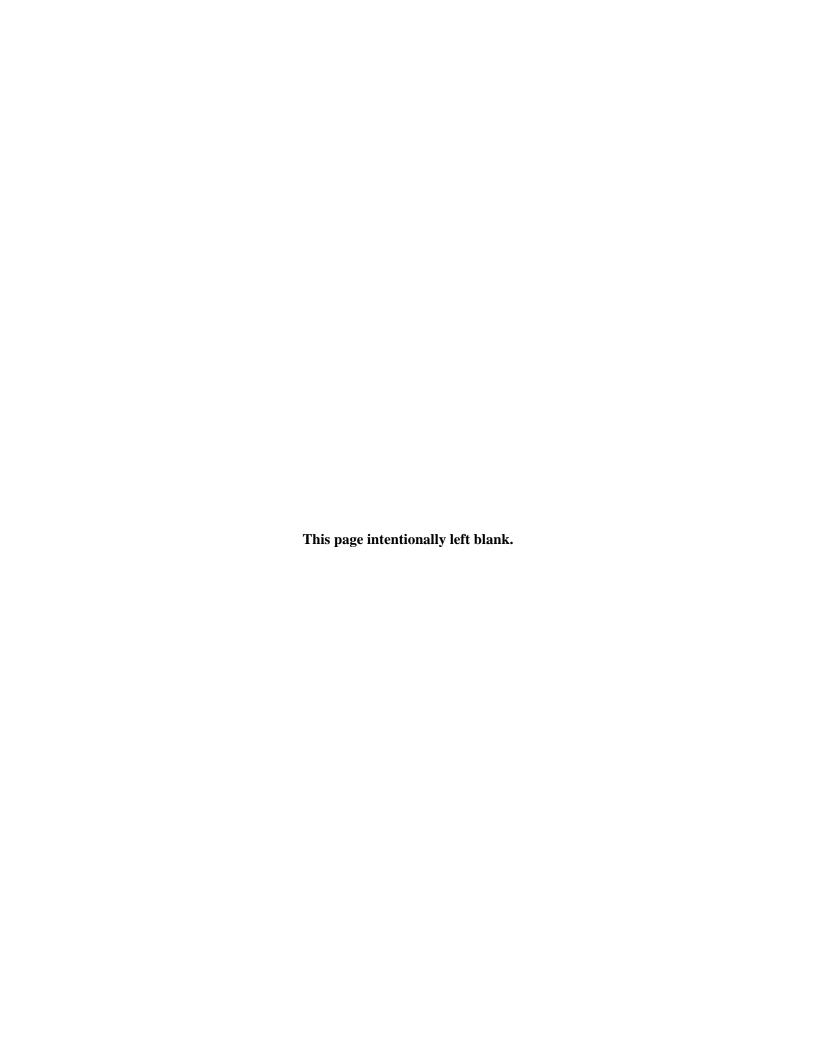
Corrective Action Report/Conditional Closure Request

NOAA Site 60/Non-TPA – Lead Contaminated Soils St. Paul Island, Alaska


February 7, 2007

Prepared By:

National Oceanic and Atmospheric Administration National Ocean Service Office of Response and Restoration 7600 Sand Point Way NE Seattle, Washington 98115

CONTENTS

MS AND ABBREVIATIONS	iv
IVE SUMMARY	ES-1
NTRODUCTION	1-1
ITE DESCRIPTION	2-1
.1 SITE BACKGROUND	2-1
.2 SITE GEOLOGY	
.3 SITE HYDROGEOLOGY	
.4 PREVIOUS INVESTIGATIONS AND CORRECTIVE ACTIONS	2-2
TELD ACTIVITIES	3-1
.1 CONTRACTORS AND EQUIPMENT	3-1
.2 SITE INVESTIGATION ACTIVITIES	3-2
.2 FIXED-LABORATORY SAMPLES	
NALYTICAL RESULTS	5-1
.1 SITE CHARACTERIZATION SAMPLES	5-1
.2 TREATABILITY STUDY SAMPLES	
.3 POST-TREATMENT WASTE DESIGNATION	
.2 RECOMMENDATION	
REFERENCES	
	NTRODUCTION. ITE DESCRIPTION 1. SITE BACKGROUND 2. SITE GEOLOGY 3. SITE HYDROGEOLOGY 4. PREVIOUS INVESTIGATIONS AND CORRECTIVE ACTIONS. IELD ACTIVITIES 1. CONTRACTORS AND EQUIPMENT. 2. SITE INVESTIGATION ACTIVITIES 3. SOIL TREATABILITY STUDY AND REGULATOR COORDINATION ACTIVITIES 4. SOIL TREATABILITY STUDY AND REGULATOR COORDINATION ACTIVITIES 5. DISPOSAL 6. BACKFILLING AND SITE RESTORATION 7. INVESTIGATION-DERIVED WASTE MANAGEMENT 8. SITE SURVEYING 9. HISTORIC PRESERVATION. IELD SCREENING AND ANALYTICAL SAMPLING 1. FIELD-PORTABLE X-RAY FLUORESCENCE SCREENING SAMPLES 2. FIXED-LABORATORY SAMPLES 3. POST-TREATMENT WASTE DESIGNATION 4. EXCAVATION-DIRECTING IN-SITU SAMPLES 3. POST-TREATMENT WASTE DESIGNATION 4. EXCAVATION-DIRECTING IN-SITU SAMPLES 5. CONFIRMATION SAMPLES 6. BACKFILL CHARACTERIZATION SAMPLES 6. BACKFILL SITE MODEL 6. HISTORICAL SOURCES OF CONTAMINATION 6. ELEASE MECHANISMS 6. BACKFILL CHARACTERIZATION SAMPLES 6. OPTENTIAL RECEPTORS 6. POTENTIAL RECEPTORS 7. CUMULATIVE RISK ASSESSMENT 8. MONITORING WELL NETWORK ONCLUSIONS AND RECOMMENDATIONS 1. CONCLUSIONS 2. RECOMMENDATION

TABLES

<u>Table</u>			
3-1	Soil Treatment and Removal Plan		
4-1	Site Investigation Data		
4-2	Treatability Study Data		
4-3	Post-Treatment Waste Designation Data		
4-4	Final Confirmation Sample Data		
4-5	Clean Backfill Characterization Sample Data		
6-1	Fixed-Laboratory Data Quality Checklist		
FIGURES			
<u>Figure</u>			
1-1	St. Paul Island Vicinity Map		
1-2	Site Location Map		
1-3	Lead-Contaminated Soil Study Area – Duplex		
1-4	Lead-Contaminated Soil Study Area – Teacher House 101		
1-5	Lead-Contaminated Soil Study Area – Teacher House 103		
3-1	Proposed Study Area and Actual Site Investigation Sample Locations - Duplex		
3-2	Proposed Study Area and Actual Site Investigation Sample Locations – Teacher House 101		
3-3	Proposed Study Area and Actual Site Investigation Sample Locations – Teacher House 103		
3-4	Planned Soil Treatment and Removal – Duplex		
3-5	Planned Soil Treatment and Removal – Teacher House 101		
3-6	Planned Soil Treatment and Removal – Teacher House 103		
3-7	Excavation Extent and Confirmation Sample Locations and Results - Duplex		
3-8	Excavation Extent and Confirmation Sample Locations and Results – Teacher House 101		
3-9	Excavation Extent and Confirmation Sample Locations and Results – Teacher House 103		
3-10	Waste Disposal Haul Route and Location		
3-11	Clean Backfill Borrow Area Haul Route and Sample Locations		
3-12	Glass Bottles Encountered Along Teacher House 101 Foundation		

APPENDICES

- A NOAA and PSI Personnel Qualifications
- B Photographic Documentation
- C Daily Reports and Logbook Notes
- D In-Situ FPXRF Data
- E Fixed-Laboratory Data
- F ADEC Approval for Corrective Action Report and Conditional Closure Request

ACRONYMS AND ABBREVIATIONS

% Percent ± Plus or minus

18 AAC Title 18 Alaska Administrative Code

ADEC Alaska Department of Environmental Conservation

bgs Below ground surface
BSE Bering Sea Eccotech, Inc.
CAP Corrective action plan
CIH Certified industrial hygienist

cm Centimeter yd³ Cubic yard EHS EHS Alaska

EPA U.S. Environmental Protection Agency

F&BI Friedman & Bruya, Inc.

FPXRF Field-portable x-ray fluorescence meter

ft Foot ft² Square feet

GPS Global positioning system

HEPA High-efficiency particulate air filtration

ICP/MS Inductively coupled plasma/mass spectroscopy

LBP Lead-based paint
mg/kg Milligram per kilogram
mg/L Milligram per liter

MT2 Metals Treatment Technologies, Limited Liability Corporation

NOAA National Oceanic and Atmospheric Administration

PCS Petroleum-contaminated soil P.E. Professional Engineer

PSI PSI Environmental and Instrumentation
QA/QC Quality assurance and quality control
RCRA Resource Conservation and Recovery Act

R.G. Registered Geologist

SGS Environmental Services Inc.

TCLP Toxicity Characteristic Leaching Procedure

TDX Tanadgusix Corporation
Tetra Tech Tetra Tech EM Inc.

TOPA Transfer of Property Agreement

TPA Two-Party Agreement
UST Underground storage tank

EXECUTIVE SUMMARY

This corrective action report/conditional closure request was prepared by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA) to detail corrective actions conducted at the Lead Contaminated Soils Site (NOAA Site 60/Non-Two-Party Agreement Site) on St. Paul Island, Alaska. Activities associated with this site were conducted during the 2006 field season.

The corrective actions occurred along and immediately adjacent the roof drip lines of teacher houses 101 and 103, and duplex 108/109 in St. Paul Village on St. Paul Island, Alaska. These three buildings were abated for lead-based paint and asbestos in the fall of 2006. The lead contaminated soil removal discussed in this document is integral to preventing lead-contaminated soil and dust from potentially recontaminating the abated building interiors. The buildings and lands involved with this corrective action are property of the U.S. government.

NOAA selected Bering Sea Eccotech (BSE) as its contractor to assist in implementing the corrective action plan (CAP) for the treatment, removal, and disposal of lead-contaminated soil. BSE subcontracted with PSI Environmental and Instrumentation (PSI) to direct BSE's treatment, removal, and disposal of lead-contaminated soil, as well as to perform third-party sampling. NOAA and PSI utilized one or more "qualified person" as defined in 18 Alaska Administrative Code (AAC) 75.990(100) and 18 AAC 78.995(118) during CAP implementation.

Consistent with the CAP, the study area for the site was defined as soil surrounding the teacher houses and duplex from ground surface to a maximum of two feet below ground surface, as appropriate, and from the building foundations to six feet horizontally away from the building foundations. NOAA performed site characterization, preliminary waste designation and in-situ treatability testing from June 2006 to September 2006 to finalize site treatment and removal planning. During corrective action activities in October 2006, BSE treated a total of approximately 80 cubic yards of soil in-situ using a phosphate-based soil additive; removed approximately 84 cubic yards of contaminated soil (treated and untreated) from the site; and transported the contaminated soil to NOAA's Landfill Cell C at Tract 42 for disposal by landfilling.

BSE treated, excavated, and disposed of site contaminated soil consistent with the CAP to the extent practicable. Buried utilities and other obstructions prevented further lead soil removal at the northwestern portions of both teacher houses, and along the southern portion of teacher house 103. Analytical data for confirmation samples collected from the bottoms of the excavations indicate that lead soil exceeding the ADEC residential cleanup level of 400 milligrams per kilogram remains at the southeast portion of the

duplex. However, this contamination is deeper than two feet below ground surface and thus requires no treatment or removal. NOAA placed permeable landscaping fabric atop the remaining duplex contamination prior to backfilling.

Because the primary sources of contamination have been removed and lead-contaminated soil has been excavated to the maximum extent possible, NOAA requests a conditional closure determination from ADEC at the Lead Contaminated Soil Site.

1.0 INTRODUCTION

The U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA), Pribilof Project Office is responsible for site characterization and restoration on St. Paul Island, Alaska, located in the Bering Sea, approximately 800 miles west-southwest of Anchorage, Alaska (Figure 1-1). Public Law 104-91 of 1996 and Public Law 106-562 of 2000 provide the mandate for NOAA's activities. A Two-Party Agreement (TPA), signed in 1996 by NOAA and the State of Alaska, provides the framework for corrective action on St. Paul Island (NOAA 1996), and the State of Alaska provides TPA oversight through its Department of Environmental Conservation (ADEC). The Lead Contaminated Soils Site, also known as NOAA Site 60, is not a TPA site. Nevertheless, during the corrective action documented herein, NOAA adhered to the tenets of the TPA. Accordingly, NOAA complied with the State of Alaska regulations for contaminated sites dated October 16, 2005 (ADEC 2005).

The Lead Contaminated Soils Site is comprised of three non-contiguous areas located along and immediately adjacent the roof drip lines of teacher houses 101 and 103 and duplex 108/109 in the City of St. Paul, Alaska (Figure 1-2). The three buildings and lands within the site are property of the U.S. government. NOAA abated these buildings for lead-based paint (LBP) and asbestos in the fall of 2006. Corrective action to remove lead contaminated soil was integral to preventing lead-contaminated soil and dust from recontaminating the abated buildings' interiors.

The objective of the corrective action was the removal of lead-contaminated soil located within 6 lateral feet (ft) of each of the three buildings' foundations, between the ground surface and a depth of up to 2 ft as appropriate due to the presence of contamination (Figures 1-3, 1-4, and 1-5; NOAA 2006a). This area is referred to as the "Lead-Contaminated Soil Study Area." Lead-contaminated soil is defined as soil that exceeds the ADEC residential land use cleanup level of 400 milligrams per kilogram (mg/kg) total lead (note 11 to Tables B1 and B2 of 18 AAC 75.341 [ADEC 2005]).

NOAA, with its contractor, Bering Sea Eccotech (BSE), implemented a corrective action plan (CAP [NOAA 2006a]) for the characterization, treatment, removal, and disposal of lead-contaminated soil associated with this site. BSE subcontracted with PSI Environmental and Instrumentation (PSI) to direct BSE's treatment, removal, and disposal of lead-contaminated soil. PSI also performed third-party sampling of the treated soil, excavation bottoms, and clean backfill. The corrective action activities were completed under the oversight of NOAA or PSI personnel in accordance with the CAP (NOAA 2006a), the TPA, and State of Alaska regulations and guidance. PSI's Keith Guyer, a registered geologist (R.G.), performed all final confirmation and clean backfill sampling. NOAA's Gregory Gervais, a professional

engineer (P.E.), was the primary author for this report. Appendix A contains the Qualified Personnel Form and associated resumes for PSI and NOAA staff.

Except as noted in this corrective action report/conditional closure request, field activities for this investigation were carried out in accordance with the CAP (NOAA 2006a).

2.0 SITE DESCRIPTION

The following subsections provide a description of the site background, site geology, site hydrogeology, and previous investigations for the site.

2.1 SITE BACKGROUND

The Lead Contaminated Soils Site includes soil adjacent to teacher houses 101 and 103 on the southeastern portion of Village Hill, as well as duplex 108/109 east of Village Hill along Sandy Lane (Figure 1-2). The legal descriptions and geographic coordinates for each affected property are:

• Duplex:

- o Legal Description: Section 25 of T35S-R132W; Lot 4: Block 20; 0.32 Acres; 1976 MOU: Parcel 6f; 1984 Transfer of Property Agreement (TOPA): Site 9.
- o Coordinates: 57°07'20.52" north latitude, 170°16'37.77" west longitude

• Teacher House 101:

- o Legal Description: Section 25 of T35S-R132W; Lot 1: Block 9; 0.13 Acres; 1976 MOU: Parcel 6b; 1984 Transfer of Property Agreement (TOPA): Site 9.
- o Coordinates: 57°07'20.52" north latitude, 170°16'37.77" west longitude

• Teacher House 103:

- Legal Description: Section 25 of T35S-R132W; Lot 3: Block 9; 0.17 Acres; 1976 MOU: Parcel 6b; 1984 Transfer of Property Agreement (TOPA): Site 9.
- o Coordinates: 57°07'20.52" north latitude, 170°16'37.77" west longitude

The two teacher houses were constructed in 1924 as single-family residences, while the duplex was constructed in the late-1950s as multi-family housing. Teacher house 101 is unoccupied and currently uninhabitable due to the extensive removal of interior finish features during the 2006 abatement. Teacher house 103 and the duplex were also abated in 2006 and are inhabitable.

2.2 SITE GEOLOGY

St. Paul Island was formed as a result of volcanic eruptions of basaltic lavas onto the southern edge of the Bering Sea Shelf. The island has never been glaciated, and many cinder cones with steep slopes and sharp crater rims are present on the island. The island soil is characterized as primarily volcanic deposits consisting of scoria of varying sizes (pebbles to cobbles) and colors (lenses of gray, red, and black) with fractured basalt occurring at depth (Barth 1956).

Soils in the vicinity of the duplex generally consist of sand to approximately 20 ft below ground surface (bgs), while soils in the vicinity of teacher houses 101 and 103 generally consist of scoria deposits to approximately 70 ft bgs (CESI 2001).

2.3 SITE HYDROGEOLOGY

Groundwater in the vicinity of the duplex is present at approximately 10 ft bgs in an unconfined aquifer and generally flows to the north, toward Village Cove (Mitretek 2005). Groundwater in the vicinity of teacher houses 101 and 103 is present at approximately 80 ft bgs in an unconfined aquifer and generally flows southwest toward the Bering Sea (Mitretek 2005). Based on analyses of existing data, groundwater beneath the City of St. Paul is considered brackish and, therefore, not potable (ADEC 2002a, Mitretek 2002). Currently, groundwater in these areas is not used for drinking water, and the groundwater is not expected for potable use in the future. The State of Alaska Department of Natural Resources designated groundwater beneath a portion of the City, including the duplex location, as a Critical Water Management Area (CWMA). This CWMA legally restricts the use of water wells to prevent the migration of petroleum-related contamination to uncontaminated areas (ADNR 2006).

2.4 PREVIOUS INVESTIGATIONS AND CORRECTIVE ACTIONS

NOAA performed corrective actions associated with leaking underground storage tanks (USTs) and petroleum-contaminated soil (PCS) at these building locations in 2002 and 2003. NOAA identified the UST/PCS sites as Tract A Lot 101 (NOAA Site 53 - TPA Site 9q); Tract A Lot 103 (NOAA Site 55 – TPA Site 9s); and E-Shop/Radio Building and Duplex (NOAA Site 24 – TPA Site 9i). Corrective action reports for each of the UST/PCS sites detail the corrective actions taken at the sites (NOAA 2004a, 2004b; Tetra Tech 2005a). Lead-contaminated soil was found at 4 ft bgs during the 2003 confirmation sampling at TPA Site 9i. The contamination, however, was located closer to the e-shop building than the adjacent duplex. In 2004, NOAA performed additional surface soil sampling near this location, but did not find lead at levels exceeding ADEC's residential soil cleanup level of 400 mg/kg (Tetra Tech 2005a). The two teacher houses received conditional closures from ADEC in October 2004, and the duplex received ADEC's conditional closure in February 2005 (NOAA 2004c, 2004d, 2005a).

Teacher house 103's exterior consisted of LBP covering a cementitious skim coating atop poured concrete walls in 2005. Teacher house 103 also had LBP painted fascia boards and soffits. The house's exterior was purportedly repainted in 2002, so that intact non-LBP covered underlying layers of LBP. Peeling LBP may have been disturbed and dislodged to the ground surface during painting preparatory work (NOAA 2005b).

Teacher house 101's exterior is similar to teacher house 103; however, T-111 wood siding and unpainted plywood cover the LBP-painted skim coating. In 2005, teacher house 101 had peeling LBP on its windows, window sills, and window frames (NOAA 2005c).

In 2005, the duplex's exterior consisted of painted cedar shake shingle siding, painted wood window frames and sills, fascia boards, and soffits (NOAA 2005d). The house's exterior was purportedly repainted during the summer of 2005, so that intact non-LBP covered underlying layers of LBP. Peeling LBP was disturbed and dislodged to the ground surface during painting preparatory work.

NOAA identified LBP hazards associated with the teacher houses and duplex during May 2005 building inspections. At that time, NOAA analyzed composite soil samples for lead using its field-portable x-ray fluorescence meter (FPXRF), and identified potentially lead-contaminated surface soil Additional details from NOAA's building inspections are documented in three phase I environmental site assessment reports (NOAA 2005b, 2005c, 2005d).

NOAA performed building risk assessments at the teacher houses and duplex during the fall of 2005. The risk assessments included the sampling and fixed-laboratory analysis of multiple discrete surface soil and paint chip samples collected along the drip lines of the buildings. Samples representing the soil at and immediately adjacent these buildings' drip lines exceeded 400 mg/kg (EHS 2005). Based on these analytical results, NOAA and ADEC agreed to establish NOAA Site 60, Lead Contaminated Soils Site.

NOAA subsequently composited the soil/paint chip samples at each building and analyzed the samples for leachable lead by the U.S. Environmental Protection Agency's (EPA's) Toxicity Characteristic Leaching Procedure (TCLP). The composite sample representing the surface soil contamination at teacher house 101 did not exceed EPA's leachable lead regulatory limit of 5.0 milligrams per liter (mg/L) for waste disposal, meaning the contaminated soil is not a characteristic hazardous waste (EHS 2006) and can be land disposed in an ADEC-permitted solid waste facility on St. Paul Island. The composite samples representing the surface soil contamination at teacher house 103 and the duplex both exceeded 5.0 mg/L (EHS 2006), meaning the contaminated soil is a characteristic hazardous waste. As such, it would require treatment and disposal at an off-island EPA-permitted Resource Conservation and Recovery Act (RCRA) Subtitle C hazardous waste landfill unless an in-situ treatment approach could reduce the lead leachability to acceptable levels [see Section 3.3 below] prior to disposal.

NOAA performed abatement actions at the buildings in the fall of 2006. At teacher house 103, NOAA removed the LBP-painted fascia boards, removed loose LBP from soffits, enclosed remaining soffit LBP with wood, and encapsulated LBP on the skim coating using an encapsulating paint formulation. At

teacher house 101, NOAA removed LBP painted windows, window sills, window frames, and fascia boards. NOAA also removed loose LBP from soffits and enclosed the remaining soffit LBP with wood. At the duplex, NOAA removed LBP siding, window systems, fascia, and soffits. No LBP remains on the duplex structure.

NOAA contractors conducted quarterly groundwater monitoring from June 2000 to September 2001 and from October 2003 to July 2004 at approximately 38 monitoring wells in St. Paul Village. Several of these wells represent groundwater conditions near the teacher houses and the duplex. None of the wells contained lead contamination exceeding ADEC's Table C groundwater cleanup level of 15 mg/L (ADEC 2005, IT Alaska 2002, Tetra Tech 2005b).

3.0 FIELD ACTIVITIES

The primary objective of the corrective action was to remove lead-contaminated soil exceeding the ADEC residential land use cleanup level of 400 mg/kg from the Lead-Contaminated Soil Study Area, consistent with note 11 to Tables B1 and B2 of 18 AAC 75.341 (ADEC 2005). The following subsections summarize the equipment used and the activities performed during this corrective action. Appendix B provides photographic documentation of the corrective action. Appendix C provides copies of the BSE's daily reports, as well as NOAA's and PSI's logbook notes generated during the corrective action.

3.1 CONTRACTORS AND EQUIPMENT

NOAA contracted with BSE to perform site investigation and corrective action activities. BSE provided personnel and equipment necessary to implement the CAP requirements related to soil treatment, soil removal, soil disposal, and site restoration. BSE subcontracted PSI to provide overall site management and engineering services during soil treatment and excavation activities, and the collection of screening and confirmation samples during implementation of the soil treatment and removal activities. NOAA's Nir Barnea, certified industrial hygienist (CIH), James Wright, P.E., and Greg Gervais, P.E. performed all site characterization and treatability study sampling. PSI's Keith Guyer, R.G. performed all final confirmation and clean backfill sampling. NOAA furnished several pieces of government-owned equipment for use during the corrective action. NOAA representatives performed FPXRF analyses of screening samples and provided survey support using real-time kinematic global positioning system (GPS) techniques and equipment. Appendix A contains the Qualified Personnel Form and associated resumes for PSI and NOAA staff. Debriefing and planning meetings were conducted between NOAA, BSE, and PSI site leaders before the commencement of each day's activities.

Laboratory analytical services were subcontracted to Friedman & Bruya, Inc. (F&BI [Seattle, Washington]), and SGS Environmental Services Inc. (SGS [Anchorage, Alaska]).

Equipment used on site during field activities included the following:

- Hitachi EX150 Excavator (BSE)
- Case 580 Backhoe (BSE)
- Caterpillar 416 D Backhoe (NOAA)
- Bobcat A300 (NOAA)
- Volvo L70 Loader (BSE)

- Caterpillar 966D Loader (BSE)
- Ford 9000D Flatbed Truck (BSE)
- International Dump Truck (BSE)
- Kenworth Dump Truck (BSE)
- Ford Dump Truck (BSE)
- Trimble Total Station 5700 GPS (NOAA)
- Niton 702Xlp FPXRF (NOAA)
- Troy-Bilt 6 horsepower rotary tiller (NOAA)

3.2 SITE INVESTIGATION ACTIVITIES

Before sampling activities were initiated, representatives of the City of St. Paul, Tanadgusix Corporation (TDX), and Alaska Communications Systems identified known utility lines in the vicinity of areas proposed for subsurface sampling (Figures 3-1 through 3-3). Between June 5 and June 8, 2006, and again on August 6, 2006, NOAA excavated test pits or manually advanced direct-push soil borings at 38 locations (16 at the duplex, 10 at teacher house 101, and 12 at teacher house 103). Each location represents a study sub-area measuring approximately 125 square ft (ft²) of surface area. NOAA attempted to remove visible paint chips at each test pit or boring location prior to advancement. However, paint chip removal by high-efficiency particulate air filtration (HEPA) vacuum was determined impracticable as the mass of soil removed greatly exceeded the mass of paint chips removed. Consequently, NOAA decided that visible paint chips would be removed with contaminated soil during excavation activities.

NOAA collected samples at up to five depth intervals in each subarea, intending to characterize contamination in the following strata: surface, 0.0 to 0.5 ft bgs, 0.5 to 1.0 ft bgs, 1.0 to 1.5 ft bgs, and 1.5 to 2.0 ft bgs. NOAA collected 173 characterization samples for analysis by FPXRF and a fixed laboratory. Soil samples were collected into new, resealable plastic bags using disposable direct-push acetate sleeves, decontaminated gardening trowels, and/or Nitrile gloves. Samples were homogenized thoroughly inside the bags. Each bag was numbered uniquely and shipped to NOAA in Seattle. A total of 165 samples (plus 23 laboratory quality control duplicate samples) were analyzed by NOAA with its FPXRF. The remaining eight samples were sent to F&BI for fixed-laboratory analysis by EPA Method 200.8 (Inductively Coupled Plasma/Mass Spectroscopy [ICP/MS]). Although the CAP (NOAA 2006a) indicated EPA Method SW-846 6020 (ICP/MS) would be used for all fixed-laboratory lead analyses,

NOAA approved F&BI's request to use this alternative EPA method based on the laboratory's proficiency with it as well as the method's comparable data quality and defensibility.

Consistent with the CAP (NOAA 2006a), NOAA collected duplicate aliquots of 19 characterization samples for fixed-laboratory quality assurance analysis by EPA Method 200.8 to verify NOAA's 165 FPXRF results. NOAA also used the characterization samples to create 11 representative composite samples to determine the volume of contaminated soil that would be a characteristic hazardous waste upon excavation. Additionally, NOAA sent an aliquot of the LBP paint chip/soil mixture in the HEPA vacuum's bag to determine whether it was a characteristic hazardous waste. The latter 12 samples were prepared for hazardous waste characterization using EPA Method SW-846 1311 (TCLP) to generate leachate, which was then analyzed for lead by EPA Method 200.8.

Based on the site investigation results, NOAA estimated 68 cubic yards (yd³) of soil in the study area exceeded the residential soil cleanup level for lead. Additionally, NOAA estimated that 64 of the 68 yd³ would be a characteristic hazardous waste upon excavation and would require treatment and disposal at a RCRA-permitted hazardous waste facility. These characterization data are interpreted as shown on Figures 3-4 through 3-6, as well as Table 3-1.

3.3 SOIL TREATABILITY STUDY AND REGULATOR COORDINATION ACTIVITIES

Based on 10 of 11 contaminated soil samples from site investigation activities exceeding the RCRA limit of 5 mg/L leachable lead, NOAA performed a treatability study to determine whether Ecobond, a commercially-available phosphate-based soil additive sold by Metals Treatment Technologies, Limited Liability Corporation (MT2), could render lead in the soil unleachable. If the Ecobond could render the lead in the soil unleachable, the contaminated soil would be considered a solid waste rather than a characteristic hazardous waste, allowing it to be land disposed in an ADEC-permitted solid waste facility on St. Paul Island. The treatability test was not described in the site CAP (NOAA 2006a) as NOAA did not determine the need to treat contaminated soil until the site investigation concluded.

NOAA collected two representative soil samples from two discrete locations in the study area, with approximately 2 pounds of soil from each location placed into a resealable plastic bag using disposable Nitrile gloves. Each sample was homogenized; then one aliquot of each sample was sent to MT2 for its own treatablity testing. MT2 found the two aliquots contained leachable lead exceeding the RCRA characteristic hazardous waste threshold prior to treatment. MT2 then mixed Ecobond with the aliquots at a rate of 2 percent (%) by mass. Post-treatment testing by MT2 indicated the lead leachability of each

aliquot reduced to nearly undetectable concentrations and below 5 mg/L, rendering the waste non-hazardous. MT2 sent a sample of Ecobond to NOAA for its independent evaluation.

NOAA provided one aliquot of each untreated sample to F&BI to determine the baseline leachability of the study samples prior to treatment. The laboratory determined the total lead in each sample was 999 and 2,630 mg/kg, respectively. NOAA then mixed Ecobond into each sample at rate of 2% by mass, and sent aliquots to F&BI for analysis. The laboratory found leachable lead in the treated samples was below the laboratory practical quantitation limit of 1.0 mg/L.

NOAA coordinated with ADEC and EPA Region 10 regarding the treatability study and approval to treat lead-contaminated soil in-situ without obtaining an EPA Treatment, Storage, and Disposal Facility permit (NOAA 2006b). Both ADEC and EPA concurred that NOAA could proceed with in-situ treatment of lead-contaminated soil without obtaining additional permits. NOAA agreed that, after Ecobond in-situ treatment of soil in the 0.0 to 0.5 ft depth interval, it would collect six representative samples to verify the soil's lead leachability did not exceed 5.0 mg/L. Following verification, NOAA would treat and excavate the remaining soil.

Based on the site characterization and soil treatability study results, NOAA prepared soil treatment and excavation maps and a table to guide the treatment, testing, and removal of contaminated soil at the site (Figure 3-4 through 3-6, Table 3-1). While ADEC and EPA Region 10 verbally concurred with treating soil at a 2% by mass rate, NOAA instead proposed treating soil at 3% instead to reduce the potential for mix heterogeneity causing in-situ post-treatment waste designation samples to "fail" the leachability testing (NOAA 2006b).

3.4 SOIL TREATMENT AND EXCAVATION ACTIVITIES

Soil treatment, excavation, confirmation and waste designation sampling, and site backfill and restoration activities were conducted at the site between October 14, 2006 and October 25, 2006.

Before treatment and excavation activities were initiated, representatives of the City of St. Paul, TDX, and Alaska Communications Systems identified known utility lines in the vicinity of areas proposed for excavation. Utility identification services also were requested and conducted at various times throughout the corrective action when unknown lines were discovered. Areas of treatment and excavation were based on the maps prepared after the site investigation and treatability testing (Figures 3-4 through 3-6), as well as visual observations (e.g., visible paint chips) and in-situ field screening using NOAA's FPXRF.

Soil treatment was initiated for the contaminated 0.0 to 0.5 ft depth intervals at the three buildings. NOAA and BSE determined by experimentation that NOAA's rotary tiller was capable of tilling the surface grass into the soil, eliminating the need to separately remove the grass. Additionally, since the grass generally contained visible paint chips, tilling the grass into the soil would allow these paint chips to be treated along with the soil. BSE applied Ecobond to the ground surface, then mixed the Ecobond with the soil and surface grass using a minimum of two passes with the rotary tiller. NOAA determined in the field that using a mix rate of 2% (the treatability study mix rate) was more prudent than the planned 3% because NOAA had a limited amount of Ecobond on the island and wanted to reserve a significant quantity for potential re-treatment of hot spots.

PSI collected two waste designation samples from the treated soil and grass at each building, for a total of six designation samples (plus one blind duplicate sample), consistent with NOAA's soil treatment plan (NOAA 2006b). Based on fixed-laboratory TCLP results for leachable lead, the in-situ treatment was determined to be fully successful in removing the hazardous characteristic from the soil and grass.

BSE, under PSI's technical direction, removed the treated 0.0 to 0.5 ft bgs soil and grass using BSE's and NOAA's backhoes. BSE's backhoe initially loaded the treated soil directly into its dump trucks at the duplex. BSE found that the following aspects of the process limited the soil removal rate:

- (1) treating and removing soil in 0.5 ft thick intervals though the soil contamination extended as deep as 2.0 ft bgs; and
- (2) loading contaminated soil directly into dump trucks instead of temporarily stockpiling excavated soil, then loading in larger batches.

The slow removal production rates were due to poor hydraulic controls on BSE's backhoe and limited space available for staging the dump trucks for loading because of the close proximity to buildings, other obstructions (e.g., heating oil aboveground storage tanks, fences), and close proximity to other BSE personnel and equipment performing building abatement work. BSE, PSI, and NOAA thus modified the soil treatment and removal approach cited in the project planning documents (NOAA 2006a, 2006b) in the following two ways:

- (1) mixing Ecobond into the soil for the full vertical treatment beginning at 0.5 ft bgs using the backhoe bucket, combining the treatment and excavating actions into one function; and
- (2) staging excavated soil into nine temporary stockpiles and periodically loading the piles into dump trucks to reduce the waiting time for the trucks and the number of times the operator had to reposition the backhoe.

NOAA personnel determined that the use of the backhoe to mix Ecobond into the soil provided an adequate level of mixing based on the backhoe's visually and mechanically similar distribution of Ecobond in the soil compared with the rotary tiller. NOAA, BSE, and PSI also decided to leave the temporary stockpiles unlined given the short duration of stockpiling, the limited mobility of lead in soil, NOAA's ability to use its FPXRF to evaluate stockpile footprints for potential lead cross-contamination, and NOAA's willingness to remove cross-contaminated surface soil.

The "planned" in-situ treatment method was used on all 0.0 to 0.5 ft bgs soil at all three buildings; the backhoe mixing in-situ treatment method was used for the remaining treated soil at all three buildings once the 0.0 to 0.5 ft bgs soil was removed. The "planned" removal and loading method was used on the first two dump truck loads at the duplex for soil 0.0 to 0.5 ft bgs. The temporary stockpiling method was employed for the remaining soil at all three buildings. Stockpiles were periodically loaded into BSE dump trucks. NOAA, BSE, and PSI personnel frequently excavated contaminated soil with hand shovels in areas with visible paint chips and where FPXRF screening indicated hot spots remained.

NOAA and its contractors followed NOAA's planned treatment and excavation location plan (Table 3-1; Figures 3-4 through 3-6) with the exceptions listed below.

- (1) Duplex: buried utilities prevented further excavation in several locations:
 - a. potable water main vault in subarea 1a
 - b. potable water shutoff valve box in subareas 2a and 2b
 - c. electrical lines in subarea 3b

Note that the potable water main vault and shutoff valve box did not prevent NOAA from removing contaminated soil. The surface soil covering the concrete vault was removed, and the vertical extent of the vault and valve box exceeded the ADEC point of compliance depth of 2 ft bgs for this site.

- (2) Duplex: BSE treated and excavated most of subarea 2a to a depth of 2.5 ft bgs (planned excavation to 2.0 ft bgs) to aid with site grading to direct runoff away from the building foundation.
- (3) Duplex: BSE excavated subarea 7a to a depth of 1.5 ft bgs (planned excavation to 1.0 ft bgs) because NOAA's in-situ FPXRF screening during treatment and excavation activities indicated contamination extended deeper than anticipated.
- (4) Duplex: BSE removed surface soil in part of subarea 6a (no excavation planned) due to the presence of visible paint chips that had fallen from LBP-painted tin found beneath the building siding and removed during abatement activities.
- (5) Teacher House 101: buried telephone lines prevented further excavation in subareas 1a, 2a and 2b.
- (6) Teacher House 101:

- a. BSE treated and excavated most of subarea 1a to a depth of 2.5 ft bgs (planned excavation to 1.0 ft bgs) because NOAA's in-situ FPXRF screening indicated contamination extended deeper than anticipated. Additionally, the deeper excavation aided with site grading to direct runoff away from the building foundation.
- b. BSE treated and excavated the eastern three-quarters of subarea 3a to a depth of 2.0 ft bgs (planned excavation to 1.0 ft bgs) because NOAA's in-situ FPXRF screening indicated contamination extended deeper than anticipated. The western one-quarter of this subarea could only be treated and excavated to approximately 0.5 ft bgs due to buried telephone lines.
- (7) Teacher House 103: buried utilities and other obstructions prevented further excavation in several locations:
 - a. cable television trunk line in subareas 3a and 3b
 - b. heating oil aboveground storage tank in subarea 6b
- (8) Teacher House 103: BSE treated and excavated most of subarea 5a to a depth of 3.0 ft bgs (planned excavation to 2.0 ft bgs) because NOAA's in-situ FPXRF screening indicated contamination extended deeper than anticipated.
- (9) Teacher House 103: BSE treated and excavated most of subarea 6a to a depth of 2.0 ft bgs (planned excavation to 1.0 ft bgs) because NOAA's in-situ FPXRF screening indicated contamination extended deeper than anticipated.

PSI collected 13 confirmation samples from the bottom of the excavations for fixed-laboratory analysis for total lead (Figures 3-7 through 3-9).

Although a soil sample collected from the excavation bottom at duplex subarea 8a indicated that lead remains above the ADEC residential cleanup level, the contamination resides deeper than 2.0 ft bgs (Figure 3-7). Consistent with the ADEC-approved CAP (NOAA 2006a), this soil does not require removal as the point of compliance for this contaminant is 0.0 to 2.0 ft bgs. NOAA placed a permeable, visible barrier at the bottom of the excavation where lead contamination remained. NOAA intends to include notification of the presence of this contamination in NOAA's parcel 6f (including the duplex) quitclaim deed.

NOAA excavated an estimated total of 84 yd³ of lead-contaminated soil from this site, including 29 yd³ at the duplex, 33 yd³ at teacher house 101, and 22 yd³ at teacher house 103. This exceeded the 68 yd³ of soil identified during NOAA's site investigation as requiring removal. BSE treated 80 yd³ of the estimated 84 yd³ of removed soil. This exceeded the 64 yd³ identified during NOAA site investigation as requiring treatment. NOAA treated and removed the additional 16 yd³ due to in-situ FPXRF results. As indicated in Section 3.2, 4 yd³ of soil was previously characterized as a non-hazardous waste and required no treatment prior to removal (Figure 3-3). The treated soil weighed about 292,000 pounds based on an assumed in-situ density of 3,645 pounds per yd³ (NOAA 2006b). NOAA used approximately 6,000

pounds of Ecobond in treating this soil, for an average application rate of 2.06% by mass. Additionally, BSE removed an estimated 40 yd³ of clean soil during drainage re-grading activities around the three buildings.

3.5 DISPOSAL

BSE transported an estimated 80 yd³ of treated lead-contaminated soil, 4 yd³ of untreated lead-contaminated soil, and 40 yd³ of clean soil from regrading activities to NOAA-owned Tract 42. There BSE excavated four disposal trenches into the landfill's cell C closure cap and landfilled the soil. BSE performed decontamination of NOAA and BSE earthmoving equipment at a disposal trench in landfill cell C using a cold water pressure washer. BSE disposed of the decontamination water by allowing it to run into a disposal trench that contained Ecobond-treated soil. Approximately four other disposal trenches in the same area of landfill cell C were excavated by BSE for disposing of solid waste and construction and demolition debris waste generated from building abatement and roofing activities BSE performed under contract with NOAA. Most disposal trenches received both contaminated soil and building abatement and roofing waste. BSE used the trench excavation soil to cover the disposal trenches consistent with the CAP (NOAA 2006a). Figure 3-10 shows the disposal trench area.

3.6 BACKFILLING AND SITE RESTORATION

Each excavation was backfilled after FPXRF screening sample analyses indicated total lead concentrations below the ADEC cleanup level, and after fixed-laboratory confirmation samples had been collected. If remaining contamination was suspected but further excavation was prevented by the presence of groundwater or obstructions, backfill was also placed after fixed-laboratory confirmation samples had been collected. Backfill operations involved transporting clean fill material in BSE's decontaminated dump trucks from the TDX-owned Lake Hill quarry to the site (Figure 3-11); dumping the material into the excavations; and compacting the fill material with the backhoe or front-end loader bucket. Each area of excavation was restored to a grade intended to direct surface water drainage away from the building foundations.

BSE placed an estimated 70 yd³ of clean backfill at the site.

3.7 INVESTIGATION-DERIVED WASTE MANAGEMENT

Investigation-derived waste generated during this corrective action included:

• Used nitrile sampling gloves, which were placed in trash bags and disposed as municipal solid waste.

- Used disposable cleaning wipes, which were placed in trash bags and disposed as municipal solid waste.
- Plastic bags, acetate sampling sleeves and glassware, which were emptied of soil and disposed as municipal solid waste.
- Reusable sampling equipment decontamination water from the June 2006 site characterization, which was transferred to a plastic bucket and characterized to have total lead exceeding the ADEC Table C groundwater cleanup level of 0.015 mg/L. The bucket will be disposed off-island at a permitted facility along with other IDW accumulated by NOAA during its cleanup activities during building abatement. As necessary, NOAA will provide a certificate of waste disposal for the bucket to ADEC in a separate submittal from this document.

3.8 SITE SURVEYING

NOAA representatives surveyed sampling locations and excavation extents using a survey-grade Trimble Total Station® 5700 differential GPS. The Trimble Total Station® 5700 is a GPS data collection and mapping system that combines a high-performance, dual-channel GPS receiver and antenna with a local base station and real-time differential correction system to provide survey-grade accuracy in real time. Horizontal positions of soil sampling locations and excavation boundaries were determined to within approximately plus or minus (\pm) 1 centimeter (cm), and elevations were determined to within approximately \pm 2 cm. A repeater radio was placed at elevated locations near the site work areas to provide radio transmission from the base station to the site location. Data were collected in latitude and longitude referenced to the World Geodetic System 1984 Datum, Universal Transverse Mercator Zone 2 coordinate system in meters.

At times, the Trimble Total Station® 5700 equipment could not be used to survey the site with cm-level precision as a result of inadequate satellite coverage or a malfunctioning local base station. On these occasions, NOAA used a lower precision GPS surveying approach to approximate the locations with submeter accuracy.

3.9 HISTORIC PRESERVATION

BSE encountered seven glass bottles while excavating along the north side of the teacher house 101 foundation in subarea 2a. The bottles were unearthed with a hand shovel in one specific area, approximately 0.5 ft north of the building foundation at approximately 1.5 ft bgs (Figure 3-8). No other articles or broken bottles were located with the bottles. The soil surrounding the bottles was unconsolidated, but not apparently less so than other soil near teacher house 101 at this depth interval. NOAA took possession of these bottles, photographed them (Figure 3-12), then sent a photograph to NOAA's historic preservation lead for the Pribilof Islands, Mr. Bernard Denno. The photograph was subsequently provided to a NOAA contractor with archaeologist credentials, Dr. Charles Mobley, to

determine the cultural significance of the bottles. Dr. Mobley suggested that the bottles predate the teacher houses, and that their discovery location may have been an outhouse hole or some other sort of cache. No other potential culturally significant artifacts were encountered during this corrective action.

4.0 FIELD SCREENING AND ANALYTICAL SAMPLING

Throughout corrective action activities, NOAA and PSI collected FPXRF screening and fixed-laboratory definitive data samples in accordance with the CAP (NOAA 2006a) and NOAA's Master Quality Assurance Plan (NOAA 2006c). FPXRF screening sample analyses were performed by NOAA representatives and used by NOAA for excavation planning, as well as by PSI to direct excavation activities and identify locations for analytical confirmation samples. Based on evaluation of the excavation screening sample results, analytical sampling locations were selected where the greatest potential for residual contamination existed.

The following subsections describe the instrumentation used and procedures followed during the collection of FPXRF screening and fixed-laboratory site characterization, waste designation, confirmation, and clean backfill samples. The FPXRF results are discussed in Section 5. Data quality is discussed in Section 6.

4.1 FIELD-PORTABLE X-RAY FLUORESCENCE SCREENING SAMPLES

FPXRF involves the use of x-rays from a depleted radioactive source to cause a fluorescence response from metallic elements during the change of energy bands by electrons, with the response measured by a sensor then compared against standard responses using an on-board computer. ADEC approved the use of the FPXRF for site characterization and excavation screening as part of NOAA's CAP for the site (NOAA 2006a).

NOAA used FPXRF in four different applications.

- (1) During site characterization, final confirmation sampling, and clean backfill characterization sampling, NOAA or PSI collected 181 samples into resealable plastic bags, with approximately 250 grams of soil collected per sample. NOAA then homogenized the soil in each bag, and analyzed each sample ex-situ with the FPXRF. The FPXRF results from this application are compared with results from the fixed laboratory to verify FPXRF accuracy.
- (2) During excavation activities, NOAA used the FPXRF to rapidly screen soil in-situ at the excavation bottom to determine the presence of localized hot spots requiring additional removal.
- (3) NOAA also provided in-situ FPXRF results to PSI as additional information to guide PSI's selection of final confirmation sampling locations.

(4) Finally, NOAA used the FPXRF to verify BSE removed all temporarily stockpiled lead-contaminated soil, with PSI directing additional removal when FPXRF in-situ screening indicated the presence of residual contamination.

Tables 4-1, 4-2, 4-4, and 4-5 provide a summary of FPXRF ex-situ samples collected for the site investigation, confirmation sampling, and clean fill verification sampling. FPXRF samples from excavation in-situ screening are summarized in Appendix D.

4.2 FIXED-LABORATORY SAMPLES

Fixed-laboratory analytical samples were collected according to the following procedures. First, approximately 250 grams of soil was collected from the sampling location and directly placed into a clean, resealable plastic bag and homogenized. For NOAA-collected samples, the homogenized bag was hand delivered to F&BI under chain-of-custody. For PSI-collected samples, an aliquot from the homogenized sample was placed in a 4-ounce jar. PSI then packaged and shipped the sample jars under chain-of-custody to SGS using air cargo and courier services.

Fixed-laboratory total lead analyses were performed using ICP/MS, while leachable lead analyses were performed by first extracting the samples using EPA Method SW-846 1311 (TCLP) then analyzing the leachates using an ICP/MS.

Tables 4-1 through 4-5 provide a summary of fixed-laboratory samples collected for the corrective action.

Site Characterization

NOAA sent 19 site characterization samples collected in June 2006 for fixed-laboratory total lead analysis to verify the accuracy of the 165 FPXRF site characterization analyses. NOAA sent eight site characterization samples collected in August 2006 for fixed-laboratory total lead analysis to fill data gaps identified after the June 2006 site characterization sampling concluded. NOAA sent 12 waste designation samples, composited from samples collected in June 2006, for fixed-laboratory total lead and leachable lead analyses to determine whether site contaminated soil and grass would require treatment as a hazardous waste prior to disposal.

Treatability Study

NOAA sent four treatability study samples for fixed-laboratory total lead and leachable lead analyses to verify MT2's Ecobond testing.

Post-Treatment Waste Designation

PSI sent six in-situ soil treatment samples for fixed-laboratory total lead and leachable lead analyses analysis to determine whether BSE successfully treated the soil to eliminate its hazardous waste characteristic of leachability.

Confirmation Sampling

PSI sent 13 confirmation samples for fixed-laboratory total lead analysis to confirm site excavation removed all soil exceeding the ADEC residential cleanup level at the point of compliance.

Clean Backfill Verification

PSI sent three clean backfill samples for fixed-laboratory total lead analysis to verify the Lake Hill scoria pit as a clean source of backfill material.

This page intentionally left blank.

5.0 ANALYTICAL RESULTS

The following subsections summarize the analytical results for soil samples collected for this corrective action. Tables 4-1 through 4-5 summarize the FPXRF and fixed-laboratory results for all samples except in-situ FPXRF samples analyzed during excavation activities. Appendix D details all FPXRF results, including in-situ samples analyzed during excavation activities to guide excavation. Appendix E provides the analytical data packages for project samples analyzed by fixed laboratories.

5.1 SITE CHARACTERIZATION SAMPLES

FPXRF and fixed-laboratory analyses indicated lead concentrations exceeded the ADEC residential cleanup level of 400 mg/kg in 29 of the 38 study area subareas. Sixteen of the 29 contaminated subareas demonstrated elevated lead concentrations to a maximum depth of 0.5 ft bgs. Only 4 of the 29 contaminated subareas demonstrated elevated lead concentrations as deep as 2.0 ft bgs. Total lead analytical results for NOAA's 173 characterization samples ranged from non-detect to 9,936 mg/kg. Only 1 of the 12 waste designation samples collected in June 2006 contained leachable lead below the RCRA characteristic hazardous waste threshold of 5.0 mg/L, and the maximum leachable lead concentration identified was 26.2 mg/L. Figures 3-1 through 3-6 indicate the site characterization sample locations and summarize the characterized extent of contamination and locations of hazardous and non-hazardous waste at the site prior to in-situ treatment and excavation activities. Table 4-1 summarizes these analytical results.

5.2 TREATABILITY STUDY SAMPLES

Fixed-laboratory analyses by NOAA indicated pre-treatment leachable lead concentrations for the two test aliquots were 9.11 and 9.35 mg/L, and post-treatment concentrations (sample aliquots mixed with a 2% by mass quantity of Ecobond) were both less than the laboratory practical quantitation limit of 1.0 mg/L. Table 4-2 summarizes these analytical results.

5.3 POST-TREATMENT WASTE DESIGNATION

Fixed-laboratory analyses indicated none of the six post-treatment waste designation samples contained leachable lead greater than SGS's practical quantitation limit of 0.5 mg/L, which is below the RCRA characteristic hazardous waste threshold of 5.0 mg/L. Table 4-3 summarizes these analytical results.

5.4 EXCAVATION-DIRECTING IN-SITU SAMPLES

In-situ FPXRF analyses aided PSI with determining whether additional soil required removal to meet corrective action objectives. Appendix D details these data by general location and actual time, indicating the progression of removing soil exceeding the ADEC residential cleanup level of 400 mg/kg. As described in Section 3.4, some anticipated soil removal could not be performed due to buried utilities and other obstructions. In some of these instances the Appendix D data show the remaining contaminant levels at these locations based on in-situ FPXRF screening.

5.5 CONFIRMATION SAMPLES

FPXRF and fixed-laboratory analyses indicated lead concentrations exceeded the ADEC residential cleanup level of 400 mg/kg in 1 of the 13 confirmation samples, with a concentration of 1,830 mg/kg in duplex subarea 8a at a depth of 2 ft bgs. Figures 3-7 through 3-9 indicate the confirmation sample locations and summarize the results. Table 4-4 also summarizes the analytical results.

5.6 BACKFILL CHARACTERIZATION SAMPLES

FPXRF and fixed-laboratory analyses indicated lead concentrations were below the ADEC residential cleanup level of 400 mg/kg in all three backfill characterization samples collected from the Lake Hill quarry. Figure 3-11 indicates the backfill characterization sample locations. Table 4-5 summarizes these analytical results.

6.0 QUALITY ASSURANCE AND QUALITY CONTROL

To ensure that information obtained from field and laboratory procedures is an accurate and defensible representation of site conditions, quality assurance and quality control (QA/QC) procedures were implemented. NOAA followed the operational guidelines set forth in the ADEC Environmental Laboratory Data and Quality Assurance Requirements memorandum (ADEC 2006a) as well as those stipulated in the Pribilof Islands site restoration Master Quality Assurance Plan (NOAA 2006c). These documents provide detailed QA/QC information pertaining to each quality control item discussed in this section. Table 6-1 is a completed copy of the ADEC-required Laboratory Data Review Checklist (ADEC 2006b).

Based on the data quality review detailed in Table 6-1, all project chemical data presented in Section 5 met project data quality requirements and are satisfactory for decision-making purposes.

This page intentionally left blank.

7.0 CONCEPTUAL SITE MODEL

A conceptual site model is used to evaluate exposure pathways for human health and ecological receptors (ADEC 2000). The following subsections provide an evaluation for each of the elements of the conceptual site model for the site including historical contamination sources, release mechanisms, impacted media, migration pathways, exposure routes, potential receptors, and the need for a cumulative risk assessment.

7.1 HISTORICAL SOURCES OF CONTAMINATION

Historical sources of contamination were abated in the fall 2006. NOAA and its contractors removed LBP-painted soffits, fascia, and cedar shake siding, and encapsulated or enclosed the remaining LBP.

7.2 RELEASE MECHANISMS

Potential release mechanisms include paint peeling from exterior building components.

7.3 IMPACTED MEDIA

As a result of releases, lead-contaminated soil was identified during previous investigations. In this 2006 corrective action, approximately 84 yd³ of lead-contaminated soil were removed to a maximum depth of 3 feet bgs. The contamination remaining at the site above the ADEC residential cleanup level of 400 mg/kg resides at the southeast corner of the duplex building (Figure 3-7). Lead was detected in site groundwater at former monitoring well MWA-8, located south of teacher house 103. The maximum level at this location was 0.0023 mg/L (Tetra Tech 2005b), which is less than the ADEC Table C groundwater cleanup level of 0.015 mg/L.

7.4 MIGRATION PATHWAYS

The majority of lead has been removed from this site, and the source volume has been reduced significantly. The presence of remaining contamination is limited to soil deeper than 2 ft bgs at duplex subarea 8a and inaccessible shallow soil adjacent to buried utilities and other obstructions. Excepting approximately 340 square feet of inaccessible surface contaminated soil at teacher house 101 subarea 2a and teacher house 103 subareas 3a, 3b, and 6b, the site's contaminated surface soil has been removed and no overland transport pathway is available. Vegetation exists at the inaccessible locations, restricting the migration of lead-contaminated soil.

7.5 EXPOSURE ROUTES

Excepting teacher house 101 subarea 2a and teacher house 103 subareas 3a, 3b, and 6b, no direct exposure pathways such as inhalation or ingestion of lead-contaminated soil exist at this site. The native grass root mass will further restrict the inhalation and ingestion exposure routes at these three subareas, presuming future site activities do not damage the root mass or otherwise create new exposure routes. Past groundwater monitoring at the site indicates lead contamination does not exceed ADEC Table C cleanup levels for lead. Given that lead contamination sources have been remediated, and that much of the City of St. Paul is designated as a Critical Water Management Area, prohibiting the use of groundwater, indirect exposure to contaminated groundwater is highly unlikely.

7.6 POTENTIAL RECEPTORS

Because potential exposure routes have been mitigated, and indirect exposure routes are not considered viable given existing site conditions, no potential receptors have been identified.

7.7 CUMULATIVE RISK ASSESSMENT

Cumulative risk is defined as the sum of risks resulting from multiple sources and pathways to which humans are exposed. When more than one hazardous substance is present at a site or multiple exposure pathways exist, the cleanup levels in Table B1 of 18 AAC 75.341 and Table C of 18 AAC 75.345 may need to be adjusted downward. There is only one hazardous substance (lead) at this site. Lead is not included in cumulative risk assessment calculations because it was deemed by ADEC and EPA to be inappropriate to apply a reference dose or cancer slope factor to lead (ADEC 2002b). Therefore, no cumulative risk assessment calculations are appropriate for this site.

7.8 MONITORING WELL NETWORK

No monitoring wells currently exist in the near vicinity of the site. Through 2004, a total of eight monitoring wells were in the vicinity of the site: MW46-13, MW46-17, MW46-18, MW46-19, MW46-20, MW46-26, MWA-7, and MWA-8 (Tetra Tech 2005b). However, lack of groundwater contamination at these locations and the presence of other monitoring wells better located for long-term monitoring allowed NOAA to decommission these wells in 2005 and 2006.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The following subsections present conclusions and recommendations for the Lead Contaminated Soils Site based on field activities performed and analytical findings obtained from corrective action activities conducted during the 2006 field season.

8.1 CONCLUSIONS

During the 2006 field season, approximately 80 yd³ of lead-contaminated soil about the perimeters of the duplex, teacher house 101, and teacher house 103 were treated in-situ with Ecobond and rendered a non-hazardous waste. After treatment, approximately 84 yd³ of lead-contaminated soil were removed from the treatment locations and two adjacent subareas that required no treatment. Although soil samples collected from the excavation bottom at the southeast corner of the duplex indicate that concentrations of lead remain above the ADEC residential soil cleanup level, the contamination lies deeper than the ADEC point of compliance ranging from ground surface to 2 ft bgs. In addition, about 340 square feet of inaccessible surface contaminated soil also remains at teacher houses 101 and 103, but further excavation is impracticable due to the presence of the active utility lines and an aboveground storage tank.

Groundwater in the vicinity of the site is not contaminated above the ADEC Table C cleanup level for lead.

8.2 **RECOMMENDATION**

Because primary sources of contamination have been removed and because the excavation of lead-contaminated soil has been conducted to the maximum extent practicable at the site, NOAA recommends no further action at this site. Prior to property transfer, NOAA will document the remaining contamination in applicable quitclaim deeds informing future landowners and other interested parties of the nature and extent of remaining lead contamination in soil.

In accordance with paragraph 59 of the TPA (NOAA 1996), NOAA requests written confirmation that NOAA completed all appropriate corrective and closure actions, to the maximum extent practicable, at the Lead Contaminated Soils Site, in accordance with the TPA and that ADEC grant a conditional closure that will not require further remedial action from NOAA. ADEC will/may require additional containment, investigation, or cleanup if subsequent information indicates that the level of contamination that remains does not protect human health, safety, or welfare, or the environment. A conditional closure request and signature blocks are found on the following page.

Request for Conditional Closure Lead Contaminated Soils Site, NOAA Site 60/Non-Two Party Agreement St. Paul Island, Alaska

Approvals: In accordance with Paragraph 59 of the Two Party Agreement, this is to confirm that all corrective action has been completed to the maximum extent practicable at the Lead Contaminated Soils Site on St. Paul Island in accordance with the Agreement.

For the National Oceanic and Atmospheric Administration				
John Lindsay	Date			
NOAA, Pribilof Project Office				
For the Alaska Department of Environmental Conservation	Date			
Louis Howard	Date			
Alaska Department of Environmental Conservation				
Remedial Project Manager				

Request for Conditional Closure Lead Contaminated Soils Site, NOAA Site 60/Non-Two Party Agreement St. Paul Island, Alaska

Approvals: In accordance with Paragraph 59 of the Two Party Agreement, this is to confirm that all corrective action has been completed to the maximum extent practicable at the Lead Contaminated Soils Site on St. Paul Island in accordance with the Agreement.

For the National Oceanic and Atmospheric Administration

John Lingsay

NOAA Pribilof Project Office

2/2/2007

For the Alaska Department of Environmental Conservation

Louis Howard

Alaska Department of Environmental Conservation

Remedial Project Manager

This page intentionally left blank.

9.0 REFERENCES

- Alaska Department of Environmental Conservation (ADEC). 1991. *Interim Guidance for Non-UST Contaminated Soil Cleanup Levels. Contaminated Sites Program.* July 17, 1991.
- ADEC. 2000. Risk Assessment Procedures Manual. June 8.
- ADEC. 2002a. Letter from Louis Howard, Project Manager, Alaska Department of Environmental Conservation, to John Lindsay, (NOAA Pribilof Project Office Manager, Regarding ADEC Conditional Approval for Applying the Ten Times Rule. May 30.
- ADEC. 2002b. Cumulative Risk Guidance. November 7.
- ADEC. 2003. 18 AAC 78. Underground Storage Tanks. State of Alaska. Amended through January 30.
- ADEC. 2005. Title 18 of the *Alaska Administrative Code* 75, Articles 3 and 9. Oil and Hazardous Substances Pollution Control Regulations. State of Alaska. Amended through October 16, 2005.
- ADEC. 2006a. *Technical Memorandum 06-002. Environmental Laboratory Data and Quality Assurance Requirements.* ADEC Division of Spill Prevention and Response, Contaminated Sites Program. May 18.
- ADEC. 2006b. *Laboratory Data Review Checklist*. ADEC Division of Spill Prevention and Response, Contaminated Sites Program. Submitted to NOAA on September 27.
- Barth, T.F.W.. 1956. U.S. Department of the Interior Geological Survey Bulletin 1028-F, Geology and Petrology of the Priblilof Islands, Alaska.
- Columbia Environmental Sciences, Inc. (CESI). 2001. *Draft Site Characterization Report, Tract 46 and Vicinity (TPA Site 9), St. Paul Island, Alaska.* Version 2.1. CESI, Kennewick, WA. December 16.
- EHS Alaska (EHS). 2005. EHS-Alaska, Inc. (EHS). 2005. LBP Risk Assessment and Asbestos Air Monitoring Report, 6 NOAA Properties, St. Paul Island, Alaska. November 15.
- EHS. 2006. Lead Bulk Sample Analysis by TCLP. Laboratory Data Report. Final. March 17.
- IT Alaska Corporation. 2002. Draft Annual Groundwater Monitoring Report 2001, St. Paul Island, Alaska. March.
- Mitretek Systems. 2002. Groundwater Use and Classification in the Vicinity of Tract 46, St. Paul Island, Pribilof Islands, Alaska. Final. May.
- National Oceanic and Atmospheric Administration (NOAA). 1996. *Pribilof Islands Environmental Restoration Two-Party Agreement, Attorney General's Office File No. 66-1-95-0126*. January 26.
- NOAA. 2004a. UST Removal and Corrective Action Report TPA Site 9-Q House 101 St. Paul Island, Alaska. February 9.

- NOAA. 2004b. *UST Removal and Corrective Action Report TPA Site 9-S House 103 St. Paul Island, Alaska.* February 9.
- NOAA. 2004c. Request for NFRAP, House 101, TPA Site 9q/Site 53. St. Paul Island, Alaska. September 29
- NOAA. 2004d. Request for NFRAP, House 103, TPA Site 9s/Site 55. St. Paul Island, Alaska. October 11.
- NOAA. 2005a. Request for Conditional Closure, Duplex Building and E-Shop, TPA Site 9i/Site 24. St. Paul Island, Alaska. February 1.
- NOAA. 2005b. *Phase I Environmental Site Assessment, Teacher House 103*. St. Paul Island, Alaska. October 19.
- NOAA. 2005c. *Phase I Environmental Site Assessment, Teacher House 101*. St. Paul Island, Alaska. October 19.
- NOAA. 2005d. *Phase I Environmental Site Assessment, Duplex Building*. St. Paul Island, Alaska. October 19.
- NOAA 2006a. Corrective Action Plan for the Removal of Lead Contamination at Teacher Houses 101 and 103, and the Duplex, Lead Contaminated Soils Site (NOAA Site 60/Non-TPA). St. Paul Island, Alaska. May 15.
- NOAA. 2006b. Memorandum from John Lindsay, NOAA, to Jan Palumbo, EPA Region 10 RCRA Permitting Coordinator, regarding Proposal for in-situ treatment of soil failing TCLP for leachable lead using commercial phosphate additives to render it non-hazardous, followed by disposal in on-island permitted solid waste landfill.. Revised September 29.
- NOAA 2006c. *Master Quality Assurance Plan. Pribilof Islands Environmental Restoration Project.*National Oceanic and Atmospheric Administration Pribilof Project Office. March.
- Tetra Tech EM Inc. (Tetra Tech). 2005a. Final Corrective Action Report, Site 24/TPA Site 9i Duplex Building and Former E-Shop. St. Paul Island, Alaska. January 7
- Tetra Tech. 2005b. *Final Field Investigation Report, St. Paul Island, Alaska.* Pribilof Islands Environmental Restoration Project. St. Paul Island, Alaska. June 23.
- U.S. Environmental Protection Agency. 1996. *Test Methods for Evaluating Solid Waste*. EPA/SW-846. Third Edition and Updates. December.

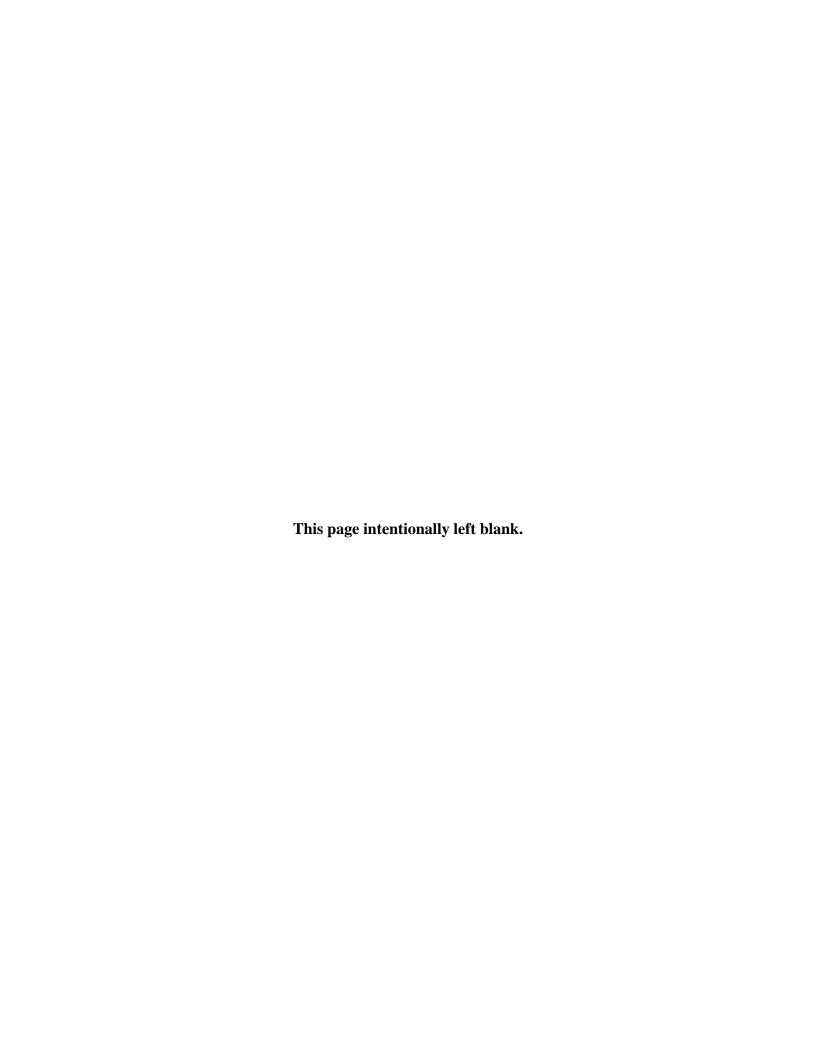


Table 3-1
Soil Treatment and Removal Plan

	LEGEND							
< 400 mg/kg	>400 mg/kg + Non-HW	>400 mg/kg +						
		HW						
С	NHW	HW						

Building	Subarea Name	Contaminated Soil Extent (ft²)	Planned Ecobond per Subarea (lbs.)	Depth: 0-3"	3-6"	6-12"	12-18"	18-24"	Non-HW Volume (yd³)	HW Volume (yd³)
Duplex	1a	91	92.1	HW	С	С	С	С	0.0	0.8
1	1b	0	0.0	С	С	С	С	С	0.0	0.0
	2a	63	63.8	HW	С	С	С	С	0.0	0.6
	2b	0	0.0	С	С	С	С	С	0.0	0.0
	3a	0	0.0	С	С	С	С	С	0.0	0.0
	3b	83	84.0	HW	С	С	С	С	0.0	8.0
	4a	100	810.0	HW	HW	HW	HW	HW	0.0	7.4
	4b	138	279.5	HW	HW	С	C	С	0.0	2.6
	5a	87	264.3	HW	С	С	HW	С	0.0	2.4
	5b	0	0.0	С	С	С	С	С	0.0	0.0
	6a	0	0.0	С	С	С	С	С	0.0	0.0
	6b	0	0.0	С	С	С	С	С	0.0	0.0
1	7a	63	0.0	NHW	NHW	С	С	NHW	2.3	0.0
1	7b	75	0.0	С	С	NHW	С	С	1.4	0.0
1	8a	82	332.1	С	С	HW	HW	С	0.0	3.0
	8b	0	0.0	С	С	С	С	С	0.0	0.0
	Total	782	1926						4	18

Building	Subarea Name	Contaminated Soil Extent (ft ²)	Planned Ecobond per Subarea (lbs.)	Depth: 0-3"	3-6"	6-12"	12-18"	18-24"	Non-HW Volume (yd³)	HW Volume (yd³)
TH101	1a	118	239.0	С	С	HW	С	С	0.0	2.2
	1b	0	0.0	С	С	С	С	С	0.0	0.0
	2a	111	449.6	HW	HW	HW	С	С	0.0	4.1
	2b	123	249.1	HW	HW	С	С	С	0.0	2.3
	3a	80	324.0	HW	HW	HW	С	С	0.0	3.0
	3b	90	182.3	HW	HW	С	С	С	0.0	1.7
	4a	0	0.0	С	С	С	С	С	0.0	0.0
	4b	97	196.4	HW	HW	С	С	С	0.0	1.8
	5a	109	441.5	HW	HW	HW	С	С	0.0	4.0
	5b	123	747.2	HW	HW	HW	HW	С	0.0	6.8
	Total	851	2829						0	26

Building	Subarea Name	Contaminated Soil Extent (ft²)	Planned Ecobond per Subarea (lbs.)	Depth: 0-3"	3-6"	6-12"	12-18"	18-24"	Non-HW Volume (yd³)	HW Volume (yd³)
TH103	1a	0	0.0	С	С	С	С	С	0.0	0.0
	1b	0	0.0	С	С	С	С	С	0.0	0.0
	2a	77	78.0	HW	С	С	С	С	0.0	0.7
	2b	89	180.2	HW	HW	С	С	С	0.0	1.6
	3a	99	100.2	HW	С	С	С	С	0.0	0.9
	3b	113	228.8	HW	HW	С	С	С	0.0	2.1
	4a	80	324.0	HW	HW	HW	С	С	0.0	3.0
	4b	75	151.9	HW	HW	С	С	С	0.0	1.4
	5a	82	332.1	HW	HW	С	С	HW	0.0	3.0
	5b	79	160.0	HW	HW	С	С	С	0.0	1.5
	6a	109	441.5	HW	HW	HW	С	С	0.0	4.0
	6b	124	251.1	HW	HW	С	С	С	0.0	2.3
	Total	927	2248						0	21

Total- 3 Buildings 2560	7002	4	64
Contaminate	I Planned	Non-HW	HW
Soil Extent (ft		Volume	Volume
	(lbs.)	(yd³)	(yd³)

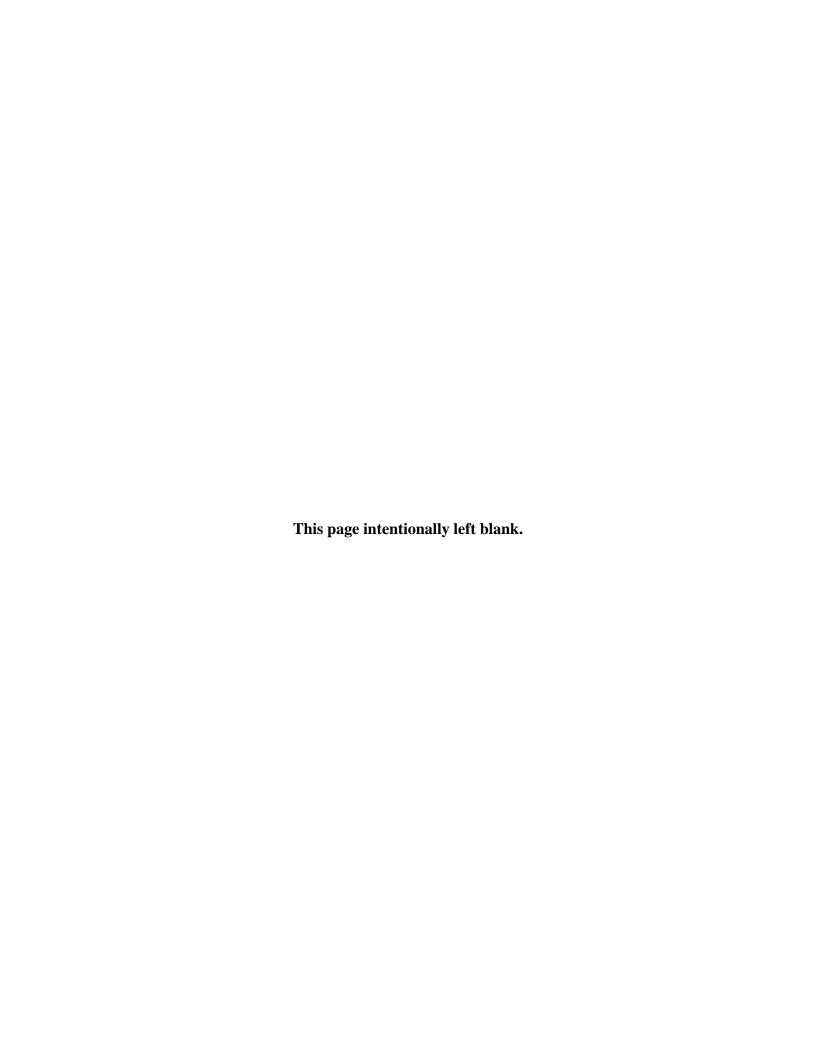


Table 4-1 Site Investigation Data

Final Sample ID	DEPTH (ft)	Building Subarea	Sampling Date	Total Lead FPXRF Result ¹ (mg/kg)	Total Lead Fixed- Lab Result (mg/kg)	Leachable Lead Fixed-Lab Result (mg/L)	False Negative Result ² for FPXRF compared with Fixed-Lab Result (Yes/No)
				ADEC Cleanup >400 mg/kg	ADEC Cleanup >400 mg/kg	RCRA Hazardous Waste >5.0 mg/L	
DUPLEX				2400 mg/ng	2400 mg/ng	Waste 20.0 mg/L	
SP60-CH-111-000	0.25	1a	6/7/2006	1,585	na	na	
SP60-CH-111-005	0.50	1a	6/7/2006	189	na	na	
SP60-CH-111-010	1.00	1a	6/7/2006	106	na	na	
SP60-CH-111-015	1.50	1a	6/7/2006	143	na	na	
SP60-CH-111-020	2.00	1a	6/7/2006	87	na	na	
SP60-CH-112-000	0.25	1b	6/7/2006	200	na	na	
SP60-CH-112-005	0.50	1b	6/7/2006	127	na	na	
SP60-CH-112-010	1.00	1b	6/7/2006	147	na	na	
SP60-CH-112-015	1.50	1b	6/7/2006	64	na	na	
SP60-CH-112-020	2.00	1b	6/7/2006	0	na	na	
SP60-CH-117-000	0.25	2a	6/7/2006	1,167	na	na	
SP60-CH-101-005	0.50	2a	6/5/2006	213	241	na	No
SP60-CH-101-010	1.00	2a	6/5/2006	155	143	na	No
SP60-CH-101-015	1.50	2a	6/5/2006	237	na	na	
SP60-CH-101-020	2.00	2a	6/5/2006	249	na	na	
SP60-CH-102-005	0.50	2b	6/5/2006	172	na	na	
SP60-CH-102-010	1.00	2b	6/5/2006	211	na	na	
SP60-CH-102-015	1.50	2b	6/5/2006	233	na	na	
SP60-CH-102-020	2.00	2b	6/5/2006	43	na	na	
SP60-CH-105-005	0.50	3a	6/7/2006	88	na	na	
SP60-CH-105-010 SP60-CH-113-015	1.00 1.50	3a	6/7/2006 6/7/2006	46 7	na	na	
SP60-CH-113-015	2.00	3a 3a	6/7/2006	0	na na	na na	
SP60-CH-119-000	0.25	3b	6/7/2006	1,675	na	na	
SP60-CH-106-005	0.50	3b	6/7/2006	67	na	na	
SP60-CH-106-010	1.00	3b	6/7/2006	0	na	na	
SP60-CH-151-005	0.50	4a	8/6/2006	na	3,570	na	
SP60-CH-114-010	1.00	4a	6/7/2006	10	na	na	
SP60-CH-151-010	1.00	4a	8/6/2006	na	180	na	
SP60-CH-114-015	1.50	4a	6/7/2006	0	na	na	
SP60-CH-151-015	1.50	4a	8/6/2006	na	567	na	
SP60-CH-114-020	2.00	4a	6/7/2006	0	na	na	
SP60-CH-151-020	2.00	4a	8/6/2006	na	656	na	
SP60-CH-122-000	0.25	4b	6/7/2006	1,816	na	na	
SP60-CH-152-005	0.50	4b	8/6/2006	na	62	na	
SP60-CH-152-010	1.00	4b	8/6/2006	na	27	na	
SP60-CH-152-015	1.50	4b	8/6/2006	na	24	na	
SP60-CH-152-020	2.00	4b	8/6/2006	na	25	na	
SP60-CH-121-000	0.25	5a	6/7/2006	502	na	na	
SP60-CH-121-000D	0.25	5a	6/7/2006	621	na	na	
SP60-CH-115-005	0.50	5a	6/7/2006	143	na	na	
SP60-CH-115-010	1.00	5a	6/7/2006	196	na	na	
SP60-CH-115-015	1.50	5a	6/7/2006	424	na	na	
SP60-CH-115-015D	1.50	5a	6/7/2006	374	na	na	
SP60-CH-115-020	2.00	5a	6/7/2006	20	na	na	
SP60-CH-116-005	0.50	5b 5b	6/7/2006	7 130	na	na	
SP60-CH-116-010 SP60-CH-116-015	1.00 1.50	5b	6/7/2006 6/7/2006	317	na	na	
SP60-CH-116-015D	1.50	5b	6/7/2006	239	na na	na	
SP60-CH-116-015D	2.00	5b	6/7/2006	12	na	na na	
SP60-CH-1109-005	0.50	6a	6/7/2006	139	na na	na na	
SP60-CH-109-010	1.00	6a	6/7/2006	53	na	na	
SP60-CH-120-000	0.25	6b	6/7/2006	223	na	na	
SP60-CH-110-005	0.50	6b	6/7/2006	31	na	na	
SP60-CH-110-010	1.00	6b	6/7/2006	0	na	na	

Table 4-1 Site Investigation Data

Final Sample ID	DEPTH (ft)	Building Subarea	Sampling Date	Total Lead FPXRF Result ¹ (mg/kg)	Total Lead Fixed- Lab Result (mg/kg)	Leachable Lead Fixed-Lab Result (mg/L)	False Negative Result ² for FPXRF compared with Fixed-Lab Result (Yes/No)
				ADEC Cleanup >400 mg/kg	ADEC Cleanup >400 mg/kg	RCRA Hazardous Waste >5.0 mg/L	
DUPLEX (cont'd)							
SP60-CH-103-000	0.25	7a	6/7/2006	313	na	na	
SP60-CH-118-000	0.25	7a	6/7/2006	1,037	na	na	
SP60-CH-103-005	0.50	7a	6/5/2006	422	406	na	No
SP60-CH-103-005D	0.50	7a	6/5/2006	603	na	na	
SP60-CH-103-010	1.00	7a	6/5/2006	213	na	na	
SP60-CH-103-015	1.50	7a	6/5/2006	39	66	na	No
SP60-CH-103-020	2.00	7a	6/5/2006	663	na	na	
SP60-CH-104-005	0.50	7b	6/5/2006	230	na	na	NI-
SP60-CH-104-010	1.00	7b	6/5/2006	892	60	na	No
SP60-CH-104-015	1.50	7b 7b	6/5/2006	189 316	159	na	No
SP60-CH-104-015D SP60-CH-104-020	1.50 2.00	7b	6/5/2006 6/5/2006	227	na	na	
SP60-CH-104-020D	2.00	7b	6/5/2006	279	na na	na na	
SP60-CH-107-005	0.50	8a	6/7/2006	313	341	na	No
SP60-CH-107-005D	0.50	8a	6/7/2006	264	na na	na	140
SP60-CH-107-010	1.00	8a	6/7/2006	743	na	na	
SP60-CH-107-015	1.50		6/7/2006	790	na	na	
SP60-CH-107-013	2.00	8a	6/7/2006	92	na	na	
SP60-CH-108-000	0.25	8b	6/7/2006	192	na	na	
SP60-CH-108-005	0.50	8b	6/7/2006	150	na	na	
SP60-CH-108-010	1.00	8b	6/7/2006	100	na	na	
SP60-CH-108-015	1.50	8b	6/7/2006	0	na	na	
SP60-CH-108-020	2.00	8b	6/7/2006	35	na	na	
TEACHER HOUSE 101							
TEACHER HOUSE 101 SP60-CH-205-000	0.25	1a	6/6/2006	35	na	na	
	0.25 0.50	1a 1a	6/6/2006 6/6/2006	35 94	na na	na na	
SP60-CH-205-000							
SP60-CH-205-000 SP60-CH-205-005 SP60-CH-205-010 SP60-CH-205-015	0.50 1.00 1.50	1a	6/6/2006 6/6/2006 6/6/2006	94 1,077 395	na	na	No
SP60-CH-205-000 SP60-CH-205-005 SP60-CH-205-010	0.50 1.00 1.50 1.50	1a 1a	6/6/2006 6/6/2006	94 1,077	na na	na na	No
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-010 \$P60-CH-205-015 \$P60-CH-205-015D \$P60-CH-205-020	0.50 1.00 1.50 1.50 2.00	1a 1a 1a 1a 1a	6/6/2006 6/6/2006 6/6/2006 6/6/2006	94 1,077 395 372 13	na na 289	na na na	No
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-010 \$P60-CH-205-015 \$P60-CH-205-015D \$P60-CH-205-020 \$P60-CH-206-005	0.50 1.00 1.50 1.50 2.00 0.50	1a 1a 1a 1a 1a 1b	6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	94 1,077 395 372 13 9	na na 289 na	na na na na na na	No
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-010 \$P60-CH-205-015 \$P60-CH-205-015D \$P60-CH-205-020 \$P60-CH-206-005 \$P60-CH-206-005	0.50 1.00 1.50 1.50 2.00 0.50 1.00	1a 1a 1a 1a 1a 1b	6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	94 1,077 395 372 13 9 65	na na 289 na na	na na na na na	No
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-010 \$P60-CH-205-015 \$P60-CH-205-015D \$P60-CH-205-020 \$P60-CH-206-005 \$P60-CH-206-010 \$P60-CH-206-015	0.50 1.00 1.50 1.50 2.00 0.50 1.00 1.50	1a 1a 1a 1a 1a 1b 1b	6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	94 1,077 395 372 13 9 65 67	na na 289 na na na na	na na na na na na na	No
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-010 \$P60-CH-205-015 \$P60-CH-205-015D \$P60-CH-205-020 \$P60-CH-206-005 \$P60-CH-206-010 \$P60-CH-206-015 \$P60-CH-206-015	0.50 1.00 1.50 1.50 2.00 0.50 1.00 1.50	1a 1a 1a 1a 1a 1b 1b	6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	94 1,077 395 372 13 9 65 67	na na 289 na na na na	na na na na na na na na	No
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-010 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-020 \$P60-CH-206-005 \$P60-CH-206-010 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015	0.50 1.00 1.50 2.00 0.50 1.50 1.50 2.00	1a 1a 1a 1a 1a 1a 1b 1b 1b 1b	6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	94 1,077 395 372 13 9 65 67 68	na na 289 na na na na na	na na na na na na na na	No
\$P60-CH-205-000 \$P60-CH-205-010 \$P60-CH-205-010 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-020 \$P60-CH-206-005 \$P60-CH-206-010 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-020 \$P60-CH-207-000	0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00 0.25	1a 1a 1a 1a 1a 1a 1b 1b 1b 1b 1b 1b 1b	6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	94 1,077 395 372 13 9 65 67 68 18	na na 289 na na na na na na	na na na na na na na na na	No
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-010 \$P60-CH-205-015 \$P60-CH-205-015D \$P60-CH-205-020 \$P60-CH-206-005 \$P60-CH-206-010 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-020 \$P60-CH-207-000 \$P60-CH-207-000	0.50 1.00 1.50 1.50 2.00 0.50 1.00 1.50 1.50 2.00 0.25 2.00	1a 1a 1a 1a 1a 1b 1b 1b 1b 1b 2a	6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	94 1,077 395 372 13 9 65 67 68 18 127 1,353	na na 289 na	na n	No
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-010 \$P60-CH-205-015 \$P60-CH-205-015D \$P60-CH-205-020 \$P60-CH-206-005 \$P60-CH-206-010 \$P60-CH-206-015 \$P60-CH-206-015D \$P60-CH-206-020 \$P60-CH-207-000 \$P60-CH-207-005 \$P60-CH-207-005	0.50 1.00 1.50 2.00 0.50 1.50 1.50 2.00 0.50 1.50 2.00 0.25 0.50 1.00	1a 1a 1a 1a 1a 1a 1b 1b 1b 1b 2a 2a 2a	6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	94 1,077 395 372 13 9 65 67 68 18 127 1,353 1,583	na na 289 na	na n	No
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-010 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-206-005 \$P60-CH-206-010 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-207-000 \$P60-CH-207-000 \$P60-CH-207-015 \$P60-CH-207-015	0.50 1.00 1.50 2.00 0.50 1.50 1.50 2.00 0.50 1.50 2.00 0.25 0.50 1.00 1.50 1.50 2.00 0.25 0.50 1.00	1a 1a 1a 1a 1a 1a 1b 1b 1b 1b 2a 2a 2a 2a	6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	94 1,077 395 372 13 9 65 67 68 18 127 1,353 1,583 4	na na 289 na	na n	No
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-010 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-206-005 \$P60-CH-206-010 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-020 \$P60-CH-207-000 \$P60-CH-207-010 \$P60-CH-207-010 \$P60-CH-207-015 \$P60-CH-207-015 \$P60-CH-207-015	0.50 1.00 1.50 2.00 0.50 1.50 1.50 2.00 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00	1a 1a 1a 1a 1a 1b 1b 1b 1b 2a 2a 2a 2a 2a 2a	6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	94 1,077 395 372 13 9 65 67 68 18 127 1,353 1,583 4	na na 289 na	na n	No
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-010 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-020 \$P60-CH-206-010 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-020 \$P60-CH-207-000 \$P60-CH-207-000 \$P60-CH-207-005 \$P60-CH-207-010 \$P60-CH-207-010 \$P60-CH-207-010 \$P60-CH-207-020 \$P60-CH-207-020 \$P60-CH-207-020	0.50 1.00 1.50 1.50 2.00 0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 0.25	1a 1a 1a 1a 1a 1b 1b 1b 1b 2a 2a 2a 2a 2a 2b	6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	94 1,077 395 372 13 9 65 67 68 18 127 1,353 1,583 4 35	na na 289 na	na n	No
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-020 \$P60-CH-206-005 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-020 \$P60-CH-207-000 \$P60-CH-207-001 \$P60-CH-207-005 \$P60-CH-207-015 \$P60-CH-207-015 \$P60-CH-207-020 \$P60-CH-207-020 \$P60-CH-207-020 \$P60-CH-208-000 \$P60-CH-208-000	0.50 1.00 1.50 2.00 0.50 1.50 1.50 2.00 0.50 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 2.00 0.25 0.50 0.25 0.50	1a 1a 1a 1a 1a 1a 1b 1b 1b 1b 2a 2a 2a 2a 2a 2b 2b	6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	94 1,077 395 372 13 9 65 67 68 18 127 1,353 1,583 4 35 499	na na 289 na	na n	No
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-020 \$P60-CH-206-005 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-020 \$P60-CH-207-000 \$P60-CH-207-001 \$P60-CH-207-005 \$P60-CH-207-015 \$P60-CH-207-015 \$P60-CH-207-020 \$P60-CH-208-000 \$P60-CH-208-005 \$P60-CH-208-005 \$P60-CH-208-005	0.50 1.00 1.50 2.00 0.50 1.50 1.50 2.00 0.50 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00	1a 1a 1a 1a 1a 1a 1b 1b 1b 1b 2a 2a 2a 2a 2b 2b 2b	6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	94 1,077 395 372 13 9 65 67 68 18 127 1,353 1,583 4 35 499	na na 289 na	na n	No
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-020 \$P60-CH-206-005 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-207-000 \$P60-CH-207-000 \$P60-CH-207-010 \$P60-CH-207-015 \$P60-CH-207-015 \$P60-CH-207-015 \$P60-CH-207-015 \$P60-CH-207-015 \$P60-CH-208-010 \$P60-CH-208-010 \$P60-CH-208-011	0.50 1.00 1.50 2.00 0.50 1.50 1.50 2.00 0.50 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 1.50 2.00 1.50 2.00 1.50 2.00 1.50 2.00 1.50 2.00 1.50 2.00 1.50 2.00 1.50 2.00 1.50 1.50	1a 1a 1a 1a 1a 1a 1b 1b 1b 1b 2a 2a 2a 2a 2a 2b 2b 2b	6/6/2006 6/6/2006	94 1,077 395 372 13 9 65 67 68 18 127 1,353 1,583 4 35 499 991 63 0	na na 289 na	na n	No
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-010 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-020 \$P60-CH-206-010 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-207-000 \$P60-CH-207-010 \$P60-CH-207-005 \$P60-CH-207-010 \$P60-CH-207-010 \$P60-CH-207-010 \$P60-CH-207-020 \$P60-CH-208-005 \$P60-CH-208-005 \$P60-CH-208-015 \$P60-CH-208-015 \$P60-CH-208-015 \$P60-CH-208-015	0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.50 2.00 0.25 0.50 2.00 0.25 0.50 2.00 0.25 0.50 0.20 0.2	1a 1a 1a 1a 1a 1a 1b 1b 1b 1b 1b 2a 2a 2a 2a 2a 2b 2b 2b 2b	6/6/2006 6/6/2006	94 1,077 395 372 13 9 65 67 68 18 127 1,353 1,583 4 35 499 991 63 0	na na 289 na	na n	
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-206-005 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-207-000 \$P60-CH-207-001 \$P60-CH-207-005 \$P60-CH-207-005 \$P60-CH-207-015 \$P60-CH-207-015 \$P60-CH-207-015 \$P60-CH-207-015 \$P60-CH-208-005 \$P60-CH-208-005 \$P60-CH-208-015 \$P60-CH-208-015 \$P60-CH-208-015 \$P60-CH-208-020 \$P60-CH-208-020 \$P60-CH-208-020 \$P60-CH-208-020	0.50 1.00 1.50 2.00 0.50 1.50 1.50 2.00 0.50 1.50 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50	1a 1a 1a 1a 1a 1a 1b 1b 1b 1b 2a 2a 2a 2a 2a 2b 2b 2b 2b 3a	6/6/2006 6/6/2006	94 1,077 395 372 13 9 65 67 68 18 127 1,353 1,583 4 35 499 991 63 0	na na 289 na	na n	No No
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-207-000 \$P60-CH-207-001 \$P60-CH-207-005 \$P60-CH-207-015 \$P60-CH-207-015 \$P60-CH-208-005 \$P60-CH-208-005 \$P60-CH-208-005 \$P60-CH-208-010	0.50 1.00 1.50 2.00 0.50 1.50 1.50 2.00 0.50 1.50 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50	1a 1a 1a 1a 1a 1a 1a 1b 1b 1b 1b 1b 2a 2a 2a 2a 2b 2b 2b 2b 2b 3a 3a	6/6/2006 6/6/2006	94 1,077 395 372 13 9 65 67 68 18 127 1,353 1,583 4 35 499 991 63 0 2 887 9,936	na na 289 na	na n	
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-010 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-020 \$P60-CH-206-010 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-207-000 \$P60-CH-207-000 \$P60-CH-207-010 \$P60-CH-207-010 \$P60-CH-207-015 \$P60-CH-207-015 \$P60-CH-207-015 \$P60-CH-208-010 \$P60-CH-208-010 \$P60-CH-208-010 \$P60-CH-208-010 \$P60-CH-208-010 \$P60-CH-208-010 \$P60-CH-203-000 \$P60-CH-203-000 \$P60-CH-203-000 \$P60-CH-203-005 \$P60-CH-203-005 \$P60-CH-203-005	0.50 1.00 1.50 2.00 0.50 1.50 1.50 2.00 0.50 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 1.50 2.00 0.25 0.50 1.00	1a 1a 1a 1a 1a 1a 1b 1b 1b 1b 1b 2a 2a 2a 2a 2b 2b 2b 2b 2b 3a 3a 3a 3a	6/6/2006 6/6/2006	94 1,077 395 372 13 9 65 67 68 18 127 1,353 1,583 4 35 499 991 63 0 2 887 9,936 5,841	na na 289 na	na n	
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-020 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-207-000 \$P60-CH-207-010 \$P60-CH-207-005 \$P60-CH-207-010 \$P60-CH-207-010 \$P60-CH-207-015 \$P60-CH-208-005 \$P60-CH-208-015 \$P60-CH-208-015 \$P60-CH-208-015 \$P60-CH-208-015 \$P60-CH-208-015 \$P60-CH-208-015 \$P60-CH-208-015 \$P60-CH-208-015 \$P60-CH-203-010 \$P60-CH-203-010 \$P60-CH-203-011	0.50 1.00 1.50 2.00 0.50 1.50 2.00 0.50 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 1.50 2.00 1.50 2.00 1.50 2.00 1.50 2.00 1.50 2.00 1.50 2.00 1.50 2.00 1.50 2.00 1.50 2.00 1.50 2.00 1.50	1a 1a 1a 1a 1a 1a 1b 1b 1b 1b 2a 2a 2a 2a 2b 2b 2b 2b 2b 3a 3a 3a 3a 3a	6/6/2006 6/6/2006	94 1,077 395 372 13 9 65 67 68 18 127 1,353 1,583 4 35 499 991 63 0 2 887 9,936 5,841 0	na na 289 na	na n	
\$P60-CH-205-000 \$P60-CH-205-005 \$P60-CH-205-010 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-015 \$P60-CH-205-020 \$P60-CH-206-010 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-206-015 \$P60-CH-207-000 \$P60-CH-207-000 \$P60-CH-207-010 \$P60-CH-207-010 \$P60-CH-207-015 \$P60-CH-207-015 \$P60-CH-207-015 \$P60-CH-208-010 \$P60-CH-208-010 \$P60-CH-208-010 \$P60-CH-208-010 \$P60-CH-208-010 \$P60-CH-208-010 \$P60-CH-203-000 \$P60-CH-203-000 \$P60-CH-203-000 \$P60-CH-203-005 \$P60-CH-203-005 \$P60-CH-203-005	0.50 1.00 1.50 2.00 0.50 1.50 1.50 2.00 0.50 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 0.25 0.50 1.00 1.50 2.00 1.50 2.00 0.25 0.50 1.00	1a 1a 1a 1a 1a 1a 1b 1b 1b 1b 1b 2a 2a 2a 2a 2b 2b 2b 2b 2b 3a 3a 3a 3a	6/6/2006 6/6/2006	94 1,077 395 372 13 9 65 67 68 18 127 1,353 1,583 4 35 499 991 63 0 2 887 9,936 5,841	na na 289 na	na n	

Table 4-1 Site Investigation Data

Final Sample ID	DEPTH (ft)	Building Subarea	Sampling Date	Total Lead FPXRF Result ¹ (mg/kg)	Total Lead Fixed- Lab Result (mg/kg)	Leachable Lead Fixed-Lab Result (mg/L)	False Negative Result ² for FPXRF compared with Fixed-Lab Result (Yes/No)
				ADEC Cleanup >400 mg/kg	ADEC Cleanup >400 mg/kg	RCRA Hazardous Waste >5.0 mg/L	
TH101 (cont'd)				r roo mgmg	r roo mg ng	made rolomge	
SP60-CH-204-005	0.50	3b	6/6/2006	471	304	na	No
SP60-CH-204-010	1.00	3b	6/6/2006	14	14	na	No
SP60-CH-204-015	1.50	3b	6/6/2006	0	na	na	
SP60-CH-204-020	2.00	3b	6/6/2006	0	na	na	
SP60-CH-209-000	0.25	4a	6/6/2006	264	na	na	
SP60-CH-209-005	0.50	4a	6/6/2006	212	na	na	
SP60-CH-209-010	1.00	4a	6/6/2006	16	na	na	
SP60-CH-209-015	1.50	4a	6/6/2006	5	na	na	
SP60-CH-209-020	2.00	4a	6/6/2006	3	na	na	
SP60-CH-210-005	0.50	4b	6/6/2006	1,176	na	na	
SP60-CH-210-010	1.00	4b	6/6/2006	56	na	na	
SP60-CH-210-015	1.50	4b	6/6/2006	10	na	na	
SP60-CH-210-020	2.00	4b	6/6/2006	0	na	na	
SP60-CH-201-000	0.25	5a	6/6/2006	305	na	na	
SP60-CH-201-000D	0.25	5a	6/6/2006	262	na	na	
SP60-CH-201-005	0.50	5a	6/6/2006	1,342	na	na	
SP60-CH-201-010	1.00	5a	6/6/2006	373	na	na	
SP60-CH-201-010D	1.00	5a	6/6/2006	444	na	na	
SP60-CH-201-015	1.50	5a	6/6/2006	11	na	na	
SP60-CH-201-020	2.00	5a	6/6/2006	54	na	na	
SP60-CH-202-000	0.25	5b	6/6/2006	356	na	na	
SP60-CH-202-000D	0.25	5b	6/6/2006	400	na	na	
SP60-CH-202-005	0.50	5b	6/6/2006	1,350	na	na	
SP60-CH-202-010	1.00	5b	6/6/2006	387	166	na	No
SP60-CH-202-010D	1.00	5b	6/6/2006	404	na	na	
SP60-CH-202-015	1.50	5b	6/6/2006	1,331	na	na	
SP60-CH-202-020	2.00	5b	6/6/2006	219	na	na	
TEACHER HOUSE 103							
SP60-CH-303-000	0.25	1a	6/6/2006	183	na	na	
SP60-CH-303-005	0.50	1a	6/6/2006	245	na	na	N.
SP60-CH-303-010	1.00	1a	6/6/2006	244	242	na	No
SP60-CH-303-020	2.00	1a	6/6/2006	33	na	na	
SP60-CH-304-005	0.50	1b	6/6/2006	77	na	na	
SP60-CH-304-010	1.00	1b	6/6/2006	97	na	na	
SP60-CH-304-015 SP60-CH-304-020	1.50 2.00	1b 1b	6/6/2006 6/6/2006	51 3	na na	na na	
SP60-CH-305-000	0.25	2a	6/6/2006	322	na	na na	
SP60-CH-305-000D	0.25	2a 2a	6/6/2006	421	625	na	No
SP60-CH-305-005	0.50	2a 2a	6/6/2006	284	na	na	140
SP60-CH-305-005D	0.50	2a 2a	6/6/2006	321	na	na	
SP60-CH-305-010	1.00	2a	6/6/2006	333	310	na	No
SP60-CH-305-010D	1.00	2a	6/6/2006	325	na	na	110
SP60-CH-305-015	1.50	2a	6/6/2006	124	na	na	
SP60-CH-305-020	2.00	2a	6/6/2006	5	na	na	
SP60-CH-306-005	0.50	2b	6/6/2006	461	na	na	
SP60-CH-306-005D	0.50	2b	6/6/2006	96	na	na	
SP60-CH-306-010	1.00	2b	6/6/2006	170	na	na	
SP60-CH-306-015	1.50	2b	6/6/2006	277	na	na	
SP60-CH-306-020	2.00	2b	6/6/2006	0	na	na	
SP60-CH-301-000	0.25	3a	6/6/2006	945	na	na	
SP60-CH-301-000D	0.25	3a	6/6/2006	723	na	na	
SP60-CH-301-005	0.50	3a	6/6/2006	182	na	na	

