H & REPARTMENT OF COMMERCE/Environmental Science Services Administration

Rongpagn 1

A World Atlas of Atmospheric Radio Refractivity

973 148 1966

ci2

U. S. DEPARTMENT OF COMMERCE \mathcal{U} , S, environmental science services administration

A World Atlas of Atmospheric Radio Refractivity

B. R. Bean, B. A. Cahoon, C. A. Samson, and G. D. Thayer

Institute for Telecommunication Sciences and Aeronomy Institutes for Environmental Research Boulder, Colo.

LIBRARY N.O.A.A. U.S. Dept. of Commerce

ESSA Monograph 1

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966

139

U.S. DEPARTMENT OF COMMERCE JOHN T. CONNOR, Secretary

ENVIRONMENTAL SCIENCE SERVICES ADMINISTRATION ROBERT M. WHITE, Administrator

Institutes for Environmental Research GEORGE S. BENTON, Director

This work was supported in part by the U.S. Navy Weather Research Facility, Contract Number 7560: NABUSTDS 65 Ser. 300.

Library of Congress Catalog Card Number: Map 66-74

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. Price \$2.25

Preface

This atlas has been prepared for the radio engineer who wants an estimate of the behavior of the radio refractive index at any point on the earth. It has many limitations, which the authors have tried to point out in the text, but should provide useful information for engineering design and predictions of tropospheric radio circuits.

The work upon which this atlas is based has been in progress for several years in the Radio Meteorology Section of the Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colo.* Many people have contributed to this research effort through the years, and it is not feasible to acknowledge them all individually. Those most directly involved with the preparation of material for this atlas include W. B. Sweezy and W. A. Williams, who were responsible for most of the computer programming; Mrs. B. J. Weddle, who assisted in processing and cataloging of the data; T. D. Stevens, who did most of the compiling, checking, and plotting of the maps, graphs, and tables; and L. P. Riggs, J. D. Horn, and Mrs. G. E. Richmond (deceased), who contributed to the atlas project in its early stages.

The National Weather Records Center of the U. S. Weather Bureau in Asheville, N. C., supplied the meteorological data upon which this atlas is based, and also performed the preliminary conversions of these data to refractivity parameters.

Finally, we thank the personnel of the U. S. Navy Weather Research Facility at Norfolk, Va., who foresaw a need for such an atlas and have arranged for support of the project over a period of years.

^{*}Now the Institute for Telecommunication Sciences and Aeronomy (ITSA), Environmental Science Services Administration.

Contents

	Page
Preface	iii
Abstract	ix
1. Introduction	1
2. Discussion of Basic Data	2
3. World Maps of N(z)	4
3.1. Development	4
Figure 1. Three-part exponential fit to mean N-profile: Koror	5
Figure 2. Three-part exponential fit to mean N-profile: Dakar	6
3.2. Discussion of $N(z)$ Map Contours	4
3.3. Reliability of Contours of $N(z)$ Maps	6
3.4. Problem Areas of $N(z)$ Maps	7
Figure 3. Five-year mean wet refractivity term: February	8
Figure 4. Five-year mean wet refractivity term: May	9
4. World Maps of $\overline{\Delta N}$	10
4.1. Development	10
4.2. Discussion of Contours and Reliability of $\overline{\Delta N}$ Maps	10
5. World Maps of Extreme N-Gradients	12
5.1. Development	12
5.2. Discussion of Gradient Map Contours (Subrefraction)	12
5.3. Discussion of Gradient Map Contours (Superrefraction and Ducting)	14
5.4. Discussion of Cumulative Distributions of Ground-Based Gradients	15
Figure 5. Five-year mean vertical refractive gradient profile: Aden	16
Figure 6. Five-year mean vertical refractive gradient profile: Nicosia	17
5.5. Reliability and Limitations of Ground-Based Refractivity Gradient Data	17
6. World Maps of Mean Tropopause Altitudes	19
7. Appraisal of Results	20
7.1. Accuracy of $N(z)$ Maps	20
Table 1. Standard errors of 5-year mean values of monthly mean N_s for 40 stations	20
Figure 7. Correlation of $ riangle N$: monthly mean N-profiles versus monthly mean exponential model	21
Table 2. Absolute errors in recovering mean N from map contours for 32 stations	21
Table 3. Approximate total standard errors, σ_{τ} , for $N(z)$ maps in appendix A	22
7.2 Accuracy of $\triangle N$ Maps	23
Figure 8. Correlation of $ riangle N$: monthly mean N-profiles versus monthly mean weather	
summary data	22
7.3. Accuracy of Gradient Maps	24
8. Conclusions	25
9. References	26
10. Appendix A. World Maps of $N(z)$ Parameters.	29
Table A-1. Cumulative distribution levels of surface refractivity	30
Figure A-1. Location of $N(z)$ data stations.	32
Figure A-2. Mean sea-level dry term, D_0 : February	33
Figure A-3. Mean sea-level wet term, W_0 : February	33
Figure A-4. Dry-term tropospheric scale height in km, H_1 : February	34
Figure A-5. Dry-term stratospheric scale height in km, H_2 : February	34
Figure A-6. Wet-term scale height in km, H_w : February	35
Figure A-7. Mean density tropopause altitude in km, z_t : February	35
Figure A-8. Mean sea-level dry term, D_0 : May	36
Figure A-9. Mean sea-level wet term, W_0 : May	36
Figure A-10. Dry-term tropospheric scale height in km, H_1 : May	37
Figure A-11. Dry-term stratospheric scale height in km, H_2 : May	37
Figure A-12. Wet-term scale height in km, H_w : May	38
Figure A-13. Mean density tropopause altitude in km, z_t : May	38
Figure A-14. Mean sea-level dry term, D_0 : August	39

		Page
	Figure A-15. Mean sea-level wet term, Wo: August.	39
	Figure A-16. Dry-term tropospheric scale height in km, H1: August	40
	Figure A-17. Dry-term stratospheric scale height in km, H ₂ : August	40
	Figure A-18. Wet-term scale height in km, H_w : August	41
	Figure A-19. Mean density tropopause altitude in km, zt: August	41
	Figure A-20. Mean sea-level dry term, D _o : November	42
	Figure A-21. Mean sea-level wet term, W _o : November	42
	Figure A-22. Dry-term tropospheric scale height in km, H_1 : November	43
	Figure A-23. Dry-term stratospheric scale height in km, H ₂ : November	43
	Figure A-24. Wet-term scale neight in Kill, H_w : November	44
	Figure A-26. Standard prediction error of the exponential fit to the mean	11
	wet-term profile: February	45
	Figure A-27. Standard prediction error of the exponential fit to the mean	
	wet-term profile: May	45
	Figure A-28. Standard prediction error of the exponential fit to the mean	
	wet-term profile: August	46
	Figure A-29. Standard prediction error of the exponential fit to the mean	
	wet-term profile: November	46
	Figure A-30. Areas of doubtful applicability of three-part exponential model of $N(z)$	
	for $z < 6$ km	47
11.	Appendix B. World Maps of $\triangle N$	48
	Table B-1. Mean surface refractivity	49
	Figure B-1. Location of $\triangle N$ data stations	52
	Figure B-2. Monthly mean ΔN : January	53
	Figure B-3. Monthly mean ΔN : February	54
	Figure B-5. Monthly mean ΔN : April.	54
	Figure B-6. Monthly mean ΔN : May	55
	Figure B-7. Monthly mean $\triangle N$: June	55
	Figure B-8. Monthly mean $\triangle N$: July	56
	Figure B-9. Monthly mean $\triangle N$: August	56
	Figure B-10. Monthly mean $\triangle N$: September	57
	Figure B-11. Monthly mean $\triangle N$: October	57
	Figure B-12. Monthly mean ΔN : November	58
	Figure B-15. Monthly mean ΔN : December	50
	Figure B-14. Annual mean of sea-level retractivity, No	59
	Figure B-15. Annual mean of refractivity gradient between surface and 1 km, $\triangle N$	59
	Figure B-16. Slope of regression line of $\triangle N$ versus N_s , b	60
	Figure B-17. Correlation coefficient of $\triangle N$ versus N_s	60
	Figure B-18. Standard prediction error of the regression line of ΔN versus N_1	51
	Figure B-19. Standard prediction error of the regression line of ΔN versus N, as a percent of ΔI	V 01 62
12	Appendix C. World Mans and Cumulative Distribution Charts of Credients of	04
14.	Ground-Based Atmospheric Layers	63
	Figure C-1. Percent of time gradient ≥ 0 (N/km): February	64
	Figure C-2. Percent of time gradient ≥ 0 (N/km): May	64
	Figure C-3. Percent of time gradient ≥ 0 (N/km): August	65
	Figure C-4. Percent of time gradient ≥ 0 (N/km): November	65
	Figure C-5. Gradient (N/km) exceeded 10 percent of the time for 100-m layer: February	66
	Figure C-6. Gradient (N/km) exceeded 2 percent of the time for 100-m layer: February	66
	Figure C-7. Gradient (N/km) exceeded 10 percent of the time for 100-m layer: May	67
	Figure C-8. Gradient (N/km) exceeded 2 percent of the time for 100-m layer: May	67
	Figure C-5. Gradient (N/km) exceeded 10 percent of the time for 100-m layer: August	60
	Figure C-11 Gradient (N/km) exceeded 10 percent of the time for 100-m layer. November	60
	Figure C-12. Gradient (N/km) exceeded 2 percent of the time for 100-m layer. November	69
	Figure C-13. Percent of time gradient ≤ -100 (N/km): February.	70
	Figure C-14. Percent of superrefractive layers thicker than 100 m: February	70
	Figure C-15. Percent of time gradient $\leq -100 \ (N/\text{km})$: May	71
	Figure C-16. Percent of superrefractive layers thicker than 100 m: May	71

Figure C-17. Percent of time gradient ≤ -100 (N/km): August	72
Figure C-19. Percent of time gradient ≤ -100 (N/km). November	72
Figure C-20. Percent of superrefractive layers thicker than 100 m: November	73
Figure C-21. Percent of time gradient ≤ -157 (N/km): February	74
Figure C-22. Percent of ducting layers thicker than 100 m: February	74
Figure C-23. Percent of time gradient ≤ -157 (N/km): May	75
Figure C-24. Percent of ducting layers thicker than 100 m: May	75
Figure C-25. Percent of time gradient ≤ -157 (N/km): August	76
Figure C-26. Percent of ducting layers thicker than 100 m: August	76
Figure C-27. Percent of time gradient ≤ -157 (N/km): November	77
Figure C-28. Percent of ducting layers thicker than 100 m: November	77
Figure C-29. Percent of time trapping frequency < 3000 Mc/s: February	78
Figure C-50. Percent of time trapping frequency < 1000 Mc/s: February	78
Figure C-32 Percent of time trapping frequency < 3000 Mc/s: February	79
Figure C-33. Percent of time trapping frequency < 1000 Mc/s: May	80
Figure C-34. Percent of time trapping frequency < 300 Mc/s: May	80
Figure C-35. Percent of time trapping frequency < 3000 Mc/s: August	81
Figure C-36. Percent of time trapping frequency < 1000 Mc/s: August	81
Figure C-37. Percent of time trapping frequency < 300 Mc/s: August	82
Figure C-38. Percent of time trapping frequency < 3000 Mc/s: November	82
Figure C-39. Percent of time trapping frequency < 1000 Mc/s: November	83
Figure C-40. Percent of time trapping frequency < 300 Mc/s: November	83
Figure C-41. Lapse rate of refractivity (N/km) exceeded 25 percent of time for	
Elements C. 42. Longe make of moderativity (NV/em) emerged at 10 mergers to the form	84
100 m lover: Echnory	04
Figure C-48 Lance rate of refractivity (N/km) exceeded 5 percent of time for	84
100-m laver: February	85
Figure C-44. Lapse rate of refractivity (N/km) exceeded 2 percent of time for	00
100-m layer: February	85
Figure C-45. Lapse rate of refractivity (N/km) exceeded 25 percent of time for	
100-m layer: May	86
Figure C-46. Lapse rate of refractivity (N/km) exceeded 10 percent of time for	
100-m layer: May	86
Figure C-47. Lapse rate of refractivity (N/km) exceeded 5 percent of time for	
Figure C. 48. Longe make of methods (NV ferr) and all Demonstrative for	87
100 m lavor: May	07
Figure C.49 Lange rate of refrectivity (N/Irm) exceeded 25 percent of time for	81
100-m laver. August	00
Figure C-50. Lapse rate of refractivity (N/km) exceeded 10 percent of time for	00
100-m laver: August	88
Figure C-51. Lapse rate of refractivity (N/km) exceeded 5 percent of time for	00
100-m layer: August	89
Figure C-52. Lapse rate of refractivity (N/km) exceeded 2 percent of time for	
100-m layer: August	89
Figure C-53. Lapse rate of refractivity (N/km) exceeded 25 percent of time for	
100-m layer: November	90
Figure C-54. Lapse rate of refractivity (N/km) exceeded 10 percent of time for	
100-m layer: November	90
Figure C-55. Lapse rate of refractivity (N/km) exceeded 5 percent of time for	
Tione Off Lange and for the first (NUm) and 10 and 51	91
100 m lawer. Neuropher	0.1
Toble C1 Moding and minimum transmiss for any (M /a) of lasting lastin	91
Figure C-57 (a) Cumulative probability distributions of JN/JL for mound band	92
100-m layer. Aden. Arabia (February May)	0.9
Figure C-57. (b) Cumulative probability distributions of dN/dh for ground-based	55
100-m layer: Aden, Arabia (August, November)	94
	1.1

Page

Page Figure C-58. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Amundsen-Scott, Antarctica..... 95 Figure C-59. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Balboa (Albrook), Panama C. Z..... 96 Figure C-60. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Bangui, Central African Republic..... 97 Figure C-61. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Bordeaux, France..... 98 Figure C-62. (a) Cumulative probability distributions of dN/dh for ground-based 100-m layer; Dakar, Republic of Senegal (February, May)..... 99 Figure C-62. (b) Cumulative probability distributions of dN/dh for ground-based Figure C-63. Cumulative probability distributions of dN/dh for ground-based Figure C-64. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Ezeiza, Argentina...... 102 Figure C-65. Cumulative probability distributions of dN/dh for ground-based Figure C-66. Cumulative probability distributions of dN/dh for ground-based Figure C-67. Cumulative probability distributions of dN/dh for ground-based Figure C-68. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Lourenco Marques, Portuguese East Africa...... 106 Figure C-69. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Nandi, Fiji Islands...... 107 Figure C-70. Cumulative probability distributions of dN/dh for ground-based 100-m layer: New York, N. Y..... 108 Figure C-71. Cumulative probability distributions of dN/dh for ground-based Figure C-72. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Ostersund, Sweden...... 110 Figure C-73. Cumulative probability distributions of dN/dh for ground-based Figure C-74. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Saigon, Viet Nam..... 112 Figure C-75. Cumulative probability distributions of dN/dh for ground-based Figure C-76. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Ship Station "C"..... 114 Figure C-77. Cumulative probability distributions of dN/dh for ground-based Figure C-78. Cumulative probability distributions of dN/dh for ground-based 13. Appendix D. World Charts of Tropopause Heights..... 117 Figure D-1. Tropopause heights (km), based on temperature lapse rate: February...... 117 Figure D-2. Tropopause heights (km), based on temperature lapse rate: May...... 118 Figure D-3. Tropopause heights (km), based on temperature lapse rate: August...... 118 Figure D-4. Tropopause heights (km), based on temperature lapse rate: November...... 119 14. Appendix E. Sample Listing of the Computer Output for San Juan, P. R., and

 Table E-1. Mean N-profiles: San Juan, P. R.
 121

 Table E-2. Mean N-profiles: Amundsen-Scott, Antarctica...... 123 Table E-3. Cumulative distributions of ground-based gradients: Amundsen-Scott, Antarctica... 125 Table E-4. Analysis of ground-based superrefractive and ducting layers: Amundsen-Scott, Antarctica 127

Abstract

This atlas presents world maps and graphs of upper-air radio refractivity, N(z) (where z is the altitude), mean monthly ΔN (the difference between the refractivity at the surface and at 1 km above the surface), extreme values of gradients of refractivity observed in the lowest layer of the atmosphere (including maps of minimum trapped frequency ducting gradients), and monthly mean tropopause heights. All refractivity values were derived from radiosonde data. The N(z) maps are presented in terms of a three-part exponential model, with separate exponentials for the water vapor and air density terms of N(z), with the latter separated into tropospheric and stratospheric terms. The ΔN data were derived by interpolation from fixed pressure-level data.

There has been a need in radio engineering for a method whereby the radio refractivity, N, at some height, z, or the gradient of N with respect to height, dN/dz, could be accurately estimated for any world location during any season of the year. Previous studies have attempted to solve this problem by determination of the value of surface refractivity, N_s , and the use of an exponential decay with height [Bean et al., 1960a]¹, or by presenting seasonal means and distributions of N at fixed pressure levels in the atmosphere for various radiosonde stations [U. S. Navy, 1955-59; Michaelis and Gossard, 1958]. However, these results did not provide any means whereby N(z) could be obtained at any arbitrary location, i.e., places for which meteorological measurements were not available. In addition, specific information on the gradient of the refractive index has not been available previously on a worldwide basis, especially for the very important layers of the atmosphere at or near the surface where the presence of superrefractive or ducting gradients can produce anomalous propagation of microwaves. This atlas presents maps, charts, and discus-

sions of the worldwide variations in the radio refractive index. With the aid of this atlas, estimates of the following parameters may be readily determined for any part of the world: the refractivity at any height, N(z); the average gradient of N over the first kilometer above the surface, ΔN ; and the gradient of N in the lowest layer of the atmosphere (with emphasis on subrefractive, superrefractive, and ducting layers and the probability of trapping of radio waves by ducting layers). The world distribution of N(z) is presented in the form of a three-part exponential model, with separate exponential terms for the water-vapor term, the density term in the troposphere, and the density term in the stratosphere; the parameters used to represent this N(z) model are the reduced-tosea-level values of surface water vapor and density terms, the scale heights of the three exponential terms, and the transition height between the tropospheric and stratospheric density exponentials. Seasonal maps of mean tropopause heights, which were obtained in the course of the data reduction required for the three-part exponential model, are also presented.

¹ Literature references on page 26.

2. Discussion of Basic Data

The radio refractive index of the atmosphere, n, exceeds unity by at most 450 parts per million; it is therefore customary to utilize the radio refractivity, N, given by ²

$$N = (n-1) \times 10^6.$$
 (1)

The radio refractivity of air for frequencies up to 30,000 Mc/s is given by Smith and Weintraub [1953]:

$$N = 77.6 \, \frac{P}{T} + 3.73 \times 10^5 \, \frac{e}{T^2}, \qquad (2)$$

where P is the total atmospheric pressure in millibars (mb), T is the absolute temperature in degrees Kelvin (K), and e is the partial pressure of water vapor in millibars. [For the development of this equation from theory, c.f. Bean, 1962]. The P/T term in (2) is frequently referred to as the "dry term" (even though there is a small water vapor component in the total pressure) and the e/T^2 term, as the "wet term."

The radiosonde is in general use throughout the world to measure the pressure, temperature, and relative humidity of the upper air. These data can be used to obtain the corresponding vertical profile of radio refractivity. However, there are a number of disadvantages in the use of radiosonde data for the purpose of obtaining *N*-profiles; perhaps the most important of these is the relatively slow response (large lag constants) of the radiosonde temperature and humidity sensors [Bunker, 1953; Wagner, 1960, 1961; Bean and Dutton, 1961]. Also of some importance is the method of selecting levels for which data are reported. The procedure followed by most meteorological services consists of reporting temperature, humidity, and height at certain fixed pressure levels, called "mandatory levels" (e.g., 850 mb), plus a sufficient number of additional "significant" levels to provide a profile of temperature and relative humidity such that linear segments between levels will not depart from the original data at any point by more than 1°C or 10 percent relative humidity. Such tolerances, although acceptable for most meteorological purposes, may result in errors of as much as 30 N-units (under

extreme conditions) in a linear-segment N-profile constructed from radiosonde data. Some punched-card refractivity data are available which were calculated from significant levels chosen with an even wider tolerance, $2^{\circ}C$ and 30 percent relative humidity [Bean and Cahoon, 1961a]. In spite of these deficiencies, this atlas is based entirely upon radiosonde data, since no other worldwide, long-term upper-air data are available. (More detailed measurements, obtained primarily from wiresonde and aircraft refractometer flights, are available only for a very few locations and for very limited periods of time.)

The first step toward obtaining a broad sample of upper-air refractivity data was the selection (by geographic-climatic considerations and period of record available) of 112 radiosonde stations from the worldwide network.³ Wherever possible, a total of 5 years of data was obtained for each of the 4 representative "seasonal" months of February, May, August, and November.

Five-year means were selected for use in the preparation of this atlas for two reasons: (a) a large number of stations, including all of those in the U.S.S.R., have available records dating back only to the International Geophysical Year (IGY), 1958; (b) 5 years seemed to represent the best compromise between the number of stations and the length of record, since the total amount of data which could be processed was naturally limited. A large number of stations is desirable for mapping purposes (better coverage), while longer periods of record yield more stable (accurate) estimates of long-term means (of climatic variables). For each radiosonde ascent, the reported values of pressure. temperature, and humidity at each mandatory or significant level were converted by means of (2) to radio refractivity values (by the National Weather Records Center, Asheville, N. C.). These data, when received at ITSA, were used to obtain four monthly *mean* N-profiles for the available period of record for each of the 112 stations. The procedure followed was to obtain for each profile the values of N at a number of standard height levels by assuming separate exponentials for the dry and wet terms between each reported level. The mean N-profile for the

² Throughout this atlas, the term atmosphere should be understood to mean the nonionized atmosphere, i.e., excluding the ionosphere.

³ A list of these stations is included in appendix A.

standard height levels was then computed as the arithmetic mean of the individually interpolated values of N at each standard height for all of the profiles in the sample. In this way, 5-year mean values of refractivity were obtained for a large number of levels, ranging from the surface to 30 km (or more) above the surface, for a worldwide sample of stations. Over 18,000 individual values of mean N were determined in this way.

In addition to these calculations, the approximate height of the tropopause was determined for each profile; this was the height of the bottom of the lowest atmospheric layer which met the following criteria:

(a) the layer thickness was ≥ 2 km,

(b) the temperature gradient $\geq -2^{\circ}C/km$.

The 2-km thickness could be made up of two or more consecutive layers from the radiosonde data. Mean monthly values of tropopause heights were obtained for the period of record for each station by averaging the individual profile tropopause heights; maps of these tropopause heights are shown in appendix D.

The monthly mean value of the average Ngradient between the surface and 1 km above the surface has been recognized as a radiometeorological parameter of some importance

[Saxton, 1951; Bean and Meaney, 1955; CCIR, 1965]. Therefore, maps are included of the mean value of this parameter for all 12 months, with a more comprehensive network of stations than was available from the complete radiosonde data sample discussed above. For this purpose a sample of 268 stations was chosen from those available in the Monthly Climatic Data for the World and the National Summary of Climatological Data (U.S.A.).4 These publications list monthly mean values of pressure, temperature, and relative humidity or dew point for the surface and some of the mandatory pressure levels from radiosonde data. For stations near sea level, the 900-mb level is very close to 1 km above the surface, but for most stations outside of the U.S.A. the 850-mb level was the lowest reported; the altitude of this pressure level varies between roughly 1.3 and 1.5 km above sea level. However, it was felt that interpolation from the 850-mb data, using separate exponentials for the wet and dry terms, would yield fairly accurate values of monthly mean N at the required 1-km height.

The radiosonde-derived data described in the preceding paragraphs constitute the basic data from which this atlas has been prepared. In the following sections the methods of reduction and presentation of these data are discussed, as well as the consistency and reliability of the results so obtained.

⁴ Data from these two publications (published by the National Weather Records Center, Asheville, N.C., under the sponsorship of the World Meteorological Organization [WMO] and the U.S. Weather Bureau) will hereafter be referred to as "weather summary data."

3.1. Development

In order to prepare worldwide maps of upper atmospheric N from the 5-year mean N-profiles described previously, it was decided to reduce the quantity of necessary N(z) maps by abstracting each mean profile in terms of a model atmosphere which would use three negative exponential functions of altitude. The three functions which are used to represent each mean profile are a single exponential for the wet term, W, and two exponentials for the dry term, D. Two exponential functions are necessary for the dry term because of the change in the lapse rate of the temperature from the normal 6.5°C/km in the troposphere to the nearly isothermal stratosphere where the temperature may increase with height. Least-squares fits were obtained for $\log \overline{W}$ versus height over the interval 0 to 3 km above the surface. The ranges to be covered by the two fits for the dry term were determined from the mean tropopause heights and their standard deviations which had been obtained during the analysis of the N-profiles in each sample. The tropospheric dry term, D_1 , was fit over the interval 0 to the tropopause height minus one standard deviation, and the stratospheric dry term, D_2 , was fit from the tropopause height plus one standard deviation to the upper limit of data for that profile. In both cases, $\log \overline{D}$ was fit to height using least squares. The resulting model atmosphere is given by

$$\overline{N}(z) = \overline{D}_{o} \exp\left(-rac{z}{H_{1}}
ight) + \overline{W}_{o} \exp\left(-rac{z}{H_{w}}
ight),$$
 (3)

$$z \leq z_t$$

$$\overline{N}(z) = \overline{D}_{o} \exp\left(-\frac{z_{t}}{H_{1}} - \frac{(z - z_{t})}{H_{2}}\right) \\ + \overline{W}_{o} \exp\left(-\frac{z}{H_{w}}\right), \qquad (4)$$

$$z > z_{t};$$

 \overline{D}_{o} and \overline{W}_{o} are the mean sea-level values of the dry and wet terms (reduced from the surface values using the free-atmosphere scale heights), H_{w} is the wet-term scale height, H_{1} is the tropospheric dry-term scale height, H_{2} is the stratospheric dry-term scale height, and z_{t} is the altitude above mean sea level of the point of transition between the tropospheric and stratospheric dry-term exponentials. The altitude, z_{t} , may thus be thought of as an effective density tropopause.

Examples of the application of this model to actual mean refractivity profiles are given in figures 1 and 2: a very good fit (Koror) and one of the worst fits encountered (Dakar). The good fit obtained in figure 1 is especially significant since Koror represents a climatic type (equatorial station with a very high mean surface refractivity, 387.6) for which exponential models of N were previously thought to be unsatisfactory [Misme et al., 1960]. Dakar (fig. 2) is an example of the climatic type (characterized by a persistent low-level temperature inversion with dry subsiding air above) where this model (or any other simple model) of Nversus z is inadequate to explain the N-structure at low latitudes. It was found that the behavior of the wet term (measured on figs. 1 and 2 by S_w , the rms error over the first 3 km) was a good indicator of whether or not the data would provide a good fit to the profile. However, it can be noted in figure 2 that, even though the rms wet-term error below 3 km is 14.6 N-units, the profile at Dakar above an altitude of 6 km is well represented by the three-part exponential.

Maps were prepared for each of the 4 "seasonal" months of the parameters necessary to utilize the three-part exponential in estimating upper-air refractivity. These are the reducedto-sea-level values, \overline{D}_{\circ} and \overline{W}_{\circ} ; the three scale heights, H_w , H_1 , and H_2 ; and the transition altitude, z_t . The surface values of N can be recovered by substituting the elevation of the surface above sea level at the desired location in (3), which amounts to inverting the process used to reduce the surface values of \overline{N} to sea level. The series of maps given in appendix A can be used to estimate the mean value of N at any desired altitude for each of the seasonal months at any world location except those areas outlined in figure A-30 (which summarizes the wet-term rms error values found in figures A-26 through A-29).

3.2. Discussion of N(z) Map Contours

The world maps of N(z) parameters reveal a number of interesting trends. Some of these are:

(1) The D_1 scale height, H_1 :

(a) is smaller than average over the arctic seas in winter because of dense stratified air;

(b) remains higher than average over land areas during their warm seasons due to a steep temperature lapse rate with height.

(2) The D_2 scale height, H_2 :

shows a minimum in the equatorial region because of the colder temperatures found above the tropical tropopause. (3) The wet scale height, H_w :

(a) is larger than average in the general area of the equatorial heat belt during all seasons. This indicates a steep temperature gradient with a very small lapse of *absolute* humidity with height in the turbulently mixed deep layer of warm air. However, in some tropical areas

FIGURE 1. Three-part exponential fit to mean N-profile: Koror.

definite changes may occur in H_w because of seasonal shifting of small, but persistent, anticyclonic circulations which modify to a considerable vertical extent the normal zonal transport of water vapor in those latitudes. The seasonal differences of H_w in the Coral Sea area seem to confirm the existence of such a cellular structure northeast of Australia [Hutchings, 1961].

(b) is larger than average over two types of convectively heated continental interiors:

(1) high-latitude land masses where the sea-level wet term is less than 20 N-units;

(2) temperate desert steppe regions where the sea-level wet term is between 20 and 60 N-units.

(c) is lower than average in areas where subsidence or tradewind ducting persistently occurs below 3 km.

(4) The dependence of the dry sea-level values, D_o , upon temperature (because $D_o = 77.6 P/T$) is revealed in such features as the 332 high in Siberia during February and the 260 low in the Sahara Desert during May and August.

(5) The wet sea-level values, W_0 , are also

very dependent upon temperatures because of the larger water content possible at high temperatures. There are two exceptions:

(a) Large interior deserts, where mountains block the normal moisture flow, tend to have low wet-term values relative to their temperatures. (b) In August, when the monsoonal moisture is trapped south of the Himalayas, India shows unusually high wet-term values.

(6) The intersection height, z_t , is closely related to the height of the tropopause, but in areas where an isothermal layer precedes the stratospheric increase of temperature, the D_2

FIGURE 2. Three-part exponential fit to mean N-profile: Dakar.

curve may intersect the D_1 curve as much as 2 km below the tropopause heights given in figures D-1 through D-4 (see appendix D).

3.3. Reliability of Contours of N(z) Maps

Although radiosonde stations are the only worldwide source of upper-air meteorological data, many areas of the world had few, if any, radiosonde reporting stations before 1957. As a result of the IGY, many new stations were established, especially in the lower latitudes; however, radiosonde data are still not available for a number of large areas, such as Brazil, China, and the Indian Ocean. High latitudes also show a noticeable sparsity of upper-air data; fortunately, there is a fairly small and uniform transition in most parameters at these far-south and far-north latitudes. Even in the U.S.A., where the first radiosonde network was established in 1938, radiosonde stations are still several hundred miles apart.

The maps were hand-contoured by interpolation between the widely-spaced plotted data points, using a technique similar to that used in the analysis of synoptic weather maps. Each map was then carefully checked by another analyst to make certain all data points had been properly considered. The contours were modified in some areas on the basis of other information or considerations not accounted for in the machine-analyzed radiosonde data. For instance, supplementary surface data [Knoll, 1941; Serra, 1955; Bean and Cahoon, 1957; UNESCO, 1958; Bean et al., 1960b; Air Ministry, 1961; Dodd, 1965] were considered in the contouring of those parameters $(D_{\circ} \text{ and } W_{\circ})$ dependent upon surface observations. Also, if spurious "high" centers of the wet term (such as the isolated values found at Tananarive, Malagasy Republic) were produced at high elevation stations by reduction-to-sea-level procedures, these values were smoothed to some extent. It was also found that the wet scale heights derived from mean N-profile data for stations at altitudes greater than 1 km tend to give more unrealistic sea-level wet terms than the average wet-term scale height of 3.0 km suggested by Hann [List, 1958]. When this "standard atmosphere" scale height was substituted for Hw, the maximum error of N(z)values calculated from (3) or (4) for all stations above 1 km which are listed in table A-1 was 6.2 percent of the true 5-year mean value at Tananarive in August; the second largest error was 5.5 percent at Nairobi in February.

