u. s. COAST AND GEODETIC SURVEY. 

n In the expression for I" (A) on page 73, if we let 3 
represent the second constant, we have 

or, by substitution in the equation on page 73, 

rr(X)dX n 
1 +ra(h)  = ax, 

by integration, 

Hence 
tan -=- ' 2 u I tan (i h+cf)- 

Since for h - 0, we have BqO; therefore, cf - 0 and 

and 
8 1  I% tan -=- u t ; an2Xe  

To determine u, we may write 

in the form 
d (UP) cos y, - n 

dp 2pu2 -2. 
But 

and 
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By substituting these values, we obtain 

n [cosa (: + z) + sin2 (z +;)I>p = -.- 
2 

2 sin ( ~ + e )  cos ( ~ + f )  4 2 4 2 

loge :+ = logo sin - + - - log. cos (g + $)I + 10% k, [ (4" 9 
'06% k being the constant of integration. Passing to 
ex~onentials we obtain 
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The value of s gives the distance of the center for the 
circle that is to represent the parallel of latitude q from tee 
intersection of the central meridian with the parallel that IS 
represented by a straight line; p is the radius of this 
parallel; the parallel is therefore fully detormined by 
these two quantities, since the centers of the parallels must 
lie on the central meridian. In order to construct the 

We have 
x = p sin 8. 

y = s - p cos 8. 
But 

0 r (X)  tan -=- 2 u 
or 

e n 8 u = r(X) cot- = t~ x cot Z. . 2 



THEORY O F  POLYGON10 PROJECTIONS. 79 

Bence % 

(sin $A cos B-)i - (cos 
p" 2c 

2 
sin nh sin 8 

n 
(sip 3 cos ;y+ (cos sin 3 

s=2c sin nX sin 8 

P-2c sin nh sin e 
1 1 sin 3 (nh-0) sin -i. (nX+fl) 

- 2 ~  = C(COS e - cos n ~ )  
sin nh sin 0 sin nh sin 8 ' 

0 
a - p coi 0 = sin __C[(sin nh sin 0 ;A cos i)' 2 sinZ2 

2 

+ (cos ;A sin '3' 2 2 cosz;] 

e n 40 sinZH coszxsin 2ih + codnh) 
P 

2 
sin nX sin 8 

~ ( C O S  0 - cos nh) 
p sin 8 = sin nX = x, 

- C C O S ~  =x+c cot nX. sin nX 
%ere fore 

y2 + (x + c cot nX)= = c2 COSOC~ nh. 
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Since this equation contains only h and is independent of 
q~ and 0, i t  is the e uation of the meridians. The meridians f are therefore circ es with centers upon the X axis (the 
straight line parallel of the map) 1 ing a t  the distance 
= - c  cot nh from the origin ann8 having tho radius 
= c cosec nA. 
. Since for x = 0, y = f c, all of the meridians pass throu b I the two points which are distant - t c  and - c  from t o 

ori in; 2c is therefore the length of the central meridian f inc uded between the poles. 
As an aid to construction, we may assume 'the equation 

then 
8 = C ~ 0 9 0 ~  $' 

and 
p- -c  cot $. 

1 

A special case of this projection is given by the valu~S/ 
k - 1  andn=l;inwhichcase$=cp, and 

s = c cosec cp 

p=c cot cp 

and the equation of the meridians becomes 

y2 + (x + c cot A)2 = c2 cosec2 A. 

This is evidently the stereogra hic meridian projectioa 
which has already been discusse $ under that heading. 

DETERMINATION OF THE CONFORMAL PRO CTION IE 
WHICH THE MERIDIANS AND PARALLELS & RBPR.@ 
SENTED BY CIRCULAR ARCS. 

This projection is the one devised by Lagran e. B problem was to  determine the general conforma projeoc 
tion in which the meridians and parallels were botb 
represented by circular arcs. 

Since the projection, is to be conformal, we can express it 
in the form of a function of a complex variable." 

*See The Oeneral Theory of tho Lambert Conformal Conic Projection, BpecialPublio~ 
tlon No. 53, U. 9. Coast and Ooodotic Survey. 
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Let i denote as usual 4 - l a n d  assume the relations, 

thensf, and.& are conjugate functions of a complex variable 
.that are only limited to being analytical functions. From 
these we find a t  once. 

i 
y=$ fl(u +<A) -fa(u-iA)I, 

or, denoting .f, (a + i ~ )  by .f, and .f, (u - i A )  by f,, 

w ~ r n  these equations i t  follows that 
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From these we obtain a t  oncc 

Therefore 
rv= -Jyl(ff + ix> .f '2 (a - ix> . 

If the coorclinates of a .  plane curve are expressed in 
terms of an independent variable t in the form 

the expression for the radius of curvature is given in the 
form 

dx d2y dy d2x - - 
1 d t  atz at a tz  

Since in the ex ressions for x and y in terms off, and&, P a is a function o the latitude and X is merely the longl- 
tude, a is constant along a given parallel and X is constant 
along a given meridian; in other woyds, a remainin T'" stant, we obtain a parallel by variation M X, and X eing 
constant, we get a meridian by vanation of a. Therefore, 
if we neglect the sign 
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or by substituting the values on page 82 

or, again 'paying no attention to sign, 

1: the meridians and parallels are to be circles, R, must 
be.mndependent of a, and R, must be independent of I 
y h s  fact is analytically expressed by 

Fhae  two conditions letid to the same condition; that is, to 

this i t  follows that, if the projection is conformal, 
the condition that one system of curves forming thenet is to 
be made up of circles, makes it necessary that the other set 
%uld also be circular arcs; this includes, of course, straight 
l1nes as special cases of circles with infinite radii and w ~ t h  
'enters a t  infinity, 

If, in order to simplify the analysis, we set 
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then 
1 -- W-gl(a+iX) g2(u-iX) 

so that from the required condition we have 

The two members of this equation are conjugate complex 
functions, and the e uality can only exist on condition. that 
the members are eac 7.1 e ual to a real constant. Let us us0 
8' for this constant anj,  for the sake of abbreviation, let 
U? denote the variable a + i X  by z and g, (z) by Z. Tho 
differential equation then becomes 

dZ Multiply both memlwrs by 2-dt and we hove 

By integration, 

-ya being the constant of integration. 
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Integrating again, we obtain 

Taking reciprocals we get 

By addition, we obtain 

Now, for abbreviation let 

e y 2e-6 - -A ,  and -- 
2P - -B1 28 . 

and we have 
Z = A,eaz + Ble-a2 

or 

g1(u +iX) = A,e@(u+ik) + Ble-O(a+ih). 
But 

1 d(A,e2sZ +n,> 
d K  (z)l= F~ (A,~~-BJ. .  

integration 

a We set -2A:P = d l  and -2A,BlP = N and restore tho 
'sue of z, we obtain 
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Since f,(a + i X )  is equal to x-iy, the constant C tends 
only to translate the origin. Let us suppose that C is a 
complex quantity in the form of afib. If we transpose 
C to the left-hand member, we have . 

a and b may be either positive or negative and either or 
both may be zero. No generality is lost if we set them 
both equal to zero, since they may be accounted for by a 
mere translation of axes. 

Now, let M= - Ai and N =  - Bi and we get 

ie-8(r+tM 
x-iy- Ae@(u+iM + Be-@(r+ih) ' 

By multiplying both terms of the fraction by AB("-'X)+ 
Be-@("-'X), we get 

A sin 2/3X + i (A cos 2/31 + Be-2s") 
A2e2B1 + 2AB cos 2/31 + B2e-2@u 

' 

By equating the real parts and the imaginary parts, we 
obtain 

2'- A sin 2/3X 
A2e2Pa + ~ A B T O ~ ~ P X  -/- BZe-2Pa 

A cos 2/3X + " - + 2AR cos 2/3A + B2e-2@a' 
On tho sphere 

a = log. tan + $) 
and on the ellipsoid 

That the meridians and parallels are both circles, we 
already know, since the function f, was determined on 
this condition; but in order to obtain their equations, we 
must proceed in the usual way. If we eliminate a, we 



THEORY OF POLYOONIO PROJECTIONS. 87 

shall have the equation of the X meridian and, by the 
elimination of X, we may obtain the equation of the 
parallel of latitude p. 

A2 $ 2ABe-2@1 cos 2PX + B2e-48' 
x2 +y2 (AZd'@u + 2AB cos 2PX + Bze-28D)2 

e-2@s - - 
A2e2@c + 2AB cos 2/3X + BJ~-~@#* 

Therefore 

Y = - (Ae2au cos 2PX + B) 
xZ + ya 

x -- - Ae2ps sin 2/31. 
xa + ya 

horn  these, by the elimination of a, we obtain 

?if B ( X ' + ? P ) _ - ~ ~ ~  
x 

or 
1 1  

~ = + y ~ + ~ y + p  cot 2/3X=O. 

This is a circle, the center being at the point 

cot 2/31 
xo= -- 2B 

1 
yo= -- 2B 

and its radius boing 
1 

P0=2B sin 2PX' 

This equation is identically satisfied by the values x = 0, 
1 

Y =O, and by x =0, y= -z; since all meridians pass - 
through these points, they represent the two poles; the 

8x1s is tho central meridian. 
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If we eliminate X ,  we get 

Developing and arranging, wo got 

Dividing by x2+ya, since this can only vanish for 2-0, 
IJ = 0, we get (A2e4Bu - Ba) (x2 + y2) - 2By = 1 
or 

This is a circle with contor a t  the point 

and with radius 
Ae2aa 

Po= A.Z~~.EU - ~a ' 

Since we know that tho projection is conformal, it is 
lmown that the ma nification is tho same a t  any point 
in all directions. #e can datermine its value along a 
parallel and in that way determine its value in all 
directions. 

by 2Ap sin 2PX (A2e2fla + B2e-*) - 4AB2pe-20a sin 2 p ~  
dL= (A2e2flu i- 2AB cos 2pX + B2e-2~u)a 

4 A2pa 
(A2ewu + 2AB cos 2PX + B2e-2flu)2 
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But on the earth 

from which it follows that 

dS &=-I- ' 2AP 41 - e2 sina q 
dS - a cos p (Aze2@a + 2AB cos 2 p ~  + B2e-P@r) 

In order to derive the equations in their usual form, 
1 

% shall move the origin down to the point - ZB. The value 
of x will remain the same, but the new value of will 

1 1 
equal the old value of y increased 1)y or y' = y-bZB. 

The equations are. therefore, 

x =  
A sin 2ph 

A2e2@° + 2AB cos 28X + B2e-2@r 
- Bae-2& 

= 2B (Aae2@o + 2AB cos 2pX + ~ ~ , - z g o ) '  
The equation of the meridians now becomes 

and that of the parallels 

To identify this projection with the one formerly 
~btained, let 

2ck sin nX 
%=pen" + 2k cos nX + e-nr 
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But for the sphere 

em= tann (i.9 
or for the spheroid 

Therefore, for the sphere 

2ck sin n X  t a p  (2 + 5 )  
x =  

k2 tanzn ( j + $ ) + 2 k  ms n~ tann (:+;)+I 

Y = 
7 2  tanZn (i + ;)+ 2k cos nh tann (z + z )  + 1 

[ c ~ t a n 2 n ( ~ + ~ ) + l ] \ 2  42  k2 tan (:+%) ' 
x2+ y- a 

~tanzn(z+f)-l  4 2  [k.'tanzn(i+$)-~]" 

We thus see that 

If we denote that intersection which lies nearest the origin 
by yo (that is to say the y value for X = 0 ) ,  we have 
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By performing the indicated operations, we obtain 

0 ktann(;+g)-1 nh 
tan -= tan y- 

ktann(2+g)+l 

The projection is thus found to be identical with the oue 
previous1 obtained by a different procedure. 

With t K ese values the m cation (denoted by k' for v distinction) for the ellipsoid ecomes 

PI = 
2ckn J1- ea sin2u, 

a cos cp (k2enu + 2k cos nh + e-m)' 
in which 

If the parallel, 
sented by the 
line, among the circles 
dicular bisector of 
tion, then the radius 
center from the origin 
the case if 

hence 
rtan2n(i-3-l=0 

or 

If, for the sake of abbreviation, we set 

* the expression for the center of the parallel becomes 

2 r n ~  
c(m2 + 'I, and the radius becomes p. = - "o"0 ,  YO= d-l ma-1 
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The equation for the parallel becomes 

The oquatlon of the meridians remains, as before 

( x  + c cot nX)2 + y2 5 c2 cosecz nX. 

The coordinates expressed in terms of m become 

x =  2cm sin nX 
1+2m cos nA+ma 

and tne magnification for the sphere becomes 

2cmn k= 
a cos cp (1 + 2m cos nX + m2)' 

and for the spheroid 

k'= 2 m n  41 - ra sinaCp 
a cos cp (1 +2m cos nX+m2) 

with the value for m in the last form 

Sines both cp and a must be less than i, if cp is greater than 

-a, then 

tan (:+;) > tan ( 2 -  g) 

In a similar way it may be shown that when p< -a, then 
m< 1. 
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The arallel circles whose latitudes are groater than -a 
lie on t\e positive side of ; those with latitudes less than 
-a lie on the negative si 3 e. 

In the expressions for the projection to which we have 
arrived, c, a, and n are constants that we can determine to 
fit such conditions as we ma require the projection to r fulfill, these being limited, o course, to the conditions 
that are possible in a conformal map. 

c determines the scale of the projection and i t  may be 
any real constant, so that it on1 remains to determine a 
and n. If a = 0, then the straig t line parallel represents 
the equator and m becomes 

K 

m= tan.(;+;), 

80 that k= 1. 
SPECIAL CASES OF THE PROJECTION. 

