Serial No. 146

DEPARTMENT OF COMMERCE

U. S. COAST AND GEODETIC SURVEY
E. LESTER JONES, Director

ELEMENTS OF MAP PROJECTION

WITH

APPLICATIONS TO MAP AND CHART CONSTRUCTION

BY
CHARLES H. DEETZ
Cartographor
AND
OSCAR S. ADAMS
Coodotic Computer

Special Publication No. 68
275
435

no. 68
1921

PRICE, 50 CENTS
Sold only by the Superintendent of Documants, Government Printing Omce, Washington, D. C.

WASHington
GOVERNMENT PRINTING OFFICE 1921

National Oceanic and Atmospheric Administration

ERRATA NOTICE

One or more conditions of the original document may affect the quality of the image, such as:

Discolored pages
Faded or light ink
Binding intrudes into the text
This has been co-operative project between the NOAA Central Library and the Climate Database Modernization Program, National Climate Data Center (NCDC). To view the original document contact the NOAA Central Library in Silver Spring, MD at (301) 713-2607 x 124 or
Library.Reference@noaa.gov.
HOV Services
Imaging Contractor
12200 Kiln Court
Beltsville, MD 20704-1387
January 22, 2008

PREFACE.

In this publication it has been the aim of the authors to present in simple form some of the ideas that lie at the foundation of the subject of map projections. Many people, even people of education and culture, have rather hazy notions of what is meant by a map projection, to say nothing of the knowledge of the practical construction of such a projection.

The two parts of the publication are intended to meet the needs of such people; the first part treats the theoretical side in a form that is as simple as the authors could make it; the second part attacks the subject of the practical construction of some of the most important projections, the aim of the authors being to give such detailed directions as are necessary to present the matter in a clear and simple manner.

Some ideas and principles lying at the foundation of the subject, both theoretical and practical, are from the very nature of the case somewhat complicated, and it is a difficult matter to state them in simple manner. The theory forms an important part of the differential geometry of surfaces, and it can only be fully appreciated by one familiar with the ideas of that branch of science. Fortunately, enough of the theory can be given in simple form to enable one to get a clear notion of what is meant by a map projection and enough directions for the construction can be given to aid one in the practical development of even the more complicated projections.

It is hoped that this publication may meet the needs of people along both of the lines indicated above and that it may be found of some interest to those who may already have a thorough grasp of the subject as a whole.

CONTENTS.

PART I.
Page.
General statement 7
Analysis of the basic elements of map projection 9
Problem to be solved 9
Reference points on the sphere 11.
Determination of latitude 12
Determination of longitude 13
Plotting points by latitude and longitude on a globe 14
Plotting points by latitude and longitude on a plane map 14
How to draw a straight line. 15
How to make a plane surface 16
How to draw the circles representing meridians and parallels on a sphere 17
The terrestrial globe 19
Representation of the sphere upon a plane 22
The problem of map projection 22
Definition of map projection 22
Distortion 22
Conditions fulfilled by a map projection. 25
Classification of projections 25
The ideal map 27
Projections considered without mathematics 28
Elementary discussion of various forms of projection. 30
Cylindrical equal-area projection. 30
Cylindrical equal-spaced projection 30
Projection from the center upon a tangent cylinder. 30
Mercator projection 32
Geometrical azimuthal projections. 35
Stereographic polar projection 35
Central or gnomonic projection 37
Lambert azimuthal equal-area projection 38
Orthographic polar projection 38
Azimuthal equidistant projection 40
Other projections in frequent use 42
Construction of a stereographic meridional projection 44
Construction of a gnomonic projection with point of tangency on the equator 45
Conical projections 46
Central projection upon a cone tangent at Iatitude 30° 47
Bonne projection 49
Polyconic projection 49
Illustrations of relative distortions 51
PART II.
Introduction 53
Projections described in Part II. 53
The choice of projection 54
Comparison of errors of scale and crrors of area in a map of the United States on four different projections 54
The polyconic projection 58
Description 58
Construction of a polyconic projection 60
Transverse polyconic projection 62
Polyconic projection with two standard meridians, as used for the international map of the world, scale 1: 1000000 62
Page.
The Bonne projection 67
Description 67
The Sanson-Flamsteed projection. 68
Construction of a Bonne projection 68
The Lambert zenithal (or azimuthal) equal-area projection 71
Description. 71
The Lambert equal-area meridional projection 73
Table for the construction of a Lambert zenithal equal-area projection with center on parallel 40° 73
Table for the construction of a Lambert zenithal equal-area meridional projection 75
The Lambert conformal conic projection with two standard parallels. 77
Description 77
Construction of a Lambert conformal conic projection. 83
Table for the construction of a Lambert conformal conic projection with standard parallels at 36° and 54°. 85
Table for the construction of a Lambert conformal conic projection with standard parallels at 10° and $48^{\circ} 40^{\prime}$. 86
The Grid system of military mapping. 87
Grid system for progressive maps in the United States. 87
The Albers conical equal-area projection with two standard parallels. 91
Description 91
Mathematical theory of the Albers projection. 93
Construction of an Albers projection 99
Table for the construction of a map of the United States on Albers equal-area projection with two standard parallels 100
The Mercator projection 101
Description 101
Development of the formulas for the coordinates of the Mercator projection. 105
Development of the formulas for the transverse Mercator projection. 108
Construction of a Mercator projection. 109
Construction of a transverse Mercator projection for the sphere with the cylinder tangent along a meridian. 114
Mercator projection table. 116
Fixing position by wireless directional bearings. 137
The gnomonic projection. 140
Description. 140
Mathematical theory of the gnomonic projection. 141
WORLD MAPS.
The Mercator projection 146
The stereographic projection 147
The Aitoff equal-area projection of the sphere 150
Table for the construction of an Aitoff equal-area projection of the sphere 152
The Mollweide homalographic projection 153
Construction of the Mollweide homalographic projection of a hemisphere 154
Homalographic projection of the sphere 155
Table for the construction of the Mollweide homalographic projection 155
Goode's homalographic projection (interrupted) for the continents and oceans. 156
Lambert projection of the northern and southern hemispheres. 158
Conformal projection of the sphere within a two-cusped epicycloid. 160
Guyou's doubly periodic projection of the sphere 160
Index 161

illustrations.

EIGURES.
Frontispiece. Diagram showing lines of equal scale error or linear distortion in the polyconic, Fege
Lambert zenithal, Lanabert conformal, and Albers projections (facing page) 1. Conical surface cut from base to apex 7 9
2. Development of the conical surface.3. Cylindrical surface cut from base to base.10
4. Development of the cylindrical surface. 11
5. Deternination of the latitude of a place 12
6. Construction of a straight edge 16
7. Constructing the circles of parallels and meridians on a globe. 18
8. Covering for a terrestrial globe 20
9. Pack of cards before "shearing". 23
10. Pack of cards after "shearing" 23
11. Square "sheared" into an equivalent parallelogram 23
12. The Mollweide equal-ares projection of the sphere. 24
13. Earth considered as formed by plane quadrangles. 28
14. Earth considered as formed by bases of cones 29
15. Development of the conical bases. 29
16. Cylindrical equal-area projection. 31
17. Cylindrical equal-spaced projection 31
18. Modified cylindrical equal-spaced projection. 32
19. Perspective projection upon a tangent cylinder. 33
20. Mercator projection 34
21. Determination of radii for stereographic polar projection 35
22. Stereographic polar projection. 36
23. Determination of radii for gnomonic polar projection. 37
24. Gnomonic polar projection 38
25. Determaination of radii for Lambert equal-area polar projection 39
26. Lambert equal-area polar projection. 39
27. Determination of radii for orthographic polar projection 40
28. Orthographic polar projection. 40
29. Azimuthal equidistant polar projection. 41
30. Stereographic projection of the Western Hemisphere 41
31. Gnomonic projection of part of the Western Hemisphere. 42
32. Lambert equal-area projection of the Western Hemisphere 42
33. Orthographic projection of the Western Hemisphere 43
34. Globular projection of the Western Hemisphere. 43
35. Determination of the elements of a stereographic projection on the plane of a meridian 44
30. Construction of a gnomonic projection with plane tangent at the Equator 45
37. Cone tangent to the sphere at latitude 30° 46
38. Determination of radii for conical central perspective projection. 47
39. Central perspective projection on cone tangent at fatitude 30° 48
40. Bonne projection of the United States. 49
41. Polyconic projection of North America. 50
42. Man's head drawn on globular projection. 51
43. Man's head plotted on orthographic projection. 51
44. Man's head plotted on stereographic projection. 51
45. Man's head plotted on Mercator projection 51
46. Gnomonic projection of the sphere on a circumscribed cube. 52
47. Polyconic development of the sphere. 58
48. Polyconic development 59
49. Polyconic projection--construction plate 01
50. International map of the world-junction of sleets. 65
51. Bonne projection of bemisphere. 67
52. Lambert conformal conic projection. 77
53. Scale distortion of the Lambert conformal conic projection with the standard parallels at 29° and 45° 79
Page.
54. Scale distortion of the Lambert conformal conic projection with the standard parallels at 33° and 45° 80
55. Diagram for constructing a Lambert projection of small scale 84
56. Grid zones for progressive military maps of the United States 88
57. Diagram of zone C, showing grid aystem 89
58. Part of a Mercator chart showing a rhumb line and a great circle 102
59. Part of a gnomonic chart showing a great circle and a rhumb line 102
60. Mercator projection-construction plate 111
61. Transverse Mercator projection-cylinder tangent along a meridian-construction plate 115
62. Fixing positions by wireless directional bearings 138
63. Diagram illustrating the theory of the gnomonic projection 140
64. Gnomonic projection-determination of the radial distance 142
65. Gnomonic projection-determination of the coordinates on the mapping plane 142
66. Gnomonic projection-transformation triangle on the sphere 143
67. Mercator projection, from latitude 60° south, to latitude 78° north 146
68. Stereographic meridional projection 148
69. Stereographic horizon projection on the horizon of Paris. 149
70. The Aitoff equal-area projection of the sphere with the Americas in center 151
71. The Mollweide homalographic projection of the sphere 153
72. The Mollweide homalographic projection of a hemisphere 154
73. Homalographic projection (interrupted) for ocean units 157
74. Guyou's doubly periodic projection of the sphere 159
yolded plates.

1. Lambert conformal conic projection of the North Atlantic Ocean 1.63
II. Transverse polyconic projection of the North Pacific Ocean, showing Alaska and its relation to the United States and the Orient, scale 1:40000 000 163
III. Allbers projection of the United States 163
IV. Gnomonic projection of part of the North Atlantic Ocean 163
V. The Aitoff equal-area projection of the sphere 163
VI. The world on the homalographic projection (interrupted for the continenta) 163
VII. Lambert projection of the Northern and Southern Hemispheres 163
VIII. Conformal projection of the sphere within a two cusped epicycloid 163

Lines of scale error or linear distortion
Polyconic projection........ $2 \%, 4 \%$ and 6%, shown by vertical broken lines
Lambert Conformal.......... 2% and 4%, shown by dotted lines (east and west)
Lambert Zenithal.............. 2%, shown by bounding circle
Albers.................................. 2% and 4%, shown by dot and dash lines (east and west)
Frontispifce.--Diagram showing lines of equal scale error or linear distortion in the polyconic, Lambert zonithal, Lambert conformal, and Albers projections. (See statistics on pp. 54, 55.)

ELEMENTS OF MAP PROJECTIONS WITH APPLICATIONS TO MAP AND CHART CONSTRUCTION.

By Cearles H. Deetz, Cartographer, and Oscar S. Adams, Geodetic Computer.

PART I.

GENERAL STATEMENT. ${ }^{1}$

Whatever may be the destiny of man in the ages to come, it is certain that for the present his sphere of activity is, as regards his bodily presence, restricted to the outside shell of one of the smaller planets of the solar system-a system which after all is by no means the largest in the vast universe of space. By the use of the imagination and of the intellect with which he is endowed he may soar into space and investigate, with more or less certainty, domains far removed from his present habitat; but as regards his actual presence, he can not leave, except by insignificant distances, the outside crust of this small earth upon which he has been born, and which has formed in the past, and must still form, the theater upon which his activities are displayed.

The connection between man and his immediate terrestrial surroundings is therefore very intimate, and the configuration of the surface features of the earth would thus soon attract his attention. It is only reasonable to suppose that, even in the most remote ages of the history of the human race, attempts were made, however crude they may have been, to depict these in some rough manner. No doubt these first attempts at representation were scratched upon the sides of rocks and upon the walls of the cave dwellings of our primitive forefathers. It is well, then, in the light of present knowledge, to consider the structure of the framework upon which this representation is to be built. At best we can only partially succeed in any attempt at representation, but the recognition of the possibilities and the limitations will serve as valuable aids in the consideration of any specific problem.

We may reasonably assume that the earliest cartographical representations consisted of maps and plans of comparatively small areas, constructed to meet some need of the times, and it would be later on that any attempt would be made to extend the representation to more extensive regions. In these early times map making, like every other science or art, was in its infancy, and probably the first attempts of the kind were not what we should now call plans or maps at all, but rough perspective representations of districts or sketches with hills, forests, lakes, etc., all shown as they would appear to a person on the earth's surface. To represent these features in plan form, with the eye vertically over the various objects, although of very early origin, was most likely a later development; but we are now never likely to know who started the idea, since, as we have seen, it dates back far into antiquity.

Geography is many-sided, and has numerous branches and divisions; and though it is true that map making is not the whole of geography, as it would be well for us

[^0]to remind ourselves occasionally, yet it is, at any rate, a very important part of it, and it is, in fact, the foundation upon which all other branches must necessarily depend. If we wish to study the structure of any region we must have a good map of it upon which the various land forms can be shown. If we desire to represent the distribution of the races of mankind, or any other natural phenomenon, it is essential, first of all, to construct a reliable map to show their location. For navigation, for military operations, charts, plans, and maps are indispensable, as they are also for the demarcation of boundaries, land taxation, and for many other purposes. It may, therefore, be clearly seen that some knowledge of the essential qualities inherent in the various map structures or frameworks is highly desirable, and in any case the makers of maps should have a thorough grasp of the properties and limitations of the various systems of projection.

ANALYSIS OF THE BASIC ELEMENTS OF MAP PROJECTION.

 PROBLEM TO BE SOLVED.A map is a small-scale, flat-surface representation of some portion of the surface of the earth. Nearly every person from time to time makes use of maps, and our ideas with regard to the relative areas of the various portions of the earth's surface are in general derived from this source. The shape of the land masses and their positions with respect to one another are things about which our ideas are influenced by the way these features are shown on the maps with which we become familiar.

It is fully established to-day that the shape of the earth is that of a slightly irregular spheroid, with the polar diameter about 26 miles shorter than the equatorial. The spheroid adopted for geodetic purposes is an ellipsoid of revolution formed by revolving an ellipse about its shorter axis. For the purpose of the present discussion the earth may be considered as a sphere, because the irregularities are very small compared with the great size of the earth. If the earth were represented by a spheroid with an equatorial diameter of 25 feet, the polar diameter would be approximately 24 feet 11 inches.

Frg. 1.-Conical surface cut from base to apex.
The problem presented in map making is the question of representing the surface of the sphere upon a plane. It requires some thought to arrive at a proper appreciation of the difficulties that have to be overcome, or rather that have to be dealt with and among which there must always be a compromise; that is, a little of one desirable property must be sacrificed to attain a little more of some other special feature.

In the first place, no portion of the surface of a sphere can be spread out in a plane without some stretching or tearing. This can be seen by attempting to flatten out a cap of orange peel or a portion of a hollow rubber ball; the outer part must be stretched or torn, or generally both, before the central part will come into the plane with the outer part. This is exactly the difficulty that has to be contended with in map making. There are some surfaces, however, that can be spread out in a plane without any stretching or tearing. Such surfaces are called developable surfaces and those like the sphere are called nondevelopable. The cone and the
cylinder are the two well-known surfaces that are developable. If a cone of revolution, or a right circular cone as it is called, is formed of thin material like paper

Frg. 2.-Development of the conical surface.
and if it is cut from some point in the curve bounding the base to the apex, the conical surface can be spread out in a plane with no stretching or tearing. (See figs. 1 and 2.) Any curve drawn on the surface will have exactly the same length after development that it had before. In the same way, if a cylindrical surface is

Fra. 3.-Cylindrical surface cut from base to base.
cut from base to base the whole surface can be rolled out in the plane, if the surface consists of thin pliable material. (See figs. 3 and 4.) In this case also there is no stretching or tearing of any part of the surface. Attention is called to the developable property of these surfaces, because use will be made of them in the later discussion of the subject of map making.

Fig. 4.-Development of the cylindrical surface.

REFERENCE POINTS ON THE SPHERE.

A sphere is such that any point of it is exactly like any other point; there is neither beginning nor ending as far as differentiation of points is concerned. On the earth it is necessary to have some points or lines of reference so that other points may be located with regard to them. Places on the earth are located by latitude and longitude, and it may be well to explain how these quantities are related to the terrestrial sphere. The earth sphere rotates on its axis once a day, and this axis is therefore a definite line that is different from overy other diameter. The ends of this diameter are called the poles, one the North Pole and the other the South Pole. With these as starting points, the sphere is supposed to be divided into two equal parts or hemispheres by a plane perpendicular to the axis midway between the poles. The circle formed by the intersection of this plane with the surface of the earth is called the Equator. Since this line is defined with reference to the poles, it is a definite line upon the earth. All circles upon the earth which divide it into two equal parts are called great circles, and the Equator, therefore, is a groat circle. It is customary to divide the circle into four quadrants and each of these into 90 equal parts called degrees. There is no reason why the quadrant should not be divided into 100 equal parts, and in fact this division is sometimes used, each part being then called a grade. In this country the division of the quadrant into 90° is almost universally used; and accordingly the Equator is divided into 360°.

After the Equator is thus divided into 360°, there is difficulty in that there is no point at which to begin the count; that is, there is no definite point to count as zero or as the origin or reckoning. This difficulty is met by the arbitrary choice of some point the significance of which will be indicated after some preliminary explanations.

Any number of great circles can be drawn through the two poles and each one of them will cut the Equator into two equal parts. Each one of these great circles may be divided into 360°, and there will thus be 90° between the Equator and each pole on each side. These are usually numbered from 0° to 90° from the Equator to the pole, the Equator being 0° and the pole 90°. These great circles through the poles are called meridians. Let us suppose now that we take a point on one of these 30° north of the Equator. Through this point pass a plane perpendicular
to the axis, and hence parallel to the plane of the Equator. This plane will intersect the surface of the earth in a small circle, which is called a parallel of latitude, this particular one being the parallel of 30° north latitude. Every point on this parallel will be in 30° north latitude. In the same way other small circles are determined to represent $20^{\circ}, 40^{\circ}$, etc., both north and south of the Equator. It is ovident that each of these small circles cuts the sphere, not into two equal parts, but into two unequal parts. These parallels are drawn for every 10°, or for any regular interval that may be selected, depending on the scale of the sphere that represents the earth. The point to bear in mind is that the Equator was drawn as the great circle midway between the poles; that the parallels were constructed with reference to the Equator; and that therefore they are definite small circles referred to the poles. Nothing is arbitrary except the way in which the parallels of latitude are numbered.

DETERMINATION OF LATITUDE.

The latitude of a place is determined simply in the following way: Very nearly

Fig. 5.-Determination of the latitude of a place.
in the prolongation of the earth's axis to the north there happens to be a star, to which the name polestar has been given. If one were at the North Pole, this star would appear to him to be directly overhead. Again, suppose a person to be at the Equator, then the star would appear to him to be on the horizon, level with his eye. It might be thought that it would be below his eye because it is in line with the earth's axis, 4,000 miles beneath his feet, but the distance of the star is so enormous that the radius of the earth is exceedingly small as compared with it. All lines to the star from different points on the earth appear to be parallel.

Suppose a person to be at A (see fig. 5), one-third of the distance between the Equator and the North Pole, the line $B C$ will appear to him to be horizontal and he will see the star one-third of the way up from the horizon to the point in the heavens directly overhead. This point in the line of the vertical is called the zenith. It is now seen that the latitude of any place is the same as the height of the polestar above the horizon. Most people who have traveled have noticed that as they go south the polestar night by night appears lower in the heavens and gradually disappears, while the Southern Cross gradually comes into view.

At sea the latitude is determined every day at noon by an observation of the sun, but this is because the sun is brighter and more easily observed. Its distance from the pole, which varies throughout the year, is tabulated for each day in a book called the Nautical Almanac. When, therefore, an observation of the sun is made, its polar distance is allowed for, and thus the latitude of the ship is determined by the height of the pole in the heavens. Even the star itself is directly observed upon from time to time. This shows that the latitude of a place is not arbitrary. If the star is one-third of the way up, measured from the horizon toward the zenith, then the point of observation is one-third of the way up from the Equator toward the pole, and nothing can alter this fact. By polestar, in the previous discussion, is really meant the true celestial pole; that is, the point at which the prolongation of the earth's axis pierces the celestial sphere. Corrections must be made to the observations on the star to reduce them to this true pole. In the Southern Hemisphere latitudes are related in a similar way to the southern pole.

Strictly speaking, this is what is called the astronomical latitude of a place. There are other latitudes which differ slightly from that described above, partly because the earth is not a sphere and partly on account of local attractions, but the above-described latitude is not only the one adopted in all general treatises but it is also the one employed on all general maps and charts, and it is the latitude by which all navigation is conducted; and if we assume the earth to be a homogeneous sphere, it is the only latitude.

DETERMINATION OF LONGITUDE.

This, however, fixes only the parallel of latitude on which a place is situated. If it be found that the latitude of one place is 10° north and that of another 20° north, then the second place is 10° north of the first, but as yet we have no means of showing whether it is east or west of it.

If at some point on the earth's surface a perpendicular pole is erected, its shadow in the morning will be on the west side of it and in the evening on the east side of it. At a certain moment during the day the shadow will lie due north and south. The moment at which this occurs is called noon, and it will be the same for all points exactly north or south of the given point. A great circle passing through the poles of the earth and through the given point is called a meridian (from merides, midday), and it is therefore noon at the same moment at all points on this meridian. Let us suppose that a chronometer keeping correct time is set at noon at a given place and then carried to some other place. If noon at this latter place is observed and the time indicated by the chronometer is noted at the same moment, the difference of time will be proportional to the part of the earth's circumference to the east or west that has been passed over. Suppose that the chronometer shows 3 o'clock, when it is noon at the place of arrival, then the meridian through the new point is situated one-eighth of the way around the world to the westward from the first point. This difference is a definite quantity and has nothing arbitrary about it, but it would be
exceedingly inconvenient to have to work simply with differences between the various places, and all would be chaos and confusion unless some place were agreed upon as the starting point. The need of an origin of reckoning was evident as soon as longitudes began to be thought of and long before they were accurately determined. A great many places have in turn been used; but when the English people began to make charts they adopted the meridian through their principal observatory of Greenwich as the origin for reckoning longitudes and this meridian has now been adopted by many other countries. In France the meridian of Paris is most generally used. The adoption of any one meridian as a standard rather than another is purely arbitrary, but it is highly desirable that all should use the same standard.

The division of the Equator is made to begin where the standard meridian crosses it and the degrees are counted 180 east and west. The standard meridian is sometimes called the prime meridian, or the first meridian, but this nomenclature is slightly misleading, since this meridian is really the zero meridian. This great circle, therefore, which passes through the poles and through Greenwich is called the meridian of Greenwich or the meridian of 0° on one side of the globe, and the 180 th meridian on the other side, it being 180° east and also 180° west of the zero meridian.

By setting a chronometer to Greenwich time and observing the hour of noon at various places their longitude can be determined, by allowing 15° of longitude to each hour of time, because the earth turns on its axis once in 24 hours, but there are 360° in the entire circumference. This description of the method of determining differences of longitude is, of course, only a rough outline of the way in which they can be determined. The exact determination of a difference of longitude between two places is a work of considerable difficulty and the longitudes of the principal observatories have not even yet been determined with sufficient degree of accuracy for certain delicate observations.

plotting points by latitude and longitude on a globe.

If a globe has the circles of latitude and longitude drawn upon it according to the principles described above and the latitude and longitude of certain places have been determined by observation, these points can be plotted upon the globe in their proper positions and the detail can be filled in by ordinary surveying, the detail being referred to the accurately determined points. In this way a globe can be formed that is in appearance a small-scale copy of the spherical earth. This copy will be more or less accurate, depending upon the number and distribution of the accurately located points.

PLOTTING POINTS BY LATITUDE AND LONGITUDE ON A PLANE MAP.

If, in the same way, lines to represent latitude and longitude be drawn on a plane sheet of paper, the places can be plotted with reference to these lines and the detail filled in by surveying as before. The art of making maps consists, in the first place, in constructing the lines to represent latitude and longitude, either as nearly like the lines on the globe as possible when transferred from a nondevelopable surface to a flat surface, or else in such a way that some one property of the lines will be retained at the expense of others. It would be practically impossible to transfer the irregular coast lines from a globe to a map; but it is comparatively easy to transfer the regular lines representing latitude and longitude. It is possible to lay down on a map the lines representing the parallels and meridians on a globe many feet in diameter. These lines of latitude and longitude may be laid down for every 10°, for every degree, or for any other regular interval either greater or smaller.

In any case, the thing to be done is to lay down the lines, to plot the principal points, and then to fill in the detail by surveying. After one map is made it may be copied even on another kind of projection, care being taken that the latitude and longitude of every point is kept correct on the copy. It is evident that if the lines of latitude and longitude can not be laid down correctly upon a plane surface, still less can the detail be laid down on such a surface without distortions.

Since the earth is such a large sphere it is clear that, if only a small portion of a country is taken, the surface included will differ but very little from a plane surface. Even two or three hundred square miles of surface could be represented upon a plane with an amount of distortion that would be negligible in practical mapping. The difficulty encountered in mapping large areas is gotten over by first making many maps of small area, generally such as to be bounded by lines of latitude and longitude. When a large number of these maps have been made it will be found that they can not be joined together so as to lie flat. If they are carefully joined along the edges it will be found that they naturally adapt themselves to the shape of the globe. To obviate this difficulty another sheet of paper is taken and on it are laid down the lines of latitude and longitude, and the various maps are copied so as to fill the space allotted to them on this larger sheet. Sometimes this can be done by a simple reduction which does not affect the accuracy, since the accuracy of a map is independent of the scale. In most cases, however, the reduction will have to be unequal in different directions and sometimes the map has to be twisted to fit into the space allotted to it.

The work of making maps therefore consists of two separate processes. In the first place, correct maps of small areas must be made, which may be called surveying; and in the second place these small maps must be fitted into a system of lines representing the meridians and parallels. This graticule of the orderly arrangement of lines on the plane to represent the meridians and parallels of the earth is called a map projection. A discussion of the various ways in which this graticule of lines may be constructed so as to represent the meridians and parallels of the earth and at the same time so as to preserve some desired feature in the map is called a treatise on map projections.

HOW TO DRAW A STRAIGHT LINE.

Few people realize how difficult it is to draw a perfectly straight line when no straightedge is available. When a straightedge is used to draw a straight line, a copy is really made of a straight line that is already in existence. A straight line is such that if any part of it is laid upon any other part so that two points of the one part coincide with two points of the other the two parts will coincide throughout. The parts must coincide when put together in any way, for an arc of a circle can be made to coincide with any other part of the same circumference if the arcs are brought together in a certain way. A carpenter solves the problem of joining two points by a straight line by stretching a chalk line between them. When the line is taut, he raises it slightly in the middle portion and suddenly releases it. Some of the powdered chalk flies off and leaves a faint mark on the line joining the points. This depends upon the principle that a stretched string tends to become as short as possible unless some other force is acting upon it than the tension in the direction of its length. This is not a very satisfactory solution, however, since the chalk makes a line of considerable width, and the line will not be perfectly straight unless extra precautions are taken.

A straightedge can be made by clamping two thin boards together and by planing the common edge. As they are planed together, the edges of the two will be alike, either both straight, in which case the task is accomplished, or they will be both convex, or both concave. They must both be alike; that is, one can not be convex and the other concave at any given point. By unclamping them it can be seen whether the planed edges fit exactly when placed together, or whether they need some more planing, due to being convex or concave or due to being convex in places and concave in other places. (See fig. 6.) By repeated trials and with sufficient patience, a straightedge can be made in this way. In practice, of course, a straightedge in process of construction is tested by one that has already been made. Machines for drawing straight lines can be constructed by linkwork, but they are seldom used in practice.

Fig. 6.-.Construction of a straight edge.
It is in any case difficult to draw straight lines of very great length. A straight line only a few hundred meters in length is not easy to construct. For very long straight lines, as in gunnery and surveying, sight lines are taken; that is, use is made of the fact that when temperature and pressure conditions are uniform, light travels through space or in air, in straight lines. If three points, A, B, and C, are such that B appears to coincide with C when looked at from A, then A, B, and C are in a straight line. This principle is made use of in sighting a gun and in using the telescope for astronomical measurements. In surveying, directions which are straight lines are found by looking at the distant object, the direction of which from the point of view we want to determine, through a telescope. The telescope is moved until the image of the small object seen in it coincides with a mark fixed in the telescope in the center of the field of view. When this is the case, the mark, the center of the object glass of the telescope, and the distant object are in one straight line. A graduated scale on the mounting of the telescope enables us to determine the direction of the line joining the fixed mark in the telescope and the center of the object glass. This direction is the direction of the distant object as seen by the eye, and it will be determined in terms of another direction assumed as the initial direction.

How to make a plane surface.

While a line has length only, a surface has length and breadth. Among surfaces a plane surface is one on which a straight line can be drawn through any point in any direction. If a straightedge is applied to a plane surface, it can be turned around, and it will in every position coincide throughout its entire length with the
surface. Just as a straightedge can be used to test a plane, so, equally well, can a plane surface be used to test a straightodge, and in a machine shop a plate with plane surface is used to test accurate workmanship.

The accurate construction of a plane surface is thus a problem that is of very great practical importance in engineering. A very much greater degree of accuracy is required than could be obtained by a straightedge applied to the surface in different directions. No straightedges in existence are as accurate as it is required that the planes should be. The method employed is to make three planes and to test them against one another two and two. The surfaces, having been made as truly plane as ordinary tools could render them, are scraped by hand tools and rubbed together from time to time with a little very fine red lead between them. Where they touch, the red lead is rubbed off, and then the plates are scraped again to remove the little elevations thus revealed, and the process is continued until all the projecting points have been removed. If only two planes were worked together, one might be convex (rounded) and the other concave (hollow), and if they had the same curvature they might still touch at all points and yet not be plane; but if three surfaces, A, B, and C, are worked together, and if A fits both B and C and A is concave, then B and C must be both convex, and they will not fit one another. If B and C both fit A and also fit one another at all points, then all three must be truly plane.

When an accurate plane-surface plate has once been made, others can be made one at a time and tested by trying them on the standard plate and moving them over the surface with a little red lead between them. When two surface plates made as truly plane as possible are placed gently on one another without any red lead between them, the upper plate will float almost without friction on a very thin layer of air, which takes a very long time to escape from between the plates, because they are everywhere so very near together.

HOW TO DRAW THE CIRCLES REPRESENTING MERDIANS AND PARALLELS ON A SPHERE.

We have seen that it is difficult to draw a straight line and also difficult to construct a plane surface with any degree of accuracy. The problem of constructing circles upon a sphere is one that requires some ingenuity if the resulting circles are to be accurately drawn. If a hemispherical cup is constructed that just fits the sphere, two points on the rim exactly opposite to one another may be determined. (See fig. 7.) To do this is not so easy as it appears, if there is nothing to mark the center of the cup. The diameter of the cup can be measured and a circle can be drawn on cardboard with the same diameter by the use of a compass. The center of this circle will be marked on the cardboard by the fixed leg of the compass and with a straight edge a diameter can be drawn through this center. This circle can then be cut out and fitted just inside the rim of the cup. The ends of the diameter drawn on the card then mark the two points required on the edge of the cup. With some suitable tool a small notch can be made at each point on the edge of the cup. Marks should then be made on the edge of the cup for equal divisions of a semicircle. If it is desired to draw the parallels for every 10° of latitude, the semicircle must be divided into 18 equal parts. This can be done by dividing the cardboard circle by means of a protractor and then by marking the corresponding points on the edge of the cup. The sphere can now be put into the cup and points on it marked corresponding to the two notches in the edge of the cup. Pins can be driven into these points and allowed to rest in the notches. If the diameter of the cup is such that
the sphere just fits into it, it can be found whether the pins are exactly in the ends of a diameter by turning the sphere on the pins as an axis. If the pins are not correctly placed, the sphere will not rotate freely. The diameter determined by the pins may now be taken as the axis, one of the ends being taken as the North Pole

Fig. 7.-Constructing the circles of parallels and meridians on a globe.
and the other as the South Pole. With a sharp pencil or with an engraving tool circles can be drawn on the sphere at the points of division on the edge of the cup by turning the sphere on its axis while the pencil is held against the surface at the correct point. The circle midway between the poles is a great circle and will represent the Equator. The Equator is then numbered 0° and the other eight circles on either side of the Equator are numbered $10^{\circ}, 20^{\circ}$, etc. The poles themselves correspond to 90°.

Now remove the sphere and, after removing one of the pins, insert the sphere again in such a way that the Equator lies along the edge of the cup. Marks can then be made on the Equator corresponding to the marks on the edge of the cup. In this way the divisions of the Equator corresponding to the meridians of 10° interval are determined. By replacing the sphere in its original position with the pins inserted, the meridians can be drawn along the edge of the cup through the various marks on the Equator. These will be great circles passing through the poles. One of these circles is numbered 0° and the others $10^{\circ}, 20^{\circ}$, etc., both east and west of the zero meridian and extending to 180° in both directions. The one hundred and eightieth meridian will be the prolongation of the zero meridian through the poles and will be the same meridian for either east or west.

This sphere, with its two sets of circles, the meridians and the parallels, drawn upon it may now be taken as a model of the earth on which corresponding circles are supposed to be drawn. When it is a question only of supposing the circles to be drawn, and not actually drawing them, it will cost no extra effort to suppose them drawn and numbered for every degree, or for every minute, or even for every second of are, but no one would attempt actually to draw them on a model globe for intervals of less than 1°. On the earth itself a second of latitude corresponds to a little more than 100 feet. For the purpose of studying the principles of map projection it is quite enough to suppose that the circles are drawn at intervals of 10°.

It was convenient in drawing the meridians and parallels by the method just described to place the polar axis horizontal, so that the sphere might rest in the cup by its own weight. Hereafter, however, we shall suppose the sphere to be turned so that its polar axis is vertical with the North Pole upward. The Equator and all the parallels of latitude will be horizontal, and the direction of rotation corresponding to the actual rotation of the earth will carry the face of the sphere at which we are looking from left to right; that is, from west to east, according to the way in which the meridians were marked. As the earth turns from west to east a person on its surface, unconscious of its movement and looking at the heavenly bodies, naturally thinks that they are moving from east to west. Thus, we say that the sun rises in the east and sets in the west.

THE TERRESTRIAL GLOBE.

With the sphere thus constructed with the meridians and parallels upon it, we get a miniature representation of the earth with its imaginary meridians and parallels. On this globe the accurately determined points may be plotted and the shore line drawn in, together with the other physical features that it is desirable to show. This procedure, however, would require that each individual globe should be plotted by hand, since no reproductions could be printed. To meet this difficulty, ordinary terrestrial globes are made in the following way: It is well known that a piece of paper can not be made to fit on à globe but a narrow strip can be made to fit fairly well by some stretching. If the strip is fastened upon the globe when it is wet, the paper will stretch enough to allow almost a perfect fit. Accordingly 12 gores are made as shown in figure 8 , such that when fastened upon the globe they will reach from the parallel of 70° north to 70° south. A circular cap is then made to extend from each of these parallels to the poles. Upon these gores the projection lines and the outlines of the continents are printed. They can then be pasted upon the globe and with careful stretching they can be made to adapt themselves to the spherical surface. It is obvious that the central meridian of each gore is shorter than the bounding meridians, whereas upon the globe all of the meridians are of the same length. Hence in adapting the gores to the globe the central meridian of each gore must be slightly stretched in comparison with the side meridians. The figure 8 shows on a very small scale the series of gores and the polar caps printed for covering a globe. These gores do not constitute a map. They are as nearly as may be on a plane surface, a facsimile of the surface of the globe, and only require bending with a little stretching in certain directions or contraction in others or both to adapt themselves precisely to the spherical surface. If the reader examines the parts of the continent of Asia as shown on the separate gores which are almosta a facsimile of the same portion of the globe, and tries to piece them together without bending them over the curved surface of the sphere, the problem of map projection will probably present itself to him in a new light.

It is seen that although the only way in which the surface of the earth can be represented correctly consists in making the map upon the surface of a globe, yet this is a difficult task, and, at the best, expedients have to be resorted to unless the work of construction is to be prohibitive. It should be remembered, however, that the only source of true ideas regarding the mapping of large sections of the surface of the earth must of necessity be obtained from its representation on a globe. Much good would result from making the globe the basis of all elementary teaching in geography. The pupils should be warned that maps are very generally used because of their convenience. Within proper limitations they serve every purpose for

which they are intended. Errors are dependent upon the system of projection used and when map and globe ${ }^{2}$ do not agree, the former is at fault. This would seem to be a criticism against maps in general and where large sections are involved and where unsuitable projections are used, it often is such. Despite defects which are inherent in the attempt to map a spherical surface upon a plane, maps of large areas, comprising continents, hemispheres or even the whole sphere, are employed because of their convenience both in construction and handling. However, before globes come into more general use it will be necessary for makers to omit the line of the ecliptic, which only leads to confusion for old and young when found upon a

[^1]terrestrial globe. It was probably copied upon a terrestrial globe from a celestial globe at some early date by an ignorant workman, and for some inexplicable reason it has been allowed to remain ever since. However, there are some globes on the market to-day that omit this anomalous line.

Makers of globes would confer a benefit on future generations if they would make cheap globes on which is shown, not as much as possible, but essential geographic features only. If the oceans were shown by a light blue tint and the continents by darker tints of another color, and if the principal great rivers and mountain chains were shown, it would be sufficient. The names of oceans and countries, and a few great cities, noted capes, etc., are all that should appear. The globe then would serve as the index to the maps of continents, which again would serve as indexes to the maps of countries. Globes as made at present are so full of detail, and are so mounted, that they are puzzling to anyone who does not understand the subject well enough to do without them, and are in most cases hindrances as much as helpers to instruction.

REPRESENTATION OF THE SPHERE UPON A PLANE. THE PROBLEM OF MAP PROJECTION.

It seems, then, that if we have the meridians and parallels properly drawn on any system of map projection, the outline of a continent or island can be drawn in from information given by the surveyors respecting the latitude and longitude of the principal capes, inlets, or other features, and the character of the coast between them. Copies of maps are commonly made in schools upon blank forms on which the meridians and parallels have been drawn, and these, like squared paper, give assistance to the free-hand copyist. Since the meridians and parallels can be drawn as closely together as we please, we can get as many points as we require laid down with strict accuracy. The meridians and parallels being drawn on the globe, if we have a set of lines upon a plane sheet to represent them we can then transfer detail from the globe to the map. The problem of map projection, therefore, consists in finding some method of transferring the meridians and parallels from the globe to the map.

DEFINITION OF MAP PROJECTION.

The lines representing the meridians and parallels can be drawn in an arbitrary manner, but to avoid confusion we must have a one-to-one correspondence. In practice all sorts of liberties are taken with the methods of drawing the meridians and parallels in order to secure maps which best fulfill certain required conditions, provided always that the methods of drawing the meridians and parallels follow some law or system that will give the one-to-one correspondence. Hence a map projection may be defined as a systematic drawing of lines representing meridians and parallels on a plane surface, either for the whole earth or for some portion of it.

DISTORTION.

In order to decide on the system of projection to be employed, we must consider the purpose for which the map is to be used and the consequent conditions which it is most important for the map to fulfill. In geometry, size and shape are the two fundamental considerations. If we want to show without exaggeration the extent of the different countries on a world map, we do not care much about the shape of the country, so long as its area is properly represented to scale. For statistical purposes, therefore, a map on which all areas are correctly represented to scale is valuable, and such a map is called an "equal-area projection." It is well known that parallelograms on the same base and between the same parallels, that is of the same height, have equal area, though one may be rectangular or upright and the other very oblique. The sloping sides of the oblique parallelograms must be very much longer than the upright sides of the other, but the areas of the figures will be the same though the shapes are so very different. The process by which the oblique parallelogram can be formed from the rectangular parallelogram is called by engineers "shearing." A pack of cards as usually placed together shows as profile a rectangular parallelogram. If a book be stood up against the ends of the cards as in figure 9 and then made to slope as in figure 10 each card will slide a little over the one below and the profile of the pack will be the oblique parallelogram shown in figure 10. The height of the parallelogram will be the same, for it is the
thickness of the pack. The base will remain unchanged, for it is the long edge of the bottom card. The area will be unchanged, for it is the sum of the areas of the edges of the cards. The shape of the paralleogram is very different from its original shape.

Fig. 9.-Pack of cards before"shearing."

FIG. 10.-Pack of cards after "shearing."

The sloping sides, it is true, are not straight lines, but are made up of 52 little steps, but if instead of cards several hundred very thin sheets of paper or metal had been used the steps would be invisible and the sloping edges would appear to be straight lines. This sliding of layer upon layer is a "simple shear." It alters the shape without altering the area of the figure.

Fic. 11.-Square "sheared" into an equivalent parallelogram.
This shearing action is worthy of a more careful consideration in order that We may understand one very important point in map projection. Suppose the square $A B C D$ (see fig. 11) to be sheared into the oblique parallelogram ab $C D$. Its base and height remain the same and its area is unchanged, but the parallelogram $a b C D$ may be turned around so that $C b$ is horizontal, and then $C b$ is the base, and the line $a N$ drawn from a perpendicular to $b C$ is the height. Then the area is the product of $b C$ and $a N$, and this is equal to the area of the original square and is constant whatever the angle of the parallelogram and the extent to which the side $B C$ has been stretched. The perpendicular $a N$, therefore, varies inversely as the length of the side $b C$, and this is true however much $B C$ is stretched. Therefore in an equal-area projection, if distances in one direction are increased, those measured in the direction at right angles are reduced in the corresponding ratio if the lines that they represent are perpendicular to one another upon the earth.

If lines are drawn at a point on an equal-area projection nearly at right angles to each other, it will in general be found that if the scale in the one direction is increased that in the other is diminished. If one of the lines is turned about the
point, there must be some direction between the original positions of the lines in which the scale is exact. Since the line can be turned in either of two directions, there must be two directions at the point in which the scale is unvarying. This is true at every point of such a map, and consequently curves could be drawn on such a projection that would represent directions in which there is no variation in scale (isoperimetric curves).

In maps drawn on an equal-area projection, some tracts of country may be sheared so that their shape is changed past recognition, but they preserve their area unchanged. In maps covering a very large area, particularly in maps of the whole world, this generally happens to a very great extent in parts of the map which are distant from both the horizontal and the vertical lines drawn through the center of the map. (See fig. 12.)

Fig. 12.-The Mollweide equal-area projection of the sphere.
It will be noticed that in the shearing process that has been described every little portion of the rectangle is sheared just like the whole rectangle. It is stretched parallel to $B C$ (see fig. 11) and contracted at right angles to this direction. Hence when in an equal-area projection the shape of a tract of country is changed, it follows that the shape of every square mile and indeed of every square inch of this country will be changed, and this may involve a considerable inconvenience in the use of the map. In the case of the pack of cards the shearing was the same at all points. In the case of equal-area projections the extent of shearing or distortion varies with the position of the map and is zero at the center. It usually increases along the diagonal lines of the map. It may, however, be important for the purpose for which the map is required, that small areas should retain their shape even at the cost of the area being increased or diminished, so that different scales have to be used at different parts of the map. The projections on which this condition is secured are called "conformal" projections. If it were possible to secure equality of area and exactitude of shape at all points of the map, the whole map would be an exact counterpart of the corresponding area on the globe, and could be made to fit the globe at all points by simple bending without any stretching or contraction, which would imply alteration of scale. But a plane surface can not be made to fit a sphere in this way. It must be stretched in some direction or contracted in others (as in the process of "raising" a dome or cup by hammering sheet metal) to fit the sphere, and this means that the scale must be altered in one direction or in the
other or in both directions at once. It is therefore impossible for a map to preserve the same scale in all directions at all points; in other words a map can not accurately represent both size and shape of the geographical features at all points of the map.

CONDITIONS FULFHLED BY A MAP PROJECTION.

If, then, we endeavor to secure that the shape of a very small area, a square inch or a square mile, is preserved at all points of the map, which means that if the scale of the distance north and south is increased the scale of the distance east and west must be increased in exactly the same ratio, we must be content to have some parts of the map represented on a greater scale than others. The conformal projection, therefore, necessitates a change of scale at different parts of the map, though the scale is the same in all directions at any one point. Now, it is clear that if in a map of North America the northern part of Canada is drawn on a much larger scale than the southern States of the United States, although the shape of every little bay or headland, lake or township is preserved, the shape of the whole continent on the map must be very different from its shape on the globe. In choosing our system of map projection, therefore, we must decide whether we want-
(1) To keep the area directly comparable all over the mep at the expense of correct shapo (equal-area projection), or
(2) To keep the shapes of the smaller geographical features, capes, bays, lakes, etc., correct at the expense of a changing scale all over the map (conformal projection) and with the knowledge that large tracts of country will not preserve their shape, or
(3) To make a compromise between these conditions so as to minimize the errors when both shape and area are taken into account.

There is a fourth consideration which may be of great importance and which is very important to the navigator, while it will be of much greater importance to the aviator when aerial voyages of thousands of miles are undertaken, and that is that directions of places taken from the center of the map, and as far as possible when taken from other points of the map, shall be correct. The horizontal direction of an object measured from the south is known as its azimuth. Hence a map which preserves these directions correctly is called an "azimuthal projection." We may, therefore, add a fourth object, viz:
(4) To preserve the correct directions of all lines drawn from the center of the map (azimuthal projection).

Projections of this kind are sometimes called zenithal projections, because in maps of the celestial sphere the zenith point is projected into the central point of the map. This is a misnomer, however, when applied to a map of the terrestrial sphere.

We have now considered the conditions which we should like a map to fulfill, and we have found that they are inconsistent with one another. For some particular purpose we may construct a map which fulfills one condition and rejects another, or vice versa; but we shall find that the maps most commonly used are the result of compromise, so that no one condition is strictly fulfilled, nor, in most cases, is it extravagantly violated.

Classification of projections.

There is no way in which projections can be divided into classes that are mutually exclusive; that is, such that any given projection belongs in one class, and only in one. There are, however, certain class names that are made use of in practice principally as a matter of convenience, although a given projection may fall in two
or more of the classes. We have already spoken of the equivalent or equal-area type and of the conformal, or, as it is sometimes called, the orthomorphic type.

The equal-area projection preserves the ratio of areas constant; that is, any given part of the map bears the same relation to the area that it represents that the whole map bears to the whole area represented. This can be brought clearly before the mind by the statement that any quadrangular-shaped section of the map formed by meridians and parallels will be equal in area to any other quadrangular area of the same map that represents an equal area on the earth. This means that all sections between two given parallels on any equal-area map formed by meridians that are equally spaced are equal in area upon the map just as they are equal in area on the earth. In another way, if two silver dollars are placed upon the map one in one place and the other in any other part of the map the two areas upon the earth that are represented by the portions of the map covered by the silver dollars will be equal. Either of these tests forms a valid criterion provided that the areas selected may be situated on any portion of the map. There are other projections besides the equal-area ones in which the same results would be obtained on particular portions of the map.

A conformal projection is one in which the shape of any small section of the surface mapped is preserved on the map. The term orthomorphic, which is sometimes used in place of conformal, means right shape; but this term is somewhat misleading, since, if the area mapped is large, the shape of any continent or large country will not be preserved. The true condition for a conformal map is that the scale be the same at any point in all directions; the scale will change from point to point, but it will be independent of the azimuth at all points. The scale will be the same in all directions at a point if two directions upon the earth at right angles to one another are mapped in two directions that are also at right angles and along which the scale is the same. If, then, we have a projection in which the meridians and parallels of the earth are represented by curves that are perpendicular each to each, we need only to determine that the scale along the meridian is equal to that along the parallel. The meridians and parallels of the earth intersect at right angles, and a conformal projection preserves the angle of intersection of any two curves on the earth; therefore, the meridians of the map must intersect the parallels of the map at right angles. The one set of lines are then said to be the orthogonal trajectories of the other set. If the meridians and parallels of any map do not intersect at right angles in all parts of the map, we may at once conclude that it is not a conformal map.

Besides the equal-area and conformal projections we have already mentioned the azimuthal or, as they are sometimes called, the zenithal projections. In these the azimuth or direction of all points on the map as seen from some central point are the same as the corresponding azimuths or directions on the earth. This would be a very desirable feature of a map if it could be true for all points of the map as well as for the central point, but this could not be attained in any projection; hence the azimuthal feature is generally an incidental one unless the map is intended for some special purpose in which the directions from some one point are very important.

