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Glossary 
AGL – above ground level 

AI – artificial intelligence 

AOLP – angle of linear polarization 

CMOS – complementary metal-oxide-semiconductor 

CSV – comma-separated values file 

DOLP – degree of linear polarization 

DSLR – digital single-lens reflex camera 

endlap – the extent of overlap of successive photos along a 
flight strip 

EXIF – exchangeable image file format 

FAA – Federal Aviation Administration 

focal length – the distance from a lens’s rear nodal point to 
the point at which objects at an infinite distance come into 
focus 

GIS – geographic information system 

GNSS – global navigation satellite system 

GSD – ground sample distance. The size of an image pixel 
projected onto the ground. It is a frequently used measure of 
resolution of an imaging system 

image blur – blurring of imagery due to, e.g., motion of 
camera during time of exposure 

K-NN – k-nearest neighbors supervised classification 
algorithm 

MDMAP – Marine Debris Monitoring and Assessment 
Project 

MDP – Marine Debris Program 

ML – machine learning 

MP – megapixel (one million pixels) 

OPRD – Oregon Parks and Recreation Department 

orthomosaic – an assemblage of multiple orthoimages (see 
orthoimage definition) to create a composite or “mosaic” 

orthoimage– a vertical aerial photograph from which 
the distortions due to varying elevation, tilt, and surface 
topography have been removed, such that it can be used as 
a planimetric map (distances and areas can be measured 
directly) 

PI – polarimetric imaging 

PPK – post-processed kinematic GNSS 

RGB – red, green, blue (e.g., a camera that images in RGB 
bands to create natural color imagery) 

RTK – real-time kinematic GNSS 

SDK – software development kit 

sidelap – extent of lateral overlap between images acquired 
on adjacent flight lines 

SfM – structure from motion, a relatively new type of 
photogrammetry with origins in the field of computer vision 

TD – transformed divergence, a standard class separability 
index in remote sensing 

UAS – uncrewed aircraft systems 

UxS – uncrewed systems 

VLOS – visual line of sight 
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Abstract 
Marine debris is a pervasive and escalating environmental problem that poses health risks to both wildlife and humans, as well 
as degradation to our oceans and coasts. Detection and categorization of shoreline debris are currently conducted through 
field surveys that entail walking shoreline transects. Uncrewed aircraft systems (UAS), machine learning (ML), and polarimetric 
imaging (PI) are three rapidly emerging technologies with the capability to dramatically enhance marine debris shoreline surveys. 
This report presents findings and recommendations based on a NOAA Uncrewed Systems Research Transition Office–funded 
project conducted collaboratively by NOAA’s National Centers for Coastal Ocean Science (NCCOS), the NOAA Marine Debris 
Program (MDP), Oregon State University (OSU), and ORBTL AI. Specific outcomes from the project included: 1) operationally 
efficient field workflows for collection of true color and polarimetric imagery from UAS; 2) deployable algorithms for automatic 
marine debris detection from remotely sensed true color imagery; and 3) recommended operating procedures for collecting and 
processing UAS imagery and communicating the locations, types, and confidence scores of potential detections of marine debris 
to stakeholders. This report serves two primary purposes. First, it summarizes the project methods, results, and key findings. 
Second, it provides guidance to stakeholders and project partners on operational use of UAS and ML for marine debris surveys. 

ii 



Field testing on Texas barrier island. Credit: NOAA NCCOS. 
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Section 1 Introduction 
The Marine Debris Research, Prevention, and Reduction 
Act (33 U.S.C. 33A) signed into law in 2006 and amended 
in 2012, 2018, and 2020, established the Marine Debris 
Program (MDP) with requirements to “identify, determine 
sources of, assess, prevent, reduce, and remove marine 
debris and address the adverse impacts of marine debris 
on the economy of the United States, marine environment, 
and navigation safety.” Part of that role includes emergency 
response functions, which often necessitate rapid detection 
of shoreline marine debris and planning for removal by MDP 
partners. Thus, the ability to accurately and quickly detect 
and identify marine debris over large areas (tens of square 
kilometers), as well as areas difficult to access by foot or 
boat (e.g., rocky headlands, marshlands, remote coastal 
sites, and embayments) is crucial. 

Aerial imagery collection, whether via crewed aircraft or 
uncrewed aircraft systems (UAS), has been the primary 
method for detecting large marine debris across sizable 
areas of shoreline and open water (Veenstra and Churnside, 
2012; Brooke et al., 2015; Moy et al., 2018; Lebreton et al. 
2018). Uncrewed systems (UxS) such as UAS can provide 
multiple advantages over crewed systems. Compared with 
crewed aircraft, UAS are favorable for conducting focused, 
small-area debris surveys with lower operational and 
maintenance costs, reduced technical complexity, potentially 
higher revisit frequencies, portability, rapid response, and 
easier pilot certification. Previous research has documented 
the benefits of UxS for marine debris mapping (Hengstmann 
et al., 2017; Bao et al., 2018; Martin et al., 2018; Fallati 
et al., 2019; Gonçalves et al., 2020); however, relatively 
few efforts to date have resulted in operationally viable 
procedures and workflows suitable for implementation by the 
broader marine debris community (but see Gonçalves et al., 
2020). 

A focus of this project was on demonstrating low-cost, 
easily deployed, and accurate marine debris detection 
workflows and tools, so as to operationalize the use of 
UAS by transferring the technological solutions to existing 
marine debris monitoring teams. A key goal was to enable 
more efficient periodic monitoring by providing a repeatable, 
systematic method of quantifying abundance and distribution 
of debris in survey areas to support decision-making. The 
scope of this work focused on routine shoreline debris 
surveys and did not specifically address disaster (e.g., 
post-hurricane) debris. However, many of the procedures 
developed and tested in this work may also be applicable to 
emergency response, and the extension of this work to such 
debris incidents is a recommended topic for future research. 

Shoreline debris on Padre Island, Texas. Credit: NOAA NCCOS. 

The project leveraged procedures, workflows, and UxS 
guidelines completed by the project team in previous work 
(Slocum et al., 2019) but also integrated new technological 
innovations specifically tailored to address MDP partner 
challenges and use cases. The novel approaches that were 
investigated included 1) evaluation of a polarimetric imaging 
(PI) camera for enhanced debris detection, as compared 
with conventional red-green-blue (RGB) cameras; and 2) 
development and testing of machine learning (ML) algorithms 
for automated detection and type classification of debris. 

PI cameras are a relatively new type of sensor, which 
may greatly facilitate marine debris detection and 
classification. PI cameras go beyond the capabilities of 
typical multispectral and hyperspectral cameras, which 
have been widely used in a range of coastal remote sensing 
applications for several decades, by providing information 
regarding the polarization state of received light. Because 
different types of objects differ in how sunlight reflected 
from them is polarized, PI cameras can assist in obtaining 
information about object types, including characteristics 
such as surface roughness. Importantly, polarimetry has 
been found beneficial for detecting human-made objects 
and for distinguishing objects from their background (e.g., 
Denes et al., 1998; Islam et al., 2019). For these reasons, PI 
cameras are of interest for the detection and classification of 
marine debris on shorelines, where it is often intermixed with 
substrate, vegetation, and/or natural (woody) debris. 

To date, identification and classification of marine debris 
from digital images captured by infrastructure-mounted 
(e.g., bridge or jetty) or UxS-mounted cameras have largely 

1 
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been performed via simple spectral threshold classification 
algorithms that do not scale across diverse background 
scenes (Bao, 2018) or via direct visual inspection and 
assessment of collected imagery (Moy et al., 2018). Both 
of these methods can be labor-intensive, especially across 
larger survey areas, making it difficult to rapidly produce 
results. ML is a sub-discipline of artificial intelligence (AI) 
in which algorithms are trained to make classifications or 
predictions through an iterative process involving the use of 
training data to build and improve classification effectiveness 
and outcomes, not unlike that of the human brain. 
Development of these automated techniques is challenging, 
as the training data require representative samples of 
every feature that one wishes to properly classify or predict. 
As the size of the training dataset increases, so does ML 
performance. ML is currently under exploration for automated 
detection of marine debris from various environmental 
backgrounds with promising results (Martin et al., 2018; 
Gonçalves et al., 2020; Kylili et al., 2020; van Lieshout 
et al., 2020; Wolf et al., 2020; Martin et al., 2021). The 
ability to automatically process large collections of images 
spanning expansive areas of shoreline or surface water 
offers substantial potential for wide-area debris detection 
and monitoring. In this project, an ML model was developed 
and tested for automatically detecting debris items. When 
georeferenced imagery is used as an input, the output can 
be used in geographic information system (GIS) software to 
generate heatmaps representing concentrations of marine 
debris (number of debris items per unit area), which can 
guide cleanup and restoration decisions and actions. 