If n converges to zero, and at  the same time c co?verges 
oo in such a wa that cn=2a, we obtaln a pro~ectlon 

ul which the para I' lels are reprosonted by straight lines 
perpendicular to the Y axis since their centers lie at 
Ufinity on the Y axis. In the same way the meridians 
have infinite radii with centers a t  infinit on the X axis ; 
Come uently they are erpendicular to t&s axis. 1 f To etermine the va ues we have 
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The limiting value of this is seen ta be 

1 [cn ban.. (h + @ - I]] =z lirn 
n 

neO \ 

cnG2e 

a [ ( ; + $ ) - I ]  
= lim 

n 
nhO 

The value of this expression at the limit is 

y - a  log, tan E+f  . 
(4 2) 

We have thus arrived a t  the Mercator projection as a 
special case of Lagrange's. projection. Although it is 
not a polyconic~pro~ection in the accepted sense,. yet it 
a pears as a specla1 case of one of the important pro-~ect~oris P o the polyconicz class. Lambert's conformal conic pro- 
ection can also be obtained as a special case by letting !!? become equal to zero in the equations containing the 

A and 23 constants. 
4 

* Since ax-ax log. a. [ L I 
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If n becomes equal *to unity, we obtain the stereographic 
Projection and the equations take the form 

2cm sin X x- 1+2m cosX+ml 

c(ma - 1) 
YG1+2m cos  ma 

~ t h  m= tan (:+;) tan (:+;) 
Substituting this value of m and reducing, we obtain 

c cos a sin X cos cp x =  l+sin a sin p+cos a cos X cos cp 

c (sin a +sin cp) 
Y=l+sinasincp+cos a cosh cos c p '  

If we now let y' = y - sin a, which merely moves the origin 
and does not change the nature of the projection, we 
obtain after dropping the primes 

c cos a sin X cos cp x =  - l+sin a sin cpfcos a cos-X cos cp 

c cos a(cos a cos Q - sin a cos X cos cp) y=- 
1+sinasin~+cosacosXcoscp ' 

t w  by replacing o cos a by a, we asrive at the values pro- 
ho~sly  obtained 

a sin X cos p 
2- 1+sin a sin p+cos a cos X cos cp 

a(cos a! cos cp - sin a cos X cos cp) u-4. . . . 
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GENERAL STUDY OF DOUBLE CJRCULAR PROJECTIONS. 
I 

In  order to enter upon some points not yet discussed, 
we shall study in general those projections in which the 
meridians are represented by a system of circles passing ' 
through two common points which form the poles of the 
projection and in which the parallels are represented by 
a system of curves orthogonal to the meridians. The 
centers of the circles forrmng the meridians wiU all lie 
u on the pe endicular bisector of the common chord gi w ch forms ? t e line joining the poles of the projection. 
The tangents drawn to the various circumferences from 
any point of the prolongation of the common chord are 
equa , since they are in each case a mean proportional 
between the same secant and the external segment of the 
same. If from this point as center, with a radius equal 
to one of these tangents, we describe a circle, it will inter- 
sect alI the circular arcs representing the meridians at  
right angles. We thus see that the orthogonal trajec- 
tories of the meridians of the map-that is, the parallels- 
are also circumferences, so that they belon to the poly- 
conic projections. The locus of centers o f the parallels 
is a straight line passing through the projections of the 
two poles and perpendicular to the locus of centers of 
the meridians. 

Every point of either prolongation of the line of poles of 
the map can be considered as the center of the projection 
of one of the parallels, and the radius of this rojection 1s % then equal to the tangent drawn through t e point in 
question to one of the meridians of the map; for example, 
to the circumference described upon the bne of 

P R"'" as diameter. Reci rocally, if in a projection with ort ogonal 
curves the para1 els are circumferences having their centers 
upon the prolongations of one of the diameters of a given 
circumference and as radii the tangents drawn from the 
various centers to this circumference, the meridians will 
also be circumferences which pass through tho two extrem- 
ities of the givan diameter. This will not bo true if tho 
radii of the parallels are determined by any other condition 
than the one mentioned. The rectangular olyconic pro- 
jection of the English War Office already $ iscussed, fur- 
nishes an example of an othogonaiprojection in which the 
parallels, but not the meridians, are circumferences. 

The properties which we have just pointed out are not 
the only ones which we can extend from the stereographic 
projection to all conformal projections with circular 
meridians and from these to projections with circular 
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meridians and orthogonal arallels. In  figure 30 let P 
Qd PP' be theyro'ectlons o!the poles, 0 the middle point 
of the line PP , A~A'P '  the circumference described upon 
PP' as a diameter, AA' the diameter perpendicular to 
PP'; in addition, let S be the center of the projection of any 
Parallel, U and U', D and D', F and F' the points where 
this projection intersects, respectively, the cucumference 

P l ~ .  30.-~eometrical relations bobween brthogonal circular meridians and pwallols, 
first flyre. 

dP4'~' ,  the line PP', and the per endicular erected a t  S 
'Pan thls line; finally, let V be t 1 e intersection of 'PP' 

UU', and let Ul be symmetrical to U with respect to 
O, 80 that U'U is parallel to PP'. 

.The point d bemg the bisector of the arc UDU' UD wlu bisect the angle formed by the chord W' and the 
0U; the point A' being the bisector of the ttrc 

112048"-10-7 
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UfA'Ul, UA' also bisects the angle UrUUL; therefore, the 
three oints U, D, A' lie on a straight line which.makcs it 
possib 7 e to construct the point D without describin tho 
circumference S when U is given. Since the angles &A', 
DUD', each being inscribed in a semicircle, are right 
angles, the three points A, U, 7,' also lie on a straight line, 
whlch is the bisector of the angle formed by one of tho 
sides of the triangle 7J1UZJ1 with the prolongation of the 
other. 

The angle PDA', which subtends, upon the circumfcr- 
ence 0, an arc equal to  a quarter of the circumference, is 
equal to the half of a right angle; the same is true of the 
angle DUF', which subtends upon tho circumforence S 
an arc equal to a quadrant;. the two an les aro, therefore, 
equal, and, as two of tl~cir s~des  UA' an f UD coincide, tho 
two others, UP and UP", also coincide; that is to say, that 
the points 17, P, 8'' are in a straioht line. Since UP' is 
perpendicular to  DP and U F  to &', the points P', U, J' 
are also.in a straight line. It follows from this that UD 
is the b~sector of the right angle PUP' and UD' of tho 
adjacent angle PUFi therefore, DP : LIP' = D'P : D'P' = 
UP : UP'. The projection of each parallel is tho locus of 
the points the distances of which to the ro'ections of tho 
two poles have s given fixod ratio. ~ g e  lines UP and 
UP' are in their turn bisectors of the ri h t  angles DUD' 
and DUA; therefore, the ratio of the fiistances of any 
point of the circumference 0 to the two points D and D' 1s 
constant. 

I n  figure 31 the letters already appearin in figure 30 are 
employed with the same signification. f l i e  sernicifcum- 
ference PAP' is the projactlon of a articui~~r meridian. 
Let us now consider the projection P& 8 P' of any meridian. 
Let T be the center, GL and M its intersccfions with AA' 
and the circumference S, respoctivcly, and, finally, lot G' 
and Mf be the points of intersection of the  arc wh~ch com- 
pletes tho circumference Twith the same two lines, res ec- 

tivet . With regard to the two circumferences S an$ T, 
we s ould have to  point out the same properties that wore 

ointed out as obtaining between tho two circumferences 5 and 0. It will be suficiont to  indicate the following 
facts: Since M lies on the parallel circle which is tho locus 
of oints with distances from P and P' in the ratio D P  to  DP, th e ratio of MP to MP' is the same as that of DP to 
DP'; therefore, the line MD is the bisector of the an le 

R f PMP', and it should ass through the mid-point Q' of t e 
arc PB'P' ; then the t re0 points M, R1 (3' are in a straight ' 
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line; the same is true of the three points D', X,. 6, 
as also of G, D, a' and of Q', M', D'. The three polnts 
D', Q, Qf are thus the vertices of a triangle the altitudes of 
Which intersect in D and the feet of these perpendiculars 
are a t  0, M', and M. 

Let us construct the angle P O I  oqual to that which the 
meridian PMP' makes with the straight line meridian 
PP'; the three points P', Q, I will be in a straight line, 

RQ. 31.-Qeomatrical relations betwoen orlhogonal moridiansand parallels, 
second flguro. 
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that which may be made use of in the stereograpllic pro- 
jection upon a meridian. 

Let us construct TL perpendicular to TP and inter- 
secting in L the projectmn PMP' of the meridian; tho 
three points P f ,  L, A are in a straight line, for the angle 
PP'L, which has its vertex upon the circumference T and 
intercepts the same arc as the angle a t  the center PTL, is 
equal to half this an le or to half a right an le; therefore, 
the rolongatbn of 42 ought to pass throug f the point A. T E ~  rnd~us O P  or 08 of the circumfer~nce describad 
upon the line of oles as diameter bein taken as unit wo 2' P define the modi ed latitude of a para1 el as the arc Jb of 

the straight line 
projection UDU of the 

arc which we denote by cp' is 
which, from the center of the 

would see the circumference 
as diameter; this arc varies 

n- n- with cp from 0 to - and from 0 to --. For the abbrevia- 2 2 
tion of the formulas wo shall often uso in them in lace of 
the arc that has just been defined the modified co P atitude 
p', which is the comploment of cp' and which re resents the R arc PU comprised between the projection of t e pole and 
that of the paralld; p' can then vary from 0 to n with the 
colatitude p. 

Every circumference described from a point S of the ro- 
longation of PP' as center, with the tang& SU for razus, 
is, m an system of projection with orthogonal intersec- 
fions an ‘f wrth circular meridians, the projection of a par- 
allel; that which varies from one s stem to another is the 

P i position of this arallel upon the g obe, or, inversely, it is 
the oxpression o q' or of p' as a function of cp or p, respec- 
tively. Whatever this expression may be, If we call I* tho 
radius SD or 527 or SV of the projection of the parallel 
and 6 the distancs OS from its center to the center of the 
map, we shall have from the right angled-triangle 0527 

r = cot cp' 
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Since the three points A, D, U' are in a straight line, 

the angle a t  A of the triangle OAD is equal to $, and it 

results, in this triangle and the triangle OAD', that OD = 

tan $ , a n d ~ ~ ' = c o t ~  2 We thus have ODxODf=l ,  as 
i t  ou h t  to be, since tho tangent OU is the mean propor- 
tionafi between OD and ODf. 

The constant ratio of the distances of any oint of the 

the two poles w& be 
3 projecti~n of- a arallel to the projections and P' of 

-- UP t a n ~ ~ ' ~ - t n n g *  
UP' - 

Let us now consider the Gericiians. The lon~itude will 
be reckoned as starting from that meridian &e projec- 
tion of which is the strai h t  line PP', and we shall define B !he modified longitude o a meridian the angle a t  which 
Its projection intersects the projection of the central 
I,nerrdian, an angle which we shall denote by A'; this an 1s 5 18 also half the angle at which, from the center of t e 

.Projection of the meridian, we should see the line of 
poles of the ma . Therefore, for the meridian projected 
into PGP', A' ~ $ 1  be the an la which PP' malces with the 
tangent a t  P to the arc P 8 P', or what amounts to the 
same thing, to the a n ~ l e  OTP. h e  projection can vary 
tpithout the arc PGP ceaslng to be the projection of a 
meridian; that which will vary will be the position of t h ~ s  
meridian upon the earth or, inversely, the expression of 
A' as a function of X. Whatever this expression may be, 
if we call R the radius TG or TP or TM of the projection 
of the meridian, and S the distance 0 T of its center from 
the center of the map, the right-angled triangle 0 TP will 
give 

B = cosec A' 

#=cot X' 

and the triangles OPG and OPG' will give 

A ' A' OG - tan -, OG' =cot -. 
2 2 
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We thus have OGX OG' = 1, which ou ht to be so, since 
OP is a mean proportional between 0 8 and OG'. 

The coordinates and X' or p' and X' determine the 
position of any point of the map; however, we shall make 
use also of a thud variable dependin upon the first two. 
This will be the angle OSM formed % y the radius SM of 
the projection of the parallel with the straight line meridian 
or, what amounts to the same t h i q ,  the angle OTM 
formed by the radius TM of the projection of the meridian 
with the straight line parallel. We denote this angle by 
8 ;  it is the angle a t  which one would see, either from the 
center of the projection of a parallel or from the center 
of the rejection of the meridian, the distance of any 
point ill to the center of the map. 

Half of 0 is e uul to the inscribed angle OG'M, which 
subtends u on t e circumference T the same arc as the R a 
angle a t  t e center 0 TN, or to the an le OG'D, since fl the three points G t ,  D, M are in a straig t line; but the 
tangent of this angle is given by the ratlo of OD to OG'. 
We have, then, 

From this equation we deduce 

0 
2 tan - 

2 - sin X' sin cp' 
sin e= 

6 -  l$cosh'cos 
1 + tan2 2. 

8 
1 - tana- 2 COS X I  + cos qJf cos e = 6 l+cosX'cos cp" . 
1 f tana ;i 

The coordinates of M with respect to the axes OA and 
O P  are 

sin A' cos lo' x=rsin6= 1 + cos A' COST 
sin cp' y = R  sin f?=l  +cos A' cos (0'' 
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We have for the squire of the distance OM to the origin 

1 - cos X' cos 'p' 

x2+y2=l  +cos h' cos 'pf' 

We should note that the eneral equation of the circles 
traced upon the sphere anf that of circles traced upall 
the map have exactly the same form when we take for 
coordinates p and X on the sphere and p' and X' upon the 
plane. . On the unit sphere we have a 

x=cos X cos $9 

?J =sin X cos co 

z = sin p. 

If we substitute those values in the oquation of a plane 

~ x + B y + C z + D = 0 ,  
We obtain 

( A  cos A t - I ?  sin X) cos $9+ Csin 'p+D=0. 