Another contouring check was made of all modified contours; a third analyst reviewed the smoothing to be sure it was consistent with the original plotted data as well as with the supplementary information.

To further check the contouring, calculated N(z) values (using (3) and (4) with values read from figs. A-1 through A-25) were compared with actual observed values at 32 representative stations. The results of this check (reported in detail in table 2 of sec. 7) emphasize that, although some error undoubtedly results in N(z) values below 1 km due to contouring, it is not a problem for N(z) values at 3 km or above.

3.4. Problem Areas of N(z) Maps

The use of wet and dry scale heights in a biexponential radio refractive index model has proved to be a good indicator of climatic differences [Bean, 1961; Misme, 1964]. The dry term, or atmospheric density component of refractivity, decreases with height in a uniform manner throughout the troposphere so that its scale height is an accurate indicator of the degree of density stratification, but the watervapor component (the wet term) is not so wellbehaved. Because the saturation vapor pressure, e_s , is itself an exponential function of temperature (which generally decreases linearly with height), one of the best wet-term models is probably an exponential curve [Reitan, 1963; Dutton and Bean, 1965]. However, an exponential model of the wet term must be used with discretion because humidity is extremely variable, both vertically and horizontally (because of its high dependence upon the temperatures within the different air masses, as well as various terrain and land-water effects).

To show actual physical changes in H_w , the wet scale height, it would be desirable to present contoured values based not only on a large number of stations, but also on data representative of various times of day. Figures A-6, A-12, A-18, and A-24 present the seasonal values of H_w , but worldwide maps of the diurnal variability of the wet scale heights are not yet available.

There are three specific areas of the world where the assumption of an exponential distribution of the wet term is largely invalid and can be used only with reservations. Two of the areas have one thing in common - a low sealevel wet term. At continental stations in high latitudes where strong temperature inversions persist during winter months, the wet term at 3 km may be as large as, or even larger than, that at the surface (because of the increase of water vapor "capacity" with temperature), and the result is a negative or a very large positive value of the wet scale height, neither of which is physically realistic. At any tropical desert station where the sea level wet term is < 30N-units, deceivingly high wet scale heights also may result. Fortunately, because of the small contribution of the wet term in these cases, the total N-error remains small. The wet-term profiles at nine stations with low values of W_{\circ} were examined, and the largest error at any height was 3.7 percent of the true 5-year N(z) value at Niamey (a desert station) in February (fig. 3). In the arctic areas (represented by Barrow, Alaska, in this same figure) the maximum error never exceeded 1.5 percent of the total N(z)value.

The third area presents a more serious problem because it exists in a subtropical climate $(15^{\circ}-35^{\circ})$ north and south of the equator) where the wet term contributes from $\frac{1}{4}$ to $\frac{1}{3}$ of the total N. The sharp decrease of humidity and increase of temperature which is found in atmospheric layers between the surface and 3 km in the subsidence regions of semipermanent subtropical highs destroys the exponential distribution of the wet term. In fact, in regions such as this, the exponential fit may be valid only at two or three points. This can be noted in figure 4, where the mean wet term for May is graphed, and the H_w value from the least-squares fit from 0-3 km of log \overline{W} versus height is indicated, for

8 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY

four dissimilar stations: Dakar (low-level subsidence), Antofagasta (intermediate subsidence-trade wind ducting), Hilo (trade wind inversion), and Balboa (steep exponential gradient). A check of figure A-30 reveals that the first three of these stations are located in areas where, because the rms of the wet-term error exceeds 5 N-units for at least 1 month, the three-part exponential model is not recommended.

FIGURE 3. Five-year mean wet refractivity term: February.

FIGURE 4. Five-year mean wet refractivity term: May.

4.1. Development

Twelve maps of monthly mean ΔN were prepared from the 5-year mean values obtained by interpolation of mandatory pressure level radiosonde data for the 268 stations listed in table B-1 and located in figure B-1 in appendix B. These maps, contoured in the same manner as the N(z) maps (sec. 3.3), are figures B-2 through B-13.

Previous work has shown that a good correlation may exist between ΔN and surface N on a monthly mean basis [Bean and Thayer, 1959; Bean and Cahoon, 1961b; CCIR, 1965]. In fact, in many areas of the world this seasonal correlation is very high, and in such areas a regression line might provide better estimates of monthly mean ΔN than the maps in appendix B (if the mean value of surface N were available for that particular month of that year for the desired location). This regression line could also be used with the N_s distribution data from table A-1 to provide estimates of the ΔN distribution. Correlations were therefore calculated for the 12 monthly mean values of ΔN and surface N for each of the stations in the sample. The equations resulting from these calculations were put into the form of deviations from the annual means:

$$\overline{\Delta N} = b \left(\overline{N}_s - \overline{\overline{N}}_s \right) + \overline{\Delta N} \pm \text{S.E.}, \quad (5)$$

where N_s is the surface value of N, the single bar represents a monthly mean value, the double bar represents the annual mean, b is the slope of the regression line, and S.E. is the standard error of estimate. The equations were put in this form because the intercept of the equations in the ordinary form is equal to $\overline{\Delta N} - b\overline{N}_s$, which is too unwieldy for contouring on maps. Maps, which appear in appendix B, were prepared of the slope (b), the annual means $(\overline{\Delta N} \text{ and } \overline{N}_o)$, and the standard error of prediction and correlation coefficient of the regression lines.⁵

4.2. Discussion of Contours and Reliability $of \Delta N$ Maps

The world ΔN maps of this atlas do not show as much detail as may be found in other publications which consider only specific areas [Bean et al., 1960b; du Castel, 1961; Rydgren, 1963; CCIR, 1963]. It was necessary in this study to omit some of the available radiosonde data in areas with relatively dense weather networks (e.g., the U.S.A. and Europe) in order to obtain a more nearly uniform worldwide coverage. Even with this coverage, the map scale size precluded the contouring detail which would be necessary if localized terrain effects were to be included; for example, mountainous locations (higher than 1 km) probably have lower values of ΔN than those indicated in figures B-2 through B-13. Some dissimilarity in the contour patterns between the maps in appendix B and other ΔN maps may also be found because of the differences in the time period used in the samples; such disagreements emphasize the fact that 5 years of data are not adequate for reliable means in many areas.

The map contours of worldwide $\overline{\Delta N}$ indicate that:

(1) Low values of ΔN are characteristic of:

(a) large desert and steppe regions such as the Sahara, the Australian interior, the southwestern U.S.A., and the Asian region southeast of the Caspian Sea all year;

(b) high plateau areas during all seasons except winter.

(2) High values of ΔN are found in:

(a) all areas where large masses of subsiding air prevent the normal diffusion of water vapor, creating an unusually large *N*-gradient between the moist surface air and the very dry air at 1 km. Specific examples are:

(1) continental west coasts at latitudes $20^{\circ}-35^{\circ}$ in the summer hemisphere and $10^{\circ}-25^{\circ}$ in the winter. In fact, the true ΔN may be higher than indicated on the maps at locations such as Dakar, Senegal, where a very thick (~250 m) surface or near-surface ducting layer occurs much of the time;

(2) tropical ocean areas where a tradewind inversion leads to a persistent elevated ducting layer below 1 km. [Note: In a few cases where the entire thickness of an elevated layer lies between 1 km and the height of the 850-mb level, the interpolation method gives a map value which may be 5 to 10 N-units too high.]

(b) southeast Arabia and the Gulf of Persia during July and August, when orographic subsidence traps moisture from the southwest monsoon in the gulf and lowlands between the mountains.

 $^{{}^5}N_{\rm o}$ is an approximate sea-level value of N_s , defined by the equation $N_o = N_s e^{0.1z}$, where z is the elevation above sea level in km.

(c) Siberia and the Canadian interior in winter because of the intense surface temperature inversion.

(d) the Mediterranean and Black Seas during summer when convective mixing greatly increases the near-surface humidity.

(e) India in the spring, when increased heating over land produces a low-pressure region which leads to onshore winds and humid weather conditions until the onset of the monsoon.

In winter a combination of high and low $\overline{\Delta N}$ values appear near the tip of southwest Africa as the subsidence from the South Atlantic High causes a large moisture gradient to appear off the coast, whereas a small humidity gradient is characteristic of the dry plateau region inland.

5. World Maps of Extreme N-Gradients

5.1. Development

The gradient of N near the surface of the earth is of particular importance in many applications of telecommunications; e.g., extreme values of these initial gradients are responsible for much of the unusual behavior of radio systems. Superrefractive gradients (defined here as values between -100.0 N/km and -156.9 N/km) are responsible for greatly extended service horizons, and may cause interference between widely separated radio circuits operating on the same frequency. Ground-based radio ducts (layers having a negative gradient larger in absolute value than 156.9 N/km) can cause prolonged spacewave fadeouts within the normal radio horizon [Bean, 1954] and allow radar to track objects many hundreds of kilometers beyond the normal radio horizon. On the other hand, subrefractive gradients (zero or positive gradients) produce greatly reduced radio horizons, and may result in diffraction fading on normally line-of-sight microwave paths.

In the process of obtaining the mean N-profile for each station and month, cumulative distributions were prepared of the gradients occurring between the surface and the 50-m and 100-m levels. Each gradient was calculated as the simple difference between the surface Nand the value at 50 or 100 m above the surface, divided by the height interval. For 99 out of the 112 stations in the mean N sample, cumulative distributions were also prepared of the gradients and thicknesses of all observed groundbased superrefractive or ducting layers, regardless of the thickness of the layer (except that no layer less than 20 m thick was included, because the gradients obtained in such cases are not considered to be reliable). In addition, cumulative distributions were prepared of the minimum trapped frequency for each of the observed ducts in the sample. (This sample size averaged 208 pieces of data for each month; for all months the smallest sample was 30 and the largest, 620). The minimum trapped frequency refers to the approximate lower limit of frequencies that will be propagated in a duct in a waveguide-like mode, and is given by [Kerr, 1951]

$$f_{\min} = \frac{1.2 \times 10^5 \text{ (c/s)}}{(t)^{3/2} \left[-\frac{dn}{dz} - \frac{1}{r} \right]^{1/2}}, \quad (6)$$

where f_{\min} is the minimum trapped frequency in

c/s, t is the total thickness of the duct in km, dn/dz is the average gradient over the duct (n/km), and r is the radius of the earth in km. Equation (6) is derived under the assumption of a constant gradient throughout the duct, but moderate departures from this assumption do not seem to affect the results greatly. The f_{\min} corresponds to an absolute attenuation of the guided energy of about 3 dB/km (5 dB/mile) [Kerr, 1951].

The maps in appendix C were prepared from the cumulative distributions discussed above. The distributions of gradients for the 0 to 100-m layer were used to obtain maps of the positive (subrefractive) gradient exceeded for 10 and 2 percent of the observations at any location, and the percent of observations with 0 or positive N-gradients. Maps were also prepared of the extreme values of negative gradi-ents observed; these are referred to as "lapse rates" of N (i.e., decrease with height, a term normally used in referring to atmospheric temperature gradients; it is used here to avoid the awkwardness of referring to a very strong negative gradient as being "less than" a given negative value). Included in appendix C are maps of the lapse rate of N exceeded for 25, 10, 5, and 2 percent of the observations for the 100-m layer. Cumulative probability distribution charts of the gradients at 22 representative world locations are also presented.

Other maps in appendix C were prepared from the distributions of superrefractive and ducting layer gradients, thicknesses, and f_{\min} values for ducts. These include the percent of time that the lapse rate of N in the groundbased layer is equal to or larger than 100 N/km and equal to or larger than 157 N/km (ducting gradient), the percent of superrefractive layers that were more than 100 m thick, and the percent of ducting layers that were more than 100 m thick (the last two refer to the percent of thick layers out of the number of observed layers of that type). The distributions of f_{\min} values were used to prepare maps of the percent of all observations which showed groundbased ducts having an f_{\min} value of less than 3000 Mc/s, 1000 Mc/s, and 300 Mc/s.

5.2. Discussion of Gradient Map Contours (Subrefraction)

Ground-based subrefractive layers may be

found in the same tropical and subtropical locations as superrefractive layers, because a small change in relative humidity at high temperatures produces a very noticeable change in absolute humidity, and the N-change (either positive or negative) with height is highly dependent upon the variation of absolute humidity. For instance, subrefractive gradients occur quite often during the afternoon at stations which experience superrefraction or ducting during the night and early morning. Other stations may have nocturnal subrefraction during winter and superrefraction during the same hours in summer. However, subrefraction, unlike superrefraction, rarely occurs at surface temperatures below $10\,^{\circ}\mathrm{C}$ (the only exception would be locations greater than 1 km above sea level).

The surface conditions conducive to subrefractive gradients are of two rather opposite types:

(a) temperature $> 30^{\circ}$ C; relative humidity < 40 percent;

(b) temperature 10° to 30° C; relative humidity > 60 percent.

Type (a) is usually found during the daylight hours of months when intense solar heating occurs at warm, dry continental locations and forms a very nearly homogeneous surface layer (no decrease of density with height) which may be several hundred meters thick. Since a moist parcel of air is less dense than a dry parcel at the same temperature and pressure, the intense convection which occurs within such a layer of absolutely unstable air tends to concentrate the available water vapor near the top of the layer, because a moist adiabatic upper boundary is formed where the superadiabatic lapse rate changes abruptly to a subadiabatic or very stable lapse rate. The result is an increase (sometimes as large as 50 percent of the surface value) with height of the wet term through the ground-based layer. This increase, coupled with no change in the dry term, leads to a subrefractive (or positive) gradient.

This layer may retain its subrefractive nature throughout the early evening hours at stations where conditions are favorable for the development of a temperature inversion. As the ground cools rapidly, the air very near the ground cools and becomes more dense, but the water vapor which is trapped between the two stable layers causes the positive wet-term gradient from surface to the top of the original layer to remain large enough to overbalance the slightly decreasing gradient of the dry term. This evening subrefraction is an outgrowth of type (a); however, it may resemble type (b) at the surface because it can be found with a temperature as low as 20°C and a relative humidity as high as 60 percent.

Type (b) occurs most often during night and early morning hours, and is characteristic of coastal trade-wind and sea-breeze areas where differential heating of land and sea results in the advection of air which is warmer and more humid than the normal surface layer. In this type, both dry and wet terms may increase with height, creating a surface layer of subrefraction which is generally more intense in gradient than type (a) but not so thick. This form of subrefraction might also be found for short periods in *any* location where frontal passages or other synoptic changes create the necessary conditions.

Type (a) subrefraction is hard to evaluate from figures C-1 through C-4 because its percentage occurrence at any specific location is so dependent upon the time of day represented by the radiosonde data at that location. For instance, because the local radiosonde observation times in the southwestern U.S.A. were 0800 and 2000 for the data period used in this atlas, only the subtype (a) of evening subrefraction is recorded. Because conditions are more suitable for inversions in February and May, these months appear to have surfacebased subrefractive layers more often than August. However, a detailed check of midafternoon observations near White Sands, N. Mex., reveals that midday subrefractive conditions are quite prevalent during much of August and September. The same diurnal problem is found in northern Africa and the desert region south and east of the Caspian Sea, where many of the stations take observations between 0300 and 0600 LST. Furthermore, even at those stations which do have midday data, the "motorboating" problem (i.e., humidities too low to be measured by the radiosonde - see sec. 5.5) during the warmest seasons at very dry locations probably masks out a large percentage of subrefractive occurrences; e.g., the occurrence of subre-fraction recorded in November and February for the interior of Australia (where afternoon observations are included) is probably too low.

Figures C-1 through C-4 reveal that type (b) subrefraction can be expected 10 to 20 percent of the time in the western Mediterranean Sea and the Red Sea area, and also in the Indonesian-Southwest Pacific Ocean region. These locations seem to indicate a slight seasonal trend, with a higher probability of occurrence during winter months. Another region with a 10 to 20 percent level of subrefractive gradient occurrence is the Ivory Coast and Ghana lowlands of Africa where onshore winds prevail all year.

Occurrences of type (b) subrefraction exceed 5 percent at these locations and times of year:

(1) Southeast coast of U.S.A. all months;

14 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY

- (2) Hawaiian Islands all months except May;
- (3) South Africa all months except November;
- (4) Southeast coast of South America in November and February;
- (5) Southern California in November;
- (6) North Indian Ocean in May;
- (7) Isthmus of Panama in November.

5.3. Discussion of Gradient Map Contours (Superrefraction and Ducting)

Superrefractive and ducting gradients in ground-based layers are most often associated with temperature inversions (temperature increasing with height within the layer), not only because a positive temperature height-gradient causes a negative N-gradient, but also because the low eddy diffusion qualities associated with a temperature inversion often lead to a steep negative gradient of humidity through the inversion. However, previous investigations [Bean, 1959] have shown that there are at least two other typical situations encountered in the formation of strong ground-based gradients: The first of these is the arctic situation, where, with surface temperatures below about -20°C, a strong temperature inversion (typical of continental arctic air masses) produces a superrefractive or ducting layer, while the vapor pressure may actually increase with height. More often, in this case, the wet term is negligible throughout the layer. The second case is typical of very humid tropical areas when the surface temperature is 30°C or greater. In these locations (which are usually coastal) a common occurrence is a slight decrease of temperature with height, accompanied by a very strong lapse of absolute humidity. Such profiles may show only a slight decrease of *relative* humidity with height, but, because the saturation vapor pressure is nearly an exponential function of temperature, the resulting vapor pressure gradient may be very large, thus causing a steep N-gradient.

Figures C-41, C-45, C-49, and C-53 show that persistent ducting (D) or superrefractive (SR) initial gradients can be found more than 25 percent of the time for at least two seasons in seven general areas of the world:

(1) Dakar - Fort Lamy transitional strip in Africa (D: all seasons),

(2) northern Arabian Sea including coastal areas of the Gulf of Aden and the Persian Gulf (D: all seasons),

(3) India, Bay of Bengal, southeast Asia, Indonesia, and north tip of Australia (SR: all seasons),

(4) southwest coast of North America, including portions of the North Pacific (SR: February, May, November),

(5) Gulf of Mexico and Caribbean region (SR: May, August, November),

(6) northwest coast of Africa and western Mediterranean (SR: May, August),

(7) Antarctica (D: May, August).

Area (1): Tropical west coast locations in the vicinity of 15°-22°N or S are affected annually by three or four latitudinal weather zones [Trewartha, 1961]. In winter the Dakar-Fort Lamy region is under the influence of dry anticyclonic Saharan air, but even at the time of low sun, the prevailing surface air movement is onshore from the southwest. The vertical depth of this maritime current is more shallow than in summer, but during the early morning hours, the surface relative humidity is 80 to 90 percent compared with 40 to 60 percent in the dry subsiding air above. Even with radiational cooling, the night temperatures throughout the marine layer (from 50 to 600 m thick) still remain over 20°C. This combination of temperature and humidity creates trapping conditions for frequencies below 300 Mc/s about 30 percent of the time in February (fig. C-31).

The weather zones advance rapidly northward [Thompson, 1965], so that by July the Dakar-Fort Lamy strip is in the wet tropical regime associated with the fluctuating, unstable Intertropical Convergence Zone (ITC). The marine current of the westerlies becomes much deeper, but the ducting layers are shallower and can exist only intermittently between the turbulent, showery periods common to the region. Figures C-22, C-24, C-26, and C-28 indicate that more than 30 percent of the ducting layers are over 100 m thick for all seasons except summer.

Area (2): The coastal areas of Arabia experience high surface humidities all year from monsoonal and sea-breeze effects, but during May and August these values are reinforced by temperatures above 25°C in a marine layer which may extend up to a height of 800 to 900 m before it meets the overrunning dry northeasterlies [Tunnell, 1964]. The percentage occurrence of ducts at Bahrain seems much higher than at Aden because all observations at Bahrain were taken at 0300 LST (when the surface humidity is at its maximum of 75 to 90 percent), whereas the Aden observations, taken twice a day, include as many observations at 1500 LST (when the relative humidity value is much less) as at 0300 LST. For instance, 50 of the 66 ducts recorded in August at Aden were from early morning observations. However, the fact that ducting gradients at Bahrain trap frequencies below 300 Mc/s over 75 percent of the time as compared to 5 percent at Aden (fig. C-37) is due to another factor: the thickness of the moist marine layer, when ducting is present

at Bahrain, is greater than 300 m over half the time.

Area (3): A moist surface layer is also found in the monsoonal areas. Its temperature is 25 to 30° C and, during occurrences of ducting, the surface relative humidity ranges from 85 to 100 percent, but the trapping incidence is much less than in either area (1) or (2). The surface layer is shallower and its gradient is less intense because the humidity decrease between it and the air mass directly above it is only 10 to 20 percent. Because brief periods of stable weather occur even between surges of the summer monsoon, the ducting incidence remains over 10 percent for all of area (3).

Area (4): Along the western coast of North America, from Southern California to Central Mexico, the most important month for unusual radio propagation due to surface conditions is February, when frequencies below 300 Mc/s are trapped 10 percent of the time. During the period studied, 30 percent of the superrefractive gradients were at least 300 m thick in all 4 months. Closer examination of the ducting structure in Mazatlan reveals that if near-surface layers (bases of 100-300 m) were included, the percentage of occurrence would be increased by 20 to 40 percent for all months except August. During February, May, and November the surface temperature of 20 to 30°C remains nearly constant through the ducting layer, but the relative humidity decreases from a surface value of 70 to 80 percent to values ranging from 20 to 40 percent. The dry air in the upper layer results from subsidence in the eastern margin of the Pacific high pressure cell, which shifts northwestward in August, thus decreasing the ducting incidence in Mazatlan but increasing it in lower California and the Hawaiian Islands (figs. C-21, C-23, C-25, C-27). Area (5): The center of most intense ducting

in the Caribbean Sea and Gulf of Mexico changes with the seasons (figs. C-41 through C-56). The smallest percentage of superrefractive groundbased gradients is found in February, with the stronger gradients concentrated near the east coast of Central America. By May the superrefractive area has shifted eastward into the Caribbean and northward into Florida. In August it includes parts of the eastern U.S. but is still most intense in the Swan Island area, and in November the area encompasses all of the Caribbean. The ground-based superrefractive layers are thicker than 100 m approximately 70 percent of the year, but the ducting layers are never intense enough to exceed the 1-percent trapping level for 300 Mc/s.

Area (6): The cause of superrefraction in the western Mediterranean and northwest Africa is very similar to that in area (4). During the summer season, subsidence along the eastern

edge of the Atlantic high-pressure cell superimposes a dry layer over the marine surface layer; during the winter season, the major subsidence area shifts southward, the temperatures throughout the surface layer are 5 to 10° C lower, and the percentage of superrefraction and trapping incidence decreases.

Area (7): During the long Antarctic night, intense radiation from the snow-covered ground keeps the surface temperature much lower than that in the air several hundred meters above. This temperature inversion of 10 to 25° C is the cause of all the ducting gradients in May and August, which trap frequencies <1000 Mc/s at least 40 percent of the time (see appendix E).

5.4. Discussion of Cumulative Distributions of Ground-Based Gradients

Data from 22 representative stations were selected as a sample of the kinds of groundbased gradient distributions from the surface to 100 m which occur in various climates and locations throughout the world.

Interesting similarities which exist among the gradient distributions imply that the refractivity climate of any station may be related more to the season or month of the year than to any particular latitudinal location. For instance, consider the interesting relationships between Bangui (a tropical station), Bordeaux (temperate), and Amundsen-Scott (arctic). The gradient distribution at Amundsen-Scott in February resembles that of Bordeaux in February, but its August distribution slope resembles that of Bangui in May. However, Bangui's distribution slope and range in August resembles Bordeaux in May. Amundsen-Scott forms another interesting climatic triad with Saigon and Long Beach. In August the distribution slope and range of Amundsen-Scott is very similar to that of Saigon (a tropical station), but the negative gradient intensity is about 100 N-units greater at all percentage levels. However, Saigon in May, before the monsoon, resembles Long Beach in February.

It was expected that a pronounced diurnal effect would exist in the gradient structure near the surface, so two stations, Aden, Arabia, and Nicosia, Cyprus, where data were available at two thermally opposite times of day—2 and 3 a.m. and 2 and 3 p.m. (0000 and 1200 GMT⁶) were studied. Figures C-57 and C-71 in appendix C show the diurnal differences in the cumulative distribution of initial gradients from 0 to 100 m for these two stations for the 4 months studied.

Superrefractive conditions normally accompany nocturnal inversions. At Nicosia this

 $^{^{6}\,\}mathrm{GMT}$ (Greenwich Mean Time) is the same as UT (Universal Time).

16 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY

proves to be the case for all seasons, with a very definite maximum in August, when anticyclonic upper air circulation intensifies the humidity decrease aloft and radiational cooling lowers the surface temperature 15°C below that found during the day.

Aden, a coastal station with less change in its diurnal temperature cycle than Nicosia (an interior valley station on a fairly large island), exhibits superrefraction day and night for all seasons. During August and November initial gradients have a wide range of values, with the largest variation occurring at 0000 GMT, but in February and May the nocturnal stability apparently is seldom destroyed by convective mixing, and the 1200 GMT (1500 LST) initial refractivity gradient may exceed the 0000 GMT (0300 LST) gradient. However, the early morning inversion is usually more significant from a radio-meteorological viewpoint because

FIGURE 5. Five-year mean vertical refractive gradient profile: Aden.

the refractivity gradient is much more intense from 250 m to 750 m, thus affecting more radio frequencies. This can be noted in figure 5, representing a 5-year mean of the vertical gradient observed from 0 to 4.5 km during May.

Figure 6 presents the same data for Nicosia during a 5-year August period. Because scale heights are also a measure of stability and stratification, figures 5 and 6 not only give the differences in the mean total N-gradient values in the lower atmosphere, but also the wet (H_w) and dry (H_1) scale heights. Five-year mean values of N_s at Aden in May were found to be 382

(surface wet term of 123) at 0000 GMT and 374 (surface wet term of 119) at 1200 GMT. The corresponding values at Nicosia in August were 341 (wet term of 83) and 310 (wet term of 62).

The percentage of occurrence of subrefraction (N/km>0) is larger at night (0000 GMT) in February and November at both locations. However, this diurnal trend is much more pronounced at Nicosia, particularly in November when the percentage of night subrefraction is over 30 percent larger than the daytime percentage of occurrence.

5.5. Reliability and Limitations of Ground-Based Refractivity Gradient Data

Because ground-based gradients are so sensitive to local effects, such as terrain and landwater relationships, it was impossible to contour figures C-1 through C-56 for individual small areas. For instance, although Madrid (on the high interior plateau of Spain) experiences little ducting during the year, it is surrounded by areas of high ducting incidence, and no attempt was made to delineate this small region of nonducting. Also, refractivity gradients calculated from radiosonde observation levels separated by less than 20 m may be seriously affected by instrumental errors, so ground-based layers less than 20 m thick were not included in the analysis. Consequently, very shallow ducting (such as that found at certain times over oceans, under dense jungle canopies, and in

FIGURE 6. Five-year mean vertical refractive gradient profile: Nicosia.

mountain valleys) is not included in the contoured data; however, such layers may be intense enough to create trapping conditions for frequencies down to 600 Mc/s [Jeske, 1964; Baynton et al., 1965; Behn and Duffee, 1965].

The time of day represented by the available observational data must also be considered for any variable which has a definite diurnal trend. Therefore, for a true comparison of worldwide gradient behavior, it would be desirable to use comparable data recorded at least twice a day at standard local or sun-referenced time. However, because simultaneous data are needed for the preparation of synoptic maps, all stations in the U.S.A. and many in the European countries schedule radiosonde observations at 0000 GMT and 1200 GMT. Many stations in other parts of the world take only one observation per day (usually at either 0000 GMT or 1200 GMT, but there are exceptions, e.g., 0600 GMT at Abidjan, Dakar, and Niamey). Even if all stations had a common GMT hour for taking observations, the diurnal problem would still exist because the *local* time for any designated *GMT* time would be distributed throughout the day as one traversed the globe. For instance, the following stations (in tropical areas where the occurrence of either subrefractive or superrefractive layers is especially dependent upon the time of day) were used in this report:

Station	Local time	GMT
*Aden, Federation of South Arabia	0300	0000
*Curacao, Netherlands Antilles	2000	0000
Fort Lamy, Republic of Chad	1 0100	0000
*Hilo, Hawaii	1400	0000
Lae, Territory of New Guines	a 1000	0000
Majuro Island, Marshall Islands	1200	0000
Singapore	0700	0000

Those stations marked with an asterisk also take observations at 1200 GMT. However, when evaluating the apparently low level of duct occurrence at some locations (e.g., Majuro) and high occurrence at others (e.g., Fort Lamy), and when checking the subrefraction occurrence at warm, dry continental locations, such as Niamey (where no midday observation is taken), the local time of the radiosonde ascent should be considered.

In addition to the spatial and temporal limitations imposed by the use of available radiosonde data, there are instrument recording limitations (see sec. 2) which must be considered when evaluating N-gradients. Although the alternating sequence system of observing the humidity and temperature can put a lower limit on the thickness and thus mask the true gradient of atmospheric layers which can be detected by radiosonde, the response of the radiosonde temperature and humidity elements is a more se-

rious problem in the measurement of the intensity and number of superrefractive gradients at or near the surface. For example, in typical ducting situations during May in a tropical (Saigon) and in a temperate climate (Bordeaux), correction of both humidity and temperature sensor time lags as suggested by Bean and Dutton [1961] would intensify gradients of -293 N/km (Saigon) and -212 N/km (Bordeaux) to -377 N/km and -362 N/km, respectively. This type of correction also would have increased the percentage occurrence of superrefractive and ducting gradients in the majority of cases. Such extensive recalculations were not possible in this study, but the possibility that more intensive gradients may occur in larger percentages at some locations (particularly in temperate, humid climates) should be kept in mind when applying values obtained from any of the figures in appendix C.

Another limitation which applies primarily to the detection of subrefractive layers (figs. C-1 through C-12) in hot, dry regions is the high electrical resistance of the lithium chloride humidity element at very low humidities which causes open-circuit signals ("motorboating"). At stations such as Aoulef, Algeria, where the daytime surface temperature often exceeds 30°C, the relative humidity may be below the motorboating boundary at all levels from surface upward, and all relative humidity values (except the surface) are estimated, usually in values which are equal to, or less than, the surface value. However, it is quite probable in these highly convective conditions that the absolute humidity remains constant with height, instead of rapidly decreasing (as the estimated relative humidity values would indicate). If it did remain constant, fairly persistent subrefractive gradients would be found in such areas during the hours of most intense solar heating. Maps have been prepared of the mean tropopause altitudes which were calculated in the course of obtaining the mean N-profiles for the 112 station sample, as discussed previously. The maps, for the 4 "seasonal" months, are shown in appendix D. The zone of maximum tropopause altitudes for each month seems to correspond quite well with the mean position of the Intertropical Convergence Zone.

As stated earlier, the criterion for determining the tropopause altitude for each radiosonde ascent was the altitude of the base of the first layer or layers which had a total thickness of at least 2 km and a temperature lapse rate of less than 2°C/km. The mean tropopause altitude for each station and for each month was

determined by a simple average of all of the individual values for the profiles in the sample (usually of 5 years' length). The reliability or consistency of these maps is difficult to assess, since the results of determining tropopause altitudes depend to a great extent on the criteria used for selection of the first stratospheric layer. The criterion used here is the one in most common usage [U.S. Weather Bureau, 1964], but other criteria may be applicable where the results are intended for use in specific atmospheric problems. These maps supplement tropopause data presented in other reports and atlases [For example, Willett, 1944; U.S. Navy, 1955-59; Smith, 1963; Smith et al., 1963; Kantor and Cole, 1965].