Collectively, the workflows and software tools developed 
during this project serve to provide automatic and efficient 
detection, identification, and geolocation of debris items 
through an objective and repeatable process. In contrast to 
traditional shoreline monitoring techniques, which typically 
rely upon random transects and visual observations, UAS 

imagery can be acquired over large areas of shoreline and 
quickly processed using the procedures, so as to quantify 
specific debris item locations and distribution patterns over 
larger spatial areas. The debris geolocation information 
obtained through these workflows allows debris specialists 
to quickly quantify debris densities and distribution, 
which, in turn, can strengthen temporal change analysis 
from repeat surveys conducted in the same locations. 
The georeferenced imagery also provides a benefit over 
traditional monitoring methods in providing a digital record 
that can be revisited for additional analysis at any later time. 
Lastly, this approach represents a significant paradigm shift 
in that the allocation of personnel between field and office 
time in the end-to-end workflow is shifted. Specifically, the 
field time is reduced through highly efficient data acquisition 
procedures, enabling more of the analysis to be done in 
the office. Debris type identification is conducted efficiently 
through use of the imagery products collected and ML 
during post-processing after returning from the field. 

Due to the overarching goals of this project, this report 
serves two purposes: 1) to document the project methods, 
results, and key findings and 2) to provide operational 
guidelines and information on how best to conduct marine 
debris shoreline surveys using UAS and how to use the 
ML model developed and tested in this work to perform 
auto-detection and classification of marine debris items. 
Readers who are more interested in the operational 
recommendations and workflows than in the methods and 
results of the study can skip directly to Section 5. 

The research portion of this project was conducted through 
a multi-phased study designed to achieve the goals noted 
above, namely to investigate UAS, ML, and PI cameras 
for marine debris shoreline surveys. The following sections 
describe the methods for each phase, starting with the 
equipment used. 

2Marine debris on Padre Island, Texas. Credit: NOAA NCCOS.. 



Polarimetric imaging (PI) camera in helicopter over Padre Island, Texas. 
Credit: NOAA NCCOS. 
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Section 2  Methods 
2.1 Equipment 
2.1.1 Uncrewed Systems 
An underlying objective in this project was to keep our 
procedures relatively invariant to the specific make and 
model of remote aircraft since, due to the rapid technological 
maturation of UAS, any platform available today is likely 
to be obsolete within a few years. An additional objective 
was to test only platforms that are commercially available 
and that could be readily procured by NOAA MDP project 
partners who conduct shoreline debris surveys. The project 
team also sought to test remote aircraft of different broad 
types (e.g., multirotor and fixed wing), with different payload 
capacities and endurances (maximum flight times). With 
these objectives in mind, four different UAS were tested in 
this study: 1) a Skydio 2™ (Figure 1a), 2) a DJI Phantom™ 4 
Pro (Figure 1b), 3) a Wingtra AG WingtraOne™ (Figure 1c), 
and 4) a DJI Matrice™ 300 (Figure 1d). 

The Skydio 2 is a small (775 g), highly portable quadcopter, 
manufactured in the U.S., with a base price (at time of 
purchase) of around $1,000. It has a built-in, gimbal-
mounted 12.3-MP (4056 x 3040 pixels) RGB camera, 
based on the Sony IMX577 complementary metal-oxide-
semiconductor (CMOS) camera chip, and a 3.7-mm focal 
length, f/2.8 lens, as well as six navigation cameras used 
for obstacle avoidance. (It should be noted that, throughout 
this report, all focal lengths are reported as the actual 
focal lengths of the camera lenses, as opposed to the 
so-called “35-mm equivalent focal length,” which is often 

A B 

C D 

reported by manufacturers of small-format cameras, such 
as those integrated on small UxSs. If any focal length in 
this report appears to differ significantly from that provided 
on a specifications sheet from the manufacturer, it is likely 
because the manufacturer is reporting a 35-mm equivalent 
focal length. This distinction is further explained in 
Verhoeven, 2007.) Since the purchase of this aircraft, Skydio 
has released a new model, the Skydio 2+™, with extended 
range and flight time. 

The DJI PHANTOM 4 Pro is a 1.39-kg quadcopter, equipped 
with a gimbal-mounted 20-MP (5472 x 3648 pixels) RGB 
camera with an 8.6-mm focal length lens and adjustable 
f/2.8–f/11 aperture. The real-time kinematic (RTK) version 
of the Phantom 4 Pro contains a carrier-phase recording 
global navigation satellite system (GNSS) receiver, capable 
of supporting RTK or post-processed kinematic (PPK) 
GNSS positioning, with accuracies on the order of a few 
centimeters. Although already two years old at the start 
of the project, the Phantom 4 Pro RTK used in this study, 
purchased through a third-party reseller, had an original 
purchase price of around $7,500. 

The Wingtra One (Wingtra AG, Switzerland) is a hybrid 
aircraft that performs vertical takeoff and landing (VTOL) 
and converts to a fixed-wing configuration in flight. It stands 
upright on the aircraft tail for takeoff and landing, in the 
configuration shown in Figure 1c. It has a wingspan of 1.25 
m, weighs 3.7 kg empty, and has a maximum payload of 
0.8 kg. The camera is a 42-MP Sony RX1R II with a 35-mm 

Figure 1: Unmanned aircraft systems (UAS) 
used in this project: (a) Skydio 2™, operated 
by OSU graduate student Kyle Herrera; 
(b) DJI Phantom™ 4 Pro; (c) Wingtra AG 
WingtraOne™; and (d) DJI Matrice™ 300. 
Credit: NOAA NCCOS (a, b, c) and Oregon 
State University (d). 
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focal length lens. Other noteworthy characteristics of this 
aircraft include very high endurance, with maximum flight 
times of nearly an hour, and a carrier-phase recording, multi-
frequency, multi-constellation GNSS supporting RTK and 
PPK operations. 

The final remote aircraft utilized in this study is the DJI 
Matrice 300 RTK. This quadcopter has a larger airframe (6.3 
kg, including batteries) than the others tested in this project. 
The integrated camera is a 45-MP DJI ZENMUSE™ P1. 
Importantly for this project, it has a total payload capacity of 
2.7 kg and supports simultaneous integration of up to three 
separate payloads. This capability was important for flight 
testing the PI camera (described below), due to the need to 
integrate both the camera and single-board computer on the 
UAS. The cost (at time of purchase) of this aircraft, including 
the camera and peripheral equipment, was approximately 
$13,000. 

2.1.2 Polarimetric Imaging Camera 
The PI camera procured for and investigated in this work 
is the FLIR Blackfly® S USB3 (RGB; Figure 2). This 5.0-MP 
polarimetric camera is based on the Sony IMX250MZR 
camera chip. Its size (<100 g, without the lens) and 
form factor make it well suited for integration on a UAS. 
Another important factor for this project is that a software 
development kit (SDK) was available for this PI camera. 
Additionally, the frame rate of 75 frames/sec was determined 
to be advantageous for this project. In this project, a Fujinon 
12.5-mm focal length C-mount lens was used on the 
Blackfly-S camera. Including the lens and all components, 
the 2020 purchase price of this camera was around $2,700. 

2.2 Field Sites 
To achieve the objectives of this project, four separate field 
sites were selected, providing a wide range of environmental 
conditions and characteristics. These sites are described 
below. 

2.2.1 Hinsdale Wave Lab 
In the first phase of the study, a controlled test site on the 
grounds of the O.H. Hinsdale Wave Research Laboratory on 
the Oregon State University (OSU) campus was created for 
acquiring and testing marine debris imagery under varying 
conditions. This site contained leftover beach materials (e.g., 
sand and vegetation) from previous experiments, which 
were seeded with everyday household trash items meant 
to simulate marine debris. While artificial, this site enabled 
extensive testing of camera settings and imagery analysis 
in an easy-to-access, contained area. The location of this 

Figure 2: FLIR Blackfly-S camera used in this project (Herrera, 2021). 

site on the OSU campus was particularly beneficial, as it 
enabled imagery to be collected even during the winter, 
which is typically quite rainy in Oregon, through strategic use 
of brief periods of sunshine for data acquisition. 

2.2.2 Neptune State Scenic Viewpoint 
The next field site used for testing UAS imagery and PI 
camera imagery was the Neptune State Scenic Viewpoint 
(hereafter, simply Neptune) on the Oregon Coast (Figures 
3 and 4). This site was selected both for its proximity to the 
OSU campus and its range of beach types, including sand, 
cobble, rock outcrop, steep bluff, and freshwater outflow from 
Cummins Creek, all within a 0.2-km2 area. The work was 
conducted under Oregon Parks and Recreation Department 
(OPRD) permit #176. Because the Oregon coast is largely 
free of debris, the site was again seeded with debris items, 
including a mix of the household debris items used at the 
Hinsdale Wave Lab and some actual marine debris items 
obtained through working with OPRD. 

2.2.3 Texas Barrier Islands 
In the next phase of the study, the procedures developed 
at the Hinsdale Wave Lab and at Neptune were validated 
using data collected on the barrier islands of the Texas 
coast east of Corpus Christi December 8–21, 2021. Specific 
sites included areas on Padre Island and San José Island 
(Figure 5). These sites are known hotspots for marine 
debris accumulation due to prevailing winds, currents, and 
circulation patterns within the Gulf of Mexico, as well as the 
orientation of the coast. The barrier islands contain wide 
(approximately 40 m from shoreline to backing dune), sandy, 
dune-backed beaches. The two primary UAS utilized in the 
Texas data collection were the Skydio 2 and a Phantom 
4 Pro (although not the RTK version). Additionally, the 
WingraOne hybrid UAS, owned and operated by project 
partners at Texas A&M University–Corpus Christi, was 
investigated during the Texas field data collection. 
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Figure 3: Neptune State Scenic 
Area test site on the Oregon 
Coast. 