Besides these classes of projections there is another class called perspective projections or, as they are sometimes called, geometric projections. The principle of these projections consists in the direct projection of the points of the earth by straight lines drawn through them from some given point. The projection is generally made upon a plane tangent to the sphere at the end of the diameter joining the point of projection and the center of the earth. If the projecting point is the
center of the sphere, the point of tangency is chosen in the center of the area to be mapped. The plane upon which the map is made does not have to be tangent to the earth, but this position gives a simplification. Its position anywhere parallel to itself would only change the scale of the map and in any position not parallel to itself the same result would be obtained by changing the point of tangency with mere change of scale. Projections of this kind are generally simple, because they can in most cases be constructed by graphical methods without the aid of the analytical expressions that determine the elements of the projection.

Instead of using a plane directly upon which to lay out the projection, in many cases use is made of one of the developable surfaces as an intermediate aid. The two surfaces used for this purpose are the right circular cone and the circular cylinder. The projection is made upon one or the other of these two surfaces, and then this surface is spread out or developed in the plane. As a matter of fact, the projection is not constructed upon the cylinder or cone, but the principles are derived from a consideration of these surfaces, and then the projection is drawn upon the plane just as it would be after development. The developable surfaces, therefore, serve only as guides to us in grasping the principles of the projection. After the elements of the projections are determined, either geometrically or analytically, no further attention is paid to the cone or cylinder. A projection is called conical or cylindrical, according to which of the two developable surfaces is used in the determination of its elements. Both kinds are generally included in the one class of conical projections, for the cylinder is just a special case of the cone. In fact, even the azimuthal projections might have been included in the general class. If we have a cone tangent to the earth and then imagine the apex to recede more and more while the cone still remains tangent to the sphere, we shall have at the limit the tangent cylinder. On the other hand, if the apex approaches nearer and nearer to the earth the circle of tangency will get smaller and smaller, and in the end it will become a point and will coincide with the apex, and the cone will be flattened out into a tangent plane.

Besides these general classes there are a number of projections that are called conventional projections, since they are projections that are merely arranged arbitrarily. Of course, even these conform enough to law to permit their expression analytically, or sometimes more easily by geometric principles.

THE IDEAL MAP.

There are various properties that it would be desirable to have present in a a map that is to be constructed. (1) It should represent the countries with their true shape; (2) the countries represented should retain their relative size in the map; (3) the distance of every place from every other should bear a constant ratio to the true distances upon the earth; (4) great circles upon the sphere-that is, the shortest distances joining various points-should be represented by straight lines which are the shortest distances joining the points on the map; (5) the geographic latitudes and longitudes of the places should be easily found from their positions on the map, and, conversely, positions should be easily plotted on the map when we have their latitudes and longitudes. These properties could very easily be secured if the earth were a plane or one of the developable surfaces. Unfortunately for the cartographer, it is not such a surface, but is a spherical surface which can not be developed in a plane without distortion of some kind. It becomes, then, a matter of selection from among the various desirable properties enumerated above, and even some of these can not in general be attained. It is necessary, then, to decide what purpose the map to be constructed is to fulfill, and then we can select the projection that comes nearest to giving us what we want.

PROJECTIONS CONSIDERED WITHOUT MATHEMATICS.

If it is a question of making a map of a small section of the earth, it will so nearly conform to a plane surface that a projection can be made that will represent the true state to such a degree that any distortion present will be negligible. It is thus possible to consider the earth made up of a great number of plane sections of this kind, such that each of them could be mapped in this way. If the parallels and meridians are drawn each at 15° intervals and then planes are passed through the points of intersection, we should have a regular figure made up of plane quadrangular figures as in figure 13. Each of these sections could be made into a selfconsistent map, but if we attempt to fit them together in one plane map, we shall find that they will not join together properly, but the effect shown in figure 13 will

Fig. 13.-Earth considered as formed by plane quadrangles.
be observed. A section 15° square would be too large to be mapped without error, but the same principle could be applied to each square degree or to even smaller sections. This projection is called the polyhedral projection and it is in substance very similar to the method used by the United States Geological Survey in their topographic maps of the various States.

Instead of considering the earth as made up of small regular quadrangles, we might consider it made by narrow strips cut off from the bases of cones as in figure 14. The whole east-and-west extent of these strips could be mapped equally accurately as shown in figure 15. Each strip would be all right in itself, but they would not fit together, as is shown in figure 15. If we consider the strips to become very narrow while at the same time they increase in number, we get what is called the polyconic projections. These same difficulties or others of like nature are met with in every projection in which we attempt to hold the scale exact in some part. At
best we can only adjust the errors in the representation, but they can never all be avoided.

Viewed from a strictly mathematical standpoint, no representation based on a system of map projection can be perfect. A map is a compromise between the

Fra. 14.-Earth considered as formed by bases of cones.
various conditions not all of which can be satisfied, and is the best solution of the problem that is possible without encountering other difficulties that surpass those due to a varying scale and distortion of other kinds. It is possible only on a globe to represent the countries with their true relations and our general ideas should be continually corrected by reference to this source of knowledge.

Fig. 15.-Development of the conical bases.
In order to point out the distortion that may be found in projections, it will be well to show some of those systems that admit of easy construction. The perspective or geometrical projections can always be constructed graphically, but it is sometimes easier to make use of a computed table, even in projections of this class.

ELEMENTARY DISCUSSION OF VARIOUS FORMS OF PROJECTION.

CYLINDRICAL EQUAL-AREA PROJECTION.

This projection is one that is of very little use for the construction of a map of the world, although near the Equator it gives a fairly good representation. We shall use it mainly for the purpose of illustrating the modifications that can be introduced into cylindrical projections to gain certain desirable features.

In this projection a cylinder tangent to the sphere along the Equator is employed. The meridians and parallels are straight lines forming two parallel systems mutually perpendicular. The lines representing the meridians are equally spaced. These features are in general characteristic of all cylindrical projections in which the cylinder is supposed to be tangent to the sphere along the Equator. The only feature as yet undetermined is the spacing of the parallels. If planes are passed through the various parallels they will intersect the cylinder in circles that become straight lines when the cylinder is developed or rolled out in the plane. With this condition it is evident that the construction given in figure 16 will give the network of meridians and parallels for 10° intervals. The length of the map is evidently π (about 34) times the diameter of the circle that represents a great circle of the sphere. The semicircle is divided by means of a protractor into 18 equal arcs, and these points of division are projected by lines parallel to the line representing the Equator or perpendicular to the bounding diameter of the semicircle. This gives an equivalent or equal-area map, because, as we recede from the Equator, the distances representing differences of latitude are decreased just as great a per cent as the distances representing differences of longitude are increased. The result in a world map is the appearance of contraction toward the Equator, or, in another sense, as an east-and-west stretching of the polar regions.

CYLINDRICAL EQUAL-SPACED PROJECTION.

If the equal-area property be disregarded, a better cylindrical projection can be secured by spacing the meridians and parallels equally. In this way we get rid of the very violent distortions in the polar regions, but even yet the result is very unsatisfactory. Great distortions are still present in the polar regions, but they are much less than before, as can be seen in figure 17. As a further attempt, we can throw part of the distortion into the equatorial regions by spacing the parallels equally and the meridians equally, but by making the spacings of the parallels greater than that of the meridians. In figure 18 is shown the whole world with the meridians and parallel spacings in the ratio of two to three. The result for a world map is still highly unsatisfactory even though it is slightly better than that obtained by either of the former methods.

PROJECTION FROM TEE CENTER UPON A TANGENT CYLINDER.

As a fourth attempt we might project the points by lines drawn from the center of the sphere upon a cylinder tangent to the Equator. This would have a tendency to stretch the polar regions north and south as well as east and west. The result of this method is shown in figure 19, in which the polar regions are shown up to 70° of latitude. The poles could not be shown, since as the projecting line approaches them

Fia. 16.-Cylindrical equal-area projection.

Fic. 17.-Cylindrical equal-spaced projection.
indefinitely, the required intersection with the cylinder recedes indefinitely, or, in mathematical language, the pole is represented by a line at an infinite distance.

Fra. 18.-Modified cylindrical equal-spaced projection.

MERCATOR PROJECTION.

Instead of stretching the polar regions north and south to such an extent, it is customary to limit the stretching in latitude to an equality with the stretching in longitude. (See fig. 20.) In this way we get a conformal projection in which any small area is shown with practically its true shape, but in which large areas will be distorted by the change in scale from point to point. In this projection the pole is represented by a line at infinity, so that the map is seldom extended much beyond 80° of latitude. This projection can not be obtained directly by graphical construction, but the spacings of the parallels have to be taken from a computed table. This is the most important of the cylindrical projections and is widely used for the construction of sailing charts. Its common use for world maps is very misleading, since the polar regions are represented upon a very enlarged scale.

Fra. 19.-Perspective projection upon a tangent cylinder
$22864^{\circ}-21-3$

Fia. 20.-Mercator projection.
Since a degree is one three-hundred-and-sixtieth part of a circle, the degrees of latitude are everywhere equal on a sphere, as the meridians are all equal circles. The degrees of longitude, however, vary in the same proportion as the size of the parallels vary at the different latitudes. The parallel of 60° latitude is just one-half of the length of the Equator. A square-degree quadrangle at 60° of latitude has the same length north and south as has such a quadrangle at the Equator, but the extent east and west is just one-half as great. Its area, then, is approximately onehalf the area of the one at the Equator. Now, on the Mercator projection the longitude at 60° is stretched to double its length, and hence the scale along the meridian has to be increased an equal amount. The area is therefore increased fourfold. At 80° of latitude the area is increased to 36 times its real size, and at 89° an area would be more than 3000 times as large as an equal-sized area at the Equator.

This excessive exaggeration of area is a most serious matter if the map be used for general purposes, and this fact ought to be emphasized because it is undoubtedly true that in the majority of cases peoples' general ideas of geography are based on Mercator maps. On the map Greenland shows larger than South America, but in reality South America is nine times as large as Greenland. As will be shown later, this projection has many good qualities for special purposes, and for some general purposes it may be used for areas not very distant from the Equator. No suggestion is therefore made that it should be abolished, or even reduced from its position among the first-class projections, but it is most strongly urged that no one should use it without recognizing its defects, and thereby guarding against being misled by false appearances. This projection is often used because on it the whole inhabited world can be shown on one sheet, and, furthermore, it can be prolonged
in either an east or west direction; in other words, it can be repeated so as to show part of the map twice. By this means the relative positions of two places that would be on opposite sides of the projection when confined to 360° can be indicated more definitely.

GEOMETRICAL AZIMUTHAL PROJECTIONS.

Many of the projections of this class can be constructed graphically with very little trouble. This is especially true of those that have the pole at the center. The meridians are then represented by straight lines radiating from the pole and the parallels are in turn represented by concentric circles with the pole as center. The angles between the meridians are equal to the corresponding longitudes, so that they are represented by radii that are equally spaced.

STEREOGRAPHIC POLAR PROJECTION.

This is a perspective couformal projection with the point of projection at the South Pole when the northern regions are to be projected. The plane upon which

Frg. 21.-Determination of zadii for stereographic polar projection.
the projection is made is generally taken as the equatorial plame. Λ plane tangent at the North Pole could be used equally well, the only difference being in the scale of the projection. In figure 21 let $N E S W$ be the plane of a meridian with N representing the North Pole. Then $N P$ will be the trace of the plane tangent at the North Pole. Divide the arc $N E$ into equal parts, each in the figure being for 10° of latitude. Then all points at a distance of 10° from the North Pole will lie on a circle with radius $n p$, those at 20° on a circle with radius $n q$, etc. With these radii we can construct the map as in figure 22. On the map in this figure the lines are drawn for each 10° both in latitude and longitude; but it is clear that a largor map could be constructed on which lines could be drawn for every degree. We have seen that a practically correct map can be made for a region measuring 1° each way, because curvature in such a size is too slight to bo taken into account. Suppose, then, that correct maps were made separately of all the little quadrangular portions. It would be found that by simply reducing oach of them to the requisite scale it could be fitted almost exactly into the space to which it belonged. We say almost exactly, because the edge
nearest the conter of the map would have to be a little smaller in scale, and hence would have to be compressed a little if the outer edges were reduced the exact amount, but the compression would be so slight that it would require very careful measurement to detect it.

Fig. 22.-Stereographic polar projection.
It would seem, then, at first sight that this projection is an ideal one, and, as a matter of fact, it is considered by most authorities as the best projection of a hemisphere for general purposes, but, of course, it has a serious defect. It has been stated that each plan has to be compressed at its inner edge, and for the same reason each plan in succession has to be reduced to a smaller average scale than the one outside of it. In other words, the shape of each space into which a plan has to be fitted is practically correct, but the size is less in proportion at the center than at the edges; so that if a correct plan of an area at the edge of the map has to be reduced, let us say to a scale of 500 miles to an inch to fit its allotted space, then a plan of an area at the center has to be reduced to a scale of more than 500 miles to an inch. Thus a moderate area has its true shape, and even an area as large as one of the States is not distorted to such an extent as to be visible to the ordinary observer, but to obtain this advantage
relative size has to be sacrificed; that is, the property of equivalence of area has to be entirely disregarded.

CENTRAL OR GNOMONIC PROJECTION.

In this projection the center of the sphere is the point from which the projecting lines are drawn and the map is made upon a tangent plane. When the plane is tangent at the pole, the parallels are circles with the pole as common conter and the meridians

FIG. 23.-Determination of radii for gnomonic polar projection.
are equally spaced radii of these circles. In figure 23 it can be seen that the length of the various radii of the parallels are found by drawing lines from the center of a circle representing a meridian of the sphere and by prolonging them to intersect a tangent line. In the figure let P be the pole and let $P Q, Q R$, etc., be arcs of 10°, then $P q$, Pr, etc., will be the radii of the corresponding parallels. It is at once evident that a complete hemisphere can not be represented upon a plane, for the radius of 90° from the center would become infinite. The North Pole regions extending to latitude 30° is shown in figure 24.

The important property of this projection is the fact that all great circles are represented by straight lines. This is evident from the fact that the projecting lines would all lie in the plane of the circle and the circle would be represented by the intersection of this plane with the mapping plane. Since the shortest distance be-

Fig. 24.-Gnomonic polar projection.
tween two given points on the sphere is an arc of a great circle, the shortest distance between the points on the sphere is represented on the map by the straight line joining the projection of the two points which, in turn, is the shortest distance joining the projections; in other words, shortest distances upon the sphere are represented by shortest distances upon the map. The change of scale in the projection is so rapid that very violent distortions are present if the map is extended any distance. A map of this kind finds its principal use in connection with the Mercator charts, as will be shown in the second part of this publication.

LAMBERT AZIMUTHAL EQUAI-AREA PROJECTION.

This projection does not belong in the perspective class, but when the pole is the center it can be easily constructed graphically. The radius for the circle representing a parallel is taken as the chord distance of the parallel from the pole. In figure 25 the chords are drawn for every 10° of arc, and figure 26 shows the map of the Northern Hemisphere constructed with these radii.

ORTHOGRAPHIC POLAR PROJECTION.

When the pole is the center, an orthographic projection may be constructed graphically by projecting the parallels by parallel lines. It is a perspective projection in which the point of projection has receded indefinitely, or, speaking mathematically,

Frg. 25.-Determination of radii for Lambert equal-area polar projection.

Fra. 20.-Lambert equal-area polar projection.

Fic. 27.-Determination of radii for orthographic polar projection.
the point of projection is at infinity. Each parallel is really constructed with a radius proportional to its radius on the sphere. It is clear, then, that the scale along the parallels is unvarying, or, as it is called, the parallels are held true to scale. The

Fig. 28.-Orthographic polar projection.
method of construction is indicated clearly in figure 27, and figure 28 shows the Northern Hemisphere on this projection. Maps of the surface of the moon are usually constructed on this projection, since we really see the moon projected upon the celestial sphere practically as the map appears.

AZIMUTHAL EQUIDISTANT PROJECTION.

In the orthographic polar projection the scale along the parallels is held constant, as we have seen. We can also have a projection in which the scale along the meridians is held unvarying. If the parallels are represented by concentric circles equally spaced, we shall obtain such a projection. The projection is very easily constructed,

Fia. 29.-Azimuthal equidistant polar projection.
since we need only to draw the system of concentric, equally spaced circles with the meridians represented, as in all polar azimuthal projections, by the equally spaced

Fig. 30.-Stereographic projection of the Western Hemisphere.
radii of the system of circles. Such a map of the Northern Hemisphere is shown in figure 29. This projection has the advantage that it is somewhat a mean between the stereographic and the equal area. On the whole, it gives a fairly good repre-
sentation, since it stands as a compromise between the projections that cause distortions of opposite kind in the outer regions of the maps.

OTHER PROJECTIONS IN FREQUENT USE.

In figure 30 the Western Hemisphere is shown on the stereographic projection. A projection of this nature is called a meridional projection or a projection on the

Fig. 31.-Gnomonic projection of part of the Western Hemisphere.
plane of a meridian, because the bounding circle represents a meridian and the North and South Poles are shown at the top and the bottom of the map, respectively.

Fig. 32.-Lambert equal-area projection of the Western Hemisphere.

The central meridian is a straight line and the Equator is represented by another straight line perpendicular to the central meridian; that is, the central meridian and the Equator are two perpendicular diameters of the circle that represents the outer meridian and that forms the boundary of the map.

Frg. 33.-Orthographic projection of the Western Hemisphere.
In figure 31 a part of the Western Hemisphere is represented on a gnomonic projection with a point on the Equator as the center.

Fra. 34.-Globular projection of the Westera Hemisphere.
A meridian equal-area projection of the Western Hemisphere is shown in figure 32.

An orthographic projection of the same hemisphere is given in figure 33. In this the parallels become straight lines and the meridians are arcs of ellipses.

A projection that is often used in the mapping of a hemisphere is shown in figure 34. It is called the globular projection. The outer moridian and the central meridian are divided each into equal parts by the parallels which are arcs of circles. The Equator is also divided into equal parts by the meridians, which in turn are arcs of circles. Since all of the meridians pass through each of the poles, these conditions are sufficient to determine the projection. By comparing it with the stereographic it will be seen that the various parts are not violently sheared out of shape, and a comparison with the equal-area will show that the areas are not badly represented. Certainly such a representation is much less misleading than the Mercator which is too often employed in the school geographies for the use of young people.

CONSTRUCTION OF A STEREOGRAPHIC MERIDIONAL PROJECTION.

Two of the projections mentioned under the preceding heading-the stereographic and the gnomonic-lend themselves readily to graphic construction. In figure 35 let the circle $P Q P^{\prime}$ represent the outer meridian in the stereographic

Fig. 35.-Determination of the elements of a stereographic projection on the plane of a meridain.
projection. Take the arc $P Q$, equal to 30°; that is, Q will lio in latitude 60°. At Q construct the tangent $R Q$; with R as a center, and with a radius $R Q$ construct the arc $Q S Q^{\prime}$. This arc represents the parallel of latitude 60°. Lay off $O K$ equal to $R Q$; with K as a center, and with a radius $K P$ construct the are $P S P^{\prime}$; then this arc represents the meridian of longitude 60° reckoned from the central meridian $P O P^{\prime}$. In the same way all the meridians and parallels can be constructed so that the construction is very simple. Hemispheres constructed on this projection are very frequently used in atlases and geographies.

CONSTRUCTION OF A GNOMONIC PROJECTION WITH POINT OF TANGENCY ON THE EQUATOR.

In figure 36 let $P Q P^{\prime} Q^{\prime}$ represent a great circle of the sphere. Draw the radii $O A, O B$, etc., for every 10° of arc. When these are prolonged to intersect the tangent at P, we get the points on the equator of the map where the meridians inter-

Fra. 36.-Construction of a gnomonic projection with plade tangent at the Equator.
sect it. Since the meridians of the sphere are represented by parallel straight lines perpendicular to the straight-line equator, we can draw the meridians when we know their points of intersection with the equator.

The central meridian is spaced in latitude just as the meridians are spaced on the equator. In this way we determine the points of intersection of the parallels with
the central meridian. The projection is symmetrical with respect to the central meridian and also with respect to the equator. To determine the points of intersection of the parallels with any meridian, we proceed as indicated in figure 36, Where the determination is made for the meridian 30° out from the central meridian. Draw $O K$ perpendicular to $O C$; then $C D^{\prime}$, which equals $C D$, determinos D^{\prime}, the intersection of the parallel of 10° north with the meridian of 30° in longitude east of the central meridian. In like manner $C E^{\prime}=C E$, and so on. These same values can be transferred to the meridian of 30° in longitude west of the central meridian. Since the projection is symmetrical to the equator, the spacings downward on any meridian are the same as those upward on the same meridian. After the points of intersection of the parallels with the various meridians are determined, we can draw a smooth curve through those that lie on any given parallel, and this curve will represent the parallel in question. In this way the complete projection can be constructed. The distortions in this projection are very great, and the representation must always be less than a hemisphere, because the projection extends to infinity in all directions. As has already been stated, the projection is used in connection with Mercator sailing charts to aid in plotting great-circle courses.

CONICAL PROJECTIONS.

In the conical projections, when the cone is spread out in the plane, the 360 degrees of longitude are mapped upon a sector of a circle. The magnitude of the angle at the center of this siector has to be determined by computation from the condition imposed

Fig. 37.-Cone tangent to the sphere at latitude 30°.
upon the projection. Most of the conical projections are determined analytically; that is, the elements of the projection are expressed by mathematical formulas
instead of being determined projectively. There are two classes of conical projec-tions-one called a projection upon a tangent cone and another called a projection upon a secant cone. In the first the scale is held true along one parallel and in the second the scale is maintained true along two parallels.

CENTRAL PROJECTION UPON A CONE TANGENT AT LATITUDE 30°.

As an illustration of conical projections we shall indicate the construction of one which is determined by projection from the center upon a cone tangent at latitude 30°. (See fig. 37.) In this case the full circuit of 360° of longitude will be

Fra. 38.-Determination of radii for conical central perspective projection.
mapped upon a semicircle. In figure 38 let $P Q P^{\prime} Q^{\prime}$ represent a meridian circle; draw $C B$ tangent to the circle at latitude 30°, then $C B$ is the radius for the parallel of 30° of latitude on the projection. $C R, O S, O T$, etc., are the radii for the parallels of $80^{\circ}, 70^{\circ}, 60^{\circ}$, etc., respectively. The map of the Northern Hemisphere on this projection is shown in figure 39; this is, on the whole, not a very satisfactory projection, but it serves to illustrate some of the principles of conical projection. We might determine the radii for the parallels by extending the planes of the same until they intersect the cone. This would vary the spacings of the parallels, but would not change the sector on which the projection is formed.

A cone could be made to intersect the sphere and to pass through any two chosen parallels. Upon this we could project the sphere either from the center or from any other point that we might choose. The gencral appearance of the projection would be similar to that of any conical projection, but some computation would
be required for its construction. As has been stated, almost all conical projections in use have their elements determined analytically in the form of mathematical formulas. Of these the one with two standard parallels is not, in general, an intersecting cone, strictly speaking. Two separate parallels are held true to scale,

Fra. 39.-Central perspective projection on cone tangent at latitude 30°.
but if they were held equal in length to their length on the sphere the cone could not, in general, be made to intersect the sphere so as to have the two parallels coincide with the circles that represent them. This could only be done in case the distance between the two ciroles on the cone was equal to the chord distance between the parallels on the sphere. This would be true in a perspective projection, but it would ordinarily not be true in any projection determined analytically. Probably the two mostimportant conical projections are the Lambert conformal conical pro-
jection with two standard parallels and the Albers equal-area conical projection. The latter projection has also two standard parallels.

BONNE PROJECTION.

There is a modified conical equal-area projection that has been much used in map making called the Bonne projection. In general a cone tangent along the parallel in the central portion of the latitude to be mapped gives the radius for the are representing this parallel. A system of concentric circles is then drawn to represent the other parallels with the spacings along the central meridian on the same scale as that of the standard parallel. Along the arcs of these circles the longitude distances are laid off on the same scale in both directions from the central meridian,

which is a straight line. All of the meridians except the central one are curved lines concave toward the straight-line central meridian. This projection has been much used in atlases partly because it is equal-area and partly because it is comparatively easy to construct. A map of the United States is shown in figure 40 on this projection.

POLYCONIC PROJECTION.

In the polyconic projection the central meridian is represented by a straight line and the parallels are represented by arcs of circles that are not concentric, but the centers of which all lie in the extension of the central meridian. The distances between the parallels along the central meridian are made proportional to the true distances between the parallels on the earth. The radius for each parallel is determined by an element of the cone tangent along the given parallel. When the parallels are constructed in this way, the arcs along the circles representing the parallels are laid off proportional to the true lengths along the respective parallels. Smooth curves drawn through the points so determined give the respective meridians. In figure 15 it may be seen in what manner the exaggeration of scale is introduced by this method of projection. A map of North America on this projection is shown in
figure 41. The great advantage of this projection consists in the fact that a general table can be computed for use in any part of the earth. In most other projections there are certain elements that have to be determined for the region to be mapped.

Fra. 41.-Polyconic projection of North America.
When this is the case a separate table has to be computed for each region that is under consideration. With this projection, regions of narrow extent of longitude can be mapped with an accuracy such that no departure from true scale can be detected. A quadrangle of 1° on each side can be represented in such a manner, and in cases where the greatest accuracy is either not required or in which the error in scale may be taken into account, regions of much greater extent can be successfully mapped. The general table is very convenient for making topographic maps of limited extent in which it is desired to represent the region in detail. Of course, maps of neighboring regions on such a projection could not be fitted together exactly to form an extended map. This same restriction would apply to any projection on which the various regions were represented on an unvarying scale with minimum distortions.

ILLUSTRATIONS OF RELATIVE DISTORTIONS.

A striking illustration of the distortion and exaggerations inherent in various systems of projection is given in figures 42-45. In figure 42 we have shown a man's head drawn with some degree of care on a globular projection of a hemisphere. The other three figures have the outline of the head plotted, maintaining the latitude and longitude the same as they are found in the globular projection. The distortions and exaggerations are due solely to those that are found in the projection in question.

Fig. 42.-Man's head drawn on globular projection.

Fra. 44.-Man's head plotted on stereographic projection.

Fig. 43.-Man's head plotted on orthographic projection.

Fig. 45.-Man's head plotted on Mercator projection.

This does not mean that the globular projection is the best of the four, because the symmetrical figure might be drawn on any one of them and then plotted on the others. By this method we see shown in a striking way the relative differences in distortion of the various systems. The principle could be extended to any number of projections that might be desired, but the four figures given serve to illustrate the method.

Fig. 46.-Gnomonic projection of the sphere on a circumscribed cube.

PART II.

INTRODUCTION.

It is the purpose in Part II of this review to give a comprehensive description of the nature, properties, and construction of the better systems of map projection in use at the present day. Many projections have been devised for map construction which are nothing more than geometric trifles, while others have attained prominence at the expense of better and ofttimes simpler types.

It is largely since the outbreak of the World War that an increased demand for better maps has created considerable activity in mathematical cartography, and, as a consequence, a marked progress in the general theory of map projections has been in evidence.

Through military necessities and educational requirements, the science and art of cartography have demanded better draftsmanship and greater accuracy, to the extent that many of the older studies in geography are not now considered as worthy of inclusion in the present-day class.

The whole field of cartography, with its component parts of history and surveys, map projection, compilation, nomenclature and reproduction is so important to the advancement of scientific geography that the higher standard of to-day is due to a general development in every branch of the subject.

The selection of suitable projections is receiving far more attention than was formerly accorded to it. The exigencies of the problem at hand can generally bo met by special study, and, as a rule, that system of projection can be adopted which will give the best results for the area under consideration, whether the desirable conditions be a matter of correct angles between meridians and parallels, scaling properties, equivalence of areas, rhumb lines, etc.

The favorable showing required to meet any particular mapping problem may oftentimes be retained at the expense of other less desirable properties, or a compromise may be effected. A method of projection which will answer for a country of small extent in latitude will not at all answer for another country of great length in a north-and-south direction; a projection which serves for the representation of the polar regions may not be at all applicable to countries near the Equator; a projection which is the most convenient for the purposes of the navigator is of little value to the Bureau of the Census; and so throughout the entire range of the subject, particular conditions have constantly to be satisfied and special rather than general problems to be solved. The use of a projection for a purpose to which it is not best suited is, therefore, generally unnecessary and can be avoided.

PROJECTIONS DESCRIBED IN PART II.

In the description of the different projections and their properties in the following pages the mathemetical theory and development of formulas are not generally included where ready reference can be given to other manuals containing these features. In several instances, however, the mathematical development is given in somewhat closer detail than heretofore.

In the selection of projections to be presented in this discussion, the authors have, with two exceptions, confined themselves to two classes, viz, conformal projections and
equivalent or equal-area projections. The exceptions are the polyconic and gnomonic projections-the former covering a field entirely its own in its general employment for field sheets in any part of the world and in maps of narrow longitudinal extent, the latter in its application and use to navigation.

It is within comparatively recent years that the demand for equal-area projections has been rather persistent, and there are frequent examples where the mathematical property of conformality is not of sufficient practical advantage to outweigh the useful property of equal area.

The critical needs of conformal mapping, however, were demonstrated at the commencement of the war, when the French adopted the Lambert conformal conic projection as a basis for their new battle maps, in place of the Bonne projection heretofore in use. By the new system, a combination of minimum of angular and scale distortion was obtained, and a precision which is unique in answering every requirement for knowledge of orientation, distances, and quadrillage (system of kilometric squares).

Conformal Mapping is not new since it is a property of the stereographic and Mercator projections. It is, however, somewhat surprising that the comprehensive study and practical application of the subject as developed by Lambert in 1772 and, from a slightly different point of view, by Lagrange in 1779 , remained more or less in obscurity for many years. It is a problem in an important division of cartography which has been solved in a manner so perfect that it is impossible to add a word. This rigid analysis is due to Gauss, by whose name the Lambert conformal conic projection is sometimes known. In the representation of any surface upon any other by similarity of infinitely small areas, the credit for the advancement of the subject is due to him.

Equal-Area Mapping.-The problem of an equal-area or equivalent projection of a spheroid has been simplified by the introduction of an intermediato equal-area projection upon a sphere of equal surface, the link between the two being the authalic ${ }^{s}$ latitude. A table of authalic latitudes for every half degree has recently been computed (see U.S. Coast and Geodetic Survey, Special Publication No. 67), and this can be used in the computations of any equal-area projection. The coordinates for the Albers equal-area projection of the United States were computed by use of this table.

THE CHOICE OF PROJECTION.

Although the uses and limitations of the different systems of projections are given under their subject headings, a few additional observations may be of interest. (See frontispiece.)
comparison of errors of scale and errors of area in a map of the united States on four different projections.

Maximum scale maror.

[^2]MAXIMUM ERROR OF AREA. Per cent.
Polyconic 7
Lambert conformal conic 5
Lambert zenithal 0
Albers. 0
MAXIMUM ERROR OF AZIMUTH.
Polyconic $1^{\circ} 56^{\prime}$
Lambert conformal conic. $0^{\circ} 00^{\prime}$
Lambert zenithal $1^{\circ} 04^{\prime}$
Albers. $0^{\circ} 43^{*}$

An improper use of the polyconic projection for a map of the North Pacific Ocean during the period of the Spanish-American War resulted in distances being distorted along the Asiatic coast to double their true amount, and brought forth the query whether the distance from Shanghai to Singapore by straight line was longer than the combined distances from Shanghai to Manila and thence to Singapore.

The polyconic projection is not adapted to mapping areas of predominating longitudinal extent and should not generally be used for distances east or west of its central meridian exceeding 500 statute miles. Within these limits it is sufficiently close to other projections that are in some respects better, as not to cause any inconvenience. The extent to which the projection may be carried in latitude is not limited. On account of its tabular superiority and facility for constructing field sheets and topographical maps, it occupies a place beyond all others. ${ }^{4}$

Straight lines on the polyconic projection (excepting its central meridian and the Equator) are neither great circles nor rhumb lines, and hence the projection is not suited to navigation beyond certain limits. This field belongs to the Mercator and gnomonic projections, about which more will be given later.

The polyconic projection has no advantages in scale; neither is it conformal or equal-area, but rather a compromise of various conditions which determine its choice within certain limits.

The modified polyconic projection with two standard meridians may be carried to a greater extent of longitude than the former, but for narrow zones of longitude the Bonne projection is in some respects preferable to either, as it is an equal-area representation.

For a map of the United States in a single sheet the choice rests between the Lambert conformal conic projection with two standard parallels and the Albers equalarea projection with two standard parallels. The selection of a polyconic projection for this purpose is indefensible. The longitudinal extent of the United States is too great for this system of projection and its errors are not readily accounted for. The Lambert conformal and Albers are peculiarly suited to mapping in the Northern Hemisphere, where the lines of commercial importance are generally east and west.

In Plate I about one-third of the Northern Hemisphere is mapped in an easterly and westerly extent. With similar maps on both sides of the one referred to, and with suitably selected standard parallels, we would have an interesting series of the Northern Hemisphere.

The transverse polyconic is adapted to the mapping of comparatively narrow areas of considerable extent along any great circle. (See Plate II.) A Mercator projection can be turned into a transverse position in a similar manner and will give us conformal mapping.

[^3]The Lambert conformal and Albers projections are desirable for areas of predominating east-and-west extent, and the choice is between conformality, on the one hand, or equal area, on the other, depending on which of the two properties may be preferred. The authors would prefer Albers projection for mapping the United States. A comparison of the two indicates that their difference is very small, but the certainty of definite equal-area representation is, for general purposes, the more desirable property. When latitudinal extent increases, conformality with its preservation of shapes becomes generally more desirable than equivalence with its resultant distortion, until a limit is reached where a large extent of area has equal dimensions in both or all directions. Under the latter condition-viz, the mapping of large areas of approximately equal magnitudes in all directions approaching the dimensions of a hemisphere, combined with the condition of preserving azimuths from a central point-the Lambert zenithal equal-area projection and the stereographic projection are preferable, the former being the equal-area representation and the latter the conformal representation.

A study in the distortion of scale and area of four different projections is given in frontispiece. Deformation tables giving errors in scale, area, and angular distortion in various projections are published in Tissot's Mémoire sur la Représentation des Surfaces. These elements of the Polyconic projection are given on pages 166-167, U. S. Coast and Geodetic Survey Special Publication No. 57.

The mapping of an entire hemisphere on a secant conic projection, whether conformal or equivalent, introduces inadmissible errors of scale or serious errors of area, either in the center of the map or in the regions beyond the standard parallels. It is better to reserve the outer areas for title space as in Plate I rather than to extend the mapping into them. The polar regions should in any event be mapped separately on a suitable polar projection. For an equatorial belt a cylindrical conformal or a cylindrical equal-area projection intersecting two parallels equidistant from the Equator may be employed.

The lack of mention of a large number of excellent map projections in Part II of this treatise should not cause one to infer that the authors deem them unworthy. It was not intended to cover the subject in toto at this time, but rather to caution against the misuse of certain types of projections, and bring to notice a few of the interesting features in the progress of mathematical cartography, in which the theory of functions of a complex variable plays no small part to-day. Without the elements of this subject a proper treatment of conformal mapping is impossible.

On account of its specialized nature, the mathematical element of cartography has not appealed to the amateur geographer, and the number of those who have received an adequate mathematical training in this field of research are few. A broad gulf has heretofore existed between the geodesist, on the one hand, and the cartographer, on the other. The interest of the former too frequently ceases at the point of presenting with sufficient clearness the value of his labors to the latter, with the result that many chart-producing agencies resort to such systems of map projection as are readily available rather than to those that are ideal.

It is because of this utilitarian tendency or negligence, together with the manifest aversion of the cartographer to cross the threshold of higher mathematics, that those who care more for the theory than the application of projections have not received the recognition due them, and the employment of autogonal ${ }^{5}$ (conformal)

[^4]projections has not been extensive. The labors of Lambert, Lagrange, and Gauss are now receiving full appreciation.

In this connection, the following quotation from volume IV, page 408, of the collected mathematical works of George William Hill is of interest:

Maps being used for a great variety of purposes, many different methods of projecting them may be admitted; but when the chief end is to present to the eye a picture of what appears on the surface of the earth, we should limit ourselves to projections which are conformal. And, as the construction of the réseau of meridians and parallels is, except in maps of small regions, an important part of the labor involved, it should be composed of the most easily drawn curves. Accordingly, in a well-known memoir, Lagrange recommended circles for this purpose, in which the straight line is included as being a circle whose center is at infinity.

An attractive field for future research will be in the line in which Prof. Goode, of the University of Chicago, has contributed so substantially. Possibilities of other combinations or interruptions in the same or different systems of map projection may solve some of the other problems of world mapping. Several interesting studies given in illustration at the end of the book will, we hope, suggest ideas to the student in this particular branch.

On all recent French maps the name of the projection appears in the margin. This is excellent practice and should be followed at all times. As different projections have different distinctive properties, this feature is of no small value and may serve as a guide to an intelligible appreciation of the map.

THE POLYCONIC PROJECTION.

DESCRIPTION.

[See fig. 47.]
The polyconic projection, devised by Ferdinand Hassler, the first Superintendent of the Coast and Geodetic Survey, possesses great popularity on account of mechanical ease of construction and the fact that a general table ${ }^{\circ}$ for its use has been calculated for the whole spheroid.

It may be interesting to quote Prof. Hassler ${ }^{7}$ in connection with two projections, viz, the intersecting conic projection and the polyconic projection:

1. Projection on an intersecting cone.-The projection which I intended to use was the development of a part of the earth's surface upon a cone, either a tangent to a certain latitude, or cutting two given parallets and two meridians, equidistant from the middle meridian, and extended on both sides of the

Fig. 47.-Polyconic development of the sphere.
meridian, and in latitude, only so far as to admit no deviation from the real magnitudes, sensible in the detail surveys.
2. The polyconic projection.-* * * This distribution of the projection, in an assemblage of sections of surfaces of successive cones, tangents to or cutting a regular succession of parallels, and upon

[^5]regularly changing central meridians, appeared to me the only one applicable to the coast of the United States.

Its direction, nearly diagonal through meridian and parallel, would not admit any other mode founded upon a single meridian and parallel without great deviations from the actual magnitudes and shape, which would have considerable disadvantages in use.

Fig. 48.-Polyconic development.
Figure on left above shows the centers (K, K_{1}, K_{2}, K_{3}) of circles on the projection that represent the corresponding parallels on the earth. Figure on right above shows the distortion at the outer meridian due to the varying radii of the circles in the polyconic development.

A central meridian is assumed upon which the intersections of the parallels are truly spaced. Each parallel is then separately developed by means of a tangent cone, the centers of the developed arcs of parallels lying in the extension of the central meridian. The arcs of the developed parallels are subdivided to true scale and the meridians drawn through the corresponding subdivisions. Since the radii for the parallels decrease as the cotangent of the latitude, the circles are not concentric, and the lengths of the arcs of latitude gradually increase as we recede from the meridian.

The central meridian is a right line; all others are curves, the curvature increasing with the longitudinal distance from the central meridian. The intersections between meridians and parallels also depart from right angles as the distance increases.

From the construction of the projection it is seen that errors in meridional distances, areas, shapes, and intersections increase with the longitudinal limits. It therefore should be restricted in its use to maps of wide latitude and narrow longitude.

The polyconic projection may be considered as in a measure only compromising various conditions impossible to be represented on any one map or chart, such as relate to-

First. Rectangular intersections ${ }^{8}$ of parallels and meridians.

[^6]Second. Equal scale ${ }^{9}$ over the whole extent (the error in scale not exceeding 1 per cent for distances within 560 statute miles of the great circle used as its central meridian).

Third. Facilities for using great circles and azimuths within distances just mentioned.

Fourth. Proportionality of areas ${ }^{9}$ with those on the sphere, etc.
The polyconic projection is by construction not conformal, neither do the parallels and meridians intersect at right angles, as is the case with all conical or single-cone projections, whether these latter are conformal or not.

It is sufficiently close to other types possessing in some respects better properties that its great tabular advantages should generally determine its choice within certain limits.

As stated in Hinks' Map Projections, it is a link between those projections which have some definite scientific value and those generally called conventional, but possess properties of convenience and use.

The three projections, polyconic, Bonne, and Lambert zenithal, may be considered as practically identical within areas not distant more than 3° from a common central point, the errors from construction and distortion of the paper exceeding those due to the system of projection used.

The general theory of polyconic projections is given in Special Publication No. 57, U. S. Coast and Geodetic Survey.

CONSTRUCTION OF A POLYCONIC PROJECTION.

Having the area to be covered by a projection, determine the scale and the interval of the projection lines which will be most suitable for the work in hand.

SMALL-SCALE PROJECTIONS (1-500 000 AND SMALLER).

Draw a straight line for a central meridian and a construction line (abin the figure) perpendicular thereto, each to be as central to the sheet as the selected interval of latitude and longitude will permit.

On this central meridian and from its intersection with the construction line lay off the extreme intervals of latitude, north and south ($m m_{2}$ and $m m_{4}$) and subdivide the intervals for each parallel (m_{1} and m_{3}) to be represented, all distances ${ }^{10}$ being taken from the table (p. 7, Spec. Pub. No. 5, "Lengths of degrees of the meridian").

Through each of the points ($m_{1}, m_{2}, m_{3}, m_{4}$) on the central meridian draw additional construction lines ($c d$, ef, $g h$, if) perpendicular to the central meridian, and mark off the ordinates ($x, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$) from the central meridian corresponding to the values ${ }^{10}$ of " X " taken from the table under "Coordinates of curvature" (pp. 11 to 189 Spec. Pub. No. 5), for every meridian to be represented.

At the points ($x, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$) lay off from each of the construction lines the corresponding values ${ }^{10}$ of " Y " 11 from the table under "Coordinates of curvature"

[^7]

Fra. 49.-Polyconic projection-construction plate.
(pp. 11 to ${ }^{\prime} 189$, Spec. Pub. No. 5), in a direction parallel to the central meridian, above the construction lines if north of the Equator, to determine points on the meridians and parallels.

Draw curved lines through the points thus determined for the meridians and parallels of the projection.

large-scale projections (1-10000 and larger).

The above method can be much simplified in constructing a projection on a large scale. Draw the central meridian and the construction line $a b$, as directed above. On the central meridian lay off the distances ${ }^{12} m m_{2}$ and $m m_{4}$ taken from the table under "Continuous sums of minutes" for the intervals in minutes between the middle parallel and the extreme parallels to be represented, and through the points m_{2} and m_{4} draw straight lines $c d$ and $e f$ parallel to the line $a b$. On the lines $a b, c d$, and ef lay off the distances ${ }^{12} m x_{5}, m_{2} x_{5}$, and $m_{4} x_{5}$ on both sides of the central meridian, taking the values from the table under "Arcs of the parallel in meters" corresponding to the latitude of the points m, m_{2}, and m_{4}, respectively. Draw straight lines through the points thus determined, x_{5}, for the extreme meridians.

[^8]At the points x_{5} on the line $a b$ lay off the value ${ }^{13}$ of y corresponding to the interval in minutes between the central and the extreme meridians, as given in the table under "Coordinates of curvature," in a direction parallel with the central meridian and above the line, if north of the Equator, to determine points in the central parallel. Draw straight lines from these points to the point m for the middle parallel, and from the points of intersection with the extreme meridians lay off distances ${ }^{13}$ on the extreme meridians, above and below, equal to the distances $m m_{2}$ and $m m_{4}$ to locate points in the extreme parallels.

Subdivide the three meridians and three parallels into parts corresponding to the projection interval and join the corresponding points of subdivision by straight lines to complete the projection.

To construct a projection on an intermediate scale, follow the method given for small-scale projections to the extent required to give the desired accuracy.

Coordinates for the projection of maps on various scales with the inch as unit, are published by the U. S. Geological Survey in Bulletin 650, Geographic Tables and Formulas, pages 34 to 107.

TRANSVERSE POLYCONIC PROJECTION.

(See Plate II.)

If the map should have a predominating east-and-west dimension, the polyconic properties may still be retained, by applying the developing cones in a transverse position. A great circle at right angles to a central meridian at the middle part of the map can be made to play the part of the central meridian, the poles being transferred (in construction only) to the Equator. By transformation of coordinates a projection may be completed which will give all polyconic properties in a traverse relation. This process is, however, laborious and has seldom been resorted to.

Since the distance across the United States from north to , south is less than three-fifths of that from east to west, it follows, then, by the above manipulation that the maximum distortion can be reduced from 7 to $2 \frac{1}{2}$ per cent.

A projection of this type (plate II) is peculiarly suited to a map covering an important section of the North Pacific Ocean. If a great circle ${ }^{14}$ passing through San Francisco and Manila is treated in construction as a central meridian in the ordinary polyconic projection, we can cross the Pacific in a narrow belt so as to include the American and Asiatic coasts with a very small scale distortion. By transformation of coordinates the meridians and parallels can be constructed so that the projection will present the usual appearance and may be utilized for ordinary purposes.

The configuration of the two continents is such that all the prominent features of America and eastern Asia are conveniently close to this selected axis, viz, Panama, Brito, San Francisco, Straits of Fuca, Unalaska, Kiska, Yokohama, Manila, Hongkong, and Singapore. It is a typical case of a projection being adapted to the configuration of the locality treated. A map on a transverse polyconic projection as here suggested, while of no special navigational value, is of interest from a geographic standpoint as exhibiting in their true relations a group of important localities covering a wide expanse.

For method of constructing this modified form of polyconic projection, see Coast and Geodetic Survey, Special Publication No. 57, pages 167 to 171.

POLYCONIC PROJECTION WITH TWO STANDARD MERIDIANS, AS USED FOR THE INTER-

 NATIONAL MAP OF THE WORLD, ON THE SCALE 1:1000000.The projection adopted for this map is a modified polyconic projection devised by Lallemand, and for this purpose has advantages over the ordinary polyconic projection in that the meridians are straight lines and meridional errors are lessened and distributed somewhat the same (except in an opposite direction) as in a conic

[^9]projection with two standard parallels; . in other words, it provides for a distribution of scale error by having two standard meridians instead of the one central meridian of the ordinary polyconic projection.

The scale is slightly reduced along the central meridian, thus bringing the paralleds closer together in such a way that the meridians 2° on each side of the center are made true to scale. Up to 60° of latitude the separate sheets are to include 6° of longitude and 4° of latitude. From latitude 60° to the pole the sheets are to include 12° of longitude; that is, two sheets are to be united into one. The top and bottom parallel of each sheet are constructed in the usual way; that is, they are circles constructed from centers lying on the central meridian, but not concentric. These two parallels are then truly divided. The meridians are straight lines joining the corresponding points of the top and bottom parallels. Any sheet will then join exactly along its margins with its four neighboring sheets. The correction to the length of the central meridian is very slight, amounting to only 0.01 inch at the most, and the change is almost too slight to be measured on the map.

In the resolutions of the International Map Committee, London, 1909, it is not stated how the meridians are to be divided; but, no doubt, an equal division of the central meridian was intended. Through these points, circles could be constructed with centers on the central meridian and with radii equal to $\rho_{\mathrm{n}} \cot \varphi$, in which ρ_{n} is the radius of curvature perpendicular to the meridian. In practice, however, an equal division of the straight-line meridians between the top and bottom parallels could scarcely be distinguished from the points of parallels actually constructed by means of radii or by coordinates of their intersections with the meridians. The provisions also fail to state whether, in the sheets covering 12° of longitude instead of 6°, the meridians of true length shall be 4° instead of 2° on each side of the central meridian; but such was, no doubt, the intention. In any case, the sheets would not exactly join together along the parallel of 60° of latitude.

The appended tables give the corrected lengths of the central meridian from 0° to 60° of latitude and the coordinates for the construction of the 4° parallels within the same limits. Each parallel has its own origin; i. e., where the parallel in question intersects the central meridian. The central meridian is the Y axis and a perpendicular to it at the origin is the X axis; the first table, of course, gives the distance between the origins. The y values are small in every instance. In terms of the parameters these values are given by the expressions

$$
\begin{aligned}
& x=\rho_{\mathrm{n}} \cot \varphi \sin (\lambda \sin \varphi) \\
& y=\rho_{\mathrm{n}} \cot \varphi[1-\cos (\lambda \sin \varphi)]=2 \rho_{\mathrm{n}} \cot \varphi \sin ^{2}\left(\frac{\lambda \sin \varphi}{2}\right)
\end{aligned}
$$

In the tables as published in the International Map Tables, the x coordinates were computed by use of the erroneous formula

$$
x=\rho_{\mathrm{n}} \cot \varphi \tan (\lambda \sin \varphi) .
$$

The resulting error in the tables is not very great and is practically almost negligible. The tables as given below are all that are required for the construction of all maps up to 60° of latitude. This fact in itself shows very clearly the advantages of the use of this projection for the purpose in hand.

A discussion of the numerical properties of this map system is given by Lallemand in the Comptes Rendus, 1911, tome 153, page 559.