7.1. Accuracy of N(z) Maps

The general accuracy of the 5-year mean values used in the N(z) study was checked by computing the standard deviation of the yearto-year monthly means and dividing by the square root of 5. This should be a good estimate of the rms (standard) error of the 5-year mean values as compared to the true long-term mean (assuming there are no trends in the data). Table 1 shows the estimated standard error of the 5-year mean N_s values for 40 stations, arranged by climatic classification. The percentage errors should be similar for the N(z) parameters (with the possible exception of scale heights) at various altitudes. The combined (rms) standard error of 5-year mean N_s for the 40 stations for February and August was 2.37 N-units, or about 0.7 percent of the mean N_s . It is significant that even the standard 30-year period recommended (e.g., by the WMO) for standard climatological normals would have a nominal standard error of about \pm 1.0 N-unit (2.37 divided by $\sqrt{6}$), or about 0.3 percent of mean N_s values.⁷ The 30-year means would thus

TABLE 1. Standard errors of 5-year mean values of monthly mean N_8 for 40 stations.

Climatic type	Number of stations	Febru- ary* (N-units)	August* (N-units)	12-month estimate (rms of Feb. and Aug.) (N-units)	$\begin{array}{c} 12 \text{-month} \\ \text{rms as} \\ \text{percent-} \\ \text{age of} \\ \text{mean} \\ N_8 \end{array}$
Arctic	2	1.6	0.6	1.2	0.4
Subarctic	2	1.2	2.8	2.1	0.7
Marine west					
coast	4	1.5	1.9	1.7	0.5
Marine (ships)	4	2.2	1.5	1.9	0.6
Continental					
(cool)	2	1.0	2.9	2.2	0.7
Continental					
(warm) and					
subtropical	3	2.2	1.6	1.9	0.6
Semiarid cool.				2.000	
high altitude	2	1.4	3.5	2.7	1.0
Arid and semi-					
arid tropical	8	2.4	3.8	3.2	0.9
Monsoon	3	3.2	1.3	2.5	0.7
Equatorial	6	(seaso	ns not	2.7	0.7
		appli	cable)		
All (rms of					
above)	40	-		2.37	0.7

*For stations in the Southern Hemisphere, months were reversed (February was combined with August for northern stations, etc.). have an advantage of only about 50 percent in rms error, as opposed to the 5-year means actually used.

The overall accuracy of the three-part exponential model was checked in two ways. First, a check was made of the accuracy of recovering the $\overline{\Delta N}$ values using the three-part exponential. Here the value of $\overline{\Delta N}$ was calculated, using the wet- and dry-term tropospheric exponentials, and the value obtained was compared with the actual ΔN from the mean N-profile. Figure 7 shows the results of such a comparison for 95 of the 112 stations in the original sample for which coincident data of several types were available. The true value of ΔN from the mean N-profile is the dependent variable, and the value recovered from the wet and dry exponentials is the independent variable. The rms error in recovering $\overline{\Delta N}$ was 9.2 N-units; however, if those stations (points shown as crosses on fig. 7) which are in areas where the threepart exponential model is of questionable validity (as shown in fig. A-30) are eliminated from the sample, the rms error is reduced to 6.4 N-units. The regression line shown in figure 7 is for this reduced sample. The deviation of the regression line from the 45° line (labeled "perfect agreement" in fig. 7: zero intercept and unity slope) is significant at the 5-percent level; thus it would appear that this is not the best usage for the three-part exponential model. Use of the ΔN maps in appendix B is recommended rather than the N(z) maps, for this purpose.

The second check was to use the N(z) maps to recover the values of N(z) for some of the actual station locations, at different heights above the surface, and compare these with the actual values of mean N(z). This would be a check not only on the three-part exponential model but also upon the contouring process. Table 2 shows the results of such an error analysis.

Thirty-two of the original 112 stations were selected on an areal basis, and the corresponding three-part exponential model was constructed for each of these stations, for all 4 months, using the maps in appendix A. These exponential models were then used to calculate N(z) for three heights (3, 8, 16 km) for each month, and the results were compared with the actual mean N-profiles. The mean and maximum values of the absolute errors thus derived are shown in table 2. Stations and seasons in this sample

⁷ Thirty-year means are used because there are long-term trends in most climatological series; thus a standard period is desirable for comparison between stations.

which are characterized by a high (tropicaltype) tropopause showed larger errors at 16 km than at 8 km, the reverse of the usual trend

in table 2. It is apparent from inspection of table 2 that errors in recovering N(z) at altitudes of 3 km or more are likely to be small.

FIGURE 7. Correlation of ΔN : monthly mean N-profiles versus monthly mean exponential model.

)

 TABLE 2. Absolute errors in recovering mean N from map contours for 32 stations (in N-units).

Month	3 km		8 km		16 km	
	Mean	Max	Mean	Max	Mean	Max
Feb.	1.0	2.1	1.6	3.6	0.6	1.7
May	1.3	3.2	1.4	3.3	0.9	2.3
Aug.	1.4	2.1	1.9	3.7	0.8	1.6
Nov.	2.0	4.0	1.3	3.0	1.2	3.0
Year	1.4	4.0	1.6	3.7	0.9	3.0

The total variance, σ_T^2 , in using the maps of N(z) given in appendix A can be estimated in terms of the following error model:

$$^{2} \cong \sigma_{5}^{2} + \sigma_{M}^{2}, \qquad (7$$

where σ_5^2 is the variance of 5-year mean values (as compared to long-term means), σ_M^2 is the variance of errors in mapping N(z). Random

 σ_T

instrumental errors are included in σ_5^2 . The value of σ_5 can be estimated at about 2.5 N-units (table 1), while σ_M may be estimated at $1.5 \times$ P.E., where the probable error, P.E., is given approximately by the mean absolute errors in table 2. These would yield 2.1 N at 3 km, 2.4 N at 8 km, and 1.4 N at 16 km, for σ_M . A reasonable estimate for σ_M at the surface (0 km) would be 1.0 N-unit. These estimates may be combined to yield approximate σ_T values, as shown in table 3. Minimum and maximum values were obtained by permutations of the values in tables 1 and 2. The standard errors of the 5-year means have been assumed to be a constant percent of mean N(z), independent of altitude.

22 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY

	0	3 km	8 km	16 km
	In terms	of N-units	3	
Average Minimum Maximum	$\begin{array}{c} 2.6\\ 1.4\\ 4.3 \end{array}$	$ \begin{array}{r} 1.9 \\ 1.3 \\ 2.8 \end{array} $	$1.8 \\ 1.3 \\ 2.2$	$1.0 \\ 0.6 \\ 1.3$
	As percent	of mean N	r(z)	
Average Minimum Maximum Mean $N(z)$	$\begin{array}{c c} 0.8 \\ 0.4 \\ 1.3 \\ 320 \end{array}$	$\begin{array}{c c} 1.1 \\ 0.7 \\ 1.6 \\ 175 \end{array}$	$1.5 \\ 1.1 \\ 1.9 \\ 117$	$2.5 \\ 1.6 \\ 3.3 \\ 38$

TABLE 3. Approximate total standard errors, σ_{T} , for N(z) maps in appendix A.

It is probable that the percent errors given in table 3 do not increase materially above 16 km; asymptotic values of 3, 2, and 4 percent for average, minimum, and maximum relative standard errors are probably good estimates for altitudes from 20 to 30 km, while above 35 km the standard errors are probably no more than 0.2 N-units.

There are also undoubtedly some bias errors involved in the N(z) maps, although they are probably quite small. Sources of these bias errors would include the equation for N itself (Smith-Weintraub formula), the radiosonde in-

FIGURE 8. Correlation of ΔN : monthly mean N-profiles versus monthly mean weather summary data.

strument (where the sensor lag would seem to assure a slight positive bias for all upper-air Nvalues, even over long-term means), and certain peculiarities in the mapping and curve-fitting procedures which might produce bias for some values of z and not others (e.g., the bias due to the sharp "knee" of the D_1 and D_2 exponential terms at the N-tropopause as compared with the smooth transition of real mean N-profiles; note example in fig. 2). It should be noted that this last type of bias error was (automatically) included in the mean absolute errors given in table 2, since there was no easy way of separating this type of error from the others. Hence table 3 includes an allowance for this particular source of bias error.

7.2 Accuracy of $\overline{\Delta N}$ Maps

As a check on the method used to calculate the ΔN values from which the maps in appendix B were derived, the $\overline{\Delta N}$ values from the weather summary data were obtained for all 90 of the stations which were also contained in the mean *N*-profile sample; the $\overline{\Delta N}$ values for the months of February, May, August, and November were then compared with the corresponding values from the actual mean N-profiles. However, the period of record involved in the mean N-profile study was not, in general, even partially coincident with the 1960-64 period used for the ΔN study. Thus it was expected that the variance, σ_{D^2} , of the differences between the weather summary $\overline{\Delta N}$ values (from which the maps given in appendix B were obtained) and the $\overline{\Delta N}$ values from the mean N-profiles would have two components,

$$\sigma_D^2 = \sigma_R^2 + \sigma_E^2, \qquad (8)$$

where σ_{R^2} is the variance of the real difference in the two 5-year mean values of ΔN (because they are obtained from different time periods). and σ_{E^2} is the variance of the differences which are caused by the interpolation errors inherent in the method used to obtain the $\overline{\Delta N}$ from the weather summary data. Since the real differences (represented by σ_R) would be expected to have a near-zero mean for a worldwide data sample, a regression analysis of the two types of $\overline{\Delta N}$ values should reveal any bias which had been produced by the interpolation method used in the $\overline{\Delta N}$ study. Figure 8 shows the results of such a comparison, with $\overline{\Delta N}$ from the mean N-profiles as the dependent variable, and $\overline{\Delta N}$ from the weather summary data as the independent variable. There is no statistically significant bias shown, since the regression line is almost identical with the "perfect agreement" line (zero intercept and slope of unity).

An evaluation of the relative sizes of σ_R and σ_E was made by calculating the rms difference between the two types of $\overline{\Delta N}$ values for a restricted sample containing only those stations where the mandatory pressure level used to calculate the $\overline{\Delta N}$ values from the weather summary data was within ± 100 m of 1 km above the surface; the rms difference thus calculated was 3.9 Nunits. Since any interpolation errors would be expected to be quite small for this restricted sample, it was concluded that the 3.9 N-unit rms represented essentially the value of σ_R as given in (8).

The value of σ_D as given in figure 8 is 5.2 *N*-units; thus by (8) the value of σ_E is probably on the order of 3.5 *N*-units. This should be a good approximation to that part of the overall rms error in the $\overline{\Delta N}$ maps which is assignable to the interpolation method used on the weather summary data.

The overall accuracy of the $\overline{\Delta N}$ maps given in figures B-2 through B-13 depends on several factors: the accuracy of the interpolation method, the variability of the 5-year mean period as compared with a standard WMO 30-year mean period, and the heterogeneous nature of the local observation times included in the data sample. The weather summary data were mostly derived from observations taken at 0000 GMT, although many stations in different parts of the world supplied data taken at 1100 or 1200 GMT, while others supplied data averaged at two, or in a few cases four, times per day. In this study no attempt was made to correct for diurnal variations imposed by the fixed observation times of the various stations; hence diurnal variability must be added to the sources of possible error in the maps. It is reasonable to assume that the actual (unknown) standard error of the maps is not independent of the true value of monthly mean ΔN desired, but that it is more likely a certain percentage of the true value. Since the overall correlation between the contoured and true values is probably quite high, it is plausible to estimate the standard error of the maps as a percentage of the contoured values. On figure 8 it is found that an allowance of \pm 10 percent from the perfectagreement line (in the vertical) will exclude only 23 percent of the 360 data points (40 above the limits, and 44 below the limits); for a normal distribution, 32.5 percent of the points should be excluded by the standard error limits. Therefore, allowing for some added error from diurnal variability, it seems reasonable to estimate the overall standard error of the maps of ΔN as approximately 10 percent of the contoured values.

This is equivalent to assuming an error model,

$$\sigma_{T^{2}} = \sigma_{5^{2}}^{2} + \sigma_{E^{2}}^{2} + \sigma_{t^{2}}^{2}, \qquad (9)$$

where the terms have the same meaning as those in (7) and (8), with $\sigma_5^2 \cong \sigma_R^2$ (possibly as low as $\frac{1}{2} \sigma_R^2$) in (8), and where σ_t^2 is the variance assignable to diurnal variations in ΔN . The value of σ_t should be on the order of 2 to 4 *N*-units, which is an estimate based on inspection of the CCIR maps [CCIR, 1965].

There is doubtless some bias error in the $\overline{\Delta N}$ maps; the discussion given for bias errors in the N(z) maps is mostly applicable to the $\overline{\Delta N}$ maps. Here the bias due to the radiosonde is relatively larger, because of the differencing used to obtain $\overline{\Delta N}$ values. This mean bias error may be as high as 1 percent of the $\overline{\Delta N}$ values, but data adequate for checking on this possibility are not available.

7.3. Accuracy of Gradient Maps

It is very difficult to assess the probable errors in the maps of the different kinds of initial gradients given in appendix C. The primary reason for this is that no data are available except those used to prepare the maps. It is likely that the most serious source of discrepancies will arise because of the admixture of data taken at widely differing local times. In line with the results of the $\overline{\Delta N}$ error analysis, an overall error of about 15 percent of the contoured values seems reasonable, but may be higher or lower, depending on the area being considered. The maps in appendix C are probably best suited for the depiction of climatic tendencies of subrefraction and superrefraction.

8. Conclusions

It seems clear that the most significant conclusion which can be drawn from this study (pertaining to future requirements) is that careful selection of data by local time of observation, and the segregation of these data into types, e.g., nighttime and midafternoon, prior to analysis or mapping, is probably equally as important as obtaining larger samples. The effects of such an analysis on the results given in this atlas would probably be slight in the case of the N(z) maps, somewhat larger in the case of the $\overline{\Delta N}$ maps, and might well have a profound effect on the ground-based gradient maps of appendix C.

9. References

- Air Ministry, Meteorological Office (1961), Tables of Temperature, Relative Humidity and Precipitation for the World, vols. I-VI (Her Majesty's Stationery Office, London)
- Baynton, H. W., H. L. Hamilton, Jr., P. E. Sherr, and J. J. B. Worth (1965), Radio climatology of a tropical rain forest, J. Geophys. Res. **70**, No. 2, 504–508.
- Bean, B. R. (1954), Prolonged space-wave fadeouts in 1046 Mc observed in Cheyenne Mountain propagation program, Proc. IRE 42, No. 5, 848-853.
- Bean, B. R. (1959), Climatology of ground-based radio ducts, J. Res. NBS 63D (Radio Prop.), No. 1, 29-34.
- Bean, B. R. (1961), Concerning the bi-exponential nature of tropospheric radio refractive index, Beitr. Physik Atmosphäre 34, Nos. 1/2, 81-91.
- Bean, B. R. (1962), The radio refractive index of air, Proc. IRE 50, No. 3, 260-273.
- Bean, B. R., and B. A. Cahoon (1957), A note on the climatic variation of absolute humidity, Bull. Am. Meteorol. Soc. 38, No. 7, 395–398.
- Bean, B. R., and B. A. Cahoon (1961a), Limitations of radiosonde punch-card records for radio-meteorological studies, J. Geophys. Res. 66, No. 1, 328-331.
- Bean, B. R., and B. A. Cahoon (1961b), Correlation of monthly median transmission loss and refractive index profile characteristics, J. Res. NBS 65D (Radio
- Prop.), No. 1, 67–74. Bean, B. R., and E. J. Dutton (1961), Concerning radiosondes, lag constants, and refractive index profiles, J. Geophys. Res. 66, No. 11, 3717-3722.
- Bean, B. R., and F. M. Meaney (1955), Some applications of the monthly median refractivity gradient in tropo-spheric propagation, Proc. IRE 43, No. 10, 1419-1431. Bean, B. R., and G. D. Thayer (1959), On models of the
- atmospheric refractive index, Proc. IRE 47, No. 5, 740-755.
- Bean, B. R., G. D. Thayer, and B. A. Cahoon (1960a), Methods of predicting the atmospheric bending of radio rays, J. Res. NBS 64D (Radio Prop.), No. 5, 487-492.
- Bean, B. R., J. D. Horn, and A. M. Ozanich, Jr. (1960b), Climatic charts and data of the radio refractive index for the United States and the world, NBS Monograph No. 22.
- Behn, R. C., and R. A. Duffee (1965), The structure of the atmosphere in and above tropical forests, Rept. No. BAT-171-8, Battelle Memorial Institute, Columbus, Ohio.
- Bunker, A. F. (1953), On the determination of moisture gradients from radiosonde records, Bull. Am. Meteorol. Soc. 34, 406-409.
- CCIR (International Radio Consultative Committee) (1963), Influence of the atmosphere on wave propa-gation, Rept. 233, Documents of the 10th Plenary Assembly, vol. 2 (Geneva).
- CCIR (International Radio Consultative Committee) (1965), Propagation over the surface of the earth and through the non-ionized regions of the atmosphere, Rept. G.l.d(V), Conclusions of the interim meetings of Study Group V (Geneva).
- Dodd, A. V. (1965), Dew point distribution in the contiguous United States, Monthly Weather Rev. 93, No. 2, 113-122
- Dutton, E. J., and B. R. Bean (1965), The bi-exponential nature of tropospheric gaseous absorption of radio waves, Radio Sci. J. Res. NBS 69D, No. 6, 885-892.

- du Castel, F. (1961), Propagation Tropospherique et Faisceaux Hertziens Transhorizon, 140-141. (Editions Chiron, Paris.)
- Hutchings, J. W. (1961), Water vapor transfer over the Australian continent, J. Meteorol. **18**, 615–634.
- Jeske, H. (1964), Transhorizon-transmission and height gain measurements above the sea with waves in the range of 1.8 cm to 187 cm under special consideration of meteorological influences, Proc. 1964 World Conf. on Radio Meteorology, Am. Meteorol. Soc., Boston, Mass. 458-463.
- Kantor, A. J., and A. E. Cole (1965), Monthly atmos-pheric structure, surface to 80 km, J. Appl. Meteorol.
- 4, No. 2, 228-237.
 Kerr, D. E. (1951), Propagation of Short Radio Waves, MIT Radiation Lab. Series, vol. 13. (McGraw-Hill Book Co., Inc., New York, N. Y.).
 Knoll, D. W. (1941), Climatology Asiatic Station, Hy-drographic Office, U. S. Navy, Washington, D. C.
 List, R. J. (1958), Smithsonian Meterological Tables, 204 (Smithsonian Inst. Washington, D. C.)
- 204. (Smithsonian Inst., Washington, D. C.). Michaelis, J., and E. Gossard (1958), Distribution of
- refractive layers over the North Pacific and Arctic, NEL Rept. No. 841, U. S. Navy Electronics Lab., San Diego, Calif.
- Misme, P., B. R. Bean, and G. D. Thayer (1960), Models of the atmospheric radio refractive index, Proc. IRE 48, No. 8, 1498-1501.
- Misme, P. (1964), A meteorological parameter for radioclimatological purposes, Radio Sci. J. Res. NBS 68D,
- No. 7, 851-855.
 Reitan, C. H. (1963), Surface dew point and water vapor aloft, J. Appl. Meteorol. 2, No. 6, 776-779.
 Rydgren, B. (1963), Proposal for a Swedish radio standard atmosphere, Rapport A518, Forsvarets, Forskningsanstalt, Stockholm.
- Saxton, J. A. (1951), Propagation of metre waves be-yond the normal horizon, Proc. Inst. Elec. Engrs. (London) **98**, Pt. III, 360–369. Serra, A. (1955), Atlas Climatologico do Brasil, vol. 1.
- (Conselho Nacional de Geografia e Service de Meteorologia, Rio de Janeiro.)
- Smith, E. K., and S. Weintraub (1953), The constants in the equation for atmospheric refractive index at radio
- frequencies, Proc. IRE **41**, 1035–1037. Smith, J. W. (1963), The vertical temperature distribution and the layer of minimum temperature, J. Appl. Meteorol. 2, No. 5, 655-667. Smith, O. E., W. M. McMurray, and H. L. Crutcher
- (1963), Cross sections of temperature, pressure, and density near the 80th meridian west, National Aero-nautics and Space Administration, Washington, D. C.
- Thompson, B. W. (1965), The Climate of Africa (Oxford University Press, Nairobi).
- Trewartha, G. T. (1961), The Earth's Problem Climates (Univ. of Wisconsin Press, Madison, Wisc.).
- Tunnell, G. A. (1964), Periodic and random fluctuations of the wind at Aden, Meteorol. Mag. 93, No. 1100, 70 - 82
- UNESCO (1958), Arid Zone Research X, Climatology, Reviews of Research, 159 (Imprimerie Firmin-Didot, Paris).
- U. S. Navy, Chief of Naval Operations (1955-1959), Marine Climatic Atlas of the World, vols. 1-5, NAV-AER 50-1C-528 through 50-1C-532, U. S. Govt. Printing Office, Washington, D. C.
- U. S. Weather Bureau (1964), Manual of Radiosonde Observations, Circular P, 7th ed., U. S. Govt. Printing Office, Washington, D. C.
 Wagner, N. K. (1960), An analysis of radiosonde effects on the measured frequency of occurrence of ducting layers, J. Geophys. Res. 65, 2077-2085.
- Wagner, N. K. (1961), The effect of the time constant of radiosonde sensors on the measurement of temperature and humidity discontinuities in the atmosphere, Bull. Am. Meteorol. Soc. 42, No. 5, 317-321.
 Willett, H. C. (1944), Descriptive Meteorology (Academic Press, Inc., New York, N. Y.).

10. Appendix A. World Maps of N(z) Parameters

Data from the weather stations listed alphabetically in table A-1 were used to prepare the maps in this appendix. Each station is preceded by a number to identify its location on figure A-1 and followed by a listing of surface refractivity values at the 1, 5, 50, 95, and 99 percent cumulative distribution levels for the 4 months of February, May, August, and November.

The N(z) parameters (all referenced to sea level) which are necessary to calculate N at any altitude, z, in kilometers, are D_0 , W_0 , H_1 , H_2 , H_w , and z_t . These are given in figures A-2 through A-25. The z_t chart for any particular month will determine which of the dryterm curves will be used. If the desired altitude (above sea level) of N(z) is below the z_t value at the specified location, use the tropospheric equation

$$N(z) = D_0 \exp\left\{-\frac{z}{H_1}\right\} + W_0 \exp\left\{-\frac{z}{H_w}\right\} .$$
 (A-1)

If the desired altitude is *above* the z_t value, use

$$N(z) = D_0 \exp\left\{-\frac{z_t}{H_1} - \frac{(z-z_t)}{H_2}\right\} + W_0 \exp\left\{-\frac{z}{H_w}\right\}.$$
 (A-2)

All three scale heights are required for equation (A-2), whereas only two, H_1 and H_w , appear in the tropospheric equation. If the surface altitude of the location is greater than 1 km, it is suggested that the "standard atmosphere" value of 3 km be substituted for H_w (see sec. 3.3).

To illustrate the step-by-step procedure for determining refractivity from the N(z) parameters, the following example (assuming heights of 2 km and 20 km above the surface at a location 200 m above sea level, at latitude 15°N and longitude 0°, in August) is given:

(a) Refractivity at 2 km above the surface:

(1) At the assumed location, interpolate linearly between contours on figures A-19 to obtain z_t (13.8 km) to see whether the altitude above sea level, z (2.2 km), is above or below the z_t value. It is below, so equation (A-1) should be used.

(2) The map values at 15° N and 0° of the parameters needed to calculate (A-1) are:

(fig. A–14)
(fig. A–15)
(fig. A-16)
(fig. A–18)

(3) If these values are substituted in (A-1), N(z) is found to be 249.9 N-units at 2 km above the surface. (Probable errors due to contouring and data restrictions would suggest the use of only three significant figures, i.e., 250 N-units.)

(b) Refractivity at 20 km above surface:

(1) Check to see whether the assumed altitude (z = 20.2 km above sea level) is above or below the z_t value. Since it is above, (A-2) should be used.

(2) All the parameters are needed for this calculation. In addition to the four values listed in calculation (a) above, these are required:

$H_2 = 5.90 \text{ km}$	(fig. A–17)
$z_t = 13.8 \text{ km}$	(fig. A–19)