Figure 4: UAS imagery 
acquisition at the Neptune 
project site. Credit: Oregon 
State University. 

6 



Uncrewed Aircraft Systems, Machine Learning, and Polarimetric Imaging for Enhanced Marine Debris Shoreline Surveys

Methods 

Figure 5: Texas barrier 
island sites. 

2.2.4 OSU Campus (PI UAS Tests) 
The tests of the Blackfly-S camera on a UAS were 
conducted over a seeded debris field on the northeast end 
of the OSU campus (Figure 6). No special characteristics 
were required for these tests. Hence, the site selected was 
a large grass field frequently used by the OSU project team 
for UAS testing. 

Figure 6: Seeded debris field on OSU campus. Credit: Oregon State 
University. 
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Debris in sand on a Texas barrier island. Credit: NOAA NCCOS. 
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Section 3  Experiments 
3.1 Preliminary Testing 
Preliminary testing was conducted at the Hinsdale Wave 
Lab site on the OSU campus in January 2021. These tests 
involved using the Blackfly-S PI camera on a pole mount to 
collect imagery over the simulated beach, which was seeded 
with household trash items (primarily plastics and foam), 
intended to simulate marine debris (Figure 7). 

Figure 7: Pole-mounted PI camera set up at Hinsdale Wave Lab. Here the 
FLIR Blackfly S USB3 PI camera is operated from a pole in a weighted stand 
and connected to a field laptop (out of the photo, to the left). Credit: Oregon 
State University. 

Simultaneously with the Hinsdale Wave Laboratory testing, 
project team member Ross Winans (ORBTL AI) extended 
a deep-learning model developed using TensorFlow during 
his MS thesis research at the University of Hawai‘i at Mānoa 
(Winans, 2021) for use in this project. This work included 
building a deep-learning–based object-detection model 
delivered via an application programming interface (API) that 
is bundled for installation within a Docker container (Cito et 
al., 2017). 

3.2 Field Testing 
Field tests were conducted at the Neptune project site on 
May 4 and July 8, 2021. The primary goals of the tests at 
Neptune were: 1) to test imagery acquisition with UAS; 2) to 
test the PI camera; and 3) to test the ability to use the UAS 
imagery in the ML model, which was originally trained on 
imagery acquired in Hawai‘i. While the PI camera used in 
this study, the FLIR Blackfly-S (Figure 2), had a sufficiently 
small form factor, weight, and power consumption for 
installation on a UAS, imagery acquisition with this camera 
was not sufficiently automated to enable it to be operated 
on a UAS in this project phase. In particular, the exposure 
settings for the camera needed to be set manually and 
adjusted frequently during acquisition. For this reason, the 
PI camera imagery acquired at Neptune and Texas was 
collected with the camera mounted on a pole. 

Throughout the experiments, UAS imagery was typically 
acquired with a 2-cm ground sample distance (GSD) for 
multiple reasons. First, this GSD matches the training data 
used to train the ML model, which was adapted from a 
previous aerial debris survey conducted over the Hawaiian 
Island coastline on 14 separate days between August and 
October 2015 (Moy et al., 2018). In the Hawai‘i imagery 
acquisition (not part of this project), a Cessna 206 aircraft 
equipped with two high-resolution digital single-lens reflex 
(DSLR) cameras (Canon EOS 5DS R) and one medium 
format aerial camera (Phase One P65+) was used. All 
camera systems were mounted on gyro-stabilized gimbals 
and paired with real-time differential GPS obtained through 
an OmniSTAR satellite-based augmentation system (SBAS). 
This system allowed photos to be corrected for multiple 
types of distortion, resulting in a within-model root-mean-
square error (RMSE) of 1.5 m without the need for field-
surveyed ground control points (GCPs; Moy et al., 2018). 
Second, this study focused on macro-debris items ≥ 2.5 
cm, as this is the lower size threshold for visual shoreline 
monitoring methods as part of MDP’s Marine Debris 
Monitoring and Assessment Project (MDMAP). Additionally, 
previous experimental work suggests that the high imagery 
resolutions of most UAS-deployed cameras (approximately 
1.0–5.5 cm) allow for the identification of debris items in 
the meso- to macro-debris size range (Bao et al., 2018; 
Gonçalves et al., 2020). However, because a goal of the 
study was to test varying flight altitudes, some imagery 
was acquired with better (smaller) than 2-cm GSD and 
subsequently downsampled to 2 cm for use in the ML model. 
In addition to flight altitude, other acquisition variables 
tested during the experiments included: solar altitude, flight 
direction with respect to the solar azimuth, platform, and 
camera type. 
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3.3 Field Validation and Workflow Refinement 
The next phase of the project entailed conducting 
operational tests on the Texas barrier islands sites. The 
fieldwork for this portion of the study was conducted 
December 6–17, 2021, in collaboration with project partners 
at Texas A&M University–Corpus Christi. Imagery was 
collected with the RGB cameras on the Skydio 2 and 
Phantom 4 Pro. Key objectives of the Texas fieldwork were: 
1) to test the procedures used at the Neptune site in a 
location known to be a hotspot for marine debris, containing 
numerous actual (i.e., not seeded) debris items; and 2) to 
test the ability to upload the UAS imagery and run the ML 
model while in the field. 

As in the tests at Neptune, it was not possible during the 
Texas barrier islands fieldwork to operate the PI camera from 
a UAS, due to not having developed the necessary hardware 
and software to operate the camera (and, in particular, 
to automatically adjust exposure settings) from a remote 
aircraft. For this reason, PI imagery was again collected 
primarily using a pole mount (Figure 8). To facilitate efficient 
acquisition of imagery with the pole-mounted PI camera, 
high-density debris fields were created by collecting debris 
items from within approximately one square kilometer and 
concentrating them in fields of a few tens of square meters 
(Figure 9). 

While the tests of the PI camera over both naturally occurring 
debris and the high-density debris fields were successful, it 
was also of interest to test the PI camera from an airborne 
platform. The main goals were to investigate potential motion 
blur in the imagery, due to the moving platform, and the ability 
to obtain sufficient spatial resolution from a height more 
typical of a UAS flying height. Through a partnership with 
the U.S. Coast Guard (USCG), permission was obtained to 
operate the PI camera from a USCG MH65 Echo helicopter 
to simulate UAS PI imagery acquisition (Figure 10). 

The experiment, led by OSU graduate student Kyle Herrera, 
entailed generating additional image bands from the 
polarimetric data. These bands included Stokes parameters 
(Stokes, 1852; Yan et al., 2020), as well as angle of linear 
polarization (AOLP) and degree of linear polarization 
(DOLP), which are computed from the Stokes parameters. 
The resulting images were visually assessed to determine 
whether the PI-derived information facilitated manual 
detection of debris items. Next, the transformed divergence 
(TD), a well-known separability index in remote sensing, was 
used to evaluate the separability of debris classes, within 
and without the PI-derived information included. Finally, a 
k-nearest neighbors (K-NN) supervised image classification 

was performed, with and without the PI-derived bands 
included, to assess the potential to increase classification 
accuracy through inclusion of the PI bands. 

Figure 8: Pole-mounted PI camera collecting imagery of debris on the Texas 
barrier islands. Credit: NOAA NCCOS. 

Figure 9: Seeded debris field on San José Island, Texas. Credit: Oregon 
State University. 
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Figure 10: Tests of PI camera on USCG MH65 Echo helicopter to simulate UAS polarimetric imagery acquisition. Credit: NOAA NCCOS. 

3.4 UAS PI Camera Integration and Testing 
Due to the fact that a computer is required to operate the 
Blackfly-S camera and adjust exposure settings during 
operations, the previous phases of the project involved 
manually operating the camera installed on a pole mount or 
USCG helicopter and connected to a laptop computer, as 
noted above. This phase of the project sought to address 
these challenges and demonstrate automated acquisition 
of PI imagery from a UAS. The specific goals of this project 
phase were to: 

1. Provide hardware and software to acquire imagery 
using the FLIR Blackfly-S polarimetric camera and a 
Raspberry Pi single-board computer. 

2. Demonstrate the UAS payload by acquiring data over a 
simulated beach scene seeded with debris items. 

3. Design and test a proof-of-concept PI technique using 
a standard RGB camera (non-PI) with a polarizing 
filter, and collecting sequential, rotated images, from 
which PI imagery can be generated using image 
processing. 

Software was written for a Raspberry Pi 4B running Ubuntu 
20.04 to communicate with the Blackfly-S camera using the 
Python FLIR Spinnaker SDK. Raw imagery was logged to a 
USB drive and post-processed into AOLP and DOLP images 
using custom Python scripts, which were made publicly 
available on a GitHub repository. 

The imaging system was integrated on the DJI Matrice 
300 (Figure 11). This remote aircraft integration required 
testing and refinement of the vibration mounts, as the initial 
installation resulted in excessive vibration of the camera 
lens and very high levels of motion blur in the imagery. Test 
flights of the Blackfly-S mounted on the Matrice 300 were 
conducted on the OSU campus September 24–25, 2022. 