Table 4-1 Site Investigation Data

Final Sample ID	DEPTH (ft)	Building Subarea	Sampling Date	Total Lead FPXRF Result ¹ (mg/kg)	Total Lead Fixed- Lab Result (mg/kg)	Leachable Lead Fixed-Lab Result (mg/L)	False Negative Result ² for FPXRF compared with Fixed-Lab Result (Yes/No)
				ADEC Cleanup	ADEC Cleanup	RCRA Hazardous	
TH103 (cont'd)				>400 mg/kg	>400 mg/kg	Waste >5.0 mg/L	
SP60-CH-301-010	1.00	3a	6/6/2006	103	na	na	
SP60-CH-301-015	1.50	3a	6/6/2006	4	na	na	
SP60-CH-301-020	2.00	3a	6/6/2006	4	na	na	
SP60-CH-302-000	0.25	3b	6/6/2006	145	na	na	
SP60-CH-302-005	0.50	3b	6/6/2006	437	377	na	No
SP60-CH-302-010	1.00	3b	6/6/2006	23	na	na	
SP60-CH-302-015	1.50	3b	6/6/2006	9	1	na	No
SP60-CH-302-020 SP60-CH-307-000	2.00 0.25	3b 4a	6/6/2006 6/6/2006	2,349	na 1,260	na na	No
SP60-CH-307-005	0.50	4a 4a	6/6/2006	3,536	na	na	INO
SP60-CH-307-010	1.00	4a	6/6/2006	579	na	na	
SP60-CH-307-015	1.50	4a	6/6/2006	9	na	na	
SP60-CH-307-020	2.00	4a	6/6/2006	0	na	na	
SP60-CH-308-005	0.50	4b	6/6/2006	525	na	na	
SP60-CH-308-010	1.00	4b	6/6/2006	47	na	na	
SP60-CH-308-015	1.50	4b	6/6/2006	0	na	na	
SP60-CH-308-020	2.00 0.25	4b	6/6/2006	6 1,217	na	na	
SP60-CH-309-000 SP60-CH-309-005	0.25	<u>5a</u> 5a	6/6/2006 6/6/2006	1,217 2,365	na na	na na	
SP60-CH-309-010	1.00	5a	6/6/2006	280	na	na	
SP60-CH-309-015	1.50	5a	6/6/2006	129	na	na	
SP60-CH-309-020	2.00	5a	6/6/2006	452	na	na	
SP60-CH-310-005	0.50	5b	6/6/2006	1,118	na	na	
SP60-CH-310-010	1.00	5b	6/6/2006	54	na	na	
SP60-CH-310-015	1.50	5b	6/6/2006	36	na	na	
SP60-CH-310-020	2.00	5b	6/6/2006	0	na	na	
SP60-CH-311-000	0.25	6a	6/6/2006	543	na	na	
SP60-CH-311-005 SP60-CH-311-005D	0.50 0.50	<u>6a</u> 6a	6/6/2006 6/6/2006	531 556	na na	na na	
SP60-CH-311-010	1.00	6a	6/6/2006	496	na	na	
SP60-CH-311-010D	1.00	6a	6/6/2006	578	na	na	
SP60-CH-311-010D	1.00	6a	6/6/2006	542	na	na	
SP60-CH-311-015	1.50	6a	6/6/2006	232	na	na	
SP60-CH-311-020	2.00	6a	6/6/2006	91	na	na	
SP60-CH-312-005	0.50	6b	6/6/2006	579	na	na	
SP60-CH-312-005D	0.50	6b	6/6/2006	312	na	na	
SP60-CH-312-010 SP60-CH-312-015	1.00 1.50	6b 6b	6/6/2006 6/6/2006	115 0	na	na	
SP60-CH-312-013	2.00	6b	6/6/2006	168	na na	na na	
01 00 011 012 020	2.00	00	0/0/2000	100	na	na	
PRE-TREATMENT WASTE DESIGNATION		Description	Sampling Date	Total Lead FPXRF Result ¹ (mg/kg)	Total Lead Fixed- Lab Result (mg/kg)	Leachable Lead Fixed-Lab Result (mg/L)	False Negative Result ² for FPXRF compared with Fixed-Lab Result (Yes/No)
				ADEC Cleanup	ADEC Cleanup	RCRA Hazardous	
SD60-TC 404 000		Dunloy composite 4	6/7/2006	>400 mg/kg	>400 mg/kg	Waste >5.0 mg/L	
SP60-TC-101-000 SP60-TC-102-000		Duplex composite 1	6/7/2006 6/7/2006	>400 mg/kg	>400 mg/kg 2,020	Waste >5.0 mg/L 26.2	
SP60-TC-102-000		Duplex composite 2	6/7/2006 6/7/2006 6/7/2006	>400 mg/kg na na	>400 mg/kg 2,020 448	Waste >5.0 mg/L 26.2 6.07	
			6/7/2006	>400 mg/kg	>400 mg/kg 2,020	Waste >5.0 mg/L 26.2	
SP60-TC-102-000 SP60-TC-103-000		Duplex composite 2 Duplex composite 3	6/7/2006 6/7/2006	>400 mg/kg na na na	>400 mg/kg 2,020 448 318	Waste >5.0 mg/L 26.2 6.07 1.92	
SP60-TC-102-000 SP60-TC-103-000 SP60-TC-104-000		Duplex composite 2 Duplex composite 3 TH101 composite 1	6/7/2006 6/7/2006 6/6/2006	>400 mg/kg na na na na	>400 mg/kg 2,020 448 318 2,370	Waste >5.0 mg/L 26.2 6.07 1.92 21.7	
SP60-TC-102-000 SP60-TC-103-000 SP60-TC-104-000 SP60-TC-105-000 SP60-TC-106-000 SP60-TC-107-000		Duplex composite 2 Duplex composite 3 TH101 composite 1 TH101 composite 2 TH101 composite 3 TH101 composite 4	6/7/2006 6/7/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	>400 mg/kg na na na na na	>400 mg/kg 2,020 448 318 2,370 597 774 444	Waste >5.0 mg/L 26.2 6.07 1.92 21.7 7.49 16.5 8.32	
SP60-TC-102-000 SP60-TC-103-000 SP60-TC-104-000 SP60-TC-105-000 SP60-TC-106-000 SP60-TC-107-000 SP60-TC-108-000		Duplex composite 2 Duplex composite 3 TH101 composite 1 TH101 composite 2 TH101 composite 3 TH101 composite 4 TH103 composite 1	6/7/2006 6/7/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	>400 mg/kg na na na na na na na	>400 mg/kg 2,020 448 318 2,370 597 774 444 2,100	Waste >5.0 mg/L 26.2 6.07 1.92 21.7 7.49 16.5 8.32 51.9	
SP60-TC-102-000 SP60-TC-103-000 SP60-TC-104-000 SP60-TC-105-000 SP60-TC-105-000 SP60-TC-107-000 SP60-TC-108-000 SP60-TC-108-000 SP60-TC-109-000		Duplex composite 2 Duplex composite 3 TH101 composite 1 TH101 composite 2 TH101 composite 3 TH101 composite 4 TH103 composite 1 TH103 composite 2	6/7/2006 6/7/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	>400 mg/kg na	>400 mg/kg 2,020 448 318 2,370 597 774 444 2,100 348	Waste >5.0 mg/L 26.2 6.07 1.92 21.7 7.49 16.5 8.32 51.9 6.37	
\$P60-TC-102-000 \$P60-TC-103-000 \$P60-TC-103-000 \$P60-TC-105-000 \$P60-TC-105-000 \$P60-TC-107-000 \$P60-TC-107-000 \$P60-TC-108-000 \$P60-TC-109-000 \$P60-TC-109-000 \$P60-TC-1109-000		Duplex composite 2 Duplex composite 3 TH101 composite 1 TH101 composite 2 TH101 composite 3 TH101 composite 4 TH103 composite 1 TH103 composite 2 TH103 composite 3	6/7/2006 6/7/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	>400 mg/kg na	>400 mg/kg 2,020 448 318 2,370 597 774 444 2,100 348 399	Waste >5.0 mg/L 26.2 6.07 1.92 21.7 7.49 16.5 8.32 51.9 6.37 6.88	
SP60-TC-102-000 SP60-TC-103-000 SP60-TC-104-000 SP60-TC-106-000 SP60-TC-106-000 SP60-TC-108-000 SP60-TC-108-000 SP60-TC-109-000 SP60-TC-110-000 SP60-TC-1110-000 SP60-TC-1110-000		Duplex composite 2 Duplex composite 3 TH101 composite 1 TH101 composite 2 TH101 composite 3 TH101 composite 4 TH103 composite 1 TH103 composite 2 TH103 composite 2 TH103 composite 3 TH103 composite 4	6/7/2006 6/7/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	>400 mg/kg na na na na na na na na na n	>400 mg/kg 2,020 4448 318 2,370 597 774 444 2,100 348 399 400	Waste >5.0 mg/L 26.2 6.07 1.92 21.7 7.49 16.5 8.32 51.9 6.37 6.88 6.91	
\$P60-TC-102-000 \$P60-TC-103-000 \$P60-TC-103-000 \$P60-TC-105-000 \$P60-TC-105-000 \$P60-TC-107-000 \$P60-TC-107-000 \$P60-TC-108-000 \$P60-TC-109-000 \$P60-TC-109-000 \$P60-TC-1109-000		Duplex composite 2 Duplex composite 3 TH101 composite 1 TH101 composite 2 TH101 composite 3 TH101 composite 4 TH103 composite 1 TH103 composite 2 TH103 composite 3	6/7/2006 6/7/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	>400 mg/kg na	>400 mg/kg 2,020 448 318 2,370 597 774 444 2,100 348 399	Waste >5.0 mg/L 26.2 6.07 1.92 21.7 7.49 16.5 8.32 51.9 6.37 6.88	
SP60-TC-102-000 SP60-TC-103-000 SP60-TC-103-000 SP60-TC-105-000 SP60-TC-105-000 SP60-TC-107-000 SP60-TC-109-000 SP60-TC-109-000 SP60-TC-1110-000 SP60-TC-1110-000 SP60-TC-1110-000 SP60-TC-1110-000 SP60-TC-1112-000		Duplex composite 2 Duplex composite 3 TH101 composite 1 TH101 composite 2 TH101 composite 3 TH101 composite 4 TH103 composite 1 TH103 composite 2 TH103 composite 3 TH103 composite 4 HEPA vac bag/paintchips	6/7/2006 6/7/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006	>400 mg/kg na	>400 mg/kg 2,020 448 318 2,370 597 774 444 2,100 348 399 400 1,230	Waste >5.0 mg/L 26.2 6.07 1.92 21.7 7.49 16.5 8.32 51.9 6.37 6.88 6.91 33.6	
SP60-TC-102-000 SP60-TC-103-000 SP60-TC-103-000 SP60-TC-105-000 SP60-TC-105-000 SP60-TC-107-000 SP60-TC-108-000 SP60-TC-109-000 SP60-TC-110-000 SP60-TC-111-000 SP60-TC-111-000 SP60-TC-111-000 SP60-TC-111-000 SP60-TC-111-000 SP60-TC-111-000		Duplex composite 2 Duplex composite 3 TH101 composite 1 TH101 composite 2 TH101 composite 3 TH101 composite 4 TH103 composite 1 TH103 composite 2 TH103 composite 3 TH103 composite 4 HEPA vac bag/paintchips	6/7/2006 6/7/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/16/2006	>400 mg/kg na na na na na na na na na n	>400 mg/kg 2,020 448 318 2,370 597 774 444 2,100 348 399 400 1,230 ars. Some results reporte-	Waste >5.0 mg/L 26.2 6.07 1.92 21.7 7.49 16.5 8.32 51.9 6.37 6.88 6.91 33.6	
SP60-TC-102-000 SP60-TC-103-000 SP60-TC-103-000 SP60-TC-106-000 SP60-TC-106-000 SP60-TC-106-000 SP60-TC-108-000 SP60-TC-109-000 SP60-TC-110-000 SP60-TC-111-000 SP60-TC-111-000 SP60-TC-111-000 SP60-TC-111-000 SP60-TC-111-000	are listed as such o	Duplex composite 2 Duplex composite 3 TH101 composite 1 TH101 composite 2 TH101 composite 3 TH101 composite 4 TH103 composite 1 TH103 composite 1 TH103 composite 2 TH103 composite 3 TH103 composite 4 HEPA vac bag/paintchips	6/7/2006 6/7/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/16/2006	>400 mg/kg na na na na na na na na na n	>400 mg/kg 2,020 448 318 2,370 597 774 444 2,100 348 399 400 1,230 ars. Some results reporte-	Waste >5.0 mg/L 26.2 6.07 1.92 21.7 7.49 16.5 8.32 51.9 6.37 6.88 6.91 33.6	
\$P60-TC-102-000 \$P60-TC-103-000 \$P60-TC-104-000 \$P60-TC-105-000 \$P60-TC-106-000 \$P60-TC-108-000 \$P60-TC-108-000 \$P60-TC-108-000 \$P60-TC-110-000 \$P60-TC-111-000 \$P60-TC-111-000 \$P60-TC-111-000 \$P60-TC-111-000 \$P60-TC-111-000 \$P60-TC-111-000 \$P60-TC-111-000	are listed as such o	Duplex composite 2 Duplex composite 3 TH101 composite 1 TH101 composite 2 TH101 composite 2 TH101 composite 4 TH103 composite 1 TH103 composite 2 TH103 composite 2 TH103 composite 3 TH103 composite 4 HEPA vac bag/paintchips	6/7/2006 6/7/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/16/2006 6/16/2006	>400 mg/kg na na na na na na na na na n	>400 mg/kg 2,020 448 318 2,370 597 774 444 2,100 348 399 400 1,230 ars. Some results reporter	Waste >5.0 mg/L 26.2 6.07 1.92 21.7 7.49 16.5 8.32 51.9 6.37 6.88 6.91 33.6	
\$P60-TC-102-000 \$P60-TC-103-000 \$P60-TC-103-000 \$P60-TC-105-000 \$P60-TC-105-000 \$P60-TC-106-000 \$P60-TC-107-000 \$P60-TC-109-000 \$P60-TC-1109-000 \$P60-TC-111-000 \$P60-TC-111-000 \$P60-TC-111-000 \$P60-TC-111-000 \$P60-TC-111-000 \$P60-TC-111-000 \$P60-TC-111-000 \$P60-TC-111-000	are listed as such on consitive and negation ity in a qualitative in a qua	Duplex composite 2 Duplex composite 3 TH101 composite 1 TH101 composite 2 TH101 composite 3 TH101 composite 4 TH103 composite 1 TH103 composite 2 TH103 composite 3 TH103 composite 4 HEPA vac bag/paintchips	6/7/2006 6/7/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/16/2006 0/16/2006	>400 mg/kg na	>400 mg/kg 2,020 448 318 2,370 597 774 444 2,100 348 399 400 1,230 ars. Some results reportern with error bars that would not or below the ADEC or	Waste >5.0 mg/L 26.2 6.07 1.92 21.7 7.49 16.5 8.32 51.9 6.37 6.88 6.91 33.6 d as negative lid yield a	
SP60-TC-102-000 SP60-TC-103-000 SP60-TC-103-000 SP60-TC-105-000 SP60-TC-105-000 SP60-TC-107-000 SP60-TC-108-000 SP60-TC-109-000 SP60-TC-109-000 SP60-TC-110-000 SP60-TC-111-000 SP60-TC-111-000 SP60-TC-1112-000 Notes: (1) FPXRF results reported are the mo concentrations are considered 0 and a concentration range that spans small p(2) NOAA evaluated FPXRF data qual cleanup level of 400 mg/kg when its fix	are listed as such on positive and negating ity in a qualitative of ked-laboratory dup	Duplex composite 2 Duplex composite 3 TH101 composite 1 TH101 composite 2 TH101 composite 3 TH101 composite 4 TH103 composite 1 TH103 composite 2 TH103 composite 2 TH103 composite 4 HEPA vac bag/paintchips Intration given the observation dura on this table for clarity. Raw instrumve concentrations.	6/7/2006 6/7/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/16/2006 tition. Longer observation and output would show by FPXRF results showe eater than 400 mg/kg.	>400 mg/kg na na na na na na na na na n	>400 mg/kg 2,020 448 318 2,370 597 774 444 2,100 348 399 400 1,230 ars. Some results reported in with error bars that would not likely and or personal terpersonal terpersona	Waste >5.0 mg/L 26.2 6.07 1.92 21.7 7.49 16.5 8.32 51.9 6.37 6.88 6.91 33.6 d as negative dd yield a	
\$P60-TC-102-000 \$P60-TC-103-000 \$P60-TC-103-000 \$P60-TC-105-000 \$P60-TC-105-000 \$P60-TC-106-000 \$P60-TC-107-000 \$P60-TC-109-000 \$P60-TC-109-000 \$P60-TC-111-000 \$P60-TC-111-000 \$P60-TC-111-000 \$P60-TC-111-000 \$P60-TC-111-000 \$P60-TC-111-000 \$P60-TC-111-000 \$P60-TC-111-000	are listed as such on positive and negati ity in a qualitative on ked-laboratory dup ually contaminated	Duplex composite 2 Duplex composite 3 TH101 composite 1 TH101 composite 2 TH101 composite 3 TH101 composite 4 TH103 composite 4 TH103 composite 1 TH103 composite 2 TH103 composite 3 TH103 composite 4 HEPA vac bag/paintchips	6/7/2006 6/7/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/6/2006 6/16/2006 6/16/2006 6/16/2006 6/16/2006 6/16/2006 6/16/2006 6/16/2006 6/16/2006 6/16/2006 6/16/2006 6/16/2006 6/16/2006 6/16/2006 6/16/2006 6/16/2006 6/16/2006 6/16/2006 6/16/2006 6/16/2006	>400 mg/kg na na na na na na na na na n	>400 mg/kg 2,020 448 318 2,370 597 774 444 2,100 348 399 400 1,230 ars. Some results reported in with error bars that would not likely and or personal terpersonal terpersona	Waste >5.0 mg/L 26.2 6.07 1.92 21.7 7.49 16.5 8.32 51.9 6.37 6.88 6.91 33.6 d as negative dd yield a	

Table 4-2 Treatability Study Data

Final Sample ID	Total Lead Fixed-Lab Result	Pre-Treatment Leachable Lead Fixed-Lab Result
	(mg/kg)	(mg/L)
	ADEC Cleanup >400 mg/kg	RCRA Hazardous Waste >5.0 mg/L
Sample A - Untreated	999	9.11
Sample A - Treated	na	<1.0
Sample B - Untreated	2,630	9.35
Sample B- Treated	na	<1.0

Notes:

na = not analyzed

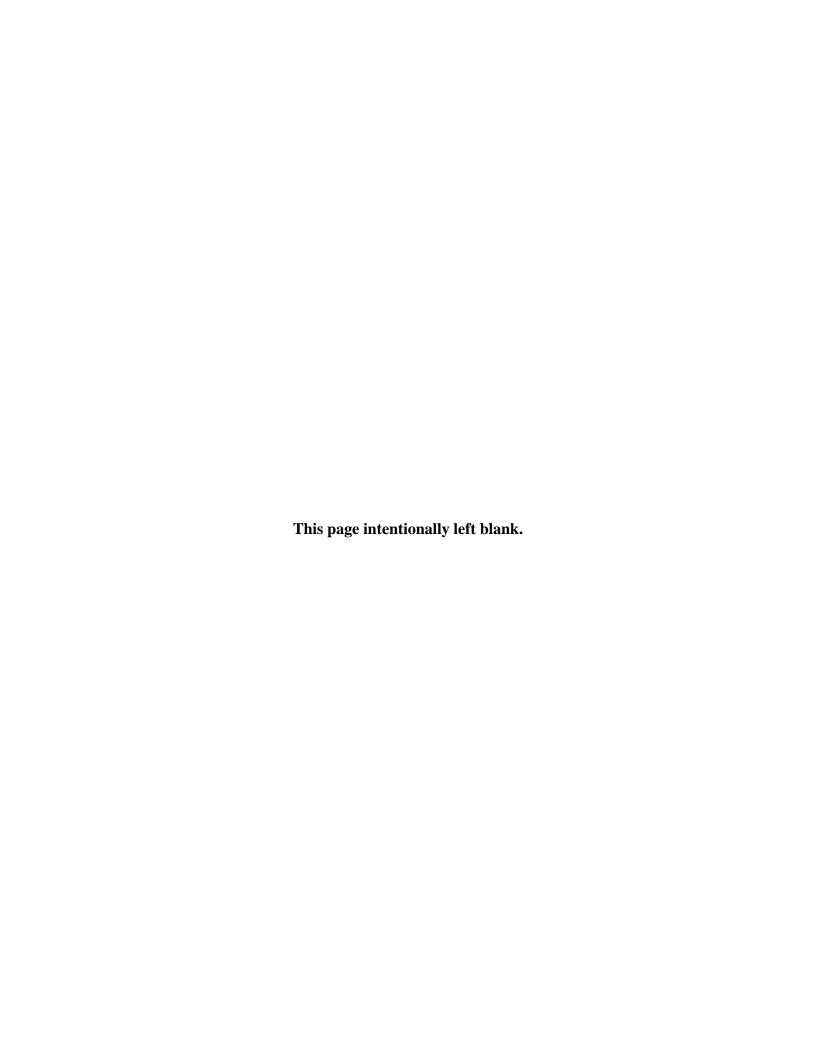


Table 4-3
Post-Treatment Waste Designation Data

Final Sample ID	Depth	Building Subarea	Sampling Date	Total Lead Fixed-Lab Result	Leachable Lead Fixed-Lab Result
	(ft)			(mg/kg)	(mg/L)
				ADEC Cleanup >400 mg/kg	RCRA Hazardous Waste >5.0 mg/L
DUPLEX					
SP60-CH-06	0.50	4b	10/15/2006	268	<0.5
SP60-CH-07	0.50	1a	10/15/2006	203	<0.5
TEACHER HOUSE 101					
SP60-CH-01	0.50	5a	10/15/2006	812	<0.5
SP60-CH-02	0.50	2b	10/15/2006	376	<0.5
TEACHER HOUSE 103					
SP60-CH-03	0.50	2b	10/15/2006	159	<0.5
SP60-CH-04	0.50	4a	10/15/2006	1,490	<0.5
SP60-CH-05 ¹	0.50	4a	10/15/2006	2,400	<0.5

Note:

(1) SP60-CH-05 is a duplicate of SP60-CH-04

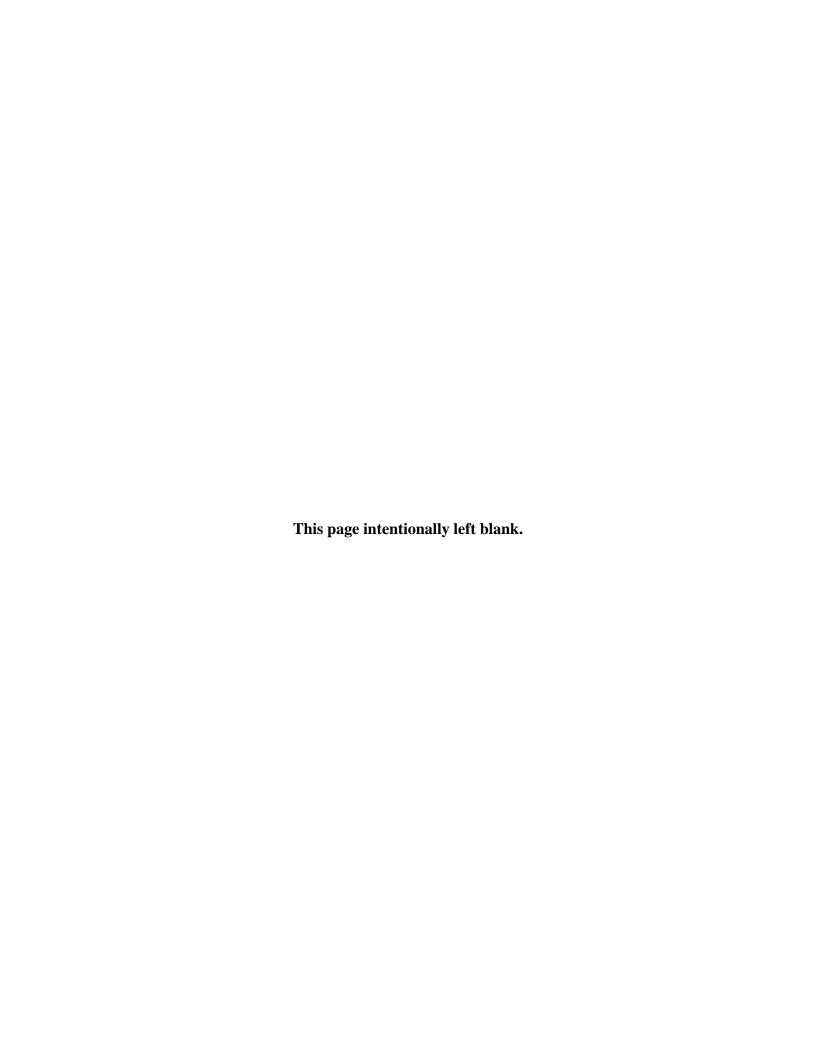


Table 4-4
Final Confirmation Sample Data

Final Sample ID	Depth	Building Subarea	Sampling Date	Total Lead FPXRF Result ¹	Total Lead Fixed-Lab Result	False Negative Result ⁴ for FPXRF compared with Fixed-Lab Result
	(ft)			(mg/kg)	(mg/kg)	(Yes/No)
				ADEC Cleanup >400 mg/kg	ADEC Cleanup >400 mg/kg	
DUPLEX						
SP60-CS-001-020	2.0	5a	10/21/2006	29	20.1	No
SP60-CS-002-015	1.5	7a	10/21/2006	159	201	No
SP60-CS-003-020	2.0	8a	10/21/2006	654	1,830	No
SP60-CS-004-020	2.0	4a	10/21/2006	5	27	No
SP60-CS-005-025	2.0	2a	10/21/2006	37	37	No
TEACHER HOUSE 101						
SP60-CS-006-025	2.5	1a	10/22/2006	36	85.4	No
SP60-CS-007-020	2.0	2a	10/22/2006	3	5.81	No
SP60-CS-008-020	2.0	3a	10/22/2006	34	22.5	No
SP60-CS-009-015	1.5	9a	10/22/2006	40	33	No
SP60-CS-010-025 ²	2.5	1a	10/22/2006	104	118	No
TEACHER HOUSE 103						
SP60-CS-011-005	0.5	3a	10/22/2006	12	30	No
SP60-CS-012-030	3.0	5a	10/22/2006	0	15.3	No
SP60-CS-013-020	2.0	6a	10/22/2006	26	62	No
SP60-CS-014-020	2.0	2a	10/22/2006	5	4	No
SP60-CS-015-020 ³	2.0	2a	10/22/2006	4	2	No

Notes:

⁽¹⁾ FPXRF results reported are the most probable concentration given the observation duration. Longer observations yield smaller error bars. Some results reported as negative concentrations are considered 0 and are listed as such on this table for clarity. Raw instrument output would show a negative concentration with error bars that would yield a concentration range that spans small positive and negative concentrations.

⁽²⁾ SP60-CS-010-025 is a duplicate of SP60-CS-006-025

⁽³⁾ SP60-CS-015-020 is a duplicate of SP60-CS-014-020

⁽⁴⁾ NOAA evaluated FPXRF data quality in a qualitative manner by determining whether any FPXRF results showed a sample concentration at or below the ADEC residential soil cleanup level of 400 mg/kg when its fixed-laboratory duplicate indicated that sample was greater than 400 mg/kg. This evaluation shows that FPXRF would not likely cause NOAA to leave soil in place that is actually contaminated due to the FPXRF erroneously indicating the soil is clean. NOAA found 0 of 15 duplicate samples had false negative results. If a particular sample had either no FPXRF or no fixed-laboratory result, the field was left blank.

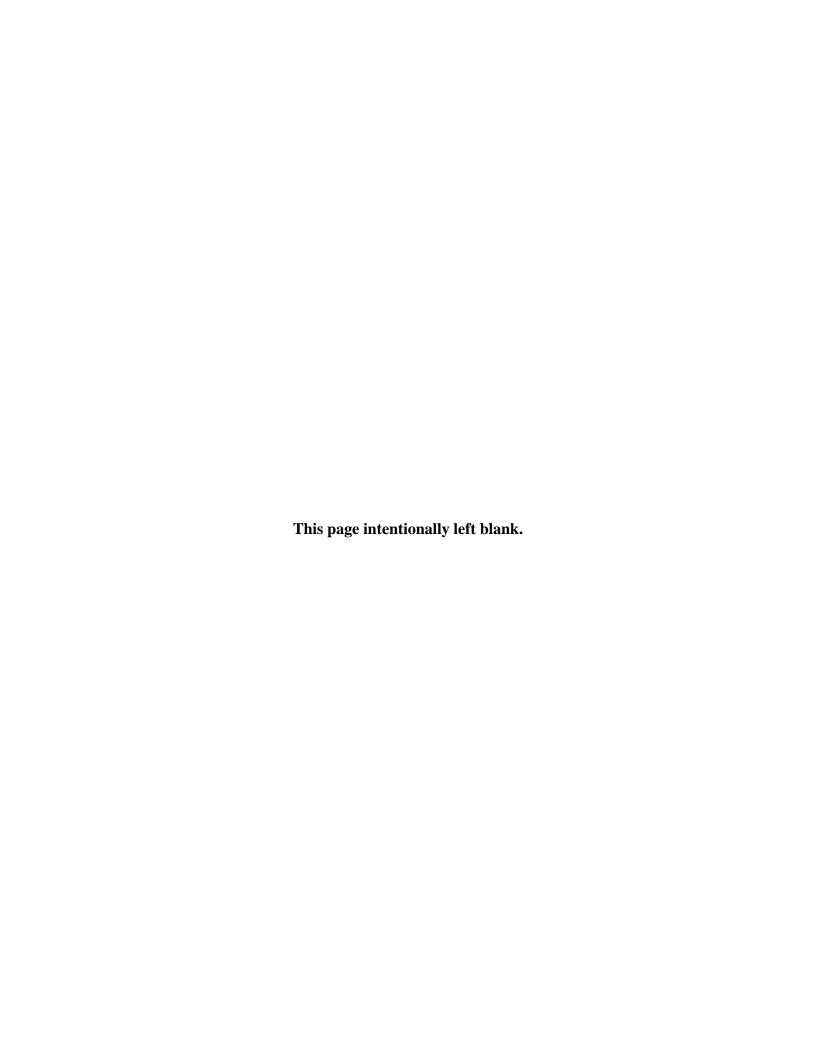
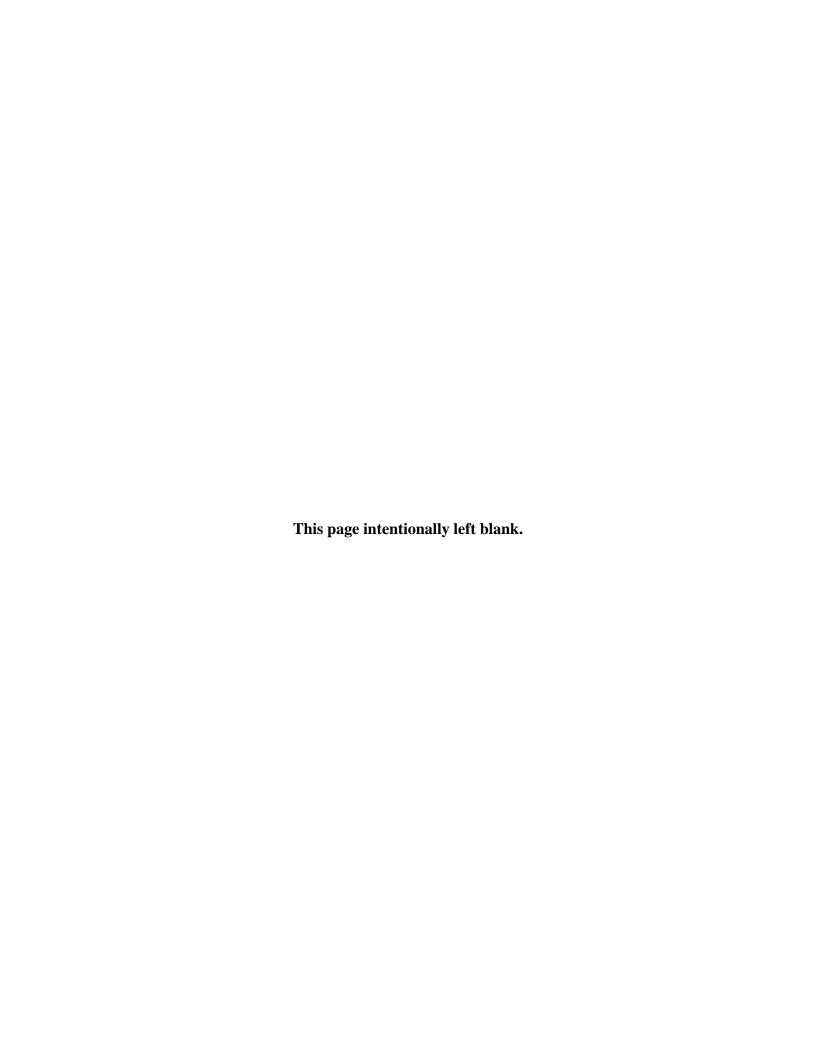



Table 4-5
Clean Backfill Characterization Sample Data

Final Sample ID	Depth	Sample Location	Sampling Date	Total Lead FPXRF Result ¹	Total Lead Fixed-Lab Result	False Negative Result ² for FPXRF compared with Fixed- Lab Result
	(ft)			(mg/kg)	(mg/kg)	(Yes/No)
				ADEC Cleanup >400 mg/kg	ADEC Cleanup >400 mg/kg	
DUPLEX						
SP60-CH-601-005	0.5	Lake Hill Scoria Pit	10/23/2006	0	0.211J	No
SP60-CH-602-005	0.5	Lake Hill Scoria Pit	10/23/2006	0	0.2J	No
SP60-CH-603-005	0.5	Lake Hill Scoria Pit	10/23/2006	0	0	No

Notes:

- (1) FPXRF results reported are the most probable concentration given the observation duration. Longer observations yield smaller error bars. Some results reported as negative concentrations are considered 0 and are listed as such on this table for clarity. Raw instrument output would show a negative concentration with error bars that would yield a concentration range that spans small positive and negative concentrations.
- (2) NOAA evaluated FPXRF data quality in a qualitative manner by determining whether any FPXRF results showed a sample concentration at or below the ADEC residential soil cleanup level of 400 mg/kg when its fixed-laboratory duplicate indicated that sample was greater than 400 mg/kg. This evaluation shows that FPXRF would not likely cause NOAA to leave soil in place that is actually contaminated due to the FPXRF erroneously indicating the soil is clean. NOAA found 0 of 3 duplicate samples had false negative results. If a particular sample had either no FPXRF or no fixed-laboratory result, the field was left blank.
- J = The sample was below the laboratory's practical quantitation limit but above the detection limit. The concentration reported is an estimate.

1.	Labora	<u>uory</u>		
	a.	Did an ADEC sample analys	* *	laboratory receive and <u>perform</u> all of the submitted
		■ Yes	□ No	Comments: ADEC approved NOAA's use of a
				scence meter (FPXRF) for analyzing
				or lead, though all confirmation and waste
				ed fixed-laboratory ("lab") analysis by an ADEC-
				ixed lab samples were analyzed by ADEC-
				dman & Bruya (F&BI, [Seattle, WA]) or SGS GS, [Anchorage, AK]).
		Environment	al Sel vices (S	os, [Anchorage, AK]).
	b.	to an alternate		ed to another "network" laboratory or sub-contracted as the laboratory performing the analyses ADEC CS
		approved? □ Yes	= N	
		⊔ Yes	■ No	Comments:
2.	Chain	of Custody (CO	OC)	
				, signed, and dated (including released/received by)?
		■ Yes	□ No	Comments: Completed for 5 of 5 fixed-lab
	sampl	e delivery grou	ups (SDGs).	
	h	Correct analys	nas raquastad?	
	υ.	■ Yes	Ses requested? □ No	Comments: Correct for 5 of 5 fixed-lab SDGs.
		_ 105	_ 110	Commens.
3.		atory Sample re		
	a.	-	-	locumented and within range at receipt $(4^{\circ} \pm 2^{\circ} \text{ C})$?
		□ Yes	■ No	Comments: Two of five SDGs received by
		between 24° a		at $4^{\circ} + 2^{\circ}$ C. The other three SDGs were received
		between 24 a	inu 32 C.	
	b.	Sample preser	vation accepta	ble – acidified waters, Methanol preserved VOC soil
		(GRO, BTEX	, Volatile Chlo	rinated Solvents, etc.)?
		■ Yes	□ No	Comments: No preservation is required for lead
	soi	l samples.		
	C	Sample condit	tion documents	ed – broken, leaking (Methanol), zero headspace
	C.	(VOC vials)?	non document	orokon, reaking (memanor), zero neauspace
		■ Yes	□ No	Comments:

	d.	If there were any discrepancies, were they documented? – For example, incorrect sample containers/preservation, sample temperature outside of acceptance range, insufficient or missing samples, etc.? ■ Yes □ No Comments: Samples from the June 2006 and August 2006 site characterization activities were delivered to laboratory in new, resealable plastic bags instead of 4 ounce jars as specified in NOAA's Master Quality Assurance Plan (QAP). See 3a above regarding sample temperatures.
	e.	Data quality or usability affected? Impacts on data should be minimal since no samples within any coolers were received frozen, containing any ice, or with bulging septa in the sample vials Use of new, resealable plastic bags instead of 4 ounce glass jars did not affect data quality or usability. Lead in soil will not migrate from or adsorb to polyethylene plastic. Sealed bags will not be subject to cross-contamination. While three batches exceeded the specified temperature range above, this should have no impact on data quality. The melting point and boiling point temperatures of lead at standard atmospheric pressure are 328 °C and 1740 °C, respectively. Lead's vapor pressure does not exceed 1 millimeter of mercury until it reaches 980 °C. Lead is a naturally occurring element. Lead is non-volatile at 32°C, and will not degrade due to biological activity or other natural processes that can degrade organic contaminants at this temperature. Consequently, the quantity of lead in project samples would not vary with temperatures ranging between 4°C and 32°C.
4.	Case N	Varrative
		Present and understandable? Yes □ No Comments: All five sample data groups had
		understandable case narratives.
	b.	Discrepancies, errors or QC failures identified by the lab? ☐ Yes ■ No Comments:
	c.	Were all corrective actions documented?
	no	\square Yes \square No <u>Comments:</u> N/A – No corrective actions were ted or needed.
	a	What is the effect on data quality/usability according to the case narrative? No

5.	<u>Sampl</u>	es Results
	a.	Correct analyses performed/reported as requested on COC?
		■ Yes □ No <u>Comments:</u>
	b.	All applicable holding times met?
		■ Yes □ No <u>Comments:</u> The maximum holding time for lead
		in soil is 6 months per NOAA's Master QAP. All samples were analyzed
		within 1 month of collection.
	c.	All soils reported on a dry weight basis?
		■ Yes □ No <u>Comments:</u>
	d.	Are the reported PQLs less than the Cleanup Level or the minimum required
		detection level for the project?
		■ Yes □ No <u>Comments:</u>
	e.	Data quality or usability affected? There was no negative effect on data quality
		or usability.
6	OC 50	omples
0.	QC Sa a.	Method Blank
		i. One method blank reported per matrix, analysis and 20 samples?
		■ Yes □ No <u>Comments:</u>
		ii. All method blank results less than PQL?
		■ Yes □ No Comments:
		iii. If above PQL, what samples are affected? Not applicable to lead soil samples.
		samples.
		iv. Do the affected sample(s) have data flags? If so, are the data flags clearly
		defined? □ Yes □ No Comments: None are needed.
		Comments. None are needed.
		v. Data quality or usability affected? There was no effect on data quality
		or usability due to method blank problems.

b.	Labora			Duplicate (LCS/LCSD)	
	i.	-		/LCSD reported per matrix, analysis and 20 samples	;?
	□ Ye	s L	No	Comments: Not applicable to lead soil samples.	
				One LCS and one sample duplicate reported per 20 samples?	
	■ Yes		No	Comments:	
		laboratory 75-125 % F	limits? Or	ent recoveries (%R) reported and within method or reproject specified DQOs? (AK Petroleum methods analyses see the laboratory QC pages) <u>Comments:</u>	
	□ Ye	method or s	laboratory No	ve percent differences (RPD) reported and less than limits? Or project specified DQOs? <u>Comments:</u> No LCSD's were analyzed, so no ted for the LCS.	
		If %R or R Not applic		e of acceptable limits, what samples are affected?	
		Do the affeddefined?	ected samp	ble(s) have data flags? If so, are the data flags clearly	У
	□ Ye		No	Comments: Not applicable.	
	vii.	-	ty or usabil d for LCS.	lity affected? No data quality or usability effects	
c.	i.	laboratory	ate recover samples?	ries reported for organic analyses – field, QC and	
	□ Ye	s \square	No	Comments: Not applicable to lead samples.	
		laboratory	_	ent recoveries (%R) reported and within method or r project specified DQOs? <u>Comments:</u> Not applicable to lead soil samples.	
		so, are the	-	s with failed surrogate recoveries have data flags? If clearly defined? <u>Comments:</u> Not applicable to lead soil samples.	Î
	137	Data quali	ty or usabil	lity affected? Not applicable to lead soil samples	

	Fixed Laboratory Data Review Checklist
d.	Trip Blank – Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): water and soil i. One trip blank reported per matrix, analysis and cooler? ☐ Yes ☐ No Comments: Not applicable to lead soil samples.
	 ii. All results less than PQL? Not applicable to lead soil samples. □ Yes □ No Comments: iii. If above PQL, what samples are affected? Not applicable to lead soil
e.	iv. Data quality or usability affected? Not applicable to lead soil samples.Field Duplicatei. One field duplicate submitted per matrix, analysis and 10 project samples?
	PSI Environmental collected and analyzed field duplicates for waste treatment effectiveness/designation samples and final confirmation samples at a rate exceeding 10% (6 waste designation samples with 1 field duplicate; 13 final confirmation samples with 2 field duplicates). NOAA did not collect or analyze field duplicate samples during its June 2006 site characterization. For this sampling event, NOAA analyzed two other types of lab duplicates, consistent with its May 2006 Corrective Action Plan for the Lead Contaminated Soils Site. NOAA analyzed FPXRF laboratory quality control duplicates for its analyses at a rate greater than 10% (23 duplicate samples analyzed for 165 project samples analyzed for FPXRF). NOAA also tasked F&BI to verify the FPXRF results by analyzing quality assurance (QA) duplicates for 19 of the 165 project samples. NOAA sent QA duplicates to F&BI for fixed laboratory analysis using EPA Method 200.8. When NOAA compared the QA duplicate results to the FPXRF results and ADEC's residential cleanup level of 400 mg/kg for lead, it found no false negative results among the FPXRF data. NOAA did not analyze field duplicate samples for its August 2006 treatability testing, however it did analyze technology verification samples through F&BI to verify the vendor's inhouse results for the treatment technology. NOAA analyzed 13 field

duplicates for PSI's final confirmation sampling and 3 field duplicates for PSI's clean backfill characterization sampling using its FPXRF; the project samples collected by PSI were analyzed by SGS Environmental Services using EPA Method SW-846 6020. NOAA encountered no false positive FPXRF results with this 36 sample data set (19 during site investigation sampling, 13 during final confirmation sampling, and 3

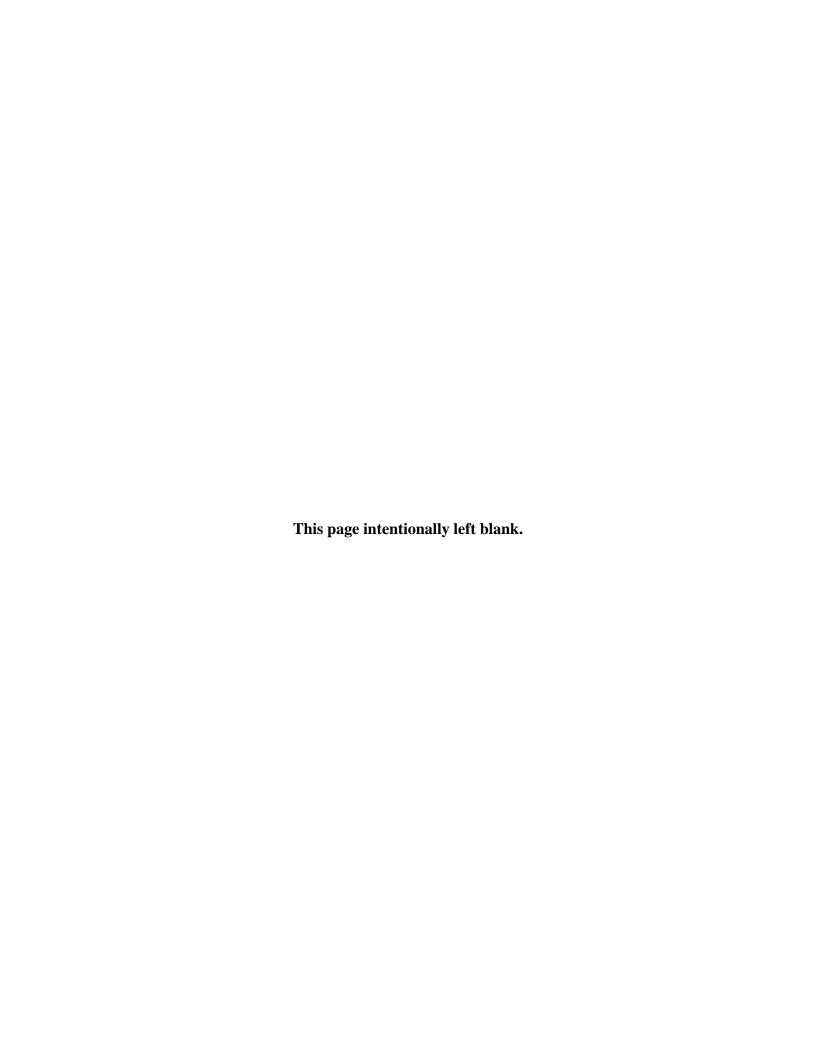
during clean backfill characterization sampling).

	ii. Submitted blind to lab? Yes ■ No <u>Comments:</u> PSI's field duplicate samples from waste treatment effectiveness/designation and final confirmation sampling in October 2006 were submitted to SGS as blind samples. NOAA's quality assurance samples from its June 2006 site investigation were submitted to F&BI as blind samples. No samples analyzed by NOAA with its FPXRF were blind.
	iii. Precision - All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil) ■ Yes □ No <u>Comments:</u> The largest RPD for fixed laboratory results is treatment effectiveness/designation sample SP60-CH-04 and its blind field duplicate SP60-CH-05 were quantified as 1,490 mg/kg and 2,400 mg/kg, respectively, by SGS. This yields a RPD of 47, which is within the error limits for this type of precision. This variation is likely due to sample heterogeneity. It is important to note both the project sample and blind field duplicate are significantly greater than the ADEC residential cleanup level of 400 mg/kg, meaning these dissimilar results would not cause an incorrect decision regarding the need for soil removal.
	iv. Data quality or usability affected? All field duplicate submissions to the laboratory were analyzed and all sampling and analysis precision calculations were within acceptance criteria.
f.	Decontamination or Equipment Blank (if applicable) Yes No Comments: The only reusable sampling equipment requiring decontamination were the steel hand trowels and direct-push cutting shoes used during the June 2006 site characterization. NOAA thoroughly decontaminated this equipment, but did not collect rinse blanks from the decontaminated equipment. NOAA did characterize the decontamination waste water (IDW) as containing lead at 12.2 μ g/L, which is about 12.2 μ g/kg assuming the decon water has a density of 1 kg/L. This concentration of lead would not cause a piece of sampling equipment to cross contaminate a soil sample to a concentration exceeding the ADEC residential soil cleanup level of 400 mg/kg (i.e., 12.2 μ g/kg = 0.0122 mg/kg << 400 mg/kg).
	 i. All results less than PQL? □ Yes □ No <u>Comments:</u> Not applicable.
	ii. If above PQL, what samples are affected? Not applicable.
	iii. Data quality or usability affected? Not applicable.

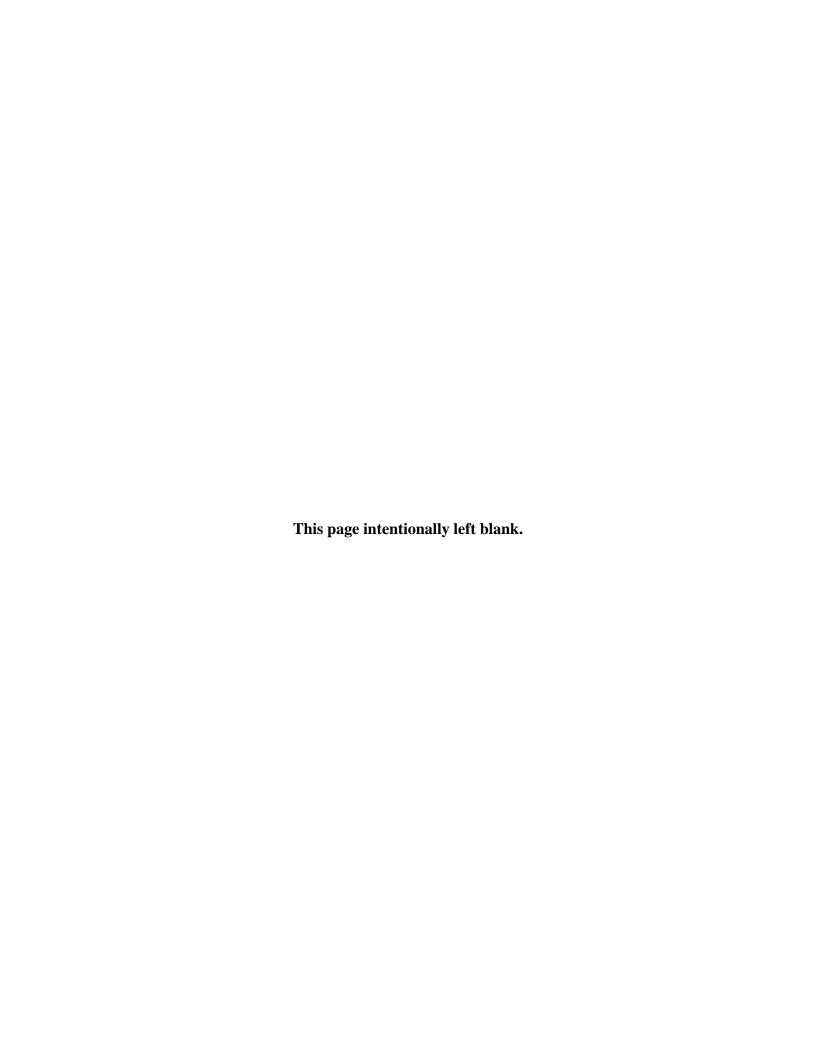
- 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab specific, etc.)
 - a. Defined and appropriate

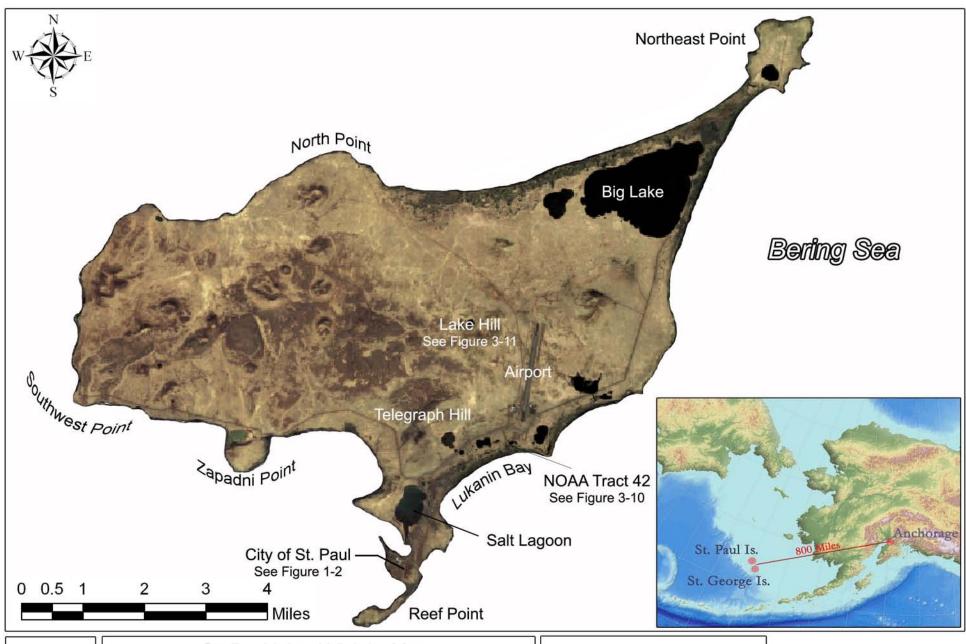
Fest □ No Comments: A number of F&BI results are "J" flagged as estimated concentrations between the MDL and PQL. F&BI Batch 608150 has one laboratory duplicate sample (608150-02) with an RPD of 130, which is much greater than the acceptable range of <20. F&BI indicated the result was likely due to sample heterogeneity (i.e., flagged by F&BI as "h" for matrix heterogeneity). NOAA notes that the reported project sample result of 3,570 mg/kg (SP60-CH-151-005) and the laboratory duplicate sample result of 759 mg/kg are both greater than the ADEC residential cleanup level of 400 mg/kg. Sample heterogeneity, in this instance, would not cause an incorrect characterization to occur relative to the site cleanup level. All other LCS were within the acceptable RPD range.

Completed by: Gregory P. Gervais, P.E.

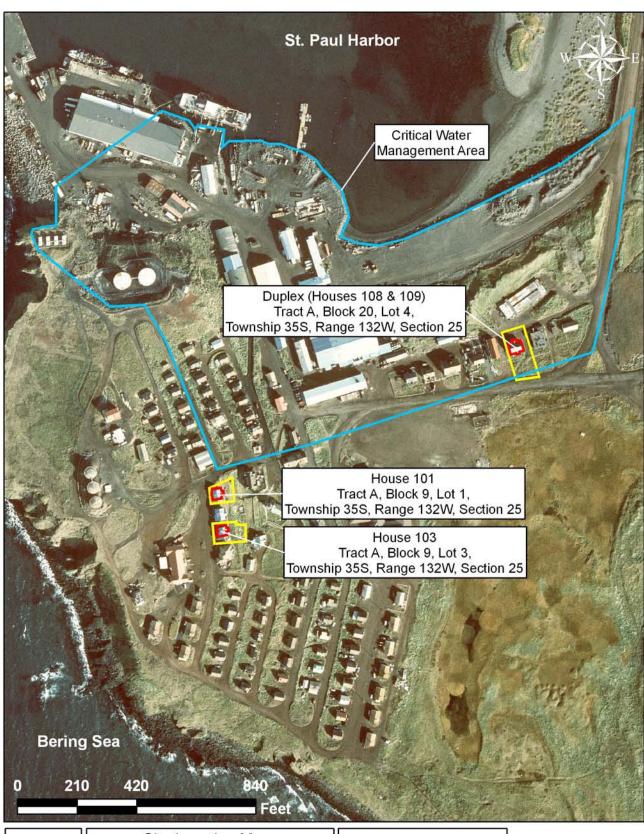

Title: Environmental Engineer Date: February 7, 2007

Report Name: Corrective Action Report/Conditional Closure Request, NOAA Site 60/Non-


TPA - Lead Contaminated Soils. St. Paul Island, Alaska


Report Date: February 7, 2007

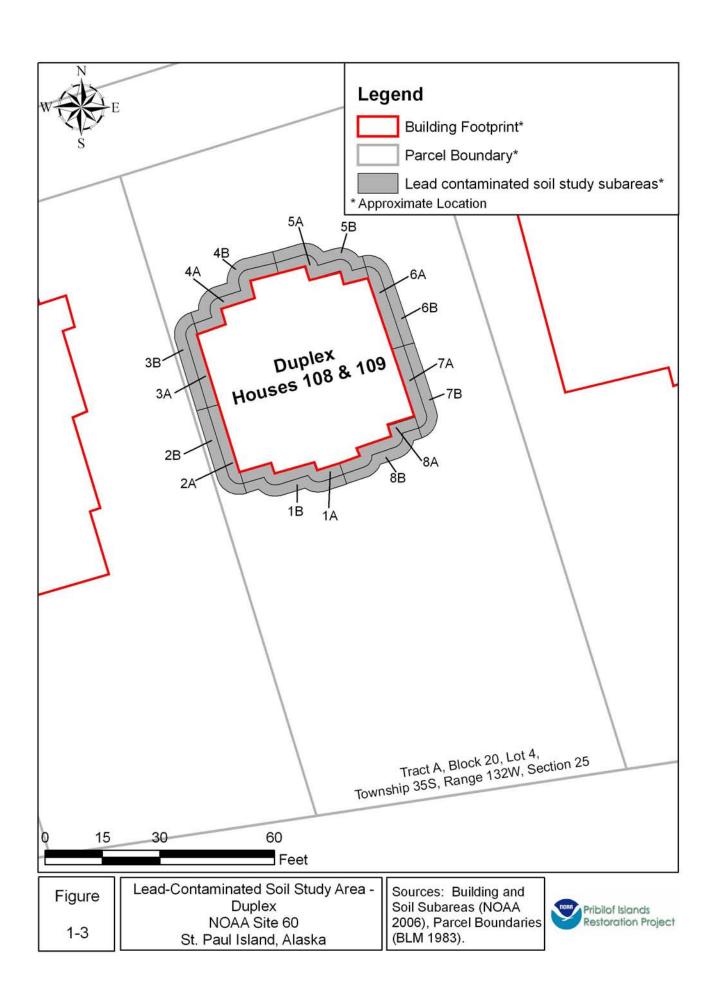
Firm: National Oceanic and Atmospheric Administration

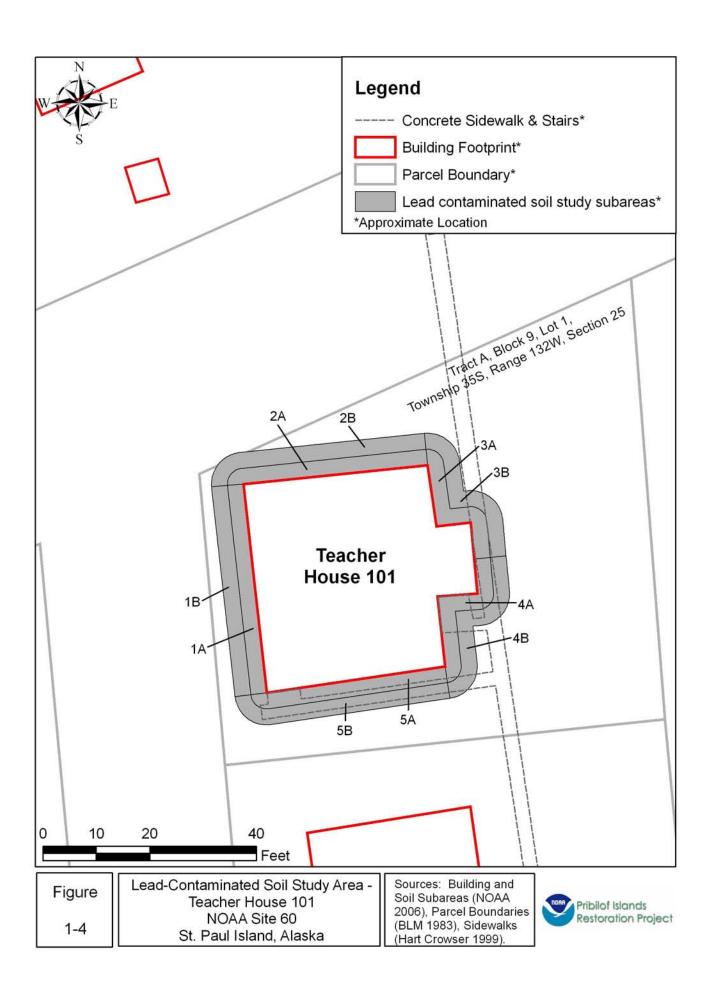

Figure

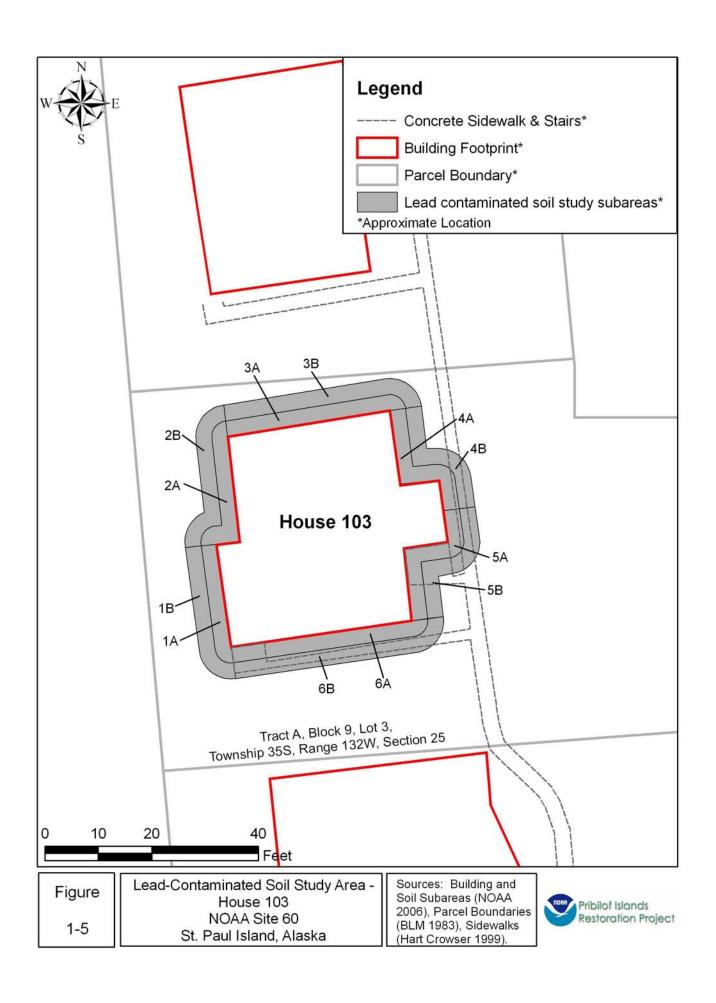
1-1

St. Paul Island Vicinity Map Lead Contaminated Soils Non-TPA Site 60 St. Paul Island, Alaska

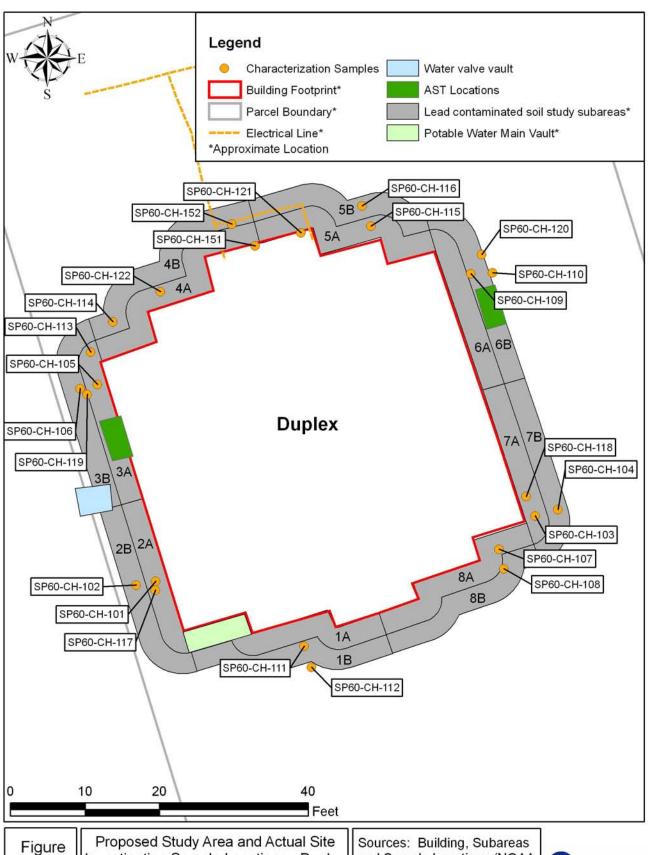
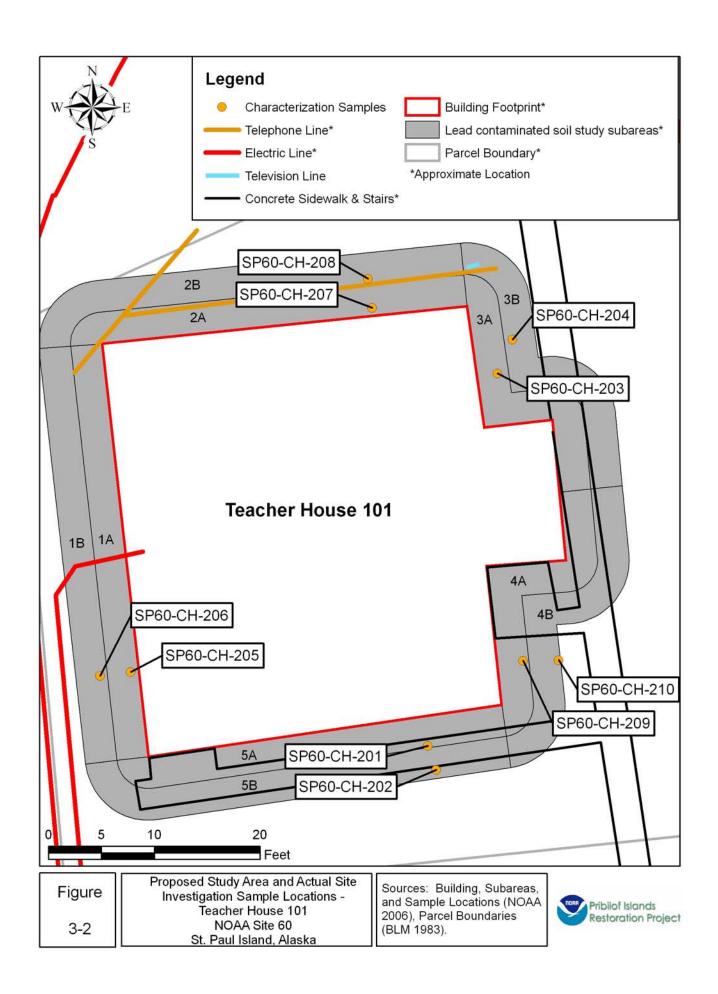
Source: Ikonos Satellite Imagery, 2001

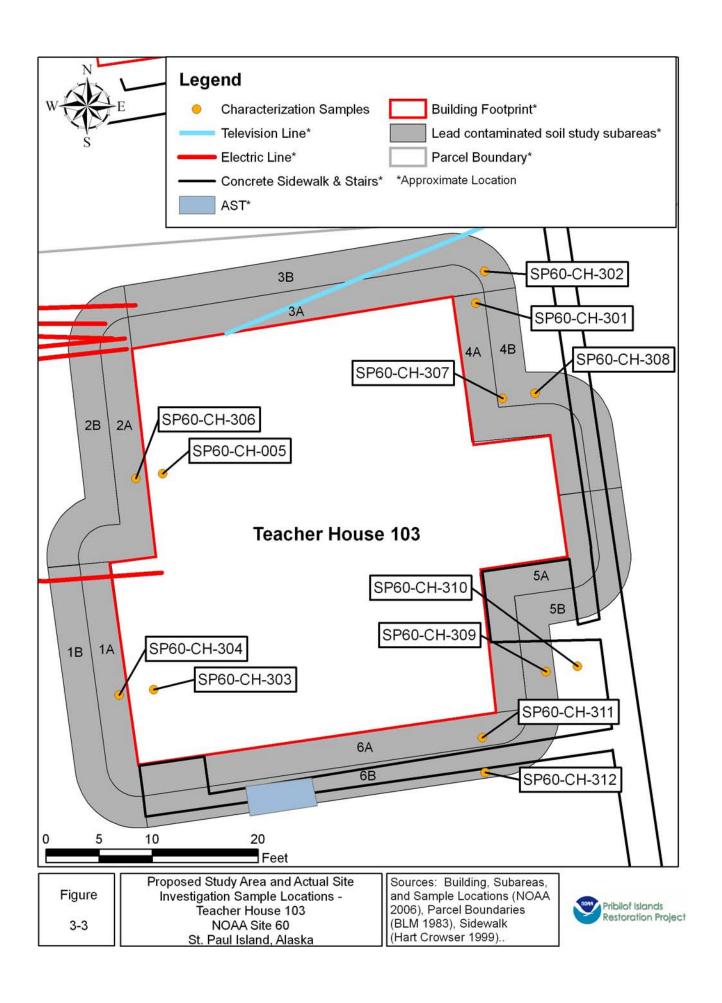


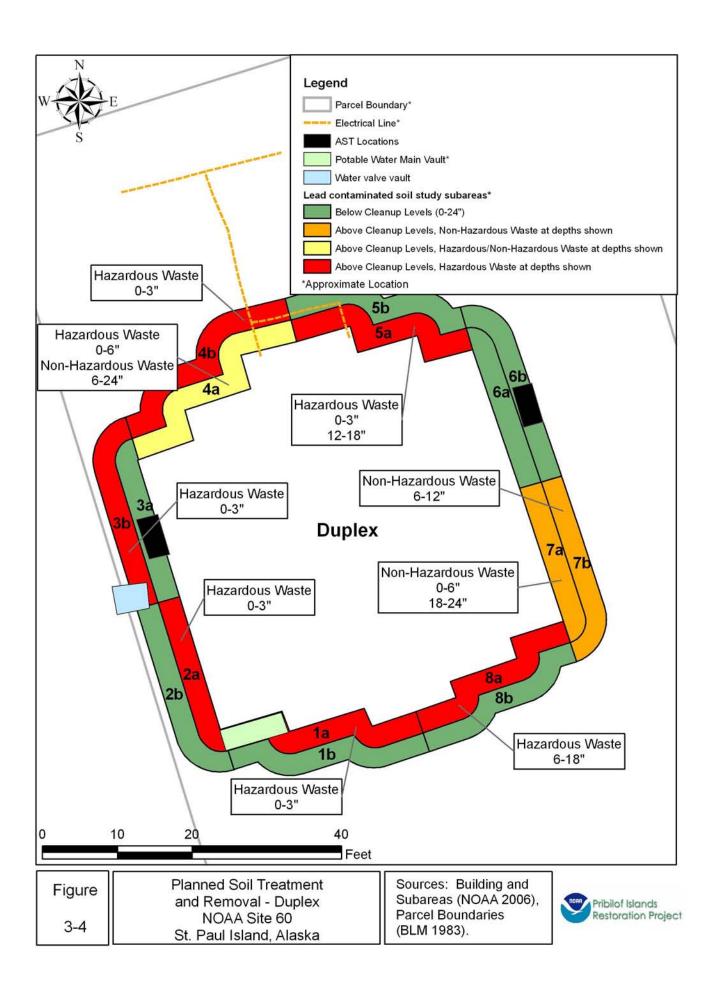

Figure

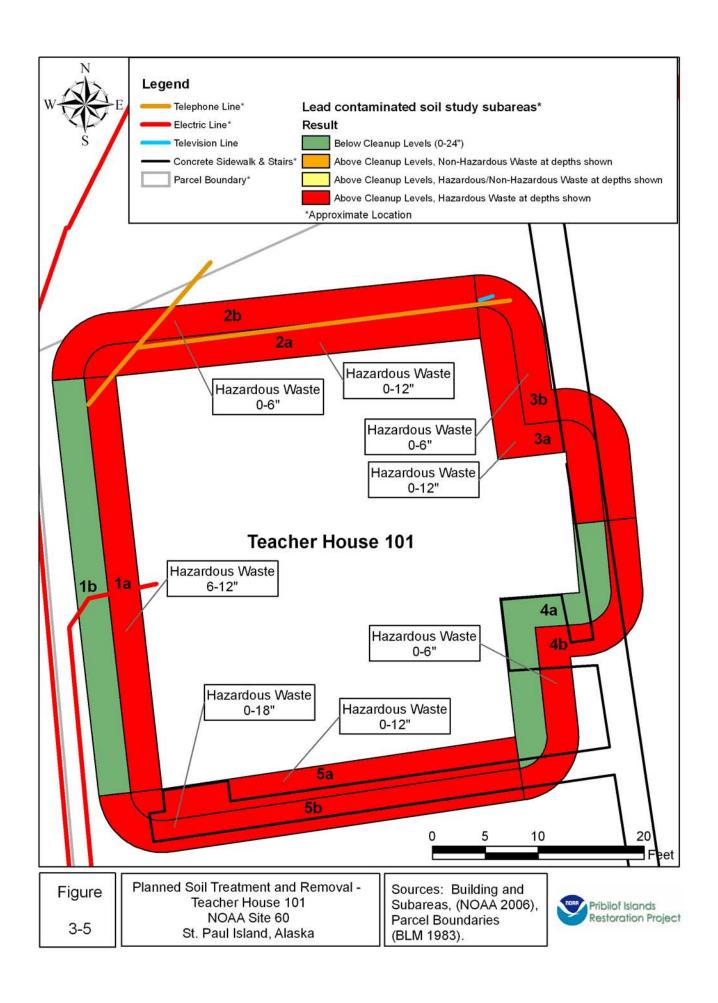

1-2

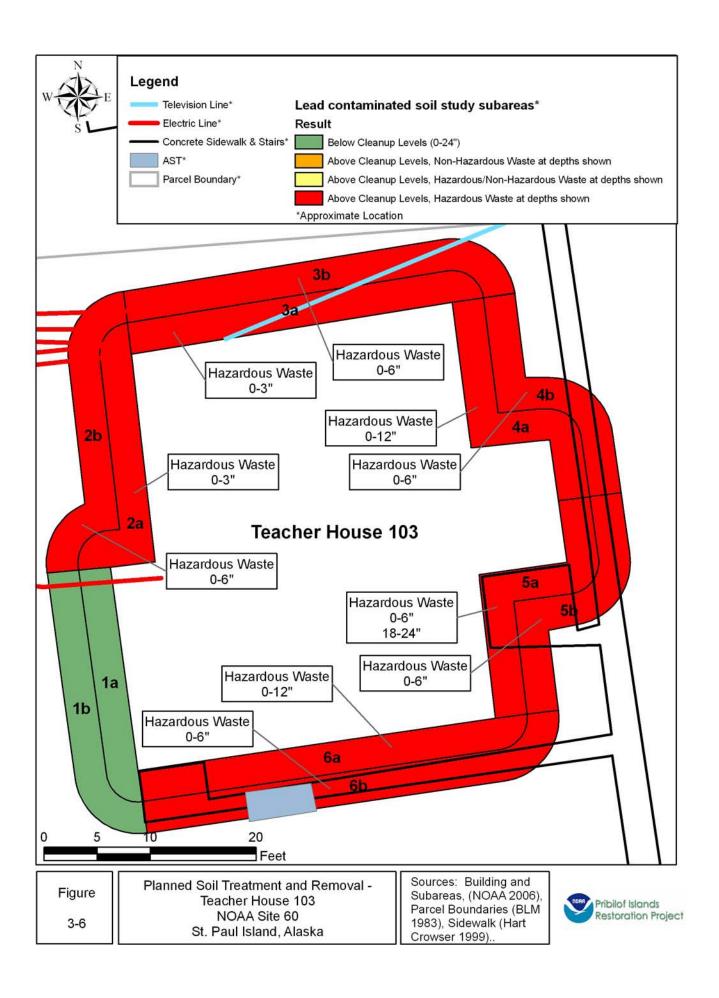
Site Location Map Lead Contaminated Soils NOAA Site 60 St. Paul Island, Alaska Sources: Buildings (NOAA GIS 2006), Parcels (BLM 1983), Aerial Photo (AeroMap US 1996).

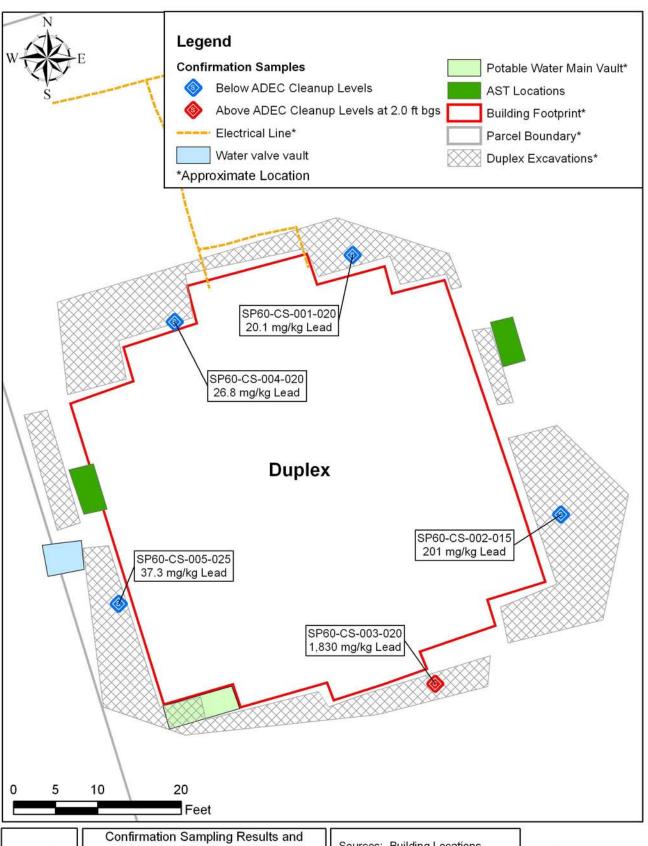
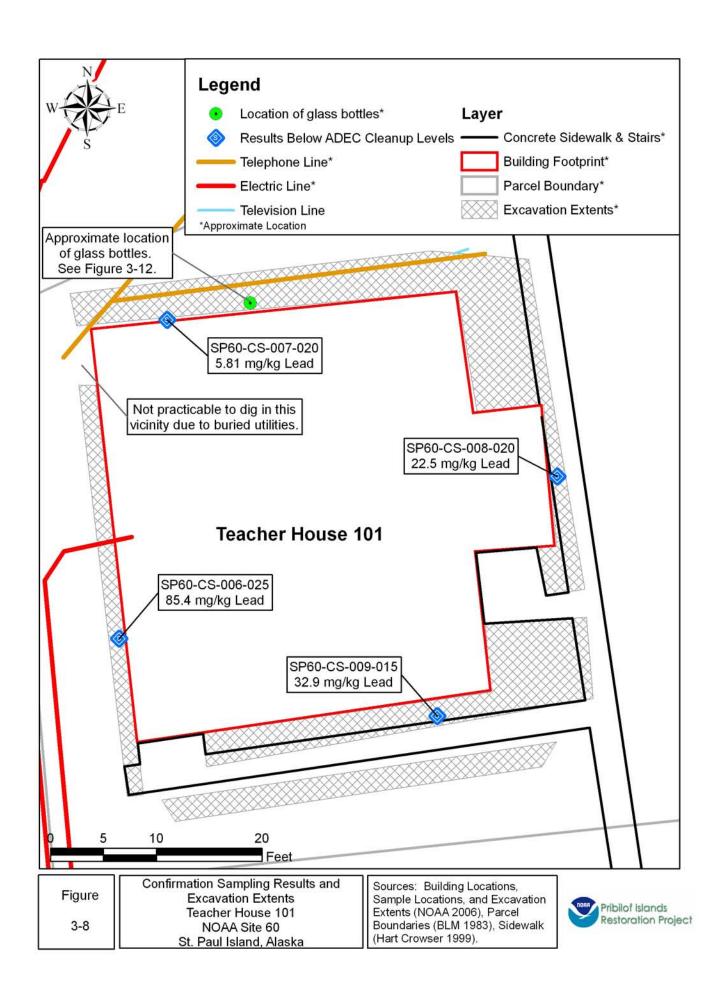
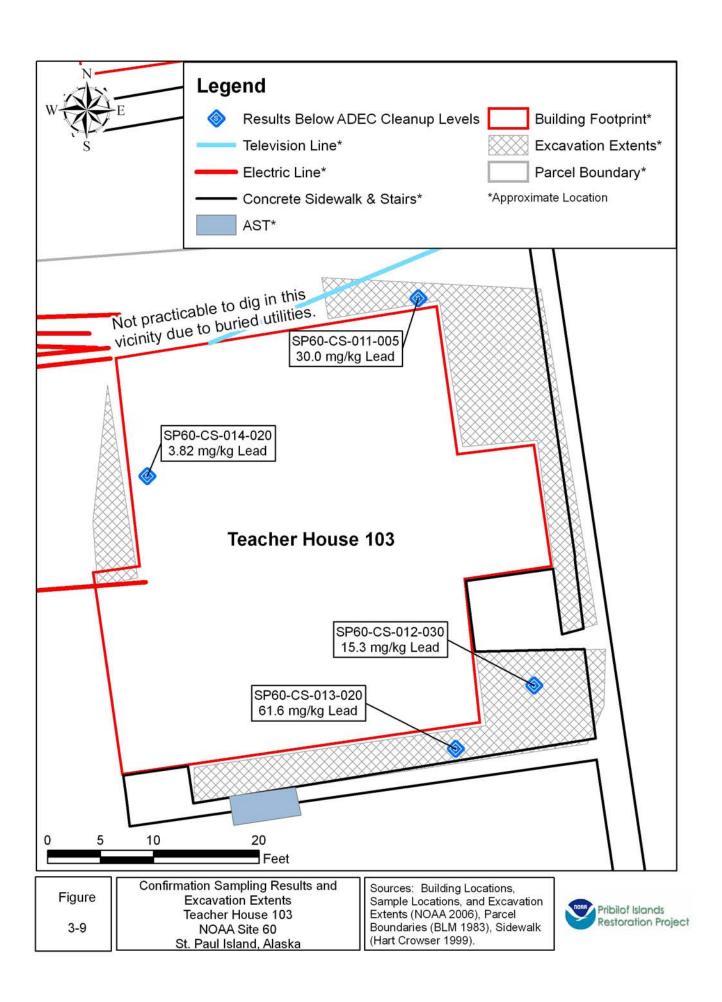



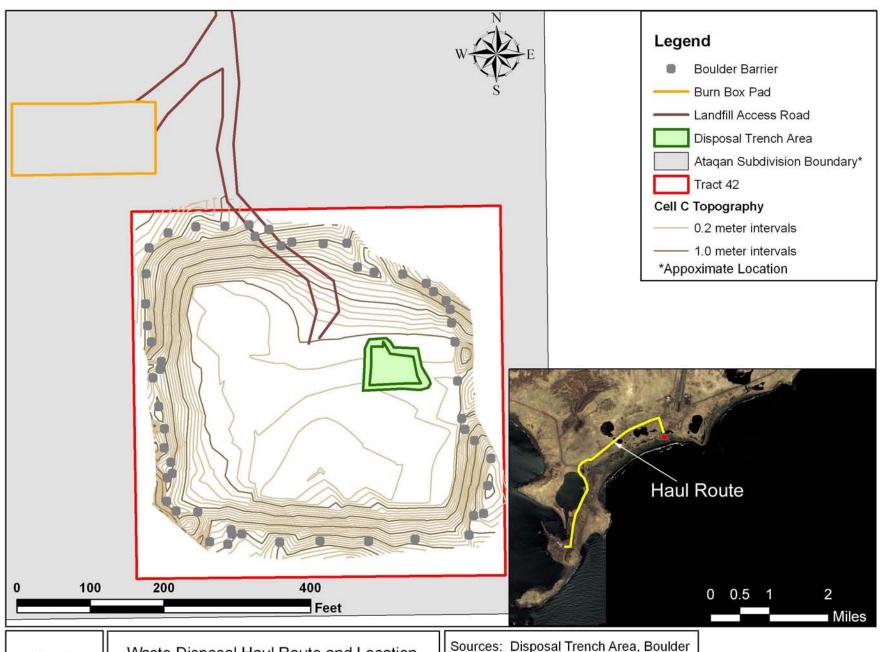

Figure 3-1


Proposed Study Area and Actual Site Investigation Sample Locations - Duplex NOAA Site 60 St. Paul Island, Alaska


Sources: Building, Subareas and Sample Locations (NOAA 2006), Parcel Boundaries (BLM 1983).




Figure 3-7 Confirmation Sampling Results and
Excavation Extents
Duplex
NOAA Site 60
St. Paul Island, Alaska

Sources: Building Locations, Sample Locations, and Excavation Extents (NOAA 2006), Parcel Boundaries (BLM 1983).

Figure

3-10

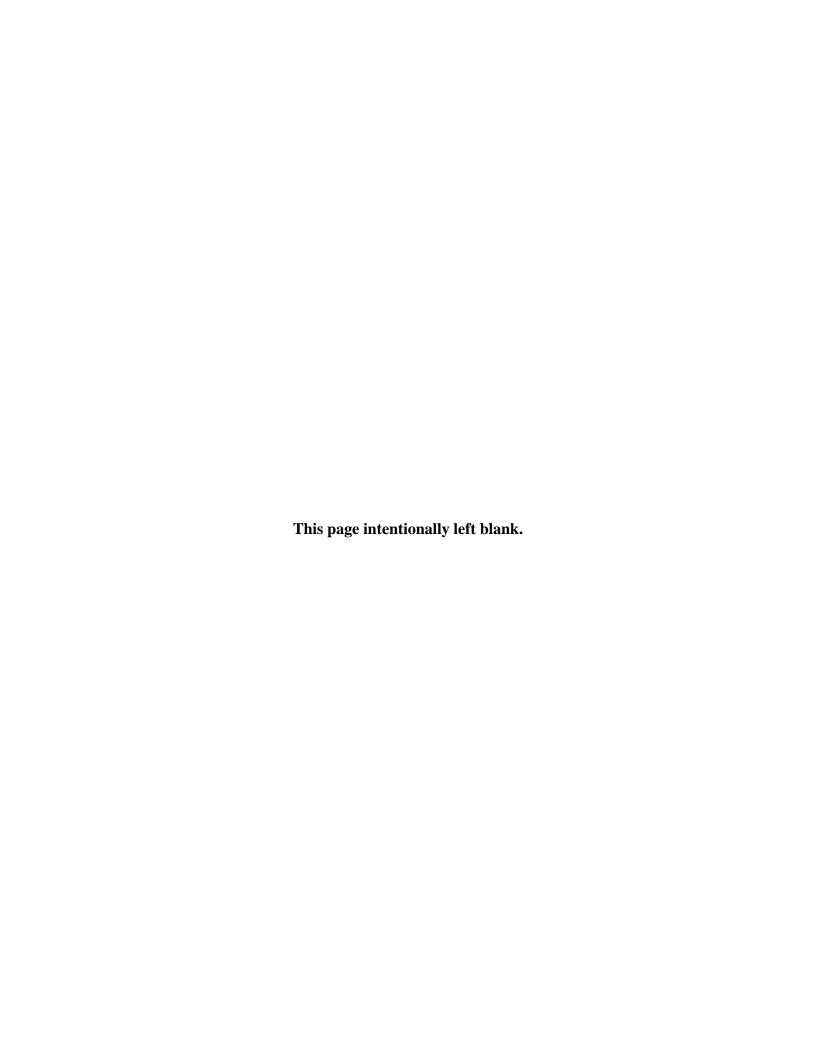
Waste Disposal Haul Route and Location St. Paul Landfill/Tract 42 NOAA Site 60 St. Paul Island Sources: Disposal Trench Area, Boulder Barrier, Burn Box Pad, Access Road, and Cell C Topography (NOAA 2003-2006), Tract 42 (BLM 1983), Ataqan Subdivision Boundary (Polarconsult 2001).

Figure

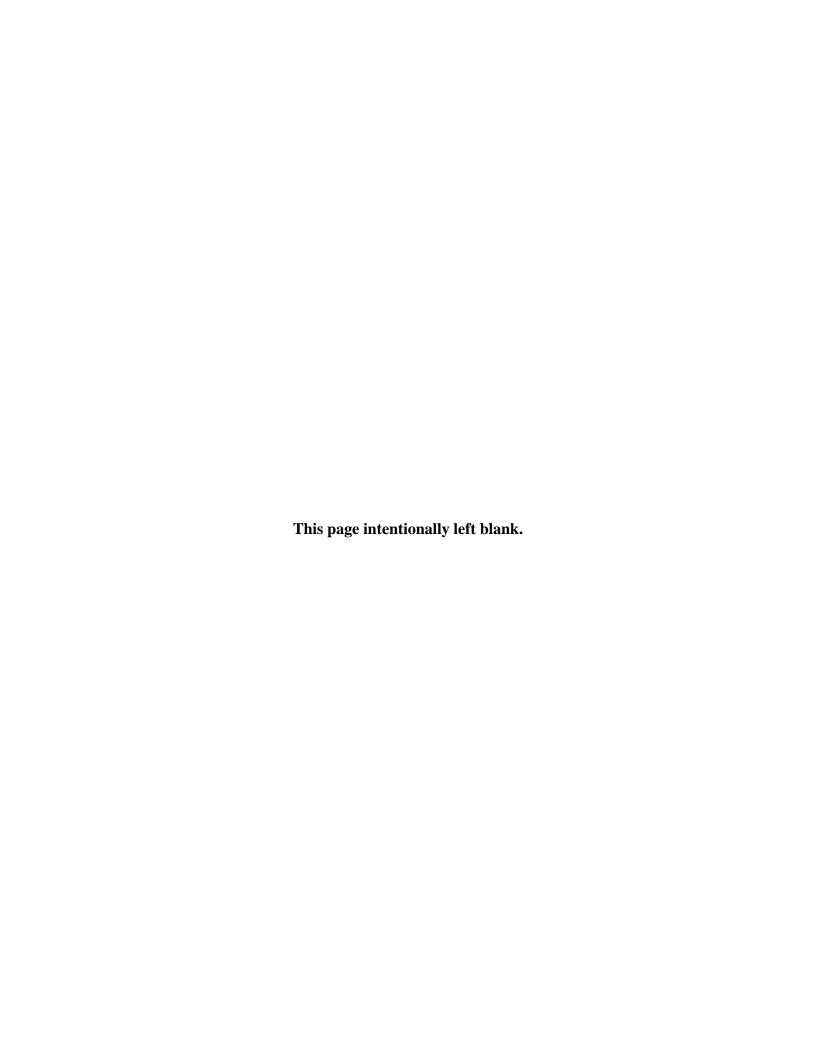
3-11

Clean Backfill Borrow Area Haul Route and Sample Locations Lake Hill Scoria Pit NOAA Site 60 St. Paul Island, Alaska

Sources: Sample Locations (NOAA 2006), Scoria Pit Location (TTEMI 1999), Satellite Imagery (Ikonos 2001).


Figure

3-12


Glass Bottles Encountered Along Teacher House 101 Foundation NOAA Site 60 St. Paul Island

Source: NOAA Pribilof Project Office.

APPENDIX A NOAA AND PSI PERSONNEL QUALIFICATIONS

APPENDIX A. ADEC STORAGE TANK PROGRAM QUALIFIED PERSONNEL FORM

This form must be submitted before any work conducted by the assessment firm under Chapter 2, Standard Sampling Procedures of the Underground Storage Tanks Procedures Manual. Resumes and any other pertinent documents must be submitted as attachments to demonstrate that the personnel listed below are "qualified" as defined in 18 AAC 78. Resumes must contain dates of degrees obtained, educational institution's name and location where degree was obtained, and professional experience and work history relating to the equivalent of one year of professional experience requirement. The assessment firm shall notify ADEC of all amendments to this listing and submit a revised form along with documentation of personnel changes and resumes. If additional people are added, place an asterisk next to each name to identify new personnel.

	_NOAA Pribilof Project Office
Address	_7600 Sand Point Way, Bldg. 3, Room 1003
City, State, Zip Code	_Seattle, WA 98115
Phone Number	_206-526-4821
Fax Number	_206-526-4819
Principal Investigator	_Greg Gervais
QA Officer	_Greg Gervais
	QUALIFIED PERSONNEL
science, hydrology, or a related equivalent from an accredited p hydrology, physical science, or 168 trimester hours, or 192 qua credits (or at least 18 percent of percent of credits) were in upper	on who actively practices environmental science or engineering, geology, physical field and meets the following minimum requirements: (A) a bachelor's degree or costsecondary institution in environmental science or engineering, geology, a related field; "equivalent" means that the person earned at least 128 semester hours, at an accredited postsecondary institution, of which at least 24 semester forcedits) were in the science major and at least 16 semester credits (or at least 13 er division level courses; and (B) at least one year of professional experience in eering, geology, physical science, or a related field, completed after the degree
1Greg Gervais	2David Winandy
3Paula Souik	4Nir Barnea
5James Wright	6James Malchow
7	8
9	
11	12
13	14
15	

QUALIFICATIONS

GREG GERVAIS, P.E.

Environmental Engineer

Greg Gervais is an environmental engineer with over 10 years of experience designing and implementing characterizations and cleanups for hazardous, toxic, and radioactive waste (HTRW) sites. Greg has worked for NOAA's Office of Response and Restoration since 2002, functioning both as a senior environmental engineer and deputy manager for the Pribilof Project Office. Prior to NOAA, Greg was a project manager and senior chemical engineer for the U.S. Army Corps of Engineers HTRW Design Center in Seattle. With the Corps, Greg played a variety of roles on cleanup projects executed for the Department of Defense, Department of Energy, Environmental Protection Agency, Farm Service Agency, and other federal agencies. He graduated from the Corps' Leadership Development Program in 2000. Greg began his career as a cooperative education student and assistant remedial project manager with the Environmental Protection Agency's Superfund Program in Region 10-Seattle where he worked on a variety of cleanups throughout Washington and Idaho. Greg has worked on civilian and military sites during his career, with contaminants such as heavy metals, polychlorinated biphenyls, petroleum-oil-lubricants, asbestos, chlorinated solvents, wood treater chemicals including polynuclear aromatic hydrocarbons, explosives residues, chlorinated and phosphorus-based pesticides, dioxins/furans, radionuclides, seal blubber, and biohazards. Past projects include the optimization of a groundwater treatment plant and leading a treatability study on the use of constructed wetlands to remediate acid mine drainage. Greg led a multidisciplinary team's review of the design for a multibillion dollar nuclear waste remediation. Greg scoped the characterization of a 3,800 acre former Army training facility, provided life-cycle environmental engineering of a former pesticides disposal test facility using the Triad Approach, and managed the conceptual design of an in-situ thermal remediation system. He holds a Bachelor of Science degree in chemical engineering from the University of Washington (1995) and is a licensed professional engineer, registered as qualified in environmental engineering by the State of Washington. Greg holds NOAA certification as a Contracting Officer's Technical Representative. Greg is also 40-hour HAZWOPER certified and has an Asbestos Worker II certificate.

JIM MALCHOW

Environmental Engineer

Jim joined NOAA and the Pribilof Project team in February 2003 as an environmental engineer. Primarily, his job has been the on-site management of remediation projects on St. George Island, Alaska. Jim is the COTR for soil remediation and groundwater sampling contracts, with the corresponding responsibilities of writing contract specifications, developing government cost estimates, negotiating contract costs, overseeing contracted work, and validating invoices prior to payment. Jim prepares reports for regulatory agencies; and provides field support including GPS surveys, thin layer chromatography, and sample collection using Geoprobe direct-push technology. Jim uses his communication skills to work cooperatively with native interests toward the mutually successful completion of NOAA's projects. Prior to coming to NOAA, Jim

worked at Puget Sound Naval Shipyard (Bremerton, Washington) in the disciplines of radiological controls engineering, nuclear system test engineering, and environmental engineering. He held various management and supervisory positions, using his experience to balance facility compliance to the myriad environmental regulations with the shipyard's production goals for cost and schedule. Jim advanced to the position of Environmental Division Head within the shipyard's Environmental, Health and Safety Department. He received a Bachelor of Science degree in civil engineering from Portland State University (1985) after serving with the U.S. Navy Submarine Corps. Jim holds NOAA certification as a Contracting Officer's Technical Representative. Jim is also 40-hour HAZWOPER certified and has an Asbestos Worker II certificate.

PAULA SOUIK

Environmental Scientist

Paula Souik is an environmental scientist who began her career with NOAA as a 1997 National Sea Grant/Knauss Marine Policy Fellow. Paula currently provides oversight of remediation projects on the Pribilof Islands, Alaska, including providing field screening and GPS support. In the office, she prepares site characterization plans and reports, corrective action plans and reports, requests for no further action, and government cost estimates for the Pribilof Project. Prior to working for the Office of Response and Restoration's (OR&R's) Pribilof Project Office, Paula worked at OR&R headquarters in Silver Spring, Maryland. Her primary responsibility there was to manage the Portfields Initiative, a NOAA-led interagency initiative to address brownfields in port and harbor areas. She also designed a sampling plan and conducted sampling to assess the risk of a petroleum-contaminated site to the adjacent marine environment. Paula spent five years with NOAA's National Marine Sanctuary Program (NMSP) before coming to work for OR&R. During her time with the NMSP, she coordinated national sanctuary science activities, designed a database to track science efforts, established and maintained the Marine Sanctuaries Conservation Series, crafted pages for the NMSP web site, conducted coral reef-related fieldwork, developed monitoring plans, and contributed to drafting environmental impact statements. Paula has also worked as a field chemist servicing a hazardous waste contract with the Puget Sound Naval Shipyard.

Paula has recently completed training courses in contracting, NITON Spectrum Analyzer, asbestos abatement, survey-grade GPS, and offshore survival. She has a bachelor's degree in chemistry and biology from Ripon College (1994) and a Master of Science degree in environmental toxicology from the University of Wisconsin (1998). Paula holds NOAA certification as a Contracting Officer's Technical Representative. Paula is also 40-hour HAZWOPER certified and has an Asbestos Worker II certificate.

DAVID WINANDY

Environmental Engineer

David Winandy is an environmental engineer who began his career with NOAA in 1998, as the project engineer for the Pribilof Islands Environmental Restoration Project. David has worked both as the project engineer for the Pribilof Project Office and the facility engineer for NOAA Western Regional Center since that time. As he has throughout his career, during his tenure with NOAA, he has also served as a Contracting Officer's

Technical Representative on numerous contracts. For 3-1/2 years prior to working for the NOAA Pribilof Project Office, David was the Environmental Branch Chief for the U.S. Army Chemical Activity, Pacific, Johnston Atoll, involved in chemical weapons storage and demilitarization. He directed, oversaw and participated in the inventory of 22 years of temporarily stored chemical agent related wastes, defined the crosslinks, developed the inventory database crosslinking USEPA hazardous waste definitions to U.S. Army chemical decontamination conditions, obtained USEPA Region concurrence, arranged for JACADS and NSCMP disposal of actual chemical agent wastes, and off-island commercial disposal of other wastes. He served five years as the region engineer for the Defense Logistics Agency, Pacific, developing, managing and providing technical oversight of environmental compliance, clean-up, maintenance, repair, renovation, minor and major construction projects at sites throughout the Pacific. David has a bachelor's degree in civil and environmental engineering from Cornell University (1977). David holds NOAA certification as a Contracting Officer's Technical Representative. David is also 40-hour HAZWOPER certified and has an Asbestos Worker II certificate.

JAMES P. WRIGHT, P.E.

Environmental Engineer

Jim Wright is an environmental engineer with over 18 years of experience in the design and implementation of environmental site restoration projects, field investigation, and regulatory compliance. He is licensed as a professional environmental engineer in Washington and Alaska. Jim holds NOAA certification as a Contracting Officer's Technical Representative. Jim is also 40-hour HAZWOPER certified and has an Asbestos Worker II certificate. He began his career with four years at the Naval Facilities Engineering Command in Alexandria, Virginia and Washington, DC, bringing regional Naval facilities into compliance with regulations under the Resource Conservation and Recovery Act (RCRA), the Toxic Substances Control Act (TSCA), and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). He then was a consulting engineer with Tetra Tech EM Inc. for a period of 13 years, working on a wide variety of environmental investigation and restoration projects in California, Oregon, Washington, Alaska and Idaho. He was Tetra Tech's lead engineer for four years for the Alameda Annex project, a PCB-contaminated Navy site on San Francisco Bay. He prepared the feasibility study and the remedial design, and then oversaw the removal of approximately 10,000 cubic yards of PCB- and cadmiumcontaminated soil and successful restoration of the Alameda Annex site to commercial and residential use. His work includes field investigations of remote abandoned gold mines on Prince William Sound, Alaska, research and geographical information system (GIS) mapping of historical firing ranges at Fort Lewis Washington, and the construction oversight of brownfields sites in Astoria and North Bend, Oregon. Jim managed a project to prepare an updated GIS map of Fort Lewis, Washington to show former sites where munitions may have been used or disposed in the past, based on a review of historical documents and interviews with personnel. The locations of many former firing ranges were successfully identified. While working for NOAA, Jim did mathematical modeling of pollutant transport using the SESOIL model, successfully demonstrating that petroleum contaminated soil could be treated in land spreading facilities on St. Paul and St. George Islands without violating State of Alaska regulations, thus obtaining regulatory approval. The land spreading facilities were successfully implemented, saving several million dollars over the previous method of soil treatment. He prepared a design for the restoration of a 250-foot section of sensitive marine shoreline where petroleum saturated soil was to be removed, applying for and receiving a permit from the Alaska District, Army Corps of Engineers. He oversaw removal of the contaminated soil and construction of the shoreline during the summer of 2004.

Jim has Bachelor of Science degrees in both civil engineering (1985) and biology (1980) from the University of Michigan. He completed solid waste management planning, permitting & design training given in 2003 by the Alaska Department of Environmental Conservation and Contracting Officer's Technical Representative training in 2004.

NIR BARNEA

Certified Industrial Hygienist; Physical Scientist

Nir Barnea has worked with OR&R since 1992, serving in several capacities. As the Health and Safety Coordinator for the office, Nir provides expert advice and direction in a broad range of industrial hygiene and site safety issues to OR&R personnel, the US Coast Guard, other federal entities, and state and local officials during oil or chemical spill response. He coordinates and tracks health and safety training of OR&R personnel, providing some of the training himself. Nir has been the OR&R focal point for in-situ burning of oil as a spill response method, promoting its use nation-wide. Nir co-chaired a federal multi-agency team that developed the Special Monitoring of Applied Response Technologies (SMART) monitoring protocol for in-situ burning and dispersant applications, and coordinated in-situ burning air monitoring during the response to the grounding of the freighter New Carissa in Oregon in 1999. Since May 2001, Nir has been providing oversight and on-site management to OR&R site remediation and restoration efforts on the Pribilof Islands including soil excavation, contaminated soil remediation in a thermal unit, UST extraction, hazardous materials characterization, and soil sampling. As a COTR for a native corporation contract, Nir develops government cost estimates, reviews reports and invoices, and, using diplomacy and communication skills, strives to maximize cooperation with the contractor to achieve successful completion of NOAA projects.

Nir received his Bachelor of Science (microbiology, 1989) and Master of Science (environmental health, 1991) degrees from the University of Washington. He has been a certified industrial hygienist since 1998. Nir's training includes CPR/AED instructor, HAZWOPER, asbestos supervisor, tank car specialist, offshore survival, Trimble GPS, COR, indoor air quality investigation, hazardous material and waste management, oil spill control, and environmental decision-making for managers.

END

Qualified Personnel Form

This form must be submitted before any work conducted by the assessment firm under Chapter 2, Standard Sampling Procedures of the Underground Storage Tanks Procedures Manual. Resumes and any other pertinent documents must be submitted as attachments to demonstrate that the personnel listed below are "qualified" as defined in 18 AAC 78 and 18 AAC 75. Resumes must contain dates of degrees obtained, educational institution's name and location where degree was obtained, and professional experience and work history relating to the equivalent of one year of professional experience requirement. The year's worth of experience must be completed after the bachelor degree was obtained. The assessment firm shall notify ADEC of all amendments to this listing and submit a revised form along with documentation of personnel changes and resumes. The list below must include names of all qualified persons working for the firm including any staff that need to go through the qualified person approval process. If additional staff are added and need to be approved by ADEC, place an asterisk next to each name to identify staff that need to be considered and submit a resume for each additional person to the department.

Assessment Firm Name	PSI Environmental & Instrumentation, LLC
Address	1611 First Avenue
City, State, Zip Code	Anchorage, Alaska 99501
Phone Number	907-272-8010
	907-272-9005
	WWW.PSIENV.COM_
Principal Investigator	Keith O. Guyer
2	Keith O. Guyer
	OHALIEIED DEDSONNEL

OUALIFIED PERSONNEL

A "qualified person" is a person who actively practices environmental science or engineering, geology, physical science, hydrology, or a related field and meets the following minimum requirements: (A) a bachelor's degree or equivalent from an accredited postsecondary institution in environmental science or engineering, geology, hydrology, physical science, or a related field; "equivalent" means that the person earned at least 128 semester hours, 168 trimester hours, or 192 quarter hours, at an accredited postsecondary institution, of which at least 24 semester credits (or at least 18 percent of credits) were in the science major and at least 16 semester credits (or at least 13 percent of credits) were in upper division level courses; and (B) at least one year of professional experience in environmental science or engineering, geology, physical science, or a related field, completed after the degree described in (A) was obtained.

1Keith O. Guyer	9
2Scott E. Nygard	10
3	11
4	12
5	13
6	14
7	15
8	16

a. Name

Scott E. Nygard

b. Project Assignment Senior Chemist

c. Name of Firm

PSI Environmental & Instrumentation, Inc.

d. Years experience

4 this firm 15 other firms

e. Education - Degree(s) / Year / Specialty

Bachelor of Science, Chemistry/Biology, 1987, Western Washington University

f. Active Registration - Year First Registered / Discipline

N/A

Basis for Selection:

- Over 18 years of analytical/process chemistry experience
- Over 5 years of sampling experience using RCRA and CERCLA test methods
- Current lead field chemist and data quality assessor for ongoing USACE groundwater monitoring project

Mr. Nygard has more than 18 years of experience as a chemist. His education and experience in laboratory analysis provide him with the scientific and practical background to oversee and lead a full range of analytical field programs. He is well versed in EPA and ADEC standard methods for analysis of solid and hazardous waste, water, and wastewater samples. He is experienced in organic and inorganic methodology, sample preparation, sample packaging and transportation, analytical reporting, data management, and analytical chemistry QA/QC.

Field Chemist

USACE Groundwater Monitoring and Remediation System Operation, Maintenance, and Monitoring; Wildwood Air Force Station; Kenai, AK Responsible for performing quarterly groundwater and free product monitoring of 29 monitoring wells and collecting off-gas samples from the vapor extraction (VE) treatment system. Groundwater monitoring at this site is a focused effort to evaluate air sparge (AS)/VE treatment system effectiveness in and near the source area and to monitor natural attenuation of contaminants downgradient of the site. Monthly off-gas sampling from VE treatment system is performed to assess vapor effluent concentrations of volatile organic compounds and to obtain data necessary for calculating hydrocarbon removal rates. In addition to field sampling duties, responsible for management of data collected including QC and database development using COELT electronic data deliverables.

Field Chemist

Agrium Groundwater Monitoring; Kenai, AK

Responsible for performing groundwater monitoring at the Agrium fertilizer production facility. Monitoring includes quarterly sampling of groundwater analysis of ammonia, nitrate/nitrate, urea, and arsenic for internal company compliance issues. Duties also include database development, chemical QA/QC reviews, and reporting. Client: Agrium, Inc.

Field Chemist

Agrium Process Stream and Utility Sampling; Kenai, AK

Responsible for collecting and analyzing samples of process streams and utilities to obtain data necessary for facilitating QA/QC program and recommending corrective actions necessary for compliance with state and federal regulations.

Chemist

Unocal Chemical; Kenai, AK

Responsible for preparing, standardizing, and checking reagents and calibration and maintenance of laboratory equipment. Analyzed samples following EPA and accepted procedures that ensured results were accurate, precise, and quality assured. He was responsible for monitoring plant operations from a broad range of chemical constituents and informed appropriate parties of corrective actions. He also routinely sampled and analyzed concurrently from multiple systems using multiple analytical techniques.

Chemist

Laboratory Supervisor for Unocal Chemical; Kenai, AK

Responsible for laboratory process and product QA/QC, and supervising the sampling and analysis of plant effluents, wastes, and drinking water as required by state and federal regulations. Prepared reports on plant operations for permitted activities and compliance with regulatory requirements.

KEITH O. GUYER, R.G., Senior Project Manager, Program Manager, Senior Geologist

EDUCATION

B.S. Geology and Geophysics, University of Wisconsin, Madison, 1975 Graduate Studies, Geology and Geophysics, San Diego State University, 1979-1981 Graduate Studies, Remediation Engineering, Kennedy-Western University, 1999-on going

PROFESSIONAL REGISTRATION

California State Board of Registration—Registered Geologist #6028

ALASKA QUALIFICATION

Qualified Sampler-Alaska Department of Environmental Conservation

PROFESSIONAL SUMMARY

Mr. Guyer has more than thirty years of experience managing and performing geologic, environmental, and remediation services. He has managed a wide variety of projects for both government and industrial clients. With his strong technical background and hands on management style, he has a long record of pleasing clients by completing projects on time and within budget.

Mr. Guyer has considerable experience in arctic, interior and remote Alaska projects. His specialty has been in geologic investigation and interpretation for environmental projects. He has been a resident of Anchorage since 1996. Specifically, he has worked throughout the State of Alaska performing geologic investigations for the purpose of site remediation and site restoration. His success has been exemplified through providing the best blend of technology, regulator acceptance, and cost effectiveness.

Mr. Guyer has dealt with the rapid response, logistics of remote locations, severe weather, and unique environmental settings. He has managed contracts with values over five million dollars and projects with up to ten subcontractors. He can see the "Big Picture" but does not loose site of all of the details.

Mr. Guyer has been involved in subsurface geologic investigation ranging from his first drilling and well instillation job in 1972, to designing low cost but highly reliable means of constructing and installing nested wells to making systems work in remote Alaskan locations with on-hand equipment and supplies.

Additional Training

OSHA Hazardous Waste Training, 40 hour and 8 hour refresher (29CFR1910.120) OSHA Supervisor Training (29CFR1910.120) Construction Quality Management (U.S. Army COE) Unescorted North Slope Safety Orientation (North Slope Training Co-operative) Arctic Engineering (UAA)

Phone: (907) 272-8019 Cell: (907) 727-8552 E-Mail: Keith@psienv.com

Fax: (907) 272-9005

Page 2 of 4 Keith O. Guyer, R.G.

SELECTED PROJECT EXPERIENCE

➤ Project Manager for an Asbestos and Lead based Paint Abatement project in Ekuk, Alaska, for Ekuk Village Council. Project consisted of abating asbestos containing material and lead based paint from a former school house in Ekuk, a remote village in western Alaska. Project also included bulking and disposing of over 60 drums that contained various liquids including fuel, oil and watery waste. Performed a soil excavation and removed hydrocarbon contaminated soil.