		66	358.5 281.6 314.1	214.3 295.6	$\begin{array}{c} 321.4\\ 268.3\\ 302.2\\ 331.2\\ 313.4\end{array}$	281.1 317.7	351.6	321.0 305.6	$\begin{array}{c} 284.1 \\ 292.2 \\ 313.8 \\ 305.6 \\ 334.4 \end{array}$	$\begin{array}{c} 353.8\\ 296.1\\ 298.9\\ 313.2\\ 279.1\end{array}$	328.0 311.0 285.5	305.4	300.1	$\begin{array}{c} 362.9\\ 327.5\\ 333.5\\ 240.3\\ 247.4\end{array}$	309.7 291.7 274.3	295.9 267.5	$\begin{array}{c} 304.3\\ 289.8\\ 332.9\\ 298.0\\ 304.3\end{array}$	$\begin{array}{c} 306.5\\ 297.0\\ 288.5\\ 328.7\\ 280.2\\ 280.2\end{array}$	$\begin{array}{c} 377.3\\ 355.5\\ 338.9\\ 330.2\\ 330.2\\ 291.8\end{array}$
	er	95	377.9 284.9 335.8	216.9 298.7	325.9 269.8 305.4 336.4 317.6	292.1 332.1	370.1	339.2 307.4	303.9 296.4 316.1 312.0 341.4	$\begin{array}{c} 358.3\\ 298.7\\ 304.8\\ 315.2\\ 282.4\end{array}$	338.2 317.8 292.3	306.6	304.3	368.9 339.2 339.2 337.9 242.2 253.9	320.6 294.2 285.7	300.3 272.9	$\begin{array}{c} 311.7\\ 300.2\\ 339.2\\ 305.9\\ 305.9\\ 308.9\end{array}$	$\begin{array}{c} 310.5\\ 299.8\\ 291.4\\ 337.0\\ 283.8\end{array}$	380.9 364.1 348.1 335.8 335.8
	ovemb	50	385.4 310.2 360.2	227.2 306.6	334.8 288.8 316.7 350.4 333.4	307.2 357.4	381.1	357.9 315.4	$\begin{array}{c} 312.6\\ 303.6\\ 323.6\\ 348.8\\ 357.3\end{array}$	369.1 307.7 325.9 331.9 291.6	360.7 351.7 303.4	313.1	312.6	378.2 365.5 364.8 253.1 264.8	$342.2 \\ 301.2 \\ 312.7 \\$	307.0 306.4	$\begin{array}{c} 322.6\\ 318.2\\ 359.0\\ 340.5\\ 322.2\end{array}$	$\begin{array}{c} 321.5\\ 306.8\\ 297.6\\ 365.8\\ 299.4\end{array}$	388.3 379.8 360.5 343.0
	N	5	396.7 340.3 376.3	233.5 314.2	$\begin{array}{c} 341.5\\ 309.3\\ 334.7\\ 360.9\\ 351.1\end{array}$	341.5 382.4	389.3	366.0 332.2	$\begin{array}{c} 324.9\\ 316.0\\ 336.4\\ 376.8\\ 381.1\\ 381.1\end{array}$	$\begin{array}{c} 383.9\\ 319.8\\ 359.6\\ 345.1\\ 304.1\end{array}$	$377.2 \\ 373.9 \\ 327.0 \\ 327.0 \\ \end{array}$	331.3	323.8	$\begin{array}{c} 386.8\\ 381.8\\ 388.0\\ 262.2\\ 282.6\\ 282.6\end{array}$	357.4 310.8 361.4	320.5 326.3	338.5 326.6 374.2 369.2 335.7	$\begin{array}{c} 336.5\\ 322.1\\ 303.0\\ 384.7\\ 315.9\end{array}$	395.4 396.2 373.0 348.5 344.7
		1	$\begin{array}{c} 399.2\\ 346.1\\ 381.2\end{array}$	234.6 315.3	$\begin{array}{c} 342.6\\ 332.2\\ 343.7\\ 368.2\\ 357.2\\ 357.2 \end{array}$	349.0 388.7	394.5	374.1 334.8	$\begin{array}{c} 329.0\\ 362.2\\ 343.1\\ 382.9\\ 387.9\end{array}$	388.2 334.2 367.7 348.1 308.2	384.1 380.3 336.9	338.7	326.9	$\begin{array}{c} 391.6\\ 388.0\\ 391.8\\ 268.2\\ 268.2\\ 289.4\end{array}$	$\begin{array}{c} 364.9\\ 314.3\\ 368.1 \end{array}$	322.9 332.9	$\begin{array}{c} 349.6\\ 335.9\\ 378.2\\ 379.8\\ 342.0\\ 342.0\end{array}$	$\begin{array}{c} 341.4\\ 333.8\\ 305.7\\ 391.0\\ 322.4\end{array}$	399.0 416.7 378.8 351.3 351.3
		66	$ \begin{array}{c} 361.0\\ 295.3\\ 323.7 \end{array} $	231.8 297.3	$\begin{array}{c} 310.2\\ 270.1\\ 316.3\\ 327.5\\ 305.5\end{array}$	315.7 359.3	365.0	340.7 308.8	300.4 298.9 324.8 354.4 378.1	$\begin{array}{c} 360.2\\ 304.6\\ 337.2\\ 304.0\\ 304.0\\ 277.8\end{array}$	347.5 356.7 310.6	279.5	300.3	$\begin{array}{c} 365.1\\ 358.2\\ 280.8\\ 244.1\\ 255.0\end{array}$	$\begin{array}{c} 311.5\\ 293.7\\ 355.6\end{array}$	295.3 260.8	$\begin{array}{c} 308.1\\ 299.1\\ 342.3\\ 361.1\\ 301.8 \end{array}$	286.0 306.5 277.6 358.7 298.4	372.8 355.3 347.1 328.2 328.2
		95	366.2 303.5 338.5	236.1 308.5	$\begin{array}{c} 319.8\\ 270.9\\ 322.6\\ 331.0\\ 313.2\end{array}$	328.3 361.2	371.7	344.6 312.0	$\begin{array}{c} 311.1\\ 304.8\\ 332.9\\ 367.6\\ 385.0\end{array}$	363.7 310.6 351.2 310.5 289.9	358.8 367.8 317.4	308.6	306.8	372.4 364.8 285.5 250.0 264.8	$\begin{array}{c} 312.7\\ 302.1\\ 358.8 \end{array}$	305.3 265.8	$\begin{array}{c} 310.1\\ 300.0\\ 348.5\\ 370.1\\ 306.3\end{array}$	$\begin{array}{c} 307.1 \\ 319.7 \\ 367.4 \\ 3367.4 \\ 334.3 \end{array}$	378.0 360.8 351.3 331.4
	August	50	375.2 317.8 366.6	246.0 324.3	328.6 275.9 337.5 346.6 332.1	357.0 392.5	383.0	359.6 318.1	328.8 318.1 344.4 381.2 396.3	375.6 327.3 376.6 322.3 309.9	372.8 383.8 344.4	327.4	316.2	382.4 381.7 341.7 273.8 294.5	323.2 319.3 369.3	320.6 296.8	$\begin{array}{c} 3224.7\\ 330.5\\ 364.1\\ 385.8\\ 317.9\\ \end{array}$	$ \begin{array}{c} 314.4 \\ 342.5 \\ 307.7 \\ 382.9 \\ 355.6 \\ \end{array} $	386.2 376.4 362.6 337.9 337.9
ivity	4	5	381.5 330.8 393.1	256.7 336.3	335.9 302.3 357.2 357.9 357.5	372.3 423.6	391.0	366.4	347.4 332.4 359.8 391.9 406.6	390.3 354.0 389.7 334.6 327.9	387.3 395.7 368.3	354.7	327.8	393.0 393.9 366.3 318.2	338.7 332.7 377.7	338.3 338.6	$\begin{array}{c} 340.1\\ 365.3\\ 378.9\\ 395.1\\ 329.3\\ 329.3\end{array}$	321.9 369.6 324.3 394.2 369.7	393.7 384.7 375.6 341.3
efracti		1	384.2 334.4 400.6	259.2 339.6	$\begin{array}{c} 340.2\\ 313.2\\ 367.1\\ 362.5\\ 364.5\end{array}$	378.3 429.6	394.1	369.3 334.0	357.4 339.0 366.8 396.4 412.0	398.1 364.4 397.3 335.5 335.5	395.1 402.5 375.2	363.8	337.2	397.7 398.2 380.3 304.2 324.7	340.2 336.5 378.2	352.0 357.4	$\begin{array}{c} 342.6\\ 380.2\\ 383.4\\ 402.7\\ 333.7\end{array}$	$\begin{array}{c} 326.6\\ 391.1\\ 329.7\\ 329.7\\ 404.9\\ 374.1\\ 374.1\end{array}$	396.8 394.1 379.3 342.8 361.3
face r		66	365.1 299.6 308.7	227.3 292.8	322.6 267.4 299.8 335.4 311.3	289.3 329.6	364.3	338.5 308.7	295.0 286.6 312.5 325.2 354.4	863.1 290.0 809.7 297.2 259.0	833.1 821.8 293.4	306.3	304.9	361.7 335.8 324.7 232.0 232.9	284.3 280.5 281.2	285.1	310.6 292.2 336.8 333.6 307.4	306.2 294.0 335.7 259.3	378.0 359.1 331.8 331.8 334.7
of sur,		95	877.0 807.2 842.9	233.8	324.4 268.4 305.2 317.7	341.6	369.7	341.3	304.0 289.4 320.0 338.2 366.8	366.8 294.8 320.6 307.1 268.2	343.3 334.1 300.4	308.9	306.8	366.0 343.3 327.0 238.8 238.2	818.3 284.9 296.5	289.6	312.8 298.8 345.0 349.8 310.7	307.9 304.4 276.0 348.6 264.1	379.4 363.3 337.8 337.8 337.5
ent) c	May	50	387.5 324.7 381.9	244.2	331.8 275.8 315.8 358.4 331.9	340.1	381.7	359.6	322.7 300.9 332.5 372.4 395.4	379.5 307.7 356.1 324.5 281.4	365.4 367.0 325.2	313.5	311.1	378.0 358.4 359.5 260.7 256.2	328.7 302.2 344.9	302.9	325.8 320.1 358.4 378.9 322.0	313.6 319.9 319.9 373.9 284.1	388.0 382.3 382.3 344.5 344.5
t perc		5	396.2 340.2 397.8	318.9	338.7 290.2 329.1 370.3 343.9	360.9	390.2	369.3	337.2 318.4 345.5 389.5 414.0	391.8 327.8 378.4 337.8 337.8 295.6	382.1 385.5 351.5	316.3	317.1	390.0 373.4 390.8 277.5 288.6	354.8 318.3 361.2	315.2	346.1 340.9 370.5 394.8 334.0	319.8 346.4 309.8 387.5 336.9	395.2 392.9 365.5 351.9
els (in		1	397.5 349.3 411.3	262.3	339.5 296.2 3338.8 375.8 349.6	367.1 409.2	393.5	375.1 321.0	343.5 319.7 353.7 393.7 420.9	395.2 3384.5 3394.5 339.8 299.4	391.9 391.2 363.2	316.4	321.8	394.1 378.6 396.9 282.4 296.7	364.4 323.3 365.3	320.3 327.5	$\begin{array}{c} 346.4\\ 350.0\\ 373.2\\ 400.7\\ 337.9\end{array}$	$\begin{array}{c} 322.4\\ 351.5\\ 315.7\\ 391.8\\ 345.7\end{array}$	398.1 394.0 354.6 354.6
val nc		66	356.7 282.2 315.5	211.9	325.2 266.1 297.7 339.1 299.1	289.4	345.1	310.7	290.1 285.3 304.5 304.4 313.9	355.9 294.7 299.3 317.5 282.6	318.0 309.4 290.1	312.9	306.6	352.5 290.0 329.3 235.9 243.4	320.4 290.9 274.8	265.8	319.0 	310.3 299.4 287.6 315.7 268.8	368.2 345.4 324.3 341.6 341.6
ibuti		95	373.0 285.7 336.5	216.8	334.0 269.2 300.4 347.0 306.8	294.3	353.7	319.7	297.8 288.9 308.4 314.0 322.3	361.8 297.8 304.7 320.0	329.7 317.2 294.8	319.6	311.8	359.8 319.7 355.1 241.4 250.0	325.4 294.1 280.0	301.9	320.2 297.4 333.4 308.4 312.4	317.3 301.7 291.5 324.2 273.4	374.4 355.9 330.8 346.3
e distr	bruary	50	890.3 814.0 857.1	226.5 307.2	344.9 284.4 309.4 360.0 317.6	308.3 338.0	367.8	352.8	308.8 299.0 320.9 351.9 343.9	371.0 305.7 326.4 339.6 297.3	348.8 344.2 303.8	328.6	329.0	368.3 346.0 377.6 251.8 263.4	346.8 311.0 297.8	316.5	832.1 817.2 851.6 832.7 832.7	3333.3 308.4 308.4 359.2 284.8	384.6 377.0 351.1 357.7 857.7
ulativ	Fe	5	401.2 343.0 377.9	234.6	352.8 303.7 323.8 371.6 330.6	337.3	378.0	366.3	819.2 305.2 332.0 371.6 372.4	382.2 313.3 352.3 356.2 307.8	368.3 367.4 319.0	341.8	339.8	378.8 363.5 402.2 259.2 281.8	370.4 335.3 326.3	336.4 318.8	354.5 327.4 365.1 367.3 345.4	348.7 316.3 305.9 376.5 295.3	392.6 388.3 363.4 368.9 368.9
Cum		1	405.0 365.9 391.3	239.6 322.0	357.6 326.4 329.2 378.2 335.8	348.1 366.1	382.3	371.8 351.4	$\begin{array}{c} 325.0\\ 308.4\\ 337.7\\ 375.5\\ 376.8\end{array}$	385.4 319.2 358.3 357.6 310.4	375.3 372.7 331.8	345.9	341.2	381.0 367.6 410.8 262.5 290.4	379.6 342.8 332.5	352.4 324.0	357.0 368.4 371.7 351.7	$\begin{array}{c} 355.8\\ 319.7\\ 310.1\\ 382.3\\ 307.2\\ \end{array}$	394.6 408.6 368.0 377.7 342.2
A-1.		itude	56W 35E 01E	00 59W	28W 05E 00W 24W 44E	25W 38E	33W	34E 47W	32E 34E 42W 27E	43W 01W 02W 33W 29E	33E 36W 22W	15W	22 W	58W 30W 52E 53W 24W	32 W 52 W 02 E	00W 37W	53 W 55 E 04 W 19 E	32W 10W 08E 33E	29E 59E 02W 02W
ABLE		Long	03 138 45	00 149	70 54 14 23	84 50	62	18 156	88 970 88 88 70 88	171 68 80 176 113	120 80 92	115	83	68 17 130 104 106	58 147 15	112 11	09 51 155 114 168	103 88 73 81 32	134 146 159 177 118
F		atitude	5 15N 4 56S 2 50N	0 00S 1 10N	3 25S 6 58N 7 18N 7 58S 7 54N	3 39N 6 16N	8 58N	4 23N 1 18N	4 47N 9 57N 5 55N 2 39N	2 46S 6 52N 2 54N 2 58S 2 05N	5 01N 8 14N 8 58N	7 49N	4 12N	2 11N 4 44N 9 46N 1 48N	4 50S 4 49N 2 08N	0 01N 5 14N	0 21S 7 07N 9 44N 2 18N 6 25S	8 47N 1 30N 9 48N 4 34N 5 36N	7 20N 6 45S 1 59N 2 06S
	noi	rs) L	15 0 11 3 4 1	40 9	37 2 90 22 177 4 9 3 3 37 2 9 30	2 2 2 2	0 6	85 0 4 7	443 666 666 666 666 666 66 66 66 66 64 44 66 66	3 0 91 4 49 4 71 5	49 1 5 2 39 3	9 6	59 6	222 8 94 33 33 33	20 3 38 6 00 1	03 6 59 2	40 440 440 440 440 440 440 440 440 440	31 79 44 555 44 85 24 85 12	229 0 336 2 20 336 2 20 335 12 0 335 12 0 20 3
	Flowet	(mete		28	5	65		69	CN 65	r v	1 2			911	100	C4 03			-
		Station	Abidjan, Ivory Coast Adelaide, Australia Aden, Arabia	Amundsen-scout, Antarctica*	Antofagasta, Chile Aoulef, Algeria Argentia, Newfoundland. Ascension Island Athinai, Greece	Atlanta, Ga Bahrain Island	Panama C.Z.	Republic	Beograd, Yugoslavia Bitburg, Germany. Bordeaux, France Brownsville, Tex Calcutta, India.	Canton Island Caribou, Maine Charleston, S. C. Chatham Island Chita, U.S.S.R.	Clark Field, the Philippines Cocoa Beach, Fla.	Coppermine, Northwest Territories.	Coral Harbour, Northwest Territories.	Curacao Island Dakar, Senegal Darwin, Australia Denver, Colo. El Paso, Tex.	Ezeiza, Argentina*. Fairbanks, Alaska* Ft. Lamy, Chad	Ft. Trinquet, Mauritania	Gough Island* Guryev, U.S.S.R. Hilo, Hawaii Hong Kong Invercargili, New Zealand	Isachsen, N.W.Territories Joliet, III. Karaganda, U.S.S.R. Key West, Fla. Khartoum, Sudan.	Koror, Palau Islands Late, New Guinea* Lihue, Hawaii Lima, Peru Lomy Baech, Calif.
	Idon+	No.	1.01.00.1	5.	6. 9. 10.	11.	14	15.	16. 17. 19. 20.	21. 22. 23. 24.	26. 27. 28.		30.	31. 32. 34. 35.	36. 38.	40.	41. 43. 44.	46. 47. 49. 50.	51. 52. 53.

. .

30

319.7	351.9 298.4 293.9 287.1	372.7 300.2 334.9 309.1 324.9	$\begin{array}{c} 304.8\\ 277.8\\ 293.7\\ 2551.3\\ 343.4\end{array}$	$\begin{array}{c} 300.4\\ 300.0\\ 295.3\\ 290.1\\ 287.6\end{array}$	$\begin{array}{c} 307.0\\ 306.5\\ 296.6\\ 293.7\\ 283.4\end{array}$	300.5 315.0 317.8 329.5	$\begin{array}{c} 304.9\\ 342.1\\ 282.7\\ 348.8\\ 305.2\end{array}$	294.2 364.5 295.5 342.0 301.5	289.6 276.0 303.5 303.5 281.7	290.8 301.6 307.9 295.2 355.3	294.5 302.1 308.6 293.9 310.4	297.9 318.5	
342.1	359.0 302.0 298.5 290.6	$\begin{array}{c} 376.3\\ 304.7\\ 341.6\\ 322.3\\ 332.0\\ 332.0\end{array}$	306.5 286.4 297.9 263.5 349.3	$\begin{array}{c} 305.0\\ 310.2\\ 300.9\\ 294.9\\ 293.9\end{array}$	$\begin{array}{c} 313.0\\ 309.9\\ 302.3\\ 296.7\\ 289.2\end{array}$	$\begin{array}{c} 292.2\\ 3.13.2\\ 3.19.7\\ 323.9\\ 323.9\\ 342.7\end{array}$	$\begin{array}{c} 309.0\\ 356.3\\ 288.6\\ 355.2\\ 312.9\\ \end{array}$	297.4 374.2 301.6 351.0 303.6	$\begin{array}{c} 302.0\\ 279.6\\ 310.9\\ 307.9\\ 318.3\\ \end{array}$	306.0 304.6 314.8 300.1 361.1	$\begin{array}{c} 297.9\\ 304.8\\ 311.3\\ 315.6\\ 315.9\end{array}$	303.7 323.1	
359.1	371.6 310.5 310.0 299.2	$\begin{array}{c} 387.2\\ 313.3\\ 364.2\\ 351.6\\ 351.6\\ 358.8\end{array}$	313.2 309.3 306.7 203.4 371.7	$\begin{array}{c} 321.0\\ 324.3\\ 313.5\\ 322.3\\ 314.5\\ 314.5\end{array}$	$\begin{array}{c} 333.8\\ 321.8\\ 311.6\\ 303.9\\ 315.8\end{array}$	$\begin{array}{c} 300.0\\ 337.9\\ 330.2\\ 342.0\\ 365.4\end{array}$	$\begin{array}{c} 319.8\\ 379.8\\ 327.5\\ 372.6\\ 323.6\end{array}$	$\begin{array}{c} 306.2\\ 382.4\\ 315.8\\ 379.5\\ 313.3\end{array}$	$\begin{array}{c} 311.0\\ 299.9\\ 326.1\\ 354.6\end{array}$	$\begin{array}{c} 329.2\\ 319.2\\ 336.2\\ 308.0\\ 376.5\end{array}$	309.8 318.5 327.6 331.2 331.2 331.3	315.8 344.8	
378.4	383.8 321.4 321.0 321.0 308.1	$\begin{array}{c} 394.9\\ 324.8\\ 381.9\\ 375.0\\ 379.8\end{array}$	$\begin{array}{c} 318.9\\ 318.9\\ 323.0\\ 302.9\\ 384.4 \end{array}$	$\begin{array}{c} 342.2\\ 340.4\\ 339.3\\ 356.9\\ 337.7\end{array}$	348.8 336.4 319.5 3110.0 337.3	$\begin{array}{c} 317.0\\ 353.5\\ 340.5\\ 362.0\\ 384.2\\ 384.2 \end{array}$	$\begin{array}{c} 339.9\\ 391.1\\ 346.2\\ 385.0\\ 332.4\\ 332.4\end{array}$	$\begin{array}{c} 318.0\\ 388.8\\ 324.8\\ 391.0\\ 320.7\end{array}$	$\begin{array}{c} 317.9\\ 309.7\\ 344.0\\ 335.5\\ 376.4\end{array}$	$\begin{array}{c} 351.6\\ 338.7\\ 351.7\\ 351.7\\ 321.1\\ 388.9\\ 388.9\end{array}$	326.8 335.7 355.4 344.2 347.0	327.0 375.1	
386.4	386.7 325.3 323.3 309.4	$\begin{array}{c} 400.6\\ 329.1\\ 386.2\\ 378.5\\ 383.6\\ 383.6\end{array}$	331.0 322.9 326.8 308.1 389.2	347.6 354.6 359.6 361.8 349.1	$\begin{array}{c} 351.3\\ 344.4\\ 322.2\\ 312.1\\ 350.4\end{array}$	356.4 343.6 365.2 394.1	$\begin{array}{c} 345.5\\ 395.7\\ 350.0\\ 390.4\\ 336.2\\ 336.2 \end{array}$	$\begin{array}{c} 322.7\\ 391.7\\ 331.5\\ 395.2\\ 328.7\\ 328.7\end{array}$	$\begin{array}{c} 320.2\\ 312.7\\ 350.1\\ 383.0\\ 383.0\end{array}$	$\begin{array}{c} 364.2\\ 343.3\\ 352.9\\ 322.9\\ 393.3\\ 393.3\end{array}$	330.0 338.3 362.1 346.1 351.9	330.0 379.0	
280.1	330.8 305.0 294.9 261.7	369.8 302.1 357.4 357.4	$\begin{array}{c} 316.3\\ 297.8\\ 302.8\\ 254.2\\ 329.1\\ 329.1\end{array}$	$\begin{array}{c} 319.4\\ 363.8\\ 309.9\\ 319.8\\ 319.8\\ 267.4\end{array}$	308.8 307.4 298.9 294.6	$\begin{array}{c} 302.7\\ 318.8\\ 310.9\\ 309.4\\ 343.6\end{array}$	$\begin{array}{c} 327.1\\ 371.8\\ 330.0\\ 359.8\\ 314.4\end{array}$	$\begin{array}{c} 307.6\\ 330.6\\ 303.0\\ 377.4\\ 305.2\\ 305.2 \end{array}$	276.2 280.1 351.8 329.2 285.6	$\begin{array}{c} 311.0\\ 292.8\\ 297.8\\ 314.4\\ 364.0\end{array}$	276.7 316.3 323.7 323.7 323.7 325.3	310.4 338.5	
303.6	335.9 316.0 300.2 272.5	$\begin{array}{c} 375.3\\ 303.9\\ 371.0\\ 361.1\\ 357.2\\ 357.2 \end{array}$	$\begin{array}{c} 320.4\\ 306.0\\ 311.2\\ 263.8\\ 337.4\end{array}$	$\begin{array}{c} 329.2\\ 370.8\\ 316.5\\ 362.8\\ 281.2\end{array}$	$\begin{array}{c} 312.7\\ 313.7\\ 313.7\\ 314.3\\ 304.3\\ 301.6\end{array}$	$\begin{array}{c} 306.2\\ 329.9\\ 315.6\\ 313.2\\ 349.1\end{array}$	$\begin{array}{c} 336.2\\ 378.1\\ 335.4\\ 366.7\\ 3566.7\\ 320.0\end{array}$	$\begin{array}{c} 315.8\\ 376.2\\ 305.3\\ 379.4\\ 308.6\end{array}$	$\begin{array}{c} 292.1\\ 288.0\\ 356.2\\ 331.2\\ 306.7\\ \end{array}$	330.9 298.6 303.0 330.8 330.8 330.8	$\begin{array}{c} 313.5\\ 318.6\\ 318.6\\ 331.8\\ 324.1\\ 324.1\\ 330.1\end{array}$	313.6 351.3	
336.4	349.7 329.3 314.3 291.5	$\begin{array}{c} 385.7\\ 312.9\\ 384.7\\ 377.6\\ 377.6\\ 372.2\end{array}$	$\begin{array}{c} 331.8\\ 326.8\\ 333.8\\ 283.8\\ 358.9\\ 358.9\end{array}$	$\begin{array}{c} 356.8\\ 385.6\\ 348.9\\ 371.8\\ 326.9\end{array}$	$\begin{array}{c} 327.8\\ 337.2\\ 336.1\\ 316.7\\ 320.5\end{array}$	$\begin{array}{c} 333.4\\ 356.3\\ 323.6\\ 321.5\\ 331.5\\ 366.8\end{array}$	$\begin{array}{c} 351.1\\ 387.9\\ 349.3\\ 379.0\\ 3333.9\end{array}$	$\begin{array}{c} 326.3\\ 386.0\\ 314.0\\ 386.7\\ 324.0\\ 324.0 \end{array}$	298.2 300.9 337.9 333.0	$\begin{array}{c} 364.2\\ 318.4\\ 313.5\\ 353.4\\ 382.1\end{array}$	$\begin{array}{c} 324.9\\ 332.0\\ 358.5\\ 345.3\\ 349.5\\ \end{array}$	327.6 378.4	
353.9	357.6 343.6 322.2 324.4	$\begin{array}{c} 396.2\\ 326.8\\ 400.2\\ 389.5\\ 384.3\\ \end{array}$	$\begin{array}{c} 352.7\\ 342.3\\ 361.6\\ 294.7\\ 376.9\end{array}$	$\begin{array}{c} 376.0\\ 396.7\\ 379.8\\ 382.4\\ 365.7\end{array}$	$\begin{array}{c} 340.4\\ 367.4\\ 345.6\\ 328.3\\ 338.9\end{array}$	$\begin{array}{c} 354.6\\ 372.4\\ 331.9\\ 355.1\\ 383.5\end{array}$	$\begin{array}{c} 365.8\\ 396.5\\ 359.1\\ 359.1\\ 390.0\\ 343.9\end{array}$	$\begin{array}{c} 336.9\\ 392.9\\ 320.5\\ 393.0\\ 348.9\end{array}$	307.9 315.9 344.5 356.9	$\begin{array}{c} 387.1\\ 336.7\\ 335.0\\ 371.3\\ 391.6\end{array}$	$\begin{array}{c} 333.4\\ 348.9\\ 348.9\\ 378.0\\ 357.7\\ 366.7\end{array}$	338.4 390.9	
358.4	$\begin{array}{c} 361.2\\ 346.9\\ 324.4\\ 324.4\\ 326.5\end{array}$	$\begin{array}{c} 398.1\\ 329.7\\ 405.9\\ 394.2\\ 389.0\\ \end{array}$	$\begin{array}{c} 360.8\\ 347.6\\ 371.0\\ 298.0\\ 381.2\\ 381.2 \end{array}$	382.4 398.7 385.0 384.1 374.2	$\begin{array}{c} 345.0\\ 372.4\\ 347.9\\ 335.2\\ 345.6\\ 345.6\end{array}$	358.4 376.4 335.6 360.5 392.5	371.4 399.1 364.0 394.1 348.1	$\begin{array}{c} 343.5\\ 394.5\\ 321.5\\ 394.9\\ 358.3\\ 358.3\end{array}$	$\begin{array}{c} 311.8\\ 327.4\\ 397.4\\ 348.2\\ 362.6\end{array}$	$\begin{array}{c} 395.8\\ 343.4\\ 340.8\\ 376.9\\ 395.3\end{array}$	335.8 355.2 383.2 359.5 371.5	341.9 393.0	
318.7	343.3 297.6 297.2 282.6	371.6 299.3 344.3 330.6 322.7	298.3 292.3 292.9 259.5 338.7	$\begin{array}{c} 302.5\\ 280.1\\ 294.5\\ 296.5\\ 296.5\\ 270.4\end{array}$	$\begin{array}{c} 306.0\\ 305.3\\ 295.4\\ 289.5\\ 290.4\end{array}$	$\begin{array}{c} 281.2\\ 290.7\\ 311.6\\ 319.8\\ 343.9\end{array}$	$\begin{array}{c} 311.8\\ 375.1\\ 295.4\\ 347.9\\ 299.8\end{array}$	299.8 338.0 302.6 340.7 292.4	290.6 283.9 306.6 311.1 295.4	284.4 284.5 284.5 287.3 291.3 344.2	282.7 305.9 308.3 308.3 308.8 314.5	304.5 317.0	
321.1	349.1 300.4 298.2 282.8	$\begin{array}{c} 377.3\\ 303.3\\ 352.6\\ 341.2\\ 328.0\\ 328.0 \end{array}$	$\begin{array}{c} 303.2\\ 295.0\\ 295.6\\ 271.8\\ 349.3\end{array}$	$\begin{array}{c} 308.2\\ 295.2\\ 299.8\\ 304.5\\ 280.4\end{array}$	$\begin{array}{c} 314.5\\ 312.0\\ 298.5\\ 298.8\\ 298.8\\ 298.8 \end{array}$	286.7 315.8 317.4 323.3 328.7 358.7	$\begin{array}{c} 315.9\\ 380.4\\ 315.8\\ 315.8\\ 357.4\\ 306.3\end{array}$	$\begin{array}{c} 302.9\\ 376.8\\ 306.8\\ 353.4\\ 295.9\end{array}$	$\begin{array}{c} 2294.4\\ 289.8\\ 313.7\\ 313.7\\ 313.6\\ 313.6\end{array}$	$\begin{array}{c} 307.4\\ 290.3\\ 289.8\\ 289.8\\ 298.1\\ 354.1\\ 354.1 \end{array}$	309.7 308.6 312.1 312.7 312.7 312.7	307.7	
347.0	$\begin{array}{c} 364.7\\ 314.0\\ 312.4\\ 302.7\end{array}$	386.6 313.6 365.7 367.0 351.0	$\begin{array}{c} 314.6\\ 312.8\\ 311.0\\ 296.9\\ 367.7\end{array}$	$\begin{array}{c} 326.8\\ 319.1\\ 323.4\\ 352.8\\ 313.7\\ 313.7\end{array}$	$\begin{array}{c} 332.6\\ 329.1\\ 313.7\\ 303.7\\ 321.1\end{array}$	$\begin{array}{c} 309.2\\ 338.9\\ 326.5\\ 343.2\\ 376.8\end{array}$	$\begin{array}{c} 324.5\\ 390.8\\ 332.7\\ 374.2\\ 322.2\\ 322.2\end{array}$	$\begin{array}{c} 311.4\\ 388.4\\ 388.4\\ 314.9\\ 380.0\\ 309.5\end{array}$	$\begin{array}{c} 302.5\\ 306.4\\ 341.7\\ 326.4\\ 343.2\\ 343.2\end{array}$	$\begin{array}{c} 342.3\\ 300.8\\ 300.2\\ 316.8\\ 373.6\end{array}$	$\begin{array}{c} 318.6\\ 320.8\\ 329.8\\ 321.5\\ 331.5\\ 336.5\end{array}$	319.8 351.7	
363.3	$\begin{array}{c} 383.7\\ 331.0\\ 324.7\\ 324.7\\ 316.4\end{array}$	$\begin{array}{c} 394.3\\ 324.8\\ 378.3\\ 383.8\\ 383.8\\ 372.2\\ \end{array}$	$\begin{array}{c} 320.8\\ 332.6\\ 3332.6\\ 3333.6\\ 306.7\\ 380.4\end{array}$	$\begin{array}{c} 341.9\\ 342.2\\ 352.4\\ 371.7\\ 341.9\end{array}$	$\begin{array}{c} 353.6\\ 346.9\\ 320.6\\ 314.2\\ 345.5\end{array}$	$\begin{array}{c} 335.8\\ 357.0\\ 339.2\\ 367.3\\ 392.2\\ 392.2\end{array}$	$\begin{array}{c} 333.2\\ 399.1\\ 342.3\\ 384.1\\ 3333.2\\ 3333.2\end{array}$	$\begin{array}{c} 319.2\\ 396.5\\ 324.6\\ 390.8\\ 321.4\end{array}$	$\begin{array}{c} 312.8\\ 321.6\\ 364.2\\ 3333.9\\ 370.0\end{array}$	$\begin{array}{c} 361.3\\ 310.6\\ 309.8\\ 330.1\\ 384.0\end{array}$	$\begin{array}{c} 327.0\\ 335.3\\ 355.4\\ 339.3\\ 350.3\\ 350.3\end{array}$	330.9	
370.3	387.6 334.3 328.3 319.4	$\begin{array}{c} 398.4\\ 328.0\\ 328.0\\ 384.7\\ 386.5\\ 376.9\\ 376.9\end{array}$	$\begin{array}{c} 328.3\\ 336.3\\ 339.0\\ 310.3\\ 383.0\\ 383.0\end{array}$	$\begin{array}{c} 347.9\\ 345.6\\ 358.9\\ 374.8\\ 374.8\\ 348.0\end{array}$	$\begin{array}{c} 355.9\\ 354.3\\ 322.4\\ 322.4\\ 360.3\end{array}$	$\begin{array}{c} 339.8\\ 363.1\\ 345.5\\ 372.1\\ 398.3\end{array}$	336.6 403.6 346.1 387.5 341.1	$\begin{array}{c} 322.2\\ 401.0\\ 328.1\\ 396.3\\ 328.0\\ 328.0\end{array}$	$\begin{array}{c} 326.1\\ 331.8\\ 371.4\\ 371.4\\ 336.0\\ 378.6\end{array}$	$\begin{array}{c} 367.9\\ 316.2\\ 311.8\\ 311.8\\ 334.3\\ 334.3\\ 387.5\end{array}$	$\begin{array}{c} 330.0\\ 339.7\\ 358.2\\ 340.8\\ 352.8\\ 352.8\end{array}$	333.8 374.5	
346.4	$\begin{array}{c} 342.3\\ 289.6\\ 298.6\\ 298.6\\ 283.0\end{array}$	$\begin{array}{c} 363.3\\ 305.3\\ 315.1\\ 315.1\\ 310.2\\ 313.7\end{array}$	$\begin{array}{c} 304.5\\ 280.5\\ 297.5\\ 246.6\\ 365.2\end{array}$	$\begin{array}{c} 300.5\\ 297.2\\ 295.6\\ 279.2\\ 287.6\end{array}$	$\begin{array}{c} 312.8\\ 304.0\\ 298.8\\ 288.3\\ 281.5\end{array}$	279.5 295.4 315.6 324.1 345.4	$\begin{array}{c} 301.9\\ 330.7\\ 293.5\\ 334.1\\ 300.7\end{array}$	$\begin{array}{c} 296.9\\ 367.0\\ 299.3\\ 333.4\\ 298.0\end{array}$	259.7 276.4 295.2 299.8 329.4	285.1 301.4 314.9 294.4 330.0	$\begin{array}{c} 292.1\\ 298.8\\ 303.7\\ 297.6\\ 308.8\end{array}$	302.8	
352.2	$\begin{array}{c} 352.2\\ 296.0\\ 301.3\\ 284.5\end{array}$	$\begin{array}{c} 367.1 \\ 307.5 \\ 328.2 \\ 319.8 \\ 317.8 \end{array}$	$\begin{array}{c} 306.4\\ 295.5\\ 298.9\\ 249.1\\ 374.0\end{array}$	$\begin{array}{c} 303.6\\ 301.6\\ 300.1\\ 279.7\\ 294.4\end{array}$	317.5 307.1 306.4 291.7 284.7	284.8 306.7 321.8 335.2 350.6	$\begin{array}{c} 305.6\\ 343.6\\ 307.2\\ 340.7\\ 306.2\end{array}$	$\begin{array}{c} 298.4\\ 369.0\\ 303.8\\ 341.8\\ 300.6 \end{array}$	$\begin{array}{c} 300.4\\ 280.0\\ 300.0\\ 304.3\\ 338.2\end{array}$	295.7 305.2 322.5 303.4 338.9	293.9 302.9 306.5 301.7 311.1	304.9 311.0	
370.6	$\begin{array}{c} 368.3\\ 303.7\\ 315.1\\ 299.4\end{array}$	$\begin{array}{c} 381.2\\ 318.5\\ 351.4\\ 350.3\\ 339.9\end{array}$	$\begin{array}{c} 317.2\\ 306.3\\ 304.2\\ 285.2\\ 383.6\end{array}$	$\begin{array}{c} 314.9\\ 314.9\\ 308.8\\ 287.4\\ 312.3\end{array}$	$\begin{array}{c} 343.7\\ 314.5\\ 315.3\\ 299.7\\ 316.4\end{array}$	$\begin{array}{c} 295.7\\ 328.5\\ 335.6\\ 352.0\\ 373.1\\ 373.1\end{array}$	$\begin{array}{c} 312.0\\ 367.6\\ 326.9\\ 359.0\\ 317.9\end{array}$	$\begin{array}{c} 306.2\\ 378.5\\ 318.0\\ 368.4\\ 308.0\\ 308.0 \end{array}$	$\begin{array}{c} 318.3\\ 296.9\\ 313.0\\ 318.9\\ 365.5\end{array}$	$\begin{array}{c} 321.0\\ 324.9\\ 342.4\\ 309.1\\ 360.9\end{array}$	$\begin{array}{c} 307.0\\ 312.9\\ 318.9\\ 317.5\\ 325.1\end{array}$	311.7 323.6	
386.1	$\begin{array}{c} 381.9\\ 312.0\\ 326.8\\ 311.2\\ 311.2 \end{array}$	$\begin{array}{c} 389.0\\ 332.1\\ 365.9\\ 371.1\\ 361.4\end{array}$	$\begin{array}{c} 330.5\\ 319.1\\ 311.1\\ 311.1\\ 297.9\\ 394.7\end{array}$	$\begin{array}{c} 326.3\\ 327.3\\ 324.1\\ 301.0\\ 326.5\end{array}$	$\begin{array}{c} 365.6\\ 320.9\\ 326.9\\ 308.8\\ 344.8\end{array}$	$\begin{array}{c} 311.8\\ 343.6\\ 349.5\\ 377.9\\ 389.4\end{array}$	$\begin{array}{c} 321.3\\ 383.2\\ 339.5\\ 371.0\\ 327.1\end{array}$	$\begin{array}{c} 316.2\\ 385.4\\ 331.8\\ 331.8\\ 378.0\\ 378.0\\ 318.6\end{array}$	$\begin{array}{c} 325.0\\ 306.5\\ 322.8\\ 322.8\\ 391.3\\ 391.3\end{array}$	335.3 348.5 359.2 313.8 377.2	$\begin{array}{c} 325.9\\ 329.9\\ 344.9\\ 332.9\\ 332.9\\ 340.6\end{array}$	321.1 350.8	
391.9	386.5 315.9 329.0 315.3	390.3 336.4 370.1 376.4 365.0	$335.2 \\ 323.2 \\ 315.7 \\ 302.2 \\ 402.7 \\ 402.7 \\ \end{array}$	$\begin{array}{c} 329.3\\ 329.4\\ 332.3\\ 302.6\\ 330.2\\ 330.2\end{array}$	374.9 323.4 329.6 310.8 362.0	$\begin{array}{c} 314.4\\ 349.6\\ 354.7\\ 354.7\\ 382.7\\ 396.8\end{array}$	325.3 385.5 343.5 373.6 330.2	320.7 388.0 334.7 380.4 328.5	$\begin{array}{c} 362.3\\ 310.9\\ 326.9\\ 331.9\\ 400.2 \end{array}$	339.5 358.2 366.2 317.2 383.0	328.8 332.3 349.8 337.2 343.4	323.6 356.4	
34E	13E 57E 34W	23E 52E 26W 17W 23W	39W 37E 56W 45E 27E	04W 12E 47W 10E 17E	34E 38E 38E 37E 49E	13W 36W 51W 55W	02 W 40 E 10 W 00 W	06E 54E 52W 56W	32E 16E 08E 44W 45E	17E 14E 23E 54E 39E	00W 00W 00W 00W	00E 00E	
32	$13 \\ 158 \\ 03 \\ 03 \\ 03 \\ 03 \\ 03 \\ 03 \\ 03 \\ 0$	171 37 106 80 80 177	80 37 86 36 36 177	77 73 02 33 33	77 30 143 143 115	80 06 177 34	1106 1117 1122 122	174 103 57 83 83 83	47 69 140 124 146	13 100 133 131 166	335 35 20 16 16	164	
25 55S	08 49S 49 49N 54 30S 40 28N	07 05N 46 53S 23 11N 25 49N 28 13N	51 16N 55 49N 42 36N 01 18S 17 45S	41 15N 28 35N 40 39N 13 29N 35 09N	37 50S 46 29N 59 22N 63 11N 81 57S	40 30N 34 18N 41 29S 29 15S 08 07S	46 56N 10 49N 32 44N 18 26N 47 41N	52 43N 01 21N 51 42S 17 24N 61 40N	18 54S 41 16N 36 03N 48 23N 19 16S	32 54N 64 16N 67 33N 43 07N 19 17N	62 00N 52 45N 44 00N 52 30N 45 00N	66 00N 34 00N	
44	70 329 6 601	3 26 13 13 13	10 156 176 1798 1798	$ \begin{array}{c} 14 \\ 216 \\ 5 \\ 226 \\ 218 \\ 218 \\ \end{array} $	$ \begin{array}{c} 28 \\ 64 \\ 309 \\ 60 \\ 60 \end{array} $	351 12 6 49 10	3 10 15 15	37 18 53 96	1310 428 27 26 4	10 147 135 138 4	++++++++++++	++++	
								· · 02 · ·					
s, Africa	: : : : : : : : : : : : : : : : : : :				am	rocco.	a Scoti	Island R.*	gasy 	S.R.* 5.R.			
Earque East	rtugue ca S.R Island ain	nd Mexico	Ontario S.S.R. nens, N nya Island	Mass. India N.Y. ger*.	msterd S.S.R. Sweder ralia.	Pa.*. ey, Mo ett, Ch d	l, Nov t Nam Calif.	aska . likland U.S.S.	, Mala, J.S.S.F an, W Austra	ya .R.* .k. U.S. d			
enco A	st Afri st Afri U.S. juarie id, Sp	uro Isla on Isla utlan, 1 ni, Fla. ray Isla	sonee, cow, U. nt Clen bi, Ke li, Fiji	ucket, Delhi, York, iey, Ni	relle A. nd sa, U.S tsk, U. sund, i	burgh, Lyaut to Mor I Islan e, Braz	Diego, Itan, Vie Diego, Itan, I le, Wa	tya, Al tpore. ey, Fa Island	narive public* kent, I no, Jap osh Isl	u. L.b. U.S.S. hoyans vostok	K-DCA*	M	
Lour	Lvov Macc Macc	Maju Mari Maza Mian Mian	Moos Moos Mour Nairc Nand	Nant New New Niam Nicos	Nouv Isla Odes Okho Oster Perth	Pitts Port Puert Raou Recif	Sable Saigo San 1 San 1 San 1 Seatt	Shem Singa Stanl Swan Sykty	Tana Rer Tash Tater Tater Town	Tripo Tura Verki Vladi Wake	Ship Ship Ship Ship Ship	Ship Ship	
56.	57. 58. 59.	61. 62. 63. 65.	66. 67. 68. 69. 70.	71. 72. 73. 74.	76. 77. 78. 80.	81. 82. 83. 85.	86. 887. 888. 90.	91. 92. 94.	96. 97. 99. 100.	101. 102. 103. 104.	K.D.A.	M. V.	