The final test conducted in this project phase was to 
investigate whether similar results to those of the PI camera 
could be obtained using an off-the-shelf RGB camera and 
circular polarizing filter by hovering and yawing the aircraft 
to obtain imagery at different orientations (0-, 45-, 90-, 
and 135-degree azimuth) of the filter. This rotating camera 
concept requires only a standard, low-cost camera and could 
greatly accelerate the readiness and adoption of this PI. 

Figure 11: Blackfly-S polarimetric camera 
integrated on DJI Matrice 300. Credit: Oregon 
Statue University. 
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OSU graduate student, Kyle Herrera, collecting PI imagery at Neptune State Scenic Area. Credit: Oregon State University. 
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Section 4  Results 
4.1 Improvement in Debris Detection Using PI 
Imagery 
Results from the PI camera was compelling. Visual analysis 
of the imagery indicated that the polarimetric information 
was useful in manual detection and recognition of debris 
items. Nine different examples are shown in Figure 12, 
where each image pair consists of an RGB image containing 
a particular debris item on the left, and the corresponding 
bivariate DOLP–AOLP on the right. As can be seen in these 
examples, there are a number of cases in which a debris 
item is difficult to distinguish visually in the RGB image, 
due to being partially buried and/or similar in color and 
texture to the background, but more readily identified in the 
corresponding PI image. Additional examples are provided 
in Herrera, 2022. 

Correlation matrices revealed that PI-derived bands 
representing the degree and AOLP were sufficiently 
different from the standard RGB bands to merit inclusion 
in a classification algorithm. The layering of PI-derived 
bands with standard RGB bands improved the separability 
of designated debris categories (Herrera, 2022). When 
PI-derived bands were included in a K-NN ML algorithm, 
the overall accuracy of debris classification increased by 
6.7–25.6 percentage points, with a mean classification 
accuracy increase of 15 percentage points (Herrera, 2022). 
Kappa coefficients (a measure of classification accuracy, as 

DJI Phantom Pro 4 Remote Controller in use during field test. Credit: NOAA NCCOS. 

compared with chance agreement) increased by 9.1–17.6 
percentage points (Herrera, 2022). There was also marked 
improvement in both producer and user accuracy for most 
categories of debris when PI-derived bands were included 
(Herrera, 2022). Table 1 shows the improvement in debris 
classification accuracy using PI-derived information for one 
of the field sites, while Figure 13 shows one example of 
the output of a supervised classification using, as input, the 
RGB bands only (top) and both the RGB and PI-derived 
bands (bottom). 

Figure 12: Visual analysis of debris items in PI imagery. In each image pair, the left image is a conventional RGB image, while the right image is a bivariate degree of 
linear polarization (DOLP)–angle of linear polarization (AOLP) image created from the polarimetric information. 
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Table 1: Improvement in debris classification enabled using PI-derived image band. It should be noted that this is one of three such tables containing results 
from each project site. The other two tables are available in the MS thesis of the graduate student supported through this project (Herrera, 2021). Note “TD” 
refers to transformed divergence, a standard class separability index. The kappa statistic is a well-known metric in remote sensing, used to evaluate classification 
performance, accounting for the probability of chance agreement between the classification output and reference data. 

RGB (3-band) 

Material Type 
Training Accuracy 

(Prod, user) % 
Test Accuracy 
(Prod, user) % 

Overall/kappa 
train (%) 

Overall/ kappa 
test (%) Mean TD 

Plastic 92.2, 71.4 50.5, 79.8 
Wood 
Rope 

68.5, 25.7 
72.5, 62.7 

53.2, 13.7 
64.9, 25.7 

64.5, 50.4 50.1, 34.2 1213 

Substrate 55.0, 94.3 45.6, 89.8 

RGB + S0 + S1 + S2 + DOLP + AOLP (8-band) 

Material Type 
Training Accuracy 

(Prod, user) % 
Test Accuracy 
(Prod, user) % 

Overall/kappa 
train (%) 

Overall/kappa 
test (%) Mean TD 

Plastic 91.5, 89.7 57.8, 93.2 
Wood 
Rope 

71.4, 81.1 
81.4, 83.9 

53.4, 48.7 
77.0, 39.1 

89.9, 83.1 75.8, 63.5 1748 

Substrate 95.9, 93.3 90.7, 90.4 

Figure 13: Comparison of classification results with and without PI-derived bands included. Top: RGB orthomosaic; middle: output of K-NN 
classification without including PI-derived bands; bottom: output with PI-derived bands included. The colors in the bottom two images represent 
the material type classification, with green representing substrate (sand). 

14 



Uncrewed Aircraft Systems, Machine Learning, and Polarimetric Imaging for Enhanced Marine Debris Shoreline Surveys

 

 

Results 

4.2 Machine Learning Results 
Results from the ML model applied to true color imagery 
showed that consumer-grade RGB cameras, such as those 
often found on consumer UAS, can serve as a potent 
source of information about the locations of marine debris 
along a shoreline (e.g., Figure 14). However, the limited 
spectral information limits the reliable classification of marine 
debris based on material type. Our first attempt at a deep-
learning–based object detection system designed for the 
automatic discrimination of shoreline stranded macro- and 
mega-debris in a real-world setting returned 49% average 
precision (AP) when compared to a human operator on our 
10-class evaluation dataset (ORBTL, 2021). The model was 
significantly better at detecting large and distinct debris, 
while class confusion was a major issue. Confusion occurred 
between ambiguous material classes (e.g., plastic and foam) 
and also naturally occurring objects (false positives such as 
driftwood). A well-defined classification scheme focused on 
item use may be more applicable to ML of mega-debris from 
true color images. For example, the model often achieved 
an AP of 70% on classes with homogeneous shape, color, 
and size (such as tire and fishing net; ORBTL, 2021). Small 
object detection is a primary challenge, and a general 
rule-of-thumb appears to be that reliable object detection 
requires a minimum of 10 pixels per object. Therefore, it 
is important to constrain the minimum target debris size in 

relation to the input ground spacing distance of the imagery. 
For example, our study utilized 2-cm imagery; therefore, 
detection of objects smaller than 20 cm was not attempted 
(ORBTL, 2021). While the study’s bottom-line precision does 
not yet achieve human-level accuracy at labeling debris in 
true color imagery, the results do show promise based on 
the small size of the dataset (approximately 5,700 labels) 
and the limited geographic scope of that training dataset 
(sections of Hawaiian coastline). Additional labeled data 
from a variety of geographic areas, dates, sensors, lighting 
conditions, etc. would train more reliable deep-learning– 
based object detection models (ORBTL, 2021). 

4.3 PI Camera UAS Integration Results 
The Blackfly-S polarimetric camera system installed on the 
DJI Matrice 300 proved capable of acquiring well-exposed 
imagery over the field site at altitudes up to 100 m. The 
imagery was processed into polarimetric AOLP and DOLP 
parameters. After refining the camera mount (including 
adjusting the vibration isolators), the imagery had minimal 
image blur and clearly depicted polarization signatures of 
the simulated marine debris. The imagery covered the entire 
field site, although it was challenging to ensure the camera 
was acquiring imagery of the site due to the lack of a real-
time display from the camera. 

Figure 14: Auto-detection of 
debris items in seeded debris 
field. The top image shows a 
bivariate AOLP-DOLP image 
from the polarimetric camera 
for the high-density debris field 
on San José Island. The bottom 
portion of the figure shows the 
results of running DebrisScan 
on the RGB orthomosaic 
generated from the UAS 
imagery of the same site. 
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The prototype auto-exposure algorithm implemented by the 
team was unsuccessful during a few portions of the flight, 
resulting in both overexposed and underexposed imagery. 
Future work should implement a more robust algorithm that 
is tuned for the specific characteristics of the camera. This 
is very important for this particular polarimetric camera, as it 
appears to qualitatively have a relatively low dynamic range. 
It is also important to note that commercially available PI 
cameras, such as that tested in this project, have poorer 
resolution than conventional RGB cameras. In practice, this 
requires the operator to fly at a lower altitude to achieve a 
desired GSD, which then impacts the number of flight lines 
and time required to complete a survey. 

The imagery from the rotating RGB camera with the 
polarizing filter yielded very high-resolution (45-MP) images 
that were automatically exposed and inspected for quality 
using the real-time data link. The processed polarimetric 
imagery from these data depicted the same polarimetric 
signatures as the polarimetric camera but with a higher 
resolution (Figure 15). 

Figure 15. PI images (specifically, bivariate AOLP/DOLP images) generated from 
the Blackfly-S polarimetric camera (top) and rotated RGB camera with a polarizing 
filter (bottom). 