This is tho equation of a circle determined by the intor- 
section of the plane with tho sphare. 

r 1 Iho general equutioil of a circle iu the plnno is given by 

or on substitutioll of tho values of x and y in terms of 
9' and X' we obtuiri 

sin i' cos 'p' - - -- -- -- - - - > ' (  
sin 'p' 

(l+aoaX'cos'p' + l+cosh tcosp t  - b>'=c2, 

l-cos X' cos p' 2a sin X' cos 2b sin 'p' ,-cLa2-b2 
~ + C O S  A' 'p'- ~ + C O S  A' cos cP'- I+COS X' COY 'p 

1 -- cos X' cos 'p'- 2a sin X f  cos cp' - 27, sin 'p' = c2 - a2 - b2 

4- (c2 - a2 - P) cos X' COB p' 

(a2 + b2 - c2 - 1) cos X' cos 'p' - 2a sin A' cos cp' - 2b sin 'p' 

+a2+bi2-c24-1=0 
or 

(A' cos X' + B' sin A') cos p' + C' sill + Df = 0, 
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A', B', C1, and D' being constants depending upon the 
position of the center and the radius of the circle. In 
the meridian-stereographic projection we have q1 = cp and 
Xf=X, so that i t  is only necessary to take A', B', Ct, and 
D' proportional to A, B, C, and D, respectively, id order 
that the two circles may correspond to each other. There- 
fore, in the stereographic projection on a meridian, and 
as a consequence also upon the horizon of an place, 
every circle is pro'ected into a circle. This P act has' 
alrekdy beer in another place by the use of ana- 
ly tic geometry .* 

Let us now determine the expressions for the scale 
along the meridian and for that don the parallels. When 
the point M is displaced infinitmima f y upon the projection 

of the meridian, the arc described is equal to 
upon the parc~llel the arc 

therefore, we have 

Now, if we take the logarithms of the two members 
6 

of the formula which gives the value of tan 3 and  the^ 
- 

differentiate, we obtain 

ae . axf apt - = ---- I+--?~ sin 0 sin X sin cp 

which gives for the partial derivative values the following 
expressions : 

be sin 8 be sin e 
a j = s m  and a T = ; s h ' .  

On substituting theso values and the values of r and R 
we obtain 

sin 0 dp' 
km'"sin A' sin & 

sin 9 dxl 
kp ' coa 9 tan 9' sin h' X ' 
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or, on substituting the value of sin 8, 

1 dcpf 
km=l+cos  h' cos cp' & 

1 COS (p l  dX1 - -. 
b=l+cos  h1 cos (p' cos p dh 

CONFORMAL DOUBLE CIRCULAR PROJECTIONS. 

In the conformal polyconic pro'ection the condition 
&rn=kp gives in the case of the ouble circular ortho- 
gonal net 

d 
sec (0' dcp' dX' --=-. 
sec cp dcp dX 

The left-hand member of this equation is a function of 
(d alone and the right-hand member a function of X alone; 
't is. therefore necessary that they should be equal to the 
same constant n; hence 

A'=n A 
and 

- -n-. d~ 
cos (0' cos (0 

BY integrating the first equation we get 

40 constant of integration being introduced, since X' 
u 

with A. In  the second equation lot v ' = ~  - p l  

and lot = I - p and we obtain 
2 

$ . 2 . L n * .  
sin p' sin p 

us write this in the form 
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on integration this becomes 

P loge sin $ -loge cos $ = n loge sin - n loge cos P 2 

- n log. sin --% + n log. cos 9. 2 

P' log, tan - =n log. tan P- n log. tan $, 
2 2 

or, on passing to exponentials, 

The cdnstant which enters into t l~? expression for tan 

denoted by tan 2, is determined by the fact that t110 2 ' 
straight line parallel is to have the colatitude po. When 

T 
p is equal to po, p' becomes equal to 2 and r=  co . In the 

further discussion we shall consider %>$ and reckon P 
and p' from the North Pole. That will throw the straight 
line parallel into the Southern Hemisphere. 

The angles are everywhere preserved except a t  the 
poles; in  order that they may be proserved also a t  these 
two points, i t  is necessary that we should have n equd 
to unit , and then we have the stereograpl~c projection 
upon t K e horizon of the place of the central meridian 

'7r 
which has the latitude (P, = po - 2. 

CAYLEY'S PRINCIPLE. 

This uts us in position to explain what is someCime8 
called 8aYley1s principle.* Since in the steroograpFG 
projection n must equal unity, the meridians in the horl- 
eon projection are s~mply the same arcs as those of tho 

-- - - 

* See Cn ley's Collected Mnthemstical Pa rs Vol VII, p. 307. Also mentioned in t1le 
lllnth editron of the Enc clopedln ~ritanng, bol. k, p. 203, in which plnco some nstov 
ishing mathemnticnl snnrysis is glven in explnnnlion of tho principle. 



8tereograpbic meridian projection. The pardels are 
determined by the equation 

paiallels constructed for p' on the meridian projection are 
the parallels for p on the horizon projection. The circle 
constructed with its diameter cons~sting of the chord for 

u)e=p,-; in the meridian projection becomes the projec- 
tion of the horizon circle in the horizon projection. In  
figure 32, pMpfN is the meridian circle of the original 
lneridian projection and PQPfQ' is the horizon circle for 

277 
constructed on the chord of the meridian circle for 

77  PO==^ Tangents to the computed p' points of the meridian 

circle would determine the centers and radii of the arcs 
for the horizon projection; or the .radii and center dis- 
tances can be computed from the expressions for r and s in 

7r If we let p, become and then let n convergs to zero 
Y 

Rhile leaving constant the product of n by the length OP in 
f k ~ i e  31, which we have choson as unity in the former 
analysis, we obtain again Mercator's projection. If we 
maintain this product equal to two, we shall have con- 
stantly 

X' 
tan - l-(tan$)" 

8 and OD=% OQ=X - A' - 
2 I +(tan g)". 

?he limiting values of these expressions as nAO are givon 
''1 the form 

P OQ=X, and OD=log, cot -Z.* 
\ 

*For the derlvatlon of these limits soo p. 94. 
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DISCUSSION OF THE MAGNIFICATION ON TBE CONFORMAL 
DOUBLE CIRCULAR PROJECTION. 

The values which we have, found for k, and k, in any 
system of rectangular projections with circular meridians 
and parallels have now become equal to each other and 
we have for the ratio of the lengths a t  each point of a 

projection 

n sin 0 k= cos cp tan cp' sin h' ' 

lt results from this equation tliat, upon any given parallel, 
increases or diminishes a t  the same time as h. When 

the value of sin 0 is substituted, we obtain 

1% see cp - n sin p' k =  sec + cos h' - sin p (1 + cos h' sin p') ' 

8 point of discontinuity is found when cod h' sin ' = - 1. 
hthin the limits of tho map this can happen on 7 y when 

P' , and h' = & r .  In the stereographic projection this 
foist is the antipode of the center of the map. If n is 

than unity .it would fall outside of the map of the 
Yhple surface; but if n is greater than unity i t  would fall 
'Qslde of the map of the earth's surface, since we should 
have nh = 5 r. 

For convenience we will write the above expression in 
the form 

;= sin p [;(tan $+ cot 5 +cos A' . 0 I 
b this ex reasion we need only to replace h' by nh and 5 by ic0 t  tun f). to obtain 7c directly as a function 
Of P and X. In  order to see immediately what ha pens to ' at the poles, we shall make this substitution an express 
the result in the form 

B 

; = (.ot 9)" (sin f)LCn(cOs $y-n 
+(tan 9)" (sin ~)'-~(coa $)1 Q+ sin p cos n~ 
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We shall need .the derivatives of k with respect to p of the 
first two orders; we have 

sin p bk - --- n COS p' 
k bp l+s inpf  cos X' - cos p 

or 
1 a;)= -cot p' +- (COSOC pr.+ cos h f )  cos p n 

=n2-n cosp cos pt 

- sin2 p (1 + 00s X' sin pi) ,  
or 

n s inps inpt  [i2 - ---? :; lj(g>. ] = sin2 p (1 + cos ht sin pt) 

'+n cos p cos p' -n2. 

Let u3 first sup oso n< 1. Thon at tho two poles, that 
is, for p = 0 and P or p = n-, we should h a v ~  k = oo; within 
the interval k would ass upon each meridian throu' h a 
minimum. Denoting gy a subscri t m the value w icb S % 
applies for k a minimum, we shoul have, by equating t o  
zero the first derivative of k with respect to p, 

cos p', - C 0 9  Pm 
1 + cos X' sin p', n 

tan p'm km =-- 
tan pm 

sin p, sin p'm n. 
C09 pm 

The corresponding point is situated in the NorthernHemi* 
sphere. 

The values which the above expression for a 3  bk 
k Gav$ 

sumes for p = 0 and for p = n are, respectively, n - 1 and 
1 - n, so that the first is negative and tho second is positive, 

n- n- 
But for p'=%) p(=po)  > 3 ; hence the expression is pos* 

Ir itive for p'=-, and, in fact, it is positive' for p -5 The 2 2 
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oint a t  which the minimum~is found lies, theroforo, in tho k orthern I-Iemisphere. 
The values of pk and p', for a given value of n on any 

given meridian would have to be determined by successive 
ap roximations until the e uation containing p,, I,, A', 

n would be satisfied y the value obtainecf For !i B 
articular meridians the equation becomes much simpler. 

~ U S  for the central rneridlnn it becomes 

h e n  this value is substitu3ed in the ocluation for the 
second derivative, we obtain 

It,is upon this meridian that wo obtain the smallost of all 
tho minima. 

Let us now suppose n> 1. The conditions are now 
changed, since k = o a t  the poles. Tho value of k upon 
each meridian passes through a maximum instead of a 
Qmiaum; this maximum is found in the Southern Hemi- 
sphere and lies between the colatitude po andb the South 

* $ is equal to This is shown by tho fact that - 
n- n- 1 for p -0, a positive rosult; for p =%, p'e3, and the 

n- 
value is -- cos pO, still positive, since p,> -; for p = n- the 2 
value becomes 1 -n a negative result. EIence tho maxi- 
Q~tn lies betweon the straight line pnrallel and the South 
Pol, --. 

m e n  n is slightly reator than unity, i t  may hap en 
that, starting a t  zero, t f e value of 7c would pass throu 1 a 
Qakirnum in thG Northern IIemisphere;,thcn i t  woul P fall 
to B minimum in the same hemisphere, pnd finally pnss 

a maximum in tho Southern Hom~sphere to return 
lo zero a t  the South Pole. This depends upon whether 

cos becomes greater than n; this may well happen if 
1 is t:t slightly greater thsn unity. 

Lagrange proposed to profit by the fact that n and p, 
arbitrary aratnetefs to so determine them that k 

Would vary as s i!' owly as pos3iblo a t  a given point upon the 
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in the vicinity of the prin- 
of which he wished to 

fulfilled by making 
central or straight 

line meridian, for in that case the derivative of k with 

respect to X becomes zero for X = 0. We can now equate 
to zero the first derivative of k with respect to p upon this 
meridian; it would mere1 be necessary to conside? (p, fts T the latitude of the given p ace. The second derivative will 
also become equal to zero if we take 
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Having thus found rt, we would calculate dm by means of 
the formula 

(a', sin 9,. tan 7 - --- n 

m e n  we should have for the determination of p, 
1 & ;;. tan - tan ?(cot ) 

. - 
For example, if the principal place was found on the 

Equator, we should have 

The Equator would then be reprosanted by a straight Iino 
and the system of projection wouId bs  defined by the 
equations 

X'=X 48 

tan %=(ton g)". 
A special case considered by Lagrmge 5s given by tho 

values of definition , 

X cot X f  2 cot ij 
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Hence %=$ and the Equator is represented by a straight 

line. The whole surface of the earth may be represented 
on a unit circle with the projection as defined, and the 
projection is so given in figure 34. 

FIG. 34.-1,agange's projection, oarLhfs surIwo in a circle. 

EQUIVALENT OR EQUAL-AREA POLYCONIC PROJECTIONS. 

An equivalent or equal-area projection is one in whic,ll 
the proportion of areas is preserved constant; that is to 
say, that any portion of the map bears the same ratlo to 
the region i t  represents that any other portion does to tho 
region which i t  represents, or the ratio of area of any part 
is equal to the ratio of area of tlze whole.ropreseiitation. 
This is expressed analytically by the equatlon . 

k,kp cos #=I.  

In  the polyconic projection this becomes for the sphere 
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Integrating ~artially with. respect to X and 8 with (p re- 
maining constant, we obtain 

no coilstant being added, since 8 arld h .vanish tonether. 
In this expression s and p are any function of p tgnt we 
may choose. 0 would the11 be determm$d by the above 
equation. Inversely, if we give the relation which should 
obtain between 0, cp, and h subject t? the condition that 
X should be a linear function of 0 and ?m 0, there would be 
an infinity of equal-area olyconic pro~ections which 
would satiify this relation. !n fact, 2~ and v being given 
functions of (p, the assigrled relation would be 

v, sin 0-v 0=X, 
in which 

P ds u=, - 
a cos cp dcp 

P dp,  v = ------ 
aa cos cp & 

po and so donoting tho two corist?nts of integration. 
There is no eqmvdent polyconic projection that is a t  the 

same time rectangular. In  a rectangular polyconio pro- 
leution we have 

as p du 
&=G 6 

and 

be rf(X) 
a=r(A) sin 8. 
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By substituting these values we obtain 

but ' 

zu r(x) sin 0 = --- 
u2 + r2(h) 

Hcncc 

u2 - r2 (A) 
cos e = 

UZ+ r2(h) ' 

This is an equation that must be identically satisfied by the 
values of u (a function of cp) and I' (A) (a function of h). 
The right-hand member is inde endont of p; hence the left- 
hand member must also be in c! epondent of q. The oondi- 
tion will be identically satisfied if u equals a constant and 

2 P if ---- is equal to a constant. 
a2 cosv d(p 
If u, is a constant, s is also a constant, and the pro'ection 

wou!d pass into one of the limiting cases of the po yconic 
pro'octions. 