FIGURE A-1. Location of N(z) data stations.

(3) If these values are substituted in (A-2), N(z) is found to be 20.7 N-units at 20 km above the surface.

Figures A-26 through A-29 are seasonal maps of the standard prediction error of the exponential fits to the mean wet-term profiles used in the N(z) parameter maps. An rms error in the wet term of more than 5 N-units was considered to be a reasonable limiting criterion for locations where the N(z) model should be used with caution, if at all. Figure A-30 delineates these areas; the cross-hatched areas indicate that the error was in excess of 5 N-units for 2 or more of the seasonal months (February, May, August, and November) and the single-hatching depicts areas where only 1 of the 4 months showed such large errors. Further discussion of the uncertainty in these areas can be found in section 3.4.

FIGURE A-2. Mean sea-level dry term, Do: February.

FIGURE A-3. Mean sea-level wet term, Wo: February.

FIGURE A-4. Dry-term tropospheric scale height in km, H_1 : February.

FIGURE A-5. Dry-term stratospheric scale height in km, H_2 : February.

FIGURE A-6. Wet-term scale height in km, H_w: February.

FIGURE A-7. Mean density tropopause altitude in km, zt: February.

FIGURE A-8. Mean sea-level dry term, Do: May.

FIGURE A-9. Mean sea-level wet term, W_o : May.

FIGURE A-10. Dry-term tropospheric scale height in km, H₁: May.

FIGURE A-11. Dry-term stratospheric scale height in km, H₂: May.

FIGURE A-12. Wet-term scale height in km, H_w : May.

FIGURE A-13. Mean density tropopause altitude in km, zt: May.

FIGURE A-14. Mean sea-level dry term, D_o : August.

FIGURE A-16. Dry-term tropospheric scale height in km, H₁: August.

FIGURE A-17. Dry-term stratospheric scale height in km, H₂: August.

FIGURE A-18. Wet-term scale height in km, H_w: August.

FIGURE A-19. Mean density tropopause altitude in km, zt: August.

FIGURE A-20. Mean sea-level dry term, Do: November.

FIGURE A-21. Mean sea-level wet term, Wo: November.

FIGURE A-22. Dry-term tropospheric scale height in km, H₁: November.

FIGURE A-23. Dry-term stratospheric scale height in km, H₂: November.

FIGURE A-24. Wet-term scale height in km, H_w: November.

FIGURE A-25. Mean density tropopause altitude in km, zt: November.

FIGURE A-26. Standard prediction error of the exponential fit to the mean wet-term profile: February.

FIGURE A-28. Standard prediction error of the exponential fit to the mean wet-term profile: August.

FIGURE A-30. Areas of doubtful applicability of three-part exponential model of N(z) for z < 6 km.

11. Appendix B. World Maps of ΔN .

The weather stations from which data were obtained for this study are shown in figure B-1. Their locations, elevations and the 5-year mean surface refractivity for each month of the year are alphabetically listed in table B-1.

The monthly $\overline{\Delta N}$ values between the surface and 1 km above the surface are presented in figures B-2 through B-13. If the $\overline{\Delta N}$ at a specific location is desired for a certain month and year for which a monthly mean surface refractivity value, \overline{N}_s , is available, the following relationships may be used:

where

(B-1)

 $\overline{\overline{N_s}} = \overline{\overline{N_o}} \exp^{-0.1(z)};$ z = elevation above sea level in km.

 $\overline{\Delta N} = b \ (\overline{N_s} - \overline{N_s}) + \overline{\Delta N},$

World maps of $\overline{N_o}$ (the yearly sea-level value of refractivity), b (the slope of the regression line (B-1)), and $\overline{\Delta N}$ (the mean annual value of the refractivity difference between surface and 1 km) are presented in figures B-14 through B-16.

If the $\overline{\Delta N}$ value were required at a station with an elevation of 300 m and a location of 30°N and 30°E, here is the procedure which would be used. Available surface weather reports indicate that the mean N_s was 314 for a recent month for which a value of $\overline{\Delta N}$ is needed. Therefore, at the assumed location, these values are interpolated linearly from the figures:

$$\overline{N_o} = 320$$
 (fig. B-14)

$$\overline{\Delta N} = 48 \text{ N-units}$$
 (fig. B-15)

$$b = 0.60$$
 (fig. B-16)

 $\overline{N_s} = 320 \exp^{-0.1(0.3)} = 311$

Using the value of 314 for \overline{N}_s , $\overline{\Delta N}$ is found to be 50 N-units.

In some areas of the world (e.g., where the assumption of an exponential distribution of the wet term is largely invalid; see sec. 3.4), the use of the regression method to predict $\overline{\Delta N}$ has definite limitations. To delineate these locations, figures B-17, B-18, B-19, and B-20 are presented. The first two figures are world maps of the correlation coefficient and the standard error of estimate of the regression line of $\overline{\Delta N}$ versus $\overline{N_s}$ for the 60 months of station data, and figure B-19 gives the percentage of this standard error to the $\overline{\overline{\Delta N}}$ value. Areas with correlation coefficients < 0.5 (fig. B-17), standard errors > 5 N-units (fig. B-18), and standard errors > 12 percent of $\overline{\overline{\Delta N}}$ (fig. B-19) are shaded, but the use of equation (B-1) for any location in these shaded areas may still be valid if:

(a) a low correlation coefficient occurs with a small standard error (typical of stations with a small seasonal range of variability in both N_s and ΔN), or

(b) a large error is found with a good correlation (typical of stations with distinct wet-dry seasons).

However, if the coefficient is less than 0.7 (reducing the variance of $\overline{\Delta N}$ to ~ 50 percent) and the standard error is greater than 10 percent of $\overline{\Delta N}$ (as discussed in sec. 7), it would be reasonable to assume that the yearly dependence of $\overline{\Delta N}$ upon N_s is not sufficient to justify the regression prediction method. Areas represented by these criteria are shaded in figure B-20.

TABLE	B-1.	Mean	surface	ref	ractivity.
* TIDING	T. T.	THEORIC	owijace	101	racococog.

Station	Elevation (meters)	Latitude	Longitude	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Abidjan, Ivory Coast. Adelaide, Australia Aden, Arabia. Albrook (Balboa), Panama C.Z. Albuquerque, N. Mex.	15 11 4 9 1620	05 15N 34 56S 12 50N 08 58N 35 03N	03 56W 138 35E 45 01E 79 33W 106 37W	$383 \\ 316 \\ 365 \\ 366 \\ 254$	389 321 364 360 251	389 321 371 365 248	387 321 380 368 245	387 322 385 375 253	382 323 386 375 251	377 322 379 372 267	$373 \\ 319 \\ 378 \\ 381 \\ 274$	380 318 376 382 259	384 313 372 379 256	387 313 366 378 251	383 314 369 375 251
Aldan, U.S.S.R. Alert, Northwest Territories. Alexander Bay, South Africa. Alger/Maison, Algeria. Alice Springs, Australia.	$680 \\ 62 \\ 22 \\ 28 \\ 546$	58 37N 82 30N 28 34S 36 43N 23 48S	$\begin{array}{cccc} 125 & 22E \\ 62 & 20W \\ 16 & 32E \\ 03 & 14E \\ 133 & 53E \end{array}$	297 326 342 326 283	296 327 341 323 287	289 330 340 327 288	284 321 336 329 290	283 312 330 337 290	292 313 327 346 287	$305 \\ 313 \\ 326 \\ 354 \\ 289$	304 315 325 355 281	293 310 328 354 282	$287 \\ 313 \\ 329 \\ 344 \\ 284$	291 320 334 333 285	297 324 338 328 284
Allahabad, India Alma Ata, U.S.S.R. Amundsen-Scott, Antarctica. Anadyr, U.S.S.R. Anchorage, Alaska.	$98\\851\\2800\\62\\40$	25 27N 43 14N 90 00S 64 47N 61 10N	81 44E 76 56E 00 00 177 34E 149 59W	$327 \\ 284 \\ 221 \\ 314 \\ 307$	312 283 229 317 307	303 285 243 319 305	291 287 246 321 306	299 293 246 310 308	338 294 245 312 318	$385 \\ 299 \\ 246 \\ 325 \\ 324$	$391 \\ 295 \\ 247 \\ 321 \\ 324$	$379 \\ 286 \\ 244 \\ 313 \\ 316$	353 285 236 308 306	$325 \\ 285 \\ 226 \\ 311 \\ 307$	324 284 220 314 307
Ankara, Turkey Antofagasta, Chile Aoulef, Algeria Argentia, Newfoundland Arkhangelsk, U.S.S.R.	$902 \\ 122 \\ 290 \\ 17 \\ 13$	39 57N 23 28S 26 58N 47 18N 64 35N	$\begin{array}{ccc} 32 & 53E \\ 70 & 26W \\ 01 & 05E \\ 54 & 00W \\ 40 & 30E \end{array}$	284 338 294 311 312	283 341 288 310 312	283 337 283 310 311	284 333 280 313 311	290 330 279 320 315	292 327 277 323 324	$290 \\ 325 \\ 274 \\ 335 \\ 331$	286 327 278 339 333	287 326 287 331 324	288 328 291 320 316	286 333 294 318 314	287 334 299 312 312
Ashkabad, U.S.S.R Aswan, United Arab Republic Athens, Ga. Athinai, Greece Auckland, New Zealand.	$230 \\ 196 \\ 246 \\ 107 \\ 49$	37 58N 23 58N 33 57N 37 58N 36 51S	58 20E 32 47E 83 19W 23 43E 174 46E	307 299 308 316 339	$305 \\ 287 \\ 308 \\ 314 \\ 345$	$305 \\ 280 \\ 312 \\ 316 \\ 341$	311 280 321 317 339	305 278 335 325 339	$305 \\ 276 \\ 352 \\ 325 \\ 331$	$303 \\ 285 \\ 360 \\ 326 \\ 327$	306 288 361 323 329	300 291 347 326 328	$305 \\ 294 \\ 325 \\ 327 \\ 326$	305 299 316 329 329	309 305 308 322 334
Bahia Blanca, Argentina Bahrain Island Baker Lake, Northwest Territories Bangkok, Thailand Bangui, Central African Republic	$72 \\ 2 \\ 9 \\ 16 \\ 385$	38 44S 26 16N 64 18N 13 44N 04 23N	$\begin{array}{ccc} 62 & 11W \\ 50 & 37E \\ 96 & 00W \\ 100 & 30E \\ 18 & 34E \end{array}$	320 338 329 366 348	323 339 333 377 347	328 342 326 385 359	$320 \\ 348 \\ 316 \\ 393 \\ 362$	$319 \\ 361 \\ 312 \\ 393 \\ 361$	$315 \\ 365 \\ 314 \\ 391 \\ 363$	316 381 318 390 361	312 386 320 391 362	$317 \\ 382 \\ 314 \\ 393 \\ 361$	$321 \\ 370 \\ 312 \\ 390 \\ 363$	320 353 317 374 362	319 341 325 363 354
Barrow, Alaska Beer Ya Aqov, Israel. B-Elan, U.S.S.R. Beni Abbes/Colomb, Algeria. Benina, Libya.	4 49 23 498 125	71 18N 32 00N 46 57N 30 08N 32 06N	$\begin{array}{cccc} 156 & 47 \mathrm{W} \\ 34 & 54 \mathrm{E} \\ 142 & 43 \mathrm{E} \\ 02 & 10 \mathrm{W} \\ 20 & 16 \mathrm{E} \end{array}$	323 324 312 294 323	325 322 312 289 322	$325 \\ 323 \\ 311 \\ 283 \\ 319$	$315 \\ 327 \\ 311 \\ 275 \\ 324$	$313 \\ 332 \\ 314 \\ 274 \\ 324$	316 339 326 276 338	318 351 339 269 350	$319 \\ 355 \\ 341 \\ 273 \\ 349$	$315 \\ 347 \\ 331 \\ 284 \\ 343$	311 337 317 291 339	318 324 312 294 331	$324 \\ 323 \\ 311 \\ 296 \\ 326$
Beograd, Yugoslavia. Bismarck, N. Dak. Bjornoya Island. Blagoveshchensk, U.S.S.R. Bloemfontein, South Africa.	$139 \\ 506 \\ 14 \\ 137 \\ 1422$	44 48N 46 46N 74 31N 50 16N 29 07S	20 28E 100 45W 19 01E 127 30E 26 11E	310 296 310 318 283	$311 \\ 296 \\ 310 \\ 311 \\ 284$	308 294 310 304 288	312 289 312 299 277	$324 \\ 296 \\ 315 \\ 304 \\ 270$	$331 \\ 306 \\ 316 \\ 325 \\ 264$	$335 \\ 313 \\ 320 \\ 336 \\ 265$	331 308 320 339 259	$320 \\ 299 \\ 317 \\ 318 \\ 264$	318 293 312 305 267	317 294 311 307 279	$312 \\ 295 \\ 310 \\ 314 \\ 285$
Boise, Idaho. Bombay, India. Bordeaux, France. Brest, France. Brisbane, Australia.	$871 \\ 11 \\ 48 \\ 103 \\ 41$	43 34N 18 54N 44 51N 48 27N 27 28S	$\begin{array}{ccc} 116 & 13W \\ 72 & 49E \\ 00 & 42W \\ 04 & 25W \\ 153 & 02E \end{array}$	284 347 320 319 351	$284 \\ 352 \\ 323 \\ 316 \\ 357$	279 362 322 318 351	$280 \\ 371 \\ 323 \\ 321 \\ 343$	286 380 330 326 328	285 386 337 332 323	283 389 343 338 319	281 388 342 337 320	278 384 343 336 325	283 375 332 331 326	285 364 324 323 337	285 355 321 324 347
Broken Hill, Zambia Brownsville, Tex. Bruxelles, Belgium Bukhta Tikhaya, U.S.S.R. Bukhta Tiksi, U.S.S.R.	$\begin{array}{c}1206\\6\\100\\6\\8\end{array}$	14 27S 25 55N 50 48N 80 19N 71 35N	$\begin{array}{c} 28 & 28\mathrm{E} \\ 97 & 28\mathrm{W} \\ 04 & 21\mathrm{E} \\ 52 & 48\mathrm{E} \\ 128 & 55\mathrm{E} \end{array}$	$319 \\ 337 \\ 314 \\ 326 \\ 332$	322 344 313 320 327	$315 \\ 346 \\ 315 \\ 321 \\ 324$	309 359 317 316 317	293 366 324 313 312	285 377 333 312 316	282 375 338 314 319*	278 377 337 315 320	$279 \\ 370 \\ 334 \\ 313 \\ 314$	282 357 328 311 311	$305 \\ 345 \\ 321 \\ 314 \\ 322$	317 339 318 319 327
Byrd Station, Antarctica Cairo, United Arab Republic Calcutta, India Camaguey, Cuba Canton Island	$1500 \\ 68 \\ 6 \\ 122 \\ 3$	80 00S 30 08N 22 39N 21 25N 02 46S	$\begin{array}{c} 120 \ \ 00W \\ 31 \ \ 24E \\ 88 \ \ 27E \\ 77 \ \ 52W \\ 171 \ \ 43W \end{array}$	$253 \\ 314 \\ 337 \\ 351 \\ 374$	257 312 338 353 372	$259 \\ 313 \\ 346 \\ 357 \\ 377$	$261 \\ 313 \\ 366 \\ 363 \\ 381$	267 318 381 370 377	266 329 389 377 377	263 341 394 378 379	267 347 395 379 376	262 338 394 379 373	259 334 379 376 373	$254 \\ 331 \\ 346 \\ 365 \\ 373$	$253 \\ 322 \\ 341 \\ 360 \\ 372$
Cape Hatteras, N. C. Caribou, Maine Charleville, Australia Chatham Island. Chiangmai, Thailand	$3 \\ 191 \\ 299 \\ 49 \\ 313$	35 16N 46 52N 26 25S 45 58S 18 47N	$\begin{array}{c} 75 & 33 \mathrm{W} \\ 68 & 01 \mathrm{W} \\ 146 & 17 \mathrm{E} \\ 176 & 33 \mathrm{W} \\ 98 & 59 \mathrm{E} \end{array}$	319 307 325 330 338	323 305 335 339 332	324 303 329 336 336	$337 \\ 305 \\ 324 \\ 330 \\ 349$	349 310 316 327 368	$364 \\ 325 \\ 314 \\ 323 \\ 371$	376 332 309 322 375	$374 \\ 330 \\ 302 \\ 324 \\ 377$	366 323 303 322 376	347 313 304 327 369	332 308 303 329 358	326 306 310 332 345
Chita, U.S.S.R. Christchurch, New Zealand. Clark Field, the Philippines. Cloncurry, Australia. Cocos Island.	$671 \\ 8 \\ 170 \\ 188 \\ 5 $	$\begin{array}{ccc} 52 & 05\mathrm{N} \\ 43 & 32\mathrm{S} \\ 15 & 08\mathrm{N} \\ 20 & 40\mathrm{S} \\ 12 & 05\mathrm{S} \end{array}$	$\begin{array}{c} 113 \ 29E \\ 172 \ 37E \\ 120 \ 35E \\ 140 \ 30E \\ 96 \ 53E \end{array}$	$300 \\ 334 \\ 345 \\ 338 \\ 373$	294 335 344 339 380	287 337 345 333 372	$281 \\ 334 \\ 351 \\ 311 \\ 378$	279 326 362 310 379	$297 \\ 324 \\ 367 \\ 305 \\ 376$	$310 \\ 323 \\ 366 \\ 307 \\ 374$	308 323 369 299 372	293 324 366 295 372	288 320 363 300 370	291 321 357 308 369	295 327 349 321 369
Columbia, Mo Coppermine, Northwest Territories Coral Harbour, Northwest Territories Cordoba, Argentina Curacao Island.	$239 \\ 9 \\ 59 \\ 479 \\ 16$	38 58N 67 49N 64 12N 31 19S 12 11N	92 22W 115 15W 83 22W 64 13W 68 59W	305 327 324 328 372	305 329 324 331 368	306 328 322 332* 372	$312 \\ 318 \\ 312 \\ 321* \\ 376$	327 313 310 318 380	343 318 313 305 380	353 318 317 303 382	352 322 319 298 384	330 316 314 300 384	$316 \\ 312 \\ 309 \\ 314 \\ 382$	306 318 313 318 379	306 323 317 327 376
Dakar, Senegal Dar Es Salaam, Tanzania Darwin, Australia Denver, Colo. D.F. Malan (Capetown),	$22 \\ 58 \\ 27 \\ 1625$	14 44N 06 52S 12 26S 39 46N	$\begin{array}{c} 17 \ 30 W \\ 39 \ 16 E \\ 130 \ 52 E \\ 104 \ 53 W \end{array}$	342 376 380 251	342 376 382 249	348 382 387 250	351 379 372 249	358 370 359 257	367 362 338 259	$371 \\ 359 \\ 344 \\ 264$	377 357 338 269	$381 \\ 361 \\ 360 \\ 256$	379 366 373 252	360 372 374 252	342 375 385 251
South Africa	49	33 55S	18 36E	337	341	337	333	333	330	329	327	328	330	330	334
Dijaroakir, Turkey Dijakarta, Indonesia. Dodge City, Kans. Douala, Cameroon. Durban, South Africa.	$652 \\ 8 \\ 791 \\ 13 \\ 14$	37 55N 06 11S 37 46N 04 01N 29 58S	40 12E 106 50E 99 58W 09 43E 30 57E	293* 382 285 382 365	292 383 286 382 367	293 382* 287 383 365	297 383 291 382 356	298 382 306 382 345	289 376 316 380 333	289 367* 322 379 338	282 366 318 379 336	276 368 308 380 343	284 375 294 379 349	297 380 285 381 357	294 380 284 382 360

TABLE B-1. (Continued) Elevation Latitude Longitude Jan. Feb. Mar. May June July Aug. Sept. Oct. Nov. Dec. Station (meters) Apr. 53 34N 307 Edmonton, Alberta. Egedesminde, Greenland. El Adem, Libya. El Paso, Tex. 113 31W 317 157 68 42N 31 51N 52 52W 289 272 23 55E 31 48N 39 17N 106 24W 114 51W Ely, Nev..... Entebbe, Uganda.... Eureka, Northwest Territories.... Ezciza, Argentina Fairbanks, Alaska Forrest, Australia 327 00 03N 32 27E 85 56W 58 32W 147 52W 80 00N 34 50S 322 311 308 314 64 49N 30 51S 128 06E Ft. Lamy, Chad. Ft. Nelson, British Columbia.... Ft. Smith, Northwest Territories. Ft. Trinquet, Mauritania. Funchal, Madeira. 313 317 295 08N 15 02E 58 50N 60 01N 25 14N 122 35W 111 58W 11 37W 302 349 32 38N 16 54W 514 26 11N 91 45E Gauhati, India..... 25 02S 53 19N 128 18E 60 25W 310 308 309 315 324 324 315 310 308 289-309 Gales, Australia Goose Bay, Labrador Gough Island Great Falls, Mont. 309 40 09 54W 111 21W 272 271 270 269 271 277 278 273 271 270 40 195 47 30N 321 314 316*

 $314 \\ 316 \\ 314$

320*

344 313

Green Bay, Wisc Guryev, U.S.S.R. Habbaniya, Iraq Helsinki, Finland Hilo, Hawaii	$210 \\ -21 \\ 45 \\ 58 \\ 11$	42 29N 47 07N 33 22N 60 19N 19 44N	88 08W 51 55E 43 34E 24 58E 155 04W	306 315 320 309 350	305 314 318 311 349	306 315 317 311 349	308 314* 317 312 353	316 315 311 316 358	329 331* 302 325 359	338 325 303 333 361	$ \begin{array}{r} 342 \\ 326 \\ 306 \\ 334 \\ 367 \end{array} $	327 320 310 327 362	316 320* 309 319 361	306 317 321 314 358
Hobart, Tasmania, Australia. Hong Kong. International Falls, Minn. Istanbul, Turkey. Izmir, Turkey.	$54 \\ 66 \\ 360 \\ 40 \\ 25$	42 53S 22 18N 48 34N 40 58N 38 24N	147 20E 114 10E 93 23W 29 05E 27 10E	319 331 301 317 317	323 334 300 317 316	323 348 297 318 314	317 363 296 323 319	315 378 300 333 326	313 385 313 342 332	314 391 323 352 334	314 391 323 354 332	314 383 311 342 324	312 360 303 333 328	312 348 298 329 325
Jodhpur, India. Johnston Island. Karachi, West Pakistan. Karaganda, U.S.S.R. Kaunas, U.S.S.R.	$224 \\ 5 \\ 4 \\ 555 \\ 75$	26 18N 16 44N 24 48N 49 48N 54 53N	$\begin{array}{c} 73 & 01E \\ 169 & 31W \\ 66 & 59E \\ 73 & 08E \\ 23 & 53E \end{array}$	301 363 324 296 310	290 361 341 297 311	292 365 355 295 310	284 371 370 295 313	297 366 384 296 322	339 376 394 304 327	355 375 391 312* 337	368 375 391 311 336	359 378 387 296 327	310 376 368 294 320	297 371 350 296 316
Keflavik, Iceland Khabarovsk, U.S.S.R. Kharkov, U.S.S.R. Khartoum, Sudan Khatanga, U.S.S.R.	$50 \\ 72 \\ 153 \\ 385 \\ 24$	63 59N 48 31N 49 56N 15 36N 71 59N	$\begin{array}{cccc} 22 & 37W \\ 135 & 10E \\ 36 & 17E \\ 32 & 33E \\ 102 & 28E \end{array}$	309 316 309 287 331	310 311 308 284 328	311 306 308 283 320*	313 306 308 285 316	$317 \\ 310 \\ 311 \\ 286 \\ 312$	321 329 321 305 314*	325 346 325 328 321	323 346 325 341 317	322 328 317 329 313	316 310 317 302 313	313 307 314 296 325
Kirensk, U.S.S.R. Kobenhavn, Denmark Kolpashev, U.S.S.R. Koror, Palau Islands Krasnoiarsk, U.S.S.R.	$258 \\ 6 \\ 76 \\ 29 \\ 194$	57 46N 55 38N 58 18N 07 20N 56 00N	108 07E 12 40E 82 54E 134 29E 92 53E	318 314 316 385 309	312 314 313 383 305	306 315 311 383 304	299 316 309 387 301	301 319 308 391 300	314 325 317 385 310	324 333 333 388 327	324 333 330 387 327	311 329 320 388 315	$304 \\ 324 \\ 311 \\ 386 \\ 305$	306 321 312 388 304
Kustanay, U.S.S.R. Kyev, U.S.S.R. La Coruna, Spain Lae, New Guinea Lagos, Nigeria	$171 \\ 182 \\ 57 \\ 8 \\ 40$	53 13N 50 27N 42 23N 06 44S 06 35N	63 37E 30 30E 08 22W 147 00E 03 20E	310 308 320 378 377	309 307 321 377 382	308 306 323 379 382	305 307 324 381 384	304 313 331 382 385	321* 320 334 377 378	328 324 340 377 373	320 328 342 377 372	311 319 341 377 379	$307 \\ 314 \\ 334 \\ 376 \\ 382$	307 314 324 380 381
Lake Charles, La. Las Vegas, Nev. Leningrad, U.S.S.R. Lenandiville, (Kinshasa), Demogratic	$\begin{array}{c}5\\664\\4\end{array}$	30 13N 36 05N 59 58N	93 09W 115 09W 30 18E	325 283 312	328 279 312	330 274 312	346 269 312	362 267 318	375 264 327	382 279 334	380 284 334	369 271 327	350 275 320	333 278 315
Republic of the Congo Lerwick, United Kingdom	290 82	04 19S 60 08N	15 19E 01 11W	369 314	368 315	368 315	$\begin{array}{c} 367\\ 316\end{array}$	368 320	$\begin{array}{c} 355\\ 324 \end{array}$	345 329	$\begin{array}{c} 346\\ 330 \end{array}$	352 329	360 324	364 318
Lima, Peru Lindenberg, East Germany Lisboa, Portugal Lourenco Marques, Portuguese East Africa Luanda, Portuguese West Africa	$135 \\ 105 \\ 103 \\ 44 \\ 70$	12 06S 52 13N 38 46N 25 55S 08 49S	77 02W 14 07E 09 08W 32 34E 13 13E	354 311 325 371 375	357 313 328 370 374	356 312 328 366 377	350 213 324 361 380	343 319 329 348 369	339 325 330 341 356	336 336 335 339 351	338 332 336 341 352	$336 \\ 326 \\ 341 \\ 345 \\ 359$	340 322 330 356 367	342 317 326 357 375
Lvov, U.S.S.R. Macquarie Island. Madras, India. Madrid, Spain. Majuro Island.	$329 \\ 6 \\ 16 \\ 657 \\ 3$	49 49N 54 30S 13 00N 40 24N 07 05N	23 57E 158 57E 80 11E 03 41W 171 23E	302 320 364 296 383	306 319 363 296 378	301 319 368 296 381	307 317 379 291 385	315 316 379 300 387	322 314 367 304 381	330 315 369 298 383	327 316 376 299 383	318 315 380 305 383	$312 \\ 314 \\ 384 \\ 304 \\ 383$	309 312 379 300 384
Malakal, Sudan Malye-Karmakuly, U.S.S.R. Maracay, Venezuela Marion Island. Maun, South Africa.	$389 \\ 16 \\ 442 \\ 26 \\ 945$	09 33N 72 23N 10 15N 46 53S 19 59S	$\begin{array}{c} 31 \ 39E \\ 52 \ 44E \\ 67 \ 39W \\ 37 \ 52E \\ 23 \ 25E \end{array}$	298 311* 339 317 323	292 315 335 317 324	299 312 336 319 319	$320 \\ 312 \\ 345 \\ 316 \\ 301$	337 311 354 313 284	353 316 352 313 279	358 322* 353 313 275	$362 \\ 321* \\ 353 \\ 314 \\ 271$	$363 \\ 354 \\ 313 \\ 274$	358 312* 355 314 282	329 314 350 314 308
Mawson, Antarctica. Mazatlan, Mexico. McMurdo Sound, Antarctica. Medford, Oreg. Melbourne, Australia.	$14 \\ 78 \\ 45 \\ 405 \\ 44$	67 36S 23 11N 77 51S 42 23N 37 49S	62 53E 106 26W 166 40E 122 52W 144 58E	299 346 302 305 328	298 339 301 303 328	300 342 310 301 330	303 351 307 300 326	$305 \\ 360 \\ 310 \\ 304 \\ 321$	306 374 311 307 324	306 379 312 306 322	306 380 315 305 319	303 384 308 306 320	300 377 304 307 319	298 354 299 307 324
Merida, Mexico Mersa Matruh, United Arab Republic Miami, Fla Milano, Italy Moscow, U.S.S.R.	$22 \\ 25 \\ 4 \\ 120 \\ 156$	20 58N 31 20N 25 49N 45 28N 55 49N	89 31W 27 13E 80 17W 09 17E 37 37E	350 319 341 313 307	349 319 343 315 306	354 321 347 315 305	363 323 357 319 306	369 336 367 330 314	376 348 375 340 322	$379 \\ 361 \\ 379 \\ 346 \\ 332$	378 361 379 348 327	381 345 380 340 318	370 340 362 329 313	357 334 352 319 310
						A REAL PROPERTY OF	A CONTRACTOR OF THE OWNER							