- ➤ Project Manager and on-site Investigator, UST replacement, Homer, Alaska, working for Site owner. Emergency response to remove and replace leaking heating oil tank at an operating motel during the winter. Excavated over 540 tons of contaminated soil, which was stockpiled onsite and later transported off-site for treatment and disposal. Containerized contaminated water and treated onsite saving over \$20,000 in off-site transport and treatment. Provided regulatory interaction. Motel was able to continue operation without interruption during tank replacement.
- ➤ Lead Geologist, Skagway, St. Paul Island, Valdez and Whiter dock projects, Subcontractor to PND. Project required using a drill rig in a landing craft to collected soil and sediment samples from under the water to characterize material prior to dredging. Sampling operations had to be scheduled based on tide stage and dock usage which required sampling at all hours of the day and night. Sampling program reviewed and approved by the U.S. Army Corps of Engineers.
- ➤ Project Manager for Third Party Sampling of Post Treated Soil for Anchorage Soil Recycling. Managed sampling, analysis and reporting of post treated soil from thermal oxidizer operation based on ADEC approved permit. Provided sampling within 24 hours of notification and reporting within 12 hours of receiving analytical results. Sampling events were unscheduled but typically required every ten days. Provided the laboratory interface to maintain schedule and correct any errors or omissions. Provided electronic reporting to increase speed of getting reports to clients.
- Principal Author Storm water Pollution Prevention Plans for various construction projects including new school sites in Wasilla and Circle Alaska, Contracted by Collins Construction. These projects were for site development and construction of new structures under EPA Region 10 requirements. Projects included filing Notice of Intent and Notice of Termination at competition of the projects. While maintaining regulatory requirements provided practice solutions that minimized schedule or budget impacts.
- ➤ Project Manager for Hazardous Building Material Investigation of over 100 Housing units in Anchorage, Cook Inlet Housing Authority. This project consisted of both subcontracted and self performed hazardous building material inspections that included asbestos and lead based paint sampling and inventorying all hazardous and potentially hazardous material at each site. Included estimating quantities and providing abatement and disposal options. Provided electronic delivery of reporting and invoicing to increase speed and reduce paper volume.
- ➤ Project Manager for a Heavy Metals Contaminated Property in Anchorage, for the Alaska Department of Environmental Conservation (ADEC). Investigated and performed a feasibility study to remediate the site. Installed engineering controls on the site to limit unauthorized access to the site. Performed a removal action that entailed excavating over 360 tons of lead contaminated soil that was transported to a permitted landfill in the lower-48 states for disposal. Was the Prime Contractor for the site overseeing multiple subcontracts to excavate, transport and dispose of the contaminated material. Site restored with protective barrier to prevent dermal

Phone: (907) 929-3444 Cell: (907) 727-8552 E-Mail: Guyer@GCI.net

Fax: (907) 929-3310

Page 3 of 4 Keith O. Guyer, R.G.

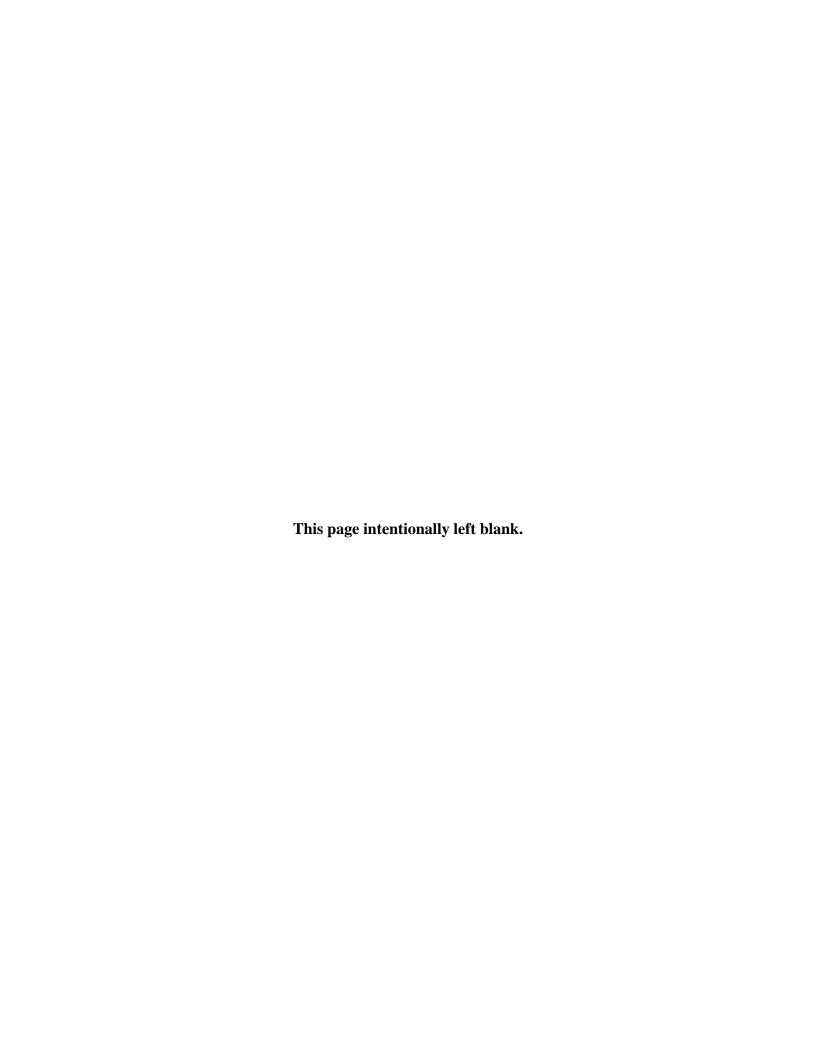
contact.

Project Manager for two Kodiak projects, Buskin Beach and Long Island, for the, U.S. Army Corps of Engineers (USACOE). These projects were performed as part of the Total Environmental Restoration Contract (TERC). Both projects concerned removal of over 100 WW II structures and more than 30 underground storage tanks (USTs) and associated contamination. An extensive drilling program was done to investigate subsurface conditions and sample groundwater. Site remediation was completed by removal of contaminated soil that was subsequently thermally treated. Project was timed so that excavation was performed during seasonal low groundwater so that excavations could be performed in areas of shallow groundwater without negative impact to shallow groundwater. Long Island was also a tank removal project with special logistic requirements because all equipment had to be barged to Long Island and all tanks and excavated soil barged back to Kodiak for treatment and disposal. Many of these locations were remote, historically and environmentally sensitive and required hand borings in order to limit impact to sites.

- ➤ Project Manager for subsurface cleanup on Shemya Island (Eareckson Air Station), performed for the U.S Air Force through Air Force Center for Environmental Excellence (AFCEE). This project consisted of drilling multiple soil borings through and under an old runway. The investigation concluded that there was extensive hydrocarbon contamination from spilled fuel that could be remediated by active bio-venting, without removing runway paving. Soil boring holes were used to install pipes for pumping air into the subsurface. The site was quickly cleaned up without removing runway paving.
- ➤ Project Manager for engineered wetlands on Shemya Island (Eareckson Air Station), AFCEE. The wetlands were designed to augment a natural drainage downgradient from an above-grade, bulk fuel storage facility. The contaminants of concern for this project included jet fuel and Bunker C fuel. Flow calculations and residence time were taken into account when designing the wetlands. Using local fine grained materials, the wetlands were lined to prevent extensive leakage of the pond. The wetlands were sized by damming the outfall, which was equipped with a controllable weir. Specialized plants were incorporated into the wetlands design. This approach was particularly attractive given the very remote status of the site to utilities. The project was also a success because it helped to support the local bird and wildlife population.
- ➤ Project Manager for a Remedial Action at Galena, Alaska (Galena Air Station), AFCEE. This multiple remedial action project included active bioventing, free product recovery and thermal oxidation. The project was conducted at a closed Air Force base using local labor for construction and operation of remedial systems. The site is located along the Yukon River and the local water table has a thirty foot seasonal variation. Only through a good understanding of the hydrogeologic dynamics could systems be designed and operated successfully.

Phone: (907) 272-8019 Cell: (907) 727-8552 E-Mail: Keith@psienv.com

Fax: (907) 272-9005


Page 4 of 4 Keith O. Guyer, R.G.

Employment History:

PSI Environmental & Instrumentation Program Manager	2006 to Present
BGES, Inc. Owner/Principal	2002-2005
Jacobs Engineering Group Inc. Project Manager Senior Geologist	1992-2001
Woodward-Clyde Consultants Project Scientist	1988-1992
EMEX Inc. Exploration Geophysicist	1987-1988
Z-Axis Exploration Operations Manager	1983-1987
Woodward-Clyde Consultants Geophysicist	1981-1983
U.S. Navy Lieutenant-Active Reserves	1975-1978 1978-1991

Phone: (907) 272-8019 Cell: (907) 727-8552 E-Mail: Keith@psienv.com

Fax: (907) 272-9005

APPENDIX B PHOTOGRAPHIC DOCUMENTATION

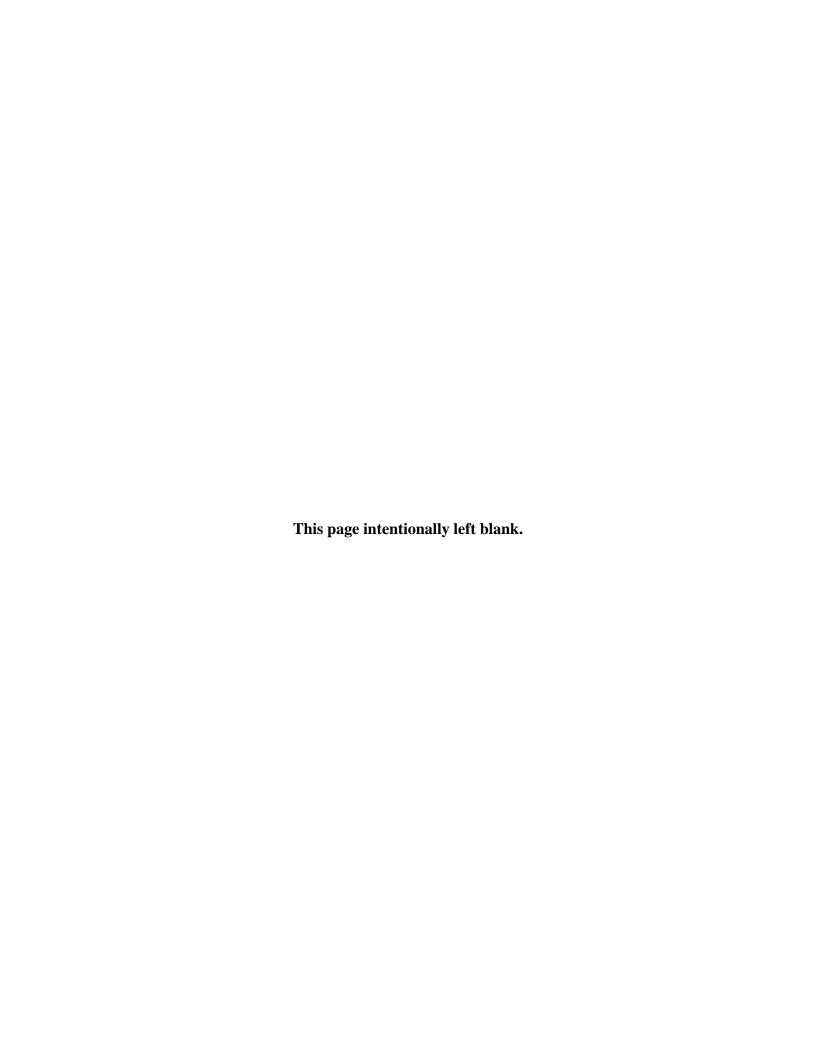


Photo 1. NTPA Site 60. Mike Baldwin, Chuck Mobley, and Jim Malchow at Site Investigation Test Pit. NOAA. 6/2006.

Photo 2. NTPA Site 60. Jim Wright Sampling During Site Investigation. NOAA. 6/2006.

Photo 3. NTPA Site 60. Jim Malchow w/Buried Cable TV Wire, NE Corner, TH101. NOAA. 6/2006.

Photo 4. NTPA Site 60. Buried Cable TV Wire, NE Corner, TH101. NOAA. 6/2006.

Photo 5. NTPA Site 60. Nir Barnea Sampling via Direct-Push, TH101. NOAA. 6/2006.

Photo 6. NTPA Site 60. Direct-Push Sample Sleeve. NOAA. 6/2006.

Photo 7. NTPA Site 60. Ray Beeter Treating Soil w/Ecobond, Duplex. NOAA. 10/2006.

Photo 8. NTPA Site 60. Ray Beeter and Nick Kozloff Excavating Soil, Duplex. NOAA. 10/2006.

Photo 9. NTPA Site 60. Excavation and Buried Telephone Lines, NW Corner, TH101. NOAA. 10/2006.

Photo 10. NTPA Site 60. Buried Telephone Lines, NW Corner, TH101. NOAA. 10/2006

Photo 11. NTPA Site 60. Excavation, NE and East Sides, TH101. NOAA. 10/2006.

Photo 12. NTPA Site 60. Richard Warner and Excavation, East Side, TH103. NOAA. 10/2006.

Photo 13. NTPA Site 60. Excavation Near AST, South Side, TH103. NOAA. 10/2006.

Photo 14. NTPA Site 60. Nick Kozloff Loading Temporary Stockpile, NE Corner, TH103. NOAA. 10/2006.

Photo 15. NTPA Site 60. Richard Warner and Nick Kozloff Loading Temporary Stockpile, SE Corner, TH103. NOAA. 10/2006.

Photo 16. NTPA Site 60. Temporary Stockpile Area After Loading, SE Corner, TH103. NOAA. 10/2006.

Photo 17. NTPA Site 60. Keith Guyer Sampling Clean Backfill, Lake Hill Scoria Pit. NOAA. 10/2006.

Photo 18. NTPA Site 60. Frank Shane Capping Disposal Pits, Landfill Cell C, Tract 42. NOAA. 12/2006.

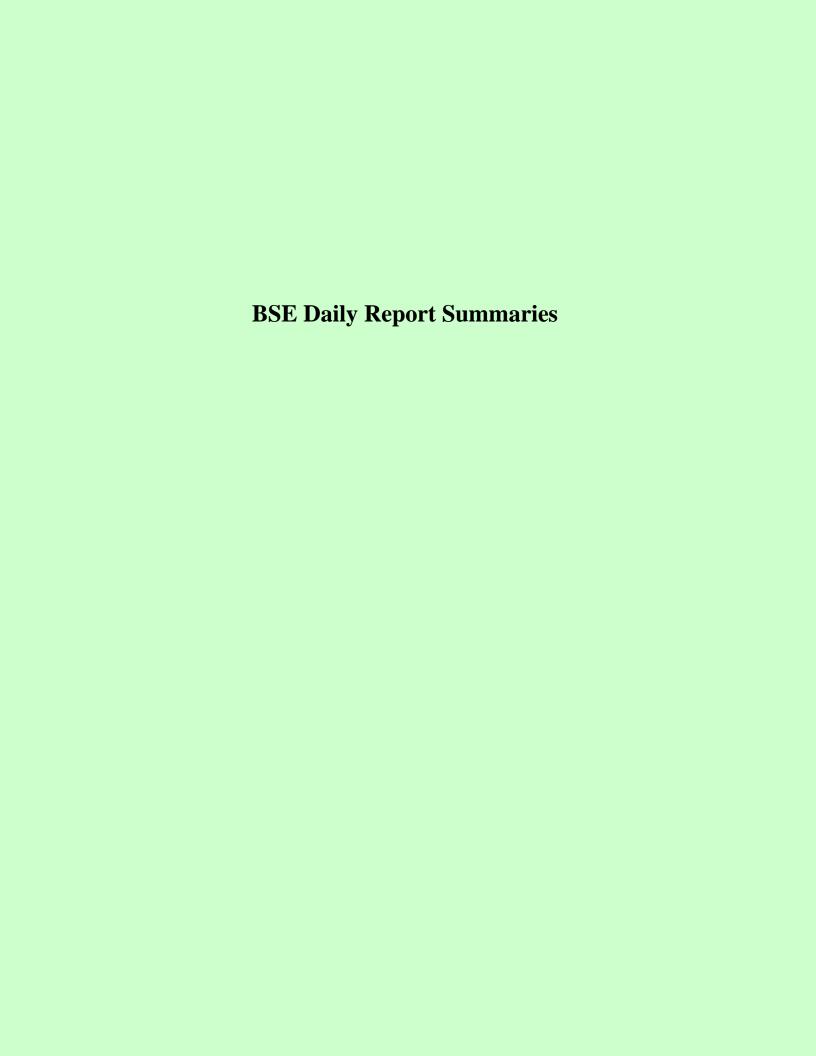


Photo 19. NTPA Site 60. Frank Shane Capping Disposal Pits, Landfill Cell C, Tract 42. 12/2006.

Photo 20. NTPA Site 60. Greg Gervais Surveying Capped Disposal Trenches, Landfill Cell C, Tract 42. 12/2006.

APPENDIX C DAILY REPORTS AND LOGBOOK NOTES

Daily Construction Quality Control Report (DCQCR) Corrective Action Plan Implementation St. Paul, Alaska

Bering Sea Eccotech IDIQ Contract -- Task Order 005 LBP ACM Restoration

DCQCR Version:

2

Work Date:	14-Oct-06		DCQCR Version:	2	
Managemer	nt on Site:				
Contractor:	Julie Shane (lead)				
	750 361				
NOAA:	Greg Gervais (lead)				
Daily Activ	ities (Include in this section a detailed de	scription):			
Summary:	Soil	Previous	Today	YTD	
	PCS Volume (CY)				
	Backfill Volume (CY)				
	Personnel				
	Personnel Cost				
	Personnel Hours				
	Equipment Hours				
	Equipment Cost				
	Contractor Equipment Hours				
	Government Equipment Hours				
	Other Costs				
	Total Backfill Royalties Cost Subcontractors				
	Supplies/Consumables				
	Freight				
	Travel/Per Diem				
	Miscellaneous				
	Sample Cost				
	Total Cost				
BSE continue	d work at head start bldg, furring ext. insulation, It	is a typical Saturday no	one shows up for work.	Framing crew was down	to 3 men,
	eadstart. Today BSE mobilzed and treated the 1st				
	lved need to discuss & prepare for this project to				
	airing rot @ the duplex, Extra framing to match w				
	started working in TH 101 1st, Maintaining a effe	ctive workforce is becor	ning a problem. the wea	itner is uncoperative. 35 i	MPH
Sustained with	ds w/gusts to 50 slow production.				
Per Diem is fo	r 5.3 FTE for BSE and 4.0 FTE for AES				
1	×				
1					

Daily Activities (Continued):
Daily Activities (Continued):
Problems Encountered or Anticipated:
Discussions With NOAA Personnel or Island Entity Personnel:
At 9.25 Andy met with Chris and Mike to answer yesterday's 2 Q?s. Answers are: 1. OK for AES to remove remaining floor layers in 101; 2. OK for BSE to pull off the sheet metal siding from Headstart bldg.

Date: 14-Oct-06	
Samples Collected/Summary of Other Direct Costs:	
Prepared by: Bering Sea Eccotech	Rev 12/4/06 14-Oct-06
	14-Oct-06
Subcontractor (if applicable) Received by:	Date
	14-Oct-06
National Oceanic and Atmospheric Administration	Date

Date:	14-Oct-06	
Daily Log I	Review Comments:	
1. Please ve	rifiy that Bob Defoe worked 4 hrs at the Duplex bldg or the abatement effort. NOAA have been verified against payroll as entered into	s no record/notes of Bob Masterbuilder. MT
2. Please ve Camp (53/10 and Correcte	rify Per Diem units for this day. Personnel page shows 53 BSE work hours for off-island 0 = 5.3) and narrative says 4.0 AES personnel staying at POSS Camp, which adds up to ed. MT	d personnel staying at POSS o 9.3 per diem units. Agreed
(Equipment)	A Comment** BSE edited the cost formulas and consequently several items were calculated incorrect cost increased by ~\$200.	tly. Formulas corrected, and
0		
National Ocean	c and Atmospheric Administration)2/7/06 Date
	s/Explanations of Daily Log Review Comments:	
	Milande	12-6-06
Bering Sea Ecc	otech	Date

Work Date:

15-Oct-06

Daily Construction Quality Control Report (DCQCR) Corrective Action Plan Implementation St. Paul, Alaska

Bering Sea Eccotech IDIQ Contract -- Task Order 005 LBP ACM Restoration

DCQCR Version: 2

Managemer	nt on Site:		d	
	Julie Shane (lead)			
NOAA:	Greg Gervais (lead)			
Daily Activ	rities (Include in this section a detailed de	escription):		
Summary:	Soil	Previous	Today	YTD
Outilinary.	PCS Volume (CY)		Today	112
	Backfill Volume (CY)			
	Personnel	-		H
	Personnel Cost			
	Personnel Hours			
	Equipment Hours	-		H
	Equipment Cost			
	Contractor Equipment Hours			
	Government Equipment Hours			
	Other Costs	-		<u> </u>
	Total Backfill Royalties Cost			
	Subcontractors			
	Supplies/Consumables			
	Freight			
	Travel/Per Diem			
	Miscellaneous			
	Sample Cost			
	Total Cost			
				-
Kieth Guyer S	cientist for PSI arrived today and took soils sampl	es of the eccobond treat	ted soils.	
Per Diem is fo	or 5.1 FTE for BSE and 4.0 FTE for AES			
1				
	4			
	*			
1				

Daily Activities (Continued):	
Problems Encountered or Anticipated:	
Discovery Mild MOAA Processed on Indian different Processed	
Discussions With NOAA Personnel or Island Entity Personnel:	

Date: 15-Oct-06 Samples Collected/Summary of Other Direct Costs:	
Prepared by:	0
Allanna & Jane My	Rev 12/4/c 15-Oct-06
Sering Sea Eccotech	Date
Subcontractor (if applicable)	15-Oct-06 Date
Received by:	
	15-Oct-06
National Oceanic and Atmospheric Administration	Date

Date:			
Daily Lo	og Review Comments:		
		 O de de de	0.5 has
1		4	
X		12/7/06	
National Oc	ceanic and Atmospheric Administration	Date	
		Date	
	tions/Explanations of Daily Log Review Comments:	 Date	
		Date	
	tions/Explanations of Daily Log Review Comments:	Date	
	tions/Explanations of Daily Log Review Comments:	Date	
	tions/Explanations of Daily Log Review Comments:	Date	
	tions/Explanations of Daily Log Review Comments:		
	tions/Explanations of Daily Log Review Comments:	12-6-06 Date	

Daily Construction Quality Control Report (DCQCR) Corrective Action Plan Implementation St. Paul, Alaska

Bering Sea Eccotech IDIQ Contract -- Task Order 005 LBP ACM Restoration

Work Date:	20-Oct-06		DCQCR Version:	2
Managemer	nt on Site:			
Contractor:	Julie Shane (lead)			
NOAA:	Greg Gervais (lead)			
Daily Activ	ities (Include in this section a detailed de	scription):		
Summary:	Soil	Previous	Today	YTD
	PCS Volume (CY)			
	Backfill Volume (CY)			
	Personnel			
	Personnel Cost			
	Personnel Hours			-
	Equipment Hours			
	Equipment Cost			
	Contractor Equipment Hours			
	Government Equipment Hours Other Costs			-
	Total Backfill Royalties Cost			
	Subcontractors			
	Supplies/Consumables			
	Freight			
	Travel/Per Diem			
	Miscellaneous			
	Sample Cost			
	Total Cost	<u> </u>		
·				
	t the day insulating and siding Headstart Bldg com			
remove the ex	isting power service. The existing service is not us	seable it is rusted out. T	he facia and soffit crew	moved to the west side

The task 5 soils Ray and Nick mobized with the 580 hoe, Ford Dump end dump and 5 ton flat bed and are excavating treating and removing the contaminated soils at the duplex. The SOW for this work is written very precisely and this little task will take 2 to 3 times longer than expected. The requirement that we are to remove exact quantities of materials and not splash contaminated soils out side the 6 foot boundry is difficult. The eccobond should probably have been ordered using a 2ft deep excavation and 8 ft boundry. allowing for over excavation, consistent with standard protocol rather then in strict compliance with the Statement of Work.

On the south side of the duplex the soils tested positive at the 2' depth. On the maps area 8A.

Per Diem is for 7_ FTE for BSE, 5.0 FTE for AES and 1.0 FTE for PSI

Paily Activities (Continued):	
roblems Encountered or Anticipated:	
Discussions With NOAA Personnel or Island Entity Personnel:	

Date: 20-Oct-06 Samples Collected/Summary of Other Direct Costs:	
Samples Collected/Summary of Other Direct Costs.	
Prepared by:	
lumin & Sone Ith	Rev. 12-5-6
Bering Sea Eccotech	Date
	20-Oct-06
Subcontractor (if applicable)	Date
Received by:	
	20-Oct-06
National Oceanic and Atmospheric Administration	Date

Daily Log Review Comments:		
	" ' " " POOO fo	- Al-
	0.1	
	12/7/06	
	Data	
National Oceanic and Atmospheric Administration	Date	
	Date	
Corrections/Explanations of Daily Log Review Comments:	Date	
	Date	
Corrections/Explanations of Daily Log Review Comments:	Date	
Corrections/Explanations of Daily Log Review Comments:	Date	
Corrections/Explanations of Daily Log Review Comments:	Date	
Corrections/Explanations of Daily Log Review Comments:	Date	
Corrections/Explanations of Daily Log Review Comments:		
Corrections/Explanations of Daily Log Review Comments:	12-6-06 Date	

Date:

20-Oct-06

Daily Construction Quality Control Report (DCQCR) Corrective Action Plan Implementation St. Paul, Alaska

Bering Sea Eccotech IDIQ Contract -- Task Order 005 LBP ACM Restoration

Work Date:	21-Oct-06		DCQCR Version:	2
Managemer			_	
Contractor:	Julie Shane (lead)			
NOAA:	Greg Gervais (lead)			
	ities (Include in this section a detailed de			
Summary:	Soil	Previous	Today	YTD
	PCS Volume (CY)			
	Backfill Volume (CY)			·
	Personnel			
	Personnel Cost			
	Personnel Hours			
	Equipment Hours			
	Equipment Cost			
	Contractor Equipment Hours			
	Government Equipment Hours			ł
	Other Costs			
	Total Backfill Royalties Cost Subcontractors			
	Supplies/Consumables Freight			
	Travel/Per Diem			
	Miscellaneous			
	Sample Cost			
	Total Cost			t e e e e e e e e e e e e e e e e e e e
	Total Cost			
Crews Spent	the day insulating and siding East side of headsta	art, chipping the chimne	ev off, and placing soffit a	nd facia an the west side.
	ils Ray and Nick, completed the soils tratment and			
located the ph	one lines, as expected there is a line laying within	4 inches of the top of t	he ground that was not lo	cated
That line was	broken, There is no way we will ever locate all the	lines the way they are	run out here. Abandoned	Power, Phone and Cable wires
	over. There are many wires are improperly buried,			
	ty. NOAA approved work for tomorrow, Sunday 1			ld to operate the backhoe. The
580 Hydralics	are real jerky not smooth at all. We will work with	the NOAA NOS backt	noe also.	
Dan Diama ia 6	- 54 FTF (DOF 50 FTF (AFC and 10 F	TE for DCI		
Per Diem is it	or 5 <u>.1</u> FTE for BSE, 5.0 FTE for AES and 1.0 F	1 - 101 - 51		
	*			
1				

I .	
Daily Activities (Continued):	1
	•
	7
Problems Encountered or Anticipated:	
	1
Discussions With NOAA Personnel or Island Entity Personnel:	L

Date: 21-Oct-06		
Samples Collected/Summary of Other Direct Costs:		
Prepared by:		Per (2/5/06) 21-001-06
		Dev (2(3)
Mianna Kane All	*****	21-Oct-06
Bering Sea Eccotech	Date	
Subcontractor (if applicable)	Date	21-Oct-06
	2410	
Received by:		
National Oceanic and Atmospheric Administration	Date	21-Oct-06

Date:	21-Oct-06	
Daily Log	Review Comments:	
1. BSE Nan	rative - Note that "NWS backhoe" referenced is actually NOAA NOS' backhoe. Correct	ed. MT
2. Please ve	erify that Hitachi EX-150 was actually used this day. Disposal trenches are not excavate sted MT	ed, filled, or closed every day.
· I		1 /-
National Ocean	iic and Atmospheric Administration) /7/0G Date
	ns/Explanations of Daily Log Review Comments:	
COTTECUO	is/Expigitations of Builty Eog Neview Comments.	
		12 / 4 :
Bering Sea Ecc	otech /// Guyh-	12-6-06 Date

22-Oct-06

Work Date:

Daily Construction Quality Control Report (DCQCR) Corrective Action Plan Implementation St. Paul, Alaska

Bering Sea Eccotech IDIQ Contract -- Task Order 005 LBP ACM Restoration

DCQCR Version: 2

Managemer	nt on Site:				
	Julie Shane (lead)				
NOAA:	Greg Gervais (lead)				
Daily Activ	rities (Include in this section a detailed de	escription):			
Summary:	Soil	Previous	Today	YTD	
	PCS Volume (CY)				
	Backfill Volume (CY)				
	Personnel				
	Personnel Cost				
	Personnel Hours	_		_	
	Equipment Hours				
	Equipment Cost				
	Contractor Equipment Hours				
	Government Equipment Hours	-		-	
	Other Costs				
	Total Backfill Royalties Cost Subcontractors				
	Supplies/Consumables				
	Freight				
	Travel/Per Diem				
	Miscellaneous				
	Sample Cost				
	Total Cost	-			
				_	
BSE: Crews	Started work @ 12:30 PM Treated and removed I	ead contaminated solis	around TH 103 & 101.	Used 2 backhoes, BSE	580 &
NoAA Caterp	illar. Keith Dryer PSI was on site along with NOAA	reps Greg & Andy.			
Per Diem is fo	or <u>5.1</u> FTE for BSE, 5.0 FTE for AES and 1.0	FTE for PSI			
	×				

Daily Activities (Continued):	
Daily Mourrison (Commission).	
Problems Encountered or Anticipated:	1
Tobletto Encountrios en ruma para en	
Discussions With NOAA Personnel or Island Entity Personnel:	1
Discussions With NOW 1 Craomicror Island Entity 1 orecimen	
L	

Date: 22-Oct-06	
Samples Collected/Summary of Other Direct Costs:	
Prepared by:	Rev 12/5/0
Bering Sea Eccotech	22-Oct-06 Date
()	
	22-Oct-06
Subcontractor (if applicable)	Date
Received by:	
	22-Oct-06
National Oceanic and Atmospheric Administration	Date

Daily Log Review Comments:		
Cost and Hour Total Summary: Note that the Personnel Hours total for the coloroken about a week ago so the running total of personnel hours YTD has bee	n wrong for a week as well. It doesn't affect	mula got t the cost
cells, but total labor to date is a useful item to tally relative to planned total labo	r hours. Noted and Corrected. MT	
LAP (===	2/100	***************************************
National Oceanic and Atmospheric Administration Corrections/Explanations of Daily Log Review Comments:	Date	
Corrections/Explanations of Daily Log Review Comments.		
*		
Sm.S.	12-6-06	
Bering Sea Eccotech	Date	

Date: 22-Oct-06

Bering Sea Eccotech

Daily Construction Quality Control Report (DCQCR) Corrective Action Plan Implementation St. Paul, Alaska

Bering Sea Eccotech IDIQ Contract -- Task Order 005 LBP ACM Restoration

DCQCR Version: 2

Work Date: 23-Oct-06

Managemer	nt on Site:			
	Julie Shane (lead)			
NOAA:	Greg Gervais (lead)			
Daily Activ	vities (Include in this section a detailed de			
Summary:	Soil	Previous	Today	YTD
	PCS Volume (CY) Backfill Volume (CY)			
	Personnel	-		-
	Personnel Cost			
	Personnel Hours			
	Equipment Hours			Ī
	Equipment Cost			
	Contractor Equipment Hours			
	Government Equipment Hours	_		
	Other Costs			
	Total Backfill Royalties Cost			
	Subcontractors Supplies/Consumables			
	Supplies/Consumables			
	Travel/Per Diem			
	Miscellaneous			
	Sample Cost			
	Total Cost			
buildings. The understood, c junction boxes	Started work at 9:00 AM BSE completed the soils at will include grade work at TH 102. The abandon common utility cables are not in utility easments the s next to house 103 and electric supplies 101 & 10 there the wires feed there is wires running up to the	ded cables and snarl of ey are run across private 02 from there. Telepho	f underground utility cab e property, ACS and th one pedistals are next to	les is terrible. It should be e City of St Paul Electric Utility
BSE continue	ed siding the Head Start Building, installed the ent	ry doors These doors w	vere installed to swing or	ut of the building.
Per Diem is fo	or _3.6 FTE for BSE and 5.0 FTE for AES			
	×			

Daily Activities (Continued):	
Daily Activities (Continued):	
Problems Encountered or Anticipated:	
Discussions With NOAA Personnel or Island Entity Personnel:	

Date: 23-Oct-06		
Samples Collected/Summary of Other Direct Costs:		
Prepared by: Sulvanna R Rane AM	23-9ct-0	2/5/06
Bering Sea Eccotech	Date	
	23-Oct-0	6
Subcontractor (if applicable)	Date	
Received by:		
	23-Oct-0	6
National Oceanic and Atmospheric Administration	Date	

Daily Log Review Comments:		
(1) Narrative - Note that AES completed the TH103 crawlspace preparations for installing EPDM lin	er, which will occur tom	orrow.
Noted and Noted on AES Daily Report MT		
(2) Discussions w/NOAA Personnel - Note that Merle Beeter confirmed for Greg Gervais that all co- insulating the exterior walls of the Duplex (e.g., removing and re-setting the windows, installing insul- will not be charged to NOAA as it is being done for TDX as they are scheduled to receive this proper Property Agreement. The daily report spreadsheet has automatically added these labor, equipment daily and YTD cost totals so this needs to get sorted out before finalizing the daily report for this and insulation-related actions occurred. Confirmed MT	ation, cost of insulation erty under the Transfer nt, and per diem units in	material) of to the
	12/7/06	
National Oceanic and Atmospheric Administration	Date	
Corrections/Explanations of Daily Log Review Comments:		
·		

Date:

23-Oct-06

12-6-06 Date

24-Oct-06

Work Date:

Daily Construction Quality Control Report (DCQCR) Corrective Action Plan Implementation St. Paul, Alaska

Bering Sea Eccotech IDIQ Contract -- Task Order 005 LBP ACM Restoration

DCQCR Version: 2

Managemer	nt on Site:				
Contractor:	Julie Shane (lead)				
	The state of the s				
NOAA:	Greg Gervais (lead)				
				1	
Daily Activ	ities (Include in this section a detailed de	escription):			
Summary:	Soil	Previous	Today	YTD	
cummuny.	PCS Volume (CY)				
	Backfill Volume (CY)				
	Personnel			7	
	Personnel Cost				
	Personnel Hours			İ	
	Equipment Hours	-		Ħ	
	Equipment Cost				
	Contractor Equipment Hours				
	Government Equipment Hours				
	Other Costs	-		T T	
	Total Backfill Royalties Cost				
	Subcontractors			l l	
	Supplies/Consumables			l l	
	Freight				
	Travel/Per Diem			l l	
	Miscellaneous				
	Sample Cost			l l	
	Total Cost				
	w started the task of backfilling and grading the bu		oil removal. The removal	affected drainage on building not	
included in the	e soils abatement. BSE carpenters continued to si	de the HS building.		DOE INOM THE	
Per Diem is fo	or _5.4_ FTE for BSE and 5.0 FTE for AES				
1					
1					

Daily Activities (Continued):	
Desklares Engagetand or Antiginated	
Problems Encountered or Anticipated:	
Discussions With NOAA Personnel or Island Entity Personnel:	
,	

Date: 24-Oct-06		
Samples Collected/Summary of Other Direct Costs:		
Prepared by:	12- 24-Oct	50b
Bering Sea Eccotech	Date	
<u> </u>	24-Oct-	-06
Subcontractor (if applicable)	Date	
Received by:		
	24-Oct	-06

National Oceanic and Atmospheric Administration

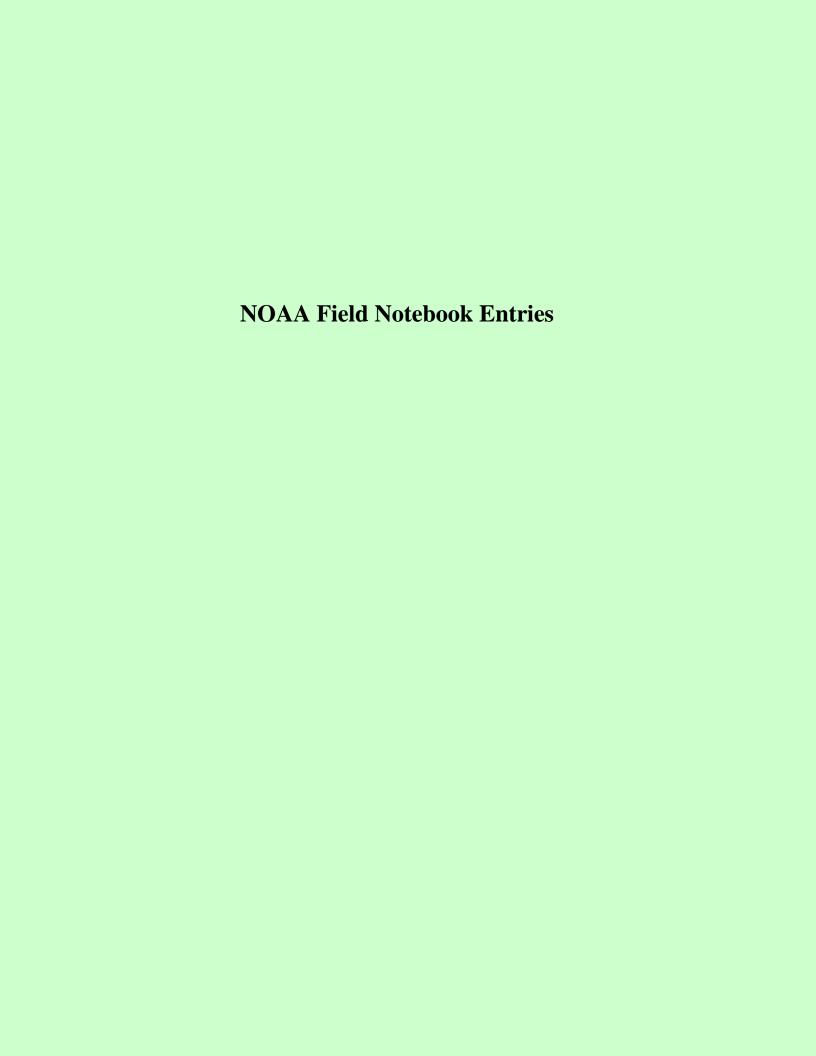
Date

Date:	24-Oct-06		
Daily Log	Review Comments:		
(1) Daily Accleanup at t	tivities - Note that backfilling at th	he lead soil removal sites did not start this day; re-grading continued along with f Equipment decontamination occurred on 10/25, followed by the start of backfill ha	inal auling
			:
	•		
	A P.C	2/5/86	
	nic and Atmospheric Administration	Date	
Correctio	ns/Explanations of Daily Lo	og Review Comments:	

12-6-06 Date

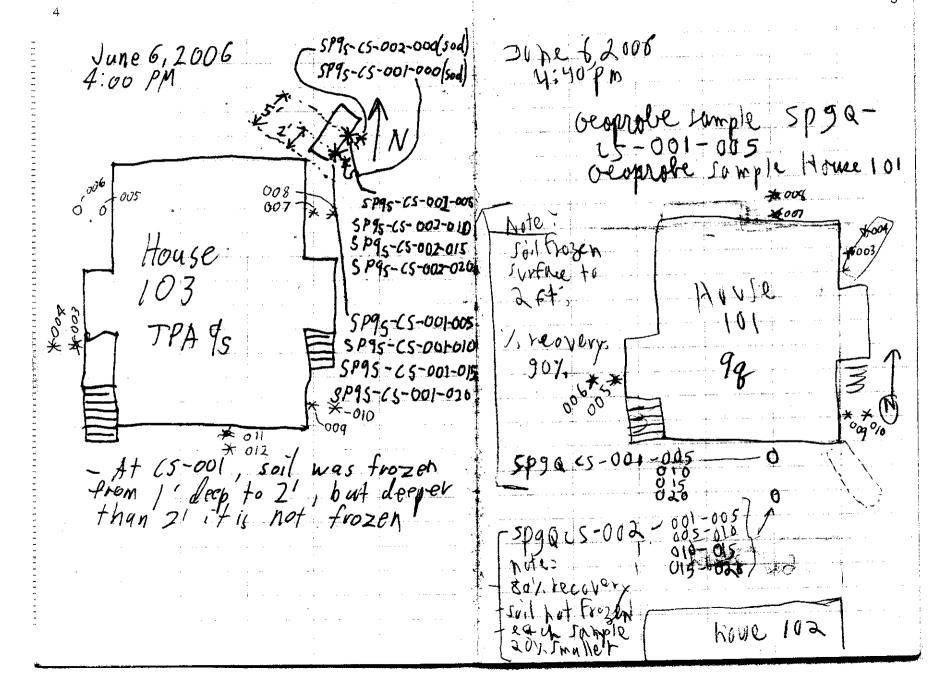
Daily Construction Quality Control Report (DCQCR) Corrective Action Plan Implementation St. Paul, Alaska

Bering Sea Eccotech IDIQ Contract -- Task Order 005 LBP ACM Restoration


Work Date:	e: 25-Oct-06 DCG		DCQCR Version:	2
Managemen	t on Site:			
Contractor:	Julie Shane (lead)			
NOAA:	Greg Gervais (lead)			
	200			
Daily Activ	ities (Include in this section a detailed de	escription):		
Summary:	Soil	Previous	Today	YTD
	PCS Volume (CY)			
	Backfill Volume (CY)			_
	Personnel			
	Personnel Cost			
	Personnel Hours			
	Equipment Hours			
	Equipment Cost			
	Contractor Equipment Hours			
	Government Equipment Hours			_
	Other Costs			
	Total Backfill Royalties Cost			
	Subcontractors			
	Supplies/Consumables			
	Freight			
	Travel/Per Diem			
	Miscellaneous			
	Sample Cost			_
	Total Cost			

BSE: Dirt crew washed Truck beds and excavatiing equipment before continuing backfill and grading around houses 101 and 103. The
carpenters continued siding the Head start Building,

Daily Activities (Continued):	
Problems Encountered or Anticipated:	
•	
Discussions With NOAA Personnel or Island Entity Personnel:	


Date: 25-Oct-06	
Samples Collected/Summary of Other Direct Costs:	
Prepared by:	25-Oct-06
Shanna R Shangton	25.0ct.05
Bering Sea Eccotech	Date
	25-Oct-06
Subcontractor (if applicable)	Date
Received by:	
	25-Oct-06 Date
National Oceanic and Atmospheric Administration	Date

Date:	25-Oct-06		
Daily Log	Review Comments:		مناه ما الما
5. PCS, Ba	ckfill - Indicate the number of dump truck loads for each truck load of clean backfill this o		
	JPL -	12/7/05	
National Ocea	nic and Atmospheric Administration	Date	
Correction	ns/Explanations of Daily Log Review Comments:		
Bering Sea Ec	cotech Co	12-6-06 Date	

5:40 started sampling the ow June 5/2006 5:35 ATVO DUPLEX 108/109 site 9I 5:50 Finished and #1 2 ft out 25ft out \$ 5:00 Started #2 6:10 Firsh # 2 very 6" Nown to 4" Spgj - 65-603- 1,8-1,0-Nilbert spgi-cs-004 0.5-1.0;

Jo ne 6 2006 6:00 pm treach sampling house 101 Wore: Frozen soil: House 101 98 00-005 2++ = 5996-C5-003 005-010 010-015 5ft=5x9&-cs-004 015 020 00-005 Note: 005-010 Soll flozer 010-015 015-020 0,1 - 2 Ft

June 7 2006 200 pm Duplex 108/109,6 Spg1: c5-009 5991-65-005 5pg1-65-015 005-010 note ; belovery 1, ~40% 2 come of some lucation (one next to other) were taken 5pgi-c5-106 1005-010 note: 2 sample taken side-by-side to invene volume both remade to 40% records (at CSOD5 + C5006)

- HEPA vaccining conducted year hole June 7, 2006

Sp91-LS-009: at NE, where of

Norme, aft then wall

Note: Instead of george, holes due

hith shoulds to >1ft, sumpled

taken from side of hise with trown

100-005, 005-010

Sp91-LS-010 At NE cause of

him so the strong wall, 1156

him to the shovel, samples taken

with trown at 0-0,510,5-1.

spaince of refusal at 1 deep moved I laterally to W, same dist (2') from wall to "B", but also hit refusal at 1 deep. Saspect concrete - possible sidewalk spaince hit refusal at 1' deep at "C" - Because of refusal at AB+C" we moved to "D and E"

Friday 13 OCT 2006 1000-1030 Morning ablution 1030-400 Daily 1100 - Called to JAL Olderoum MW debais to Tract 42 Trench from Egipnest Garage Hard Rain. Starband 1340 - Left voicemail for Biff Balcer, x3236, Re: Return of kongs or pudlock - containers, Need for Removation Project Info, GAC Sandbag Transfer. working Admin - TAA, Comp Time Holiday (D-81, E-Mail clownload) 1525 B: 1 Baker, Tribal Govern ment **Linic** 1 Funded throug ANTHC Renovetion 3rd Contract - First 2 under ANTHE - Third ANTHC & Deneli Commission split funding The has abatement logs & will provide. (2) GAC Sandbags - Transfer Morday Call him. In Office all day Scale: Squaldally taking ACM container will sent commit so stating.

Friday, 13 OCT 06

1620 - Met Make. Will attacept to get him answers tonight or abouteness issues. No PSI arrival. No meeting tonique_ 1630 - " NWS Waste Pile" <u>در</u> (<u>< 26 -></u>) 649 BIL mathesses? Scale: 1 square

Need 49 labor hours to Friday, 130ct 2006

Identical to poll. Friday, 130ct 2006

The House Mudlown and Kitcher NIE Need NTP. FRIDAY, 13 OCT 2006 TH101 - Polling all multi-power windows 1655 - PenAir now coming in First 18 tomorrow and bay. No charge bodies only, ... = 10 miles They are just loing.

TH 101 - Staid treads folled toluranow.

BSE to install new of NTP. 1700 Meeting Andy, Chris, Meele DBLA
POSS comp wing A. TH103 - Start Monday -+ opperaise barricade. BSE FAES need decision on wowl spaces Especially TH102, Re: Hot water Heating Systom - want to start work in THEO3 on Monday (=) BSE & AES. DUPLEX 108 & 109 4 No answer yet. TEM.
Metal Sheeting - All 4 sides. . 108 - Installed windows Doors daying in Foss Camp. Door Install on Monday. THEOR Weather holds, paint THEOS CHAIRS wearong AES THOI -> Ashestos Flooring : Beathroom & East Mudroom. Pulled Cleaned #2 - Painting inter or done Completed West Mudroom & withen Scalar place throng in basement, 131011 und - Started wrapp: " Scale: Square = Winds down graded to so tom 70 upts and martin

Friday 13007 2006 7SI - Trying to come in on Sunday Lead soil Abatoment. Meet a TH101 2 0800 ? Mayber not. ? Esther & Mike, Ray word & Nick. Maybe tomorrow. 0930 -> Daylight west DTH 103 [4(5x85') x647 = 2720 (F = 100.74 CY 1/2 (8, x8.2,) x10, = 340 CF = 12-59 CY A 1/ 12' x 8' x 18' = 4180 cF = 17.78 c7 8,980 (F 395 (Y 91898 (F=> 365,9 cy Scale: 1 square =

Saturday, 140cT 2006 0755 - Delianul Grey. No one consumering a Julio Shano's office or home. 4 -> Stanting dailies. 0845 -> Andy backed, (vew asking for malking point and tilla. Merle apparently did not tell him about seacheduling to 0930. OBS 5 = 27 THIS . BJE NOT HAVE 1 supers-ele on BSE / lot bal plastic & top pertially you is vain. - nike & Ray nout have picked up vototilles from Equip Garage 0930 - Merle, Andy Mile Baldwin & Raywould Bester a Her 102 Welled moved site. Flood lights portial illur. - Container & AST to be moved away from TH103 Reexplained real to be frigal w/ pellets & spread rate - Eco Bind Pollets in ACE air freightell. parleaging. will dear sidewalk tops and trent soil on other yerr soil " ares. - Mike & Raymond off to retrieve 580 Back the to chart sideralles. CARS do 580 Dack of Scale: TSC isot math. 3'\$ ('lines painted. THIO)

Saturday (4 OCT 06

1005-Full light. Started (DBW) moving on from THOI. Notice paint chias wood, appliances, rocks and intrior abotement : tones mornel THIOL. Real CAP to see if it called all removal, including chips. Did not see - however it said alle LBP to be semoval to be complated before. To the extant practicable all visible LBP chips to be removed with HEPA vacuum; NONA to remove vocator bosa paint hip removal. Paint Chip removal often Bldg Ext 13? abatement. "soil removal" LBP abatoment concludes. Provided 6 cans 1035 - Back of the trying to trade down posts Rain affecting telephone. Connot connoct to GG cell, Left mag a home F. (~1040). No otility locutes. 1058 - Call to JAL cell 1110 - all to JPW cell. 1115 - Talked to Mente. He'll pull latest Scale 1 square = 0 1 and neet of THIO)

1118 - GG. 3 tot \$100 Interior Doors leave. Hot could or not. Check if new windows in THIOR There are THIOI & THIOD, in 74102 If not being removed due to LBP issue, the windows and dod's one to be removal. It caulcing has ABM is above 10% officiable than RSE mods to identify potential time + costs. Potential 9"ACT files under cabinets. Ok to receive oir et boon 64 Clean out HEPA vac bag. Areplace. Bassin BOD Biff Botter -> Has some plywood. BSE -> World need to hand work in, 1200 - John R. Monculied called Askad for promised (1) from Head stant AST release last years becoming a much hole Electrifities undersett

Saturday, 14 007 06 Saturday, 140CTOB Abate ا کی JPW wheel back 1530 and misc- closis from around THEOL JAL oulled back 4 TH103 of 1530 - Completed relocation to Diplex. 1215 Mike Babberin a) THIOI Scomping 3 Sidewalks w/ 580 6 actubre. Left CAP wy ver figures, and gas can and noto tillen w/ Mike & Raymond 1300 Nick Koslov & Raymond Beater with Loader 966, Dungs Truck, -Askal Mike Hangrave if he could **:** have some bodies help more Roto Tiller. muterials & debris away from - worled w/ crew to move visible vocas & debris away from THOI Dupler 108 \$ 109. Quite a bit. Will \$ 5 1330 - To Apt. 1. Retrieved hammed have to rototill assured in use AST. 2 - Ran through areas on figures and mattock, in order to discode 134 0-6" that required trout. Mike B rocks from times. Jammod. sprayed outlines on grow ((orange). Mike Baldwin & I use 2 hands to - Definite depression w/mud between Operate - Rayand B.P. uses one Big: - Back picking more debois & rocks Head Start and John R. Merculig's 1400 - To PPO Flammable Conex. Retrievel house, toward NW corner of H.S. 5-ballous of gas in car. Gave - Inspected Z-Strip firring on HI to rike Baldwin, along w/ rototilled 1600 - Back to Apt I. Updating notes. nanuals, CAP & updated figures. BACK NOTES: IN AM TELEON w/ Mente asked the Absternant wester 1500 - Done w/ T.H. 101 & 103. Loading and chips out side that he preved up Debus from around TH103, Rototillal around TH103 AST. In use. before nototilling. (hois skeep and another Paint chips blew across street toward AES body spent ~ 40 minutes picking up went. City Wall. Picted up. Good job, Too well and value for HEPA w/ock she Dump. Local from THIOL interior die to rocks.

1620 - Winds downgraded again to 30-45 mph from last downgrade of 35-45 mph w/ gusts to 65 mph

Boule collapse
3 sides of Dupler
D 1155

5:00 PM Heating

a) THIOI FIHIOZ, 2 sides done a Duplax

THE LOLL DOWNE Except Folling of Windows (Northern ACM). It windows W 2070 asbestos count pulled, basged & into container. Stair to each sin basenent removed. Floor in when will much normal kitchen to be removed later.

The Associated representations

exist. in pantry. Remove cabinets put in vadalayment and install new cabinets.

* Merle Question: THIOL Heat Registers to be pulled ? Old (not Iran & Paintal)

=> Male may have latest electronic sow.

Firring up. Insulation being cut for Monday install. Probable siding start on Monday.

Many do

DUPLEX
NO poctivity to day.

Hend start Printing (rew of 3

Sheet on exterior walls approved

for namoyal.

Done w/ Soil Second sack started. Treatment. Need to restore.

Sunday, 15 09 2006 Keish Goyer PSI arrival at Apt 1. - Proxided him copy of cos vas \$ Revised Figures 1-5. - Obtained was & states, stedge hammer and shovel, & marking tape (hot pieds) (1) - THEOL Samples of \$ 52, north a south side respectively, New midspan. (2) - THIO3 samples 03, of duplicate) & 4485. \$3 to gut on east side between East vestibule & NE Corner . \$5 on west side between west vestibule basement stairs and NW corner. (3) - Duplex Samples \$6 807. 66 on N side between Wyestibule (new of wit) and Hw corner. * Found 8' long roll of ~ 1/2" thick of lead sheet, buried by kitchen steps. Mike & raymond avoided rototilling area, as they tasynt it a pipe. Deed to add pellets. Need to move.] of on sside between svestibile (Front of 40 use) & SUY Corner. tell workers not to move stakes.

1806 - Returned tools & states to NAM

Flammable Container CRXU

294180_0, took stake

Keith Buyese, PSI, took stake

Weasuremands

BJ 1Cibbe back in Staff Quarters

trom ANC. First time actually

Scaped while landing.

High tide floodood grass on Channel side of NMES Staff Otrs and grass notth of Diesel Leep.

Hed "low" ly ing areas. Storm surge effect too.

|S to a | 1 scusta # | .

1805 Sun trying to break through. Rain Stopped

Toes by FOR TUBBLE Monday 16 OCT 2006 0750 - Mark Ridyeway called USCG Reading Have ADEL approval to use THIO 2 Icitchene Silve Drain Line 24 GAC as bock fill, USCG C-130 25 site. Awaiting ADOT A Not Hot approval to use on their land. 14 P6 Wants all GAC. 0915 - Keith Guyen, PSI Stopped 1541 - Log Off XIRT Shotdown 92070 battery obtained Soil Remodiation N. W. Sample Fires es Copied Scappel 1630: PPO SNP \$66 \$616- \$61 Yesterday Blomples off Island to SGS Environmental , RNC, RURA DOOS LET Waste LBP Chips, Soil Wood, Plastic, Paper 3-Day Turn Around, Already is u Nituile Gloves. Accom Start Dute: \$61\$16 Digcolting MW46-3 Yesterly Unused How 55-6al Ring Top Steel Dury UN 1A2/41.7/150/83 MW46-4 MW46-9 UN 1A2/ X420/5/03 MW46-14 1.4/1.1/1.12086 - Mw Purge Water Disposed Machine Shop Interior Clean up Wester at NWS Loudspread Site. DPP E-Mail GACE-Muit HW Latel BSE Duilies Scale: 1 square = ____ Scale: 1 square = ____

Photo CD

	OCT JODE		sday 18 OCT 20	
MU Kesty	-w46-12 Buried in			
	spira. Du			
	The artagoin			
Equip R				
	- 24		A	
	-15 (Ouplicate)			
Locks worked	ble. Hinges in good shape			2
			A P	
1650 DPT APT.1 1700 APR SUP				
BU - 33- (-13- 05-	LAY ON SMG. ONLY ENOUGH EL FOR 6 More flights, intensishand x pitot.			
1843 2 commend and a	I of Rieflythe asticide.			
Now to be	irside protected from weather.			
	<u> </u>			
		X X		

1830 - Daily De-brief (Merle Booker-BSE; Chris Skoog-AES; Keith Gyer-PSI G. Genais, A. Poppen - NoisiA)

· Merle: Continue to side HS, So. I treatment & removal for HS, THIOI, THIOZ Will have Ray & Nick work of Keith. Wants all treatment, excavation, & sampling done FRI so Keith can demob. Also makeds crew on 8ther stuff as BSE is short-Staffed.

o Gres! Not sure we can finish soil on FRI, may neg. SAT work.

NOMA not sure cost of encapsulating TH102, TH103 crawlspaces Te commensurate w/risk veduction. Can utilities be re-routed out of crawlspaces? How frequent will accoss be needed for utilities manuferance?

· Merle: Need access as facility maintenance out home ends up

being breakdown repairs.

· BSE Plumber: Weed to inspect plumbry to be sure but re-vouting inner supply I headler pipes is not from the

· Chris: Only aware of 3 practicable ways to abote asbestos in soil: (1) Removal = \$; (2) mosile solidification = the + horzardous; (3) encapsulate of Inner = & but loss than 1d2.

=> All agreed to meet @ THIOZ on FRI@ 0930 to respect 1 directs.

2200 - Installed new wiveless router & est, network for NOS.

10/20/06

- 0845 Brought A. Poppen to E-Shed for first time. Loaded tiller of free ca- in Black Chery. Hauled to Duply for land soil work,
 - 0905. Off-loaded tiller & feel can. Went over excavation of Ecobond treatment plan w/ Keith Guyer of PSI & Andy.

 Ray & Nick arrive around 0930, a few of BSE's siding crew also showep@ 0930. Backed noto tiller trying to depart for TH102 for neetry. Cracked oil dipstick channel & broke it.

 Tempony repair of duct tope. Works okay but oil seeps.

 Tiller norts.
 - 1500 Just readized the fin removed from Duplex walls was painted will BP. Some point chips fell to ground I onto concrete stairs during 10/16 removal. Placed some Ecobart onto surface. Used home to wash stairs of lower concrete fourty of duty chips. Scraped surface soil / Paint/Ecobard up of loaded to truck, what a mess. Had BSG vennous 2 more section, of the around 5. entry to 108.
- 1815 Unearthed old servered utility roult @ See corner of 108. Accessed defound apparent old under supply line & booster pump. Photographylic & video graphed. W:11 cover at doctor!
 - 1930. Located of dumped 3 loads of treated load soil white Food dupting.

 Keith collected 9 screening samples. Based on FPKRF scheded 5 for confirmation (high based)

Daily Truck Count: Ford = 3 Kenworth = Ø

M

- 0930 Resumed work @ Duplex Pb Soil. Removed another 2/3 dumpfuck
- 1300 Placed landscope fubric al stuples after 500 bind placement for SE portion of 109, a southwarden > 400 ppm still present 0 2C+ by charge Videographed.
 - 150 Exeavaly of trenty Pb soil @ THIOI. Goily faster w/ 2 Apparent
 - (1) Place 5 colored but mix of backbox 1 and excavallanus.

 tiller. Can front desper them 6" out of the. Visually this
 appears equippled to 2 passes of tiller.
 - (2) Staged examined soil in temporary unlied stockpiles. Los piles vs. one see Ca fine. Obstructine like blogs I Asts abound. Pile removed includes over scrappy of XRF to continu no cross-contamination.
- 1645 Broke apparent phone line of NW corner of THIOI.

 Spent NIS has hand did, by to a seess position of remain! lines, which bldg. may have been affected by break, etc. Line hit at NI211 bys. .. very shallow haver phone supply line pulled up by dead groundy cable that was wapped uncle larger phone lines No damage apparent. No more backhize dus by Markey this area. Shovels only where practicable.
 - 1800 Hand digging orlong it foundation of THIOI unearthed it old glass bottles. Pulled aside of placed in THIOE leither temporarily for safe keeping. Will move to Staff Quarters leater.

SV

	/23/06, contid)
18 –	Loose paint chips fally off w gross removal from lower part of TH 101 foundation. Hand shovely.
20	- So far, removed another dump truck land from THIOI w/white Ford. Still need to dry more of THWI per FPXRF. Need to work SUN to get to confirmation sampling before Keith demobes on MON PM. Ecobard supersack It2 hearly empty. Will need another one for SUN.
	Daily Trock Dump Count
	Duplux: Ford = 2/3, KW=Ø
	THIOI: Ford=1, KW=0
	(1840 - Davily Meeting Chris-TH103 chandepara decorn setup, general debris moved, cleaned, & placed and dumptinck. Wet down death of picked up laye chants of TSI Mon = raking so. for TSI chips, rocks, leveling for liver. The = EPDM, cleanerer; UED = Yank TH101 kitchen/Bath and, mindows Merle - Working on HS riding; standed sawny channey; HS exterior should be nearly done to Hope to stant HS exterior doors next week. Marker key for TH's & HS; separate for Self Sampsong Ran Apolold, Self Sampson Ray Beaker, for Sool on Sunday. Start (2) 1230 hrs.

- 1230 Met BSE @ THIOI. Crew = Jerry, Bon, Raymord, & check-ins by Merke. Retrieved NOAA Bobcot & Cost 416 backher for use today.
- 1315 Used BSE & NOVAH backhoes @ same time, diff't parts of building. Ray loaves a Mevle to get 966 for moving corrects away from TH103.
 - 1415 Conexes moved. Blue Kennorth full of dumped. Move things analy from 5. site of TH103 to get back here accoss. AST is in the way but is full of in use to heat TH103 during abolement. Squeeze Cost 416 back there.
 - 1545 Jenry digs SE corner of TH103 but cuts himself off for hauly stockpile to dump twck. Pon moves part of Pilo to get Serry o.t. Here to move part of Phild Debbie's fence to clear more egross for Jerry.
 - 1630 XRF shows THIOI is clean & vardy for confirmation samples
 4 100 dup. Lots of hard sharely get last of LBP
 out of soil. White Food filled & compete
 - 1900 Lots of hand showly. We have several small stockpiles as region; removal tomorrow. FPKRF shows bill is clean. Leith collects 4+/QC dp for confirmation.
 - 2000 Finish XRF on continuotion samples, pack up gear. Keith to collect clean backfill samples Most & LakeHill. Blue Kenumble is fully rendy to dump tomorrom. Need to decon truck beds of backbers between money to backlilling.

Daily Truck Count

THIOI: Ford=1, KW=1

TH103: Ford = 6 , KW = 12

D

0850-CPS base station menony fall. Delete largest file five-start.

0930 - Wet of Delibie the talked no: Fence. I write her to inspect restantion of let me know it its not good enough.

1000 - Blue Kenworth beny dumped. GPS receiver lon Herios die.
Ask Andy to have Wick of Pony clean up stopepius. Ray
says Merle wants soil next to TH Basement stainways
removed for drainage. Andy it Greg warm 1355 they are responsible
for any damaged utilities.

1035 - Keith & Greato Lake Hill to sample backfill. No GPS nedect us scoria is stockplet. Ask Frank Shame to do LOF, air filter, tribanto cables on Bet

1130 - LF trenches full, need to cover of 2 - Gt soil & dis new ono.

1205 - Nick & Grey to LF. Nick evers filled trench of Soil. Diss new disposed Hench. Encountered standing water @ old PCS stockpill liver. Had Nick tear liberally.

1400 - BSB Gost states noto. rescheduled to TUE.

1430 - Nicked Richard contawing map up of stockpile areas and along weidos where boseneut autries. Testry w/ FDXRF & spot cleaning.

1700 - Met briefly w Jerry of others from NWS house inspecting.

1815 - Nick & Richard Filish removing remaining level soil from temporary stockpile locations. Returned NOAA Bubsect to E-Shed. Drove flothed back to Poss Camp.

Daily Truck Count: While Ford = 2" - Blue KW = 2"

THIOZ: Ford=OSKW=1 THIOI: FORL=DSKW=1

Tank to the Same

10/24/06, contil.
1840 - Daily De brief Mtg.
OChris-THO3 craw/space cop prep done. Tomonow with place Epon, spray encapsulant, & clearance test, will move to THIO2 on WED.
need to move electrical such start of way, Telephone box, too. Joe Lealo & another worker will move up to TH\$2030
o Merle - Grading for TH's will be done of Raymond over the leser level. Looking for a 2% slope oway from fundations, will do on these
Greg = OK, Reminded Merk re: Word to decon dumpfrick beds of backhoes buckets prim to bauly elean, Also said BSE can USP NO AA's O Bobcat of front end bancket.
2230 - Greg determined that THIO3 does not require any window replacement under the sow or PMP. Sent e-maild will call Denno to direcuss.
Lead Soil Removal Totals1
Assume: Due to fluffing & keeping loads below truck bed top, Food holder 8 CY ins. Ten

Assume: Due to fluffry & keeping loads below truck bed top, load holds 8 CY ins .: Headstart = (3.67 Ford) x (8 CY/Ford) + (0 KW) x (6 CY/KW) = 30 CY THIO! = (2.5 Ford) x (8 CY/Ford) + (2 KW) x (6 CY/KW) = 33 CY THIO? = (1.5 Ford) x (8 CY/Ford) + (1.5 KW) x (6 CY/KW) = 22 CY 84 CY

		(1352)			1330	
May - May		(1)36)				
				lalela		
	المحلم				ماوسماله ما	7
				موال دو سوما		
\https://doi.org/10.1016/10.1016/10.1016/10.1016/10.1016/10.1016/10.1016/10.1016/10.1016/10.1016/10.1016/10.10		er today	77			
		enclos	- Constitution of the Cons	100 p		
	مارص ا					
	Merle sai	d Nick d 2 TH's A	Ray would clean ncl. scovia	deun twoken placement, t	, do Ghish han de-mè	b
······································	by o	OB today	• • • • • • • • • • • • • • • • • • •			

1055 - Photographied Old Movie Theater wooden waterpipe in Flamontius conex by Garco for Souik.

110 - Mot Mike Hargrave (BSE) Q Diplex. Informed Mike of TH103 window situation. Sidn, Q Headstort continue, nearly complete will East Side. Sisile work affect vent installation proceeding.

Nick & Roy Stop by for break Q 1125, Protos of Headstort taken.

1140 - Photos of THIOI, 103 undows taken

124/06,	contil	
215 - 6	thris Skoog (Amoubed) verified F abatement in THO3 excluded	he understood the scope
125 -	Rommbed Nick & Ray to include soil from re-grading. Also recom locate major coulde TV line	Ecobond Prior to loading mended they ask TDX to
227 -	Stopped Mike Hangvave & asked	him to get TDX to locate explicitly.
1230 -	Stopped by Hoodstart. New wm	sow on St wall trimmed out.
	226/1	

.... -----

. ._ .

SUS- Much andres. Tours abortenent Dilgs. whong, And orsks Mike Hayme to defer sizzy N, Gable end on Hadshut 145 - Daily Debrief Mts. A Chris Skoog - Epom installed in TH103, wet wiped of HEPA- vaccined. Encapsilized sprayed will pull an cleanance samples was Am. Should be cleaned for BSE NOAA access with Pun
545 - Much antres, tour abotenent bldgs, whose orsks Mike Hayene to defer sizzy N, Gable end on Hardstant 145 - Daily Debrief Mts.
1545 - Much andres. tour abotenent bldgs. w/ Eng. Ang orsks Mike Hayene to defer sidy N. Galek end on Haudstant 45 - Daily Debrief Mts.
1545 - Much andres. tour abotenent bldgs. w/ Eng. Ang orsks Mike Hayene to defer sidy N. Galek end on Haudstant 45 - Daily Debrief Mts.
SUS-Much andress. Tours abortenent bldgs. w/ Eng. Ang orsks Mike Hayrone to defor size N. Gable end on Hardstart 45 - Daily Debrief Mts.
45 - Daily Debnef Mtg.
45 - Daily Debrief Mtg.
act = EDDM welled on THIOZ wet wiced & HEPA
ACL Share EDOM welled on THIOZ wet wired of HEPA
ABS to pull windows & 4x9" tile from THIOI by COB WED.
A Merle: will send onen to Machine Shop to complete soffit installment stack security of collar/flushing.

Marin Selection of the
10/24/06, com'd ...

0800 - Worked with Minh of CAO's Richard via phone to get wineless card working on his computer.

Duplex windows (No North cost). Mike Hangmane

Said they standed this yesterday Dan. 2 person crew installing 2 metal for strips on S. side of Headstand, num 2 person crew installing new affic new to true along w. side of the of the of the of the off the

1805 - Drop Walter Q LF. Rayd Wick done whereas. Harday to Lake Hill to start having clean score backfill.

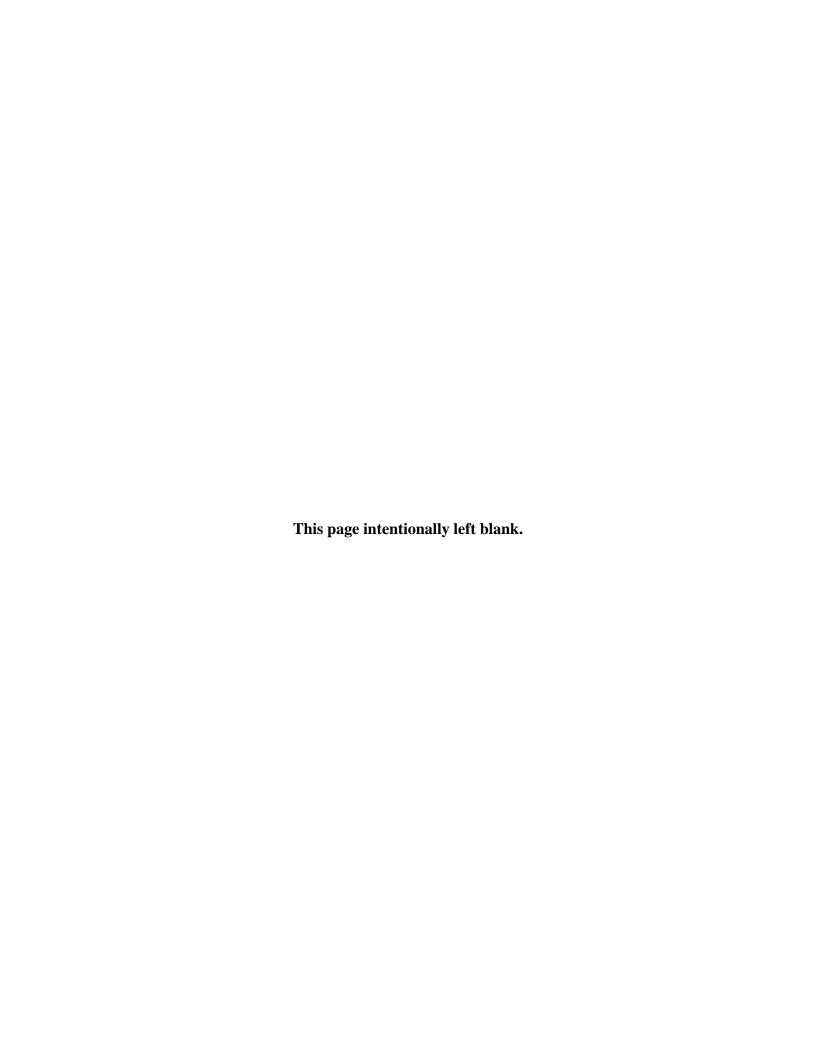
1200 - Inspected Whichre Ship. Remaining work limited to enclosing ends.

XI.

1835-	Daily Debrief
	Churs sloog (Anowherd) - THIU3 & 101 comparle, Moving to 102.
	Greg - N. Gable end sidny complete.
. <u></u>	
	-alc. Had by I will
	and the second of the second o
*,	
in the second of the second o	
3 4 ,	

Heavy over cost, Roin somewill 10/19/66 0845 - check egyint - close of whenday 1030 ACE 2/19/15 - sendent 4000/20 1/00 Take photos of Blog 10+103 -soil
trest ment + sample locations 1230 - 1300 Lung 6 1300 - Go ove pages work - organzo 1600 Pendin Flight-Greg quies 1630 Meet briefly - agree to go out to Duyler 1645 At Duple - good songle bouten 1715 Drive to Airport to get bother to sow it NOAA Survey express 1730 Take GPS measurements of all 7 50:1 Somple locations 1815 Head Car Disport 1830 Meeting BSE - NOAA 1930 Go to Supper -

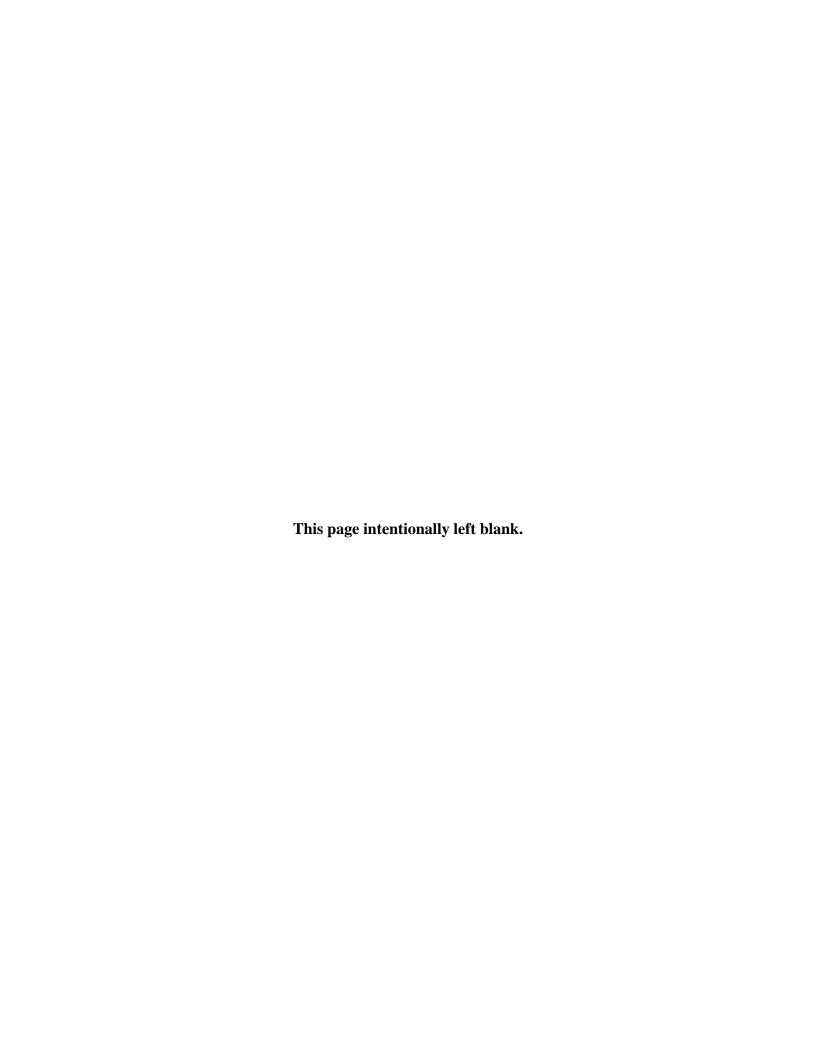
10-20-06 240°E \$830 - load up gripmet in sichup 2500 AT duple 0915 NORA on mer us roto tilla 0930 Go are plon 0945-NORA ballo ave tilla 1000 book hoe a river 1011 I drive to or port & Sind dangsted 1040 Stat Excountry on SES. do of 130 Go to NOA + blog toget plastic streeting to 1215 Dong truck head to lond fill (1) 1230 Stort applying Ecobond on 5-50 sideof duples - Vototillia 1340 Getride out to Singet 13:15 - Lunh, 1410 Drine book out to Duple - continue 1800 Find long conet voult in 50 corner 200 - Finish & drive in to de port 20/5 Supe


Hong over cost some rain 10-21-06 0830-13+ lost GU sangla an COC 0930 At dupla - 5th 11 to dork to songle 1000 start loading stock p. Ted contominated 1045 Scrape Surface of NE corner orone AST-part chips 1/25 stat colleting bags of soil -COllect 9 + NOAA Fast With XRF 1200 Sompleon SW Side Falls - area 2 a 1201 Reaph Eco bonds till in 1210 Fhich looding stock piles + stort digging - area 2 a. 1218 Stort Colleting confirmation soupling 1226 Collet SP60-CS-001.025 1238 Collet 5860-C5-002.015 1243 Collect 5860-C5-003-020 1251 Collect 5960- CS-004-020 1258 Collect 8/60-CS-005-025 1315 Put remaning bog somples in NOAA1-ing 1324 Go to Junel 1405 Go to Bldg 101 14/10 A1 B/dy 101-worthy 1425 Stort Excounting at 10 2/0) 16/9 Drive First despetived back from 101 to

		26.05	The Ties	- 300	40,S	overcost, gusty wind
				33-		10-21-06 Continue
			18:11 2 4			Dung
						1620 Continue exconting
		1		La Paragraph		1850 Go look for fuel truck -bookhoelow
				14		1930 E. 2.13 L Excavating for day
	and the second	100				1940 Help of load rotatilia NOAA gora
			1.			2000 At Disport - Super
						() () ()
7,54	-34	4				
, Ç. (1.1			
		11244				
		12.67				
- 4		Secretary Control		1 2		
	4			-		
			- G-1			
,						
		-15				
	211					
				8		
		U.s.		-12 14		
		6 1 1		-1-2-6		
W N	5.					

Portly Clouds, light breeze 10-22-06 1215 Drive out to Billy 101 1300 start reaccorating at bly 101 430 Drive white damp from to land F. 11 @ 1500 Stort Excovable X103 Not wing BSE COUSSO +NOAN-C1-8/6 1700 - Storted to Snow 1715 set up to collect bug somple of B/25/01 1827 SPEO-CS-006-025-B101-1a 1330 5860 - CS - 010 - 025 dep. 1006 Note drove Blue dans truck ladit, 1/2 building natial to land L. VI at 1710 1832 White deep truck to land fill 4 1833 5P60-CS-007-020ct 8/0/ 2a 1836 5 P60 - C5 - 008 - 020 at B101-3a 1839 SP60-CS-009-015-B/0/-9a 1955 5860 -CS - ON-005 at Bld 103-30 1958 5860 - C5 - 0/2 - 030 ct Bldg 103 5 g 2000 5960 - CS - 0/3 - 020 ABKB, 103 69 2018 5960 -C5-014-020at 8/4/03-29 11 2025 Take down NOAA-GPS repeats 2035 Leone 5,40 Note Duplicate \$160-cs-015-020 colocatedat 5P60-C5-014-020

10-23-06 \$840- Pocklage cooper + equipment for shippent book to Anchorage 0936- Cn11 ACE- setup for shipment 1040-NOPA-drive out to Scoria pit-collect 3 sombler 105 Collect SP60-CH-601-001-Collect SP60-CH-602-005 Collect SP60-CH-603-005 1120 Bocker POSS comp - Close out lost cooler


APPENDIX D IN-SITU FPXRF DATA

St. Paul Inference	NOAA Pribilof	Project Office									
Feedback	St. Paul Island	l, Alaska									
Self-Seminon-According Self-Self-Self-Self-Self-Self-Self-Self-											-
20			Allalyses								
20											
27							SAMPLE	LOCATION	NOTE		
28							SP60-XR-501-020	DUPLEX-7A	SCREENING		_
29											
35									SCREENING		
98 1029/00061337 BULK 2397 ppm Proal SPROXR-802 DUPEX-1A 100.00 110.66 30 10.00 110.00											
38											
39 1020/2000 1846 BULK 6.61 ppm Final SP60-XR-030 DUPLE-LA 56.27 64.79											219.56
41 10202000161449 BULK 17.07 ppm Final SPB0.98-030 DUPLEX-1A 9876.2 172.72 42 102020016151 BULK 2.77 ppm Final SPB0.98-030 DUPLEX-1A 182.27 44 1020200016151 BULK 2.77 ppm Final SPB0.98-030 DUPLEX-1A 182.27 45 1020200016151 BULK 2.77 ppm Final SPB0.98-040 DUPLEX-1A 182.27 46 1020200016153 BULK 2.70 ppm Final SPB0.98-040 DUPLEX-1A 182.27 47 102020016153 BULK 2.70 ppm Final SPB0.98-050 DUPLEX-1A 182.27 48 102020016153 BULK 2.70 ppm Final SPB0.98-050 DUPLEX-1A 182.27 49 102020016153 BULK 2.70 ppm Final SPB0.98-050 DUPLEX-1A 182.27 49 102020016153 BULK 2.70 ppm Final SPB0.98-050 DUPLEX-1A 182.27 49 102020016153 BULK 2.70 ppm Final SPB0.98-050 DUPLEX-1A 182.27 49 102020016153 BULK 2.70 ppm Final SPB0.98-050 DUPLEX-1A 182.27 49 102020016153 BULK 2.70 ppm Final SPB0.98-050 DUPLEX-1A 182.27 40 102020016153 BULK 2.70 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016153 BULK 2.70 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016153 BULK 2.70 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016153 BULK 2.70 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016153 BULK 2.70 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016153 BULK 2.70 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016153 BULK 2.70 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016153 BULK 2.70 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016153 BULK 2.72 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016153 BULK 2.72 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016153 BULK 2.72 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016153 BULK 2.72 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016153 BULK 2.72 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016153 BULK 2.72 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016153 BULK 2.72 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016153 BULK 2.72 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016153 BULK 2.73 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016153 BULK 2.74 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016153 BULK 2.75 ppm Final SPB0.98-050 DUPLEX-1A 182.27 41 102020016154 BU		10/20/2006 18:45					SP60-XR-503				107.88
42 100202001 8148 BULK 4.79 ppm Pinul SP00-XR-030 DUPLEX-1A 1082.2 121-38 43 100202001 8148 BULK 2.29 ppm Finul SP00-XR-030 DUPLEX-1A 102.2 121-38 44 100202001 8151 BULK 2.27 ppm Finul SP00-XR-040 DUPLEX-1A 102.2 121-38 47 10020200 8153 BULK 5.02 ppm Finul SP00-XR-050 DUPLEX-0A 14.1 12.2 121-38 48 10020200 8153 BULK 5.02 ppm Finul SP00-XR-050 DUPLEX-0A 14.1 12.2 121-38 49 10020200 8153 BULK 5.02 ppm Finul SP00-XR-050 DUPLEX-0A 14.1 12.1 121-38 49 10020200 8154 BULK 7.07 ppm Finul SP00-XR-050 DUPLEX-0A 14.1 12.1 121-38 49 10020200 8154 BULK 7.07 ppm Finul SP00-XR-050 DUPLEX-0A 14.1 12.1 121-38 49 10020200 8154 BULK 5.02 ppm Finul SP00-XR-050 DUPLEX-0A 14.1 12.1 121-38 49 10020200 8157 BULK 5.03 ppm Finul SP00-XR-050 DUPLEX-0A 14.0 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12											
43 100202001 16:49 BULK 2.28 ppm Final SP60-XR-030 DUPLEX/7A 965.49 12:05. 44 100202001 16:51 BULK 3.19 ppm Final SP60-XR-040 DUPLEX/7A 227.28 117.24 45 100202001 16:51 BULK 3.19 ppm Final SP60-XR-040 DUPLEX/7A 227.28 117.24 46 100202001 16:51 BULK 3.19 ppm Final SP60-XR-040 DUPLEX/7A 227.28 117.24 47 10020200 16:54 BULK 2.51 ppm Final SP60-XR-050 DUPLEX-0A 227.28 117.24 48 100202001 16:54 BULK 2.51 ppm Final SP60-XR-050 DUPLEX-0A 257.28 117.24 49 10020200 16:54 BULK 7.07 ppm Final SP60-XR-050 DUPLEX-0A 257.24 10.05 50 10020200 16:55 BULK 0.51 ppm Final SP60-XR-050 DUPLEX-0A 22.55 ppm Final SP60-XR-050 DUPLEX-0A 22.57 ppm Final SP60											
Heart											
46 10202006 1832 BULK 2.74 ppm Final SP60.XR.505 DUPLEX.SA 44.19 39.45 47 10202006 1832 BULK 2.25 ppm Final SP60.XR.505 DUPLEX.SA 88 62.23 48 10202006 1834 BULK 2.51 ppm Final SP60.XR.505 DUPLEX.SA 179.47 108.57											
48											
48 1020/2006 18:94 BULK 2:51 ppm Final SP60/R5:96 DUPLE-VAA 170:16 108:57 49 1020/2006 18:57 BULK 0:91 ppm Final SP60/R5:96 DUPLE-VAA 2:216 128:48 51 1020/2006 18:57 BULK 0:91 ppm Final SP60/R5:97 DUPLE-VAA 2:216 128:48 51 1020/2006 18:57 BULK 0:91 ppm Final SP60/R5:97 DUPLE-VAA 2:216 128:48 52 1020/2006 18:07 BULK 0:91 ppm Final SP60/R5:97 DUPLE-VAA 2:216 128:48 53 1020/2006 18:07 BULK 0:91 ppm Final SP60/R5:97 DUPLE-VAA 2:216 128:48 54 1020/2006 18:07 BULK 2:21 ppm Final SP60/R5:98 BULFE-VAA 4:06:74 23:37 55 1020/2006 19:01 BULK 0:91 ppm Final SP60/R5:98 BULFE-VAA 4:06:74 23:37 56 1020/2006 19:01 BULK 0:91 ppm Final SP60/R5:98 BULFE-VAA 4:06:74 23:37 57 1020/2006 19:01 BULK 0:91 ppm Final SP60/R5:98 BULFE-VAA 4:06:74 23:37 58 1020/2006 19:03 BULK 0:91 ppm Final SP60/R5:98 BULFE-VAA 4:06:74 23:37 59 1020/2006 19:03 BULK 0:91 ppm Final SP60/R5:98 BULFE-VAA 4:07 ppm Final SP60/R5:98 BULFE-VAA 4:08 BULFE-VAA 4:08 ppm Final SP60/R5:98 BULFE-VAA 4:09 ppm Final SP60/R5:9											
49											
Section											
52											126.46
53											
54											
56											
56 10/20/2006 19:35 BULK 2.28 ppm Final SP60-XR-6-99 DUPLEX-8A 441.6 167.78 58 10/20/2006 19:37 BULK 1.82 ppm Final SP60-XR-6-99 DUPLEX-8A 441.6 167.78 58 10/20/2006 19:37 BULK 1.82 ppm Final SP60-XR-6-99 DUPLEX-8A 441.6 63.16 265.02 40.20 40.2	55	10/20/2006 19:01	BULK	3.88		Final		DUPLEX-2A		272.21	101.44
58					ppm					482.57	
59											
60							2F00-XK-203	DUPLEX-6A			
61 102/12/006 10:12 BULK 1.14 ppm Final SP60.XR-010-000 DUPLEX-6A 448.34 346.66 c2 102/12/006 11:19 BULK 2.05 ppm Final SP60.XR-011 DUPLEX-6A 48.34 346.66 c3 102/12/006 11:19 BULK 2.05 ppm Final SP60.XR-011 DUPLEX-6A 242.16 176.77 c64 102/12/006 11:19 BULK 0.23 ppm Final SP60.XR-011 DUPLEX-6A 249.31 383.45 c65 102/12/006 11:20 BULK 3.41 ppm Final SP60.XR-011 DUPLEX-6A 249.31 383.46 c65 102/12/006 11:21 BULK 1.025 ppm Final SP60.XR-011 DUPLEX-6A 249.31 383.46 c65 102/12/006 11:22 BULK 4.56 ppm Final SP60.XR-011 DUPLEX-6A 248.56 c68 102/12/006 11:22 BULK 4.56 ppm Final SP60.XR-011 DUPLEX-6A 248.56 c68 249.31 20.3							SP60-XR-010-000	DUPLEX-6A			764.22
63											
66 102/12/006 11:19 BULK 0.23 ppm Final SP60-XR-011 DUPLEX-2A 299.2 11:00.66 67 102/12/006 11:22 BULK 1.0.25 ppm Final SP60-XR-011 DUPLEX-2A 486.56 80.44 67 102/12/006 11:22 BULK 4.56 ppm Final SP60-XR-011 DUPLEX-2A 486.56 80.44 68 102/12/006 11:23 BULK 4.56 ppm Final SP60-XR-011 DUPLEX-2A 343.91 110.79 68 102/12/006 11:23 BULK 4.56 ppm Final SP60-XR-011 DUPLEX-2A 165.21 173.61 69 102/12/006 11:23 BULK 3.37 ppm Final SP60-XR-011 DUPLEX-2A 165.21 173.61 70 102/12/006 11:29 BULK 1.16 ppm Final SP60-XR-011 DUPLEX-2A 178.76 71 102/12/006 11:29 BULK 11.61 ppm Final SP60-XR-011 DUPLEX-2A 178.76 72 102/12/006 11:39 BULK 9.79 ppm Final SP60-XR-011 DUPLEX-2A 178.76 73 102/12/006 11:31 BULK 9.79 ppm Final SP60-XR-011 DUPLEX-2A 4.44 20.7 74 102/12/006 11:35 BULK 2983 ppm Final SP60-XR-011 DUPLEX-2A 34.44 20.7 75 102/12/006 11:36 BULK 2983 ppm Final SP60-XR-011 DUPLEX-2A 444.2 76 102/12/006 11:36 BULK 10.39 ppm Final SP60-XR-011 DUPLEX-2A 44.4 77 102/12/006 11:36 BULK 10.39 ppm Final SP60-XR-011 DUPLEX-2A 44.4 78 102/12/006 11:36 BULK 10.39 ppm Final SP60-XR-011 DUPLEX-2A 44.4 79 102/12/006 11:40 BULK 8.65 ppm Final SP60-XR-011 DUPLEX-2A 44.4 79 102/12/006 11:40 BULK 8.65 ppm Final SP60-XR-011 DUPLEX-2A 44.4 79 102/12/006 11:40 BULK 8.65 ppm Final SP60-XR-011 DUPLEX-2A 44.4 79 102/12/006 11:42 BULK 8.65 ppm Final SP60-XR-011 DUPLEX-2A 44.4 70 102/12/006 11:40 BULK 8.65 ppm Final SP60-XR-011 DUPLEX-2A 44.4 70 102/12/006 11:40 BULK 8.65 ppm Final SP60-XR-011 DUPLEX-2A 44.4 70 102/12/006 11:40 BULK 8.65 ppm Final SP60-XR-011 DUPLEX-2A 44.4 70 102/12/006 11:40 BULK 8.65 ppm Final SP60-XR-011 DUPLEX-2A 44.4 70 102/12/006 11:40 BULK 8.65 ppm Final SP60-XR-011 DUPLEX-2A 44.4 70 102/12/006 11:40 BULK 8.65 ppm Final SP60-XR-011 DUPLEX-2A 44.4 70 102/12/006 11:40 BULK 8.65 ppm Final SP60-XR-011 DUPLEX-2A 44.4 70 102/12/006 11:40 BULK 8.65 ppm Final SP60-XR-011 DUPLEX-2A 44.4 70 102/12/006 11:40 BULK 8.65 ppm Final SP60-XR-011 DUPLEX-2A 44.4 70 102/12/006 11:40 BULK 8.65 ppm Fin											
First Firs											
66											
Best											
69											
TO											
Tri											
Total											
T44 1021/2006 11:38 BULK 0.46 ppm Final SP60.KR-011 DUPLEX-2A 494.05 70.17 76 1021/2006 11:40 BULK 19.33 ppm Final SP60.KR-011 DUPLEX-2A 250.53 63.69 77 1021/2006 11:40 BULK 6.15 ppm Final SP60.KR-011 DUPLEX-2A 250.53 63.69 78 1021/2006 11:42 BULK 6.15 ppm Final SP60.KR-011 DUPLEX-2A 180.64 63.69 78 1021/2006 11:45 BULK 4.55 ppm Final SP60.KR-011 DUPLEX-2A 167.34 82.23 79 1021/2006 11:35 BULK 7.29 ppm Final SP60.KR-011 DUPLEX-2A 8.28 23.97 80 1021/2006 12:37 BULK 7.29 ppm Final SP60.KR-011 DUPLEX-2A 62.734 73.03 81 1021/2006 12:37 BULK 3.87 ppm Final SP60.KR-011 DUPLEX-2A 4.94 50.61 82 1021/2006 17:13 BULK 3.87 ppm Final SP60.KR-011 DUPLEX-2A 4.94 50.61 83 1021/2006 17:14 BULK 22.78 ppm Final SP60.KR-012 TH101-1A 308.16 49.52 49.61 49.6					ppm						
Tr Tr Tr Tr Tr Tr Tr Tr											
76											
1021/2006 11:42 BULK 6.15 ppm Final SP60.XR-011 DUPLEX-2A 18.0.64 65.46 78 1021/2006 11:45 BULK 4.55 ppm Final SP60.XR-011 DUPLEX-2A 167.34 82.23 79 1021/2006 11:37 BULK 10.48 ppm Final SP60.XR-011 DUPLEX-2A 8.28 23.97 80 10/21/2006 12:37 BULK 7.29 ppm Final SP60.XR-011 DUPLEX-2A 267.84 73.03 81 10/21/2006 12:37 BULK 7.29 ppm Final SP60.XR-011 DUPLEX-2A 14.94 50.61 82 10/21/2006 17:13 BULK 3.87 ppm Final SP60.XR-011 DUPLEX-2A 14.94 50.61 82 10/21/2006 17:14 BULK 2.78 ppm Final SP60.XR-012 TH101-1A 190.8 91.68 83 10/21/2006 17:15 BULK 2.96 ppm Final SP60.XR-012 TH101-1A 308.16 49.52 84 10/21/2006 17:15 BULK 2.96 ppm Final SP60.XR-012 TH101-1A 740.81 175.66 85 10/21/2006 18:06 BULK 2.96 ppm Final SP60.XR-012 TH101-1A 740.81 175.66 86 10/21/2006 18:06 BULK 5.92 ppm Final SP60.XR-012 TH101-1A 591.82 225.03 88 10/21/2006 18:06 BULK 5.92 ppm Final SP60.XR-013 TH101-2A 568.64 111.98 10/21/2006 18:06 BULK 4.1 ppm Final SP60.XR-014 TH101-2A 241.87 335.06 89 10/21/2006 18:10 BULK 4.32 ppm Final SP60.XR-014 TH101-2B 1325.14 199.06 10/21/2006 19:48 BULK 1.59 ppm Final SP60.XR-015 TH101-2A 241.87 355.06 10/21/2006 19:49 BULK 4.78 ppm Final SP60.XR-015 TH101-2A 22.32 0.99 10/21/2006 19:49 BULK 4.78 ppm Final SP60.XR-015 TH101-2A 2.32 0.15 10/21/2006 19:49 BULK 4.78 ppm Final SP60.XR-015 TH101-2A 2.32 0.15 10/21/2006 19:49 BULK 4.78 ppm Final SP60.XR-015 TH101-2A 625.56 125 10/21/2006 19:52 BULK 4.78 ppm Final SP60.XR-015 TH101-3A 59.38 51.18 10/21/2006 19:52 BULK 4.78 ppm Final SP60.XR-015 TH101-3A 59.38 51.18 10/21/2006 19:52 BULK 4.78 ppm Final SP60.XR-015 TH101-3A 63.84.58 86.39 10/21/2006 13:52 BULK 4.5											
1021/2006 11:49										180.64	
80											
81 10/21/2006 12:37 BULK 6.15 ppm Final SP60-XR-012 TH101-1A 190.8 91.88 82 10/21/2006 17:14 BULK 2.278 ppm Final SP60-XR-012 TH101-1A 190.8 91.88 84 10/21/2006 17:15 BULK 2.96 ppm Final SP60-XR-012 TH101-1A 740.81 175.66 85 10/21/2006 18:06 BULK 2.96 ppm Final SP60-XR-012 TH101-1A 799.82 299.82 250.38 86 10/21/2006 18:06 BULK 5.92 ppm Final SP60-XR-012 TH101-1A 991.82 250.38 86 10/21/2006 18:06 BULK 5.92 ppm Final SP60-XR-013 TH101-2A 241.387 356.64 111.98 86 10/21/2006 18:08 BULK 4.1 ppm Final SP60-XR-014 TH101-2A 241.387 356.14 199.06 88 10/21/2006 18:04 BULK 4.2 ppm Final SP60-XR-014 TH101-2A <td></td>											
82 10/21/2006 17:13 BULK 3.87 ppm Final SP60.XR-012 TH101-1A 190.8 91.88 83 10/21/2006 17:15 BULK 2.96 ppm Final SP60.XR-012 TH101-1A 308.16 49.52 84 10/21/2006 17:15 BULK 2.96 ppm Final SP60.XR-012 TH101-1A 740.81 175.66 85 10/21/2006 18:05 BULK 2.96 ppm Final SP60.XR-012 TH101-1A 991.82 225.03 86 10/21/2006 18:05 BULK 2.59 ppm Final SP60.XR-013 TH101-2A 568.64 111.98 87 10/21/2006 18:05 BULK 4.1 ppm Final SP60.XR-013 TH101-2A 2413.87 335.06 89 10/21/2006 18:05 BULK 4.1 ppm Final SP60.XR-014 TH101-2B 555.1 136.52 90 10/21/2006 19:46 SHUTER CAL 4.2 cps Final SP60.XR-015 TH10											
84 10/21/2006 17:15 BULK 2.96 ppm Final SP60-XR-012 TH101-1A 740.81 175.66 85 10/21/2006 17:15 BULK 2.96 ppm Final SP60-XR-013 TH101-1A 991.82 225.03 86 10/21/2006 18:06 BULK 2.5 ppm Final SP60-XR-013 TH101-2A 258.66 111.88 87 10/21/2006 18:07 BULK 2.5 ppm Final SP60-XR-013 TH101-2A 2413.87 335.06 88 10/21/2006 18:10 BULK 4.32 ppm Final SP60-XR-014 TH101-2B 1325.14 199.06 89 10/21/2006 19:48 BULK 4.32 ppm Final SP60-XR-014 TH101-2B 555.1 136.52 90 10/21/2006 19:49 BULK 4.78 ppm Final SP60-XR-015 TH101-2A 31.17 52.09 93 10/21/2006 19:49 BULK 4.56 ppm Final SP60-XR-015 TH101-2	82	10/21/2006 17:13	BULK	3.87		Final	SP60-XR-012				
85 10/21/2006 18:06 BULK 2.96 ppm Final SP60-XR-012 TH101-1A 991.82 225.03 86 10/21/2006 18:06 BULK 5.92 ppm Final SP60-XR-013 TH101-2A 568.64 111.98 87 10/21/2006 18:07 BULK 2.5 ppm Final SP60-XR-013 TH101-2A 2413.87 335.06 88 10/21/2006 18:08 BULK 4.1 ppm Final SP60-XR-014 TH101-2B 1325.14 199.06 89 10/21/2006 18:10 BULK 4.32 ppm Final SP60-XR-014 TH101-2B 555.1 136.52 90 10/21/2006 19:48 BULK 4.2 cps Final SP60-XR-014 TH101-2B 555.1 136.52 91 10/21/2006 19:48 BULK 1.59 ppm Final SP60-XR-015 TH101-2A 120.17.1 310.15 92 ppm Final SP60-XR-015 TH101-2A 120.17.1 320.15 92 ppm Final SP60-XR-015 TH101-3A 120.17 320.1											
86 10/21/2006 18:06 BULK 5.92 ppm Final SP60-XR-013 TH101-2A 568.64 411.88 87 10/21/2006 18:07 BULK 2.5 ppm Final SP60-XR-014 TH101-2A 2413.87 335.06 88 10/21/2006 18:08 BULK 4.1 ppm Final SP60-XR-014 TH101-2B 1325.14 199.06 89 10/21/2006 18:08 BULK 4.32 ppm Final SP60-XR-014 TH101-2B 555.1 189.06 90 10/21/2006 19:48 BULK 1.59 ppm Final SP60-XR-015 TH101-2A 1201.71 310.15 92 10/21/2006 19:49 BULK 4.78 ppm Final SP60-XR-015 TH101-2A 31.17 52.09 93 10/21/2006 19:50 BULK 4.56 ppm Final SP60-XR-015 TH101-2A 32.56 625.56 125.59 125.59 125.50 125.50 125.50 125.50 125.50 125.50 125.5											
87											111.98
88		10/21/2006 18:07	BULK				SP60-XR-013			2413.87	335.06
90					ppm						199.06
91							SP60-XR-014	TH101-2B			
92 10/21/2006 19:49 BULK 4.78 ppm Final SP60-XR-015 TH:01-2A 31.17 52.09 93 10/21/2006 19:49 BULK 4.56 ppm Final SP60-XR-015 TH:01-2A 625.56 125 94 10/21/2006 19:50 BULK 13:68 ppm Final SP60-XR-015 TH:01-2A 385.98 59.92 95 10/21/2006 19:52 BULK 4.78 ppm Final SP60-XR-016 TH:01-3A 55.38 51.18 96 10/21/2006 19:52 BULK 5.92 ppm Final SP60-XR-016 TH:01-3A 19.27 40.89 102 10/22/2006 13:48 SHUTTER CAL 44.21 cps Final SP60-XR-016 TH:01-3A 19.27 40.89 102 10/22/2006 13:51 BULK 2.73 ppm Final SP60-XR-021 TH:01-1A 637.29 211.24 104 10/22/2006 13:52 BULK 2.27 ppm Final SP60-XR-021 TH:01-1A 237.19 131.31 105 10/22/2006 13:52 BULK 0.68 ppm Final SP60-XR-021 TH:01-1A 3564.58 886.37 106 10/22/2006 13:52 BULK 0.68 ppm Final SP60-XR-021 TH:01-1A 3564.58 886.37 107 10/22/2006 13:53 BULK 0.68 ppm Final SP60-XR-021 TH:01-1A 360.03 157.18 107 10/22/2006 13:53 BULK 0.68 ppm Final SP60-XR-021 TH:01-1A 360.03 157.18 107 10/22/2006 13:52 BULK 0.68 ppm Final SP60-XR-021 TH:01-1A 360.03 157.18 107 10/22/2006 14:33 BULK 6.37 ppm Final SP60-XR-022 TH:01-3A 186.14 68.64 108 10/22/2006 14:33 BULK 3.18 ppm Final SP60-XR-022 TH:01-3A 186.14 68.64 108 10/22/2006 14:34 BULK 3.42 ppm Final SP60-XR-022 TH:01-3A 285.59 135.83 110 10/22/2006 14:34 BULK 3.42 ppm Final SP60-XR-022 TH:01-3A 368.44 133.98 111 10/22/2006 14:35 BULK 3.42 ppm Final SP60-XR-022 TH:01-3A 186.64 133.98 111 10/22/2006 14:35 BULK 3.42 ppm Final SP60-XR-022 TH:01-3A 368.44 133.98 111 10/22/2006 14:35 BULK 3.45 ppm Final SP60-XR-022 TH:01-3A 1826.83 321.16 112 10/22/2006 14:38 BULK 3.45 ppm Final SP60-XR-022 TH:01-3A 1826.83 321.16 112 10/22/2006 14:38 BULK 3.56 ppm Final SP60-XR-022 TH:01-3A 48.38 95.02 115 10/22/2006 14:38 BULK 3.86 ppm Final SP60-XR-022 TH:01-3A 48.38 95.02 115 10/22/2006 14:38 BULK 3.86 ppm Final SP60-XR-022 TH:01-3A 1826.89 95.02 115 10/22/2006 14:38 BULK 3.86 ppm Final SP60-XR-022 TH:01-3A 1826.89 95.02 115 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-022 TH:01-3A 1826.44 180 BULK 3.86 ppm Final SP60-XR-023 TH:01-4A 19:04 49:04 40:04 40:04 40:04 40:04 40:04							SP60-XR-015	TH101-2A			
93											
95	93	10/21/2006 19:49	BULK	4.56		Final	SP60-XR-015	TH101-2A		625.56	125
96 10/21/2006 19:52 BULK 5.92 ppm Final SP60-XR-016 TH101-3A 19.27 40.89 102 10/22/2006 13:48 SHUTER_CAL 44.21 cps Final SP60-XR-021 TH101-1A 637.29 211.24 103 10/22/2006 13:51 BULK 2.73 ppm Final SP60-XR-021 TH101-1A 237.19 131.31 105 10/22/2006 13:52 BULK 0.68 ppm Final SP60-XR-021 TH101-1A 3584.58 886.37 106 10/22/2006 13:52 BULK 2.52 ppm Final SP60-XR-021 TH101-1A 360.03 157.18 107 10/22/2006 13:52 BULK 2.52 ppm Final SP60-XR-021 TH101-1A 360.03 157.18 107 10/22/2006 14:33 BULK 3.51 ppm Final SP60-XR-021 TH101-3A 186.14 68.64 108 10/22/2006 14:33 BULK 3.18 ppm Final SP60-XR-022 TH101-3A 544.08 158.37 109 10/22/2006 14:34 BULK 2.5 ppm Final SP60-XR-022 TH101-3A 544.08 158.37 110 10/22/2006 14:34 BULK 3.42 ppm Final SP60-XR-022 TH101-3A 368.44 133.98 110 10/22/2006 14:35 BULK 3.42 ppm Final SP60-XR-022 TH101-3A 368.44 133.98 111 10/22/2006 14:35 BULK 3.50 ppm Final SP60-XR-022 TH101-3A 126.683 321.16 110 10/22/2006 14:36 BULK 4.55 ppm Final SP60-XR-022 TH101-3A 126.683 321.16 111 10/22/2006 14:38 BULK 4.55 ppm Final SP60-XR-022 TH101-3A 126.683 321.16 112 10/22/2006 14:38 BULK 4.55 ppm Final SP60-XR-022 TH101-3A 126.683 321.16 113 10/22/2006 14:38 BULK 4.55 ppm Final SP60-XR-022 TH101-3A 126.683 321.16 114 10/22/2006 14:38 BULK 4.55 ppm Final SP60-XR-022 TH101-3A 126.78 68.88 115 10/22/2006 14:38 BULK 4.55 ppm Final SP60-XR-022 TH101-3A 168.88 116 10/22/2006 14:38 BULK 3.18 ppm Final SP60-XR-022 TH101-3A 18.89 50.02 117 10/22/2006 14:38 BULK 3.18 ppm Final SP60-XR-022 TH101-3A 18.08 95.02 115 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-022 TH101-3A 165.9 95.34 116 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-023 TH101-4A 165.9 95.34 117 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-024 TH101-5A 165.9 95.34 118 10/22/2006 14:41 BULK 0.68 ppm Final SP60-XR-024 TH101-5A 165.9 95.34											
102											
103							O1 00-AN=010	111101-3A			
104 10/22/2006 13:52 BULK 2.27 ppm Final SP60-XR-021 TH:01-1A 237.19 131.31 105 10/22/2006 13:52 BULK 0.68 ppm Final SP60-XR-021 TH:01-1A 368.458 886.37 106 10/22/2006 13:52 BULK 2.52 ppm Final SP60-XR-021 TH:01-1A 360.03 157.18 107 10/22/2006 14:33 BULK 6.37 ppm Final SP60-XR-022 TH:01-3A 186.14 68.64 108 10/22/2006 14:33 BULK 3.18 ppm Final SP60-XR-022 TH:01-3A 248.59 109 10/22/2006 14:34 BULK 2.5 ppm Final SP60-XR-022 TH:01-3A 248.59 110 10/22/2006 14:34 BULK 3.42 ppm Final SP60-XR-022 TH:01-3A 368.44 133.98 111 10/22/2006 14:35 BULK 2.27 ppm Final SP60-XR-022 TH:01-3A 1826.83 111 10/22/2006 14:36 BULK 4.55 ppm Final SP60-XR-022 TH:01-3A 1826.83 113 10/22/2006 14:37 BULK 4.55 ppm Final SP60-XR-022 TH:01-3A 126.83 114 10/22/2006 14:38 BULK 4.55 ppm Final SP60-XR-022 TH:01-3A 178.77 115 10/22/2006 14:38 BULK 3.18 ppm Final SP60-XR-022 TH:01-3A 48.38 116 10/22/2006 14:38 BULK 3.18 ppm Final SP60-XR-022 TH:01-3A 63 66.93 116 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-023 TH:01-3A 63 66.93 116 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-023 TH:01-4A 165.9 95.34 117 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-023 TH:01-4A 165.9 95.34 118 10/22/2006 14:41 BULK 0.68 ppm Final SP60-XR-024 TH:01-5A 2292.21 119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024 TH:01-5A 52.99 64.96 119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024 TH:01-5A 52.99 64.96							SP60-XR-021	TH101-1A			211.24
106					ppm						
107 10/22/2006 14:33 BULK 6.37 ppm Final SP60-XR-022 TH101-3A 186.14 68.64 108 10/22/2006 14:33 BULK 3.18 ppm Final SP60-XR-022 TH101-3A 544.08 158.37 109 10/22/2006 14:34 BULK 2.5 ppm Final SP60-XR-022 TH101-3A 28.59 135.83 110 10/22/2006 14:34 BULK 3.42 ppm Final SP60-XR-022 TH101-3A 368.44 133.98 111 10/22/2006 14:35 BULK 2.27 ppm Final SP60-XR-022 TH101-3A 1826.83 321.16 10/22/2006 14:36 BULK 4.55 ppm Final SP60-XR-022 TH101-3A 216.7 86.88 113 10/22/2006 14:37 BULK 4.55 ppm Final SP60-XR-022 TH101-3A 178.77 79.34 114 10/22/2006 14:38 BULK 4.55 ppm Final SP60-XR-022 TH101-3A 48.38 95.02 115 10/22/2006 14:38 BULK 3.18 ppm Final SP60-XR-022 TH101-3A 63 66.93 116 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-023 TH101-4A 79.71 69.04 117 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-023 TH101-4A 165.9 95.34 118 10/22/2006 14:41 BULK 0.68 ppm Final SP60-XR-024 TH101-5A 2292.21 644.08 119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024 TH101-5A 52.99 64.96 119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024 TH101-5A 52.99 64.96 119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024 TH101-5A 52.99 64.96 119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024 TH101-5A 52.99 64.96 119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024 TH101-5A 52.99 64.96 119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024 TH101-5A 52.99 64.96 119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024 TH101-5A 52.99 64.96 119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024 TH101-5A 52.99 64.96 119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024 TH101-5A 52.99 64.96 119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024											
108 10/22/2006 14:33 BULK 3.18 ppm Final SP60-XR-022 TH:101:3A 544.08 158.37 109 10/22/2006 14:34 BULK 2.5 ppm Final SP60-XR-022 TH:101:3A 285.59 135.83 110 10/22/2006 14:34 BULK 3.42 ppm Final SP60-XR-022 TH:101:3A 368.44 133.98 111 10/22/2006 14:35 BULK 2.27 ppm Final SP60-XR-022 TH:101:3A 1826.83 321.16 112 10/22/2006 14:36 BULK 4.55 ppm Final SP60-XR-022 TH:101:3A 216.7 86.88 113 10/22/2006 14:36 BULK 4.55 ppm Final SP60-XR-022 TH:101:3A 178.77 79.34 114 10/22/2006 14:38 BULK 1.36 ppm Final SP60-XR-022 TH:101:3A 48.38 95.02 115 10/22/2006 14:38 BULK 3.18 ppm Final SP60-XR-022											
109 10/22/2006 14:34 BULK 2.5 ppm Final SP60-XR-022 TH101-3A 285.59 135.83 110 10/22/2006 14:34 BULK 3.42 ppm Final SP60-XR-022 TH101-3A 368.44 133.98 111 10/22/2006 14:35 BULK 2.27 ppm Final SP60-XR-022 TH101-3A 1826.83 321.16 112 10/22/2006 14:36 BULK 4.55 ppm Final SP60-XR-022 TH101-3A 216.7 86.88 113 10/22/2006 14:37 BULK 4.55 ppm Final SP60-XR-022 TH101-3A 178.77 79.34 114 10/22/2006 14:38 BULK 1.36 ppm Final SP60-XR-022 TH101-3A 48.38 95.02 115 10/22/2006 14:38 BULK 3.18 ppm Final SP60-XR-022 TH101-3A 48.38 95.02 115 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-023 TH1											158.37
110 10/22/2006 14:34 BULK 3.42 ppm Final SP60-XR-022 TH:101-3A 368.44 133.98 111 10/22/2006 14:35 BULK 2.27 ppm Final SP60-XR-022 TH:101-3A 1826.83 321.16 112 10/22/2006 14:36 BULK 4.55 ppm Final SP60-XR-022 TH:101-3A 216.7 68.88 113 10/22/2006 14:37 BULK 4.55 ppm Final SP60-XR-022 TH:101-3A 178.77 79.34 114 10/22/2006 14:38 BULK 1.36 ppm Final SP60-XR-022 TH:101-3A 48.38 95.02 115 10/22/2006 14:38 BULK 3.18 ppm Final SP60-XR-022 TH:101-3A 48.38 95.02 116 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-023 TH:101-4A 79.71 69.04 117 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-023 <	109	10/22/2006 14:34	BULK	2.5		Final	SP60-XR-022	TH101-3A		285.59	135.83
112 10/22/2006 14:36 BULK 4.55 ppm Final SP60-XR-022 TH101-3A 216.7 86.88 113 10/22/2006 14:37 BULK 4.55 ppm Final SP60-XR-022 TH101-3A 178.77 79.34 114 10/22/2006 14:38 BULK 1.36 ppm Final SP60-XR-022 TH101-3A 48.38 95.02 115 10/22/2006 14:38 BULK 3.18 ppm Final SP60-XR-022 TH101-3A 63 66.93 116 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-023 TH101-4A 79.71 69.04 117 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-023 TH101-4A 165.9 95.34 118 10/22/2006 14:41 BULK 0.68 ppm Final SP60-XR-024 TH101-5A 2292.21 644.08 119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024 TH101-5A<											133.98
113 10/22/2006 14:37 BULK 4.55 ppm Final SP60-XR-022 TH101-3A 178.77 79.34 114 10/22/2006 14:38 BULK 1.36 ppm Final SP60-XR-022 TH101-3A 48.38 95.02 115 10/22/2006 14:38 BULK 3.18 ppm Final SP60-XR-022 TH101-3A 63 66.93 116 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-023 TH101-4A 79.71 69.04 117 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-023 TH101-4A 165.9 95.34 118 10/22/2006 14:41 BULK 0.68 ppm Final SP60-XR-024 TH101-5A 2292.21 644.08 119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024 TH101-5A 52.99 64.96											
114 10/22/2006 14:38 BULK 1.36 ppm Final SP60-XR-022 TH:101-3A 48.38 95.02 115 10/22/2006 14:38 BULK 3.18 ppm Final SP60-XR-022 TH:101-3A 63 66.93 116 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-023 TH:101-4A 79.71 69.04 117 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-023 TH:101-4A 165.9 95.34 118 10/22/2006 14:41 BULK 0.68 ppm Final SP60-XR-024 TH:101-5A 2292.21 644.08 119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024 TH:101-5A 52.99 64.96											
115 10/22/2006 14:38 BULK 3.18 ppm Final SP60-XR-022 TH101-3A 63 66.93 116 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-023 TH101-4A 79.71 69.04 117 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-023 TH101-4A 165.9 95.34 118 10/22/2006 14:41 BULK 0.68 ppm Final SP60-XR-024 TH101-5A 2292.21 644.08 119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024 TH101-5A 52.99 64.96							SP60-XR-022				
117 10/22/2006 14:40 BULK 3.86 ppm Final SP60-XR-023 TH:101-4A 165.9 95.34 118 10/22/2006 14:41 BULK 0.68 ppm Final SP60-XR-024 TH:101-5A 2292.21 644.08 119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024 TH:101-5A 52.99 64.96	115	10/22/2006 14:38	BULK	3.18		Final	SP60-XR-022	TH101-3A		63	66.93
118 10/22/2006 14:41 BULK 0.68 ppm Final SP60-XR-024 TH101-5A 2292.21 644.08 119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024 TH101-5A 52.99 64.96											
119 10/22/2006 14:42 BULK 3.41 ppm Final SP60-XR-024 TH101-5A 52.99 64.96									-		
	120	10/22/2006 14:42	BULK	2.73	ppm	Final	SP60-XR-024	TH101-5A		66.91	64.35