1' 
dhe integration of the equation 

2 p  dp = a2c cos q dp 
givcv 

pZ = po2 + a2c sin cp. 

By ussigni~lg particular values to tho constants p, and c, 
we may obtain Lambert's cerltral equal area projection, 
Lambert's isospherical stenoteric projection (sometimes 
called Lambert's fifth), or, finally, Albers' projection. 
None of these are polyconic projections.in the accepted 
sense, and hence no inyestigation of their properties will 
be iven a t  this time. 80 one of the strictly polyconic equivalen t pro jec lions 
has ever become of practical importance, becauso they 
would generally be complicated both for computation and 
constluction. 



Let us investi ate the case in which the scale should be 
held constant a f ong the parallels. We should then have 

ds cos 0 - & = a  dp 

d s  cos 0--dp+a dp. 

On any given parallel the ri&t-hand member of this equa- 
tiorl is a constant, since dp IS a function of cp; but 0 1s a 
function of r p  and X, for we have 

or, by integration, 
a cos cp 

0 - ------- 
P 

X, 

no constant being added, since 0 and X vanish tcgether. 
It follows that tho left-hand member of the above e ua- 

tion must vanish identically; that is to say, &=O. Ypho 
circles of parallels are, therefore, concentric and 

dp= - a  dcp, 
or, by integration, 

p=~~+a(cp,--cp)~ 

This is Bonne's projection.; but, of course, it is not a pol - Y conic projection, si~lce s 1s constant; that is, the pard  el 
arcs are concentric. It appears, however, in the attempt 
to attain certain things by means of the equal-area poly- 
conic projection and can be looked upon rts a limiting case 
of tho same. 

If wo assume 
p = a  coC 9 

s--a(p+ cot P), 
then 
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If these values are substituted in the equation of condition 

S P ~ ( c  sin 0---o)=x, aa cos $0 d c p  d c p  

we obtain for the determination of 0 tho equation 

0-cos2 cp sin 0=X sin3 cp. 

I n  this case 
1 -cosZ cp cos 0 

km = sin2 cp 
sec # 

sin2 cp 
k, = 1 - cos2 cp cos 8' 

so that we have as required 

kmkp cos J/ = 1, 

and both k, and k, are equal to unity for 0=0. 

If, on the other hand, we assume 

p=a  cot cp 

s = a cosec cp 

these values bein substitutad in the equation of condition 4 give as the formu a for 0 

0 - cos cp sin 0 = X sinq cp 
and 

1 - cos cp cos e 
k,= sina e sec # 

sina cp 
k, = 1 -cos $9 cos 0' 

so that k, 3cp cos # = 1  and k,= 1 for 0=cp, and k,=sec J/ a t  
the same pomt. 
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CONVENTIONAL POLYCONIC PROJECTIONS. 

There is a clws of projections that are not strictIy equal- 
area, but, which have the property that they preserve the 
area of the zones between the arallels and that of the 
lullas between the meridians: b)ny equal-area projection 
possesses this property, but ?t is not co?vorsely true tl~fit 
any projection possessing thls property 1s also an equal- 
area projection. Tissot cdis projections of this class 
atractozonic. It can be rigidly proved that no ~ectangular 
polyconic projection can be an equa1:area projection. We 
can, however, have an atractozonlc projection in the 
polyconic class that 
also h a s  c i rcu lar  S 
merid~ans forming a 
rectangular net with 
tho circular p arallels. 

I n  those that we 
shall study f i s t  we 
s l l a l l  t a k e  t h e  
straight-line paral- 
lel of the map to 
represent the Equa- 
tor, and tha circum- 
ference descr ibed  A' A 
upon  t h e  l i ne  of 
poles of the map as 
diameter to .repre- 
sent the meridlan the 
longitude of wllicli is 
90°, reclconod from 
the central meridian 
or the liue of poles. 
We s ~ ~ u I I  determillc ~~~.~~.-~oomctricalro~ntio~~~~fatrmt~~~ni~pr~j~~ti~m. 
y' as a function of (P 

in such a manner tllat, in the hemispherp limited by this 
meridian, the area of the half zone compnsed betwee9 any 
two parallels will be preserved, and we shall determine X' 

a ffurictioll of X, so that the area of the lune formed by 
ally two meridians may be preserved. The equal-area 
projections not only have the zorles and luucs equal, but 
also in them tho ~neridians af the et~rtll anrid those of the 
map, respectively, divide each zone intq prol~ortional parts. 
T h ~ s  latter property is not found in the atractozonic 
projections. 

Ill-figure 38 we shall supposo the radius OA or O P  equal 
to 42, so that tho homisphero and the circle which servos as 
its projection are equivalent, since the radius of lllo globe 
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is taken as unity. The half zone with a base limited by the 
paraUel of latitude (p has the area ?r(l -sin (p). It is pro- 
jected u on the portion of the plane PUDU' which the 
chord aX' divides into two segments of circles; the one 
UPLT' is the difference between the sector OUPU', meas- 

1 -- 
~ r e d  by 2 OP2 times the arc UPU' or by r -2cpf, and 

1 the triangle OOU', which is measured by 2 OUX OU'X 
sin ,i UOU' or by sin 2cpf; the other segment is the difference 
between the sector SUDU' and the triangle SUU'; the 
angle USU' is equal to 2v', and the radius SU of the par- 
allel is equal to @ cot cp', so that the area of the segment 
is equal to (iP' -sin 2cp') cota cp'. By equating the area 
of the zone to the area of tho projection of the same, we 
obtain the relation 

r - n .  sin p=~--2cp' -sin 2qf+ (2cp'-sii12(pf) cotZq' 

or 
?r . sin 2cp' - 2cp1 cos 2p' 5 sin cp = 1 - cos 2cpf 

According to the second condition, the area of the segment 
OPQPf ought to be equal to that of the lune formed by the 
central meridian with the meridian of loggitude A. The 
angle PTO is the angle A', so that T P =  42 coseo A'. The 
area of the segment OPGP' is equal to the areaof thesector 
TPQP', minus the area of the triangle TPP'. 

A T P P ' = ~ T P ~  T P ' S ~ ~  L P T P ~  

1 
= 2 x 2 coseca X' sin 2X' 

TPP' = coseo2h' sin 2X'. 

Henco for tlio area of tho segmont wo obtain 

OPGP' = 2X' cosec2X' - cosec2X' sin 2X'. 
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The area of the lune upon the unit sphere is equal to 2 ~ ;  
hence by equating this area to the area of the projection 
of the same we obtain 

2X' - sin 21' 
A =  1 - cos 2X' ' 

These two expressions may be written 

sin 2q' -2q' cos 240' 
sin p= a sinzp' 

By computing by means of the first equation the values of 
P, which correspond to a suficient number of values' of P', 
we could construct a table which, reciprocally, would make 
known the values of corresponding to g?ven values of 9. 
The second equation wouId make i t  poss~ble to solve the 
same roblem with respect to X and A'. 
W. ~t % these relations we obtain 

dp' ?r cos (0 ( I  - cos 2q')2 
6 - 4  sin 2p' (2qf-sin 2q1) ' 

n cos Q sin cp' tan tp' sin 8 
k m - ~  m ( 2 s ' -  i n  Zr') - 

I sin X' sin 0 
'P'J~ cos tan Qf (1 - X I  cot A') 

" "-- T ---- 7 km-- 
- 

2 J ~ 2 4 0 ' - ~ s i n  p 1 + C O ~  A' cog (0' 
2 

1 cos v' sin2X' &=- - 1 
Jg C 0 3 p  1 - ~ ' ~ 0 t h ' l t ~ o s  h'coscp' 

1 COS $0' 
e=- - 1 1 

.,IS cos Q 1-x cot A' ~ + C O S  A' cos (0'' 
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By setting aside the condition that the rincipal meridian P should be represented by the circum erence described 
u on the line of poles of the map as diameter, we could B o tain a series of etractozonic projections instead of a 
single one, and in this group some would certainly be found 
the alterations of which would be less than those of the 

rojection that we have just studied. We could still 
Further increase the indetermination, and we could intro- 
duce two ammeters in the place of one by not fixing in 
advance t l! e parallel, the rojection of which should be a 
straight line. This remar applies also to the remaining 
projections in this class. 

1: 

a given meridian or that 

a way that, u on a given arallel, the same conditions 
should be fulfil ed. B cornfining each ex ression of rp' so X ? obtained with one of t e expressions for X we could form 
several kinds of projections, each of which would possess 
the two properties in question. 

Let us continue to re resent the principal meridian by R the circumference descri ed upon the line of poles of the 
map as diameter, the Equator by the diameter perpen- 
dicular to this line, and let us call R the radius of the cir- 
cumference. 

The ratio of surfaces a t  each point, in 0110 of these rectan- 
gular circular projections, is 

27 cog B' 1 dcp' dA' x=1 , -A- ----- -- - -. 
cos cp (1 + cos X' cos tp')= dp dA 

We now propose to bring about that it should remain equal 
to unity along the central meridian. For X = O  we have 
X' =O, and the derivative of X' with respect to A assumes a 
known value n, depending on the nature of the function of 
X which has been adopted to represent the value of A'. 
The condition is then 

or, by integration, 
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No constant of integration is added, sinco.~ and P' vanish 
a t  one and the same time. If each polo 1s to be a smgle 

point this equation must be valid for or - 5. This gives 
nRa=3. If we wish that the ratio of surfaces should bo 
equal to unity along the Equator, i t  would be necessary to 
have 

n' being the value of the derivatipe of P'. with respect to 
q for rp = 0. We deduce from ths equalon, by integra- 
tion, tho relation 

hSn?(l +3 t a n 2 2  ,I tan At 3, 

np constant being added, since X and X' vanish together. 
Since the meridian of 90" of longitude is to be  re resented P by the circumference described upon the llne .o poles of 
the ma as diameter, i t  is necessary. that t l ~ s  equation 
~hould Re satisfied when we make in i t  a t  the same thno 

y e  can unite the two oonditions; then the mode of pro- 
jection will be dofinod b the two relutions whlcll we have 
Just obtained, the first TI etween Y' and p, themsecond be- 
tween A' and A; in addition, n' T V I ~ ~  be ~ O U I I ~  joined to n 
by the relation nn1Ra= 4, which wo obtain either by making 

a p t  P= 0 and -- -nt ip the iii-st differential equation or by 
d@ 

making = 6 and $=n in tho socoud. From this we 

conclude that 
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.The two equations are 

k, and 7c, have now becomo 

& cosp(l+coscp')2 3c,=- - 
4 cos 'p' (1 +cos X' cos 'p') 

1 COS cp' (1 + COS k, = - ---- 
J?r cos p (1 + cos A' cos cpf)  

1 (l+cosA') (l+cos'p') K = kmkp = [% 
1 + cos X' cos (0' 

Tho latter formula can be written 

1 (1 - cos A') (1 - cos q7') K -  1-- [ 2 I+c0sX'coscpf I 
In  this form we see that K is everywhere less than unity, 
except on the Equator and upon the central meridian, and 
that the alteration of surface increases with the longitude 
and with, the lrztitude. On the principal moridian we 
obtain 

Lot us further examin? how cp' ought to vary with cp in 
order that tho areas should be preserved dong the prin- 
cipal meridian. If we denote by n" b e  value which the 

'n- derivative of X' with respect to h takes for X=Z, we should 

have 

or, by integration, 
' sin cp = n" Ra sin cp', 

no constant hoing added, sinco cp and cp' vanish simul- 
taneously. 
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r 
If 9 nrld v' am to bacomo ij- dmultnnoously, we shall 

have the condition 
nff  R2=1, 

and in this case tho pole will be reprssentod by a single 
Point. The equation then reducos to 

If to this equation we add the following: 

WO know that the surfaces d l  aIso be presorvod along the 
Equator; this equation was derived from the &fferentid 
equation 

This value of nf' gives 
I - R E  Z./3~. 

2'110 values for the ~nagnification nloi~g tho moridians nnd 
Parallels now bocomo 

2 (1 +cog A')' k~az I +oos p oos A'' 

Qd from these we derive 
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The ratio of surfaoes is greater than unity everywhere 
except on tho Equator and upon the princ~pal meridian. 
The alteration increases with the latitude; on the other 
hand, i t  diminishes when the longitude increases. This is 
shown at once by writing tho above expression in tlie form 

1 + cos p cos A' 

Upon the central meridian, whore the greatest altoration is 
produoed, we have 

The oonditions to insure that the areas should be pre- 
served alon the meridian of longitude Xo and dong the 
parallel of atitudo p0 give, rospoctively, the differential 
equations 

f 
cos p' A sinZ A', - 1 dv' , 2---=1 
cos p ( ~ + C O S  X r o  cos p ) dp 

B sin p', tan p', -- 
1 dx' 

(1 +cos pl, cos A'J~x=" 

Tho integration of tho first equation gives 

sin p' sinp=A 
1 + COS A', cos p' 

- 2 cot A', tm-l 

and from tho second wo got 

. sin A'  tang)^)-^+^^^ cOs 

The uantitios q,, p',, A,, Af0 and the constants A and B are 
'oine 1 to each othor by tho four relations that are obtained by expressing that the first equation is satisfied for p =c 

7r ?r 
with p' = p',, as also for p = 2 with (P' - 2 and the socond for 

a 7r 
A with A' = 2, as also for A =Ao with A' =Af,. 

The ratio of surfaces has now become 

(1 + cos A', cos p')  (1 + cos pf0 cos A')  2 

"=[(I + cos ufo cos A'.) (I + cos A' o o s x ]  
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In the parentheses of tho second member the factor which 
varies with co' is 

1 + cos X', cos $0'- cos X', - cos 1' 
l+cos X) 00s $01-ICCOS Xf+se0 (or. 