TABLE B-1. (Continued)

Station	Elevation (meters)	Latitude	Longitude	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Mould Bay, Northwest Territories Murmansk, U.S.S.R. Mys Cheliuskin, U.S.S.R. Mys Kamenny, U.S.S.R. Mys Schmidt, U.S.S.R.	$15 \\ 50 \\ 13 \\ 7 \\ 7 \\ 7 \end{array}$	76 14N 68 58N 77 43N 68 28N 68 55N	119 20W 33 03E 104 17E 73 36E 179 29W	331 309 328 319 322	330 309 326 321 326	332 308 326 318 325	322 308 318 314 314 318	$314 \\ 310 \\ 314 \\ 313 \\ 313 \\ 313$	$314 \\ 315 \\ 315 \\ 316 \\ 317$	316 324 317 321 318	$\begin{array}{r} 317 \\ 325 \\ 316 \\ 327 \\ 318 \end{array}$	$312 \\ 317 \\ 314 \\ 314^* \\ 316$	$313 \\ 313 \\ 312 \\ 314 \\ 312 $	323 311 320 315 315 315	328 309 321 322 320*
Nagphur, India Nairobi, Kenya Nandi, Fiji Islands Nantucket, Mass. Naryan-Mar, U.S.S.R.	$310 \\ 1798 \\ 16 \\ 14 \\ 7$	21 06N 01 18S 17 45S 41 15N 67 39N	79 07E 36 45E 177 27E 70 04W 53 01E	319 277 380 311 313	300 278 382 312 313	297 277 381 312 313	305 289 379 318 312	308 289 373 327 313	343 282 367 340 315	$370 \\ 281 \\ 364 \\ 355 \\ 325$	369 280 362 354 325	361 277 367 347 318	341 276 367 330 313	321 284 371 320 313	317 286 373 313 313 315
Nashville, Tenn. Naval Orcades Island Neuquen, Argentina New Delhi, India Niamey, Niger	$184 \\ 4 \\ 270 \\ 216 \\ 226$	36 07N 60 45S 38 57S 28 35N 13 29N	86 41W 44 43W 68 07W 77 12E 02 10E	309 309 296 313 286	311 308 303 311 281	311 307 305* 308 285	324 308 310* 299 308	338 307 304 306 331	351 307 300 334 351	363 309 304 373 362	361 306 302 379 369	340 307 299 362 369	326 307 300 332 343	313 307 297 318 308	312 307 296 313 294
Nicosia, Cyprus Nitchequon, Quebec. Nome, Alaska Norfolk Island Norman Wells, Northwest Territories	$218 \\ 515 \\ 14 \\ 110 \\ 64$	35 09N 53 12N 64 30N 29 03S 65 18N	33 17E 70 35W 165 26W 167 56E 126 51W	317 298 313 352 322	315 296 315 357 321	313 293 315 349 317	314 291 313 348 310	315 293 313 336 308	325 299 320 336 314	$326 \\ 311 \\ 326 \\ 331 \\ 327$	$331 \\ 307 \\ 326 \\ 334 \\ 325$	325 301 318 335 315	318 296 311 337 309	320 293 312 340 315	319 295 315 348 318
North Platte, Nebr. Norway Base, Antarctica Nouvelle Amsterdam Island Oakland, Calif. Odessa, U.S.S.R.	$850 \\ 50 \\ 28 \\ 6 \\ 64$	41 08N 70 20S 37 50S 37 44N 46 29N	100 42W 02 00W 77 34E 122 12W 30 38E	282 302 340 323 312	281 303 339 324 313	281 303 336 324 312	282 309 335 326 315	295 309 332 329 327	$307 \\ 311 \\ 324 \\ 334 \\ 334 \\ 334$	317 313 327 337 337	314 313 328 337 336	294 309 325 335 326	289 305 328 330 323	283 301 330 323 321	281 302 339 321 315
Okhotsk, U.S.S.R. Omsk, U.S.S.R. Onslow, Australia Ostersund, Sweden. Ostrov Chetyrekhstolbovoy, U.S.S.R.	$\begin{array}{r} 7\\94\\4\\309\\6\end{array}$	59 22N 54 56N 21 40S 63 11N 70 38N	$\begin{array}{c} 143 \ 12E \\ 73 \ 24E \\ 115 \ 07E \\ 14 \ 37E \\ 162 \ 24E \end{array}$	316 315 344 299 325	314 312 350 299 327	311 311 355 299 325	309 309 332 299 317	312 305 327 301 312	320 316 330 310 315	332 331 321 313 316	337 328 317 314 317	321 316 322 310 316	307 307 316 304 313	310 311 325 303 319	314 313 337 298 324
Ostrov Dikson, U.S.S.R. Papeete, Tahiti Island Perth, Australia Peshawar, West Pakistan Petropavlovsk Kamcatskij, U.S.S.R.	$20 \\ 2 \\ 60 \\ 359 \\ 7$	73 30N 17 33S 31 57S 34 01N 52 58N	80 14E 149 37W 115 49E 71 35E 158 45E	324 375 330 303 303	323 376 330 301 304	318 378 333 309* 305	315 377 330 312 305	313 375 327 304 309	315* 368 326 305 320	320 366 325 347* 326	320 362 323 365* 331	314 363 323 373* 320	311 368 324 318 311	316 373 320 311 306*	320 375 324 304 303
Ponape, Caroline Islands Port Blair, India Port Elizabeth, South Africa Port Harrison, Quebec Pretoria, South Africa	$37 \\ 79 \\ 61 \\ 20 \\ 1368$	06 58N 11 40N 33 59S 58 27N 25 45S	158 13E 92 43E 25 36E 78 08W 28 14E	379 364 351 319 301	380 365 350 318 300	380 369 350 317 298	384 371 339 312 287	385 385 331 313 275	386 384 328 315 270	384 382 329 321 270	384 386 328 322 266	384 384 332 317 276	384 382 335 313 282	384 378 339 310 294	378 367 346 314 299
Puerto Montt, Chile Quetta/Samungli, West Pakistan Raizet, Guadaloupe Island Raoul Island Resistencia, Argentina	$3 \\ 1601 \\ 8 \\ 49 \\ 52$	41 28S 30 15N 16 16N 29 15S 27 28S	72 56W 66 53E 61 31W 177 55W 58 59W	336 263 368 349 356	337 258 361 352 362	331 267 363 353 362	328 269 369 346 353	326 262 370 342 346	328 276 374 334 332	326 282 377 331 329	324 276 379 331 332	325 270 380 333 337	326 261 377 335 345	326 256 374 338 342	$331 \\ 259 \\ 369 \\ 346 \\ 354$
Resolute Bay, Northwest Territories Roma, Italy Saigon, Viet Nam Saint Paul, Alaska. Salisbury, Rhodesia.	$64\\131\\10\\6\\1480$	74 43N 41 48N 10 49N 57 09N 17 56S	94 59W 12 36E 106 40E 170 13W 31 05E	325 314 363 313 302	328 317 362 311 305	330 316 369 311 295	319 319 375 312 288	311 328 384 314 279	313 334 386 320 277	315 338 384 326 271	315 339 386 326 270	310 335 384 322 274	310 326 383 315 275	319 321 373 311 288	320 318 370 312 300
Salt Lake City, Utah. Samarovo, U.S.S.R. Samsun, Turkey. San Diego, Calif. San Juan, P. R.	1288 37 44 9 19	40 46N 60 58N 41 17N 32 44N 18 26N	111 58W 69 04E 36 20E 117 10W 66 00W	270 316 311 320 358	268 312 313 325 358	$265 \\ 311 \\ 316 \\ 325 \\ 359$	264 309 320 328 363	268 310 330 332 371	267 321 343 339 376	$270 \\ 330 \\ 346 \\ 346 \\ 378$	272 329 347 350 378	265 318 337 346 378	268 311 329 337 374	270 314 322 323 370	$271 \\ 315 \\ 313 \\ 317 \\ 365$
Sapporo, Japan Saratov, U.S.S.R. Sault Ste. Marie, Mich Shemya, Alaska Singapore.	$ \begin{array}{r} 18 \\ 135 \\ 221 \\ 37 \\ 18 \\ \end{array} $	43 03N 51 34N 46 28N 52 43N 01 21N	$\begin{array}{c} 141 \ 20E \\ 46 \ 00E \\ 84 \ 22W \\ 174 \ 06E \\ 103 \ 54E \end{array}$	309 304 307 308 375	309 306 906 308 377	310 303 304 311 382	310 305 305 315 385	318 307 309 318 387	332 315 325 321 384	349 322 333 327 383	353 318 332 327 382	337 314 323 324 382	323 307 315 316 382	313 305 307 310 380	309 305 306 307 381
Sodankyla, Finland Stanley, Falkland Islands Stockholm, Sweden Stuttgart, Germany. Sverdlovsk, U.S.S.R.	$179 \\ 53 \\ 52 \\ 315 \\ 284$	67 22N 51 42S 59 21N 48 50N 56 50N	26 39E 57 52W 18 04E 09 12E 60 38E	306 317 311 303 306	306 316 310 303 303	306 318 310 304 302	$304 \\ 316 \\ 311 \\ 306 \\ 300$	305 313 311 313 302	309 312 318 319 314	319 313 328 322 324	320 311 329 325 319	313 312 324 319 309	307 312 321 312 303	307 314 315 306 305	306 314 312 302 304
Swan Island Syktyvkar, U.S.S.R. Tacubaya, Mexico. Taipei, Taiwan Tamanrasset, Algeria.	$ \begin{array}{r} 10 \\ 96 \\ 2306 \\ 8 \\ 1378 \end{array} $	17 24N 61 40N 19 24N 25 02N 22 48N	83 56W 50 51E 99 12W 121 31E 05 32E	368 311 249 338 246	364 309 247 342 248	$371 \\ 308 \\ 242 \\ 349 \\ 244$	$377 \\ 308 \\ 247 \\ 357 \\ 243$	382 310 252 372 243	386 317 263 381 252	387 325 265 384 251	387 324 266 384 252	388 318 265 380 255	383 312 258 364 251	$375 \\ 311 \\ 254 \\ 357 \\ 252$	$371 \\ 311 \\ 251 \\ 343 \\ 250$
Tananarive, Malagasy Republic Tashkent, U.S.S.R. Tatoosh Island, Wash. Tbilisi, U.S.S.R. The Pas, Manitoba	$1310 \\ 478 \\ 26 \\ 404 \\ 272$	18 54S 41 20N 48 23N 41 43N 53 58N	47 32E 69 18E 124 44W 44 48E 101 06W	312 296 318 299 310	311 295 321 297 305	312 298 317 298 302	307 304 321 305 301	299 308 328 314 304	295 301 332 320 316	291 302 336 331 326	289 304 340 330 326	290 297 336 321 312	294 297 328 311* 305	305 300 324 308 303	311 300 321 303 305
Tourane, Viet Nam. Townsville, Australia. Trivandrum, India. Tromso, Norway. Tura, U.S.S.R.	7 4 64 9 147	16 02N 19 15S 08 29N 69 42N 64 16N	108 11E 146 46E 76 57E 19 01E 100 14E	365* 376 362 307 334	366 378 364 309 324	372* 371 370 311 307*	382* 363 380 310 304	385* 351 385 316 301*	383* 339 382 321 313	385* 333 382 328 324	390* 336 380 328 318	389* 339 379 321 310	386* 356 380 313 306	376* 361 378 312 316*	363* 366 368 308 329

Station	Elevation (meters)	Latitude	Longitude	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Turukhansk, U.S.S.R Ushuaia, Argentina. Valentia, United Kingdom. Yalparaiso, Chile. Vera Cruz, Mexico.	$37 \\ 6 \\ 14 \\ 41 \\ 16$	65 47N 54 48S 51 56N 33 01S 19 12N	87 57E 68 19W 10 15W 71 39W 96 08W	$324 \\ 311 \\ 320 \\ 345 \\ 361$	318 312 319 346 367	312 307 321 343 370	308 308 322 334 380	305 508 325 332 382	311 310 332 333 386	323 310 337 331 386	324 308 336 332 387	316 309 335 332 383	310 305 329 334 379	316 305 324 335 368	324 303 320 338 361
Verkhoyansk, U.S.S.R. Vishakhapatnam, India Vladivostok U.S.S.R. Vologda, U.S.S.R. Wajima, Japan	$ \begin{array}{r} 135 \\ 3 \\ 138 \\ 118 \\ 7 \end{array} $	67 33N 17 43N 43 07N 59 17N 37 23N	$\begin{array}{c} 133 \ \ 23E \\ 83 \ \ 14E \\ 131 \ \ 54E \\ 39 \ \ 52E \\ 136 \ \ 54E \end{array}$	$345 \\ 357 \\ 308 \\ 309 \\ 314$	$341 \\ 356 \\ 305 \\ 308 \\ 314$	320 369 304 307 316	307 391 307 308 322	301 392 314 312 332	308 391 329 325 348	$316 \\ 384 \\ 347 \\ 335 \\ 369$	314 386 350 330 371	307 389 332 319 355	$310 \\ 380 \\ 311 \\ 314 \\ 336$	$331 \\ 358 \\ 304 \\ 311 \\ 324$	345 353 306 309 318
Wake Island. Washington, D. C. Whitehorse, Yukon Wien/Hohe-Warte, Austria. Wilkes Stn., Antarctica.	4 20 698 203 12	19 17N 38 51N 60 43N 48 15N 66 15S	$\begin{array}{c} 166 & 39E \\ 77 & 02W \\ 135 & 04W \\ 16 & 22E \\ 110 & 35E \end{array}$	$356 \\ 310 \\ 291 \\ 306 \\ 301$	359 311 287 307 302	363 309 284 307 300	367 320 282 309 303	371 328 282 316 303	378 342 287 325 306	380 354 292 332 307	384 352 293 333 303	383 343 289 322 303	380 328 284 317 301	$373 \\ 316 \\ 284 \\ 312 \\ 299$	368 313 289 308 302
Windhoek, South-West Africa	1728	22 34S	17 06E	263	269	267	265	248	247	245	241	237	240	256	250
Ship A Ship B Ship C Ship D Ship E	+++++++++++++++++++++++++++++++++++++++	62 00N 56 30N 52 45N 44 00N 35 00N	33 00W 51 00W 35 30W 41 00W 48 00W	307 310 317 327 339	$312 \\ 310 \\ 315 \\ 323 \\ 336$	$312 \\ 312 \\ 315 \\ 324 \\ 337$	315 312 321 328 341	$317 \\ 318 \\ 322 \\ 334 \\ 351$	323 321 328 340 366	326 326 332 356 374	324 325 333 360 374	320 320 330 348 368	$314 \\ 315 \\ 323 \\ 336 \\ 357$	$311 \\ 311 \\ 319 \\ 330 \\ 349$	306 309 315 330 346
Ship I Ship J Ship K Ship M Ship N		59 00N 52 30N 45 00N 66 00N 30 00N	19 00W 20 00W 16 00W 02 00E 140 00W	315 322 329 312 340	$315 \\ 319 \\ 322 \\ 314 \\ 339$	316 321 327 315 335	319 323 329 316 338	321 324 335 319 340	$327 \\ 333 \\ 342 \\ 321 \\ 344$	330 337 348 327 349	328 337 348 327 351	324 333 345 326 350	320 327 338 318 348	318 326 330 318 345	315 319 332 312 342
Ship P Ship V	ŧ	50 00N 34 00N	145 00W 164 00E	316 328	318 331	318 335	317 340	324 350	328 359	333 379	336 381	335 369	$\begin{array}{c} 325\\ 366 \end{array}$	319 355	317 337

TABLE B-1. (Continued)

* Less than 3 years of data. ‡ No elevation given.

FIGURE B-1. Location of ΔN data stations.

FIGURE B-2. Monthly mean ΔN : January.

FIGURE B-3. Monthly mean ΔN : February.

FIGURE B-4. Monthly mean ΔN : March.

FIGURE B-5. Monthly mean ΔN : April.

FIGURE B-6. Monthly mean ΔN : May.

FIGURE B-7. Monthly mean ΔN : June.

FIGURE B-10. Monthly mean ΔN : September.

FIGURE B-11. Monthly mean ΔN : October.

FIGURE B-12. Monthly mean ΔN : November.

FIGURE B-14. Annual mean of sea-level refractivity, $\overline{\overline{N}}_{o}$.

FIGURE B-15. Annual mean of refractivity gradient between surface and 1 km, $\overline{\Delta N}$.

FIGURE B-16. Slope of regression line of $\overline{\Delta N}$ versus $\overline{N}_{s},$ b.

FIGURE B-17. Correlation coefficient of $\overline{\Delta N}$ versus $\overline{N}_{s}.$

APPENDIX B 61

FIGURE B-18. Standard prediction error of the regression line of $\overline{\Delta N}$ versus $\overline{N}_{s}.$

FIGURE B-19. Standard prediction error of the regression line of $\overline{\Delta N}$ versus \overline{N}_s as a percent of $\overline{\overline{\Delta N}}$.

FIGURE B-20. Areas of doubtful applicability of using \overline{N}_s to predict $\overline{\Delta N}$.
12. Appendix C. World Maps and Cumulative Distribution Charts of Gradients of Ground-Based Atmospheric Layers

Initial gradient data, obtained (see sec. 5) for 99 of the 112 stations listed in table A-1, are presented in groups of seasonal world maps which illustrate various aspects of the percentage distribution of gradients in ground-based layers. The specific map groups are given below.

Figures C-1 through C-4: Percent of time gradient ≥ 0 (N/km).

Figures C-5 through C-12: Gradient exceeded 10 and 2 percent of the time for 100-m layer.

Figures C-13 through C-20: Percent of time gradient ≤ -100 (N/km) and percent of superrefractive layers > 100 m thick.

Figures C-21 through C-28: Percent of time gradient ≤ -157 (N/km) and percent of ducting layers > 100 m thick.

Figures C-29 through C-40: Percentage of time trapping frequency is below 3000 Mc/s, below 1000 Mc/s, and below 300 Mc/s.

Figures C-41 through C-56: Lapse rate of refractivity (N/km) exceeded 25, 10, 5, and 2 percent of the time for 100-m layer.

Cumulative probability distribution charts were prepared for 22 climatically diverse locations for the months of February, May, August, and November (figs. C-57 through C-78). The alphabetical listing of these stations in table C-1 includes seasonal median and minimum trapping frequency values when these were available. Distribution data for two separate times of day at Aden and Nicosia are shown in figures C-57 and C-71. The negative gradient of 50 N-units/km, which is generally considered to be a good normal value for ground-based layers, has been indicated on each of the distributions by a dashed line to provide a common reference for the vertical scale. The circled value on the distribution line represents the *mean* ground-based gradient (of any layer thickness greater than 20 m) for each month.

FIGURE C-1. Percent of time gradient ≥ 0 (N/km): February.

FIGURE C-3. Percent of time gradient ≥ 0 (N/km): August.

FIGURE C-4. Percent of time gradient ≥ 0 (N/km): November.

FIGURE C-5. Gradient (N/km) exceeded 10 percent of the time for 100-m layer: February.

FIGURE C-6. Gradient (N/km) exceeded 2 percent of the time for 100-m layer: February.

FIGURE C-7. Gradient (N/km) exceeded 10 percent of the time for 100-m layer: May.

FIGURE C-8. Gradient (N/km) exceeded 2 percent of the time for 100-m layer: May.

FIGURE C-9. Gradient (N/km) exceeded 10 percent of the time for 100-m layer: August.

FIGURE C-11. Gradient (N/km) exceeded 10 percent of the time for 100-m layer: November.

FIGURE C-12. Gradient (N/km) exceeded 2 percent of the time for 100-m layer: November.

FIGURE C-13. Percent of time gradient ≤ -100 (N/km): February.

FIGURE C-14. Percent of superrefractive layers thicker than 100 m: February.

FIGURE C-15. Percent of time gradient ≤ -100 (N/km): May.

FIGURE C-16. Percent of superrefractive layers thicker than 100 m: May.

FIGURE C-17. Percent of time gradient ≤ -100 (N/km): August.

FIGURE C-18. Percent of superrefractive layers thicker than 100 m: August.

FIGURE C-19. Percent of time gradient ≤ -100 (N/km): November.

FIGURE C-20. Percent of superrefractive layers thicker than 100 m: November.

FIGURE C-23. Percent of time gradient ≤ -157 (N/km): May.

FIGURE C-25. Percent of time gradient ≤ -157 (N/km): August.

FIGURE C-27. Percent of time gradient ≤ -157 (N/km): November.

FIGURE C-28. Percent of ducting layers thicker than 100 m: November.

FIGURE C-29. Percent of time trapping frequency < 3000 Mc/s: February.

FIGURE C-31. Percent of time trapping frequency < 300 Mc/s: February.

FIGURE C-32. Percent of time trapping frequency < 3000 Mc/s: May.

FIGURE C-33. Percent of time trapping frequency < 1000 Mc/s: May.

FIGURE C-34. Percent of time trapping frequency < 300 Mc/s: May.

FIGURE C-35. Percent of time trapping frequency < 3000 Mc/s: August.

FIGURE C-36. Percent of time trapping frequency < 1000 Mc/s: August.

FIGURE C-37. Percent of time trapping frequency < 300 Mc/s: August.

FIGURE C-38. Percent of time trapping frequency < 3000 Mc/s: November.

FIGURE C-39. Percent of time trapping frequency < 1000 Mc/s: November.

FIGURE C-40. Percent of time trapping frequency < 300 Mc/s: November.

FIGURE C-41. Lapse rate of refractivity (N/km) exceeded 25 percent of time for 100-m layer: February.

FIGURE C-42. Lapse rate of refractivity (N/km) exceeded 10 percent of time for 100-m layer: February.

FIGURE C-43. Lapse rate of refractivity (N/km) exceeded 5 percent of time for 100-m layer: February.

FIGURE C-45. Lapse rate of refractivity (N/km) exceeded 25 percent of time for 100-m layer: May.

FIGURE C-47. Lapse rate of refractivity (N/km) exceeded 5 percent of time for 100-m layer: May.

FIGURE C-49. Lapse rate of refractivity (N/km) exceeded 25 percent of time for 100-m layer: August.

FIGURE C-51. Lapse rate of refractivity (N/km) exceeded 5 percent of time for 100-m layer: August.

FIGURE C-53. Lapse rate of refractivity (N/km) exceeded 25 percent of time for 100-m layer: November.

- -

FIGURE C-55. Lapse rate of refractivity (N/km) exceeded 5 percent of time for 100-m layer: November.

Station	Feb.		May		Aug.		Nov.	
	Med	Min	Med	Min	Med	Min	Med	Min
Aden, Arabia 0000 GMT 1200 GMT	478 475	82 82	865 767	40 51	898 582	41 41	485 522	$\begin{array}{c} 114\\ 122 \end{array}$
Amundsen-Scott, Antarctica	2503	*	531	266	495	272	†	
Balboa (Albrook), Panama C. Z	743	311	676	270	663	242	657	314
Bangui, Central African Republic	280	66	569	247	265	176	369	294
Bordeaux, France	1300	190	565	99	402	89	442	186
Dakar, Senegal	328	56	409	43	848	162	378	35
Denver, Colo	‡	*	‡	*	‡		‡	
Ezeiza, Argentina	681	123	181	*	383	*	1403	*
Fort Smith, Northwest Territories	872	9	430	*	145	43	1345	*
Hilo, Hawaii	862	482	801	346	467	253	1035	496
Long Beach, Calif	‡		‡		‡		‡	
Lourenco Marques, Portuguese East Africa	554	245	†		2334	*	2404	430
Nandi, Fiji Islands	‡		‡		‡	*	‡	*
New York, N.Y.	‡	*	‡		‡	*	‡	*
Nicosia, Cyprus 0000 GMT 1200 GMT	$^{1143}_{\dagger}$	*	307 290	125 *	$\begin{array}{c} 137\\680\end{array}$	44 122	398 1223	*
Ostersund, Sweden	†		‡		†		†	
Perth, Australia	4864	*	709	*	799	*	649	*
Saigon, Viet Nam	532	155	610	326	904	403	539	264
San Juan, P. R.	671	51	631	41	595	227	535	53
Ship Station "C"	320	*	843	*	1028	*	308	*
Tashkent, U.S.S.R.	†		†		334	*	774	*
Vladivostok, U.S.S.R	†		499	*	584	50	1253	*

TABLE C-1 Median and minimum trapping frequency (Mc/s) of ducting layers.

* Less than 5 ducting layers during month. † No ducting. ‡ Trapping frequencies not computed.

FIGURE C-57. (b) Cumulative probability distributions of dN/dh for ground-based 100-m layer: Aden, Arabia (August, November).

FIGURE C-59. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Balboa (Albrook), Panama C.Z.

FIGURE C-61. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Bordeaux, France.

N-UNITS PER KILOMETER

FIGURE C-62. (b) Cumulative probability distributions of dN/dh for ground-based 100-m layer: Dakar, Republic of Senegal (August, November).

FIGURE C-64. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Ezeiza, Argentina.

103

FIGURE C-66. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Hilo, Hawaii.

107

NOTES OF ULN / ULL JUL BI UNING TUBER I UN-THE MUGEL. LY LEOSER, UB PI 46.

FIGURE C-72. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Ostersund, Sweden.

FIGURE C-74. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Saigon, Viet Nam.

13. Appendix D. World Charts of Tropopause Heights

Five-year mean tropopause heights obtained in the process of computing N(z) parameters for February, May, August, and November at the 112 stations listed in table A-1 were plotted and contoured. Maps of these heights, given in figures D-1 through D-4, represent the average of all of the individual altitudes which marked the base of the first layer which had a thickness of at least 2 km and a temperature lapse rate of less than $2^{\circ}C/km$ (see sec. 6).

FIGURE D-1. Tropopause heights (km), based on temperature lapse rate: February.

117

FIGURE D-2. Tropopause heights (km), based on temperature lapse rate: May.

FIGURE D-4. Tropopause heights (km), based on temperature lapse rate: November.

14. Appendix E. Sample Listing of the Computer Output for San Juan, P.R., and Amundsen-Scott, Antarctica

A sample listing of the complete computer output of the mean N-profiles for February, May, August, and November at a subtropical and an arctic station is given in the first section of this appendix.

For instance, at station 11636 (San Juan, P. R.) in February (table E-1), the heading gives the number of pieces of data used to compute two types of tropopause height (based on two types of temperature criteria):

(a) the mean heights where the extreme minimum temperature occurred in 320 individual profiles was 17.56 km \pm a standard deviation of 0.65 km,

(b) the mean height of the bottom of the lowest atmospheric layer with a thickness ≥ 2 km and a temperature gradient $\geq -2^{\circ}$ C/km in 307 temperature profiles was 16.44 km ± 0.96 km.

This February profile also gives refractivity information at 40 height levels ranging from 0 to 30 km. Following each height level is a listing of the values of total refractivity, gradient, dry and wet terms, and their respective standard deviations at that height above surface. For example, at 1 km, 383 radiosonde profiles were examined, and the refractivity was found to be 306.7 with a standard deviation of 8.22 N-units; the gradient at that level was -47.66 N/km with a standard deviation of 17.38 N/km; the dry term was 242.4 \pm 1.19 N-units, and the wet term was 64.3 ± 8.52 N-units. The correlation coefficients for the data fit, within various height ranges, of the wet term (W) and the tropospheric (D₁) and stratospheric (D₂) dry terms to the line represented by a computed regression equation are found at the bottom of each month's listing. In this example, for the dry term equation (D₁), with a surface value of 271.9 and an exponential decay coefficient of -0.1088, the correlation coefficient is 0.999 and the standard deviation is 3.01 N-units. (These figures were based on 5 years of data from the surface to 15 km.)

At station 90001 (Amundsen-Scott, Antarctica) the wet-term value is so small at all heights during the months studied that the regression equation from 0 to 3 km becomes meaningless. Because the South Polar region is not shown on the ground-based gradient maps (figs. C-1 through C-56), a complete computer listing for Amundsen-Scott is included in this appendix. This also illustrates the form of the original station data which were used to plot the various values needed for the gradient maps. All gradients are in N-units/ km and all frequencies are Mc/s. The "profiles skipped" represents the number of profiles which had gradients > -100 N/km.

TABLE E-1. Mean N-profiles: San Juan, P.