TABLES FOR THE PROJECTION OF THE SHEETS OF THE INTERNATIONAL MAP OF THE WORLD.
[Scale 1:1 000000 . Assumed figure of the earth: $a=6378.24 \mathrm{~km} . ; b=6356.56 \mathrm{~km}$.
Table 1.-Corrected lengths on the central meridian, in millimeters.

Table 2.-Coordinates of the intersections of the parallels and the meridians, in millimeters.

Latitude	Coordinates	Longitude from central moridian		
		$1{ }^{\circ}$	2°	$3^{\text {a }}$
0		111.32	222.64	
0	${ }^{x}$	0.00	0.00	338.96 0.00
4	x	111.05	222.10	333.16
	y	0.07	0.27	0.61
8	x	110.25	220.49	330.74
	y	0.13	0.51	1.21
12	x	108.91	217.81	326.73
	y	0.20	0.79	1.78
16	x	107.04	214.08	321.13
	y	0.26	1.03	2.32
20	x	104.65	209.31	313.98
	y	0.31	1.25	2.81
24	x	101.76	203.52	305.31
	y	0.36	1.45	3.25
28	x	98.37	196.75	295.15
	y	C. 40	1.61	3.63
32	x	94.50	180.01	283.56
	y	0.44	1.75	3.08
36	x	90.17	180.36	270.59
	y	0. 46	1.85	4.16
40	x	85.40	170.82	256.29
	y	0.48	1.92	4. 31
14	x	80.21	160.45	240.73
	y	0.49	1.95	4.38
48	x	74.63	149.29	224.00
	y	0.48	1.94	4.36
52	x	68.69	137.40	206.16
	y	0.47	1.89	4.25
56	x	62.49	124.83	187.31
	y	0.45	11.81	4. 06
60	x	55. 81	111.64	167.52
	y	0.42	1.69	3.80

In the debates on the International Map, the ordinary polyconic projection was opposed on the ground that a number of sheets could not be fitted together on account of the curvature of both meridians and parallels. This is true from the nature of things, since it is impossible to make a map of the world in a series of flat sheets which shall fit together and at the same time be impartially representative of all meridians and parallels. Every sheet edge in the international map has an exact fit with the corresponding edges of its four adjacent sheets. (See fig. 50.)

The corner sheets to complete a block of nine will not make a perfect fit along their two adjacent edges simultaneously; they will fit one or the other, but the
angles of the corners are not exactly the same as the angles in which they are required to fit; and there will be in theory a slight wedge-shaped gap unfilled, as shown in the figure. It is, however, easy to calculate that the discontinuity at the points a or b in a block of nine sheets, will be no more than a tenth of an inch if the paper

Fig. 50.-International map of the world-junction of sheets.
preserves its shape absolutely unaltered. What it will be in practice depends entirely on the paper, and a map mounter will have no difficulty in squeezing his sheets to make the junction practically perfect. If more than nine sheets are put together, the error will, of course, increase somewhat rapidly; but at the same time the sheets will become so inconveniently large that the experiment is not likely to be made very often. If the difficulty does occur, it must be considered an instructive example at once of the proposition that a spheroidal surface can not be developed on a plane without deformation, and of the more satisfying proposition that this modified projection gives a remarkably successful approximation to an unattainable ideal.

Concerning the modified polyconic projection for the international map, Dr. Frischauf has little to say that might be considered as favorable, partly on account of errors that appeared in the first publication of the coordinates.

The claim that the projection is not mathematically quite free from criticism and does not meet the strictest demands in the matching of sheets has some basis. The system is to some extent conventional and does not set out with any of the better scientific properties of map projections, but, within the limits of the separate sheets or of several sheets joined together, should meet all ordinary demands.

The contention that the Albers projection is better suited to the same purpose raises the problem of special scientific properties of the latter with its limitations to separate countries or countries of narrow latitudinal extent, as compared with the modified polyconic projection, which has no scientific interest, but rather a value of expediency.

In the modified polyconic projection the separate sheets are sufficiently good and can be joined any one to its four neighbors, and fairly well in groups of nine throughout the world; in the Albers projection a greater number of sheets may be joined exactly if the latitudinal limits are not too great to necessitate new series to
the north or south, as in the case of continents. The latter projection is further discussed in another chapter.

The modified polyconic projection loses the advantages of the ordinary polyconic in that the latter has the property of indefinite extension north or south, while its gain longitudinally is offset by loss of scale on the middle parallels. The system does not, therefore, permit of much extension in other maps than those for which it was designed, and a few of the observations of Prof. Rosén, of Sweden, on the limitations ${ }^{15}$ of this projection are of interest:

The junction of four sheets around a common point is more important than junctions in Greek-cross arrangement, as provided for in this system.

The system does not allow a simple calculation of the degree scale, projection errors, or angular differences, the various errors of this projection being both lengthy to compute and remarkably irregular.

The length differences are unequal in similar directions from the same point, and the calculation of surface differences is specially complicated.

For simplicity in mathematical respects, Prof. Rosén favors a conformal conic projection along central parallels. By the latter system the sheets can be joined along a common meridian without a seam, but with a slight encroachment along the parallels when a northern sheet is joined to its southern neighbor. The conformal projection angles, however, being right angles, the sheets will join fully around a corner. Such a system would also serve as a better pattern in permitting wider employment in other maps.

On the other hand, the modified polyconic projection is sufficiently close, and its adaptability to small groups of sheets in any part of the world is its chief advantage. The maximum meridional error in an equatorial sheet, according to Lallemand ${ }^{16}$ is only $\frac{13}{2}$, or about one-third of a millimeter in the height of a sheet; and in the direction of the parallels $\frac{1}{1600}$, or one-fifth of a millimeter, in the width of a sheet. The error in azimuth does not exceed six minutes. Within the limits of one or several sheets these errors are negligible and inferior to those arising from drawing, printing, and hygrometric conditions.

[^10]
THE BONNE PROJECTION.
 DESCRIPTION.

[See fig. 51.]
In this projection a central meridian and a standard parallel are assumed with a cone tangent along the standard parallel. The central meridian is developed along that element of the cone which is tangent to it and the cone developed on a plane.

BONNE PROJECTION OF HEMISPHERE

Development of cone tangent along parallel $45^{\circ} \mathrm{N}$.

The standard parallel falls into an arc of a circle with its center at the apex of the developing cone, and the central meridian becomes a right line which is divided to true scale. The parallels are drawn as concentric circles at their true distances apart, and all parallels are divided truly and drawn to scale.

Through the points of division of the parallels the meridians are drawn. The central meridian is a straight line; all others are curves, the curvature increasing with the difference in longitude.

The scale along all meridians, excepting the central, is too great, increasing with the distance from the center, and the meridians become more inclined to the parallels,
thereby increasing the distortion. The developed areas preserve a strict equality, in which respect this projection is preferable to the polyconic.

Uses.-The Bonne ${ }^{17}$ system of projection, still used to some extent in France, will be discontinued there and superseded by the Lambert system in military mapping.

It is also used in Belgium, Netherlands, Switzerland, and the ordnance surveys of Scotland and Ireland. In Stieler's Atlas we find a number of maps with this projection; less extensively so, perhaps, in Stanford's Atlas. This projection is strictly equal-area, and this has given it its popularity.

In maps of France having the Bonne projection, the center of projection is found at the intersection of the meridian of Paris and the parallel of latitude $50^{\circ} \quad\left(=45^{\circ}\right)$. The border divisions and subdivisions appear in grades, minutes (centesimal), seconds, or tenths of seconds.

Limitations.-Its distortion, as the difference in longitude increases, is its chief defect. On the map of France the distortion at the edges reaches a value of 18^{\prime} for angles, and if extended into Alsace, or western Germany, it would have errors in distances which are inadmissible in calculations. In the rigorous tests of the military operations these errors became too serious for the purposes which the map was intended to serve.

THE SANSON-FLAMSTEED PROJECTION.

In the particular case of the Bonne projection, where the Equator is chosen for the standard parallel, the projection is generally known under the name of SansonFlamsteed, or as the sinusoidal equal-area projection. All the parallels become straight lines parallel to the Equator and preserve the same distances as on the spheroid.

The latter projection is employed in atlases to a considerable extent in the mapping of Africa and South America, on account of its property of equal' area and the comparative ease of construction. In the mapping of Africa, however, on account of its considerable longitudinal extent, the Lambert zenithal projection is preferable in that it presents less angular distortion and has decidedly less scale error. Diercke's Atlas employs the Lambert zenithal projection in the mapping of North America, Europe, Asia, Africa, and Oceania. In an equal-area mapping of South America, a Bonne projection, with center on parallel of latitide 10° or 15° south, would give somewhat better results than the Sanson-Flamsteed projection.

CONSTRUCTION OF A BONNE PROJECTION.

Due to the nature of the projection, no general tables can be computed, so that for any locality special computations become necessary. The following method involves no difficult mathematical calculations:

Draw a straight line to represent the central meridian and erect a perpendicular to it at the center of the sheet. With the central meridian as Y axis, and this perpendicular as X axis, plot the points of the middle or standard parallel. The coordinates for this parallel can be taken from the polyconic tables, Special Publication No. 5. A smooth curve drawn through these plotted points will establish the standard parallel.

The radius of the circle representing the parallel can be determined as follows: The coordinates in the polyconic table are given for 30° from the central meridian.

[^11]With the x and y for 30°, we get

$$
\tan \frac{\theta}{2}=\frac{y}{x} ; \text { and } r_{1}=\frac{x}{\sin \theta}
$$

(θ being the angle at the center subtended by the arc that represents 30° of longitude). By using the largest values of x and y given in the table, the value of r_{2} is better determined than it would be by using any other coordinates.

This value of r_{1} can be derived rigidly in the following manner:

$$
r_{1}=N \cot \phi
$$

(N being the length of the normal to its intersection with the Y axis); but

$$
N=\frac{1}{A^{\prime} \sin 1^{\prime \prime}}
$$

(A^{\prime} being the factor tabulated in Special Publication No. 8, U. S. Coast and Geodetic Survey). Hence,

$$
r_{1}=\frac{\cot \phi}{A^{\prime} \sin 1^{\prime \prime}}
$$

From the radius of this central parallel the radii for the other parallels can now be calculated by the addition or subtraction of the proper values taken from the table of "Lengths of degrees," U. S. Coast and Geodetic Survey Special Publication No. 5, page 7, as these values give the spacings of the parallels along the central meridian.

Let r represent the radius of a parallel determined from r_{1} by the addition or subtraction of the proper value as stated above. If θ denotes the angle between the central meridian and the radius to any longitude out from the central meridian, and if P represents the arc of the parallel for 1° (see p. 6, Spec. Pub. No. 5), we obtain

$$
\begin{aligned}
\theta \text { in seconds for } 1^{\circ} \text { of longitude } & =\frac{P}{r \sin 1^{\prime \prime}} ; \\
\text { chord for } 1^{\circ} \text { of longitude } & =2 r \sin \frac{\theta}{2}
\end{aligned}
$$

Ares for any longitude out from the central meridian can be laid off by repeating this are for 1°.
θ can be determined more accurately in the following way by the use of Special Publication No. 8:
$\lambda^{\prime \prime}=$ the longitude in seconds out from the central meridian; then

$$
\theta \text { in seconds }=\frac{\lambda^{\prime \prime} \cos \phi}{r A^{\prime} \sin 1^{\prime \prime}}
$$

This computation can be made for the greatest λ, and this θ can be divided proportional to the required λ.

If coordinates are desired, we get

$$
\begin{aligned}
& x=r \sin \theta \\
& y=2 r \sin ^{2} \frac{\theta}{2}
\end{aligned}
$$

The X axis for the parallel will be perpendicular to the central meridian at the point where the parallel intersects it.

If the parallel has been drawn by the use of the beam compass, the chord for the λ farthest out can be computed from the formula

$$
\text { chord }=2 r \sin \frac{\theta}{2}
$$

The arc thus determined can be subdivided for the other required intersections with the meridians.

The meridians can be drawn as smooth curves through the proper intersections with the parallels. In this way all of the elements of the projection may be determined with minimum labor of computation.

THE LAMBERT ZENITHAL (OR AZIMUTHAL) EQUAL-AREA PROJECTION. DESCRIPTION.

[See Frontispiece.]
This is probably the most important of the azimuthal projections and was employed by Lambert in 1772 . The important property being the preservation of azimuths from a central point, the term zenithal is not so clear in meaning, being obviously derived from the fact that in making a projection of the celestial sphere the zenith is the center of the map.

In this projection the zenith of the central point of the surface to be represented appears as pole in the center of the map; the azimuth of any point within the surface, as seen from the central point, is the same as that for the corresponding points of the map; and from the same central point, in all directions, equal great-circle distances to points on the earth are represented by equal linear distances on the map.

It has the additional property that areas on the projection are proportional to the corresponding areas on the sphere; that is, any portion of the map bears the same ratio to the region represented by it that any other portion does to its corresponding region, or the ratio of area of any part is equal to the ratio of area of the whole representation.

This type of projection is well suited to the mapping of areas of considerable extent in all directions; that is, areas of approximately circular or square outline. In the frontispiece, the base of which is a Lambert zenithal projection, the line of 2 per cent scale error is represented by the bounding circle and makes a very favorable showing for a distance of $22^{\circ} 44^{\prime}$ of arc-measure from the center of the map. Lines of other given errors of scale would therefore be shown by concentric circles (or almucantars), each one representing a small circle of the sphere parallel to the horizon.

Scale error in this projection may be determined from the scale factor of the almucantar as represented by the expression $\frac{1}{\cos \frac{1}{2} \theta}$ in which $\theta=$ actual distance in arc measure on osculating sphere from center of map to any point.

Thus we have the following percentages of scale error:

Distance in aro from center of map	Scale error
Degrees	Per cent
5	0.1
10	0.4
20	3.2
30	3.5
40	10.3
50	15.5

In this projection azimuths from the center are true, as in all zenithal projections. The scale along the parallel circles (almucantars) is too large by the amounts indicated in the above table; the scale along their radii is too small in inverse proportion, for the projection is equal-area. The scale is increasingly erroneous as the distance from the center increases.

The Lambert zenithal projection is valuable for maps of considerable world areas, such as North America, Asia, and Africa, or the North Atlantic Ocean with its somewhat circular configuration. It has been employed by the Survey Department, Ministry of Finance, Egypt, for a wall map of Asia, as well as in atlases for the delineation of continents.

The projection has also been employed by the Coast and Geodetic Survey in an outline base map of the United States, scale 1:7500000. On account of the inclusion of the greater part of Mexico in this particular outline map, and on account of the extent of area covered and the general shape of the whole, the selection of this system of projection offered the best solution by reason of the advantages of equalarea representation combined with practically a minimum error of scale. Had the limits of the map been confined to the borders of the United States, the advantages of minimum area and scale errors would have been in favor of Albers projection, described in another chapter.

The maximum error of scale at the eastern and western limits of the United States is but 17 per cent (the polyconic projection has 7 per cent), while the maximum error in azimuths is $1^{\circ} 04^{\prime}$.

Between a Lambert Zenithal projection and a Lambert conformal conic projection, which is also employed for base-map purposes by the Coast and Geodetic Survey, on a scale 1:5000000, the choice rests largely upon the property of equal areas represented by the zenithal, and conformality as represented by the conformal conic projection. The former property is of considerable value in the practical use of the map, while the latter property is one of mathematical refinement and symmetry, the projection having two parallels of latitude of true scale, with definite scale factors available, and the advantages of straight meridians as an additional element of prime importance.

For the purposes and general requirements of a base map of the United States, disregarding scale and direction errors which are conveniently small in both projections, either of the above publications of the U. S. Coast and Geodetic Survey offers advantages over other base maps heretofore in use. However, under the subject heading of Albers projection, there is discussed another system of map projection which has advantages deserving consideration in this connection and which bids fair to supplant either of the above. (See frontispiece and table on pp. 54, 55.)

Among the disadvantages of the Lambert zenithal projection should be mentioned the inconvenience of computing the coordinates and the plotting of the double system of complex curves (quartics) of the meridians and parallels; the intersection of these systems at oblique angles; and the consequent (though slight) inconvenience of plotting positions. The employment of degenerating conical projections, or rather their extension to large areas, leads to difficulties in their smooth construction and use. For this reason the Lambert zenithal projection has not been used so extensively, and other projections with greater scale and angular distortion are more frequently seen because they are more readily produced.

The center used in the frontispiece is latitude 40° and longitude 96°, corresponding closely to the geographic center ${ }^{18}$ of the United States, which has been determined by means of this projection to be approximately in latitude $39^{\circ} 50^{\prime}$, and longitude $98^{\circ} 35^{\prime}$. Directions from this central point to any other point being true, and the law of radial distortion in all azimuthal directions from the central point being the same, this type of projection is admirably suited for the determination of the geographic center of the United States.
${ }^{18}$ "Geographic center of the United States" is here considered as a point analogous to the center of gravity of a spherical surface oqually weighted (per unit area), and hence may be found by means similar to those employed to find the center of gravity.

The coordinates for the following tables of the Lambert zenithal projection ${ }^{10}$ were computed with the center on parallel of latitude 40°, on a sphere with radius equal to the geometric mean between the radius of curvature in the meridian and that perpendicular to the meridian at center. The logarithm of this mean radius in meters is 6.8044400 .

TEE LAMBERT EQUAL-AREA MERIDIONAL PROJECTION.

This projection is also known as the Lambert central equivalent projection upon the plane of a meridian. In this case we have the projection of the parallels and meridians of the terrestrial sphere upon the plane of any meridian; the center will be upon the Equator, and the given meridional plane will cut the Equator in two points distant each 90° from the center.

It is the Lambert zenithal projection already described, but with the center on the Equator. While in the first case the bounding circle is a horizon circle, in the meridional projection the bounding circle is a meridian.

Tables for the Lambert meridional projection are given on page 75 of this publication, and also, in connection with the requisite transformation tables, in Latitude Developments Connected with Geodesy and Cartography, U. S. Coast and Geodetic Survey Special Publication No. 67.

The useful property of equivalence of area, combined with very small error of scale, makes the Lambert zenithal projection admirably suited for extensive areas having approximately equal magnitudes in all directions.

TABLE FOR THE CONSTRUCTION OF THE LAMBERT ZENITHAL EQUAL-AREA PROJECTIÓN WITH CENTER ON PARALLEL 40°.

Latitude	Longitude 0°		Longitude 5°		Longitude 10°		Longitude 15°		Longitude 20°		Longitude 25°	
	x	y										
	Meters	Mreters	Meters	$\begin{gathered} \text { Meters } \\ +5387885 \end{gathered}$	Meters	$\left.\begin{array}{\|c\|} \text { AReters } \\ +5387885 \end{array} \right\rvert\,$	Meters	Mfeters	Meters	$\left\lvert\, \begin{gathered} \text { Mreters } \\ +5387885 \end{gathered}\right.$	Meters	Meters
90°		$0+5387885$										-5387885
		$0+4878763$		+4880699		+4888085	155742	+4895196	205914	+4907863	254604	+4924009
		$0+4360354$	102679	+4363859	204665	+4374361	305266	+4391792	403799	+4416058	499587	+4447015
		$0+3833644$	150800	+3838672	300777	+3855490	448560	$+3878743$	593609	+3913587	734842	$+3958086$
		$0+3299637$	196770	+3 306041	392357	+3 325225	585579	+3357113	775258	+3 401565	960222	+3458391
		$0+2759350$	240571	+2766 994	479775	+2789898	716248	+2827881	948624	$+2881110$	1175542	
		$0+2213809$	282175	+2222561	562835	+2248789	840467	+2292419	1113555	+2353 321	1380581	+2431312
		$0+1664056$	321546	+1673787	641463	+1702962	058118	+17515091	1269876	+1819313	1575095	+1906212
		$0+1111133$	358645	+1121723	715572	+1153474	1069062	+1206328	1417387	+1280187	1758808	+1374910
		$0+{ }^{-556096}$	393422	567424	785065	+ 601395	173145	+ 657961	1555870	+ 737046	1931430	838536
				+ 11951			1270200	+ 107490		+ 190988		+ 298207
		$0-556096$	455800	- 543637	909762	- 506266	1360044	- 444005	1804787	± 356887	2242115	- 244963
		0-1111133	483280	-1098 277	964722	-1059 712	1442480	- 095443	1914698	- 905490		- 789868
		0.1-1664 056	508200	-1 650918	1014578	-1611480	1517303	-1 545757	2014529	-1 1453735	2504388	-1335405
		$0-2213809$	\$30 490	-2 200485		-2 160506	1584288	-2093 872	2103978	-2000539		-1880485
		0-2759350	55072	-2 745953	1098391	-2 705752		-2 638727	2182718	-2 544835	2715156	-2 424020
		0 - 3299637	866863	-3 2862691	1132024	-3246157	1693776	-3179267	2250398	-3085 552	2800148	-2964935
		0 -3833644	580775	-3820 4081	1159907	-3780690	1735750	-3714453	2306644	-3621639	2870912	-3502166
- $5^{0} \cdots \cdots$		0 0-4360354	${ }_{5}^{591} 5982$	-43473491 -4866090	${ }_{118181844} 844$	-4308330	1788820	$\|$-4243252 -4764 1	2383170	- 4152060	2926 926	-4036588 -4561368
		()-5387885				428		-4		-4670	2	-4 561368

[^12]TABLE FOR THE CONSTRUCTION OF THE LAMBERT ZENITHAL EQUAL-AREA PROJECTION WITH CENTER ON PARALLEL 40°-Continued.

TABLE FOR THE CONSTRUCTION OF THE LAMBERT ZENITHAL EQUAL-AREA MERIDIONAL PROJECTION.
[Coordinatos in units of the earth's radius.]

Latitude	Longitude 0°		Longitude 5°		Longitude 10°		Longitude 15°		Longitude 20°		Longitude $\mathbf{2 5}^{\circ}$	
	\boldsymbol{x}	y	x	y	x	y	x	y	2	y	z	y
0.	0	0.000000	0.037239	0.000000	0.174311	0.000000	0.261052	0.000000	0.347296	0.000000	0. 432879	0.000000
	0	0.087239	0.086991	0.087323	0.173812	0.087571	0.260302	0.087990	0.346294	0.088582	0.431623	0.089353
10	0	0.174311	0.086241	0.174476	0.172313	0.174972	0.258051	0.175804	0.343285	0.176979	0.427851	0.178 .10
15.	0	0.261052	0.084992	0.261297	0.169813	0.262032	0.254295	0. 263265	0.338268	265002	0.421558	0. 267277
20	0	0.347296	0.083240	0,347617	0.166308	0.348581	0.249026	0.350199	0.331226	0. 352484	0.412733	0.355457
25.	0	0.432879	0.080981	0.433272	0.161785	0. 434451	0. 242235	0.436429	0.322153	0.439222	0.401363	0.442855
30	0	0.517638	0.078211	0.518096	0.158241	0.519473	0.233908	0.521780	0.311030	0.525038	0.387426	0.529273
35	0	0.601412	0.074923	0.601928 .	0.149660	0.603479	0.224026	0.608079	0.297835	0.609748	0.370897	0.614515
40	0	0.684040	0.071109	0,684605	0.142028	0.686305	0.212568	0.689152	0.282538	0. 693167	0.351743	0.698379
45.	0	0.765367	0.066759	0.765971	0.133325	0.767787	0.199504	0.770825	0.265103	0.775110	0.329244	0. 779058
50.	0	0.845237	0.061860	0.845866	0. 123525	0.847760	0. 184800	0.850929	0.245487	0.855389	0.305357	0. 861169
55	0	0.923497	0.056398	0.924139	0.112600	0.928064	0. 168412	0.929286	0.223635	0.933818	0.278071	0.939682
60.	0	1.000000	0.050351	1.000635	0.100511	1.052542	0,149939	1.005727	0.190480	1.010205	0.247901	1.015991
65	0	1.074599	. 0.043698	1.075207	0.087211	1.077032	0.130054	1.080079	0.172940	1.084356	0.214781	1.089874
70.	0	1.147153	0. 036408	1.147710	0.072644	1.149380	0.108537	1.152166	0.143914	1.156072	0.178601	1. 161099
75	0	1.217523	0.028444	1.218000	0.056739	1.219429	0.084733	1.221810	0.112277	1.225142	0. 139220	1. 229422
80	0	1.285575	0.019762	1.285937	0.039407	1.287022	0.058818	1.288828	0.077878	1.291350	0.096471	1. 294579
85	0	1.351180	0.010305	1.351387	0.020542	1.352150	0.030638	1.353030	0.040529	1.354459	0.050147	1.356283
00.	0	1.414214	0.000000	1. 414214	0.600000	1.414214	0.000000	1. 414214	0.006000	1.414214	0.000000	1.414214
Latitude	Longitude 25°		Longitude 30°		Longitude 35°		Longitude 40°		Longitude 45°		Longitude 50°	
	x	y	\boldsymbol{x}	y	x	y	x	y	I	y	I	y
0.	0. 432879	0.000000	0.517638	0.000000	0.601412	0.000000	0.684040	0.000000	0.765367	0.000000	0.845237	0.000000
	0.431623	0.089353	0.516124	0.090310	0.599638	0.091464	0.682000	0.092826	0.763056	0.094411	0. 842047	0.096237
10.	0.427851	0. 178510	0.511581	0.180411	0.594311	0.182701	0.675879	0.185404	0.756122	0.188550	0.834881	0. 192172
15.	0.421558	0.267277	0. 504001	0.270093	0. 585428	0.273485	0.665670	0.277488	0.744560	0.282142	0.821934	0.287499
20.	0.412733	0.355457	0.493374	0.350147	0.572975	0.363589	0.651364	0.368827	0.728365	0.374912	0.803803	0.381011
25	0.401363	0.442855	0.479684	0.447361	0.556939	0.452782	0.632946	0.459168	0.706066	0. 465622	0.780484	0.475097
30.	0.387426	0. 529273	0.462910	0.534523	0. 537297	0.540832	0.610397	0.548258	0.682022	0.556868	0.751972	0. 566744
	0.370897	0.614515	0.443023	0.620417	0.514021	0.627504	0.583694	0.635835	0. 651842	0.645482	0.718257	0.656527
40	0.351743	0.698379	0.419990	0.70 .4826	0. 487078	0.712559	0.552805	0.721635	0.616961	0.732126	0.679328	0.744114
45.	0.329244	0.779058	0.393765	0.787531	0. 456425	0.795753	0.517691	0.805385	0.577350	0.816497	0.635176	0.829164
50	0.305387	0. 861169	0.364296	0.868302	0.422007	0.876829	0.478307	0.886800	0.532976	0.898275	0.585785	0.911320
	0.278071	0. 939682	0.331516	0.916908	0.383762	0.955528	0.434595	0.905586	0.483798	0.977129	0.531139	0. 990210
60.	0.247901	1, 015991	0.295345	1.023106	0.341338	1.030750	0.386490	1. 041432	0.429767	1.052708	0. 471219	1.065441
65.	0.214781	1.089874	0.255687	1.096644	0.295462	1.104684	0.333810	1. 114008	0.370826	1.124640	0.406007	1. 130597
70	0.178601	1.161099	0.212423	1.167253	0.245202	1.174540	0.276761	1.182962	0.306915	1. 192524	0.334709	1. 203229
75	0.139220	1. 229422	0.165411	1. 234646	0.190899	1.240809	0. 214932	1. 247906	0.237959	1.255925	0.259626	1. 264857
8	0.096471	1.294579	0.114481	1.298509	0.131794	1.303128	0.148297	1. 308420	0.163878	1.314370	0.178427	1.320956
85.	0.050147	1. 356283	0.059427	1.358496	0.068301	1. 361083	0.076708	1.364033	0.084588	1.367329	0.091882	1.370953
90.	0.000000	1.414214	0.000000	1. 414214	0.000000	1.414214	0.000000	1.414214	0.000000	1.414214	0.000000	1. 41×214
Latitude	Longitudo 50°		Longitude 55°		Longitude 60°		Longitude 65°		Longitude 70°		Longitude 75°	
	x	y	\pm	y	x	y	x	y	x	y	x	y
	0.845237	0.000000	0.923497	0.000000	1.000000	0.000000	1.074599	0.000000	1. 147153	0.000000	1. 217523	0.000600
	0.842647	0. 090237	0,920622	0.098326	0.996827	0.100703	1.071115	0.103398	1. 143342	0.106449	1.213365	0.109901
10.	0.834881	0. 192172	0. 911995	0.196312	0.987311	0.201021	1.060670	0.206359	1. 131919	0.212397	1. 200003	0.219222
15.	0.821934	0,287499	0.897621	0.293617	0.971458	0.300570	1.043276	0.308444	1. 112907	0.317341	1.180179	0.327383
20.	0.803803	0.381911	0.877502	0.389897	0.949282	0.398961	1.018962	0.409211	1.086352	0.420776	1.151257	0. 433805
	0.780484	0, 475097	0. 851641	0.484802	0.920800	0.495801	0.987761	0.508217	1.052313	0.522193	1,114235	0.537905
3.	0.751972	0. 566744	0.820046	0.577981	0. 886036	0.590691	0.919722	0.805007	1.010871	0.621083	1.069235	0.639100
35.	0.718257	0.656527	0.782723	0.689068	0.844341	0.682676	0.904904	0.699123	0.962126	0.716924	1.016411	0.736805
40.	0. 679328	0. 744114	0.739692	0.757694	0.797784	0.772979	0. 853380	0.790097	0.906201	0. 809194	0. 955952	0.830435
45.	0. 635176	0.829164	0.690934	0.843475	0.744377	0.859533	0.795240	0.877451	0.843242	0.897359	0.885073	0.919401
	0.585785	0.911320	0.636495	0.926012	0.684853	0.942438	0.730590	0.960693	0.773421	0.980881	0.810035	1.003117
	0.531139	0.990210	0. 576381	1.004891	0.619275	1.021236	0.659555	1.039318	0.696939	1.059210	0.731128	1.080994
60.	0. 471219	1, 065441	0.510618	1. 1.079673	0.547723	1.095445	0.532282	1.112802	0.614031	1.131788	0.612692	1. 152445
65.	0.406007	1. 136597	0.439234	1.149898	0.470291	1.164563	0.498947	1.180010	0.524968	1. 198048	0.548109	1.210887
70.	0. 334709	1. 203229	0.362271	1. 215076	0.387095	1. 228063	0.409756	1.242180	0. 430061	1. 257414	0.477808	1. 273745
	0.259226	1.264857	0.279782	1. 274684	0.298274	1.285385	0.314953	1.296935	0.329669	1. 309303	0.342275	1.322449
	0. 178427	1. 320956	0.191837	1. 328156	0. 204003	1.335940	0.214824	1.344276	0.22420t	1. 353126	0.232051	1.362449
80.	0.091882	1. 370953	0.098534	1. 374885	0.104491	1.379104	0.109706	1.383581	0.114135	1. 388292	0.117730	1. 393206
85.	0.000000	1.414214	0.000000	1.414214	0.000000	1. 414214	0.000000	1.414214	0.000000	1.414214	0.000000	1.414214

TABLE FOR THE CONSTRUCTION OF THE LAMBERT ZENITHAL EQUAIMAREA MERIDIONAL PROJECTION-Continued.
[Coordinates in units of the earth's radius.]

Latitude	Longitude 75°		Longitude 80°		Longitude 85°		Longitude 90°	
	\boldsymbol{x}	y	I	ν	x	y	x	y
-								
0.	1. 217523	0.000000	1.285575	0.000000	1. 351180	0.000000	1.414214	0.000000
5.	1.213365	0. 109901	1. 281044	0.113806	1.346245	0.118231	1.408832	0.123257
10.	1. 200903	0.219222	1. 267469	0.226837	1. 331607	0. 235695	1. 392729	0, 245576
15.	1. 180179	0.327383	1.244912	0.338721	1. 308926	0.351527	1. 366025	0.366025
20.	1. 151257	0.433805	1. 213472	0.448481	1. 272775	0.465022	1.328926	0.483690
25.	1. 114235	0.537905	1. 173287	0.555553	1. 229210	0.575380	1.281713	0.597672
30.	1. 069235	0.639100	1. 124542	0.659270	1. 176491	0.681843	1. 224745	0.707107
35.	1. 016411	0.736805	1.067459	0.758974	1. 114934	0.783667	1.158456	0.811160
40.	0.955952	0.830435	1.002308	0.854010	1.044910	0.880132	1.083351	0.009039
45.	0.888073	0.919401	0.929400	0.943738	0.966848	0. 970541	1.000000	1. 000000
50.	0.813035	1.003117	0. 849094	1.027521	0.881231	1. 054223	0.909039	1. 083351
55.	0.731128	1.080994	0.761799	1.104745	0.788602	1. 130542	0.811160	1,158456
60.	0.642692	1. 152445	0.667970	1. 174806	0.689552	1. 198901	0.707107	1. 224745
65.	0.548109	1. 216887	0. 568115	1. 237122	0.584727	1. 258741	0.597673	1.281713
70.	0.447808	1. 273745	0.462796	1. 291138	0.474823	1. 309551	0. 483690	1.328926
75.	0.342275	1. 322449	0.352628	1.336326	0.360588	1,350874	0.366025	1.366025
80.	0.232051	1. 362449	0.238279	1.372193	0.242811	1.382308	0.245576	1.392729
85	0.117736	1. 393206	0.120476	1. 398291	0.122324	1.403512	0.123257	1. 408832
90.	0.000000	1. 414214	0.000000	1.414214	0.000000	1.414214	0.000000	1. 414214

THE LAMBERT CONFORMAL CONIC PROJECTION WITH TWO STANDARD PARALLELS.
 DESCRIPTION.

[See Plate I.]
This projection, devised by Johann Heinrich Lambert, first came to notice in his Beiträge zum Gebrauche der Mathematik und deren Anwendung, volume 3, Berlin, 1772.

Fig. 52.-Lambert conformal conic projection.
Diagram illustrating the intersection of a cone and sphere along two standard parallels. The elements of the prolection are calculated for the tangent cone and afterwards reduced in scale so as to produce the effect of a secant cone. The parallels that are true to scale do not exactly coincide with those of the earth, since they are spaced in such a way as to produce contormality.

Although used for a map of Russia, the basin of the Mediterranean, as well as for maps of Europe and Australia in Debes' Atlas, it was not until the beginning of the World War that its merits were fully appreciated.

The French armies, in order to meet the need of a system of mapping in which a combination of minimum angular and scale distortion might be obtained, adopted this system of projection for the battle maps which were used by the allied forces in their military operations.

HISTORICAL OUTLINE.
Lambert, Johann Heinrich (1728-1777), physicist, mathematician, and astronomer, was born at Mülhausen, Alsace. He was of humble origin, and it was entirely due to his own efforts that he obtained his education. In 1764, after some years in travel, he removed to Berlin, where he received many favors at the hand of Frederick the Great, and was elected a member of the Royal Academy of Sciences of Berlin, and in 1774 edited the Ephemeris.

He had the facility for applying mathematics to practical questions. The introduction of hyperbolic functions to trigonometry was due to him, and his discoveries in geometry are of great value, as well as his investigations in physics and astronomy. He was also the author of several remarkable theorems on conics, which bear his name.

We are indebted to A. Wangerin, in Ostwald's Klassiker, 1894, for the following tribute to Lambert's contribution to cartography:

The importance of Lambert's work consists mainly in the fact that he was the first to make general investigations upon the subject of map projection. His predecessors limited themselves to the investigations of a single method of projection, especially the perspective, but Lambert considered the problem of the representation of a sphere upon a plane from a higher standpoint and stated certain general conditions that the representation was to fulfill, the most important of these being the preservation of angles or conformality, and equal surface or equivalence. These two properties, of course, can not be attained in the same projection.

Although Lambert has not fully developed the theory of these two methods of representation, yet he was the first to express clearly the ideas regarding them. The former-conformality-has become of the greatest importance to pure mathematics as well as the natural sciences, but both of them are of great significance to the cartographer. It is no more than just, therefore, to date the beginning of a new epoch in the science of map projection from the appearance of Lambert's work. Not only is his work of importance for the generality of his ideas but he has also succeeded remarkably well in the results that he has attained.

The name Lambert occurs most frequently in this branch of geography, and, as stated by Craig, it is an unquestionable fact that he has done more for the advancement of the subject in the way of inventing ingenious and useful methods than all of those who have either preceded or followed him. The manner in which Lambert analyzes and solves his problems is very instructive. He has developed several methods of projection that are not only interesting, but are to-day in use among cartographers, the most important of these being the one discussed in this chapter.

Among the projections of unusual merit, devised by Lambert, in addition to the conformal conic, is his zenithal (or azimuthal) equivalent projection already described in this paper.

DEFINITION OF THE TERM "CONFORMALITY."

A conformal projection or development takes its name from the property that all small or elementary figures found or drawn upon the surface of the earth retain their original forms upon the projection.

This implies that-
All angles between intersecting lines or curves are preserved;

For any given point (or restricted locality) the ratio of the length of a linear element on the earth's surface to the length of the corresponding map element is constant for all azimuths or directions in which the element may be taken.

Arthur R. Hinks, M. A., in his treatise on "Map projections," defines orthomorphic, which is another term for conformal, as follows:

Abstract

If at any point the scale along the meridian and the parallel is the same (not correct, but the same in the two directions) and the parallels and meridians of the map are at right angles to one another, then the shape of any very small area on the map is the same as the shape of the corresponding smali area upon the earth. The projection is then called orthomorphic (right shape).

The Lambert Conformal Conic projection is of the simple conical type in which all meridians are straight lines that meet in a common point beyond the limits of the map, and the parallels are concentric circles whose center is at the point of intersection of the meridians. Meridians and parallels intersect at right angles and the angles formed by any two lines on the earth's surface are correctly represented on this projection.

It employs a cone intersecting the spheroid at two parallels known as the standard parallels for the area to be represented. In general, for equal distribution of scale error, the standard parallels are chosen at one-sixth and five-sixths of the total length of that portion of the central meridian to be represented. It may be advisable in some localities, or for special reasons, to bring them closer together in order to have greater accuracy in the center of the map at the expense of the upper and lower border areas.

Fig. 53.-Scale distortion of the Lambert conformal conic projection with the standard parallele at 29° and 45°.

On the two selected parallels, arcs of longitude are represented in their true lengths, or to exact scale. Between these parallels the scale will be too small and beyond them too large. The projection is specially suited for maps having a predominating east-and-west dimension. For the construction of a map of the United States on this projection, see tables in U. S. Coast and Geodetic Survey Special Publication No. 52.

Fig. 54.-Scale distortion of the Lambert conformal conic projection with the standard parallels at 33° and 45°.

The chief advantage of this projection over the polyconic, as used by several Government bureaus for maps of the United States, consists in reducing the scale error from 7 per cent in the polyconic projection to $2 \frac{1}{2}$ or $1 \frac{1}{5}$ per cent in the Lambert projection, depending upon what parallels are chosen as standard.

The maximum scale error of $2 \frac{1}{2}$ per cent, noted above, applies to a base map of the United States, scale 1:5000 000, in which the parallels 33° and 45° north latitude (see fig. 54) were selected as standards in order that the scale error along the central parallel of latitude might be small. As a result of this choice of standards, the maximum scale error between latitudes $30 \frac{1}{2}^{\circ}$ and $47 \frac{1}{2}^{\circ}$ is but one-half of 1 per cent, thus allowing that extensive and most important part of the United States to be favored with unusual scaling properties. The maximum scale error of $2 \frac{1}{2}$ per cent occurs in southernmost Florida. The scale error for southernmost Texas is somewhat less.

With standard parallels at 29° and 45° (see fig. 53), the maximum scale error for the United States does not exceed $1 t$ per cent, but the accuracy at the northern and southern borders is acquired at the expense of accuracy in the center of the map.

GENERAL OBSERVATIONS ON THE LAMBERT PROJECTION.
In the construction of a map of France, which was extended to 7° of longitude from the middle meridian for purposes of comparison with the polyconic projection of the same area, the following results were noted:

> Maximum scale error, Lambert $=0.05$ per cent.
> Maximum scale error, polyconic $=0.32$ per cent.

Azimuthal and right line tests for orthodrome (great circle) also indicated a preference for the Lambert projection in these two vital properties, these tests indicating accuracies for the Lambert projection well within the errors of map construction and paper distortion.

In respect to areas, in a map of the United States, it should be noted that while in the polyconic projection they are misrepresented along the western margin in one
dimension (that is, by meridional distortion of 7 per cent), on the Lambert projection ${ }^{20}$ they are distorted along both the parallel and meridian as we depart from the standard parallels, with a resulting maximum error of 5 per cent.

In the Lambert projection for the map of France, employed by the allied forces in their military operations, the maximum scale errors do not exceed 1 part in 2000 and are practically negligible, while the angles measured on the map are practically equal to those on the earth. It should be remembered, however, that in the Lambert conformad conic, as well as in all other conic projections, the scale errors vary increasingly with the range of latitude north or south of the standard parallels. It follows, then, that this type of projections is not suited for maps having extensive latitudes.

Areas.-For areas, as stated before, the Lambert projection is somewhat better than the polyconic for maps like the one of France or for the United States, where we have wide longitude and comparatively narrow latitude. On the other hand, areas are not represented as well in the Lambert projection or in the polyconic projection as they are in the Bonne or in other conical projections.

For the purpose of equivalent areas of large extent the Lambert zenithal (or azimuthal) equal-area projection offers advantages desirable for census or statistical purposes superior to other projections, excepting in areas of wide longitudes combined with narrow latitudes, where the Albers conical equal-area projection with two standard parallels is preferable.

In measuring areas on a map by the use of a planimeter, the distortion of the paper, due to the method of printing and to changes in the humidity of the air, must also be taken into consideration. It is better to disregard the scale of the map and to use the quadrilaterals formed by the latitude and longitude lines as units. The areas of quadrilaterals of the earth's surface are given for different extents of latitude and longitude in the Smithsonian Geographical Tables, 1897, Tables 25 to 29.

It follows, therefore, that for the various purposes a map may be put to, if the property of areas is slightly sacrificed and the several other properties more desirable are retained, we can still by judicious use of the planimeter or Geographical Tables overcome this one weaker property.

The idea seems to prevail among many that, while in the polyconic projection every parallel of latitude is developed upon its own cone, the multiplicity of cones so employed necessarily adds strength to the projection; but this is not true. The ordinary polyconic projection has, in fact, only one line of strength; that is, the central meridian. In this respect, then, it is no better than the Bonne.

The Lambert projection, on the other hand, employs two lines of strength which are parallels of latitude suitably selected for the region to be mapped.

A line of strength is here used to denote a singular line characterized by the fact that the elements along it are truly represented in shape and scale.

COMPENSATION OF SCALE ERROR.

In the Lambert conformal conic projection we may supply a border scale for each parallel of latitude (see figs. 53 and 54), and in this way the scale variations may be accounted for when extreme accuracy becomes necessary.

[^13]Without a knowledge of scale errors in projections that are not equivalent, erroneous results in areas are often obtained. In the table on p. 55, "Maximum error of area," only the Lambert zenithal and the Albers projections are equivalent, the polyconicand and Lambert conformal being projections that have errors in area.

$$
22864^{\circ}-21-0
$$

With a knowledge of the scale factor for every parallel of latitude on a map of the United States, any sectional sheet that is a true part of the whole may have its own graphic scale applied to it. In that case the small scale error existing in the map as a whole becomes practically negligible in its sectional parts, and, although these parts have graphic scales that are slightly variant, they fit one another exactly. The system is thus truly progressive in its layout, and with its straight meridians and properties of conformality gives a precision that is unique and, within sections of 2° to 4° in extent, answers every requirement for knowledge of orientation and distances.

Caution should be exercised, however, in the use of the Lambert projection, or any conic projection, in large areas of wide latitudes, the system of projection not being suited to this purpose.

The extent to which the projection may be carried in longitude ${ }^{25}$ is not limited, a property belonging to this general class of single-cone projections, but not found in the polyconic, where adjacent sheets have a "rolling fit" because the meridians are curved in opposite directions.

The question of choice between the Lambert and the polyconio system of projection resolves itself largely into a study of the shapes of the areas involved. The merits and defects of the Lambert and the polyconic projections may briefly be stated as being, in a general way, in opposite directions.

The Lambert conformal conic projection has unquestionably superior merits for maps of extended longitudes when the property of conformality outweighs the property of equivalence of areas. All elements retain their true forms and meridians and parallels cut at right angles, the projection belonging to the same general formula as the Mercator and stereographic, which have stood the test of time, both being likewise conformal projections.

It is an obvious advantage to the general accuracy of the scale of a map to have two standard parallels of true lengths; that is to say, two axes of strength instead of one. As an additional asset all meridians are straight lines, as they should be. Conformal projections, except in special cases, are generally of not much use in map making unless the meridians are straight lines, this property being an almost indispensable requirement where orientation becomes a prime element.

Furthermore, the projection is readily constructed, free of complex curves and deformations, and simple in use.

It would be a better projection than the Mercator in the higher latitudes when charts have extended longitudes, and when the latter (Mercator) becomes objectionable. It can not, however, displace the latter for general sailing purposes, nor can it displace the gnomonic (or central) projection in its application and use to navigation.

Thanks to the French, it has again, after a century and a quarter, been brought to prominent notice at the expense, perhaps, of other projections that are not con-formal-projections that misrepresent forms when carried beyond certain limits.

[^14]Unless these latter types possess other special advantages for a subject at hand, such as the polyconio projection which, besides its special properties, has certain tabular superiority and facilities for constructing field sheets, they will sooner or later fall into disuse.

On all recent French maps the name of the projection appears in the margin. This is excellent practice and should be followed at all times. As different projections have different distinctive properties, this feature is of no small value and may serve as a guide to an intelligible appreciation of the map.

In the accompanying plate (No. 1), ${ }^{22}$ North Atlantic Ocean on a Lambert oonformal conic projection, a number of great circles are plotted in red in order that their departure from a straight line on this projection may be shown.

Great-circle courses.-A great-circle course from Cape Hatteras to the English Channel, which falls within the limits of the two standard parallels, indicates a doparture of only 15.6 nautical miles from a straight line on the map, in a total distance of about 3,200 nautical miles. The departure of this line on a polyconic projection is given as 40 miles in Lieut. Pillsbury's Charts and Chart Making.

Distances.-The computed distance 1 rom Pittsburgh to Constantinople is 5,277 statute miles. The distance between these points as measured by the graphic scale on the map without applying the scale factor is 5,258 statute miles, a resulting error of less than four-tenths of 1 per cent in this long distance. By applying the scale factor true results may be obtained, though it is hardly worth while to work for closer results when errors of printing and paper distortion frequently exceed the above percentage.

The parallels selected as standards for the map are 36° and 54° north latitude. The coordinates for the construction of a projection with these parallels as standards are given on page 85.

CONSTRUCTION OF A LAMBERT CONFORMAL CONIC PROJECTION

FOR A MAP OF THE UNITED STATES.

The mathematical development and the general theory of this projection are given in U. S. Coast and Geodetic Survey Special Publications Nos. 52 and 53. The method of construction is given on pages 20-21, and the necessary tables on pages 68 to 87 of the former publication.

Another simple method of construction is the following one, which involves the use of a long beam compass and is hardly applicable to scales larger than 1:2500 000.

Draw a line for a central meridian sufficiently long to include the center of the curves of latitude and on this line lay off the spacings of the parallels, as taken from Table 1, Special Publication No. 52. With a beam compass set to the values of the radii, the parallels of latitude can be described from a common center.
(By computing chord distances for 25° of arc on the upper and lower parallels of latitude, the method of construction and subdivision of the meridians is the same as that described under the heading, For small scale maps, p. 84.)

However, instead of establishing the outer meridians by chord distances on the upper and lower parallels we can determine these meridians by the following simple process:

Assume 39° of latitude as the central parallel of the map (see fig. 55), with an upper and lower parallel located at 24° and 49°. To find on parallel 24° the

[^15]intersection of the meridian 25° distant from the central meridian, lay off on the central meridian the value of the y coordinate (south from the thirty-ninth parallel 1315273 meters, as taken from the tables, page 69, second column, opposite 25°), and from this point strike an arc with the x value (2581184 meters, first column).

Fra. 55.-Diagram for constructing a Lambert projection of small scale.
The intersection with parallel 24° establishes the point of intersection of the parallel and outer meridian.

In the same manner establish the intersection of the upper parallel with the same outer meridian. The projection can then be completed by subdivision for intermediate meridians or by extension for additional ones.

The following values for radii and spacings in addition to those given in Table 1, Special Publication No. 52, may be of use for extension of the map north and south of the United States:

Latitude	Radius	Spacings from 39°
51	6492.973	${ }_{1}^{1336305}$
$\stackrel{50}{*}$	$\underset{*}{6605970}{ }_{*}^{*}$	${ }_{*}^{1223} 308$
*	* * *	* * *
23	9615911	178683
22	9730456	1901178

FOR SMALL SCALE MAPS.
In the construction of a map of the North Atlantic Ocean (see reduced copy on Plate I), scale 1:10000000, the process of construction is very simple.

Draw a line for a central meridian sufficiently long to include the center of the curves of latitude so that these curves may be drawn in with a beam compass set to the respective values of the radii as taken from the tables given on page 85.