We see, then, that upon each of the moridians for which we 
have A <&, t11e ratio Ii is less than unity and incromes from 
the Equator to the pole; for X > X, we have K> 1 and K 

, increases from the poIe to the Equator. We shorrld see in 
a similar manner that, upon each parallel whose latitude is 
loss than pol I i i s  smaller than unity and incroasos with the 
longitude, ~vllile, if (p is greater than $00, I< will be greater 
than unity and will increase as the longitude decreascs. 
Thus Hattains a minimum Ii, at the contorsof the map, and 
another I<2 a t  tho pole on the principal meridian; it attains 
a maximum Ic. a t  the pole on the central meridian; and, 
finally, s second maximum g4 a t  the lntorsoction of tho 
Equator with tho principal rne~~idian; these values are 

cos Xfo)  (1 +cos d o )  
2(1+ cos hJ0 cos p',) 

1 
Z~ (1 + cos A; cos co',)' , 

Let us stilI oonsidor the rectangular circular projoclion 
in which tho homisphcre is rop~~esouted by a complete 
clrcle, and lot us now suppose that we wish to dovelop 
the central meridian with its true length. In  order to 

7 '  
do this we tako tho radius of Wle map equal to 2. In  

fi@m 30 we have seen that the three points A', D, and 
are m a straight lino; hence the angle OA'D is equul 

?r 
tho half of $0'. Moreover, we have here OA' =- and 2 

OD = $0; tho right triangle OA'D will then give 
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If we also wish to develo the E uator with the true 

S R len th, we should have in gure 3 1 8 G = X, and, since the 
ang e OPG is equal to tho half of X', the triangle OPG 
will give in turn 

X' 2X tan2: =--a 

n 

From these two equations we obtain 

6' 4Xp tan - =--, 2 na 
and also 

ah' sin A' 
d?; =x' 

so that we obtain 

n sin 0 n sin p' 
b=ij psin=Z p (1 + cos A' cos $7') 

n sin 0 - n -- sin X' 
kp=2 A cosp tanp '  2 X ( ~ + o o s X ' e o s ~ ' ) ~  

At the intersection of the Equator and the principal: 
moridian, we have 

kt, -2  

Ti' = 2. 

The Equator bein developed with its true length, if 
we make tho Becon f condition 90 longor a ply to the 
central meridian, but to the principal meri I$' ian, and if 
we wish that the arcs of this last have for. projeotions 
arcs that are proportional to them, the relation between 
X and A' will remain the same, but that which exists 
between p and p' will be replaced by pr=p,  which rela- 
tions give 

X' 2X tan- =- 2 n 

e 2X cp tan -=- tan5* 2 n 
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We have thon 
n sin 0 7 ~ "  1 

km =Z sin p sin h' Z 1 + cos h' cos p 

a sin 0 a k -- = -  
sin X' 

P -2hs incp  2X(1+cosA'cosp) 

a2 sin X' I<= - 4 X(l + cos X' cos (o)=* 

This projoction is somotimoa callod tho storeographic pro- 
jection with modified meridian. 

NONRECTANGULAR CIRCULAR PROJECTIONS. 

Lot us always supposo that to each point of the globe 
thoro corrospo~ids ono point of tho map, and o?ly one, so 
that tho circu~nforoncos which sorvo for .the pro~ectlons of 
!he moridiaiis all pass through two points P and P' in 
figuro 36, which atto tho rojoctions of the two 010s. P Let APA'P' bo t l~e  cbcum erence doscnbod upon P$' as 
diamotor, 0 its centor, AA' tho diameter per endicular f to PP', UDU' the ro'ection of tho parallel of atitude 9 
or of colatitude p, 5 tile point in tho prolongation of PP' 
which sorves as the center for this projected parallel, V 
the middle point of tho chord 1717' common to tho two 
~ircumferonces APA'P' and UDU'. firthor,  lot POP' 
be the projection of the meridian of longitude A, reckoned 
from the contra1 ~nolidian projected into the line PP' and 
lot T be tho coiitor of the circumforonce PGP'. Let us 
continue to dofino this last by tho anglo X' at which i t  
intersects PP', wliich is equal to tho an lo OTP, so that f in the triangle OTP ~vo  linvo, us formor y, on taking O P  
as unity and on denoting by I2 and S, rospoctivoly, tho 
radius T P  and tho distnnco OT, 

As to tlie projoction UDU' of tho pardlel, \\re can dofine 
it by the two lengths r and s, as we have done up to this 
timo, or by the two angles wliich the sides of the triangle 
0517 make with each other. Lot us call the angle SOU, 
f'; its complomont, the angle OSU, e. and, finally, 
et 7 denote the angle which one of the radii 027' and SZ7 

malw with the prolon ation of the other. Shlco wo have 
011- 1, tho triangle ~ S U  is dotorminod by two of tho 

112948"-10-0 
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B>a. 86.-hmetrlcai relations of nonrectangular doubleclrcular projections. 

urntities r, 8,  p'? f ,  and 7 and it is easy to express the 
%roe other quptlt~es a. weell a. the vanous lines of the 
figure in functions of the &st two. We have especially 
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sin 21' 
T=  sin E 

sin r g=- 
sin e 

cos ?+) 
OD=s-r= 

6 

cos 2 

The ratio of the two parts DP and DP' into which tho 
line PP' is divided by the projection of the parallel is 
expressed very simply by moans of 1' and r .  I n  fact, 
t b  latter angle is e ual to that of t e two tanwonts a t  
U to the two circum ? crences, which angle is .divi$ed into 
two arts b the chord UV', the one of which is the double 
of $ angfe DUUf, and tho other of the angle PUU'. 

Th.e anglo PUD is thon equal to $; but of the two comple- 

mentary angles PP'U and P'PU the first is equal to $. 
It comes about, then, in the triangles DPU and DP'U 

t ha t  
'Y 2' DU sin z= DP cos 

froln wllich, by-dividing member by member and 011 

denoting tho ratio by t ,  
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The alteration $I of the angle of the meridians with the 

parallels is the excess of the angle SNT over In  order 

to obtain i t  simply, let us note that, MI being the second 
point of intersection of S M  with the circumference PMP', 
we have 

SMx SMl = SP x SP', 

if 111 is displaced by changing the meridian but, remaining 
on the same parallol, SM is constant; then tho same is true 
of SM,; conse uently, also of MM,. Then the projection 
MN of the ra 1 ius TM of the variable meridian pf the map 
upon the radius SM of the fixed parallel has a constant 
length. At tho point B4 this lcngth is oxpresscd by R sin 9 

sin rC. or by --- sin X' 1 and, at  tho point U, by cou y; i t  thus rosults 

that 
sin I// = cos y sin A'. 

1x1 the trianglc O S T  tho tl.nglo a t  S, which we will c d  a, 
may be immediately obtained, for we have 

Let us now designate by O the angle OSM and by 6 the an le 
O T M ,  which we shall need for calculating tlie ratios 
and kp. The triangle STM gives 

"k 
R sin ( O + U ) = ~ ~  cos I) 

r cos (6 + u )  - -- cos $; TS 

but we have in tho triangle OST 

S S . TS=?-=---. 
sin u cos u' 

so that wo have 

R sin (0 +a) = -- sin u cos I) S 

r 
cos (6 + u )  =- cos u cos I) 

S 
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sin a cos J ,  
sin (0 + u) = cos A' 

sin p' cos a cos J,  
cos (6 +a) = sin y 

I t  is, however, sufFicient to calculate one of the angles 6 
and 6; we have, in fact, 

for, I being the oint of intorsoction of TST with PP', tho 
two triangles OI f ' and ISM have the angles a t  I equal, and, 
by expressing that the sum of tho other angles are tho 
same in the one triangle as in the other, we ohtajn the 
relation which we have just written. 

The rectan ular coordinates of the point U with respect 
to the axes 8 A and OP are 

x = r  sin 6 

y = R sin 6. 
Wo now have 

By taking, with respect to p and with respect to X, tho 
derivatives of the logarithms of the two members of each 
of the relations which we ham establ~shed befweon tho 

as a 6  
different variables, we obtain FD and z, which figure in 

the values of k ,  and kp; but c i s  more simple to obtain 
k,  by malciqg use of the formula 

k,=($---$ 00s 6 ) sec +, 

which has been demonstrated with regvd to polyconic 
pro'ections in general. Since the lnorldlans are also 
circ 1 es with thew centers upon the same straight line, 
we can form an expression for kp by replacing in the 



134 u. S. COAST AND GEODETIC SURVEY. 

expression for km, p by h, r by R, s by S, and 0 by 6, and by 
dividing by sin p; this givos 

a f i .  as 
.=(K-& cos s ) ::: -.- ; 

The projection of TMupon OT being equal to TO plus tho 
projection of SM, we have 

R cos 6 = S + r  sin 0. 

Substituting for cos 6, in the expression of k,, the value 
which results from this lnst equation, and observing that 
an as. 

R- - S& IS zero, since R2 - Sa is a constant, we have ax 
r sin 0 d l .  

kpF -R sin p COB + dht 
but 

1 dS - -- 1 dl' 
R ax- -m X" 

so that 
r sin 9 sec + dl '  

k p =  sin h' sin a' 
Tho expression for 7cm can be written 

Let us examine in particular what these ratios become 
upon tho straight-line parallel of the ma which we shall 
make, for example, correspond to tho 8 {quator. Let us 
call A tho value which is assumed for p = 0 by the deriva- 
tive of OD or s-r with respect to cp and -R the limit 

a s  toward which tends the ratio of - to 2r3 whcn p tends 

toward zcro. Since at the same time re 'tends toward 00 

or tan wo find that on the Equator 2 ' 
A' k,-Aa B tana 

since # = 0 a t  that point. 
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The condition that the areas should be preserved along 
this line will then be 

A' dAf ' ( A + B  tan' g) secaZ ~ = 1  2 

or, by integration, 

X' (a+: tana g) tan 2 =h, 

no constant bein;: added, since X and X' vanish simulta- 
neously. 

There is an infinity of circular projections with oblique 
angles that are atractozonic. If we sup ose the meridian i of 90' of longitude represented b y ,  t e circumference 
described upon the line of poles as d~ameter, these pro- 
J ections are furnished by the following equations : 

2c  -sin 2~ 
2 ~ '  +sin 2 4  - ( 1  + cos 2p') - cos 2E = r sin p 

The first leaves yet undoterminad one of the two quantities 
p' and E as a function of 9; as to the s?cond, i t  1s incom- 
patible with the condition of reservation of areas along 
the E uator, which proves t at  no circular projection B R 
with o lique angles can be equal-area in the complete 
881190. 

PROJECTION OF NICOLOSI OR GLOBULAR PROJECTION. . 
In  this projection the Equator and the central meridian 

are found developed in strai h t  lines and wit11 their true 
lengths; the principal meri%ian is represonted by the 
circumference described upon the line of 010s of the 
ma as diameter; and, finally, tho arcs of t is meridian 

Ci' 
R 

an the correspondinc* arcs of the circumforonce are pro- 
portional. We th&re have 
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tan -=- P c o t -  P 
2 n - p  2 . 

a sin p r=-- 
2 sin E 

a sin y 
S I ----- 

2 sin e 

X' 21" tan -=- 
2 n 

a- f cosec A' - 2  

a cot X' 

sin $ = cos y sin X' 

S 
tan a=- 

S 

sin (0 + a) = sin u cos + 
c,os A' 

r sin 0 
h cos rp cos $' 



The latter formula is very easjly deduced, since by 
logarithmic differentiation we obtaln 

when this value is substituted in the enerd formula we 
obtain the relation as iven abov?. T%! formula for h is 
somewhat more oorn~cated  in its der~vation. We have 
from the a priori con itions 

From the triangle OSV we obtain 

7r3 
ra=s2+--7rs sin $0; 4 

hut 
s-r=q 

7r2 ( s - ~ ) ~ = s ~ + ~  -as sin (o 

7? - -d 
S= 

4 
a sin p-2p 

ds -- P -2p -s (lr cos $0-2) 
dp nsin(o-2p asinp-2p 

- - 2r-as cos (o. 

a sin (o-2p 

m e n  these values are substituted in the general formula on 
P?ge 134, we obtain the value of 7c,, as given above. A 
circle constructad upon the lino of polas of the map as ct 
diameter gives the projection of the principal meridian. A 
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diameter perpendicular to this is the rojection of the 
Equator. Both of these diameters are gvided into equal 
parts and the projection of the principal meridian is divided 
lnto the same number of equal arts. The parallels are 
arcs through the divisions of t g e line of poles passin 7 through the corresponding divisions of the principa 
meridian. The meridians are arcs passing through the 
poles and throu h the divisions of the Equator or the 'F diameter perpen icular to the line of poles. 

FIG. 37.-Nicolosi's projection or globular projection. 

PROJECTION OF P. FOORNIER. 

Another conventional rojection is that proposed b 
P. Fournier in 1646, whic % is a polyconic projection wit g 
meridians that are ellipses. Tho Equator and the centrd 
meridian are developed with their true length on two 
strai ht  lines perpendicular to each otheri the contra1 
meri % ian serves as the major axis of all the ehpses for each 
of which the corres onding X serves as the semiminor axis. 
The principal meriian is a circumferenc6 of a circle. The 
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pro 'ec tions of the parallels intercept upon this circumf erence 
an d upon the projection of the central meridian lengths 
proportional to the comes onding arcs of the globe. P In  figure 38 let APA'P be a c~rcumference the radius of 

which O P  is equal to g; it will reprdsent the principal 
meridian. Let PPf be the central meridian of the map 

&a. 88.-Geomolrlonl relations of Fournior's projection. 

and let AA1 bo the E uator. If we take OD equal to P, 
and if we make the ang f es AOU and A1OU' also equd to P, 
the circumference passing through the three points 17, D, 
0' will be the projection of the pard01 of latitude P. BY 
taking OCf e ual to h and constructing a half ellipse ha& 4 for vertices $, a, and P f  we shall obtain the projection o 
the meridian of longitude A. Let 3 be the point where i t  
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intersects the parallel, and let S be the center for the lattera 
draw the absc~ssa MN of the point M and the tangent ~ d '  
to the ellipse; also draw SU and SM. 