	313. 7 ±0.83.	SDW	$\begin{array}{c} 11.19\\ 10.81\\ 10.402\\ 8.608\\ 8.608\\ 8.608\\ 8.608\\ 112.28\\ 115.28\\ 112.28\\ 115.2$	(KM)	= 3 = 14 = 28
	ause 327. apse 15.1	WET	1009 1009 9729 1050 11121 112119 1000 1000 1000 1000 1000	Range	$\begin{array}{c} 0 = H = 0 \\ 0 = H = 16 \\ 16 = H = 16 \end{array}$
	Tropop 0.74, L	SDD	$\begin{array}{c} 1.92\\ 1.66\\ 1.166\\ 1.166\\ 1.166\\ 1.166\\ 1.166\\ 1.166\\ 0.925\\ 0.055\\ 0.056\\ 0.05$		54 32 72
	culating 16.40 ±	DRY	$\begin{array}{c} 262.8\\ 2261.7\\ 2261.7\\ 2257.7\\ 2257.7\\ 2257.7\\ 2257.7\\ 2257.7\\ 2257.7\\ 2257.7\\ 2257.7\\ 2257.7\\ 2257.7\\ 2257.7\\ 2257.7\\ 2356.7\\ 2356.7\\ 224.8\\ 257.8\\ 336.1\\ 110.2\\ 254.8\\ 336.1\\ 1110.2\\ 336.1\\ 1110.2\\ 336.7\\ 336.7\\ 1110.2\\ 1110.2\\ 1100.2$		± 3.0061 ± 2.4003 $\pm 0.4576'$
	id in Cal	SDG	$\begin{array}{c} 47.92\\ 45.66\\ 46.66\\ 46.66\\ 112.27\\ 115.57\\ 115.57\\ 115.57\\ 116.67\\ 5.53\\ 5.539\\ 5.539\\ 117.78\\ 5.539\\ 5.539\\ 117.78\\ 5.539\\ 117.78\\ 5.539\\ 0.557\\ 0.057\\ 0.057\\ 0.057\\ 0.057\\ 0.057\\ 0.057\\ 0.057\\ 0.057\\ 0.057\\ 0.07\\$	ion	3356H) 6109H) 2794H)
	Profiles Use Height Min	dN/dh	$\begin{array}{c} -88.57\\ -87.23\\ -87.23\\ -56.66\\ -67.23\\ -57.23\\$	Equat	Exp(-0.43) Exp(-0.10) Exp(-0.17)
	nber of I opause I	SDN	$\begin{array}{c} 111.24\\ 10.38\\ 10.38\\ 10.38\\ 8.46\\ 8.46\\ 8.46\\ 8.254\\ 112.44\\ 112.44\\ 9.999\\ 9.999\\ 9.999\\ 9.999\\ 9.999\\ 9.999\\ 9.999\\ 0.038\\ 0.038\\ 0.038\\ 0.056\\ 0.$		111.65 1 268.22 1 667.88 1
	Trop	N	$ 372.3\\ 357.5\\ 357.5\\ 357.5\\ 357.5\\ 357.5\\ 357.5\\ 357.5\\ 357.5\\ 357.5\\ 357.5\\ 357.5\\ 557.5\\ 557.5\\ 557.5\\ 557.5\\ 357.5\\ 577.5\\ 577.5\\ \mathbf$		D ₂ = =
ian, P. R.	e, Month 5	Number	4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	al Profile tion	961 393 570
rofiles: San Ju	Mean N-Profil Station 11636,	Height (KM)	$\begin{array}{c} 0 \\ 0.1050 \\ 0.1050 \\ 0.1000 \\ 0.1500 \\ 0$	Exponentis Correla	0.9949
E-1. Mean N-p	4 ± 0.96 .	SDW	$ \begin{array}{c} 11.22\\ 11.22\\ 10.95\\ 1$	KM)	= 3 = 15 = 30
	tuse 320. tpse 16.4	WET	888 892 877 877 877 877 877 877 877 877 877 87	Range (]	$\begin{array}{c} 0 \\ H \\$
LABLE	Tropopa 0.65, La	SDD	$\begin{array}{c} 1.66\\ 1.1.8\\ 1.1$	-	19 70 57
	culating 17.56 ±	DRY	$\begin{array}{c} & 2665.3\\ & 2665.3\\ & 2665.3\\ & 2665.3\\ & 2665.3\\ & 2665.3\\ & 2665.3\\ & 2665.3\\ & 2655.3\\$		± 6.0544 ± 3.0113 ± 0.5351
	d in Cal.	SDG	$\begin{array}{c} 4.2.1\\ 4.2.1\\ 10.62\\ 10.62\\ 11.64\\ 11.64\\ 11.65\\ 11.64\\ 11.17\\ 11$	u u	8658H) 8778H) 2110H)
	rofiles Use Ieight Min	dN/dh	$\begin{array}{c} -75.67\\ -75.67\\ -75.67\\ -8.031\\ -46.031\\ -46.031\\ -46.031\\ -46.032\\ -47.165\\ -49.165\\ -49.165\\ -59.47\\ -50.25\\ -50.40\\ -50.25\\ -111.28\\ -111.28\\ -111.28\\ -111.28\\ -111.28\\ -111.28\\ -111.28\\ -50.22\\ -111.28\\ -111.$	Equati	Exp(-0.56 Exp(-0.10 Exp(-0.17
	aber of F opause F	SDN	$\begin{array}{c} 11.39\\ 11.39\\ 9.77\\ 9.77\\ 9.77\\ 9.77\\ 10.78\\ 9.77\\ 11.95\\ 11.95\\ 11.95\\ 11.95\\ 15.52\\ 11.95\\ 15.52\\ $	-	99.92 271.91 662.57
	Nun Trop	N	357.8 3557.8 3557.8 3556.3 3556.3 3556.3 3556.3 3556.3 3556.3 167.8 167.8 167.8 167.8 167.8 167.8 167.8 167.8 383.2 383.		DD4 DD4
	e, Month 2	Number	3833 3833 3833 3833 3833 3833 3833 383	d Profile	352 353 385
	Mean N-Profil Station 11636,	Height (KM)	$\begin{array}{c} 0.0\\ 0.050\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.100\\ 0.000\\ 0.100\\ 0.000\\ 0.11\\ 0.000\\ 0.11\\ 0.000\\ 0.11\\ 0.000\\ $	Exponentia Correla	0.9828 0.9989 0.9993

(pan
ontin
. (C
E-1
ABLE
-

lating Tropopause 369. 347. 5.95 ±0.70, Lapse 15.79 ±0.92.

SDW

WET

SDD

g Tr ±0.7	SI			8167 80762 94327
culatin 16.95	DRY	265. 2661. 2261. 2261. 2265. 2256. 2255. 2255. 2273. 2217. 2217. 2217. 2217. 2255. 2255. 2255. 2255. 2265. 2255. 2265. 2) ±4.3() ±2.28) ±0.70
d in Cal	SDG	$\begin{array}{c} 555.94\\ 54469\\ 54469\\ 12.377\\ 12.378\\ 12.378\\ 12.378\\ 12.378\\ 12.378\\ 12.378\\ 12.387\\ 1$	uo	62755H 06144H 67133H
rofiles Use Height Min	dN/dh	$\begin{array}{c} -86.27\\ -799.001\\ -799.001\\ -799.001\\ -799.002\\ -49.47\\ -49.47\\ -49.47\\ -49.47\\ -49.47\\ -49.48\\ -49.47\\ -10.23\\ -20.33\\ -10.119\\ -10.25\\ -17.50\\ -10.25\\ -17.50\\ -10.25\\ -17.50\\ -10.25\\ -17.50\\ -10.25\\ -17.50\\ -10.25\\ -17.50\\ -10.25\\ -17.50\\ -10.25$	Equati	Exp(-0.4) Exp(-0.1) Exp(-0.1)
mber of I	SDN	$\begin{array}{c} 12.75\\ 12.234\\ 12.249\\ 12.249\\ 10.144\\ 11.02\\ 8.41\\ 11.039\\ 8.41\\ 11.03\\ 8.41\\ 12.35\\ 10.339\\ 5.33\\ 8.41\\ 12.35\\ 5.33\\ 8.41\\ 12.35\\ 5.33\\ 8.41\\ 12.35\\ 5.33\\ 8.41\\ 12.35\\ 0.50\\ 0.5$		= 112.72 = 267.69 = 594.38
Trop	N	$\begin{array}{c} 371.1\\ 3566.5\\ 3565.7\\ 3565.7\\ 32815.7\\ 32815.7\\ 32815.7\\ 32815.7\\ 32815.7\\ 32815.7\\ 32815.7\\ 1107.8\\ 1107.8\\ 1107.8\\ 11174.5\\ 11174.5\\ 11174.5\\ 33.6\\ 557.7\\ 74.2\\ 557.7\\ 74.2\\ 557.7\\ 74.2\\ 557.7\\ 74.2\\ 557.7\\ 74.2\\ 557.7\\ 74.2\\ 557.7\\ 72.1\\ 112.5\\ 557.7\\ 72.2\\ 557.7\\ 72.2\\ 557.7\\ 72.2\\ 557.7\\ 72.2\\ 557.7\\ 72.2\\ 557.7\\ 72.2\\ 557.7\\ 72.2\\ 557.7\\ 72.2\\ $		DD22
e, Month 11	Number	$\begin{array}{c} 420\\ 420\\ 420\\ 420\\ 420\\ 420\\ 420\\ 420\\$	ial Profile lation)375)426)400
Mean N-Profil Station 11636,	Height (KM)	$\begin{array}{c} 0 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.050 \\ 0.000 \\ 0.0$	Exponent Corre	86.0 9990
$358. 1 \pm 0.83.$	SDW	$ \begin{array}{c} 8.60\\ 8.23\\ 8.23\\ 8.23\\ 8.23\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.75$	= 3	= 14
ause 376. apse 15.2	WET	$\mathbb{R}^{1115}_{11033}$	H = 0	16 = H
Tropop 0.69, L	SDD	$\begin{array}{c} 2.54\\ 2.54\\ 1.54\\ 1.55\\$	615	345
$16.32 \pm$	DRY	$\begin{array}{c} 2662.0\\ 2560.3\\ 2560.4\\ 2256.1\\ 2256.5\\ 2256.5\\ 2256.5\\ 22256.5\\ 22256.5\\ 22256.5\\ 22256.5\\ 1155.5\\ 1155.5\\ 2255.0\\ 556.5\\ 556.5\\ 2255.0\\ 2255.$	±3.819	±2.300 ±0.497
I in Calc Temp.	SDG	A46.18 446.18 446.18 110.246 112.16 1	(9425H)	(H68089H)
Profiles Used Height Min.	dN/dh	-8.85.44 -8.87.22 -8.87.22 -5.31.819 -5.31.819 -5.32.91 -5.32.91 -5.32.91 -5.32.91 -5.32.91 -5.32.91 -2.52.33 -2.52.33 -2.52.33 -2.52.33 -2.52.33 -2.52.33 -2.52.33 -1.55.73 -1.13.14 -	Exp(-0.45	Exp(-0.10
nber of] opause]	SDN	$\begin{array}{c} 7,30\\ 8,059\\ 8,059\\ 8,059\\ 7,337\\ 7,337\\ 7,337\\ 7,337\\ 7,342\\ 7,3$	= 120.48	= 614.01
Nur Trop	N	337286 337286 337286 337786 3347.4 3225652 3225652 3225652 322552 32255 32255 32255 32255 32255 32255 32255 32255 32255 32255 32555 32555 32555 32555 32555 32555 32555 32555 32555 32555 32555 32555 325555 325555 3255555 3255555555	Ba	D2 D2
e, Month 8	Number	434 434 434 434 434 434 434 4334 4334	632	1990
Mean N-Profil Station 11636,	Height (KM)	0.000 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.000 1.000 1.000 8.500 8.500 8.500 1.50000 1.50000 1.50000 1.50000 1.50000 1.50000 1.50000000000	0.994	666°0

 $\begin{array}{c} 122, 72\\ 122, 336\\ 122, 336\\ 122, 336\\ 111, 558\\ 111, 568\\ 111, 568\\ 111, 568\\ 111, 568\\ 125, 566\\$

 $\begin{array}{c} 1100\\ 110053\\ 997,05\\ 997,05\\ 883,01\\ 1137,8\\ 1$

 $\begin{array}{c} 1.90\\ 1.129\\ 1.1$

Range (KM)

= 34= 34

 $\begin{array}{c} 0 = H = 0 \\ 0 = H = 117 = H = 117 \end{array}$

Monn N. TABLE F-2.

122.	MC	00000000000000000000000000000000000000	0		
38. 5.35 +	T SI		ge (KN	H = 0	H = 26
pause : Lapse	WE	000000000000000000000000000000000000000	Ran	= 0	10 =]
t Tropo	SDD	6.97 5.81 5.81 5.835 5.81 5.81 5.87 2.73 2.532	1	000	101
ulculating	DRY	244.6 2295.5 2207.6 2295.5 2207.6 2207.6 2207.6 2007.6 193.8 189.8 1150.4 1150.4 1160.4 1160.4 1160.4 1160.4 1160.4 1160.4 1160.6 1160.4 1160.6 100.6 10		± 1.0000 ± 6.9971	± 0.5792
sed in Ca n. Temp	SDG	$\begin{array}{c} 96.79\\ 569.41\\ 569.41\\ 256.27\\ 21.57\\ 2.66\\ 1.26\\ 1.26\\ 1.24\\ 1.24\\ 1.24\\ 1.24\\ 1.24\\ 1.26\\ 1.26\\ 1.26\\ 1.26\\ 1.26\\ 1.26\\ 1.26\\ 1.26\\ 1.26\\ 1.26\\ 1.26\\ 1.26\\ 0.92\\ 0.92\\ 0.92\\ 0.92\\ 0.92\\ 0.92\\ 0.00\\ 0.0$	on	H1651H)	37585H)
Profiles Us Height Mi	dN/dh	$\begin{array}{c} -164.97\\ -164.97\\ -127.27\\ -25.36\\ -27.06\\ -27.06\\ -27.06\\ -27.06\\ -27.06\\ -27.06\\ -27.06\\ -21.5.59\\ -117.76\\ -117.76\\ -117.76\\ -117.76\\ -117.76\\ -12.08\\ -117.06\\ -12.08\\ -12.08\\ -2.45\\ -2.45\\ -2.45\\ -2.45\\ -2.45\\ -2.45\\ -2.45\\ -2.45\\ -2.45\\ -1.28\\ -2.45$	Equati	Exp(0, -0.1)	Exp(-0.10
mber of opause]	SDN	$\begin{smallmatrix} & 6.97 \\ & 5.80 \\ & 5.180 \\ & 5.$		1.00	291.00
Trop	N	$\begin{array}{c} 2244.6\\ 2236.5\\ 2236.5\\ 2236.5\\ 2200.7\\ 11894.2\\ 11894.2\\ 116.7\\ 116.7\\ 116.7\\ 116.7\\ 116.7\\ 116.7\\ 116.7\\ 116.7\\ 116.7\\ 116.7\\ 116.7\\ 110.8\\ 38.5\\ 110.8\\ 100.8$		D B I	D2 =
e, Month 5	Number	$\begin{array}{c} 164\\ 1664\\ 1664\\ 1664\\ 1664\\ 1661\\ 1661\\ 1661\\ 1661\\ 1661\\ 1661\\ 1661\\ 1661\\ 1661\\ 1661\\ 1661\\ 1662\\ $	al Profile ttion	730	733
Mean N-Fron Station 90001,	Height (KM)	$\begin{array}{c} 0 \\ 0.050 \\ 0.100 \\ 0.1$	Exponentis Correls	0.989	0*999
au. ±0.51.	SDW	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	-0.	KM)	- 3
apse 4.93	WET	00000111110000000000000000000000000000	0.0	Range (= H $=$ 0
culating Tropopa 5.28 ±0.87, Lap	SDD	5,42 5,42 3,570 3,570 3,570 3,570 3,570 3,570 1,233 1,234 1,134	0.03)4
	DRY	22222 22258 22258 22258 2011 19067 111556 2011 111556 5560 706 5560 706 5560 706 5560 706 5560 706 5560 706 5560 706 5660 706 706 706 706 706 706 706 706 706	2.0		±0.83750
. Temp.	SDG	332.39 30.30.30 7.452 7.452 7.452 7.452 7.452 1.944 1.922 1.855 1.955	0.01	u	(H883H)
Height Mir	dN/dh	-66.37 -65.37 -62.51.37 -62.51.37 -22.66 -22.666 -22.73 -22.666 -22.666 -22.666 -22.666 -22.666 -22.666 -22.666 -22.666 -22.666 -22.666 -22.666 -22.666 -22.666 -22.666 -22.666 -22.666 -22.666 -22.666 -22.666 -22.73 -22.666 -22.73 -22.666 -22.73 -22.73 -22.715 -22.73 -22.715 -22.732 -22.715 -22.732 -22.715 -22.725 -22.725 -22.725 -22.725 -22.725 -22.725 -22.725 -22.725 -22.725 -22.725 -22	-0.40	Equatio	Txp(0.496
opause]	SDN	$\begin{array}{c} 7^{5,5,5}_{7,5,5,5}\\ 7^{5,5,5}_{7,5,5,5}\\ 7^{5,5,5}_{7,5,5,5,5,5,5,5,5$	0.03		0.28 I
Trop	N	22222222222222222222222222222222222222	2.0		= M
Month 2	Number	99999999999999999999999999999999999999	2	tion	153
on 90001,	ht (KM)	0.0 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.000 0.100 0.100 0.000 0.100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	0000	Correla	0.3664

 ntinı
 (C0)
E-2.
ABLE
- 1

(pa)

Moan N_Droff	0	"N	mher of	Profiles Use	d in Cal	culating	Tropot	ause 50.	129.
Station 90001,	Month 8	Trop	opause]	Height Min	. Temp.	14.35	E1.30, I	apse 8.31	±1.71.
Height (KM)	Number	N	SDN	dN/dh	SDG	DRY	SDD	WET	SDW
0.	185	246.7	6.10	-175.52	73.79	246.7	6.10	0.0	-0.
0.050	185	238.0	5.10	-167.74	67.82	238.0	5.10	0.0	-0.
0.100	185	230.0	5.54	-124.23	60.79	230.0	5.56	0.0	0.06
0.250	185	217.6	3.51	-52.07	27.00	217.5	3.53	00	0.14
0.500	185	208.1	2.56	-31.62	6.43	208.0	2.57	0.1	0.26
0.750	185	200.8	2.34	-27.27	2.57	200.7	2.32	0.1	0.29
1.000	185	194.2	2.23	-25.64	2.23	194.1	2.19	0.1	0.31
1 500	185	182.0	2.13	-23.08	1.52	181.9	2.11	0.1	0.30
0000 6	185	171 0	2.06	-21 14	1 07	171.0	2.06	0.0	0.19
9 500	185	160.8	1 98	10 74	1 06	160.8	1 98	0.0	011
0000 6	105	151 9	101	10 60	61 1	151 9	1 01	0.0	
0.000	100	0.011	1 00	17 00	001	6 6VL	1 09		
0000	100	1.001	101	DC-11	60.0	V 661	1 01		
4.000	100	195.0	1 05	16.95	1 09	195.0	1 05		
4.000	100	0.071	00.T	00.01-	00.1	0.071	1.00		
0.000	183	0.111	00.2	00.01-	50.T	0.111	00.7		
9.900	182	109.3	61.2	-19.20	1.6.0	109.3	61.2		
00009	182	101.8	2.30	-14.52	0.84	101.8	2.30	.0	-0.
6.500	182	94.7	2.36	-14.04	0.81	94.7	2.36	0.	-0.
7.000	178	87.8	2.41	-13.38	0.81	87.8	2.41	0.	-0.
7.500	177	81.3	2.36	-12.90	0.78	81.3	2.36	0.	-0.
8.000	175	75.0	2.26	-12.17	0.78	75.0	2.26	0.	-0.
8.500	174	69.1	2.06	-11.51	0.82	69.1	2.06	0.	-0.
0000	173	63.5	1.82	-10.65	0.75	63.5	1.82	0.	-0.
9.500	170	58.4	1.58	-9.80	0.70	58.4	1.58	0.	-0.
10.000	168	53.7	1.35	-8.95	0.56	53.7	1.35	0.	-0.
11 000	155	45.5	1.07	-7.68	0.64	45.5	1.07	0.	-0-
19 000	141	38.4	0.88	-6.63	0.47	38.4	0.88	0.	-0.
13 000	119	32.3	010	-5.60	0.31	32.3	0.70	0.	-0.
14 000	101	6 16	0.57	-4 77	0.91	616	0.57	0	-0-
15 000	69	8 66	0.46	-4.07	0.17	22.8	0.46	0.	-0.
16 000	41	19.0	0.39	-3.45	0.13	19.0	0.39	0.	-0.
17 000	V6	15.9	0.39	-9 95	000	159	0.32	0	-0-
18 000	101	181	0.00	-9.40	80.0	13.1	0.99		-0-
10,000	PT PT	10.8	-0	-1 99	- 0.0	10.8	-0-		0-
nnn•et	-	0.01		00.1		0.01		5	
Exponent Corre	ial Profile lation			Equat	ion			Range	(KM)
0		M	- 1 00	Fixn(0	(H)	+1 000	000	0 = H	0 =
0.99	5190	, C	= 229.20	Exn(-0.1	36440H)	+6.117	404	H = 0	9
0.99	9715	D2	= 322.60	Exp(-0.1	77505H)	±0.390	122	10 = H	= 19

	F F																																					-	-	-	-
Tropop:	Tropops ±1.38, L	SDD	5.14 4.37	3.76	3.12	2.85	2.64	2.26	1.89	1.69	1.49	1.31	1.20	1.15	1.20	1.42	1.70	2.04	2.28	2.40	07.7	1.99	1.73	1.48	1.30	1.14	0.00	0.80	0.78	0.81	0.84	0.84	0.89	0.91	0.88	0.81	0.66	0.48	0.25	0.26	-0.
	. 7.12 =	DRY	226.7	219.8	212.6	204.4	197.6	191.3	179.7	169.1	159.2	149.9	141.1	132.6	124.5	116.8	109.1	101.6	94.2	87.0	80.0	73.5	9.1.9	1.29	1.1.9	0.20	44.4	010	1 16	1 86	19.7	16.9	14.4	12.3	10.5	7.7	5.6	4.0	2.9	2.2	R'T
	d in Calo n. Temp	SDG	32.32	29.06	10.63	4.25	3.18	2.31	66.0	1.78	0.82	0.93	0.82	06.0	1.03	1.31	1.40	1.43	1.38	1.61	1.85	0.99	0.98	0.76	0.73	0.60	10.0	0.51	060	0.50	0.18	0.14	0.13	0.08	60.0	0.08	0.06	90.06	0.02	20.0	-0.
	rofiles Use Height Mii	dN/dh	-62.39 -66.64	-61.22	-37.47	-28.51	-26.25	-24.57	-22.31	-21.02	-19.64	-18.45	-17.39	-16.61	-15.80	-15.39	-15.23	-14.91	-14.61	-14.18	-13.58	-12.30	-11.47	-10.47	-9.60	10.01	10.1-	10.20	-4 27	-3 66	-3.11	-2.63	-2.24	-1.93	-1.62	-1.19	-0.85	-0.62	-0.43	-0.32	07.0-
, Month 11 Tropopause 1	nber of F	SDN	5.11	3.75	2.70	2.48	2.32	2.01	1.77	1.56	1.41	1.29	1.20	1.15	1.20	1.42	1.70	2.04	2.28	2.40	62.25	1.99	1.73	1.48	1.30	1.14	0.90	0.00	0.78	0.81	0.84	0.84	0.89	0.91	0.88	0.81	0.66	0.48	0.25	0.26	-0.
	Nur Trol	z	226.7	219.8	213.3	205.4	198.6	192.3	180.5	169.6	159.4	149.9	141.1	132.6	124.5	116.8	109.1	101.6	94.2	87.0	80.0	73.5	9.7.9	62.1	1.12	0.20	44.4	0.10	1 16	1 86	19.7	16.9	14.4	12.3	10.5	7.7	5.6	4.0	2.9	2.2	R'T
	e, Month 11	Number	161	161	161	161	161	161	161	161	161	161	161	161	161	160	158	156	154	153	152	149	144	143	141	141	100	7001	196	119	108	100	86	92	11	55	45	21	× •	4.	T
	Mean N-Profil Station 90001,	Height (KM)	0.050	0.100	0.250	0.500	0.750	1.000	1.500	2.000	2.500	3.000	3.500	4.000	4.500	5.000	5.500	6.000	6.500	2.000	7.500	8.000	8.500	9.000	9.500	10.000	000.11	10 000	14 000	15,000	16.000	17.000	18.000	19.000	20.000	22.000	24.000	26.000	28.000	30.000	32.000

 $\begin{array}{c} 0.17\\ 0.18\\ 0.28\\$

Range (KM)

= 3 = 32

 $\begin{array}{c} 0 \\ 0 \\ 0 \\ 10 \\ 0 \\ H \\ 0 \\ \end{array}$

 $= \begin{array}{l} 0.15 \ \mathrm{Exp}(0.376075\mathrm{H}) \ \pm 0.523091 \\ = 220.96 \ \mathrm{Exp}(-0.130114\mathrm{H}) \ \pm 2.602547 \\ = 239.21 \ \mathrm{Exp}(-0.155433\mathrm{H}) \ \pm 0.599881 \end{array}$

PD2

 $\begin{array}{c} 0.233854 \\ 0.997559 \\ 0.999344 \end{array}$

Equation

Exponential Profile Correlation

124 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY

132. ±0.82

ropopause 132. 1.38, Lapse 5.71 SDW

WET

TABLE E-3.	Cumulative distribution of ground-based gradients: Amundsen-Scott, Antarctica
	(gradient followed by percentage level).

TABLE E-3. (Continued)

TABLE E-3. (Continued)

0-100 METERS, STATION 90001, MONTH 11

					and the second se	the local division of	the second se		the state of the second s	CONTRACTOR OF TAXABLE PROPERTY AND ADDRESS OF TAXABLE PROPERTY.			
-9.0	0.31	-9.9	0.93	-17.9	1.55	-21.3	2.17	-22.5	2.80	-25.0	3.42	-25.7	4.04
-27.2	4.66	-27.5	5.28	-27.6	5.90	-27.7	6.52	-27.9	7.14	-28.1	7.76	-29.0	8.39
-29.8	9.01	-31.6	9.63	-34.9	10.25	-37.0	10.87	-38.2	11.49	-38.4	12.1	-39.4	12 79
-40.3	13.35	-40.5	13.98	-42.4	14.60	-44 1	15.22	-45.2	15.84	-46.9	16.46	16.9	17 00
-46.3	17.70	-46.4	18 32	-481	18 94	-18.8	10.57	40.0	20.10	40.0	20.40	-40.5	11.00
-40.6	29.05	50.0	99 67	51.0	00.04	-40.0	10.01	-45.0	20.19	-49.0	20.81	-49.0	21.43
-43.0 E9.4	22.00	-50.0	22.01	-51.0	23.29	-51.1	23.91	-51.3	24.53	-51.4	25.16	-53.4	25.78
-03.4	20,40	-03.0	27.02	-54.3	27.64	-54.6	28.26	-54.7	28.88	-55.1	29.50	-55.3	30.12
-55.8	30.75	-56.0	31.37	-56.0	31.99	-56.5	32.61	-57.3	33.23	-57.9	33.85	-58.3	34.47
-58.4	35.09	-58.7	35.71	-58.8	36.34	-59.3	36.96	-59.5	37.58	-59.8	38.20	-60.1	38.82
-60.7	39.44	-61.0	40.06	-61.5	40.68	-61.6	41.30	-61.8	41.93	-62.4	42.55	-62.4	43.17
-62.8	43.79	-63.7	44.41	-64.0	45.03	-64.5	45.65	-65.6	46.27	-65.8	46.89	-66.0	47 52
-66.7	48.14	-67.0	48.76	-67.3	49.38	-68.1	50.00	-68.7	50.62	-69.2	51.24	-69.6	51 96
-72.4	52.48	-72.8	53.11	-73.3	53.73	-73.3	54 35	-73.5	54 97	-79.6	55 50	-03.0	56 91
-74.8	56.83	-754	57 45	-75.7	58.07	-76 1	58 70	76 4	50.99	76 5	50.04	-10.1	00.21
-76 7	61 19	77.0	61 90	70.0	00.01	-10.1	00.10	-10.4	09.04	-70.0	59.94	-76.6	60.56
70.9	01.10	-77.0	01.00	-78.0	02.42	-78.1	63.04	-78.3	63.66	-78.3	64.29	-78.8	64.91
-19.4	00.03	-19.8	66.15	-80.7	66.77	-80.8	67.39	-80.9	68.01	-81.1	68.63	-81.6	69.25
-83.2	69.88	-83.2	70.50	-83.8	71.12	-84.0	71.74	-84.1	72.36	-84.2	72.98	-84.3	73.60
-85.2	74.22	-85.2	74.84	-85.2	75.47	-85.3	76.09	-85.5	76.71	-85.8	77 33	-86.0	77 95
-86.0	78.57	-86.5	79.19	-86.9	79.81	-88.0	80.43	-88.9	81.06	-80.3	81.68	- 90.9	09 90
-90.4	82.92	-91.6	83.54	-95.1	84 16	-96.6	84 78	06.9	95 40	-00.0	02.00	-05.0	04.00
-98.9	87 97	-99.6	87 80	-00.7	00 51	100.7	04.10	100.0	00.40	-90.4	80.02	-98.3	80.00
-102 5	01 61	104.1	09.94	-99.1	00.01	-100.7	09.13	-100.9	89.75	-101.2	90.37	-101.7	90.99
-102.0	51.01	-104.1	94.24	-104.9	92.86	-107.1	93.48	-107.4	94.10	-110.4	94.72	-110.6	95.34
-114.8	95.96	-117.6	96.58	-120.7	97.20	-120.8	97.83	-122.1	98.45	-132.5	99.07	-158.5	99.69
	and a state of the												

TABLE E-4. Analysis of ground-based superrefractive and ducting layers: Amundsen-Scott, Antarctica.