Reading No	Time	Type	Duration	Units	Sequence	SAMPLE		NOTE Pb	Pb Error
121	10/22/2006 14:42	BULK	2.95	ppm	Final	SP60-XR-024	TH101-5A	222.38	108.11
122	10/22/2006 14:45	BULK	3.41	ppm	Final	SP60-XR-025	TH101-1A	224.67	120.28
123	10/22/2006 14:45	BULK	4.32	ppm	Final	SP60-XR-025	TH101-1A	374.73	119.1
124	10/22/2006 14:47	BULK	2.28	ppm	Final	SP60-XR-025	TH101-1A	146.25	93.47
125	10/22/2006 15:42	BULK	3.87	ppm	Final	SP60-XR-026	TH101-2A	571.5	139.43
126	10/22/2006 15:42	BULK	10.23	ppm	Final	SP60-XR-026	TH101-2A	369.98	68.81
127	10/22/2006 15:43	BULK	4.32	ppm	Final	SP60-XR-026	TH101-2A	547.02	131.32
128 129	10/22/2006 15:44	BULK	7.51	ppm	Final	SP60-XR-026	TH101-2A	314.65 47.72	90.16 71.97
130	10/22/2006 15:44 10/22/2006 15:46	BULK BULK	3.18 2.05	ppm	Final Final	SP60-XR-026 SP60-XR-026	TH101-2A TH101-2A	393.11	163.66
131	10/22/2006 15:46	BULK	2.05	ppm	Final	SP60-XR-026	TH101-2A	750.49	200.29
132	10/22/2006 15:47	BULK	3.64	ppm	Final	SP60-XR-020	TH101-2A	46.69	72.44
133	10/22/2006 15:48	BULK	5.23	ppm	Final	SP60-XR-027	TH101-1A	448.95	112.98
134	10/22/2006 15:49	BULK	5.91	ppm	Final	SP60-XR-027	TH101-1A	418.66	107.28
135	10/22/2006 15:49	BULK	3.19	ppm	Final	SP60-XR-027	TH101-1A	234.02	119.5
136	10/22/2006 15:50	BULK	4.55	ppm	Final	SP60-XR-027	TH101-1A	110.6	67.54
137	10/22/2006 16:56	BULK	1.14	ppm	Final	SP60-XR-028	TH101-1A	261.96	195.64
138	10/22/2006 16:57	BULK	2.5	ppm	Final	SP60-XR-028	TH101-1A	253.66	131.54
139	10/22/2006 16:57	BULK	3.86	ppm	Final	SP60-XR-028	TH101-1A	144	87.81
140	10/22/2006 16:58	BULK	3.86	ppm	Final	SP60-XR-029	TH101-2A	136.21	81.8
141	10/22/2006 16:59	BULK	5.91	ppm	Final	SP60-XR-029	TH101-2A	28.23	52.53
142	10/22/2006 16:59	BULK	3.41	ppm	Final	SP60-XR-029	TH101-2A	275.1	113.3
143	10/22/2006 17:00	BULK	1.14	ppm	Final	SP60-XR-030	TH101-5B	82.09	121.42
144	10/22/2006 17:01	BULK	2.95	ppm	Final	SP60-XR-030	TH101-5B	204.17	108.14
145	10/22/2006 17:01	BULK	3.86	ppm	Final	SP60-XR-030	TH101-5B	233.69	101.17
146	10/22/2006 17:02	BULK	2.27	ppm	Final	SP60-XR-030	TH101-5B	228.94	121.11
152	10/22/2006 18:21	BULK	1.36	ppm	Final	SP60-XR-040	TH103-6A	1017.6	293.24
153	10/22/2006 18:22	BULK	2.29	ppm	Final	SP60-XR-040	TH103-6A	89.47	90.07
154 155	10/22/2006 18:22	BULK BULK	2.27 5.23	ppm	Final	SP60-XR-040	TH103-6A	18.92 82.42	59.83 51.91
156	10/22/2006 18:23 10/22/2006 19:28	BULK	5.23	ppm	Final Final	SP60-XR-040 SP60-XR-041	TH103-6A TH103-2A	97.98	56.77
157	10/22/2006 19:28	BULK	5.68	ppm ppm	Final	SP60-XR-041	TH103-2A	48.99	51.34
158	10/22/2006 19:29	BULK	2.5	ppm	Final	SP60-XR-041	TH103-2A	251.23	111.52
159	10/22/2006 19:30	BULK	3.41	ppm	Final	SP60-XR-041	TH103-2A	223.05	97.04
160	10/22/2006 19:30	BULK	5.91	ppm	Final	SP60-XR-041	TH103-2A	-10.21	37.85
161	10/22/2006 19:31	BULK	2.73	ppm	Final	SP60-XR-041	TH103-2A	221.89	106.56
162	10/22/2006 19:32	BULK	2.95	ppm	Final	SP60-XR-041	TH103-2A	171.67	95.01
163	10/22/2006 19:32	BULK	4.09	ppm	Final	SP60-XR-041	TH103-2A	160.71	80.73
164	10/22/2006 19:33	BULK	1.59	ppm	Final	SP60-XR-041	TH103-2A	343.88	184.73
165	10/22/2006 19:33	BULK	2.95	ppm	Final	SP60-XR-041	TH103-2A	415.5	142.08
169	10/22/2006 20:00	BULK	7.28	ppm	Final	SP60-XR-051	TH103-2A	403.62	90.08
170	10/22/2006 20:00	BULK	3.18	ppm	Final	SP60-XR-051	TH103-2A	540.63	152.57
173	10/23/2006 11:54	SHUTTER_CAL	44.26	cps	Final			2.48	0
176	10/23/2006 12:43	BULK	11.13	ppm	Final	SP60-CH-601-000	LAKE HILL	-30.34	23.82
177	10/23/2006 12:45	BULK	10.67	ppm	Final	SP60-CH-602-005	LAKE HILL	-30.45	22.65
178	10/23/2006 12:46	BULK	10.44	ppm	Final	SP60-CH-603-005	LAKE HILL	-3.44	29.22
179	10/23/2006 15:33	SHUTTER_CAL	46.22	cps	Final			2.06	0
180	10/23/2006 15:36	BULK	4.09	ppm	Final	SP60-XR-071	101-STOCKPILES	296.47	99.15
181	10/23/2006 15:37	BULK	2.73	ppm	Final	SP60-XR-071 SP60-XR-071	101-STOCKPILES	214.24	101.23
182 183	10/23/2006 15:37	BULK BULK	4.77	ppm	Final	SP60-XR-071 SP60-XR-071	101-STOCKPILES	1563.25 352.22	307.06
183	10/23/2006 15:38 10/23/2006 15:44	BULK	1.82	ppm	Final Final	SP60-XR-071 SP60-XR-072	103-STOCKPILES	929.6	90.5 229.56
185	10/23/2006 15:45	BULK	3.86	ppm	Final	SP60-XR-072	103-STOCKPILES	444.05	115.36
186	10/23/2006 15:46	BULK	2.72	ppm	Final	SP60-XR-072	103-STOCKPILES	329.91	123.51
187	10/23/2006 17:53	BULK	4.54	ppm	Final	SP60-XR-073	101-STOCKPILES	13.51	37.97
188	10/23/2006 17:54	BULK	2.72	ppm	Final	SP60-XR-073	101-STOCKPILES	296.49	119.18
189	10/23/2006 17:54	BULK	2.73	ppm	Final	SP60-XR-073	101-STOCKPILES	182.22	94.66
190	10/23/2006 17:55	BULK	2.05	ppm	Final	SP60-XR-073	101-STOCKPILES	208.54	116.54
191	10/23/2006 17:55	BULK	1.59	ppm	Final	SP60-XR-073	101-STOCKPILES	939.43	287.3
192	10/23/2006 18:06	BULK	4.77	ppm	Final	SP60-XR-074	103-STOCKPILES	473.41	116.09
193	10/23/2006 18:06	BULK	2.5	ppm	Final	SP60-XR-074	103-STOCKPILES	35.3	55.02
194	10/23/2006 18:10	BULK	1.59	ppm	Final	SP60-XR-074	103-STOCKPILES	1008.31	273.36
195	10/23/2006 18:13	BULK	3.41	ppm	Final	SP60-XR-074	103-STOCKPILES	468.17	127.17
196	10/23/2006 18:13	BULK	1.36	ppm	Final	SP60-XR-074	103-STOCKPILES	416.12	177.81
197	10/23/2006 18:13	BULK	2.5	ppm	Final	SP60-XR-074	103-STOCKPILES	-7.21	52.71
198	10/23/2006 18:17	BULK	2.05	ppm	Final	SP60-XR-074	103-STOCKPILES	-5.19	39.13
199	10/23/2006 18:17	BULK	5.9	ppm	Final	SP60-XR-074	103-STOCKPILES	395.19	89.21
		1					1		

APPENDIX E FIXED LABORATORY DATA

Site Characterization Fixed Laboratory Data (June 2006) Friedman & Bruya SDG 606247

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

July 10, 2006

Greg Gervais, Project Manager USDOC NOAA NOS OR&R PPO 7600 Sand Point Way NE Seattle, WA 98115-6349

Dear Mr. Gervais:

Included are the results from the testing of material submitted on June 26, 2006 from the NOAA Site SNP 60, PO#D8K3RBA, F&BI 606247 project. There are 50 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 26, 2006 by Friedman & Bruya, Inc. (ADEC laboratory approval number UST-007) from the USDOC NOAA NOS OR&R PPO NOAA Site SNP 60, PO#D8K3RBA, F&BI 606247 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	USDOC NOAA	Date Sampled
606247-01	SP9I-CS-001-005	06/05/06
606247-02	SP9S-CS-002-015	06/05/06
606247-03	SP9S-CS-007-000	06/05/06
606247-04	SP9Q-CS-003-000	06/05/06
606247-05	SP9I-CS-001-010	06/05/06
606247-06	SP9S-CS-003-010	06/05/06
606247-07	SP9S-CS-005-010	06/05/06
606247-08	SP9Q-CS-005-015	06/05/06
606247-09	SP9I-CS-003-015	06/05/06
606247-10	SP9Q-CS-004-000	06/05/06
606247-11	SP9I-CS-007-005	06/05/06
606247-12	SP9I-CS-004-015	06/05/06
606247-13	SP9S-CS-002-005	06/05/06
606247-14	SP9S-CS-005-000	06/05/06
606247-15	SP9Q-CS-002-010	06/05/06
606247-16	SP9Q-CS-004-005	06/05/06
606247-17	SP9Q-CS-004-010	06/05/06
606247-18	SP9I-CS-003-005	06/05/06
606247-19	SP9I-CS-004-010	06/05/06
606247-20	SP60-TC-101-000	06/05/06
606247-21	SP60-TC-102-000	06/05/06
606247-22	SP60-TC-103-000	06/05/06
606247-23	SP60-TC-104-000	06/05/06
606247-24	SP60-TC-105-000	06/05/06
606247-25	SP60-TC-106-000	06/05/06
606247-26	SP60-TC-107-000	06/05/06
606247-27	SP60-TC-108-000	06/05/06
606247-28	SP60-TC-109-000	06/05/06
606247-29	SP60-TC-110-000	06/05/06
606247-30	SP60-TC-111-000	06/05/06
606247-31	SP60-TC-112-000	06/16/06

The samples were analyzed as follows.

Total Lead (soil) - Analysis Method 200.8, Extraction Method 3050 All quality control requirements were acceptable.

<u>TCLP Lead (soil) - Analysis Method 200.8, Extraction Method 1311</u> All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9I-CS-001-005

Date Received:

Internal Standard:

06/26/06 Date Extracted: 06/27/06 Date Analyzed:

Matrix:

Units:

06/27/06

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File: 606247-01 606247-01.057

Instrument:

ICPMS1

Operator:

btb

Lower

Upper Limit:

Holmium

% Recovery:

77

Limit: 60

125

Concentration

Analyte:

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9S-CS-002-015

Date Received: 06/26/06

Date Extracted: Date Analyzed:

06/27/06 06/27/06

Matrix: Units:

Soil ug/g (ppm) Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

606247-02

Data File: Instrument: 606247-02.060

ICPMS1

Operator:

btb

Internal Standard:

Holmium

% Recovery:

77

Lower Limit:

Upper Limit:

60

125

Concentration

Analyte:

ug/g (ppm)

Lead

1.42

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9S-CS-007-000

Date Received:
Date Extracted:

Date Analyzed:

06/26/06 06/27/06 06/27/06

Matrix:

Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File: 606247-03 606247-03.061

Instrument:

ICPMS1

Operator:

btb

Lower

 Upper

Internal Standard:

Holmium

% Recovery:

80

Limit: 60

Limit: 125

Concentration

Analyte:

ug/g (ppm)

Lead

1,260

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9Q-CS-003-000

Client: Project: USDOC NOAA

Date Received:

06/26/06 06/27/06

Lab ID:

NOAA Site SNP 60, PO#D8K3RBA

Date Extracted: Date Analyzed:

06/27/06

Data File:

606247-04

Matrix:

Instrument:

606247-04.062

Units:

Soil ug/g (ppm)

Operator:

ICPMS1 btb

Internal Standard:

% Recovery:

Lower Limit: Upper

Holmium

77

60

Limit: 125

Concentration

Analyte:

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9I-CS-001-010

Date Received: Date Extracted: Date Analyzed:

06/26/06 06/27/06 06/27/06 Soil

ug/g (ppm)

Matrix:

Units:

Holmium

Analyte:

% Recovery:

78

Client:

USDOC NOAA

NOAA Site SNP 60, PO#D8K3RBA Project:

Lab ID: Data File:

606247-05 606247-05.063

ICPMS1 Instrument:

Operator:

btb

Lower Limit: 60

Upper Limit: 125

Concentration

Internal Standard:

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9S-CS-003-010

Date Received: Date Extracted:

Date Analyzed:

06/26/06 06/27/06 06/27/06

Matrix:

Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File:

606247-06 606247-06.064

Instrument:

ICPMS1

Operator:

btb

Internal Standard:

Holmium

% Recovery:

76

Lower Limit: Upper Limit:

60

125

Concentration

Analyte:

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9S-CS-005-010

Date Received: Date Extracted:

Date Analyzed:

06/26/06 06/27/06 06/27/06

Matrix:

Units:

Soil ug/g (ppm) Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

606247-07 606247-07.065

Data File: Instrument:

ICPMS1

Operator:

btb

Lower

Upper

Internal Standard: Holmium

% Recovery:

76

Limit: 60

Limit: 125

Concentration

Analyte:

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9Q-CS-005-015

Date Received:

06/26/06

Date Extracted: Date Analyzed:

Internal Standard:

06/27/06 06/27/06

Matrix:

Soil

Units:

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

606247-08

Data File: Instrument: $606247 \hbox{-} 08.066$

Operator:

ICPMS1

btb

% Recovery:

76

Lower Limit: Upper

60

Limit: 125

Concentration

Analyte:

Holmium

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9I-CS-003-015

Date Received: Date Extracted:

Date Analyzed:

06/26/06 06/27/06 06/27/06

Matrix: Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File: 606247-09

Instrument:

606247-09.068 ICPMS1

Operator:

btb

Internal Standard: Holmium

% Recovery:

81

Lower Limit:

Upper Limit:

60

125

Concentration

Analyte:

ug/g (ppm)

Lead

65.5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9Q-CS-004-000 06/26/06

Date Received: Date Extracted:

Date Analyzed:

06/27/06 06/27/06

Matrix: Units:

Soil ug/g (ppm) Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File: 606247-10 606247-10.069

Instrument:

Operator:

ICPMS1 btb

Lower

Upper

Internal Standard: Holmium

% Recovery:

76

Limit: 60

Limit: 125

Concentration

Analyte:

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9I-CS-007-005

Date Received: Date Extracted: Date Analyzed:

Internal Standard:

06/26/06 06/27/06 06/27/06

Matrix: Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File: 606247-11 606247-11.070

Instrument:

ICPMS1

Operator:

btb

Lower

Holmium

Limit: % Recovery:

60

UpperLimit:

125

Concentration

75

Analyte:

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9I-CS-004-015

Date Received:

06/26/06

Date Extracted: Date Analyzed:

06/27/06 06/27/06

Matrix: Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

606247-12 606247-12.071

Data File: Instrument:

ICPMS1

Operator:

btb

Lower

Upper

Internal Standard: Holmium

% Recovery:

76

Limit: 60

Limit: 125

Concentration

Analyte:

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9S-CS-002-005

06/26/06 06/27/06

Date Extracted: Date Analyzed:

Internal Standard:

Date Received:

06/27/06

Matrix: Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File:

606247-13 606247-13.072

Instrument: Operator:

ICPMS1 btb

Lower

Upper

Holmium

% Recovery: 75

Limit: 60

Limit: 125

Concentration

Analyte:

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9S-CS-005-000

Date Received:
Date Extracted:

06/26/06 06/27/06 06/27/06

Date Analyzed: Matrix:

Soil

Units:

Internal Standard:

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: 6
Data File: 6

606247-14 606247-14.073

Instrument:

ICPMS1

Operator:

btb

% Recovery: Li

74

Lower Limit: Upper Limit:

60

125

Concentration

Analyte:

Holmium

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9Q-CS-002-010

Date Received:

06/26/06 06/27/06

Date Extracted: Date Analyzed: Matrix:

06/27/06

Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File: 606247-15 606247-15.074

Instrument:

1CPMS1

Operator:

btb

Internal Standard:

Holmium

% Recovery:

75

Lower Limit: 60 Upper Limit:

125

Concentration

Analyte:

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9Q-CS-004-005

Date Received: Date Extracted: Date Analyzed:

06/26/06 06/27/06 06/27/06

Matrix: Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File: 606247-16 606247-16.075

Instrument:

ICPMS1

Operator:

btb

Lower Limit: Upper Limit:

Internal Standard: Holmium

% Recovery:

76

60

125

Concentration

Analyte:

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9Q-CS-004-010

Client: Project: USDOC NOAA

Date Received:

06/26/06

Lab ID:

NOAA Site SNP 60, PO#D8K3RBA

Date Extracted: Date Analyzed:

06/27/06 06/27/06

606247-17

Matrix:

Soil

Data File: Instrument: 606247-17.076

ICPMS1

Units:

ug/g (ppm)

Operator:

btb

Internal Standard:

% Recovery:

Lower Limit: Upper Limit:

Holmium

73

60

125

Concentration

Analyte:

ug/g (ppm)

Lead

13.7

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9I-CS-003-005

Date Received:
Date Extracted:

06/26/06 06/27/06 06/27/06

Date Analyzed: Matrix: Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File: 606247-18 606247-18.077

Instrument:

ICPMS1

Operator:

btb

Lower

Upper

Internal Standard: Holmium % Recovery:

74

Limit: 60

Limit: 125

Concentration

Analyte:

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP9I-CS-004-010

Date Received: Date Extracted: 06/26/06 06/27/06 06/27/06

Date Analyzed: Matrix:

Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

606247-19

Data File: Instrument: 606247-19.079

ICPMS1

Operator:

btb

Lower

Upper

Internal Standard: Holmium

% Recovery:

78

Limit: 60

Limit: 125

Concentration

Analyte:

ug/g (ppm)

Lead

60.2

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-TC-101-000

Date Received: Date Extracted:

Date Analyzed:

Internal Standard:

06/26/06 06/27/06 06/27/06

Matrix: Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project: Lab ID: NOAA Site SNP 60, PO#D8K3RBA

606247-20 606247-20.080 Data File:

Instrument:

ICPMS1

Operator:

btb

Lower % Recovery:

Limit:

Upper Limit:

60

125

Concentration

78

Analyte:

Holmium

ug/g (ppm)

Lead

2,020

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-TC-102-000

06/26/06

Date Received: Date Extracted: Date Analyzed:

06/27/06 06/27/06

Matrix:

Soil

Units:

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

606247-21 606247-21.083

Data File: Instrument:

ICPMS1

Operator:

btb

Lower

Upper

Internal Standard: Holmium

% Recovery:

76

Limit: 60

Limit:

125

Concentration

Analyte:

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-TC-103-000

Date Received: Date Extracted: 06/26/06 06/27/06

Date Analyzed: Matrix:

Units:

06/27/06

ug/g (ppm)

Soil

Client:

USDOC NOAA

Project: Lab ID:

NOAA Site SNP 60, PO#D8K3RBA

Data File:

606247-22 606247-22.084

Instrument:

ICPMS1

Operator:

btb

Lower

Upper

Internal Standard: Holmium

% Recovery:

76

Limit: 60

Limit: 125

Concentration

Analyte:

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-TC-104-000

Date Received: Date Extracted:

06/26/06 06/27/06

Date Analyzed: Matrix:

06/27/06 Soil

Units:

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

606247-23 606247-23.087

Data File: Instrument:

ICPMS1

Operator:

btb

Lower

Upper

Holmium

Internal Standard:

% Recovery:

76

Limit: 60

Limit: 125

Concentration

Analyte:

ug/g (ppm)

Lead

2,370

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-TC-105-000

Date Received: Date Extracted: 06/26/06 06/27/06

Date Analyzed: Matrix:

06/27/06 Soil

Units:

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

606247-24 606247-24.088

Data File: Instrument:

ICPMS1

Operator:

btb

Lower

Upper Limit:

Holmium

Internal Standard:

% Recovery:

75

Limit: 60

125

Concentration

Analyte:

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-TC-106-000

Date Received: Date Extracted: Date Analyzed:

Internal Standard:

06/26/06 06/27/06 06/27/06

Matrix: Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

606247-25

Data File:

606247-25.090

Instrument:

ICPMS1

Operator:

btb

% Recovery:

77

Limit: 60

Lower

Upper Limit: 125

Concentration

Analyte:

Holmium

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-TC-107-000

Date Received:

06/26/06 06/27/06

Date Extracted: Date Analyzed:

06/27/06

Matrix: Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

606247-26

Data File: Instrument: 606247-26.091

Operator:

ICPMS1 btb

Lower

Internal Standard:

Holmium

% Recovery:

75

Limit: 60

Upper Limit:

125

Concentration

Analyte:

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-TC-108-000

06/26/06

Date Received:
Date Extracted:
Date Analyzed:

06/27/06 06/27/06

Matrix: Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

606247-27 606247-27.092

Data File: Instrument:

ICPMS1

Operator:

btb

Lower

 ${\bf Upper}$

Internal Standard: Holmium

%

% Recovery: 74

ery: Limit: 60

Limit:

Concentration

Analyte:

ug/g (ppm)

Lead

2,100

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-TC-109-000

Date Received: Date Extracted: 06/26/06 06/27/06

Date Analyzed:

06/27/06 Soil

Matrix: Units:

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File: 606247-28 606247-28.093

Instrument: Operator:

ICPMS1

btb

Lower

Upper Limit:

Internal Standard:

Holmium

% Recovery:

75

Limit: 60

125

Concentration

Analyte:

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-TC-110-000

Date Received:

06/26/06 06/27/06

Date Extracted: Date Analyzed:

06/27/06

Matrix: Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

606247-29 606247 - 29.094

Data File: Instrument:

ICPMS1

Operator:

btb

Lower

Upper

Internal Standard:

Holmium

% Recovery:

73

Limit: 60

Limit: 125

Concentration

Analyte:

ug/g (ppm)

Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-TC-111-000

Date Received:

06/26/06 06/27/06

Date Extracted: Date Analyzed: Matrix:

Internal Standard:

Units:

06/27/06

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File: 606247-30 606247-30.095

Instrument:

ICPMS1

Operator:

btb

Lower

Limit: 60

Upper Limit:

125

Concentration

% Recovery:

72

Analyte:

Holmium

ug/g (ppm)

Lead

400

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-TC-112-000

06/26/06 06/27/06

Date Received: Date Extracted: Date Analyzed:

Matrix: Units:

06/27/06 Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File:

606247-31.096

606247-31

Instrument: ICPMS1

Operator:

btb

Lower

Upper

Internal Standard:

Holmium

% Recovery:

74

Limit: 60

Limit: 125

Concentration

Analyte:

ug/g (ppm)

Lead

1,230

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

Method Blank

Date Received:

Not Applicable 06/27/06

Date Extracted: Date Analyzed: Matrix:

06/27/06

Units:

Soil ug/g (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File: I6-294 mb I6-294 mb.054

Instrument: Operator:

ICPMS1 btb

Lower

Upper

Internal Standard: Holmium

% Recovery:

74

Limit: 60

Limit: 125

Concentration

Analyte:

ug/g (ppm)

Lead

<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

Method Blank

Date Received:

Not Applicable

Date Extracted: Date Analyzed:

06/27/06 06/27/06

Matrix: Units:

Soil ug/g (ppm) Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

I6-295 mb

Data File: Instrument:

I6-295 mb.081 ICPMS1

Operator:

btb

Internal Standard:

Holmium

% Recovery:

75

Lower Limit: Upper Limit:

60

125

Concentration

Analyte:

ug/g (ppm)

Lead

<1

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

SP60-TC-101-000

06/26/06

Date Extracted: Date Analyzed:

Date Received:

06/27/06 06/29/06

Matrix: Units:

Holmium

Analyte:

Soil mg/L (ppm) Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File: 606247-20 606247-20.019

Instrument:

ICPMS1

Operator:

btb

Internal Standards:

% Recovery: 84

Limit: 60

Upper Limit: 125

Concentration

mg/L (ppm)

TCLP Limit

Lower

Lead

26.2

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

SP60-TC-102-000

06/26/06

Date Received: Date Extracted: Date Analyzed:

06/27/06 06/29/06

Matrix: Units:

Soil

mg/L (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

606247-21 606247-21.022

Data File: Instrument:

ICPMS1

Operator:

btb

Internal Standards:

Holmium

% Recovery:

82

Lower

Limit: 60

UpperLimit:

125

Concentration

Analyte:

mg/L (ppm)

TCLP Limit

Lead

6.07

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

SP60-TC-103-000

Date Received:

06/26/06 06/27/06

Date Extracted: Date Analyzed:

Soil

Matrix: Units:

06/29/06

mg/L (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

606247-22 606247-22.023

Data File: Instrument:

ICPMS1

Operator:

btb

Lower

Upper

Internal Standards: Holmium

% Recovery:

81

Limit: 60

Limit: 125

Concentration

Analyte:

mg/L (ppm)

TCLP Limit

Lead

1.92

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

SP60-TC-104-000

06/26/06

Date Received: 06/27/06 Date Extracted: Date Analyzed:

Matrix:

06/29/06

Units:

Soil

mg/L (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

606247-23 606247-23.024

Data File: Instrument:

ICPMS1

Operator:

btb

Lower

Upper

Internal Standards: Holmium

% Recovery:

83

Limit: 60

Limit: 125

Concentration

Analyte:

mg/L (ppm)

TCLP Limit

Lead

21.7

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

SP60-TC-105-000

Client: 06/26/06

USDOC NOAA Project: NOAA Site SNP 60, PO#D8K3RBA

Date Received: Date Extracted:

06/27/06

Lab ID:

Date Analyzed:

06/29/06

606247-24

Matrix: Units:

Soil

Data File:

606247-24.025

Instrument:

ICPMS1

mg/L (ppm)

Operator:

btb

Internal Standards:

% Recovery:

Lower Limit: Upper Limit:

Holmium

77

60

125

Concentration

Analyte:

mg/L (ppm)

TCLP Limit

Lead

7.49

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID: Date Received: SP60-TC-106-000

06/26/06 06/27/06

Date Extracted: Date Analyzed:

06/29/06

Matrix: Units:

Soil

mg/L (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File: 606247-25 606247-25.026

Instrument:

ICPMS1 btb

Operator:

Lower

Upper Limit:

Internal Standards: Holmium

% Recovery:

77

Limit: 60

125

Concentration

Analyte:

mg/L (ppm)

TCLP Limit

Lead

16.5

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

SP60-TC-107-000

Date Received: Date Extracted: 06/26/06 06/27/06

Date Analyzed:

06/29/06

Matrix:

Units:

Soil mg/L (ppm) Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

606247-26

Data File:

606247-26.028

Instrument:

ICPMS1

Operator:

btb

Internal Standards:

Holmium

% Recovery:

75

Lower

Limit: 60

Upper Limit: 125

Concentration

Analyte:

mg/L (ppm)

TCLP Limit

Lead

8.32

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

SP60-TC-108-000

Date Received: Date Extracted: 06/26/06 06/27/06 06/29/06

Date Analyzed: Matrix:

Units:

Soil

mg/L (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File: 606247-27 606247-27.029

Instrument:

ICPMS1

Operator:

btb

Lower

Upper

Internal Standards: Holmium

% Recovery: 75

Limit: 60

Limit: 125

Concentration

Analyte:

mg/L (ppm)

TCLP Limit

Lead

51.9

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

SP60-TC-109-000

Date Received:
Date Extracted:

Internal Standards:

Date Analyzed:

06/26/06 06/27/06 06/29/06

Matrix: Units:

Soil

mg/L (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File: 606247-28 606247-28.030

Instrument:

606247-28.030 ICPMS1

Operator:

btb

% Recovery:

Lower Limit: Upper Limit:

60

125

Concentration

Analyte:

Holmium

mg/L (ppm)

TCLP Limit

Lead

6.37

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

SP60-TC-110-000

Date Received:

06/26/06 06/27/06

Date Extracted: Date Analyzed:

06/29/06

Matrix: Units:

Soil

mg/L (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

606247-29

Data File: Instrument: 606247-29.031

ICPMS1

Operator:

btb

Internal Standards:

Holmium

% Recovery:

76

Lower

Limit: 60

Upper Limit:

125

Concentration

Analyte:

mg/L (ppm)

TCLP Limit

Lead

6.88

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

SP60-TC-111-000

Date Received: 06/26/06

Internal Standards:

Date Extracted: Date Analyzed: 06/29/06

Matrix: Units:

06/27/06

Soil mg/L (ppm) Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File: 606247-30 606247-30.032

Instrument:

ICPMS1

Operator:

btb

Lower

Limit:

Upper Limit:

60

125

Concentration

% Recovery:

77

Analyte:

Holmium

mg/L (ppm)

TCLP Limit

Lead

6.91

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

SP60-TC-112-000

Date Received: Date Extracted: 06/26/06 06/27/06

Date Analyzed: Matrix:

06/29/06

Units:

Soil

mg/L (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID:

606247-31 606247-31.033

Data File: Instrument:

ICPMS1

Operator:

btb

Lower

Upper Limit:

Internal Standards: Holmium

% Recovery:

75

Limit: 60

125

Concentration

Analyte:

mg/L (ppm)

Lead

33.6

5.0

TCLP Limit

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

Method Blank

Date Received:

Not Applicable 06/27/06

Date Extracted: Date Analyzed:

06/29/06

Matrix: Units:

Soil

mg/L (ppm)

Client:

USDOC NOAA

Project:

NOAA Site SNP 60, PO#D8K3RBA

Lab ID: Data File: I6-292 mb I6-292 mb.017

Instrument:

ICPMS1

Operator:

btb

Lower

Upper

Internal Standards: Holmium

% Recovery: 83

Limit: 60

Limit: 125

Analyte:

Concentration mg/L (ppm)

TCLP Limit

Lead

<1

ENVIRONMENTAL CHEMISTS

Date of Report: 07/10/06 Date Received: 06/26/06

Project: NOAA Site SNP 60, PO#D8K3RBA, F&BI 606247

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR METALS BY EPA METHOD 200.8

Laboratory Code: 606247-01 (Duplicate)

				Relative	
		Sample	Duplicate	Percent	Acceptance
Analyte	Reporting Units	Result	Result	Difference	Criteria
Lead	ug/g (nnm)	241	247	2	0-20

Laboratory Code: 606247-01 (Matrix Spike)

				$\operatorname{Percent}$	
		Spike	Sample	Recovery	Acceptance
Analyte	Reporting Units	Level	Result	MS	Criteria
Lead	ug/g (ppm)	20	241	0 b	50-150

Laboratory Code: Laboratory Control Sample

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	_ Level	LCS	Criteria
Lead	ug/g (ppm)	20	99	70-130

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/10/06 Date Received: 06/26/06

Project: NOAA Site SNP 60, PO#D8K3RBA, F&BI 606247

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR METALS BY EPA METHOD 200.8

Laboratory Code: 606247-22 (Duplicate)

				Relative	
Analyte	Reporting Units	Sample Result	Duplicate Result	Percent Difference	Acceptance Criteria
Lead	ug/g (ppm)	318	342	7	0-20

Laboratory Code: 606247-22 (Matrix Spike)

				$\operatorname{Percent}$	
		Spike	Sample	Recovery	Acceptance
Analyte	Reporting Units	Level	Result	MS	Criteria
Lead	ug/g (ppm)	20	318	1,710 b	50-150

Laboratory Code: Laboratory Control Sample

			rercent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Lead	ug/g (ppm)	20	98	70-130

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/10/06 Date Received: 06/26/06

Project: NOAA Site SNP 60, PO#D8K3RBA, F&BI 606247

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF THE TCLP EXTRACTS FOR METALS BY EPA METHOD 200.8 AND 40 CFR PART 261

Laboratory Code: 606247-20 (Duplicate)

	ouc. 00021, 20 (Dupin	,		Relative	
Analyte	Reporting Units	Sample Result	Duplicate Result	Percent Difference	Acceptance Criteria
Lead	mg/L (ppm)	26.2	26.6	2	0-20

Laboratory Code: 606247-20 (Matrix Spike)

				$\operatorname{Percent}$	
Analyte	Reporting Units	Spike Level	Sample Result	Recovery MS	Acceptance Criteria
Lead	mg/L (ppm)	1.0	26.2	94 b	50-150

Laboratory Code: Laboratory Control Sample

			Percent	
		\mathbf{Spike}	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria_
Lead	mg/L (ppm)	1.0	102	70-130

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

(006247						N OF CU					N	Æ	•	6	12	61	06	BI	` <i>2</i>
				. [SAMPL	ERS (s	rignature)	1	1			-						ige#_		4
	Send Report To Great Ger Company NOAA	1	PROJE	T NA	ME/NO.			3		D81	PC)# 2 B A	+		TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by:					
	AddressCity, State, ZIPPhone #_256-526-4821	_Fax #			REMAR	REMARKS								SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions						
ſ												ANA	LYS	ES R	EQU	EST.	ED			
Field 10	Sample ID	Lab ID	Date	Time	Sample	Туре	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	HFS	TOTAL LEAD	TCLP LEAD				N	otes
001	spat-c\$-001-005	01	6/5/06		Sou		1,				/			X	1					
902	589\$-C\$-002-015 589\$-C\$-007-000	02	Le .		(,		1	1		7				Y						
003	Spg-Cf-007-000	03	ξ •	1	(,	-	(1	7			K	1					
004	======================================	04	••	-	١,		(1		1		1		4						
995	SP9I-(\$-001-010	05	14	_	1,		(1	1	×		X				•
006	589\$-C\$-003-010	06	`	_	11		(17			1			4.	17					
007	5895-05-00	07			. (*	•	(П						K	1					
	5999-65-605-015	08	٠.	_	1.		1	1/				\prod	17	Y	17					
	SP9I-C\$-003-015	09	4	_			1	1				17	1	K)					
010		1	•	_			(\uparrow				۲	1	4	1		T	1		
	Friedman & Bruya, Inc. SIGNATURE 3012 16th Avenue West Relinquished by:			RE		(-	PRIN'						(A.) O K		PANY			DATE /26/06	TIME \410
	Seattle, WA 98119-2029 Received by:				GREG GERNAIS NO										126/26					
Ph. (206) 285-8282 Relinquished by:														 √				15	7 = -/	
	Fax (206) 283-5044	Received by:										_								

FORMS\COC\COC.DOC

	606247		·•	SAM	IPLE CHAI	IN OF CU	JST	OD	Y				, 	MŁ	3				BIQ
	Sand Panart To Carea (S	@ziaure	Meo.ea	, [SAMPLERS (signature)	九	ر ۾							Γ	Pe	ge#	2 AROUND	TIME
	Send Report To Gray. Gompany NoAA				PROJECT NA NOAA S		? 60	0			D9	PO K3	# RBA			Stan RUS	dard H	(2 Weeks)	
	City, State, ZIP	2 Fax #			REMARKS	REMARKS									SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions				
ľ											NA	LYS	ES R	EQU	EST	ED			
ield ID	Sample ID	Lab ID	Date	Time	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	HFS	TOTAL LEAD	TRUP LEAD	1			N	otes
oli	SP9I-C\$-007-005	1]	6/5/06		SBIL	1			/	\Box)]	\bigcup	X	5	I	/	I		
012	SP9I-C4-004-015	12	44	-	••	'							V				\prod		
013	SP95-C4-000-005	13			••	(ot		X	2		1	Ц	<u> </u>	
	SP9\$-C\$-005-000	1	4.		(.	1			\bigcup				X	>			П		
	SP952-C\$-002-010	1	4	_	(((イ	>			\prod		
	5899-C\$-004-005		(-	_	•	(x	2	1				
017	589Q-C\$-004-010	17	•	-	•	(7						
018	5890-C\$-004-010 5891-C\$-003-005 5891-C\$-004-01	18		_	1.	t							7						
-87	5 P97-C\$-004-01	0 19	•	_	(.	(*	7					
030	SP60-TC-101-000	20	۲.	_	(د	((X	X					
	Trecompose of Drugos, xive.	Relinquished by	SIGNATU	RE		PRIN	-						CC	MP	ANY		\dashv	DATE	TIME
	3012 16th Avenue West		<u> </u>	REC (ER	UA	5		\dashv	·	<u>N9</u>	^	-			e (26/06	1410		
	Seattle, WA 98119-2029	Received by:	<u> </u>		- S. Som F					FJB, Je 926/26/2:10						5:100			
	Ph. (206) 285-8282	Relinquished by	y:														·		
	Fax (206) 283-5044																		

FORMS\COC\COC.DOC

6	06247				PLE CHAI				Y		M	Ē	(6/8	26/	06		BIR	
	Sand Basset To Gas: Ga	جناهائد (6) ،	10000 GO		SAMPLERS (s	ignature)	人	24		 >								3 of 4 ROUND TIME	
	Send Report To Greg: Ge Company NOMA Address]	PROJECT NAME/NO. PO # NOAA Site SN? 60 D8K3RBA							Standard (2 Weeks) RUSH Rush charges authorized by:									
	City, State, ZIPPhone #_286-526-482			REMARKS					1						Dispo Retur	se aft n san	LE DISPOSAL ter 30 days nples ith instructions		
Г											ANA	LYS	ES R	EQU	UESTED				
ield ID	Sample ID	Lab ID	Date	Time	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	HFS	TOTAL LEAD	TCUP LEAD				Notes	
220 12(H	SP60-TC-102-00	21	6/5/06		50(L	(1				1		4	γ					
02Z	SPG0-TC-103-000	22	ય		••	1	7						Y	¥					
223	5960-TC-104-000	25	٠.		۲۰	1							¥	Ķ					
024	SP60 -TC-105-000	24	٠,	J	44	1							Y	ĸ					
025			۲,		પ	1							4	K				·	
026	SP60_TC-107-000	26	Le	-	(c	(4	k					
02.7	SPGO_TC-108-00		(4		(,	1		\prod				1	x	v					

۲,

"

5860 - TC-109-000

SP60-T(-110-00)

029

029

030

28

(4

Fax (206) 283-5044 FORMS\COC\COC.DOC

SP60 -T(-111-00	30	٠.	•	پ	(1	X	4	۲			
Friedman & Bruya, Inc.		SIGNATU	RE		PRINT	NAME			COM	IPANY		DATE	TIME
3012 16th Avenue West	Relinquished by:	ty!	2		SKEG	GERN	45		Nov	14		6/26/0	1410
Seattle, WA 98119-2029	Received by:	- 2		- 5	, Di	-87-C	~	F	VB	JZ	~	0/26/2	401.5 8
Ph. (206) 285-8282	Relinquished by:	:											
Fax (206) 283-5044	Received by:												

	Send Report To Grog. Company No AA Address City, State, ZIP Phone # 206-526-48	ω	IPLE CHAIN OF CUSTODY SAMPLERS (signature) PROJECT NAME/NO. PO # D8K3 RBA REMARKS SAMPLE DISP Return samples S.Will call with instr								AROUND (2 Weeks) es authoriz PLE DISPO	of Y TIME ed by:							
ſ		1				1					ANA	LYS	ES F	≀EQI	EST.	ED			
FIN	Sample ID	Lab ID	Date	Time	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260			TOTAL LEAD					N	lotes
031	SPGO-TECHTOO	31	6/16/06	1500	Soic	1	1		1	/	r	1	X	X		·			
-	/	1	0 100			(1							 			_		
,		 (:		(1-/	1 (1	1		1	1	7		\vdash			屵		
		+ -	 . \ 		 \ 		 		+	 `	+	/-	-	+-	-	-	╁	 	
	<u> </u>	 	 	 	 	\longrightarrow			_	-	₩/	_	-	┼	<u> </u>		┼		
			 	1	1	 		1-1		.	//	$ar{}$		-	-		↓_	<u> </u>	-
						/	'		L.,	\coprod	V_{-}	1			<u> </u>				
		1 /		T /				V	\prod		$\ - \ $	V					T		
		+	1.			1/				It	T			†			T		
		+	! \	 \			╁┤	十	\vdash	\vdash	+	-	1	+	╁╴	+	+	 	***
	Friedman & Bruya, Inc.	1	SIGNATU	L TRE		PRIN'	r N4	ME	<u> </u>					OMP	ANY	-		DATE	TIME
	3012 16th Avenue West	Relinquished b												DAG			1	6 26/06	
	Seattle, WA 98119-2029 Received by:				5	. 8%	<u>י</u> במי	<u> </u>	<u></u>	<u>., </u>		<i>)</i> =	7			<u> </u>			I — — — — — — — — — — — — — — — — — — —
	Ph. (206) 285-8282	Relinquished b	у:		- GREG GERMIS S. BBENN					$\overline{}$	FfB, Iz bkb/es 2.								

Received by:

Fax (206) 283-5044
FORMS\COC\COC.DOC

SAMPLE CONDITION UPON RECEIPT CHECKLIST

PROJECT # 606247 CLIENT NOAA	INITIAI DATE:_	LSI 6/20	5/06
If custody seals are present on cooler, are they intact?	NA	□ YES	. NO
Cooler/Sample temperature			32 1 °C
Is there a Chain-of-Custody* (COC)? *or other representative documents, letters, and/or shipping memos		-E YES	□ NO
Is the COC* complete and in agreement with the sample (explain "no" answers below)	s received?	∕□ YES	□ NO
Sample ID's Yes No # of Containers 4	Yes No)	
Date Sampled Yes No Relinquished	Yes 🗆 No)	
Time Sampled Yes No Requested analysis	Yes 🗆 No)	
Number of days samples have been sitting prior to recei	pt at laborat	ory	21 days
Were all sample containers received intact (i.e. not brok leaking etc.)? (explain "no" answer below)	en,	YES	□ NO
If custody seals are present on samples, are they intact?	/U NA	□ YES	□ NO
Are samples requiring no headspace, headspace free?	Ø NA	□ YES	□ NO
Are samples for PCB testing, or do samples originate out of the country? (if yes, put a red sticker on each sample)	t	□ YES	NO
Was client notified of sample receipt? Over the Count		d up by F8	zBI
If Yes, name of person contacted		_ 🗆 Left	Message
Special Instructions from Client	· · · · · · · · · · · · · · · · · · ·		
Degaribe "no" items from above (use the best if needed)			
Describe "no" items from above (use the back if needed) No date no time in coc an	d sam	ple	- ALLEN COLOR
——————————————————————————————————————			

WORKSHEETS, 606247

TOTAL METALS BY ICP/MS EXTRACTION WORKSHEET (SOIL/PRODUCT)

Project:	#: <u> </u>		60	6247		Date Received: 6/26/06 Date Extracted: 6/27/06								
Client:_				NOAT	1	Date Extracted: 6.2766 Date Analyzed:								
QC Bate	ch ID:	<u>Ib</u>	-29	94			Date.	Analyzed:		<i>_</i>				
QC Bate Samples	s checke	d agai	nst	COC			Seque	nce Date:						
Analysis N	lethod:		<u>Jatri</u>			Requested	Analytes	:	Reportin	g Units:				
200.8 U Other_			Soi Pro	l oduct		□ RCRA (*			μg/g (p	pm) 				
] Oth	ner	- 4 -	☐ Priority☐ CAM 17	Pollutant				•			
İ	_		_			☐ Other as	Marked l	Below	a) a	. n. n	n (DL)			
Analyte Li	st: Be	V	Cr	Mn C	o Ni	Cu Zn	As S	e Mo A	g Cd Si	b Ba 7	Pb ')			
		T		i		<u> </u>		Wet	Pan &	T	·			
Sample	Sample	Fin	al	Dilu	itions	Dilution	Pan	Sample	Dry					
ID	Weight	Volu	ıme			Factor	ID	Weight	Sample	Percent	Observations			
				Amt. Extract	Amt. Solvent			(grams)	Weight	Solids				
01	2.0 g	50 r	nL	2500	low	(000)	27	9.9	O. 3	94				
UZ		1		,	1		ID	9.5	7.0	74				
03		1 1		- .		1 1	417	9.9	7.3	74				
04		++				1-1-	H7	97						
		 			-	 		9.1	7.3					
or						 	Rzg		8.8	96				
06						1/	R	9.5	8. 2	86				
07							418	9.4	8. 2	(Z				
૦૪						/	K19	9.8	8.1	.83	_			
09						·	L-30	9.5	. 8.7	al				
10							F,8	10.0	7.8	718				
(/				1	- 1		34	9.5	8.3	87				
Initials				<u> </u>			<u> </u>							
			71	//-			<u> </u>			<u> </u>				
		~		Volum	e	Conc.	Com	pound(s)	Lot#					
Solvent(s)			4-	2 mL		prox. 70% H			22~5		6.27.06			
			+	7 mL	ap	prox. 37% H	CI	<u></u>	世~3.	/ (
	Ot	her	+-											
Internal S	tandard(s)		μL per 1				² Ge, ⁸⁹ Y,	1 1-39	8	·			
	O ₁	her	+/-'	D sample	•	11:	in, rosili	o, ¹⁶⁵ Ho, ²⁰⁹ B	1 12					
D .			~			Ned E	\(\frac{1}{2}\)	Data Da	- L	·				
Project		OTE	S:			Ivea c	υν/	1 wto 1	<u>c</u>		····			
Leader	Nh													
Initials:		1.	-	/ 1							· · · · · · · · · · · · · · · · · · ·			
Calculati	edi by	W	- K	1)(11/			aviewe	i jaya Ma	/ m= 6	128/0	6			
FORMS\LAB\		ETALS_I	CPMS	- 4	-	, - 					Rev. 03-28-06			

TOTAL METALS BY ICP/MS EXTRACTION WORKSHEET (SOIL/PRODUCT)

Project #: 606247 Client: NOAA QC Batch ID: 16-294, 16-295										Date Received: 6/26/06 Date Extracted: 6.27.06						
Client:	··· •			١	JOAT	1	_]	Date 1	Extracted	6	.27-0	6.	
QC Bate	ch ID:_		t 6.	-296	7,	16.	-29:	5]	Date 1	Analyzed:		1		
Sample	s check	ed a	again	st CO	Ć	S)			Ş	Seque	nce Date:		/	 .	
Analysis M	lethod:		Ma	trix:				Req	ueste	d A	nalytes	:	Reportin	g Units:		
200.8 Other_				Soil Product					RCRA MTCA	(4)			μg/g (j Other	opm)		
				Other_		- 33			Priorit CAM 1		ollutant 6)					•
Analyte Li	st: Be	, 1	v (Cr M	n C	io i	Ni	□ 6 Cu	Other Zn	as N	larked E		g Cd S	b Ba	Tl Pb	7
Allalyte Di	St. De															
	<u> </u>	T		<u> </u>			_		_			Wet	Pan &			
Sample ID	Sampl Weigh		Fina Volun		Dilu	itions			lutio: actor		Pan ID	Sample Weight	Dry Sample	Percent	Obser	vations
	Mergin		VOIUII	Am		Amt		*	actor		1.0	(grams)	Weight	Solids	00001	· autonio
1.0	2.0 g	-	50 m	ſ	ract	Solv		ļ.,	. 4 . 1		۲.,		00	1~	 	
12	1		1	2	ON	100		0	y dely		K 26	9.7	9.0	93	<u> </u>	
13							<u> </u>	ļ			72	9.6	6.9	77	ļ	
14											L04	9.9	9.0	9/		
15				·							T 28	9.9	78	79		
1,2		1			1						4,2	9.9	6.8	69		,
17											K7	9.6	79	82		
18		_			 		-			\dashv	r,4	1 1 .	8-4	90	ļ	
19		+	-		1		\vdash			+	Ka	9.4	8.5	.90		
· · · · ·		+			-					-1	23	9.2	8.9	97		
70		-		++				•		- 1	25°	`-		· ' <u> </u>	<u> </u>	
171		- -	+	+			lack	•				9.4	8.4	89	<u> </u>	
2L Initials							`				NV	7. /	8.8	91		
Initials	(\$)			1/1								(8)	12			
	0		17	- // 	olume		 	Conc.	\neg		Com	pound(s)	Lot #	! Injti	alo l	Date
Solvent(s)					2 mL			rox. 7		HN		,	22-5) 💢		27.06
				· · · ·	7 mL		app	rox. 3	37%	HC	<u> </u>		世~3	7 [
		Othe	+						\rightarrow							
Internal S				2 σμL	per 1	0 mL	10) mg/	L	Li,	45Sc, 72	Ge, ⁸⁹ Y,		P-		
	· · ·	Othe		<i>) O</i> sa	mple	!			1	15]r	ı, ¹⁵⁹ Tb	, ¹⁶⁵ Ho, ²⁰⁹ B	i <u>T-3</u>	8		
<u> </u>		Jone	rı				<u> </u>									
Project		NO	TES:	;												
Leader \	Ma													<u> </u>		
Initials:_		- /	m-	 	1/1	-/							·			
Calculate	edi hw	//	//-		7/0	XV	-		Ţ	}ev	iewer		1/14	<u> </u>	ji Ç eri eriy	1.756
FORMS\LAB\	7	/ META	/ LS_ICP	MS		O		A THE PARTY OF THE					V	A CONTRACTOR OF THE PROPERTY O		3-28-06

TOTAL METALS BY ICP/MS EXTRACTION WORKSHEET (SOIL/PRODUCT)

Client:_ QC Bate	ethod:	agains	oil roduct other	-	Date Received: 6/26/06 Date Extracted: 6^27/06 Date Analyzed: 6^27/06 Date Analyzed: 5 Sequence Date: Reporting Units: pg/g (ppm) Unit							
Sample ID	Sample Weight	Final Volume	and the second s	tions Amt. Solvent	Dilutio Facto		Wet Sample Weight (grams)	Pan & Dry Sample Weight	Percent Solids	Observations		
23	2.0 g	50 mL	250d	10,0		. 3	9.8	74	76			
24		1	1	,	1000	У	10.0	75	7<			
25					1	K,8	9.4	71	201	6 Jul		
76			1			E	9.6	77	80			
27					<i> </i>	KZ	93	75	91			
28						e-11	9, 2	78	85			
29			1		 	W	99	7. 0	フフ			
30			+ /		 	6.8	9.4	7.7	st	82/m		
31			1-1-	——	, 	10	97	0,5	-898	·		
3 -	V					-	1. /		0.0			
Initials												
		$-\langle \mathcal{S} \rangle$	16/					6				
		7	Volum		Conc.	1	ipound(s)	Lot#				
Solvent(s)			$\frac{2 \text{ mL}}{7 \text{ mL}}$		pprox. 70% pprox. 37%		·	22- 5		6.27.06		
					.рргол. 0170	1101						
Internal S		her	20 μL per 1	0 m I	10 mg/L	⁶ Li, ⁴⁵ Sc, ⁷	12C o 89V					
	`		/ D sample		10 mg/L		b, ¹⁶⁵ Ho, ²⁰⁹ E	3i Zb~3°	8			
Project Leader Initials:_ Calculate FORMS\LAB\	ed by	NOTES:	6)	1286	2	Reviewe	d'by	(m 6	[2810!	Rev. 03-28-06		

TCLP METALS EXTRACTION WORKSHEET

Project	;#:	600	247			D	ate Rece	eived:	61	2610	6	
Client:		7	MAOC			D	ate Extr	acted:_	6.	27.0	16	
QC Ba	tch ID:	I6-	247 292			\mathbf{D}_{i}	ate Anal	lyzed:	6-	29-0	<u> </u>	
			st COC	(3)		Se	quence		<u> </u>	t'		
Analysis G010B Other		_ /8	atrix: Soil Product Other		☐ TCI	sted Analyt LP Metals LP Metals + er as Marke	Cu, Ni, Zn	Extra 13 □ Ot	ction Met 11/3005A her	hod: R	eporting mg/L (pp Other	m)
Date/Time	e on Tumbler 12,800-3	Ini	itials		,	e off Tumble		Initials		-E	CLP Solut Type I, 5	00 mL 500 mL
	Sample							<u> </u>		(N	ot TCLP A	lalytes)
Sample ID	Weight/ Volume	pН	As	Ba	Cd	Cr	Pb	Se	Ag	Cu	Ni	Zn
20	25 g	4.9	'. 				<u> </u>					
21		1										
22		1										
23		\										
24												
75												
26	V											
27	24.83											
28	25.09			1								
29	V			· · · · · · · · · · · · · · · · · · ·								
<u> </u>	<u> </u>	TCLP Limit		100	1.0	5.0	5.0	1.0	5.0			
Initials	(9)	m/L							· · · · · · · · · · · · · · · · ·		· ·	
		1.	/ Nolume	Co	nc.	Co	mpound(-)	Lot#	Tni	ials .	Date
Solvent	,	(0.5 mL		ис. x 70%	HNO ₃	mpound	5)	225/	K) /os
		Other	0.5 mL	appro	x 37%	HCl						
Project Leader Initials	W.	NOTES	s: N	eed E	DD, Ī	>-+-[Pack	10	ولا	bN	100	シ
Calleula	ite all laye	<u> </u>	6] nd 4			: JRevi	eweddig			7/6 ⁶		

TCLP METALS EXTRACTION WORKSHEET

Project	#:	606	247				ate Rec			26/6	0	-
Client:	<u></u>	べ	DOAA			D	ate Ext	racted:_		12 1/6	<i>J</i> (-
QC Bat	tch ID:			16	-29) D	ate Ana			5/29/		- .
	es checke						equence	Date:_		<u>'V</u>		_
Analysis G010B Other_	Method: 200.8		rix: Soil Product Other	· ·	TCI TCI	sted Analy LP Metals LP Metals + er as Marke	Cu, Ni, Zn	/ 2 13	action Met 11/3005A ther	· /	eporting mg/L (p) Other_	pm)
Date/Time	on Tumbler	Initi	als		Date/ Tim	ne off Tumbl	er —	Initials			CLP Solu Type I, t Type II,	500 mL
		,	~						1	(No	t TCLP A	nalytes)
Sample ID	Sample Weight/ Volume	рН	As	Ba	Cd	Cr	Pb) Se	Ag	Cu	Ni	Zn
30	25 g	4-9										
31		(10)	·									
		· · · · · ·										
	<u> </u>	<u></u>		,								
		·										
		* *										
				<u> </u>								
Initials		TCLP Limit	5.0	100	1.0	5.0	5.0	1.0	5.0			
Inicials	(\mathcal{S})											
	V		Volume	Co	200	Co	mpound(s	<u> </u>	Lot#	Initi	olo I	Date
Solvent			0.5 mL	appro		HNO₃	mpounta	5)	2251			7/14
		ther	0.5 mL	appro	x 37%	HCl						-
Project Leader Initials:		NOTES:	(2)	W -	• (0)		100 y					
				un de Nie Juli 14								ar processors

TOTAL METALS DATA, 606247

Dataset Report

User Name: btb

Computer Name: ICPMS

Dataset File Path: D:\ICPMS Data\DataSet\06-27-06\ Report Date/Time: Monday, July 10, 2006 15:17:36

The Dataset

		ine i	Jalasel		
Batch ID	Sample ID	Date and Time	Read Type	Samp. File Name	Description
	blank	10:51:50 Tue 27-Jun-06	Blank	blank.001	
	1 ppb i1-56a	10:55:22 Tue 27-Jun-06	Standard #1	1 ppb i1-56a.002	
	5 ppb i1-56b	10:58:55 Tue 27-Jun-06	Standard #2	5 ppb i1-56b.003	
	10 ppb i1-56c	11:02:28 Tue 27-Jun-06	Standard #3	10 ppb i1-56c.004	
	25 ppb i1-56d	11:06:03 Tue 27-Jun-06	Standard #4	25 ppb i1-56d.005	
	50 ppb i1-56e	11:09:36 Tue 27-Jun-06	Standard #5	50 ppb i1-56e.006	
	25 ppb i1-57a	11:13:08 Tue 27-Jun-06	Sample	25 ppb i1-57a.007	
	i6-286 mb	11:51:57 Tue 27-Jun-06	Sample	i6-286 mb.008	water
	i6-286 lcs	11:55:40 Tue 27-Jun-06	Sample	i6-286 lcs.009	water
	606149-01	11:59:24 Tue 27-Jun-06	Sample	606149-01.010	water
	i6-286 ms 6061	412:03:07 Tue 27-Jun-06	Sample	i6-286 ms 606149-01.011	water
	i6-286 dup 6061	1/12:06:50 Tue 27-Jun-06	Sample	i6-286 dup 606149-01.012	2water
	606220-01	12:10:34 Tue 27-Jun-06	Sample	606220-01.013	water
	606220-02	12:14:17 Tue 27-Jun-06	Sample	606220-02.014	water
	606220-03	12:18:00 Tue 27-Jun-06	Sample	606220-03.015	water
	606220-04	12:21:44 Tue 27-Jun-06	Sample	606220-04.016	
	25 ppb i1-57a	12:25:28 Tue 27-Jun-06	Sample	25 ppb i1-57a.017	water
	i6-296 mb	12:29:13 Tue 27-Jun-06	Sample	i6-296 mb.018	water
	i6-296 lcs	12:32:58 Tue 27-Jun-06	Sample	i6-296 lcs.019	water
	606205-01	12:36:43 Tue 27-Jun-06	Sample	606205-01.020	water
	i6-296 ms 6062	012:40:27 Tue 27-Jun-06	Sample	i6-296 ms 606205-05.021	
	i6-296 dup 6062	2/12:44:10 Tue 27-Jun-06	Sample	i6-296 dup 606205-01.022	2
	606205-02	12:47:54 Tue 27-Jun-06	Sample	606205-02.023	water
	606205-05	12:51:38 Tue 27-Jun-06	Sample	606205-05.024	water
	606205-07	12:55:21 Tue 27-Jun-06	Sample	606205-07.025	water
	606205-10	12:59:05 Tue 27-Jun-06	Sample	606205-10.026	water
	606205-12	13:02:48 Tue 27-Jun-06	Sample	606205-12.027	water
	25 ppb i1-57a	13:06:33 Tue 27-Jun-06	Sample	25 ppb i1-57a.028	water
	606159-01	13:10:17 Tue 27-Jun-06	Sample	606159-01.029	water
	606159-02	13:14:00 Tue 27-Jun-06	Sample	606159-02.030	water
	606168-01 10x	13:17:45 Tue 27-Jun-06	Sample	606168-01 10x.031	water
	606164-01 10x	13:21:29 Tue 27-Jun-06	Sample	606164-01 10x.032	water
	606223-01 10x	13:25:14 Tue 27-Jun-06	Sample	606223-01 10x.033	water
	25 ppb i1-57a	13:28:59 Tue 27-Jun-06	Sample	25 ppb i1-57a.034	water
	i6-293 mb	15:41:47 Tue 27-Jun-06	Sample	i6-293 mb.035	soil
	i6-293 lcs	15:45:31 Tue 27-Jun-06	Sample	i6-293 lcs.036	soil
	606220-06	15:49:15 Tue 27-Jun-06	Sample	606220-06.037	soil
	606220-07	15:52:59 Tue 27-Jun-06	Sample	606220-07.038	soil
	606220-08	15:56:43 Tue 27-Jun-06	Sample	606220-08.039	soil
	i6-293 ms 6062	216:00:27 Tue 27-Jun-06	Sample	i6-293 ms 606220-08.040	soil
		2:16:04:11 Tue 27-Jun-06	Sample	i6-293 dup 606220-08.04	
	606220-09	16:07:55 Tue 27-Jun-06	Sample	606220-09.042	soil
	606220-10	16:11:39 Tue 27-Jun-06	Sample	606220-10.043	soil
	606220-11	16:15:23 Tue 27-Jun-06	Sample	606220-11.044	soil
		 			

25 pph i1 57a	16:19:08 Tue 27-Jun-06	Sample	25 ppb i1-57a.045	water
25 ppb i1-57a 606220-13	16:22:53 Tue 27-Jun-06	Sample	606220-13.046	soil
606220-13	16:26:38 Tue 27-Jun-06	Sample	606220-14.047	soil
606220-14	16:30:22 Tue 27-Jun-06	Sample	606220-16.048	soil
606200-24	16:34:07 Tue 27-Jun-06	Sample	606200-24.049	soil
606220-26	16:37:51 Tue 27-Jun-06	Sample	606220-26.050	soil
606220-30	16:41:35 Tue 27-Jun-06	Sample	606220-30.051	soil
606220-35	16:45:20 Tue 27-Jun-06	Sample	606220-35.052	soil
606220-36	16:49:04 Tue 27-Jun-06	Sample	606220-36.053	soil
i6-294 mb	16:52:48 Tue 27-Jun-06	Sample	i6-294 mb.054	soil
i6-294 lcs	16:56:33 Tue 27-Jun-06	Sample	i6-294 lcs.055	soil
25 ppb i1-57a	17:00:17 Tue 27-Jun-06	Sample	25 ppb i1-57a.056	water
606247-01	17:04:02 Tue 27-Jun-06	Sample	606247-01.057	soil
	417:07:46 Tue 27-Jun-06	Sample	i6-294 ms 606247-01.0	
	2/17:11:31 Tue 27-Jun-06	Sample	i6-294 dup 606247-01.	
606247-02	17:15:16 Tue 27-Jun-06	Sample	606247-02.060	soil
606247-03	17:19:00 Tue 27-Jun-06	Sample	606247-03.061	soil
606247-04	17:22:45 Tue 27-Jun-06	Sample	606247-04.062	soil
606247-05	17:26:30 Tue 27-Jun-06	Sample	606247-05.063	soil
606247-06	17:30:15 Tue 27-Jun-06	Sample	606247-06.064	soil
606247-07	17:33:59 Tue 27-Jun-06	Sample	606247-07.065	soil
606247-08	17:37:44 Tue 27-Jun-06	Sample	606247-08.066	soil
25 ppb i1-57a	17:41:29 Tue 27-Jun-06	Sample	25 ppb i1-57a.067	water
606247-09	17:45:13 Tue 27-Jun-06	Sample	606247-09.068	soil
606247-10	17:48:58 Tue 27-Jun-06	Sample	606247-10.069	soil
606247-11	17:52:43 Tue 27-Jun-06	Sample	606247-11.070	soil
606247-12	17:56:27 Tue 27-Jun-06	Sample	606247-12.071	soil
606247-13	18:00:12 Tue 27-Jun-06	Sample	606247-13.072	soil
606247-14	18:03:57 Tue 27-Jun-06	Sample	606247-14.073	soil
606247-15	18:07:42 Tue 27-Jun-06	Sample	606247-15.074	soil
606247-16	18:11:28 Tue 27-Jun-06	Sample	606247-16.075	soil
606247-17	18:15:13 Tue 27-Jun-06	Sample	606247-17.076	soil
606247-18	18:18:59 Tue 27-Jun-06	Sample	606247-18.077	soil
25 ppb i1-57a	18:22:44 Tue 27-Jun-06	Sample	25 ppb i1-57a.078	water
606247-19	18:26:29 Tue 27-Jun-06	Sample	606247-19.079	soil
606247-20	18:30:14 Tue 27-Jun-06	Sample	606247-20.080	soil
i6-295 mb	18:34:00 Tue 27-Jun-06	Sample	i6-295 mb.081	soil
i6-295 lcs	18:37:45 Tue 27-Jun-06	Sample	i6-295 lcs.082	soil
606247-21	18:41:30 Tue 27-Jun-06	Sample	606247-21.083	soil
606247-22	18:45:15 Tue 27-Jun-06	Sample	606247-22.084	soil
i6-295 ms 6062	418:49:01 Tue 27-Jun-06	Sample	i6-295 ms 606247-22.0	
	2/18:52:46 Tue 27-Jun-06	Sample	i6-295 dup 606247-22.	
606247-23	18:56:31 Tue 27-Jun-06	Sample	606247-23.087	soil
606247-24	19:00:17 Tue 27-Jun-06	Sample	606247-24.088	soil
25 ppb i1-57a	19:04:02 Tue 27-Jun-06	Sample	25 ppb i1-57a.089	water
606247-25	19:07:47 Tue 27-Jun-06	Sample	606247-25.090	soil
606247-26	19:11:33 Tue 27-Jun-06	Sample	606247-26.091	soil
606247-27	19:15:19 Tue 27-Jun-06	Sample	606247-27.092	soil
606247-28	19:19:04 Tue 27-Jun-06	Sample	606247-28.093	soil
606247-29	19:22:50 Tue 27-Jun-06	Sample	606247-29.094	soil
606247-30	19:26:35 Tue 27-Jun-06	Sample	606247-30.095	soil
606247-31	19:30:21 Tue 27-Jun-06	Sample	606247-31.096	soil
606255-01	19:34:07 Tue 27-Jun-06	Sample	606255-01.097	soil
606255-02	19:37:52 Tue 27-Jun-06	Sample	606255-02.098	soil
606255-03	19:41:38 Tue 27-Jun-06	Sample	606255-03.099	soil
25 ppb i1-57a	19:45:23 Tue 27-Jun-06	Sample	25 ppb i1-57a.100	water
		•	••	

606255-04	19:49:09 Tue 27-Jun-06	Sample	606255-04.101	soil
606255-05	19:52:55 Tue 27-Jun-06	Sample	606255-05.102	soil
606255-06	19:56:41 Tue 27-Jun-06	Sample	606255-06.103	soil
606244-01	20:00:27 Tue 27-Jun-06	Sample	606244-01.104	soil
25 ppb i1-57a	20:04:12 Tue 27-Jun-06	Sample	25 ppb i1-57a.105	water

Daily Performance Report

Sample ID: Daily Performance Check

Sample Date/Time: Tuesday, June 27, 2006 10:40:56

Sample Description:

Method File: D:\ICPMS Data\Method\FBI-Daily.mth

Dataset File: D:\ICPMS Data\Dataset\Default\Daily Performance Check.909

Tuning File: D:\ICPMS Data\Tuning\default.tun

Optimization File: D:\ICPMS Data\Optimize\Default.dac

Dual Detector Mode: Dual Acq. Dead Time(ns): 55 Current Dead Time (ns): 55

Summary

	Analyte	Mass	Meas. Intens. Mean	Net Intens. Mean	Net Intens. SD	Net Intens. RSD
	Mg	24.0	180480.7	180480.735	2229.946	1.2
	Rh	102.9	722307.6	722307.601	10945.336	1.5
	in	114.9	882975.8	882975.789	13245.595	1.5
	Pb	208.0	561609.1	561609.103	5501.310	1.0
	U	238.1	1118290.4	1118290.429	12670.474	1.1
Γ>	Ba	137.9	721219.4	721219.360	10891.410	1.5
Ĺ	Ba++	69.0	11793.1	0.016	0.000	1.3
Γ̈>	Ce	139.9	879059.1	879059.065	13836.345	1.6
Ĺ	CeO	155.9	25701.7	0.029	0.001	2.9
_	Bkgd	220.0	3.6	3.600	0.760	21.1

Current Optimization File Data

•	
Current Value	Description
0.95	Nebulizer Gas Flow
8.00	Lens Voltage
1200.00	ICP RF Power
-2112.50	Analog Stage Voltage
1250.00	Pulse Stage Voltage
75.00	Discriminator Threshold
- 5.50	AC Rod Offset

Current Autolens Data

Analyte	Mass	Num of Pts	DAC Value	Maximum Intensity
Be	9	15	7.0	22865.4
Co	59	15	7.0	406401.7
In	115	15	9.0	860419.2

SmartTune Wizard - Summary

Optimization Summary

Wizard file: D:\ICPMS Data\Wizard\SmartTune\fbi-Basic Opt.swz

Start Time: 10:30:49, Tuesday, June 27, 2006 End Time: 10:43:52, Tuesday, June 27, 2006

Mass Calibration and Resolution - [Passed] Optimum value(s): N/A

Target/Obtained mass (3.016/3.026), Target/Obtained resolution (0.7/0.716)
Target/Obtained mass (23.985/23.979), Target/Obtained resolution (0.7/0.704)
Target/Obtained mass (102.905/102.928), Target/Obtained resolution (0.7/0.701)
Target/Obtained mass (139.905/139.878), Target/Obtained resolution (0.7/0.704)
Target/Obtained mass (207.977/207.979), Target/Obtained resolution (0.7/0.707)
Target/Obtained mass (238.05/238.026), Target/Obtained resolution (0.7/0.706)

Nebulizer Gas - [Passed] Optimum value(s): 0.95

Obtained Intensity (Rh 102.905): 716926

Obtained Formula (CeO 155.9 / Ce 139.905): 0.030 (=27121 / 908549)

Lens Voltage - [Passed] Optimum value(s): 8 Obtained Intensity (Rh 102.905): 722687

Auto Lens Calibration - [Passed] Optimum value(s): y = 0.019 x + 6.495

Daily Performance Check - [Passed] Optimum value(s): N/A

Obtained Intensity (Ba 137.905): 723703

Obtained Intensity (Ba++ 68.9525): 11793

Obtained Intensity (Bkgd 220): 4

Obtained Intensity (Ce 139.905): 879059 Obtained Intensity (CeO 155.9): 25702

Obtained Intensity (In 114.904): 882976

Obtained Intensity (Mg 23.985): 180481

Obtained Intensity (Pb 207.977): 561609

Obtained Intensity (Rh 102.905): 722308

Obtained Intensity (U 238.05): 1118290

Obtained Formula (CeO 155.9 / Ce 139.905): 0.029 (=25702 / 879059)

Report Date/Time: Tuesday, June 27, 2006 10:43:52

Page 1

SmartTune Wizard - Details

Optimization Details

Wizard file: D:\ICPMS Data\Wizard\SmartTune\fbi-Basic Opt.swz

Optimization Status

Start Time: 10:30:49, Tuesday, June 27, 2006

Mass Calibration and Resolution

Optimization Settings:

Method: D:\ICPMS Data\Method\FBI-Tuning.mth.

Tuning File: default.tun

Iterations: 6

Target accuracy (+/- amu): 0.05 for Mass Cal. and 0.05 for Resolution

Peak height (%) for Res. Opt.: 10

Optimization Results:

Warning: Autosampler is not defined. (Aspirate optimization solution and click OK)

First pass

Target/Obtained mass (3.016/3.026), Target/Obtained resolution (0.7/0.716)

Target/Obtained mass (23.985/23.979), Target/Obtained resolution (0.7/0.704)

Target/Obtained mass (102.905/102.928), Target/Obtained resolution (0.7/0.701)

Target/Obtained mass (139.905/139.878), Target/Obtained resolution (0.7/0.704)

Target/Obtained mass (207.977/207.979), Target/Obtained resolution (0.7/0.707)

Target/Obtained mass (238.05/238.026), Target/Obtained resolution (0.7/0.706)

[Passed] Optimum value(s): N/A

Nebulizer Gas

Optimization Settings:

Method: D:\ICPMS Data\Method\fbi-Optimize.mth.

First pass - Start/End/Step: 0.75/1.2/0.05. Intensity Criterion: Rh 102.905 Maximum

Formula Criterion: CeO 155.9 / Ce 139.905 <= 0.033

Optimization Results:

Warning: Autosampler is not defined. (Aspirate optimization solution and click OK)

First pass

Obtained Intensity (Rh 102.905): 716926

[Passed] Optimum value(s): 0.95

Lens Voltage

Optimization Settings:

Method: D:\ICPMS Data\Method\fbi-Optimize.mth.

First pass - Start/End/Step: 2/15/0.5.
Intensity Criterion: Rh 102.905 Maximum

Optimization Results:

Warning: Autosampler is not defined. (Aspirate optimization solution and click OK)

First pass

Obtained Intensity (Rh 102.905): 722687

[Passed] Optimum value(s): 8

Auto Lens Calibration

Optimization Settings:

Method: D:\ICPMS Data\Method\fbi-AutoLens Calibration.mth.

First pass - Start/End/Step: 2/16/1.

Report Date/Time: Tuesday, June 27, 2006 10:43:52

Page 2

Optimization Results:

Warning: Autosampler is not defined. (Aspirate optimization solution and click OK)

First pass

[Passed] Optimum value(s): y = 0.019 x + 6.495

Daily Performance Check

Optimization Settings:

Method: D:\ICPMS Data\Method\FBI-Daily.mth.

Intensity Criterion: Ba 137.905 > 10000
Intensity Criterion: Ba++ 68.9525 > 10000
Intensity Criterion: Bkgd 220 <= 30
Intensity Criterion: Ce 139.905 > 10000
Intensity Criterion: CeO 155.9 > 10000
Intensity Criterion: In 114.904 > 300000
Intensity Criterion: Mg 23.985 > 50000
Intensity Criterion: Pb 207.977 > 100000

Intensity Criterion: Pb 207.977 > 100000 Intensity Criterion: Rh 102.905 > 10000 Intensity Criterion: U 238.05 > 300000

Formula Criterion: CeO 155.9 / Ce 139.905 <= 0.033

Optimization Results:

Warning: Autosampler is not defined. (Aspirate optimization solution and click OK)

First pass

Obtained Intensity (Ba 137.905): 723703 Obtained Intensity (Ba++ 68.9525): 11793

Obtained Intensity (Bkgd 220): 4

Obtained Intensity (Ce 139.905): 879059
Obtained Intensity (CeO 155.9): 25702
Obtained Intensity (In 114.904): 882976
Obtained Intensity (Mg 23.985): 180481
Obtained Intensity (Pb 207.977): 561609
Obtained Intensity (Rh 102.905): 722308
Obtained Intensity (U 238.05): 1118290

Obtained Formula (CeO 155.9 / Ce 139.905): 0.029 (=25702 / 879059)

[Passed] Optimum value(s): N/A

End Time: 10:43:52, Tuesday, June 27, 2006

Report Date/Time: Tuesday, June 27, 2006 10:43:52

Quantitative Analysis Calibration Report

File Name:

06-27-06.cal

File Path:

D:\ICPMS Data\System

Calibration Type:

External Calibration

Analyte	Mass	Curve Type	Slope	Intercept	Corr. Coeff.
Li	6.015	Linear Thru Zero	0.00	0.00	0.000000
Ве	9.012	Linear Thru Zero	0.00	0.00	0.999982
Al	26.982	Linear Thru Zero	0.03	0.00	0.999944
Sc	44.956	Linear Thru Zero	0.00	0.00	0.000000
V	50.944	Linear Thru Zero	0.04	0.00	0.999978
V-1	50.944	Linear Thru Zero	0.04	0.00	0.999980
Cr	51.941	Linear Thru Zero	0.04	0.00	0.999979
Cr	52.941	Linear Thru Zero	0.00	0.00	0.999992
Mn	54.938	Linear Thru Zero	0.05	0.00	0.999949
Co	58.933	Linear Thru Zero	0.05	0.00	0.999968
Ni	59.933	Linear Thru Zero	0.01	0.00	0.999987
Ni	61.928	Linear Thru Zero	0.00	0.00	0.999986
Cu	62.930	Linear Thru Zero	0.02	0.00	0.999983
Cu	64.928	Linear Thru Zero	0.01	0.00	0.999977
Zn	65.926	Linear Thru Zero	0.01	0.00	0.999953
Zn	66.927	Linear Thru Zero	0.00	0.00	0.999950
Zn	67.925	Linear Thru Zero	0.00	0.00	0.999932
Ge	71.922	Linear Thru Zero	0.00	0.00	0.000000
As	74.922	Linear Thru Zero	0.01	0.00	0.999944
As-1	74.922	Linear Thru Zero	0.01	0.00	0.999926
Se	76.920	Linear Thru Zero	0.00	0.00	0.999872
Se	81.917	Linear Thru Zero	0.00	0.00	0.999929
Υ	88.905	Linear Thru Zero	0.00	0.00	0.000000
Мо	94.906	Linear Thru Zero	0.01	0.00	0.999879
Мо	96.906	Linear Thru Zero	0.01	0.00	0.999953
Мо	97.906	Linear Thru Zero	0.02	0.00	0.999890
Ag	106.905	Linear Thru Zero	0.04	0.00	0.999959
Ag	108.905	Linear Thru Zero	0.04	0.00	0.999942
Cd	105.907	Linear Thru Zero	0.00	0.00	0.999948
Cd	107.904	Linear Thru Zero	0.00	0.00	0.999917
Cd	110.904	Linear Thru Zero	0.01	0.00	0.999961
Cd	113.904	Linear Thru Zero	0.02	0.00	0.999961
In	114.904	Linear Thru Zero	0.00	0.00	0.000000
Sb	120.904	Linear Thru Zero	0.03	0.00	0.999967
Sb	122.904	Linear Thru Zero	0.02	0.00	0.999972
Ba	134.906	Linear Thru Zero	0.01	0.00	0.999951
Ba	136.905	Linear Thru Zero	0.01	0.00	0.999905
Tb	158.925	Linear Thru Zero	0.00	0.00	0.000000
Но	164.930	Linear Thru Zero	0.00	0.00	0.000000
Hg	200.970	Linear Thru Zero	0.00	0.00	0.259364

Report Date/Time:

Wednesday, June 28, 2006 09:27:08

	004.074		0.00	0.00	0.640670
Hg	201.971	Linear Thru Zero	0.00	0.00	0.640679
Ti	202.972	Linear Thru Zero	0.03	0.00	0.999968
TI	204.975	Linear Thru Zero	0.07	0.00	0.999867
Pb	207.977	Linear Thru Zero	0.09	0.00	0.999932
Bi	208.980	Linear Thru Zero	0.00	0.00	0.000000
Th	232.038	Linear Thru Zero	0.08	0.00	0.999751
U	238.050	Linear Thru Zero	0.08	0.00	0.999328
Fe	55.935	Linear Thru Zero	0.00	0.00	0.000000
Ru	100.906	Linear Thru Zero	0.00	0.00	0.000000
ArCl	76.928	Linear Thru Zero	0.00	0.00	0.000000
Kr	83.912	Linear Thru Zero	0.00	0.00	0.000000
Sn	117.902	Linear Thru Zero	0.00	0.00	0.000000

		0.5	<i></i> 4	00	00	70	77	60
606220-11	114	85	74	99	82	76	77	69
25 ppb i1-57a	120	83	83	84	90	86	85	78
606220-13	116	85	76	97	82	78	79	71
606220-14	116	86	74	101	81	76	76	68
606220-16	114	83	74	94	80	74	75	69
606200-24	113	86	73	99	80	75	76	69
606220-26	113	85	74	95	81	77	77	70
606220-30	113	81	74	93	81	76	77	70
606220-35	113	80	73	92	80	75	75	70
606220-36	111	85	73	98	81	76	75	69
i6-294 mb	107	71	71	72	79	74	74	70
i6-294 lcs	107	71	72	73	79	75	75	70
25 ppb i1-57a	115	81	81	83	90	86	86	80
606247-01	109	85	72	117	79	77	77	71
i6-294 ms 606247-01	106	85	71	117	78	78	77	70
i6-294 dup 606247-01	105	84	71	117	78	78	77	71
606247-02	107	90	72	118	78 78	77	 77	68
606247-03	110	84	74	103	83	80	80	80
606247-04	104	84	70	103	79	77	77	71
606247-05	104	83	70	114	79	77	78	71
606247-06	104	79	70	97	77	75	76 76	70
				97				
606247-07	103	80	71		77	76 75	76	72 72
606247-08	103	82	71	95	77	75	76	72
25 ppb i1-57a	104	77	78	78	88	84	84	80
606247-09	104	87	74	122	81	81	81	72
606247-10	100	82	71	104	77	77	76	71
606247-11	98	80	69	107	75	75	75	69
606247-12	99	81	71	116	76	75	76	70
606247-13	100	81	71	100	77	76	75	72
606247-14	94	81	69	100	75	74	74	69
606247-15	99	82	71	102	76	74	75	72
606247-16	101	82	71	99	77	77	76	72
606247-17	99	82	71	96	76	75	73	69
606247-18	97	81	71	109	74	75	74	70
25 ppb i1-57a	99	75	77	77	84	82	83	79
606247-19	101	85	72	115	76	78	78	70
606247-20	97	82	72	109	77	78	78	74
i6-295 mb	97	68	71	72	77	75	75	70
i6-295 lcs	95	69	70	71	76	75	74	70
606247-21	97	81	70	110	75	77	76	73
606247-22	97	80	71	107	76	76	76	71
i6-295 ms 606247-22	94	80	69	108	74	74	74	71
i6-295 dup 606247-22	93	80	73	108	74	76	75	71
606247-23	94	79	70	102	76	75	76	80
606247-24	95	77	70 70	95	74	75	75	71
25 ppb i1-57a	96	77 73	75	76	82	82	82	71 78
ppo II o / u	70	, 5	15	70	02	02	02	70

606247-25	98	82	71	104	75	76	77	73
606247-26	96	<i>7</i> 9	70	97	74	75	75	70
606247-27	95	79	69	99	74	73	74	75
606247-28	96	78	69	97	74	75	75	71
606247-29	96	80	68	100	72	72	73	69
606247-30	93	75	68	96	72	72	72	68
606247-31	94	78	70	103	73	75	74	71
606255-01	93	70	68	90	73	73	72	67
606255-02	100	72	70	85	75	73	73	69
606255-03	97	73	69	86	74	73	74	69
25 ppb i1-57a	99	71	74	75	80	80	80	76
606255-04	100	72	70	86	76	74	74	69
606255-05	99	72	69	84	75	73	73	70
606255-06	98	68	68	84	73	72	72	67
606244-01	98	75	69	96	72	72	72	68
25 ppb i1-57a	98	74	77	77	83	81	82	77

^{** -} Value out of control limits.