To determine the meridians, a chord distance (chord $=2 r \sin \frac{\theta}{2}$) may be computed and described from and on each side of the central meridian on a lower parallel of latitude; preferably this chord should reach an outer meridian. Chord distances for this map are given in the table.

By means of a straightedge the points of intersection of the chords at the outer ends of a lower parallel can be connected with the same center as that used in describing the parallels of latitude. This, then, will determine the outer meridians of the map. The lower parallel can then be subdivided into as many equal spaces as the meridional interval of the map may require, and the meridians can then be drawn in as straight lines to the same center as the outer ones.

If a long straightedge is not available, the spacings of the meridians on the upper parallel can be obtained from chord distance and subdivision in a similar manner to that employed on the lower parallel. Lines drawn through corresponding points on the upper and lower parallels will then determine the meridians of the map.

This method of construction for small-scale maps is far more satisfactory than the one involving rectangular coordinates.

Another method for determining the meridians without the computation of chord distances has already been described.

TABLE FOR THE CONSTRUCTION OF A LAMBERT CONFORMAL CONIC PROJECTION WITH STANDARD PARALLELS AT 36° AND 54°.
[This table was used in the construction of U. S. Coast and Geodetic Survey Chart No. 3070, North Atlantic Ocean, scale 1:10 000 000. See Plate I for reduced copy.]
$[l=0.710105 ; \log l=9.8513225 ; \log K=7.0685567$.

Scale along the Paraliels.

Latitude-Degrees.	Scale factor.	Latitudo-Degrees.	Scale factor.
20....	... 1.079	50............... 0.991
30.	. 1.021	54.	1.000
36.	. 1.000	60.	1.022
40.	. 0.992	70.	.. 1.113
45.	. 0.988		

(To correct distances measured with graphic scale, divide by scale factor.)

TABLE FOR THE CONSTRUCTION OF A LAMBERT CONFORMLAL CONIC PROJECTION WITH STANDARD PARALLELS AT 10° AND $48^{\circ} 40^{\prime}$.
[This table was used in the construction of a map of the Northern and Southern Hemispheres. See Plate VII.]
$\left\{l=\frac{1}{2} ; \log K=7.1369624.\right]$

Latitude	Radius	Difference	Scale along the parallel	Latitude	Radius	Difference	Scale along the parallel
Degrees	Meters	Meters		Degrees	Meters	Afeters	
0.................	${ }_{13}^{13707631}$	118306	1.0746	40.	9380896	106629	0.9586
2.	13472006	117319	1.0557		9274287 9167236	107031	0. 9819
3.	13355628	116378 115479	1. 0484	43.	9059783	107473	0.9656
	13240149	114623	1.0404		8951802	107981 10891	0.9740
5.	13125526	113807	1.0328	45.	8843311		0.9787
6.	113011719	113026	1.0256		8734252	1090959	0.9839
	12898683 12786406	112287	1.0187 1.0121		88624569	110349	0.9896
9.	12674819		1.0059		8403148	111 111848	${ }_{1}^{0.0956}$
10.	12563899		1.0000	50.	8291302		1. 0092
11.	12453605	1109699	0. 9984			${ }_{112}^{112672}$	1.0092
13.	12343906	109140	0.9891	52	8065070	113580 114510	1. 0248
14.	${ }_{12126148}$	108618	0.9872 0.9795		7950560	115518	1.0334
		108123			783042	116604	1.0426
15.	12018025		0.9751	55.	7718438		
16.	11910357	1076283	0.9711	56	7600679	117759	1.0630
17.	11803114	106850	0.9873		7481688	118	1.0743
19.	11696264 11589778	106486	0.9638 0.9606		7361378 7239685	120308 121	1. 0863
		108164				123211	1.0992
20.	11483614	105863	0.9576	60.	7116454		1.1129
	11377751	105598	0.9550		6991642	124812	1.1276
23.	11168792	105361	-.9505		6865117 673882	128355	1.1433
24	11061628	105164	0.9487		67368448 664	130316 132418	1.1782
25.	10956842		0.9471	65.			
28.	10851795	104848	0.9459	66.	${ }_{6}^{64749352}$	134676	1.1975 1.2184
27	10747058	104659 104	0.9449	67.	6202249	137103	1.2408
28	10642400 1053791	104609	0.9442		6062531	139718	1.2650
29.	10537791	104594	0.9437		5019988	145602	1.2912
30.	10433197		0.9436	70.	577438		1.3195
31.	10328587 1023829	104658	0.9437		5625462	148922 15258	1. 35
33.	10119186	104743	0.9449		${ }_{5}^{5472924} 4$	156491	1. 38
34.	10014334	105002	0.9459		5155604	160829	1.42
35.	9909332		0.9473	75.			
\%	9804151	105400	0.9489	76.	4819073	170919	1.51
37	9698751		0.9508	77.		176836	
38	9593100	-105699	0.9531	78.	4458752	183485	1.61
40.	9487161	106265	0.9557	79	4267727	191025 1952	1.75
-				80.	4068075		1.83
					3858419	2221422	1.93
				82,.........	3636997		2.04
				$48^{\circ} 3$	8458879		0.9988

THE GRID SYSTEM OF MILITARY MAPPING.

A grid system (or quadrillage) is a system of squares determined by the rectangular coordinates of the projection. This system is referred to one origin and is extended over the whole area of the original projection so that every point on the map is coordinated both with respect to its position in a given square as well as to its position in latitude and longitude.

The orientation of all sectional sheets or parts of the general map, wherever located, and on any scale, conforms to the initial meridian of the origin of coordinates. This system adapts itself to the quick computation of distances between points whose grid coordinates are given, as well as the determination of the azimuth of a line joining any two points within artillery range and, hence, is of great value to military operations.

The system was introduced by the First Army in France under the name "Quadrillage kilomètrique système Lambert," and manuals (Special Publications Nos. 47 and 49 , now out of print) containing method and tables for constructing the quadrillage, were prepared by the Coast and Geodetic Survey.

As the French divide the circumference of the circle into 400 grades instead of 360°, certain essential tables were included for the conversion of degrees, minutes, and seconds into grades, as well as for miles, yards, and feet into their metric equivalents, and vice versa.

The advantage of the decimal system is obvious, and its extension to practical cartography merits consideration. The quadrant has 100 grades, and instead of $8^{\circ} 39^{\prime} 56^{\prime \prime}$, we can write decimally 9.6284 grades.

GRID SYSTEM FOR PROGRESSIVE MAPS IN TEE UNITED STATES.

The French system (Lambert) of military mapping presented a number of features that were not only rather new to cartography but were specially adapted to the quick computation of distances and azimuths in military operations. Among these features may be mentioned: (1) A conformal system of map projection which formed the basis. Although dating back to 1772 , the Lambert projection remained practically in obscurity until the outbreak of the World War; (2) the advantage of one reference datum; (3) the grid system, or system of rectangular coordinates, already described; (4) the use of the centesimal system for graduation of the circumference of the circle, and for the expression of latitudes and longitudes in place of the sexagesimal system of usual practice.

While these departures from conventional mapping offered many advantages to an area like the French war zone, with its possible eastern extension, military mapping in the United States presented problems of its own. Officers of the Corps of Engineers, U. S. Army, and the Coast and Geodetic Survey, foreseeing the needs of as small allowable error as possible in a system of map projection, adopted a succession of zones on the polyconic projection as the best solution of the problem.

These zones, seven in number, extend north and south across the United States, covering each a range of 9° of longitude, and have overlaps of 1° of longitude with adiacent zones east and west.

Fig. 57.-Diagram of zone C, showing grid system.

A grid system similar to the French, as already described, is projected over the whole area of each zone. The table of coordinates for one zone can be used for any other zone, as each has its own central meridian.

The overlapping area can be shown on two sets of maps, one on each grid system, thus making it possible to have progressive maps for each of the zones; or the two grid systems can be placed in different colors on the same overlap. The maximum scale error within any zone will be about one-fifth of 1 per cent and can, therefore, be considered negligible.

The system is styled progressive military mapping, but it is, in fact, an interrupted system, the overlap being the stepping-stone to a new system of coordinates. The grid system instead of being kilometric, as in the French system, is based on units of 1000 yards.

For description and coordinates, see U. S. Coast and Geodetic Survey Special Publication No. 59. That publication gives the grid coordinates in yards of the intersection of every fifth minute of latitude and longitude. Besides the grid system, a number of formulas and tables essential to military mapping appear in the publication.

Tables have also been about 75 per cent completed, but not published, giving the coordinates of the minute intersections of latitude and longitude.

THE ALBERS CONICAL EQUAL-AREA PROJECTION WITH TWO STANDARD PARALLELS.

DESCRIPTION.

[See Plate III.]
This projection, devised by Albers ${ }^{23}$ in 1805, possesses advantages over others now in use, which for many purposes give it a place of special importance in cartographic work.

In mapping a country like the United States with a predominating east-and-west extent, the Albers system is peculiarly applicable on account of its many desirable properties as well as the reduction to a minimum of certain unavoidable errors.

The projection is of the conical type, in which the meridians are straight lines that meet in a common point beyond the limits of the map, and the parallels are concentric circles whose center is at the point of intersection of the meridians. Meridians and parallels intersect at right angles and the arcs of longitude along any given parallel are of equal length.

It employs a cone intersecting the spheroid at two parallels known as the standard parallels for the area to be represented. In general, for equal distribution of scale error, the standard parallels are placed within the area represented at distances from its northern and southern limits each equal to one-sixth of the total meridional distance of the map. It may be advisable in some localities, or for special reasons, to bring them closer together in order to have greater accuracy in the center of the map at the expense of the upper and lower border areas.

On the two selected parallels, arcs of longitude are represented in their true lengths. Between the selected parallels the scale along the meridians will be a trifle too large and beyond them too small.

The projection is specially suited for maps having a predominating east-andwest dimension. Its chief advantage over certain other projections used for a map of the United States consists in the valuable property of equal-area representation combined with a scale error ${ }^{24}$ that is practically the minimum attainable in any system covering this area in a single sheet.

In most conical projections, if the map is continued to the pole the latter is represented by the apex of the cone. In the Albers projection, however, owing to the fact that conditions are imposed to hold the scale exact along two parallels instead of one, as well as the property of equivalence of area, it becomes necessary to give up the requirement that the pole should be represented by the apex of the cone; this

[^16]means that if the map should be continued to the pole the latter would be represented by a circle, and the series of triangular graticules surrounding the pole would be represented by quadrangular figures. This can also be interpreted by the statement that the map is projected on a truncated cone, because the part of the cone above the circle representing the pole is not used in the map.

The desirable properties obtained in mapping the United States by this system may be briefly stated as follows:

1. As stated before, it is an equal-area, or equivalent, projection. This means that any portion of the map bears the same ratio to the region represented by it that any other portion does to its corresponding region, or the ratio of any part is equal to the ratio of area of the whole representation.
2. The maximum scale error is but $1 \frac{1}{4}$ per cent, which amount is about the minimum attainable in any system of projection covering the whole of the United States in a single sheet. Other projections now in use have scale errors of as much as 7 per cent.

The scale along the selected standard parallels of latitude $29 \frac{1}{2}^{\circ}$ and $45 \frac{1}{2}^{\circ}$ is true. Between these selected parallels, the meridional scale will be too great and beyond them too small. The scale along the other parallels, on account of the compensation for area, will always have an error of the opposite sign to the error in the meridional scale. It follows, then, that in addition to the two standard parallels, there are at any point two diagonal directions or curves of true-length scale approximately at right angles to each other. Curves possessing this property are termed isoperimetric curves.

With a knowledge of the scale factors for the different parallels of latitude it would be possible to apply corrections to certain measured distances, but when we remember that the maximum scale error is practically the smallest attainable, any greater refinement in scale is seldom worth while, especially as errors due to distortion of paper, the method of printing, and to changes in the humidity of the air must also be taken into account and are frequently as much as the maximum scale error.

It therefore follows that for scaling purposes, the projection under consideration is superior to others with the exception of the Lambert conformal conic, but the latter is not equal-area. It is an obvious advantage to the general accuracy of the scale of a map to have two standard parallels of latitude of true lengths; that is to say, two axes of strength instead of one.

Caution should be exercised in the selection of standards for the use of this projection in large areas of wide latitudes, as scale errors vary increasingly with the range of latitude north or south of the standard parallels.
3. The meridians are straight lines, crossing the parallels of concentric circles at right angles, thus preserving the angle of the meridians and parallels and facilitating construction. The intervals of the parallels depend upon the condition of equal-area.

The time required in the construction of this projection is but a fraction of that employed in other well-known systems that have far greater errors of scale or lack the property of equal-area.
4. The projection, besides the many other advantages, does not deteriorate as we depart from the central meridian, and by reason of straight meridians it is easy at any point to measure a direction with the protractor. In other words it is adapted to indefinite east-and-west extension, a property belonging to this general class of single-cone projections, but not found in the polyconic, where adjacent sheets con-
structed on their own central meridians have a "rolling fit," because meridians are curved in opposite directions.

Sectional maps on the Albers projection would have an exact fit on all sides, and the system is, therefore, suited to any project involving progressive equal-area mapping. The term "sectional maps" is here used in the sense of separate sheets which, as parts of the whole, are not computed independently, but with respect to the one chosen prime meridian and fixed standards. Hence the sheets of the map fit accurately together into one whole map, if desired.

The first notice of this projection appeared in Zach's Monatliche Correspondenz zur Beförderung der Erd-und Himmels-Kunde, under the title "Beschreibung einer neuen Kegelprojection von H. C. Albers," published at Gotha, November, 1805, pages 450 to 459.

A more recent development of the formulas is given in Studien über flächentreue Kegelprojectionen by Heinrich Hartl, Mittheilungen des K. u. K. Militär-Geographischen Institutes, volume 15, pages 203 to 249, Vienna, 1895-96; and in Lehrbuch der Landkartenprojectionen by Dr. Norbert Hera, page 181, Leipzig, 1885.

It was employed in a general map of Europe by Reichard at Nuremberg in 1817 and has since been adopted in the Austrian general-staff map of Central Europe; also, by reason of being peculiarly suited to a country like Russia, with its large extent of longitude, it was used in a wall map published by the Russian Geographical Society.

[^17]In view of the various requirements a map is to fulfill and a careful study of the shapes of the areas involved, the incontestible advantages of the Albers projection for a map of the United States have been sufficiently set forth in the above description. By comparison with the Lambert conformal conic projection, we gain the practical property of equivalence of area and lose but little in conformality, the two projections being otherwise closely identical; by comparison with the Lambert zenithal we gain simplicity of construction and use, as well as the advantages of less scale error; a comparison with other familiar projections offers nothing of advantage to these latter except where their restricted special properties become a controlling factor.

mathematical theory of the albers projection.

If a is the equatorial radius of the spheroid, ϵ the eccentricity, and φ the latitude, the radius of curvature of the meridian ${ }^{25}$ is given in the form

$$
\rho_{\mathrm{m}}=\frac{a\left(1-\epsilon^{2}\right)}{\left(1-\epsilon^{2} \sin ^{2} \varphi\right)^{3 / 2}},
$$

and the radius of curvature perpendicular to the meridian ${ }^{25}$ is equal to

$$
\rho_{\mathrm{n}}=\frac{a}{\left(1-\epsilon^{2} \sin ^{2} \varphi\right)^{1 / 2}} .
$$

[^18]The differential element of length of the meridian is therefore equal to the expression

$$
d m=\frac{a\left(1-\epsilon^{2}\right) d \varphi}{\left(1-\epsilon^{2} \sin ^{2} \varphi\right)^{32}}
$$

and that of the parallel becomes

$$
d p=\frac{a \cos \varphi d \lambda}{\left(1-\epsilon^{2} \sin ^{2} \varphi\right)^{11 / 2}},
$$

in which λ is the longitude.
The element of area upon the spheroid is thus expressed in the form

$$
d S=d m d p=\frac{a^{2}\left(1-\epsilon^{2}\right) \cos \varphi d \varphi d \lambda}{\left(1-\epsilon^{2} \sin ^{2} \varphi\right)^{2}} .
$$

We wish now to determine an equal-area projection of the spheroid in the plane.
If ρ is the radius vector in the plane, and θ is the angle which this radius vector makes with some initial line, the element of area in the plane is given by the form

$$
d S^{\prime}=\rho d \rho d \theta .
$$

ρ and θ must be expressed as functions of φ and λ, and therefore

$$
d \rho=\frac{\partial \rho}{\partial \varphi} d \varphi+\frac{\partial \rho}{\partial \lambda} d \lambda
$$

and

$$
d \theta=\frac{\partial \theta}{\partial \varphi} d \varphi+\frac{\partial \theta}{\partial \lambda} d \lambda .
$$

We will now introduce the condition that the parallels shall be represented by concentric circles; ρ will therefore be a function of φ alone, or

$$
d \rho=\frac{\partial \rho}{\partial \varphi} d \varphi .
$$

As a second condition, we require that the meridians be represented by straight lines, the radii of the system of concentric circles. This requires that θ should be independent of φ, or

$$
d \theta=\frac{\partial \theta}{\partial \lambda} d \lambda .
$$

Furthermore, if θ and λ are to vanish at the same time and if equal differences of longitude are to be represented at all points by equal arcs on the parallels, θ must be equal to some constant times λ,
or

$$
\theta=n \lambda,
$$

in which n is the required constant.
This gives us

$$
d \theta=n d \lambda .
$$

By substituting these values in the expression for $d S^{\prime}$, we get

$$
d S^{\prime}=\rho \frac{\partial \rho}{\partial \varphi} n d \varphi d \lambda .
$$

Since the projection is to be equal-area, $d S^{\prime}$ must equal $-d S$, or

$$
\rho \frac{\partial \rho}{\partial \varphi} n d \varphi d \lambda=-\frac{a^{2}\left(1-\epsilon^{2}\right) \cos \varphi d \varphi d \lambda}{\left(1-\epsilon^{2} \sin ^{2} \varphi\right)^{2}} .
$$

The minus sign is explained by the fact that ρ decreases as φ increases.
By omitting the $d \lambda$, we find that ρ is determined by the integral

$$
\int_{0}^{\varphi} \rho \frac{\partial \rho}{\partial \varphi} d \varphi=-\frac{a^{2}\left(1-\epsilon^{2}\right)}{n} \int_{0}^{\varphi} \frac{\cos \varphi d \varphi}{\left(1-\epsilon^{2} \sin ^{2} \varphi\right)^{2}}
$$

If R represents the radius for $\varphi=0$, this becomes

$$
\rho^{2}-R^{2}=-\frac{2 a^{2}\left(1-\epsilon^{2}\right)}{n} \int_{0}^{\varphi} \frac{\cos \varphi d \varphi}{\left(1-\epsilon^{2} \sin ^{2} \varphi\right)^{2}}
$$

If β is the latitude on a sphere of radius c, the right-hand member would be represented by the integral

$$
u=-\frac{2 c^{2}}{n} \int_{0}^{\beta} \cos \beta d \beta=-\frac{2 c^{2}}{n} \sin \beta
$$

We may define β by setting this quantity equal to the above right-hand member, or

$$
\begin{aligned}
c^{2} \sin \beta & =a^{2}\left(1-\epsilon^{2}\right) \int_{0}^{\varphi} \frac{\cos \varphi d \varphi}{\left(1-\epsilon^{2} \sin ^{2} \varphi\right)^{2}} \\
& =a^{2}\left(1-\epsilon^{2}\right) \int_{0}^{\varphi}\left(\cos \varphi+2 \epsilon^{2} \sin ^{2} \varphi \cos \varphi+3 \epsilon^{4} \sin ^{4} \varphi \cos \varphi+4 \epsilon^{6} \sin ^{6} \varphi \cos \varphi+\cdots \cdots\right) d \varphi
\end{aligned}
$$

Therefore,

$$
c^{2} \sin \beta=a^{2}\left(1-\epsilon^{2}\right)\left(\sin \varphi+\frac{2 \epsilon^{2}}{3} \sin ^{3} \varphi+\frac{3 \epsilon^{4}}{5} \sin ^{5} \varphi+\frac{4 \epsilon^{6}}{7} \sin ^{7} \varphi+\cdots \cdots\right)
$$

As yet c is an undetermined constant. We may determine it by introducing the condition that,

$$
\text { when } \varphi=\frac{\pi}{2}, \quad \beta \text { shall also equal } \frac{\pi}{2} .
$$

This gives

$$
c^{2}=a^{2}\left(1-\epsilon^{2}\right)\left(1+\frac{2 \epsilon^{2}}{3}+\frac{3 \epsilon^{4}}{5}+\frac{4 \epsilon^{8}}{7}+\cdots \cdots\right)
$$

The latitude on the sphere is thus defined in the form

$$
\sin \beta=\sin \varphi\left(\frac{1+\frac{2 \epsilon^{2}}{3} \sin ^{2} \varphi+\frac{3 \epsilon^{4}}{5} \sin ^{4} \varphi+\frac{4 \epsilon^{6}}{7} \sin ^{\beta} \varphi+\cdots \cdots}{1+\frac{2 \epsilon^{2}}{3}+\frac{3 \epsilon^{4}}{5}+\frac{4 \epsilon^{6}}{7}+\cdots \cdots}\right)
$$

This latitude on the sphere has been called the authalic latitude, the term authalic meaning equivalent or equal-area. A table of these latitudes for every half degree of geodetic latitude is given in U. S. Coast and Geodetic Survey Special Publication No. 67.

With this latitude the expression for ρ becomes

$$
\rho^{2}=R^{2}-\frac{2 c^{2}}{n} \sin \beta .
$$

The two constants n and R are as yet undetermined.
Let us introduce the condition that the scale shall be exact along two given parallels. On the spheroid the length of the parallel for a given longitude difference λ is equal to the expression

$$
P=\frac{a \lambda \cos \varphi}{\left(1-\epsilon^{2} \sin ^{2} \varphi\right)^{3 / 4}} .
$$

On the map this arc is represented by

$$
\rho \theta=\rho n \lambda .
$$

On the two parallels along which the scale is to be exact, if we denote them by subscripts, we have
or, on omitting λ, we have

$$
\rho_{1} n \lambda=\frac{a \lambda \cos \varphi_{1}}{\left(1-\epsilon^{2} \sin ^{2} \varphi_{1}\right)^{3 / 2}}
$$

and

$$
\rho_{1}=\frac{a \cos \varphi_{1}}{n\left(1-\epsilon^{2} \sin ^{2} \varphi_{1}\right)^{3 / 3}},
$$

$$
\rho_{2}=\frac{a \cos \varphi_{2}}{n\left(1-\epsilon^{2} \sin ^{2} \varphi_{2}\right)^{1 / 2}} .
$$

Substituting these values in turm in the general equation for ρ, we get

$$
R^{2}-\frac{2 c^{2}}{n} \sin \beta_{1}=\frac{a^{2} \cos ^{2} \varphi_{1}}{n^{2}\left(1-\epsilon^{2} \sin ^{2} \varphi_{1}\right)}
$$

and

$$
R^{2}-\frac{2 c^{2}}{n} \sin \beta_{2}=\frac{a^{2} \cos ^{2} \varphi_{2}}{n^{2}\left(1-\epsilon^{2} \sin ^{2} \varphi_{2}\right)} .
$$

In U. S. Coast and Geodetic Survey Special Publication No. 8 a quantity called A^{\prime} is defined as

$$
A^{\prime}=\frac{\left(1-\epsilon^{2} \sin ^{2} \varphi^{\prime}\right)^{2}}{a \sin 1^{\prime \prime}} ;
$$

and is there tabulated for every minute of latitude.
Hence

$$
\frac{a^{2}}{\left(1-\epsilon^{2} \sin ^{2} \varphi_{1}\right)}=\frac{1}{A_{1}^{2} \sin ^{2} 1^{\prime \prime}} .
$$

(The prime on A is here omitted for convenience.)
The equations for determining R and n, therefore, become
and

$$
R^{2}-\frac{2 c^{2}}{n} \sin \beta_{1}=\frac{\cos ^{2} \varphi_{1}}{A_{1}^{2} n^{2} \sin ^{2} 1^{\prime \prime}}
$$

$$
R^{2}-\frac{2 c^{2}}{n} \sin \beta_{2}=\frac{\cos ^{2} \varphi_{2}}{A_{2}{ }^{2} n^{2} \sin ^{2} 1^{\prime \prime}}
$$

By subtracting these equations and reducing, we get

$$
\begin{gathered}
n=\frac{\frac{\cos ^{2} \varphi_{1}}{A_{1}^{2} \sin ^{2} 1^{\prime \prime}}-\frac{\cos ^{2} \varphi_{3}}{A_{2}^{2} \sin ^{2} 1^{\prime \prime}}}{2 c^{2}\left(\sin \beta_{2}-\sin \beta_{1}\right)} \\
=\frac{\frac{\cos ^{2} \varphi_{1}}{A_{1}^{2} \sin ^{2} 1^{\prime \prime}}-\frac{\cos ^{2} \varphi_{2}}{A_{2}^{2} \sin ^{2} 1^{\prime \prime}}}{4 c^{2} \sin \frac{1}{2}\left(\beta_{2}-\beta_{1}\right) \cos \frac{1}{2}\left(\beta_{2}+\beta_{1}\right)}=\frac{r_{1}^{2}-r_{2}^{2}}{4 c^{2} \sin \frac{1}{2}\left(\beta_{2}-\beta_{1}\right) \cos \frac{1}{2}\left(\beta_{2}+\beta_{1}\right)},
\end{gathered}
$$

r_{1} and r_{2} being the radii of the respective parallels upon the spheroid.
By substituting the value of n in the above equations, we could determine R, but we are only interested in canceling this quantity from the general equation for ρ.

Since n is determined, we have for the determination of ρ_{1}

$$
\rho_{1}=\frac{a \cos \varphi_{1}}{n\left(1-\epsilon^{2} \sin ^{2} \varphi_{1}\right)^{3}}=\frac{\cos \varphi_{1}}{n A_{1} \sin 1^{\prime \prime}}=\frac{r_{1}}{n} .
$$

But

$$
\cdot \rho_{1}^{2}=R^{2}-\frac{2 c^{2}}{n} \sin \beta_{1}
$$

By subtracting this equation from the general equation for the determination of ρ, we get

$$
\rho^{2}-\rho_{1}^{2}=\frac{2 c^{2}}{n}\left(\sin \beta_{1}-\sin \beta\right)
$$

or

$$
\rho^{2}=\rho_{1}^{2}+\frac{4 c^{2}}{n} \sin \frac{1}{2}\left(\beta_{1}-\beta\right) \cos \frac{1}{2}\left(\beta_{1}+\beta\right) .
$$

In a similar manner we have
and

$$
\rho_{2}=\frac{a \cos \varphi_{2}}{n\left(1-\epsilon^{2} \sin ^{2} \varphi_{2}\right)^{3}}=\frac{\cos \varphi_{2}}{n A_{2} \sin 1^{\prime \prime}}=\frac{r_{2}}{n}
$$

$$
\rho^{2}=\rho_{3}^{2}+\frac{4 c^{2}}{n} \sin \frac{1}{2}\left(\beta_{2}-\beta\right) \cos \frac{\frac{1}{2}}{}\left(\beta_{2}+\beta\right) .
$$

The radius c is the radius of a sphere having a surface equivalent to that of the spheroid. For the Clarke spheroid of 1866 (c in meters)

$$
\log c=6.80420742
$$

To obviate the difficulty of taking out large numbers corresponding to logarithms, it is convenient to use the form

$$
\frac{\rho^{2}}{c^{2}}=\frac{\rho_{1}^{2}}{c^{2}}+\frac{4}{n} \sin \frac{1}{2}\left(\beta_{1}-\beta\right) \cos \frac{1}{2}\left(\beta_{1}+\beta\right),
$$

until after the addition is performed in the right-hand member, and then ρ can be found without much difficulty.

For the authalic latitudes use the table in U. S. Coast and Geodetic Survey Special Publication No. 67.

$$
22864^{\circ}-21-7
$$

Now, if λ is reckoned as longitude out from the central meridian, which becomes the Y axis, we get

$$
\begin{aligned}
& \theta=n \lambda \\
& x=\rho \sin \theta \\
& y=-\rho \cos \theta
\end{aligned}
$$

In this case the origin is the center of the system of concentric circles, the central meridian is the Y axis, and a line perpendicular to this central meridian through the origin is the X axis. The y coordinate is negative because it is measured downward.

If it is desired to refer the coordinates to the center of the map as a single system of coordinates, the values become

$$
\begin{aligned}
& x=\rho \sin \theta \\
& y=\rho_{0}-\rho \cos \theta
\end{aligned}
$$

in which ρ_{0} is the radius of the parallel passing through the center of the map.
The coordinates of points on each parallel may be referred to a separate origin, the point in which the parallel intersects the central meridian. In this case the coordinates become

$$
\begin{aligned}
x & =\rho \sin \theta, \\
y & =\rho-\rho \cos \theta=2 \rho \sin ^{2} \frac{1}{2} \theta .
\end{aligned}
$$

If the map to be constructed is of such a scale that the parallels can be constructed by the use of a beam compass, it is more expeditious to proceed in the following manner:

If λ^{\prime} is the λ of the meridian farthest out from the central meridian on the map, we get

$$
\theta^{\prime}=n \lambda^{\prime} .
$$

We then determine the chord on the circle representing the lowest parallel of the map, from its intersection with the central meridian to its intersection with the meridian represented by λ^{\prime},

$$
\text { chord }=2 \rho \sin \frac{1}{2} \theta^{\prime} \text {. }
$$

With this value set off on the beam compass, and with the intersection of the parallel with the central meridian as center, strike an arc intersecting the parallel at the point where the meridian of λ^{\prime} intersects it. The arc on the parallel represents λ^{\prime} degrees of longitude, and it can be divided proportionately for the other intersections.

Proceed in the same manner for the upper parallel of the map. Then straight lines drawn through corresponding points on these two parallels will determine all of the meridians.

The scale along the parallels, k_{p}, is given by the expression

$$
k_{\mathrm{p}}=\frac{n \rho_{\mathrm{s}}}{r_{\mathrm{s}}},
$$

in which ρ_{8} is the radius of the circle representing the parallel of φ_{5}, and r_{8} is the radius of the same parallel on the spheroid; hence

$$
r_{\mathrm{s}}=\frac{\cos \varphi_{\mathrm{B}}}{A_{\mathrm{B}}^{\prime} \sin 1^{\prime \prime}}
$$

The scale along the meridians is equal to the reciprocal of the expression for the scale along the parallels, or

$$
k_{\mathrm{m}}=\frac{r_{\mathrm{s}}}{n \rho_{\mathrm{s}}} .
$$

CONSTRUCTION OF AN ALBERS PROJECTION.

This projection affords a remarkable facility for graphical construction, requiring practically only the use of a scale, straightedge, and beam compass. In a map for the United States the central or ninety-sixth meridian can be extended far enough to include the center of the curves of latitude, and these curves can be drawn in with a beam compass set to the respective values of the radii taken from the tables.

To determine the meridians, a chord of 25° of longitude (as given in the tables) is laid off from and on each side of the central meridian, on the lower or 25° parallel of latitude. By means of a straightedge the points of intersection of the chords with parallel 25° can be connected with the same center as that used in drawing the parallels of latitude. This, then, will determine the two meridians distant 25° from the center of the map. The lower parallel can then be subdivided into as many equal spaces as may be required, and the remaining meridians drawn in similarly to the outer ones.

If a long straightedge is not available, the spacings of the meridians on parallel 45° can be obtained from chord distance and subdivision of the are in a similar manner to that employed on parallel 25°. Lines drawn through corresponding points on parallels 25° and 45° will then determine the meridians of the map.

This method of construction is far more satisfactory than the one involving rectangular coordinates, though the length of a beam compass required for the construction of a map of the United States on a scale larger than 1:5000000 is rather unusual.

In equal-area projections it is a problem of some difficulty to make allowance for the ellipticity of the earth, a difficulty which is most readily obviated by an intermediate equal-area projection of the spheroid upon a sphere of equal surface. This amounts to the determination of a correction to be applied to the astronomic latitudes in order to obtain the corresponding latitudes upon the sphere. The sphere can then be projected equivalently upon the plane and the problem is solved.

The name of authalic latitudes has been applied to the latitudes of the sphere of equal surface. A table ${ }^{26}$ of these latitudes has been computed for every half degree and can be used in the computations of any equal area projection. This table was employed in the computations of the following coordinates for the construction of a map of the United States.

[^19]TABLE FOR THE CONSTRUCTION OF A MAP OF THE UNITED STATES ON ALBERS EQUALAREA PROJECTION WITH TWO STANDARD PARALLELS.

THE MERCATOR PROJECTION.

DESCRIPTION.

[See 6g. 67, p. 146.]
This projection takes its name from the Latin surname of Gerhard Krämer, the inventor, who was born in Flanders in 1512 and published his system on a map of the world in 1569. His results were only approximate, and it was not until 30 years later that the true principles or the method of computation and construction of this type of projection were made known by Edward Wright, of Cambridge, in a publication entitled "Certaine Errors in Navigation."

In view of the frequent misunderstanding of the properties of this projection, a few words as to its true merits may be appropriate. It is by no means an equalarea representation, and the mental adjustment to meet this idea in a map of the world has caused unnecessary abuse in ascribing to it properties that are peculiarly absent. But there is this distinction between it and others which give greater accuracy in the relative size or outline of countries-that, while the latter are often merely intended to be looked at, the Mercator projection is meant seriously to be worked upon, and it alone has the invaluable property that any bearing from any point desired can be laid off with accuracy and ease. It is, therefore, the only one that meets the requirements of navigation and has a world-wide use, due to the fact that the ship's track on the surface of the sea under a constant bearing is a straight line on the projection.

GREAT CIRCLES AND RHUMB LINES.
The shortest line between any two given points on the surface of a sphere is the arc of the great circle that joins them; but, as the earth is a spheroid, the shortest or minimum line that can be drawn on its ellipsoidal surface between any two points is termed a geodetic line. In connection with the study of shortest distances, however, it is customary to consider the earth as a sphere and for ordinary purposes this approximation is sufficiently accurate.

A rhumb line, or loxodromic curve, is a line which crosses the successive meridians at a constant angle. A ship "sailing a rhumb" is therefore on one course ${ }^{27}$ continuously following the rhumb line. The only projection on which such a line is represented as a straight line is the Mercator; and the only projection on which the great circle is represented as a straight line is the gnomonic; but as any oblique great circle cuts the meridians of the latter at different angles, to follow such a line would necessitate constant alterations in the direction of the ship's head, an operation that would be impracticable. The choice is then between a rhumb line, which is longer than the arc of a great circle and at every point of which the direction is the same, or the arc of a great circle which is shorter than the rhumb line, but at every point of which the direction is different.

The solution of the problem thus resolves itself into the selection of points at convenient course-distances apart along the great-circle track, so that the ship may be steared from one to the other along the rhumb lines joining them; the closer the

[^20]points selected to one another,-that is, the shorter the sailing chords-the more nearly will the track of the ship coincide with the great circle, or shortest sailing route.

Fig. 58.-Part of a Mercator chart showing a rhumb line and a great circle.
The dotted line shows the rhumb line which is a straight line on this projection. The curve shown by a full line is the great circle track which lies on the polar side of the rhumb line. Any great circle or straight line drawn between two given points on the gnomonic projection may be plotted on the Mercator projection by noting the latitudes of the points where the track crosses the various meridians.

Fra. 59.-Part of a gnomonic chart showing a great circle and a rhumb line.
The full line shows the great circle track. The curve shown by a dotted line is the rhumb line which lies on the equatorial side of the great circle track.

For this purpose the Mercator projection, except in high latitudes, has attained an importance beyond all others, in that the great circle can be plotted thereon from a gnomonic chart, or it may be determined by calculation, and these arcs can then be subdivided into convenient sailing chords, so that, if the courses are carefully followed, the port bound for will in due time be reached by the shortest practicable route.

It suffices for the mariner to measure by means of a protractor the angle which his course makes with any meridian. With this course corrected for magnetic variation and deriation his compass route will be established.

It may here be stated that the Hydrographic Office, U. S. Navy, has prepared a series of charts on the gnomonic projection which are most useful in laying off great circle courses. As any straight line on these charts represents a great circle, by taking from them the latitudes and longitudes of a rumber of points along the line, the great-circle arcs may be transferred to the Mercator system, where bearings are obtainable.

It should be borne in mind, moreover, that in practice the shortest course is not always necessarily the shortest passage that can be made. Alterations become necessary on account of the irregular distribution of land and water, the presence of rocks and shoals, the effect of set and drift of currents, and of the direction and strength of the wind. It, therefore, is necessary in determining a course to find out if the rhumb line (or lines) to destination is interrupted or impracticable, and, if so, to determine intermediate points between which the rhumb lines are uninterrupted. The resolution of the problem at the start, however, must set out with the great circle, or a number of great circles, drawn from one objective point to the next. In the interests of economy, a series of courses, or composite sailing, will frequently be the solution.

Another advantage of the Mercator projection is that meridians, or north and south lines, are always up and down, parallel with the east-and-west borders of the map, just where one expects them to be. The latitude and longitude of any place is readily found from its position on the map, and the convenience of plotting points or positions by straightedge across the map from the marginal divisions prevents errors, especially in navigation. Furthermore, the projection is readily constructed.

A true compass course may be carried by a parallel ruler from a compass rose to any part of the chart without error, and the side borders furnish a distance scale ${ }^{28}$ convenient to all parts of the chart, as described in the chapter of "Construction of a Mercator projection". In many other projections, when carried too far, spherical relations are not conveniently accounted for.

From the nature of the projection any narrow belt of latitude in any part of the world, reduced or enlarged to any desired scale, represents approximately true form for the ready use of any locality.

All charts are similar and, when brought to the same scale, will fit exactly. Adjacent charts of uniform longitude scale will join exactly and will remain oriented when joined.

The projection provides for longitudinal repetition so that continuous sailing routes east or west around the world may be completely shown on one map.

Finally, as stated before, for a nautical chart, if for no other purpose, the Mercator projection, except in high latitudes, has attained an importance which puts all others in the background.

[^21]
MERCATOR PROJECTION IN HIGH LATITUDES.

In latitudes above 60°, where the meridional parts of a Mercator projection increase rather rapidly, charts covering considerable area may be constructed advantageously on a Lambert conformal projection, if the locality has a predominating east-and-west extent; and on a polyconic projection, or a transverse Mercator, if the locality has predominating north-and-south dimensions. In regard to suitable projections for polar regions, see page 147.

Difficulties in navigation in the higher latitudes, often ascribed to the use of the Mercator projection, have in some instances been traced to unreliable positions of landmarks due to inadequate surveys and in other instances to the application of corrections for variation and deviation in the wrong direction.

For purposes of navigation in the great commercial area of the world the Mercator projection has the indorsement of all nautical textbooks and nautical schools, and its employment by maritime nations is universal. It is estimated that of the 15000 or more different nautical charts published by the various countries not more than 1 per cent are constructed on a system of projection that is noticeably different from Mercator charts.

The advantages of the Mercator system over other systems of projection are evident in nautical charts of small scale covering extensive areas, ${ }^{20}$ but the larger the scale the less important these differences become. In harbor and coast charts of the United States of scales varying from 1:10 000 to 1:80 000 the difference of the various types of projection is almost inappreciable.

This being the case, there is a great practical advantage to the mariner in having one uniform system of projection for all scales and in avoiding a sharp break that would require successive charts to be constructed or handled on different principles at a point where there is no definite distinction.

The use of the Mercator projection by the U. S. Coast and Geodetic Survey is, therefore, not due to the habit of continuing an old system, but to the desirability of meeting the special requirements of the navigator. It was adopted by this Bureau within comparatively recent years, superseding the polyconic projection formerly employed.

The middle latitudes employed by the U. S. Coast and Geodetic Survey in the construction of charts on the Mercator system, are as follows:

Coast and harbor charts, scales 1:80 000 and larger, are constructed to the scale of the middle latitude of each chart. This series includes 86 coast charts of the Atlantic and Gulf coasts, each on the scale 1:80000. The use of these charts in series is probably less important than their individual local use, and the slight break in scale between adjoining charts will probably cause less inconvenience than would the variation in the scale of the series from 1:69000 to 1:88 000 if constructed to the scale of the middle latitude of the series.

General charts and sailing charts of the Atlantic coast, scales 1:400 000 and 1:1200000 are constructed to the scale of latitude 40°. The scales of the different charts of the series are therefore variant, but the adjoining charts join exactly. This applies likewise to the following three groups:

General charts of the Pacific coast, San Diego to Puget Sound, are constructed to the scale of $1: 200000$ in latitude 41°.

[^22]General charts of the Alaska coast, Dixon Entrance to Dutch Harbor, are constructed to the scale of 1:200 000 in latitude 60°.

General sailing charts of the Pacific coast, San Diego to the western limit of the Aleutian Islands, are constructed to the scale of 1:1 200000 in latitude 49°.

Some of the older charts still issued on the polyconic projection will be changed to the Mercator system as soon as practicable. Information as to the construction of nautical charts in this Bureau is given in Rules and Practice, U. S. Coast and Geodetic Survey, Special Publication No. 66.

DEVELOPMENT OF THE FORMULAS FOR THE COORDINATES OF THE MERCATOR PROJECTION.

The Mercator projection is a conformal projection upon a cylinder tangent to the spheroid at the Equator. The Equator is, therefore, represented by a straight line when the cylinder is developed or rolled out into the plane. The meridians are represented by straight lines perpendicular to this line which represents the Equator; they are equally spaced in proportion to their actual distances apart upon the Equator. The parallels are represented by a second system of parallel lines perpendicular to the family of lines representing the meridians; or, in other words, they are straight lines parallel to the line representing the Equator. The only thing not yet determined is the spacings between the lines representing the parallels; or, what amounts to the same thing, the distances of these lines from the Equator.

Since the projection is conformal, the scale at any point must be the same in all directions. When the parallels and meridians are represented by lines or curves that are mutually perpendicular, the scale will be equal in all directions at a point, if the scale is the same along the parallel and meridian at that point. In the Mercator projection the lines representing the parallels are perpendicular to the lines representing the meridians. In order, then, to determine the projection, we need only to introduce the condition that the scale along the meridians shall be equal to the scale along the parallels.

An element of length along a parallel is equal to the expression

$$
d p=\frac{a \cos \varphi d \lambda}{\left(1-\epsilon^{2} \sin ^{2} \varphi\right)^{2 / 2}},
$$

in which a is the equatorial radius, φ the latitude, λ the longitude, and ϵ the eccentricity.

For the purpose before us we may consider that the meridians are spaced equal to their actual distances apart upon the earth at the Equator. In that case the element of length $d p$ along the parallel will be represented upon the map by $a d \lambda$, or the scale along the parallel will be given in the form

$$
\frac{d p}{a d \lambda}=\frac{\cos \varphi}{\left(1-\epsilon^{2} \sin ^{2} \varphi\right)^{1 / 2}} .
$$

An element of length along the meridian is given in the form

$$
d m=\frac{a\left(1-\epsilon^{2}\right) d \varphi}{\left(1-\epsilon^{2} \sin ^{2} \varphi\right)^{2 / 2}} .
$$

Now, if $d s$ is the element of length upon the projection that is to represent this element of length along the meridian, we must have the ratio of $d m$ to $d s$ equal to the scale along the parallel, if the projection is to be conformal.

Accordingly, we must have

$$
\frac{d m}{d s}=\frac{a\left(1-\epsilon^{2}\right) d \varphi}{d s\left(1-\epsilon^{2} \sin ^{2} \varphi\right)^{3 / 2}}=\frac{\cos \varphi}{\left(1-\epsilon^{2} \sin ^{2} \varphi\right)^{1 / 2}},
$$

or,

$$
d s=\frac{a\left(1-\epsilon^{2}\right) d \varphi}{\left(1-\epsilon^{2} \sin ^{2} \varphi\right) \cos \varphi} .
$$

The distance of the parallel of latitude φ from the Equator must be equal to the integral

$$
\begin{aligned}
s & =\int_{0}^{\varphi} \frac{a\left(1-\epsilon^{2}\right) d \varphi}{\left(1-\epsilon^{2} \sin ^{2} \varphi\right) \cos \varphi} \\
& =a \int_{0}^{\varphi} \frac{d \varphi}{\cos \varphi}+\frac{a \epsilon}{2} \int_{0}^{\varphi} \frac{-\epsilon \cos \varphi d \varphi}{1-\epsilon \sin \varphi}-\frac{a \epsilon}{2} \int_{0}^{\varphi} \frac{\epsilon \cos \varphi d \varphi}{1+\epsilon \sin \varphi} \\
& =a \int_{0}^{\varphi} \frac{d \varphi}{\sin \left(\frac{\pi}{2}+\varphi\right)}+\frac{a \epsilon}{2} \int_{0}^{\varphi} \frac{-\epsilon \cos \varphi d \varphi}{1-\epsilon \sin \varphi}-\frac{a \epsilon}{2} \int_{0}^{\varphi} \frac{\epsilon \cos \varphi d \varphi}{1+\epsilon \sin \varphi} \\
& =a \int_{0}^{\varphi} \frac{\cos \left(\frac{\pi}{4}+\frac{\varphi}{2}\right)}{\sin \left(\frac{\pi}{4}+\frac{\varphi}{2}\right)} \frac{d \varphi}{2}-a \int_{0}^{\frac{-}{\varphi} \sin \left(\frac{\pi}{4}+\frac{\varphi}{2}\right)} \frac{d \varphi}{\cos \left(\frac{\pi}{4}+\frac{\varphi}{2}\right)} \frac{a \epsilon}{2}+\frac{-\epsilon \cos \varphi d \varphi}{2} \int_{0}^{1-\epsilon \sin \varphi}-\frac{a \epsilon}{2} \int_{0}^{\varphi} \frac{\epsilon \cos \varphi d \varphi}{1+\epsilon \sin \varphi} .
\end{aligned}
$$

On integration this becomes

$$
\begin{aligned}
s & =a \log _{\ominus} \sin \left(\frac{\pi}{4}+\frac{\varphi}{2}\right)-a \log _{e} \cos \left(\frac{\pi}{4}+\frac{\varphi}{2}\right)+\frac{a \epsilon}{2} \log _{\ominus}(1-\epsilon \sin \varphi)-\frac{a \epsilon}{2} \log _{e}(1+\epsilon \sin \varphi) \\
& =a \log _{e} \tan \left(\frac{\pi}{4}+\frac{\varphi}{2}\right)+\frac{a \epsilon}{2} \log _{\ominus}\left(\frac{1-\epsilon \sin \varphi}{1+\epsilon \sin \varphi}\right) \\
& =a \log _{\ominus}\left[\tan \left(\frac{\pi}{4}+\frac{\varphi}{2}\right) \cdot\left(\frac{1-\epsilon \sin \varphi}{1+\epsilon \sin \varphi}\right)^{\varepsilon / 2}\right] .
\end{aligned}
$$

The distance of the meridian λ from the central meridian is given by the integral

$$
\begin{aligned}
s^{\prime} & =a \int_{0}^{\lambda} d \lambda \\
& =a \lambda
\end{aligned}
$$

The coordinates of the projection referred to the intersection of the central meridian and the Equator as origin are, therefore, given in the form

$$
\begin{aligned}
& x=a \lambda, \\
& y=a \log _{e}\left[\tan \left(\frac{\pi}{4}+\frac{\varphi}{2}\right) \cdot\left(\frac{1-\epsilon \sin \varphi}{1+\epsilon \sin \varphi}\right)^{\alpha / 2}\right]
\end{aligned}
$$

In U. S. Coast and Geodetic Survey Special Publication No. 67, the isometric or conformal latitude is defined by the expression

$$
\tan \left(\frac{\pi}{4}+\frac{\chi}{2}\right)=\tan \left(\frac{\pi}{4}+\frac{\varphi}{2}\right) \cdot\left(\frac{1-\epsilon \sin \varphi}{1+\epsilon \sin \varphi}\right)^{/ / 2},
$$

or, if

$$
\begin{gathered}
x=\frac{\pi}{2}-z \text { and } \varphi=\frac{\pi}{2}-p, \\
\tan \frac{z}{2}=\tan \frac{p}{2} \cdot\left(\frac{1+\epsilon \cos p}{1-\epsilon \cos p}\right)^{\varepsilon / 2} .
\end{gathered}
$$

With this value we get

$$
y=a \log _{e} \cot \frac{z}{2},
$$

or, expressed in common logarithms,

$$
y=\frac{a}{M} \log \cot \frac{z}{2},
$$

in which M is the modulus of common logarithms.

$$
\begin{aligned}
M & =0.4342944819, \\
\log M & =9.6377843113 .
\end{aligned}
$$

A table for the isometric colatitudes for every half degree of geodetic latitude is given in U. S. Coast and Geodetic Survey Special Publication No. 67.