						FEBRU.	ARY						
87 Profiles 99 Profiles Number of Number of	Skipped Read Ducts 2 Superref	ractive Layer	s 10										
CUMULAT	IVE DI	STRIBUTIO	N OF D	UCTING GI	RADIEN	TS, STATIC	ON 90001,	MONTH 2		X			
-157.500	25.00	-164.815	75.00										
	1000				ð	gent .							
CUMULAT	IVE DI	STRIBUTIO	N OF DU	UCT THICK	NESSES	, STATION	90001, M	ONTH 2					
0.120	25.00	0.108	75.00								4		
CUMULAT 3693.683	IVE DI 25.00	STRIBUTIO 1191.104	N OF TF 75.00	APPING F	REQUEN	VCIES, STA'	FION 900	001, MONTH	2				
CUMULAT	IVE DI	STRIBUTIO	N OF SU	PERREFRA	CTIVE	LAYER GR.	ADIENT	S, STATION	90001, 1	MONTH 2			
$-100.000 \\ -129.054$	$\begin{array}{r} 5.00 \\ 75.00 \end{array}$	$-101.626 \\ -138.182$	15.00 85.00	$-103.922 \\ -148.182$	$25.00 \\ 95.00$	-103.960	35.00	-117.391	45.00	-118.033	55.00	-124.793	65.00

					TABLE	E-4. (Con	tinued)	-					
CUMULAT	IVE DIS	STRIBUTIO	N OF SU	PERREFRA	CTIVE	LAYER THI	CKNES	SES, STATIO	ON 90001	, MONTH	2		
0.148 0.102	5.00 75.00	0.123 0.101	$\begin{array}{c} 15.00\\ 85.00\end{array}$	0.122 0.092	$\begin{array}{c} 25.00\\95.00\end{array}$	0.121	35.00	0.110	45.00	0.110	55.00	0.104	65.00
						MAY	7						
45 Profiles 164 Profiles Number of Number of	Skipped Read Ducts 7 Superrefr	9 active Layer	s 40										
CUMULAT	IVE DIS	STRIBUTIO	N OF DI	UCTING GE	ADIEN	rs, statio	N 90001,	MONTH 5					
$\begin{array}{c} -157.396\\ -164.045\\ -167.925\\ -175.694\\ -187.629\\ -196.522\\ -206.542\\ -224.107\\ -239.583\\ -266.279\\ -298.947\\ -422.414 \end{array}$	$\begin{array}{c} 0.63\\ 9.49\\ 18.35\\ 27.22\\ 36.08\\ 44.94\\ 53.80\\ 62.66\\ 71.52\\ 80.38\\ 89.24\\ 98.10\\ \end{array}$	$\begin{array}{c} -158.605\\ -165.248\\ -169.595\\ -176.119\\ -187.850\\ -198.742\\ -210.204\\ -224.762\\ -240.230\\ -266.327\\ -302.410\\ -789.655\end{array}$	$\begin{array}{c} 1.90\\ 10.76\\ 19.62\\ 28.48\\ 37.34\\ 46.20\\ 55.06\\ 63.92\\ 72.78\\ 81.65\\ 90.51\\ 99.37 \end{array}$	$\begin{array}{c} -158.929\\ -165.306\\ -170.732\\ -176.774\\ -188.095\\ -200.962\\ -210.959\\ -231.633\\ -244.706\\ -272.500\\ -306.383\end{array}$	$\begin{array}{c} 3.16 \\ 12.03 \\ 20.89 \\ 29.75 \\ 38.61 \\ 47.47 \\ 56.33 \\ 65.19 \\ 74.05 \\ 82.91 \\ 91.77 \end{array}$	$\begin{array}{c} -159.596\\ -165.789\\ -172.414\\ -176.800\\ -192.035\\ -202.778\\ -214.019\\ -231.818\\ -246.808\\ -275.000\\ -351.282 \end{array}$	$\begin{array}{r} 4.43\\ 13.29\\ 22.15\\ 31.01\\ 39.87\\ 48.73\\ 57.59\\ 66.46\\ 75.32\\ 84.18\\ 93.04 \end{array}$	$\begin{array}{c} -159.873\\ -166.667\\ -173.810\\ -180.952\\ -192.105\\ -202.857\\ -219.231\\ -232.824\\ -250.000\\ -276.389\\ -375.000 \end{array}$	$\begin{array}{c} 5.70\\ 14.56\\ 23.42\\ 32.28\\ 41.14\\ 50.00\\ 58.86\\ 67.72\\ 76.58\\ 85.44\\ 94.30\\ \end{array}$	$\begin{array}{c} -160.156\\ -167.290\\ -174.737\\ -182.906\\ -192.241\\ -203.175\\ -220.192\\ -233.333\\ -259.375\\ -284.615\\ -377.586\end{array}$	$\begin{array}{c} 6.96\\ 15.82\\ 24.68\\ 33.54\\ 42.41\\ 51.27\\ 60.13\\ 68.99\\ 77.85\\ 86.71\\ 95.57\end{array}$	$\begin{array}{c} -161.207\\ -167.480\\ -175.163\\ -175.163\\ -196.241\\ -205.263\\ -221.429\\ -237.903\\ -263.265\\ -285.981\\ -405.128\end{array}$	$\begin{array}{c} 8.23\\ 17.09\\ 25.95\\ 34.81\\ 43.67\\ 52.53\\ 61.39\\ 70.25\\ 79.11\\ 87.97\\ 96.84\end{array}$
CUMULAT	IVE DIS	TRIBUTIO	N OF DI	JCT THICK	NESSES	, STATION	90001, M	ONTH 5					
$\begin{array}{c} 0.215\\ 0.159\\ 0.141\\ 0.126\\ 0.116\\ 0.107\\ 0.105\\ 0.098\\ 0.095\\ 0.076\\ 0.058\\ 0.029\\ \end{array}$	$\begin{array}{c} 0.63\\ 9.49\\ 18.35\\ 27.22\\ 36.08\\ 44.94\\ 53.80\\ 62.66\\ 71.52\\ 80.38\\ 89.24\\ 98.10\\ \end{array}$	$\begin{array}{c} 0.196\\ 0.157\\ 0.134\\ 0.125\\ 0.116\\ 0.107\\ 0.105\\ 0.098\\ 0.094\\ 0.076\\ 0.058\\ 0.028\\ \end{array}$	$\begin{array}{c} 1.90\\ 10.76\\ 19.62\\ 28.48\\ 37.34\\ 46.20\\ 55.06\\ 63.92\\ 72.78\\ 81.65\\ 90.51\\ 99.37 \end{array}$	$\begin{array}{c} 0.188\\ 0.155\\ 0.133\\ 0.124\\ 0.115\\ 0.107\\ 0.104\\ 0.098\\ 0.087\\ 0.075\\ 0.049\\ \end{array}$	$\begin{array}{c} 3.16\\ 12.03\\ 20.89\\ 29.75\\ 38.61\\ 47.47\\ 56.33\\ 65.19\\ 74.05\\ 82.91\\ 91.77\end{array}$	$\begin{array}{c} 0.178\\ 0.153\\ 0.131\\ 0.123\\ 0.113\\ 0.107\\ 0.104\\ 0.097\\ 0.086\\ 0.073\\ 0.048\\ \end{array}$	$\begin{array}{r} 4.43\\ 13.29\\ 22.15\\ 31.01\\ 39.87\\ 48.73\\ 57.59\\ 66.46\\ 75.32\\ 84.18\\ 93.04 \end{array}$	$\begin{array}{c} 0.171\\ 0.152\\ 0.128\\ 0.120\\ 0.112\\ 0.107\\ 0.104\\ 0.096\\ 0.085\\ 0.072\\ 0.047\\ \end{array}$	$\begin{array}{c} 5.70\\ 14.56\\ 23.42\\ 32.28\\ 41.14\\ 50.00\\ 58.86\\ 67.72\\ 76.58\\ 85.44\\ 94.30\end{array}$	$\begin{array}{c} 0.169\\ 0.148\\ 0.126\\ 0.117\\ 0.112\\ 0.106\\ 0.099\\ 0.096\\ 0.083\\ 0.066\\ 0.039\end{array}$	$\begin{array}{c} 6.96\\ 15.82\\ 24.68\\ 33.54\\ 42.41\\ 51.27\\ 60.13\\ 68.99\\ 77.85\\ 86.71\\ 95.57\end{array}$	$\begin{array}{c} 0.164\\ 0.144\\ 0.126\\ 0.116\\ 0.108\\ 0.105\\ 0.098\\ 0.095\\ 0.078\\ 0.060\\ 0.039\end{array}$	$\begin{array}{c} 8.23\\ 17.09\\ 25.95\\ 34.81\\ 43.67\\ 52.53\\ 61.39\\ 70.25\\ 79.11\\ 87.97\\ 96.84\end{array}$
CUMULAT	IVE DIS	STRIBUTIO	N OF TH	APPING FI	REQUEN	ICIES, STAT	TION 900	01, MONTH	5				
$\begin{array}{c} 2429.613\\ 1108.889\\ 961.749\\ 816.260\\ 646.673\\ 563.175\\ 515.639\\ 483.106\\ 450.911\\ 435.225\\ 370.600\\ 282.840 \end{array}$	$\begin{array}{c} 0.63\\ 9.49\\ 18.35\\ 27.22\\ 36.08\\ 44.94\\ 53.80\\ 62.66\\ 71.52\\ 80.38\\ 89.24\\ 98.10\\ \end{array}$	$\begin{array}{c} 2325.397\\ 1107.595\\ 957.395\\ 610.797\\ 553.068\\ 512.172\\ 482.604\\ 449.615\\ 424.335\\ 340.803\\ 266.106\end{array}$	$\begin{array}{c} 1.90\\ 10.76\\ 19.62\\ 28.48\\ 37.34\\ 46.20\\ 55.06\\ 63.92\\ 72.78\\ 81.65\\ 90.51\\ 99.37\end{array}$	$\begin{array}{c} 2227.842\\ 1063.192\\ 954.692\\ 777.463\\ 603.274\\ 538.194\\ 507.723\\ 482.287\\ 449.164\\ 412.328\\ 338.249 \end{array}$	$\begin{array}{c} 3.16\\ 12.03\\ 20.89\\ 29.75\\ 38.61\\ 47.47\\ 56.33\\ 65.19\\ 74.05\\ 82.91\\ 91.77\end{array}$	$1903.914 \\ 1054.213 \\ 918.759 \\ 764.293 \\ 592.484 \\ 534.227 \\ 506.381 \\ 481.507 \\ 448.447 \\ 394.994 \\ 302.637 \\ \end{cases}$	4.43 13.29 22.15 31.01 39.87 48.73 57.59 66.46 75.32 84.18 93.04	$\begin{array}{c} 1718.862\\ 1040.684\\ 847.641\\ 712.759\\ 586.278\\ 530.990\\ 502.051\\ 476.108\\ 445.739\\ 390.938\\ 299.088 \end{array}$	5.70 14.56 23.42 32.28 41.14 50.00 58.86 67.72 76.58 85.44 94.30	$\begin{array}{c} 1450.565\\ 1037.927\\ 838.695\\ 710.191\\ 582.761\\ 494.731\\ 472.742\\ 439.734\\ 390.912\\ 290.004 \end{array}$	$\begin{array}{c} 6.96\\ 15.82\\ 24.68\\ 33.54\\ 42.41\\ 51.27\\ 60.13\\ 68.99\\ 77.85\\ 86.71\\ 95.57\end{array}$	$\begin{array}{c} 1439.236\\ 980.129\\ 820.140\\ 662.327\\ 573.161\\ 522.541\\ 484.498\\ 465.027\\ 437.183\\ 387.054\\ 287.878\end{array}$	$\begin{array}{c} 8.23\\ 17.09\\ 25.95\\ 34.81\\ 43.67\\ 52.53\\ 61.39\\ 70.25\\ 79.11\\ 87.97\\ 96.84 \end{array}$
CUMULAT	TIVE DIS	STRIBUTIO	N OF SU	PERREFRA	ACTIVE	LAYER GR.	ADIENT	S, STATION	v 90001,	MONTH 5			
$\begin{array}{r} -103.333\\ -112.632\\ -126.087\\ -130.469\\ -139.662\\ -148.980\end{array}$	$\begin{array}{c} 1.25 \\ 18.75 \\ 36.25 \\ 53.75 \\ 71.25 \\ 88.75 \end{array}$	$\begin{array}{r} -103.347\\ -113.333\\ -126.214\\ -133.110\\ -140.845\\ -150.649\end{array}$	3.75 21.25 38.75 56.25 73.75 91.25	$\begin{array}{r} -103.791 \\ -114.465 \\ -127.700 \\ -133.588 \\ -141.799 \\ -155.208 \end{array}$	$\begin{array}{r} 6.25\\ 23.75\\ 41.25\\ 58.75\\ 76.25\\ 93.75\end{array}$	$\begin{array}{r} -106.587\\ -115.741\\ -127.835\\ -134.375\\ -134.375\\ -142.938\\ -155.556\end{array}$	$\begin{array}{r} 8.75\\ 26.25\\ 43.75\\ 61.25\\ 78.75\\ 96.25\end{array}$	$\begin{array}{c} -106.667\\ -120.084\\ -128.144\\ -135.714\\ -143.158\\ -155.797\end{array}$	$11.25 \\ 28.75 \\ 46.25 \\ 63.75 \\ 81.25 \\ 98.75$	-111.515 -123.478 -130.000 -138.967 -147.183	$13.75 \\ 31.25 \\ 48.75 \\ 66.25 \\ 83.75$	-111.892 -125.253 -130.337 -139.655 -147.619	$16.25 \\ 33.75 \\ 51.25 \\ 68.75 \\ 86.25$
CUMULAT	TIVE DIS	STRIBUTIO	N OF SU	PERREFRA	ACTIVE	LAYER TH	ICKNES	SES, STATI	ON 9000	1, MONTH	5		
$\begin{array}{c} 0.300\\ 0.213\\ 0.184\\ 0.159\\ 0.126\\ 0.096\end{array}$	$\begin{array}{c} 1.25 \\ 18.75 \\ 36.25 \\ 53.75 \\ 71.25 \\ 88.75 \end{array}$	$\begin{array}{c} 0.299\\ 0.213\\ 0.178\\ 0.154\\ 0.120\\ 0.095 \end{array}$	3.75 21.25 38.75 56.25 73.75 91.25	$\begin{array}{c} 0.240\\ 0.211\\ 0.177\\ 0.147\\ 0.115\\ 0.095\end{array}$	$\begin{array}{r} 6.25\\ 23.75\\ 41.25\\ 58.75\\ 76.25\\ 93.75\end{array}$	$\begin{array}{c} 0.239\\ 0.206\\ 0.174\\ 0.142\\ 0.108\\ 0.090 \end{array}$	$\begin{array}{r} 8.75\\ 26.25\\ 43.75\\ 61.25\\ 78.75\\ 96.25\end{array}$	$\begin{array}{c} 0.239\\ 0.198\\ 0.167\\ 0.138\\ 0.098\\ 0.080\\ \end{array}$	$11.25 \\ 28.75 \\ 46.25 \\ 63.75 \\ 81.25 \\ 98.75$	$\begin{array}{c} 0.237\\ 0.189\\ 0.167\\ 0.131\\ 0.097\end{array}$	$13.75 \\ 31.25 \\ 48.75 \\ 66.25 \\ 83.75$	$\begin{array}{c} 0.213\\ 0.185\\ 0.165\\ 0.128\\ 0.096\end{array}$	$16.25 \\ 33.75 \\ 51.25 \\ 68.75 \\ 86.25$
THICKNE	SS AND	GRADIEN'	r of su	PERREFRA	CTIVE 1	LAYERS OV	ER 300 1	METERS TH	ніск				- 1-4

TABLE E-4. (Continued)

AUGUST

31 Profiles Skipped	
185 Profiles Read	
Number of Ducts 104	
Number of Superrefractive Layers	50

CUMULAT	IVE DIS	STRIBUTIO	N OF DU	JCTING GR	ADIENT	S, STATION	1 90001,	MONTH 8					
$\begin{array}{r} -157.059\\ -162.667\\ -170.248\\ -175.510\\ -177.922\\ -185.185\\ -198.889\\ -202.778\\ -221.702\\ -221.552\\ -236.842\\ -252.885\\ -266.279\\ -281.633\\ -295.349\end{array}$	$\begin{array}{c} 0.48\\ 7.21\\ 13.94\\ 20.67\\ 27.40\\ 34.13\\ 40.87\\ 47.60\\ 54.33\\ 61.06\\ 67.79\\ 74.52\\ 81.25\\ 87.98\\ 94.71 \end{array}$	$\begin{array}{r} -157.639\\ -168.265\\ -170.408\\ -175.949\\ -181.250\\ -185.315\\ -200.000\\ -203.738\\ -214.286\\ -222.078\\ -222.078\\ -225.652\\ -287.113\\ -255.652\\ -282.558\\ -282.558\\ -298.507\end{array}$	$\begin{array}{c} 1.44\\ 8.17\\ 14.90\\ 21.63\\ 28.37\\ 35.10\\ 41.83\\ 48.56\\ 55.29\\ 62.02\\ 68.75\\ 75.48\\ 82.21\\ 88.94\\ 95.67\end{array}$	$\begin{array}{r} -157.843 \\ -166.355 \\ -172.308 \\ -176.056 \\ -182.292 \\ -186.170 \\ -200.000 \\ -205.517 \\ -214.943 \\ -225.000 \\ -239.175 \\ -256.701 \\ -268.817 \\ -284.058 \\ -302.941 \end{array}$	$\begin{array}{c} 2.40\\ 9.13\\ 15.87\\ 22.60\\ 29.33\\ 36.06\\ 42.79\\ 49.52\\ 56.25\\ 62.98\\ 69.71\\ 76.44\\ 83.17\\ 89.90\\ 96.63\\ \end{array}$	$\begin{array}{c} -158.268\\ -167.262\\ -172.727\\ -176.111\\ -182.895\\ -190.816\\ -200.769\\ -236.674\\ -216.239\\ -230.645\\ -243.434\\ -257.843\\ -257.843\\ -271.429\\ -284.211\\ -326.923\end{array}$	$\begin{array}{c} 3.37\\ 10.10\\ 16.83\\ 23.56\\ 30.29\\ 37.02\\ 43.75\\ 50.48\\ 57.21\\ 63.94\\ 70.67\\ 77.40\\ 84.13\\ 90.87\\ 97.60\\ \end{array}$	$\begin{array}{c} -159.236\\ -167.532\\ -172.727\\ -176.190\\ -182.993\\ -191.919\\ -202.062\\ -288.571\\ -218.584\\ -232.174\\ -243.750\\ -258.491\\ -277.586\\ -288.298\\ -332.653\end{array}$	$\begin{array}{r} 4.33\\11.06\\17.79\\24.52\\31.25\\37.98\\44.71\\51.44\\58.17\\64.90\\71.63\\78.37\\85.10\\91.83\\98.56\end{array}$	$\begin{array}{r} -160.759\\ -168.033\\ -173.404\\ -176.786\\ -184.127\\ -194.286\\ -202.069\\ -210.526\\ -218.750\\ -232.941\\ -243.966\\ -264.935\\ -264.935\\ -289.189\\ -408.000\\ \end{array}$	$\begin{array}{c} 5.29\\ 12.02\\ 18.75\\ 25.48\\ 32.21\\ 38.94\\ 45.67\\ 52.40\\ 59.13\\ 65.87\\ 72.60\\ 79.33\\ 86.06\\ 92.79\\ 99.52 \end{array}$	$\begin{array}{c} -161.881\\ -170.149\\ -173.984\\ -177.165\\ -184.536\\ -196.939\\ -202.083\\ -211.111\\ -220.619\\ -234.694\\ -245.977\\ -266.154\\ -245.977\\ -266.154\\ -281.395\\ -290.566\end{array}$	$\begin{array}{c} 6.25\\ 12.98\\ 19.71\\ 26.44\\ 33.17\\ 39.90\\ 46.63\\ 53.37\\ 60.10\\ 66.83\\ 73.56\\ 80.29\\ 87.02\\ 93.75\end{array}$
CUMULATIVE DISTRIBUTION OF DUCT THICKNESSES, STATION 90001, MONTH 8													
$\begin{array}{c} 0.204\\ 0.168\\ 0.145\\ 0.143\\ 0.126\\ 0.116\\ 0.104\\ 0.098\\ 0.098\\ 0.098\\ 0.096\\ 0.094\\ 0.086\\ 0.077\\ 0.065\\ \end{array}$	$\begin{array}{c} 0.48\\ 7.21\\ 13.94\\ 20.67\\ 27.40\\ 34.13\\ 40.87\\ 47.60\\ 54.33\\ 61.06\\ 67.79\\ 74.52\\ 81.25\\ 87.98\\ 94.71 \end{array}$	$\begin{array}{c} 0.202\\ 0.158\\ 0.145\\ 0.145\\ 0.142\\ 0.126\\ 0.016\\ 0.107\\ 0.008\\ 0.098\\ 0.098\\ 0.096\\ 0.094\\ 0.086\\ 0.077\\ 0.065\\ \end{array}$	$\begin{array}{c} 1.44\\ 8.17\\ 14.90\\ 21.63\\ 28.37\\ 35.10\\ 41.83\\ 48.56\\ 55.29\\ 62.02\\ 68.75\\ 75.48\\ 82.21\\ 88.94\\ 95.67\end{array}$	$\begin{array}{c} 0.201\\ 0.158\\ 0.144\\ 0.141\\ 0.124\\ 0.116\\ 0.107\\ 0.099\\ 0.098\\ 0.097\\ 0.096\\ 0.093\\ 0.086\\ 0.075\\ 0.064\\ \end{array}$	$\begin{array}{c} 2.40\\ 9.13\\ 15.87\\ 22.60\\ 29.33\\ 36.06\\ 42.79\\ 49.52\\ 56.25\\ 62.98\\ 69.71\\ 76.44\\ 83.17\\ 89.90\\ 96.63\\ \end{array}$	$\begin{array}{c} 0.189\\ 0.157\\ 0.144\\ 0.134\\ 0.123\\ 0.115\\ 0.106\\ 0.099\\ 0.098\\ 0.097\\ 0.095\\ 0.095\\ 0.095\\ 0.075\\ 0.057\\ \end{array}$	$\begin{array}{c} 3.37\\ 10.10\\ 16.83\\ 23.56\\ 30.29\\ 37.02\\ 43.75\\ 50.48\\ 57.21\\ 63.94\\ 70.67\\ 77.40\\ 84.13\\ 90.87\\ 97.60\\ \end{array}$	$\begin{array}{c} 0.180\\ 0.154\\ 0.144\\ 0.130\\ 0.122\\ 0.115\\ 0.106\\ 0.099\\ 0.098\\ 0.097\\ 0.095\\ 0.087\\ 0.084\\ 0.069\\ 0.046\\ \end{array}$	$\begin{array}{r} 4.33\\11.06\\17.79\\24.52\\31.25\\37.98\\44.71\\51.44\\58.17\\64.90\\71.63\\78.37\\85.10\\91.83\\98.56\end{array}$	$\begin{array}{c} 0.170\\ 0.152\\ 0.144\\ 0.127\\ 0.121\\ 0.113\\ 0.105\\ 0.098\\ 0.098\\ 0.098\\ 0.097\\ 0.078\\ 0.078\\ 0.068\\ 0.087\\ 0.078\\ 0.078\\ 0.037\\ \end{array}$	5.29 12.02 18.75 25.48 32.21 38.94 45.67 752.40 59.13 65.87 72.60 79.33 86.06 92.79 99.52	$\begin{array}{c} 0.168\\ 0.147\\ 0.143\\ 0.127\\ 0.113\\ 0.105\\ 0.098\\ 0.098\\ 0.098\\ 0.097\\ 0.094\\ 0.086\\ 0.077\\ 0.067\\ \end{array}$	$\begin{array}{c} 6.25\\ 12.98\\ 19.71\\ 26.44\\ 33.17\\ 39.90\\ 46.63\\ 53.37\\ 60.10\\ 66.83\\ 73.56\\ 80.29\\ 87.02\\ 93.75\end{array}$
CUMULAT	TIVE DI	STRIBUTIO	N OF TH	RAPPING FI	REQUEN	ICIES, STAT	10N 900	001, MONTH	[8				
$\begin{array}{r} 4257.656\\ 1452.918\\ 963.952\\ 773.430\\ 665.675\\ 585.818\\ 554.666\\ 508.428\\ 456.459\\ 434.024\\ 412.601\\ 387.321\\ 362.590\\ 323.797\\ 306.892 \end{array}$	$\begin{array}{c} 0.48\\ 7.21\\ 13.94\\ 20.67\\ 27.40\\ 34.13\\ 40.87\\ 47.60\\ 54.33\\ 61.06\\ 67.79\\ 74.52\\ 81.25\\ 87.98\\ 94.71 \end{array}$	$\begin{array}{c} 2532.044\\ 1329.146\\ 959.782\\ 762.783\\ 645.208\\ 588.745\\ 552.839\\ 507.829\\ 455.120\\ 433.891\\ 410.449\\ 385.794\\ 361.955\\ 322.623\\ 298.083\end{array}$	$\begin{array}{c} 1.44\\ 8.17\\ 14.90\\ 21.63\\ 28.37\\ 35.10\\ 41.83\\ 48.56\\ 55.29\\ 62.02\\ 68.75\\ 75.48\\ 82.21\\ 88.94\\ 95.67\end{array}$	$\begin{array}{c} 2411.305\\ 1250.981\\ 898.651\\ 748.876\\ 612.670\\ 581.916\\ 550.368\\ 496.512\\ 454.290\\ 429.227\\ 400.787\\ 383.099\\ 360.014\\ 321.650\\ 298.050 \end{array}$	$\begin{array}{c} 2.40\\ 9.13\\ 15.87\\ 22.60\\ 29.33\\ 36.06\\ 42.79\\ 49.52\\ 56.25\\ 62.98\\ 69.71\\ 76.44\\ 83.17\\ 89.90\\ 96.63\end{array}$	$\begin{array}{c} 2246.992\\ 1105.087\\ 836.497\\ 689.477\\ 608.351\\ 576.303\\ 536.565\\ 493.191\\ 450.911\\ 422.651\\ 398.659\\ 374.394\\ 355.321\\ 321.337\\ 292.426 \end{array}$	$\begin{array}{c} 3.37\\ 10.10\\ 16.83\\ 23.56\\ 30.29\\ 37.02\\ 43.75\\ 50.48\\ 57.21\\ 63.94\\ 70.67\\ 77.40\\ 84.13\\ 90.87\\ 97.60\end{array}$	$\begin{array}{c} 1828.382\\ 1094.283\\ 793.512\\ 686.622\\ 605.451\\ 571.701\\ 535.535\\ 491.071\\ 441.075\\ 420.691\\ 396.326\\ 351.509\\ 320.504\\ 274.025 \end{array}$	$\begin{array}{r} 4.33\\11.06\\17.79\\24.52\\31.25\\37.98\\44.71\\51.44\\58.17\\64.90\\71.63\\78.37\\85.10\\91.83\\98.56\end{array}$	$\begin{array}{c} 1707.076\\ 1054.796\\ 788.227\\ 679.791\\ 590.511\\ 557.462\\ 511.758\\ 486.291\\ 439.567\\ 418.707\\ 394.077\\ 365.419\\ 347.118\\ 317.181\\ 272.166 \end{array}$	5.29 12.02 18.75 25.48 32.21 38.94 45.67 52.40 59.13 65.87 72.60 79.33 86.06 92.79 99.52	$\begin{array}{c} 1536.587\\ 1015.818\\ 774.572\\ 667.047\\ 585.965\\ 555.015\\ 509.624\\ 484.535\\ 413.111\\ 393.639\\ 363.385\\ 341.917\\ 308.929 \end{array}$	$\begin{array}{c} 6.25\\ 12.98\\ 19.71\\ 26.44\\ 33.17\\ 39.90\\ 46.63\\ 53.37\\ 60.10\\ 66.83\\ 73.56\\ 80.29\\ 87.02\\ 93.75 \end{array}$
			N OP OF		COMMENT		DIDIT	a amimton					
	IVE DI	TRIBUTIO	N OF SU	-106 000	5 00	LAYER GRA	TOTENT 7.00	S, STATION	90001,]		11.00	_111 111	13.00
$\begin{array}{r} -104.543 \\ -112.500 \\ -126.894 \\ -130.380 \\ -134.343 \\ -140.645 \\ -147.489 \\ -156.627 \end{array}$	$15.00 \\ 29.00 \\ 43.00 \\ 57.00 \\ 71.00 \\ 85.00 \\ 99.00$	$\begin{array}{c} -103.093\\ -113.978\\ -127.362\\ -131.250\\ -135.052\\ -142.553\\ -151.402\end{array}$	17.00 31.00 45.00 59.00 73.00 87.00	$\begin{array}{c} -106.000\\ -118.902\\ -127.368\\ -131.902\\ -136.598\\ -144.253\\ -152.222\end{array}$	$\begin{array}{c} 5.00\\ 19.00\\ 33.00\\ 47.00\\ 61.00\\ 75.00\\ 89.00\end{array}$	$\begin{array}{r} -103.016\\ -120.257\\ -127.962\\ -132.903\\ -136.813\\ -144.324\\ -153.247\end{array}$	$\begin{array}{c} 1.00\\ 21.00\\ 35.00\\ 49.00\\ 63.00\\ 77.00\\ 91.00 \end{array}$	-105.302 -120.556 -128.090 -133.047 -137.288 -144.545 -155.224	23.00 37.00 51.00 65.00 79.00 93.00	$\begin{array}{r} -110.037\\ -122.609\\ -128.495\\ -133.444\\ -138.378\\ -146.012\\ -156.081\end{array}$	25.00 39.00 53.00 67.00 81.00 95.00	-1124.409 -129.583 -133.673 -140.217 -146.980 -156.164	27.00 41.00 55.00 69.00 83.00 97.00
CUMULAT	TIVE DU	STRIBUTIO	NOFST	PERPERP	CTIVE	LAVED TH	CKNES	SES STATI	ON 90001	MONTH	8		
0.311	1 00	0.307	3 00	0 302	5.00	0.279	7 00	0.264	9 00	0.244	11.00	0.240	13.00
$\begin{array}{c} 0.233\\ 0.211\\ 0.184\\ 0.164\\ 0.148\\ 0.110\\ 0.077\\ \end{array}$	$\begin{array}{c} 15.00\\ 29.00\\ 43.00\\ 57.00\\ 71.00\\ 85.00\\ 99.00 \end{array}$	$\begin{array}{c} 0.232\\ 0.200\\ 0.182\\ 0.163\\ 0.146\\ 0.107\\ \end{array}$	$\begin{array}{c} 17.00\\ 31.00\\ 45.00\\ 59.00\\ 73.00\\ 87.00 \end{array}$	$\begin{array}{c} 0.224\\ 0.198\\ 0.180\\ 0.163\\ 0.134\\ 0.098\\ \end{array}$	$ 19.00 \\ 33.00 \\ 47.00 \\ 61.00 \\ 75.00 \\ 89.00 $	$\begin{array}{c} 0.221\\ 0.221\\ 0.194\\ 0.178\\ 0.158\\ 0.131\\ 0.097\\ \end{array}$	$\begin{array}{c} 21.00\\ 35.00\\ 49.00\\ 63.00\\ 77.00\\ 91.00 \end{array}$	$\begin{array}{c} 0.224\\ 0.220\\ 0.186\\ 0.177\\ 0.155\\ 0.127\\ 0.095 \end{array}$	$\begin{array}{c} 23.00\\ 37.00\\ 51.00\\ 65.00\\ 79.00\\ 93.00 \end{array}$	$\begin{array}{c} 0.219\\ 0.219\\ 0.185\\ 0.174\\ 0.155\\ 0.117\\ 0.094 \end{array}$	25.00 39.00 53.00 67.00 81.00 95.00	0.216 0.185 0.185 0.166 0.149 0.115 0.090	27.00 41.00 55.00 69.00 83.00 97.00

TABLE E-4. (Coutinued)

THICKNESS AND GRADIENT OF SUPERREFRACTIVE LAYERS OVER 300 METERS THICK

0.31100	-120.25723
0.30200	-133.44371
0.30700	-127.36157

NOVEMBER

144 Profiles Skipped		
161 Profiles Read		
Number of Ducts 0		
Number of Superrefractive Layers	17	

CUMULA	TIVE DI	STRIBUTIC	N OF SU	JPERREFRA	ACTIVE	LAYER GR	ADIENT	rs, statioi	N 90001,	MONTH 1	1		
-100.000 -111.972 -137.255	$2.94 \\ 44.12 \\ 85.29$	$-100.000 \\ -113.592 \\ -151.852$	$8.82 \\ 50.00 \\ 91.18$	$-100.000 \\ -115.254 \\ -152.252$	$\begin{array}{c} 14.71 \\ 55.88 \\ 97.06 \end{array}$	$-101.786 \\ -118.750$	20.59 61.76	$\begin{array}{ c c c } -102.970 \\ -120.690 \end{array}$	$\begin{array}{c} 26.47\\ 67.65\end{array}$	$ -106.504 \\ -122.000$	$32.35 \\ 73.53$	$-109.804 \\ -131.667$	38.24 79.41
CUMULAT	TIVE DI	STRIBUTIO	N OF SU	PERREFRA	CTIVE	LAYER TH	ICKNES	SES, STATI	ON 9000	1, MONTH	11		
$0.142 \\ 0.101 \\ 0.051$	$2.94 \\ 44.12 \\ 85.29$	$0.123 \\ 0.100 \\ 0.051$	$8.82 \\ 50.00 \\ 91.18$	$0.120 \\ 0.081 \\ 0.050$	$14.71 \\ 55.88 \\ 97.06$	$\substack{\textbf{0.112}\\\textbf{0.070}}$	$\begin{array}{c} 20.59\\ 61.76\end{array}$	0.112 0.060	$\begin{array}{c} 26.47\\ 67.65\end{array}$	0.111 0.059	$32.35 \\ 73.53$	$\begin{array}{c} 0.103\\ 0.058\end{array}$	38.24 79.41

☆ U.S. GOVERNMENT PRINTNG OFFICE: 1967-0 222-613