Sample ID: blank

Sample Date/Time: Tuesday, June 27, 2006 10:51:50

Sample Description: User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth Dataset File: D:\ICPMS Data\DataSet\06-27-06\blank.001

Tuning File: D:\ICPMS Data\Tuning\default.tun

Optimization File: D:\ICPMS Data\Optimize\Default.dac

Calibration File: Batch ID:

Calibration Type: External Calibration

Autosampler Position: 1 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6		54057	4.07		ug/L
l	Be	9		7	54.39		ug/L
İ	Al	27		50334	0.23		ug/L
1	Sc	45		463094	1.04		ug/L
- 1	V	51		6917	5.29		ug/L
- 1	V-1	51		5584	2.75		ug/L
1	Cr	52		20686	1.99		ug/L
1	Cr	53		1914	2.70		ug/L
-	Mn	55		5964	0.76		ug/L
1	Co	59		598	42.49		ug/L
- 1	Ni	60		886	0.80		ug/L
1	Ni	62		-20173	0.69		ug/L
1	Cu	63		12791	0.85		ug/L
1	Cu	65		6061	0.39		ug/L
1	Zn	66		3175	1.85		ug/L
	Zn	67		735	3.46		ug/L
	Zn	68		2465	3.87		ug/L
L>	Ge	72		907488	0.40		ug/L
Γ	As	75		-403	0.00		ug/L
	As-1	75		296	1.91		ug/L
- 1	Se	77		395	11.46		ug/L
	Se	82		193	1.10		ug/L
	Υ	89		749932	0.55		ug/L
	Мо	95		52	12.06		ug/L
	Мо	97		32	20.06		ug/L
ļ	Мо	98		72	13.71		ug/L
İ	Ag	107		288	22.10		ug/L

Page 1

Sample ID: blank

Report Date/Time: Tuesday, June 27, 2006 10:53:52

1	Ag	109	223	7.61	ug/L
İ	Cd	106	908	1.29	ug/L
i	Cd	108	1	244.73	ug/L
i	Cd	111	734	2.32	ug/L
Ĺ	Cd	114	141	47.39	ug/L
İ>	In	115	806560	2.43	ug/L
i	Sb	121	242	0.29	ug/L
İ	Sb	123	186	3.90	ug/L
İ	Ва	135	325	23.06	ug/L
Ĺ	Ва	137	563	25.37	ug/L
Ī	Tb	159	1187362	1.46	ug/L
j>	Но	165	1212300	0.70	ug/L
j	Hg	201	98	2.89	ug/L
İ	Hg	202	210	5.39	ug/L
1	TI	203	52	2.72	ug/L
Ì	Ti	205	112	6.98	ug/L
Ì	Pb	208	6710	3.34	ug/L
İ	Bi	209	821507	0.46	ug/L
ĺ	Th	232	1933	21.55	ug/L
Ĺ	U	238	373	46.13	ug/L
_	Fe	56	6645286	0.58	ug/L
	Ru	101	4	20.20	ug/L
	ArCl	77	381	0.93	ug/L
	Kr	84	931	6.13	ug/L
	Sn	118	870	13.33	ug/L
	QC Cal	culated Values			
			Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
٢	Mass Analyt		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
٢	Mass Analyt 6 Li 9 Be		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
[Mass Analyt 6 Li 9 Be 27 Al		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
[Mass Analyt 6 Li 9 Be 27 Al 45 Sc		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
	Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
	Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
	Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
	Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
<u> </u>	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
<u> </u>	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
[<u>}</u>	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
└──── <u></u>	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
<u> </u>	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
<u> </u>	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
└────────────────────────────────────	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
└────────────────────────────────────	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag		Int Std % Recovery Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference

114 Cd 115 In 121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 TI 205 TI 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl 84 Kr

118 Sn

Sample ID: 1 ppb i1-56a

Sample Date/Time: Tuesday, June 27, 2006 10:55:22

Sample Description: User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average Signal Profile Processing Mode: Maximum

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac

Calibration File: Batch ID:

Calibration Type: External Calibration

Autosampler Position: 2 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	54486	0.81		ug/L
	Be	9	7	1729	0.74	1.000	ug/L
1	Al	27	50334	68524	2.90	1.000	ug/L
1	Sc	45	463094	464402	0.08		ug/L
1	V	51	6917	37311	1.58	1.000	ug/L
1	V-1	51	5584	36461	0.06	1.000	ug/L
1	Cr	52	20686	46090	1.60	1.000	ug/L
ĺ	Cr	53	1914	4873	0.29	1.000	ug/L
1	Mn	55	5964	44500	0.34	1.000	ug/L
1	Co	59	598	33866	1.29	1.000	ug/L
	Ni	60	886	8168	0.66	1.000	ug/L
-	Ni	62	-20173	-19110	0.19	1.000	ug/L
1	Cu	63	12791	27660	0.72	1.000	ug/L
1	Cu	65	6061	13412	0.45	1.000	ug/L
l	Zn	66	3175	6044	1.72	1.000	ug/L
1	Zn	67	735	1271	2.56	1.000	ug/L
1	Zn	68	2465	4400	1.24	1.000	ug/L
L>	Ge	72	907488	908824	0.43		ug/L
Γ	As	75	-403	3957	2.65	1.000	ug/L
	As-1	75	296	4565	0.98	1.000	ug/L
1	Se	77	395	752	4.99	1.000	ug/L
1	Se	82	193	672	4.84	1.000	ug/L
1	Υ	89	749932	747354	2.00		ug/L
- 1	Мо	95	52	8627	0.25	1.000	ug/L
	Мо	97	32	5361	3.13	1.000	ug/L
-	Мо	98	72	13894	0.69	1.000	ug/L
1	Ag	107	288	32043	4.27	1.000	ug/L

Page 1

Sample ID: 1 ppb i1-56a

Report Date/Time: Tuesday, June 27, 2006 10:57:24

Γ	Mass Analyte 6 Li	QC Std % F	Recovery	Int Std % Recovery	Spike % Recovery	y Dilution % Difference		Duplicate Rel. %
		ulated Val						
	Sn	118		370	715	14.04		ug/L
	Kr	84		931	929	0.57		ug/L
	ArCI	77		381	742	2.86		ug/L
	Ru	101		4	4	0.00		ug/L
	Fe	56	66452	286	6670756	0.09		ug/L
L	U	238	3	373	91906		1.000	ug/L
-	Th	232	19	933	81791		1.000	ug/L
	Bi	209	8215	507	814188	0.06		ug/L
	Pb	208	67	710	93191	0.98	1.000	ug/L
İ	TI	205	1	112	65275	2.70	1.000	ug/L
İ	ΤΪ	203		52	26581	0.29	1.000	ug/L
į	Hg	202	2	210	217	10.43	1.000	ug/L
Ϊ́	Hg	201		98	99	11.43	1.000	ug/L
İ>	Но	165	12123		1205289	1.42		ug/L
ř	Tb	159	11873		1177330	1.22		ug/L
i	Ba	137		563	11617		000.1	ug/L
i	Ba	135		325	6663		000.1	ug/L
i	Sb	123		86	12990	•	1.000	ug/L
>	Sb	121		.42	16666		.000	ug/L
1	In .	115	8065		816789	0.46		ug/L
1	Cd	114		41	13679		.000	ug/L
i i	Cd	111	7	34	6557		.000	ug/L
-	Cd	108	•	1	445		.000	ug/L
1	Cd	106		08	1449		.000	ug/L
1	Ag	109	2	23	30142	3.17 1	.000	ug/L

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li					
i	9	Be					
i							
i		Sc					
i	51	V					
j		V-1					
1	52	Cr					
	53	Cr					
		Mn					
	59	Co					
1	60	Ni					
-	62						
		Cu					
		Cu					
		Zn					
-		Zn					
ļ	68	Zn					
[>		Ge					
Ţ		As					
Ţ		As-1					
	77	Se					
ļ	82						
!		Y					
!		Мо					
		Мо					
ļ		Мо					
İ		Ag					
l i		Ag					
l I	106						
1		Cd					
i	111	Ca					

114 Cd 115 in 121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 TI 205 TI 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl 84 Kr 118 Sn

Sample ID: 5 ppb i1-56b

Sample Date/Time: Tuesday, June 27, 2006 10:58:55

Sample Description: User Name: btb Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth Dataset File: D:\ICPMS Data\DataSet\06-27-06\5 ppb i1-56b.003

Tuning File: D:\ICPMS Data\Tuning\default.tun Optimization File: D:\ICPMS Data\Optimize\Default.dac

Calibration File: Batch ID:

Calibration Type: External Calibration

Autosampler Position: 3 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL): Solids Ratio:

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	54514	1.71		ug/L
İ	Be	9	7	10917	0.33	5.041	ug/L
ĺ	Al	27	50334	172978	0.20	5.051	ug/L
ĺ	Sc	45	463094	463690	0.43		ug/L
	V	51	6917	194691	0.63	5.037	ug/L
	V-1	51	5584	195631	0.41	5.037	ug/L
	Cr	52	20686	182264	0.75	5.042	ug/L
	Cr	53	1914	21092	0.44	5.045	ug/L
	Mn	55	5964	252919	0.17	5.043	ug/L
	Co	59	598	212225	0.63	5.042	ug/L
1	Ni	60	886	46955	0.41	5.041	ug/L
	Ni	62	-20173	-13241	1.48	5.041	ug/L
	Cu	63	12791	117246	1.22	5.056	ug/L
1	Cu	65	6061	56061	0.55	5.052	ug/L
	Zn	66	3175	30433	0.13	5.093	ug/L
	Zn	67	735	5332	0.41	5.082	ug/L
1	Zn	68	2465	21985	0.10	5.099	ug/L
L>	Ge	72	907488	908135	0.71		ug/L
Γ	As	75	-403	27417	0.30	5.045	ug/L
İ	As-1	75	296	27656	0.75	5.046	ug/L
	Se	77	395	2596	1.14	5.043	ug/L
	Se	82	193	3106	4.12	5.039	ug/L
	Υ	89	749932	752084	0.98		ug/L
	Мо	95	52	54185	0.83	5.044	ug/L
	Мо	97	32	33804	0.06	5.045	ug/L
	Мо	98	72	86103	0.09	5.042	ug/L
f	Ag	107	288	160461	1.38	5.006	ug/L

Page 1

Sample ID: 5 ppb i1-56b

Report Date/Time: Tuesday, June 27, 2006 11:00:57

ļ	Ag	109	223	154168	0.27	5.010	ug/L
i	Cd	106	908	4295	0.18	5.046	ug/L
i	Cd	108	1	2616	0.43	5.033	ug/L
i	Cd	111	734	37682	1.94	5.045	ug/L
i	Cd	114	141	85590	1.03	5.044	ug/L
i>	ln	115	806560	797416	0.81		ug/L
j	Sb	121	242	105992	1.75	5.047	ug/L
i	Sb	123	186	81058	0.89	5.044	ug/L
i	Ва	135	325	31477	0.22	5.001	ug/L
i	Ва	137	563	55907	1.15	5.005	ug/L
ř	Tb	159	1187362	1210220	0.31		ug/L
i>	Но	165	1212300	1225310	0.90		ug/L
ï	Hg	201	98	103	1.37	4.828	ug/L
i	Hg	202	210	222	5.43	4.413	ug/L
i	TI	203	52	167786	0.65	5.038	ug/L
İ	TI	205	112	404895	1.72	5.035	ug/L
ĺ	Pb	208	6710	556494	1.02	5.039	ug/L
	Bi	209	821507	818989	0.21		ug/L
١	Th	232	1933	539017	0.54	5.047	ug/L
L	U	238	373	579714	0.03	5.038	ug/L
	Fe	56	6645286	6647370	0.66		ug/L
	Ru	101	4	7	54.39		ug/L
	ArCI	77	381	2608	2.47		ug/L
	Kr	84	931	953	5.05		ug/L
	Sn	118	870	837	6.25		ug/L
	QC Calc	ulated Value	s				
٢	Mass Analyte 6 Li	QC Std % Re∞	very Int Std % Recovery	Spike % Recovery	Dilution % Difference	•	Duplicate Rel. % Difference

- 1	6	Li
1	9	Be
ì	27	
i		Sc
-		
!	51	
1		V-1
1	52	Cr
1		Cr
i		Mn
i		Со
!		
1	60	
1	62	Ni
1	63	Cu
i	65	Cu
i		Zn
i i		
!		Zn
Ţ		Zn
L>	72	Ge

75 As-1
77 Se
82 Se
89 Y
95 Mo
97 Mo
98 Mo
107 Ag
109 Ag
106 Cd
108 Cd
111 Cd

Report Date/Time: Tuesday, June 27, 2006 11:00:57

Page 2 Sample ID: 5 ppb i1-56b

114 Cd 115 In 121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 TI 205 TI 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCI 84 Kr 118 Sn

Sample ID: 10 ppb i1-56c

Sample Date/Time: Tuesday, June 27, 2006 11:02:28

Sample Description: User Name: btb Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Data\DataSet\06-27-06\10 ppb i1-56c.004

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac

Calibration File: Batch ID:

Calibration Type: External Calibration

Autosampler Position: 4
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):

Solids Ratio:

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	52743	2.97		ug/L
	Be	9	7	21526	0.36	10.026	ug/L
1	Al	27	50334	313199	0.60	10.203	ug/L
	Sc	45	463094	451030	0.60		ug/L
	V	51	6917	379860	1.93	10.040	ug/L
1	V-1	51	5584	382841	1.32	10.038	ug/L
	Cr	52	20686	339886	1.15	10.033	ug/L
	Cr	53	1914	39375	0.20	10.010	ug/L
1	Mn	55	5964	494790	1.60	10.035	ug/L
1	Co	59	598	416656	0.86	10.020	ug/L
	Ni	60	886	91329	0.01	10.017	ug/L
}	Ni	62	-20173	-6191	0.44	10.015	ug/L
	Cu	63	12791	220455	0.44	10.051	ug/L
	Cu	65	6061	107310	1.18	10.087	ug/L
1	Zn	66	3175	58963	0.71	10.124	ug/L
1	Zn	67	735	10343	1.08	10.162	ug/L
	Zn	68	2465	42205	1.51	10.116	ug/L
L>	Ge	72	907488	891403	0.58		ug/L
Γ	As	75	-403	55494	0.03	10.016	ug/L
	As-1	75	296	54831	1.17	10.000	ug/L
	Se	77	395	4799	0.27	10.003	ug/L
	Se	82	193	6185	1.82	10.059	ug/L
	Υ	89	749932	740313	1.60		ug/L
1	Мо	95	52	107094	1.13	9.982	ug/L
1	Мо	97	32	67240	0.26	9.996	ug/L
	Мо	98	72	172445	0.45	10.009	ug/L
1	Ag	107	288	323355	0.45	10.008	ug/L

Page 1

Sample ID: 10 ppb i1-56c

Report Date/Time: Tuesday, June 27, 2006 11:04:31

1	Ag	10	09	223	305043	1.17	9.971	
i	Cd		06	908	7583	1.29	9.972	_
i	Cd		08	1	5130	0.27	9.961	_
i	Cd		11	734	73287	0.32	9.968	_
i	Cd		14	141	172244	0.71	10.020	ug/L
İ>	In			3560	802168	0.64		ug/L
1	Sb		21	242	213089	0.09	10.020	ug/L
i	Sb		23	186	163741	0.23	10.029	ug/L
i	Ba		35	325	62590	1.46	9.987	ug/L
i	Ba		37	563	110569	1.90	9.977	ug/L
ř	Tb			7362	1146771	0.43		ug/L
>	Но			2300	1188136	0.89		ug/L
1	Hg		01	98	85	0.00	15.491	_
i	Hg		02	210	223	10.15	9.663	
i	Ti		03	52	334399	1.55	10.071	
i	TI		05	112	806311	1.23	10.069	ug/L
i	Pb			6710	1091405	1.11	10.052	ug/L
i	Bi			1507	798815	1.38		ug/L
i	Th			1933	1074093	1.41	10.079	
i	U		38	373	1141832	1.21	10.048	
_	Fe			5286	6609228	1.51		ug/L
	Ru		01	4	11	77.14		ug/L
	ArC		77	381	4828	2.26		ug/L
	Kr		84	931	922	3.84		ug/L
	Sn		18	870	1661	41.69		ug/L
			ated Values					•
		Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recove	ery Dilution % [)ifference	Duplicate Rel. % Difference
Γ		Li	QC 3td 76 Necovery	intola // Necovery	Spike 76 New V	ery Diludon 76 L	Silicitorios	Duplicate Net. 70 Billerence
İ	9	Be						
i		Al						
1		Sc						
1		V	•					
		V-1						
 		Cr Cr						
i İ		Mn						
i	59							
İ	60							
1	62							
ļ	63							,
1	65							
i	66 67							
! 	68							
_ 	72	Ge						
اٰ> [75	As						
 - 	75 75	As As-1						
 - 	75	As As-1 Se						

82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd 108 Cd 111 Cd

114 Cd 115 In 121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 TI 205 TI 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl 84 Kr 118 Sn

Sample ID: 25 ppb i1-56d

Sample Date/Time: Tuesday, June 27, 2006 11:06:03

Sample Description: User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Data\Data\Set\06-27-06\25 ppb i1-56d.005

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac

Calibration File: Batch ID:

Calibration Type: External Calibration

Autosampler Position: 5
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):
Solids Ratio:

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	53132	0.33		ug/L
Ì	Be	9	7	54232	1.84	25.001	ug/L
	Al	27	50334	711425	0.02	25.055	ug/L
1	Sc	45	463094	458833	1.26		ug/L
1	V	51	6917	931095	0.56	24.935	ug/L
1	V-1	51	5584	943569	0.04	24.949	ug/L
1	Cr	52	20686	813948	1.22	24.942	ug/L
1	Cr	53	1914	96505	0.81	25.000	ug/L
i	Mn	55	5964	1218598	0.84	24.938	ug/L
1	Co	59	598	1046206	0.55	24.987	ug/L
1	Ni	60	886	227021	0.61	24.964	ug/L
1	Ni	62	-20173	14048	2.25	24.964	ug/L
1	Cu	63	12791	533061	0.35	24.984	ug/L
-	Cu	65	6061	255755	0.29	24.932	ug/L
ļ	Zn	66	3175	145042	1.04	25.077	ug/L
l	Zn	67	735	25172	0.50	25.091	ug/L
-	Zn	68	2465	102255	1.03	25.021	ug/L
L>	Ge	72	907488	900575	0.95		ug/L
Γ	As	75	-403	138439	0.53	25.005	ug/L
1	As-1	75	296	137688	0.61	25.057	ug/L
1	Se	77	395	11772	1.82	25.162	ug/L
1	Se	82	193	14578	1.54	24.879	ug/L
-	Υ	89	749932	741183	0.04		ug/L
l	Мо	95	52	270246	1.18	25.058	ug/L
1	Мо	97	32	165469	0.21	24.959	ug/L
[Мо	98	72	432213	1.03	25.041	ug/L
	Ag	107	288	801348	0.91	24.995	ug/L

Page 1

Sample ID: 25 ppb i1-56d

Report Date/Time: Tuesday, June 27, 2006 11:08:06

-1		Ag	109	223	771	506	1.42	25.064		
i		Cd	106	908	178	B21	0.83	25.069	_	
i		Cd	108	1		877	0.83	25.027	ug/L	
1		Cd	111	734			0.25	25.033	ug/L	
- [Cd	114	141			0.26	25.038	ug/L	
				806560			0.51		ug/L	
;	>	in O	115				0.73	25.047		
ļ		Sb	121	242			0.68	25.103		
ļ		Sb	123	186						
ļ		Ва	135	325			1.87	25.015	-	
L		Ва	137	563			0.45	25.022	-	
Γ		Tb	159	1187362			0.10		ug/L	
1:	>	Но	165	1212300			2.27		ug/L	
- 1		Hg	201	98		126	2.82	34.697		
- 1		Hg	202	210)	315	7.87	27.594		
İ		TI	203	52	829	208	0.53	24.906	ug/L	
i		TI	205	112	1971	819	0.02	24.845	ug/L	
i		Pb	208	6710		806	0.30	24.908	ug/L	
i		Bi	209	821507		456	0.83		ug/L	
i		Th	232	1933			0.77	24.497		
1		U	238	373			0.33	24.216		
L	•	Fe	56	6645286			0.21		ug/L	
		Ru	101	2040200		9	24.96		ug/L	
		ArCI	77	38		641	1.82		ug/L	
		Kr	84	93.		006	9.73		ug/L	
		Sn	118	870		258	3.09		ug/L	
					'	250	3.09		ug/L	
		QC Calc	illiated v	vallies						
		40 0 4.0	uiutou	Talaco						
	Ν	lass Analyte			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ice
ŗ	M	flass Analyte 6 Li			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ice
ſ !	M	lass Analyte 6 Li 9 Be			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ice
Γ 	M	flass Analyte 6 Li 9 Be 27 Al			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ice
[N	Mass Analyte 6 Li 9 Be 27 Al 45 Sc			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ice
[M	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ice
	M	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ace
	M	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr			Std % Recovery Spi	ke % Recovery	Dilution % Dif	ference	Duplicate Rel. % Differen	ace
	M	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ace
	M	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ice
	M	Alass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ice
	N	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ace
	•	Alass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ace
	N	Alass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ice
	N	Alass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ace
	N	Alass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ace
	M	Alass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ace
	M	Alass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ace
	M	Alass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ace
	M	Alass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ace
	M	Alass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ace
	M	Alass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ace
	•	Alass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 75 As 77 Se 82 Se 89 Y 95 Mo			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ace
	M	Alass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ace
		Alass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ace
		Alass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag			Std % Recovery Spi	ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ace
		Alass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo				ke % Recovery	Dilution % Diff	ference	Duplicate Rel. % Differen	ace

108 Cd 111 Cd 114 Cd 115 in 121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 TI 205 TI 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl 84 Kr 118 Sn

Sample ID: 50 ppb i1-56e

Sample Date/Time: Tuesday, June 27, 2006 11:09:36

Sample Description: User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\06-27-06\50 ppb i1-56e.006

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac

Calibration File: Batch ID:

Calibration Type: External Calibration

Autosampler Position: 6
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):

Solids Ratio:

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	53192	1.38		ug/L
	Be	9	7	106783	0.14	50.128	ug/L
	Al	27	50334	1350975	0.31	50.150	ug/L
1	Sc	45	463094	453790	0.47		ug/L
	V	51	6917	1832539	1.04	50.134	ug/L
1	V-1	51	5584	1857251	0.76	50.133	ug/L
1	Cr	52	20686	1585826	0.37	50.125	ug/L
	Cr	53	1914	186484	1.16	50.024	ug/L
Ì	Mn	55	5964	2226432	0.22	49.247	ug/L
ĺ	Co	59	598	1870198	0.38	48.985	ug/L
ĺ	Ni	60	886	445406	1.70	50.091	ug/L
1	Ni	62	-20173	46426	0.92	49.909	ug/L
	Cu	63	12791	1020861	0.25	49.936	ug/L
	Cu	65	6061	496464	0.77	50.068	ug/L
1	Zn	66	3175	278332	0.52	49.989	ug/L
	Zn	67	735	48042	0.26	49.976	ug/L
1	Zn	68	2465	199790	1.05	50.186	ug/L
L>	Ge	72	907488	876935	0.24		ug/L
Γ	As	75	-403	273767	0.10	49.734	ug/L
-	As-1	75	296	270129	0.52	49.694	ug/L
	Se	77	395	22518	1.30	49.622	ug/L
1	Se	82	193	28744	1.28	49.732	ug/L
	Υ	89	749932	730571	2.47		ug/L
	Мо	95	52	526247	0.41	49.595	ug/L
	Мо	97	32	328181	1.42	49.764	ug/L
ļ	Mo	98	72	843262	0.25	49.609	ug/L
ı	Ag	107	288	1585621	1.36	49.754	ug/L

Page 1

Sample ID: 50 ppb i1-56e

Report Date/Time: Tuesday, June 27, 2006 11:11:38

1		Ag	109	223	1517812	0.61	49.718	ug/L	
i		Cd	106	908	34320	0.87	49.761	ug/L	
i		Cd	108	1	25246	1.24	49.660	ug/L	
i		Cd	111	734	362106	0.39	49.792	ug/L	
		Cd	114	141	828490	0.64	49.440	-	
1.	_	In	115	806560	805590	0.24		ug/L	
1.	>	Sb	121	242	1060137	2.46	49.817		
-		Sb	123	186	827631	0.87	49.880	=	
		Ba	135	325	307139	1.82	49.730		
-			137	563	539049	0.74	49.625		
L	:	Ba Th			1163723	0.40	10.020	ug/L	
1		Tb	159	1187362	1204109	3.10		ug/L	
- }	>	Ho	165	1212300 98	95	9.73	-21.661		
ŀ		Hg Ha	201 202	210	231	0.61	18.631		
-		Hg Tl	202	52	1630409	0.23	49.857		
-		TI	205	112	3433192	0.95	48.365		
ı,			208	6710	4961034	0.45	49.051		
- 1		Pb			812128	0.43	49.051	ug/L	
!		Bi	209	821507			49.974		
- [Th	232	1933	4890543	0.35		=	
L	-	Ū	238	373	4839944	0.65	49.666	=	
		Fe	56	6645286	6571675	0.51		ug/L	
		Ru	101	4	17	16.64		ug/L	
		ArCI	77	381	22262	1.06		ug/L	
		Kr	84	931	1068	5.87		ug/L	
		Sn	118	870	843	1.76		ug/L	
			aulatad M						
		WC Cai	culated V	alues					
	ı	Mass Analyt		Recovery Int Std % F	Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference	
٢	ı	Mass Analyt 6 Li			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
[ı	Mass Analyt 6 Li 9 Be			Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference	
	ı	Mass Analyt 6 Li 9 Be 27 Al			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
[ľ	Mass Analyt 6 Li 9 Be 27 Al 45 Sc			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
[1	Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V			Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Difference	
[!	Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
	1	Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
	1	Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
	ľ	Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
	ľ	Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
	ı	Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni			Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Difference	
	ı	Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
	,	Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
	,	Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
	1	Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
[Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
		Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
		Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
		Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
		Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
		Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
		Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
		Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
		Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	
		Mass Analyt 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo			Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference	

108 Cd 111 Cd

114 Cd 115 in 121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 TI 205 TI 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCI 84 Kr 118 Sn

Sample ID: 25 ppb i1-57a

Sample Date/Time: Tuesday, June 27, 2006 11:13:08

Sample Description: User Name: btb Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Data\DataSet\06-27-06\25 ppb i1-57a.007

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac

Calibration File: Batch ID:

Calibration Type: External Calibration

Autosampler Position: 7 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	53628	5.41		ug/L
ĺ	Be	9	7	53945	0.85	25.025	ug/L
- 1	Al	27	50334	720040	0.51	25.531	ug/L
ĺ	Sc	45	463094	451886	0.42		ug/L
	V	51	6917	932850	1.64	25.129	ug/L
1	V-1	51	5584	945905	1.59	25.160	ug/L
	Cr	52	20686	813836	0.38	25.108	ug/L
1	Cr	53	1914	95110	0.31	24.967	ug/L
1	Mn	55	5964	1227293	0.20	26.772	ug/L
i	Co	59	598	1049795	0.67	27.167	ug/L
- 1	Ni	60	886	228099	0.45	25.305	ug/L
-	Ni	62	-20173	14398	1.45	25.534	ug/L
1	Cu	63	12791	531457	0.00	25.396	ug/L
1	Cu	65	6061	255753	0.75	25.199	ug/L
İ	Zn	66	3175	144098	0.49	25.306	ug/L
-	Zn	67	735	24859	0.43	25.191	ug/L
l	Zn	68	2465	102256	1.24	25.089	ug/L
L>	Ge	72	907488	887371	1.36		ug/L
Γ	As	75	-403	139205	0.61	25.508	ug/L
1	As-1	75	296	138030	1.08	25.549	ug/L
1	Se	77	395	11518	0.10	25.139	ug/L
1	Se	82	193	14876	1.24	25.772	ug/L
ı	Υ	89	749932	737789	0.39		ug/L
1	Мо	95	52	270770	0.84	25.706	ug/L
1	Мо	97	32	170551	0.15	26.049	ug/L
1	Мо	98	72	434159	0.45	25.726	ug/L
1	Ag	107	288	793557	0.19	25.078	ug/L

Page 1

Sample ID: 25 ppb i1-57a

Report Date/Time: Tuesday, June 27, 2006 11:15:10

					4.00	05 500	
	Ag	109	223	773688	1.08	25.522	
	Cd	106	908	17889	1.35	25.482	_
İ	Cd	108	1	13076	0.30		_
ĺ	Cd	111	734	186101	0.24	25.730	-
ĺ	Cd	114	141	432466	0.84	25.990	ug/L
i>	In	115	806560	799981	2.57		ug/L
ΙÍ	Sb	121	242	563651	0.45	26.676	ug/L
i	Sb	123	186	431618	1.93	26.192	ug/L
i	Ва	135	325	154339	0.73	25.149	ug/L
i	Ba	137	563	272940	0.99	25.283	ug/L
ř	Tb	159	1187362	1166416	0.21		ug/L
 >	Ho	165	1212300	1200293	0.25		ug/L
	Hg	201	98	94	1.50	-22.441	
ı İ	Hg	202	210	218	2.93	7.934	
i	TI	203	52	828597	1.24	25.407	
1	TI	205	112	1953315	0.07	27.595	
1	Pb	208	6710	2724711	0.66	26.985	
l I	Bi	209	821507	813659	0.13	20.000	ug/L
i	Th	232	1933	2512364	0.58	25.734	
-	U		373	2498731	0.75	25.712	= -
L		238 56	6645286	6550860	0.73	25.7 12	ug/L
	Fe			9	24.96		
	Ru A-CI	101	4	11749	0.47		ug/L
	ArCl	77 94	381				ug/L
	Kr C=	84	931	953 803	0.49		ug/L
	Sn	118	870	893	10.38		ug/L
	QC Ca	alculated V	aiues				
_	Mass Analy	yte QC Std %	% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference
ŗ	6 Li	yte QC Std %	% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference
F I	6 Li 9 Be	yte QC Std %	% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al	yte QC Std %	% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference
 	6 Li 9 Be 27 Al 45 Sc	yte QC Std %	% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference
 - - -	6 Li 9 Be 27 Al 45 Sc 51 V	yte QC Std %	% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc	yte QC Std %	% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1	yte QC Std %	% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn	yte QC Std %	% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co	yte QC Std %	% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni	yte QC Std %	% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni	yte QC Std %	% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu	yte QC Std %	% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu	yte QC Std %	% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn	yte QC Std %	% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu	yte QC Std %	% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge	yte QC Std %		ecovery Spike % Recovery 97.783	Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference

Report Date/Time: Tuesday, June 27, 2006 11:15:10

ļ	114	Cd	
>	115	In	99.184
1	121	Sb	
	123	Sb	
I	135	Ва	
L	137	Ва	
Γ	159	Tb	
>	165	Но	99.010
1	201	Hg	
1	202	Hg	
1	203	TI	
1	205	TI.	
Ì	208	Pb	
İ	209	Bi	
1	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCl	
	84	Kr	
	118	Sn	

Sample ID: i6-286 mb

Sample Date/Time: Tuesday, June 27, 2006 11:51:57

Sample Description: water

User Name: btb Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average Signal Profile Processing Mode: Maximum

Signal Frome Frocessing Mode. Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\06-27-06\i6-286 mb.008

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 38
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):
Solids Ratio:

Analyte Mass

Intensities

Mass Intens RSD Conc Mean Penort Unit

Blank Intensity Meas Intens Mean

Analyte Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
∫ Li 6	54057	51871	1.27		ug/L
Be 9	7	2	47.14	-0.002	ug/L
Al 27	50334	53016	22.80	0.224	ug/L
Sc 45	463094	428879	1.42		ug/L
V 51	6917	6816	3.43	0.009	ug/L
V-1 51	5584	4463	3.69	-0.022	ug/L
Cr 52	20686	19209	0.22	-0.009	ug/L
Cr 53	1914	1519	4.52	-0.079	ug/L
Mn 55	5964	8998	13.05	0.073	ug/L
Co 59	598	370	2.49	-0.005	ug/L
Ni 60	886	349	7.91	-0.056	ug/L
Ni 62	-20173	-19796	0.04	-0.627	ug/L
Cu 63	12791	8485	1.41	-0.181	ug/L
Cu 65	6061	4125	1.23	-0.165	ug/L
Zn 66	3175	3046	3.18	0.011	ug/L
Zn 67	735	699	5.57	0.007	ug/L
Zn 68	2465	2236	2.63	-0.022	ug/L
> Ge 72	907488	854223	0.65		ug/L
「 As 75	-403	-382	11.05	0.002	ug/L
As-1 75	296	229	16.67	-0.011	ug/L
Se 77	395	357	9.32	-0.060	ug/L
Se 82	193	202	3.16	0.027	ug/L
Y 89	749932	704542	0.00		ug/L
Mo 95	52	105	6.91	0.005	ug/L
Mo 97	32	77	3.90	0.007	ug/L
Mo 98	72	166	3.32	0.006	ug/L
Ag 107	288	106	14.68	-0.006	ug/L

Page 1

Sample ID: i6-286 mb

Report Date/Time: Tuesday, June 27, 2006 11:54:00

	Ag	109	223	124	26.23	-0.003	-	
	Cd	106	908	840	3.47	-0.060	ug/L	
ĺ	Cd	108	1	-10	38.37	-0.022	_	
ĺ	Cd	111	734	661	4.02			
i	Cd	114	141	34	21.10	-0.006	ug/L	
i>		115	806560	781141	0.24		ug/L	
i	Sb	121	242	420	9.27	0.009		
ĺ	Sb	123	186	332	15.34	0.009	ug/L	
i	Ba	135	325	91	15.54	-0.037	ug/L	
i	Ва	137	563	161	14.93	-0.037	ug/L	
ī	Tb	159	1187362	1133820	1.06		ug/L	
i,		165	1212300	1163198	2.14		ug/L	
1	Hg	201	98	95	17.86	8.960		
i	Hg	202	210	205	3.45	2.974		
i	TI	203	52	46	20.20	-0.000		
1	TI	205	112	113	11.26	0.000	ug/L	
i	Pb	208	6710	5053	1.02	-0.013		
i	Bi	209	821507	783883	1.67	0,0,0	ug/L	
l l	Th	232	1933	7017	25.19	0.054		
l l	Ü	238	373	44	6.43	-0.003	ug/L	
L		56	6645286	6496097	0.07	0.000	ug/L	
	Fe			4	35.36		ug/L	
	Ru	101	4					
	ArCl	77	381	360	5.70		ug/L	
	Kr	84	931	969	1.49		ug/L	
	Sn	118	870	776	7.47		ug/L	
	OC Ca	Iculated V	/aluee					
	ac ou	iculated v	uiucs					
	Mass Analy		% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Differe	nce
Ĺ	Mass Analy 6 Li			ecovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Differen	nce
[!	Mass Analy 6 Li 9 Be			ecovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Differe	nce
[Mass Analy 6 Li 9 Be 27 Al			ecovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Differe	nce
	Mass Analy 6 Li 9 Be 27 Al 45 Sc			lecovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Differe	nce
[Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V			ecovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Differe	nce
[Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1			lecovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Differe	nce
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V			tecovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Differe	nce
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr			tecovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Differe	nce
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co			tecovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Differe	nce
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni			lecovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Differe	nce
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni			lecovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Differe	nce
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu			tecovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Differe	nce
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu			tecovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Differe	nce
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn			tecovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Differe	nce
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn			tecovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Differe	nce
[Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn			ecovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Differe	nce
<u> </u>	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As				Dilution % Diff	erence	Duplicate Rel. % Differe	nce
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1				Dilution % Diff	erence	Duplicate Rel. % Differe	nce
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se				Dilution % Diffe	erence	Duplicate Rel. % Differe	nce
^^	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se				Dilution % Diffe	erence	Duplicate Rel. % Differen	nce
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y				Dilution % Diffe	erence	Duplicate Rel. % Differen	nce
[^	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo				Dilution % Diffe	erence	Duplicate Rel. % Differen	nce
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo				Dilution % Diffe	erence	Duplicate Rel. % Differen	nce
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo				Dilution % Diffe	erence	Duplicate Rel. % Differen	nce
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo				Dilution % Diffe	erence	Duplicate Rel. % Differen	nce
L ^	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd				Dilution % Diffe	erence	Duplicate Rel. % Differen	nce
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag				Dilution % Diffe	erence	Duplicate Rel. % Differen	nce

Sample ID: i6-294 mb

Sample Date/Time: Tuesday, June 27, 2006 16:52:48

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\i6-294 mb.054

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 80 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	57896	0.99		ug/L
	Be	9	7	6	94.28	0.001	ug/L
1	Al	27	50334	150916	5.59	6.012	ug/L
1	Sc	45	463094	330363	0.19		ug/L
1	V	51	6917	-7984	44.28	-0.481	ug/L
	V-1	51	5584	191347	0.70	6.882	ug/L
1	Cr	52	20686	19338	0.47	0.200	ug/L
	Cr	53	1914	65149	1.77	23.446	ug/L
Ì		55	5964	9595	0.32	0.153	ug/L
	Co	59	598	290	11.22	-0.005	ug/L
1	Ni	60	886	3306	1.60	0.409	ug/L
1	Ni	62	-20173	-15321	1.62	-0.978	ug/L
F	Cu	63	12791	7056	0.57	-0.138	ug/L
1	Cu	65	6061	3279	2.89	-0.144	ug/L
1	Zn	66	3175	3958	2.63	0.418	ug/L
1	Zn	67	735	4724	3.68	6.018	ug/L
1	Zn	68	2465	3428	1.44	0.577	ug/L
L>	Ge	72	907488	646377	0.14		ug/L
Γ	As	75	-403	-941	6.79	-0.142	ug/L
1	As-1	75	296	8190	0.95	1.847	ug/L
1	Se	77	395	3004	1.62	7.612	ug/L
1	Se	82	193	165	14.57	0.028	ug/L
1	Υ	89	749932	541509	1.25		ug/L
1	Mo	95	52	139	7.55	0.012	ug/L
İ	Mo	97	32	87	2.34	0.012	ug/L
1	Мо	98	72	202	11.49	0.011	ug/L
	Ag	107	288	212	1.33	-0.001	ug/L

Page 1

Sample ID: i6-294 mb

Report Date/Time: Tuesday, June 27, 2006 16:54:51

	1	Ag	109	223	180	5.50	0.000	ug/L	
	i	Cd	106	908	562	3.90	-0.295	ug/L	
	i	Cd	108	1	-224	4.42	-0.559	ug/L	
	i	Cd	111	734	612	1.40	0.005	ug/L	
	i	Cd	114	141	45	28.72	-0.005	ug/L	
	¦>	in	115	806560	638924	1.08		ug/L	
	<u> </u>	Sb	121	242	5454	23.01	0.311	=	
	i	Sb	123	186	4152	23.80	0.304		
	i	Ba	135	325	571	54.98	0.064		
		Ba	137	563	1001	35.60	0.064		
	Ľ.	Tb	159	1187362	880028	0.77		ug/L	
	1	Но	165	1212300	898373	0.74		ug/L	
	>	Hg	201	98	108	15.13	345.640		
	i	Hg	202	210	278	6.10	135.453		
	ł	TI	203	52	297	11.69	0.011		
	i	TI	205	112	725	6.24	0.011		
	1	Pb	208	6710	15162	8.29	0.127		
	i	Bi	209	821507	575375	0.24	0.121	ug/L	
	1	Th	232	1933	703	2.52	-0.010		
	i	Ü	238	373	79	13.51	-0.003	ug/L	
	L	Fe	56	6645286	5173900	1.51	-0.000	ug/L	
		Ru	101	4	10	7.44		ug/L	
		ArCl	77	381	3055	0.79		ug/L	
		Kr	84	931	650	3.46		ug/L	
			118			1.35			
		Sn		870	9577	1.55		ug/L	
		QC Calc							
		Mass Analyte	UC 6H	O/ December 1st Ctd O/	Deserve College/ Deservent			Dualizata Dal 0/ Difference	
	_		QC Siu	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference	3
1	Γ	6 Li	QC Siu	% Recovery Int Sta %	Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rei. % Dinerence	8
	[6 Li 9 Be	QC Siu	% Recovery Int Sta %	Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Ref. % Difference	3
	[6 Li 9 Be 27 Al	QC Siu	% Recovery Int Sta %	Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rei. % Difference	8
	[6 Li 9 Be	QC Siu	% Recovery Int Sta %	Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rei. % Difference	а
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1	QC Siu	% Recovery Int Sta %	Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rei. % Difference	а
	 	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr	QC Siu	% Recovery Int Sta %	Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rei. % Difference	в
	 	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr	GO SILI	% Recovery Int Sta %	Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Ref. % Difference	в
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55	GO SILI	% Recovery Int Sta %	Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Ref. % Difference	а
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co	GO SILI	% Recovery Int Sta %	Recovery Spike % Recovery	Dilution % Diffe	erence	Dupitcate Ref. % Difference	8
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co 60 Ni	QC Su	% Recovery Int Sta %	Recovery Spike % Recovery	Dilution % Diffe	erence	Dupitcate Ref. % Difference	e
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co	QC Su	% Recovery Int Sta %	Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Ref. % Difference	е
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co 60 Ni 62 Ni 63 Cu 65 Cu	QC Su	% Recovery Int Sto %	Recovery Spike % Recovery	Dilution % Diffe	erence	Dupitcate Ref. % Difference	e
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn	GO SILI	% Recovery Int Sta %	Recovery Spike % Recovery	Dilution % Diffe	erence	Dupitcate Ref. % Difference	e
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn	GO SILI	% Recovery Int Sto %	Recovery Spike % Recovery	Dilution % Diffe	erence	Dupitcate Ref. % Difference	e
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn	GO SILI	% Recovery Int Sto %		Dilution % Diffe	erence	Dupitcate Ref. % Difference	e
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge	QC Su	% Recovery Int Sto %	71.227	Dilution % Diffe	erence	Dupitcate Ref. % Difference	8
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co 60 Ni 62 Ni 63 Cu 66 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As	GC Stu	% Recovery Int Sto %		Dilution % Diffe	erence	Dupitcate Ref. % Difference	
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge	QC Su	% Recovery Int Sto %		Dilution % Diffe	erence	Dupitcate Ref. % Difference	
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se	GC Stu	% Recovery Int Sto %		Dilution % Diffe	erence	Dupitcate Ref. % Difference	e
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y	GC Stu	% Recovery Int Sto %		Dilution % Diffe	erence	Dupitcate Ref. % Difference	e
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo	QC Su	% Recovery Int Sto %		Dilution % Diffe	erence	Dupitcate Ref. % Difference	e
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo	GC Stu	% Recovery Int Sto %		Dilution % Diffe	erence	Dupitcate Ref. % Difference	e
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo	GC Stu	% Recovery Int Sto %		Dilution % Diffe	erence	Dupitcate Ref. % Difference	e
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag	GC Stu	% Recovery Int Sto %		Dilution % Diffe	erence	Dupitcate Ref. % Difference	e
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo	GC Stu	% Recovery Int Sto %		Dilution % Diffe	erence	Dupitcate Ref. % Difference	e
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd 108 Cd	GC Stu	% Recovery Int Sto %		Dilution % Diffe	erence	Duplicate Rel. % Difference	e
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd	GC Stu	% Recovery Int Sto %		Dilution % Diffe	erence	Duplicate Ref. % Difference	e

1	114	Cd				
>	115	ln				79.216
	121	Sb				
1	123	Sb				
1	135	Ва				
Ĺ	137	Ва				
ſ	159	Tb				
>	165	Ho				74.105
ĺ	201	Hg				
1	202	Hg				
1	203	TI				
1	205	TI				
Ì	208	Pb				
İ	209	Bi				
1	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCI				
	84	Kr				

118 Sn

Sample ID: i6-294 lcs

Sample Date/Time: Tuesday, June 27, 2006 16:56:33

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2

Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\i6-294 lcs.055

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 81 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

Intensities

Mana Intona DCD

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	57692	0.00		ug/L
	Be	9	7	10282	2.18	6.491	ug/L
1	Al	27	50334	73029	18.36	1.909	ug/L
1	Sc	45	463094	326999	0.78		ug/L
	V	51	6917	796539	1.39	29.240	ug/L
	V-1	51	5584	1053628	0.12	38.228	ug/L
1	Cr	52	20686	1215186	1.17	51.692	ug/L
}	Cr	53	1914	218685	1.20	79.209	ug/L
	Mn	55	5964	7084	2.37	0.080	ug/L
	Co	59	598	633751	0.26	20.910	ug/L
1	Ni	60	886	175615	0.81	26.524	ug/L
1	Ni	62	-20173	11555	0.06	26.529	ug/L
	Cu	63	12791	782383	0.81	51.505	ug/L
	Cu	65	6061	368959	1.51	50.057	ug/L
	Zn	66	3175	216467	0.56	52.331	ug/L
	Zn	67	735	39835	1.24	55.834	ug/L
	Zn	68	2465	154197	0.08	52.132	ug/L
L>	Ge	72	907488	651839	0.34		ug/L
Γ	As	75	-403	41535	0.51	9.559	ug/L
	As-1	75	296	51954	0.20	11.991	ug/L
1	Se	77	395	5394	0.51	14.347	ug/L
	Se	82	193	2521	0.56	5.194	ug/L
I	Υ	89	749932	549402	0.89		ug/L
i	Мо	95	52	158	31.48	0.014	ug/L
	Мо	97	32	63	15.16	0.007	ug/L
	Мо	98	72	198	7.29	0.010	ug/L
I	Ag	107	288	226164	0.17	8.927	ug/L

Page 1

Sample ID: i6-294 lcs

Report Date/Time: Tuesday, June 27, 2006 16:58:36

1	А	\g	109	223	217390	1.45	8.958	ug/L	
i		.g Cd	106	908	5996	2.77	9.889	ug/L	
i		Cd	108	1	3766	3.07	9.323	ug/L	
i		Cd	111	734	60720	0.26	10.432	ug/L	
i		Cd	114	141	141690	0.86	10.256	ug/L	
i		n	115	806560	639935	1.09		ug/L	
i		 Sb	121	242	322821	2.23	19.092		
i		Sb	123	186	246407	2.67	18.691	ug/L	
i		3a	135	325	247633	0.20	50.477		
i		3a	137	563	428995	1.95	49.714		
ו ר	-	Γb	159	1187362	888004	0.80		ug/L	
i		Но	165	1212300	906425	0.51		ug/L	
¦		-io ⊣g	201	98	132	6.43	575.579		
		ig ⊣g	202	210	266	1.06	119.622		
 		rg Tl	203	52	120831	1.01	4.905		
1		 ГI	205	112	287474	2.34	4.849		
1		 Pb	208	6710	1616189	0.79	19.924	_	
1		3i	209	821507	570256	0.95		ug/L	
1		Σi Th⇒	232	1933	670	13.84	-0.011	*	
l I		U.	238	373	85	14.23	-0.003	_	
ı	-	F e	56	6645286	4998604	0.18	0.000	ug/L	
		Ru	101	4	7	40.41		ug/L	
		ArCI	77	381	5387	0.87		ug/L	
		Kr	84	931	661	1.09		ug/L	
		Sn	118	870	5573	2.04		ug/L	
		QC Calc			••••			-0 -	
	•	QU Calc	ulated	Values					
	14-		00.00	td 0/ December - Int Cto	19/ Bassyany Chika 9/ Bassya	on Cilution 9/ Diff	oronco	Dunlicate Rel % Difference	
Г	Ма	iss Analyte	QC S	td % Recovery Int Sto	1 % Recovery Spike % Recove	ery Dilution % Diffe	erence	Duplicate Rel. % Difference	t
ſ	Ма	6 Li	QC S	td % Recovery Int Sto	1 % Recovery Spike % Recove	ery Dilution % Diffe	erence	Duplicate Rel. % Difference	ŀ
Г 			QC SI	td % Recovery Int Sto	1 % Recovery Spike % Recove	ery Dilution % Diff	erence	Duplicate Rel. % Difference	ŀ
[2	6 Li 9 Be 27 Al 45 Sc	QC S	td % Recovery Int Sto	I % Recovery Spike % Recove	ery Dilution % Diff	erence	Duplicate Rel. % Difference	ł
[: 	6 Li 9 Be 27 Al 45 Sc 51 V	QC SI	td % Recovery Int Sto	I % Recovery Spike % Recove	ery Dilution % Diff	erence	Duplicate Rel. % Difference	ł
	; ;	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1	QC Si	td % Recovery Int Sto	I % Recovery Spike % Recove	ery Dilution % Diff	erence	Duplicate Rel. % Difference	ŀ
[; ; ;	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr	QC Si	td % Recovery Int Sto	I % Recovery Spike % Recove	ery Dilution % Diff	erence	Duplicate Rel. % Difference	•
	; ; ;	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr	QC Si	td % Recovery Int Sto	I % Recovery Spike % Recove	ery Dilution % Diff	erence	Duplicate Rel. % Difference	•
	; ; ;	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn	QC Si	td % Recovery Int Sto	I % Recovery Spike % Recove	ery Dilution % Diff	erence	Duplicate Rel. % Difference	•
	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co	QC Si	td % Recovery Int Sto	I % Recovery Spike % Recove	ery Dilution % Diff	erence	Duplicate Rel. % Difference	,
	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni	QC Si	td % Recovery Int Sto	I % Recovery Spike % Recove	ery Dilution % Diff	erence	Duplicate Rel. % Difference	•
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu	QC Si	td % Recovery Int Sto	I % Recovery Spike % Recove	ery Dilution % Diff	erence	Duplicate Rel. % Difference	•
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu	QC Si	td % Recovery Int Sto	I % Recovery Spike % Recove	ery Dilution % Diff	erence	Duplicate Rel. % Difference	•
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn	QC Si	td % Recovery Int Sto	I % Recovery Spike % Recove	ery Dilution % Diff	erence	Duplicate Rel. % Difference	•
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn	QC Si	td % Recovery Int Sto	I % Recovery Spike % Recove	ery Dilution % Diff	erence	Duplicate Rel. % Difference	•
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 69 Ni 62 Ni 63 Cu 66 Zn 667 Zn 68 Zn	QC Si	td % Recovery Int Sto		ery Dilution % Diff	erence	Duplicate Rel. % Difference	
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn	QC Si	td % Recovery Int Sto	I % Recovery Spike % Recovery	ery Dilution % Diff	erence	Duplicate Rel. % Difference	•
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 69 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge	QC Si	td % Recovery Int Sto		ery Dilution % Diff	erence	Duplicate Rel. % Difference	•
<u> </u>		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se	QC Si	td % Recovery Int Sto		ery Dilution % Diff	erence	Duplicate Rel. % Difference	•
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se	QC Si	td % Recovery Int Sto		ery Dilution % Diff	erence	Duplicate Rel. % Difference	•
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 88 Y	QC Si	td % Recovery Int Sto		ery Dilution % Diff	erence	Duplicate Rel. % Difference	•
<u> </u>		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo	QC Si	td % Recovery Int Sto		ery Dilution % Diff	erence	Duplicate Rel. % Difference	•
<u> </u>		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo	QC Si	td % Recovery Int Sto		ery Dilution % Diff	erence	Duplicate Rel. % Difference	•
<u> </u>		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo	QC Si	td % Recovery Int Sto		ery Dilution % Diff	erence	Duplicate Rel. % Difference	•
	2 2 3 3 4 3 4 6 6 6 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6 Li 9 Be 27 AI 45 Sc 51 V 51 V-1 52 Cr 53 Mn 59 Co 60 Ni 62 Cu 663 Cu 664 Zn 665 Zn 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 07 Ag 09 Ag	QC Si	td % Recovery Int Sto		ery Dilution % Diff	erence	Duplicate Rel. % Difference	•
	2 2 3 3 4 3 4 6 6 6 6 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 88 Y 95 Mo 97 Mo 98 Mo 07 Ag	QC Si	td % Recovery Int Sto		ery Dilution % Diff	erence	Duplicate Rel. % Difference	•

111 Cd

1	114	Cd	
>	115	In	79.341
ĺ	121	Sb	
i	123	Sb	
İ	135	Ва	
Ĺ	137	Ва	
Ī	159	Tb	
>	165	Но	74.769
	201	Hg	
	202	Hg	
1	203	TI	
1	205	П	
	208	Pb	
	209	Bi	
	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77		
	84		
	118	Sn	

Sample ID: 25 ppb i1-57a

Sample Date/Time: Tuesday, June 27, 2006 17:00:17

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\25 ppb i1-57a.056

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 5 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	62333	2.10		ug/L
	Be	9	7	53831	0.50	30.110	ug/L
j	Al	27	50334	619510	1.21	26.553	ug/L
1	Sc	45	463094	372540	0.47		ug/L
ĺ	V	51	6917	763935	0.16	24.811	ug/L
1	V-1	51	5584	819211	0.40	26.280	ug/L
	Cr	52	20686	676313	1.19	25.158	ug/L
1	Cr	53	1914	94379	0.96	29.968	ug/L
	Mn	55	5964	1042715	0.23	26.116	ug/L
	Co	59	598	853982	0.08	24.959	ug/L
1	Ni	60	886	188551	0.01	25.219	ug/L
	Ni	62	-20173	12402	1.70	25.948	ug/L
	Cu	63	12791	431635	0.37	24.855	ug/L
	Cu	65	6061	205918	0.62	24.442	ug/L
	Zn	66	3175	121132	0.69	25.655	ug/L
	Zn	67	735	23930	0.45	29.358	ug/L
	Zn	68	2465	86592	0.48	25.625	ug/L
L>	Ge	72	907488	735947	0.16		ug/L
Γ	As	75	-403	113616	1.90	23.008	ug/L
	As-1	75	296	113456	1.00	23.198	ug/L
-	Se	7 7	395	10345	0.92	24.937	ug/L
	Se	82	193	12743	1.07	24.365	ug/L
	Υ	89	749932	620754	0.97		ug/L
i	Мо	95	52	217810	0.93	22.841	ug/L
	Мо	97	32	136238	1.01	22.987	ug/L
ļ	Мо	98	72	351365	0.86	23.001	ug/L
ı	Ag	107	288	677506	0.65	23.653	ug/L

Page 1

Sample ID: 25 ppb i1-57a

Report Date/Time: Tuesday, June 27, 2006 17:02:21

1	Ag	109	223	655520	0.75	23.892	-
i	Cd	106	908	15684	0.58	24.643	
i	Cd	108	1	11413	1.06	24.984	=
i	Cd	111	734	166195	0.47	25.382	=
i	Cd	114	141	393267	0.30	25.173	ug/L
į:		115	806560	723902	0.12		ug/L
i	Sb	121	242	491537	1.73	25.698	
i	Sb	123	186	378849	0.57	25.403	_
ĺ	Ва	135	325	134557	1.09	24.218	
L	Ва	137	563	235540	0.52	24.104	=
Γ	Tb	159	1187362	1018545	0.09		ug/L
- [:	> Ho	165	1212300	1047043	0.35		ug/L
	Hg	201	98	128	7.21	363.915	
	Hg	202	210	290	0.73	102.736	
- 1	TI	203	52	689205	0.63	24.225	
1	TI	205	112	1619752	1.12	23.658	
- 1	Pb	208	6710	2240825	0.18	23.926	
1	Bi	209	821507	659485	1.17		ug/L
1	Th	232	1933	1902635	0.07	22.338	
L	U	238	373	1930612	0.69	22.773	
	Fe	56	6645286	5256031	1.59		ug/L
	Ru	101	4	8	66.00		ug/L
	ArCl	77	381	10334	2.08		ug/L
	Kr	84	931	677	1.87		ug/L
	Sn	118	870	1976	1.65		ug/L
	റെ റ	Calculated \	Valuae				
	40 0	aiculateu	values				
	Mass An			% Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Difference
ŗ	Mass An 6 Li	alyte QC Std		% Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Difference
ſ	Mass An 6 Li 9 Be	alyte QC Std		% Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Difference
Γ 	Mass An 6 Li 9 Be 27 Al	alyte QC Std		% Recovery Spike % Recovery	Dilution % Dif	rerence	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc	alyte QC Std		% Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al	alyte QC Std		% Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr	alyte QC Std		% Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr	alyte QC Std		% Recovery Spike % Recovery	Dilution % Dif	rerence	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mn	alyte QC Std		% Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mn 59 Co	alyte QC Std		% Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mn 59 Co 60 Ni	alyte QC Std		% Recovery Spike % Recovery	Dilution % Dif	rerence	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mn 59 Co	alyte QC Std		% Recovery Spike % Recovery	Dilution % Dif	rerence	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu	alyte QC Std		% Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn	alyte QC Std		% Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn	alyte QC Std		% Recovery Spike % Recovery	Dilution % Diff	rerence	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn	alyte QC Std			Dilution % Diff	rerence	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge	alyte QC Std		% Recovery Spike % Recovery 81.097	Dilution % Diff	rerence	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As	alyte QC Std			Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Se	alyte QC Std			Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Se 82 Se	alyte QC Std			Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Se 82 Se 89 Y	alyte QC Std			Dilution % Diff	rerence	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 63 Cu 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo	alyte QC Std			Dilution % Diff	rerence	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo	alyte QC Std			Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 63 Cu 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo	alyte QC Std			Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 98 Mo	alyte QC Std			Dilution % Diff	ference	Duplicate Rel. % Difference

108 Cd 111 Cd

	114	Cd				
>	115	ln				89.752
1	121	Sb				
1	123	Sb				
1	135	Ва				
Ĺ	137	Ba				
Ī	159	Tb				
>	165	Но				86.368
1	201	Hg				
1	202	Hg				
İ	203	TI				
Ì	205	TI				
1	208	Pb				
1	209	Bi				
ı	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCl				
	84	Kr				
	118	Sn				

Sample ID: 606247-01

Sample Date/Time: Tuesday, June 27, 2006 17:04:02

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-01.057

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 82 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.94

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	58651	1.11		ug/L
	Be	9	7	828	4.02	0.487	ug/L
1	Al	27	50334	174081238	0.79	8454.196	ug/L
1	Sc	45	463094	391612	0.29		ug/L
	V	51	6917	814599	0.46	28.043	ug/L
1	V-1	51	5584	986905	1.20	33.564	ug/L
1	Cr	52	20686	353201	0.36	13.661	ug/L
	Cr	53	1914	95208	0.43	32.069	ug/L
	Mn	55	5964	7611981	0.69	202.653	ug/L
	Co	59	598	274807	2.67	8.493	ug/L
	Ni	60	886	196413	0.27	27.826	ug/L
	Ni	62	-20173	[-3872815]	[81.52]	[-3675.024]	ug/L
1	Cu	63	12791	260096	0.14	15.671	ug/L
	Cu	65	6061	130435	0.32	16.230	ug/L
1	Zn	66	3175	1137321	0.59	260.021	ug/L
1	Zn	67	735	174965	1.12	232.330	ug/L
1	Zn	68	2465	791652	0.27	253.307	ug/L
L>	Ge	72	907488	653473	0.66		ug/L
Γ	As	75	-403	21071	4.02	4.632	ug/L
	As-1	75	296	29499	1.68	6.435	ug/L
	Se	77	395	3005	0.92	7.215	ug/L
1	Se	82	193	328	13.80	0.367	ug/L
1	Υ	89	749932	875153	0.27		ug/L
- 1	Мо	95	52	5817	5.67	0.650	ug/L
	Мо	97	32	3587	3.30	0.645	ug/L
1	Мо	98	72	9563	5.74	0.668	ug/L
1	Ag	107	288	4420	15.13	0.157	ug/L

Page 1

Sample ID: 606247-01

Report Date/Time: Tuesday, June 27, 2006 17:06:05

1	Ag	109	223	4436	10.53	0.167	ug/L	
i	Cd	106	908	3786	2.41	5.462	ug/L	
- 1	Cd	108	1	652	12.15	1.530	ug/L	
i	Cd	111	734	10148	1.90	1.574	ug/L	
i	Cd	114	141	19129	1.14	1.306	ug/L	
>	1.	115	806560	634278	0.28		ug/L	
1	Sb	121	242	23197	5.66	1.291		
i	Sb	123	186	17604	7.30	1.257		
i	Ba	135	325	219618	1.95	42.449		
i	Ba	137	563	385534	0.70	42.369	_	
Ļ	Tb	159	1187362	917531	0.99		ug/L	
		165	1212300	933920	1.61		ug/L	
>	Hg	201	98	478	12.72	3596.551		
ŀ	Hg	202	210	1140	1.05	979.067	_	
l	TI	203	52	1588	12.20	0.057		
l I	ΤΙ	205	112	4051	6.27	0.061		
i	Pb	208	6710	21361563	0.33	240.967	=	
- 1	Bi	209	821507	582624	0.02	210.00.	ug/L	
- 1	Th	232	1933	91984	4.47	1.120	ug/L	
1	Ü	238	373	26268	1.30	0.323	ug/L	
L	Fe	238 56	6645286	\$	s	0.020	ug/L	
	Ru	101	4	8	9.43		ug/L	
	ArCl	77	381	2963	2.53		ug/L	
	Kr	84	931	-1232	24.75		ug/L	
	Sn	118	870	37660	2.56		ug/L	
		alculated V		37000	2.50		ugre	
г	Mass Anal	yte QC Std %	6 Recovery Int Std %	Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference	æ
l I	6 Li 9 Be							
i	27 AI							
i	45 Sc							
İ	51 V							
	• • •							
-	51 V-1							
	51 V-1 52 Cr							
	51 V-1 52 Cr 53 Cr							
	51 V-1 52 Cr 53 Cr 55 Mn							
	51 V-1 52 Cr 53 Cr 55 Mn 59 Co							
	51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni							
	51 V-1 52 Cr 53 Cr 55 Mn 59 Co							
	51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu							
	51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn							
	51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn							
	51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn			72.000				
	51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge			72.009				
	51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As			72.009				
	51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1			72.009				
	51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As			72.009				
	51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y			72.009				
	51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo			72.009				
	51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo			72.009				
	51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo			72.009				
<u> </u>	51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag			72.009				
	51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag			72.009				
	51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd			72.009				
	51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag			72.009				

1	114	Cd			
>	115	in			78.640
İ	121	Sb			
i	123	Sb			
i	135	Ва			
Ĺ	137	Ва			
Ī	159	Tb			
>	165	Ho			77.037
1	201	Hg			
1	202	Hg			
	203	TI			
ĺ	205	TI			
ĺ	208	Pb			
Ì	209	Bi			
	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			
	118	Sn			

Sample ID: i6-294 ms 606247-01

Sample Date/Time: Tuesday, June 27, 2006 17:07:46

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2
Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam
Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\i6-294 ms 606247-01.058

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 83 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.94

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	57472	1.31		ug/L
	Be	9	7	10826	2.01	6.529	ug/L
	Al	27	50334	188289988	0.78	9317.251	ug/L
	Sc	45	463094	394811	0.46		ug/L
	V	51	6917	1595782	0.24	56.146	ug/L
	V-1	51	5584	1818861	0.28	63.151	ug/L
1	Cr	52	20686	1462921	0.67	59.589	ug/L
1	Cr	53	1914	237026	1.26	82.074	ug/L
	Mn	55	5964	7851930	1.37	212.991	ug/L
Ì	Co	59	598	867636	0.40	27.354	ug/L
1	Ni	60	886	348609	0.84	50.394	ug/L
	Ni	62	-20173	-1577652	0.03	-1521.389	ug/L
	Cu	63	12791	931402	1.27	58.698	ug/L
	Cu	65	6061	448729	1.05	58.295	ug/L
	Zn	66	3175	1038543	0.44	241.892	ug/L
	Zn	67	735	165695	1.17	224.152	ug/L
1	Zn	68	2465	726231	0.26	236.737	ug/L
L>	Ge	72	907488	641361	1.01		ug/L
Γ	As	75	-403	57786	2.09	12.783	ug/L
	As-1	75	296	67546	1.32	15.039	ug/L
	Se	77	395	4914	0.29	12.541	ug/L
1	Se	82	193	2355	6.40	4.658	ug/L
	Υ	89	749932	878846	2.08		ug/L
1	Мо	95	52	4730	0.64	0.536	ug/L
1	Мо	97	32	2875	3.93	0.524	ug/L
1	Мо	98	72	7520	0.44	0.533	ug/L
1	Ag	107	288	210689	0.52	8.014	ug/L

Page 1

Sample ID: i6-294 ms 606247-01

Report Date/Time: Tuesday, June 27, 2006 17:09:49

	Δα	109	223	204659	0.75	8.127	ug/L
1	Ag Cd	106	908	7918	3.82	13.031	ug/L
	Cd	108	1	3581	1.22	8.542	
1	Cd	111	734	61978	0.16	10.266	
	Cd	114	141	141077	1.26	9.840	
1		115	806560	624293	2.17		ug/L
	> In Sb	121	242	311036	0.80	17.727	
	Sb	123	186	238544	2.73	17.441	
	Ba	135	325	464853	0.11	91.364	
	Ba	137	563	812344	0.54	90.773	=
	Tb	159	1187362	920088	0.44		ug/L
	> Ho	165	1212300	930314	1.15		ug/L
	Hg	201	98	254	3.90	1606.160	
	Hg	202	210	620	2.40	460.846	-
	TI	203	52	115562	1.43	4.296	
	TI	205	112	275080	0.95	4.250	
	Pb	208	6710	17340240	0.18	196.336	
	Bi	209	821507	576040	0.84		ug/L
	Th	232	1933	81824	2.17	0.999	
	U	238	373	25598	0.03	0.316	
	Fe	56	6645286	533762549	0.09		ug/L
	Ru	101	4	11	25.71		ug/L
	ArCl	77	381	5040	0.42		ug/L
	Kr	84	931	-537	5.16		ug/L
	Sn	118	870	47516	1.12		ug/L
							·
	Ulli	Caicillateo	values				
		Calculated Calculated		Recovery Snike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
٦	Mass A	nalyte QC Std		Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
[nalyte QC Sto		Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
[Mass A 6 Li 9 B 27 A	nalyte QC Sto i e I		Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
[Mass A 6 Li 9 B 27 A 45 S	nalyte QC Sto i e I c		Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
	Mass A 6 Li 9 B 27 A 45 S 51 V	nalyte QC Sto i e I c		Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
	Mass A 6 Li 9 B 27 A 45 S 51 V	nalyte QC Sto i e I c		Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
	Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C	nalyte QC Sto i e I c -1		Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
	Mass A 6 Li 9 B 27 A 45 S 51 V	nalyte QC Sto i e I c -1 r		Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
	Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 55 M	nalyte QC Sto i e I c -1 r r in		Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
	Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 55 M 59 C	nalyte QC Sto i e I c -1 r r in o		Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
	Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 55 M 59 C 60 N 62 N	nalyte QC Sto i e l c -1 r r i i		Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
	Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 55 M 59 C 60 N 62 N 63 C	nalyte QC Sto i e I c -1 r r r i i i		Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
	Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 55 M 59 C 60 N 62 N 63 C	nalyte QC Sto i e l c -1 r r r in o i i		Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
	Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 55 M 59 C 60 N 62 N 63 C	nalyte QC Sto i e l c -1 r r r in o i i u u		Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
	Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 55 M 69 C 60 N 62 N 63 C 65 C 66 Z 67 Z 68 Z	nalyte QC Sto			Dilution % Di	fference	Duplicate Rel. % Difference
	Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 55 M 59 C 60 N 62 N 63 C 65 C 66 Z 67 Z 68 Z	nalyte QC Sto		Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
	Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 55 M 59 C 60 N 62 N 63 C 65 C 66 Z 67 Z 68 Z 72 G	nalyte QC Sto			Dilution % Di	fference	Duplicate Rel. % Difference
	Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 55 M 59 C 60 N 62 N 63 C 66 Z 67 Z 68 Z 72 G	nalyte QC Sto			Dilution % Di	fference	Duplicate Rel. % Difference
	Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 55 M 69 C 60 N 62 N 63 C 66 Z 67 Z 68 Z 72 G 75 A 77 S	nalyte QC Sto			Dilution % Di	fference	Duplicate Rel. % Difference
	Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 55 M 59 C 60 N 62 N 63 C 66 Z 67 Z 68 Z 72 G	nalyte QC Sto			Dilution % Di	fference	Duplicate Rel. % Difference
	Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 55 M 69 C 60 N 62 N 63 C 66 Z 67 Z 68 Z 77 A 77 S 82 S	nalyte QC Sto			Dilution % Di	fference	Duplicate Rel. % Difference
	Mass Ai 6 Li 9 Bi 27 A 45 S 51 V 51 V 52 C 53 C 55 M 62 N 63 C 66 Z 67 Z 68 Z 75 Ai 77 S 82 S 89 Y 95 M	nalyte QC Sto			Dilution % Di	fference	Duplicate Rel. % Difference
	Mass Ai 6 Li 9 Bi 27 A 45 S 51 V 51 V 52 C 53 C 55 M 60 N 62 N 63 C 66 Zi 67 Zi 68 Zi 77 Si 77 Si 82 Si 89 Y 95 M 98 M	nalyte QC Sto			Dilution % Di	fference	Duplicate Rel. % Difference
	Mass Ai 6 Li 9 Bi 27 A 45 S 51 V 51 V 52 C 53 C 55 M 60 N 62 N 63 C 66 Zi 67 Zi 68 Zi 77 Ai 77 Si 82 Si 89 Y 95 M 97 M 98 M 107 Ai	nalyte QC Sto			Dilution % Di	fference	Duplicate Rel. % Difference
	Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 55 M 59 C 60 N 62 N 63 C 66 Zi 67 Zi 68 Zi 77 Si 82 Si 89 Y 95 M 97 M 98 M 107 A 109 A	nalyte QC Sto			Dilution % Di	fference	Duplicate Rel. % Difference
	Mass Ai 6 Li 9 Bi 27 A 45 S 51 V 51 V 52 C 53 C 55 M 60 N 62 N 63 C 66 Zi 67 Zi 68 Zi 77 Ai 77 Si 82 Si 89 Y 95 M 97 M 98 M 107 Ai	nalyte QC Sto			Dilution % Di	fference	Duplicate Rel. % Difference

111 Cd

1	444	\sim 1				
1	114	Ca				
>	115	In				77.402
ı	121	Sb				
1	123	Sb				
	135	Ва				
Ĺ	137	Ва				
Ī	159	Tb				
>	165	Но				76.740
	201	Hg				
	202	Hg				
	203	Τl				
1	205	TI				
1	208	Pb				
1	209	Bi				
1	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCI				
	84	Kr				
	118	Sn				

Report Date/Time: Tuesday, June 27, 2006 17:09:49

Sample ID: i6-294 dup 606247-01

Sample Date/Time: Tuesday, June 27, 2006 17:11:31

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\i6-294 dup 606247-01.059

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 84 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1 Solids Ratio: 0.94

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	56974	2.57		ug/L
ı	Be	9	7	817	1.90	0.488	ug/L
1	Al	27	50334	176478696	1.82	8698.493	ug/L
1	Sc	45	463094	386922	0.54		ug/L
ı	V	51	6917	817583	0.73	28.566	ug/L
1	V-1	51	5584	996863	0.46	34.411	ug/L
1	Cr	52	20686	354004	0.06	13.906	ug/L
1	Cr	53	1914	98848	0.17	33.814	ug/L
İ	Mn	55	5964	7647801	0.04	206.637	ug/L
1	Co	59	598	274796	0.51	8.620	ug/L
1	Ni	60	886	194627	0.13	27.984	ug/L
1	Ni	62	-20173	-1642936	1.18	-1578.578	ug/L
1	Cu	63	12791	258766	0.44	15.828	ug/L
1	Cu	65	6061	129195	1.05	16.317	ug/L
1	Zn	66	3175	1135345	1.65	263.425	ug/L
1	Zn	67	735	176813	0.85	238.300	ug/L
1	Zn	68	2465	797641	1.60	259.018	ug/L
L>	Ge	72	907488	643906	0.44		ug/L
Γ	As	75	-403	20839	1.18	4.612	ug/L
l	As-1	75	296	29812	0.42	6.547	ug/L
1	Se	77	395	3074	3.75	7.451	ug/L
- 1	Se	82	193	316	4.71	0.345	ug/L
- 1	Υ	89	749932	875250	0.28		ug/L
1	Мо	95	52	5028	1.37	0.565	ug/L
]	Мо	97	32	3122	0.88	0.564	•
l	Мо	98	72	8013	0.11	0.563	ug/L
	Ag	107	288	3511	8.56	0.124	ug/L

Page 1

Sample ID: i6-294 dup 606247-01

Report Date/Time: Tuesday, June 27, 2006 17:13:34

1							
	Ag	109	223	3633	4.63	0.136	=
-1	Cď	106	908	3900	1.26		_
i	Cd	108	1	657	0.68	1.550	
ĺ	Cd	111	734	10250	1.77	1.602	
-	Cd	114	141	19467	1.06	1.338	
>	In	115	806560	630231	1.51		ug/L
1	Sb	121	242	23729	9.94	1.331	
1	Sb	123	186	18631	7.99	1.340	
-	Ва	135	325	225783	0.56		
L	Ва	137	563	391754	0.28	43.336	
Γ	Tb	159	1187362	922288	1.38		ug/L
>	Но	165	1212300	933326	1.00	3239.554	ug/L
ļ	Hg	201	98	438	6.30 6.56	949.371	ug/L ug/L
ļ	Hg	202	210 52	1110 1539	1.38	0.056	
į į	TI TI	203 205	112	3680	1.63		
ŀ	Pb	208	6710	21894777	0.19	247.116	-
ŀ	Bi	209	821507	578629	0.24	217.110	ug/L
	Th	232	1933	82544	0.29	1.004	
¦	Ü	238	373	31036	26.06	0.383	ug/L
L	Fe	56	6645286	547942382	1.09	2,333	ug/L
	Ru	101	4	13	50.91		ug/L
	ArCl	77	381	3127	1.63		ug/L
	Kr	84	931	-1313	42.70		ug/L
	Sn	118	870	38662	0.82		ug/L
	QC Ca	alculated V	alues				
	Mass Anai	lyte QC Std %	6 Recovery Int Std % F	Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Difference
Γ	6 Li	•	•	, ,			
	O Li						
!	9 Be						
	9 Be 27 Al						
	9 Be 27 Al 45 Sc						
	9 Be 27 Al 45 Sc 51 V						
	9 Be 27 Al 45 Sc						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn			70.055			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge			70.955			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As			70.955			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge	I		70.955			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Se 82 Se			70.955			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Se 82 Se 89 Y			70.955			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Se 82 Se 89 Y 95 Mo			70.955			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo			70.955			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo			70.955			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo			70.955			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd			70.955			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag			70.955			

	114	Cd			
>	115	In			78.138
1	121	Sb			
Ì	123	Sb			
İ	135	Ba			
L	137	Ba			
Γ	159	Tb			
>	165	Но			76.988
1	201	Hg			
1	202	Hg			
1	203	TI			
1	205	TI			
	208	Pb			
	209	Bi			
1	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCI			
	84	Kr			
	118	Sn			

Sample ID: 606247-02

Sample Date/Time: Tuesday, June 27, 2006 17:15:16

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-02.060

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 85 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.74

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	57603	2.41		ug/L
Ì	Be	9	7	817	0.35	0.382	ug/L
1	Al	27	50334	242455011	0.25	9343.338	ug/L
1	Sc	45	463094	418515	0.84		ug/L
	V	51	6917	1302994	0.05	35.673	ug/L
	V-1	51	5584	1492673	0.11	40.337	ug/L
	Cr	52	20686	335962	1.06	10.290	ug/L
1	Cr	53	1914	98059	1.05	26.221	ug/L
Ì	Mn	55	5964	9118938	2.08	192.620	ug/L
	Co	59	598	299066	2.14	7.334	ug/L
	Ni	60	886	156323	0.76	17.557	ug/L
1	Ni	62	-20173	-1862535	0.85	-1400.385	ug/L
	Cu	63	12791	219607	1.86	10.429	ug/L
	Cu	65	6061	113430	1.68	11.142	ug/L
1	Zn	66	3175	116576	2.52	20.774	ug/L
	Zn	67	735	23523	0.66	24.303	ug/L
1	Zn	68	2465	72912	0.58	18.104	ug/L
L>	Ge	72	907488	648413	1.28		ug/L
Γ	As	75	-403	24979	0.72	4.357	ug/L
Ī	As-1	75	296	33535	0.76	5.823	ug/L
1	Se	77	395	3218	1.80	6.196	ug/L
	Se	82	193	470	6.48	0.529	ug/L
	Υ	89	749932	886741	1.09		ug/L
İ	Мо	95	52	3053	2.30	0.270	ug/L
1	Мо	97	32	1952	0.27	0.277	ug/L
1	Мо	98	72	4838	0.90	0.267	ug/L
1	Ag	107	288	2104	5.21	0.056	ug/L

Page 1

Sample ID: 606247-02

Report Date/Time: Tuesday, June 27, 2006 17:17:19

ı							
	Ag	109	223	2912	7.19	0.085	
i	Cď	106	908	5330	3.43	6.535	
i	Cd	108	1	1313	0.56	2.451	
i	Cd	111	734	2984	4.21	0.316	
i	Cd	114	141	736	3.52	0.034	ug/L
i>	In	115	806560	627935	1.81		ug/L
i	Sb	121	242	6011	8.63	0.260	ug/L
i	Sb	123	186	4637	8.82	0.257	ug/L
i	Ва	135	325	118844	1.17	18.249	ug/L
i	Ва	137	563	207238	0.14	18.095	ug/L
Ī	Tb	159	1187362	908795	0.78		ug/L
i>	Но	165	1212300	926868	0.21		ug/L
i	Hg	201	98	166	1.70	646.214	
i	Hg	202	210	352	2.81	152.061	
i	TI	203	52	1090	0.19	0.031	ug/L
i	TI	205	112	2627	1.00	0.031	
i	Pb	208	6710	163782	0.45	1.420	
i	Bi	209	821507	559089	2.65		ug/L
i	Th	232	1933	52510	0.24	0.501	
i	U	238	373	31661	0.02	0.309	_
L	Fe	56	6645286	619561248	0.84	-	ug/L
	Ru	101	4	9	24.96		ug/L
	ArCl	77	381	3119	3.67		ug/L
	Kr	84	931	-40	516.46		ug/L
	Sn	118	870	11452	0.08		ug/L
	QC Calc						•
	Mass Analyte			& Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Difference
Γ	6 Li	40 0.0 /	in old /	orreservery opinio /orreservery	2 // date // 2 //		zapiratio i territo de la constanti
İ	9 Be						
1	27 AI						
!	45 Sc						
!	51 V						
1	51 V/1						
1	51 V-1 52 Cr						
1	52 Cr						
	52 Cr 53 Cr						
	52 Cr 53 Cr 55 Mn 59 Co 60 Ni						
	52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni						
	52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu						
	52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu						
	52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn						
	52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn						
	52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn			71.451			
	52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As			71.451			
	52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1			71.451			
^ ^	52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se			71.451			
 	52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 75 Se 82 Se			71.451			
	52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y			71.451			
<u>-</u>	52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 75 As 75 Se 82 Se 89 Y 95 Mo			71.451			
	52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y			71.451			
	52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag			71.451			
	52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag			71.451			
	52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag			71.451			

111 Cd

1	114	Cd			
>	115	In			77.853
1	121	Şb			
Ì	123	Sb			
İ	135	Ва			
Ĺ	137	Ba			
ſ	159	Tb			
>	165	Но			76.455
	201	Hg			
	202	Hg			
	203	TI			
1	205	TI			
İ	208	Pb			
1	209	Bi			
1	232	Th			
Ĺ	238	U			
_	56	Fe			
	101	Ru			
	77	ArCI			
	84	Kr			
	118	Sn			

Sample ID: 606247-03

Sample Date/Time: Tuesday, June 27, 2006 17:19:00

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-03.061

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 86 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.74

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	59642	1.55		ug/L
1	Be	9	7	596	5.34	0.270	ug/L
1	Al	27	50334	157218409	1.14	5893.799	ug/L
	Sc	45	463094	387966	1.08		ug/L
	V	51	6917	675701	0.18	17.929	ug/L
	V-1	51	5584	873934	0.35	22.929	ug/L
1	Cr	52	20686	499965	1.35	15.109	ug/L
	Cr	53	1914	119788	0.49	31.228	ug/L
1	Mn	55	5964	7277826	1.14	149.541	ug/L
	Co	59	598	288484	0.06	6.883	ug/L
1	Ni	60	886	191525	0.67	20.940	ug/L
1	Ni	62	-20173	-1467404	0.63	-1070.865	ug/L
	Cu	63	12791	500749	0.33	23.690	ug/L
	Cu	65	6061	243489	0.93	23.751	ug/L
	Zn	66	3175	3898611	0.21	688.975	ug/L
	Zn	67	735	631105	0.50	648.248	ug/L
1	Zn	68	2465	2701335	1.35	668.161	ug/L
L>	Ge	72	907488	666528	1.29		ug/L
٢	As	75	-403	15084	0.30	2.499	ug/L
	As-1	75	296	23958	1.26	3.902	ug/L
!	Se	77	395	3171	0.60	5.701	ug/L
1	Se	82	193	307	0.00	0.230	ug/L
	Υ	89	749932	773074	0.08		ug/L
1	Мо	95	52	3872	0.29	0.322	ug/L
	Мо	97	32	2444	2.54	0.328	ug/L
	Мо	98	72	6398	0.59	0.333	ug/L
	Ag	107	288	1986	2.21	0.049	ug/L

Page 1

Sample ID: 606247-03

Report Date/Time: Tuesday, June 27, 2006 17:21:04

Г	Mass Analyte 6 Li	QC Std % R	ecovery	Int Std % R	lecovery	Spike % Re	ecovery	Dilution % Di	fference	Duplicat
		ulated Val								
	Sn	118		870		36572		0.40		ug/L
	Kr	84		931		53		731.21		ug/L
	ArCl	77		381		3088		3.60		ug/L
	Ru	101		4		16		26.52		ug/L
_	Fe	56	6645	286	489	9931596		0.61		ug/L
Ĺ	U	238		373		20686		0.97	0.192	ug/L
i	Th	232		933		39731		0.89	0.358	ug/L
i	Bi	209		507		657287		0.29		ug/L
i	Pb	208	6	5710	14	7948892		0.30	1261.929	ug/L
i	ΤΪ	205		112		1678		1.05	0.018	ug/L
-	TI	203		52		692		2.66	0.018	ug/L
i	Hg	202		210		1944		1.82	1344.360	ug/L
>	Hg	201	1212	98		861		2.79	5291.818	ug/L
1	Но	165	1212			972378		0.17		ug/L
L r	Tb	159	1187			947764		0.30	•	ug/L
l I	Ba	137		563		1152724		1.09	94.888	ug/L
ł	Ba	135		325		660174		0.69	95.586	ug/L
-	Sb	123		186		16752		1.36	0.894	ug/L
>	In Sb	121		242		22161		0.65	0.922	ug/L
- !	Cd	115	906	560		667119		1.00	0.011	ug/L
-	Cd	111 114		141		17900		2.29	0.914	ug/L
- !	Cd	108		734		9213		0.32	1.060	ug/L
ļ	Cd	106		1		245		41.56	0.429	ug/L
-	-			908		2588		2.18	2.446	ug/L
		400		000		2200		2.42	0.065	ug/L
1	Ag	109			223	223	223 2398	223 2398	223 2398 2.42	223 2398 2.42 0.065

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Г		Li	QO Old 70 Necovery	int old 70 Newvery	opino 70 Mecovery	Diadon / Dinerence	Duplicate Net. 78 Difference
i	9	Be					
i	27						
i		Sc					
i	51						
i		V-1					
		Cr .					
i		Cr					
i							
i		Со					
i	60						
i	62						
i		Cu					
1		Cu					
1	66	Zn					
ı	67	Zn					
1	68	Zn					
L>		Ge		73.448			
ſ		As					
1		As-1					
	77	Se					
ļ		Se					
!		Υ					
ļ		Мо					
	97	Мо					
1	98	Мо					
!	107	Ag					
1	109	Ag					
1	106						
l I	108						
i	111	Cu					

1	114	Cd			
>	115	In			82.712
1	121	Sb			
1	123	Sb			
1	135	Ba			
Ĺ	137	Ва			
Ī	159	Tb			
>	165	Но			80.209
1	201	Hg			
1	202	Hg			
1	203	TI			
1	205	TI			
1	208	Pb			
j	209	Bi			
	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCI			
	84	Kr			
	118	Sn			

Sample ID: 606247-04

Sample Date/Time: Tuesday, June 27, 2006 17:22:45

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2
Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-04.062

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 87 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.75

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	56298	0.32		ug/L
	Be	9	7	695	8.04	0.336	ug/L
	Al	27	50334	177014193	2.44	7075.216	ug/L
l	Sc	45	463094	387957	0.47		ug/L
	V	51	6917	812171	1.72	23.015	ug/L
	V-1	51	5584	1003979	1.21	28.108	ug/L
	Cr	52	20686	405624	1.14	13.001	ug/L
	Cr	53	1914	107954	0.50	29.990	ug/L
1	Mn	55	5964	7600217	0.23	166.536	ug/L
1	Co	59	598	295091	0.96	7.508	ug/L
	Ni	60	886	218712	0.33	25.513	ug/L
	Ni	62	-20173	[-6102709]	[0.01]	[-4785.897]	ug/L
	Cu	63	12791	262337	1.87	13.027	ug/L
	Cu	65	6061	131333	1.80	13.466	ug/L
1	Zn	66	3175	913712	0.85	171.857	ug/L
	Zn	67	735	145256	2.46	158.664	ug/L
	Zn	68	2465	640551	0.49	168.610	ug/L
حا	Ge	72	907488	633496	0.26		ug/L
ſ	As	75	-403	14873	1.26	2.617	ug/L
	As-1	75	296	24170	0.28	4.186	ug/L
1	Se	77	395	3017	2.13	5.764	ug/L
1	Se	82	193	248	7.14	0.158	ug/L
	Υ	89	749932	778806	0.46		ug/L
	Мо	95	52	4275	0.16	0.379	ug/L
	Мо	97	32	2740	2.10	0.391	ug/L
	Мо	98	72	7115	0.68	0.394	ug/L
]	Ag	107	288	1428	5.15	0.036	ug/L

Page 1

Sample ID: 606247-04

Report Date/Time: Tuesday, June 27, 2006 17:24:48

1	Ag	109	223	1829	3.13	0.051	
İ	Cd	106	908	2334	0.71	2.288	
ĺ	Cd	108	1	-50	0.85	-0.095	
1	Cd	111	734	2889	2.00	0.302	
	Cd	114	141	2932	0.10	0.154	
>	In	115	806560	636252	1.32		ug/L
	Sb	121	242	8387	1.54	0.366	
]	Sb	123	186	6486	0.33	0.363	
ļ	Ва	135	325	506746	1.40	77.956	-
Ē	Ba	137	563	896506	0.08	78.423	=
ļ	Tb	159	1187362	911425	1.45		ug/L ug/L
>		165	1212300	929152 300	0.97 4.71	1613.835	-
- [Hg	201	98 210	754	1.97	475.793	
l I	Hg Ti	202 203	52	712	0.00		
ŀ	TI	205	112	1678	0.42	0.020	
-	Pb	208	6710	31890016	0.42	288.490	
	Bi	209	821507	581346	0.26		ug/L
i	Th	232	1933	47111	0.40	0.453	
i	Ü	238	373	21792	1.62	0.214	
L	Fe	56	6645286	S	S		ug/L
	Ru	101	4	12	23.57		ug/L
	ArCI	77	381	3175	1.67		ug/L
	Kr	84	931	-53	125.48		ug/L
	Sn	118	870	35300	1.37		ug/L
		alculated V	alues				
			% Recovery Int Std % I	Recovery Spike % Recover	v Dilution % Diff	ference	Duplicate Rel. % Difference
٢	Mass Analy		% Recovery Int Std % I	Recovery Spike % Recovery	y Dilution % Diff	ference	Duplicate Rel. % Difference
۲ ا	Mass Analy 6 Li 9 Be		% Recovery Int Std % I	Recovery Spike % Recover	y Dilution % Diff	ference	Duplicate Rel. % Difference
[Mass Analy 6 Li 9 Be 27 Al		% Recovery Int Std % I	Recovery Spike % Recover	y Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc		% Recovery Int Std % I	Recovery Spike % Recover	y Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V		% Recovery Int Std % I	Recovery Spike % Recover	y Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1		% Recovery Int Std % I	Recovery Spike % Recover	y Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr		% Recovery Int Std % I	Recovery Spike % Recover	y Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1		% Recovery Int Std % I	Recovery Spike % Recover	y Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr		% Recovery Int Std % I	Recovery Spike % Recover	y Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni		% Recovery Int Std % I	Recovery Spike % Recover	y Dilution % Diff	ference	Duplicate Rei. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni		% Recovery Int Std % I	Recovery Spike % Recover	y Dilution % Diff	ference	Duplicate Rei. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu		% Recovery Int Std % I	Recovery Spike % Recover	y Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu		% Recovery Int Std % I	Recovery Spike % Recover	y Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn		% Recovery Int Std % I	Recovery Spike % Recovery	y Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn		% Recovery Int Std % I	Recovery Spike % Recovery	y Dilution % Diff	ference	Duplicate Rei. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn		% Recovery Int Std % I	Recovery Spike % Recovery	y Dilution % Diff	ference	Duplicate Rei. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As	yte QC Std 9	% Recovery Int Std % I		y Dilution % Diff	ference	Duplicate Rei. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1	yte QC Std 9	% Recovery Int Std % I		y Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se	yte QC Std 9	% Recovery Int Std % I		y Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se	yte QC Std 9	% Recovery Int Std % I		y Dilution % Diff	ference	Duplicate Rei. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y	yte QC Std 9	% Recovery Int Std % I		y Dilution % Diff	ference	Duplicate Rei. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo	yte QC Std 9	% Recovery Int Std % I		y Dilution % Diff	ference	Duplicate Rei. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y	yte QC Std 9	% Recovery Int Std % I		y Dilution % Diff	ference	Duplicate Rei. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag	yte QC Std 9	% Recovery Int Std % I		y Dilution % Diff	ference	Duplicate Rel. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag	yte QC Std 9	% Recovery Int Std % I		y Dilution % Diff	ference	Duplicate Rei. % Difference
	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd	yte QC Std 9	% Recovery Int Std % I		y Dilution % Diff	ference	Duplicate Rei. % Difference
[Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag	yte QC Std 9	% Recovery Int Std % I		y Dilution % Diff	ference	Duplicate Rei. % Difference

1	114	Cd				
>	115	ln				78.885
ĺ	121	Sb				
Ì	123	Sb				
i	135	Ва				
Ĺ	137	Ba				
Ī	159	Tb				
>	165	Но				76.644
1	201	Hg				
	202	Hg				
1	203	TI				
Ì	205	TI				
Ì	208	Pb				
ł	209	Bi				
1	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCI				
	84	Kr				
	118	Sn				

Sample ID: 606247-05

Sample Date/Time: Tuesday, June 27, 2006 17:26:30

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam
Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth
Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-05.063

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 88 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.96

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	56073	2.38		ug/L
	Be	9	7	739	8.04	0.455	ug/L
	Al	27	50334	169840317	0.12	8619.955	ug/L
	Sc	45	463094	385094	0.86		ug/L
	V	51	6917	784399	0.18	28.217	ug/L
	V-1	51	5584	973190	0.07	34.591	ug/L
	Cr	52	20686	303735	1.05	12.203	ug/L
1	Cr	53	1914	94732	0.58	33.354	ug/L
	Mn	55	5964	7098528	0.23	197.495	ug/L
	Co	59	598	260123	1.73	8.402	ug/L
	Ni	60	886	183754	0.87	27.202	ug/L
1	Ni	62	-20173	-1528671	1.65	-1511.556	ug/L
	Cu	63	12791	293185	0.41	18.550	ug/L
	Cu	65	6061	145696	0.18	19.027	ug/L
	Zn	66	3175	774499	0.63	184.886	ug/L
1	Zn	67	735	122301	0.15	169.514	ug/L
	Zn	68	2465	541671	0.18	180.953	ug/L
L>	Ge	72	907488	638600	0.14		ug/L
Γ	As	75	-403	19751	0.54	4.432	ug/L
1	As-1	75	296	28911	0.71	6.430	ug/L
1	Se	77	395	3158	0.31	7.773	ug/L
	Se	82	193	287	12.32	0.287	ug/L
	Υ	89	749932	857147	0.34		ug/L
	Мо	95	52	4068	0.33	0.462	ug/L
	Мо	97	32	2660	0.58	0.487	ug/L
	Мо	98	72	6641	0.35	0.472	ug/L
1	Ag	107	288	2826	3.88	0.099	ug/L

Page 1

Sample ID: 606247-05

Report Date/Time: Tuesday, June 27, 2006 17:28:33

1	Ag	109	223	3050	1.65	0.115	ug/L
i	Cd	106	908	3403	7.57	4.873	ug/L
i	Cd	108	1	244	24.59	0.582	ug/L
i	Cd	111	734	4179	4.90	0.604	ug/L
i	Cd	114	141	4927	0.10	0.337	ug/L
i>	In	115	806560	635190	0.30		ug/L
i	Sb	121	242	11679	1.94	0.657	ug/L
i	Sb	123	186	8984	1.18	0.649	ug/L
i	Ва	135	325	199018	1.38	39.225	ug/L
i	Ва	137	563	348030	2.13	39.001	ug/L
Ī	Tb	159	1187362	918009	0.20		ug/L
i>	Но	165	1212300	946685	1.05		ug/L
i	Hg	201	98	313	4.07	2131.848	ug/L
İ	Hg	202	210	707	8.00	548.136	ug/L
j	TI	203	52	1198	4.49	0.043	ug/L
1	TI	205	112	2849	0.25	0.043	ug/L
1	Pb	208	6710	12616989	0.07	143.353	ug/L
1	Bi	209	821507	581152	0.57		ug/L
1	Th	232	1933	81487	1.20	0.998	ug/L
L	U	238	373	25488	2.41	0.316	ug/L
	Fe	56	6645286	509902261	1.63		ug/L
	Ru	101	4	10	0.00		ug/L
	ArCl	77	381	3163	1.90		ug/L
	Kr	84	931	-978	142.27		ug/L
	Sn	118	870	38434	0.14		ug/L
	QC C	alculated Va	alues				

	Mace	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ		Li	QC Old 70 Necovery	iii du /a Newvery	opike 76 Newvery	Diludon / Dillerence	Duplicate (tel. % Difference
i	9						
i	27						
i		Sc					
1	51						
i		V-1					
i		Cr					
1	53						
i		Mn					
i							
i	60						
i	62						
i		Cu					
i		Cu					
i		Zn					
i		Zn					
i		Zn					
Ĺ>		Ge		70.370			
Ī		As					
į		As-1			9		
i		Se					
İ		Se					
1		Υ					
1	95	Мо					
1		Мо					
	98	Мо					
1	107	Ag					
1		Ag					
	106						
1	108						
	111						

	114	Cd			
l>	115	In			78.753
ĺ	121	Sb			
İ	123	Sb			
1	135	Ва			
Ĺ	137	Ba			
Ī	159	Tb			
>	165	Но			78.090
	201	Hg			
	202	Hg			
	203	TI			
	205	TI			
i	208	Pb			
İ	209	Bi			
İ	232	Th			
Ĺ	238	U			
	56	Fe			
	101	Ru			
	77	ArCI			
	84	Kr			
	118	Sn			

Sample ID: 606247-06

Sample Date/Time: Tuesday, June 27, 2006 17:30:15

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-06.064

Tuning File: D:\ICPMS Data\Tuning\default.tun Optimization File: D:\ICPMS Data\Optimize\Default.dac Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 89 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1 Solids Ratio: 0.86

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	54794	2.11		ug/L
	Be	9	7	530	4.54	0.295	ug/L
-	Al	27	50334	124855047	1.62	5749.663	ug/L
1	Sc	45	463094	364360	1.25		ug/L
1	٧	51	6917	585147	0.93	19.063	ug/L
J	V-1	51	5584	782297	0.83	25.210	ug/L
	Cr	52	20686	611091	0.79	22.855	ug/L
	Cr	53	1914	131027	0.58	42.042	ug/L
ł	Mn	55	5964	6223129	0.22	157.115	ug/L
-	Co	59	598	233979	1.92	6.857	ug/L
- 1	Ni	60	886	166890	1.23	22.412	ug/L
	Ni	62	-20173	-1162920	0.67	-1040.613	ug/L
	Cu	63	12791	226936	1.28	12.916	ug/L
	Cu	65	6061	112451	0.66	13.215	ug/L
1	Zn	66	3175	491367	0.90	106.272	ug/L
	Zn	67	735	79771	0.34	100.126	ug/L
l	Zn	68	2465	347394	0.98	105.130	ug/L
L>	Ge	72	907488	630456	1.66		ug/L
Γ	As	75	-403	8058	1.56	1.690	ug/L
	As-1	75	296	16849	0.93	3.407	ug/L
l	Se	77	395	2896	0.17	6.470	ug/L
	Se	82	193	231	0.92	0.159	ug/L
	Υ	89	749932	730263	1.09		ug/L
- 1	Мо	95	52	3376	0.68	0.350	ug/L
	Мо	97	32	2035	5.33	0.339	ug/L
	Мо	98	72	5459	1.18	0.354	ug/L
	Ag	107	288	1210	6.14	0.034	ug/L

Page 1

Sample ID: 606247-06

Report Date/Time: Tuesday, June 27, 2006 17:32:18

	1	Ag	109	223	1453	0.00	0.047	ug/L
		Cd	106	908	1903	0.32	1.994	ug/L
	1	Cd	108	1	49	48.46	0.104	ug/L
	! 	Cd	111	734	2369	0.41	0.276	ug/L
	i	Cd	114	141	2677	0.14	0.165	_
	-	In	115	806560	622487	2.26		ug/L
		Sb	121	242	28910	2.20	1.503	_
	i	Sb	123	186	21765	0.70	1.451	=
	i	Ва	135	325	220236	0.77	39.697	
	İ	Ва	137	563	382850	0.49	39.235	-
	ř	Tb	159	1187362	895145	1.61		ug/L
	i >	Но	165	1212300	918930	0.20		ug/L
	ľ	Hg	201	98	236	3.30	1340.781	
	i	Hg	202	210	496	9.69	313.539	
	ĺ	TI	203	52	624	0.23	0.020	
	i	TI	205	112	1474	1.49	0.020	
	i	Pb	208	6710	23041758	0.34	241.645	
	i	Bi	209	821507	577030	1.29		ug/L
	i	Th	232	1933	37488	0.77	0.415	
	i	U	238	373	16031	2.79	0.182	
	_	Fe	56	6645286	389072867	0.68		ug/L
		Ru	101	4	7	60.61		ug/L
		ArCI	77	381	2999	2.95		ug/L
		Kr	84	931	-502	6.65		ug/L
		Sn	118	870	23776	0.91		ug/L
		QC Calc	ulated	Values				
		Mass Analyte	QC Sto	d % Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dit	ference	Duplicate Rel. % Difference
1	•	6 Li						
1		9 Be						
ĺ		27 Al						
1		45 Sc 51 V						
i		51 V-1						
i		52 Cr						
ļ		53 Cr						
- 1		55 Mn						
		59 Co						
ļ		60 Ni						
-		62 Ni 63 Cu						
		65 Cu						
i		66 Zn						
İ		67 Zn						
- !		68 Zn						
Į	>	72 Ge			69.473			
		75 As						

75 As-1
77 Se
82 Se
89 Y
95 Mo
97 Mo
98 Mo
107 Ag
109 Ag
106 Cd
108 Cd
111 Cd

1	114	Cd				
>	115	In				77.178
ĺ	121	Sb				
ĺ	123	Sb				
1	135	Ba				
Ĺ	137	Ba				
Ī	159	Tb				
>	165	Но				75.801
1	201	Hg				
	202	Hg				
	203	Tì				
1	205	TI				
	208	Pb				
1	209	Bi				
	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCI				
	84	Kr				
	118	Sn				

Sample ID: 606247-07

Sample Date/Time: Tuesday, June 27, 2006 17:33:59

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2

Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-07.065

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 90 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.87

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	55421	1.75		ug/L
	Be	9	7	443	10.71	0.246	ug/L
	Al	27	50334	113900609	0.20	5231.835	ug/L
	Sc	45	463094	371017	0.21		ug/L
	V	51	6917	549812	0.83	17.852	ug/L
	V-1	51	5584	746039	0.52	23.970	ug/L
	Cr	52	20686	352103	0.36	12.892	ug/L
	Cr	53	1914	101476	0.36	32.369	ug/L
	Mn	55	5964	5613535	1.93	141.315	ug/L
	Co	59	598	201659	0.53	5.892	ug/L
	Ni	60	886	130585	1.49	17.470	ug/L
	Ni	62	-20173	-1046314	1.50	-932.490	ug/L
	Cu	63	12791	220897	0.79	12.517	ug/L
	Cu	65	6061	110408	0.04	12.924	ug/L
	Zn	66	3175	1023977	1.35	221.378	ug/L
	Zn	67	735	160018	0.79	200.933	ug/L
	Zn	68	2465	721042	0.68	218.204	ug/L
L>	Ge	72	907488	639490	1.63		ug/L
Γ	As	75	-403	6388	2.16	1.365	ug/L
	As-1	75	296	15092	0.45	3.074	ug/L
	Se	77	395	2909	1.56	6.558	ug/L
1	Se	82	193	219	1.62	0.136	ug/L
1	Υ	89	749932	698022	0.51		ug/L
	Мо	95	52	2977	4.46	0.311	ug/L
-	Мо	97	32	1837	1.92	0.309	
1	Мо	98	72	4783	3.10	0.312	
1	Ag	107	288	1210	2.57	0.035	ug/L

Page 1

Sample ID: 606247-07

Report Date/Time: Tuesday, June 27, 2006 17:36:02

ı	Ag	109	223	1394	2.99	0.045	
İ	Cd	106	908	1942	0.87	2.073	
İ	Cd	108	1	5	148.35	0.008	
İ	Cd	111	734	2895	0.11	0.360	
ĺ	Cd	114	141	3702	1.91	0.232	
>	In	115	806560	624154	1.15		ug/L
ı	Sb	121	242	15605	1.06	0.814	
1	Sb	123	186	11853	0.63	0.793	
İ	Ва	135	325	307483	0.54	55.919	
L	Ва	137	563	537501	0.15	55.579	
Ī	Tb	159	1187362	901825	1.39		ug/L
>	Но	165	1212300	922830	0.27		ug/L
Ì	Hg	201	98	221	8.02	1222.190	
İ	Hg	202	210	563	5.53	378.055	
Ĺ	ΤΙ	203	52	598	2.13	0.019	
Ì	TI	205	112	1446	0.29	0.020	ug/L
ĺ	Pb	208	6710	29381166	1.23	310.405	ug/L
İ	Bi	209	821507	592242	0.37		ug/L
i	Th	232	1933	35532	0.86	0.395	ug/L
i	U	238	373	14823	0.19	0.169	
_	Fe	56	6645286	349108803	1.42		ug/L
	Ru	101	4	7	10.88		ug/L
	ArCl	77	381	2962	0.86		ug/L
	Kr	84	931	91	160.41		ug/L
	Sn	118	870	28930	0.37		ug/L
	QC Calc	ulated Va	alues		Dilution % Di	fference	Duplicate Rel. % Difference
Г	QC Calc	ulated Va	alues	Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
Γ	QC Calc Mass Analyte 6 Li 9 Be	ulated Va	alues		Dilution % Di	fference	Duplicate Rel. % Difference
Г !	QC Calc Mass Analyte 6 Li 9 Be 27 Al	ulated Va	alues		Dilution % Di	fference	Duplicate Rel. % Difference
[-	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc	ulated Va	alues		Dilution % Di	fference	Duplicate Rel. % Difference
[QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V	ulated Va	alues		Dilution % Di	fference	Duplicate Rel. % Difference
[- - - - -	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1	ulated Va	alues		Dilution % Di	fference	Duplicate Rel. % Difference
[QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr	ulated Va	alues		Dilution % Di	fference	Duplicate Rel. % Difference
「 - - - - - - - - - - - - 	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr	ulated Va	alues		Dilution % Di	ifference	Duplicate Rel. % Difference
	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn	ulated Va	alues		Dilution % Di	ifference	Duplicate Rel. % Difference
	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr	ulated Va	alues		Dilution % Di	fference	Duplicate Rel. % Difference
	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co	ulated Va	alues		Dilution % Di	fference	Duplicate Rel. % Difference
	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu	ulated Va	alues		Dilution % Di	ifference	Duplicate Rel. % Difference
	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu	ulated Va	alues		Dilution % Di	ifference	Duplicate Rel. % Difference
	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn	ulated Va	alues		Dilution % Di	ifference	Duplicate Rel. % Difference
	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn	ulated Va	alues		Dilution % Di	ifference	Duplicate Rel. % Difference
	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn	ulated Va	alues	Recovery Spike % Recovery	Dilution % Di	ifference	Duplicate Rel. % Difference
	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge	ulated Va	alues		Dilution % Di	ifference	Duplicate Rel. % Difference
	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn	ulated Va	alues	Recovery Spike % Recovery	Dilution % Di	ifference	Duplicate Rel. % Difference
	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se	ulated Va	alues	Recovery Spike % Recovery	Dilution % Di	ifference	Duplicate Rel. % Difference
	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 75 As 75 As 75 Se 82 Se	ulated Va	alues	Recovery Spike % Recovery	Dilution % Di	ifference	Duplicate Rel. % Difference
	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y	ulated Va	alues	Recovery Spike % Recovery	Dilution % Di	ifference	Duplicate Rel. % Difference
	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo	ulated Va	alues	Recovery Spike % Recovery	Dilution % Di	ifference	Duplicate Rel. % Difference
	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo	ulated Va	alues	Recovery Spike % Recovery	Dilution % Di	ifference	Duplicate Rel. % Difference
	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo	ulated Va	alues	Recovery Spike % Recovery	Dilution % Di	ifference	Duplicate Rel. % Difference
	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 63 Cu 65 Cu 66 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag	ulated Va	alues	Recovery Spike % Recovery	Dilution % Di	ifference	Duplicate Rel. % Difference
	QC Calc Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo	ulated Va	alues	Recovery Spike % Recovery	Dilution % Di	ifference	Duplicate Rel. % Difference

108 Cd 111 Cd

	114	Cd				
>	115	In				77.385
1	121	Sb				
İ	123	Sb				
Ĺ	135	Ва				
Ĺ	137	Ba				
Ī	159	Tb				
>	165	Но				76.122
1	201	Hg				
	202	Hg				
-	203	TI				
l	205	TI				
1	208	Pb				
1	209	Bi				
1	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCl				
	84	Kr				
	118	Sn				

Sample ID: 606247-08

Sample Date/Time: Tuesday, June 27, 2006 17:37:44

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam
Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth
Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-08.066

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 91 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.83

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	55476	1.17		ug/L
1	Be	9	7	473	4.34	0.250	ug/L
-	Al	27	50334	125383609	1.35	5483.600	ug/L
1	Sc	45	463094	378032	1.37		ug/L
]	V	51	6917	597347	1.24	18.480	ug/L
	V-1	51	5584	786859	0.29	24.078	ug/L
1	Cr	52	20686	361491	0.09	12.615	ug/L
1	Cr	53	1914	102406	0.33	31.103	ug/L
	Mn	55	5964	5480022	1.85	131.356	ug/L
1	Co	59	598	164695	0.21	4.580	ug/L
1	Ni	60	886	87410	1.00	11.108	ug/L
1	Ni	62	-20173	[-3535706]	[103.60]	[-3036.949]	ug/L
	Cu	63	12791	264573	0.00	14.374	ug/L
1	Cu	65	6061	130354	1.52	14.616	ug/L
	Zn	66	3175	988659	1.31	203.500	ug/L
1	Zn	67	735	154266	2.19	184.407	ug/L
1	Zn	68	2465	691355	0.82	199.159	ug/L
L>	Ge	72	907488	640713	0.52		ug/L
Γ	As	75	-403	7248	1.18	1.474	ug/L
1	As-1	75	296	16058	0.20	3.134	ug/L
1	Se	77	395	3161	0.90	6.886	ug/L
	Se	82	193	264	0.00	0.216	ug/L
- 1	Υ	89	749932	714411	1.06		ug/L
	Мо	95	52	3178	1.31	0.318	ug/L
1	Мо	97	32	2099	3.17	0.338	ug/L
	Мо	98	72	5168	4.06	0.323	ug/L
	Ag	107	288	2594	1.66	0.080	ug/L

Page 1

Sample ID: 606247-08

Report Date/Time: Tuesday, June 27, 2006 17:39:47

	Α	100	223	2658	2.69	0.088	ua/L	
ļ	Ag Cd	109 106	908	-428	23.53	-1.805	_	
l I	Cd Cd	108	1	-2478	1.10	-5.243		
l i	Cd	111	734	3442	3.42	0.426		
1	Cd	114	141	4810	1.46	0.291		
1	In	115	806560	622076	1.86	••	ug/L	
>	Sb	121	242	14548	1.74	0.726		
1	Sb	123	186	11381	1.60	0.728		
i	Ba	135	325	575040	1.32	100.141	_	
i	Ba	137	563	1004469	1.69	99.455	-	
ř	Tb	159	1187362	894565	1.15		ug/L	
>		165	1212300	920757	0.46		ug/L	
	Hg	201	98	244	2.61	1354.310		
i	Hg	202	210	582	5.35	378.824	ug/L	
İ	TI	203	52	692	0.82	0.022		
	TI	205	112	1668	0.89	0.022		
	Pb	208	6710	28595422	1.01	288.875	_	
1	Bi	209	821507	590689	0.25		ug/L	
1	Th	232	1933	33875	0.06	0.359		
L	U	238	373	15631	2.13	0.171		
	Fe	56	6645286	\$	S		ug/L	
	Ru	101	4	15	4.88		ug/L	
	ArCl	77	381	3033	0.56		ug/L	
	Kr	84	931	7	3560.97		ug/L	
	Sn	118	870	121194	1.21		ug/L	
	QC Ca	alculated V	/alues					
_	Mass Anal	yte QC Std ⁴	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dil	fference	Duplicate Rel. % Difference	
ŗ	6 Li	yte QC Std ^c	% Recovery Int Std % I	Recovery Spike % Recovery	Dilution % Did	fference	Duplicate Rel. % Difference	
[6 Li 9 Be	yte QC Std ⁴	% Recovery Int Std % I	Recovery Spike % Recovery	Dilution % Dif	fference	Duplicate Rel. % Difference	
[6 Li 9 Be 27 Al	yte QC Std ⁽	% Recovery Int Std % I	Recovery Spike % Recovery	Dilution % Dit	fference	Duplicate Rel. % Difference	
[6 Li 9 Be	yte QC Std ^o	% Recovery Int Std % I	Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1	yte QC Std ⁽	% Recovery Int Std % I	Recovery Spike % Recovery	Dilution % Dit	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr	yte QC Std ⁽	% Recovery Int Std % I	Recovery Spike % Recovery	Dilution % Dit	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr	yte QC Std ⁽	% Recovery Int Std % I	Recovery Spike % Recovery	Dilution % Dit	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn	yte QC Std ⁽	% Recovery Int Std % I	Recovery Spike % Recovery	Dilution % Dit	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co	yte QC Std ⁽	% Recovery Int Std % i	Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni	yte QC Std ⁽	% Recovery Int Std % i	Recovery Spike % Recovery	Dilution % Dit	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni	yte QC Std ⁽	% Recovery Int Std % I	Recovery Spike % Recovery	Dilution % Dit	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni	yte QC Std ⁽	% Recovery Int Std % I	Recovery Spike % Recovery	Dilution % Dit	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu	yte QC Std ⁽	% Recovery Int Std % I	Recovery Spike % Recovery	Dilution % Dit	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn	yte QC Std ⁽	% Recovery Int Std % I	Recovery Spike % Recovery	Dilution % Dit	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn	yte QC Std ⁽	% Recovery Int Std % I		Dilution % Dit	fference	Duplicate Rel. % Difference	
[6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge	yte QC Std ⁴	% Recovery Int Std % I	Recovery Spike % Recovery 70.603	Dilution % Dif	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As		% Recovery Int Std %		Dilution % Dit	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1		% Recovery Int Std %		Dilution % Dit	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se		% Recovery Int Std % I		Dilution % Dit	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1		% Recovery Int Std % I		Dilution % Dit	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo		% Recovery Int Std % I		Dilution % Dif	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo		% Recovery Int Std % I		Dilution % Dif	fference	Duplicate Rel. % Difference	
[6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo		% Recovery Int Std %		Dilution % Dit	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag		% Recovery Int Std %		Dilution % Dif	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag		% Recovery Int Std %		Dilution % Dif	fference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 AI 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd		% Recovery Int Std % I		Dilution % Dif	fference	Duplicate Rel. % Difference	
<u> </u>	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag		% Recovery Int Std % I		Dilution % Dif	fference	Duplicate Rel. % Difference	

-	114	Cd			
-1	> 115	ln			77.127
Ì	121	Sb			
i	123	Sb			
1	135	Ва			
i	137	Ва			
Ī	159	Tb			
- [> 165	Ho			75.951
-	201	Hg			
	202	Hg			
1	203	TI			
	205	TI			
ĺ	208	Pb			
ĺ	209	Bi			
١	232	Th			
l	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			
	118	Sn			

Sample ID: 25 ppb i1-57a

Sample Date/Time: Tuesday, June 27, 2006 17:41:29

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam
Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth
Dataset File: D:\ICPMS Data\Dataset\06-27-06\25 ppb i1-57a.067

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 5 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL): Solids Ratio:

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	55914	1.24		ug/L
1	Be	9	7	50536	1.77	29.511	ug/L
1	Al	27	50334	638611	1.21	28.722	ug/L
1	Sc	45	463094	355632	1.01		ug/L
l	V	51	6917	724720	0.59	24.572	ug/L
1	V-1	51	5584	775021	0.29	25.956	ug/L
1	Cr	52	20686	643389	0.64	24.984	ug/L
ı	Cr	53	1914	88694	0.08	29.394	ug/L
l	Mn	55	5964	988445	0.64	25.847	ug/L
	Co	59	598	809329	0.56	24.695	ug/L
ĺ	Ni	60	886	176571	0.44	24.654	ug/L
1	Ni	62	-20173	9960	13.15	24.137	ug/L
1	Cu	63	12791	406956	0.77	24.456	ug/L
- 1	Cu	65	6061	196420	0.47	24.340	ug/L
-	Zn	66	3175	115012	0.37	25.428	ug/L
1	Zn	67	735	22157	0.43	28.355	ug/L
l	Zn	68	2465	82863	0.71	25.603	ug/L
L>	Ge	72	907488	704897	0.59		ug/L
٢	As	75	-403	108495	0.54	22.423	ug/L
1	As-1	75	296	108173	1.01	22.570	ug/L
	Se	77	395	9827	0.36	24.143	ug/L
1	Se	82	193	12235	0.31	23.867	ug/L
!	Υ	89	749932	586774	0.01		ug/L
1	Мо	95	52	208347	1.82	22.299	ug/L
l	Мо	97	32	130097	1.02	22.401	ug/L
1	Мо	98	72	335734	0.19	22.426	ug/L
	Ag	107	288	655384	2.21	23.341	ug/L

Page 1

Sample ID: 25 ppb i1-57a

Report Date/Time: Tuesday, June 27, 2006 17:43:32

	ı	Ag	109	223	627905	0.18	23.352	ug/L
	i	Cd	106	908	15266	1.32	24.471	ug/L
	i	Cd	108	1	11033	0.14	24.644	ug/L
	i	Cd	111	734	158578	0.28	24.711	ug/L
	i	Cd	114	141	372880	1.30	24.359	ug/L
	i >	In	115	806560	709628	2.33		ug/L
	ĺ	Sb	121	242	466489	2.48	24.893	ug/L
	i	Sb	123	186	357071	1.53	24.435	ug/L
	i	Ва	135	325	133023	0.17	24.431	ug/L
	i	Ва	137	563	229702	0.54	23.987	ug/L
	ř	Tb	159	1187362	998073	2.28		ug/L
	>	Но	165	1212300	1015813	1.89		ug/L
	i	Hg	201	98	121	4.11	336.400	=
	i	Hg	202	210	293	0.24	114.183	-
	i	TI	203	52	673519	0.46	24.407	
	i	TI	205	112	1607701	1.07	24.210	
	i	Pb	208	6710	2260096	0.28	24.879	
	i	Bi	209	821507	656191	2.55		ug/L
	i	Th	232	1933	1914245	0.08	23.170	
	i	U	238	373	1952696	0.11	23.745	_
	L	Fe	56	6645286	5388302	7.22		ug/L
		Ru	101	4	10	14.14		ug/L
		ArCl	77	381	9869	1.97		ug/L
		Kr	84	931	664	4.24		ug/L
		Sn	118	870	1497	6.14		ug/L
				d Values	1101	•		- 9 · –
					0.4-0/0	Ditestion Of Differen		Duralizata Dal IV Difference
	г ;	Mass Analyte	QC:	Std % Recovery Int Std % R	ecovery Spike % Recovery	y Dilution % Differe	ence	Duplicate Rel. % Difference
ı	 	6 Li 9 Be						
- 1	i	27 Al						
i	i	45 Sc						
Ī	1	51 V						
	!	51 V-1						
ļ		52 Cr						
	 	53 Cr 55 Mn						
	ł ł	55 Mn 59 Co						
	1	60 Ni						
i	i	62 Ni						
1	l	63 Cu						
ļ	ļ	65 Cu						
ļ	!	66 Zn						
	1	67 Zn						
	! _	68 Zn 72 Ge			77.676			
i	ſ	75 As			77.070			
Ì	i	75 As-1						
-	1	77 Se						
į	1	82 Se						
,	İ	89 Y						
1	1	95 Mo						
	i i	97 Mo 98 Mo						
ĺ	i	107 Ag						
ĺ	İ	109 Ag						
j	1	106 Cd						
- 1	1	108 Cd						
,	!							
Ì	1	111 Cd						

1	114	Cd			
>	115	In			87.982
1	121	Sb			
1	123	Sb			
1	135	Ba			
L	137	Ва			
Γ	159	Tb			
>	165	Но			83.792
1	201	Hg			
1	202	Hg			
1	203	TI			
1	205	TI			
1	208	Pb			
1	209	Bi			
1	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			
	118	Sn			

Sample ID: 606247-09

Sample Date/Time: Tuesday, June 27, 2006 17:45:13

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-09.068

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 92 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.92

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	56115	2.09		ug/L
	Be	9	7	834	2.54	0.468	ug/L
1	Al	27	50334	188570019	1.41	8734.380	ug/L
	Sc	45	463094	402231	0.16		ug/L
1	V	51	6917	841065	0.86	27.616	ug/L
1	V-1	51	5584	1020464	1.02	33.103	ug/L
	Cr	52	20686	348596	1.66	12.837	ug/L
	Cr	53	1914	97223	0.36	31.230	ug/L
	Mn	55	5964	7259637	0.96	184.326	ug/L
[Co	59	598	253752	2.14	7.479	ug/L
	Ni	60	886	164089	2.40	22.155	ug/L
l	Ni	62	-20173	-1596648	0.29	-1440.782	ug/L
	Cu	63	12791	366225	0.92	21.253	ug/L
	Cu	65	6061	180327	1.28	21.590	ug/L
	Zn	66	3175	1018874	0.44	222.105	ug/L
1	Zn	67	735	159322	1.86	201.697	ug/L
	Zn	68	2465	709464	0.43	216.438	ug/L
حاٍ	Ge	72	907488	670578	0.23		ug/L
Γ	As	75	-403	20984	3.01	4.392	ug/L
-	As-1	75	296	30246	1.25	6.279	ug/L
-	Se	77	395	3126	6.38	7.154	ug/L
	Se	82	193	280	0.51	0.246	ug/L
	Υ	89	749932	914417	1.23		ug/L
-	Мо	95	52	5165	6.35	0.548	ug/L
1	Мо	97	32	3207	5.79	0.548	ug/L
	Мо	98	72	8453	9.72	0.561	ug/L
	Ag	107	288	4296	15.45	0.145	ug/L