Field surveys for collecting reference data at the Neptune State Scenic Area. Credit: Oregon State University. 
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Tracy Weatherall of the University of Texas Marine Science Institute collecting debris on Padre Island. Credit: NOAA NCCOS. 
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Section 5  Recommended Operational Workflows 
The following sections of this report contain operational 
recommendations, based on this multi-phased study, as well 
as experience of the project team in related studies (e.g., 
Slocum et al., 2019; Winans, 2021). These sections are 
intended to benefit researchers and programs interested 
in enhancing their marine debris detection abilities or 
programs. However, they are not intended to guide users 
through steps of learning to fly UAS, obtaining Federal 
Aviation Administration (FAA) Part 107 certification, or other 
regulatory aspects. There is a litany of resources available 
to guide interested, novice parties on initial entry into the use 
of UAS, from the wealth of guidance on obtaining Part 107 
certification provided directly by the FAA, to the countless 
videos, discussion boards, blogs, and apps that cover the 
topics of both UAS operation and certification. (Perhaps 
the best vector of entry to the use of UAS is hands-on 
practice, beginning with recreational flights in open, safe 
environments.) The intended audience for this report, 
however, is users with moderate to extensive experience 
with UAS including operational basics, FAA certification, 
knowledge of flight permission procedures, and having 
sufficient experience with remote aircraft to safely collect 
data in a coastal environment. 

5.1 Pre-Planning and Program Setup 
An initial consideration is the selection of a specific remote 
aircraft (make and model) for conducting marine debris 
mapping flights. These procedures assume the use of 
sUAS (< 55 lb) under FAA Part 107. As noted in Section 3.2, 
two main categories of remote aircraft are multirotor (e.g., 
quadcopters, hexicopters, etc.) and fixed wing. Based on 
the findings of this project, it is recommended that multirotor 
aircraft be considered the primary choice. The advantages of 
fixed-wing aircraft include longer flight endurance (i.e., longer 
flights per battery) and the ability to efficiently cover large 
stretches of beach. However, it was found that the multirotor 
aircraft (at least those tested in this study) tended to perform 
better in higher winds (e.g., wind speeds on the order of 
15–20 kts). In the case of the WingtraOne, the aircraft’s 
VTOL configuration proved challenging in higher winds, 
as the large wing acts as a sail and can push the aircraft 
downwind. The other advantage of multirotor aircraft is that 
the small, lightweight quadcopters tested in this project are 
highly portable and user-friendly. This makes them ideal to 
carry and operate, including for personnel whose primary 
job function is not UAS operations but who want to use 
UAS periodically to enhance data collection. Additionally, 
multirotor aircraft are generally easier to maneuver, less 
expensive, and require smaller takeoff and landing areas, 
which is critical for operations from a small vessel. 

Other factors to consider in setting up an operational UAS 
capability include: required IT infrastructure (e.g., disk 
space to process and archive large volumes of imagery), 
training and flight proficiency requirements and safety 
protocols. These aspects of establishing an operational 
UAS program are beyond the scope of this report. UxS 
standard operating procedures are available from a number 
of sources, including the North Carolina Department of 
Transportation (NCDOT, n.d.) and Connecticut Department 
of Transportation (Zaffetti, 2019). 

5.2 Project Planning 
5.2.1 Takeoff/Landing Zone 
The multirotor (e.g., quadcopter, hexicopter, etc.) remote 
aircraft suggested for this procedure have versatile takeoff 
and landing options. It is recommended to have a stable, 
open launch zone of roughly 2 x 2 m away from impeding 
trees or structures. This will allow for reliable home-point 
recording and safe takeoffs/landings when performing 
automated survey flights. A flat, rigid pad (Figure 16) is 
recommended to prevent the UAS from tipping or being 
damaged from the natural ground surface beneath the 
pad. Having paint or markings to discern the center-of-pad 
helps with reliable point recording from the UAS. If a stable 
launch zone is unfeasible (e.g., moving/rocking vessel, 
rough/uneven terrain, or unsafe landing area), many UAS 
platforms allow for takeoff/landing by hand, where the 
pilot will take manual control of the device and carefully 
maneuver it into the positioned hand of an assisting team 
member (as shown in Figure 17). If conditions worsen during 
flight, or the UAS is unfit to land automatically, manual pilot 
control is recommended to safely return to the platform. 
Most modern UAS platforms will have an alert feature via 
the controller when challenges are encountered (e.g., loss of 
signal, poor home-point recording, or excessive wind gusts). 

Figure 16: UAS takeoff and landing panel. Credit: Oregon State University. 
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Figure 17: Hand launch of UAS. The aircraft shown here is a Skydio 2. 
Credit: NOAA NCCOS. 

Launch and recovery of the UAS from a vessel is also an 
option in some situations. However, there are a number of 
safety and operational considerations to be aware of with 
vessel launch and recovery. Because of vessel movement 
(roll, pitch, and heave), it is critical to have sufficient deck 
space for a takeoff and landing zone, larger than the amount 
of space that would be needed on land. On a vessel, hand 
launch and recovery of the UAS is often preferable to taking 
off and landing directly on the deck. However, the UAS 
manual and operating procedures should be consulted to 
determine whether hand launch and recovery is supported 
by the particular remote aircraft and to understand the 
manufacturer’s recommended procedures. Practicing the 
procedures on land ahead of time is critical, as every aspect 
of the process is substantially more challenging on a moving 
vessel. A key concern is ensuring the safety of the person 
hand-catching a landing UAS and, in particular, minimizing 
the risk of being cut by the spinning propellers. Safety of 
the remote aircraft is also an important consideration. There 
are a number of situations in which the remote aircraft 
could inadvertently land in the water and be destroyed and/ 
or lost. Just one example is if the remote aircraft loses 
communication with the controller and returns to its home 
point to land, but, due to movement of the vessel, the 
recorded home point is now over water. 

5.2.2 Image Resolution 
The ML model is designed to perform inference on imagery 
with a 2-cm GSD. Any imagery not at 2-cm resolution 
will be automatically up- or downsampled upon upload to 
the API. If auto-resampling is required, this will increase 
the processing time and could decrease performance. 
Importantly, the upsampling performed on coarser-resolution 
imagery to obtain a 2-cm GSD does not improve the effective 
resolution or quality of the imagery. For these reasons, it is 
recommended to avoid having the software upsample or 
downsample the imagery by acquiring imagery with a 2-cm 
GSD. The following equation can be used to precompute the 
GSD: 

(Eq. 1) 

In Equation 1, xpx is the physical pixel size on the camera 
chip, H’ is flying height above ground level (AGL), and ƒ is 
the camera lens’s focal length. If xpx and ƒ are given in units 
of millimeters, and H’ in units of meters, the computed GSD 
will likewise have units of meters. Since the physical size of 
a pixel is fixed for a particular camera, and the focal length 
may be fixed for a particular lens, the AGL is most often the 
parameter that is varied to change the GSD. 

UAS mission planning and flight management software 
for mapping missions (e.g., DroneDeploy, Pix4DCapture, 
Pixhawk Mission Planner, and senseFly eMotion) will typically 
automatically calculate GSD and other imagery parameters, 
given a project area, UAS camera model, and flying height. 
Furthermore, it is generally possible to reverse the process 
by inputting a desired GSD and allowing the mission planning 
software to calculate flying height and other parameters. 

5.2.3 Beyond Visual Line of Sight 
Operating a small uncrewed aircraft system (sUAS) under 
FAA Part 107 requires visual line of sight (VLOS) of the 
platform to ensure flight safety and situational control. This 
does impact coastal mapping missions where long stretches 
of shoreline are operationally flown. It is important to consider 
this range when selecting a suitable launch zone to efficiently 
acquire data for large areas. The VLOS requirement typically 
limits small quadcopters to approximately 500 m (either 
horizontal direction) from the ground station, as this is the 
maximum distance at which the remote aircraft can typically 
be seen, even in very clear conditions. It is recommended 
to select a ground station roughly in the center of the AOI to 
allow for maximum shoreline coverage per flight. The process 
of obtaining an FAA Part 107 § 107.31–Visual Line of Sight 
Aircraft Operation waiver involves completing and submitting 
a waiver application through FAADroneZone, including a 
description of the proposed operations and the justification for 
the waiver (FAA, n.d.). 
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Jake Berryhill, Texas A&M University–Corpus Christi, readies UAS for takeoff on Padre Island. Credit: NOAA NCCOS. 

5.2.4 Data Management 
Appropriate data management is critical for project planning, 
data acquisition, and result generation. When imaging large 
stretches of coastline, a single survey can produce hundreds 
of high-resolution images, equating to gigabytes of data. 
One project typically includes several survey missions and 
gigabytes quickly turn into terabytes of imagery. As such, 
it is imperative to maintain consistent file organization and 
sufficient memory allocation. It is recommended to have 
several microSD cards empty and ready before beginning 
any project data acquisition. Most UAS will specify on the 
controller the remaining image capacity of the microSD card 
installed in the device. Subsequently, most survey planning 
tools will specify the number of images required to complete 
the mission. The project team should always remain aware 
of these two numbers to avoid any missing data or failed 
project objectives: the total images required for the mission, 
and image space remaining on the microSD card. It is 
recommended to have more microSD cards than needed in 
case any fail to record imagery correctly (rare but possible). 

For ease of result and report generation, it is also suggested 
to have a reliable, consistent file structure, including an 
individual folder for each flight survey named according to 
the collection date and location. A project-dedicated portable 
hard drive is recommended to have project files backed up 
and organized in one place. 