The radius a is usually expressed in units'of minutes on the Equator, or

$$
\begin{gathered}
a=\frac{10800}{\pi}, \\
\log a=3.5362738828, \\
\log \left(\frac{a}{M}\right)=3.8984895715 . \\
\log y=3.8984895715+\log \left(\log \cot \frac{z}{2}\right),
\end{gathered}
$$

or,

$$
y=7915^{\prime} .704468 \log \cot \frac{z}{2}
$$

The value of x now becomes

$$
x=\frac{10800}{\pi} \lambda,
$$

with λ expressed in radians;
or,

$$
x \Rightarrow \lambda,
$$

with λ expressed in minutes of arc.
The table of isometric latitudes given in U. S. Coast and Geodetic Survey Special Publication No. 67 was computed for the Clarke spheroid of 1866 . If it is desired
to compute values of y for any other spheroid, the expansion of y in series must be used. In this case

$$
\begin{aligned}
y= & 7915^{\prime} .704468 \log \tan \left(\frac{\pi}{4}+\frac{\varphi}{2}\right) \\
& -3437^{\prime} .747\left(\epsilon^{2} \sin \varphi+\frac{\epsilon^{4}}{3} \sin ^{3} \varphi+\frac{\epsilon^{6}}{5} \sin ^{5} \varphi+\frac{\epsilon^{8}}{7} \sin ^{7} \varphi+\cdots\right)
\end{aligned}
$$

or, in more convenient form,

$$
\begin{aligned}
& y=7915^{\prime} .704468 \log \tan \left(\frac{\pi}{4}+\frac{\varphi}{2}\right)-3437^{\prime} .747\left[\left(\epsilon^{2}+\frac{\epsilon^{4}}{4}+\frac{\epsilon^{6}}{8}+\frac{5 \epsilon^{8}}{64}+\cdots\right) \sin \varphi\right. \\
& -\left(\frac{\epsilon^{4}}{12}+\frac{\epsilon^{8}}{16}+\frac{3 \epsilon^{8}}{64}+\cdots\right) \sin 3 \varphi+\left(\frac{\epsilon^{8}}{80}+\frac{\epsilon^{8}}{64}+\cdots\right) \sin 5 \varphi-\left(\frac{\epsilon^{8}}{448}+\cdots\right) \sin 7 \varphi \cdots .
\end{aligned}
$$

If the given spheroid is defined by the flattening, ϵ^{2} may be computed from the formula

$$
\epsilon^{2}=2 f-f^{2}
$$

in which f is the flattening.
The series for y in the sines of the multiple arcs can be written with coefficients in closed form, as follows:

$$
\begin{aligned}
y & =7915^{\prime} .704468 \log \tan \left(\frac{\pi}{4}+\frac{\varphi}{2}\right)-3437^{\prime} .747\left(2 f \sin \varphi-\frac{2 f^{9}}{3 \epsilon^{2}} \sin 3 \varphi\right. \\
& \left.+\frac{2 f^{5}}{5 \epsilon^{4}} \sin 5 \varphi-\frac{2 f^{7}}{7 \epsilon^{0}} \sin 7 \varphi+\cdots\right)
\end{aligned}
$$

in which f denotes the flattening and ϵ the eccentricity of the spheroid.

DEVELOPMENT OF THE FORMULAS FOR THE TRANSVERSE MERCATOR PROJECTION.

The expressions for the coordinates of the transverse Mercator projection can be determined by a transformation performed upon the sphere. If p is the greatcircle radial distance, and ω is the azimuth reckoned from a given initial, the transverse Mercator projection in terms of these elements is expressed in the form

$$
\begin{aligned}
& x=a \omega \\
& y=a \log _{e} \cot \frac{p}{2}
\end{aligned}
$$

But, from the transformation triangle (Fig. 66 on page 143), we have

$$
\begin{aligned}
& \cos p=\sin \alpha \sin \varphi+\cos \alpha \cos \varphi \cos \lambda \\
& \tan \omega=\frac{\cos \alpha \sin \varphi-\sin \alpha \cos \varphi \cos \lambda}{\sin \lambda \cos \varphi}
\end{aligned}
$$

in which α is the latitude of the point that becomes the pole in the transverse projection.

By substituting these values in the equations above, we get
and

$$
x=a \tan ^{-1}\left(\frac{\cos \alpha \sin \varphi-\sin \alpha \cos \varphi \cos \lambda}{\sin \lambda \cos \varphi}\right)
$$

$$
\begin{aligned}
y & =a \log _{e} \cot \frac{p}{2}=\frac{a}{2} \log _{e}\left(\frac{1+\cos p}{1-\cos p}\right) \\
& =\frac{a}{2} \log _{e}\left(\frac{1+\sin \alpha \sin \varphi+\cos \alpha \cos \varphi \cos \lambda}{1-\sin \alpha \sin \varphi-\cos \alpha \cos \varphi \cos \lambda}\right)
\end{aligned}
$$

If we wish the formulas to yield the usual values when α converges to $\frac{\pi}{2}$, we must replace λ by $\lambda-\frac{\pi}{2}$ or, in other words, we must change the meridian from which λ is reckoned by $\frac{\pi}{2}$. With this change the expressions for the coordinates become

$$
\begin{aligned}
& x=a \tan ^{-1}\left(\frac{\sin \alpha \cos \varphi \sin \lambda-\cos \alpha \sin \varphi}{\cos \varphi \cos \lambda}\right) \\
& y=\frac{a}{2} \log _{\theta}\left(\frac{1+\sin \alpha \sin \varphi+\cos \alpha \cos \varphi \sin \lambda}{1-\sin \alpha \sin \varphi-\cos \alpha \cos \varphi \sin \lambda}\right)
\end{aligned}
$$

With common logarithms the y coordinate becomes

$$
y=\frac{a}{2 M} \log \left(\frac{1+\sin \alpha \sin \varphi+\cos \alpha \cos \varphi \sin \lambda}{1-\sin \alpha \sin \varphi-\cos \alpha \cos \varphi \sin \lambda}\right),
$$

in which M is the modulus of common logarithms.
A study of the transverse Mercator projections was made by A. Lindenkohl, U. S. Coast and Geodetic Survey, some years ago, but no charts in the modified form have ever been issued by this office.

In a transverse position the projection loses the property of straight meridians and parallels, and the loxodrome or rhumb line is no longer a straight line. Since the projection is conformal, the representation of the rhumb line must intersect the meridians on the map at a constant angle, but as the meridians become curved lines the rhumb line must also become a curved line. The transverse projection, therefore, loses this valuable property of the ordinary Mercator projection.

The distortion, or change of scale, increases with the distance from the great oircle which plays the part of the Equator in the ordinary Mercator projection, but, considering the shapes and geographic location of certain areas to be charted, a transverse position would in some instances give advantageous results in the prop. erty of conformal mapping.

CONSTRUCTION OF A MERCATOR PROJECTION.

On the Mercator projection, meridians are represented by parallel and equidistant straight lines, and the parallels of latitude are represented by a system of straight lines at right angles to the former, the spacings between them conforming to the condition that at every point the angle between any two curvilinear elements upon the sphere is represented upon the chart by an equal angle between the representatives of these elements.

In order to retain the correct shape and comparative size of objects as far as possible, it becomes necessary, therefore, in constructing a Mercator chart, to increase every degree of latitude toward the pole in precisely the same proportion as the degrees of longitude have been lengthened by projection.

TABLES.
The table at present employed by the U.S. Coast and Geodetic Survey is that appearing in Traité d'Hydrographie by A. Germain, 1882, Table XIII. This table is as good as any at present available and is included in this publication, beginning on page 117.

The outer columns of minutes give the notation of minutes of latitude from the Equator to 80°.

The column of meridional distances gives the total distance of any parallel of latitude from the Equator in terms of a minute or unit of longitude on the Equator.

The column of differences gives the value of 1 minute of latitude in terms of a minute or unit of longitude on the Equator; thus, the length of any minute of latitude on the map is obtained by multiplying the length of a minute of longitude by the value given in the column of differences between adjacent minutes.

The first important step in the use of Mercator tables is to note the fact that a minute of longitude on the Equator is the unit of measurement and is used as an expression for the ratio of any one minute of latitude to any other. The method of construction is simple, but, on account of different types of scales employed by different chart-producing establishments, it is desirable to present two methods: (1) The diagonal metric scale method; (2) the method similar to that given in Bowditch's American Practical Navigator.
diagonal metrio soale method as used in the u. s. coast and geodetid survey.
Draw a straight line for a central meridian and a construction line perpendicular thereto, each to be as central to the sheet as the selected interval of latitude and longitude will permit. To insure greater accuracy on large sheets, the longer line of the two should be drawn first, and the shorter line erected perpendicular to it.

Example: Required a Mercator projection, Portsmouth, N. H., to Biddeford, Me., extending from latitude $43^{\circ} 00^{\prime}$ to $43^{\circ} 30^{\prime}$; longitude $70^{\circ} 00^{\prime}$ to $71^{\circ} 00^{\prime}$, scale on middle parallel 1:400 000, projection interval 5 minutes.

The middle latitude being $43^{\circ} 15^{\prime}$, we take as the unit of measurement the true value of a minute of longitude as given in the Polyconic Projection Tables, U. S. Coast and Geodetic Survey Special Publication No. 5 (general spherical coordinates not being given in the Germain tables). Entering the proper column on page 96, we find the length of a minute of longitude to be 1353.5 meters.

As metric diagonal scales of 1:400 000 are neither available nor convenient, we ordinarily use a scale $1: 10000$; this latter scale, being 40 times the former, the length of a unit of measurement on it will be one-fortieth of 1353.5, or 33.84.

Lines representing 5 -minute intervals of longitude can now be drawn in on either side of the central meridian and parallel thereto at intervals of 5×33.84 or 169.2 apart on the $1: 10000$ scale. (In practice it is advisable to determine the outer meridians first, 30 minutes of longitude being represented by 6×169.2, or 1015.2 ; and the 5 -minute intervals by 169.2 , successively.)

THE PARALLELS OF LATITUDE。

The distance between the bottom parallel of the chart $43^{\circ} 00^{\prime}$ and the next 5 -minute parallel-that is, $43^{\circ} 05^{\prime}$-will be ascertainod from the Mercator tables by taking the difference between the values opposite these parallels and multiplying this difference by the unit of measurement. Thus:

Latitude.	Meridional distance.
0	,
43	05
43	00

6.816 multiplied by $33.84=230.6$, which is the spacing from the bottom parallel to $43^{\circ} 05^{\prime}$.

The spacings of the other 5 -minute intervals obtained in the same way are as follows:

From the central parallel, or $43^{\circ} 15^{\prime}$, the other parallels can now be stepped off and drawn in as straight lines and the projection completed. Draw then the outer neat lines of the chart at a convenient distance outside of the inner neat lines and extend to them the meridians and parallels already constructed. Between the inner and outer neat lines of the chart subdivide the degrees of latitude and longitude as minutely as the scale of the chart will permit, the subdivisions of the degrees of longitude being found by dividing the degrees into equal parts; and the subdivisions of the degrees of latitude being accurately found in the same manner as the full degrees of latitude already described, though it will generally be sufficiently exact on large-scale charts to make even subdivisions of the degrees of latitude, as in the case of the longitude.

In northern latitudes, where the meridional increments are quite noticeable, care should be taken so as to have the latitude intervals or subdivisions computed with sufficient closeness, so that their distances apart will increase progressively.

The subdivisions along the eastern, as well as those along the western neat line, will serve for measuring or estimating terrestrial distances. Distances between points bearing north and south of each other may be ascertained by referring them to the subdivisions between their latitudes. Distances represented by lines (rhumb or loxodromic) at an angle to the meridians may be measured by taking between the dividers a small number of the subdivisions near the middle latitude of the line to be measured, and stepping them off on that line. If, for instance, the terrestrial length of a line running at an angle to the meridians, between the parallels of latitude $24^{\circ} 00^{\prime}$ and $29^{\circ} 00^{\prime}$ be required, the distance shown on the neat space between $26^{\circ} 15^{\prime}$ and $26^{\circ} 45^{\prime}\left(=30\right.$ nautical miles ${ }^{30}$ may be taken between the dividers and stepped off on that line. An oblique line of considerable length may well be divided into parts and each part referred to its middle latitude for a unit of measurement.

TO CONSTRUCT A MERCATOR PROJECTION BY A METHOD SIMILAR TO THAT GIVEN IN BOWDITCH'S AMERICAN PRACTICAL NAVIGATOR.

If the chart includes the Equator, the values found in the tables will serve airectly as factors for any properly divided diagonal scale of yards, feet, meters, or miles, these factors to be reduced proportionally to the scale adopted for the chart.

If the chart does not include the Equator then the parallels of latitude should be referred to a principal parallel, preferably the central or the lowest parallel to be

[^23]drawn upon the chart. The distance of any other parallel of latitude from the principal parallel is the difference of the values of the two taken from the tables and reduced to the scale of the chart.

If, for example, it be required to construct a chart on a scale of one-fourth of an inch to 5 minutes of arc on the Equator, the minute or unit of measurement will be $\frac{t}{3}$ of $\frac{1}{4}$ inch, or $\frac{1}{20}$ of an inch, and 10 minutes of longitude on the Equator (or 10 meridional parts) will be represented by $\frac{10}{20}$ or 0.5 inch; likewise 10 minutes of latitude north or south of the Equator will be represented by $\frac{1}{20} \times 9.932$ or 0.4966 inch. The value 9.932 is the difference between the meridional distances as given opposite latitudes $0^{\circ} 00^{\prime}$ and $0^{\circ} 10^{\prime}$.

If the chart does not include the Equator, and if the middle parallel is latitude 40°, and the scale of this parallel is to be one-fourth of an inch to 5 minutes, then the measurement for 10 minutes on this parallel will be the same as before, but the measurement of the interval between $40^{\circ} 00^{\prime}$ and $40^{\circ} 10^{\prime}$ will be $\frac{1}{20} \times 13.018$, or 0.6509 inch. The value 13.018 is the difference of the meridional distances as given opposite these latitudes, i. e., the difference between 2620.701 and 2607.683.
(It may often be expedient to construct a diagonal scale of inches on the drawing to facilitate the construction of a projection on the required scale.)

Sometimes it is desirable to adapt the scale of a chart to a certain allotment of paper.

Example: Let a projection be required for a chart of 14° extent in longitude between the parallels of latitude $20^{\circ} 30^{\prime}$ and $30^{\circ} 25^{\prime}$, and let the space allowable on the paper between these parallels be 10 inches.

Draw in the center of the sheet a straight line for the central meridian of the chart. Construct carefully two lines perpendicular to the central meridian and 10 inches apart, one near the lower border of the sheet for parallel of latitude $20^{\circ} 30^{\prime}$ and an upper one for parallel of latitude $30^{\circ} 25^{\prime}$.

Entering the tables in the column meridional distance we find for latitude $20^{\circ} 30^{\prime}$ the value 1248.945, and for latitude $30^{\circ} 25^{\prime}$ the value 1905.488. The difference, or $1905.488-1248.945=656.543$, is the value of the meridional are between these latitudes, for which 1 minute of arc of the Equator is taken as a unit. On the projection, therefore, 1 minute of arc of longitude will measure $\frac{10 \mathrm{in} \text {. }}{656.543}=0.0152$ inch, which will be the unit of measurement. By this quantity all the values derived from the table must be multiplied before they can be used on a diagonal scale of inches for this chart.

As the chart covers 14° of longitude, the 7° on either side of the central meridian will be represented by $0.0152 \times 60 \times 7$, or 6.38 inches. These distances can be laid off from the central meridian east and west on the upper and lower parallel. Through the points thus obtained draw lines parallel to the central meridian, and these will be the eastern and western neat lines of the chart.

In order to obtain the spacing, or interval, between the parallel of latitude $21^{\circ} 00^{\prime}$ and the bottom parallel of $20^{\circ} 30^{\prime}$, we find the difference between their meridional distances and multiply this difference by the unit of measurement, which is 0.0152 .

Thus:
$(1280.835-1248.945) \times 0.0152$ or $31.890 \times 0.0152=0.485$ inch.

```
22864
```

On the three meridians already constructed lay off this distance from the bottom parallel, and through the points thus obtained draw a straight line which will be the parallel $21^{\circ} 00^{\prime}$.

Proceed in the same manner to lay down all the parallels answering to full degrees of latitude; the distances for $22^{\circ}, 23^{\circ}$, and 24° from the bottom parallel will be, respectively:

$$
\begin{aligned}
& 0.0152 \times(1344.945-1248.945)=1.459 \text { inches } \\
& 0.0152 \times(1409.513-1248.945)=2.441 \text { inches } \\
& 0.0152 \times(1474.566-1248.945)=3.429 \text { inches, etc. }
\end{aligned}
$$

Finally, lay down in the same way the parallel $30^{\circ} 25^{\prime}$, which will be the northern inner neat line of the chart.

A degree of longitude will measure on this chart $0.0152 \times 60=0.912$ inch. Lay off, therefore, on the lowest parallel of latitude, on the middle one, and on the highest parallel, measuring from the central meridian toward either side, the distances 0.912 inch, 1.824 inches, 2.736 inches, 3.648 inches, etc., in order to determine the points where meridians answering to full degrees cross the parallels drawn on the chart. Through the points thus found draw the straight lines representing the meridians.

If it occurs that a Mercator projection is to be constructed on a piece of paper where the size is controlled by the limits of longitude, the case may be similarly treated.

CONSTRUCTION OF A TRANSVERSE MERCATOR PROJECTION FOR THE SPHERE WITH THE CYLINDER TANGENT ALONG A MERIDIAN.

The Anti-Gudermannian table given on pages 309 to 318 in "Smithsonian Mathematical Tables-Hyperbolic Functions" is really a table of meridional distances for the sphere. By use of this table an ordinary Mercator projection can be constructed for the sphere. Upon this graticule the transverse Mercator can be plotted by use of the table, "Transformation from geographical to azimuthal coordi-nates-Center on the Equator" given in U. S. Coast and Geodetic Survey Special Publication No. 67, "Latitude Developments Connected with Geodesy and Cartography, with Tables, Including a Table for Lambert Equal-Area Meridional Projection."

Figure 61 shows such a transverse Mercator projection for a hemisphere; the pole is the origin and the horizontal meridian is the central meridian. The dotted lines are the lines of the original Mercator projection. Since the projection is turned 90° in azimuth, the original meridians are horizontal lines and the parallels are vertical lines, the vertical meridian of the transverse projection being the Equator of the original projection. The numbers of the meridians in the transverse projection are the complements of the numbers of the parallels in the original projection. The same thing is true in regard to the parallels in the transverse projection and the meridians in the original projection. That is, where the number 20 is given for the transverse projection, we must read 70 in the original projection.

The table in Special Publication No. 67 consists of two parts, the first part giving the values of the azimuths reckoned from the north and the second part giving the great-circle central distances. From this table we get for the intersection of latitude 10° with longitude 10°,

azimuth	0	\prime	$1 /$
radial distance	$=14$	33	41.2
ren	21.6		

To the nearest minute these become

$$
\begin{array}{cc}
\alpha=44^{\circ} & 34^{\prime} \\
\zeta=14 & 06
\end{array}
$$

The azimuth becomes longitude in the original projection and is laid off upward from the origin, or the point marked "pole" in the figure. The radial distance is the complement of the latitude on the original projection; hence the chosen intersection lies in longitude $44^{\circ} 34^{\prime}$ and latitude $75^{\circ} 54^{\prime}$ on the original projection.

Frg. 61.-Transverse Mercator projection-cylinder tangent along a meridian-construction plate.
It can be seen from the figure that there are three other points symmetrically situated with respect to this point, one in each of the other three quadrants. If the intersections in one quadrant are actually plotted, the other quadrants may be copied from this construction. Another hemisphere added either above or below will complete the sphere, with the exception, of course, of the part that passes off to infinity.

In practice the original projection need not be drawn, or, if it is drawn, the lines should be light pencil lines used for guidance only. If longitude $44^{\circ} 34^{\prime}$ is laid off upward atong a vertical line from an origin, and the meridional distance for $75^{\circ} 54^{\prime}$ is laid off to the right, the intersection of the meridian of 10° with the parallel of 10° is located upon the map. In a similar manner, by the use of the table in Special Publication No. 67, the other intersections of the parallel of 10° can be located; then a smooth curve drawn through these points so determined will be the parallel of 10°. Also the other intersections of the meridian of 10° can be located, and a smooth curve drawn through these points will represent the meridian of 10°.

The table in Special Publication Nc. 67 gives the intersections for 5° intervals in both latitude and longitude for one-fourth of a hemisphere. This is sufficient for the construction of one quadrant of the hemisphere on the map. As stated above, the remaining quadrants can either be copied from this construction, or the values may be plotted from the consideration of symmetry. In any case figure 61 will serve as a guide in the process of construction.

In the various problems of conformal and equal-area mapping, any solution that will satisfy the shapes or extents of the areas involved in the former system has generally a counterpart or natural complement in the latter system. Thus, where we map a given locality on the Lambert conformal conic projection for purposes of conformality, we may on the other hand employ the Albers projection for equalarea representation of the same region; likewise, in mapping a hemisphere, the stereographic meridional projection may be contrasted with the Lambert meridional projection, the stereographic horizon projection with the Lambert zenithal; and so, with a fair degree of accuracy, the process above described will give us conformal representation of the sphere suited to a zone of predominating meridional dimensions as a counterpart of the Bonne system of equal-area mapping of the same zone. Such a zone would, of course, for purposes of conformality, be more accurately mapped by the more rigid transverse method on the spheroid which has also been described and which may be adapted to any transverse relation.

MERCATOR PROJECTION TABLE.
[Reprinted from Traité d'Hydrographie, A. Germain, Ingenieur Hydrographe de la Marine, Paris, MDCCCLXXXII, to latitude 80° only.]

NOTE.
It is observed in this table that the meridional differences are irregular and that second differences frequently vary from plus to minus. The tables might well have been computed to one more place in decimals to insure the smooth construction of a projection.

In the use of any meridional distance below latitude $50^{\circ} 00^{\prime}$ the following process will eliminate irregularities in the construction of large scale maps and is within scaling accuracy:

To any meridional distance add the one above and the one below and take the mean, thus:

Latitude.	Moridional distances.
\circ	,
28	35
28	36
28	37
	1779.745
	1782.0871
	5342.633

The mean to be used for latitude $28^{\circ} 36^{\prime}$ is 1780.8777

MERCATOR PROJECTION TABLE.
[Meridional distances for the spheroid. Compression $2 \frac{1}{294}$.]

MERCATOR PROJECTION TABLE-Continued.
[Meridional distances for the spheroid, Compression $\frac{1}{24}$]

$\begin{aligned} & \text { Min. } \\ & \text { utes. } \end{aligned}$	4°		5°		6°		7°		$\begin{aligned} & \text { Minn } \\ & \text { utes. } \end{aligned}$
	Meridionsl distance.	Difierence.	Meridional distance.	Difference.	Meridional	Diference.	Meridional distance.	Difference.	
	238.568				358.222		418.206		
1	238.568 239.564	0. 996	298.348 299.345	0. 997	358.222 359.220	0.998	418.206 419.207	1.001	0
2	239.564 240.559	995	299.345 300.342	997	360.219	999 999	420.208	001	2
3	241.555	${ }_{996}^{996}$	301.340	9988	361.218	999 999	421.209	001	3
4	242.551	996 996	302.337	997	362.217	999	422.209	001	4
5	243.547	996	303.334	997	363.216	999	423.210	001	5
6	244.543	995	304. 331	997	364.215	998	424.211	001	7
7	245.538	996	305. 328	998	365.213	999	425.212	001	8
8	246.534	996	306. 326	997	366.212	0.999	426.213	001	8
9	247.530	996	307.323	997	367.211	1. 000	427.214	002	9
10	248.526	0.996	308. 320	0.998	368. 211	0.999	428. 216	1. 001	10
11	249. 522	. 996	309. 318	-997	369.210	- 999	429.217	001	11
12	250.518	996	310. 315	997	370.209	999	430.218	001	12
13	251.514	996	311.312	998	371.208	999	431.219	001	13
14	252.510	996	312.310	997	372.207	0.999	432.220	002	14
15	253.506	996	313.307		373.206		433.222	001	15
16	254.502	996	314.305	997	374. 206	0. 0.099	434.223	001	18
17	255.498	9996	315.302	998	375.205	0. 999	435.224	002	17
18	256.494	996	316.300	998	376. 204	1.000	436.226	001	18
19	257.490	996	317.298	997	377.204	0.399	437.227	002	19
20	258.486	0.996	318.295	0.998	378.203	1.000	438. 229	1.001	20
21	259.482		319.293	- 998	379.203	0.999	439.230	1.002	21
22	260.478	996 996	320.291	997	380.202	1.000	440.232	002	22
23	261.474	996	321.288	998	381. 202	$\stackrel{1}{0.999}$	441.234	001	23
24	262.470	997	322.286	998	382.201	1.000	42.235	002	24
25	263.467		323.284		383.201		443.237		25
26	264.463	9996	324. 281	998	384. 200	1. 000	444. 239	002	26
27	265.459	996	325.279	998	385.200	1.000	445.241	001	27
28	266.455	996	326.277	998	386.200	-0.999	446.242	002	28
29	267.451	997	327.275	998	387.199	0.999	447.244	002	29
30	268.448		328.273	0.997	388.198	1.000	448.246	1.002	30
31	269.444	$\begin{array}{r}0.996 \\ \hline 996\end{array}$	329.270	$\begin{array}{r}0.997 \\ \hline 998\end{array}$	389.198	1.000	449.248	1.002	31
32	270.440	${ }_{997} 99$	330.268	998	390.198	000	450.250	002	32
33	271.437	${ }_{996}^{997}$	331.266	998	391.198	000	451.252	002	33
34	272.433	${ }_{997}$	332.264	998	392.198	000	452.254	002	34
35	273.430		333.262		393.198		453.256		35
36	274. 426	${ }_{997}^{996}$	334.260		394. 198	000	454.258	002	36
37	275.423	${ }_{996}^{997}$	335.258	998 998	395. 198	000	455.260	002	37
38	276.419	997 997	336. 256	998	396. 198	000	456.262	002	38
39	277.416	996	337.254	999	397.198	000	457.264	003	39
40	278.412		338.253	0.998	398.198	1.000	458.267	1.002	40
41	279.409	$\begin{array}{r}0.997 \\ \hline 97\end{array}$	339.251	0.998 998	399.198	1.000	459.269	1.003	41
42	280.406	996	340.249	998	400.198	000	460.272	002	43
43	281.402	997	341. 247	998	401.198	000	461.274	003	43
44	282.389	997	342.245	999	402.198	000	462.277	002	4
45	283.396		343.244	998	403.198	001	463.279	003	45
46	284.392	997	344.242	998	404. 199	000	464.282	002	46
47	285.389	997	34.5 .240	999	405.199	000	465. 284	003	47
48	286.386	997	346.239	998	406.199	001	466.287	002	48
43	287.383	997	347.237	999	407.200	000	467.289	003	49
50	288.380		348.236		408. 200		468.292	1.003	50
51	289.376	0.996 997	345.234	0.998 999	409.201	1.000	469.295	1.002	51
62	290.373	997	350.233	998	410.201	001	470.297	003	52
53	291.370	997	351.231	999	411.202	000	471. 300	003	53
54	292.367	996	352.230	998	412.202	001	472.303	003	54
65	293.363		353.228		413.203	000	473.306	003	55
56	294.360	997	354.227	999	414.203	001	474.309	003	56
57	295.357	997	355.226	998	415.204	001	475.312	002	57
58	296.354	997	356.224	999	416.205	001	476.314	003	58
59	297.351	0.997	357.223	0. 999	417.206	1.000	477.317	1.004	69
60	298.348		358.222		418.206		478.321		60

MERCATOR PROJECTION TABLE-Continued.
[Meridional distances for the spheroid. Compression $\frac{1}{294}$.]

$\begin{aligned} & \text { Min- } \\ & \text { utes. } \end{aligned}$	8°		9°		10°		11°		$\begin{aligned} & \text { Min- } \\ & \text { utes. } \end{aligned}$
	Meridional distance.	Difference	Merldional distance.	Difference.	Meridional distance.	Difference.	Meridional distance.	Difierence.	
0	478.321	1.003	538. 585		599.019	1.009	659.641	1. 012	0
1	479.324	1.003	539.591	1.006 006	600.028	1.009	660.653 661.665	1.012	2
2 3	480.327 481.330	003	540.597 541.603	006	601.037 602046	009	661. 665 662.678	013	3
3	481. 330	003	541.603	006	${ }_{602.046}^{603}$	009	662.678 663.690	012	3
4	482.333	004	542. 609	006	603.054	009	663.690	012	4
5	483.337	003	543.615	006	604.063	009	${ }^{664.702}$	013	5
${ }^{6}$	484. 340	003	544.621	006	605.072	009	${ }_{6}^{665.715}$	012	${ }_{7}$
7	485. 343	004	545.627	006	${ }_{607}^{606.081}$	010	${ }_{666.727}^{668}$	013	8
8	486.347 487	003	546.633	006	607.091 608.100	009	667.740 668.752	012	8
9	487.350	004	547.639	007		009	668.752	013	
10	488. 354		548.646	1. 006	609.109	1. 009	669.765	1.013	10
11	489. 357	1. 004	549.652	1.006	610.118	${ }^{1} 010$	670.778	${ }^{1} 012$	11
12	490. 361	004	550.658	006	611. 128	009	671.790	013	12
13	491.365	004	551.664	007	612.137	009	${ }^{672.803}$	013	13
14	492.369	003	552. 671	006	613.146	010	673, 816	013	
15	493.372	004	553.677	007	614. 156	010	674. 829	013	15
16	494. 376	004	554.684	006	615.166	009	${ }_{675.842} 6$	013	16
17	495. 380	004	555.690	007	616.175	010	676. 855 677.868	013	17
18	496.384	004	556. 697	006	617.185 618.195	010	677.868 678.881	013	18
19	497.388	004	557.703	007		009	678.881	013	
20	498.392	1.004	558.710		619.204	1.010	679.894	1.013	20
21	499. 396	1.004	559.717	1.007	620. 214	${ }^{0} 010$	680. 907	${ }^{0} 013$	21
22	500.400	004	560.724	007	621.224	010	681. 920	014	$\stackrel{22}{23}$
23	501.404	004	561.731	006	622. 234	010	${ }_{683}^{682} 934$	013	83
24	502.408	004	562.737	007	623.244	010	83. 947	014	24
25	503.412	004	563. 744	007	624.254	010	684. 961	013	25
26	504.416	004	564.751	007	625. 264	011	685.974 686.988	014	$\stackrel{26}{27}$
27	505.420 506.424	004	565.758 566.766	008	626.275 627285	010	686. 988 688.002	014	27
28	506. 424	005	566.766 567.773	007	627.285 628.295	010	688.002 689.015	013	${ }_{29}^{28}$
29	429	004		007		010		014	
30	508.433	1.004	568.780	1.007	629.305	1. 011	690.029	1.014	30
31	509.437	1.005	569.787	- 008	630.316	1.010	691.043 692.057	${ }^{0} 014$	31
32	510.442	004	570.795	007	631. 326	011	${ }_{692}^{692.057}$	014	32
33	511.446	005	571.802	007	632.337	010	693.071	014	33
34	512.451	004	572.809	008	633.347	011		014	
35	513.455	005	573.817		634. 358	011	695.099	014	35
36	514. 460	005	574.824	008	635. 369	010	696.113	015	${ }_{34}^{36}$
37	515.465	004	575.832	007	636.379	011	697. 128	014	37
38	516.469	005	576. 839	008	637.390	011	698. 142	014	38 39
39	517.474	005	577.847	008	638.401	011	699.156	015	39
40	518.479	1.005	578.855		639.412	1. 011		1.014	
41	519.484	1.005	579.862	1.008	640.423	1.011	701.185 702200	${ }^{1} 015$	41 42
42	520. 489	005	580.870 581.878	008	641.434 642.445	011	702.200 703.215	015	42 43
43	521.494	005	581.878 582.886	008	642.445 643.456	011	703.215 704.229	014	43 4
44	522.499	005	582.886	008	643.456	011		015	
45	523. 504	005	583.894		644.467	011	705.244	015	45
46	524. 509	005	584. 902	008	${ }_{646}^{645.478}$	011	706.259 707.274	015	46
47	525. 514	005	585.910 586.918	008	646.489 647 500	011	708.284 7089	015	
48	526.519	006	586.918	008	647.500	012	708. 289 709.304	015	
49	527.525	005	587.926	008	648.512	011		015	
50	528.530		588.934		649.523	1.012	710.319	1.015	50
51	529.535	1.005	589.942	${ }_{0} 009$	650.535	011	711.334 712	015	51
52	530.540	006	590.951	008	651.546	012	712.349	015	
53	531.546	005	591.959	009	652.558 653.570	012	713.364 714.379	015	${ }_{54}^{53}$
54	532.551	006	592.968	008	653.570	011	714.379	016	5
55	533.557	006	593.976	009	654.581	012	715.395	015	
56	534. 563	005	594.985	008	655.593	012	716.410	015	56 57
57	${ }_{535.568}^{574}$	006	595. 993 597.002	009	656.605 657.617	012	717.425 718.441	016	58
58	536.574	006	597.002 598.010	008	657.617 658.629	012	718.441 719.457	016	59
59 60	537.580 538.585	1. 005	598.010 599.019	1. 009	658.629 659.641	1.012	719.457 720.472	1.015	60

MERCATOR PROJECTION TABLE--Continued.
[Meridional distances for the spheroid. Compression $\frac{1}{294} \cdot$]

Min-	12°		13°		14°		15°		Minutes.
	Meridional distance.	Difference.							
	,	,		,	,	,	'	,	
0	720.472		781. 532	1. 020	842.842 843666	1. 024	904. 422	1. 029	1
1	721. 488	1. 016	782. 552	1. 020	843.866	1.024	905.451	1.029	2
2	722. 504	016	783.572	020	844.890	025	906. 480	029	2
3	723. 520	016	784. 592	020	845.915	024	907. 509	029	3
4	724.535	016	785.612	020	846.939	024	908. 538	029	4
5	725.551	016	786.632	020	847.963	025	909.567	029	5
6	726.567	016	787. 652	020	848. 988	024	910.596	030	6
7	727.584	016	788.672	020	850.012	025	911. 626	029	8
8	728.600	016	789.692	020	851.037	024	912.055	029	8
9	729.616	016	790.712	021	852.061	025	913.684	030	9
10	730.632	1.017	791. 733	1.020	853. 086		914.714	1. 029	10
11	731.649	1. 017	792. 753	1. 020	854.111	1.025	915.743	1.030	11
12	732.665	017	793.773	021	855. 136	025	916.773	030	12
13	733. 682	016	794. 794	020	856.161	025	917.803	029	13
14	734.698	017	795. 814	021	857.186	025	918.832	030	14
15	735.715	017	796. 835	021	858.211	025	919. 862	030	15
16	736.732	017	797.856	021	859.236	026	920.892	030	16
17	737.749	016	798.877	021	860.262	025	921.922	031	17
18	738.765	017	799.898	021	861.287	025	922. 953	030	18
19	739.782	017	800.919	021	862.312	025	923.983	030	19
20	740.799	1.017	801.940	1. 021	863. 337	1.026	925.013	1.031	20
21	741.816	1.017	802. 961	1. 021	864. 363	1. 026	926.044	1.031 030	21
22	742.833	017	803.982	021	865.389	026	927.074	031	22
23	743.850	017	805.003	021	866.415	025	928.105	030	23
24	744.868	017	806.025	021	867.440	026	929.135	031	24
25	745. 885		807.046		868.466	026	930.166		25
26	746.902	017	808.068	022	869.492	${ }_{0} 026$	931.197	031	26
27	747.919	017	809.089	021	870.518	026	932. 228	031	27
28	748.937	018	810.111	022	871.544	027	933.259	031	28
29	749.954		811.133	022	872.571	026	934.290	031	29
30	750.972		812.155	1. 022	873.597	1.026	935.321	1.031	30
31	751.990	1.018	813.177	1.022	874. 623	1.026 026	936.352	1.031	31
32	753.007	017	814.199	022	875.649	027	937. 384	031	32
33	754. 025	018	815.221	022	876. 676	026	938. 415	032	33
34	755.043	018	816. 243	022	877.702	027	939.447	031	34
35	756.061	018	817.265	022	878.729	027	940. 478	032	35
36	757.079	018	818.287	022	879.756	026	941. 510	032	36
37	758.097	018	819.309	023	880.782	027	942. 542	031	37
38	759.115	018 019	820.332	022	881. 809	027	943. 573	032	38
39	760.134	018	821.354	023	882.836	027	944.605	032	39
40	761.152	01	822.377	1. 022	883.863	1. 028	945.637	1. 032	40
41	762. 170	018	823.399	1.023	884.891	1. 027	946. 669	033	41
42	763.189	018	824.422	022	885.918	028	947. 702	032	42
43	764. 207	019	825.444	023	886.946 887.973	027	948.734	032	43
44	765. 226	018	826.467	023	887.973	028	949.766	033	44
45	766. 244		827.490	023	889.001	027	950.799	033	45
46	767. 263	019	828.513	023	890.028	028	951.832	032	46
47	768. 282	019	829.536	023	891.056	028	952.864	032	48
48	769. 301	019	830.559	023	892.084	028	953.896 954.929	033	48
49	770.320	019	831.582	023	893.112	028	954.929	033	49
50	771.339		832.605		894. 140	1. 028	955. 962	1.033	50
51	772. 358	1. 019	833.629	1.024	895. 168	1.028 028	956. 995	${ }^{1} 033$	51
52	773.377	019	834. 652	024	896.196	028	958.028	033	52
53	774. 396	019	835.676	023	897. 224	028	959.061	034	53
54	775.415	019	836.699	024	898.252	028	960.095	033	54
55	776. 434	020	837.723	024	899.280	028	961. 128	033	55
56	777. 454	019	838.747	024	900.308	029	962. 161	034	56
57	778.473	019	839.771	024	901. 337	028	963. 195	033	57
58	779.493	020	840.794	023	902. 365	029	964. 228	034	58
59	780.513	1. 019	841.818	1. 024	903. 394	1. 028	965. 262	1. 034	59
60	781.532	1.019	842.842	1. 024	904. 422	1.028	966.296		60

MERCATOR PROJECTION TABLE-Continued.
[Meridional distances for the spheroid. Compression $\frac{1}{294}$.]

Min-	16°		17°		18°		19°		$\xrightarrow{\text { Min- }}$
	Meridional distance.	Difference.	Meridional distance.	Difference.	Maridional distance.	Difference.	Meridional distance.	Difference	
		,					1153893		
0	966.296	1.034	1028.483	1.039	1091.007	1.045	1153.893	1.052	0
1	${ }^{967.330}$	${ }^{1} 034$	29.522	1.039	92.052 93.098	046	34. 5594 59	051	2
$\stackrel{2}{3}$	968.364 969.398	034	30.561 31.600	039	${ }_{94.143}$	045	${ }_{57.046}$	052	3
3 4 4	969.398 970.432	034	$3{ }^{31.640}$	040	95.188	045	58.097	051	4
	971.466	034	33.680	039	96.234		59.149	052	5
6	972.500	034	34.719	039 040	97.279	046	60. 201	052	6
7	973.534	034	35.759	040	98.325	045	61. 253	052	8
8	974.568	035	36.799	040	1099.370	046	62.305 63.357	052	8
9	975.603	035	37.839	040	1100.416	046		052	${ }^{\mathbf{9}}$
10	976.638	1.035	1038.879		1101.462	1.046	1164.411	1.052	11
11	977.673	1.034	39.920	1.041 040	02.508	. 046	65.461 66.514	053	112
12	978.707	035	40.960	040	03.554 04.601	047	66.514 67.566	052	13
13	979.742	035	42.000 43.041	041	04.647	046	67.560 68.619	053	14
14	980.777	035		041		046		053	
15	981.812	035	44.082	040	06.693 07.740	047	69.672 70.724	052	16
16	982.847 983.882	035	45.122 46.163	041	07.787 08.780	047 046	71.777	053 053	17
18	983.882 984.918	036	46.120 47.204	041	09. 833	046 047	72.830	053 054	18
19	985.953	035	48.245	041	10.880	047	73.884	053	19
20	986.988		1049.286	1.041	1111.927	1.047	1174.939	1.053	20
21	988.024	1.036 036	50.327	${ }_{0} 041$	12.974	047	75.990 77.044	054	22
22	989.060	035	51.368	041	14.021	048	78.044 78.097	053	${ }_{23}^{22}$
23	990.095	036	52. 409	042	15.069 16.116	047	78.097 79.151	054	24
24	991.131	036		042	16.116	047		054	
25	992.167	036	54.493	041	17.163	048	80.205 81.259	054	${ }_{26}^{25}$
${ }_{27}^{26}$	${ }_{994}^{993.203}$	036	55.534 56.576	042	18.211 19.259	048	82.313	054	${ }_{27}^{26}$
27	${ }_{9954}^{994.239}$	037	56.576 57.618	042	19.259	048	82.313 83.367	054	28
$\stackrel{28}{29}$	995.276 996.312	036	57.618 58.660	042	21.354	047	84.421		29
29	996.312	036	58.660	042	21.354 1122.402		1185.478		30
30	997.348	1. 037	1059.702 60.744 6	1.042	1122.402	1.049	86.530	1. 054	31
31	${ }_{999}^{998.385}$	036	61.744 61.786	042	24.499	048	87.585	055	32
33	1000.458	037	62.828	042	25.547	048	88.640	055	33
34	01.495	037	63.870	042	26.595	049	89.695	055	34
35	02.532		64.913		27.644	049	90.750	055	35
36	03.569	${ }_{037}$	65.956	042	28.693	048	${ }_{92} 91.805$	055	36 37
37	04. 606	037	66.998	043	29.741 30.790	049	${ }_{93} 92.815$	055	38
38	05.643	037	68.041 69.084	043	30.790 31.839	049	$\stackrel{94.971}{ }$	056	39
39	06.	038		043		049		055	
40	1007.718	1.037	1070.127	1.043	1132.888	1.049	1196.028 97.082	1.056	41
41	08.755	1.038	71.170 72.213	043	33.937 34.987	050		055	
42	09.793	037		044	34.987 36.036	049	98. 1199.193	056	43
43 44	10.830 11.878	038	73.257 74.300	043	36.036 37.086	050	${ }_{1200.249}$	056 056	44
44	11.878	038	74.300	043		049			45
45	12.906		75.343 76.387	044		050	01.305	056	46
46	13. 943	038	76.387 77.431	044	39.185 40.235	050	03.417	056	47
47 48	14.981 16.019	038	77.431 78.475	044	41.285 41	050 050	04. 474		48
48 49	16.019 17.058	${ }_{0}^{039}$	79.518	043	42.335	050 050	05.530	${ }_{0}^{057}$	49
50	1018.096		1080.562		1143.385	1. 050	1206.589	1.056	50
51	19. 134	1.038 038	81.607	1.044	44.435	. 050	07.643 08.700	-057	51
52	20.172	${ }_{0} 038$	82.651	044	45.485 46.536	051	08.700 09.757	057	53
53	21. 210	039	83.695 84.739	044	46.536 47.586	050	09.757 10.814	057	54
54	22.249	039	84.739	045		051		057	
55	23.288		85.784	044	${ }_{49}^{48.637}$	051	11.871	058	$\stackrel{55}{56}$
56	24.327	039	86.828 87873	045	49.688 50.738	050	13.986	057	57
58	25.366	039	87.873 88.918	045	50.738 51.789	051	15.044	058	58
58	26.405	039	88.918 89.963	045	51.789 52.840	051 1051	16.019	$\begin{array}{r}057 \\ 1.058 \\ \hline\end{array}$	59
${ }_{60}^{59}$	27.444 1028.483	1.039	89.963 1091.007	1.044	1153.891	1. 051	1217.159	1.058	60

mercator projection table--Continued.
[Meridional distances for the spheroid. Compression $\frac{1}{294}{ }^{\circ}$]

$\begin{aligned} & \text { Min- } \\ & \text { utes. } \end{aligned}$	20°		21°		22°		$23{ }^{\circ}$		Minutes.
	Meridional distance.	Difference.							
	1217.161	'	1280. 835		1344.945	1.072	1409.513	1.080	0
0	1217. 161	1. 058	1280.835 81.900	1. 065	1344.945 46.017	1. 072	1409.513 10.593	1. 080	1
1	18. 217	- 058	81.900	065	47.089	072	11.673	080	2
2	19. 275	058	82.965	065	48.162	073	12. 754	081	3
3	20. 333	059	84.030 85.095	065	48.162 49.235	073	13.834	080	4
4	21. 392	058	85.095	066	49.250	072	13.834	081	5
5	22. 450	059	86.161	065	50. 307	073	14.915	081	5
6	23. 509	058	87.226	066	51.380	073	15.996 17.077	081	7
7	24. 567	059	88.292	065	52.453 53.526	073	17.077 18.158	081	8
8	25. 626	059	89.357 90.423	066	53.520 54.600	074	19.239	081	9
9	26.685	059		066		073		082	10
10	1227. 744	1. 059	1291. 489	1. 066	1355.673 56.747	1.074	1420.321 21.402	1. 081	11
11	28.803	1.059	92.555	- 066	56.747 57.820	073	21. 484	082	12
12	29.862	059	93.621	067	57.820 58.894	074	23. 566	082	13
13	30.921	059	94.688	066	58.894 59.968	074	24.647	081	14
14	31.980	060	95.754	067	59.968	074	24.647	082	
15	33. 040	059	96.821	066	61.042	074	25.729	083	15
16	34. 099	060	97.887	057	62. 116	075	26. 812	082	16
17	35. 159	059	1298. 954	067	63. 191	074	27.894 28.976	082	18
18	36. 218	060	1300.021	067	64.265 65.340	075	30. 059	083	19
19	37.278	060	01.088	067		075	30.058	083	1.
20	1238.340	1.061	1302. 155	1.068	1366. 415	1.074	1431. 142	1.083	20
21	39.399	1.061 060	03.223	1.068	67.489	1.075	32.225	083	21
22	40.459	060	04. 290	068	68.564	076	33. 308	083	23
23	41. 519	061	05.358	067	69.640	075	34. 374	083	24
24	42. 580	060	06.425	068	70.715	075	35. 474	083	84
25	43. 640	061	07.493	068	71.790	076	36. 557	084	25 26
26	44. 701	061	08.561	068	72. 866	076	37.641	084	27
27	45.762	061	09. 629	068	73.942	075	38.725 39.809	084	28
28	46. 823	061	10.697 11.765	068	76.093	076	40.893	084	29
29	47.884	061	11.765	069	76.093	076	40.83	084	
30	1248.945	1. 061	1312.834	1. 068	1377. 169	1. 076	1441.977 43.061	1. 084	31
31	50.006	1.061	13.902	1. 069	78.245	077	43.061	085	31
32	51.068	061	14.971	069	79.322 80.398	076	44. 146	084	33
33	52.129	062	16.040	069	80.398 81	077	45.230 46.315	085	34
34	53.191	061	17. 109	069	81.475	076	40.315	085	
35	54.252		18. 178		82. 551	077	47. 400	085	35
36	55. 314	062	19. 247	069	83. 628	077	48. 485	085	36 37
37	56.376	062	20. 316	070	84.705	077	49. 570	085	38
38	57.438	063	21. 386	069	85.782 86.860	078	50.655 51.741	086	39
39	58.501	062	22.455	070	86.860	077	51.741	085	35
40	1259. 563		1323. 525	1.070	1387.937	1. 077	1452.826	1. 086	40
41	60.626	1.063	24. 595	1.070	89.014	1.078	53.912	086	42
42	61. 688	063	25.665	070	90.092	078	54. 598	086	43
43	62. 751	063	26. 735	070	91.170 92.248	078	57.170	086 086	44
44	63.814	063	27.805	070	92.248	078	57.170	086	
45	64.877	063	28.875	070	93. 326	078	58. 2546	087	45 46
46	65.940	063	29.945	071	94.404 95.482	078	60. 429	086	47
47	67.003	064	31.016 32.086	070	95.482 96.561	079	60.416 61.516	087	48
48	68.067	063	32.086 33.157	071	96.561 97.639	078	62.603	087	49
49	69.130	064	33. 157	071	97.659 1398.718	079	1463.690	087	50
50	1270. 192	1. 063	1334. 228	1.071	1398.718 1399.797	1. 079	1463.690 64.776	1. 088	51
51	71. 257	1. 064	35. 299	071	1399.797 1400.876	079	65.864	088	52
52	72.321	064	36. 370	072	1400.876 01.955	079	66.951	087	53
53	73. 385	064	37. 442	071	01.955 03.034	079	68. 038	087	54
54	74. 449	064	38.513	072	03.034	080	68.038	088	5
55	75.513		39.585	072	04. 114	079	69. 126	088	55
56	76.577	064	40. 657	071	05.193	080	70.214	088	56
57	77.642	064	41. 728	072	06. 273	080	72. 390	088	58
58	78. 706	065	42. 800	072	07. 353 08.433	. 080	73. 478	$\begin{array}{r}088 \\ \hline\end{array}$	59
59	79.771	1. 064	43.872 1344.945	1. 073	08. 1409.513	1. 080	1474.566	1.088	60

MERCATOR PROJECTION TABLE-Continued.
[Meridional distances for the spheroid. Compression $\frac{1}{294}$.]