Page 1

Sample ID: 606247-09

Report Date/Time: Tuesday, June 27, 2006 17:47:17

1	Ag	109	223	4613	8.17	0.165	-	
İ	Cd	106	908	-40886	2.32	-70.418		
i	Cd	108	1	-43580	2.20	-97.400	ug/L	
Ĺ	Cd	111	734	5082	0.85	0.703	ug/L	
i	Cd	114	141	6991	6.75	0.450	ug/L	
i:		115	806560	652320	1.07		ug/L	
i	Sb	121	242	267505	0.29	14.275	ug/L	
i	Sb	123	186	204294	0.03	13.982	ug/L	
i	Ba	135	325	193306	0.46	35.550	ug/L	
i	Ва	137	563	335997	0.26	35.134	ug/L	
Ē	Tb	159	1187362	955379	0.79		ug/L	
i.	> Ho	165	1212300	978849	2.14		ug/L	
i	Hg	201	98	375	5.85	2469.842		
i	Hg	202	210	901	0.78	684.176		
i	TI	203	52	1757	18.24	0.059		
i	TI	205	112	4756	20.31	0.067		
i	Pb	208	6710	6222169	0.00	65.505		
i	Bi	209	821507	594554	2.53		ug/L	
i	Th	232	1933	92480	8.14	1.051	_	
!	U	238	373	28448	0.19	0.327	-	
L	Fe	56	6645286	531097531	0.31	0.02.	ug/L	
	Ru	101	4	13	16.97		ug/L	
	ArCl	77	381	3190	2.59		ug/L	
	Kr	84	931	-1697	12.78		ug/L	
	Sn	118	870	1638601	2.03		ug/L	
		Calculated		1000001	2.00		-9·-	
						D.//	D " + D + 0/ O'''	
r	Mass An	nalyte QC Sto		d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference	
ſ	Mass An 6 Li	nalyte QC Sto		d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference	
[Mass An 6 Li 9 Be	nalyte QC Sto		d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference	
[Mass An 6 Li 9 Be 27 Al	nalyte QC Sto		d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference	
	Mass An 6 Li 9 Be	nalyte QC Sto		d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference	
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-	nalyte QC Sto		d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference	
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr	nalyte QC Sto		d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference	
· · · · · · · · · · · · · · · · · · ·	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr	nalyte QC Sto		d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference	
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mr	nalyte QC Sto		d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference	
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mr 59 Cc	nalyte QC Sto		d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference	
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mr 59 Cc 60 Ni	nalyte QC Sto		d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference	
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 52 Cr 53 Cr 55 Mr 59 Cc 60 Ni 62 Ni 63 Cc	nalyte QC Sto		td % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference	
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mr 59 Cc 60 Ni 62 Ni 63 Cc 65 Cc	nalyte QC Sto		d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference	
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mr 59 Cc 60 Ni 62 Ni 63 Cc 65 Cc 66 Zn	nalyte QC Sto		d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference	
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mr 59 Cc 60 Ni 62 Ni 63 Cl 65 Cl 66 Zn 67 Zn	nalyte QC Sto		d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference	
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mr 59 Cc 60 Ni 62 Ni 63 Cc 65 Cc 66 Zn 67 Zn 68 Zn	nalyte QC Sto			Recovery Dilution %	Difference	Duplicate Rel. % Difference	
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mr 59 Cc 60 Ni 62 Ni 63 Cc 65 Cc 66 Zn 67 Zn 68 Zn 72 Ge	nalyte QC Sto		d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference	
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mr 59 Cc 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As	nalyte QC Sto			Recovery Dilution %	Difference	Duplicate Rel. % Difference	
[Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mr 59 Cc 60 Ni 62 Ni 63 Cc 65 Cc 66 Zn 67 Zn 68 Zn 72 Ge	nalyte QC Sto			Recovery Dilution %	Difference	Duplicate Rel. % Difference	
[Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mr 59 Cc 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Se 82 Se	nalyte QC Sto			Recovery Dilution %	Difference	Duplicate Rel. % Difference	
[Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mr 59 Cc 60 Ni 62 Ni 63 Cc 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se	nalyte QC Sto			Recovery Dilution %	Difference	Duplicate Rel. % Difference	
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mr 59 Cc 60 Ni 62 Ni 63 Cu 66 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Se 82 Se 89 Y 95 Mc	nalyte QC Sto			Recovery Dilution %	Difference	Duplicate Rel. % Difference	
[Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mr 59 Cc 60 Ni 62 Ni 63 Cl 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mc	nalyte QC Sto			Recovery Dilution %	Difference	Duplicate Rel. % Difference	
[Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mr 59 Cc 60 Ni 62 Ni 63 Cl 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Se 82 Se 89 Y 95 Mc 98 Mc	nalyte QC Sto			Recovery Dilution %	Difference	Duplicate Rel. % Difference	
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mr 59 Cc 60 Ni 62 Ni 63 Cl 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Se 82 Se 89 Y 95 Mc 98 Mc 107 Ag	nalyte QC Sto			Recovery Dilution %	Difference	Duplicate Rel. % Difference	
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mr 59 Cc 60 Ni 62 Ni 63 Cl 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Se 82 Se 89 Y 95 Mc 97 Mc 98 Mc 107 Ag 109 Ag	nalyte QC Sto			Recovery Dilution %	Difference	Duplicate Rel. % Difference	
	Mass An 6 Li 9 Be 27 Al 45 Sc 51 V 51 V- 52 Cr 53 Cr 55 Mr 59 Cc 60 Ni 62 Ni 63 Cl 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Se 82 Se 89 Y 95 Mc 98 Mc 107 Ag	nalyte QC Sto			Recovery Dilution %	Difference	Duplicate Rel. % Difference	

1	114	Cd			
- 1	> 115	In			80.877
Ì	121	Sb			
ĺ	123	Sb			
İ	135	Ba			
Ĺ	137	Ва			
Ī	159	Tb			
- }	> 165	Но			80.743
ŀ	201	Hg			
-	202	Hg			
ĺ	203	TI			
İ	205	TI			
ĺ	208	Pb			
ĺ	209	Bi			
-	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			
	118	Sn			

Sample ID: 606247-10

Sample Date/Time: Tuesday, June 27, 2006 17:48:58

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-10.069

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 93 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.78

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	54182	0.03		ug/L
	Be	9	7	682	2.18	0.338	ug/L
1	Al	27	50334	176232766	0.96	7211.298	ug/L
	Sc	45	463094	379244	0.54		ug/L
	V	51	6917	776408	0.74	22.515	ug/L
1	V-1	51	5584	962033	0.38	27.567	ug/L
	Cr	52	20686	447275	0.60	14.719	ug/L
1	Cr	53	1914	109718	0.28	31.205	ug/L
1	Mn	55	5964	7180449	0.07	161.071	ug/L
	Co	59	598	285114	1.35	7.426	ug/L
İ	Ni	60	886	202393	1.58	24.162	ug/L
1	Ni	62	-20173	-1452733	1.04	-1157.479	ug/L
	Cu	63	12791	1101474	2.02	57.487	ug/L
	Cu	65	6061	532854	0.06	57.333	ug/L
	Zn	66	3175	1594897	0.39	307.419	ug/L
	Zn	67	735	246936	2.38	276.514	ug/L
	Zn	68	2465	1117616	1.22	301.503	ug/L
L>	Ge	72	907488	643563	0.89		ug/L
Γ	As	75	-403	17023	1.09	3.171	ug/L
1	As-1	75	296	25978	0.47	4.782	ug/L
	Se	77	395	3136	0.34	6.401	ug/L
1	Se	82	193	315	11.22	0.293	ug/L
1	Υ	89	749932	778462	1.01		ug/L
1	Мо	95	52	3599	1.28	0.338	ug/L
1	Mo	97	32	2294	0.19	0.347	ug/L
1	Мо	98	72	5883	2.84	0.346	ug/L
1	Ag	107	288	2241	1.89	0.064	ug/L

Page 1

Sample ID: 606247-10

Report Date/Time: Tuesday, June 27, 2006 17:51:01

1	Ag	109	223	2724	5.38	0.084	ug/L	
i	Cd	106	908	1417	4.48	1.073		
i	Cd	108	1	-1227	1.71	-2.436	ug/L	
i	Cd	111	734	4890	3.32	0.600	ug/L	
i	Cd	114	141	7183	1.64	0.410	ug/L	
>	In	115	806560	623435	2.68		ug/L	
1	Sb	121	242	18851	9.00	0.883		
i	Sb	123	186	14321	6.21	0.861		
i	Ba	135	325	568018	0.58	92.778	ug/L	
i	Ba	137	563	980666	1.68	91.059	ug/L	
ŗ	Tb	159	1187362	914373	1.07		ug/L	
1	Но	165	1212300	916214	0.58		ug/L	
>	Hg	201	98	368	3.07	2223.656	-	
	Hg	202	210	826	2.74	565.213	_	
i	TI	203	52	819	15.20	0.024	_	
i	TI	205	112	1928	3.01	0.024	_	
i	 Pb	208	6710	51685896	0.29	493.144		
i	Bi	209	821507	584107	0.35		ug/L	
i	Th	232	1933	50263	0.61	0.511		
i	υ	238	373	23777	0.02	0.247		
L	Fe	56	6645286	486218759	1.08	3.2 / 1	ug/L	
	Ru	101	4	15	4.88		ug/L	
	ArCI	77	381	3121	0.27		ug/L	
	Kr	84	931	-496	33.79		ug/L	
	Sn	118	870	88689	1.24		ug/L	
				***************************************			-3	
	OC Calc	V botelu	عميراد					
		ulated V		Dansson Chile IV Dansson	Dilution 9/ Di	#avanaa	Dunlingto Bol. 9/ I	Difference
г	Mass Analyte			Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. %	Difference
ſ	Mass Analyte 6 Li			Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. %	Difference
ſ	Mass Analyte 6 Li 9 Be			Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. %	Difference
[Mass Analyte 6 Li			Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. %	Difference
[Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V			Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1			Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr			Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr			Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn			Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co			Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn			Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu			Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu			Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn			Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn			Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn				Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge			Recovery Spike % Recovery 70.917	Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1				Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se				Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se				Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y				Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo				Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo				Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo				Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo				Dilution % Di	fference	Duplicate Rel. %	Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag				Dilution % Di	fference	Duplicate Rel. %	Difference

108 Cd 111 Cd

	114	Cd	
>	115	In	77.296
1	121	Sb	
ĺ	123	Sb	
1	135	Ва	
L	137	Ва	
٢	159	Tb	
>	165	Но	75.577
1	201	Hg	
1	202	Hg	
	203	TI	
1	205	TI	
	208	Pb	
	209	Bi	
1	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCl	
	84	Kr	

Sample ID: 606247-11

Sample Date/Time: Tuesday, June 27, 2006 17:52:43

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-11.070

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 94 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.87

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	53132	4.55		ug/L
1	Be	9	7	681	2.60	0.387	ug/L
1	Al	27	50334	161490252	0.17	7586.660	ug/L
1	Sc	45	463094	368559	1.08		ug/L
	V	51	6917	720186	0.60	23.971	ug/L
	V-1	51	5584	903900	0.91	29.733	ug/L
	Cr	52	20686	300480	1.37	11.181	ug/L
	Cr	53	1914	90632	0.22	29.528	ug/L
1	Mn	55	5964	6666491	1.47	171.676	ug/L
	Co	59	598	239177	0.22	7.150	ug/L
	Ni	60	886	154603	0.93	21.173	ug/L
l	Ni	62	<i>-</i> 20173	-1388268	0.74	-1269.728	ug/L
	Cu	63	12791	189841	1.44	10.938	ug/L
ı	Cu	65	6061	95195	1.67	11.334	ug/L
	Zn	66	3175	618268	0.03	136.528	ug/L
l	Zn	67	735	98961	0.16	126.851	ug/L
	Zn	68	2465	431159	0.41	133.227	ug/L
L>	Ge	72	907488	625223	0.23		ug/L
Γ	As	75	-403	16947	0.25	3.621	ug/L
1	As-1	75	296	26093	0.57	5.513	ug/L
1	Se	77	395	3155	0.99	7.417	ug/L
1	Se	82	193	254	1.67	0.221	ug/L
	Υ	89	749932	805419	0.43		ug/L
l	Мо	95	52	3962	5.32	0.428	ug/L
	Мо	97	32	2468	2.01	0.429	ug/L
	Мо	98	72	6297	0.84	0.425	ug/L
	Ag	107	288	1446	2.59	0.045	ug/L

Page 1

Sample ID: 606247-11

Report Date/Time: Tuesday, June 27, 2006 17:54:46

1	Ag	109	223	1931	4.10	0.067	_	
i	Cď	106	908	2527	1.25	3.180	•	
i	Cd	108	1	391	0.09	0.889	ug/L	
i	Cd	111	734	2758	0.53	0.352	ug/L	
i	Cd	114	141	3161	3.19	0.203	ug/L	
i:		115	806560	605726	1.78		ug/L	
i	Sb	121	242	7939	1.03	0.422	ug/L	
i	Sb	123	186	6055	4.93	0.412	ug/L	
i	Ba	135	325	226674	0.80	42.474	ug/L	
i	Ba	137	563	394835	1.27	42.058	ug/L	
ř	Tb	159	1187362	890426	1.54		ug/L	
i:		165	1212300	905615	0.32		ug/L	
i	Hg	201	98	270	3.67	1680.259	-	
i	Hg	202	210	625	3.17	447.418		
i	TI	203	52	1069	0.99	0.036		
i	TI	205	112	2579	0.52	0.037		
i	Pb	208	6710	31683127	0.27	341.100	<u> </u>	
i	Bi	209	821507	567825	1.08		ug/L	
i	Th	232	1933	65049	1.82	0.752		
i	Ü	238	373	24115	0.07	0.283		
L	Fe	56	6645286	462527453	0.77	0.200	ug/L	
	Ru	101	4	6	12.86		ug/L	
	ArCI	77	381	3132	2.06		ug/L	
	Kr	84	931	-622	9.45		ug/L	
	Sn	118	870	17215	0.08		ug/L	
				17213	0.00		ug/ L	
		lculated V						
	Mass Analy							
г		yle QCSIU?	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	-
Γ	6 Li	yle QCSId 7	% Recovery Int Sta %	6 Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	•
	6 Li 9 Be	yle QC Sid ?	% Recovery Int Sta %	6 Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	•
	6 Li 9 Be 27 Al	yle QC Sid 9	% Recovery Int Sta %	6 Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	•
	6 Li 9 Be	yie QC Sia 7	% Recovery Int Sta %	6 Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	•
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1	yie QC Sia 7	% Recovery Int Sta %	ь Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	3
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr	yie QCSia 7	% Recovery Int Sta %	6 Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	3
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr	yle QCSia 7	% Recovery Int Sta %	6 Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	3
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn	yle QCSIII 7	% Recovery Int Sta %	6 Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co	yle QCSIII 7	% Recovery Int Sta %	ь Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni	yle QCSIII 7	% Recovery Int Sta %	ь Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co	yle QCSIII7	% Recovery Int Sta %	6 Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	3
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni	yle QCSIII 7	% Recovery Int Sta %	6 Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	3
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn	yle QCSIII7	% Recovery Int Sta %	6 Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	3
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn	yle QCSIII 7	% Recovery Int Sta %	6 Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	3
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn	yle QCSIII 7	% Recovery Int Sta %		Dilution % Dif	ference	Duplicate Rel. % Difference	7
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge	yle QCSIII 7	% Recovery Int Sta %	68.896	Dilution % Dif	ference	Duplicate Rel. % Difference	7
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As	yle QCSIII 7	% Recovery Int Sta %		Dilution % Dif	ference	Duplicate Rel. % Difference	7
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1	yle QCSIII 7	% Recovery Int Sta %		Dilution % Dif	ference	Duplicate Rel. % Difference	7
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As	yle QCSIII7	% Recovery Int Sta %		Dilution % Dif	ference	Duplicate Rel. % Difference	-
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se	yle QCSIII 7	% Recovery Int Sta %		Dilution % Dif	ference	Duplicate Rel. % Difference	-
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo	yle QCSIII 7	% Recovery Int Sta %		Dilution % Dif	ference	Duplicate Rel. % Difference	-
[6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo	yle QCSIII 7	% Recovery Int Sta %		Dilution % Dif	ference	Duplicate Rel. % Difference	-
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo	yle QCSIII 7	% Recovery Int Sta %		Dilution % Diff	ference	Duplicate Rel. % Difference	-
<u> </u>	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag	yle QCSIII 7	% Recovery Int Sta %		Dilution % Dif	ference	Duplicate Rel. % Difference	-
[6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 68 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag	yle QCSIII 7	% Recovery Int Sta %		Dilution % Diff	ference	Duplicate Rel. % Difference	-
[<u>}</u>	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd	yle QCSIII 7	% Recovery Int Sta %		Dilution % Diff	ference	Duplicate Rel. % Difference	
<u> </u>	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 68 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag	yle QCSIII 7	% Recovery Int Sta %		Dilution % Diff	ference	Duplicate Rel. % Difference	

Page 2 Sample ID: 606247-11

Report Date/Time: Tuesday, June 27, 2006 17:54:46

	114	Cd			
>	115	In			75.100
1	121	Sb			
ĺ	123	Sb			
İ	135	Ва			
Ĺ	137	Ва			
Ī	159	Tb			
>	165	Но			74.702
1	201	Hg			
i	202	Hg			
1	203	TI			
ĺ	205	TI			
j	208	Pb			
ĺ	209	Bi			
Ì	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCI			
	84	Kr			
	118	Sn			

Sample ID: 606247-12

Sample Date/Time: Tuesday, June 27, 2006 17:56:27

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2
Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-12.071

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 95 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.93

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	53514	0.15		ug/L
j	Be	9	7	768	5.80	0.454	ug/L
1	Al	27	50334	179836176	1.97	8774.496	ug/L
	Sc	45	463094	376053	1.73		ug/L
	٧	51	6917	808355	0.28	27.956	ug/L
	V-1	51	5584	990435	0.37	33.841	ug/L
1	Cr	52	20686	297259	1.44	11.464	ug/L
	Cr	53	1914	91787	1.07	31.046	ug/L
	Mn	55	5964	6929988	0.38	185.336	ug/L
	Co	59	598	245725	0.22	7.629	ug/L
	Ni	60	886	162351	0.06	23.091	ug/L
	Ni	62	-20173	-1522173	0.53	-1446.707	ug/L
	Cu	63	12791	202298	0.07	12.124	ug/L
	Cu	65	6061	100695	1.65	12.467	ug/L
	Zn	66	3175	739088	0.67	169.567	ug/L
	Zn	67	735	116995	0.80	155.848	ug/L
	Zn	68	2465	511427	0.53	164.199	ug/L
L>	Ge	72	907488	643599	0.83		ug/L
Γ	As	75	-403	19496	2.51	4.382	ug/L
	As-1	75	296	28628	1.19	6.380	ug/L
	Se	77	395	3111	1.48	7.686	ug/L
	Se	82	193	261	2.17	0.243	ug/L
	Υ	89	749932	865475	1.14		ug/L
	Мо	95	52	4091	3.05	0.466	ug/L
1	Мо	97	32	2607	1.30	0.478	ug/L
	Мо	98	72	6591	4.70	0.469	ug/L
i	Ag	107	288	2541	0.83	0.089	ug/L

Page 1

Sample ID: 606247-12

Report Date/Time: Tuesday, June 27, 2006 17:58:30

ı	Ag	109	223	2712	2.79	0.102	ug/L
i	Cd	106	908	2856	1.78	3.932	ug/L
i	Cd	108	1	215	33.62	0.514	ug/L
i	Cd	111	734	4823	0.17	0.716	ug/L
-	Cd	114	141	7374	2.03	0.510	
	In	115	806560	614363	1.06		ug/L
>	Sb	121	242	9703	0.14	0.546	
-	Sb	123	186	7503	2.87	0.541	
-	Ba	135	325	225800	0.12	44.584	-
1		137	563	394689		44.307	-
Ĺ	Ba Th		1187362	894422			ug/L
ļ	Tb	159		925373			ug/L
>		165	1212300	312		2112.511	
ļ	Hg	201	98	706		544.818	
- -	Hg	202	210 52	1206		0.043	
1	Ti Ti	203	112	2787		0.042	
ŀ	TI	205	6710	14088152		158.638	-
l l	Pb	208				130.030	ug/L
- [Bi ~	209	821507	576430		0.968	
!	Th	232	1933	79734			-
L	U	238	373	25214		0.310	_
	Fe	56	6645286	506385212			ug/L
	Ru	101	4	11			ug/L
	ArCl	77	381	3133			ug/L
	Kr	84	931	-442			ug/L
	Sn	118	870	33850	1.38		ug/L
	QC Cal	culated Va	aluae				
		ouluted Vt	alucs				
_	Mass Analyte			d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference
ŗ	Mass Analyte 6 Li			d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference
Γ 	Mass Analyte 6 Li 9 Be			d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference
[Mass Analyte 6 Li 9 Be 27 Al			d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference
 	Mass Analyte 6 Li 9 Be 27 Al 45 Sc			d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V			d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc			d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1			d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr			d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co			d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni			d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni			d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu			d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu			d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference
[Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu			d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn			d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge			d % Recovery Spike %	Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As				Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1				Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se				Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se				Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y				Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se				Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo				Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag				Recovery Dilution %	Difference	Duplicate Rel. % Difference
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag				Recovery Dilution %	Difference	Duplicate Rel. % Difference
[Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag				Recovery Dilution %	Difference	Duplicate Rel. % Difference

111 Cd

1	114	Cd				
1						76.171
>	115	In				70.171
	121	Sb				
1	123	Sb				
	135	Ba				
Ĺ	137	Ba				
٢	159	Tb				
>	165	Но				76.332
1	201	Hg				
1	202	Hg				
1	203	TI				
1	205	TI				
1	208	Pb				
	209	Bi				
1	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCI				
	84	Kr				
	118	Sn				

Sample ID: 606247-13

Sample Date/Time: Tuesday, June 27, 2006 18:00:12

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2

Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-13.072

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 96 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.72

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	54141	2.20		ug/L
1	Be	9	7	619	5.25	0.285	ug/L
ĺ	Al	27	50334	166836848	0.45	6339.237	ug/L
1	Sc	45	463094	373203	0.85		ug/L
İ	V	51	6917	792828	0.45	21.353	ug/L
1	V-1	51	5584	984015	0.23	26.186	ug/L
1	Cr	52	20686	380100	0.35	11.548	ug/L
	Cr	53	1914	103920	0.03	27.427	ug/L
	Mn	55	5964	7378783	0.73	153.699	ug/L
	Co	59	598	268922	0.75	6.503	ug/L
	Ni	60	886	199947	1.34	22.166	ug/L
	Ni	62	-20173	-1523202	0.31	-1127.554	ug/L
	Cu	63	12791	273741	0.12	12.937	ug/L
	Cu	65	6061	137318	0.60	13.400	ug/L
1	Zn	66	3175	1051283	0.75	188.028	ug/L
	Zn	67	735	163562	0.38	169.907	ug/L
	Zn	68	2465	725080	1.36	181.493	ug/L
<u></u> >	Ge	72	907488	639745	0.25		ug/L
Γ	As	75	-403	13744	0.38	2.388	ug/L
	As-1	75	296	22892	0.65	3.910	ug/L
	Se	77	395	3179	0.31	6.041	ug/L
	Se	82	193	345	8.42	0.321	ug/L
	Υ	89	749932	751177	0.67		ug/L
1	Мо	95	52	4075	3.14	0.356	ug/L
	Мо	97	32	2612	1.85	0.368	ug/L
1	Мо	98	72	6696	0.36	0.366	ug/L
1	Ag	107	288	1977	1.40	0.052	ug/L

Page 1

Sample ID: 606247-13

Report Date/Time: Tuesday, June 27, 2006 18:02:15

	ı	Ag	109	223	3	2898		4.32	0.084	ug/L	
	1	Cd	106	908		2412		1.22	2.394	ug/L	
	1	Cd	108			-63		109.00	-0.116	ug/L	
	1	Cd	111	734		3669		1.30	0.401	_	
	1	Cd	114	14		4809		1.12	0.253	_	
	l 1.	in	115	806560		619336		2.03		ug/L	
	>	Sb	121	242		15224		0.27	0.662	-	
	1	Sb	123	186		11746		0.82	0.655		
	! !		135	32		494381		1.29	75.031	=	
	1	Ba	137	563		858072		0.63	74.030		
	Ļ	Ba		118736		896940		1.87	11.000	ug/L	
	1	Tb	159			904397		0.74		ug/L	
	>	Ho	165	121230		246		6.32	1222.844		
	!	Hg	201	98				0.99	328.968		
	į.	Hg 	202	210		572 706			0.020		
	ļ	TI 	203	5:		706		3.00			
	ļ	TI	205	11:		1758		2.25	0.020	_	
	ļ	Pb	208	671		2215529		0.62	376.651		
		Bi	209	82150		592898		1.10		ug/L	
		Th	232	193		42985		0.19	0.407		
	L	U	238	37		26406		0.46	0.257	~	
		Fe	56	664528	6 50	8921627		0.33		ug/L	
		Ru	101	•	4	9		47.14		ug/L	
		ArCI	77	38	1	3206		1.26		ug/L	
		Kr	84	93	1	117		253.89		ug/L	
		Sn	118	87	0	42432		0.15		ug/L	
		QC Calc	ulated	d Values							
		Mass Analyte			Std % Recovery	Spike % Reco	overy [Dilution %	Difference	Duplicate Rel. % Differ	ence
į	Γ	6 Li		•	•	·	•				
	l	9 Be									
	1	27 AI									
		45 Sc									
	ļ	51 V									
	i I	51 V-1 52 Cr									
	! !	52 Cr									
	i	55 Mn									
	i	59 Co									
	ĺ	60 Ni									
	1	62 Ni									
	ļ	63 Cu									
	ļ	65 Cu									
	 1	66 Zn									
] 	67 Zn									
	 -	68 Zn 72 Ge			70.496						
	[> [72 Ge 75 As			70.480						
	<u>.</u>	75 As-1									
	i	77 Se									
	l	82 Se									
	ļ	89 Y									

95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd 108 Cd 111 Cd

114	Cd							
115	In							76.787
121	Sb							
123	Sb							
135	Ва							
137	Ba							
159	Tb							
165	Но							74.602
201	Hg							
202	Hg							
203	ΤI							
205	TI							
208	Pb							
209	Bi							
232	Th							
238	U							
56	Fe							
101	Ru							
77	ArCI							
84	Kr							
	115 121 123 135 137 159 165 201 202 203 205 208 209 232 238 56 101 77	121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 TI 205 TI 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCI	115 In 121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 TI 205 TI 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 TI 205 TI 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 TI 205 TI 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 TI 205 TI 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 TI 205 TI 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 Tl 205 Tl 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl

Sample ID: 606247-14

Sample Date/Time: Tuesday, June 27, 2006 18:03:57

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-14.073

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 97 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1 Solids Ratio: 0.91

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	50851	0.32		ug/L
1	Be	9	7	656	2.37	0.391	ug/L
1	Al	27	50334	163438042	0.90	8036.265	ug/L
	Sc	45	463094	376903	0.46		ug/L
	V	51	6917	772555	1.33	26.926	ug/L
1	V-1	51	5584	952497	0.44	32.799	ug/L
	Cr	52	20686	377300	0.05	14.842	ug/L
1	Cr	53	1914	100804	0.17	34.422	ug/L
	Mn	55	5964	8169189	0.95	220.182	ug/L
	Co	59	598	346655	1.40	10.850	ug/L
	Ni	60	886	239605	0.93	34.388	ug/L
1	Ni	62	-20173	-1610366	1.52	-1543.793	ug/L
1	Cu	63	12791	2138811	0.85	134.681	ug/L
	Cu	65	6061	1108135	1.90	143.857	ug/L
1	Zn	66	3175	5198801	0.83	1205.151	ug/L
1	Zn	67	735	835296	0.62	1125.596	ug/L
	Zn	68	2465	3639898	0.54	1181.237	ug/L
L>	Ge	72	907488	624946	1.54		ug/L
Γ	As	75	-403	13205	3.06	2.986	ug/L
1	As-1	75	296	21890	0.12	4.864	ug/L
	Se	77	395	2954	1.65	7.270	ug/L
	Se	82	193	283	2.25	0.295	ug/L
	Υ	89	749932	752556	0.61		ug/L
1	Мо	95	52	4075	0.51	0.464	ug/L
1	Мо	97	32	2544	4.09	0.466	ug/L
	Мо	98	72	6526	0.38	0.464	ug/L
1	Ag	107	288	1864	6.19	0.063	ug/L

Page 1

Sample ID: 606247-14

Report Date/Time: Tuesday, June 27, 2006 18:06:01

1	Ag	109	223	2004	4.52	0.073	ug/L
i	Cd	106	908	3074	5.15	4.352	ug/L
i	Cd	108	1	566	3.46	1.355	ug/L
i	Cd	111	734	9519	1.87	1.507	ug/L
i	Cd	114	141	18849	0.74	1.315	ug/L
ij.	> In	115	806560	601470	0.54		ug/L
i.	Sb	121	242	21102	1.43	1.199	ug/L
i	Sb	123	186	16127	0.78	1.175	ug/L
i	Ba	135	325	759442	0.86	149.978	ug/L
i	Ba	137	563	1348957	1.05	151.476	ug/L
Ī	Tb	159	1187362	875615	0.47		ug/L
i	> Ho	165	1212300	892957	0.05		ug/L
i	Hg	201	98	229	1.55	1415.677	ug/L
İ	Hg	202	210	498	4.41	347.553	ug/L
ĺ	TI	203	52	615	7.94	0.022	ug/L
- 1	TI	205	112	1495	1.47	0.022	
- 1	Pb	208	6710	54683937	0.76	624.561	ug/L
- 1	Bi	209	821507	564389	1.47		ug/L
	Th	232	1933	53376	0.72	0.651	ug/L
L	U	238	373	20490	0.45	0.254	ug/L
	Fe	56	6645286	538766158	1.48		ug/L
	Ru	101	. 4	23	3.14		ug/L
	ArCl	77	381	3008	4.19		ug/L
	Kr	84	931	-645	32.09		ug/L
	Sn	118	870	35358	1.12		ug/L
	QC Cal	culated '	Values				
	Mass Analyte	QC Std	I % Recovery Int Std % Recove	ry Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
Γ	6 Li						
- !	9 Be						
	27 Al						
1	45 Sc 51 V						
i	51 V 51 V-1						
i	52 Cr						

	21	~
-		Sc
ł		٧
-1	51	V-1
-	52	
i	53	
İ	55	
i	59	
i	60	
i	62	
i	63	
i		Cu
i	66	
i		
i	68	
į:		Ge
Γ.		As
1	75	As-1
H	73	Se
1	92	Se
-	02	oe v
- [89	
!	95	
		Мо
Ţ	98	
!	107	Ag
-	109	Ag
	106	
-	108	
1	111	Cd

Page 2

Sample ID: 606247-14

Report Date/Time: Tuesday, June 27, 2006 18:06:01

1	114	Cd			
l.					74.570
>	115	In			74.572
	121	Sb			
1	123	Sb			
1	135	Ba			
L	137	Ba			
٢	159	Tb			
1>	165	Ho			73.658
	201	Hg			
	202	Hg			
-	203	TI			
1	205	TI			
1	208	Pb			
1	209	Bi			
1	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCI			
	84	Kr			

Sample ID: 606247-15

Sample Date/Time: Tuesday, June 27, 2006 18:07:42

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-15.074

Tuning File: D:\ICPMS Data\Tuning\default.tun

Optimization File: D:\ICPMS Data\Optimize\Default.dac Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 98 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.79

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	53239	3.12		ug/L
	Be	9	7	760	4.56	0.384	ug/L
	Al	27	50334	181372734	0.72	7570.304	ug/L
1	Sc	45	463094	377830	1.31		ug/L
1	V	51	6917	820277	0.36	24.272	ug/L
1	V-1	51	5584	1002742	0.26	29.314	ug/L
	Cr	52	20686	272437	1.12	8.950	ug/L
	Cr	53	1914	89711	0.91	25.952	ug/L
1	Mn	55	5964	8230056	0.26	188.315	ug/L
	Co	59	598	260268	0.36	6.913	ug/L
	Ni	60	886	158601	1.71	19.295	ug/L
	Ni	62	-20173	-1548156	1.72	-1258.885	ug/L
	Cu	63	12791	246222	0.52	12.733	ug/L
	Cu	65	6061	125033	1.58	13.359	ug/L
	Zn	66	3175	1003964	1.51	197.199	ug/L
	Zn	67	735	157855	0.33	180.099	ug/L
1	Zn	68	2465	700920	0.83	192.685	ug/L
L>	Ge	72	907488	639091	1.19		ug/L
Γ	As	75	-403	11780	2.49	2.281	ug/L
1	As-1	75	296	20614	0.41	3.906	ug/L
	Se	77	395	3096	1.07	6.525	ug/L
1	Se	82	193	324	3.49	0.323	ug/L
1	Υ	89	749932	762126	0.48		ug/L
	Мо	95	52	3088	2.65	0.299	ug/L
	Мо	97	32	1942	0.04	0.303	ug/L
1	Мо	98	72	5007	1.41	0.303	ug/L
I	Ag	107	288	2063	3.26	0.060	ug/L

Page 1

Sample ID: 606247-15

Report Date/Time: Tuesday, June 27, 2006 18:09:46

1	Ag	109	223	2671	3.95	0.085	ug/L
i	Cd	106	908	4138	3.42	5.343	ug/L
i	Cd	108	1	976	6.47	1.995	ug/L
i	Cd	111	734	3709	7.89	0.452	ug/L
i	Cd	114	141	4040	1.85	0.235	ug/L
١٠		115	806560	611767	0.13		ug/L
ĺ	Sb	121	242	8551	0.13	0.409	ug/L
i	Sb	123	186	6631	0.26	0.407	ug/L
j	Ва	135	325	531767	1.29	89.620	ug/L
į	Ba	137	563	912945	0.77	87.481	ug/L
Ī	Tb	159	1187362	877427	0.24		ug/L
i:	> Ho	165	1212300	910976	0.45		ug/L
İ	Hg	201	98	218	4.88	1108.522	ug/L
	Hg	202	210	532	4.92	322.343	ug/L
Ì	TI	203	52	979	4.91	0.030	ug/L
-	TI	205	112	2313	4.01	0.030	ug/L
	Pb	208	6710	17128020	0.04	166.436	ug/L
	Bi	209	821507	587096	0.44		ug/L
-	Th	232	1933	56621	0.82	0.589	ug/L
Ĺ	U	238	373	25196	2.15	0.267	ug/L
	Fe	56	6645286	515773850	1.71		ug/L
	Ru	101	4	16	8.84		ug/L
	ArCl	77	381	3089	1.85		ug/L
	Kr	84	931	-171	33.78		ug/L
	Sn	118	870	17292	0.72		ug/L
	QC Calc	ulated	l Values				
	Mass Analyte	QC S	Std % Recovery Int Std %	6 Recovery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. %
٢	6 Li						
-	9 Be						
l	27 Al						

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
٢	6	Li	•				•
i	9	Ве					
i	27	Al					
i	45	Sc					
i	51	٧					
İ							
1	52	Cr					
-	53	Cr					
1	55	Mn					
	59	Co					
-1	60	Ni					
1	62	Ni					
		Cu					
1		Cu					
		Zn					
1		Zn					
1	68	Zn					
L>		Ge		70.424			
ſ	75						
1		As-1					
	77	Se					
ļ	82						
1		Υ					
ļ		Мо					
!	97	Мо					
!	98	Мо					
		Ag					
	109	Ag					
1		Cd			•		
		Cd					
1	111	Ca					

1	114	Cd	
>	115	In	75.849
i	121	Sb	
	123	Sb	
	135	Ва	
L	137	Ва	
ſ	159	Tb	
>	165	Но	75.144
1	201	Hg	
	202	Hg	
]	203	TI	
	205	TI	
	208	Pb	
	209	Bi	
	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCl	
	84	Kr	
	118	Sn	

Sample ID: 606247-16

Sample Date/Time: Tuesday, June 27, 2006 18:11:28

Sample Description: soil

User Name: btb Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-16.075

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 99 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1 Solids Ratio: 0.69

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	54504	1.91		ug/L
1	Be	9	7	633	0.45	0.276	ug/L
1	Al	27	50334	175967762	2.25	6335.505	ug/L
	Sc	45	463094	377298	0.39		ug/L
	V	51	6917	836062	1.89	21.346	ug/L
1	V-1	51	5584	1029955	1.35	25.979	ug/L
1	Cr	52	20686	349131	0.89	10.012	ug/L
1	Cr	53	1914	101258	1.05	25.313	ug/L
ļ	Mn	55	5964	7180986	0.76	141.737	ug/L
	Co	59	598	286652	0.45	6.569	ug/L
1	Ni	60	886	210409	0.91	22.106	ug/L
1	Ni	62	-20173	[-3871556]	[81.51]	[-2741.750]	ug/L
1	Cu	63	12791	663742	0.98	30.314	ug/L
1	Cu	65	6061	318829	0.53	30.018	ug/L
	Zn	66	3175	2315023	1.18	392.846	ug/L
1	Zn	67	735	374741	1.78	369.516	ug/L
	Zn	68	2465	1712794	0.33	406.835	ug/L
L>	Ge	72	907488	646991	0.94		ug/L
Γ	As	75	-403	15411	2.83	2.542	ug/L
ĺ	As-1	75	296	24559	1.92	3.994	ug/L
1	Se	77	395	3257	0.35	5.901	ug/L
	Se	82	193	362	8.41	0.331	ug/L
1	Υ	89	749932	744109	1.16		ug/L
1	Мо	95	52	3752	1.51	0.312	ug/L
	Мо	97	32	2371	0.47	0.317	ug/L
1	Мо	98	72	6089	0.73	0.316	ug/L
1	Ag	107	288	2040	1.49	0.051	ug/L

Page 1

Sample ID: 606247-16

Report Date/Time: Tuesday, June 27, 2006 18:13:31

1	114	Cd	
>	115	In	77.321
1	121	Sb	
1	123	Sb	
İ	135	Ва	
Ĺ	137	Ва	
Ī	159	Tb	
>	165	Но	75.964
1	201	Hg	
	202	Hg	
1	203	TI	
1	205	П	
	208	Pb	
i	209	Bi	
l	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCl	
	84	Kr	

Sample ID: 606247-17

Sample Date/Time: Tuesday, June 27, 2006 18:15:13

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam
Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth
Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-17.076

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 100 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1 Solids Ratio: 0.82

Intensities

	Analyte	Mass	Blank Intensity	Meas, Intens, Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	53621	0.77		ug/L
	Be	9	7	554	13.27	0.288	ug/L
1	A!	27	50334	161408757	0.37	6940.316	ug/L
	Sc	45	463094	379537	0.32		ug/L
1	V	51	6917	697497	0.92	21.238	ug/L
1	V-1	51	5584	882042	0.90	26.547	ug/L
	Cr	52	20686	221768	0.82	7.404	ug/L
	Cr	53	1914	83887	0.90	24.973	ug/L
	Mn	55	5964	6394334	0.18	150.706	ug/L
	Co	59	598	200391	0.75	5.481	ug/L
	Ni	60	886	114100	0.04	14.279	ug/L
	Ni	62	-20173	-1215307	1.27	-1015.448	ug/L
1	Cu	63	12791	180458	1.11	9.477	ug/L
	Cu	65	6061	93078	1.61	10.118	ug/L
i	Zn	66	3175	142238	1.97	28.389	ug/L
1	Zn	67	735	26702	0.99	30.872	ug/L
	Zn	68	2465	95421	0.58	26.595	ug/L
Ĺ>	Ge	72	907488	643903	1.22		ug/L
Γ	As	75	-403	9580	0.84	1.939	ug/L
	As-1	75	296	18474	0.84	3.633	ug/L
	Se	77	395	2976	3.07	6.489	ug/L
	Se	82	193	280	2.78	0.252	ug/L
1	Υ	89	749932	719455	0.36		ug/L
1	Мо	95	52	1800	4.16	0.179	ug/L
1	Мо	97	32	1178	2.63	0.189	ug/L
1	Мо	98	72	2976	0.26	0.186	ug/L
1	Ag	107	288	1786	2.18	0.053	ug/L

Page 1

Sample ID: 606247-17

Report Date/Time: Tuesday, June 27, 2006 18:17:17

1	Ag	109	223	2044	1.56	0.066	-	
i	Cd	106	908	4834	0.23	6.676		
i	Cd	108	1	1230	5.97	2.616	_	
i	Cd	111	734	2739	3.41		ug/L	
İ	Cd	114	141	931	9.40	0.051	_	
İ>	In	115	806560	611125	1.93		ug/L	
İ	Sb	121	242	4082	0.59	0.198	_	
-	Sb	123	186	3200	1.85		ug/L	
1	Ва	135	325	201066	1.35	35.195		
Ĺ	Ba	137	563	347606	0.59	34.592	ug/L	
Γ	Tb	159	1187362	886879	0.66		ug/L	
>	Но	165	1212300	887513	0.07		ug/L	
	Hg	201	98	156	6.35	691.840		
	Hg	202	210	341	0.41	172.116		
1	TI	203	52	782	5.06	0.025		
	TI	205	112	1921	3.53	0.026		
ļ	Pb	208	6710	1328476	0.81	13.706	-	
	Bi	209	821507	566246	0.37		ug/L	
Į	Th	232	1933	56319	0.55	0.624	_	
L	U	238	373	20597	0.91	0.232	-	
	Fe	56	6645286	405115906	1.26		ug/L	
	Ru	101	4	6	12.86		ug/L	
	ArCl	77	381	3072	0.99		ug/L	
	Kr	84	931	-76	103.55		ug/L	
	Sn	118	870	12654	0.78		ug/L	
	QC Ca	alculated Va	alues					
_	Mass Anal		Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference	
ŗ	Mass Anal			Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference	
[Mass Anal			Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Anal 6 Li 9 Be 27 Al			Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference	
[Mass Anal			Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference	
[Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1			Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr			Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr			Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn			Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co			Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn			Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu			Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu			Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn			Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn			Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn				Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn			Recovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference	
<u> </u>	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference	
<u> </u>	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference	
[Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference	
[Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 71 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference	
<u> </u>	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference	
<u> </u>	Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 71 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag	yte QC Std %			Dilution % Diffe	erence	Duplicate Rel. % Difference	

1	114	Cd			
 >	115	In			75.769
1	121	Sb			
1	123	Sb			
1	135	Ва			
L	137	Ba			
Γ	159	Tb			
>	165	Но			73.209
	201	Hg			
1	202	Hg			
1	203	TI			
1	205	TI			
1	208	Pb			
	209	Bi			
1	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCI			
	84	Kr			
	118	Sn			

Sample ID: 606247-18

Sample Date/Time: Tuesday, June 27, 2006 18:18:59

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-18.077

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 101 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.9

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
٢	Li	6	54057	52249	0.29		ug/L
1	Be	9	7	756	4.21	0.435	ug/L
1	Al	27	50334	173173522	1.57	8229.353	ug/L
1	Sc	45	463094	374758	1.13		ug/L
	V	51	6917	775493	1.79	26.118	ug/L
	V-1	51	5584	955034	1.24	31.782	ug/L
	Cr	52	20686	317339	0.03	11.964	ug/L
1	Cr	53	1914	92313	0.05	30.422	ug/L
	Mn	55	5964	7219830	1.54	188.078	ug/L
	Co	59	598	263838	1.30	7.979	ug/L
	Ni	60	886	166298	0.81	23.042	ug/L
1	Ni	62	-20173	-1491619	0.03	-1380.747	ug/L
	Cu	63	12791	207284	0.52	12.118	ug/L
1	Cu	65	6061	105285	0.91	12.725	ug/L
	Zn	66	3175	822993	0.16	183.995	ug/L
	Zn	67	735	129124	1.12	167.613	ug/L
	Zn	68	2465	574549	0.45	179.753	ug/L
L>	Ge	72	907488	639394	0.86		ug/L
Γ	As	75	-403	17270	0.17	3.859	ug/L
	As-1	75	296	26542	0.42	5.869	ug/L
	Se	77	395	2908	1.48	7.100	ug/L
-	Se	82	193	257	1.38	0.240	ug/L
	Υ	89	749932	820165	0.78		ug/L
1	Мо	95	52	3894	3.04	0.440	ug/L
1	Мо	97	32	2486	2.01	0.452	ug/L
	Мо	98	72	6310	0.35	0.446	ug/L
1	Ag	107	288	1299	3.10	0.041	ug/L

Page 1

Sample ID: 606247-18

Report Date/Time: Tuesday, June 27, 2006 18:21:02

1	Ag	109	223	1684	1.55	0.060	
i	Cd	106	908	2669	0.68	3.597	
i	Cd	108	1	301	30.73	0.714	
İ	Cd	111	734	3555	1.40	0.502	
ĺ	Cd	114	141	4458	0.72	0.303	ug/L
į,	1	115	806560	598879	0.88		ug/L
Ï	Sb	121	242	5511	0.21	0.303	ug/L
i	Sb	123	186	4270	0.68	0.302	ug/L
i	Ba	135	325	172498	0.03	33.802	ug/L
i	Ba	137	563	298337	0.03	33.239	ug/L
Ī	Tb	159	1187362	891821	1.03		ug/L
ij		165	1212300	896028	0.57		ug/L
- i	Hg	201	98	177	1.20	929.017	ug/L
i	Hg	202	210	417	9.00	261.195	ug/L
i	ΤΪ	203	52	1074	4.21	0.038	ug/L
İ	TI	205	112	2546	0.36	0.038	ug/L
Ĺ	Pb	208	6710	36074824	1.47	406.066	ug/L
Ì	Bi	209	821507	577514	2.12		ug/L
i	Th	232	1933	66234	0.74	0.801	ug/L
i	U	238	373	24458	0.78	0.300	ug/L
_	Fe	56	6645286	496918530	0.06		ug/L
	Ru	101	4	10	14.14		ug/L
	ArCl	77	381	3174	0.74		ug/L
	Kr	84	931	-429	39.67		ug/L
	Sn	118	870	23707	0.35		ug/L
		lculated V					
	Mass Analy		% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Difference
٢	6 Li	yle doolu	A recovery line out 70	recovery opine witeocresy	Bilduoi: 70 Bill	0.000	Dupilouio i ion you more inco
- 1							
1							
	9 Be 27 Al 45 Sc						
	9 Be 27 Al 45 Sc 51 V						
	9 Be 27 Al 45 Sc 51 V 51 V-1						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn						
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn			70.458			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn			70.458			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1			70.458			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 Se			70.458			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 Se 82 Se			70.458			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y			70.458			
<u>-</u>	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo			70.458			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y			70.458			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo			70.458			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag			70.458			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd			70.458			
	9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag			70.458			

1	114	Cd			
>	115	In			74.251
	121	Sb			
	123	Sb			
1	135	Ba			
Ĺ	137	Ва			
Γ	159	Tb			
>	165	Но			73.911
1	201	Hg			
1	202	Hg			
1	203	TI			
1	205	TI			
İ	208	Pb			
1	209	Bi			
1	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCI			
	84	Kr			

Sample ID: 25 ppb i1-57a

Sample Date/Time: Tuesday, June 27, 2006 18:22:44

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\25 ppb i1-57a.078

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 5
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):
Solids Ratio:

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	53615	1.58		ug/L
1	Be	9	7	48416	0.90	28.547	ug/L
	Al	27	50334	780209	14.78	35.829	ug/L
1	Sc	45	463094	345659	1.87		ug/L
	V	51	6917	716580	1.06	24.528	ug/L
1	V-1	51	5584	766120	0.33	25.904	ug/L
1	Cr	52	20686	635591	0.48	24.915	ug/L
	Cr	53	1914	87658	0.37	29.328	ug/L
1	Mn	55	5964	969238	0.10	25.586	ug/L
1	Co	59	598	798785	1.43	24.606	ug/L
	Ni	60	886	172955	0.05	24.381	ug/L
	Ni	62	-20173	10036	1.29	24.304	ug/L
	Cu	63	12791	402212	0.85	24.401	ug/L
1	Cu	65	6061	193748	0.63	24.238	ug/L
	Zn	66	3175	115481	0.19	25.784	ug/L
1	Zn	67	735	22111	0.45	28.573	ug/L
	Zn	68	2465	81458	0.91	25.403	ug/L
L>	Ge	72	907488	698235	1.22		ug/L
٢	As	75	-403	107360	1.49	23.204	ug/L
1	As-1	75	296	106940	0.73	23.337	ug/L
	Se	77	395	9481	1.22	24.370	ug/L
	Se	82	193	11790	1.70	24.058	ug/L
1	Υ	89	749932	579044	1.60		ug/L
1	Мо	95	52	204758	1.42	22.915	ug/L
1	Мо	97	32	129887	0.21	23.389	ug/L
1	Мо	98	72	336882	0.38	23.536	ug/L
ł	Ag	107	288	643334	0.56	23.971	ug/L

Page 1

Sample ID: 25 ppb i1-57a

Report Date/Time: Tuesday, June 27, 2006 18:24:47

Pb Bi Th U Fe Ru ArCl Kr Sn QC Calc	208 209 232 238 56 101 77 84 118 ulated Values	6710 821507 1933 373 6645286 4 381 931 870	2197927 648163 1888123 1921552 5196306 7 9475 662 1520	1.18 0.14 0.21 0.88 3.10 20.20 1.03 4.47 20.47	23.162 23.681	ug/L
Bi Th U Fe Ru ArCl Kr	209 232 238 56 101 77 84	821507 1933 373 6645286 4 381 931	648163 1888123 1921552 5196306 7 9475 662	0.14 0.21 0.88 3.10 20.20 1.03 4.47	23.162	ug/L ug/L ug/L ug/L ug/L ug/L ug/L
Bi Th U Fe Ru ArCl	209 232 238 56 101 77	821507 1933 373 6645286 4 381	648163 1888123 1921552 5196306 7 9475	0.14 0.21 0.88 3.10 20.20 1.03	23.162	ug/L ug/L ug/L ug/L ug/L ug/L
Bi Th U Fe Ru	209 232 238 56 101	821507 1933 373 6645286 4	648163 1888123 1921552 5196306 7	0.14 0.21 0.88 3.10 20.20	23.162	ug/L ug/L ug/L ug/L ug/L
Bi Th U Fe	209 232 238 56	821507 1933 373 6645286	648163 1888123 1921552 5196306	0.14 0.21 0.88 3.10	23.162	ug/L ug/L ug/L ug/L
Bi Th U	209 232 238	821507 1933 373	648163 1888123 1921552	0.14 0.21 0.88	23.162	ug/L ug/L ug/L
Bi Th	209 232	821507 1933	648163 1888123	0.14 0.21	23.162	ug/L ug/L
Bi	209	821507	648163	0.14		ug/L
					24.522	_
Pb	208	6710	2197927	1.18	24.022	49/ L
					24 522	ug/L
		- ··	1578694	0.42	24.091	ug/L
_				1.31	24.248	ug/L
-						-
					252.834	ug/L
						ug/L
						ug/L
						ug/L
						ug/L
						ug/L
					25.731	ug/L
						ug/L
						ug/L
		•				ug/L
						ug/L
-				2.15		ug/L
Δα	109	223	616225	0.04	23.970	ug/L
	Ag Cd Cd Cd Cd In Sb Sb Ba Ba Tb Ho Hg TI TI	Cd 106 Cd 108 Cd 111 Cd 114 In 115 Sb 121 Sb 123 Ba 135 Ba 137 Tb 159 Ho 165 Hg 201 Hg 202 TI 203 TI 205	Cd 106 908 Cd 108 1 Cd 111 734 Cd 114 141 In 115 806560 Sb 121 242 Sb 123 186 Ba 135 325 Ba 137 563 Tb 159 1187362 Ho 165 1212300 Hg 201 98 Hg 202 210 Tl 203 52 Tl 205 112	Cd 106 908 14901 Cd 108 1 10635 Cd 111 734 158257 Cd 114 141 366910 In 115 806560 678295 Sb 121 242 461180 Sb 123 186 352986 Ba 135 325 129392 Ba 137 563 225498 Tb 159 1187362 975879 Ho 165 1212300 1002155 Hg 201 98 110 Hg 202 210 254 Tl 203 52 660230 Tl 205 112 1578694	Cd 106 908 14901 2.15 Cd 108 1 10635 2.66 Cd 111 734 158257 0.60 Cd 114 141 366910 0.59 In 115 806560 678295 0.44 Sb 121 242 461180 1.87 Sb 123 186 352986 0.98 Ba 135 325 129392 0.84 Ba 137 563 225498 1.93 Tb 159 1187362 975879 1.09 Ho 165 1212300 1002155 0.67 Hg 201 98 110 5.81 Hg 202 210 254 6.68 Tl 203 52 660230 1.31 Tl 205 112 1578694 0.42	Cd 106 908 14901 2.15 25.006 Cd 108 1 10635 2.66 24.843 Cd 111 734 158257 0.60 25.797 Cd 114 141 366910 0.59 25.065 In 115 806560 678295 0.44 Sb 121 242 461180 1.87 25.731 Sb 123 186 352986 0.98 25.260 Ba 135 325 129392 0.84 24.855 Ba 137 563 225498 1.93 24.630 Tb 159 1187362 975879 1.09 Ho 165 1212300 1002155 0.67 Hg 201 98 110 5.81 252.834 Hg 202 210 254 6.68 79.874 Tl 203 52 660230 1.31 24.248

	•	a.o.	atou raiuoo				
_		Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
ļ	6	Li -					
[9	Ве					
ļ	27						
!	45						
!	51	V					
	51						
	52						
-	53	Cr					
İ	55	Mn					
1	59						
- 1	60						
1	62	Ni					
1	63	Cu					
1	65						
		Zn					
1		Zn					
l	68	Zn					
L>	72			76.942			
Γ		As					
		As-1					
l	77						
-		Se					
- 1		Υ					
-		Мо					
		Мо					
1		Мо					
	107						
	109						
1	106						
1	108						
	111	Cd					

1	114	Cd	
>	115	In	84.097
1	121	Sb	
1	123	Sb	
1	135	Ва	
L	137	Ва	
Γ	159	Tb	
l>	165	Но	82.666
1	201	Hg	
1	202	Hg	
]	203	TI	
	205	TI	
1	208	Pb	
1	209	Bi	
ł	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCI	
	84	Kr	

Sample ID: 606247-19

Sample Date/Time: Tuesday, June 27, 2006 18:26:29

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-19.079

Tuning File: D:\ICPMS Data\Tuning\default.tun Optimization File: D:\ICPMS Data\Optimize\Default.dac Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 102 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.9

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	54532	0.37		ug/L
	Be	9	7	801	6.27	0.449	ug/L
	Al	27	50334	187516363	2.23	8685.901	ug/L
İ	Sc	45	463094	392283	1.01		ug/L
	٧	51	6917	861411	2.20	28.292	ug/L
	V-1	51	5584	1034321	1.49	33.559	ug/L
1	Cr	52	20686	309734	2.40	11.353	ug/L
-	Cr	53	1914	90737	2.19	29.136	ug/L
1	Mn	55	5964	7099374	1.27	180.276	ug/L
	Co	59	598	245981	1.44	7.251	ug/L
	Ni	60	886	143354	2.86	19.346	ug/L
1	Ni	62	-20173	-1551332	0.09	-1400.068	ug/L
1	Cu	63	12791	204856	1.75	11.654	ug/L
	Cu	65	6061	104233	0.74	12.262	ug/L
	Zn	66	3175	387315	1.15	84.133	ug/L
-	Zn	67	735	63001	1.03	79.365	ug/L
	Zn	68	2465	268312	0.24	81.535	ug/L
L>	Ge	72	907488	655953	1.58		ug/L
Γ	As	75	-403	20873	3.12	4.536	ug/L
1	As-1	75	296	30067	1.19	6.488	ug/L
	Se	77	395	3153	0.40	7.551	ug/L
	Se	82	193	309	3.66	0.334	ug/L
	Υ	89	749932	861572	1.39		ug/L
1	Мо	95	52	5264	7.25	0.581	ug/L
1	Мо	97	32	3224	10.06	0.573	ug/L
1	Мо	98	72	8504	5.10	0.587	ug/L
1	Ag	107	288	3349	5.07	0.116	ug/L

Page 1

Sample ID: 606247-19

Report Date/Time: Tuesday, June 27, 2006 18:28:32

			000	2480	2 10	0.128	ug/L
!	Ag	109	223	3480	3.19		_
1	Cd	106	908	2876	3.48	3.841	ug/L
1	Cd	108	1	251	2.95	0.581	ug/L
	Cd	111	734	3391	2.85	0.461	ug/L
	Cd	114	141	3814	1.77	0.252	ug/L
>	ln	115	806560	614147	0.02		ug/L
	Sb	121	242	9765	18.17	0.532	ug/L
1	Sb	123	186	7527	17.40	0.526	ug/L
ĺ	Ва	135	325	189267	2.59	36.168	ug/L
Ĺ	Ba	137	563	334023	2.69	36.293	ug/L
Γ̈́	Tb	159	1187362	928635	0.27		ug/L
i>	Ho	165	1212300	948261	1.58		ug/L
i	Hg	201	98	198	1.07	1019.351	ug/L
Ì	Hg	202	210	434	1.47	254.307	ug/L
İ	TI	203	52	1635	24.62	0.056	ug/L
İ	TI	205	112	3997	12.90	0.057	ug/L
ĺ	Pb	208	6710	5664571	0.26	60.210	ug/L
i	Bi	209	821507	574519	2.17		ug/L
i	Th	232	1933	92639	8.87	1.064	ug/L
j	U	238	373	26916	5.00	0.312	ug/L
_	Fe	56	6645286	515475588	0.09		ug/L
	Ru	101	4	11	20.20		ug/L
	ArCl	77	381	3192	2.64		ug/L
	Kr	84	931	-1044	55.42		ug/L
	Sn	118	870	28104	0.23		ug/L
		alculated Va	lues				-
		-64- 00 044 0/		College / Page /	Dilution 9/ Di	Horonoo	Dunling

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li					
1	9	Be					
	27						
1	45	Sc					
1	51	٧					
	51	V-1					
İ	52	Cr					
1	53	Cr					
1	55	Mn					
1	59	Co					
1	60	Ni					
1	62	Ni					
1	63	Cu					
	65	Cu					
1	66	Zn					
1	67	Zn					•
1	68	Zn					
L>	72			72.282			
Γ		As					
1		As-1					
	77						
!	82	Se					
1	89						
ļ		Мо					
1	97	Мо					
!	98	Мо					
!	107						
	109						
	106						
!	108						
Í	111	Cd					

1	114	Cd				
>	115	In				76.144
1	121	Sb				
1	123	Sb				
1	135	Ba				
Ĺ	137	Ba				
Γ	159	Tb				
>	165	Но				78.220
-	201	Hg				
l	202	Hg				
	203	TI				
	205	TI				
1	208	Pb				
	209	Bi				
1	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCI				
	84	Kr				
	118	Sn				

Sample ID: 606247-20

Sample Date/Time: Tuesday, June 27, 2006 18:30:14

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-20.080

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 103 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.97

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	52513	3.17		ug/L
1	Be	9	7	732	4.44	0.448	ug/L
1	Al	27	50334	169954757	0.27	8581.904	ug/L
	Sc	45	463094	377431	0.89		ug/L
	V	51	6917	737153	1.15	26.368	ug/L
	V-1	51	5584	908708	0.89	32.123	ug/L
	Cr	52	20686	375962	0.43	15.164	ug/L
	Cr	53	1914	97718	0.40	34.239	ug/L
1	Mn	55	5964	7534744	1.14	208.562	ug/L
1	Co	59	598	279347	1.47	8.977	ug/L
	Ni	60	886	183346	0.18	27.002	ug/L
1	Ni	62	-20173	-1509546	1.10	-1484.623	ug/L
1	Cu	63	12791	259984	1.48	16.289	ug/L
	Cu	65	6061	130746	2.29	16.919	ug/L
	Zn	66	3175	2869027	0.40	682.835	ug/L
	Zn	67	735	462034	0.46	639.146	ug/L
	Zn	68	2465	2001151	0.65	666.655	ug/L
L>	Ge	72	907488	648569	0.95		ug/L
ſ	As	75	-403	14633	0.27	3.429	ug/L
1	As-1	75	296	23437	0.12	5.408	ug/L
	Se	77	395	3078	2.25	7.873	ug/L
1	Se	82	193	279	2.79	0.289	ug/L
ı	Υ	89	749932	813851	1.65		ug/L
	Мо	95	52	4370	0.10	0.516	
1	Мо	97	32	2724	1.19	0.518	
!	Мо	98	72	7260	0.52	0.536	-
ı	Ag	107	288	2091	6.26	0.074	ug/L

Page 1

Sample ID: 606247-20

Report Date/Time: Tuesday, June 27, 2006 18:32:18

1	Ag	109	2	23		2268		0.22	0.087	ug/L
i	Cď	106	9	80		2532		0.62	3.460	ug/L
i	Cd	108		1		-25		330.58	-0.064	ug/L
i	Cd	111	7	'34		5599		2.61	0.878	ug/L
i	Cd	114	1	41		9301		0.65	0.669	ug/L
i,	▶ In	115	8065	60		617685		0.86		ug/L
i	Sb	121	2	42		10410		2.75	0.608	ug/L
i	Sb	123	1	86		8118		2.89	0.608	ug/L
i	Ва	135	3	25		262853		3.84	53.857	ug/L
Ĺ	Ва	137	5	63		457657		0.40	53.308	ug/L
Ī	Tb	159	11873	362		920987		0.65		ug/L
į,	> Ho	165	12123	300		943158		1.01		ug/L
İ	Hg	201		98		225		1.26	1359.599	ug/L
ĺ	Hg	202	2	210		523		0.14	367.457	ug/L
ĺ	TI	203		52		1000		1.98	0.036	ug/L
-	TI	205	1	12		2339		0.73	0.035	ug/L
-	Pb	208	67	' 10	17	5615620		0.15	2024.444	ug/L
	Bi	209	8215	507		608187		1.02		ug/L
1	Th	232	19	33		68065		1.35	0.842	ug/L
L	U	238	3	373		24316		1.16	0.305	ug/L
	Fe	56	66452	286	503	3079559		1.10		ug/L
	Ru	101		4		17		4.29		ug/L
	ArCl	77	3	881		3043		0.33		ug/L
	Kr	84	9	31		-1053		9.32		ug/L
	Sn	118	8	370		42138		0.48		ug/L
	QC Calc	ulated	d Values							
	Mass Analyte	QC S	Std % Recovery I	nt Std	% Recovery	Spike %	Recovery	Dilution %	Difference	Duplicate Rel. % Di
ſ	6 Li									
	9 Be									
1	27 AI									
i	45 Sc 51 V									
-	51 V									

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li					
1	9	Be					
	27	Al					
	45	Sc					
1	51	V					
-	51	V-1					
	52						
	53	Cr					
		Mn					
		Co					
	60						
		Ni					
		Cu					
1		Cu					
		Zn					
	67						
1		Zn					
L>		Ge		71.469			
Γ		As					
i		As-1					
1	77						
ł		Se					
1	89						
l		Мо					
1		Мо					
1		Мо					
1		Ag					
	109						
	106						
-	108						
	111	Cd					

Report Date/Time: Tuesday, June 27, 2006 18:32:18

1	114	Cd	
>	115	In	76.583
1	121	Sb	
1	123	Sb	
1	135	Ва	
L	137	Ва	
٢	159	Tb	
>	165	Но	77.799
1	201	Hg	
1	202	Hg	
!	203	П	
	205	TI	
1	208	Pb	
1	209	Bi	
1	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCI	
	84	Kr	

Sample ID: i6-295 mb

Sample Date/Time: Tuesday, June 27, 2006 18:34:00

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth Dataset File: D:\ICPMS Data\Dataset\06-27-06\i6-295 mb.081

Tuning File: D:\ICPMS Data\Tuning\default.tun Optimization File: D:\ICPMS Data\Optimize\Default.dac Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 104 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
ſ	Li	6	54057	52454	2.79		ug/L
1	Ве	9	7	8	47.14	0.002	ug/L
ĺ	Al	27	50334	182809	56.61	7.684	ug/L
1	Sc	45	463094	316703	0.09		ug/L
1	٧	51	6917	-5770	32.24	-0.399	ug/L
	V-1	51	5584	185925	1.11	6.687	ug/L
	Cr	52	20686	19633	0.52	0.213	ug/L
	Cr	53	1914	63153	2.72	22.728	ug/L
1	Mn	55	5964	14213	5.54	0.286	ug/L
1	Co	59	598	426	0.33	0.000	ug/L
	Ni	60	886	1191	2.55	0.086	ug/L
1	Ni	62	-20173	-15964	0.03	-1.650	ug/L
	Cu	63	12791	16188	0.52	0.476	ug/L
1	Cu	65	6061	7680	1.33	0.466	ug/L
1	Zn	66	3175	2995	15.92	0.181	ug/L
1	Zn	67	735	4244	6.70	5.334	ug/L
1	Zn	68	2465	3249	32.62	0.516	ug/L
L>	Ge	72	907488	645940	0.00		ug/L
Γ	As	75	-403	-720	7.89	-0.097	ug/L
	As-1	75	296	9309	1.97	2.178	ug/L
1	Se	77	395	3348	2.09	8.894	ug/L
	Se	82	193	163	10.41	0.035	ug/L
ı	Υ	89	749932	536233	0.72		ug/L
1	Мо	95	52	174	4.69	0.016	ug/L
	Мо	97	32	120	12.13	0.019	ug/L
1	Мо	98	72	292	6.44	0.018	ug/L
1	Ag	107	288	356	29.00	0.006	ug/L

Page 1

Sample ID: i6-295 mb

Report Date/Time: Tuesday, June 27, 2006 18:36:03

		400	222	303	25.20	0.006	ua/l
ļ	Ag	109	223 908	-165	30.28	-1.671	
- [Cd	106 108	1	-833	2.27	-2.137	
-	Cd	108 111	734	523	4.79	-0.007	_
-	Cd Cd	114	141	-21	41.49	-0.010	
- I.		115	806560	618603	0.57		ug/L
	> In Sb	121	242	1761	0.12	0.096	
l I	Sb	123	186	1302	3.14	0.091	
1	Ba	135	325	378	45.14	0.027	
i	Ba	137	563	590	39.70	0.019	
F	Tb	159	1187362	888471	1.27	•••	ug/L
I.	> Ho	165	1212300	905615	0.05		ug/L
1	Hg	201	98	88	2.42	140.242	=
i	Hg	202	210	210	5.06	57.804	
i	TI	203	52	286	1.48	0.010	
i	ΤΙ	205	112	710	7.28	0.011	
i	Pb	208	6710	84183	6.40	0.980	
i	Bi	209	821507	575180	1.36		ug/L
i	Th	232	1933	2484	7.03	0.014	
i	Ü	238	373	94	15.88	-0.003	
_	Fe	56	6645286	5291315	0.18		ug/L
	Ru	101	4	6	47.14		ug/L
	ArCl	77	381	3340	1.88		ug/L
	Kr	84	931	652	11.10		ug/L
	Sn	118	870	32395	0.78		ug/L
	QC Ca	Iculated \	/alues				
	Mass Analy		% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference
Γ	6 Li						·
1	9 Be						
	27 AI						
-	45 Sc 51 V						
1	51 V 51 V-1						
i	52 Cr						
j	53 Cr						
ŀ	55 Mn						
ļ	59 Co						
!	60 Ni						
	62 Ni 63 Cu						
i	65 Cu						
j	66 Zn						
1	67 Zn						
ı							
- 1	68 Zn						
Ļ>	72 Ge			71.179			
[>	72 Ge 75 As			71.179			
[> [72 Ge 75 As 75 As-1			71.179			
 	72 Ge 75 As 75 As-1 77 Se 82 Se			71.179			
> - - - -	72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y			71.179			
	72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo			71.179			
	72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo			71.179			
	72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo			71.179			
	72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo			71.179			
>	72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd			71.179			
	72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd 108 Cd			71.179			
	72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd			71.179			

1	114	Cd	
 >	115	In	76.697
1	121	Sb	
ĺ	123	Sb	
1	135	Ва	
L	137	Ва	
Ī	159	Tb	
>	165	Но	74.702
1	201	Hg	
1	202	Hg	
1	203	ТІ	
	205	П	
1	208	Pb	
1	209	Bi	
1	232	Th	
Ĺ	238	U	
	56	Fe	
	101	Ru	
	77	ArCI	
	84	Kr	

Sample ID: i6-295 lcs

Sample Date/Time: Tuesday, June 27, 2006 18:37:45

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth Dataset File: D:\ICPMS Data\Dataset\06-27-06\i6-295 lcs.082

Tuning File: D:\ICPMS Data\Tuning\default.tun Optimization File: D:\ICPMS Data\Optimize\Default.dac Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 105 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	51134	1.39		ug/L
ĺ	Be	9	7	9329	1.65	6.044	ug/L
	Al	27	50334	95998	3.91	3.230	ug/L
1	Sc	45	463094	317521	1.05		ug/L
	V	51	6917	774820	0.88	29.197	ug/L
	V-1	51	5584	1019495	0.03	37.966	ug/L
	Cr	52	20686	1165892	0.15	50.897	ug/L
	Cr	53	1914	211444	0.38	78.603	ug/L
	Mn	55	5964	9398	7.94	0.152	ug/L
1	Co	59	598	602276	0.66	20.395	ug/L
1	Ni	60	886	163810	0.13	25.391	ug/L
	Ni	62	-20173	8997	1.32	24.165	ug/L
-	Cu	63	12791	747965	0.14	50.530	ug/L
	Cu	65	6061	356883	0.96	49.692	ug/L
	Zn	66	3175	211061	1.03	52.369	ug/L
	Zn	67	735	38735	0.50	55.729	ug/L
1	Zn	68	2465	149704	0.22	51.948	ug/L
L>	Ge	72	907488	635104	1.32		ug/L
٢	As	75	-403	40503	0.10	9.738	ug/L
1	As-1	75	296	51977	0.24	12.538	ug/L
	Se	77	395	5493	0.40	15.323	ug/L
	Se	82	193	2396	0.24	5.156	ug/L
	Υ	89	749932	528133	0.45		ug/L
1	Мо	95	52	129	14.64	0.011	ug/L
	Мо	97	32	83	28.59	0.012	ug/L
	Мо	98	72	239	1.68	0.014	ug/L
	Ag	107	288	219302	0.68	9.045	ug/L

Page 1

Sample ID: i6-295 lcs

Report Date/Time: Tuesday, June 27, 2006 18:39:48

	ı	Ag	109	223	212283	0.69	9.140	ug/L	
	! !	Cd	106	908	5863	1.85	10.137	-	
İ	i i		108	1	3821	1.17	9.887		
	1	Cd			58845	1.28	10.566	-	
	ļ	Cd	111	734		0.34	10.321		
	ļ	Cd	114	141	136470		10.321		
	>	ln -	115	806560	612543	2.03	00.000	ug/L	
	ļ	Sb	121	242	328554	2.02	20.306		
	1	Sb	123	186	250031	1.62	19.818		
		Ва	135	325	240170	2.54	51.140		
	L	Ba	137	563	420360	0.06	50.906	ug/L	
	Γ	Tb	159	1187362	885218	2.25		ug/L	
	İ>	Ho	165	1212300	896980	0.22		ug/L	
	İ	Hg	201	98	100	7.07	272.437	ug/L	
	i	Hg	202	210	218	11.03	69.421		
	i	ΤΙ	203	52	118115	0.58	4.845		
	i	TI	205	112	287193	0.02	4.895		
	i	Pb	208	6710	1655582	0.56	20.626		
	1	Bi	209	821507	577339	1.05	20.020	ug/L	
	 		232	1933	2103	15.17	0.009		
	!	Th							
	L	Ū	238	373	104	4.08	-0.002	-	
		Fe	56	6645286	5084346	0.66		ug/L	
		Ru	101	4	7	32.64		ug/L	
		ArCi	77	381	5622	0.57		ug/L	
		Kr	84	931	718	8.66		ug/L	
		Sn	118	870	3042	3.46		ug/L	
		QC Cald	culated '	Values					
		Mass Analyte	QC Std	1 % Recovery Int Std %	6 Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
٦	•	Mass Analyte 6 Li	QC Std	I % Recovery Int Std %	6 Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
٦	-	Mass Analyte 6 Li 9 Be	QC Std	I % Recovery Int Std %	6 Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
[-	6 Li	QC Std	I % Recovery Int Std %	6 Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
[-	6 Li 9 Be 27 Al 45 Sc	QC Std	I % Recovery Int Std %	6 Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
[-	6 Li 9 Be 27 Al 45 Sc 51 V	QC Std	i % Recovery Int Std %	6 Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
	•	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1	QC Std	i % Recovery Int Std %	6 Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
	-	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr	QC Std	i % Recovery Int Std %	6 Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
	-	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr	QC Std	i % Recovery Int Std %	6 Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
	-	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn	QC Std	i % Recovery Int Std %	6 Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
	-	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co	QC Std	i % Recovery Int Std %	6 Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
	-	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni	QC Std	i % Recovery Int Std %	6 Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
	-	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni	QC Std	i % Recovery Int Std %	6 Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
	-	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni	QC Std	i % Recovery Int Std %	6 Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
	•	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu	QC Std	i % Recovery Int Std %	Kecovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn	QC Std	i % Recovery Int Std %	6 Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
	-	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn	QC Std	i % Recovery Int Std %		Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge	QC Std	i % Recovery Int Std %	K Recovery Spike % Recovery	Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
	-	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As	QC Std	i % Recovery Int Std %		Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
	-	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1	QC Std	i % Recovery Int Std %		Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se	QC Std	i % Recovery Int Std %		Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se	QC Std	i % Recovery Int Std %		Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y	QC Std	i % Recovery Int Std %		Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo	QC Std	i % Recovery Int Std %		Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo	QC Std	i % Recovery Int Std %		Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo	QC Std	i % Recovery Int Std %		Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
		6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag	QC Std	i % Recovery Int Std %		Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
	- > >	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo	QC Std	i % Recovery Int Std %		Dilution % Diff	ference	Duplicate Rel. % Diffe	erence
	-	6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 72 Ge 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag	QC Std	i % Recovery Int Std %		Dilution % Diff	ference	Duplicate Rel. % Diffe	erence

111 Cd

Page 2 Sample ID: i6-295 lcs Report Date/Time: Tuesday, June 27, 2006 18:39:48

1	Ag	109	22	3	3094	2.90	0.085	ug/L	
į	Cd	106	90	В	2781	4.37	2.758	ug/L	
İ	Cd	108		1	-176	3.67	-0.310	ug/L	
İ	Cd	111	73	4	4927	1.75	0.535	ug/L	
ĺ	Cd	114	14	1	7289	0.67	0.368	ug/L	
>	in	115	80656	0	623639	2.01		ug/L	
1	Sb	121	24	2	10309	0.95	0.424		
1	Sb	123	18	6	7634	0.70	0.402		
	Ba	135	32	5	689229	0.48	99.549	_	
L	Ва	137	56	3	1198681	0.43	98.447	ug/L	
Γ	Tb	159	118736	2	909695	0.07		ug/L	
1>	Но	165	121230	0	920908	2.52		ug/L	
	Hg	201	9	8	276	0.51	1342.799	ug/L	
1	Hg	202	21		662	3.63	374.466		
- 1	TI	203	5		744	1.43		_	
1	TI	205	11		1828	1.16	0.020	ug/L	
	Pb	208	671		36432178	2.03	305.933	_	
	Bi	209	82150	7	592125	1.58		ug/L	
- 1	Th	232	193	3	58821	1.87	0.529	ug/L	
L	U	238	37	3	32203	0.11	0.296	ug/L	
	Fe	56	664528	6	S	S		ug/L	
	Ru	101		4	16	13.69		ug/L	
	ArCl	77	38	1	3220	0.42		ug/L	
	Kr	84	93	1	-409	78.41		ug/L	
	Sn	118	87	0	58186	1.69		ug/L	
	QC Cald	culated \	Values						
				Std % Recovery	Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
٢	Mass Analyte 6 Li			Std % Recovery	Spike % Recove	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
ſ	Mass Analyte 6 Li 9 Be			Std % Recovery	Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
[Mass Analyte 6 Li 9 Be 27 Al			Std % Recovery	Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
[Mass Analyte 6 Li 9 Be 27 AI 45 Sc			Std % Recovery	Spike % Recove	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V			Std % Recovery	Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1			Std % Recovery	Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V			Std % Recovery	Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn			Std % Recovery	Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co			Std % Recovery	Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni			Std % Recovery	Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
K	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni			Std % Recovery	Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu			Std % Recovery	Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu			Std % Recovery	Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn			Std % Recovery	Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn				Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
<u></u>	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge			Std % Recovery	Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As				Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1				Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se				Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se				Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y				Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 75 As 75 As 75 As 75 Ms				Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo				Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag				Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag				Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	
	Mass Analyte 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag				Spike % Recover	ry Dilution % Diffe	erence	Duplicate Rel. % Difference	

111 Cd

114	Cd						
115	In						75.945
121	Sb						
123	Sb						
135	Ba						
137	Ва						
159	Tb						
165	Но						73.990
201	Hg						
202	Hg						
203	TI						
205	TI						
208	Pb						
209	Bi						
232	Th						
238	U						
56	Fe						
101	Ru						
77	ArCI						
84	Kr						
	115 121 123 135 137 159 165 201 202 203 205 208 209 232 238 56 101 77	121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 Tl 205 Tl 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 135 Ba 137 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 Tl 205 Tl 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 135 Ba 137 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 Tl 205 Tl 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 135 Ba 137 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 Tl 205 Tl 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 135 Ba 137 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 Tl 205 Tl 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 135 Ba 137 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 Tl 205 Tl 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl

Sample ID: 606247-21

Sample Date/Time: Tuesday, June 27, 2006 18:41:30

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-21.083

Tuning File: D:\ICPMS Data\Tuning\default.tun Optimization File: D:\ICPMS Data\Optimize\Default.dac Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 106 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.89

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
٢	Li	6	54057	52486	0.56		ug/L
1	Be	9	7	747	0.95	0.427	ug/L
l	Al	27	50334	166037792	0.39	7827.461	ug/L
	Sc	45	463094	373680	0.19		ug/L
1	V	51	6917	754222	2.48	25.191	ug/L
1	V-1	51	5584	933195	2.33	30.799	ug/L
1	Cr	52	20686	319744	0.90	11.963	ug/L
	Cr	53	1914	93635	0.86	30.615	ug/L
	Mn	55	5964	7224294	1.34	186.676	ug/L
	Co	59	598	256430	1.25	7.692	ug/L
1	Ni	60	886	162275	0.45	22.302	ug/L
	Ni	62	-20173	-1490480	2.06	-1368.436	ug/L
	Cu	63	12791	204375	0.58	11.846	ug/L
1	Cu	65	6061	102039	1.74	12.217	ug/L
1	Zn	66	3175	1181240	1.45	262.153	ug/L
1	Zn	67	735	182972	0.00	235.893	ug/L
1	Zn	68	2465	822324	0.33	255.436	ug/L
L>	Ge	72	907488	637451	1.34		ug/L
Γ	As	75	-403	17138	1.76	3.751	ug/L
. 1	As-1	75	296	26362	0.18	5.708	ug/L
	Se	77	395	3155	1.73	7.603	ug/L
ı	Se	82	193	272	2.08	0.264	ug/L
	Υ	89	749932	824006	0.98		ug/L
l	Мо	95	52	4005	0.10	0.443	ug/L
	Мо	97	32	2506	3.63	0.446	ug/L
	Мо	98	72	6341	1.41	0.439	ug/L
1	Ag	107	288	2166	4.51	0.073	ug/L

Page 1

Sample ID: 606247-21

Report Date/Time: Tuesday, June 27, 2006 18:43:34

1	Ag	109	223	2747	6.21	0.100	ug/L
i	Cd	106	908	1720	5.08	1.835	ug/L
i	Cd	108	1	-498	18.38	-1.163	ug/L
i	Cd	111	734	6017	0.68	0.893	ug/L
i	Cd	114	141	10603	3.39	0.716	ug/L
i >	In	115	806560	604673	0.24		ug/L
İ	Sb	121	242	33175	5.26	1.839	ug/L
İ	\$ b	123	186	26202	2.18	1.863	ug/L
İ	Ва	135	325	293523	0.86	56.364	ug/L
İ	Ba	137	563	512499	0.78	55.955	ug/L
Ī	Tb	159	1187362	909328	1.00		ug/L
i>	Но	165	1212300	922490	0.81		ug/L
i.	Hg	201	98	255	13.06	1541.622	ug/L
İ	Hg	202	210	594	0.24	416.751	ug/L
Ĺ	TI	203	52	1413	8.06	0.049	ug/L
1	TI	205	112	3448	10.40	0.050	ug/L
1	Pb	208	6710	41418492	1.05	447.824	ug/L
1	Bi	209	821507	597828	1.05		ug/L
ĺ	Th	232	1933	59635	0.47	0.690	ug/L
Ĺ	U	238	373	23125	0.18	0.272	ug/L
_	Fe	56	6645286	496010171	2.02		ug/L
	Ru	101	4	15	18.86		ug/L
	ArCI	77	381	3172	2.72		ug/L
	Kr	84	931	-1041	29.09		ug/L
	Sn	118	870	50954	2.57		ug/L
	QC Ca	alculated Va	alues				
		vte OC Std %		1 % Recovery Snike % Recov	eny Dilution % Dif	ference	Dunlica

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
٢	6	Li		•	•		•
1	9	Be					
1	27	Al					
1	45	Sc					
	51	V					
1		V-1					
1	52	Cr					
1	53	Cr					
1	55	Mn					
1	59	Co					
1	60	Ni					
1	62	Ni					
	63	Cu					
1		Cu					
1		Zn					
1		Zn					
1	68	Zn					
ا_>		Ge		70.243			
ſ	75						
1		As-1					
ļ	77	Se					
!		Se					
!		Y					
!		Мо					
í		Мо					
l I	98	Мо					
1	107						
1	109						
1							
1	108						
l	111	Cu					

1	114	Cd			
>	115	In			74.969
1	121	Sb			
	123	Sb			
	135	Ba			
L	137	Ba			
Γ	159	Tb			
۱>	165	Но			76.094
1	201	Hg			
}	202	Hg			
1	203	TI			
1	205	TI			
1	208	Pb			
1	209	Bi			
1	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCI			
	84	Kr			

Sample ID: 606247-22

Sample Date/Time: Tuesday, June 27, 2006 18:45:15

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-22.084

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 107 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.91

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	52523	1.36		ug/L
	Be	9	7	671	11.50	0.388	ug/L
	Al	27	50334	160965447	0.88	7693.302	ug/L
	Sc	45	463094	371433	1.32		ug/L
	V	51	6917	712591	2.18	24.122	ug/L
	V-1	51	5584	887958	1.59	29.709	ug/L
	Cr	52	20686	288500	1.66	10.882	ug/L
1	Cr	53	1914	90037	0.93	29.827	ug/L
	Mn	55	5964	6384842	0.60	167.269	ug/L
	Co	59	598	216336	0.49	6.578	ug/L
	Ni	60	886	133866	1.02	18.637	ug/L
1	Ni	62	-20173	-1317834	1.47	-1225.167	ug/L
1	Cu	63	12791	207396	0.52	12.191	ug/L
	Cu	65	6061	104745	0.88	12.726	ug/L
	Zn	66	3175	741470	1.55	166.654	ug/L
1	Zn	67	735	116659	0.11	152.233	ug/L
	Zn	68	2465	520419	0.63	163.692	ug/L
L>	Ge	72	907488	642818	0.37		ug/L
Γ	As	75	-403	17177	2.67	3.801	ug/L
	As-1	75	296	26383	0.19	5.775	ug/L
	Se	77	395	3028	5.09	7.338	ug/L
	Se	82	193	238	1.78	0.192	ug/L
1	Υ	89	749932	805265	0.14		ug/L
	Мо	95	52	5201	1.45	0.583	ug/L
1	Мо	97	32	3303	0.99	0.596	ug/L
	Мо	98	72	8491	1.97	0.595	ug/L
1	Ag	107	288	1684	3.86	0.055	ug/L

Page 1

Sample ID: 606247-22

Oampic 15. 000241-22

Report Date/Time: Tuesday, June 27, 2006 18:47:19

1	Ag	109	223	2022	1.92	0.073	ug/L	
i	Cď	106	908	1818	0.88	2.017	ug/L	
i	Cd	108	1	-311	7.61	-0.735	ug/L	
i	Cd	111	734	4290	2.21	0.617	ug/L	
i	Cd	114	141	6552	2.62	0.445	ug/L	
i:		115	806560	611641	1.63		ug/L	
i	Sb	121	242	9472	3.30	0.523		
i	Sb	123	186	7058	1.58	0.500		
i	Ва	135	325	200602	0.39	38.926		
i	Ba	137	563	352497	1.80	38.887		
ř	Tb	159	1187362	896298	1.69		ug/L	
	> Ho	165	1212300	921810	0.22		ug/L	
- 1	Hg	201	98	207	2.73	1162.236		
i	Hg	202	210	582	11.91	414.825		
i	TI	203	52	1196	4.91	0.042		
i	TI	205	112	2828	1.25	0.041		
i	Pb	208	6710	28782567	0.40	318.419		
i	Bi	209	821507	584725	2.26		ug/L	
i	Th	232	1933	64443	0.11	0.765		
i	U	238	373	22868	1.35	0.275		
L	Fe	56	6645286	438232158	1.47	3.2.3	ug/L	
	Ru	101	4	12	18.45		ug/L	
	ArCI	77	381	3138	4.26		ug/L	
	Kr	84	931	-933	52.59		ug/L	
		Ω4	301	-933	UZ.U3		uu/L	
	Sn	118	870	45326	1.52		ug/L	
	Sn QC C	118 alculated V	870 /alues	45326	1.52		ug/L	
г	Sn QC C Mass Ana	118 alculated V	870 /alues			fference		•
ſ	Sn QC C Mass Ana 6 Li	118 alculated V	870 /alues	45326	1.52	fference	ug/L)
[Sn QC C Mass Ana 6 Li 9 Be	118 alculated V	870 /alues	45326	1.52	fference	ug/L	•
[Sn QC C Mass Ana 6 Li	118 alculated V	870 /alues	45326	1.52	fference	ug/L	9
[Sn QC C Mass Ana 6 Li 9 Be 27 Al	118 alculated V	870 /alues	45326	1.52	fference	ug/L	•
[Sn QC C Mass Ana 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1	118 alculated V	870 /alues	45326	1.52	fference	ug/L	•
	Sn QC C Mass Ana 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr	118 alculated V	870 /alues	45326	1.52	fference	ug/L	•
	Sn QC C Mass Ana 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr	118 alculated V	870 /alues	45326	1.52	fference	ug/L	•
	Sn QC C Mass Ana 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn	118 alculated V	870 /alues	45326	1.52	fference	ug/L	•
	Sn QC C Mass Ana 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co	118 alculated V	870 /alues	45326	1.52	fference	ug/L	•
	Sn QC C Mass Ana 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn	118 alculated V	870 /alues	45326	1.52	fference	ug/L	•
	Sn QC C Mass Ana 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu	118 alculated V	870 /alues	45326	1.52	fference	ug/L	•
	Sn QC C Mass Ana 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu	118 alculated V	870 /alues	45326	1.52	fference	ug/L	•
	Sn QC C Mass Ana 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn	118 alculated V	870 /alues	45326	1.52	fference	ug/L	•
	Sn QC C Mass Ana 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn	118 alculated V	870 /alues	45326	1.52	fference	ug/L	•
	Sn QC C Mass Ana 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn	118 alculated V	870 /alues	45326 6 Recovery Spike % Recovery	1.52	fference	ug/L	Э
	Sn QC C Mass Ana 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge	118 alculated V	870 /alues	45326	1.52	fference	ug/L	Э
	Sn QC C Mass Ana 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn	118 alculated V lyte QC Std 9	870 /alues	45326 6 Recovery Spike % Recovery	1.52	fference	ug/L	e
	Sn QC C Mass Ana 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Se	118 alculated V lyte QC Std 9	870 /alues	45326 6 Recovery Spike % Recovery	1.52	fference	ug/L	e
	Sn QC C Mass Ana 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Se 82 Se	118 alculated V lyte QC Std 9	870 /alues	45326 6 Recovery Spike % Recovery	1.52	fference	ug/L	e
	Sn QC C Mass Ana 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Se	118 alculated V lyte QC Std 9	870 /alues	45326 6 Recovery Spike % Recovery	1.52	fference	ug/L	2

97 Mo 98 Mo 107 Ag 109 Ag 106 Cd 108 Cd 111 Cd

1	114	Cd	
>	115	In	75.833
1	121	Sb	
1	123	Sb	
1	135	Ba	
L	137	Ва	
Γ	159	Tb	
l >	165	Но	76.038
1	201	Hg	
1	202	Hg	
1	203	TI	
1	205	TI	
İ	208	Pb	
l	209	Bi	
1	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCl	
	84	Kr	

Sample ID: i6-295 ms 606247-22

Sample Date/Time: Tuesday, June 27, 2006 18:49:01

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\i6-295 ms 606247-22.085

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 108 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1 Solids Ratio: 0.91

Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	50840	0.93		ug/L
	Be	9	7	9631	0.35	5.750	ug/L
	Al	27	50334	180590150	0.82	8846.237	ug/L
-	Sc	45	463094	369230	1.95		ug/L
	V	51	6917	1474678	0.65	51.348	ug/L
	V-1	51	5584	1690341	0.43	58.086	ug/L
	Cr	52	20686	1363708	0.62	54.957	ug/L
1	Cr	53	1914	225713	0.62	77.345	ug/L
1	Mn	55	5964	6786732	0.86	182.236	ug/L
1	Co	59	598	757021	0.84	23.623	ug/L
	Ni	60	886	282358	0.13	40.390	ug/L
1	Ni	62	-20173	[-3772758]	[87.07]	[-3636.299]	ug/L
	Cu	63	12791	857244	0.61	53.445	ug/L
1	Cu	65	6061	416533	0.68	53.537	ug/L
	Zn	66	3175	982484	1.29	226.487	ug/L
1	Zn	67	735	155297	0.07	207.938	ug/L
	Zn	68	2465	678934	0.75	219.038	ug/L
l>	Ge	72	907488	627256	0.99		ug/L
Γ	As	75	-403	53047	0.58	11.849	ug/L
	As-1	75	296	63290	0.32	14.223	ug/L
1	Se	77	395	5003	1.47	12.938	ug/L
1	Se	82	193	2178	1.46	4.340	ug/L
1	Υ	89	749932	808869	0.80		ug/L
	Мо	95	52	4163	1.66	0.476	ug/L
1	Мо	97	32	2557	1.91	0.470	ug/L
1	Мо	98	72	6688	1.28	0.478	ug/L
1	Ag	107	288	197408	0.04	7.578	ug/L