5.3 Data Collection 
5.3.1 Flight Parameters 
Data collection for UAS marine debris shoreline surveys 
may entail a combination of “mowing the lawn” (i.e., parallel 
flight strips with a specified amount of image overlap 
to provide wall-to-wall stereo coverage of the area of 
interest) and “hotspot” capture to acquire detailed imagery 
of specific debris items from varying viewing geometries 
and flight altitudes. Often, the mowing-the-lawn survey is 
conducted first, and areas of high debris concentrations are 
subsequently investigated using the hotspot capture mode. 
The following sections describe the considerations and 
parameters for the mowing-the-lawn portion of the mission. 

Flying Height/Image Resolution 
Operational flight parameters are typically dictated by the 
planned project scope and the target area of interest. UAS 
flying height AGL is determined by the desired imagery 
resolution and platform sensor used. For example, to 
achieve 2-cm GSD, the Phantom 4 Pro would collect 
imagery at an altitude of 68 m AGL. Alternatively, the 
Skydio 2 would fly at 47 m AGL to achieve 2-cm GSD. The 
relationship between flying height and GSD is illustrated by 
Equation 1. Under FAA Part 107, the maximum allowable 
flying height is 400 ft (120 m) AGL. 
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Remote Aircraft Speed 
UAS flying speed is a function of the flying height and image 
overlap necessary for the planned mission. If the desired 
result is a georeferenced orthomosaic of the shoreline, it is 
recommended to achieve an overlap (also called endlap) 
and sidelap of 75%. This will ensure sufficient image overlap 
between image frames to accurately reconstruct the camera 
station and scene geometry from matched features. These 
settings are typically located/adjusted in survey planning 
settings. Once the flying height and overlap/sidelap have 
been specified, mission planning software will typically 
select the proper flying speed to obtain the best results. Like 
flying height/image resolution, these settings are platform 
specific and will vary. For instance, to acquire imagery 
at 2-cm resolution with 75% overlap and sidelap, the 
Phantom 4 Pro will fly at 7 m/s at 68 m AGL for best results. 
Meanwhile, the Skydio 2 would fly the mission at 15 m/s at 
47 m AGL to accomplish the same objective. 

Example of ground control points (GCPs) at Padre Island field site. Credit: NOAA NCCOS. 

Survey Area Geometry 
The area of interest for coastal mapping missions plays a 
large role in how these surveys are planned. Shorelines and 
their geomorphology vary significantly across the world and, 
as such, require special attention to detail. The survey area 
geometry strongly influences how UAS flights are designed 
in order to achieve the highest quality imagery. Narrow 
shorelines with extreme elevation change require a different 
survey approach than wide beaches with little to no slope. 
Some of the flight parameters that might vary depending on 
geometry are flight path orientation, gimbal angle, and flying 
height, while some flying conditions, such as sun angle 
and wind direction, will also need careful consideration. 
The overarching goal of imagery acquisition is to achieve 
the highest quality surface detail for the shoreline area 
of interest. Analyzing the existing geometry will aid in the 
determination of how to best plan a survey/mapping mission 
for a particular location. 

Exposure–ISO, Aperture, and Shutter Speed 
Exposure is of paramount importance in determining the 
quality of resulting imagery. Inadequate exposure levels 
almost always result in a loss of information at the surface 
level. Auto-exposure is a somewhat reliable function 
to gauge the relative illumination in the scene during 
acquisition but should not be solely relied upon. The best 
way to actively avoid substantial exposure problems is to 
avoid performing a mission during rapidly varying lighting 
conditions. For instance, acquiring imagery in direct sunlight 
and then subsequently in fully overcast conditions will 
severely affect image quality. Most UAS platforms allow for 
selection of lighting conditions prior to flying (i.e., sunny, 
overcast, low illumination, etc.); however, these functions 
serve as a primary means of balancing the incoming light 
levels throughout the mission. This setting is not meant to be 
changed frequently during a survey as the resulting imagery 
would vary in brightness. Therefore, it is recommended 
to aim for completing the planned mapping mission under 
consistent illumination conditions to achieve consistent 
image quality. This is not always possible in dynamic coastal 
areas, but the general concept should be adhered to as 
closely as possible. 

Flight Conditions 
UAS platforms are highly versatile in that they can 
successfully function under vastly different conditions. 
This flexibility is one aspect that makes them valuable in 
a shoreline scenario where conditions fluctuate regularly. 
There exist, however, certain conditions that allow for 
optimal quality of results while minimizing potential risks and 
hazards. The most important natural factors to be aware of 
when operating UAS platforms in a coastal environment are 
wind, rain, clouds, and sun. 

Sun/Specular Reflection 
Starting with the sun, there are important aspects to 
understand in how it impacts quality of results. Shoreline 
mapping missions often involve flying over or near the water 
surface. Water surfaces are highly reflective of natural 
sunlight and should be minimized as much as possible to 
avoid intense specular reflection in the imagery. This can 
be accomplished by avoiding flight over the water surface 
whenever possible. However, when unavoidable, specular 
reflection can be minimized by flying during ideal sun angles/ 
times of day, when the sun is in the range of 20–60 degrees 
above the horizon. As the sun approaches its highest point 
in the sky, specular reflections off the water surface will be 
directed up toward the remote aircraft, causing hotspots 
and saturation in the resulting imagery. Notwithstanding this 
sun angle recommendation when avoiding flights over water 
and sun glint, it is generally recommended to collect aerial 

21 



Uncrewed Aircraft Systems, Machine Learning, and Polarimetric Imaging for Enhanced Marine Debris Shoreline Surveys

Recommended Operational Workflows 

imagery with the highest illumination possible to maximize 
the shoreline detail captured. Direct and consistent sunlight 
is desirable for result quality, but the key is consistency in 
illumination during each flight, as noted previously. 

Weather 
The most severe operational conditions are wind and rain, 
as these can often inhibit data collection and create an 
unsafe working environment. Of all the weather conditions 
to be aware, rain should be on the forefront of any mission 
planning for UAS data collection. Most UAS platforms are 
unfit to operate effectively during active rainfall, and this 
scenario should be avoided altogether. Sun or consistent 
overcast conditions are optimal for both image quality and 
equipment/personnel safety. While wind conditions can 
also be a limiting factor, multirotor UAS platforms are more 
tolerable in the amount of wind they can sustain while still 
accomplishing mission objectives. The maximum allowable 
wind gusts a UAS can withstand is generally listed in the 
specifications from the manufacturer. This manufacturer-
provided wind tolerance is an essential parameter to keep 
in mind, but it should not be solely relied on for decision-
making in the field. Wind begins to hamper imagery quality 
in shoreline mapping whenever the UAS struggles to 
maintain flight path consistency or camera position. In the 
field, this may look like the UAS swaying off center from the 
predetermined path or the camera gimbal being temporarily 
blown off the angle desired. 

These effects can significantly impact the quality of 
results, as several images in the survey can be unusable, 
and the UAS may struggle to maintain sufficient overlap 
or sidelap for orthomosaic processing. As such, it is 
strongly recommended to always monitor wind conditions, 
both sustained speed and maximum gusts, throughout 
the duration of the mission. Several resources exist to 
provide active wind gauge readings and forecasts in 
coastal areas. Wind, however, can be unpredictable in 
shoreline environments, and it is recommended to carry an 
anemometer to the intended fieldwork location for careful 
monitoring. Of the two wind measurements, maximum 
gusts are the important limiting factor. If sustained winds 
are around 10 kts, but gusts are reaching up to 20 kts, 
these conditions are likely to curtail UAS operations. The 
two quadcopters that were utilized extensively in this study 
were able to effectively collect imagery in winds up to 15 
kts but did encounter some instances of gimbal instability 
toward that upper limit. Ideal operational wind conditions 
were observed to be 12 kts or less to ensure high-quality 
imagery throughout the duration of the flight. These 
tolerances vary slightly between UAS platforms, so it is 

important to be aware of individual equipment capabilities. 
It is highly recommended to perform test flights in a variety 
of wind conditions to discern adequate confidence levels in 
deployment and data collection. Extreme wind gusts can be 
common in coastal areas and can potentially blow a UAS off 
course entirely, resulting in equipment damage and ceasing 
of mission operations. The overarching recommendation 
is to exercise extreme caution when planning around wind 
conditions and to curtail operations during instances of 
unpredictable gusting events. 

Clear day at Neptune State Scenic Area, Oregon. Credit: Oregon State University. 

WiFi and Cellular Service 
WiFi and cellular service availability are important utilities 
to consider during all phases of project planning and data 
acquisition. Many UAS programs for pre-planned survey 
missions rely on accessing the internet for both the planning 
and launch phases. In most instances, it is likely that the 
internet is available for mission planning and setting flight 
parameters. However, many shoreline scenarios where 
this procedure would be employed may have limited to 
no connectivity. (In this project, this was the case at the 
Neptune project site.) This could result in the inability to 
effectively launch the UAS to complete the pre-planned 
survey as the project files would be inaccessible. Therefore, 
it is recommended that the project team verify cell service 
availability for the area of interest. The best practice is to 
first open the UAS mapping software and load the intended 
project file prior to departing for the field site. This ensures 
that the pre-planned survey is effectively loaded and ready 
to deploy in the target shoreline location. Remote aircraft-
to-controller connectivity does not typically rely on WiFi or 
cell service; however, the controller/phone/tablet interface 
requires internet data to access project files and pre-planned 
missions. 
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5.4 DebrisScan 
The ML model developed and tested in this project 
was integrated into operationally ready software called 
DebrisScan. The DebrisScan application (available on 
GitHub: https://github.com/orbtl-ai/DebrisScan) allows 
end-users to utilize our pre-trained ML models for debris 
detection on their own imagery. DebrisScan (Figure 18) 
allows users to upload UAS photos and receive a zip file 
containing labeled images, spreadsheets, and reports about 
the debris in each photo. DebrisScan is a free and open-
source project licensed under the permissive Apache-2.0 
software license (Vendome and Poshyvanyk, 2016). This 
license structure allows DebrisScan to reach the widest 
possible audience for the largest possible impact. 