MERCATOR PROJECTION TABLE-Continued.
[Meridional distances for the spheroid. Compression ${ }_{29} \frac{1}{4} 4^{\circ}$]

Minutes.	28°		29°		30°		31°		Minutes.
	Meridional distance.	Difference.							
	1740.206	' 12	1808. 122	' 1.138	1876.706	'	1945.992		0
0	1740.206 41.333	1.127	1808.122 09.260	1.138	187.855 77.85	1. 149	1945.992 47.153	1.161	1
1	41.333 42.460	127	09.260 10.398	138	79.004	149	48.314	161	1
2	42.460 43.587	127	11.535	137	80.153	149	49.476	162	3
3 4	43.814 44.714	127	12.673	138 139	81.303	150	50.637	161	4
5	45.841	128	13.812	138	82.453	150	51.799	162	5
6	46.969	128	14.950	139	83.603	150	52.961	162	6
7	48.096	128	16.089	139	84.753	150	54.123	162	7
8	49.224	128	17. 228	139	85.903	150	55.285	163	8
9	50.352	129	18.367	139	87.053	151	56.448	163	9
10	1751.481	1. 128	1819.506	1.139	1888. 204	1.151	1957.611	1. 163	10
11	52. 609	1. 129	20.645	1.140	89, 355	1. 151	58.774	1.163 163	11
12	53.738	128	21.785	140	90.506	151	59.937	163	12
13	54.866	129	22.924	140	91.657	152	61.100	163	13
14	55.995	129	24.064	140	92.809	151	62.263	164	14
15	57.124	130	25.204	141	93.960	152	63.427	164	15
16	58.254	129	26.345	140	95.112	152	64.591	165	16
17	59.383	130	27.485	141	96.264	152	65.756	164	17
18	60.513	130	28.626	141	97.416	153	66.920	165	18
19	61.643	130	29.767	141	98.569	152	68.085	164	19
20	1762.773	1. 130	1830.908	1. 141	1899.721	1. 153	1969.249	1.165	20
21	63.903	1. 130	32.049	1. 141	1900. 874	1. 153	70.414	1. 166	21
22	65.033	131	33.190	142	02.027	154	71.580	165	22
23	66.164	131	34. 332	142	03.181	153	72.745	166	23
24	67.295	131	35.474	142	04.334	154	73.911	166	24
25	68.426	131	36.616	142	05.488	154	75.077	166	25
26	69.557	131	37.758	142	06.642	154	76.243	166	26
27	70.688	132	38.900	143	07.796	154	77.409	166	27
28	71. 820	131	40.043	143	08.950	155	78.575	167	28
29	72.951	132	41.186	143	10. 105	154.	79.742	167	29
30	1774.083		1842.329	1. 143	1911.259	1.155	1980.909	1.167	30
31	75.215	1.132 132	43.472	1. 143	12. 414	1. 155	82.076	1. 168	31
32	76.347	132	44.615	144	13.569	155	83.244	167	32
33	77.479	133	45.759	143	14.724	156	84.411	168	33
34	78.612	133	46.902	144	15.880	155	85.579	168	34
35	79.745	132	48.046	144	17.035	156	86.747	168	35
36	80.877	132	49.190	145	18. 191	156	87.915	169	36
37	82.011	134	50.335	144	19.347	156	89.084	168	37
38	83.144	133	51.479	145	20.503	157	90.252	169	38
39	84.277	134	52.624	145	21.660	156	91.421	169	39
40	1785.411	1. 134	1853.769	1. 145	1922.816	1. 157	1992.590	1. 169	40
41	86.545	1. 134	54.914	1. 145	23.973	1. 157	93.759	1.169 170	41
42	87.679	134	56.059	145	25. 130	157	94.929	169	42
43	88.813	135	57.204	146	26.287	158	96.098	170	43
44	89.948	134	58.350	146	27.445	158	97.268	170	44
45	91.082	135	59.496	146	28.603	157	98.438	171	45
46	92.217	135	60.642	146	29.760	158	1999.609	170	46
47	93.352	135	61.788	146	30.918	159	2000.779	171	47
48	94.487	135	62.934	147	32.077	158	01.950	171	48
49	95.622	136	64.081	147	33.235	159	03.121	171	49
50	1796.758	1. 135	1865.228	1. 147	1934. 394	1. 159	2004. 292	1.171	50
51	97.893	1.135	66.375	1. 147	35.553	1.159 159	05.463	1.171	51
52	1799.029	136	67.522	147	36.712	159	06.635	172	52
53	1800. 165	136	68. 669	148	37.871	160	07.807	172	53
54	01.301	137	69.817	147	39.031	160	08.979	172	54
55	02.438	136	70.964	148	40.191	160	10. 151	172	55
56	03.574	137	72. 112	148	41.351	160	11.323	173	56
57	04.711	137	73.260	148	42.511	160	12. 496	173	57
58	05.848	137	74. 409	148	43.671	161	13.669	173	58
59	06.985	1.137	75.557	1. 149	44.832 1945992	1. 160	14.842	1.173	59
60	1808. 122		1876.706	1.149	1945.992	1.160	2016.015	1.173	60

MERCATOR PROJECTION TABLE-Continued.
[Meridional distances for the spheroid. Compression $2^{194} \cdot$.]

$\begin{aligned} & \text { Min- } \\ & \text { utes. } \end{aligned}$	32°		33°		34°		35°		Minutes.
	Meridional distanco.	Difference-	Meridional distance.	Difference.	Meridional distance.	Difference.	Meridional distance.	Difference.	
	- \quad,		''			,	2920.898	,	
0	2016.015	1. 174	2086.814	1.187	2158. 428	1.201	2230.898 32.113	1. 215	1
1	17.189	1. 174	88.001	1. 187	59.629	1. 201	32.113 33.329	216	1
2	18.363	174	89.188	188	60.830	201	34.545	216	3
3	19.537	174	90.376	187	62.031 63.232	201	34.045 35.761	216	4
4	20.711	174	91.563	188	63.232	202	35.761	216	4
5	21.885	175	92.751	188	64.434	202	36.977 38.194	217	5
6	23.060	175	93.939	188	65.636	202	38.194	217	${ }_{7}$
7	24.235	175	95.127	188	66.838	203	39.411	217	8
8	25.410	175	96.315	189	68.041	202	40.628	217	8
9	26.585	176	97.504	189	69.243	203	41.845	218	9
10	2027.761		2098.693	1.189	2170.446	1. 203	2243.063	1.218	10
11	28.936	1.175 176	2099.882	1. 189	71.649	1. 204	44. 281	- 218	11
12	30.112	176	2101.071	189	72.853	203	45.499	218	12
13	31. 288	176	02.260	190	74.056	204	46.717	219	13
14	32.464	177	03.450	190	75.260	204	47.936	219	14
15	33.641		04.640	190	76.464	204	49. 155	219	15
16	34.818	177	05.830	191	77.668	205	50.374	219	16
17	35.995	177	07.021	190	78.873	204	51.593	220	17
18	37. 172	177	08.211	191	80.077	205	52.813	220	18
19	38.349	178	09.402	191	81.282	206	54.033	220	19
20	2039.527	1.178	2110.593	1.192	2182.488	1. 205	2255.253	1.220	20
21	40.705	1.178 178	11.785	1. 192	83.693	1. 206	56.473	1. 220	21
22	41.883	178	12.976	192	84.899	206	57.693	221	22
23	43.061	178	14.168	192	86.105	206	58.914	221	23
24	44.239	179	15.360	192	87.311	207	60.135	222	24
25	45.418	179	16.552	193	88.518	206	61.357	221	25
26	46.597	179	17.745	192	89.724	207	62.578	222	26
27	47.776	179	18.937	193	90.931	207	63.800	222	27
28	48.955	179	20.130	193	92.138	208	65.022	223	28
29	50.134	180	21. 323	194	93.346	208	66.245	222	29
30	2051. 314	1.181	2122.517	1.194	2194.554	1. 208	2267.467	1. 223	30
31	52.495	1.181 180	23.711	1.194 193	95.762	1. 208	68.690	1. 223	31
32	53.675	181	24.904	194	96.970	208	69.913	224	32
33	54.856	180	26.098	194	98.178	208	71.137	224	33
34	56.036	181	27.293	194	2199.386	209	72.361	224	34
35	57.217	182	28.487	195	2200.595	209	73.585	224	35
36	58.399	181	29.682	195	01.804	210	74.809	224	36
37	59.580	182	30.877	195	03.014	209	76.033	225	37
38	60.762	182	32.072	196	04. 223	210	77.258	225	38
39	61.944	182	33.268	196	05.433	210	78.483	225	39
40	2063. 126	1.182	2134.464	1.196	2206.643		2279.708	1. 226	40
41	64.308	1.182 183	35. 660	1.196 196	07.854	1. 211	80.934	1. 222	41
42	65.491	183	36.856	196	09.065	211	82.159	226	42
43	66.674	183	38. 052	197	10.276	211	83.385	227	43
44	67.857	183	39.249	197	11.487	211	84.612	226	4
45	69.040	183	40.446	197	12. 698	212	85.838	227	45
46	70.223	184	41.643	198	13.910	212	87.065	227	46
47	71.407	184	42.841	197	15. 122	212	88.292	227	47
48	72.591	184	44.038	198	16.334	212	89.519	228	48
49	73.775	184	45.236	198	17.546	213	90.747	228	49
50	2074.959		2146.434	1.199	2218.759	1. 213	2291.975	1. 228	50
51	76.144	1. 184	47.633	1.199 198	19.972	1. 213	93.203	1. 228	51
52	77.328	184	48.831	199	21.185	213	94.431	229	52
53	78.513	185	50.030	199	22.398	213	95.660	229	53
54	79.698	186	51.229	199	23.611	214	96.889	229	54
55	80.884	185	52.428	1. 199	24.825	214	98. 118	229	55
56	82.069	186	53.627	1. 1.200	26.039	214	2299.347	230	56
57	83.255	186	54.827	1. 200	27.253	215	2300.577	230	57
58	84.441	187	56.027	200	28. 468	215	01.807	230	58
59	85.628	1.186	57.227 2158.428	1.201	29.683 2230.898	1.215	03.037 2304.267	1.230	59 60
60	2086.814		2158.428		2230.898		2304.267		60

MERCATOR PROJECTION TABLE-Continued.
[Meridional distances for the spheroid. Compression $\frac{1}{294}$]

$\begin{aligned} & \text { Min- } \\ & \text { utes. } \end{aligned}$	36°		37°		38°		39°		Min-utes.
	$\frac{\text { Meridional }}{\text { distance }}$	Difference.	Maridional ${ }_{\text {distance. }}$	Difference.	Meridional distance.	Difiereace.	Meridional distance.	Difference.	
	2304267						2530.238	1.282	
0 1	2304.267 05.498	1.231	2378.581 79.828	1. 247	2453.888 55.152	1. 264	2530.238 31.519	1.282	0
2	05.498 06.729	231	81.075	247	56.416	264	32.801	282	2
3	07.960	231	82.323	248	57.680	265	34. 083	283	3
4	09.192	232	83.570	248	58.945	265	35. 366	283	4
5	10.423	232	84.818	248	60.210	265	36.649	283	5
6	11.655	232	86.066	249	61.475	266	37.932	283	6
7	12.887	233	87.315	249	62.741	266	39.215	284	8
8	14.120	233	88.564	249	64.007	266	40.499 41.783	284	8
9	15. 353	233	89.813	249		266	41.783	285	9
10	2316.586	1. 233	2391.062	1.250	2466.539	1. 267	2543.068	1. 284	10
11	17. 819	1.234	92.312	1.250	67.806 69.073	267	44.352 45.637	285	11
12	19.053	234	93.562 94.812	250	69.073 70.340	267	45.637 46.922	285	12
13	20.287	234	94.812 96.062	250	70. 340 71.608	268	46.922 48.208	286	14
14	21.521	234	96.062	251	71.608	268	48.208	286	14
15	22.755	235	97.313	251	72.876	268	49,494	287	15
16	23.990	235	98.564	252	74. 144	269	50.781	286	16
17	25.225	235	2399.816	251	75. 413	268	52.067	287	17
18	26.460	235	2401.067	252	76.681	269	53.354	287	18
19	27.695	236	02. 319	252	77.950	270	54.641	288	19
20	2328.931	1. 236	2403.571	1. 253	2479. 220	1. 269	2555. 929	1. 287	20
21	30.167	1.236 237	04.824	1.252	80.489	1. 270	57.216	288	21
22	31. 404	236	06.076	253	81.759	271	58.504 59.793	289	23
23	32.640	237	07.329	253	83.030 84.300	270	${ }_{61}^{59.793}$	288	24
24	33.877	237	08.582	254	84.300	271	61.081	289	24
25	35.114	237	09.836	254	85.571	271	62.370	290	25
26	36. 351	238	11.090	254	86.842	272	63.660	289	26
27	37.589	238	12.344	254	88.114 89.385	271	64.949 66.239	290	27
28	38.827	238	13. 598	255	89.385 90.657	272	66.239	290	28
29	40.065	238	14.853	255		273	67.529	291	29
30	2341.303		2416.108	1.255	2491.930	1.272	2568.820	1.291	30
31	42. 542	1.239 239	17.363	1. 255	93.202	1. 273	70.111	1.291	31
32	43.781	239	18.618	256	94.475	273	71.402	292	32
33	45.020	240	19.874	256	95. 748	274	72.694	292	33
34	46.260	240	21.130	256	97.022	274	73.986	292	34
35	47.500	240	22. 386	257	98. 296	274	75. 278	292	35
36	48.740	240	23.643	257	2499.570	274	76.570	293	36
37	49.980	241	24.900	257	2500.844	275	77.863	293	37
38	51.221	241	26.157	258	02. 119	275	79.156 80.449	293	38
39	52.462	241	27.415	257	03.394	275	80.449	294	39
40	2353.703		2428.672	1. 258	2504. 669		2581.743		40
41	54.944	1. 241	29. 930	1. 258	05. 945	1.276 276	83.037	1. 294	41
42	56.185	242	31. 189	259	07.221	276	84.331	295	42
43	57.427	242	32.448	259	08.497	276	85.626	295	43
44	58.669	243	33.707	259	09.773	277	86.921	295	44
45	59.912		34. 966	259	11.050	277	88. 216	295	45
46	61.154	$\stackrel{243}{243}$	36. 225	260	12.327	277	89.511	296	46
47	62.397	244	37. 485	260	13.604	278	90.807	296	47
48	63.641	243	38.745	261	14.882	278	92.103 93.400	297	48
49	64.884	244	40.006	260	16.160	278	93.400	297	49
50	2366.128	1. 244	2441.266	1. 261	2517.438	1. 279	2594. 697	1. 297	50
51	67.372	1.244 244	42. 527	1. 261	18.717	1. 279	95.994	1. 298	51
52	68.616	245	43.788	262	19.996	279	97.292 98.590	298	62 53
53	69.861	245	45.050	261	21.275	279	98.590 2599.888	298	53
54	71. 106	245	46.311	262	22.554	280	2599.888	298	54
55	72.351		47.573		23.834		2601.186		55
56	73.597	245	48.836	262	25.114	281	02.485	1. 299	56
57	74.842	246	50.098	263	26.395	280	03.784	1. 300	57
58	76. 088	247	51.361	263	27.675	281	05.084	1. 299	58
59	77.335	1.246	52. 624	1. 264	28.956	1. 282	06.383	1.300	59
60	2378.581		2453.888		2530.238		2607.683		60

MERCATOR PROJECTION TABLE-Continued.
[Meridional distances for the spheroid. Compression $\frac{1}{294}$.]

Min-utes.	40°		41°		43°		43°		Min-utes.
	Meridional distance.	Difference.							
0	2607.683	1.301	2686. 280	1. 320	2766.089	1. 341	2847.171	1. 362	0
1	2607.984	1. 301	87.600	1. 320	67.430	1.341 341	48.533	1.362	2
2	10. 284	301	88. 920	321	68.771	341	51.260	364	3
3	11. 585	301	90.241	321	70. 112	342	51.260 52.623	363	4
4	12.886	302	91.562	322	71. 454	342	52.623	364	5
5	14.188	302	92.884	322	72. 796	342	53.987 55.352	365	6
6	15. 490	302	94. 206	322	74. 138	343	56. 716	364	7
7	16. 792	303	95.528	322	76. 824	343	58.081	365	8
8	18. 095	303	96.850 98.173	323	78. 168	344	59.447	366 366	9
9	19.398	303	98. 173	323	78.168 2779.512	344	2860.813	366	10
10	2620.701	1. 303	2699. 496	1. 324	2779.512 80.856	1. 344	2860.813 62.179	1. 366	11
11	22. 004	1. 304	2700.820	323	80.8201 82.201	345	63.546	367	12
12	23.308	304	02. 143	324	82. 2046	345	64.913	367 367	13
13	24.612	305	03. 467	325	83.546 84.891	345	66. 280	367	14
14	25.917	305	04.792	325	84.851	346		368	15
15	27. 222	305	06.117	325	86. 237	346	67.648 69.016	368	16
16	28. 527	306	07.442	325	87.583	347	70.384	368	17
17	29.833	306	08.767	326	80.937	347	71.753	369 370	18
18	31. 139	306	10.093 11.419	326	91.624	347	73. 123	370	19
19	32. 445	306		327		347	2874	369	20
20	2633. 751	1. 307	2712. 746	1. 327	2792.971	1. 348	75.862	1. 370	21
21	35.058	1. 307	14.073	1. 327	94.319	348	77.233	371	22
22	36. 365	307	15.400	327	97.016	349	78. 604	371	23
23	37.672	308	16.727 18.055	328	97.016 98.365	349	79.975	371	24
24	38.980	308	18.055	328		349	81.347	372	25
25	40.288	309	19.383	329	2799.714 2801.064	350	82.719	372 372	26
26	41.597	309	20.712	329	2801. 024	350	84.091	372	27
27	42. 906	309	22. 041	329	02. 764	350	85.464	373 373	28
28	44. 215	309	23.370	330	05. 115	351	86.837	373 374	29
29	45.524	310	24.700	330		351	2888.211	374	30
30	2646. 834	1. 310	2726. 030	1.330	2806.466 07	1. 352	2888.211 89.585	1. 374	31
31	48. 144	1.310 310	27. 360	1.330	07.818	352	90.959	374	32
32	49. 454	311	28. 690	331	09. 170	352	92. 333	374	33
33	50.765	311	30.021	331	1.5875	353	93. 708	375	34
34	52.076	312	31.352	332	11.875	353	93. 708	376	35
35	53.388	312	32.684	332	13. 228	353	95.084 96.460	376	35 36
36	54.700	312	34. 016	332	14.581	354	97. 836	376	37
37	56.012	312	35.348	333	17. 289	354	2899.212	376	38
38	57. 324	313	36.681 38.014	333	18. 643	354 355	2900.589	377 377	39
39	58.637	313	38.014	333	18.6	355	2901 966	377	40
40	2659.950	1. 313	2739. 347	1. 334	2819.998 21.353	1. 355	2901.966 03.344	1. 378	41
41	61. 263	1.314	40.681	334	21. 353	356	04. 722	378	42
42	62.577	314	42.015	335	24. 065	356	06.100	378 379	43
43	63.891	314	43.350	334	24.065 25.421	356	07. 479	379 379	44
44	65.205	315	44.684	335	25.421	356		379	45
45	66.520	315	46.019	336	26.777 28.134	357	08.858 10.238	380	46
46	67.835	315	47.355	336	28. 134	358	11. 618	380	47
47	69.150	316	48.691	336	29.492 30.850	358	12.998	380	48
48	70. 466	316	50.027 51.363	336	32. 208	358 358	14.379	381	49
49	71. 782	317	51.363	337	32. 208	358	2915.760	381	50
50	2673. 099	1. 316	2752. 700	1.338	2833.566 34.925	1. 359	2917. 142	1. 382	51
51	74. 415	1. 317	54.038	337	34. 325 36. 284	359	18.524	382	52
52	75. 732	317	55.375	338	37. 643	359	19.906	382	53
63	77.049	318	56.713 58.052	339	39.003	360 361	21. 289	383 383	54
54	78.367	318	58.052	338		361	22.672	383	55
55	79.685	318	59. 390	339	40.364 41.724	360	22.672 24.056	384	56
56	81.003	319	60.729	340	43.085	361	25.440	384	57
57	82. 322	319	62.069 63.409	340	44. 447	362	26.824	384 385	58
58	83.641	319	63. 409	340	44. 809	$\begin{array}{r}362 \\ \hline\end{array}$	28. 209	1. 385	59
59	84.960	1. 320	64.749 2766.089	1. 340	2847.171	1. 362	2929.594	1.385	60

MERCATOR PROJECTION TABLE-Continued.
[Meridional distances for the spheroid. Compression $\frac{1}{294}{ }^{-}$]

$\begin{aligned} & \text { Min- } \\ & \text { utes. } \end{aligned}$	44°		45°		46°		47°		$\begin{aligned} & \text { Min- } \\ & \text { utes. } \end{aligned}$
	$\begin{aligned} & \text { Meridional } \\ & \text { distanco. } \end{aligned}$	Difference.	Meridional distance.	Difference.	Meridional distance.	Differenco.	Meridional distance.	Difference.	
0	2929.594	1.385	3013. 427	1.410	3098.747	1435	3185.634	1462	0
1	30.979	1. 385	14.837	1.410 410	3100.182	1.435	87.096	1. 462	1
2	32.365	386	16.247	410	01.617	435	88. 558	462	2
3	33. 751	386	17. 657	410	03.053	436	90.021	463	3
4	35.138	387	19.068	411	04.490	437	91. 484	463	4
5	36.525		20.479	412	05.927	437	92.948	464	5
6	37.913	388	21. 891	412	07.364	438	94.412	464	6
7	39. 300	387 388	23.303	412	08.802	438	95.876	464	7
8	40.688	388 389	24.716	413	10. 240	438	97.341	465	8
9	42.077	389	26.129	413	11. 678	439	3198.807	466	9
10	2943.466	1. 389	3027.542	1. 414	3113.117	1. 440	3200.273	1.466	10
11	44.855	1.389 390	28.956	1. 414	14. 557	1. 440	01.739	1. 467	11
12	46.245	390	30.370	414	15.997	440	03.206	467 468	12
13	47.635	391	31. 784	414 415	17.437	440	04.674	468 468	13
14	49.026	391	33.199	416	18.878	441	06.142	468	14
15	50.417	391	34.615	416	20.319	442	07.610	469	15
16	51.808	391	36.031	416 416	21.761	442	09.079	469	16
17	53.200	392 392	37.447	416 416	23.203	442	10.548	470	17
18	54.592	393	38. 863	417	24. 645	443	12.018	470	18
19	55.985	393 393	40.280	417 418	26.088	443	13.488	471	19
20	2957.378		3041.698		3127.531	1. 444	3214.959	1.471	20
21	58.771	1.393	43.116	1.418	28.975	1. 444	16.430	1. 4712	21
22	60.165	394	44.534	418	30.419	444	17. 902	472	22
23	61.559	394	45.953	419	31.864	445	19. 374	472	23
24	62.953	394 395	47.373	419	33.309	445 446	20.846	473	24
25	64.348		48.792	420	34. 755	446	22. 319	474	25
26	65.744	396	50.212	421	36. 201	446 446	23.793	474	26
27	67.140	396	51.633	421	37.647	446 447	25. 267	474 474	27
28	68.536	396 396	53.054	421	39.094	447	26. 741	474 475	28
29	69.932	396 397	54.475	422	40.541	447 448	28.216	475 475	29
30	2971.329		3055.897		3141.989		3229.691		30
31	72.727	1. 398	57.319	1. 422	43.438	1. 4448	31.167	1.476 476	31
32	74.124	397	58.741	423	44. 886	448 449	32. 643	476 477	32
33	75. 522	398	60.164	424	46.335	449 450	34. 120	477 477	33
34	76.921	399 399	61. 588	424	47.785	450 450	35.597	478	34
35	78.320		63.012		49.235		37.075		35
36	79.719	399	64.436	424	50. 686	451	38. 553	479	36
37	81.119	400	65.860	424	52. 137	451	40.032	479	37
38	82.519	400	67.286	426	53. 588	451	41.511	479 480	38
49	83.920	401	68.711	425 426	55.040	451 452	42.991	480 480	39
40	2985.321	1.401	3070.137	1. 427	3156. 492	1. 453	3244. 471	1.480	40
41	86.722	1.401 402	71.564	1. 427	57.945	1.453 453	45.951	1.480 481	41
42	88.124	402	72.991	427	59.398	453	47.432	481	42
43	89.527	403	74. 418	428	60.852	454 454	48. 914	482	43
44	90.929	402 403	75.846	428	62.306	454 455	50.396	482	44
45	92.332		77.274		63.761		51. 878		45
46	93.736	404	78.702	428 429	65.216	455	53.361	483	46
47	95.140	404	80.131	429 430	66.671	455 456	54.844	483	47
48	96. 544	404	81.561	430	(68.127	457	56.328	485	48
49	97.949	405 405	82.991	430	-69.584	457 457	57.813	485	49
50	2999.354		3084. 421		3171.041		3259.298	1.485	50
51	3000.759	1. 405	85.852	1.431	72.498	1.457 458	60.783	1.485 486	51
52	02.165	406	87.283	431	73.956	458	62. 269	486	52
53	03.572	407 406	88.714	431	75. 414	458	63.755	480	53
54	04.978	406 407	90. 146	432	76.873	459	65.242	487	54
55	06.385	408	91.578	433	78. 382	459	66.729	488	55
56	07.793	408	93.011	433	79.791	460	68. 217	488	56
57	09.201	408	94.444	434	81.251	461	69.705	489	57
58	10. 609	409	95. 878	434 434	82. 712	461	71. 194	489	58
59	12.018	1. 409	97. 312	1. 435	84.173	1.461	$\begin{array}{r}72.683 \\ 3274 \\ \hline\end{array}$	1.490	59 60
60	3013.427		3098. 747	1.435	3185.634		3274. 173		60

MERCATOR PROJECTION TABLE-Continued.
[Meridional distances for the spheroid. Compression $\frac{1}{294}$.]

$\begin{aligned} & \text { Min- } \\ & \text { utes. } \end{aligned}$	48°		49°		50°		51°		$\frac{\text { Min. }}{\text { utes. }}$
	Meridional distance.	Difference.							
	'			,	''	,	' ${ }^{\prime}$,	
0	3274.173		3364. 456		3456.581		3550.654	1.585	0
1	75.663	1.490 491	65.976	1.520 521	58.132	1.551 552	52.239	1.585 585	1
2	77.154	491	67.497	521	59.684	553	53.824	586	2
3	78.645	491	69.018	521	61.237	553 553	55.410	588	3
4	80.136	493	70.539	521	62.790	554	56.997	587	4
5	81.629	492	72.061	523	64.344	555	58.584	588	5
6	83.121	493	73.584	523	65.899	555	60.172	589	6
7	84.614	493	75.107	523	67.454	555	61.761	589	7
8	86.108	494	76.631	524	69.009	556	63.350	589	8
9	87.602	494	78.155	525	70.565	557	64.939	590	9
10	3289.096		3379.680		3472.122		3566.529	1. 591	10
11	90.591	1.495 496	81.205	1.525 526	73.679	1.557 557	68.120	1.391 592	11
12	92.087	496 496	82.731	526	75.236	558	69.712	592	12
13	93.583	496	84.257	526	76.794	559	71.304	592	13
14	95.079	497	85.783	527	78.353	559	72.896	593	14
15	96.576	498	87.310	528	79.912	560	74.489	594	15
16	98.074	498	88.838	529	81.472	561	76.083	594	16
17	3299.572	498	90.367	529	83.033	561	77.677	595	17
18	3301.070	499	91.896	529	84.594	561	79.272	596	18
19	02.569	500	93.425	530	86.155	562	80.868	596	19
20	3304.069	1. 500	3394.955	1.530	3487.717	1.563	3582.464	1.596	20
21	05.569	1.500 500	96.485	1.530 531	89.280	1.563 563	84.060	1.597	21
22	07.069	501	98.016	531	90.843	563	85.657	598	22
23	08.570	501	3399.547	532	92.406	564	87.255	598	23
24	10.071	502	3401.079	533	93.970	565	88.853	599	24
25	11.573	502	02.612	533	95.535	565	90.452	600	25
26	13.075	503	04.145	533	97. 100	566	92.052	600	26
27	14.578	503	05.678	534	3498.666	567	93. 652	600	27
28	16.082	504	07.212	534 535	3500.233	567	95.252	601	28
29	17.586	504	08.747	535 535	01.800	567	96. 853	602	29
30	3319.090].505	3410.282	1.535	3503.367	1.568	3598.455	1.603	30
31	20.595	$\begin{array}{r}1.505 \\ \hline 505\end{array}$	11.817	1. 538	04.935	1. 569	3600.058	1. 603	31
32	22.100	505 506	13.353	-537	06. 504	569	01.661	604	32
33	23. 606	507	14.890	${ }_{5}^{537}$	08.073	570	03.265	604	33
34	25.113	507	16.427	538	09.643	570	04.869	605	34
35	26. 620	507	17.965	538	11.213	571	06.474	605	35
36	28.127	508	19.503	- 539	12.784	571	08.079	606	36
37	29.635	508	21.042	- 539	14.355	572	09.685	607	37
38	31.143	508 509	22.581	539	15.927	573	11.292	607	38
39	32.652	510	24.121	540 540	17.500	573 573	12.899	607	39
40	3334. 162		3425.661		3519.073		3614.506		40
41	35.672	1.510 510	27.202	1.541 542	20.647	1.574 574	16.115	1.609	41
42	37.182	511	28.744	542	22.221	575 575	17.724	610	42
43	38.693	511	30.286	542	23.796	575	19.334	610	43
44	40.204	512	31.828	543	25.371	576	20.944	611	44
45	41.716	512	33.371	544	26.947	577	22.555	611	45
46	43.228	513	34.915	544	28.524	577	24.166	612	46
47	44.741	514	36.459	5445	30. 101	577	25.778	612	47
48	46.255	514	38. 004	545	31. 678	578	27.390	613	48
49	47.769	514	39.549	546	33.256	579	29.003	614	49
50	3349.283	1.515	3441.095	1.546	3534.835	1.580	3630.617	1.614	50
51	50.798	1.515	42.641	1.546	36.415	1.580 580	32.231	1.615	51
52	52.314	516	44.188	547	37.995	580	33.846	616	52
53	53.830	516	45.735	548	39.575	581	35.462	616	53
54	55.346	517	47.283	548	41.156	581	37.078	617	54
55	56.863		48.831		42.737	582	38.695	617	55
56	58.381	518	50.380	549	44.319	583	40.312	618	56
57	59.899	518	51.929	549	45.902	588	41.930	618	57
58	61.417	519	53.479	551	47.485	584	43.548	619	58
59	$\begin{array}{r}62.936 \\ \hline\end{array}$	1. 520	55.030	1.551	49.069 3550.654	1.585	45.167 3646.787	1. 620	69 60
60	3364.456		3456.581	1.651	3550.654		3646.787		

$22864^{\circ}-21-9$

MERCATOR PROJECTION TABLE-Continued.
[Meridional distances for the spheroid. Compression $\frac{1}{294}$]]

Minutes.	52°		53°		54°		55°		$\begin{aligned} & \text { Min- } \\ & \text { utes. } \end{aligned}$
	Meridional distance	Difference.	Meridional distance.	Difference.	Meridional distance.	Difference.	Meridional distance.	Difference.	
	- ' 787		3745.105		3845. 738	'	3948. 830	' 7	
0	3646. 787	1.621	3745. 105	1.658	3845.738 47.436	1. 698	3948.830 50.570	1. 740	0
1	48.408	1.621 621	46. 763	1. 658	47.436 49.134	- 698	50.570	741	2
2	50.029	621	48.421	659	49.134	699	52.311	741	2
3	51.650	622	50.080	660	50.833	700	54.052	742	3
4	53.272	623	51.740	661	52.533	701	55.794	743	4
5	54.895	624	53.401	661	54. 234	701	57.537	744	5
6	56.519	624	55.062	662	55.935	702	59.281	744	6
7	58.143	624	56.724	662	57.637 59.339	702	61.025 62.770	745	8
8	59.767	626	58.386 60.049	663	59. 389 61.042	703	62.770 64.516	746	8
9	61.393	626		664	61.042	704	64.016	746	9
10	3663.019	1. 626	3761.713	1. 664	3862. 746	1. 704	3966.262 68.009	1. 747	10
11	64.645	1. 627	63.377	1. 665	64.450	1. 705	68.009 69.757	- 748	11
12	66.272	628	65. 042	666	66. 156	706	69.757 71506	749	12
13	67.900	628	66.708	666	67.861 69.568	707	71. 7306	749	13
14	69.528	629	68.374	667	69.568	707	73.255	750	14
15	71.157	630	70.041	668	71.275	708	75.005	751	15
16	72.787	630	71. 709	668	72.983	708	76.756	752	16
17	74.417	631	73.377	669	74.691 76.400	709	78.508 80.260	752	17
18	76.048	631	75.046	669	76. 400	710	80.260 82.013	753	18
19	77.679	632	76.715	670	78. 110	711	82.013	754	19
20	3679.311	1. 633	3778.385	1.671	3879.821	1. 712	3983. 767	1.755	20
21	80.944	1.633	80.056	1.672	81.533	1. 712	85.522	755	21
22	82.577	633	81.728	672	83.245	713	87.277	756	22
23	84.211	634	83.400	673	84.958	714	89.033	757	23
24	85.845	635	85.073	673	86.672	714	90.790	758	24
25	87.480		86. 746	674	88.386	715	92. 548	758	25
26	89.116	636	88.420	675	90. 101	715	94. 306	759	26
27	90.752	633	90.095	676	91.816	717	96.065	760	27
28	92.389	638	91.771	676	93.533	717	97.825 399886	761	28
29	94.027	638	93.447	677	95.250	717	3999.586	761	29
30	3695. 665		3795. 124	1.677	3896.967	1.719	4001.347	1. 762	30
31	97.304	1.639 639	96. 801	1.678	3898.686	1.719	03. 109	1. 763	31
32	3698.943	639	3798.479	679	3900.405	720	04.872	763	32
33	3700.583	641	3800. 158	679	02.125	720	06. 635	764	33
34	02.224	642	01.837	680	03.845	721	08.399	765	34
35	03.866	642	03.517	681	05.566	722	10. 164	766	35
36	05.508	642	05. 198	681	07.288	723	11.930	767	36
37	07. 150	643	06.879	682	09.011	723	13. 697	767	37
38	08.793	644	08.561	683	10.734	724	15.464	768	38 38
39	10.437	645	10.244	684	12.458	725	17.232	769	39
40	3712.082	1.645	3811.928	1. 684	3914.183	1. 726	4019.001	1. 769	40
41	13. 727	1.646	13. 612	1.685	15.909	- 726	20.770	1. 771	41
42	15.373	646	15.297	685	17.635	727	22.541	771	42
43	17.019	647	16.982	686	19.362	728	24.312	772	43 44
44	18. 666	648	18.668	687	21.090	728	26.084	772	44
45	20.314		20.355	688	22.818	729	27.856	774	45
46	21. 962	648	22.043	688	24.547	730	29.630	774	46
47	23.611	650	23. 731	689	26.277	731	31. 404	775	47
48	25. 261	650	25. 420	689	28.008	731	33.179	776	48
49	26.911	651	27.109	690	29.739	732	34.955	776	49
50	3728.562	6	3828.799	1.691	3931.471	1.732	4036. 731	1. 777	50
51	30.213	1. 651	30.490	1. 698	33.203	1. 734	38.508	778	51
52	31.865	652	32.182	692	34.937	734	40.286	779	52
53	33.518	653	33. 874	693	36. 671	735	42.065	779	53
54	35.171	654	35.567	694	38.406	736	43.844	780	54
65	36.825	655	37.261		40.142	736	45.624	781	55
56	38.480	655	38.955	695	41.878	737	47.405	782	56
57.	40.135	656	40. 650	695	43. 615	738	49.187	783	57
68	41.791	656	42.345	696	45.353 47.091	738	50.970 52.753	783	58 59
59	43.447 3745.105	1. 658	44.041 3845.738	1. 697	47.091 3948.830	1. 739	52.753 4054.537	1. 784	59 60

MERCATOR PROJECTION TABLE-Continued
[Meridional distances for the spheroid. Compression $\frac{1}{294} 4^{4}$]

Minutes.	56°		57°		58°		59°		Min-
							Meridional		
	Meridional distance.	Difference-	Meridional distance.	Difference.	Moridional distance.	Difference.	distance.	Differenc	
	disanca.		[163. 027	,	4274.485		$\text { 4389. } 113$	939	0
0	4054.537	1. 784	4163. 027	1. 833	4274.485 76.369	1. 884	91.052	$\begin{array}{r}1.939 \\ \hline 939\end{array}$	1
1	56.321	1. 785	64.860	1.833	76. 369	885	92.991	939	2
2	58.106	786	66.693	834	78.254 80.139	885 887	94.932	941	3
3	59.892	787	68.527	836	82.026	887	96.873	941	4
4	61.679	788	70.363	836	83.913	887	4398.815	942	5
5	63.467	788	72. 199	837	83.913 85.801	888	4400.759	944	6
6	65.255	789	74.036	837	87.691	890	02. 703	944	7
7	67.044	790	75.873	839	89.581	890	04.648	945	8
8	68.834	791	77.712 79.551	839	89.581 91.42	891	06. 594	947	9
9	70.625	792	79. 501	840	-91. 364	892	4408. 541	948	10
10	4072.417	1. 793	4181. 391	1. 841	4293.364 95.256	1. 892	$\begin{array}{r}\text { 10. } \\ \hline 189\end{array}$	1. 948	11
11	74.210	1. 794	83. 232	842	97. 150	894	12. 438	949	12
12	76. 004	795	85.074	843	4299.045	895	14. 388	951	13
13	77. 799	795	86.917	844	4299.045 4300.940	895	16.339		14
14	79.594	796	88.761	844		896	18. 291		15
15	81. 390	797	90.605	846	02.836 04.734	898	20. 244	953	16
16	83.187	797	92.451	846	06. 632	898	22. 197	953	17
17	84.984	799	94. 297	847	08. 531	899	24.152	956	18
18	86.783	799	96. 974	848	10.431	900	26.108	956	19
19	88.582	800	97.992	848	4312.332	902	4428.064		20
20	4090.382	1.800	4199.840	1. 850	4312.332 14.233	1.901	34.022	$\begin{array}{r}1.958 \\ \hline 959\end{array}$	21
21	92. 182	1. 801	4201.690	850	16. 136	903	31. 981	959	22
22	93.983	802	03.540	851	18.040	904	33.940	961	23
23	95.785	803	05. 391	852	18.944	904 905	35.901	961	24
24	97.588	804	07.243	852		905	37.862		25
25	4099.392	805	09.095	854	21. 8459	906	39.825	963	26
26	4101. 197	805	10. 949	854	25. 663	908	41. 788	965	27
27	03.002	806	12.804	855	27. 571	908	43. 753	965	28
28	04. 808	807	14.659	856	29.480	909 909	45.718	965	29
29	06.615	808	16. 515	857		909	4447.684		30
30	4108.423	1.808	4218. 372	1. 858	4331.389 33.300	1. 911	49.652	1.968 968	31
31	10. 231	$\begin{array}{r}1.808 \\ \hline 809\end{array}$	20.230 22.089	859	35. 212	912	51.620	968 969	32
32	12.040	810	22. 089	860	37.125	913	53.589	971	33
33	13.850	811	23.949 25.809	860	39.038	913 915	55.560	971	34
34	15. 661	812	25.809	862		915	57.531		35
35	17.473	812	27.671	862	42. 868	915	59.503	972	36
36	19. 285	813	29.533	863	44. 784	916	61.476	973	37
37	21. 098	814	31.396 33.260	864	46.701	917	63.451	975 975	38
38	22. 912	815	33. 260 35.125	865	48.619	918	65.426	975 976	39
39	24.727	816	35. 125	866	48.610	919		976	40
40	4126.543	1. 817	4236. 991	1. 866	4350.538 52.458	1.920	4467.402 69.379	1.977 978	41
41	28. 360	1. 817	38. 857	867	54. 379	921	71.357	978 979	42
42	30. 177	818	40.724	868	54.379 56.301	922	73. 336	979 981	43
43	31. 995	819	44. 463	869	58.224	923	75.317	981	44
44	33.814	820	44. 461	870		924	77.298		45
45	35.634	820	46. 331	871	60. 148 62.072	924	79.280	988	46
46	37.454	821	48. 202	872	63. 997	925	81. 263	983	47
47	39. 275	822	50.074 51.946	872	65. 924	927	83.247	984 985	48
48	41.097	823	53. 819	873	67.851	927	85.232	986	49
49	42.920	824	53. 819	875		928	4487.218		50
50	4144. 744	1. 825	4255.694	1.875	4369.779 71.709	1. 930	89.205	1.987	51
51	46.569	1. 825	57. 569	876	73.639	930	91.193	9889	52
52	48. 394	826	59. 445	877	75.570	931	93.182	989	53
53	50.220	827	61. 322	878	77.502	932	95.172	999	54
54	52.047	828	63.200	879		932	97. 163		55
55	53.875	829	65.079	879	81. 368	934 035	4499. 155	998	56
56	55.704	830	66.958	881	83.303	935	4501.148	994	57
57	57. 534	830	68. 839	881	85. 239	936	03. 142	995	58
68	59.364	831	70.720 72.602	882	87.175	$\begin{array}{r}936 \\ \hline\end{array}$	05.137	1. 996	59
59	61. 195	1.832	72.602 4274.485	1.883	4389.113	1.938	4507. 133	1. 306	60
60	4163.027		4274.480						

MERCATOR PROJECTION TABLE-Continued.
[Meridional distances for the spheroid. Compression $\frac{1}{294}$.]

Minutes.	60°		61°		62°		63°		Min-utes.
	Meridional distance.	Difference.							
	-'		4628.789	,	4754.350	' ${ }^{\text {c }}$	4884.117	00	
0	4507.133	1.997	4628.789 30.849	2.060	4754.350 56.478	2.128	$\begin{array}{r} 4884.117 \\ 86.317 \end{array}$	2.200	0
1	09.130	1.997 998	30.849	061	56.478 58.607	129	86.317	201	2
$\stackrel{1}{2}$	11. 128	1.999	32.910 34.972	062	58. 60.736	129	88.518 90.721	203	3
3	13.127	2.001	34.972 37.035	063	60.7367	131	90.721 92.925	204	4
4	15.128	${ }^{2.001}$	37.035	064	62.867	133	92.925	205	4
5	17.129	002	39.099	066	65.000	133	95.130	206	5
6	19.131	003	41. 165	066	67.133 69.268	135	97.336 4899.544	208	7
7	21. 134	005	43.231 45.299	068	69.268 71.403	135	4899.544 4901.753	209	8
8	23.139	005	45.299 47.368	069	71.403 73.540	137	4901.753 03.964	211	9
9	25. 144	006	47.368	069	73.540	138		211	
10	4527.150	2.007	4649.437	2.071	4775.678 77	2.139	4906. 175	2.213	10
11	29.157	2.009	51.508	2.071	77.817	2. 141	08.358	215	12
12	31.166	009	53.580	073	79.958 82.099	141	10.603 12.818	215	13
13	33.175	010	55.653	074	84.242	143	12.035	217	14
14	35. 185	012	57.727	075	84.242	144	15.035	218	14
15	37.197	012	59.802	077	86.386	145	17.253	219	15
16	39.209	013	61.879	077	88.531	146	19.472	221	16
17	41.222	015	63.956	079	90.677	148	21.693	222	18
18	43.237	015	66.035	079	92.825	148	23.915	223	19
19	45.252	017	68.114	081	94.973	150	26.138	224	19
20	4547. 269	2.017	4670.195	2.082	4797.123	2.151	4928.362	2.226	20
21	49.286	2.017	72.277	2.082 083	4799.274	${ }^{2.153}$	30.588	2.227	21
22	51.305	019	74.360	084	4801.427	153	32.815	228	22
23	53.324	021	76.444	085	03.580	155	35.043	230	3
24	55.345	022	78.529	086	05.735	156	37.273	231	24
25	57.367	022	80.615	088	07.891	157	39.504	232	25
26	59.389	022	82.703	088	10.048	158	41.736	234	26
27	61.143	025	84.791	090	12.206	160	43.970	234	27
28	63.438	026	86.881	091	14. 366	160	46. 204	234	28
29	65.464	027	88.972	092	16.526	162	4S. 441	237	29
30	4567.491		4691.064	2.093	4818.688	2.163	4950.678	2.239	30
31	69.518	2.028	93.157	2.094	20.851	2.163	52.917	2. 240	31
32	71.547	028	95.251	095	23.016	165	55.157	241	32
33	73.577	030	97.346	097	25.181	167	57.398	243	33
34	75.609	032	4699.443	097	27.348	168	59.641	244	34
35	77.641		4701.540	099	29.516	169	61.885	245	35
36	79.674	033	03.639	100	31.685	171	64.130	248	36
37	81.708	034	05.739	101	33.856	171	66.377	248	37
38	83.743		07.840	102	36.027	173	68.625	249	38
39	85.780	037	09.942	103	38.200	174	70.874	251	39
40	4587.817		4712.045	2.104	4840.374	217	4973.125		40
41	89.856	2.039 039	14. 149	2. 104	42.550	2. 176	75.377	- 253	41
42	91.895	039	16. 255	106	44.726	176 178	77.630	253	42
43	93.936	042	18.361	108	46.904	179	79.885	256	43
44	95.978	042	20.469	109	49.083	180	82.141	257	44
45	4598.020		22.578	110	51.263	182	84.398	259	45
46	4600.064	045	24.688	111	53.445	183	86.657	260	46
47	02.109	040	26.799	113	55.628	184	88.917	261	48
48	04.155	046	28.912	113	57.812	185	91.178	263	48
49	06.202	048	31.025	115	59.997	186	93.441	263	49
50	4608.250	2.049	4733.140	2.116	4862. 183	2.188	4995. 704	2.266	50
51	10.299	2.049 050	35.256	2. 117	64.371	2.188 189	4997.970	-2.266	51
52	12.349	051	37.373	118	66.560	190	5000.236 02.504	268	52
53	14. 400	052	39.491	119	68.750	192	02.504	270	53
54	16.452	054	41.610	121	70.942	192	04.774	271	54
55	18.506		43.731		73. 134	194	07.045	272	55
56	20.560	${ }_{0} 054$	45.852	123	75.328	196	09.317	273	56
57	22.616	056	47.975	124	77.524	196	11. 590	275	57
58	24.672	058	50.099	125	79.720	198	13.865	276	58
59	26.730	2.059	52. 224	2.126	81.918	2. 199	16.141	2.278	59
60	4628.789	2.059	4754.350	2.126	4884.117		5018.419		60

MERCATOR PROJECTION TABLE-Continued.
[Merldional distances for the spheroid. Compression $\frac{1}{294}$.]