The parallels are the same as thoso in the globular pro- 
jection, so that we have, as before, 

or, by combining the two equations, 

7r2 
p(ri-8) -TS sin p f 3 = o  

n-2 
x- 'pa  

s= 
n sin (p- Zp' 

By taking the derivatives of the two members of these 
equations with respect to (p we obtain 

ds 2r-ns cos p -- 
dp- T sin (p - 2(p 

The angle OSN is still denoted by 0. The triangle SMN 
gives for the rectangular coordinates of M with 0 as an 
origin 

x = r  sin 0 

The elliptic meridian has the equation 

By substituting the above values of x and y in this equa- 
tionS and then solving for cos 0, we find 

cos e= n44X4 + 2nXa (2s sin (p - n) + 7r2rz - 4X2s. 
r (n2 - 4X2) 
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By using this equation we can compute the angle 0 as well 
as the values of x and y. If we denote by q the angle OTM 
formed by tho tangent to the ellipse at  N and the Y axis, 
we know that we have 

but the departure $ of the angle of the meridian from a n  
orthogollal intersection with the arallel IS the al l~lo SMT, 
which is equal to the differenco\ctwcen the ~ n & s  OTJf 
and OSM; we have then 

~ ~ e r ~ t l l h l ~  is lill0~~\~11 ill the eq,rcssion for k,, wamely 

By substitcting tho vulucs this becomes 

as cos p - 2r 
" m = ( l + '  sin p-2p s i 1 1 ~ ~  O )  soc +j 

e s  rcssion that has the same form as in tho case of the 
lobufar projection; Eut, of course, the anglos 0 and.$ have 

%l'arant values from what they had m that projection. 

BY differentiating the equation for cos 0 with respect to A 
a0 We obtain the value of which may be reducecl lo a con- 
"-- 

Veniant form by substituting for sin 0 its value,h te~~rns pf 
and y; this form is much more readlly obtu~nod by dlf- 

ferentiating the expressions for x and ye wlth respect to 
A, and then the differelltiation of the qquatlon of th? ellipse 
1)artiaUy with respect to will furxilsh the equutlon for 

c3 9 detcrmi~lill~ -. In  this way we get ax 
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be ' By solving these linear equations for - we obtain ax 

a2m sec cp 
kp= [rig - G2 - 4x2) Y]. 

Upon the central meridian we have 

e=o, +=o, k,=i, 
and 

kp= sec cpdl -(%yj 
upon the principal meridian 

21 relation that is evident from the figure. 
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Also 
1 

sin $=, [p (r+s) -21 
~ m ~ ~ [ (  s p-2 * sin p) -$ + r] 

ORDINARY, OR AMERICAN, POLYCONIC PROPCTION. 

This is the pro ection that is generally referred to in this 
country as the po 1 yconic projectron; but we liaye attempted 
;to show that the pol~conic projection class is an exceod- 
ingly broad one and that i t  contains examples of almost 
every kind of projections; The name Amencan polycon~c 
rojection has been given to i t  by European writers chiefly 

gecause i t  has been extensively usod by the United States 
Coast and Geodetic Survey; in fact, the projection seems 
to have been devised by Supt. F. R. ffassler to meet the 
requirements in the charting of the coast of the United 
States. 

E'or convenience of reference we shall give again the dif- 
ferential formulas developed on pages 10-13 : 

be ds 
D-+  sin 0 
dp & 

tan #=- ds dp - cos 0-- 
dP dP 

k,,= P (1 - 2 sin2p)x 30 
a cos p bx 

The characteristics of this rojection are that each par- 
aUel is the developed base o ! the cone tangent along the 
parallel in quostion; that the parallels are spaced along the 
central meridian in proportion to their true distances apart 
dong this meridian; and, finally, that the scale is main- 
tained constant along the parallels. 
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With these conditions we have 

a cot p 
P z  (1 - ez sinzp) % 

dp s=a (1 -e3f------ 1 - 9 ~ i n ~ p ) ~ ~ ~  + (1 - a e2 cot siri%p) p X 

k, = 
p  (1 -e2 sin2p)x a 0  

a c o s p  
or 

By intergration 
0  =X sin cp, 

no constant of inte ration being added, since 9 and X vanish 
simultaneously. 8mce the parallels are represented by 
circles and since tho scale alon the parallels is to be main-, 
tained constant, the last re I? ation can be obtained b 
equating an arc of the projection to an arc of the paraIlec 
hence 

pe = 
aX cos p 

(1 - e2 sin2 p) 

a cot cp ah cos p 
(1 - e2 sin2 q ~ )  ' -  (1 - €2 sin2 py% 

8 =X sin cp. 
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These values fully determine the. projection, and all of tho 
elements can a t  onco be computed. 

be - = X cos 'p. 
bcp 
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By substituting thoso values in the differential formulas 
we obtain 

a m t $  
X cos cp- a cot cp sin 8 

tan $= (1 - e2 sinz cp)all (1 - aZ sin2 cp)% 

- a cot2 cp a cosec 2cp - ae2 (1 + cos2 cp)  
( I - ~ Z   sin^ p)% cos ' +  (1 - e2 sin2 cp)'l? 

tan $ = 
h cos2 cp sin cp - cos2 cp sin 13 

1 - t" (1 + cos2 q) sinZ cp - cos2 cp cos e + 1 -e2 sin2 cp 1 - e2 sin2 cp 
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When X is small-that is, when the map is.not extellded 
far from the central meridian-a? approximation in a 
series in terms of X is very, convemont. If we neglect O5 
and higher powers, we obtain 

e3 e-g+- -  . . . 
G 

tan $= 
t3 sin2 $9 OZ 

sec2 p - t2sin2 p- 14-2 - . . . 1- 

AS sin3 p - - . . . .  
tan $= 

6 
€2 sin2 $9 X2 sina p 

t a n 2 p - 1 - e a s i n 2 p + 2 -  ' ' ' ' 

or approximately 

X3 
= - sin p cosa p 6 

X3 (1 --;$ p 
= =sin2 pcos $9 >. 

For smaller values of $ this can be stiU further tipproxi- 
meted by the form 

XS $= - sin 2p cos p; 12 

for the sphere km becomes \ 

km = S ~ C  $ (coseca p - cota p cos 6). 

To obtain an approximation we let sec $= 1 and wo gat 
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In these approximations h must of course be expressed in 
arc. 

An  a proximation for k, was determined by A. Linden- P kohl, o the United States Coast and Geodetic Survey, that 
is remarkably close to the one given above. This was given 
in the form 

X0 cos $0 
E= +0.01( *el y, 

in which X0 is the distance from the central m6ridian in 
degrees of longitude. In  this form B corresponds to the 

ha 
term 2 cos =p in the b t  approximation. 

The projection is generally lotted from computed coordi- P nates of the intersections o the meridians and parallels. 
If we take as origin the interesection of the central meridian 
and the Equator, we shaU havo 

It is the more general practice to compute each parallel 
with its own ori m; that is to say, by using as origin the 

meridian. 
5 intersection of t e parallel in question with the central 

In  this case 

The 0 anglcs havo to be computed for each parallel that i t  
is desired to ma by computation. If those are to be a t  
frequent interva 7 s, i t  is customary to compute certain 
coordinates and then to interpolate the intervening values. 

Tho meridional-arc values are tabulated in meters from 
minute to minute in the Polyconic Pro ection Tables, 
Special Publication No. 5, United States & onst and Geo- 
detic Survcy. If i t  is desired to refer the coordinates of 
the various parallels to a common origin, i t  is merely 
necessary to add the meridional-arc values reckoned from 
the chosen origin to the y values as determined above; this 
is true because the value of s is given as  e ual t o  the 
meridional arc from the Equator to the paralle ? of latitude 
p, with the addition of the value of p in terms of p. I t  is 
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customary, however, in the construction of the projection 
to locate the various origins on the central meridlan by 
their meridional-arc values and ,then to use the coordinates 
as originally computed. It is, m general, not necessar to d compute the p, values since the tabulatcd A factor v ues 
given in Special Publication No. 8, U?tod States Coast 
and Geodctic Survey, are connected with them by the 
relation 

1 A= 
- 

p, sin 1'' 
or 

1 
P,"A 1'/' 

Hence 
log p, = colog A + colog sin 1 ". 

The logarithms of the A factors in meters.arc. tabulated for 
each minute of latitude in Specid Publ~cat~on No. 8, as 
referred to above. With these values as given the formula 
for p becomes 

p-p, cot (0. 

A great advanta e of this projection consists in the fact 
that a universal t a  % le can be computed that can be used 
anywhore upon the earth's surface. Almost every other 
projection has specid elements that must be determined 
or each projection. These elements are generally certain 

arbitrary comtants that enter into the formulas forcom u- 

e can have a universal tn 10. 
E tation. The Mercntor rojection is another projection t a t  

If the whole earth's surface wcrc mapped in one continu- 
ous rojection it would b? interesting to know what would 
be t g e length of the meridian that forms the outer boundary 
of the representation and also h0.w many t~mcs the area has 
been increased. Such a projection of the sphere is shown 
in figure 40. By approximate measurement on a plate of 
such a projection it was found that the ratio of increase of 
lenvth of the outer moridian was about 3.2 to 1. 

f h e  element of area of the representation being given in 
the form 

dS=a2 ICcos d p  dk 

for the sphere, we hnve 



ma. 40.-Ordinarp or American polywnicpmjection 01 the entiresphela 
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so that 

dS= a2 [cosec2 (o - cot2 (o cos (h sin (o)] cos (o d(o dh. 

One-fourth of the area is given by integrating between the 
a 

I i m i t s ~ = ~  toh=aa.nd ( p = O  to p=2. The total a r e a s i s  

therefore given by ths formula 

S = cos (o dps' [cosec2 (o - cot2 (o ow(h sin (o)] dh 
0 0 

c0s2 (o 
= 4a21:[a cosec2 (o - sq sin (a sin (o) cos (o dcp I 

cos8 (o 
= 4ea [- a oosec - 4aaJ$ sinscP sin (r sin cp) dP. 

In the latter integraI let x = a sin (o 

then 

and a 

* cOsa cp - 4 a 2 J ~  - sin(r sin p) cos (o 4 sin3 I,O 

1 sin x 1 cos X *sin x p4a2a2 [ 2 .  --+----]r+(2*+4) 2 x 0  a 2 1  -az. a 

Ifonce the value of S becomes 
r 

S--4a2[-a cosec (p133-2r 
0 

The integrated terms assume the form oo - oo a t  the lower 
limit, and must be evaluated for that point. The last term 
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of the expression is the transcendental function Imown as 
the integral sine; i t  is represented by the series 

The value of this series for x = n is approximately 1.852. 
To aid in the evaluation of the integrated part, we shall 

restore the value of x = n sin cp 

sin (n  sin cp) cos ( r  sin c ) ] ;  - 4n cosec cp + 2 
cp 

+ 2n sin cp 0 

2 sin(n sin cp) + 2n sin cp cos(n sin cp) - 4n sin cp 

sinz cp I: 
2 sin (n  sin cp) + 27~ sin cp cos ( a  sin cp) -4n sin cp 

sinz cp I 
=limit [ ~ T C O S ~ M S ( T ~ ~  ~ ) + ~ T C O S B  cos(~sin p)-2+sin ~ c o s p s i n ( ~ s i n ~ ) - 4 ~ c o s  (p 

2 sin p COST 
cpL0 

I 

=limit [ 2n cos (n  sin cp) - ?r2 sin cp sin ( a  sin cp) - 
cpA0 sin cp 2nI 

=limit [- 2as cos (p sin (T sin p)-rs cos p sin (u sin p)-d sin (p ws(p cos (r sin p) 
COY p 

$910 

= 0. 

Therefore 
S = [ - 4 r - 2 ~ +  (2na+4) 1.8521 aa 

= [ - 6n + (3n2 + 4) 1 .852]a2 

=[-6n+23.74 X 1.S52]a2 

= (- 18.85 +43.97)aa 

= 25.12 a2. 

Area of the sphere = 4na2 = 12.57 a2. 

Area of  ma^-25.12 - 2 very nearly. 
Area of sphere- 12.57- 

The area is therefore increased approximately in the ratio 
of 2 : l .  
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TISSOT'S INI)ICATRIX. 

To represent one surface u on another we imagine that E each surface is decomposed y two systems of lines into 
infinitesimal parallelograms, and to each line of the first 
surface we make correspond one of the llnes of the second; 
then the intersection of two lines of the different sys- 
tems upon the one surface and the intersection of the 
two corresponding lines upon the other determine two cor- 
responding oints; final1 , the totality of the points of the 
second whic K corresponBto the points of a given figure of 
the first forms the representation or the projection of this 
figure. We obtain the different methods of representation 
by varying the two series of lines whch form the graticule 
upon one of the surfaces. 

If two surfaces are not ap licablg tq each other, i t  is 
impossible to choose a metho d=' of projection such that there 
is similarity between every figure traced u on tho first and 
the correspondin figure upon the second: On the other 
hand, whatever t % e two surfaces may be, there exists an 
infinity of systems of projection preseryy, the angles, and 
gs a consequence, such t l~a t  each fi ure in lnitely small and f ;ts representation are similar to eac other. There is also an 
infinit of others preserving the arets. However these 
two c P asses of pro ections are ex~ept~pns. A method of 
projection being ta lc en by chance, ~t d l  generally happen 
that the cmgles will be changed, except! possibly, a t  par- 
ticular points, and that the corresponln areas will not 

be altered. 
f have a constant ratio to each other. The engths will thus 

Let us consider two curves which correspond to each 
other on the two surfaces. In  figure 41 let 0 and Mbe two 
points of the one, 0' and M' the correspondin points of k the other, and let O T  be the tangent at 0 to the irst curve. 
If the oint M a  proaches the polnt 0 indefinitely, the point 
M' wi t  xproac~ indefinitely the point O', and the ratio of 
the leng of the arc O'M' to that of the arc OM will tend 
toward a certain limit; this limit is ~vllat we c d  the ratio of 
len ths a t  the point 0 upon the curve OMor in the direction 
0 I! In  n system of projeotionpreservin the angles the ratio 
thus defined has the same value for all fircotions at  a given 
point; but i t  varies with the osition of this point uuless P the two surfaces are applicab e to each other. when the 
representation does not preserve the angles except a t  par- 
ticular points, the ratio of lengths a t  all other po~nts 
changes with the direction. 
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The deformation produced around each oint is subjected 
to a law which de ends neither upon t e nature of the E E 
surfaces nor upon t e method of projection. 