This beta release contains an EfficientDet-d0 object 
detection model (Tan et al., 2020) from the TensorFlow 
Model Garden that has been pre-trained on a real-world 
set of 2-cm aerial imagery collected across the Hawaiian 
Islands and labeled by teams of experts. This model does 
not represent the current state of the art, but it has proven 
versatile over many types of terrain and imagery. It is 
recommended that DebrisScan users briefly review this 
project’s EfficientDet-d0 model report to better understand 
DebrisScan v0.05’s current capabilities (ORBTL, 2021). 
The EfficientDet-d0 neural architecture is also small enough 
to be run on a wide range of modern hardware, including 
personal laptop computers that lack dedicated graphics 
processing units (GPUs). The DebrisScan application is 
designed to detect only large pieces of macro- or mega-
debris that are greater than 20 cm in size (this is constrained 
by the model’s 2-cm GSD). Further, this model is designed 
to work on only “dry” debris that is above the waterline. 
While the EfficientDet-d0 model classifies debris into eight 

discrete categories, the performance can vary greatly across 
object classes. It is best to consult the linked model report 
above for detailed information about the data and techniques 
used to train and evaluate DebrisScan’s primary model 
(ORBTL, 2021). 

5.4.1 Downloading and Installing DebrisScan 
Download/installation instructions can be found on the 
DebrisScan code repository’s front page (https://github.com/ 
orbtl-ai/DebrisScan). The entire DebrisScan application is 
distributed and installed using free and open-source tooling 
such as Git and Docker. DebrisScan supports Windows 
10/11 and Linux platforms as of this writing, with plans to 
expand support in the future. 

Running DebrisScan is relatively simple, and the entire app 
can be “spun up” in a single command (see instructions 
above). Once DebrisScan is running, it is accessed 
via a web browser by going to the default address of 
`localhost:8080` (unless changed by the user). DebrisScan 
v0.05’s homepage is shown in Figure 19. 

5.4.2 DebrisScan Preprocessing 
DebrisScan allows users to bulk upload large sets of aerial 
imagery to be scanned for marine debris by a geospatially 
aware AI. In this context, “geospatially aware” means 
that DebrisScan can read additional georeferencing or 
GNSS information from imagery uploads to determine the 
geographic locations of debris objects, in addition to spatial 
characteristics such as debris size. DebrisScan’s output 
results will be formatted with as much of this “geo aware” 
information as possible. If no location information is present, 
then DebrisScan will simply count and classify the debris 
without attempting to catalog debris objects in space or time. 

Figure 18: 
DebrisScan software 
for running the ML 
model developed in 
this project. ORBTL 
AI with permission 
from ©Government 
of Japan / PICES 
2015. 
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Figure 19: Image of DebrisScan homepage. 

It is highly recommended that users of DebrisScan either 
orthorectify or georeference their aerial imagery prior to 
uploading. This allows DebrisScan to provide the best, 
most detailed results. However, not all users may need 
high-quality debris locations for their specific use cases. 
Additionally, users may not be familiar with orthorectification/ 
georeferencing of aerial imagery. For these reasons, 
DebrisScan will still operate on standard single-frame 
images. 

The following is an overview of how DebrisScan interprets, 
processes, and returns results for the three possible types of 
image uploads: 

Orthorectified and Georeferenced Imagery 
This type of imagery has distortions (e.g., due to topographic 
relief, lens distortion, etc.) removed and contains pixel-
level spatial coordinates in a defined reference frame, 

which allows DebrisScan to relate the image pixels that 
comprise a debris object to a real-world location. This 
location information allows the results of these surveys to be 
communicated to assessment crews and responders to aid 
in the identification and removal of debris. While the steps 
to produce georeferenced orthoimages and orthomosaics 
are beyond the scope of this report, the procedures are 
becoming significantly more automated with new structure 
from motion (SfM) photogrammetry software, such as 
Pix4D Mapper, Agisoft Metashape, and online software, 
such as WebODM (Open Drone Map). (Note: these are 
not endorsements of any particular software but simply 
some of the software packages that are currently in use, 
including by the project team.) Despite the increasing 
levels of automation, generation of orthomosaics can 
sometimes take hours of processing time for larger projects. 
Additionally, the quality and positional accuracy of the 
outputs can vary significantly, depending on the number and 
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spatial distribution of GCPs, the type of aircraft GNSS (e.g., 
standalone pseudoranging vs. carrier-phase–based RTK or 
PPK), the quality of the imagery, and the specific processing 
procedures. The U.S. Geological Survey Open-File Report 
2021-1039 (Over et al., 2021) contains useful information on 
recommended processing workflows and settings. 

Non-georeferenced Imagery 
Users of DebrisScan may be more familiar with non-
georeferenced imagery. This type of imagery, which is 
the typical output of a UAS mapping mission, does not 
contain spatial coordinates at a pixel level but may contain 
spatial coordinates for each camera station (i.e., each 
image center) obtained via a GNSS receiver on the remote 
aircraft. DebrisScan can still count and classify debris 
within these standard images, but extracting accurate 
real-world spatial coordinates and object measurements 
is impossible. Fortunately, many modern digital cameras 
contain consumer-grade GNSS receivers and can roughly 
log the location an image was taken in the industry-standard 
exchangeable image file format (EXIF). If DebrisScan finds 
this image-level spatial information stored in an image’s 
EXIF data, the coordinates will be associated with found 
debris objects, providing a rough location. If information 
about the sensor’s physical characteristics and flight altitude 
is provided by the user (optional) or found among the EXIF 
data, it will be used to estimate each debris object’s shape 
and size. The more information provided by the user (or 
contained in an image’s EXIF data), the higher detail the 
results will be. 

Standard Imagery 
“Standard images” are any images that contain neither 
pixel-level nor image-level location data. Without these data, 
DebrisScan will operate as a standard AI model. The AI can 
count and classify debris objects, returning simple reports 
of each debris object class’s rate of occurrence and image 
plots showing predictions. No spatial coordinates or size 
information will be provided. 

5.4.3 Processing in DebrisScan 
Starting from the DebrisScan processing interface (Figure 
20), users can upload batches of aerial imagery in the 
primary field labeled “Aerial Imagery” and press “Submit” 
to run DebrisScan. At this stage, users can also provide 
optional information about the sensor and flight altitude 
(optional). This additional information allows DebrisScan to 
infer the GSD of each photo, resample the photos to match 
the expected 2-cm GSD, and potentially geolocate debris 
objects. These parameters are highly recommended to help 
DebrisScan achieve optimal results. 

Finally, the user has the ability to set the “Confidence 
Threshold” at which DebrisScan filters the model’s 
predictions. A confidence of 30% to 40% is ideal for most 
scenarios. Lowering the Confidence Threshold will bias the 
model toward over-counting debris. Conversely, raising the 
Confidence Threshold will bias the model toward under-
counting debris. 

Figure 20: DebrisScan’s Status and 
Results retrieval tab. A user-provided 
Job ID will return a message about the 
processing status. 
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Once the user presses “Submit,” DebrisScan begins to 
evaluate the upload to ensure that only valid imagery is 
kept. If everything looks good, DebrisScan returns a unique 
“Job ID” to the user. The Job ID allows the user to leave 
the DebrisScan application, work on other tasks, and then 
return to retrieve results once the processing has finished. 
This Job ID also allows users to check on the status of their 
job. Retrieving the status and results from a DebrisScan 
processing job is done at a single “Job Status/Results” 
endpoint. 

DebrisScan will return a zip file called “inference_results. 
zip,” which will contain the following files: 

• Image plots – These consist of the user’s original 
images with debris bounding boxes drawn over all 
predictions that exceed the user’s specified Confidence 
Threshold. The bounding boxes will be colored and 
labeled with both the object’s predicted class, and the 
model’s prediction confidence (0–100%). The word 
“_plot” will be appended to each of the original image 
names. These plots are useful for a quick qualitative 
review of DebrisScan’s performance. If image uploads 
contain no spatial information, these are the primary 
visual outputs from DebrisScan. An example is shown in 
Figure 21. 

• Debris list - A file called “all_debris_objects.csv” 
contains a database of all DebrisScan’s predictions. This 
is DebrisScan’s primary quantitative output, allowing 
users to quickly view many characteristics about their 
scene’s debris objects. This file will contain DebrisScan’s 
most complete report on debris, listing each prediction’s 
location, classification, estimated size, confidence level, 
and associated input image. Note that these debris 
attributes may not all be included (specifically location 
and estimated size) if spatial information and/or sensor 
and flight information is not provided. 