Page 1

Sample ID: i6-295 ms 606247-22

Report Date/Time: Tuesday, June 27, 2006 18:51:04

1		Ag	109	223	189719	0.71	7.605	ug/L
i		Cd	106	908	6152	3.72	9.987	
i		Cd	108	1	2995	0.69	7.211	_
i		Cd	111	734	57373	0.71	9.588	ug/L
i		Cd	114	141	132073	1.83	9.300	ug/L
i	>	In	115	806560	598731	1.54		ug/L
i		Sb	121	242	317890	1.03	18.284	
i		Sb	123	186	246329	1.13	18.172	ug/L
i		Ва	135	325	438192	1.26	86.932	ug/L
i		Ва	137	563	772259	0.85	87.095	ug/L
ř	=	Tb	159	1187362	875536	1.64		ug/L
i	>	Но	165	1212300	901570	1.62		ug/L
i		Hg	201	98	191	7.79	1054.195	ug/L
i		Hg	202	210	503	2.96	347.695	ug/L
i		TI	203	52	107994	2.28	4.010	ug/L
i		TI	205	112	256727	0.07	3.962	ug/L
İ		Pb	208	6710	58425943	0.93	661.062	ug/L
j		Bi	209	821507	586068	0.19		ug/L
ĺ		Th	232	1933	63822	0.70	0.775	ug/L
Ĺ	Ĺ	U	238	373	23436	3.54	0.289	ug/L
		Fe	56	6645286	S	S		ug/L
		Ru	101	4	14	5.24		ug/L
		ArCl	77	381	5050	0.14		ug/L
		Kr	84	931	-862	32.07		ug/L
		Sn	118	870	47446	0.42		ug/L
		QC Ca	laulatad \	/aluan				
		~~~	iculated v	values				
					6 Recovery Spike % Recovery	Dilution % Dit	ference	Duplicate Rel. % Difference
ſ		Mass Analy			6 Recovery Spike % Recovery	Dilution % Di	ference	Duplicate Rel. % Difference
ſ		Mass Analy 6 Li 9 Be			6 Recovery Spike % Recovery	Dilution % Dit	ference	Duplicate Rel. % Difference
[ 		Mass Analy 6 Li 9 Be 27 Al			6 Recovery Spike % Recovery	Dilution % Dit	ference	Duplicate Rel. % Difference
[		Mass Analy 6 Li 9 Be 27 Al 45 Sc			6 Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference
[     		Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V			6 Recovery Spike % Recovery	Dilution % Dit	ference	Duplicate Rel. % Difference
		Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1			6 Recovery Spike % Recovery	Dilution % Dit	ference	Duplicate Rel. % Difference
[		Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V			6 Recovery Spike % Recovery	Dilution % Dit	ference	Duplicate Rel. % Difference
		Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn			6 Recovery Spike % Recovery	Dilution % Dit	ference	Duplicate Rel. % Difference
		Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co			6 Recovery Spike % Recovery	Dilution % Dit	ference	Duplicate Rel. % Difference
		Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 53 Cr 55 Mn 59 Co 60 Ni			6 Recovery Spike % Recovery	Dilution % Dit	ference	Duplicate Rel. % Difference
		Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni			6 Recovery Spike % Recovery	Dilution % Dit	ference	Duplicate Rel. % Difference
		Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu			6 Recovery Spike % Recovery	Dilution % Dit	ference	Duplicate Rel. % Difference
		Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu			6 Recovery Spike % Recovery	Dilution % Dit	ference	Duplicate Rel. % Difference
		Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu			6 Recovery Spike % Recovery	Dilution % Dit	ference	Duplicate Rel. % Difference
		Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn			6 Recovery Spike % Recovery	Dilution % Dit	ference	Duplicate Rel. % Difference
	>>	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge			69.120 Spike % Recovery	Dilution % Dit	ference	Duplicate Rel. % Difference
	>	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As				Dilution % Dit	ference	Duplicate Rel. % Difference
[	>	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1				Dilution % Dif	ference	Duplicate Rel. % Difference
<u> </u>	>	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se				Dilution % Dif	ference	Duplicate Rel. % Difference
L	>	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 75 Se 82 Se				Dilution % Dit	ference	Duplicate Rel. % Difference
<u> </u>	>	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se				Dilution % Dit	ference	Duplicate Rel. % Difference
	>>	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 75 Se 82 Se 89 Y				Dilution % Dit	ference	Duplicate Rel. % Difference
[	>	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo				Dilution % Dit	ference	Duplicate Rel. % Difference
L	>	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 75 As 75 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag				Dilution % Dif	ference	Duplicate Rel. % Difference
	>	Mass Analy 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo				Dilution % Dif	ference	Duplicate Rel. % Difference

108 Cd 111 Cd

1	114	Cd			
i>	115	In			74.233
i	121	Sb			
i	123	Sb			
i	135	Ba			
i	137	Ba			
ř	159	Tb			
>	165	Ho			74.369
1	201	Hg			
- 1	202				
!					
ı	203	TI			
	205	TI			
	208	Pb			
1	209	Bi			
	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			
	118	Sn			
	. 10	011			

Sample ID: i6-295 dup 606247-22

Sample Date/Time: Tuesday, June 27, 2006 18:52:46

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam
Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\i6-295 dup 606247-22.086

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 109 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.91

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	50032	0.91		ug/L
Ì	Be	9	7	703	0.30	0.397	ug/L
1	Al	27	50334	165674243	0.09	7733.898	ug/L
İ	Sc	45	463094	371083	1.01		ug/L
1	V	51	6917	746001	0.54	24.669	ug/L
	V-1	51	5584	922171	0.41	30.137	ug/L
]	Cr	52	20686	324295	0.07	12.005	ug/L
1	Cr	53	1914	92255	1.32	29.852	ug/L
ļ	Mn	55	5964	10645751	0.34	272.471	ug/L
1	Co	59	598	225111	0.06	6.686	ug/L
1	Ni	60	886	148904	0.93	20.256	ug/L
1	Ni	62	-20173	[-6114729]	[0.00]	[-5599.982]	ug/L
	Cu	63	12791	238095	0.15	13.738	ug/L
	Cu	65	6061	118682	0.10	14.142	ug/L
	Zn	66	3175	779158	0.83	171.060	ug/L
	Zn	67	735	123532	0.63	157.476	ug/L
ļ	Zn	68	2465	543179	1.44	166.895	ug/L
L>	Ge	72	907488	658160	0.82		ug/L
٢	As	75	-403	17849	3.23	4.025	ug/L
	As-1	75	296	26235	0.17	5.859	ug/L
	Se	77	395	2924	1.74	7.215	ug/L
1	Se	82	193	259	4.10	0.246	ug/L
	Υ	89	749932	812688	0.53		ug/L
i	Мо	95	52	4459	1.44	0.510	ug/L
	Мо	97	32	2831	2.24	0.521	ug/L
	Мо	98	72	6947	2.94	0.496	ug/L
1	Ag	107	288	2535	0.86	0.089	ug/L

Page 1

Sample ID: i6-295 dup 606247-22

Report Date/Time: Tuesday, June 27, 2006 18:54:49

								_	
		Ag	109	223	2773	0.87	0.104		
1		Cd	106	908	2104	1.56	2.603		
İ		Cd	108	1	-195	7.50	-0.471	-	
Ì		Cd	111	734	3906	1.48	0.566		
į		Cd	114	141	5593	0.87	0.386	ug/L	
Ì	>	In	115	806560	599496	0.59		ug/L	
	ĺ	Sb	121	242	12204	11.06	0.691	ug/L	
	ĺ	Sb	123	186	9331	9.86	0.678	ug/L	
	İ	Ва	135	325	212950	0.22	42.159	ug/L	
	i	Ва	137	563	373555	1.28	42.048	ug/L	
	Γ	Tb	159	1187362	898397	0.38		ug/L	
	>	Но	165	1212300	909195	0.72		ug/L	
		Hg	201	98	183	8.14	970.072		
		Hg	202	210	473	0.45	313.651	_	
	İ	TI	203	52	1299	5.06	0.046		
	i	TI	205	112	3216	1.94	0.048		
	<u> </u>	Pb	208	6710	30487562	0.53	341.977		
		Bi	209	821507	578399	0.14		ug/L	
	<b>.</b> 	Th .	232	1933	73578	0.82	0.888		
	! 	U	238	373	23294	1.98	0.285		
	L	Fe	56	6645286	S S	S	0.200	ug/L	
		Ru	101	4	14	10.10		ug/L	
		ArCl	77	381	2892	5.58		ug/L	
		Kr	84	931	-596	192.63		ug/L	
		Sn	118	870	41558	0.39		ug/L	
					71000	0.03		ugr	
			culated \						
r		Mass Analyt	e QC Std	% Recovery Int Std % R	ecovery Spike % Recovery	Dilution % Diffe	erence	Duplicate Rel. % Difference	
-		6 Li 9 Be							
1		27 Al							
i		45 Sc							
i		51 V							
- 1		51 V-1							
!		52 Cr							
		53 Cr							
ŀ		55 Mn 59 Co							
1		60 Ni							
i		62 Ni							
i		63 Cu							
- 1		65 Cu							
- !		66 Zn							
-		67 Zn							
-		68 Zn			70.505				
Ĺ	>	72 Ge 75 As			72.525				
1		75 AS 75 As-1							
i		77 Se							
i		82 Se							
ĺ		89 Y							
1		95 Mo							
-									
- :		97 Mo							
İ		97 Mo 98 Mo							
		97 Mo 98 Mo 107 Ag							
		97 Mo 98 Mo 107 Ag 109 Ag							
		97 Mo 98 Mo 107 Ag 109 Ag 106 Cd							
		97 Mo 98 Mo 107 Ag 109 Ag							

1		114	Cd				
١	>	115	In				74.327
١		121	Sb				
Ì		123	Sb				
ĺ		135	Ва				
ĺ	_	137	Ва				
Ī	-	159	Tb				
ĺ	>	165	Но				74.998
ĺ		201	Hg				
ĺ		202	Hg				
ĺ		203	TI				
		205	TI				
ĺ		208	Pb				
ĺ		209	Bi				
		232	Th				
į	L	238	U				
		56	Fe				
		101	Ru				
		77	ArCI				
		84	Kr				
		118	Sn				

Sample ID: 606247-23

Sample Date/Time: Tuesday, June 27, 2006 18:56:31

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-23.087

Tuning File: D:\ICPMS Data\Tuning\default.tun

Optimization File: D:\ICPMS Data\Optimize\Default.dac Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 110 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.76

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	50714	0.15		ug/L
Ì	Ве	9	7	618	1.26	0.300	ug/L
	Al	27	50334	155359917	1.32	6241.090	ug/L
	Sc	45	463094	366517	0.31		ug/L
1	V	51	6917	743731	2.07	21.168	ug/L
	V-1	51	5584	932073	1.05	26.219	ug/L
	Cr	52	20686	902082	2.03	29.644	ug/L
	Cr	53	1914	162579	0.08	45.586	ug/L
	Mn	55	5964	6442491	1.29	141.867	ug/L
1	Co	59	598	244483	1.43	6.250	ug/L
	Ni	60	886	139510	1.98	16.328	ug/L
	Ni	62	-20173	-1376296	0.28	-1076.202	ug/L
1	Cu	63	12791	527580	1.13	26.794	ug/L
	Cu	65	6061	255572	0.93	26.762	ug/L
	Zn	66	3175	3196720	1.44	605.345	ug/L
	Zn	67	735	510307	1.80	561.641	ug/L
	Zn	68	2465	2222301	0.14	589.104	ug/L
<u> </u>	Ge	72	907488	638722	· 1.51		ug/L
Γ	As	75	-403	18705	1.85	3.453	ug/L
1	As-1	75	296	27387	1.53	5.010	ug/L
1	Se	77	395	3063	0.09	6.208	ug/L
1	Se	82	193	361	7.05	0.375	ug/L
1	Υ	89	749932	766465	2.75		ug/L
	Мо	95	52	4159	4.66	0.389	ug/L
1	Мо	97	32	2646	0.02	0.398	ug/L
	Мо	98	72	6559	0.67	0.383	ug/L
1	Ag	107	288	3559	0.62	0.105	ug/L

Page 1

Sample ID: 606247-23

Report Date/Time: Tuesday, June 27, 2006 18:58:35

١	l Ag	1	109	223	4028	0.97	0.127	ug/L	
ľ	Co		106	908	-12032	0.06	-18.976		
	Co		108	1	-14722	0.42	-29.013		
Ì	Co		111	734	7530	2.56	0.963	=	
	Co		114	141	12855	4.45	0.734	-	
	  > In		115	806560	611487	2.91		ug/L	
	Sb		121	242	30985	2.54	1.450		
	Sb		123	186	23639	1.64	1.419	_	
	l Ba		135	325	726718	2.45	117.903	_	
	l Ba		137	563	1268501	0.14	117.053	<del>-</del>	
	[ Tb		159	1187362	890232	0.53	111.000	ug/L	
	i		165	1212300	918170	0.92		ug/L	
	> Ho   Ho		201	98	1275	3.33	8835.320	ug/L	
	i ne   Hg		202	210	3087	3.94	2410.154		
	TI		203	52	921	3.76	0.027	=	
	TI		205	112	2383	3.29	0.029		
	l Pb		208	6710	254987361	0.52	2365.766		
	Bi		209	821507	654625	1.48	2000.100	ug/L	
	Th		232	1933	51612	0.10	0.511		
	. ''' L U	•	238	373	26773	0.30	0.271	ug/L	
	լ Մ Fe		236 56	6645286	457834322	0.25	0.271	ug/L	
	Ru			4	13	5.66		ug/L	
			101 77	381	3071	1.43		-	
	Ar				-606			ug/L	
	Kr		84 118	931		130.07 0.07		ug/L	
	Sr			870	589978	0.07		ug/L	
				<b>Values</b>					
_		Analyte Li	QC S	td % Recovery Int St	d % Recovery Spike % Re	covery Dilution %	Difference	Duplicate Rel. % Differe	ence
!	6								
- 1									
1	9	Be							
		Be Al							
	9 27 45 51	Be Al Sc V							
	9 27 45 51 51	Be Al Sc V-1							
	9 27 45 51 51	Be Al Sc V-1 Cr							
	9 27 45 51 51 52 53	Be Al Sc V V-1 Cr Cr							
	9 27 45 51 51 52 53	Be Al Sc V V-1 Cr G Mn							
	9 27 45 51 51 52 53 55	Be Al Sc V V-1 Cr Gr Mn							
	9 27 45 51 51 52 53 55	Be Al Sc V V-1 Cr Gr Mn Co Ni							
	9 27 45 51 51 52 53 55 59 60 62 63	Be Be Al Sc V V-1 Cr Cr Mn Co Ni Ni Cu							
	9 27 45 51 51 52 53 55 59 60 62 63	Be Be Al Sc V V-1 Cr Cr Mn Co Ni Cu Cu Cu							
	9 27 45 51 51 52 53 55 59 60 62 63 65	Be Be Al Sc V V-1 Cr Cr G Mn CO Ni Cu Cu Cu Zn							
	9 27 45 51 51 52 53 55 59 60 62 63 65 66	Be Be Al Sc V V-1 Cr Cr G Mn Co Ni Cu Cu Zn Zn							
	9 27 45 51 51 52 53 55 59 60 62 63 65 66	Be Be Al Sc V V-1 Cr Cr Mn Co Ni Cu Cu Zn Zn Zn			70 384				
	9 27 45 51 51 52 53 55 60 62 63 65 66 67 68 > 72	Be Be Al Sc V V-1 Cr Cr Mn Co Ni Cu Cu Zn Zn Zn Ge			70.384				
	9 27 45 51 51 52 53 55 59 60 62 63 65 66 67 68 > 72 75	Be Be Al Sc V V-1 Cr Cr Gr Mn Co Ni Cu Cu Zn Zn Ge As			70.384				
	9 27 45 51 51 52 53 55 59 60 62 63 65 66 67 68 72 75 75	Be Be Al Sc V V-1 Cr Cr G Mn Co Ni Cu Cu Zn Zn Ge As As-1 Se			70.384				
	9 27 45 51 51 52 53 55 59 60 62 63 65 66 67 68 72 75 75 77	Be Be Al Sc V V-1 Cr Cr G Mn Co Ni Cu Cu Zn Zn Ge As As-1 Se Se			70.384				
	9 27 45 51 51 52 53 55 59 60 62 63 65 66 67 68 72 75 75 82 89	Be Be Al Sc V V-1 Cr Cr Cr Ni Co Ni Cu Cu Zn Zn Ge As-1 Se Se Y			70.384				
	9 27 45 51 51 52 53 55 59 60 62 63 65 66 67 68 72 75 75 77 82 89 95	Be AI BE AI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI			70.384				
	9 27 45 51 51 52 53 55 59 60 62 63 65 66 67 68 72 75 75 77 82 89 95	Be AI BE AI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI			70.384				
	9 27 45 51 51 52 53 55 59 60 62 63 65 66 67 68 72 75 75 77 82 89 95	Be AI BE AI CO V-1 CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI CO NI			70.384				
	9 27 45 51 51 52 53 55 59 60 62 63 65 66 67 78 77 82 89 95 97 98	Be AI BE AI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI			70.384				
	9 27 45 51 51 52 53 55 59 60 62 63 65 66 67 72 75 75 77 82 89 95 107 109 106	Be Be Al Sc V V-1 Cr Cr Cr Mn Co Ni Cu Cu Zn Zn Se Se Y Mo Mo Ag Ag Cd			70.384				
	9 27 45 51 51 52 53 55 59 60 62 63 65 66 67 72 75 75 77 82 89 95 107 109 106 108	Be AI BE AI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI BE CI			70.384				

111 Cd

l	114	Cd	
>	115	In	75.814
	121	Sb .	
	123	Sb	
	135	Ва	
L	137	Ва	
Γ	159	Tb	
>	165	Но	75.738
1	201	Hg	
	202	Hg	
	203	TI	
	205	TI	
	208	Pb	
l	209	Bi	
1	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCl	
	84	Kr	
	118	Sn	

Sample ID: 606247-24

Sample Date/Time: Tuesday, June 27, 2006 19:00:17

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-24.088

Tuning File: D:\ICPMS Data\Tuning\default.tun Optimization File: D:\ICPMS Data\Optimize\Default.dac Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 111 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.75

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	51494	0.30		ug/L
	Be	9	7	533	0.66	0.255	ug/L
	Al	27	50334	142541207	0.14	5655.861	ug/L
1	Sc	45	463094	358089	0.41		ug/L
	V	51	6917	649626	0.08	18.247	ug/L
1	V-1	51	5584	834590	0.25	23.177	ug/L
-	Cr	52	20686	339000	1.37	10.706	ug/L
	Cr	53	1914	97534	0.81	26.858	ug/L
1	Mn	55	5964	6051624	1.72	131.635	ug/L
-	Co	59	598	223148	1.36	5.634	ug/L
	Ni	60	886	148470	1.61	17.171	ug/L
	Ni	62	-20173	-1243732	0.18	-959.450	ug/L
	Cu	63	12791	429694	1.31	21.472	ug/L
	Cu	65	6061	209060	0.20	21.542	ug/L
	Zn	66	3175	1307235	0.44	244.274	ug/L
	Zn	67	735	202776	0.17	220.113	ug/L
	Zn	68	2465	905315	0.59	236.767	ug/L
L>	Ge	72	907488	638166	1.16		ug/L
ſ	As	75	-403	11325	2.51	2.124	ug/L
1	As-1	75	296	20308	0.67	3.726	ug/L
	Se	77	395	3115	0.82	6.371	ug/L
1	Se	82	193	268	5.80	0.219	ug/L
	Υ	89	749932	713863	1.82		ug/L
	Мо	95	52	3227	1.73	0.303	ug/L
1	Мо	97	32	2077	2.10	0.314	ug/L
1	Мо	98	72	5106	4.90	0.299	ug/L
1	Ag	107	288	1899	2.31	0.053	ug/L

Page 1

Sample ID: 606247-24

Report Date/Time: Tuesday, June 27, 2006 19:02:21

	<b>A</b> -	400	202	2376	5.03	0.073	ua/l	
ļ	Ag	109	223		2.49	0.973	-	
ļ	Cd	106	908	1324			-	
ļ	Cd	108	1	-822 2536	2.78	-1.630		
ļ	Cd	111	734	3536	4.00	0.415		
ļ	Cd	114	141	4910	0.94	0.278		
>		115	806560	600052	1.55	0.504	ug/L	
	Sb	121	242	11255	6.44	0.524		
	Sb	123	186	8321	2.55	0.497		
1	Ba	135	325	439416	0.61	71.679		
L	Ва	137	563	774298	0.68	71.814	_	
Γ	Tb	159	1187362	890357	1.93		ug/L	
>	Ho	165	1212300	908473	1.29		ug/L	
- 1	Hg	201	98	319	10.43	1796.585	_	
	Hg	202	210	722	3.43	463.492		
	TI	203	52	725	3.90	0.021		
	TI	205	112	1779	2.82	0.021	=	
- 1	Pb	208	6710	64545397	1.12	597.211	ug/L	
1	Bi	209	821507	585551	1.33		ug/L	
1	Th	232	1933	39037	0.91	0.382	ug/L	
Ĺ	U	238	373	21778	1.19	0.219	ug/L	
_	Fe	56	6645286	414810611	0.14		ug/L	
	Ru	101	4	13	39.60		ug/L	
	ArCI	<b>7</b> 7	381	3091	1.12		ug/L	
	Kr	84	931	-463	77.04		ug/L	
	Sn	118	870	61905	0.35		ug/L	
		Iculated V					_	
	Mass Analy	te OC Std 9	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
٢	Mass Analy	te QC Std 9	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
ſ	Mass Analyl 6 Li 9 Be	te QC Std 9	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
<u>ا</u>	6 Li 9 Be 27 Al	te QC Std 9	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc	te QC Std %	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V	te QC Std %	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
     	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1	te QC Std ⁹	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
 	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr	te QC Std ⁹	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr	te QC Std ⁹	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn	te QC Std ⁹	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr	te QC Std 9	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni	te QC Std 9	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu	te QC Std ⁹	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu	te QC Std ⁹	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn	te QC Std ⁹	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn	te QC Std ⁹	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn	te QC Std 9	% Recovery Int Std %		Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge	te QC Std 9	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn	te QC Std 9	% Recovery Int Std %		Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As	te QC Std 9	% Recovery Int Std %		Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se	te QC Std 9	% Recovery Int Std %		Dilution % Dif	ference	Duplicate Rel. % Difference	
[	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y	te QC Std 9	% Recovery Int Std %		Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo	te QC Std 9	% Recovery Int Std %		Dilution % Dif	ference	Duplicate Rel. % Difference	
[	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo	te QC Std 9	% Recovery Int Std %		Dilution % Dif	ference	Duplicate Rel. % Difference	
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo	te QC Std 9	% Recovery Int Std %		Dilution % Dif	ference	Duplicate Rel. % Difference	
[	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag	te QC Std 9	% Recovery Int Std %		Dilution % Dif	ference	Duplicate Rel. % Difference	
[	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag	te QC Std 9	% Recovery Int Std %		Dilution % Dif	ference	Duplicate Rel. % Difference	
[	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag	te QC Std 9	% Recovery Int Std %		Dilution % Dif	ference	Duplicate Rel. % Difference	
[	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd	te QC Std 9	% Recovery Int Std %		Dilution % Dif	ference	Duplicate Rel. % Difference	

	114	Cd			
<b> </b> >	115	In			74.396
	121	Sb			
1	123	Sb			
1	135	Ва			
L	137	Ba			
Γ	159	Tb			
>	165	Но			74.938
1	201	Hg			
1	202	Hg			
1	203	TI			
ł	205	TI			
1	208	Pb			
1	209	Bi			
1	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCI			
	84	Kr			

Sample ID: 25 ppb i1-57a

Sample Date/Time: Tuesday, June 27, 2006 19:04:02

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\25 ppb i1-57a.089

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 5 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

#### Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	51747	1.83		ug/L
	Be	9	7	47229	1.64	28.534	ug/L
1	Al	27	50334	693455	12.06	32.473	ug/L
	Sc	45	463094	336523	0.43		ug/L
1	V	51	6917	699482	0.45	24.535	ug/L
	V-1	51	5584	755046	0.27	26.159	ug/L
	Cr	52	20686	614334	0.63	24.670	ug/L
	Cr	53	1914	87738	0.20	30.090	ug/L
1	Mn	55	5964	958014	0.87	25.913	ug/L
	Co	59	598	781617	0.44	24.671	ug/L
1	Ni	60	886	169382	0.67	24.466	ug/L
1	Ni	62	-20173	9297	1.70	23.818	ug/L
	Cu	63	12791	395912	0.20	24.617	ug/L
1	Cu	65	6061	190969	1.73	24.485	ug/L
1	Zn	66	3175	112740	0.49	25.793	ug/L
	Zn	67	735	21515	2.59	28.482	ug/L
i	Zn	68	2465	80747	0.07	25.813	ug/L
L>	Ge	72	907488	681435	0.95		ug/L
Γ	As	75	-403	105434	0.65	23.491	ug/L
1	As-1	75	296	105262	0.40	23.682	ug/L
	Se	77	395	9408	3.72	24.956	ug/L
1	Se	82	193	11682	0.42	24.579	ug/L
	Υ	89	749932	566150	0.22		ug/L
İ	Мо	95	52	201456	0.90	23.245	ug/L
}	Мо	97	32	127835	0.09	23.731	ug/L
	Мо	98	72	328878	0.42	23.688	ug/L
ı	Ag	107	288	628722	0.18	24.151	ug/L

1		Δα	109	223	605024	0.02	24.262	ug/l	
1		Ag Cd	105	908	14439	0.58	24.977	=	
- 1		Cd	108	1	10560	1.41	25.432	-	
- 1		Cd	111	734	155725	1.22	26.172	=	
-		Cd	114	141	362087	0.35	25.501		
1		In	115	806560	657962	0.74	20.001	ug/L	
1	>	Sb	121	242	454992	0.06	26.172		
ŀ		Sb	123	186	346672	0.32	25.576		
-		Ba	135	325	129074	1.05	25.562	=	
1		Ва	137	563	220750	0.68	24.856	· ·	
_ [	:	Tb	157	1187362	968967	0.41	24.000	ug/L	
1		Но	165	1212300	998355	2.30		ug/L	
	>	Hg	201	98	111	16.00	263.670		
<u> </u>		Hg	202	210	247	0.29	73.371		
i		TI	203	52	668269	0.57	24.640		
i		TI	205	112	1565420	2.07	23.991		
i		Pb	208	6710	2213819	0.67	24.797		
i		Bi	209	821507	643850	0.29		ug/L	
i		Th	232	1933	1898705	0.35	23.387		
i		U	238	373	1942343	1.34	24.039		
	•	Fe	56	6645286	5338725	1.39		ug/L	
		Ru	101	4	6	12.86		ug/L	
		ArCl	77	381	9466	0.46		ug/L	
		Kr	84	931	672	9.84		ug/L	
		Sn	118	870	1543	5.50		=	
		O.,	110	010	1040	5.50		UU/L	
					1040	5.50		ug/L	
	N.	QC Ca	alculated V	alues			erence		<b>-</b>
٢	Μ	QC Ca	alculated V			Dilution % Diffe	erence	Duplicate Rel. % Difference	æ
[	M	QC Ca	alculated V	alues			erence		æ
[ 	Μ	QC Ca Mass Anal 6 Li 9 Be 27 Al	alculated V	alues			erence		æ
[	Μ	QC Ca Mass Anal 6 Li 9 Be 27 Al 45 Sc	alculated V	alues			erence		æ
	٨	QC Ca Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V	alculated V	alues			erence		æ
	N	QC Ca Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1	alculated V	alues			erence		æ
	N	QC Ca Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr	alculated V	alues			erence		æ
	N	QC Ca  Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn	alculated V	alues			erence		æ
	٨	QC Ca  Mass Anal  6 Li  9 Be  27 Al  45 Sc  51 V  51 V-1  52 Cr  53 Cr  55 Mn  59 Co	alculated V	alues			erence		œ
	٨	QC Ca  Mass Anal  6 Li  9 Be  27 Al  45 Sc  51 V  51 V-1  52 Cr  53 Cr  55 Mn  59 Co  60 Ni	alculated V	alues			erence		æ
	N	QC Ca  Aass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni	alculated V	alues			erence		ce
	N	QC Ca  Aass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu	alculated V	alues			erence		œ
	٨	QC Ca  Aass Anal 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu	alculated V	alues			erence		ce
	٨	QC Ca  Aass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu	alculated V	alues			erence		ce
	٨	QC Ca  Aass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn	alculated V	alues	Recovery Spike % Recovery		erence		ce
	٨.	QC Ca  Aass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge	alculated V	alues			erence		ce
		QC Ca  Aass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As	alculated V	alues	Recovery Spike % Recovery		erence		ce
		QC Ca  Aass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 75 As 71	alculated V	alues	Recovery Spike % Recovery		erence		ce
		QC Ca  Aass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 Se	alculated V	alues	Recovery Spike % Recovery		erence		ce
		QC Ca  Aass Anal 6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 75 As 71	alculated V	alues	Recovery Spike % Recovery		erence		ce
	٨.	QC Ca  Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo	alculated V	alues	Recovery Spike % Recovery		erence		ce
		QC Ca  Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo 97 Mo	alculated V	alues	Recovery Spike % Recovery		erence		ce
		QC Ca  Mass Anal 6 Li 9 Be 27 Al 45 Sc 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1 77 Se 82 Se 89 Y 95 Mo	alculated V	alues	Recovery Spike % Recovery		erence		ce

109 Ag 106 Cd 108 Cd 111 Cd

1	114	Cd	
>	115	In	81.576
1	121	Sb	
1	123	Sb	
1	135	Ва	
L	137	Ва	
Γ	159	Tb	
>	165	Но	82.352
1	201	Hg	
1	202	Hg	
1	203	TI	
1	205	П	
1	208	Pb	
	209	Bi	
1	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCI	
	84	Kr	

Sample ID: 606247-25

Sample Date/Time: Tuesday, June 27, 2006 19:07:47

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2
Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-25.090

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 112 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1 Solids Ratio: 0.76

#### Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	53173	3.95		ug/L
1	Be	9	7	791	5.28	0.381	ug/L
1	Al	27	50334	179964488	0.24	7164.000	ug/L
1	Sc	45	463094	378873	1.11		ug/L
1	V	51	6917	780523	1.10	22.020	ug/L
	V-1	51	5584	954898	0.92	26.617	ug/L
	Cr	52	20686	400239	0.71	12.762	ug/L
1	Cr	53	1914	101509	1.67	28.057	ug/L
	Mn	55	5964	8091311	0.74	176.574	ug/L
1	Co	59	598	286375	0.52	7.256	ug/L
	Ni	60	886	182267	1.23	21.161	ug/L
1	Ni	62	-20173	-1485042	0.51	-1151.306	ug/L
	Cu	63	12791	310854	1.92	15.449	ug/L
	Cu	65	6061	154395	0.90	15.837	ug/L
1	Zn	66	3175	3019707	0.99	566.590	ug/L
1	Zn	67	735	479722	1.84	523.130	ug/L
İ	Zn	68	2465	2111050	1.77	554.419	ug/L
<b>L&gt;</b>	Ge	72	907488	644583	0.73		ug/L
Γ	As	75	-403	12293	0.53	2.318	ug/L
- 1	As-1	75	296	20884	0.98	3.860	ug/L
	Se	77	395	3064	1.04	6.300	ug/L
1	Se	82	193	343	2.27	0.351	ug/L
1	Υ	89	749932	779355	0.71		ug/L
	Мо	95	52	5325	5.51	0.505	ug/L
1	Мо	97	32	3329	8.90	0.508	ug/L
	Мо	98	72	8807	11.40	0.522	ug/L
1	Ag	107	288	3996	23.79	0.120	ug/L

Page 1

Sample ID: 606247-25

Report Date/Time: Tuesday, June 27, 2006 19:09:51

- 1	Ag	109	223	4243	17.64	0.135	_
- į	Cd	106	908	3313	1.71	3.979	<del></del>
i	Cd	108	1	441	4.49	0.878	ug/L
i	Cd	111	734	5742	2.09	0.726	ug/L
i	Cd	114	141	9145	1.62	0.528	ug/L
i,		115	806560	603482	0.22		ug/L
ĺ	Sb	121	242	16854	11.72	0.795	ug/L
i	Sb	123	186	12836	9.07	0.776	ug/L
i	Ba	135	325	467526	1.31	76.837	ug/L
i	Ba	137	563	812659	0.08	75.940	ug/L
ř	Tb	159	1187362	896299	2.45		ug/L
i,		165	1212300	933566	0.54		ug/L
	Hg	201	98	553	5.37	3454.366	
i	Hg	202	210	1283	5.13	907.586	
	TI	203	52	1061	7.80	0.031	
i	TI	205	112	2549	7.27	0.031	
i	Pb	208	6710	84820396	1.43	773.882	
i	Bi	209	821507	599527	1.66		ug/L
-	Th	232	1933	65998	13.02	0.646	
1	Ü	238	373	26063	1.95	0.259	=
L	Fe	56	6645286	495973524	0.58	0.200	ug/L
	Ru	101	4	13	0.00		ug/L
	ArCi	77	381	3027	1.68		ug/L
	Kr	84	931	-397	33.63		ug/L
	Sn	118	870	33710	2.85		ug/L
		Iculated V		337.10	2.00		ug/L
					<b></b>		
_	Mass Analy	te QC Std 9	% Recovery Int Std % F	Recovery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference
1	6 Li 9 Be						
	27 AI						
i	45 Sc						
i	51 V						
1	51 V-1						
- !	52 Cr						
!	53 Cr						
1	55 Mn						
1	59 Co 60 Ni						
i	62 Ni						
i	63 Cu						
Ì	65 Cu						
- }	66 Zn						
-	67 Zn						
	68 Zn			T1 000			
Ľ>	72 Ge 75 As			71.029			
1	75 As-1						
i	77 Se						
i							
	82 Se						
- 1	82 Se 89 Y						
	82 Se 89 Y 95 Mo						
	82 Se 89 Y 95 Mo 97 Mo						
	82 Se 89 Y 95 Mo 97 Mo 98 Mo						
1	82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag						
	82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag						
	82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag						
	82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd						

1	114	Cd				
>	115	In				74.822
	121	Sb				
	123	Sb				
1	135	Ba				
L	137	Ba				
ſ	159	Tb				
>	165	Но				77.008
1	201	Hg				
1	202	Hg				
	203	TI				
	205	TI				
	208	Pb				
1	209	Bi				
1	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCl				
	84	Kr				

Sample ID: 606247-26

Sample Date/Time: Tuesday, June 27, 2006 19:11:33

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-26.091

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 113
Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.8

### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
٢	Li	6	54057	51617	0.79		ug/L
	Be	9	7	574	3.70	0.294	ug/L
1	Al	27	50334	147773363	1.02	6261.176	ug/L
	Sc	45	463094	365692	2.73		ug/L
1	V	51	6917	670839	1.77	20.122	ug/L
	V-1	51	5584	844529	1.16	25.042	ug/L
1	Cr	52	20686	362699	1.73	12.264	ug/L
	Cr	53	1914	96933	0.98	28.502	ug/L
	Mn	55	5964	6731276	0.61	156.329	ug/L
	Co	59	598	216720	0.10	5.842	ug/L
1	Ni	60	886	131654	0.36	16.248	ug/L
	Ni	62	-20173	-1237938	0.50	-1019.616	ug/L
	Cu	63	12791	286166	1.02	15.103	ug/L
1	Cu	65	6061	142429	1.27	15.517	ug/L
1	Zn	66	3175	1340181	1.34	267.381	ug/L
1	Zn	67	735	208098	0.02	241.207	ug/L
	Zn	68	2465	943707	1.00	263.525	ug/L
L>	Ge	72	907488	637518	1.14		ug/L
Γ	As	75	-403	9267	0.91	1.882	ug/L
1	As-1	75	296	17986	0.43	3.549	ug/L
	Se	77	395	2999	3.04	6.591	ug/L
1	Se	82	193	306	6.93	0.311	ug/L
1	Υ	89	749932	725507	0.36		ug/L
1	Мо	95	52	3314	6.04	0.335	ug/L
	Мо	97	32	2067	2.33	0.336	ug/L
	Мо	98	72	5288	0.41	0.334	ug/L
1	Ag	107	288	2083	1.56	0.064	ug/L

Page 1

Sample ID: 606247-26

Report Date/Time: Tuesday, June 27, 2006 19:13:37

	Mass Analyte	QC Std % F	Recovery	Int Std % Re	ecovery	Spike % Reco	overy Dilution	% Difference	Duplica
	QC Calc	ulated Val	ues						
	Sn	118		870		32769	1.8	1	ug/L
	Kr	84		931		-375	99.5	4	ug/L
	ArCl	77		381		3038	0.6	5	ug/L
	Ru	101		4		15	43.89	€	ug/L
_	Fe	56	664	5286	41	2593496	0.48	3	ug/L
Ĺ	U	238		373		20423	1.23		ug/L
i	Th	232		1933		43518	0.9		
i	Bi	209		1507		576166	0.59		ug/L
i	Pb	208		6710	4	4715575	0.09		_
i	TI	205		112		1944	2.9		_
i	TI	203		52		792	3.7		_
i	Hg	202		210		505	4.63		_
	Hg	201	12.1	98		242	3.5		_
>	Но	165		2300		902683	1.33		ug/L
Γ	Tb	159	118	7362		889516	1.47		ug/L
i.	Ва	137		563		880427	0.54		ug/L
-	Ba	135		325		508796	0.6		•
l I	Sb	123		186		11449	1.28		_
>	ln Sb	121	80	242		14851	2.79		_
1.		115	80	6560		594313	2.3 ⁻		ug/L
-	Cd	114		141		5838	3.8		-
l	Cd	111		734		4166	0.27		_
ı	Cd	108		1		183	14.0		_
ļ i	Ay Cd	109		908		2649	5.18		-
ļ	Ag	109		223		2582	4.93		

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
٢	6	Li	20 010 70 1000 10.1		opino no ricordi,		
i	9	Be					
i	27	Al					
i		Sc					
i	51						
İ		V-1					
İ	52						
İ	53						
ĺ		Mn					
ĺ	59	Co					
1							
1	62	Ni					
	63	Cu					
1	65	Cu					
	66	Zn					
1	67						
		Zn					
<b>L&gt;</b>		Ge		70.251			
Γ		As					
- 1		As-1					
-	77						
		Se					
		Υ					
1		Мо					
	97	Мо					
!	98	Мо					
- [		Ag					
ļ	109	Ag					
!	106						
!	108						
ı	111	Cd					

114	Cd					
115	ln					73.685
121	Sb					
123	Sb					
135	Ba					
137	Ва					
159	Tb					
165	Ho					74.460
201	Hg					
202	Hg					
203	TI					
205	T!					
208	Pb					
209	Bi					
232	Th					
238	U					
56	Fe					
101	Ru					
77	ArCI					
84	Kr					
	115 121 123 135 137 159 165 201 202 203 205 208 209 232 238 56 101 77	121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 Ti 205 Ti 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 Tl 205 Tl 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 Ti 205 Ti 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 Ti 205 Ti 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 Ti 205 Ti 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl

Sample ID: 606247-27

Sample Date/Time: Tuesday, June 27, 2006 19:15:19

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-27.092

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 114
Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1 Solids Ratio: 0.81

### Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	51440	0.43		ug/L
1	Be	9	7	657	2.26	0.345	ug/L
-	Al	27	50334	172118421	0.75	7474.518	ug/L
	Sc	45	463094	365094	1.63		ug/L
	V	51	6917	755891	1.73	23.262	ug/L
	V-1	51	5584	933453	1.12	28.386	ug/L
	Cr	52	20686	525551	0.59	18.458	ug/L
1	Cr	53	1914	115637	0.77	34.933	ug/L
	Mn	55	5964	7955963	1.47	189.405	
	Co	59	598	308831	1.29	8.537	ug/L
	Ni	60	886	196448	0.29	24.890	ug/L
ı	Ni	62	-20173	-1482453	1.44	-1254.034	ug/L
	Cu	63	12791	812681	1.54	44.893	ug/L
	Cu	65	6061	399529	1.09	45.506	ug/L
	Zn	66	3175	5028908	0.54	1029.710	ug/L
	Zn	67	735	799890	0.24	952.064	ug/L
	Zn	68	2465	3487980	0.35	999.720	ug/L
L>	Ge	72	907488	629725	0.50		ug/L
Γ	As	75	-403	21057	0.32	4.214	ug/L
	As-1	75	296	29691	0.87	5.904	ug/L
	Se	77	395	2979	0.21	6.551	ug/L
1	Se	82	193	347	5.71	0.386	ug/L
i	Υ	89	749932	738890	1.60		ug/L
- [	Мо	95	52	3876	0.96	0.393	ug/L
1	Мо	97	32	2428	0.80	0.397	ug/L
1	Мо	98	72	6069	4.30	0.385	ug/L
1	Ag	107	288	2758	1.08	0.087	ug/L

Page 1

Sample ID: 606247-27

Report Date/Time: Tuesday, June 27, 2006 19:17:22

	ı	Ag	109	223	3393	0.00	0.115	ug/L
	i	Cd	106	908	3397	4.82	4.408	ug/L
	<u> </u>	Cd	108	1	682	5.85	1.457	_
	! !	Cd	111	734	12433	1.02	1.782	
	! 	Cd	114	141	25702	0.89	1.602	
	 			806560	599892	0.20	1.002	ug/L
	>	ln Ch	115		33020	0.01	1.679	
	į	Sb	121	242		0.24	1.661	-
	i	Sb	123	186	25467			_
	ļ	Ba	135	325	808625	0.43	142.522	_
	Ĺ	Ba 	137	563	1402635	1.88	140.563	_
	ļ	Tb	159	1187362	868943	1.50		ug/L
	>	Но	165	1212300	896861	0.26		ug/L
	ļ	Hg	201	98	826	0.68	6048.080	=
		Hg	202	210	1905	0.15	1572.119	_
		TI	203	52	726	12.96	0.023	ug/L
	1	T!	205	112	1579	6.68	0.021	ug/L
		Pb	208	6710	207708145	0.29	2102.561	ug/L
	İ	Bi	209	821507	611556	0.35		ug/L
	-	Th	232	1933	55864	1.40	0.605	ug/L
	ĺ	U	238	373	30027	1.89	0.332	
	_	Fe	56	6645286	495324066	1.40		ug/L
		Ru	101	4	15	18.86		ug/L
		ArCl	77	381	3044	1.46		ug/L
		Kr	84	931	-399	47.62		ug/L
		Sn	118	870	40682	2.26		ug/L
				d Values				-g, -
							_	
,		Mass Analyte	QC :	Std % Recovery Int Std 9	6 Recovery Spike % Recovery	ery Dilution % Dif	ference	Duplicate Rel. % Difference
1		6 Li 9 Be						
i		27 AI						
i		45 Sc						
i		51 V						
İ		51 V-1						
		52 Cr						
1		53 Cr						
İ		55 Mn						
- !		59 Co						
-		60 Ni						
-		62 Ni						
I		63 Cu 65 Cu						
ŀ		66 Zn						
i		67 Zn						
i		68 Zn						
Ĺ	>	72 Ge		•	69.392			
٢		75 As						
-		75 As-1						
-1		77 Se						

Page 2

Sample ID: 606247-27

82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd 108 Cd 111 Cd

Report Date/Time: Tuesday, June 27, 2006 19:17:22

1	114	Cd			
>	115	In			74.377
1	121	Sb			
	123	Sb			
1	135	Ва			
L	137	Ва			
Γ	159	Tb			
1>	165	Но			73.980
1	201	Hg			
1	202	Hg			
1	203	TI			
1	205	TI.			
1	208	Pb			
j	209	Bi			
1	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCI			
	84	Kr			

Sample ID: 606247-28

Sample Date/Time: Tuesday, June 27, 2006 19:19:04

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-28.093

Tuning File: D:\ICPMS Data\Tuning\default.tun Optimization File: D:\ICPMS Data\Optimize\Default.dac Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 115 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1 Solids Ratio: 0.85

### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	52039	1.68		ug/L
1	Be	9	7	537	11.32	0.296	ug/L
	Al	27	50334	142111480	1.23	6480.077	ug/L
	Sc	45	463094	360672	0.86		ug/L
1	V	51	6917	659877	0.59	21.306	ug/L
	V-1	51	5584	835594	0.38	26.672	ug/L
1	Cr	52	20686	471676	2.08	17.339	ug/L
	Cr	53	1914	108558	0.07	34.413	ug/L
1	Mn	55	5964	6628494	0.60	165.695	ug/L
-	Co	59	598	256427	0.85	7.442	ug/L
	Ni	60	886	192724	1.69	25.637	ug/L
	Ni	62	-20173	-1325182	0.97	-1175.830	ug/L
	Cu	63	12791	301464	0.84	17.160	ug/L
	Cu	65	6061	148006	0.64	17.383	ug/L
1	Zn	66	3175	2216113	0.17	476.262	ug/L
	Zn	67	735	356645	0.63	445.443	ug/L
	Zn	68	2465	1626688	0.67	489.318	ug/L
L>	Ge	72	907488	629331	1.40		ug/L
Γ	As	75	-403	10876	2.41	2.318	ug/L
	As-1	75	296	19657	1.29	4.093	ug/L
	Se	77	395	2993	0.95	6.923	ug/L
	Se	82	193	266	3.46	0.244	ug/L
1	Υ	89	749932	724838	1.35		ug/L
	Мо	95	52	3457	0.36	0.368	ug/L
	Мо	97	32	2256	1.92	0.387	ug/L
	Мо	98	72	5805	0.83	0.387	ug/L
1	Ag	107	288	1592	0.00	0.049	ug/L

Page 1

Sample ID: 606247-28

Report Date/Time: Tuesday, June 27, 2006 19:21:08

	1	Ag	109	223	2001	0.81	0.069	ug/L	
	î .	Cd	106	908	2172	2.12	2.551	ug/L	
	i	Cd	108	1	116	0.01	0.258		
	Ì	Cd	111	734	4079	1.88	0.557		
	İ	Cd	114	141	6547	0.22	0.424	ug/L	
	<b> </b> >	In	115	806560	598815	0.31		ug/L	
	Ì	Sb	121	242	19824	0.28	1.056	ug/L	
	i	Sb	123	186	15020	0.13	1.026	ug/L	
	İ	Ba	135	325	441269	0.88	81.740	ug/L	
	Ì	Ва	137	563	761423	1.25	80.197	ug/L	
	Ē	Tb	159	1187362	886627	0.67		ug/L	
	i>	Но	165	1212300	904655	0.23		ug/L	
	i	Hg	201	98	240	0.89	1389.184		
	i	Hg	202	210	610	1.39	423.709		
	i	TI	203	52	586	0.12	0.019		
	İ	TI	205	112	1402	4.19	0.019	ug/L	
	Ì	Pb	208	6710	33053972	0.41	348.049	ug/L	
	İ	Bi	209	821507	583171	1.90		ug/L	
	1	Th	232	1933	46587	1.23	0.522	ug/L	
	L	U	238	373	20230	0.58	0.232	ug/L	
	_	Fe	56	6645286	443292773	0.98		ug/L	
		Ru	101	4	11	12.86		ug/L	
		ArCI	77	381	3025	0.33		ug/L	
		Kr	84	931	-368	77.75		ug/L	
		Sn	118	870	26190	2.08		ug/L	
		QC Calc	ulated V	'alues					
		Mass Analyte		% Recovery Int Std % F	Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Differen	æ
	Γ	6 Li			ор от постольной				
	ĺ	9 Be							
	1	27 AI							
	!	45 Sc							
	!	51 V							
-	 	51 V-1 52 Cr							
	! !	52 Cr 53 Cr							
ı		55 Mn							
i	İ	59 Co							
ĺ	1	60 Ni							
- 1	1	62 Ni							
ļ		63 Cu							
	i	65 Cu							
	l I	66 Zn 67 Zn							
		68 Zn							
i	, 	72 Ge			69.349				
- 1									

75 As-1
77 Se
82 Se
89 Y
95 Mo
97 Mo
98 Mo
107 Ag
109 Ag
106 Cd
108 Cd
111 Cd

-		114	Cd	
	>	115	in	74.243
ĺ		121	Sb	
		123	Sb	
		135	Ва	
Į	L	137	Ва	
	Γ	159	Tb	
	>	165	Но	74.623
		201	Hg	
		202	Hg	
		203	TI	
	]	205	TI	
		208	Pb	
	1	209	Bi	
		232	Th	
	L	238	U	
		56	Fe	
		101	Ru	
		77	ArCI	
		84	Kr	
		118	Sn	
		110	OII	

Sample ID: 606247-29

Sample Date/Time: Tuesday, June 27, 2006 19:22:50

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2
Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam
Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth
Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-29.094

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 116 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio: 0.77

### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	51573	1.81		ug/L
1	Be	9	7	758	1.96	0.389	ug/L
1	Al	27	50334	208205125	1.54	8813.188	ug/L
	Sc	45	463094	370033	1.33		ug/L
	V	51	6917	903340	0.24	27.131	ug/L
	V-1	51	5584	1076671	0.31	31.936	ug/L
	Cr	52	20686	369477	0.02	12.512	ug/L
1	Cr	53	1914	97202	0.42	28.571	ug/L
	Mn	55	5964	8347483	1.49	193.748	ug/L
	Co	59	598	258407	0.15	6.962	ug/L
1	Ni	60	886	143945	1.16	17.761	ug/L
	Ni	62	-20173	-1542879	0.37	-1273.077	ug/L
	Cu	63	12791	272648	0.79	14.374	ug/L
1	Cu	65	6061	135293	0.71	14.722	ug/L
	Zn	66	3175	2075358	0.91	414.014	ug/L
1	Zn	67	735	337755	0.05	391.546	ug/L
1	Zn	68	2465	1516242	0.38	423.380	ug/L
<b>L&gt;</b>	Ge	72	907488	614166	1.38		ug/L
Γ	As	75	-403	11585	1.62	2.297	ug/L
1	As-1	75	296	20333	1.30	3.951	ug/L
	Se	77	395	2998	3.96	6.486	ug/L
	Se	82	193	379	3.55	0.445	ug/L
1	Υ	89	749932	752546	0.67		ug/L
	Мо	95	52	3350	1.87	0.333	ug/L
	Мо	97	32	2121	0.29	0.339	ug/L
1	Мо	98	72	5460	1.15	0.339	ug/L
1	Ag	107	288	2402	3.53	0.073	ug/L

Page 1

Sample ID: 606247-29

Report Date/Time: Tuesday, June 27, 2006 19:24:54

	ı	Ag	109	223	2944	0.31	0.097	ug/L	
	i	Cd	106	908	4205	4.27	5.636	ug/L	
	i	Cd	108	1	909	1.92	1.905		
	i	Cd	111	734	5498	0.07	0.730	_	
	1	Cd	114	141	7944	2.98	0.481	_	
	!  -	In	115	806560	581713	1.36		ug/L	
	> 	Sb	121	242	11487	1.87	0.567		
	i	Sb	123	186	8633	3.09	0.546	=	
	ì	Ba	135	325	548560	1.47	94.788	_	
	i I	Ba	137	563	955488	1.40	93.855	<b>~</b>	
	Г Г	Tb	159	1187362	859499	0.08		ug/L	
	1  -	Но	165	1212300	879942	0.80		ug/L	
	>	Hg	201	98	395	7.88	2519.680		
	i	Hg	202	210	909	2.72	658.299	=	
	1	TI	203	52	735	1.92	0.022		
	i	TI	205	112	1700	1.83	0.022		
	i	Pb	208	6710	40698226	0.58	399.123		
	i	Bi	209	821507	562313	0.18		ug/L	
	i	Th	232	1933	47167	1.40	0.493		
	i	Ü	238	373	25639	2.83	0.274		
	L	Fe	56	6645286	513485817	0.39	*	ug/L	
		Ru	101	4	13	21.76		ug/L	
		ArCl	77	381	3106	0.43		ug/L	
		Kr	84	931	-592	38.34		ug/L	
		Sn	118	870	28415	1.77		ug/L	
			culated \					•	
		Mass Analy		% Recovery Int Std % F	Recovery Spike % Recovery	Dilution % Diffe	oronoo	Duplicate Rel. % Difference	
ı	-	6 Li	ie QC Siu	% Recovery IIII Std % F	Recovery Spike % Recovery	Dilution % Dilli	erence	Duplicate Ivel. // Difference	
j		9 Be							
į		27 AI							
]		45 Sc							
		51 V							
ļ		51 V-1							
l I		52 Cr 53 Cr							
		55 Mn							
i		59 Co							
j		60 Ni							
١		62 Ni							
		63 Cu							
!		65 Cu							
- 1		66 Zn 67 Zn							
1		68 Zn							
1	>	72 Ge			67.678				
Ì	-	75 As							
		75 As-1							

77 Se
82 Se
89 Y
95 Mo
97 Mo
98 Mo
107 Ag
109 Ag
106 Cd
108 Cd
111 Cd

	114	Cd	
>	115	In	72.123
1	121	Sb	
	123	Sb	
	135	Ba	
L	137	Ва	
Γ	159	Tb	
>	165	Но	72.585
-	201	Hg	
	202	Hg	
	203	TI	
1	205	TI	
1	208	Pb	
1	209	Bi	
ŀ	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCI	
	84	Kr	

Sample ID: 606247-30

Sample Date/Time: Tuesday, June 27, 2006 19:26:35

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-30.095

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 117 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1 Solids Ratio: 0.81

### Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	49994	0.18		ug/L
1	Be	9	7	627	0.68	0.337	ug/L
1	Al	27	50334	153850525	0.84	6824.718	ug/L
	Sc	45	463094	347113	0.76		ug/L
l	V	51	6917	680947	1.97	21.394	ug/L
	V-1	51	5584	851505	0.86	26.442	ug/L
-	Cr	52	20686	361918	2.49	12.830	ug/L
	Cr	53	1914	95378	1.47	29.367	ug/L
1	Mn	55	5964	7697825	2.13	187.189	ug/L
	Co	59	598	276686	0.51	7.813	ug/L
1	Ni	60	886	197559	0.38	25.571	ug/L
	Ni	62	-20173	-1401793	0.57	-1210.928	ug/L
1	Cu	63	12791	274767	0.94	15.180	ug/L
1	Cu	65	6061	136906	0.16	15.615	ug/L
	Zn	66	3175	1619156	0.29	338.369	ug/L
	Zn	67	735	251623	0.12	305.527	ug/L
	Zn	68	2465	1132955	0.42	331.384	ug/L
L>	Ge	72	907488	616483	1.07		ug/L
Γ	As	75	-403	13052	1.69	2.725	ug/L
	As-1	75	296	21645	1.08	4.444	ug/L
ı	Se	77	395	3023	1.31	6.917	ug/L
	Se	82	193	277	1.53	0.272	ug/L
ı	Υ	89	749932	718749	0.45		ug/L
	Мо	95	52	3458	0.99	0.363	ug/L
	Мо	97	32	2208	2.35	0.373	ug/L
İ	Мо	98	72	5647	1.51	0.371	ug/L
	Ag	107	288	2993	2.77	0.098	ug/L

Page 1

Sample ID: 606247-30

Report Date/Time: Tuesday, June 27, 2006 19:28:39

1	Ag	109	223	3438	3.27	0.121	ua/L
i	Cd	106	908	2394	4.63	2.921	
i	Cd	108	1	79	54.78	0.175	_
i	Cd	111	734	5294	3.14	0.740	
i	Cd	114	141	8871	0.23	0.568	=
>	In	115	806560	579569	1.21		ug/L
-	Sb	121	242	9893	0.83	0.514	
i	Sb	123	186	7564	3.81	0.504	
i	Ba	135	325	480508	1.77	87.640	
i	Ва	137	563	843557	2.37		_
ŗ	Tb	159	1187362	849798	0.15		ug/L
i>	Ho	165	1212300	871497	1.74		ug/L
ĺ	Hg	201	98	278	4.07	1715.500	
i	Hg	202	210	638	2.11	450.056	
i	TI	203	52	606	0.93	0.019	
i	Ti	205	112	1442	2.65	0.019	
j	Pb	208	6710	38404698	0.22	400.097	
i	Bi	209	821507	560078	0.50		ug/L
Ì	Th	232	1933	42808	0.67	0.474	
İ	U	238	373	23055	0.62	0.262	
_	Fe	56	6645286	468804869	0.54		ug/L
	Ru	101	4	10	37.22		ug/L
	ArCl	77	381	2974	0.02		ug/L
	Kr	84	931	-528	55.29		ug/L
	Sn	118	870	36445	1.18		ug/L
	QC Ca	iculated V					•
	Mass Analy	vte OC Std %	& Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference
Г	Mass Analy	yte QC Std %	% Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference
Γ	6 Li 9 Be	yte QC Std %	6 Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference
[	6 Li 9 Be 27 Al	yte QC Std %	6 Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc	yte QC Std %	6 Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V	yte QC Std %	6 Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1	yte QC Std %	6 Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr	yte QC Std %	6 Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr	yte QC Std %	6 Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co	yte QC Std %	6 Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni	yte QC Std %	6 Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni	yte QC Std %	6 Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu	yte QC Std %	6 Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu	yte QC Std %	6 Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu	yte QC Std %	6 Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn	yte QC Std %	6 Recovery Int Std %	Recovery Spike % Recovery	Dilution % Diff	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge	yte QC Std %	6 Recovery Int Std %	Recovery Spike % Recovery  67.933	Dilution % Diff	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As	yte QC Std %	6 Recovery Int Std %		Dilution % Diff	erence	Duplicate Rel. % Difference
[ <u>-</u>	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As-1	yte QC Std %	6 Recovery Int Std %		Dilution % Diff	erence	Duplicate Rel. % Difference
[	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se	yte QC Std %	6 Recovery Int Std %		Dilution % Diff	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y	yte QC Std %	6 Recovery Int Std %		Dilution % Diff	erence	Duplicate Rel. % Difference
[ <u>-</u>	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo	yte QC Std %	6 Recovery Int Std %		Dilution % Diff	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo	yte QC Std %	6 Recovery Int Std %		Dilution % Diff	erence	Duplicate Rel. % Difference
	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo	yte QC Std %	6 Recovery Int Std %		Dilution % Diff	erence	Duplicate Rel. % Difference
[	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag	yte QC Std %	6 Recovery Int Std %		Dilution % Diff	erence	Duplicate Rel. % Difference
[	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag	yte QC Std %	6 Recovery Int Std %		Dilution % Diff	erence	Duplicate Rel. % Difference
[	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag	yte QC Std %	6 Recovery Int Std %		Dilution % Diff	erence	Duplicate Rel. % Difference
<u> </u>	6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 75 As 77 Se 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 106 Cd	yte QC Std %	6 Recovery Int Std %		Dilution % Diff	erence	Duplicate Rel. % Difference

Page 2

Sample ID: 606247-30

Report Date/Time: Tuesday, June 27, 2006 19:28:39

1	114	Cd			
1>	115	In			71.857
1	121	Sb			
1	123	Sb			
1	135	Ba			
L	137	Ba			
Γ	159	Tb			
>	165	Но			71.888
	201	Hg			
1	202	Hg			
	203	TI			
	205	TI			
1	208	Pb			
1	209	Bi			
	232	Th			
Ĺ	238	U			
	56	Fe			
	101	Ru			
	77	ArCI			
	84	Kr			

Sample ID: 606247-31

Sample Date/Time: Tuesday, June 27, 2006 19:30:21

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam

Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Dataset\06-27-06\606247-31.096

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Analyta

Calibration Type: External Calibration

Autosampler Position: 118 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1 Solids Ratio: 0.98

Mace

### **Intensities**

Mass Intens RSD

Conc Mean Report Unit

Blank Intensity Moss Intens Mean

Li     6     54057     50723     0.33       Be     9     7     644     1.32     0.400	•
Be 9 7 644 1.32 0.406	ug/L
	•
Al 27 50334 145955330 2.31 7635.90	
Sc 45 463094 359140 1.04	ug/L
V 51 6917 600943 0.95 22.24	ug/L
V-1 51 5584 767494 0.24 28.090	ug/L
Cr 52 20686 376285 1.66 15.74	ug/L
Cr 53 1914 95984 1.55 34.85	ug/L
Mn 55 5964 7642048 0.82 219.20	ug/L
Co 59 598 260716 1.85 8.68	ug/L
Ni 60 886 165805 1.78 25.29	ug/L
Ni 62 -20173 -1455115 0.62 -1482.97	ug/L
Cu 63 12791 311080 1.04 20.33	ug/L
Cu 65 6061 152209 0.93 20.52	ug/L
Zn 66 3175 1677292 0.43 413.45	ug/L
Zn 67 735 258263 0.42 369.880	ug/L
Zn 68 2465 1181013 0.79 407.46	ug/L
L> Ge 72 907488 632364 1.47	ug/L
As 75 -403 11452 0.46 2.879	ug/L
As-1 75 296 20234 0.55 4.983	ug/L
Se 77 395 2891 1.69 7.895	ug/L
Se 82 193 210 8.44 0.16	ug/L
Y 89 749932 772312 1.04	ug/L
Mo 95 52 5414 1.19 0.685	ug/L
Mo 97 32 3545 1.73 0.722	ug/L
Mo 98 72 8916 0.02 0.705	ug/L
Ag 107 288 1514 5.93 0.055	ug/L

Page 1

Sample ID: 606247-31

Report Date/Time: Tuesday, June 27, 2006 19:32:25

	Ag	109	223	1538	1.70	0.061	•
	Cd	106	908	2058	1.08	2.818	_
1	Cd	108	1	-448	10.01	-1.193	•
1	Cd	111	734	4383	2.29	0.717	ug/L
l	Cd	114	141	6512	0.70	0.498	ug/L
ĺ>	In	115	806560	584202	1.27		ug/L
ĺ	Sb	121	242	6763	1.23	0.418	ug/L
ĺ	Sb	123	186	5165	0.54	0.410	ug/L
İ	Ва	135	325	217310	0.67	47.549	ug/L
Ĺ	Ва	137	563	379662	0.57	47.233	ug/L
Ī	Tb	159	1187362	893578	2.38		ug/L
İ>	Но	165	1212300	892899	1.81		ug/L
ĺ	Hg	201	98	152	4.20	774.474	ug/L
į	Hg	202	210	409	1.73	277.690	ug/L
ĺ	TI	203	52	790	4.03	0.030	ug/L
ĺ	TI	205	112	1967	4.14	0.032	ug/L
-	Pb	208	6710	100088669	0.04	1231.400	ug/L
	Bi	209	821507	579764	0.84		ug/L
	Th	232	1933	66279	0.73	0.876	ug/L
L	U	238	373	23617	1.19	0.317	ug/L
	Fe	56	6645286	484036933	0.61		ug/L
	Ru	101	4	11	47.14		ug/L
	ArCI	77	381	2979	2.26		ug/L
	Kr	84	931	-944	6.71		ug/L
	Sn	118	870	55527	1.34		ug/L
	QC Calc	ulated Values					
	Mass Analyte	QC Std % Recove	ery Int Std % Recove	ery Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Difference
_			•				•

IVIA			QC 3iu /6 Necovery	in Sid % Necestery	Spike % itemvery	Dilution % Dilierence	Duplicate Net. // Difference
•		Li					
		Be					
:	27	Al ·					
4	45	Sc					
	51	٧					
	51	V-1					
	52	Cr					
	53	Cr					
		Mn					
		Co					
	60						
6	62	Ni					
		Cu					
		Cu					
	66	Zn					
	67						
6	68	Zn					
L> 7	72	Ge		69.683			
Γ ;	75	As					
		As-1					
		Se					
		Se					
	89						
) (	95	Мо					
! 9	97	Мо					
		Мо					
10	07	Ag					
		Ag					
	<b>)</b> 6						
	80						
11	11	Cd					

1	114	Cd				
>	115	In				72.431
İ	121	Sb				
Ì	123	Sb				
1	135	Ва				
Ĺ	137	Ba				
Ī	159	Tb				
>	165	Ho				73.653
İ	201	Hg				
1	202	Hg				
1	203	TI				
	205	TI				
	208	Pb				
1	209	Bi				
	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCI				
	84	Kr				
	118	Sn				

Sample ID: 25 ppb i1-57a

Sample Date/Time: Tuesday, June 27, 2006 19:45:23

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\Dataset\06-27-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-27-06.sam
Method File: D:\ICPMS Data\Method\06-27-06fbi200.8.mth
Dataset File: D:\ICPMS Data\Dataset\06-27-06\25 ppb i1-57a.100

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-27-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 5
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	54057	53591	0.84		ug/L
	Be	9	7	47221	0.89	29.141	ug/L
1	Al	27	50334	628341	1.09	29.936	ug/L
	Sc	45	463094	326577	1.08		ug/L
	V	51	6917	687841	2.33	24.646	ug/L
	V-1	51	5584	738768	1.11	26.147	ug/L
1	Cr	52	20686	606085	0.48	24.867	ug/L
	Cr	53	1914	85355	0.28	29.901	ug/L
1	Mn	55	5964	936928	1.07	25.889	ug/L
	Co	59	598	767894	0.24	24.761	ug/L
	Ni	60	886	165816	0.38	24.466	ug/L
İ	Ni	62	-20173	10207	4.50	24.919	ug/L
1	Cu	63	12791	385284	0.99	24.468	ug/L
1	Cu	65	6061	185372	0.42	24.273	ug/L
1	Zn	66	3175	110462	1.42	25.816	ug/L
1	Zn	67	735	21278	0.13	28.786	ug/L
-	Zn	68	2465	78795	0.60	25.729	ug/L
L>	Ge	72	907488	667039	0.13		ug/L
Γ	As	75	-403	104325	0.13	23.617	ug/L
	As-1	75	296	103624	0.16	23.688	ug/L
1	Se	77	395	9269	0.65	24.979	ug/L
	Se	82	193	11365	0.08	24.293	ug/L
	Υ	89	749932	559363	0.85		ug/L
	Мо	95	52	198513	0.74	23.273	ug/L
1	Мо	97	32	123892	0.93	23.368	ug/L
1	Мо	98	72	320779	0.18	23.476	ug/L
1	Ag	107	288	610225	0.68	23.817	ug/L

Page 1

Sample ID: 25 ppb i1-57a

Report Date/Time: Tuesday, June 27, 2006 19:47:27

	QC Calc  Mass Analyte	ulated Values  QC Std % Recove	ery Int Std % Recover	y Spike % Recovery	Dilution % Difference		Duplica
	Sn OO O-1-	118	870	1281	5.47		ug/L
	Kr	84	931	643	0.02		ug/L
	ArCl	77	381	9038	0.04		ug/L
	Ru	101	4	8	9.43		ug/L
	Fe	56	6645286	4920349	2.68		ug/L
L	U	238	373	1914912	1.10	24.316	ug/L
İ	Th	232	1933	1959802	0.17	24.771	
i	Bi	209	821507	622715	1.30		ug/L
i	Pb	208	6710	2097472	0.56	24.108	
i	Ti	205	112	1513215		23.792	•
i	TI	203	52	635838		24.058	-
	Hg	202	210	172	7.01	3.114	-
>	Hg	201	98	79	2.70	-1.228	
  - -		165	1212300	972679	0.57		ug/L
L	Tb	159	1187362	946194	0.60	24.000	ug/L
	Ba Ba	135 137	563	218403		24.990	-
	Sb	123	186 325	124336		25.00 <i>1</i> 25.018	-
-  -	Sb	121	242	444411 341627		25.972 25.607	•
>		115	806560	647551	0.81	25.972	ug/L
-	Cd	114	141	346341		24.784	•
ļ	Cd	111	734	147977		25.266	_
- !	Cd	108	1	10201		24.963 25.266	-
!	Cd	106	908	14273		25.095	ug/L
	Ag	109	223	584747		23.825	

6 Li 9 Be 27 Al 45 Sc 51 V 51 V-1 52 Cr 53 Cr 55 Mn 59 Co 60 Ni 62 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 72 Ge 75 As 77 Ss 82 Se 89 Y 95 Mo 97 Mo 98 Mo 107 Ag 109 Ag 109 Ag 110 Cd 108 Cd 111 Cd		Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
9 Be	ſ			20 012 10 1000101,		opo		
27 Al	i							
45 Sc	į							
51 V     55 V-1     52 Cr     53 Cr     55 Mn     59 Co     60 Ni     62 Ni     65 Cu     65 Cu     66 Zn     67 Zn     68 Zn     72 Ge   73.504     75 As     75 As     77 Se     89 Y     95 Mo   97 Mo   98 Mo   107 Ag   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 Cd   108 C	i							
51 V-1   52 Cr   53 Cr   55 Mn   59 Co   60 Ni   62 Ni   63 Cu   65 Cu   66 Zn   67 Zn   68 Zn   72 Ge 73.504   75 As-1   77 Se   82 Se   89 Y   95 Mo   97 Mo   98 Mo   107 Ag   109 Ag   106 Cd   108 Cd	i							
52 Cr	j							
53	Ì							
55 Mn	ĺ							
59 Co	j							
60 Ni	1							
62 Ni	1							
65 Cu								
66 Zn	- 1	63	Cu					
67 Zn								
68 Zn								
72   Ge   73.504	1							
75       As         75       As-1         77       Se         82       Se         89       Y         95       Mo         97       Mo         98       Mo         107       Ag         109       Ag         106       Cd         108       Cd								
75 As-1   77 Se   82 Se   89 Y   95 Mo   97 Mo   98 Mo   107 Ag   109 Ag   106 Cd	Lِ>				73.504			
77 Se	Ţ							
82 Se	ļ							
89 Y   95 Mo   97 Mo   98 Mo   107 Ag   109 Ag   106 Cd	ļ							
95 Mo   97 Mo   98 Mo   107 Ag   109 Ag   106 Cd								
97 Mo   98 Mo   107 Ag   109 Ag   106 Cd   108 Cd	!							
98 Mo   107 Ag   109 Ag   106 Cd   108 Cd	ļ							
107 Ag   109 Ag   106 Cd   108 Cd	ļ							
109 Ag   106 Cd   108 Cd	ļ							
106 Cd   108 Cd	į							
108 Cd	İ							
	1							
111 Ca	1							
	ı	111	Cu					

1	114	Cd	
>	115	In	80.286
ı	121	Sb	
1	123	Sb	
1	135	Ba	
L	137	Ba	
Γ	159	Tb	
>	165	Но	80.234
1	201	Hg	
1	202	Hg	
1	203	TI	
1	205	Ti	
1	208	Pb	
1	209	Bi	
1	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCl	
	84	Kr	
	118	Sn	

# TCLP METALS DATA, 606247

# **Dataset Report**

User Name: btb

Computer Name: ICPMS

Dataset File Path: D:\ICPMS Data\DataSet\06-29-06\ Report Date/Time: Friday, June 30, 2006 10:51:07

### **The Dataset**

Batch ID	Sample ID	Date and Time	Read Type	Samp. File Name	Description
	blank	09:19:31 Thu 29-Jun-06	Blank	blank.001	
	1 ppb i1-56a	09:23:03 Thu 29-Jun-06	Standard #1	1 ppb i1-56a.002	
	5 ppb i1-56b	09:26:36 Thu 29-Jun-06	Standard #2	5 ppb i1-56b.003	
	10 ppb i1-56c	09:30:10 Thu 29-Jun-06	Standard #3	10 ppb i1-56c.004	
	25 ppb i1-56d	09:33:44 Thu 29-Jun-06	Standard #4	25 ppb i1-56d.005	
	50 ppb i1-56e	09:37:18 Thu 29-Jun-06	Standard #5	50 ppb i1-56e.006	
	25 ppb i1-57a	09:40:50 Thu 29-Jun-06	Sample	25 ppb i1-57a.007	
	i6-298 mb	10:22:30 Thu 29-Jun-06	Sample	i6-298 mb.008	water
	i6-298 lcs	10:26:13 Thu 29-Jun-06	Sample	i6-298 lcs.009	water
	606253-01	10:29:56 Thu 29-Jun-06	Sample	606253-01.010	water
	i6-298 ms 6062	2510:33:39 Thu 29-Jun-06	Sample	i6-298 ms 606253-01.01	1 water
	i6-298 dup 606	2!10:37:23 Thu 29-Jun-06	Sample	i6-298 dup 606253-01.0	12water
	606253-02	10:41:06 Thu 29-Jun-06	Sample	606253-02.013	water
	606252-01	10:44:49 Thu 29-Jun-06	Sample	606252-01.014	water
	606252-02	10:48:33 Thu 29-Jun-06	Sample	606252-02.015	water
	25 ppb i1-57a	10:52:17 Thu 29-Jun-06	Sample	25 ppb i1-57a.016	water
	i6-292 mb	11:04:07 Thu 29-Jun-06	Sample	i6-292 mb.017	water
	i6-292 lcs	11:07:52 Thu 29-Jun-06	Sample	i6-292 lcs.018	water
	606247-20	11:11:37 Thu 29-Jun-06	Sample	606247-20.019	water
	i6-292 ms 6062	2411:15:22 Thu 29-Jun-06	Sample	i6-292 ms 606247-20.02	0 water
	i6-292 dup 606	241:19:07 Thu 29-Jun-06	Sample	i6-292 dup 606247-20.0	21water
	606247-21	11:22:53 Thu 29-Jun-06	Sample	606247-21.022	water
	606247-22	11:26:38 Thu 29-Jun-06	Sample	606247-22.023	water
	606247-23	11:30:23 Thu 29-Jun-06	Sample	606247-23.024	water
	606247-24	11:34:08 Thu 29-Jun-06	Sample	606247-24.025	water
	606247-25	11:37:54 Thu 29-Jun-06	Sample	606247-25.026	water
	25 ppb i1-57a	11:41:39 Thu 29-Jun-06	Sample	25 ppb i1-57a.027	water
	606247-26	11:45:24 Thu 29-Jun-06	Sample	606247-26.028	water
	606247-27	11:49:09 Thu 29-Jun-06	Sample	606247-27.029	water
	606247-28	11:52:54 Thu 29-Jun-06	Sample	606247-28.030	water
	606247-29	11:56:40 Thu 29-Jun-06	Sample	606247-29.031	water
	606247-30	12:00:25 Thu 29-Jun-06	Sample	606247-30.032	water
	606247-31	12:04:11 Thu 29-Jun-06	Sample	606247-31.033	water
	25 ppb i1-57a	12:07:56 Thu 29-Jun-06	Sample	25 ppb i1-57a.034	water

## **Quantitative Analysis Calibration Report**

File Name: 06-29-06.cal

D:\ICPMS Data\System External Calibration File Path: Calibration Type:

Analyte	Mass	Curve Type	Slope	Intercept	Corr. Coeff.
Li	6.015	Linear Thru Zero	0.00	0.00	0.000000
Be	9.012	Linear Thru Zero	0.00	0.00	0.999905
Al	26.982	Linear Thru Zero	0.03	0.00	0.999504
Sc	44.956	Linear Thru Zero	0.00	0.00	0.000000
V	50.944	Linear Thru Zero	0.04	0.00	0.999851
V-1	50.944	Linear Thru Zero	0.04	0.00	0.999864
Cr	51.941	Linear Thru Zero	0.04	0.00	0.999980
Cr	52.941	Linear Thru Zero	0.00	0.00	0.999989
Mn	54.938	Linear Thru Zero	0.06	0.00	0.999964
Co	58.933	Linear Thru Zero	0.05	0.00	0.999968
Ni	59.933	Linear Thru Zero	0.01	0.00	0.999986
Ni	61.928	Linear Thru Zero	0.00	0.00	0.999974
Cu	62.930	Linear Thru Zero	0.02	0.00	0.999976
Cu	64.928	Linear Thru Zero	0.01	0.00	0.999981
Zn	65.926	Linear Thru Zero	0.01	0.00	0.999908
Zn	66.927	Linear Thru Zero	0.00	0.00	0.999878
Zn	67.925	Linear Thru Zero	0.00	0.00	0.999905
Ge	71.922	Linear Thru Zero	0.00	0.00	0.000000
As	74.922	Linear Thru Zero	0.01	0.00	0.999983
As-1	74.922	Linear Thru Zero	0.01	0.00	0.999986
Se	76.920	Linear Thru Zero	0.00	0.00	0.999977
Se	81.917	Linear Thru Zero	0.00	0.00	0.999986
Υ	88.905	Linear Thru Zero	0.00	0.00	0.000000
Мо	94.906	Linear Thru Zero	0.01	0.00	0.999988
Мо	96.906	Linear Thru Zero	0.01	0.00	0.999988
Мо	97.906	Linear Thru Zero	0.02	0.00	0.999986
Ag	106.905	Linear Thru Zero	0.04	0.00	0.999989
Ag	108.905	Linear Thru Zero	0.04	0.00	0.999995
Cd	105.907	Linear Thru Zero	0.00	0.00	0.999970
Cd	107.904	Linear Thru Zero	0.00	0.00	0.999988
Cd	110.904	Linear Thru Zero	0.01	0.00	0.999989
Cd	113.904	Linear Thru Zero	0.02	0.00	0.999971
In	114.904	Linear Thru Zero	0.00	0.00	0.000000
Sb	120.904	Linear Thru Zero	0.03	0.00	0.999991
Sb	122.904	Linear Thru Zero	0.02	0.00	0.999979
Ba	134.906	Linear Thru Zero	0.01	0.00	0.999972
Ba	136.905	Linear Thru Zero	0.01	0.00	0.999995
Tb	158.925	Linear Thru Zero	0.00	0.00	0.000000
Но	164.930	Linear Thru Zero	0.00	0.00	0.000000
Hg	200.970	Linear Thru Zero	0.00	0.00	0.432069

Report Date/Time: Friday, June 30, 2006 10:51:23 Page 1

Hg	201.971	Linear Thru Zero	0.00	0.00	0.715775
TI	202.972	Linear Thru Zero	0.03	0.00	0.999983
TI	204.975	Linear Thru Zero	0.07	0.00	0.999892
Pb	207.977	Linear Thru Zero	0.09	0.00	0.999965
Bi	208.980	Linear Thru Zero	0.00	0.00	0.000000
Th	232.038	Linear Thru Zero	0.09	0.00	0.999942
U	238.050	Linear Thru Zero	0.09	0.00	0.999572
Fe	55.935	Linear Thru Zero	0.00	0.00	0.000000
Ru	100.906	Linear Thru Zero	0.00	0.00	0.000000
ArCI	76.928	Linear Thru Zero	0.00	0.00	0.000000
Kr	83.912	Linear Thru Zero	0.00	0.00	0.000000
Sn	117.902	Linear Thru Zero	0.00	0.00	0.000000

Report Date/Time: Page 2 Friday, June 30, 2006 10:51:23

Sample ID: i6-292 mb

Sample Date/Time: Thursday, June 29, 2006 11:04:07

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-29-06\blank.001

Number of Replicates: 2
Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-29-06.sam

Method File: D:\ICPMS Data\Method\06-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\06-29-06\i6-292 mb.017

Tuning File: D:\ICPMS Data\Tuning\default.tun

Optimization File: D:\ICPMS Data\Optimize\Default.dac Calibration File: D:\ICPMS Data\System\06-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 98
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	77283	65074	0.32		ug/L
ı	Be	9	6	6	0.00	0.001	ug/L
1	Al	27	65200	57585	0.34	0.184	ug/L
-	Sc	45	480732	390695	3.06		ug/L
- 1	V	51	6377	11141	5.99	0.183	ug/L
-	V-1	51	8707	5715	1.50	-0.041	ug/L
-	Cr	52	20096	35642	4.89	0.661	ug/L
	Cr	53	3033	2292	1.30	-0.050	ug/L
-	Mn	55	7732	11974	1.81	0.123	ug/L
	Co	59	325	387	2.19	0.003	ug/L
	Ni	60	1052	2308	3.49	0.170	ug/L
	Ni	62	-20447	-18595	0.67	-1.536	ug/L
]	Cu	63	14403	24424	1.41	0.658	ug/L
1	Cu	65	6850	4853	1.27	-0.079	ug/L
1	Zn	66	5147	1497	4.82	-0.537	ug/L
1	Zn	67	1202	504	0.14	-0.563	ug/L
-	Zn	68	3616	1135	1.06	-0.510	ug/L
L>	Ge	72	990488	805473	0.25		ug/L
Γ	As	75	-291	-119	64.29	0.024	ug/L
-	As-1	75	254	262	6.22	0.012	ug/L
-	Se	77	335	300	4.01	0.073	ug/L
ļ	Se	82	232	220	1.29	0.064	ug/L
	Υ	89	857355	687014	0.36		ug/L
İ	Мо	95	45	309	13.26	0.029	ug/L
1	Мо	97	33	177	13.20	0.025	ug/L
	Мо	98	73	444	7.81	0.026	ug/L
l	Ag	107	156	371	4.01	0.009	ug/L

Page 1

Sample ID: i6-292 mb

1	Ag	109	139	347	6.33	0.009	ug/L
	Cd	106	791	706	5.46	0.119	ug/L
	Cd	108	-10	138	5.40	0.347	ug/L
	Cd	111	632	398	6.65	-0.018	ug/L
1	Cd	114	48	40	41.86	0.000	ug/L
>	In	115	853515	690679	1.19		ug/L
	Sb	121	349	845	13.15	0.030	ug/L
1	Sb	123	289	625	15.64	0.027	ug/L
	Ва	135	408	156	12.28	-0.031	ug/L
L	Ва	137	595	307	8.29	-0.017	ug/L
Γ	Tb	159	1157157	951376	0.58		ug/L
>	Но	165	1161743	960243	1.47		ug/L
	Hg	201	48	41	8.73	10.959	ug/L
	Hg	202	93	107	1.99	79.907	ug/L
	TI	203	151	128	22.74	0.000	ug/L
	TI	205	373	281	22.44	-0.000	ug/L
	Pb	208	6668	5561	1.68	0.001	ug/L
	Bi	209	765154	621087	0.26		ug/L
	Th	232	1316	9733	14.12	0.105	ug/L
L	U	238	202	255	18.06	0.001	ug/L
	Fe	56	6738323	6270142	0.86		ug/L
	Ru	101	6	6	0.00		ug/L
	ArCl	77	363	301	5.64		ug/L
	Kr	84	1078	1004	3.04		ug/L
	Sn	118	1053	1337	3.02		ug/L
	QC Calo	ulated Values	S				

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li		·	•		•
	9	Be					
-	27						
1	45	Sc					
	51	٧					
-	51	V-1					
1	52	Cr					
	53	Cr					
	55	Mn					
1	59	Co					
	60	Ni					
	62	Ni					
1	63	Cu					
1		Cu					
1	66	Zn					
	67	Zn					
1	68	Zn					
L>		Ge		81.321			
ſ	75	As					
- 1		As-1					
		Se					
		Se					
1		Υ					
		Мо					
İ	97	Мо					
- 1	98	Мо					
1	107	Ag					
ļ	109						
1	106						
	108						
	111	Cd					

	114	Cd	
>	115	In	80.922
	121	Sb	
	123	Sb	
	135	Ва	
Ĺ	137	Ва	
ſ	159	ТЪ	
>	165	Ho	82.655
	201	Hg	
]	202	Hg	
j	203	TI	
1	205	TI	
	208	Pb	
	209	Bi	
	232	Th	
	238	U	
	56	Fe	
	101	Ru	
	77	ArCl	
	84	Kr	

Sample ID: i6-292 lcs

Sample Date/Time: Thursday, June 29, 2006 11:07:52

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-29-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-29-06.sam

Method File: D:\ICPMS Data\Method\06-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\06-29-06\i6-292 Ics.018

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 99
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):

Solids Ratio:

### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
ſ	Li	6	77283	65335	2.15		ug/L
	Be	9	6	11856	0.31	5.544	ug/L
	Al	27	65200	57016	1.38	0.193	ug/L
	Sc	45	480732	396383	0.26		ug/L
	V	51	6377	701023	0.35	21.646	ug/L
	V-1	51	8707	706700	0.41	21.386	ug/L
	Cr	52	20096	626581	0.37	21.193	ug/L
	Cr	53	3033	72073	0.26	20.210	ug/L
	Mn	55	7732	928265	1.14	20.166	ug/L
	Co	59	325	790163	0.62	19.919	ug/L
	Ni	60	1052	171872	0.81	20.311	ug/L
	Ni	62	-20447	-4261	1.25	9.611	ug/L
	Cu	63	14403	411773	0.74	21.013	ug/L
	Cu	65	6850	187342	0.92	20.277	ug/L
1	Zn	66	5147	262441	0.24	52.351	ug/L
	Zn	67	1202	41831	0.53	49.187	ug/L
	Zn	68	3616	183486	1.48	51.724	ug/L
<u> </u>	Ge	72	990488	794416	0.18		ug/L
Γ	As	75	-291	53249	0.52	11.062	ug/L
	As-1	75	254	53141	0.49	11.199	ug/L
	Se	77	335	2464	1.69	5.710	ug/L
	Se	82	232	3068	0.85	5.669	ug/L
	Υ	89	857355	687387	0.95		ug/L
	Мо	95	45	236	13.21	0.021	ug/L
	Мо	97	33	123	25.39	0.016	ug/L
	Мо	98	73	399	11.52	0.023	ug/L
	Ag	107	156	104416	0.18	3.893	ug/L

Page 1

Sample ID: i6-292 lcs

1	Ag	109	139	100975	1.95	3.955	ug/L
l l	Cd	106	791	3680	0.73	5.522	ug/L
-	Cd	108	-10	2277	1.87	5.458	_
-			· -				ug/L
-	Cd	111	632	32310	1.55	5.222	ug/L
- !	Cd	114	48	74283	0.79	5.270	ug/L
ļ>	ln -	115	853515	685225	2.32		ug/L
ļ	Sb	121	349	401354	1.55	21.375	•
1	Sb	123	289	310473	0.54	21.535	ug/L
1	Ва	135	408	297081	0.79	52.333	ug/L
L	Ba	137	595	519059	1.99	51.982	ug/L
Γ	Tb	159	1157157	936385	0.37		ug/L
>	Но	165	1161743	947809	1.08		ug/L
1	Hg	201	48	44	22.50	45.458	ug/L
i	Hg	202	93	105	14.21	78.044	-
1	TI	203	151	132852	0.88	5.064	ug/L
1	TI	205	373	314352	0.11	5.065	ug/L
1	Pb	208	6668	883189	0.15	10.250	ug/L
	Bi	209	765154	606034	0.96		ug/L
	Th	232	1316	5522	13.41	0.054	ug/L
L	U	238	202	107	10.57	-0.001	ug/L
	Fe	56	6738323	9870340	0.11		ug/L
	Ru	101	6	4	0.00		ug/L
	ArCl	77	363	2466	0.66		ug/L
	Kr	84	1078	1031	0.86		ug/L
	Sn	118	1053	1336	5.45		ug/L
	QC C	alculated Va	lues				-
		alvte OC Std %		covery Snike % Becover	/ Dilution 9/ Diff		Dunlingto D

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6		Ť				Dapinouse i tom 70 Dimerente
ĺ	9						
ĺ		Al					
İ		Sc					
İ		V					
İ		V-1					
1		Cr					
-		Cr					
	55						
	59						
	60						
1	62	Ni					
- 1	63	Cu					
	65	Cu					
-	66	Zn					
1	67	Zn			•		
1	68	Zn					
Ŀ	> 72	Ge		80.204			
Γ	75	As					
-		As-1					
		Se					
		Se					
İ		Υ					
- !		Мо					
- [		Мо					
ļ	98						
ļ		Ag					
- [		Ag					
- [		Cd					
		Cd					
1	111	Cd					

1	114	Cd			
>	115	In			80.283
	121	Sb			
	123	Sb			
1	135	Ва			
L	137	Ba			
Γ	159	Tb			
>	165	Но			81.585
İ	201	Hg			
İ	202	Hg			
	203	TI			
ĺ	205	TI			
ĺ	208	Pb			
ĺ	209	Bi			
Ì	232	Th			
Ĺ	238	U			
_	56	Fe			
	101	Ru			
	77	ArCI			
	84	Kr			
	118	Sn			

Sample ID: 606247-20

Sample Date/Time: Thursday, June 29, 2006 11:11:37

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-29-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-29-06.sam
Method File: D:\ICPMS Data\Method\06-29-06fbi200.8.mth
Dataset File: D:\ICPMS Data\DataSet\06-29-06\606247-20.019

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 100 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	77283	67295	1.44		ug/L
	Be	9	6	19	22.33	0.006	ug/L
	Al	27	65200	163686	0.16	4.235	ug/L
	Sc	45	480732	408335	1.40		ug/L
	V	51	6377	8933	3.89	0.106	ug/L
	V-1	51	8707	6204	2.36	-0.033	ug/L
	Cr	52	20096	26988	0.14	0.334	ug/L
	Cr	53	3033	2094	1.89	-0.126	ug/L
	Mn	55	7732	213046	0.03	4.310	ug/L
	Co	59	325	5615	0.69	0.129	ug/L
	Ni	60	1052	2862	1.04	0.224	ug/L
1	Ni	62	-20447	-19041	0.08	-1.400	ug/L
	Cu	63	14403	17388	2.71	0.265	ug/L
1	Cu	65	6850	6353	0.46	0.063	ug/L
1	Zn	66	5147	600674	1.24	115.323	ug/L
	Zn	67	1202	90665	0.96	102.964	ug/L
	Zn	68	3616	416301	0.06	112.944	ug/L
L>	Ge	72	990488	832579	0.39		ug/L
Γ	As	75	-291	-131	30.90	0.022	ug/L
	As-1	75	254	301	11.53	0.018	ug/L
1	Se	77	335	318	0.00	0.096	ug/L
	Se	82	232	208	0.68	0.028	ug/L
1	Υ	89	857355	718403	0.67		ug/L
	Мо	95	45	160	5.02	0.012	ug/L
	Мо	97	33	97	14.80	0.011	ug/L
	Мо	98	73	247	8.68	0.012	ug/L
1	Ag	107	156	738	3.83	0.022	ug/L

Page 1

Sample ID: 606247-20

	Ag	109	139	705	14.96	0.022	ug/L
	Cd	106	791	777	2.47	0.203	ug/L
	Cd	108	-10	117	20.50	0.288	ug/L
	Cd	111	632	1503	1.15	0.154	ug/L
	Cd	114	48	2421	6.28	0.163	ug/L
>	ln	115	853515	712205	0.06		ug/L
	Sb	121	349	5116	25.67	0.247	ug/L
	Sb	123	289	4007	20.91	0.251	ug/L
	Ва	135	408	8959	1.71	1.462	ug/L
L	Ba	137	595	15844	1.05	1.480	ug/L
Γ	Tb	159	1157157	986623	0.62		ug/L
>	Ho	165	1161743	973770	0.90		ug/L
	Hg	201	48	44	19.28	35.984	ug/L
	Hg	202	93	95	2.98	45.860	ug/L
	TI	203	151	300	6.85	0.006	ug/L
	TI	205	373	634	5.25	0.005	ug/L
	Pb	208	6668	23052353	1.06	261.978	ug/L
	Bi	209	765154	668793	0.78		ug/L
	Th	232	1316	3998	6.53	0.035	ug/L
L	U	238	202	260	17.17	0.001	ug/L
	Fe	56	6738323	6380537	0.07		ug/L
	Ru	101	6	8	28.28		ug/L
	ArCl	77	363	308	0.23		ug/L
	Kr	84	1078	491	17.97		ug/L
	Sn	118	1053	1377	2.05		ug/L
	QC C	Calculated Va	lues				

00	Cal	اريما	lated	W ₂	اللمو
wu	C a	ıcu	ateo	va	mes

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li					·
	9	Be					
	27	Al					
		Sc					
- 1	51	V					
		V-1					
		Cr					
- 1	53						
		Mn					
		Co					
	60	Ni					
	62	Ni					
	63						
	65	Cu					
		Zn					
		Zn					
		Zn					
L>		Ge		84.057			
Γ		As					
		As-1					
		Se					
	82						
	89						
1							
	97	Мо					
	98	Мо					
1	107	Ag					
	109						
- [	106						
!	108						
1	111	Cd					

	114	Cd			
>	115	In			83.444
1	121	Sb			
	123	Sb			
1	135	Ba			
L	137	Ва			
Γ	159	Tb			
>	165	Ho			83.820
	201	Hg			
1	202	Hg			
1	203	TI			
	205	TI			
	208	Pb			
1	209	Bi			
1	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCI			
	84	Kr			

Sample ID: i6-292 ms 606247-20

Sample Date/Time: Thursday, June 29, 2006 11:15:22

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-29-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-29-06.sam Method File: D:\ICPMS Data\Method\06-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\06-29-06\i6-292 ms 606247-20.020

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 101 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	77283	65977	1.26		ug/L
	Be	9	6	11969	0.65	5.359	ug/L
1	Al	27	65200	160805	1.38	4.145	ug/L
j	Sc	45	480732	409192	0.89		ug/L
ĺ	V	51	6377	703800	0.66	20.804	ug/L
ĺ	V-1	51	8707	713128	0.55	20.658	ug/L
Ì	Cr	52	20096	627646	0.91	20.305	ug/L
Ì	Cr	53	3033	73687	0.34	19.772	ug/L
1	Mn	55	7732	1162841	1.38	24.217	ug/L
	Co	59	325	817399	0.83	19.732	ug/L
1	Ni	60	1052	178741	2.56	20.225	ug/L
1	Ni	62	-20447	-4299	0.95	9.726	ug/L
	Cu	63	14403	415474	1.03	20.281	ug/L
ĺ	Cu	65	6850	194232	2.75	20.125	ug/L
	Zn	66	5147	873982	1.26	168.781	ug/L
	Zn	67	1202	133139	0.91	152.290	ug/L
1	Zn	68	3616	600631	0.13	163.908	ug/L
Ĺ>	Ge	72	990488	829625	0.60		ug/L
Γ	As	75	-291	54546	0.82	10.935	ug/L
1	As-1	75	254	54174	0.76	11.017	ug/L
	Se	77	335	2433	0.47	5.408	ug/L
1	Se	82	232	3137	0.20	5.589	ug/L
	Υ	89	857355	707285	1.43		ug/L
1	Мо	95	45	154	0.01	0.012	ug/L
	Мо	97	33	81	5.21	0.009	ug/L
	Мо	98	73	249	11.34	0.012	ug/L
	Ag	107	156	109851	0.74	3.952	ug/L

Page 1

Sample ID: i6-292 ms 606247-20

	Ag	109	139	104914	0.70	3.966	ug/L			
	Cd	106	791	3795	0.36	5.491	ug/L			
	Cd	108	-10	2357	5.62	5.449	ug/L			
	Cd	111	632	34652	0.63	5.408	ug/L			
	Cd	114	48	79777	1.56	5.461	ug/L			
>	In	115	853515	709976	1.25		ug/L			
	Sb	121	349	408967	0.88	21.014	ug/L			
	Sb	123	289	315601	0.30	21.122	ug/L			
	Ba	135	408	313257	0.52	53.253	ug/L			
L	Ва	137	595	538823	1.75	52.076	ug/L			
Γ	Tb	159	11571 <b>57</b>	973215	0.39		ug/L			
>	Но	165	1161743	969257	1.37		ug/L			
	Hg	201	48	53	2.67	114.509	ug/L			
	Hg	202	93	92	10.76	39.272	ug/L			
	TI	203	151	144127	1.35	5.374	ug/L			
1	TI	205	373	339994	1.05	5.358	ug/L			
	Pb	208	6668	23766132	0.38	271.358	ug/L			
	Bi	209	765154	679814	1.66		ug/L			
	Th	232	1316	3421	13.94	0.028	ug/L			
L	U	238	202	249	15.34	0.001	ug/L			
	Fe	56	6738323	10154266	0.32		ug/L			
	Ru	101	6	10	66.99		ug/L			
	ArCi	77	363	2438	0.67		ug/L			
	Kr	84	1078	594	7.89		ug/L			
	Sn	118	1053	1338	9.41		ug/L			
	QC Calculated Values									

$\sim$	0-1		lated	1/-	l
U.	Ca	CH	lated	Val	2911

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li					•
-	9	Be					
	27						
	45	Sc					
	51	V					
1	51	V-1					
- 1	52	Cr					
	53	Cr					
	55	Mn					
	59	Co					
	60	Ni					
	62	Ni					
ļ	63	Cu					
1	65	Cu					
	66	Zn					
	67	Zn					
	68	Zn					
L>	72	Ge		83.759			
Γ	75	As					
	75	As-1					
	77	Se					
	82	Se					
-	89	Υ					
1	95	Мо					
-	97	Мо					
	98	Мо					
	107	Ag					
	109	Ag					
	106	Cd					
	108						
1	111	Cd					

	114	Cd			
>	115	ln			83.183
-	121	Sb			
	123	Sb			
1	135	Ba			
L	137	Ва			
Γ	159	Tb			
>	165	Ho			83.431
1	201	Hg			
1	202	Hg			
1	203	TI			
	205	TI			
	208	Pb			
	209	Bi			
	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			

Sample ID: i6-292 dup 606247-20

Sample Date/Time: Thursday, June 29, 2006 11:19:07

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-29-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-29-06.sam Method File: D:\ICPMS Data\Method\06-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\06-29-06\i6-292 dup 606247-20.021

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 102
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):
Solids Ratio:

### Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	77283	65582	1.11		ug/L
	Be	9	6	18	78.57	0.006	ug/L
	Al	27	65200	164161	3.27	4.295	ug/L
	Sc	45	480732	405487	1.22		ug/L
	V	51	6377	8198	9.93	0.086	ug/L
	V-1	51	8707	6095	1.85	-0.035	ug/L
	Cr	52	20096	25176	1.63	0.280	ug/L
	Cr	53	3033	2104	0.87	-0.120	ug/L
1	Mn	55	7732	211609	0.09	4.308	ug/L
	Co	59	325	5930	10.99	0.137	ug/L
	Ni	60	1052	2995	5.39	0.241	ug/L
	Ni	62	-20447	-19182	1.54	-1.597	ug/L
	Cu	63	14403	17054	0.67	0.253	ug/L
	Cu	65	6850	6314	0.22	0.063	ug/L
	Zn	66	5147	601973	0.31	116.297	ug/L
	Zn	67	1202	89529	0.65	102.305	ug/L
	Zn	68	3616	417879	1.55	114.101	ug/L
L>	Ge	72	990488	827453	1.19		ug/L
Γ	As	75	-291	-121	2.15	0.024	ug/L
	As-1	75	254	340	12.71	0.027	ug/L
	Se	77	335	326	10.41	0.124	ug/L
	Se	82	232	210	6.06	0.035	ug/L
	Υ	89	857355	694187	2.03		ug/L
	Мо	95	45	135	9.69	0.010	ug/L
1	Мо	97	33	69	13.93	0.007	ug/L
1	Мо	98	73	178	12.12	0.008	ug/L
1	Ag	107	156	840	19.12	0.026	ug/L

Page 1

Sample ID: i6-292 dup 606247-20

1	Ag	109	139	782	13.30	0.025	ug/L
	Cd	106	791	817	2.91	0.286	ug/L
	Cd	108	-10	135	8.55	0.333	ug/L
	Cd	111	632	1496	1.94	0.155	ug/L
	Cd	114	48	2394	0.13	0.162	ug/L
>	In	115	853515	706564	2.48		ug/L
	Sb	121	349	5519	19.42	0.271	ug/L
	Sb	123	289	4250	21.87	0.271	ug/L
	Ва	135	408	9089	5.32	1.496	ug/L
Ĺ	Ва	137	595	15811	1.19	1.490	ug/L
Γ	Tb	159	1157157	957077	2.67		ug/L
>	Но	165	1161743	956810	0.08		ug/L
	Hg	201	48	36	17.93	-31.359	ug/L
	Hg	202	93	94	0.76	46.229	ug/L
	TI	203	151	220	5.48	0.004	ug/L
	TI	205	373	568	23.55	0.004	ug/L
	Pb	208	6668	23042075	0.55	266.480	ug/L
	Bi	209	765154	662737	0.29		ug/L
	Th	232	1316	2531	7.15	0.018	ug/L
L	U	238	202	245	16.74	0.001	ug/L
	Fe	56	6738323	6427893	1.56		ug/L
	Ru	101	6	7	54.39		ug/L
	ArCI	77	363	319	7.33		ug/L
	Kr	84	1078	551	6.19		ug/L
	Sn	118	1053	1377	0.72		ug/L
	QC C	alculated Va	lues				

	_				
$\alpha$	Cal	CH	lated	Val	11100

		Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li					
	9	Be					
1	27	Al					
	45	Sc					
	51	V					
	51	V-1					
	52	Cr					
	53	Cr					
	55	Mn					
	59	Co					
1	60	Ni					
1	62	Ni					
	63	Cu					
1	65	Cu					
1	66	Zn					
	67	Zn					
	68	Zn					
L>	72	Ge		83.540			
Γ	75	As					
		As-1					
	77						
	82						
	89						
		Mo					
		Мо					
	98	Мо					
	107						
	109						
	106						
	108						
1	111	Cd					

		114	Cd	
	>	115	In	82.783
1		121	Sb	
		123	Sb	
		135	Ва	
	L	137	Ва	
	Γ	159	Tb	
	>	165	Но	82.360
	1	201	Hg	
	1	202	Hg	
	1	203	TI	
		205	TI	
		208	Pb	
		209	Bi	
	1	232	Th	
	L	238	U	
		56	Fe	
		101	Ru	
		77	ArCI	
		84	Kr	

118 Sn

Sample ID: 606247-21

Sample Date/Time: Thursday, June 29, 2006 11:22:53

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-29-06\blank.001

Number of Replicates: 2
Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-29-06.sam

Method File: D:\ICPMS Data\Method\06-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\06-29-06\606247-21.022

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 103
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	77283	64725	1.90		ug/L
	Be	9	. 6	10	28.28	0.002	ug/L
	Al	27	65200	105465	4.09	2.021	ug/L
	Sc	45	480732	400599	2.78		ug/L
	V	51	6377	7889	1.65	0.078	ug/L
	V-1	51	8707	5794	2.25	-0.042	ug/L
	Cr	52	20096	23880	0.52	0.241	ug/L
	Cr	53	3033	1998	5.38	-0.146	ug/L
	Mn	55	7732	77247	1.90	1.496	ug/L
	Co	59	325	2959	0.77	0.065	ug/L
	Ni	60	1052	2602	0.92	0.198	ug/L
1	Ni	62	-20447	-19015	0.24	-1.557	ug/L
	Cu	63	14403	15449	1.19	0.177	ug/L
	Cu	65	6850	5626	2.69	-0.007	ug/L
1	Zn	66	5147	261571	1.03	50.364	ug/L
1	Zn	67	1202	39253	1.08	44.471	ug/L
	Zn	68	3616	180247	0.19	49.033	ug/L
L>	Ge	72	990488	822511	0.18		ug/L
Γ	As	75	-291	-146	61.25	0.019	ug/L
	As-1	75	254	278	8.92	0.014	ug/L
1	Se	77	335	320	4.21	0.105	ug/L
	Se	82	232	197	1.44	0.010	ug/L
	Υ	89	857355	701450	2.23		ug/L
	Мо	95	45	135	0.17	0.010	ug/L
	Мо	97	33	69	18.00	0.007	ug/L
	Мо	98	73	192	1.96	800.0	ug/L
	Ag	107	156	471	11.27	0.012	ug/L

Page 1

Sample ID: 606247-21

1	Ag	109	139	403	20.20	0.011	ug/L
1	Cd	106	791	872	8.62	0.380	ug/L
1	Cd	108	-10	114	2.09	0.283	ug/L
1	Cd	111	632	1459	3.25	0.149	ug/L
	Cd	114	48	2101	0.19	0.142	ug/L
>	ln	115	853515	707833	0.36		ug/L
	Sb	121	349	2208	4.20	0.099	ug/L
	Sb	123	289	1660	4.42	0.095	ug/L
1	Ва	135	408	28368	0.24	4.784	ug/L
L	Ba	137	595	50002	0.01	4.804	ug/L
Γ	Tb	159	1157157	952417	1.36		ug/L
>	Но	165	1161743	947618	0.55		ug/L
	Hg	201	48	51	21.00	102.614	ug/L
	Hg	202	93	94	6.81	48.702	ug/L
	TI	203	151	158	17.90	0.001	ug/L
- 1	TI	205	373	342	12.63	0.001	ug/L
-	Pb	208	6668	5206310	0.16	60.746	ug/L
	Bi	209	765154	658767	1.40		ug/L
	Th	232	1316	2047	1.31	0.012	ug/L
L	U	238	202	132	5.36	-0.000	ug/L
	Fe	56	6738323	6354839	0.09		ug/L
	Ru	101	6	6	38.57		ug/L
	ArCl	77	363	296	6.21		ug/L
	Kr	84	1078	392	20.44		ug/L
	Sn	118	1053	1287	2.75		ug/L
	QC Calc	ulated \	<b>Values</b>				
	Mass Analyte	QC Std	% Recovery Int Std % Re	covery Spike % Recovery	Dilution % Diff	erence	Duplicat
г			•				

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li	·	•	•		·
	9	Be					
ĺ		Al					
	45	Sc					
ĺ	51						
		V-1					
ĺ	52						
	53	Cr					
		Mn					
		Co					
1	60	Ni					
1	62	Ni					
		Cu					
1	66	Zn					
	67	Zn					
1	68	Zn					
L>	72	Ge		83.041			
Ţ	75	As					
		As-1					
1	77	Se					
İ	82						
	89						
1							
1		Мо					
		Mo					
1	107	Ag					
	109						
1	106						
1	108						
1	111	Cd					

	114	Cd				
>	115	In				82.931
	121	Sb				
İ	123	Sb				
ì	135	Ва				
i	137	Ва				
Ī	159	Tb				
j>	165	Но				81.569
İ	201	Hg				
İ	202	Hg				
i	203	TI				
i	205	TI				
i	208	Pb				
ĺ	209	Bi				
ĺ	232	Th				
Ĺ	238	U				
	56	Fe				
	101	Ru				
	77	ArCl				
	84	Kr				
	118	Sn				

Sample ID: 606247-22

Sample Date/Time: Thursday, June 29, 2006 11:26:38

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-29-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-29-06.sam

Method File: D:\ICPMS Data\Method\06-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\06-29-06\606247-22.023

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 104
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	77283	64457	0.86		ug/L
	Be	9	6	10	56.57	0.002	ug/L
	Al	27	65200	110511	1.04	2.341	ug/L
	Sc	45	480732	395279	0.21		ug/L
	V	51	6377	7882	3.81	0.084	ug/L
	V-1	51	8707	5764	1.51	-0.039	ug/L
	Cr	52	20096	24284	3.35	0.277	ug/L
	Cr	53	3033	2024	2.62	-0.123	ug/L
	Mn	55	7732	109400	0.32	2.240	ug/L
1	Co	59	325	2674	1.88	0.060	ug/L
	Ni	60	1052	2495	0.06	0.194	ug/L
1	Ni	62	-20447	-19012	0.19	-1.961	ug/L
	Cu	63	14403	15658	1.53	0.210	ug/L
	Cu	65	6850	5689	0.42	0.017	ug/L
İ	Zn	66	5147	133553	0.88	26.038	ug/L
	Zn	67	1202	20462	0.42	23.291	ug/L
	Zn	68	3616	92835	0.59	25.571	ug/L
L>	Ge	72	990488	800155	0.96		ug/L
Γ	As	75	-291	-84	7.80	0.031	ug/L
	As-1	75	254	244	3.78	0.008	ug/L
	Se	<b>77</b>	335	318	1.33	0.123	ug/L
	Se	82	232	210	9.43	0.045	ug/L
	Υ	89	857355	683424	1.73		ug/L
	Мо	95	45	98	0.88	0.006	ug/L
	Мо	97	33	54	18.47	0.005	ug/L
	Мо	98	73	138	3.18	0.005	ug/L
	Ag	107	156	322	2.42	0.007	ug/L

Page 1

Sample ID: 606247-22

	Ag	109	139	304	4.65	0.007	ug/L
1	Cd	106	791	767	4.44	0.231	ug/L
1	Cd	108	-10	62	31.16	0.166	ug/L
1	Cd	111	632	931	3.83	0.069	ug/L
	Cd	114	48	911	1.70	0.061	ug/L
>	in	115	853515	689341	0.78		ug/L
	Sb	121	349	1290	1.32	0.053	ug/L
	Sb	123	289	958	7.90	0.050	ug/L
1	Ва	135	408	9052	1.13	1.529	ug/L
L	Ba	137	595	16035	1.40	1.550	ug/L
Γ	Tb	159	1157157	938588	2.42		ug/L
>	Но	165	1161743	944448	1.74		ug/L
	Hg	201	48	39	18.13	3.968	ug/L
	Hg	202	93	95	7.44	53.426	ug/L
ı	TI	203	151	119	8.32	-0.000	ug/L
	TI	205	373	274	12.39	-0.000	ug/L
1	Pb	208	6668	1644134	1.84	19.204	ug/L
	Bi	209	765154	634763	0.47		ug/L
	Th	232	1316	1888	7.76	0.010	ug/L
L	U	238	202	99	14.29	-0.001	ug/L
	Fe	56	6738323	6341998	0.04		ug/L
	Ru	101	6	5	28.28		ug/L
	ArCl	77	363	276	6.15		ug/L
	Kr	84	1078	565	5.59		ug/L
	Sn	118	1053	1335	1.64		ug/L
	QC Ca	alculated Va	lues				

		Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li			-		•
1	9	Be					
-	27						
	45						
1	51						
-		V-1					
1	52	Cr					
	53						
	55	Mn					
	59						
	60	Ni					
	62	Ni					
	63	Cu					
		Cu					
	66						
	67	Zn					
<u> </u>		Ge		80.784			
Γ	75						
t		As-1					
1	77						
1	82						
	89						
		Мо					
1		Мо					
		Мо					
1	107	Ag					
ļ	109						
ļ	106						
1	108						
1	111	Cd					

1	114	Cd	
>	115	In	80.765
1	121	Sb	
	123	Sb	
	135	Ва	
L	137	Ba	
٢	159	Tb	
>	165	Но	81.296
	201	Hg	
	202	Hg	
1	203	TI	
	205	TI	
1	208	Pb	
1	209	Bi	
1	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCl	
	84	Kr	

118 Sn

Sample ID: 606247-23

Sample Date/Time: Thursday, June 29, 2006 11:30:23

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-29-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-29-06.sam

Method File: D:\ICPMS Data\Method\06-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\06-29-06\606247-23.024

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 105 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
٢	Li	6	77283	63597	0.14		ug/L
	Be	9	6	11	25.71	0.003	ug/L
	Al	27	65200	128226	0.60	2.994	ug/L
	Sc	45	480732	403644	1.89		ug/L
	V	51	6377	7368	2.90	0.066	ug/L
	V-1	51	8707	5447	0.22	-0.050	ug/L
	Cr	52	20096	23779	2.92	0.250	ug/L
	Cr	53	3033	2042	4.57	-0.125	ug/L
	Mn	55	7732	75054	1.77	1.474	ug/L
1	Co	59	325	4904	3.35	0.115	ug/L
	Ni	60	1052	2515	1.12	0.193	ug/L
	Ni	62	-20447	-18909	1.34	-1.696	ug/L
1	Cu	63	14403	20175	2.34	0.432	ug/L
	Cu	65	6850	7883	2.58	0.249	ug/L
	Zn	66	5147	662305	1.46	130.783	ug/L
	Zn	67	1202	99270	0.19	115.998	ug/L
	Zn	68	3616	456342	0.32	127.338	ug/L
L>	Ge	72	990488	810160	0.21		ug/L
Γ	As	75	-291	-210	51.29	0.005	ug/L
1	As-1	75	254	212	3.68	0.001	ug/L
	Se	77	335	304	2.79	0.083	ug/L
	Se	82	232	208	10.56	0.038	ug/L
1	Υ	89	857355	687287	0.25		ug/L
	Мо	95	45	97	6.42	0.006	ug/L
	Мо	97	33	67	11.42	0.007	ug/L
	Мо	98	73	118	3.13	0.004	ug/L
1	Ag	107	156	243	2.33	0.004	ug/L

Page 1

Sample ID: 606247-23

1	Ag	109	139	233	10.04	0.005	ug/L
	Cd	106	791	831	0.52	0.340	ug/L
	Cd	108	-10	136	26.50	0.342	ug/L
- 1	Cd	111	632	1590	1.04	0.175	ug/L
	Cd	114	48	2602	1.20	0.180	ug/L
>	In	115	853515	692434	0.57		ug/L
	Sb	121	349	1132	7.44	0.045	ug/L
	Sb	123	289	903	1.62	0.046	ug/L
	Ва	135	408	98865	0.60	17.193	ug/L
L	Ва	137	595	171078	0.30	16.922	ug/L
Γ	Tb	159	1157157	949218	2.50		ug/L
>	Ho	165	1161743	958914	1.07		ug/L
	Hg	201	48	43	29.60	32.231	ug/L
	Hg	202	93	92	2.32	40.399	ug/L
	TI	203	151	112	7.58	-0.000	ug/L
	TI	205	373	245	1.15	-0.001	ug/L
	Pb	208	6668	18772495	0.46	216.632	ug/L
	Bi	209	765154	662259	0.40		ug/L
	Th	232	1316	1700	3.41	0.007	ug/L
L	U	238	202	213	1.00	0.001	ug/L
	Fe	56	6738323	6308055	1.15		ug/L
	Ru	101	6	7	20.20		ug/L
	ArCI	77	363	304	4.65		ug/L
	Kr	84	1078	740	1.60		ug/L
	Sn	118	1053	1342	1.69		ug/L
	QC Calc	ulated '	Values				
٢	Mass Analyte 6 Li 9 Be	QC Std	% Recovery Int Std % Reco	overy Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. %

	Mono	Analuta	00 Ctd 0/ Dansson	Int Otal O/ Decrees	O -!! 0/ D	D" " 0/ D"	D !! ! D ! 0/ D'//
г	iviass 6	Analyte Li	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
	9	Be					
l l	27	Al					
ŀ	45	Sc					
1	51	V					
		V V-1					
		Cr					
1	53	Cr					
	55	Mn					
i	59	Co					
1	60	Ni					
i		Ni					
i		Cu					
i		Cu					
i	66	Zn					
i							
i	68	Zn					
		Ge		81.794			
[		As		01.794			
		As-1					
i	77						
ì		Se					
i							
i		, Mo					
i	97	Мо					
i	98	Мо					
i	107	Ag					
i		Ag		·			
i	106	Cd					
i	108						
i	111						
'							

	114	Cd				
>	115	In				81.127
ĺ	121	Sb				
Ì	123	Sb				
İ	135	Ва				
i	137	Ва				
Ī	159	Tb				
>	165	Ho				82.54
1	201	Hg				
1	202	Hg				
1	203	TI				
1	205	TI				
1	208	Pb				
ĺ	209	Bi				
ĺ	232	Th				
Ĺ	238	U				
_	56	Fe				
	101	Ru				
	77	ArCl				
	84	Kr				
	118	Sn				

Sample ID: 606247-24

Sample Date/Time: Thursday, June 29, 2006 11:34:08

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-29-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-29-06.sam

Method File: D:\ICPMS Data\Method\06-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\06-29-06\606247-24.025

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 106
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	77283	62186	1.53		ug/L
1	Be	9	6	22	6.43	0.008	ug/L
1	Al	27	65200	672786	0.17	26.264	ug/L