Every representation of one surface upon another can 
be replaced by an infinit of orthogonal projections each 
made upon a suitable sca i e. 

We note, first, that there always exists a t  every point 
of the first surface two tangents perpendicular to each 
other, such that the directions which correspond to them 
upon the second surface also intersect a t  right angles. 
I n  figure 42 let CE and OD be two tangents perpendicular 
to each other a t  the point 0 on the first surface; let C'E' 
and O'D' be the corresponding tangents to the second. 

FIG. 41.-A curve and its proJlecction. 

Let us suppose that of two angles C'O'D' and D'O'E' the 
first is acute, and let us imagine that a right angle having 
its vertex a t  0 turns from left to ri h t  around this oint f in the plane CDE, starting from t o position C O ~  and 
arriving a t  tho position DOE. The corresponding angle 
in the plane tan ent a t  0 to the second surface will first 
coincide with 0' 8 'D' and will be acute; in its h a 1  position 
i t  will coincide with D'O'E', and will be obtuse; within the 
interval i t  will have passed through a right angle. There- 
fore, there exists a system of two tangents satisfyin the 
condition stated, except a t  certain singular points. brom 
this property we conclude that in ever system of repre- r sentation there is upon the first of t lo two surfaces a 
system of two series of orthogonal curves whose ro'ec- 
tions upon the second surface are also orthogona? &he 
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two surfaces are thus divided into infinitesimal rectangles 
w&ch correspond the one to the other. 

FIG. 42.-TWO tangents s t  rlgl~t angles nnd ;heir projections. 

This fact being established, let M be a point in figure 43 
infinitely near to 0 u )on the first surface and let OPMQ 
be that one of tho in 8 lnitesimal roctangles which we have 
just described that has OM as a diagonal. Let us move 

Fro. 43.-Projeotlon of inllnitely nenr points. 

the second surface and placo i t  so that tho projections of 
the uidos 01' and 0& fall upon tho siclos themsolves pro- 
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longed if necessar . then let O'P'MQ' be the rectangle 
corresponding to &.MQ; let us call N the point of inter- 
section of the lines OM' and PM. We can consider this 
point as the orthogonal ~rojection of the point that M 
would be if we should turn the plane of the rectangle 
OPMQ throu h q, suitable ando with OP as an axis. But f this angle, w lich depends onjy upon the ratio of the two 
lines NP and MP, is the same whatever oint M ma be; R for denoting, respectively, by c and d t e ratios o r the 
lengths in the directions OP and OQ-that is, on setting 

OP' - O P = ~ a n d - -  OQ' 
OQ 

wc should have 

NP OP 1 = - - iilP OQ 1 
xfl" OP/-2 and --=-=- M'P' OQ' d' 

and, consequently, . 
N P  d -=-. 
M P  c 

Thus if M moves on an infinitesimal curve traced around ' 
0, we shall obtain the locus described by N by turning this 
curve through a certain angle around OP as an axis and 
by then projecting orthogonally upon the plane tangent 
a t  0. On the. other hand, we have 

OMt OP' ----- 
ON OP-" 

so that the locus of the points M' is homothetic to that of 
the oints N;  the center of similitude is 0, and the ratio of 
simifkude has the value e .  The representation of the 
infinitesimal figure described about the point is then in 
reality an orthogonal rojection of this figure made on a 
suitable scale, or the &ure formed by the points N and 
that formcd by the points M' are formed by parallel sec- 
tions of the same cone. Any 
fore be considered as 

'i! onalpro ections of all 
provlile that we 
the scale of the 
with respect to the plano of the map. 
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Of all the right angles which are formed by the tangents 
a t  the point 0 those of the lines O P  and OQ and their pro- 
longations are the only ones one slde of whlch ~emains 
parallel to the tan ent plane after the rotation whlch was 
described above; &ese are tho only ones then which arc 
projected into right angles. We can now state an addition 
to the proposition which has just been proved, and we can 
express the whole in thq following form: At evcry point of 
the surface which we wisli to represent there nro two per- 
pendicular tangents, and, if the angles are not preserved, 
there are only two, such that those whlch correspond to 
them upon the other surface also intersect at  right angles. 
SO that, upon each of the two surfaces, there OXS~S sys- 
tem of ortho onal trajectories, and, if the method of rep- 
resentation foes not preserve the an los, thero cxwts 5 only one of them the projections of \vhic 1 upon the other 
surface are also orthogonal. 

We shall denote, by first and second principal tangents, 
the two per endicular tangents tho ando between which is 
not altered 1 y the projection. . We s h d  cont.inue to denotc, 
respectively, by c and d the ratio of lengths in the dlrec- 
tions of these tangents, and we shall su1)pose that c is 
greater than d. 
If the iniinitesimal curve drawn around the poi11t O i? a 

circumfercnce of which 0 is the center, tho reprcsenbablon 
of this curvo will be an ellipse the axcs of which will fall 
up011 tho rincipal tangents, and these will have tho V ~ ~ U C S  
2c and Z$ the radius of the circle being taken .as ,unity. 
This ellipse constitutes a t  each point a sort of ~ndicatrix 
of the system of projection. 

In  place of projcci,ing orthoeonally the circumference, 
the locus of tile oints M iu &ure 43, which ivcs the e ~llipse the locus ofthe points N, &en increasing t is in tho 
ratio of c to unity, which gives the locus of the points XI, 
we can perform the two operations in tho inverse order. 
w e  should then in figure 44 obtain the point M1 of tho 
elliptic indicatrix which correspoilds to a given point M 
of tho circle by prolonging the radius O H  until i t  meets a t  

the circumference described upon the major axis as 
diameter, and then by dropping a perpendicular from R 
upon OA, the semimajor axls, and, finally, by roducing this 
Perpendicular BS, starting from its foot S in the ratio of d 
t o  c. The point X' thus determined will be the required 
Point. 

In figure 44 let us draw OM', and let us call, respectively, 
u and u' the angles AOB and AOX which correspond 
upon tho two surfaces. Inasmuch as tho second is tho 
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smaller of the two, we see that the representation dimin- 
ishes all the acute angles one side of which coincides with 
the fist principal tangent. Between u and uf we have, 
moreover, the relation 

d 
tan uf =- tan u, 

C 
since 

ns 
tan u= - 0s 

M'S 
tan u' = -- 0s ' 

and, consequently, 
X'S d tan u'=- tan u=- tan U. ns C 

Let us prolong the line RS to R' and then join 0 und R'. 
The two triangles ORM' and OR'Mf give 

c - d  
+ sin (u +ut), sin (u - u') = - 
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which is obtained by eqyating. two expressions for the 
ratio of the areas of the triangles. The same relation fol- 
lows a t  once anaIytically from the tangent relation first 

B 
given. The angle u increasing from zero to 3, its alteration 

u-u' increases from zero up to a cprtain value w ,  then 
decreases to zero. The maximum 1s produced a t  the 

nlolnent when tho sum u +u' becomes equal t,o ;i*. Let 17 
and U' be the corresponding values of u and,u'. Wo find 
from the tangent formula that the folloulng are their 
values : 

The quantity w can be computed by any one of the formula; 

c-d Pin "=-, 
c+d 

2@, 
COS W =- c+d 

c- a 
tan w = = s d '  

prom the last two equations since the sum of U and U' is . 

equal to and their difference is equal to o, wo have 

prom the tangent relation wo see that when we change z~ 
']r 5 - u' it is sufficimt to change, r' to - u The same 

substitutions being sffectod in u ~ u ' ,  give for result "- (U +u'), so that the, sine formula shows that tbe value 



160 U. 8. COAST AND GEODETIC SURVEY. 

of the alteration is not chan ed. Thus of two angles 
which are found to be change% by equal quantities each 
is the complement of the propotion of the other. 

If we wish to calculate directly the alteration which any 
given an le u, is subject to, we should make use of one of f tho two ormulas 

(c-d) tan u 
tan (u- u ' ) = ~  tan ZUt 

(c- d )  sin 2u 
tan ( % - d ) = c + a +  (c-a)  cos 2u' 

which follow immediately from tho previous formulas by 
easy analytical reductions. 

FIG. 45.-angular ohango in projection, firsL cnso. 

Let us now consider an angle MON in figures 45 and 46, 
which has for sides neither one nor the other of the prin- 
cipal tangents OA and OB. We can suppose the two 
directions OM and ON to tho right of OB and the one of 
them OM above OA. According as the other ON will be 
above OA (fig. 45) or below OA (fi . 46) ,  we should calcu- 
late the correspondin % I$ by t ak i . 1  the differ- 
once or the sum of t o angles AOM and ON', which 
would be given by the formula stated above. The alter- 
ation MON-M'ON' would also in the first case be the 
differencei and in the second case would be the sum of 
the alterations of the angles AOM and AON. When the 
angle AON (fig. 45) is equal to the angle BOM', we know 
that its alteration is the same as that of tho angle AOM, 
so that the angle MON will then be reproduced in its true 



TNEORY OF POLYCONIO PROJECTIONS. 161 

magnitude by the angle M'ON'. Thus to every given 
direction we can join another, and only one other, such 
that their angle is preserved in the projection. However, 
the second direction will coincide with the iirst when it 
makes with OA the angle which we have denoted by U. 

The an& the most dtered is that which this direction 
forms witg the oint symmetric to it with respect to OA; 
i t  is representel upon the rejection by its sup lement. 
The maximum alteration t I! us produced is equ$ to 2u. 

Wo. 46.-Anylar change in projection, socond case. 

This can novor be found ap licable to two directions that r: are er ondicular to each ot er. TL PcnRth OM in figure 44 having been takon as unitv, 
the ratio of lengths in the direction OM is memured by 
0%'. Lot us denote by r this ratio; wo can cdculate ~t 
by moans of one of tho formulas 

r cos u'= c cos U 

r sin u'=d sin u 
or 

9 = ca cos au + da sin =u. 
112948"-1-11 
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We have also among r, u, and the alteration u-u' of the 
angle u the relation 

2r sin (u - u') = (C - d )  sin 2u, 

which expresses that, in the triangle ORMI, the sines of 
two of the angles are to each other as the sides opposite. 

The maximum and the minimum of r correspond to the 
principal tangents and are, respectively, c and d. 

Let us call r and r, the ratios of len ths in two directions % at right angles to each other and let y5 e the alteration that 
the right angle formed by these two directions is subjected 
to. From the well-known properties of conjugate diam- 
eters in the ellipse we have 

m; cos * = cd 

or, in terms of the scales dong the parallels and meridians, 
tho semiaxes are given by the equations 

For all angles not changed by the projection the product 
of the ratlos of lengths along their sides is the same. 
In fact, let OA (fig. 45) and OB be the two princi a1 
tangents; let JION be an angle whatever; and et E P 
Jl'ON1 be its projection. et us denote b r' and rl' 
the ratios of lengths alon OM and ON and $ zl and u' 
the angles AOM and A O ~ .  
Then -- 

r' cos u f = c  cos u 

'r" sin L AON' = d sin L A02V; 

but we know that, when the altoration MON- 21ffON' 
is zero, the angle AON is the complement of u' and tho 
angle AON' is the complement of u; so that the second 
equation gives 

T" cos u = d  cos u'. 

By multiplying theso oqualions member by member we 
obtain 

r' r" =cd, 
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which roves the statement. It results from this roperty 1 that t%e ratio of lengths in the two directions t e angle 
of which undergoes the maximum alterat~on is equal to 

for the angle which is not altered and which has for 
side one of these two lines reduces to zero, and it has the 
same line for second side, so that r' = r" = Jcd. 

In the ordinary, or American, polyconic projection we 
have 

7c,= I isec* 

k , = l .  
Hence 

c2+d2=1+ &? SGC' # 

By means of these formulas the .semiaxes could be 
computed for any oint on a qontlnuous map of the 
sphere or of tho elEpsoid if it is deqred to take into 
account the eccentricity of the.generatln%.eUipse. As a 
ood a proximation for projections exten in no farther % &om t!e central meridian than is usually t e care, we 

may take 
c =  Iisec #=k, 

The effect of this a proximation becomes barely erceptible i in the third place o!!decimnb for h = 454  so that t e approx- 
imation is exceedingly good for projections of less extent in 
lon itude. . 

dBith this ap roximntion for the semiaxes i t  only remains 
to determine tKe angles through which the axes of ooordi- 
nates should be turned to make them coincide with the 
directions of the axes of the ellipse. The angle through 
which the axes must be turned to make the x axis be tan- 
gent to the parallel a t  the oint we shall denote by [; its 
value is given by the formu f a 

[ = A  sin (p. 
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If 7 is the angle between the conjugate axes, and if q 
is the angle between the major axis and the conjugate 
axis of x. we have from the theory of conjugate axes 

d2 tan 4 tan ( q + ~ ) =  --• ca 

By developing this expression we get 

d2+c2 tan2 q . 
tan y = - 

(cZ - dZ) tan ?I ' 
but 

a 
T = ~ + $ .  

Therefore 
d3 + c2 tan2 q 

# =  ( C ~  - tan q' 

By solving this for tan q we get 

from which q can be determined. The angle between the 
minor axis and the conjugate minor axis is e ual to ?+$I. ? If 5 is counted positive for points east o the central 
meridian, the axes must be turned through the angle 
4 - q - $. We shall then have 

X ' = X  cos (E-q-#)+y sin (E-?-$) 

Y'= -x sin (5-7-$)-I-y cos (t-,)-$). 
For points west. of )he central meridian t-q-# can be 
considered negat~ve m the transformation formulas. 