Min-	64°		65°		66°		67°		$\begin{aligned} & \text { Min- } \\ & \text { utes. } \end{aligned}$
	Meridional distance.	Difference.							
	5018.419	,	5157629	'	5302164	'	5452.493	'	
0	5018.419	2. 279	5157.629 59.993		5302. 164	2.457	5452.493 55.051	2.558	0
1	20.698	2. 288	59.993	2.364 366	04.621	2.457 458	55.051	2.558 559	1
2	22. 978	281	62.359	366 367	07.079	459	57.610 60.171	561	2
3	25. 259	283	64.726 67.094	368 368	09.538 11.999	461	60.171 62.734	563	3
4	27.542	285	67.094	370	11.999	464	62.734	564	4
5	29.827	286	69.464	371	14.463	465	65.298	567	5
6	32.113	287	71.835	373	16.928	466	67.865	568	6
7	34.400	288	74.208	375	19.394	468	70.433	570	7
8	36. 688	288 290	76.583	375 376	21. 862	469	73.003	571	8
9	38.978	291	78.959	376 378	24.331	471	75.574	574	9
10	5041.269		5181.337		5326.802	2. 473	5478.148	2.576	10
11	43.562	2. 293	83.716	2.379 380	29.275	2.473 475	80.724	$\begin{array}{r}2.576 \\ \hline 577\end{array}$	11
12	45.856	294	86.096	380	31.750	475 476	83.301	579	12
13	48.151	295	88.478	382 383	34. 226	476 478	85.880	579	13
14	50.447	298	90.861	385 385	36.704	479	88.461	582	14
15	52.745	300	93.246	386	39.183	481	91.043	584	15
16	55.045	301	95.632	386 388	41.664	483	93.627	586	16
17	57.346	302	5198.020	388 390	44. 147	484	96.213	588	17
18	59.648	304	5200.410	391	46. 631	486	5498.801	589	18
19	61.952	305	02.801	393	49.117	488	5501.390	591	19
20	5064.257	2.306	5205. 194		5351.605	2.489	5503. 981	2.592	20
21	66.563	2.308	07.588	$\begin{array}{r}2.394 \\ \hline\end{array}$	54.094	2. 491	06.573	2. 593	21
22	68.871	308 309	09.983	395	56.585	491	09.166	593	22
23	71.180	309	12.380	397 399	59.078	493 494	11.761	597	23
24	73.491	311	14.779	390 400	61.572	496	14.358	599	24
25	75.803	314	17.179	402	64.068	497	16.957	602	25
26	78.117	314 315	19.581	402 403	66.565	499	19.559	603	26
27	80.432	315 316	21.984	403	69.064	501	22. 162	605	27
28	82.748	316 318	24.389	405	71.565	503	24.767	608	28
29	85.066	320	26.795	408	74.068	504	27.375	610	29
30	5087.386	2.320	5229.203	2. 409	5376.572	2.506	5529.985	2.612	30
31	89.706	2.322	31.612	2.409 411	79.078	2.506 508	32.597	2. 612	31
32	92.028	323	34.023	412	81.586	509	35.212	617	32
33	94.351	325	36.435	414	84.095	512	37.829	618	33
34	96.676	325 326	38.849	414 416	86.607	512	40.447	620	34
35	5099.002	328	41.265	417	89.119	515	43.067	621	35
36	5101.330	329	43.682	419	91.634	516	45.688	624	36
37	03.659	329 330	46.101	419	94.150	516	48.312	624	37
38	05.989	330 332	48.521	421	96.668	519	50.937	627	38
39	08.321	334	50.942	424	5399.187	522	53.564	628	39
40	5110.655	2. 335	5253.366	2. 425	$5401.709{ }^{\circ}$	2.522	5556. 192	2.630	40
41	12.990	2.335 -336	55.791	-2. 426	04.231	2.522 525	58.822	2. 632	41
42	15.326	338	58.217	428	06.756	526	61.454	634	42
43	17.664	338	60.645	428 429	09.282	526 528	64. 088	635	43
44	20.003	341	63.074	431	11.810	530	66.723	637	44.
45	22.344		65.506		14.340		69.360	640	45
46	24.686	342	67.938	433	16.871	533	72.000	641	46
47	27.029	343 345	70.373	436	19.404	535	74.641	643	47
48	29.374	340 347	72.809	437	21.939	537	77.284	645	48 49
49	31.721	347 348	75.246	440	24.476	538	79.929	647	49
50	5134.069	2.350	5277.686	2.440	5427.014	2.540	5582.576	2.649	50
51	36.419	2. 350	80.126	2. 442	29.554	2. 542	85.225	2. 650	51
52	38.770	351 352	82.568	444	32.096 34.640	544	87.875 90.528	653	52
53	41. 122	354	85.012	445	34.640 37.185	545	90.528 93.182	654	53 54
54	43.476	355	87.457	448	37.185	547	93.182	657	54
55	45.831		89.905	449	39.732	549	95.839 5598.497	658	55
56	48.188	357	92.354	449	42.281	551	5598. 497	660	56
57	50.545	358 359	94.803	452	44.832	552	5601.157	662	57 58
58	52.905	361	97.255 5299	454	47.384 49.988	554	03.819 06.483	664	58 59
59	55. 266	2.363	5299.709	2.455	49.938 5452.493	2. 555	06.483 5609.149	2.666	69 60

MERCATOR PROJECTION TABLE-Continued.
[Meridional distances for the spheroid. Compression $\frac{1}{294}{ }^{\circ}$]

Min-	68°		69°		70°		71°		Min-
	Meridional	Difference.	Meridional distance.	Difference.	Meridional distance.	Difference.	Meridional distance.	Difference.	
	5609.149	2.668	5772.739	2. 789	5943.955	2923	6123.602	3.071	0
0	5609.149 11.817	2. 668	5772.739 75.528	2.789	50. 46.88	2.923 925	- 26.673	3.071 073	1
1	11.817	670	78.319	791	49.803	925	29.746	073 076	2
3	14.487 17.159	672 673	81.112	795	52.730	929	32.822	076 078	3
4	19.832	676	83.907	798	55.659	932	35.900	081	4
5	22.508	678	86.705	800	58. 591	935	38.981	084	5
6	25.186	679	89.505	801	61.526	937	42.065	086	6
7	27.865	682	92.306	804	64.463	939	45.151	089	7
8	30.547	683	95. 110	807	67. 702	941	48.240	092	8
9	33.230	685	5797.917	808	70.343	944	51.332	094	9
10	5635.915	2.687	5800. 725	2.810	5973.287	2.947	6154. 426	3.097	10
11	38.602	2. 690	03. 535	2.813	76.234	2.948	57.523	3. 099	11
12	41. 292	691	06.348	814	79. 182	951	60.622	102	12
13	43.983	693	09.162	817	82.133	954	63.724	105	13
14	46.676	695	11.979	819	85.087	956	9	108	14
15	49.371	697	14.798	822	88.043	958	69.937	110	15
16	52.068	699	17.620	823	91.001	960	73.047	113	16
17	54.767	701	20.443	826	93.961	964	76. 160	115	17
18	57.468	703	23. 269	827	96.925	965	79.275	119	18
19	60.171	705	26.096	830	5999.890	968	82.394	120	19
20	5662.876	2. 707	5828.926	2.832	6002.858	2.970	6185.514	3. 124	20
21	65.583	2.709	31. 758	2.835	05.828	2. 973	88.638	3. 126	21
22	68.292	711	34.593	836	08.801	$\stackrel{975}{975}$	91.764	129	22
23	71.003	713	37.429	838	11.776	977	94.893	132	23
24	73.716	715	40.267	841	14.753	980	6198.025	134	24
25	76.431	717	43. 108	843	17. 733	983	6201.159	137	25
26	79.148	719	45.951	846	20.716	985	04.296	130	26
27	81.867	721	48.797	847	23.701	987	07.436	143	27
28	84.588	723	51.644	850	26.688	990	10. 579	145	28
23	87.311	725	54.494	852	29.678	992	13.724	148	29
30	5690.036	2.727	5857.346	2.854	6032. 670	2.995	6216.872	3.151	30
31	C2. 763	2. 729	60.200	2.857	35.665	2.995	20.023	3. 153	31
32	95.492	731	63.057	858	38.662	2. 999	23.176	156	32
33	5698.223	733	65. 915	861	41.661	3. 003	26.332	159	33
34	5700. 956	735	68.776	863	44.664	3. 004	29.491	162	34
35	03.691	738	71. 639	866	47.668	007	32.653	165	35
36	06.429	739	74.595	867	50.675	010	35. 818	167	36
37	09.168	741	77.372	870	53.685	012	38. 985	170	37
38	11. 909	743	80.242	872	56.697 59.712	015	42. 155	173	38
39	14.652	746	83.114	875	59.712	017	45.328	175	39
40	5717.398		5885.989	2.876	6062.729		6248.503		40
41	20. 145	$\begin{array}{r}2.747 \\ \hline\end{array}$	88.865	2.876 879	65.748	3.019 022	51.682	3. 179	41
42	22. 894	752	91.744	881	68.770	024	54.863	181	42
43	25. 646	753	94. 625	883	71.794	027	58.047	184	43
44	28.399	756	5897.508	886	74.821	030	61.234	180	44
45	31. 155		5900. 394		77.851		64.424		45
46	33.913	758	03.282	888	80.883	032	67.616	192	46
48	36. 672	759	06.172	8893	83.918	035	70.811	195	47
48	39.434	764	09.065	893	86.955	040	74.010	199	48
49	42.198	766	11.960	895	89.995	040	77.211	203	49
50	5744. 964		5914.857		6093.038		6280.414		50
51	47.732	2. 768	17. 756	2.899	96. 083	3.045	83.621	3.207	51
52	50.502	770 772	20.658	902	6099.130	047	86.831	210	52
53	53.274	775	23. 562	904	6102. 180	050	90.043	212	53
54	56.049	776	26.468	909	05.232	055	93.258	218	54
55	58.825		29.377		08.287		96.476		55
56	61. 604	780	32. 288	913	11.345	061	6299.697	224	56
57	64.384	783	35.201	913	14. 406	063	6302.921	224	57
58	67.167	785	38.117	916	17. 469	065	06.148	227	58
59	69.952	2.787	41.035	918 2.920	20. 534	3. 068	09.378	- 230	59
60	5772. 739	2.787	5943.955	2. 920	6123.602	3. 068	6312.610	3. 232	60

MERCATOR PROJECTION TABLE-Continued.
[Meridional distances for the spheroid. Compression $\frac{1}{294}$.]

Minutes.	72°		73°		74°		75°		$\begin{aligned} & \text { Min- } \\ & \text { utes. } \end{aligned}$
	Merldional distance.	Difference.	Meridional distance.	Difference.	Meridional distance.	Difference.	Meridional distance.	Difference.	
	' ${ }^{\prime}$	1	' '		' ${ }^{\prime}$	'	6047'701	,	
0	6312.610	3.235	6512.071	3.420	6723, 275	3.628	6947.761	3.864	0
1	15.845	3. 238	15.491	3.420 423	26.903	3. 638	51.625	3.864 868	?
2	19.083	242	18.914	428	30.534	635	55.493	872	2
3	22. 325	244	22.340	430	34. 169	639	59.365 63.942	877	3
4	25.569	247	25.770	433	37.808	643	63.242	881	4
5	28.816	250	29.203	437	41.451	646	67.123	885	5
6	32.066	253	32.640	437 439	45.097	646	71.008	890	6
7	35.319	256	36.079	443	48.747	654	74.898	894	7
8	38.575	259	39.522	446	52.401	658	78.792 82.690	898	8
9	41.834	262	42.968	450	56.059	662	82.690	902	9
10	6345.096	3.264	6546.418	3. 45	6759.721	3.665	6986.592	3.906	10
11	48.360	267	49.871	3. 453	63.386	669	90.498	3.906	11
12	51.627	271	53.327	456 459	67.055	673	94.409	915	12
13	54.898	273	56.786	459 463	70.728	676	6998.324	919	13
14	58.171	277	60.249	463 466	74.404	680	7002.243	924	14
15	61.448	279	63.715	470	78.084	684	06.167	928	15
16	64.727	283	67.185	470	81.768	688	10.095	938	16
17	68.010	286	70.658	473 476	85.456	692	14.028	937	17
18	71.296	288	74. 134	480	89.148	696	17.965	941	18
19	74.584	292	77.614	483	92.844	699	21.906	946	19
20	6377.876	3.295	6581.097	3.486	6796.543	3.703	7025.852	3.949	20
21	81.171	3. 297	84.583	3. 480	6800.246	3. 707	29.801	3. 949	21
22	84.468	300	88.073	490 493	03.953	710	33.755	959	22
23	87.768	304	91.566	493	07.663	715	37.714	963	23
24	91.072	307	95.063	497 500	11.377	718	41.677	968	24
25	94.379		6598.563		15.096	722	45.645	972	25
26	6397.689	310	6602.067	504	18.812	726	49.617	972 977	26
27	6401.002	313 315	05.574	507	22.545	730	53.594	981	27
28	04.317	319	09.084	510	26.275	734	57.575	985	28
29	07.636	322	12.598	514 518	30.009	738	61.561	990	29
30	6410.958	3.325	6616.116		6833.747	3.742	7065.551	3.994	30
31	14. 283	3.325 328	19.636	3.520 524	37.489	3. 747	69.545	3.994 3.999	31
32	17.611	328	23.160	524	41.236	747 750	73.544	3.993 4.003	37
33	20.842	334	26.688	531	44.986	754	77.547	4.008	33
34	24.276	334 337	30.219	535	48.740	758	81.555	013	34
35	27.613		33.754		52.498		85.568		35
36	30.954	341	37.292	538	56.260	766	89.585	017	36
37	34.298	344	40.833	545	60.027	770	93.607	026	37
38	37.645	350	44.378	545 549	63.797	770	7097.633	026	38
39	40.995	353	47.927		67.571	778	7101.664	035	39
40	6444.348	3. 356	6651.479	3. 556	6871.349		7105.699	4.039	40
41	47.704	3.356 359	55.035	3.556 559	75.131	$\begin{array}{r}3.782 \\ \hline 785\end{array}$	09.739	4.089 045	41
42	51.063	362	58.594	559 563	78.916	785 790	13.784	049	42
43	54.425	365	62.157	563	82.706	794	17.833	054	43
44	57.790	369	65.723	566 570	86.500	798	21.887	059	44
45	61.159	372	69.293		90. 298	802	25.946	063	45
46	64.531	375	72.866	577	94.100	806	30.009	068	46
47	67.906	378	76.443	581	6897.906	810	34.077	072	47
48	71.284	381	80.024	585	6901.716	815	38. 149	077	48
49	74.665	385	83.609	588	05.531	819	42.226	082	49
50	6478.050		6687.197	3591	6909.350	3.822	7146.308	4.088	50
51	81.437	3.387 391	90.788	3.591 595	13.172	3. 822	50.394	4.080 091	51
52	84.828	391	94.383	599	16.998	831	54.485	096	52
53	88.222	394	6697.982	602	20.829	835	58.581	101	58
54	91.619	397 401	6701.584	606	24.664	839	62.682	105	54
55	95.020		05.190	610	28.503	843	66.787	110	55
56	6498.424	404	08.800	613	32.346	847	70.897	115	56
57	6501.831	407	12.413	617	36.193	852	75.012	120	57
58	05.241	413	16.030	621	40.045	856	79.132	125	58
59	08.654	3.417	19.651	3.625	43.901	3.860	83.257	4.130	59
60	6512.071	3.417	6723.275	3.620	6947.761	3.860	7187.387	4.180	60

MERCATOR PROJECTION TABLE-Continued.
[Meridional distances for the spheriod. Compression $\frac{1}{294}$.]

$\begin{aligned} & \text { Min- } \\ & \text { utes. } \end{aligned}$	76°		77°		78°		79°		Minutes.
	Meridional distance.	Difference.	Meridional distance.	Difference.	Meridional distance	Difference.	Meridional distance.	Difference.	
	7187.387	,	7444.428	,		,	8022.758	243	
0	$\begin{array}{r}7187.387 \\ 91 \\ \hline 921\end{array}$	4. 134	7444.428 48.875	4. 447	7721.700 26.511	4. 811	8022.758 28.001	5. 243	0
1	91.521 95.660	139	48.875 53.327	452	26. 31.329	818	33. 252	251	2
3	7199.804	144	57.785	458	36. 154	825	38. 511	259	3
4	7203.953	149	62.248	463 469	40.985	831 838	43.778	267	4
5	08.107	159	66. 717	475	45.823	845	49.053	283	5
6	12. 266	159	71. 192	481	50. 668	858	54.336	292	6
7	16. 429	163	75. 673	487	55.520	858	59.628	299	7
8	20. 598	174	80. 160	492	60. 378	865	64.927	307	8
9	24.772	178	84.652	498	65.243	872	70. 234	316	9
10	7228. 950	4.183	7489. 150	4. 504	7770.115	4.878	8075.550	5. 323	10
11	33. 133	4. 188	93.654	4. 509	74.993	4.878 885	80.873	5. 330	11
12	37.321	183	7498. 163	515	79. 878	885	86.203	339	12
13	41.514	198	7502. 678	521	84.770	899	91. 542	348	13
14	45.712	203	07.199	527	89.669	906	8096.890	356	14
15	49.915	208	11. 726	532	94. 575	912	8102. 246	364	15
16	54.123	213	16. 258	539	7799. 487	920	07.610	373	16
17	58.336	219	20. 797	544	7804.407	927	12. 983	381	17
18	62.555	219	25.341	5	09.334	933	18. 364	389	18
19	66.778	229	29.891	556	14. 267	941	23.753	397	19
20	7271.007		7534. 447	4.561	7819. 208	4.947	8129. 150	405	20
21	75.240	4. 233	39.008	4. 561	24.155	4. 954	34.555	414	21
22	79. 478	238	43.575	574	29. 109	961	39.969	422	22
23	83.721	243	48. 149	574 579	34.070	968	45.391	430	23
24	87.970	249	52.728	579 585	39.038	975	50.821	430 439	24
25	92.224		57.313	592	44.013	983	56.260	448	25
26	7296. 482	258	61.905	592	48. 996	983 990	61.708	448	26
27	7300.747	55	66. 502	604	53.986	4. 997	67.165	465	27
28	05.016	269	71. 106	610	58. 983	5. 004	72.630	474	28
29	09.290	274 280	75. 716	610 616	63.987	5. 011	78.104	474 482	29
30	7313.570		7580.332		7868. 998	5.018	8183. 586	5. 490	30
31	17. 854	4. 284	84.953	4. 621	74.016	5. 028	89.076	5. 490	31
32	22.144	290	89. 581	628	79.041	025	8194.575	499 507	32
33	26.439	295	94.215	6	84.073	040	8200.082	516	33
34	30.739	300	7598.855	640 647	89.113	047	05.598	525	34
35	35.045		7603.502		94.160	054	11. 123	534	35
36	39.356	316	08. 154	659	7899. 214	062	16. 657	543	36
37	43.672	316	12. 813	665	7904. 276	069	22. 200	545	37
38	47. 994	322	17. 478	671	09.345	076	27.752	561	38
39	52.321	332	22. 149	678	14. 421	084	33.313	570	39
40	7356.653	4. 337	7626.827	4. 683	7919.505	5.091	8238.883	5. 578	40
41	60.990	4. 3342	31. 510	4.683	24. 596	- 098	44.461	5. 578	41
42	65.332	342	36. 199	696	29.694	105	50.047	586 595	42
43	69.680	348 353	40.895	702	34.799	113	55.642	605	43
44.	74.033	353 359	45.597	708	39.912	121	61.247	614	44
45	78.392		50.305	715	45. 033	128	66.881	623	45
46	82.756	364	55.020	721	50.161	136	72. 484	633	46
47	87.126	375	59.741.	728	55.297	144	78. 117	642	47
48	91. 501	375 381	64.469	734	60.441	151	83.759	650	48
49	7395.882	381	69.203	740	65.592	159	89.409	660	49
50	7400.268		7673.943	4.746	7970.751	5. 166	8295.069	5. 668	50
51	04.659	4. 391	78. 689	4. 7453	75.917	5. 166	8300.737	5. 677	51
52	09.055	396	83.442	753	81.090	181	06. 414	687	52
53	13.457	402	88.201	766	86.271	189	12. 101	697	53
54	17.865	413	92.967	773	91.460	196	17.798	706	54
55	22. 278		7697.740		7996.656	205	23. 504	715	55
56	26.697	424	7702.519	785	8001.861	213	29.219	725	56
57	31. 121	424 430	07.304	780	07.074	220	34. 944	734	57
58	35. 551	436	12. 096	799	12. 294	228	40.678	744	58
59	39.987	4.441	16. 895	4.805	17. 522	5.236	46. 422	5. 754	59
60	7444. 428		7721.700		8022.758		8352.176		60

FIXING POSITION BY WIRELESS DIRECTIONAL BEARINGS. ${ }^{31}$

A very close approximation for plotting on a Mercator chart the position of a ship receiving wireless bearings is given in Admiralty Notice to Mariners, No. 952, June 19, 1920, as follows:
I.-GENERAL.

Fixing position by directional wireless is very similar to fixing by cross bearings from visible objects, the principal difference being that, when using a chart on the Mercator projection allowance has to be made for the curvature of the earth, the wireless stations being generally at very much greater distances than the objects used in an ordinary cross bearing fix.

Although fixing position by wireless directional bearings is dependent for its accuracy upon the degree of precision with which it is at present possible to determine the direction of wireless waves, confirmation of the course and distance made good by the receipt of additional bearings, would afford confidence to those responsible in the vessel as the land is approached under weather conditions that preclude the employment of other methods.

At the present time, from shore stations with practiced operators and instruments in good adjustment, the maximum error in direction should not exceed 2° for day working, but it is to be noted that errors at night may je larger, although sufficient data on this point is not at present available.

II.-TRACK OF WIRELESS WAVE.

The track of a wireless wave being a great circle is represented on a chart on the Mercator projection by a flat curve, concave toward the Equator; this flat curve is most curved when it runs in an east and west direction and flattens out as the bearing changes toward north and south. When exactly north and south it is quite flat and is then a straight line, the meridian. The true bearing of a ship from a wireless telegraph station, or vice versa, is the angle contained by the great circle passing through either position and its respective meridian.
III. - CONVERGENCY.

Meridians on the earth's surface not being parallel but converging at the poles, it follows that a great circle will intersect meridians as it crosses them at a varying angle unless the great circle itself passes through the poles and becomes a meridian. The difference in the angles formed by the intersection of a great circle with two meridians (that is, convergency) depends on the angle the great circle makes with the meridian, the middle latitude between the meridians, and the difference of longitude between the meridians.

This difference is known as the convergency and can be approximately calculated from the formulaConvergency in minutes=diff. long. in minutes X sin mid. lat.
Convergency may be readily found from the convergency scale (see fig. 62), or it may be found by traverse table entering the diff. long. as distance and mid. lat. as course; the resulting departure being the convergency in minutes.

IV.-TRUE AND MERCATORIAL BEARINGS.

Meridians on a Mercator chart being represented by parallel lines, it follows that the true bcaring of the ship from the station, or vice versa, can not be represented by a straight line joining the two positions, the straight line joining them being the mean mercatorial bearing, which differs from the true bearing

[^24]by $\pm \frac{1}{2}$ the convergency. As it is this mean mercatorial bearing which we require, all that is necessary when the true bearing is obtained from a W / T station is to add to or subtract from it $\frac{1}{2}$ the convergency and lay off this bearing from the station.

Note.-Charts on the gnomonic projection which facilitate the plotting of true bearings are now in course of preparation by the Admiralty and the U. S. Hydrographic Office.

$$
\text { } \nabla \text {--SIGN OF THE } \frac{1}{2} \text { CONVERGENCY. }
$$

Provided the bearings are always measured in degrees north 0° to 360° (clockwise) the sign of this $\frac{1}{2}$ convergency can be simply determined as follows:

When the W/T station and the ship are on opposite sides of the Equator, the factor sin mid. lat. is necessarily very small and the convergency is then negligible. All great circles in the neighborhood of the Equator appear on the chart as straight lines and the convergency correction as described above is immaterial and unnecessary.
VI.-EXAMPLE.

A ship is by D. R..32 in lat. $48^{\circ} 45^{\prime} \mathrm{N}$., long. $25^{\circ} 30^{\prime} \mathrm{W}$., and obtains wireless bearings from Sea View 2443° and from Ushant $277 \frac{1}{2}^{\circ}$. What is her position?

Sea	Lat. $55^{\circ} 22^{\prime} \mathrm{N}$.	Long. $7^{\circ} 19 \frac{1}{\prime}^{\prime} \mathrm{W}$.
D. R.	Lat. $48^{\circ} 45^{\prime} \mathrm{N}$.	Long. $25^{\circ} 30^{\prime} \mathrm{W}$.
Mid. lat.	$52^{\circ} 03^{\prime} \mathrm{N}$	Diff. long. 1090.5
	$\mathrm{ncy}=1090.5 \times \sin$ convergency $=$	$\begin{aligned} & 0^{\prime}=859^{\prime} \\ & 9^{\prime} \end{aligned}$

The true bearing signaled by Sea View was 2443°; as ship is west of the station (north lat., see Par. V) tho $\frac{1}{2}$ convergency will be "minus" to the true bearing signaled.

Therefore the mercatorial bearing will be 2371° nearly.
Similarly with Ushant.

Lat.	. $48^{\circ} 45^{\prime} \mathrm{N}$.	Long. $25^{\circ} 30^{\prime} \mathrm{W}$.
Lat. Ushan	. $48^{\circ} 26 \frac{1}{2}^{\prime} \mathrm{N}$.	Long. $5^{\circ} 05 \frac{1}{\frac{1}{\prime}} \mathrm{~W}$.
Mid. lat.	$48^{\circ} 36^{\prime} \mathrm{N}$	Diff. long. 1224
	$c y=1224.5 \times$ convergenc	$\begin{aligned} & 36^{\prime}=919^{\prime}, \\ & 0^{\prime} \end{aligned}$

The true bearing signaled by Ushant was $277 \frac{1}{2}^{\circ}$; as ship is west of the station (north lat., see Par. V) the $\frac{1}{2}$ convergency will be "minus" to the true bearing signaled. Therefore the mercatorial bearing will be 270° nearly.

Laying off $237 \frac{1}{2}^{\circ}$ and 270° on the chart from Sea View and Ushant, respectively, the intersection will be in:

Lat. $48^{\circ} 27 \frac{1}{2}^{\prime} \mathrm{N}$., long. $25^{\circ} 05^{\prime} \mathrm{W}$., which is the ship's position.
Nots.-In plotting the positions the largest scale chart available that embraces the area should be used. A station pointer will be found convenient for laying off the bearings where the distances are great.

The accompanying chartlet (see Fig. 62), drawn on the Mercator projection, shows the above positions and the error involved by laying off the true bearings as signaled from Sea View W/T station and Ushant W/T station.

The black curved lines are the great circles passing through Sea View and ship's position, and Ushant and ship's position.

The red broken lines are the true bearings laid off as signaled, their intersection " B " being in latitude $50^{\circ} 14^{\prime} \mathrm{N}$., longitude $25^{\circ} 46^{\prime} \mathrm{W}$., or approximately 110^{\prime} from the correct position.

The red firm lines are the mean mercatorial bearings laid off from Sea View and Ushant and their intersection " C^{\prime} " gives the ship's position very nearly; that is, latitude $48^{\circ} 27 \frac{1}{2}$ ' N., longitude $25^{\circ} 05^{\prime} \mathrm{W}$.

[^25]

Scales for obtaining the Convergency for 10^{\prime} Diff. Longitude in different Latitudes.

Fig 62

Position "A" is the ship's D. R. position, latitude $48^{\circ} 45^{\prime}$ N., longitude $25^{\circ} 30^{\prime}$ W., which was used for calculating the $\frac{1}{2}$ convergency.

Note.-As the true position of the ship should have been used to obtain the $\frac{1}{}$ convergency, the quantity found is not correct, but it could be recalculated using lat. and long. " C " and a more correct value found. This, however, is only necessary if the crror in the ship's assumed position is very great,

> VII.-ACCURACY OF THIS METHOD OF PLOTTING.

Although this method is not rigidly accurate, it can be used for all practical purposes up to 1,000 miles range, and a very close approximation found to the lines of position on which the ship is, at the moment the stations receive her signals.
vili.-USE of w/t bearings with observations of heavenly bodies.
It follows that W/T bearings may be used in conjunction with position lines obtained from observations of heavenly bodies, the position lines from the latter being laid off as straight lines (although in this case also they are not strictly so), due consideration being given to the possible error of the W/T bearings. Moreover, W/T bearings can be made use of at short distances as "position lines," in a similar manner to the so-called "Sumner line" when approaching port, making the land, avoiding dangers, etc.

IX.-CONVERSE METHOD.

When ships are fitted with apparatus by which they record the wireless bearings of shore stations whose positions are known, the same procedure for laying off bearings from the shore stations can be adopted, but it is to be remembered that in applying the $\frac{1}{2}$ convergency to these bearings it must be applied in the converse way, in both hemispheres, to that laid down in paragraph V.

THE GNOMONIC PROJECTION.

 DESCRIPTION.[See Plate IV.]
The gnomonic projection of the sphere is a perspective projection upon a tangent plane, with the point from which the projecting lines are drawn situated at the center of the sphere. This may also be stated as follows:

The eye of the spectator is supposed to be situated at the center of the terrestrial sphere, from whence, being at once in the plane of every great circle, it will see these circles projected as straight lines where the visual rays passing through them intersect the plane of projection. A straight line drawn between any two points or places on this chart represents an arc of the great circle passing through them, and is, therefore, the shortest possible track line between them and shows at once all the geographical localities through which the most direct route passes.

Fig. 63.-Diagram illustrating the theory of the gnomonic projection.
The four-sided figure $Q R S T$ is tho imaginary paper forming a "tangent plane," which touches the surface of the globe on the central meridian of the chart. The N.-S. axis of the globe is conceived as produced to a point P on which all meridians converge. Where imaginary lines drawn from the center of the earth through points on its surface fall on the tangent plane, these points can be plotted. The tangent paper being viewed in the figure from underneath, the outline of the island is reversed as in a looking glass; if the paper were transparent, the outline, when seen from the further side (the chart side) would be in its natural relation.-From charts: Their Use and Mcaning, by G. Iferbert Fowler, Ph. D., University College, London.

Obviously a complete hemisphere can not be constructed on this plan, since, for points 90° distant from the center of the map, the projecting lines are parallel
to the plane of projection. As the distance of the projected point from the center of the map approaches 90° the projecting line approaches a position of parallelism to the plane of projection and the intersection of line and plane recedes indefinitely from the center of the map.

The chief fault of the projection and the one which is incident to its nature is that while those positions of the sphere opposite to the eye are projected in approximately their true relations, those near the boundaries of the map are very much distorted and the projection is useless for distances, areas, and shapes.

The one special property, however, that any great circle on the sphere is represented by a straight line upon the map, has brought the gnomonic projection into considerable prominence. For the purpose of facilitating great-circle sailing the Hydrographic Office, U. S. Navy, and the British Admiralty have issued gnomonic charts covering in single sheets the North Atlantic, South Atlantic, Pacific, North Pacific, South Pacific, and Indian Oceans.

This system of mapping is now frequently employed by the Admiralty on plans of harbors, polar charts, etc. Generally, however, the area is so small that the difference in projections is hardly apparent and the charts might as well be treated as if they were on the Mercator projection.

The use and application of gnomonic charts as supplementary in laying out ocean sailing routes on the Mercator charts have already been noted in the chapter on the Mercator projection. In the absence of charts on the gnomonic projection, greatcircle courses may be placed upon Mercator charts either by computation or by, the use of tables, such as Lecky's General Utility Tables. It is far easier and quicker, however, to derive these from the gnomonic chart, because the route marked out on it will show at a glance if any obstruction, as an island or danger, necessitates a modified or composite course.

WIRELESS DIRECTIONAL BEARINGS.

The gnomonic projection is by its special properties especially adapted to the plotting of positions from wireless directional bearings.

Observed directions may be plotted by means of a protractor, or compass rose, constructed at each radiocompass station. The center of the rose is at the radio station, and the true azimuths indicated by it are the traces on the plane of the projection of the planes of corresponding true directions at the radio station.

MATHEMATICAL THEORY OF THE GNOMONIC PROJECTION.

A simple development of the mathematical theory of the projection will be given with sufficient completeness to enable one to compute the necessary elements.

In figure 64, let $P Q P^{\prime} Q^{\prime}$ represent the meridian on which the point of tangency lies; let $A C B$ be the trace of the tangent plane with the point of tangency at C; and let the radius of the sphere be represented by R; let the angle $C O D$ be denoted by p; then, $C D=O O$ tan $C O D=R \tan p$.

All points of the sphere at arc distance p from C will be represented on the projection by a circle with radius equal to $C D$, or

$$
\rho=R \tan p
$$

To reduce this expression to rectangular coordinates, let us suppose the circle drawn on the plane of the projection. In figure 65, let $Y Y^{\prime}$ represent the projection of the central meridian and $X X^{\prime}$ that of the great circle through C (see fig. 64) perpendicular to the central meridian.

Fra. 64.-Gnomonic projection-determination of the radial distance.

Fra. 65.-Gnomonic projection-determination of the coordinates on the mapping plane.
If the angle $X O F$ is denoted by ω, we have

$$
\begin{aligned}
& x=\rho \cos \omega=R \tan p \cos \omega \\
& y=\rho \sin \omega=R \tan p \sin \omega ;
\end{aligned}
$$

$$
x=\frac{R \sin p \cos \omega}{\cos p}
$$

$$
y=\frac{R \sin p \sin \omega}{\cos p}
$$

Now, suppose the plane is tangent to the sphere at latitude α. The expression just given for x and y must be expressed in terms of latitude and longitude, or φ and λ, λ representing, as usual, the longitude reckoned from the central meridian.

In figure 66, let T be the pole, Q the center of the projection, and let P be the point whose coordinates are to be determined.

Fig. 66.-Gnomonic projection-transiormation triangle on the sphere.
The angles between great circles at the point of tangency are preserved in the projection so that ω is the angle between $Q P$ and the great circle perpendicular to $T Q$ at Q;
or,

$$
\angle T Q P=\frac{\pi}{2}-\omega .
$$

Also,
and,

$$
\begin{aligned}
& T Q=\frac{\pi}{2}-\alpha \\
& T P=\frac{\pi}{2}-\varphi, \\
& Q P=p,
\end{aligned}
$$

$$
\angle Q T P=\lambda
$$

From the trigonometry of the spherical triangle we have

$$
\begin{aligned}
& \cos p=\sin \alpha \sin \varphi+\cos \alpha \cos \lambda \cos \varphi \\
& \frac{\sin p}{\cos \varphi}=\frac{\sin \lambda}{\cos \omega}, \text { or } \sin p \cos \omega=\sin \lambda \cos \varphi,
\end{aligned}
$$

and
$\sin p \sin \omega=\cos \alpha \sin \varphi-\sin \alpha \cos \lambda \cos \varphi$.
On the substitution of these values in the expressions for x and y, we obtain as definitions of the coordinates of the projection-

$$
\begin{aligned}
& x=\frac{R \sin \lambda \cos \varphi}{\sin \alpha \sin \varphi+\cos \alpha \cos \lambda \cos \varphi}, \\
& y=\frac{R(\cos \alpha \sin \varphi-\sin \alpha \cos \lambda \cos \varphi)}{\sin \alpha \sin \varphi+\cos \alpha \cos \lambda \cos \varphi}
\end{aligned}
$$

The Y axis is the projection of the central meridian and the X axis is the projection of the great circle through the point of tangency and perpendicular to the central meridian.

These expressions are very unsatisfactory for computation purposes. To put them in more convenient form, we may transform them in the following manner:

$$
\begin{gathered}
x=\frac{R \sin \lambda \cos \varphi}{\sin \alpha(\sin \varphi+\cos \varphi \cot \alpha \cos \lambda)} \\
y=\frac{R \cos \alpha(\sin \varphi-\cos \varphi \tan \alpha \cos \lambda)}{\sin \alpha(\sin \varphi+\cos \varphi \cot \alpha \cos \lambda)}
\end{gathered}
$$

Let

$$
\begin{aligned}
& \cot \beta=\cot \alpha \cos \lambda, \\
& \tan \gamma=\tan \alpha \cos \lambda
\end{aligned}
$$

then

$$
\begin{aligned}
& x=\frac{R \sin \lambda \cos \varphi}{\frac{\sin \alpha}{\sin \beta}(\sin \varphi \sin \beta+\cos \varphi \cos \beta)} \\
& y=\frac{\frac{R \cos \alpha}{\cos \gamma}(\sin \varphi \cos \gamma-\cos \varphi \sin \gamma)}{\frac{\sin \alpha}{\sin \beta}(\sin \varphi \sin \beta+\cos \varphi \cos \beta)} .
\end{aligned}
$$

But
and
Hence

$$
\cos (\varphi-\beta)=\sin \varphi \sin \beta+\cos \varphi \cos \beta
$$

$$
\sin (\varphi-\gamma)=\sin \varphi \cos \gamma-\cos \varphi \sin \gamma .
$$

$$
x=\frac{R \sin \beta \sin \lambda \cos \varphi}{\sin \alpha \cos (\varphi-\beta)}
$$

$$
y=\frac{R \cot \alpha \sin \beta \sin (\varphi-\gamma)}{\cos \gamma \cos (\varphi-\beta)} .
$$

These expressions are in very convenient form for logarithmic computation, or for computation with a calculating machine. For any given meridian β and γ are constants; hence the coordinates of intersection along a meridian are very easily computed. It is known, a priori, that the meridians are represented by straight lines; hence to draw a meridian we need to know the coordinates of only two points. These should be computed as far apart as possible, one near the top and the other near the bottom of the map. After the meridian is drawn on the projection it is sufficient to compute only the y coordinate of the other intersections. If the map extends far enough to include the pole, the determination of this point will give one point on all of the meridians.

Since for this point $\lambda=0$ and $\varphi=\frac{\pi}{2}$, we get

$$
\begin{aligned}
& \beta=\alpha, \\
& \gamma=\alpha, \\
& x=0, \\
& y=R \cot \alpha .
\end{aligned}
$$

If this point is plotted upon the projection and another point on each meridian is determined near the bottom of the map, the meridians can be drawn on the projection.

If the map is entensive enough to include the Equator, the intersections of the straight line which represents it, with the meridians can be easily computed. When $\varphi=0$, the expressions for the coordinates become

$$
\begin{aligned}
& x=R \tan \lambda \sec \alpha, \\
& y=-R \tan \alpha .
\end{aligned}
$$

A line parallel to the X axis at the distance $y=-R \tan \alpha$ represents the Equator. The intersection of the meridian λ with this line is given by

$$
x=R \tan \lambda \sec \alpha .
$$

When the Equator and the pole are both on the map, the meridians may thus be determined in a very simple manner. The parallels may then be determined by computing the y coordinate of the various intersections with these straight-line meridians.

If the point of tangency is at the pole, $\alpha=\frac{\pi}{2}$ and the expressions for the coordinates become

$$
\begin{aligned}
& x=R \cot \varphi \sin \lambda, \\
& y=-R \cot \varphi \cos \lambda .
\end{aligned}
$$

In these expressions λ is reckoned from the central meridian from south to east. As usually given, λ is reckoned from the east point to northward. Letting $\lambda=\frac{\pi}{2}+\lambda^{\prime}$ and dropping the prime, we obtain the usual forms:

$$
\begin{aligned}
& x=R \cot \varphi \cos \lambda, \\
& y=R \cot \varphi \sin \lambda .
\end{aligned}
$$

The parallels are reprecented by concentric circles each with the radius

$$
\rho=R \cot \varphi .
$$

The meridians are represented by the equally spaced radii of this system of circles.

If the point of tangency is on the Equator, $\alpha=0$, and the expressions become

$$
\begin{aligned}
& x=R \tan \lambda, \\
& y=R \tan \varphi \sec \lambda .
\end{aligned}
$$

The meridians in this case are represented by straight lines perpendicular to the X axis and parallel to the Y axis. The distance of the meridian λ from the origin is given by $x=R \tan \lambda$.

Any gnomonic projection is symmetrical with respect to the central meridian or to the Y axis, so that the computation of the projection on one side of this axis is sufficient for the complete construction. When the point of tangency is at the pole, or on the Equator, the projection is symmetrical both with respect to the Y axis and to the X axis. It is sufficient in either of these cases to compute the intersections for a single quadrant.

Another method for the construction of a gnomonic chart is given in the Admiralty Manual of Navigation, 1915, pages 31 to 38.

```
22864* - 21-10
```


WORLD MAPS.

As stated concisely by Prof. Hinks, "the problem of showing the sphere on a single sheet is intractable," and it is not the purpose of the authors to enter this field to any greater extent than to present a few of the systems of projection that have at least some measure of merit. The ones herein presented are either conformal or equalarea projections.

THE MERCATOR PROJECTION.

The projection was primarily designed for the construction of nautical charts, and in this field has attained an importance beyond all others. Its use for world maps has brought forth continual criticism in that the projection is responsible for many false impressions of the relative size of countries differing in latitude. These details have been fully described under the subject title, "Mercator projection," page 101.

The two errors to one or both of which all map projections are liable, are changes of area and distortion as applying to portions of the earth's surface. The former

Frg. 67.-Mercator projection, from latitude 60° south, to latitude 78° north.
error is well illustrated in a world map on this projection where a unit of area at the Equator is represented by an area approximating infinity as we approach the pole. Errors of distortion imply deviation from right shape in the graticules or network of meridians and parallels of the map, involving deformation of angles, curvature of meridians, changes of scale, and errors of distance, bearing, or area.

In the Mercator projection, however, as well as in the Lambert conformal conic projection, the changes in scale and area can not truly be considered as distortion or as errors. A mere alteration of size in the same ratio in all directions is not considered distortion or error. These projections being conformal, both scale and area are correct in any restricted locality when referred to the scale of that locality, but as the scale varies with the latitude large areas are not correctly represented.

Useful Features of the Mercator Projection in World Maps.-Granting that on the Mercator projection, distances and areas appear to be distorted relatively
when sections of the map differing in latitude are compared, an intelligent use of the marginal scale will determine these quantities with sufficient exactness for any given section. In many other projections the scale is not the same in all directions, the scale of a point depending upon the azimuth of a line.

As proof of the impossibilities of a Mercator projection in world maps, the critics invariably cite the exaggeration of Greenland and the polar regions. In the consideration of the various evils of world maps, the polar regions are, after all, the best places to put the maximum distortion. Generally, our interests are centered between 65° north and 55° south latitude, and it is in this belt that other projections present difficulties in spherical relations which in many instances are not readily expressed in analytic terms.

[^26]The Mercator projection embodies all the properties of conformality, which implies true shape in restricted localities, and the crossing of all meridians and parallels at right angles, the same as on the globe. The cardinal directions, north and south, east and west, always point the same way and remain parallel to the borders of the chart. For many purposes, meteorological charts, for instance, this property is of great importance. Charts having correct areas with cardinal directions running every possible way are undesirable.

While other projections may contribute their portion in special properties from an educational standpoint, they cannot entirely displace the Mercator projection which has stood the test for over three and a half centuries. It is the opinion of the authors that the Mercator projection, not only is a fixture for nautical charts, but that it plays a definite part in giving us a continuous conformal mapping of the world.

THE STEREOGRAPHIC PROJECTION.

The most widely known of all map projections are the Mecator projection already described, and the stereographic projection, which dates back to ancient Greece, having been used by Hipparchus (160-125 B. C.).

The stereographic projection is one in which the eye is supposed to be placed at the surface of the sphere and in the hemisphere opposite to that which it is desired to project. The exact position of the eye is at the extremity of the diameter passing through the point assumed as the center of the map.

It is the only azimuthal projection which has no angular distortion and in which every circle is projected as a circle. It is a conformal projection and the most familiar form in which we see it, is in the stereographic meridional as employed to represent the Eastern and Western Hemispheres. In the stereographic meridional projection the center is located on the Equator; in the stereographic horizon projection the center is located on any selected parallel.

Another method of projection more frequently employed by geographers for representing hemispheres is the globular projection, in which the Equator and central meridian are straight lines divided into equal parts, and the other meridians are

Fia. 68.-Stereographic meridional projection.
circular ares uniting the equal divisions of the Equator with the poles; the parallels, except the Equator, are likewise circular arcs, dividing the extreme and central meridians into equal parts.

In the globular representation, nothing is correct except the graduation of the outer circle, and the direction and graduation of the two diameters; distances and directions can neither be measured nor plotted. It is not a projection defined for the preservation of special properties, for it does not correspond with the surface of the sphere according to any law of cartographic interest, but is simply an arbitrary distribution of curves conveniently constructed.

The two projections, stereographic and globular, are noticeably different when seen side by side. In the stereographic projection the meridians intersect the parallels at right angles, as on the globe, and the projection is better adapted to the plotting and measurement of all kinds of relations ${ }^{39}$ pertaining to the sphere than any other projection. Its use in the conformal representation of a hemisphere is not fully appreciated.

In the stereographic projection of a hemisphere we have the principle of Tchebicheff, namely, that a map constructed on a conformal projection is the best possible when the scale is constant along the whole boundary. This, or an approxi-

Fra. 69.--Stereographic horizon projection on the horizon of Paris.
mation thereto, seems to be the most satisfactory solution that has been suggested in the problern of conformal mapping of a hemisphere.

The solution of various problems, including the measurement of angles, directions, and distances on this projection, is given in U. S. Coast and Geodetic Survey Special Publication No. 57. The mathematical theory of the projection, the con-

[^27]struction of the stereographic meridional and stereographic horizon projection, and tables for the construction of a meridional projection are also given in the same publication.

the aitoff equal-area projection of the sphere.

(See Plate V and fig. 70.)
The projection consists of a Lambert azimuthal hemisphere converted into a full sphere by a manipulation suggested by Aitoff. ${ }^{34}$

It is similar to Mollweide's equal-area projection in that the sphere is represented within an ellipse with the major axis twice the minor axis; but, since the parallels are curved lines, the distortion in the polar regions is less in evidence. The representation of the shapes of countries far east and west of the central meridian is not so distorted, because meridians and parallels are not so oblique to one another. The network of meridians and parallels is obtained by the orthogonal or perpendicular projection of a Lambert meridional equal-area hemisphere upon a plane making an angle of 60° to the plane of the original.

The fact that it is an equivalent, or equal-area, projection, combined with the fact that it shows the world in one connected whole, makes it useful in atlases on physical geography or for statistical and distribution purposes. It is also employed for the plotting of the stars in astronomical work where the celestial sphere may be represented in one continuous map which will show at a glance the relative distribution of the stars in the different regions of the expanse of the heavens.

Observations on ellipsomal projections.-Some criticism is made of ellipsoidal projections, as indeed, of all maps showing the entire world in one connected whole. It is said that erroneous impressions are created in the popular mind either in obtaining accuracy of area at the loss of form, or the loss of form for the purpose of preserving some other property; that while these are not errors in intent, they are errors in effect.

It is true that shapes become badly distorted in the far-off quadrants of an Aitoff projection, but the continental masses of special interest can frequently be mappod in the center where the projection is at its best. It is true that the artistic and mathematically trained eye will not tolerate "the world pictured from a comic mirror," as stated in an interesting criticism; but, under certain conditions where certain properties are desired, these projections, after all, play an important part.

The mathematical and theoretically elegant property of conformality is not of sufficient advantage to outweigh the useful property of equal area if the latter property is sought, and, if we remove the restriction for shape of small areas as applying to conformal projections, the general shape is often better preserved in projections that are not conformal.

The need of critical consideration of the system of projection to be employed in any given mapping problem applies particulary to the equal-area mapping of the entire sphere, which subject is again considered in the following chapters.

A base map without shoreline, size 11 by $22 \frac{1}{3}$ inches, on the Aitoff equal-area projection of the sphere, is published by the U. S. Coast and Geodetic Survey, the radius of the projected sphere being 1 decimeter. Tables for the construction of this projection directly from x and y coordinates follow. These coordinates were obtained from the Lambert meridional projection by doubling the x 's of half the longitudes, the y 's of half the longitudes remaining unchanged.

[^28]

Fig. 70.-The Aitoff equal-area projection of the sphere with the Americas in center.
table for the construction of an aitoff equal-area projection of the sphere.
(Radius of projected sphere equals 1 decimeter. Rectangalar coordinates in decimillimeters.)