• Class list - A file called “debris_type_counts.csv” 
contains a list of DebrisScan’s debris classes (i.e., 
fishing net, vessel, and buoy) in each scene, the 
number of debris in each category, and the total number 
of debris objects (across all input images). DebrisScan 
provides this summary file to get a high-level view of the 
total number and type of debris in each scene. 

• Per-image results – DebrisScan will also create a 
folder labeled “per_image_results,” which contains 
redundant copies of the above information, broken into 
one .csv file per image (with files named accordingly). 
These files will match the format of the “all_debris_ 
objects.csv” file; however, each will contain debris 

Figure 21: DebrisScan results. 
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objects for only a single image (as opposed to all 
images). Additionally, the per-image results are provided 
as .json files, which can be difficult for users to read but 
are often programmers’ preferred way of working with 
DebrisScan’s results. 

5.4.4 Administrator Dashboard 
DebrisScan is designed to handle multi-user production 
workloads. The entire DebrisScan application is built 
around a Celery task queue and a Flower administrative 
dashboard. Celery is a widely used open-source task 
queue, which allows jobs to “stack” and be processed in the 
order they were received by a pool of “workers.” A Celery 
Worker can be either a portion of a single computer or 
an entire group of computers working together to handle 
deep job stacks or large, time-consuming user uploads. 
Administrators of DebrisScan will find the included Flower 
Dashboard helpful, which runs alongside DebrisScan by 
default and can be reached in the web browser by default 
at `localhost:5555`. See Figure 22, which shows the Flower 
Administrator Dashboard below with detailed information 
about DebrisScan and all received user uploads. 

5.5 Post-Processing 
To generate debris density maps, the “Point Density” tool 
in ArcGIS Pro can be used. It should be noted that this tool 
requires a Spatial Analyst toolbox license. The input to this 
tool consists of the locations (e.g., Universal Transverse 
Mercator [UTM] eastings and northings) of detected debris 
points from the ML model. These points can be stored as 
a .csv file, which is an ASCII text file containing columns of 
data, such as: debris_ID, utm_East, and utm_North. Please 
note that DebrisScan provides this information by default 

(provided the necessary spatial information is present in 
user uploads). After opening the table in ArcGIS Pro, the 
points can be displayed using the “Display XY data” function 
and then converted to a geodatabase feature class, after 
which they can be used as input in the Point Density tool. 
The tool computes the spatial density of points using a 
window of defined size around each cell. 

To be able to consistently compare debris density across 
different areas, it is important to use consistent settings 
in running the Point Density tool. The output cell size 
parameter specifies the GSD of the output layer. The 
parameters in the “Neighborhood” portion of the window 
specify the shape and size of the window around each cell 
that is used in searching for points that are then used in the 
density calculation. The “Area units” parameter specifies 
the units of the denominator in the density calculation; 
for example, selecting hectares means the density will 
be displayed as the number of debris items per hectare. 
Similarly, using consistent symbology (color scheme, 
stretch type, and number of classes) will enable the debris 
density maps to be compared across different regions 
in a meaningful way. Once a suitable set of symbology 
parameters is determined, the “Apply Symbology from 
Layer” tool within the “Data Management” toolbox can be 
used to apply the same symbology to other debris density 
maps. Figure 23 shows an example debris density map for 
the San José Island, Texas, study site. 

The specific settings used in ArcGIS Pro for creating the 
density heatmap in Figure 23 are shown in Figure 24. (Note 
that the same functionality exists in ArcMap 10.x.) Additional 
display settings used in generating the map in Figure 23 
are: 1) symbology set to “equal interval” with 10 classes 
and a green-to-red color scheme and 2) transparency set 

Figure 22: DebrisScan’s administrator dashboard, powered by the open-source Flower package. This dashboard allows DebrisScan’s administrators to see the 
current number of jobs, the number of celery workers, the status of DebrisScan’s back-end database, and more. 
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to 50%. There are some edge effects 
with running this operation with these 
parameter settings on such a small 
area, and users may want to experiment 
with different settings. Again, however, 
it is strongly recommended to stick with 
consistent settings, if debris density 
heatmaps are going to be consistently 
compared across different areas and/or 
different time epochs. 

Figure 23: Debris density heatmap 
for San José Island, TX, site. 

Figure 24: Settings used in ArcGIS Pro in creating the debris density 
heatmap. 
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Marine debris on San José Island, Texas. Credit: NOAA NCCOS. 

29 



Uncrewed Aircraft Systems, Machine Learning, and Polarimetric Imaging for Enhanced Marine Debris Shoreline Surveys

 

 

Section 6  Conclusions and Recommendations 
for Future Work 

This project demonstrated the enhancement in marine 
debris shoreline surveys achievable using UAS, PI, and ML. 
UAS were shown capable of enhancing efficiency of marine 
debris shoreline surveys and providing georeferenced 
imagery. Meanwhile, imagery from polarimetric cameras 
was found to substantially improve marine debris detection 
results over RGB spectral information only, including in both 
visual recognition of debris, as well as automated debris 
classification. The mean improvement of 15 percentage 
points in overall classification accuracy achieved by 
including PI-derived bands was noteworthy. 

ML models for debris detection showed similar promise. 
Although not yet at the level of human detection and 
recognition, the ML model tested in this study performed 
nearly as well as human visual interpretation when detecting 
large and distinct debris, such as tires and fishing nets, in 
RGB imagery acquired from UAS. The model suffered from 
class confusion with small, ambiguous items, which often 
had two characteristics in common: 1) classification based 
on the object’s material type (e.g., plastic, etc.) rather than 
use (e.g., fishing) and 2) debris items that were primarily 
composed of easily fragmented materials, such as plastic or 
foam, which resulted in a wide range of object shapes and 
sizes per category, confusing the ML models. 

Overall, the results of this project provide strong indication 
that UAS with advanced imaging payloads and ML are 
technologies capable of complementing and enhancing 
existing MDP monitoring and detection methods. 
Notwithstanding these advances, there are still some 
limitations that merit discussion. Investments in equipment 
(including not only the remote aircraft but also data storage 
and other IT resources), as well as training, experience, and 
certifications are needed to implement a safe, successful 
UAS marine debris program. Beyond experience in UAS 
operations, personnel must also have some level of 
expertise in photography to acquire good-quality imagery 
in challenging environmental conditions, as well as 
experience with SfM photogrammetry software to generate 
orthoimagery, from which georeferenced debris items can be 
extracted. 

Flights without an FAA waiver are currently limited to 
VLOS operations. Thus, each flight can typically cover a 
stretch of shoreline no longer than a few hundred meters in 
either direction from the base of operations, and frequent 
relocation of the base of operations along the shoreline is 
needed to cover sites extending a few kilometers or more. 

Operation of drone. 
Credit: NOAA NCCOS. 

Weather conditions can also limit operations, as winds 
can be too difficult to navigate (typically, 12–20 kt [22–37 
km/h])) is a threshold, although this is highly dependent 
on the specific remote aircraft), or precipitation can ground 
flights entirely. To improve operational efficiency, ongoing 
improvements will be investigated for hybrid UAS, which 
support VTOL by switching to a fixed-wing configuration 
in flight. It is also of interest to investigate remote aircraft 
that perform well in windy coastal conditions to increase 
the number of potential operational days. Additionally, 
streamlining the process to obtain FAA waivers for 
beyond visual line-of-sight operations will greatly improve 
operational efficiency for large coastal sites. 

Future improvements to the ML model and software are also 
recommended. The model used in this work was trained 
using data collected on the coastlines of Hawai‘i. While 
the Hawai‘i data covered a range of coastal morphologies, 
a larger and more geographically diverse training dataset 
would enable improvement in debris detection. It is highly 
recommended to acquire additional reference data for 
shorelines containing significant beach wrack and additional 
vegetation types not covered in this study, as well as for 
mixed environments that include built infrastructure, such 
as marinas. Reference data in saltmarshes and estuaries 
would also be particularly valuable for extending the model. 
In situ ground truthing is also recommended to validate and 
improve the training dataset. Ultimately, the robust training 
dataset developed through ongoing efforts is anticipated to 
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Padre Island, Texas. Credit: NOAA NCCOS. 

be the most beneficial outcome of this ongoing work; new 
deep-learning algorithms and architectures come and go, 
but the underlying training data are “evergreen” and can be 
used to train new deep-learning frameworks as they become 
available. Additionally, further work is recommended to allow 
ML-based methods to integrate more seamlessly with the 
existing field of marine debris management. In particular, 
this will entail use of statistics, metrics, and terminology 
meaningful within the marine debris community, rather than 
those more common within the field of computer science. 

Finally, it should be emphasized that this study focused on 
routine shoreline debris monitoring and did not address 
post-hurricane marine debris or floating debris. Some of the 

procedures developed in this study may be extensible to 
post-storm marine debris and potentially to floating debris 
as well. However, retraining of the ML model would likely 
be required for each of these applications. Post-hurricane 
imagery is often obtained at a coarser resolution, and the 
detected debris items may also be larger in size. Hence, 
training with coarser resolution imagery and larger objects 
(e.g., derelict vessels) would be a required step. Similarly, 
floating debris poses a number of additional challenges 
(e.g., partially submerged debris items, specular reflections 
from the water surface, etc.), and acquisition of suitable 
reference data would be a required next step. 
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