If geodetic azimuths are given, they should first be 
referred to the arallel as initral line; that is, the should P T be redsonod rom the east around counterc ockwise 
through north. If the q + #  an le is added to  these 
azimuths we shall obtain the ang f e u. Since the elliptic 
indicatrix has the minor axis in the direction of the 
initial line, we have 

. c 
tan u' = - tan u. d 
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The ratio of scale is given by the equations 

r sin u'=c sin u 

r COS U' =d cos u. 

If i t  is desired to determine the azifnuth of the line from 
a point to a near point from their coordinates on the 
map, we have approximately 

Y' tan u' ' = -7, 
2 

x' and y' being the coordinates of one of the points with 
respect to the other as origin in the transformed system; 
that is. after the axes have been turned to make the axes 
of the ellipse coincide with the axes of coordinates. Then 

d tan u=- tan u". 
C 

The azimuth reclconed from east to north is given by 

J ections. 
The appended tables of the slemonts of the ordinary 

polyconic pro'ection are taken from Tissot's work. They 
are. computed for the sphere but can safely be used for 
ordinary computation work. If more exact results are 
desired the computations should be made from the first 
by employment of tho spheroidal formulas. 
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TABLES OF ELEMENTS OF THE ORDINARY OR AXERICAN 
POLYCONIC PROJECTION. 

Values of +. 

0 0 0  0 0 0  0 0 0  
0 0 0  0 0 2  0 1 8  
0 0 0  0 0 4  0 2 8  
0 0 0  0 0 4  0 2 7  
0 0 0  0 0 2  0 1 7  
0 0 0  0 0 1  0 0 5  
0 0 0  O M )  0 0 0  

0 0 0  0 0 0  0 0 0  
1 45 2 62 4 09 
2 53 4 50 7 08 
2 59 5 10 7 51 
2 01 3 38 5 46 
0 3 9  1 1 3  2 0 0  
0 0 0  0 0 0  O M )  

Values of k,. 

Values of 2w. 

v 

0 ............................. 
15.. .......................... 
30 ............................ 
45 ............................ 
60 ............................ 
75 ............................ 
80 ............................ 

---- 
D t  0 ,  0 ,  0 ,  

15 20 24 50 34 65 44 61 
14 20 23 29 33 09 42 40 
11 52 19 33 28 01 36 43 
8 08 13 42 20 04 26 62 
4 11 7 13 10 MJ 14 51 
1 0 8  1 6 7  3 0 4  4 1 8  
0 0 0  0 0 0  O M )  0 0 0  

X 

0' 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

15" 

1.034 
1.012 
1.020 
1.017 
1.009 
1.002 
1.000 

30' 

1.137 
1.128 
1.102 
1.M8 
1.034 
1.009 
1.000 

45" ------- 
1.308 
1.287 
1.229 
1.151 
1.074 
1.020 
1.000 

GO" 

1.648 
1.508 
1.404 
1.204 
1.128 
1.034 
1.000 

75" 

1 . W  
1.704 
1.626 
1.404 
1.105 
1.050 
1.000 

90" 

2.234 
2.141 
1.893 
1.571 
1.270 
1.MQ 
1.000 



Values of c. 

I I I I I 

Values of li: 

TRANSVERSE POLYCONIC PROJECTION. 

If the earth is considered as a sphere, there is no reason 
why the tangent cones that determine the projection 
should necessaril bo tangent to the earth along parnllcls 
of latitude and s < ould have thcir apexes in the axis of the 
earth. Any diameter prolonged might just as well servo 
as the lino of apexes, and then the cones would bo tangent 
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along a system of small circles that would correspond to 
the parallels of latitude in the ordinary projection. Some 
great circle of the earth would correspond to the central 
meridian. By this scheme a map of reat extent in longi- f tude could be constructed without t e usual trouble due 
to the lon itudind scale error. The error m scale in this 
case woul d appear along the great circles of the projection 
that correspond to the meridians in the oadinary projection. 

The most feasible plan for the construction of such a 
projection would seem to be the followin : .Since such a S map would, no doubt, be planned.for a arge section of 
the earth's surface, the elli soidal features would be neg- B ligible, and thk ordinary ta  les could be emplo ed, just as t if they had been computed for the sphere. ith these 
tables construct a projection in the usual way. After i t  
is constructed turn the projection so that the poles fall 

FIG. 48.-l'rmsfomtion triangle for transvorso polyconio projection. 

upon the Equator and then by means of the formulas for 
the transformation of coordinates the intersections of the 
parallels and meridians can be computed in terms of tho 
parameters that correspond to latitude and Ion itude on 
the ordinary projection. After the projection % as been 
constructed and turned into the new position, the cp and X 
values become what we shall denote by + and q .  The 
values in degrees will be just the same as before, but the 
wih have the new designation. Figure 47 represents suc g 
a scheme in outline. PP' is the central meridian, and 
QQ' represents the Equator in the pro'ection as constructed.. 
The projection is now turned and P d ' becomes the chosen 
great circle, and QQ' becomes a meridian on the map; $ 
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is measured to the right.and left of QQ' and 7 is measured 
up and down from PP'. 

In  the figure 48 let P be the pole and let RBR' be the 
Equator and also let ABA' be the great circle that we 
wish to make correspond to the central meridian of the 
ordinary projection. BR and BA are quadrants, and AR 
measures the inclination of the iven great circle to the "d plane of the Equator, and PMA ecomes the Equator on 
the transverse projection. Let Q be the intersection that 
we wish to compute. We have BQ=90°-J/; QP=90°-cp; 
BP=90°. LBPQ=90°-X; lABR=p;  LPBQ=90°- 
(P + 7 ) .  by the trigonometry of the sphericd triangle we 
obtain from these results the relations 

sin +=sin A cos Q 

cos * cos @+q) =cos X cos (0 

cos * sin ( p  + q )  = sin cp, 

or by cornbilling the last two equations 

tan ( p  + 7) = sec X tan Q. 

/3 is aconstant the value of which is lmown from our choice 
of the great circle that is to form the center of the map; 
i t  is the value of the parallel of latitude to which the great 
circle is tangent. 

By uso of the equations 

sin #=sin X cos cp 
and . 

tan (0 + q )  =set X tan cp 

we can compute the $ and 7 values for any intersections of 
the parallels and meridians that we may wish to determine. 
The points are then plotted on tho projection as originaily 
constructed; a smooth~curve drawn through the points 
corresponding to a constant value of (p wiU represent the 
parallel of latitude Q, and, similarly, the smooth curvc 
through the points correspondin to a constant value of X 
will represent the meridian of f ongitude X. After these 
curves are draw.,  the original rojection lines can bo 
erased, and then only the merigians snd pardols will 
appear on the projection. The folding plate represents 
such a projection of the North Pacific Ocean, showing 
the eastern coast of Asia in its relation to North America. 
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The projection was constructed b Mr. Chas. H. Deetz, B cartogra her of the United States oast and Geodetic Sur- 
vey, w i t ,  the central great circle approximately the one 
joining San Francisco and Manila. Another ro'ection of 
this kmd was constructed by Mr. A. c id en god, cartog- 
rapher in the United States Coast and Geodetic Suwey, 
consistin of a map of the United States based on the 
reat circ 4 e intersecting the 95" meridian a t  39" of latit.ude. 

f n  this projection @=3g0 and X is reokoned from the 9b0 
meridian. 

The meridian that corresponds to the Equator in the 
projection as first collstructed is an axis of symmetry for 
the map, so that tho coordinates of the intersections need 
to be computed only for one-half of the map if the Equator 
of the original projection corresponds to one of the meri- 
dians that ap ear on the map, so that for each value of 
+A we may E ave another intersection for -X, with the 
latitude the same in both cases. In  tho one constructed 
by Mr. Lindenkohl for the United States the meridians 
were constructed for every 5" of lon@tude, so that the 
meridian of 95' appeared upon the ro~ection. If 94" had 
been chosen in place of 95*, we shou f d have had a meridian 
to compute for a X of 4" E. and one for a X of 6" W., and 
so on for the others. 

In the construction of the rojaction of which the fold- 
ing plate is a copy the centr t!i great circle is the one that 
is tangent to the parallel of 45' of latitude a t  the point of 
its intersection with the 100" meridian west of Gree~~wich. 
Mr. Dsetz (in the constmtion of his projection) computed 
the intersections of his original projection after i t  was 
turned into the new position in terms of latitude and 
longitude and then interpolated the even vdues of inter- 
sections on this p~ojection. From the orkina3 three equa,- 
tions we obtain 

tan X =sec @+?) tan # 

sin cp-sin (P4-1) cos JI. 

In the crtse under consideration P= 45' and 8+q is the 
latitude of the intersection of any iven greatcircle with K the 160" meridian. fZ +r) is, there ore, constant for any 
given great circle. The amount of computation required 
is about the same for either method of procedure. 
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PROJECTION FOR THE INTERNATIONAL MAP ON THE SCALE 
OF 1 : 1 000 000. 

The projection adopt;ed for this map is a modified 
polyconic projection devised by M. LaZlemand. The scale 
is slightly reduced along the central meridian, thus bringing 
the parallels closer together in such a way that the meridians 
2" on each side of the center are made true to scale. Up 
to 60' of latitude the separate sheets are to include 6" of 
longitude and 4' of latitude. From latitude 60" t c ~  the 
pole the sheets are to include 12' of longitude; that is, two 
sheets are to be united into one. The to and bottom 
parallel of each sheet are constructed in t % e usual way; 
that is, they are circles constructed from centers lying on 
the central meridian, but not concentric. These two par- 
allels are then truly divided. The meridians are straight 
lines joining the corres onding points of the top and 
bottom parallels. b y  seeet will then join exact1 along 
its margins with its four neighboring sheets. T K ~  cor- 
rection to the length of the central meridian is very slight, 
amounting to only 0.01 inch a t  the most, and the change 
is almost too slight to be measured on the map. 

I n  the resolutions of the International Map Corynittee, 
London, 1909, i t  is not stated how the meridlans are to be 
divided; but, no doubt an equal division of the central 
meridian was intended. Through these points circles 
could be constructed with centers on the central meridian 
and with radii e ual to p, cot cp. I n  practice, however, an 
equd division o 1 the straight-line meridians between the 
top and bottom ardels  could scarcely be distinguished 
from the points o ! parallels actually constructed by means 
of radii or b coordinates of their intersections with the 
meridians. The provisions also fail to state whether, in  
the sheets covering 12' of longitude instead of 6", the 
meridians of true length shall be 4" instead of 2" on each 
side of the central meridian; but such was, no doubt, the 
intention. In  any case, the sheets would not exactly join 
to ether alon the arallel of 60" of latitude. 

$he appen f ed ta ! les give the corrected lengths of the 
central meridian from O0 to 60" of latitude and the coordi- 
nates for the construction of the 4" parallels .within the 
same limits. Each parallel has its own origin; 1. e., where 
the parallel in question intersects the central meridian. 
The central mendian is the Y axis and a per endicular to P it a t  the origin is the X axis; the f i s t  table, o course, gives 
the distance between the origins. The y values are small 
in every instance. I n  terms of the parameters used 
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throughout this publication these vulucs are given by the 
expressions 

x = pn cot cp sin (A sin cp) 

y = pn cot cp [I - cos (X sin cp)] = 2pll cot p sin2 

In  the tables as published in the International Map 
Tables, the x coordinates were computed by use of tho 
erroneous f orm'da 

x=pn cot @ tan (Xsin cp). 

Tho resultin error in the tables is not very great arid is 
practically a k o s t  negliwiblo. Tllo tublos as given bolow 
are all that are required?or the construction of all mna s up F to 60' of latitude. This fact in itself shows very clear y the 
advantages of the use of this projection for the purpose in 
hand. 

A discussion of the numerical properties of this map 
system is given by M. Ch. Lallemand in tho Comptes 
Rendus, tome 153, page 559: I'ie finds that the maximum 
error of scale of a meridian is 1 part in 1270, which 
corresponds to 0.35 mm. in the height, 0.44 m., of the sheet. 
The maximum error of scale of a parallel is 1 part in 
3200, and the greatest alteration of azimuth is 6 minutes 
of arc. These errors are much smaller than those occa- 
sioned by the expansion and contraction of the sheet due 
to atmospheric conditions. 

TABLES FOR THE PROJECTION OF THE SHEETS OF THE 
INTERNATIONAL MAP OF THE WORLD. 

[Scalo 1: 1 000 000. Assumod figoro of tho earth: d 7 8 . 2 4  km.; b==6356.56 km.] 

TABLE 1.-Corrcctcd lengths on the cet11ral mvridian, in n~illimclcrs 
- -. - - - - 

l ,~rt i t~~dc.  

0 D 

From 0 to 4 ............................................. 
4 t o  8 ............................................. 
8 to 12 

I 
............................................. 

12 to 16 ............................................. 
16to20.. ........................................... 
20 to 24... .......................................... 
24 to 28 ............................................. 
28to32 ............................................. 
32 to 3G ............................................. 
30to40 ............................................. 
40 to 44. ............................................ 
44to48 ............................................. 
48 to 62 ............................................. 
52 to 56 ............................................. 
60to00 ............................................. 
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TABLE 2.-Coordinates of the intersections of the paralleb and the meridians, 
in  millimeters. 

Longitude from central 
meridian. 

Latf- 
tude. 

-- 
0 

4 

8 

12 

1G 

20 

24 

28 

32 

35 

40 

44 

48 

52 

60 

80 

Coordi- 
nates. 

z 

! 
Y 
z 

I 
I 
z 

I 
! 
Y 
Z 

I 
! 
! 
: 
I/ 
z 

! 
K 
z 
Y 
z 
Y 