Iongitude		0°	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°	110°	120°	130°	140°	150°	100°	170°	180°
Equator \qquad Latitude 10° \qquad	$\begin{aligned} & x \\ & y \\ & x \\ & y \end{aligned}$	0.0	174.5 0.0	$\begin{array}{r} 348.6 \\ 0.0 \end{array}$	$\begin{array}{r} 522.1 \\ 0.0 \end{array}$	$\begin{array}{r} 694.6 \\ 0.0 \end{array}$	$\begin{array}{r} 865.7 \\ 0.0 \end{array}$	$\begin{array}{r} 1035.3 \\ 0.0 \end{array}$	$\begin{array}{r} 1202.8 \\ 0.0 \end{array}$	$\begin{array}{r} 1368.1 \\ 0.0 \end{array}$	$\begin{array}{r} 1530.7 \\ 0.0 \end{array}$	$\begin{array}{r} 1690.5 \\ 0.0 \end{array}$	$\begin{array}{r} 1847.0 \\ 0.0 \end{array}$	$\begin{array}{r} 2000.0 \\ 0.0 \end{array}$	$\left.\begin{array}{r} 2149.2 \\ 0.0 \end{array} \right\rvert\,$	$\begin{array}{r} 2294.3 \\ 0.0 \end{array}$	$\begin{array}{r} 2435.0 \\ 0.0 \end{array}$	$\begin{array}{\|} 2571.2 \\ 0.0 \end{array}$	$\begin{array}{r} 2702.4 \\ 0.0 \end{array}$	$\begin{array}{r} 2828.4 \\ 0.0 \end{array}$
		0.0 174.3	172.5 174.5	344.6 175.0	516.1 175.8	686.6 177.0	855.7 178.5	1023.2 180.4	$\begin{array}{r} 1188.6 \\ 182.7 \end{array}$	$\begin{array}{r} 1351.8 \\ 185.4 \end{array}$	$\begin{array}{r} 1512.2 \\ 189.6 \end{array}$	$\begin{array}{r} 1669.8 \\ 192.2 \end{array}$	$\begin{array}{\|r\|} 1824.0 \\ 196.3 \end{array}$	$\begin{array}{r} 1974.6 \\ 201.0 \end{array}$	$\begin{array}{r} 2121.3 \\ 206.4 \end{array}$	$\begin{array}{r} 2263.8 \\ 212.4 \end{array}$	$\begin{gathered} 2401.8 \\ 219.2 \end{gathered}$	$\begin{array}{r} 2534.9 \\ 226.9 \end{array}$	$\begin{array}{r} 2663.2 \\ 235.7 \end{array}$	$\begin{array}{r} 2785.5 \\ 245.6 \end{array}$
Latitude $20^{\circ} \ldots \ldots \ldots \ldots \ldots \ldots$	$\begin{aligned} & x \\ & y \\ & x \\ & y \end{aligned}$	0.0 347.3	${ }_{347.6}^{166.5}$	332.6 348.6	498.1 350.2	$\begin{aligned} & 662.5 \\ & 352.5 \end{aligned}$	$\begin{aligned} & 825.5 \\ & 355.5 \end{aligned}$	986.7 359.1	$\begin{array}{r} 1146.0 \\ 363.6 \end{array}$	$\begin{array}{r} 1302.7 \\ 368.8 \end{array}$	$\begin{array}{r} 1456.7 \\ 374.9 \end{array}$	$\begin{gathered} 1607.6 \\ 381.9 \end{gathered}$	$\begin{array}{r} 1755.0 \\ 389.9 \end{array}$	$\begin{gathered} 1898.6 \\ 399.0 \end{gathered}$	$\begin{array}{r} 2037.9 \\ 409.2 \end{array}$	$\begin{array}{r} 2172.7 \\ 420.8 \end{array}$	$\begin{array}{r} 2302.5 \\ 433.8 \end{array}$	$\begin{array}{r} 2436.9 \\ 448.5 \end{array}$	$\begin{array}{r} 2545.6 \\ 465.0 \end{array}$	$\begin{array}{r} 2657.9 \\ 483.7 \end{array}$
Latitude 30°.		0.0 517.6	${ }^{156.4} 5$	312.5 519.5	$\begin{aligned} & 467.8 \\ & 521.8 \end{aligned}$	$\begin{aligned} & 622.1 \\ & 525.0 \end{aligned}$	$\begin{array}{r} 774.9 \\ 529.3 \end{array}$	$\begin{aligned} & 925.8 \\ & 534.5 \end{aligned}$	$\begin{array}{r} 1074.6 \\ 540.8 \end{array}$	$\begin{gathered} 1220.8 \\ 548.3 \end{gathered}$	$\begin{array}{r} 1364.0 \\ 556.9 \end{array}$	$\begin{array}{r} 1504.0 \\ 566.7 \end{array}$	$\begin{array}{r} 1640.1 \\ 578.0 \end{array}$	$\begin{array}{r} 1772.1 \\ 590.7 \end{array}$	$\begin{gathered} 1899.4 \\ 605.0 \end{gathered}$	$\begin{array}{r} 2021.7 \\ 621.1 \end{array}$	$\begin{gathered} 2138.5 \\ 639.1 \end{gathered}$	$\begin{gathered} 2249.1 \\ 659.3 \end{gathered}$	$\begin{array}{r} 2353.0 \\ 681.8 \end{array}$	2449.5 707.1
Latitude 40°.	$\begin{aligned} & x \\ & y \end{aligned}$	0.0 684.0	142.2 684.6	$\begin{aligned} & 284.1 \\ & 686.3 \end{aligned}$	425.1 689.2	565.1 693.2	703.5 698.4	$\begin{aligned} & 840.0 \\ & 704.8 \end{aligned}$	$\begin{aligned} & 974.2 \\ & 712.6 \end{aligned}$	$\begin{aligned} & 1105.6 \\ & 721.6 \end{aligned}$	$\begin{gathered} 1233.9 \\ 732.1 \end{gathered}$	$\begin{array}{r} 1358.7 \\ 744.1 \end{array}$	$\begin{array}{r} 1479.4 \\ 757.7 \end{array}$	$\begin{array}{r} 1595.6 \\ 773.0 \end{array}$	$\begin{array}{r} 1706.8 \\ 790.1 \end{array}$	$\begin{array}{r} 1812.4 \\ 809.2 \end{array}$	$\begin{array}{\|} 1911.9 \\ 830.4 \end{array}$	$\begin{array}{r} 2004.6 \\ 854.0 \end{array}$	2089.8 880.1	2166.7 909.0
Latitude 50°.	$\begin{aligned} & x \\ & y \end{aligned}$	0.0 845.2	123.7 845	247.0 847.8	369.6 850.9	491.0 855.4	610.8 861.2	728.6 868.3	$\begin{aligned} & 844.0 \\ & 876.8 \end{aligned}$	$\begin{aligned} & 956.6 \\ & 886.8 \end{aligned}$	$\begin{gathered} 1066.0 \\ 898.3 \end{gathered}$	$\begin{array}{r} 1171.6 \\ 911.3 \end{array}$	$\begin{array}{r} 1273.0 \\ 926.0 \end{array}$	1369.7 942.4	$\begin{array}{r} 1461.2 \\ 960.7 \end{array}$	$\begin{array}{r} 1546.8 \\ 980.9 \end{array}$	$\begin{array}{\|l\|l\|} 1626.1 \\ 1003.1 \end{array}$	$\begin{aligned} & 1698.2 \\ & 1027.5 \\ & \end{aligned}$	$\begin{aligned} & 1762.5 \\ & 1054.2 \end{aligned}$	1818.1 1083.4
Latitude 60°.	x y	0.0 1000.0	100.7 1000.6	$\begin{array}{\|c} 201.0 \\ 1002.5 \end{array}$	$\begin{array}{r} 299.9 \\ 1005.7 \end{array}$	$\begin{array}{r} 399.0 \\ 1010.2 \end{array}$	$\begin{array}{r} 495.8 \\ 1016.0 \end{array}$	$\begin{array}{r} 590.7 \\ 1023.1 \end{array}$	$\begin{gathered} 682.7 \\ 1030.8 \end{gathered}$	$\begin{array}{r} 773.0 \\ 1041.4 \\ \hline \end{array}$	$\begin{array}{r} 859.5 \\ 1052.7 \end{array}$	$\begin{array}{r} 942.4 \\ 1065.4 \end{array}$	1021.2	1095.4	$\begin{aligned} & 1164.6 \\ & 1112.8 \end{aligned}$	$\begin{aligned} & 1228.1 \\ & 1131.8 \end{aligned}$	1285.4 1152.4	1335.9 1174.8	1379.1 1198.9	1414.2 1224.7
Latitude 70°.	$\begin{aligned} & x \\ & y \end{aligned}$	$\begin{array}{r} 1147.2 \end{array}$	$\begin{array}{r} 72.8 \\ 1147.7 \end{array}$	$\begin{array}{r} 145.3 \\ 1149.4 \end{array}$	$\begin{array}{r} 217.1 \\ 1152.2 \end{array}$	$\begin{array}{r} 287.8 \\ 1156.1 \end{array}$	$\begin{array}{r} 357.2 \\ 1161.1 \end{array}$	$\begin{array}{r} 424.8 \\ 1167.3 \end{array}$	$\begin{gathered} 490.4 \\ 1174.5 \end{gathered}$	$\begin{array}{r} 553.5 \\ 1183.0 \end{array}$	$\begin{array}{r} 613.8 \\ 1192.5 \end{array}$	$\begin{array}{r} 669.4 \\ 1203.2 \end{array}$	$\begin{array}{r} 724.5 \\ 1215.1 \end{array}$	$\begin{array}{r} 774.2 \\ 1228.1 \end{array}$	$\begin{array}{r} 819.5 \\ 1242.2 \end{array}$	$\begin{array}{r} 860.1 \\ 1257.4 \end{array}$	$\begin{array}{r} 895.6 \\ 1273.7 \end{array}$	$\begin{array}{r} 925.6 \\ 1291.1 \end{array}$	949.6 1309.6	967.4 1328.9
Latitude 80°.	$\begin{aligned} & x \\ & y \\ & x \\ & y \end{aligned}$	$\begin{array}{r} 0.0 \\ 1285.6 \end{array}$	$\begin{array}{r} 39.5 \\ 1285.9 \end{array}$	$\begin{array}{r} 78.8 \\ 1287.0 \end{array}$	$\begin{array}{r} 117.6 \\ 1288.8 \end{array}$	$\begin{array}{r} 155.8 \\ 1291.4 \end{array}$	$\begin{array}{r} 192.9 \\ 1294.6 \end{array}$	$\begin{array}{r} 229.0 \\ 1298.5 \end{array}$	$\begin{array}{r} 263.6 \\ 1303.1 \end{array}$	$\begin{array}{r} 296.6 \\ 1308.4 \end{array}$	327.8 1314.4	356.8 1321.0	$\begin{array}{r} 383.7 \\ 1328.2 \end{array}$	$\begin{array}{r} 408.0 \\ 1335.9 \end{array}$	429.6 1344.3	13438.4	464.1 1362.4	476.6 1372.2	485.6 1382.3	491.2 +392.7
Latitude 90°.		$\begin{array}{r} 0.0 \\ 1414.2 \end{array}$																		

Thus, in the Lambert meridional projection, the coordinates at latitude 20°, longitude 20°, are
$x=0.33123$ decimeter, or 331.23 decimillimeters.
$y=0.35248$ decimeter, or 352.48 decimillimeters.
For the Aitoff projection, the coordinates at latitude 20°, longitude 40°, will be

$$
x=2 \times 331.23=662.5 \text { decimillimeters } .
$$

$y=\quad 352.5$ decimillimeters.
The coordinates for a Lambert equal-area meridional projection are given on page 75.

THE MOLLWEIDE HOMALOGRAPHIC PROJECTION.

This projection is also known as Babinet's equal-surface projection and its distinctive character is, as its name implies, a proportionality of areas on the sphere with the corresponding areas of the projection. The Equator is developed into a straight line and graduated equally from 0° to 180° either way from the central meridian, which is perpendicular to it and of half the length of the representative line of the Equator. The parallels of latitude are all straight lines, on each of which the degrees of longitude are equally spaced, but do not bear their true proportion in length to those on the sphere. Their distances from the Equator are determined by the law of equal surfaces, and their values in the table have been tabulated between the limits 0 at the Equator and 1 for the pole.

Fig. 71.-The Mollweide homalographic projection of the sphere.
The meridian of 90° on either side of the central meridian appears in the projection as a circle, and by intersection determines the length of 90° from the central meridian on all the parallels; the other meridians are parts of elliptical arcs.

Extending the projection to embrace the whole surface of the sphere, the bounding line of the projection becomes an ellipse; the area of the circle included by the meridians of 90° equals that of the hemisphere, and the crescent-shaped areas lying outside of this circle between longitudes $\pm 90^{\circ}$ and $\pm 180^{\circ}$ are together equal to that of the circle; also the area of the projection between parallels $\pm 30^{\circ}$ is equal to the same.

In the ellipse outside of the circle, the meridional lengths become exaggerated and infinitely small surfaces on the sphere and the projection are dissimilar in form.

The distortion in shape or lack of conformality in the equatorial belt and polar regions is the chief defect of this projection. The length which represents 10 degrees of latitude from the Equator exceeds by about 25 per cent the length along the Equator. In the polar regions it does not matter so much if distortions become excessive in the bounding circle beyond 80 degrees of latitude.

The chief use of the Mollweide homalographic projection is for geographical illustrations relating to area, such as the distribution and density of population or the extent of forests, and the like. It thus serves somewhat the same purpose as the Aitoff projection already described.

The mathematical description and theory of the projection are given in Lehrbuch der Landkartenprojectionen by Dr. Norbert Herz, 1885, pages 161 to 165; and Craig (Thomas), Treatise on Projections, U. S. Coast and Geodetic Survey, 1882, pages 227 to 228.

CONSTRUCTION OF THE MOLLWEIDE HOMALOGRAPHIC PROJEOTION OF A HEMISPHERE.

Having drawn two construction lines perpendicular to each other, lay off north and south from the central point on the central meridian the lengths, $\sin \theta$, which are given in the third column of the tables ${ }^{35}$ and which may be considered as y coor-

Fra. 72.-The Mollweide homalographic projection of a hemisphere.
dinates, these lengths being in terms of the radius as unity. The points so obtained will be the points of intersection of each parallel of latitude with the central meridian.

With a compass set to the length of the radius and passing through the upper and lower divisions on the central meridian, construct a circle, and this will represent the outer meridian of a hemisphere. Through the points of intersection on the central meridian previously obtained, draw lines parallel to the Equator and they will represent the other parallels of latitude.

[^29]For the construction of the meridians, it is only necessary to divide the Equator and parallels into the necessary number of equal parts which correspond to the unit of subdivision adopted for the chart.

HOMALOGRAPHIC PROJECTION OF THE SPIERE.

In tho construction of a projection including the entire sphere (fig. 71), we proceed as before, excepting that the parallels are extended to the limiting ellipse, and their lengths may be obtained by doubling the lengths of the parallels of the hemisphere, or by the use of the second column of the tables under the values for $\cos \theta$, in which $\cos \theta$ represents the total distance out along a given parallel from the central to the outer meridian of the hemisphere, or 90 degrees of longitude. In the projection of a sphere these distances will be doubled on each side of the central meridian, and the Equator becomes the major axis of an ellipse.

Equal divisions of the parallels corresponding to the unit of subdivision adopted for the chart will determine points of intersection of the ellipses representing the meridians.

TABLE FOR THE CONSTRUOTION OF THE MOLLWEIDE HOMALOGRAPHIC PROJECTION. $[\pi \sin \varphi=2 \theta+\sin 2 \theta$.

Latitude φ	$\cos \theta$	$\sin \theta$	$\begin{aligned} & \text { Difference } \\ & \sin \theta \end{aligned}$	Latitude φ	$\cos \theta$	$\sin \theta$	$\begin{aligned} & \text { Differenco } \\ & \sin \theta \end{aligned}$
- ,				- ,			
000	1.0000000	0.00000000		2230	0. 0522324	0.30537390	
030	0.9999767	0.00685431	${ }_{885382}$	2300	0.9500756	0. 31201940	684550
100	0. 9999060	0.01370813	${ }_{685331}$	2330	0.9478704	0.31865560	683620
130	0. 9997884	0.02056114	685331 685279	2400	0.9456170	0.32528210	682850 681650
200	0.9896240	0.02741423	685190	2430	0.9433152	0.33189860	$\begin{aligned} & 681850 \\ & 660660 \end{aligned}$
	0.9994127	0.03426022		2500	0.9409646	0.33850520	
300	0.9991542	0.04111710	885088	2530	0.9385654	0.34510150	659830
330	0.9988489	0.04796860	684950 684805	2600	0.9361174	0.35188730	658580
400	0. 9984907	0. 05481485	684805 684650	2630	0. 9336210	0.35826250	657520 656430
430	0.9980970	0.06168115	$\begin{aligned} & 684650 \\ & 684485 \end{aligned}$	2700	0.9310754	0.36482680	$\begin{aligned} & 656430 \\ & 655320 \end{aligned}$
500	0.9976507	0.06850600		2730	0. 9284809	0.37138000	
530	0.9971572	0.07534880	684280 684070	2800	0.9258374	0.37792200	654200
600	0.9866169	0.08218950	8883830	2830	0.9231446	0.38445240	653040
630	0.9960289	0.08902780	683830 683500	2900	0.8204030	0.39097120	${ }_{650720}$
700	0.9953942	0.09586340	883270	2930	0.9178119	0. 39747840	$\begin{aligned} & 650720 \\ & 649540 \end{aligned}$
	0.9947127	0.10269810		$30 \quad 00$	0.9147708	0. 40397380	
800	0.9938839	0.10952580	682655	$30 \quad 30$	0.9118800	0.41045670	648290
830	0.9932080	0.11635235	6882330	3100	0.9089400	0.41692880	647010
900	0.9923847	0.12317585	682380 881980	3130	0.9059504	0. 42338400	645720
9.30	0.9915144	0.12999545	881610	3200	0.9029108	0. 42982800	$\begin{aligned} & 644400 \\ & 643040 \end{aligned}$
1000	0.9905970	0.13681155		3230	0.8998216	0. 43625840	
$10 \quad 30$	0.9898322	0.14362350	681195 680745	3300	0.8986820	0.44267510	841670 640300
1100	0.9886204	0.15043095	680745 680285	$33 \quad 30$	0.8934924	0.44907810	640300
1130	0.9875614	0. 15723380	680285 679810	34.00	0.8902524	0,45546720	638910 637520
1200	0.9864550	0.16403190	$\begin{aligned} & 679810 \\ & 679330 \end{aligned}$	3430	0.8869620	0. 46184240	$\begin{aligned} & 637520 \\ & 636110 \end{aligned}$
1230	0.9853012	0.17082520			0.8836206	0. 46820350	
1300	0.9841004	0.17761365	678845 678345	3530	0. 8802282	0. 47455020	634870
1330	0.9828517	0.18439710	678345	3600	0.8767850	0. 48088240	633220
1400	0.9815556	0.19117535	677825 677275	3630	0.8732908	0. 48719920	631680 630180
1480	0.9802124	0.19794810	677275 676890	3700	0.8697454	0.49350080	630150 62850
1500	0.9788217	0.20471500		3730	0.8661484	0.49978670	
1530	0.9773830	0.21147590	678090 67540	3800	0.8625002	0.50805670	${ }_{6} 625420$
1600	0.9758970	0.21823050	674795	3830	0.85888002	0.51231090	623760
1630	0.9743837	0.22497845	674115	3900	0.8550482	0.51854850	622130
17.00	0.9727827	0.23171960	673430	3930	0.8512442	0. 52476980	620440
1730	0.9711537	0.238453390			0.8473879	0.53097420	
1800	0.9694770	0.24518120	672730 672000	$40 \quad 30$	0.8434792	0.53716160	618740 617010
1830	0.9677529	0.25190120	671250	4100	0.8395179	0. 54333170	615280
1900	0.9659809	0.25881370	870470	4130	0.8355020	0.54948450	613510
1930	0.9641809	0.26531840	${ }_{6} 69680$	4200	0.8314364	0.55561900	611700
2000	0.9622929	0.27201520		4230	0.8273120	0. 56173660	
$20 \quad 30$	0.9603770	0. 27870400	668880 668030	4300	0.8231420	0.56783530	609870 608020
2100	0.0584130	0. 28538430	${ }_{667180}$	4330	0.8189142	0. 57391550	606180
2130	0.9584009	0.29205610	${ }_{666340}$	4400	0.8146326	0. 57997710	606160 604300
2200	0.9543409	0. 29871950	6663440 66544	4430	0.8102966	0. 58802010	604300 602360
2230.	0.9522324	0.30537390	665440	4500	0.8050058	0.59204370	602360

TABLE FOR THE CONSTRUCTION OF THE MOLLWEIDE HOMALOGRAPHIO PROJECTIONcontinued.
[$x \sin \varphi=2 \theta+\sin 2 \theta$.

$\underset{\varphi}{\text { Latitude }}$	$\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$	$\sin \theta$	$\begin{gathered} \text { Difference } \\ \sin \theta \end{gathered}$	$\underset{\varphi}{\text { Latitude }}$	$\cos \theta$	$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	$\begin{aligned} & \text { Difference } \\ & \sin \theta \end{aligned}$
				${ }^{\circ} 78$			
45 45 45	0.8059058	0.59204370 0.59804760	${ }^{600330}$	67 68 68 00	0.5451794 0.5377379	$\begin{aligned} & 0.83831940 \\ & 0.84311240 \end{aligned}$	
45 46 460	0.8014604	0.598804760 0.60403170	598410 596360	6830	0. 5302071	0.84788820	475580 471840
4630	0. 7924049	0.60999530	594340	69 69 60	0.5225861	0.85258860 0.85726740	468080
4700	0.7877940	0.61583870	592320		0.5148715	0.85726740	464320
	0.7831270	0.62186190	590220	7000	0.5070603	0.88191060	460420
4800	0. 7784035	0.62776410	588130	$\begin{array}{ll}70 & 30 \\ 71 & 00\end{array}$	0. 49915111	0.88651480 0.87107920	456440
4830	0.7736235	0.63364540	586020	${ }_{71}{ }^{1} 00$	0.4911423 0.4830314	0.87107920 0.87560300	452380
49 49 10	0.7687865 0.7638925	0.63535360 0.6450	583800 581600	7200	0. 0.4748167	0.885603460 0.8808400	448160 443940
		0.65115960		7230	0. 4664942	0.88452400	
	0.7538317	0.65695270	577080	7300	0. 4580613	0.88892040	439640
5100	0.7488643	0.66272350	574850	7330	0. 4495146	0.89327300	${ }_{430720}$
5130	0.7437375	0.66847200	572510	74 74	0.4408511	0.89758020	426180
5200	0.7385513	0.67419710	570200	7430	0.4320659	0.90184180	421440
	0.7333054	0.67989910		7500	0. 4231614	0.90605820	
	0.7279995	0.68557740	565440	75 780 780	0. 4141158	0. 91022420	416800 412100
5330	0.7228332	${ }^{0.69123180}$	562950	76 7600 760	0.4049354 0.3956158	0.91434520 0.91841600	407080
5400	0.7172058	0.69688130 0.70246580	560450	7700	0.3956158	${ }_{0}^{0.92243460}$	401860
5430	0.7117175		557880				396550
	0,7061676	0.70804460		7730	0.3765409	0. 92640010	
55.30	0.7005550	0.71359830	552820	7800 78	0.3667705	0.93031150	${ }_{385710}$
$\begin{array}{lll}56 & 00 \\ 56 & 30\end{array}$	0.6948790	0.71912650 0.72462920	550270	7800	0.3568322	0.93416860 0.93797060	380200
$\begin{array}{ll}56 & 30 \\ 57 & 00\end{array}$	0.6891390 0.6833342	0.72462920 0.73010570	547850 545000	79 70	${ }_{0}^{0.34374437}$	${ }_{0}^{0.94171410}$	374350 368190
	0.633342		545000				368190
	0.6774641	0.73555570	542300		0. 3259234	0.94539600	
	0.6715285	${ }_{0}^{0.74097870}$	539480	80 81 80 00	0.3152285 0.3043189	0.94901590 0.95257020	355430
5830	0.6655270 0.6594590	${ }^{0.74637350}$	536770	8100 8180	0.3043189	0.95257020 0.95605840	348820
59 59 59	0.6594590 0.6533232	0. 0.75707900	533880 530970	8200	0.2817783	0.95948020	342180 334980
	0.6471191	0.76238870			0.2701079	0.96283000	
6030	0.6408456	0.76768950	525170	8300	0.2581516	0.90610470	327470 31970
6100	0.6345019	0. 77292120	522190	8330	0.24588837	0.98929940	311150
6130	0.6280869	0.77814310	519140	8400	0.2332737	0.97241090	302800
6200	0.6218001	0.78333450	516070	8430	0.2022700	0.97543890	293630
	0.6150407	0.78849520			0.2088385	0.97837520	
6300	0.6084076	0.79382470	509820	85.30	0. 1929149	0.98121520	273550
6330	0.6016988	0.79872290	506610	80	0.1784407	0.98395070	261900
6400	0. 5949143	0.80378900	503400	8630	0.1833412	0.98856970	249500
6430	0. 5880519	0.80882300	500120	8700	0. 1474838	0.88908470	236180
	0.5811107	0.81382 ¢20			0. 1308660	0.99142650	
6530	0.5740894	0.81877250	493410	8800	0.1126372	0.99363820	203020
6600	0.5660870	0.82372860	489940	8880	0.0929962	0.99566840	180630
6630	0.5598024	0.82862600	488440	8900	0.0710530	0.99747970	152500
6700 67	0.5525339 $\mathbf{0 . 5 4 5 1 7 9 4}$	0.83349040 0.83831940	482900	89 90 00	0.0447615 0.0000000	0.99899770 1.0000000	100230

GOODE'S HOMALOGRAPHIC PROJECTION (INTERRUPTED) FOR THE CONTINENTS AND oceans.
[See Plate VI and fig. 73.]
Through the kind permission of Prof. J. Paul Goode, Ph. D., we are able to include in this paper a projection of the world devised by him and copyrighted by the University of Chicago. It is an adaptation of the homalographic projection and is illustrated by Plate VI and by figure 73, the former study showing the world on the homalographic projection (interrupted) for the continents, the latter being the same projection interrupted for ocean units.

The homalographic projection (see fig. 71) which provides the base for the new modification was invented by Prof. Mollweide, of Halle, in 1805, and is an equalarea representation of the entire surface of the earth within an ellipse of which the ratio of major axis to minor axis is $2: 1$. The first consideration is the construction of an equal-area hemisphere (see fig. 72) within the limits of a circle, and in this pro-
jection the radius of the circle is taken as the square root of 2 , the radius of the sphere being unity. The Equator and mid-meridian are straight lines at right angles to each other, and are diameters of the map, the parallels being projected in right lines parallel to the Equator, and the meridians in ellipses, all of which pass through two fixed points, the poles.

In view of the above-mentioned properties, the Mollweide projection of the hemisphere offers advantages for studies in comparative latitudes, but shapes become badly distorted when the projection is extended to the whole sphere and becomes ellipsoidal. (See fig. 71.)

In Prof. Goode's adaptation each continent is placed in the middle of a quadrillage centered on a mid-meridian in order to secure for it the best form. Thus North America is best presented in the meridian 100° west, while Eurasia is well taken care of in the choice of 60° east; the other continents are balanced as follows: South America, 60° west; Africa, 20° east; and Australia, 150° east.

Besides the advantage of equal area, each continent and ocean is thus balanced on its own axis of strength, and world relations are, in a way, better shown than one may see them on a globe, since they are all seen at one glance on a flat surface.

In the ocean units a middle longitude of each ocean is chosen for the mid-meridian of the lobe. Thus the North Atlantic is balanced on 30° west, and the South Atlantic on 20° west; the North Pacific on 170° west, and the South Pacific on 140° west; the Indian Ocean, northern lobe on 60° east, and southern lobe 90° east.

We have, then, in one setting the continents in true relative size, while in another setting the oceans occupy the center of interest.

The various uses to which this map may be put for statistical data, distribution diagrams, etc., are quite evident.

Section 3 (the eastern section) of figure 73, if extended slightly in longitude and published separately, suggests possibilities for graphical illustration of long-distance sailing routes, such as New York to Buenos Aires with such intermediate points as may be desired. While these could not serve for nautical charts-a province that belongs to the Mercator projection-they would be better in form to be looked at and would be interesting from an educational standpoint.

As a study in world maps on an equal-area representation, this projection is a noteworthy contribution to economic geography and modern cartography.

LAMBERT PROJECTION OF THE NORTHERN AND SOU'THERN HEMISPHERES.

> [See Plate VII.]

This projection was suggested by Commander A. B. Clements of the U. S. Shipping Board and first constructed by the U. S. Coast and Geodetic Survey. It is a conformal conic projection with two standard parallels and provides for a repetition of each hemisphere, of which the bounding circle is the Equator.

The condition that the parallel of latitude 10° be held as one of the standards combined with the condition that the hemispheres be repeated, fixes the other standard parallel at $48^{\circ} 40^{\prime}$.

The point of tangency of the two hemispheres can be placed at will, and the repetition of the hemispheres provides ample room for continuous sailing routes between any two continents in either hemisphere.

A map of the world has been prepared for the U. S. Shipping Board on this system, scale 1:20000000, the diameter of a hemisphere being 54 inches. By a gearing device the hemispheres may be revolved so that a sailing route or line of commercial interest will pass through the point of contact and will appear as a continuous line on the projection.

Tables for the construction of this projection are given on page 86. The scale factor is given in the last column of the tables and may be used if greater ąccuracy in distances is desired. In order to correct distances measured by the graphic

savy atzoas
Fig. 74.-Guyou's doubly periodic projection of the sphere.
scale of the map, divide them by the scale factor. Corrections to area may be applied in accordance with the footnote on page 81. With two of the parallels true to scale, and with scale variant in other parts of the map, care should be exercised in applying corrections.

In spite of the great extent covered by this system of projection, the property of form, with a comparatively small change of scale, is retained, and a scale factor for the measurement of certain spherical relations is available.

CONFORMAL PROJECTION OF THE SPHERE WITHIN A TWO-CUSPED EPICYCLOID.

[See Plate VIII.]

The shape of the sphere when developed on a polyconic projection (see fig. 47) suggested the development of a conformal projection within the area inclosed by a two-cusped epicycloid. The distortions in this case appear in the distant quadrants, or regions, of lesser importance.

Notwithstanding the appearance of similarity in the bounding meridians of the polyconic and the conformal development, the two projections are strikingly different and present an interesting study, the polyconic projection, however, serving no purpose in the mapping of the entire sphere.

For the above system of conformal representation we are indebted to Dr. F. August and Dr. G. Bellermann. The mathematical development appears in Zeitschrift der Gesellschaft für Erdkunde zu Berlin, 1874, volume 9, part 1, No. 49, pages 1 to 22 .

gUYou's doubly periodic projection of the sphere.

[See fig. 74.]
In Annales Hydrographiques, second series, volume 9, pages 16-35, Paris, 1887, we have a description of an interesting projection of the entire sphere by Lieut. E. Guyou. It is a conformal projection which provides for the repetition of the world in both directions-east or west, north or south, whence the name doubly periodic. The necessary deformations are, in this projection, placed in the oceans in a more successful manner than in some other representations.

The accompanying illustration shows the Eastern and Western Hemispheres without the duplicature noted above.

The above projection is the last one in this brief review of world-map projections. In the representation of moderate areas no great difficulties are encountered, but any attempt to map the world in one continuous sheet presents difficulties that are insurmountable.

Two interesting projections for conformal mapping of the world are not included in this review as they have already been discussed in United States Coast and Geodetic Survey Special Publication No. 57, pages 111 to 114 . Both of these are by Lagrange, one being a double circular projection in which Paris is selected as center of least alteration with variation as slow as possible from that point; the other shows the earth's surface within a circle with the center on the Equator, the variations being most conspicuous in the polar regions.

For conformal mapping of the world the Mercator projection, for many purposes, is as good as any, in that it gives a definite measure of its faults in the border scale; for equal-area mapping, Prof. Goode's interrupted homalographic projection accomplishes a great deal toward the solution of a most difficult problem.

INDEX

Aitoff equal-area projection.............. ${ }^{\text {Page. }}$ (153	n-C
Table. $15 . .15$	Stereographic meridional............ 42, 44, 51,
Albers, H. C............................... . 91	116, 147-149
Albers projection......................... 55,56	Stereographic polar.................. 35, 147
Comparison with Lambert conformal.... $92-$	Conformality............................. 78
93, 116	Conical projections (see also Albers and Lam-
Construction.......................... 99	bert).................................. 46
Description.......................... 91-93	Craig, Thomas............................. 78, 154
Mathematical theory................... 93-99	Cylindrical conformal projection (see also
Table for United States................. 100	Mercator)........................... 32, 51, 56
Anti-Gudermannian........................ 114	Cylindrical equal-area projection........ 30, 56, 93
August, Dr. F............................. 160	Cylindrical equal-spaced projection.......... 30
Authalic latitude...................... 54, 56,99	Deformation tables......................... . 54,56
Azimuthal projection:	
Gnomonic meridional.................. 43, 45	Earth:
Gnomonic (or central)................. 37, 43,	Polyhedron........................... 28
45, 52, 101-103, 140-145	Reference lines......................... 11
Lambert meridional equal-area.. 43, 73, 74, 116	Shape.
Lambert polar equal-area.............. 38	Truncated cone...................... 28
Lambert zenithal equal-area.... 56, 71-74, 116	Ellipsoidal projections..................... 150
Orthographic meridional. 43, 51	Equal-area mapping...................... . 54, 116
Orthographic polar.................... 38	Equal-area projections..................... 24, 26
Polar equidistant..................... 40,147	Aitoff............................... 150-153
Polar gnomonic. 37,147	Albers.................... 55, 56, 91-100, 116
Stereographic horizon. 116, 147-149	Bonne................. 49, 60, 67-70, 81, 116
Stereographic meridional.............. 42, 44,	Cylindrical....................... 30, 56, 93
51, 116, 147-149	Goode's homalographic........ 57, 156-158, 160
Stereographic polar................... 35, 147	Lambert meridional azimuthal...... 43, 73, 116
Behrmann, Dr. W......................... 93	Lambert zenithal (or azimuthal) projec-
Bonne projection.................. 49, 60, 81, 116	tion........................ 56, 71-74, 116
Construction........................... . 68-70	Mollweide. 24, 153-156
Description............................ 67 67-68	Sanson-Flamsteed...................... 68
Bourdin, J., tables. 154	Equal-spaced projection, cylindrical........ 30
Bowditch, American Practical Navigator... 112	Equidistant polar projection............... 40, 147
British Admiralty:	Errors of projections...... 54-56, 59, 80-82, 91, 146
Fixing positions by wireless............. 137	Compensation......................... 81-82
Gnomonic charts.................... 141	Fowler, G. H................................ 140
Manual of navigation................. 145	Frischauf, Dr. 65
Central projection (see also Gnomonic)...... 37	Gauss....................................... . 54, 57
Gnomonic meridional.................. 43, 45	Geological Survey, tables................... 62
Gnomonic polar....................... 37	Geometrical azimuthal projections.......... 35
Tangent cone........................ 47	Germain, A., tables (Mercator)............ 116-136
Tangent cylinder..................... 30	Globe:
Choice of projection....................... 54	Plotting points 14
Clements, A. B............................. 158	Terrestrial.............................. 19
Collins, E. B.............................. 137	Globular projection................. 43, 44, 51, 148
Conformal mapping. 26, 54, 116	Gnomonic (or central) projection 101-103
Conformal projection:	Description......................... 140-141
Lambert. See Lambert.	Mathematical theory.................. 140-145
Mercator. See Mercator.	Meridional. 43, 45
Sphere............................... 160	Polar.................................. 37
Stereographic horizon............ 116, 147-149	Tangent cube

Goode, Prof. J. P.......................... 57, 160	
Homalographic projectio	
Great circles (see also Plate 1)	
Grid system of military mappi	
	87
Uni	87-90
Guyou's doubly periodic projection. 159-160	
Hartl, Prof.................................. 91, 93	
Hassler, Ferdina	
Hendrickson, W. W......................... 149	
Herz, Dr. Norbert.......................... 93, 154	
Hill, George William	
Hinks, A. R............................ 60, 79, 146Hydrographic Office, U. S........ 103, 137, 138, 147	
International map. See Polyconic projection with two standard meridians.	
sometric latitude	
Isoperimetric curves........................ 24,92	
Lambert azimuthal projection, polar........ 38	
Lambert conformal conic projection.........55,56, $\begin{array}{r}77-86,116\end{array}$	
Comparison with Lambert zenithal..... 72	
Compensation of scale erro	
Construction.......................... . 83	
General observations.................... 80	
$\begin{array}{ll}\text { Table for hemispheres............................. } 86 \\ \text { Table for North Atlantic.......... } & 85\end{array}$	
Tables for United States, reference.... 83,84	
Lambert equal-area meridional projection... 43, 56,$71-73,116$	
Table for construction	73,74
Lambert, Johann Heinrich................. 78	
Lambert projection of the northern and southern hemispheres.. \qquad 158-160	
Table................................. 86	
Lambert zenithal (or azimuthal) projection.. 56,$71-73,116$	
Comparison with Lambert conformal.... ${ }^{\text {a }}$, 72Table for construction 73,74	
Latitude determination.................... 12	
Lecky, reference to tables.................. 141	
Map:	
Definition.	
Ideal, the........................... $\quad 27$	
Process of making	
Map projection:	
Azimuthal.	
Condition fulfilled......................... 25 Conformal	
Conventional.......................... 27	
Definition Distortion.	

Map projection-Continued. Page.
Geometrical azimuthal..................... 35
Perspective....................................... 26
Polar equidistant............................ . . 40,147
Problem... 22
Mercator projection............................... . . 32, 51,
101-137, 141, 145-147, 160
Advantages. 103-105
Construction. 109-114
Description. 101-105
Development of formulas............. . . 105-109
Distances measured...................... . . 103, 112
Employed by Coast and Geodetic Sur-
vey... 104, 105
High latitudes. 82, 104
Tables...................... $109,110,116,117-136$
Transverse....................... 104, 108, 109, 116
Transverse construction for sphere.... 114-116
Useful features............................. . . 146, 147
Ministère de la Marine........................... . . . 103
Mollweide homalographic projection. . . 24, 153-156
Construction................................ 154
Table....................................... 155,150
Monaco, Prince Albert of. 147
North Atlantic Ocean map....... 82-84
Table.. 85
Orthographic projection:
Meridional. 43, 51
Polar... 38
Penfield, S. L.................................... . . 149
Perspective projection........................... 26
Central on tangent cone......... 47
Gnomonic meridional....................... . 43, 45
Gnomonic (or central) 101-103, 140-145
Gnomonic polar............................ 37,147
Orthographic meridional.................. 43,51
Orthographic polar............................ 38
Stereographic horizon.............. . 116, 148, 149
Stereographic meridional................. 42, 44, 51, 11.6, 147-149
Stereographic polar...................... . . 35, 147
Tangent cylinder............................. 30
Petermanns Mitteilungen......................... 150
Pillsbury, Lieut. J. E. 83
Polar charts. 35-40, 147
Polyconic projection.................. . . . 49, 55, 58-60
Compromise. 59-60
Construction. 61
International map... $62-66$
Tables.................................. 64
Transverse...................................... 62
With two standard meridians. 62-66
Tables.64

Reference lines:
Earth 11
Globe... 14 . 17
Plane map..................................... 14
INDEX. 163

Rhumb lines.................................. 101-103Page.	Surface: Page.
Rosén, Prof................................. 66	Developable and nondevelopable....... 9
Rude, G. T................................ 149	Developable, use..................... 27
	Plane, construction.................... 16
Sanson-Flamsteed projection.............. 68	Tchebicheff. 149
Smithsonian tables....................... 81, 114	Tissot.................................... . 54, 56
Sphere:	
Construction of meridians and parallels. $\quad 17$	United States, map..... 54, 55, 72, 79-85, 91-93, 99 Table:
Stereographic projection................... 56,147	Albers............................ 100
Horizon.............................. 116, 147-149	Lambert conformal 85, 86
Meridional............ 42, 44, 51, 116, 147-149	
Construction.................... 44	Wangerin, A.............................. . 78
Polar................................ 35 , 147	Wireless directional bearings......... 137-139, 141
Straightedge, construction.................. 16	World maps.......................... 57, 146-160
Straight line, how to draw.................. . 15	Zöppritz, Prof. Dr. Karl..................... 73

ALBERS EQUAL AREA PROJECTION

LAMBERT PROJECTION OF THE
NORTHERN AND SOUTHERN HEMISPHERES

Within a two cusped Epicycloid

[^0]: ${ }^{1}$ Paraphrased from "Maps and Map-making," by E. A. Reaves, London, 1910.

[^1]: : Perfect globes are seldom seen on account of the expense involved in their manufacture.

[^2]: a The term authalic was first employed by Tissot, in 1881, signifying equal area.

[^3]: 4 The polyconic projection has always been employed by the Coast and Geodetic Survey for fold sheets, and general tables for the construction of this projection are published by this Bureau. A projection for any small part of the world can readily be constructed by the use of these tables and the accuracy of this system within the limits specified are good reasons for its general use.

[^4]: ${ }^{6}$ Page 75, Tissot’s Mémoire sur la Représentation des Surfaces, Paris, 1881-"Nous appellerons autogonales les projections qui conserventles angles, et authaliques celles qui conservent les aires."

[^5]: ${ }^{8}$ Tables for the polyconic projection of maps, Coast and Geodetic Survey, Special Publication No. 5.
 7 Papers on various subjects connected with the survey of the coast of the United States, by F. R. Fassler; communicated Mar. 3, 1820 (in Trans. Am. Phil. Soc., new sories, vol. 2, pp. 406-408, Philadolphia, 1825).

[^6]: ${ }^{8}$ The errorsin meridional scale and area are exprossed in percentage very closely by the formula

 $$
 E=\left(\frac{l^{\circ} \cos \varphi}{8.1}\right)^{9}
 $$

 in which $7^{\circ}=$ distance of point from cantral moridian expressed in degrees of longitude, and φ olatitude.
 Example.-For latitude 30° the orror for $10^{\circ} 25^{\prime 2} 22^{\prime \prime}$ (560 statute miles) departure in longitude is 1 per cent for scale along the meridian and the same amount for area.

 The angular distortion is a variable quantity not casily expressed by an equation. In latitude 30° this distortion is $1^{\circ} 2 z^{\prime}$ on the maridian 15° distant from the contral moridian; at 30° distant it increases to $5^{\circ} 36^{\circ}$.

 The greatest angular distortion in this projection is at the Equator, decreasing to zero as we approach the pole. The distortion of azimuth is one-hall of the above amounts.

[^7]: - Footnote on preceding page.

 10 The lengths of the arcs of the meridians and parallels change when the latitude changes and all distances must be taken from the table opposite the latitude of the point in use.

 I A pproximate method of deriving the values of y intermediate between those shown in the table.
 The ratio of any two successive ordinates of curvature equals the ratio of the stuares of the corresponding arce.
 Examples.-Latitude 60° to 61°. Given the value of y for longitude $50^{\prime}, 292 . \mathrm{m} 8$ (see table), to obtain the value of y for longitude 55^{\prime}.
 $\frac{(55)^{2}}{(50)^{2}}=\frac{y}{292.8^{2}} ;$ hence $y=354 .^{\text {mo }} 3$ (see table).
 $\frac{4^{2}}{3^{2}}=\frac{y}{3795} ;$ hence y for $4^{\circ}=6747^{m}$,
 which differs $2^{\text {m }}$ from the tabular value, a negligible quantity for the intermediate values of η under most conditions.

[^8]: 12 The lengths of the ares of the meridians and parallels change when the latitudechanges and all distancea must be taken from the table opposite the latitude of the point in use.

[^9]: ${ }^{13}$ The lengths of the arcs of the meridians and parallels change when the latitude changes and all distances must be taken from the table opposite the latitude of the point in use.

 14 A great circle tangent to parallel 45° north latitude at 160° west longitude was chosen as the axis of the projection in this plate.

[^10]: 15 See Atti del X Congresso Intarnationale di Geografia, Roma, 1913, pp. 87-42
 ${ }^{16}$ Ibid., p. 681.

[^11]: ${ }^{17}$ Tables for this profection for the map of France were computed by Plessis.

[^12]: ${ }^{19}$ A mathematical account of this projection is given in: Zöppritz, Prof, Dr. Karl,Leeltfaden der Kartenentwurfslehre, Erstar Theil, Leipzig, 1899, pp. 38-44.

[^13]: ${ }^{20}$ In the Lambert profection, every point has a seale factor characteristic of that point, so that the area of any restricted locality is represented by the expression

 Ares $=\frac{\text { measured area on map }}{(\text { scale factor) }}$.

[^14]: I A map (chart No. 3070, see Plate I) on the Lambert conformal conio projection of the North Atlantic Ocean, including the eastern part of the United States and the greater part of Europe, has been prepared by the Coast and Geodetio Survey. The western limits aro Duluth to New Orleans; the eastern limits, Bagdad to Cairo; extending from Greenland in the north to the West Indics in the south; scale 1:10 000 000. The selected standard parallels are 36° and 54° north latitude, both these parallels being, therefore, true scale. The scale on parallel 45° (middle parallel) is but 1% per cent too small; beyond the standard parallels the scale is increasingly large. This map, on certain other woll-known projections covering the same area, would have distortions and seale orrors so great as to render their use inadmissible. It is not intended for navigational purposes, but was constructed for the use of anothor department of the Government, and is designed to bring the two continents vised-vis in an approximately true relation and scale. The projection is based on the rigid formula of Lambert and covers a range of longitude of 165 degrees on the middle parallel. Plate I is a reduction of chart No. 3070 to approximate scale $1: 25500000$.

[^15]: ${ }^{22}$ See footnote on p. 82.

[^16]: ${ }^{23}$ Dr. H. C. Albers, the inventor of this projection, was a native of Litneburg, Germany. Several articles by him on the subject of map projections appeared in Zach's Monatliche Correspondenz during the year 1805. Very little is known about him, not oven his full name, the tutle "doctor" being used with has name by Germain about 1865. A book of 40 pages, entitled Unterricht im Schachsspiel (Instruction in Chass Playing) by H. C. Albers, Linneburg, 1821, may have been the work of the inventor of this projection.
 ${ }^{34}$ The standards chosen for a map of tho United States on the Albers projection are parallels 291° and 451°, and this selection provides for a scale orror slightiy less than 1 per cent in the center of the map, with a maximum of 1 f per cent along the northern and southeri borders. This arrangement of the standards also places them at an even 30 -minute interval.

 The standards in this system of projection, as in the Lambert conformal conic projection, can be placed at will, and by not favoring the central or more important part of the United States a maximum scale error of somewhat less than $1 \frac{1}{4}$ per cent might be obtained. Prof. Hartl suggests the placing of the standards so that the total length of the central meridian remain true, and this arrangement would be ddeal for a country more rectangular in shape with predominating east-and-west dimenstons.

[^17]: An interesting equal-area projection of the world by Dr. W. Behrmann appeared in Petermanns Mitteilungen, September, 1910, plate 27. In this projection equidistant standard parallels are chosen 30° north and south of the Equator, the projection being in fact a limiting form of the Albers.

[^18]: ${ }^{25}$ See U. S. Coast and Geodetio Survey Special Publication No. 57, pp. 9-10.

[^19]: ${ }^{26}$ Developments Connected with Geodesy and Cartography, U. S. Coast and Geodetic Survey Special Publication No. 67.

[^20]: ${ }^{27}$ A ship following always the same ablique course, would continuously approach nearer and nearer to the pole without ever theoretically arriving at it.

[^21]: 28 The border latitudescale will give the correct distance in the correspondinglatitude. If sufliciently important on thesmaller scale charts, a diagrammatic scale could be placed on the charis, giving the scale for various latitudes, as on a French Mercator chart of Africa, No. 2A, pubilshed by the Ministère de a Marino.

[^22]: 29 On smallscale charts in the middle or higher latitudes, the difference between the Mercator and polyconio projections is obviousto the oye and affects the miethod of using the charts. Latitude must not be carried across perpendicular to the border of a polyconic chart of small scale.

[^23]: ${ }^{20}$ Strictly speaking, a minute of latitude is equal to a nautical mile in latitude $48^{\circ} 15^{\prime}$ only. The length of a minute of latitude varies from 1842.8 meters at the Equator to 1881.7 meters at the pole.

[^24]: ${ }^{32}$ A valuable contribution to this subject by G. W. Littlehales, appeared in the Journal of the American Society of Naval Engineers, February, 1920, under the title: "The Prospective Utilization of Vessel-to-Shore Radiocompass Bearings in Aerial and Transoccanic Navigation."

 Since going to press our attention has been called to a diagram on Pilot Chart No. 1400, February, 1921, entitled "Position Plotting by Radio Bearings" by Elmer B. Collins, nautical expert, U. S. Hydrographic Office. On this diagman there is given a method of fxing the position of a vessel on a Mercator chart both by plotting and by computation.

 Tho Admiralty uses dead-reckoning position for preliminary fix whereas by the Hydrographic Office mathod the preliminary fix is obtained by laying the radiocompass bearings on the Mercator chart. The Hydrographic Office also gives a method of computation wherein the radiocompass bearings are used in a manner very similar to Sumner lines.

 See also the paragraph wireless dircctional becrings under the chapter Gnomonic Profection, p. 141.

[^25]: ${ }^{33}$ Dead reckoning.

[^26]: Beyond these limits a circumpolar chart like the one issued by the Hydrographic Office, U. S. Navy, No. 2560 , may be employed. Polar charts can be drawn on the gnomonic projection, the point of contact between plane and sphere being at the pole. In practice, however, they are generally drawn, not as true gnomonic projections, but as polar equidistant projections, the meridians radiating as straight lines from the pole, the parallels struck as concentric circles from the pole, with all degrees of latitude of equal length at all parts of the chart.

 However, for the general purposes of a circumpolar chart from latitude 60° to the pole, the polar stereographic projection or the Lambert conformal with two standard parallels would be preferable. In the latter projection the 360 degrees of longitude would not be mapped within a circle, but on a sector greater than a semicircle.

 Note.-The Mercator projection has been employed in the construction of a hydrographic map of the world in 24 sheets, published under the direction of the Prince of Monaco under the title "Carte Bathymetrique des Océans." Under the provisions of the Seventh International Geographic Congress held at Berlin in 1899, and by recommendation of the committee in charge of the charting of suboceanic relief, assembled at Wiesbaden in 1903, the project of Prof. Thoulet was adopted. Thanks to the generous initiative of Prince Albert, the charts have obtained considerable success, and some of the sheets of a second edition have been issued with the addition of continental relief. The sheets measure 1 meter in length and 60 centimeters in height. The series is constructed on 1:10 000000 equatorial scale, embracing 16 sheets up to latitude 72°. Beyond this latitude, the gnomonic projection is employed for mapping the polar regions in four quadrants each.

[^27]: ${ }_{8 s}$ Aninteresting paper on this projection appeared in the American Journal of Science, Vol, XI, February, 1901, The Stereographic Projection and its Possibilities from a Geographic Standpoint, by S. L. Penfield.

 The application of this projection to the solution of spherical problems is given in Notes on Stereographic Projection, by Prof. W. W. Henderickson, U. S. N., Annapolis, U. S. Naval Institute, 1005.

 A practical use of the stereographic projection is illustrated in the Star Finder recently devised by G. T. Rude, hydrographio and geodetic engineer, U. S. Coast and Geodetic Survey.

[^28]: ~Also written, D. Aitow. A detailed acoount of this projection is given in Petermanns Mitteilungen, 1892, vol. 38, pp. 80-87.

[^29]: *s These tables were computed by Jules Bourdin.