	Sc	45	480732	386737	0.57		ug/L
	V	51	6377	11440	4.65	0.209	ug/L
	V-1	51	8707	5559	2.75	-0.038	ug/L
1	Cr	52	20096	37125	5.36	0.775	ug/L
	Cr	53	3033	2289	5.31	-0.018	ug/L
	Mn	55	7732	80682	2.39	1.691	ug/L
	Co	59	325	2947	4.37	0.070	ug/L
	Ni	60	1052	3680	0.65	0.352	ug/L
	Ni	62	-20447	-18452	1.01	-2.142	ug/L
	Cu	63	14403	39301	2.52	1.530	ug/L
	Cu	65	6850	12867	0.28	0.873	ug/L
1	Zn	66	5147	310823	0.97	64.384	ug/L
	Zn	67	1202	47385	1.54	57.886	ug/L
	Zn	68	3616	217683	0.03	63.728	ug/L
L>	Ge	72	990488	767292	1.19		ug/L
Γ	As	75	-291	-156	38.58	0.014	ug/L
	As-1	75	254	242	3.51	0.011	ug/L
	Se	<b>7</b> 7	335	306	1.39	0.147	ug/L
1	Se	82	232	199	11.37	0.051	ug/L
	Υ	89	857355	658143	1.05		ug/L
1	Мо	95	45	116	2.10	0.009	ug/L
	Мо	97	33	52	11.38	0.005	ug/L
1	Мо	98	73	125	4.76	0.005	ug/L
	Ag	107	156	202	7.70	0.003	ug/L

Page 1

Sample ID: 606247-24

	Ag	109	139	195	4.73	0.004	ug/L
	Cd	106	791	769	2.79	0.332	ug/L
	Cd	108	-10	173	4.78	0.459	ug/L
	Cd	111	632	940	4.13	0.081	ug/L
	Cd	114	48	1282	1.14	0.094	ug/L
>	ln	115	853515	644175	0.27		ug/L
	Sb	121	349	904	3.13	0.036	ug/L
	Sb	123	289	703	13.85	0.036	ug/L
	Ba	135	408	110632	0.59	20.692	ug/L
L	Ba	137	595	194033	0.47	20.640	ug/L
Γ	Tb	159	1157157	878805	2.32		ug/L
>	Но	165	1161743	897610	0.73		ug/L
1	Hg	201	48	47	0.00	95.160	ug/L
1	Hg	202	93	100	0.71	79.766	ug/L
	TI	203	151	91	7.03	-0.001	ug/L
	TI	205	373	201	15.48	-0.001	ug/L
	Pb	208	6668	6081184	0.82	74.926	ug/L
	Bi	209	765154	588834	0.71		ug/L
	Th	232	1316	1667	3.31	0.008	ug/L
Ĺ	U	238	202	973	0.65	0.011	ug/L
	Fe	56	6738323	6286795	0.86		ug/L
	Ru	101	6	5	56.57		ug/L
	ArCl	77	363	290	1.22		ug/L
	Kr	84	1078	826	0.08		ug/L
	Sn	118	1053	1271	5.51		ug/L
	QC C	alculated Va	lues				

OC	Cal	ابنما	ated	Va	عمدا
$\omega$	Ua:	LL	alteu	Va	IIIHS

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li					
	9						
	27	Al					
- 1	45	Sc					
1	51	V					
	51	V-1					
- 1	52	Cr					
	53	Cr					
1	55	Mn					
	59	Co					
	60	Ni					
1	62	Ni					
	63	Cu					
-	65	Cu					
1	66	Zn					
	67						
1	68	Zn					
L>	72	Ge		77.466			
Γ	75	As					
		As-1					
		Se					
-	82	Se					
l	89	Υ					
1		Мо					
		Мо					
- 1	107						
	109						
ł	106						
1	108						
- 1	111	Cd					

	114	Cd				
>	115	In				75.473
	121	Sb				
	123	Sb				
	135	Ва				
L	137	Ba				
Γ	159	Tb				
>	165	Но				77.264
	201	Hg				
	202	Hg				
	203	TI				
	205	TI				
	208	Pb				
1	209	Bi				
	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCl				
	84	Kr				
	118	Sn				

Sample ID: 606247-25

Sample Date/Time: Thursday, June 29, 2006 11:37:54

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-29-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-29-06.sam

Method File: D:\ICPMS Data\Method\06-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\06-29-06\606247-25.026

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 107 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	77283	61929	0.32		ug/L
	Be	9	6	23	0.00	0.009	ug/L
	Al	27	65200	585967	0.28	22.660	ug/L
	Sc	45	480732	388763	2.30		ug/L
	V	51	6377	11540	4.64	0.214	ug/L
	V-1	51	8707	5525	0.64	-0.038	ug/L
	Cr	52	20096	40305	2.62	0.893	ug/L
1	Cr	53	3033	2565	1.54	0.067	ug/L
1	Mn	55	7732	125585	0.16	2.715	ug/L
	Co	59	325	6155	2.18	0.154	ug/L
	Ni	60	1052	3354	3.63	0.313	ug/L
	Ni	62	-20447	-18333	0.33	-2.080	ug/L
	Cu	63	14403	27164	0.61	0.874	ug/L
	Cu	65	6850	7016	0.10	0.199	ug/L
	Zn	66	5147	1066485	0.37	223.486	ug/L
	Zn	67	1202	158591	0.72	196.938	ug/L
	Zn	68	3616	725960	0.05	214.984	ug/L
L>	Ge	72	990488	765592	2.22		ug/L
Γ	As	75	-291	-105	102.13	0.025	ug/L
	As-1	75	254	230	6.47	0.008	ug/L
	Se	77	335	288	14.73	0.096	ug/L
	Se	82	232	222	4.79	0.097	ug/L
	Υ	89	857355	658040	0.80		ug/L
-	Мо	95	45	127	6.39	0.010	ug/L
	Мо	97	33	60	4.08	0.006	ug/L
	Мо	98	73	129	3.05	0.005	ug/L
1	Ag	107	156	218	6.83	0.004	ug/L

Page 1

Sample ID: 606247-25

	Ag	109	139	187	6.81	0.003	ug/L
1	Cd	106	791	841	5.37	0.468	ug/L
	Cd	108	-10	171	27.39	0.452	ug/L
	Cd	111	632	1614	8.10	0.198	ug/L
	Cd	114	48	2684	1.22	0.199	ug/L
>	In	115	853515	645216	0.81		ug/L
	Sb	121	349	1192	3.86	0.052	ug/L
	Sb	123	289	939	2.44	0.053	ug/L
	Ва	135	408	121512	2.66	22.694	ug/L
L	Ba	137	595	212960	0.79	22.623	ug/L
Γ	Tb	159	1157157	884888	1.20		ug/L
>	Но	165	1161743	898385	0.65		ug/L
	Hg	201	48	49	2.89	113.286	ug/L
	Hg	202	93	91	7.77	55.425	ug/L
	TI	203	151	87	9.75	-0.001	ug/L
	TI	205	373	205	2.42	-0.001	ug/L
	Pb	208	6668	13378018	0.49	164.754	ug/L
	Bi	209	765154	602290	0.12		ug/L
	Th	232	1316	1343	3.32	0.004	ug/L
L	U	238	202	999	0.99	0.011	ug/L
	Fe	56	6738323	6234216	0.14		ug/L
	Ru	101	6	8	35.36		ug/L
	ArCI	77	363	288	10.58		ug/L
	Kr	84	1078	639	8.62		ug/L
	Sn	118	1053	1332	0.27		ug/L
	QC C	Calculated Va	lues				

			000000				
г		Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
į.	6	Li					
ļ	9	Be					
	27	Al					
. !		Sc					
. !	51	V					
į		V-1					
- 1		Cr					
1		Cr					
1	55	Mn					
1	59	Co					
	60	Ni					
l	62	Ni					
1	63	Cu					
- 1	65	Cu					
-	66	Zn					
-	67	Zn					
	68	Zn					
L>	72	Ge		77.294			
Γ		As					
	75	As-1					
-	77	Se					
	82	Se					
	89	Υ					
1	95	Мо					
	97	Мо					
l	98	Мо					
	107	Ag					
		Ag					
	106						
	108	Cd					
	111						

	114	Cd			
>	115	łn			75.595
1	121	Sb			
1	123	Sb			
1	135	Ba			
L	137	Ba			
Γ	159	Tb			
>	165	Но			77.331
1	201	Hg			
1	202	Hg			
1	203	TI			
	205	TI			
1	208	Pb			
1	209	Bi			
	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCI			
	84	Kr			
	118	Sn			

Sample ID: 25 ppb i1-57a

Sample Date/Time: Thursday, June 29, 2006 11:41:39

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-29-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-29-06.sam

Method File: D:\ICPMS Data\Method\06-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\06-29-06\25 ppb i1-57a.027

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 5 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL): Solids Ratio:

### Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	77283	73875	0.59		ug/L
	Be	9	6	65256	0.18	26.672	ug/L
	Al	27	65200	779291	0.36	25.627	ug/L
	Sc	45	480732	451719	0.64		ug/L
	V	51	6377	940253	0.64	25.397	ug/L
	V-1	51	8707	951694	0.75	25.205	ug/L
	Cr	52	20096	844087	0.34	25.047	ug/L
	Cr	53	3033	100032	1.29	24.663	ug/L
1	Mn	55	7732	1290210	0.62	24.523	ug/L
	Co	59	325	1091423	0.40	24.042	ug/L
	Ni	60	1052	240170	0.83	24.824	ug/L
	Ni	62	-20447	17569	1.75	25.141	ug/L
	Cu	63	14403	552971	0.38	24.762	ug/L
	Cu	65	6850	264532	0.35	25.162	ug/L
	Zn	66	5147	150163	1.82	25.758	ug/L
	Zn	67	1202	25488	1.18	25.647	ug/L
	Zn	68	3616	106314	0.62	25.779	ug/L
L>	Ge	72	990488	909161	0.84		ug/L
Γ	As	75	-291	139872	0.33	25.129	ug/L
	As-1	75	254	137323	0.02	25.145	ug/L
	Se	77	335	11459	1.03	25.138	ug/L
	Se	82	232	14943	0.70	25.115	ug/L
1	Υ	89	857355	776348	0.00		ug/L
1	Мо	95	45	270839	0.16	24.847	ug/L
	Мо	97	33	167340	1.35	24.891	ug/L
1	Мо	98	73	432499	1.77	25.127	ug/L
ı	Ag	107	156	782798	0.69	25.325	ug/L

Page 1

Sample ID: 25 ppb i1-57a

	Ag	109	139	749290	2.73	25.477	ug/L
	Cd	106	791	17119	1.67	25.767	ug/L
	Cd	108	-10	12473	1.22	25.843	ug/L
	Cd	111	632	180462	1.83	25.608	ug/L
	Cd	114	48	411275	0.30	25.302	ug/L
>	ln	115	853515	790217	0.94		ug/L
1	Sb	121	349	540780	3.80	24.971	ug/L
	Sb	123	289	420144	3.06	25.269	ug/L
	Ва	135	408	164421	1.02	25.084	ug/L
L	Ba	137	595	286563	0.64	24.860	ug/L
Γ	Tb	159	1157157	1053154	0.63		ug/L
>	Но	165	1161743	1063529	2.19		ug/L
	Hg	201	48	64	4.42	159.836	ug/L
	Hg	202	93	116	26.33	74.887	ug/L
	TI	203	151	767333	2.33	26.086	ug/L
1	TI	205	373	1828082	0.40	26.277	ug/L
	Pb	208	6668	2531076	1.56	26.288	ug/L
	Bi	209	765154	750669	0.98		ug/L
1	Th	232	1316	2378638	2.75	25.971	ug/L
Ĺ	U	238	202	2421633	0.29	26.706	ug/L
	Fe	56	6738323	6085610	0.71		ug/L
	Ru	101	6	13	32.64		ug/L
	ArCl	77	363	11363	0.65		ug/L
	Kr	84	1078	1014	2.84		ug/L
	Sn	118	1053	1642	2.54		ug/L
	QC Ca	alculated Va	alues				

		Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li		•	•		•
	9	Be					
		Sc					
	51	V					
	51	V-1					
	52	Cr					
-	53	Cr					
	55	Mn					
	59	Co					
	60	Ni					
	62	Ni					
		Cu					
	65	Cu					
	66	Zn					
İ	67	Zn					
1	68	Zn					
L>	72	Ge		91.789			
Γ	75	As					
- 1	75	As-1					
	77	Se					
	82	Se					
1		Υ					
	95	Мо					
	97	Мо					
	98	Мо					
	107	Ag					
	109	Ag					
	106						
	108						
1	111	Cd					

	114	Cd			
>	115	In			92.584
1	121	Sb			
1	123	Sb			
ĺ	135	Ba			
Ì	137	Ba			
Ī	159	Tb			
>	165	Но			91.546
1	201	Hg			
	202	Hg			
	203	Τl			
	205	TI			
1	208	Pb			
1	209	Bi			
	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			
	118	Sn			

# Sample ID: 606247-26

Sample Date/Time: Thursday, June 29, 2006 11:45:24

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-29-06\blank.001

Number of Replicates: 2

Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-29-06.sam

Method File: D:\ICPMS Data\Method\06-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\06-29-06\606247-26.028

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 108
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	77283	60979	1.50		ug/L
	Be	9	6	46	3.07	0.021	ug/L
	Al	27	65200	668111	0.65	26.982	ug/L
	Sc	45	480732	378965	1.97		ug/L
	V	51	6377	12465	5.23	0.255	ug/L
	V-1	51	8707	6709	19.29	0.005	ug/L
	Cr	52	20096	40626	1.31	0.948	ug/L
	Cr	53	3033	2658	1.14	0.119	ug/L
	Mn	55	7732	117139	0.48	2.603	ug/L
	Co	59	325	4100	6.56	0.104	ug/L
	Ni	60	1052	3144	1.60	0.299	ug/L
	Ni	62	-20447	-18445	1.27	-2.627	ug/L
	Cu	63	14403	29443	1.50	1.046	ug/L
	Cu	65	6850	8137	0.03	0.357	ug/L
	Zn	66	5147	503717	0.33	108.298	ug/L
1	Zn	67	1202	75701	0.21	96.248	ug/L
	Zn	68	3616	347898	0.64	105.695	ug/L
<u>_</u> >	Ge	72	990488	743164	1.43		ug/L
Γ	As	75	-291	74	86.59	0.065	ug/L
	As-1	75	254	473	9.73	0.065	ug/L
1	Se	77	335	317	2.68	0.196	ug/L
	Se	82	232	202	3.50	0.066	ug/L
	Υ	89	857355	641783	1.13		ug/L
	Мо	95	45	1781	50.42	0.200	ug/L
	Мо	97	33	1002	38.66	0.181	ug/L
1	Мо	98	73	2584	43.37	0.183	ug/L
1	Ag	107	156	1381	33.49	0.051	ug/L

Page 1

Sample ID: 606247-26

1	Ag	109	139	1761	41.92	0.070	•	
į	Cd	106	791	789	3.96	0.401		
i	Cd	108	-10	230	12.67	0.615	ug/L	
i	Cd	111	632	1295	12.63	0.147	ug/L	
i	Cd	114	48	1994	17.07	0.151	ug/L	
i	> In	115	853515	630892	1.96		ug/L	
i	Sb	121	349	5411	27.64	0.297	ug/L	
i	Sb	123	289	4189	22.69	0.299	ug/L	
i	Ва	135	408	120319	0.78	22.987	ug/L	
i	Ba	137	595	206247	2.20	22.405		
ř	Tb	159	1157157	870293	0.99		ug/L	
i	> Ho	165	1161743	865246	1.24		ug/L	
i	Hg	201	48	34	12.48	-13.425		
¦	Hg	202	93	93	11.47	69.519	-	
¦	TI	203	151	444	16.74	0.014	=	
ŀ	TI	205	373	985	20.47	0.012		
-	Pb	203	6668	6507077	0.85	83.176	_	
- [			765154	575702	2.92	00.170	ug/L	
	Bi	209		33493	32.42	0.436		
ł	Th	232	1316 202	2450	21.97	0.430		
Ĺ	U	238			1.08	0.031	ug/L	
	Fe	56	6738323	6266775				
	Ru	101	6	5	56.57		ug/L	
	ArCI	77	363	292	14.05		ug/L	
		• •	4070	700	4.00		//	
	Kr	84	1078	733	1.08		ug/L	
	Sn	118	1053	733 1284	1.08 1.60		ug/L ug/L	
	Sn		1053					
	Sn	118 Calculated \	1053	1284		erence		nce
٢	Sn QC ( Mass A 6 Li	118 <b>Calculated \</b> nalyte QC Std	1053 <b>/alues</b>	1284	1.60	erence	ug/L	nce
[	Sn QC ( Mass A 6 Li 9 B	118  Calculated \ nalyte QC Std i e	1053 <b>/alues</b>	1284	1.60	ierence	ug/L	nce
[	Sn QC ( Mass A 6 Li 9 B 27 A	118  Calculated \ nalyte QC Std i e	1053 <b>/alues</b>	1284	1.60	erence	ug/L	nce
[	Sn QC () Mass A 6 Li 9 B 27 A 45 S	118  Calculated \ nalyte QC Std e I c	1053 <b>/alues</b>	1284	1.60	erence	ug/L	nce
[	Sn QC ( Mass A 6 Li 9 B 27 A 45 S 51 V	118  Calculated \ nalyte QC Std e I	1053 <b>/alues</b>	1284	1.60	erence	ug/L	nce
[	Sn QC ()  Mass A 6 Li 9 B 27 A 45 S 51 V 51 V	118 Calculated \ nalyte QC Std i e i c	1053 <b>/alues</b>	1284	1.60	erence	ug/L	nce
	Sn QC ()  Mass A 6 Li 9 B 27 A 45 S; 51 V 51 V 52 C	118 Calculated \ nalyte QC Std e I c	1053 <b>/alues</b>	1284	1.60	erence	ug/L	nce
[	Sn QC ()  Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C	118 Calculated \ nalyte QC Std e I c	1053 <b>/alues</b>	1284	1.60	erence	ug/L	nce
	Sn QC ()  Mass A 6 Li 9 B 27 A 45 S; 51 V 51 V 52 C	118 Calculated \ nalyte QC Std e I c -1 ir	1053 <b>/alues</b>	1284	1.60	erence	ug/L	nce
	Sn QC (  Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 55 M 59 C 60 N	118 Calculated \ nalyte QC Std e I c -1 ir ir ir in io	1053 <b>/alues</b>	1284	1.60	erence	ug/L	nce
	Sn QC (  Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 55 M 60 N 62 N	118 Calculated \ nalyte QC Std e I c -1 r r f n i i	1053 <b>/alues</b>	1284	1.60	erence	ug/L	nce
	Sn QC (  Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 55 M 60 N 62 N 63 C	118 Calculated \ nalyte QC Std i e J c -1 c r f n i o i i i i i i	1053 <b>/alues</b>	1284	1.60	erence	ug/L	nce
	Sn QC (  Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 60 N 62 N 63 C 65 C 65 C	118 Calculated \ nalyte QC Std i e I c -1 ir i i i i i i i i i i i i i i i i i i	1053 <b>/alues</b>	1284	1.60	erence	ug/L	nce
	Sn QC (  Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 60 N 62 N 63 C 66 Z 66 Z	118 Calculated \ nalyte QC Std i e J c -1 ir i n i i i i i i i i i i i i i i i i	1053 <b>/alues</b>	1284	1.60	erence	ug/L	nce
	Sn QC (  Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 60 N 62 N 63 C 65 C 66 Z 67 Z	118 Calculated \ nalyte QC Std i e I c -1 ir in o ii ii ii ii ii ii ii ii ii ii ii ii i	1053 <b>/alues</b>	1284	1.60	erence	ug/L	nce
	Sn QC (  Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 60 N 62 N 63 C 65 C 66 Z 67 Z 68 Z	118 Calculated \ nalyte QC Std i e I c -1 ir in o ii ii ii ii ii ii ii ii ii ii ii ii i	1053 <b>/alues</b>	1284 Recovery Spike % Recovery	1.60	erence	ug/L	nce
	Sn QC (  Mass Al 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 55 M 69 C 60 N 62 N 63 C 65 C 66 Z 67 Z 68 Z	118 Calculated \ nalyte QC Std i e i c -1 ir in io ii iu iu n n	1053 <b>/alues</b>	1284	1.60	erence	ug/L	nce
	Sn QC (  Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 60 N 62 N 63 C 65 C 66 Z 67 Z 68 Z	118 Calculated \ nalyte QC Std i e i c -1 ir ir i i i i i i i i i i i i i i i i	1053 <b>/alues</b>	1284 Recovery Spike % Recovery	1.60	erence	ug/L	nce
	Sn QC ( ) Mass Al 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 60 N 62 N 63 C 65 C 66 Z 67 Z 68 Z 72 G 75 A	118 Calculated \ nalyte QC Std i e i c -1 ir ir ir in io ii ii iu u n n n se s s-1	1053 <b>/alues</b>	1284 Recovery Spike % Recovery	1.60	erence	ug/L	nce
	Sn QC ( ) Mass A 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 65 C 66 Z 67 Z 68 Z 75 A 75 A 77 S 82 S	118 Calculated \ nalyte QC Std i e i c -1 ir ir ir in co ii ii ii ii ii ii ii ii ii ii ii ii ii	1053 <b>/alues</b>	1284 Recovery Spike % Recovery	1.60	erence	ug/L	nce
	Sn QC ( ) Mass Al 6 Li 9 B 27 A 45 S 51 V 51 V 52 C 53 C 65 C 66 Z 67 Z 68 Z 75 A 77 S	118 Calculated \ nalyte QC Std e l c -1 ir ir in io ii ii ii ii ii ii ii ii ii ii ii ii	1053 <b>/alues</b>	1284 Recovery Spike % Recovery	1.60	rerence	ug/L	nce

97 Mo 98 Mo 107 Ag 109 Ag 106 Cd 108 Cd 111 Cd

114	Cd							
115	In							73.917
121	Sb							
123	Sb							
135	Ва							
137	Ва							
159	Tb							
165	Ho							74.478
201	Hg							
202	Hg							
203	TI							
205	TI							
208	Pb							
209	Bi							
232	Th							
238	U							
56	Fe							
101	Ru							
77	ArCl							
84	Kr							
	115 121 123 135 137 159 165 201 202 203 205 208 209 232 238 56 101 77	121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 Tl 205 Tl 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 TI 205 TI 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 TI 205 TI 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 Tl 205 Tl 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 Tl 205 Tl 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 123 Sb 135 Ba 137 Ba 159 Tb 165 Ho 201 Hg 202 Hg 203 Tl 205 Tl 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl	115 In 121 Sb 123 Sb 135 Ba 137 Ba 139 Tb 165 Ho 201 Hg 202 Hg 203 Tl 205 Tl 208 Pb 209 Bi 232 Th 238 U 56 Fe 101 Ru 77 ArCl

118 Sn

Sample ID: 606247-27

Sample Date/Time: Thursday, June 29, 2006 11:49:09

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-29-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-29-06.sam

Method File: D:\ICPMS Data\Method\06-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Data\DataSet\06-29-06\606247-27.029

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 109 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

#### Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	77283	60765	0.65		ug/L
	Be	9	6	37	22.93	0.016	ug/L
1	Αl	27	65200	727603	0.21	29.329	ug/L
	Sc	45	480732	380606	1.43		ug/L
-	V	51	6377	11884	0.60	0.233	ug/L
}	V-1	51	8707	5417	4.02	-0.038	ug/L
1	Cr	52	20096	40438	1.34	0.930	ug/L
ļ	Cr	53	3033	2509	2.17	0.066	ug/L
	Mn	55	7732	88842	0.51	1.925	ug/L
j	Со	59	325	8652	0.47	0.225	ug/L
l	Ni	60	1052	3327	1.96	0.319	ug/L
1	Ni	62	-20447	-18011	0.17	-2.142	ug/L
}	Cu	63	14403	95389	0.85	4.706	ug/L
	Cu	65	6850	39962	0.24	4.114	ug/L
1	Zn	66	5147	1799199	1.21	385.928	ug/L
}	Zn	67	1202	271276	0.08	345.176	ug/L
	Zn	68	3616	1239805	0.45	375.858	ug/L
L>	Ge	72	990488	748947	0.73		ug/L
Γ	As	75	-291	1	3179.71	0.049	ug/L
1	As-1	75	254	332	0.21	0.032	ug/L
ļ	Se	77	335	288	8.61	0.107	ug/L
1	Se	82	232	204	2.43	0.066	ug/L
1	Υ	89	857355	643560	0.43		ug/L
	Мо	95	45	536	23.13	0.057	ug/L
l	Мо	97	33	294	25.14	0.050	ug/L
1	Мо	98	73	760	16.05	0.051	ug/L
Ì	Ag	107	156	542	18.79	0.017	ug/L

Page 1

Sample ID: 606247-27

1	Ag	109	139	499	14.33	0.017	ug/L
Ì	Cd	106	791	1056	4.66	0.913	ug/L
ĺ	Cd	108	-10	380	16.31	0.997	ug/L
Ì	Cd	111	632	3419	1.07	0.522	ug/L
	Cd	114	48	7139	1.01	0.543	ug/L
>	In	115	853515	635481	0.15		ug/L
	Sb	121	349	2768	11.80	0.144	ug/L
	Sb	123	289	2196	11.71	0.148	ug/L
	Ba	135	408	221757	1.71	42.104	ug/L
L	Ва	137	595	384971	1.79	41.561	ug/L
Γ	Tb	159	1157157	875161	0.74		ug/L
>	Но	165	1161743	870800	0.15		ug/L
	Hg	201	48	41	12.22	46.655	ug/L
1	Hg	202	93	78	34.45	25.477	ug/L
l	TI	203	151	214	51.55	0.004	ug/L
1	TI	205	373	406	35.05	0.002	ug/L
	Pb	208	6668	40867968	0.49	519.378	ug/L
	Bi	209	765154	576584	3.30		ug/L
	Th	232	1316	11262	21.81	0.137	ug/L
L	U	238	202	1399	5.92	0.017	ug/L
	Fe	56	6738323	6122967	0.07		ug/L
	Ru	101	6	9	47.14		ug/L
	ArCI	77	363	272	2.86		ug/L
	Kr	84	1078	784	7.71		ug/L
	Sn	118	1053	1186	5.31		ug/L
	QC Ca	iculated Va	lues				

# QC Calculated Values

		Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ		Li					
1	9	Be					
Ī	27	Al					
	45	Sc					
1	51	V					
		V-1					
- 1	52						
1	53						
- 1							
1	60						
l	62						
Ī	63						
	65						
	66						
1	67						
ļ	68						
_>		Ge		75.614			
Ţ	75						
		As-1					
!	77						
	82						
	89						
		Мо					
	97						
!		Мо					
ļ	107						
!	109						
!	106						
!	108						
1	111	Cd					

-	114	Cd			
>	115	In			74.455
1	121	Sb			
	123	Sb			
	135	Ba			
L	137	Ba			
Γ	159	Tb			
>	165	Ho			74.956
	201	Hg			
	202	Hg			
1	203	TI			
1	205	TI			
	208	Pb			
	209	Bi			
1	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			
	118	Sn			

Sample ID: 606247-28

Sample Date/Time: Thursday, June 29, 2006 11:52:54

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-29-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-29-06.sam

Method File: D:\ICPMS Data\Method\06-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\06-29-06\606247-28.030

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 110
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	77283	62023	4.48		ug/L
Ì	Be	9	6	21	20.20	0.008	ug/L
İ	Al	27	65200	974537	0.29	39.357	ug/L
j	Sc	45	480732	381544	0.56		ug/L
j	V	51	6377	11780	3.10	0.224	ug/L
	V-1	51	8707	5278	2.47	-0.045	ug/L
	Cr	52	20096	46092	2.05	1.112	ug/L
	Cr	53	3033	3116	1.45	0.238	ug/L
	Mn	55	7732	82360	2.82	1.745	ug/L
	Co	59	325	4348	3.35	0.108	ug/L
	Ni	60	1052	3370	5.98	0.318	ug/L
	Ni	62	-20447	-17980	0.32	-1.883	ug/L
1	Cu	63	14403	37059	0.01	1.426	ug/L
	Cu	65	6850	11666	2.80	0.746	ug/L
	Zn	66	5147	554887	0.16	116.614	ug/L
	Zn	67	1202	83274	0.37	103.523	ug/L
	Zn	68	3616	381904	0.35	113.414	ug/L
<u> </u> >	Ge	72	990488	760678	1.19		ug/L
ſ	As	75	-291	-202	31.61	0.004	ug/L
	As-1	75	254	272	2.08	0.018	ug/L
	Se	77	335	259	12.86	0.012	ug/L
	Se	82	232	193	3.31	0.035	ug/L
	Υ	89	857355	647488	2.99		ug/L
1	Мо	95	45	279	5.67	0.027	ug/L
	Мо	97	33	161	6.02	0.025	ug/L
1	Мо	98	73	399	14.29	0.024	ug/L
1	Ag	107	156	309	9.86	0.008	ug/L

Page 1

Sample ID: 606247-28

	Ag	109	139	274	2.33	0.007	ug/L
	Cd	106	791	761	10.98	0.309	ug/L
1	Cd	108	-10	237	6.50	0.620	ug/L
	Cd	111	632	1080	10.69	0.104	ug/L
1	Cd	114	48	1850	1.10	0.136	ug/L
>	ln	115	853515	647571	0.79		ug/L
	Sb	121	349	1355	3.08	0.061	ug/L
-	Sb	123	289	1084	7.96	0.063	ug/L
	Ва	135	408	126811	0.03	23.603	ug/L
L	Ва	137	595	222066	2.08	23.504	ug/L
Γ	Tb	159	1157157	885182	0.46		ug/L
>	Но	165	1161743	889344	0.66		ug/L
	Hg	201	48	33	4.29	-31.389	ug/L
	Hg	202	93	96	3.70	70.949	ug/L
	TI	203	151	125	4.53	0.000	ug/L
	TI	205	373	328	39.08	0.001	ug/L
	Pb	208	6668	5121844	0.28	63.680	ug/L
1	Bi	209	765154	582954	1.00		ug/L
İ	Th	232	1316	6800	15.49	0.076	ug/L
L	U	238	202	1021	6.79	0.011	ug/L
	Fe	56	6738323	6131354	0.49		ug/L
	Ru	101	6	8	53.03		ug/L
	ArCl	77	363	309	4.36		ug/L
	Kr	84	1078	793	4.56		ug/L
	Sn	118	1053	1233	3.84		ug/L
	QC Ca	alculated Va	lues				

Mass Analyte QC Std % Recovery Int Std % Recovery Spike % Recovery Dilution % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Difference Duplicate Rel. % Differen	erence
27 Al	
45 Sc   51 V   51 V-1   52 Cr   53 Cr	
51 V   51 V-1   52 Cr   53 Cr	
51 V-1   52 Cr   53 Cr	
52 Cr 53 Cr	
53 Cr	
55 Mn	
59 Co	
60 Ni	
62 Ni	
63 Cu	
65 Cu	
66 Zn	
67 Zn	
68 Zn	
> 72 Ge 76.798	
75 As	
75 As-1	
77 Se	
82 Se	
89 Y	
95 Mo	
97 Mo	
98 Mo	
107 Ag	
109 Ag	
106 Cd	
108 Cd	
111 Cd	

	114	Cd			
>	115	In			75.871
	121	Sb			
	123	Sb			
	135	Ba			
L	137	Ва			
Γ	159	Tb			
>	165	Ho			76.553
1	201	Hg			
1	202	Hg			
İ	203	TI			
1	205	TI			
1	208	Pb			
1	209	Bi			
1	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArÇi			
	84	Kr			
	118	Sn			

Sample ID: 606247-29

Sample Date/Time: Thursday, June 29, 2006 11:56:40

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-29-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-29-06.sam

Method File: D:\ICPMS Data\Method\06-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\06-29-06\606247-29.031

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 111
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):
Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	77283	59153	2.90		ug/L
	Be	9	6	41	22.70	0.018	ug/L
	Al	27	65200	832078	1.18	34.062	ug/L
	Sc	45	480732	381536	0.33		ug/L
	V	51	6377	11778	0.88	0.232	ug/L
	V-1	51	8707	5354	2.48	-0.039	ug/L
	Cr	52	20096	38343	1.20	0.861	ug/L
	Cr	53	3033	2247	0.79	-0.010	ug/L
	Mn	55	7732	69588	1.15	1.488	ug/L
	Со	59	325	3381	1.72	0.084	ug/L
	Ni	60	1052	3280	1.79	0.315	ug/L
	Ni	62	-20447	-17877	0.64	-2.120	ug/L
	Cu	63	14403	25422	0.75	0.818	ug/L
	Cu	65	6850	6390	0.96	0.148	ug/L
	Zn	66	5147	676984	0.33	145.588	ug/L
	Zn	67	1202	101882	1.10	129.694	ug/L
	Zn	68	3616	468942	1.84	142.493	ug/L
L>	Ge	72	990488	744478	1.53		ug/L
Γ	As	75	-291	-287	6.13	-0.016	ug/L
	As-1	75	254	210	0.67	0.005	ug/L
	Se	77	335	277	0.51	0.078	ug/L
	Se	82	232	178	5.56	0.013	ug/L
	Υ	89	857355	634767	0.95		ug/L
	Мо	95	45	206	11.16	0.020	ug/L
	Мо	97	33	126	19.40	0.019	ug/L
	Мо	98	73	273	7.38	0.016	ug/L
ı	Ag	107	156	231	1.22	0.005	ug/L

Page 1

Sample ID: 606247-29

	Ag	109	139	197	27.71	0.004	ug/L
	Cd	106	791	827	5.30	0.467	ug/L
	Cd	108	-10	219	10.64	0.585	ug/L
	Cd	111	632	1228	2.30	0.134	ug/L
	Cd	114	48	1986	2.24	0.149	ug/L
>	In	115	853515	634634	0.61		ug/L
1	Sb	121	349	1165	6.38	0.052	ug/L
1	Sb	123	289	903	4.53	0.052	ug/L
	Ва	135	408	142661	1.27	27.101	ug/L
L	Ba	137	595	245518	0.92	26.523	ug/L
Γ	Tb	159	1157157	865962	1.89		ug/L
>	Но	165	1161743	882406	0.67		ug/L
	Hg	201	48	35	10.25	-14.940	ug/L
	Hg	202	93	97	5.83	77.469	ug/L
	TI	203	151	89	3.99	-0.001	ug/L
	ΤI	205	373	204	4.16	-0.001	ug/L
	Pb	208	6668	5491054	1.83	68.809	ug/L
	Bi	209	765154	572118	0.27		ug/L
	Th	232	1316	4346	12.86	0.044	ug/L
L	U	238	202	1211	4.44	0.014	ug/L
	Fe	56	6738323	6087529	0.79		ug/L
	Ru	101	6	9	41.59		ug/L
	ArCl	77	363	304	4.65		ug/L
	Kr	84	1078	572	8.13		ug/L
	Sn	118	1053	1298	0.05		ug/L
	QC C	alculated Va	lues				-

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ		Li	20 010 70 1 1000 1017	in old 70 (Coovery	Opine 70 Necovery	Dilduoit % Difference	Duplicate Itel. // Dillerence
i	9						
i	27						
i		Sc					
i	51						
i		V-1					
İ		Cr					
j	53						
		Mn					
ĺ	59						
Ì	60						
1	62						
	63	Cu					
	65	Cu					
1		Zn					
1		Zn					
1	68	Zn					
L>		Ge		75.163			
Γ	75	As					
		As-1					
		Se					
	82						
	89						
		Мо					
		Мо					
		Мо					
	107	Ag					
ļ	109						
ļ	106						
!	108						
1	111	Cd					

	114	Cd	
>	115	In	74.355
	121	Sb	
	123	Sb	
	135	Ва	
L	137	Ва	
Γ	159	Tb	
>	165	Но	75.955
1	201	Hg	
	202	Hg	
	203	TI	
	205	TI	
	208	Pb	
	209	Bi	
	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCl	
	84	Kr	

118 Sn

Sample ID: 606247-30

Sample Date/Time: Thursday, June 29, 2006 12:00:25

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-29-06\blank.001

Number of Replicates: 2
Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-29-06.sam

Method File: D:\ICPMS Data\Method\06-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\06-29-06\606247-30.032

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 112 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	77283	62583	2.42		ug/L
	Be	9	6	21	20.20	0.008	ug/L
	Al	27	65200	408997	0.93	15.161	ug/L
1	Sc	45	480732	392669	0.84		ug/L
1	V	51	6377	11238	2.11	0.203	ug/L
	V-1	51	8707	5209	0.68	-0.048	ug/L
	Cr	52	20096	35096	2.11	0.704	ug/L
	Cr	53	3033	2070	0.68	-0.083	ug/L
	Mn	55	7732	58645	0.95	1.195	ug/L
	Co	59	325	2112	0.70	0.049	ug/L
	Ni	60	1052	3494	4.96	0.330	ug/L
	Ni	62	-20447	-17559	0.81	-1.436	ug/L
	Cu	63	14403	23377	1.42	0.666	ug/L
	Cu	65	6850	6185	0.34	0.103	ug/L
	Zn	66	5147	480603	2.03	100.195	ug/L
	Zn	67	1202	72329	0.56	89.133	ug/L
	Zn	68	3616	331146	1.21	97.550	ug/L
<u> </u> >	Ge	72	990488	765960	0.83		ug/L
Γ	As	75	-291	-155	13.88	0.014	ug/L
	As-1	75	254	255	1.66	0.014	ug/L
	Se	77	335	273	7.25	0.055	ug/L
	Se	82	232	182	10.88	0.015	ug/L
	Υ	89	857355	648440	0.19		ug/L
	Мо	95	45	189	0.79	0.017	ug/L
	Мо	97	33	100	22.00	0.014	ug/L
	Мо	98	73	227	17.52	0.012	ug/L
	Ag	107	156	242	7.32	0.005	ug/L

Page 1

Sample ID: 606247-30

]	Ag	109	139	206	9.29	0.004	ug/L
	Cd	106	791	798	2.88	0.386	ug/L
	Cd	108	-10	161	9.01	0.427	ug/L
	Cd	111	632	1380	1.42	0.158	ug/L
	Cd	114	48	2225	0.24	0.165	ug/L
>	In	115	853515	644877	0.40		ug/L
	Sb	121	349	872	4.95	0.034	ug/L
	Sb	123	289	645	0.51	0.031	ug/L
	Ba	135	408	105189	0.17	19.650	ug/L
Ĺ	Ba	137	595	182976	1.46	19.440	ug/L
Γ	Tb	159	1157157	888081	2.20		ug/L
>	Но	165	1161743	899409	0.34		ug/L
	Hg	201	48	51	4.20	126.584	ug/L
	Hg	202	93	93	4.56	60.721	ug/L
	TI	203	151	99	8.57	-0.001	ug/L
	Τl	205	373	205	4.83	-0.001	ug/L
	Pb	208	6668	5619234	1.31	69.089	ug/L
	Bi	209	765154	587012	0.34		ug/L
	Th	232	1316	3455	4.63	0.031	ug/L
L	U	238	202	849	4.58	0.009	ug/L
	Fe	56	6738323	5979260	0.74		ug/L
	Ru	101	6	5	15.71		ug/L
	ArCl	77	363	280	3.79		ug/L
	Kr	84	1078	773	4.00		ug/L
	Sn	118	1053	1575	2.42		ug/L
	OC C	alculated Va	lues				

# QC Calculated Values

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li	•	·	·		
	9	Be					
	27	Al					
1		Sc					
	51						
1	51	V-1					
1	52						
1	53						
1	55						
1	59						
	60						
	62						
1	63						
- 1		Cu					
		Zn					
1		Zn					
1		Zn					
L>		Ge		77.332			
Γ		As					
1		As-1					
1	77	Se					
		Se					
1	89						
	95	Мо					
1	97	Мо					
		Мо					
1		Ag					
		Ag					
	106						
	108						
	111						

-		114	Cd	
1	>	115	In	75.555
Ì		121	Sb	
1		123	Sb	
Ì		135	Ва	
ĺ	_	137	Ва	
ĺ	=	159	Tb	
1	>	165	Но	77.419
1		201	Hg	
		202	Hg	
-		203	TI	
		205	TI	
		208	Pb	
		209	Bi	
-		232	Th	
	L	238	U	
		56	Fe	
		101	Ru	
		77	ArCI	
		84	Kr	
		118	Sn	

Sample ID: 606247-31

Sample Date/Time: Thursday, June 29, 2006 12:04:11

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-29-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-29-06.sam

Method File: D:\ICPMS Data\Method\06-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\06-29-06\606247-31.033

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 113
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	77283	59433	0.48		ug/L
	Be	9	6	26	0.00	0.011	ug/L
1	Al	27	65200	587956	1.21	23.386	ug/L
1	Sc	45	480732	383377	2.52		ug/L
1	V	51	6377	12339	1.27	0.250	ug/L
1	V-1	51	8707	5426	3.73	-0.037	ug/L
	Cr	52	20096	48313	1.64	1.227	ug/L
	Cr	53	3033	3296	0.06	0.313	ug/L
1	Mn	55	7732	299028	0.11	6.828	ug/L
	Co	59	325	7233	0.35	0.188	ug/L
	Ni	60	1052	3108	0.64	0.293	ug/L
	Ni	62	-20447	-17828	0.25	-2.046	ug/L
	Cu	63	14403	40417	0.83	1.653	ug/L
	Cu	65	6850	13476	1.27	0.987	ug/L
	Zn	66	5147	739835	0.08	158.820	ug/L
	Zn	67	1202	110743	0.08	140.765	ug/L
	Zn	68	3616	519608	0.64	157.635	ug/L
L>	Ge	72	990488	746172	1.67		ug/L
Γ	As	75	-291	-83	68.84	0.030	ug/L
ł	As-1	75	254	287	3.45	0.023	ug/L
	Se	77	335	296	1.43	0.135	ug/L
	Se	82	232	202	4.90	0.065	ug/L
	Υ	89	857355	636989	0.68		ug/L
	Мо	95	45	165	2.96	0.015	ug/L
	Мо	97	33	96	4.50	0.013	ug/L
	Мо	98	73	203	2.05	0.011	ug/L
	Ag	107	156	195	10.15	0.003	ug/L

Page 1

Sample ID: 606247-31

	Ag	109	139	176	14.46	0.003	ug/L			
	Cd	106	791	888	3.27	0.594	ug/L			
	Cd	108	-10	232	15.53	0.620	ug/L			
	Cd	111	632	1714	1.89	0.222	ug/L			
	Cd	114	48	3055	5.28	0.232	ug/L			
>	In	115	853515	632263	0.43		ug/L			
	Sb	121	349	937	7.63	0.039	ug/L			
	Sb	123	289	720	3.15	0.038	ug/L			
	Ba	135	408	44607	2.43	8.466	ug/L			
L	Ba	137	595	77088	0.18	8.326	ug/L			
Γ	Tb	159	1157157	861718	0.52		ug/L			
>	Ho	165	1161743	869593	1.19		ug/L			
	Hg	201	48	48	4.47	113.817	ug/L			
	Hg	202	93	88	1.61	55.152	ug/L			
	TI	203	151	75	9.43	-0.002	ug/L			
	TI	205	373	167	0.85	-0.002	ug/L			
	Pb	208	6668	26426662	0.88	336.299	ug/L			
	Bi	209	765154	590125	1.91		ug/L			
	Th	232	1316	2701	8.38	0.023	ug/L			
L	U	238	202	1006	0.28	0.012	ug/L			
	Fe	56	6738323	6050003	0.50		ug/L			
	Ru	101	6	9	8.32		ug/L			
	ArCl	77	363	283	2.50		ug/L			
	Kr	84	1078	572	13.10		ug/L			
	Sn	118	1053	1549	3.38		ug/L			
	QC Calculated Values									

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li					·
1	9	Be					
	27	Al					
	45	Sc					
1	51	V					
	51	V-1					
1	52	Cr					
İ	53	Cr					
- 1	55	Mn					
- 1	59	Co					
- 1	60	Ni					
- 1		Ni					
		Cu					
		Cu					
	66	Zn					
		Zn					
1		Zn					
L>		Ge		75.334			
Γ		As					
		As-1					
1							
	82						
1		Υ					
-		Мо					
- [		Мо					
	98	Мо					
- [		Ag					
-	109	Ag					
1	106						
		Cd					
	111	Cd					

J	114	Cd			
>	115	In			74.077
	121	Sb			
1	123	Sb			
1	135	Ва			
L	137	Ba			
Γ	159	Tb			
>	165	Но			74.852
1	201	Hg			
1	202	Hg			
1	203	TI			
	205	TI			
1	208	Pb			
	209	Bi			
1	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			

118 Sn

#### **Quantitative Analysis - Summary Report**

Sample ID: 25 ppb i1-57a

Sample Date/Time: Thursday, June 29, 2006 12:07:56

Sample Description: water

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\06-29-06\blank.001

Number of Replicates: 2
Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\06-29-06.sam
Method File: D:\ICPMS Data\Method\06-29-06fbi200.8.mth
Dataset File: D:\ICPMS Data\DataSet\06-29-06\25 ppb i1-57a.034

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\06-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 5 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL): Solids Ratio:

Analida Mass

#### Intensities

Blank Intensity Meas Intens Mean Meas Intens RSD Conc Mean Report Unit

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	77283	71570	2.44		ug/L
1	Be	9	6	64091	1.70	26.853	ug/L
	Al	27	65200	758920	2.25	25.578	ug/L
1	Sc	45	480732	447202	1.02		ug/L
1	V	51	6377	913494	0.76	25.292	ug/L
	V-1	51	8707	928756	0.37	25.214	ug/L
1	Cr	52	20096	820420	1.28	24.953	ug/L
	Cr	53	3033	97512	0.55	24.643	ug/L
	Mn	55	7732	1255460	0.78	24.461	ug/L
	Co	59	325	1058760	1.90	23.908	ug/L
]	Ni	60	1052	228952	0.25	24.255	ug/L
1	Ni	62	-20447	16980	2.62	25.029	ug/L
	Cu	63	14403	537839	0.98	24.687	ug/L
	Cu	65	6850	254002	0.29	24.757	ug/L
	Zn	66	5147	146438	0.29	25.748	ug/L
	Zn	67	1202	24728	0.23	25.499	ug/L
	Zn	68	3616	102441	0.75	25.452	ug/L
L>	Ge	72	990488	886871	0.49		ug/L
Γ	As	75	-291	136765	1.08	25.485	ug/L
	As-1	75	254	134075	0.44	25.462	ug/L
	Se	77	335	11096	1.45	25.253	ug/L
	Se	82	232	14728	0.42	25.682	ug/L
	Υ	89	857355	752295	0.27		ug/L
	Мо	95	45	266439	0.34	25.350	ug/L
	Мо	97	33	164476	1.11	25.374	
	Мо	98	73	424200	0.78	25.559	ug/L
	Ag	107	156	754039	2.04	25.306	ug/L

Page 1

Sample ID: 25 ppb i1-57a

Report Date/Time: Friday, June 30, 2006 10:46:46

1	Ag	109	13	9	715632	0.00	25.231	ug/L
	Cd	106	79	1	16666	2.23	26.031	ug/L
	Cd	108	-1	0	11825	0.01	25.412	ug/L
-	Cd	111	63	2	173561	0.44	25.542	ug/L
Ì	Cd	114	4	-8	403140	0.68	25.719	ug/L
1:	> In	115	85351	5	762192	2.58		ug/L
Ī	Sb	121	34	9	518759	0.40	24.836	
	Sb	123	28	9	407799	1.07	25.436	ug/L
	Ba	135	40	8	157617	2.42	24.928	ug/L
L	Ba	137	59	95	274347	2.32	24.675	ug/L
Γ	Tb	159	115715	57	1034539	1.41		ug/L
1:	> Ho .	165	116174	13	1034638	0.97		ug/L
-	Hg	201	4	-8	61	3.51	145.781	ug/L
1	Hg	202	9	3	124	4.01	101.591	ug/L
	TI	203	15	51	734751	0.73	25.676	ug/L
	TI	205	37	<b>'</b> 3	1756433	1.60	25.946	ug/L
	Pb	208	666	88	2419434	0.80	25.819	ug/L
	Bi	209	76515	54	722354	2.90		ug/L
	Th	232	131	6	2239766	2.69	25.143	ug/L
L	U	238	20	2	2326917	1.22	26.374	ug/L
	Fe	56	673832	23	5909137	0.38		ug/L
	Ru	101		6	6	0.00		ug/L
	ArCl	77	36	3	11143	2.07		ug/L
	Kr	84	107	<b>'</b> 8	924	2.38		ug/L
	Sn	118	105	<b>i</b> 3	1480	5.73		ug/L
	QC Calc	ulated \	<b>√alues</b>					
	Mass Analyte	QC Std	% Recovery In	t Std % Recovery	Spike % Recov	ery Dilution % Differe	ence	Duplicate

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li	•	•	•		<b>,</b>
1	9	Be					
-	27						
1	45						
1	51						
		V-1					
1	52						
	55						
	60	Ni					
	62	Ni					
1		Cu					
	65	Cu					
	66	Zn					
	67	Zn					
	68	Zn					
L>		Ge		89.539			
Γ		As					
-		As-1					
1		Se					
	82						
1	89						
1		Мо					
1		Мо					
1		Мо					
	107	Ag					
	109	Ag					
ļ	106						
	108						
1	111	Cd					

Page 2

Sample ID: 25 ppb i1-57a

Report Date/Time: Friday, June 30, 2006 10:46:46

-	114	Cd	
>	115	in	89.300
	121	Sb	
1	123	Sb	
1	135	Ва	
L	137	Ва	
Γ	159	Tb	
>	165	Но	89.059
1	201	Hg	
	202	Hg	
	203	TI	
	205	TI	
1	208	Pb	
	209	Bi	
	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCl	
	84	Kr	

118 Sn

# Site Characterization Fixed Laboratory Data (August 2006) Friedman & Bruya SDG 608150

#### **ENVIRONMENTAL CHEMISTS**

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

August 22, 2006

James Wright, Project Manager USDOC NOAA NOS OR&R PPO 7600 Sand Point Way NE Seattle, WA 98115-6349

Dear Mr. Wright:

Included are the results from the testing of material submitted on August 11, 2006 from the Lead Test, F&BI 608150 project. There are 41 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures
NAA0822R

#### **ENVIRONMENTAL CHEMISTS**

#### CASE NARRATIVE

This case narrative encompasses samples received on August 11, 2006 by Friedman & Bruya, Inc. (ADEC laboratory approval number UST-007) from the USDOC NOAA NOS OR&R PPO Lead Test, F&BI 608150project. The samples were received at 25°C and were refrigerated upon receipt. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	USDOC NOAA NOS OR&R PPO	Date Sampled
680150-01	SP60-ID-001	08/06/06
680150-02	SP60-CH-151-005	08/06/06
680150-03	SP60-CH-151-010	08/06/06
680150-04	SP60-CH-151-015	08/06/06
680150-05	SP60-CH-151-020	08/06/06
680150-06	SP60-CH-152-005	08/06/06
680150-07	SP60-CH-152-010	08/06/06
680150-08	SP60-CH-152-015	08/06/06
680150-09	SP60-CH-152-020	08/06/06
680150-10	LAP-01	08/06/06
680150-11	LAP-01P	08/06/06
680150-12	PLY-01	08/06/06
680150-13	PLY-01P	08/06/06
680150-14	LAP-02	08/06/06
680150-15	LAP-02P	08/06/06
680150-16	PLY-02	08/06/06
680150-17	PLY-02P	08/06/06
680150-18	SP60-TR-001-000	08/06/06
680150-19	SP60-TR-002+003	08/06/06

The samples were analyzed as follows.

Total Lead (soil/solid) - Analysis Method 200.8, Extraction Method 3050 All quality control requirements were acceptable.

TCLP Lead (soil/solid) - Analysis Method 200.8, Extraction Method 1311 All quality control requirements were acceptable.

### **ENVIRONMENTAL CHEMISTS**

### Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-CH-151-005

Date Received:

08/11/06

Date Extracted: Date Analyzed:

08/16/06 08/16/06

Matrix:

Soil

Units: ug/g (ppm) Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID: Data File: 608150-02

Instrument:

 $608150 \hbox{-} 02.035$ ICPMS1

Operator:

btb

Lower

Upper

Internal Standard:

% Recovery:

Limit: 60

Limit: 125

Holmium

97

Concentration

ug/g (ppm)

Lead

Analyte:

3,570

### **ENVIRONMENTAL CHEMISTS**

### Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-CH-151-010

Date Received: Date Extracted: 08/11/06 08/16/06 08/16/06

Date Analyzed: Matrix:

Soil

Units:

ug/g (ppm)

Client: Project: USDOC NOAA

Lead Test, F&BI 608150 608150-03

Lab ID: Data File:

608150-03.038

Instrument:

ICPMS1

Operator:

btb

Lower

Limit: 60

Upper Limit:

125

Holmium

Internal Standard:

% Recovery: 97

Concentration

ug/g (ppm)

Lead

Analyte:

### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-CH-151-015

Date Received:

08/11/06

Date Extracted: Date Analyzed:

08/16/06 08/16/06

Matrix: Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID: Data File: 608150-04 608150-04.039

Instrument:

ICPMS1

Operator:

btb

Internal Standard:

Holmium

% Recovery: 98

Lower Limit: 60

UpperLimit:

125

Concentration

Analyte:

ug/g (ppm)

Lead

### **ENVIRONMENTAL CHEMISTS**

### Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-CH-151-020

Date Received:

08/11/06

Date Extracted: Date Analyzed:

08/16/06 08/16/06

Matrix:

Soil

Units:

ug/g (ppm)

Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID: Data File: 608150-05 608150-05.040

Instrument: Operator:

ICPMS1 btb

Lower

Upper

Internal Standard: Holmium

% Recovery:

95

Limit: 60

Limit: 125

Concentration

Analyte:

ug/g (ppm)

Lead

**ENVIRONMENTAL CHEMISTS** 

### Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-CH-152-005

Date Received: Date Extracted: Date Analyzed:

Internal Standard:

08/11/06 08/16/06 08/16/06

Matrix: Units:

ug/g (ppm)

Soil

Client: Project: USDOC NOAA

Lab ID:

Lead Test, F&BI 608150 608150-06

Data File:

608150-06.041

Instrument:

ICPMS1

Operator:

btb

% Recovery: 97

Lower Limit: Upper Limit:

60

125

Concentration

Analyte:

Holmium

ug/g (ppm)

Lead

### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-CH-152-010

Date Received:

08/11/06

Date Extracted: Date Analyzed:

08/16/06 08/16/06

Matrix: Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID: Data File: 608150-07

Instrument:

608150-07.042 ICPMS1

Operator:

btb

Lower

Upper

Internal Standard:

Holmium

% Recovery:

99

Limit: 60

Limit: 125

Concentration

Analyte:

ug/g (ppm)

Lead

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-CH-152-015

Date Received:

08/11/06

Date Extracted: Date Analyzed:

08/16/06 08/16/06

Matrix:

Soil

Units:

ug/g (ppm)

Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID:

608150-08

Data File:

608150-08.044

Instrument:

ICPMS1

Operator:

btb

Lower

Upper

Internal Standard: Holmium

% Recovery:

98

Limit: 60

Limit: 125

Concentration

Analyte:

ug/g (ppm)

Lead

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-CH-152-020

Date Received: Date Extracted:

08/11/06 08/16/06 08/16/06

Date Analyzed: Matrix:

Soil

Units:

ug/g (ppm)

Client: Project: USDOC NOAA

Lead Test, F&BI 608150 608150-09

Lab ID: Data File:

608150-09.045

Instrument:

ICPMS1

Operator:

btb

Internal Standard:

Holmium

% Recovery:

98

Lower Limit: Upper Limit:

60

125

Concentration

Analyte:

ug/g (ppm)

Lead

#### **ENVIRONMENTAL CHEMISTS**

Client:

Project:

Lab ID:

Data File:

Operator:

Instrument:

Lower

Limit:

60

USDOC NOAA

608150-10 100x

ICPMS1

btb

608150-10 10x.048

Lead Test, F&BI 608150

Upper

Limit:

125

## Analysis For Total Metals By EPA Method 200.8

Client ID: LAP-01
Date Received: 08/11/06
Date Extracted: 08/16/06
Date Analyzed: 08/16/06

Matrix: Solid

Units: ug/g (ppm)

Analyte:

% Recovery:

Internal Standard: % Recover Holmium 96

Concentration ug/g (ppm)

Lead 22,000

#### **ENVIRONMENTAL CHEMISTS**

### Analysis For Total Metals By EPA Method 200.8

Client ID: LAP-01P Date Received: 08/11/06 08/16/06 Date Extracted: Date Analyzed: 08/16/06

Matrix: Solid Units:

Internal Standard:

Holmium

Analyte:

ug/g (ppm)

% Recovery:

95

Concentration ug/g (ppm)

Lead 13,200

USDOC NOAA Client:

Lead Test, F&BI 608150 Project:

Lab ID: 608150-11 100x Data File: 608150-11 100x.049

ICPMS1 Instrument: Operator:

60

btb

Upper Lower Limit: Limit:

**ENVIRONMENTAL CHEMISTS** 

FRIEDMAN & BRUYA, INC.

## Analysis For Total Metals By EPA Method 200.8

Client ID: PLY-01 Date Received: 08/11/06 08/16/06 Date Extracted: Date Analyzed: 08/16/06

Matrix: Solid Units: ug/g (ppm)

Internal Standard:

Holmium

Project: Lab ID: Data File:

Client:

USDOC NOAA Lead Test, F&BI 608150

608150-12 100x 608150-12 100x.050

ICPMS1 Instrument: btb

Operator:

Lower

Upper Limit: % Recovery: Limit: 95 60 125

Concentration

Analyte: ug/g (ppm)

Lead < 50

#### **ENVIRONMENTAL CHEMISTS**

### Analysis For Total Metals By EPA Method 200.8

Client ID: PLY-01P
Date Received: 08/11/06
Date Extracted: 08/16/06
Date Analyzed: 08/16/06
Matrix: Solid
Units: ug/g (ppm)

Data File: 608150-13 100x.051
Instrument: ICPMS1
Operator: btb

Client:

Project:

Lab ID:

USDOC NOAA

608150-13 100x

Lead Test, F&BI 608150

Lower Upper Internal Standard: % Recovery: Limit: Limit: Holmium 97 60 125

Analyte: Concentration ug/g (ppm)

Lead <50

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 200.8

Client ID:

LAP-02

Date Received:

08/11/06

Date Extracted: Date Analyzed:

08/16/06 08/16/06

Matrix: Units: Solid ug/g (ppm) Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID: Data File: 608150-14 100x

Instrument:

 $608150\text{-}14\ 100 \text{x}.052$ 

Operator:

ICPMS1 btb

Internal Standard:

% Recovery:

Lower Limit: Upper Limit:

Holmium

% necovery.

60

125

Analyte:

Concentration ug/g (ppm)

Lead

15,800

#### **ENVIRONMENTAL CHEMISTS**

### Analysis For Total Metals By EPA Method 200.8

Client ID: LAP-02P Date Received: 08/11/06

Date Extracted: 08/16/06 Date Analyzed: 08/16/06 Solid

Matrix: Units: ug/g (ppm)

USDOC NOAA Client:

Project: Lead Test, F&BI 608150

Upper

Lab ID: 608150-15 100x Data File: 608150-15 100x.053

Instrument: ICPMS1 Operator: btb

Lower Limit:

Internal Standard: Limit: % Recovery: Holmium 99 60 125

Concentration

Analyte: ug/g (ppm)

Lead 4,220

### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: PLY-02

08/11/06 Date Extracted: 08/16/06 08/16/06

Date Analyzed: Matrix: Units:

Solid ug/g (ppm) Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID: Data File: 608150-16 100x 608150-16 100x.055

Instrument: Operator:

ICPMS1 btb

Lower

Upper

Internal Standard:

Holmium

% Recovery: 94

Limit: 60

Limit: 125

Concentration

Analyte:

ug/g (ppm)

Lead

< 50

**ENVIRONMENTAL CHEMISTS** 

### Analysis For Total Metals By EPA Method 200.8

Client ID:

PLY-02P

Date Received:

08/11/06

Date Extracted: Date Analyzed:

08/16/06 08/16/06

Matrix: Units: Solid ug/g (ppm) Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID: Data File: 608150-17 100x 608150-17 100x.056

Instrument:

ICPMS1

Operator:

btb

Internal Standard:

Holmium

% Recovery: 96

Lower Limit: 60 Upper Limit: 125

Concentration

ug/g (ppm)

Lead

Analyte:

< 50

### **ENVIRONMENTAL CHEMISTS**

### Analysis For Total Metals By EPA Method 200.8

Client ID:

Date Extracted:

SP60-TR-001-000

Date Received:

08/11/06

08/16/06

Date Analyzed: Matrix:

08/16/06

Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID: Data File: 608150-18

Instrument:

608150-18.046 ICPMS1

Operator:

btb

Internal Standard:

% Recovery:

ecovery 96 Lower Limit: Upper Limit:

60

125

Concentration

Analyte:

Holmium

ug/g (ppm)

Lead

### **ENVIRONMENTAL CHEMISTS**

### Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-TR-002+003

Date Received:

08/11/06

Date Extracted: Date Analyzed:

08/16/06 08/16/06

Matrix:

Soil Units: ug/g (ppm) Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID: Data File: 608150-19

Instrument:

608150-19.047 ICPMS1

Operator:

btb

Internal Standard:

Holmium

Analyte:

% Recovery:

97

Lower Limit: 60

Upper

Limit: 125

Concentration

ug/g (ppm)

Lead

2,630

### **ENVIRONMENTAL CHEMISTS**

#### Analysis For Total Metals By EPA Method 200.8

Client ID:

Method Blank

Date Received: Date Extracted:

Internal Standard:

Not Applicable 08/16/06 08/16/06

Date Analyzed: Matrix:

Soil

Units:

ug/g (ppm)

Client:

USDOC NOAA

Project: Lab ID: Lead Test, F&BI 608150 I6-336 mb

Data File:

I6-336 mb.033 ICPMS1

Instrument: Operator:

btb

Lower Limit: Upper Limit:

Holmium

% Recovery:

97

60

125

Concentration

Analyte:

ug/g (ppm)

Lead

<1

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-ID-001

Date Received: Date Extracted:

08/11/06 08/16/06

Date Analyzed: Matrix: Units:

08/16/06 Water

ug/L (ppb)

Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID: Data File: 608150-01 608150-01.010

Instrument:

ICPMS1

Operator:

btb

Lower

Upper Limit:

Internal Standard: Holmium

% Recovery: 103

Limit: 60

125

Concentration

Analyte:

ug/L (ppb)

Lead

### **ENVIRONMENTAL CHEMISTS**

### Analysis For Total Metals By EPA Method 200.8

Client ID:

Method Blank

Date Received: Date Extracted: Not Applicable 08/16/06

Date Analyzed: Matrix:

08/16/06 Water

Units:

ug/L (ppb)

Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID: Data File: I6-338 mb I6-338 mb.008

Instrument:

ICPMS1

Operator:

btb

Internal Standard: Holmium

% Recovery: 99

Lower Limit: 60

Upper Limit: 125

Concentration

Analyte:

ug/L (ppb)

Lead

<1

#### **ENVIRONMENTAL CHEMISTS**

### Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

LAP-01

Date Received:

08/11/06 08/16/06

Date Extracted: Date Analyzed:

Internal Standards:

08/16/06 Solid

Matrix: Units:

mg/L (ppm)

Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID: Data File: 608150-10 608150-10.076

Instrument:

ICPMS1

Operator:

btb

% Recovery: 96

Lower Limit: 60

Upper

Limit: 125

Concentration

Analyte:

Holmium

mg/L (ppm)

**TCLP Limit** 

Lead

31.2

#### **ENVIRONMENTAL CHEMISTS**

Client:

#### Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID: LAP-01P

Date Received: 08/11/06

Date Extracted: 08/16/06

Date Analyzed: 08/16/06

Matrix: Solid

Units: mg/L (ppm)

Analyte:

 Project:
 Lead Test, F&BI 608150

 Lab ID:
 608150-11

 Data File:
 608150-11.077

 Instrument:
 ICPMS1

 Operator:
 btb

Internal Standards: % Recovery: Holmium 98

Lower Upper Limit: Limit: 60 125

USDOC NOAA

Concentration

mg/L (ppm) TCLP Limit

Lead 2.45 5.0

#### **ENVIRONMENTAL CHEMISTS**

Client:

Project:

Lab ID:

Data File:

#### Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID: PLY-01 Date Received: 08/11/06 Date Extracted: 08/16/06 Date Analyzed: 08/16/06 Matrix: Solid

Units: mg/L (ppm)

Internal Standards:

Instrument: Operator:

% Recovery: 99

Lower Limit: 60

Upper Limit: 125

USDOC NOAA

608150-12.078

608150-12

ICPMS1

btb

Lead Test, F&BI 608150

Concentration

mg/L (ppm)

<1

5.0

**TCLP Limit** 

Lead

Holmium

Analyte:

### **ENVIRONMENTAL CHEMISTS**

### Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID: Date Received:

Internal Standards:

PLY-01P

08/11/06

Date Extracted: 08/16/06 Date Analyzed: 08/16/06

Matrix: Units:

Solid mg/L (ppm) Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID: Data File: 608150-13 608150-13.079

Instrument:

ICPMS1

Operator:

btb

Lower % Recovery:

Limit: 60

Upper Limit: 125

Concentration

97

Analyte:

Holmium

mg/L (ppm)

TCLP Limit

Lead

<1

### **ENVIRONMENTAL CHEMISTS**

Client:

Project:

Lab ID:

Data File:

Operator:

**TCLP Limit** 

### Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID: LAP-02 Date Received: 08/11/06 Date Extracted: 08/16/06 Date Analyzed: 08/16/06

Matrix: Solid Units:

Internal Standards:

Holmium

Analyte:

Instrument: mg/L (ppm)

% Recovery: 98

Upper Lower Limit: Limit: 60 125

USDOC NOAA

608150-14.080

608150-14

ICPMS1

btb

Lead Test, F&BI 608150

Concentration mg/L (ppm)

Lead 37.5 5.0

**ENVIRONMENTAL CHEMISTS** 

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID: LAP-02P Client: USDOC NOAA

 Date Received:
 08/11/06
 Project:
 Lead Test, F&BI 608150

 Date Extracted:
 08/16/06
 Lab ID:
 608150-15

 Date Extracted:
 08/16/06
 Lab ID:
 608150-15

 Date Analyzed:
 08/16/06
 Data File:
 608150-15.081

 Matrix:
 Solid
 Instrument:
 ICPMS1

Units: mg/L (ppm) Operator: btb

Internal Standards: % Recovery: Limit: Limit: Holmium 100 60 125

Concentration

Analyte: mg/L (ppm) TCLP Limit

Lead <1 5.0

### **ENVIRONMENTAL CHEMISTS**

## Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID: PLY-02 Date Received: 08/11/06 Date Extracted: 08/16/06 Date Analyzed: 08/16/06 Matrix: Solid Units:

mg/L (ppm)

Lab ID: Data File: Instrument: Operator:

Client:

Project:

608150-16 608150-16.082 ICPMS1

USDOC NOAA

Lead Test, F&BI 608150

btb

Internal Standards:

% Recovery: 97

Lower Limit: 60

Upper Limit: 125

Concentration

Analyte:

Holmium

mg/L (ppm)

**TCLP Limit** 

Lead

<1

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID: PLY-02P Client: USDOC NOAA

 Date Received:
 08/11/06
 Project:
 Lead Test, F&BI 608150

 Date Extracted:
 08/16/06
 Lab ID:
 608150-17

 Date Extracted:
 08/16/06
 Lab ID:
 608150-17

 Date Analyzed:
 08/16/06
 Data File:
 608150-17.083

 Matrix:
 Solid
 Instrument:
 ICPMS1

Units: mg/L (ppm) Operator: btb

Internal Standards: % Recovery: Limit: Limit: Holmium 97 60 125

Concentration

Analyte: mg/L (ppm) TCLP Limit

Lead <1 5.0

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

Method Blank

Date Received:

Not Applicable

Date Extracted: Date Analyzed:

08/16/06 08/16/06 Solid

Matrix: Units:

mg/L (ppm)

Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID: Data File: I6-339 mb

Instrument:

I6-339 mb.071 ICPMS1

Operator:

btb

Internal Standards:

Holmium

% Recovery:

96

Lower Limit:

Upper

60

Limit: 125

Concentration

Analyte:

mg/L (ppm)

**TCLP Limit** 

Lead

<1

**ENVIRONMENTAL CHEMISTS** 

#### Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

SP60-CH-151-005

Date Received:

08/11/06

Date Extracted: Date Analyzed:

08/18/06 08/18/06 Soil

Matrix: Units:

mg/L (ppm)

Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID: Data File: 608150-02

Instrument:

608150-02.037 ICPMS1

Operator:

btb

Internal Standards:

Holmium

% Recovery:

96

Lower Limit: 60

Upper Limit: 125

Concentration

Analyte:

mg/L (ppm)

**TCLP Limit** 

Lead

15.8

#### **ENVIRONMENTAL CHEMISTS**

#### Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

SP60-CH-151-015

Date Received:

08/11/06

Date Extracted: Date Analyzed:

08/18/06 08/18/06

Matrix: Units:

Soil

mg/L (ppm)

Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID: Data File: 608150-04

Instrument:

 $608150 \hbox{-} 04.040$ ICPMS1

Operator:

btb

Upper

Internal Standards:

Holmium

% Recovery: 97

Lower Limit: 60

Limit: 125

Concentration

Analyte:

mg/L (ppm)

**TCLP Limit** 

Lead

2.39

#### **ENVIRONMENTAL CHEMISTS**

## Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

SP60-CH-151-020

Date Received:

08/11/06

Date Extracted: Date Analyzed:

08/18/06 08/18/06

Matrix:

Soil Units: mg/L (ppm) Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID: Data File: 608150-05

Instrument:

 $608150 \hbox{-} 05.041$ 

Operator:

ICPMS1

btb

Internal Standards:

Holmium

% Recovery:

97

Lower Limit: 60

Upper Limit: 125

Concentration

Analyte:

mg/L (ppm)

**TCLP Limit** 

Lead

<1

#### **ENVIRONMENTAL CHEMISTS**

## Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

SP60-TR-001-000

USDOC NOAA Client: Project:

Date Received:

08/11/06 08/18/06 Lead Test, F&BI 608150

Date Extracted: Date Analyzed:

608150-18

Matrix:

08/18/06 Soil

Lab ID: Data File: 608150-18.042

Units: mg/L (ppm) Instrument:

ICPMS1

Operator:

btb

Internal Standards:

% Recovery: 100

Lower Limit: 60

Upper Limit: 125

Concentration

Analyte:

Holmium

mg/L (ppm)

**TCLP Limit** 

Lead

9.11

#### **ENVIRONMENTAL CHEMISTS**

# Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

SP60-TR-002+003 Client ID: Client: USDOC NOAA

Date Received: 08/11/06 Lead Test, F&BI 608150 Project: Lab ID: Date Extracted: 08/18/06 608150-19

Date Analyzed: 08/18/06 Data File: 608150-19.044 Matrix: Soil Instrument: ICPMS1 Units: mg/L (ppm) Operator: btb

Lower  ${\bf Upper}$ Internal Standards: % Recovery: Limit: Limit:

Holmium 101 60 125

Concentration

Analyte: TCLP Limit mg/L (ppm)

Lead 9.35 5.0

**ENVIRONMENTAL CHEMISTS** 

Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

Method Blank

Date Received:

Not Applicable 08/18/06

Date Extracted: Date Analyzed:

08/18/06

Matrix: Units:

Soil mg/L (ppm) Client:

USDOC NOAA

Project:

Lead Test, F&BI 608150

Lab ID: Data File: 16-345 mb I6-345 mb.035

Instrument:

ICPMS1

Operator:

btb

Internal Standards:

Holmium

% Recovery: 96

Lower Limit: 60

Upper Limit: 125

Concentration

Analyte:

mg/L (ppm)

**TCLP Limit** 

Lead

<1

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 08/22/06 Date Received: 08/11/06

Project: Lead Test, F&BI 608150

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR METALS BY EPA METHOD 200.8

Laboratory Code: 608150-02 (Duplicate)

				Relative	
Analyte	Reporting Units	Sample Result	Duplicate Result	Percent Difference	Acceptance Criteria
Lead	ug/g (ppm)	3,570	759	130 h	0-20

Laboratory Code: 608150-02 (Matrix Spike)

				Percent		
		Spike	Sample	Recovery	Acceptance	
Analyte	Reporting Units	Level	Result	MS	Criteria	_
Lead	ug/g (ppm)	10	3,570	0 b	50-150	_

Laboratory Code: Laboratory Control Sample

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Lead	ug/g (ppm)	10	106	70-130

h - RPD results are likely outside control limits due to sample inhomogeneity.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 08/22/06 Date Received: 08/11/06

Project: Lead Test, F&BI 608150

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR METALS BY EPA METHOD 200.8

Relative

Laboratory Code: 608150-01 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	Percent Difference	Acceptance Criteria	
Lead	ug/L (ppb)	12.2 11.		7	0-20	
Laboratory C	Code: 608150-01 (Matri	x Spike)	n			

Percent Spike Acceptance Sample Recovery Reporting Units Analyte Level Result MS Criteria Lead 10 12.250-150 ug/L (ppb) 96 b

Laboratory Code: Laboratory Control Sample

	-	-	Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	108	70-130

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 08/22/06 Date Received: 08/11/06

Project: Lead Test, F&BI 608150

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF THE TCLP EXTRACT FOR METALS BY EPA METHOD 200.8 AND 40 CFR PART 261

Laboratory Code: 608112-01 (Duplicate)

	ouc. 000112-01 (Dupli	,		Relative	
Analyte	Reporting Units	Sample Result	Duplicate Result	Percent Difference	Acceptance Criteria
Lead	mg/L (ppm)	<1	<1	nm	0-20

Laboratory Code: 608112-01 (Matrix Spike)

				$\operatorname{Percent}$	
Analyte	Reporting Units	Spike Level	Sample Result	Recovery MS	Acceptance Criteria
		1.0	resur		
Lead	mg/L (ppm)	1.0	<1	100	50-150

Laboratory Code: Laboratory Control Sample

			$\operatorname{Percent}$			
		$\operatorname{Spike}$	Recovery	Acceptance		
Analyte	Reporting Units	Level	LCS	Criteria		
Lead	mg/L (ppm)	1.0	105	70-130		

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 08/22/06 Date Received: 08/11/06

Project: Lead Test, F&BI 608150

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF THE TCLP EXTRACT FOR METALS BY EPA METHOD 200.8 AND 40 CFR PART 261

Laboratory Code: 608150-02 (Duplicate)

				Relative			
Analyte	Sample Analyte Reporting Units Result		Duplicate Result	Percent Difference	Acceptance Criteria		
Lead	mg/L (ppm)	15.8	15.4	3	0-20		

Laboratory Code: 608150-02 (Matrix Spike)

				$\operatorname{Percent}$		
		Spike	Sample	Recovery	Acceptance	
Analyte	Reporting Units	Level	Result	MS	Criteria	_
Lead	mg/L (ppm)	1.0	15.8	126 b	50-150	-

Laboratory Code: Laboratory Control Sample

			Percent						
		$\operatorname{Spike}$	Recovery	Acceptance					
Analyte	Reporting Units	Level	LCS	Criteria					
Lead	mg/L (ppm)	1.0	113	70-130					

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

7600 Sand Point Way NE Seattle WA 98115	tel 206-526-6 fax 206-526-6		410				and a control of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of		C	HAI	N of CUSTODY
company NOAA	phone ( ) project		fax				ANALYSIS REC	QUESTED		П	ASAP 48 hr
address 7660 Sand Point Way NE Blags, room 1003. Scuttle wt 98103	project #				lot lend	90-07			TI 9	of conta	12 hr 72 hr 24 hr 35 std 24 hr
SAMPLE DESCRIPTION	Date Sampled	Time	Matrix	Preserve	101	72			1/2	*	Remarks
SP60-CH-151-005	8/6/06	2016	soil	<i>HNO3</i>	X	*			01		
SP60-CH-151-010			Soil			X			03		
SP60-CH-151-015 SP60-CH-151-020			Soil		$\parallel$	*		_	04		
5P60-614-152-005			Soil			*			06		
SP60-CH-152-010 SP60-CH-152-015			Soil			* *	+++		07 0X		
SP60-CH-152-020			Soil			X			09		
LAP-ØI LAP-ØIP			Wood			$\frac{X}{X}$			10		
PLY-01			Wood		V	X			12		
Comments  X if total Ph exceeds  400 mg/kg, then conduct TCL  in composits of 4	Relinquished I Signature — Print — Company — Date —	Paul	Qu 2 a 304	Joran Time 1		00	Received by: Signature _ Print _ Company _ Date _	Mu	choe I E-	eah	(
Sample integrity upon receipt:  Samples received intact Samples received cold Custody seals Correct container types  PO# Quote yes no	Relinquished I Signature — Print — Company — Date —			Time			Received b: Signature - Print - Company - Date -			Time	

BI4

7600 Sand Point Way NE Seattle WA 98115	tel 206-526 <del>-6317</del> (d fax 206-526-6329	iO·			CHAIN of CUSTODY
James P Wright	phone ( ) project	fax		ANALYSIS REQUESTED	Turnaround Time
, , , , , , , , , , , , , , , , , , ,	project`#				ASAP 48 hr
	sampler		200		12 hr 72 hr
	Sample				12 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr 72 hr
SAMPLE DESCRIPTION	Date Sampled Time	Matrix Preserve	120		Remarks
PLY-01P		Moved	XX		13
1AP-02		Wood	IX		14
1AP-02P		Wisod			15
PLV-02		Wood	X		16
P/ V-07 P		Wood	VX		<i>1</i> 7
SP60-TR-001-000		Soil	XX		18
SP60-TR-002+003		Soil	XX		19
Comments LUFT EDD	Relinquished by: Signature			Received by: Signature	Luf
	Print		·	Print Michael	Falch
	Company Date	Time		Company S/11/06	
Sample integrity upon receipt: Bill 3rd Party:	Relinquished by:			Received b:	
Samples received intact	Signature		<del></del>	Signature	
Samples received cold	Print			Print	
Custody seals Correct container types  PO# Quote yes no	Company	Time		Date	Time

# SAMPLE CONDITION UPON RECEIPT CHECKLIST

PROJECT # 608 ISO CLIENT NOAA	INITIALA DATE:	NP)	8-11-06
If custody seals are present on cooler, are they intact?	₽ NA	□ YES	S 🗆 NO
Cooler/Sample temperature		_	<u>25</u> ∘c
Is there a Chain-of-Custody* (COC)? *or other representative documents, letters, and/or shipping memos		Æ YES	S 🗆 NO
Is the COC* complete and in agreement with the samples rece (explain "no" answers below)	eived?	□ YES	S &NO
Sample ID's Yes   No # of Containers Yes	□ No		
Date Sampled	$\square$ No		
Time Sampled   Yes   No Requested analysis   Yes	$\square$ No		
Number of days samples have been sitting prior to receipt at	laborato	ry _	5 days
Were all sample containers received intact (i.e. not broken, leaking etc.)? (explain "no" answer below)		1 YES	S 🗆 NO
If custody seals are present on samples, are they intact?	Ø NA	□ YES	S [NO
Are samples requiring no headspace, headspace free?	☑ NA	□ YES	S 🗆 NO
Are samples for PCB testing, or do samples originate out of the country? (if yes, put a red sticker on each sample)		□ YES	S INO
Was client notified of sample receipt?		up by F	'&BI
If Yes, name of person contacted		□ Le	ft Message
Special Instructions from Client		·	
Describe "no" items from above (use the back if needed) NO date and fime Sample of			

# WORKSHEETS, 608150

# TCLP METALS EXTRACTION WORKSHEET

Project #: 608 150  Client: NOAA  QC Batch ID: 16-339						Date Received: 8/11/00  Date Extracted: 8/14/0							
Client:		K	201	AA		•	Da	ate Extr	acted:_	8/	1800		
QC Bat	tch ID:		IB	-339						• •			_
	es checke						Se	quence	Date:_	. <u> </u>	*		: 
		<u> </u>				_			T	12 . 36 (1)			TT. 1/
Analysis	Method: 700.8		Matr		1,	Requested Analytes Extraction Method: Reporting Units:  TCLP Metals   1311/3005A   mg/L (ppm)    TCLP Metals + Cu, Ni, Zn   Other   Other							pm)
Other_	200.8			oil roduct ther	· ———	Oth	iP Metals + ( er as Marked	Cu, Ni, Zn l	ц о	her		Other_	
	on Tumbler		Initia		I	Date/ Tim	e off Tumble	r	Initials	<u></u>		CLP Sol	
8/14/	26 5	degr	- /	ne -	-	8/13	ko 10	com	11	•		Type I, Type II	, 500 mL
				· · · · · · · · · · · · · · · · · · ·		···					(N	ot TCLP	Analytes)
Sample	Sample Weight/												
ID	Volume	p]	<u>H</u>	As	Ba	Cd	Cr	Pb	Se	Ag	Cu	Ni	Zn
10	25 g	<b>y</b> .	7										
11													
12							<del>                                     </del>	1					
13								<u>'</u>	<u> </u>				
19					· .							ļ	
14	·												
15			·					·					
16													
								·					-
17					· · · · · · · · · · · · · · · · · · ·				BRIC.				
-		A				ļ.	DUE	Date/	Park _	8/18.	06		
								otified	ľ				
!		TC	LP					et./C.		6.00	and appropriate part of	gan page land a control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contr	_
Initials		Lin	nit	5.0	100	1.0	5.0	5.0	1.0	5.0	ia	tinis	
					·				the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s				
	<del></del>			Volume	Co	nc.	Co	mpound(	٠,	Lot#	Ini	tials	Date
Solvent	<del> </del>			0.5 mL		x 70%	HNO ₃	шрошиц	8)	L0t#	11111	lais	Date
				0.5 mL	appro	x 37%	HCl						
	0	ther				· .	<u></u>	· · · ·	·	<u>.</u>	<u></u>	<u> </u>	
Project Leader	1/1	NOT	ES:		(5	nol	Upresi	<u>utitue</u>	Sam	ple-no	of jus	pair	<u>+</u>
Leader Initials:					right	-> 10	7 N	1001	·	<del></del>		<del> </del>	
		1			1/1-	1			Aug. Silling				
(Challette)	idejali lahyezen	111	4		1//5		ja Ikraji	ย่งเอยได้					

# METALS BY ICP/MS EXTRACTION WORKSHEET (WATER)

Project #	<b>#</b> :	(	_{රි} ල	8156	_	Date Rece	ived:	8/1	106	_
Client:			<u> </u>	JOAA	_	Date Extra	acted:	8/90	7	
OC Bato	h ID:			76,-	326	Date Anal	yzed:			_
Samples	checked	agains	st C	8156 16, 00_/	-	Sequence :				_
Analysis M 2-200.8 Other	(ethod:	Mat	rix:		Requested A  RCRA (7)  MTCA (4)  Priority Po	ollutant 6)	Total or Di Total Dissolve Field	ed I Filtered	Reporting U  µg/L (ppb)  Other	) [
Analyte Li	st: Be	V C	r :	Mn Co N	Other as M i Cu Zn		Mo Ag	Cd Sb	Ba Tl	Pb
Sample ID	Sample Volume	Fina Volur		Dilu Amt. Extract	tions	Dilution Factor		Obser	vations	
01	10 mL	10 m	L					<del></del>		
01	- 5a	50								
				·						
	·									
						·	PRIO			
						DUE: Date PM notifie	/Time_	8/18/0	<u>d</u>	
						PM notifie	l if una	blo to me∈ > ′o-č-o (	t deadii.	
						Extrac./O	•	iir ale one.		0£ 1500-0s
									iniciais	
Initials	1									
								<u> </u>		
<u> </u>		17		Volume	Conc.	Compour	nd(a)	Lot#	Initials	Date
Solvent(s)		.		0.2 mL	approx. 70%		(0)	20011	12	100111
				0.2 mL	approx. 37%			- X		
	Oth	er								
Internal S	tandard(s)		20 μ	L per 10 mL sample	10 mg/L	⁶ Li, ⁴⁵ Sc, ⁷² Ge ¹¹⁵ In, ¹⁵⁹ Tb, ¹⁶⁸	, ⁸⁹ Y, ⁵ Ho, ²⁰⁹ Bi			
	Oth	er				<u> </u>	i			
Project		OTES:	·				· · ·			
Leader	Ma				· · · · · · · · · · · · · · · · · · ·					
Initials:_	<u> </u>	_				· · · · · · · · · · · · · · · · · · ·				
		A.				STENSENVERSTON		en domination		
( <b>6)</b>	odithwii i i					e(tarefebrie)erien				
FORMS\LAB\	extract\mét	TALS_ICP	MS					•	1	Rev. 11/10/05

# TOTAL METALS BY ICP/MS EXTRACTION WORKSHEET (SOIL/PRODUCT)

Project:	Project #: 608150 Client: 00AA						Date Received: 8/11/06							
	rr•	<del></del>	WOAA	-	-	Date Extracted: 8-/6-06								
Off Bot	h ID.	T	6-331	,	-		•		Analyzed:		111/10			
					-	•			nce Date:		1797	<del></del>		
Samples	s cnecked	agam	st COC_		•			seque.	nce Date.		- 1	<del></del>		
Analysis M	lethod:	M	atrix: Soil			Reque		nalytes	•	Reportin  □ μg/g (p				ĺ
□ Other_			Product Other_W	-1		□ MT	CA (4)			☐ Other_				
	·	· ,D	Other Wo	001		□ Prie		ollutant						ľ
				1,		□ Oth	er as Ì	Aarked E					<b>&gt;</b>	
Analyte Li	st: Be	V	Cr Mn	Co Ni	i (	Cu Z	n A	As Se	e Mo A	g Cd Si	Ba 7	rı (Pb	)	
									777.1	D 0	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
Sample	Sample	Fina	ו ו	utions		Dilu	Hon	Pan	Wet Sample	Pan & Dry				
ID	Weight.	Volum		ucions	- 1	Fac		ID	Weight	Sample	Percent	Observ	ations	
			Amt.	Amt.					(grams)	Weight	Solids	ļ		
1.0	2.0 g	50 m	Extract	Solve		10	-7	<del></del>		1 01		<u> </u>		
10	2.0 g	30 III	25M	100	4	1.1	0	40	7.0	1710	1.00	Pose	1 total	d
11			•					L 11	2,0	1.9	(.05			
12								KII	2.1	1.9	96.11			
13								34	7.0	1.9	1.05			
14								228	2.3	2	1.6.10			
15								L26		2.0	1.10			
16		-	1 1	1				K,4	2.4	) )	1.09			
17	1			++	_	-		035	~ /r	19-	1.01			
1 /	· \		V	17		<u> </u>		<u> </u>	Z. [TT] Date/1	- 1.6/1	8/0/0	<u> </u>		
				<u> </u>			- 3		ified if			•		
<b>4</b> /					1			at lea	st 48hr.	rior to		_		
							E	xtrac	./Calcula	. (circle d	ne)			
Initials		70			<del></del>						ini	ials		
	17/		>/ <i>&gt;</i>						<b>A</b>					
<del> </del>		<del>- (/</del>	Volum			lone	-	Com	naund(a)	T at #	Tmiss	-1- T	)oto	
Solvent(s)		<del>-  </del>	2 mI			onc. ox. 70	% HN		pound(s)	Lot#		8/	Date /	, つ
~ · · · · · · · · · · · · · · · · · · ·			7 mI			ox. $379$				//_3		2   3/		
	Otl		<del> </del>						·				,	
Internal S	tandard(s	"	20 μL per		10	mg/L			² Ge, ⁸⁹ Y, o, ¹⁶⁵ Ho, ²⁰⁹ B	i 17-3	8 3	8//	16/04	>
	Otl	her												
Project	4 N	OTES	·		6	-R11	U D	12	EPRES	ENTIT	IVE S	SAMI	DLE -	_
Leader	//	OI III	·	NOT	$\tau_i$	工2	DAI					· · · · · · · · · · · · · · · · · · ·	***	
1.	YV			<u> </u>	۳ ر	<del>-&gt; 1</del>	VIVI	V 1		•	,			
Initials:\			/				_			<del></del>				
(Dellopilei)	o a Pave	M	· (x /: /-	12:3		r i gan	∦Ra•		i by eileg	T Elle	106:			
FORMS\LAB\	30,00 HARISAN X X 11.	TATE TO	0///		complete Carrie						ужник <u>и пр</u> учиний касебай!	Dag: 04	2 99 00	
T. OUMO /TWD /	DVIVACI/MR	THIM LIVE	CIVIO									Rev. 03	J-40-UU	

# TOTAL METALS BY ICP/MS EXTRACTION WORKSHEET (SOIL/PRODUCT)

Project	<b>#</b> .		(	608156				]	Date I	Received:_	8/	11/06	
Client:				25180ê NONA		•		]	Date I	Extracted:	& ~	16-0	0
QC Bate	ch ID:		I	26-33	6								
Sample	s checl	ced	again	st COC_	<i>Q</i>	•			Seque	nce Date:			<u> </u>
Analysis N	lethod:			trix:					nalytes		Reportin		***
200.8 Dther_				Soil Product			☐ RCR	A (4)			□ μg/g (p □ Other_		
	,			Product Other	<del></del>		□ Prior						
A T d		e	v (	Cr Mn	Co N	: ,	Othe	r as N	Marked B		g Cd Si	о Ва Т	rl (Pb)
Analyte Li	st: B	е	· ·	or Min	CO N.					3 1/10 11			
										Wet	Pan &		
Sample ID	Samp Weigl		Fina Volun		lutions		Dilut: Fact		Pan ID	Sample Weight	Dry Sample	Percent	Observations
	A GIR		Volun	Amt.	Amt.	ı	. Pace	01	"	(grams)	Weight	Solids	O D D D T T T T T T T T T T T T T T T T
67	2.0 £	<del>,  </del>	50 m	Extract			1 - 2	- 1	144	9.7	00	1	
62	1		1	355/	1 10.	n	100	Jr .	M		9.0	1.09	
UZ				1	1-				22	9.8	0.0	1.09	
04				$\rightarrow$					410		8.9	1.07	
05				\					F	9.5	8.9	107	
06				Ì					416	9.2	8.5	1.08	
07			$\Box$	Age alle Stay					602	9.7	93	1.0 Y	
08			.	1					12,9	9.5	9.1	1,04	
09			1						28	^ /	1192	1.04	
18			-			_		2/1		Dafe/Sin		0417	
19		$\dashv$	1:			<b>-</b>		H	M no	tined	60	1, 3>	
(-)		$\dashv$	V		<del>                                     </del>	+				t (Calcul	nr <b>u</b> 0 a. (chreiu	1, 7	
Initials	(0)	<u>·</u>				<u> </u>	1		Auray	v./Oaicui	at (Car Cao	J. A. S. W. J. Samuel St. St. St. St. St. St. St. St. St. St.	the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa
	(2)		9								9		
			1	Volu	ne		Conc.	T	Com	pound(s)	Lot#	Initia	als Date,
Solvent(s)				2 m			rox. 70%	6 HN		· · · · · · · · · · · · · · · · · · ·	22-51		8/16/24
	<del></del>		_	7 m	L	appı	ox. 37%	HC	1		#-3	/   1	/
		Oth	ner	<del> </del>				+-		·	<del>-  </del>		
Internal S	tandar			20 μL per	1	10	mg/L			² Ge, ⁸⁹ Y,	74 ~ 3/	20	8/16/21
	<del></del>	Oth	ner	(D) samp	le	<del></del>		115]	n, ¹⁵⁹ Tt	o, ¹⁶⁵ Ho, ²⁰⁹ E	Si III O	5 3	01197
			* *	<u> </u>	$\overline{}$	/ 14		_l	1	1 1 +	<u> </u>	. 1	
Project	.10	·N	OTES	$:$ $\mathcal{I}$	7	40	OP	m	Lece	x, Do 1	CLP on	compacit	د د
Leader	VVh				<del>-</del>		· ·				· · · · · · · · · · · · · · · · · · ·	•	
Initials:_	1		_			7	<del> </del>				1.		<u></u>
<b>O</b> ETOTIST	Maria de la compa		-A		7/7	7	i ja ja	Rái			T = 8/16/6	<b>΄</b> β*::::::::::::::::::::::::::::::::::::	
FORMS\LAB\				T C		THE RESERVE				omiliands, governmentsumggaltin			Pov. 09-28-06

# METALS DATA, 608150

# **Dataset Report**

User Name: btb

Computer Name: ICPMS

Dataset File Path: D:\ICPMS Data\DataSet\08-16-06\

Report Date/Time: Thursday, September 07, 2006 13:13:47

# **The Dataset**

		1116	Datasci		
Batch ID	Sample ID	Date and Time	Read Type	Samp. File Name	Description
	blank	12:44:20 Wed 16-Aug-06	Blank	blank.001	
	1 ppb i1-56a	12:47:52 Wed 16-Aug-06	Standard #1	1 ppb i1-56a.002	
	5 ppb i1-56b	12:51:25 Wed 16-Aug-06	Standard #2	5 ppb i1-56b.003	
	10 ppb i1-56c	12:54:59 Wed 16-Aug-06	Standard #3	10 ppb i1-56c.004	
	25 ppb i1-56d	12:58:33 Wed 16-Aug-06	Standard #4	25 ppb i1-56d.005	
	50 ppb i1-56e	13:02:06 Wed 16-Aug-06	Standard #5	50 ppb i1-56e.006	
	25 ppb i1-57a	13:05:39 Wed 16-Aug-06	Sample	25 ppb i1-57a.007	
	i6-338 mb	14:38:09 Wed 16-Aug-06	Sample	i6-338 mb.008	
	i6-338 lcs	14:41:52 Wed 16-Aug-06	Sample	i6-338 lcs.009	
	608150-01	14:45:35 Wed 16-Aug-06	Sample	608150-01.010	
	i6-338 ms 6081	514:49:19 Wed 16-Aug-06	Sample	i6-338 ms 608150-01.01	1
	i6-338 dup 608	1:14:53:02 Wed 16-Aug-06	Sample	i6-338 dup 608150-01.0	12
	607192-10 100	x 14:56:45 Wed 16-Aug-06	Sample	607192-10 100x.013	
	607192-10 10x	15:00:29 Wed 16-Aug-06	Sample	607192-10 10x.014	
	601134-01 100	x 15:04:13 Wed 16-Aug-06	Sample	601134-01 100x.015	
		15:07:58 Wed 16-Aug-06	Sample	601134-01 10x.016	
	608144-01 100	x 15:11:44 Wed 16-Aug-06	Sample	608144-01 100x.017	
	rinse	15:15:28 Wed 16-Aug-06	Sample	rinse.018	
	25 ppb i1-57-a	15:19:12 Wed 16-Aug-06	Sample	25 ppb i1-57-a.019	
	608156-01	15:22:56 Wed 16-Aug-06	Sample	608156-01.020	
	608160-01	15:26:40 Wed 16-Aug-06	Sample	608160-01.021	
	25 ppb i1-57-a	15:30:24 Wed 16-Aug-06	Sample	25 ppb i1-57-a.022	
	608160-02	15:34:09 Wed 16-Aug-06	Sample	608160-02.023	
	i6-337 mb	15:37:54 Wed 16-Aug-06	Sample	i6-337 mb.024	soil
	i6-337 lcs	15:41:38 Wed 16-Aug-06	Sample	i6-337 lcs.025	soil
	608152-24 com	np15:45:23 Wed 16-Aug-06	Sample	608152-24 comp.026	soil
	608162-01	15:49:06 Wed 16-Aug-06	Sample	608162-01.027	soil
	608162-02	15:52:50 Wed 16-Aug-06	Sample	608162-02.028	soil
	608162-03	15:56:34 Wed 16-Aug-06	Sample	608162-03.029	soil
	i6-337 ms 6081	616:00:17 Wed 16-Aug-06	Sample	i6-337 ms 608162-03.03	30 soil
	-	1(16:04:01 Wed 16-Aug-06	Sample	i6-337 dup 608162-03.0	31soil
	25 ppb i1-57-a	16:07:45 Wed 16-Aug-06	Sample	25 ppb i1-57-a.032	soil
	i6-336 mb	16:11:29 Wed 16-Aug-06	Sample	i6-336 mb.033	soil
	i6-336 lcs	16:15:13 Wed 16-Aug-06	Sample	i6-336 lcs.034	soil
	608150-02	16:18:57 Wed 16-Aug-06	Sample	608150-02.035	soil
		516:22:41 Wed 16-Aug-06	Sample	i6-336 ms 608150-02.03	36 soil
		1:16:26:26 Wed 16-Aug-06	Sample	i6-336 dup 608150-02.0	37soil
	608150-03	16:30:10 Wed 16-Aug-06	Sample	608150-03.038	soil
	608150-04	16:33:55 Wed 16-Aug-06	Sample	608150-04.039	soil
	608150-05	16:37:39 Wed 16-Aug-06	Sample	608150-05.040	soil
	608150-06	16:41:23 Wed 16-Aug-06	Sample	608150-06.041	soil
	608150-07	16:45:07 Wed 16-Aug-06	Sample	608150-07.042	soil
	25 ppb i1-57-a	16:48:51 Wed 16-Aug-06	Sample	25 ppb i1-57-a.043	soil
	608150-08	16:52:35 Wed 16-Aug-06	Sample	608150-08.044	soil

608150-09	16:56:19 Wed 16-Aug-06	Sample	608150-09.045	soil
608150-18	17:00:03 Wed 16-Aug-06	Sample	608150-18.046	soil
608150-19	17:03:47 Wed 16-Aug-06	Sample	608150-19.047	soil
608150-10 10x	17:07:31 Wed 16-Aug-06	Sample	608150-10 10x.048	soil
	17:11:15 Wed 16-Aug-06	Sample	608150-11 10x.049	soil
	17:15:00 Wed 16-Aug-06	Sample	608150-12 10x.050	soil
	17:18:45 Wed 16-Aug-06	Sample	608150-13 10x.051	soil
608150-14 10x	17:22:30 Wed 16-Aug-06	Sample	608150-14 10x.052	soil
608150-15 10x	_	Sample	608150-15 10x.053	soil
25 ppb i1-57-a	17:30:34 Wed 16-Aug-06	Sample	25 ppb i1-57-a.054	soil
608150-16 10x	17:34:54 Wed 16-Aug-06	Sample	608150-16 10x.055	soil
608150-17 10x	17:38:38 Wed 16-Aug-06	Sample	608150-17 10x.056	soil
rinse	17:42:57 Wed 16-Aug-06	Sample	rinse.057	soil
608174-01	17:47:16 Wed 16-Aug-06	Sample	608174-01.058	soil
608174-02	17:51:00 Wed 16-Aug-06	Sample	608174-02.059	soil
608174-03	17:54:44 Wed 16-Aug-06	Sample	608174-03.060	soil
608174-04	17:58:29 Wed 16-Aug-06	Sample	608174-04.061	soil
608174-05	18:02:13 Wed 16-Aug-06	Sample	608174-05.062	soil
608174-06	18:05:58 Wed 16-Aug-06	Sample	608174-06.063	soil
25 ppb i1-57-a	18:09:43 Wed 16-Aug-06	Sample	25 ppb i1-57-a.064	soil
607244-09 100	x 18:14:03 Wed 16-Aug-06	Sample	607244-09 100x.065	
607244-09 10x	18:17:48 Wed 16-Aug-06	Sample	607244-09 10x.066	
607244-09	18:21:33 Wed 16-Aug-06	Sample	607244-09.067	
509037-01 10x	18:25:17 Wed 16-Aug-06	Sample	509037-01 10x.068	
509037-01	18:29:02 Wed 16-Aug-06	Sample	509037-01.069	
25 ppb i1-57-a	18:32:47 Wed 16-Aug-06	Sample	25 ppb i1-57-a.070	soil
i6-339 mb	18:37:07 Wed 16-Aug-06	Sample	i6-339 mb.071	
i6-339 lcs	18:41:28 Wed 16-Aug-06	Sample	i6-339 lcs.072	
608112-01	18:45:48 Wed 16-Aug-06	Sample	608112-01.073	
i6-339 ms 6081	118:50:09 Wed 16-Aug-06	Sample	i6-339 ms 608112-01.0	74
i6-339 dup 608	1 18:54:29 Wed 16-Aug-06	Sample	i6-339 dup 608112-01.0	75
608150-10	18:58:49 Wed 16-Aug-06	Sample	608150-10.076	
608150-11	19:03:10 Wed 16-Aug-06	Sample	608150-11.077	
608150-12	19:07:30 Wed 16-Aug-06	Sample	608150-12.078	
608150-13	19:11:50 Wed 16-Aug-06	Sample	608150-13.079	
608150-14	19:16:11 Wed 16-Aug-06	Sample	608150-14.080	
608150-15	19:20:32 Wed 16-Aug-06	Sample	608150-15.081	
608150-16	19:24:52 Wed 16-Aug-06	Sample	608150-16.082	
608150-17	19:29:13 Wed 16-Aug-06	Sample	608150-17.083	
rinse	19:33:33 Wed 16-Aug-06	Sample	rinse.084	
rinse	19:37:51 Wed 16-Aug-06	Sample	rinse.085	
25 ppb i5-57-a	19:42:10 Wed 16-Aug-06	Sample	25 ppb i5-57-a.086	

# **Instrument Tuning Report**

File Name:

default.tun

File Path:

D:\ICPMS Data\Tuning

Analyte	Exact Mass	Meas. Mass	Mass DAC	Res. DAC	Meas. Pk. Width	Custom Res.
He	3.016	2.975	592	2077	0.726	
Mg	23.985	23.979	5682	2080	0.707	
Rh	102.905	102.879	24847	2156	0.709	
Ce	139.905	139.929	33855	2196	0.707	
Pb	207.977	207.979	50426	2274	0.715	
U	238.050	238.076	57748	2313	0.706	

Report Date/Time:

Thursday, September 07, 2006 15:27:31

# **Quantitative Analysis Calibration Report**

File Name: 08-16-06.cal

File Path: D:\ICPMS Data\System Calibration Type: External Calibration

Analyte	Mass	Curve Type	Slope	Intercept	Corr. Coeff.
Li	6.015	Linear Thru Zero	0.00	0.00	0.000000
Be	9.012	Linear Thru Zero	0.00	0.00	0.999978
Al	26.982	Linear Thru Zero	0.02	0.00	0.999783
Sc	44.956	Linear Thru Zero	0.00	0.00	0.000000
V	50.944	Linear Thru Zero	0.04	0.00	0.999995
V-1	50.944	Linear Thru Zero	0.04	0.00	0.999993
Cr	51.941	Linear Thru Zero	0.04	0.00	0.999993
Cr	52.941	Linear Thru Zero	0.00	0.00	0.999990
Mn	54.938	Linear Thru Zero	0.05	0.00	0.999910
Co	58.933	Linear Thru Zero	0.04	0.00	0.999773
Ni	59.933	Linear Thru Zero	0.01	0.00	0.999912
Ni	61.928	Linear Thru Zero	0.00	0.00	0.999996
Cu	62.930	Linear Thru Zero	0.02	0.00	0.999996
Cu	64.928	Linear Thru Zero	0.01	0.00	0.999872
Zn	65.926	Linear Thru Zero	0.01	0.00	0.999984
Zn	66.927	Linear Thru Zero	0.00	0.00	0.999954
Zn	67.925	Linear Thru Zero	0.00	0.00	0.999979
Ge	71.922	Linear Thru Zero	0.00	0.00	0.000000
As	74.922	Linear Thru Zero	0.01	0.00	0.999957
As-1	74.922	Linear Thru Zero	0.01	0.00	0.999971
Se	76.920	Linear Thru Zero	0.00	0.00	0.999989
Se	81.917	Linear Thru Zero	0.00	0.00	0.999960
Υ	88.905	Linear Thru Zero	0.00	0.00	0.000000
Мо	94.906	Linear Thru Zero	0.01	0.00	0.999990
Мо	96.906	Linear Thru Zero	0.01	0.00	0.999962
Мо	97.906	Linear Thru Zero	0.02	0.00	0.999952
Ag	106.905	Linear Thru Zero	0.04	0.00	0.999960
Ag	108.905	Linear Thru Zero	0.04	0.00	0.999973
Cd	105.907	Linear Thru Zero	0.00	0.00	0.999977
Cd	107.904	Linear Thru Zero	0.00	0.00	0.999988
Cd	110.904	Linear Thru Zero	0.01	0.00	0.999914
Cd	113.904	Linear Thru Zero	0.02	0.00	0.999929
In	114.904	Linear Thru Zero	0.00	0.00	0.000000
Sb	120.904	Linear Thru Zero	0.03	0.00	0.999990
Sb	122.904	Linear Thru Zero	0.02	0.00	0.999943
Ba	134.906	Linear Thru Zero	0.01	0.00	0.999953
Ba	136.905	Linear Thru Zero	0.01	0.00	0.999963
Tb	158.925	Linear Thru Zero	0.00	0.00	0.000000
Но	164.930	Linear Thru Zero	0.00	0.00	0.000000
Hg	200.970	Linear Thru Zero	-0.00	0.00	-0.108927
-		- <b>-</b>	<b>-</b>	2.23	

Report Date/Time: Thursday, September 07, 2006 13:20:03

Page 1

Hg	201.971	Linear Thru Zero	0.00	0.00	0.354121
TI	202.972	Linear Thru Zero	0.03	0.00	0.999958
TI	204.975	Linear Thru Zero	0.06	0.00	0.999878
Pb	207.977	Linear Thru Zero	0.08	0.00	0.999918
Bi	208.980	Linear Thru Zero	0.00	0.00	0.000000
Th	232.038	Linear Thru Zero	0.07	0.00	0.999972
U	238.050	Linear Thru Zero	0.07	0.00	0.999828
Fe	55.935	Linear Thru Zero	0.00	0.00	0.000000
Ru	100.906	Linear Thru Zero	0.00	0.00	0.000000
ArCl	76.928	Linear Thru Zero	0.00	0.00	0.000000
Kr	83.912	Linear Thru Zero	0.00	0.00	0.000000
Sn	117.902	Linear Thru Zero	0.00	0.00	0.000000

# **Quantitative Analysis - Summary Report**

Sample ID: 608150-01

Sample Date/Time: Wednesday, August 16, 2006 14:45:35

Sample Description: User Name: btb Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam

Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Data\Set\08-16-06\608150-01.010

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 40 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas, Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	70670	2.34		ug/L
ĺ	Be	9	15	52	39.82	0.014	ug/L
i	Al	27	30236	2560238	0.56	64.742	ug/L
İ	Sc	45	700355	1142725	5.50		ug/L
ĺ	V	51	16349	195967	1.33	2.468	ug/L
1	V-1	51	7600	136761	2.88	1.743	ug/L
	Cr	52	46918	364652	1.14	4.880	ug/L
Ì	Cr	53	2548	22552	4.47	2.567	ug/L
1	Mn	55	4069	15535931	0.83	171.193	ug/L
	Co	59	728	185766	2.30	2.359	ug/L
	Ni	60	2164	362374	1.21	19.793	ug/L
	Ni	62	547	55359	0.57	19.796	ug/L
	Cu	63	3953	4147859	1.88	95.544	ug/L
	Cu	65	1949	2010100	0.11	98.123	ug/L
	Zn	66	5390	8783664	1.44	786.285	ug/L
	Zn	67	1013	1406671	1.07	729.999	ug/L
1	Zn	68	4021	6180204	0.76	754.679	ug/L
L>	Ge	72	1798281	1846040	0.17		ug/L
Γ	As	75	-902	11589	1.37	1.065	ug/L
	As-1	75	259	11746	0.61	0.998	ug/L
1	Se	77	806	2572	1.95	1.798	ug/L
	Se	82	487	3071	3.91	2.025	ug/L
- 1	Υ	89	1627756	1750857	1.43		ug/L
	Мо	95	755	1084624	1.08	45.013	ug/L
1	Мо	97	489	697039	0.81	46.283	ug/L
	Мо	98	1246	1739501	0.57	45.210	ug/L
ı	Ag	107	229	2641	44.75	0.035	ug/L

Page 1

Sample ID: 608150-01

Report Date/Time: Thursday, September 07, 2006 13:14:55

1	Ag	109	178	2242	44.35	0.032	ug/L
	Cd	106	2442	4365	2.39	1.278	ug/L
	Cd	108	11	4284	6.72	3.809	ug/L
1	Cd	111	1914	11270	0.58	0.592	ug/L
l	Cd	114	199	26955	2.74	0.748	ug/L
>	In	115	1708474	1734341	1.50		ug/L
1	Sb	121	376	25836	8.88	0.586	ug/L
1	Sb	123	240	19151	9.86	0.585	ug/L
	Ba	135	629	226284	1.71	17.640	ug/L
L	Ва	137	1074	387447	1.03	17.672	ug/L
Γ	Tb	159	1781693	1819477	80.0		ug/L
>	Но	165	1759123	1803647	0.54		ug/L
	Hg	201	45	162	4.82	-4767.639	ug/L
	Hg	202	83	380	4.66	3043.695	ug/L
	TI	203	114	4263	8.00	0.090	ug/L
	TI	205	208	9719	12.12	0.092	ug/L
	Pb	208	4961	1734566	1.20	12.196	ug/L
1	Bi	209	1048210	985488	2.43		ug/L
	Th	232	279	27355	67.59	0.201	ug/L
L	U	238	625	4551	29.41	0.030	ug/L
	Fe	56	16567515	35355346	3.70		ug/L
	Ru	101	12	39	12.86		ug/L
	ArCl	77	768	2553	0.94		ug/L
	Kr	84	2212	3464	73.84		ug/L
	Sn	118	1708	8654	3.68		ug/L
	QC C	alculated Va	lues				

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li	•	•	•		
	9	Be					
	27	Al					
	45	Sc					
	51	V					
	51	V-1					
1	52	Cr					
	53	Cr					
	55	Mn					
	59	Co					
1	60	Ni					
	62	Ni					
	63	Cu					
1	65	Cu					
	66	Zn					
	67	Zn					
	68	Zn					
L>		Ge		102.656			
٢	75						
		As-1					
	77						
	82						
		Υ					
1	95						
	97						
	98	Мо					
		Ag					
1	109						
1		Cd					
1		Cd					
	111	Cd					

	114	Cd			
>	115	In			101.514
	121	Sb			
-	123	Sb			
	135	Ba			
L	137	Ва			
Γ	159	Tb			
>	165	Ho			102.531
1	201	Hg			
1	202	Hg			
-	203	Ti			
1	205	TI			
	208	Pb			
	209	Bi			
1	232	Th			
Ĺ	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			

118 Sn

# **Quantitative Analysis - Summary Report**

Sample ID: 608150-02

Sample Date/Time: Wednesday, August 16, 2006 16:18:57

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth Dataset File: D:\ICPMS Data\DataSet\08-16-06\608150-02.035

Tuning File: D:\ICPMS Data\Tuning\default.tun Optimization File: D:\ICPMS Data\Optimize\Default.dac Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 58 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	65249	2.81		ug/L
-	Be	9	15	963	5.22	0.375	ug/L
	Al	27	30236	310419447	2.01	8102.911	ug/L
	Sc	45	700355	851038	1.63		ug/L
	V	51	16349	1580342	0.61	21.973	ug/L
-	V-1	51	7600	1966277	0.59	26.995	ug/L
1	Cr	52	46918	747546	0.80	11.013	ug/L
- 1	Cr	53	2548	205035	0.19	26.594	ug/L
	Mn	55	4069	16117135	2.13	181.181	ug/L
- 1	Co	59	728	570503	0.98	7.411	ug/L
1	Ni	60	2164	358275	2.83	19.966	ug/L
	Ni	62	547	72915	0.29	26.665	ug/L
1	Cu	63	3953	927505	0.14	21.720	ug/L
- 1	Cu	65	1949	458044	1.96	22.735	ug/L
- 1	Zn	66	5390	1765394	2.15	160.770	ug/L
1	Zn	67	1013	293050	0.59	154.688	ug/L
- 1	Zn	68	4021	1266417	0.30	157.344	ug/L
L>	Ge	72	1798281	1810058	1.56		ug/L
Γ	As	75	-902	45668	0.05	4.268	ug/L
	As-1	75	259	76655	0.75	7.155	ug/L
1	Se	77	806	10629	1.23	10.904	ug/L
	Se	82	487	849	1.75	0.330	ug/L
	Υ	89	1627756	2436640	1.54		ug/L
-	Мо	95	755	11575	3.09	0.486	ug/L
	Мо	97	489	7344	3.31	0.493	ug/L
ļ	Мо	98	1246	18467	2.01	0.485	ug/L
ļ	Ag	107	229	7764	12.09	0.119	ug/L

Page 1

Sample ID: 608150-02

Report Date/Time: Thursday, September 07, 2006 13:15:15

	Ag	109	178	8516	13.05	0.139	ug/L
	Cd	106	2442	10038	0.41	5.654	ug/L
	Cd	108	11	1794	0.83	1.715	ug/L
	Cd	111	1914	11769	0.91	0.682	ug/L
1	Cd	114	199	13981	3.38	0.416	ug/L
>	In	115	1708474	1608766	0.32		ug/L
1	Sb	121	376	54153	19.01	1.336	ug/L
	Sb	123	240	40409	20.36	1.340	ug/L
	Ва	135	629	526143	0.66	44.282	ug/L
L	Ba	137	1074	891550	1.42	43.910	ug/L
Γ	Tb	159	1781693	1762407	1.31		ug/L
>	Ho	165	1759123	1709572	1.10		ug/L
	Hg	201	45	407	0.17	-15815.299	ug/L
	Hg	202	83	845	3.51	8334.492	ug/L
	TI	203	114	2552	1.88	0.056	ug/L
-	TI	205	208	6142	6.81	0.060	ug/L
	Pb	208	4961	440698860	1.47	3278.768	ug/L
	Bi	209	1048210	1051241	1.02		ug/L
	Th	232	279	131851	2.33	1.029	ug/L
L	U	238	625	37945	0.53	0.303	ug/L
	Fe	56	16567515	S	S		ug/L
	Ru	101	12	32	0.00		ug/L
	ArCl	77	768	10601	1.56		ug/L
	Kr	84	2212	-3370	0.85		ug/L
	Sn	118	1708	44866	0.52		ug/L
	QC C	alculated Va	lues				

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li			-p /	7.0 2	Dapinous Non /o Binorones
ĺ	9	Be					
i	27						
ĺ		Sc					
ĺ	51						
ĺ		V-1					
ĺ		Cr					
Ì		Cr					
1		Mn					
Ì	59	Co					
ĺ	60	Ni					
1	62	Ni					
		Cu					
1		Cu					
		Zn					
1		Zn					
		Zn					
L>	72	Ge		100.655			
Γ	75	As					
	75	As-1					
1	77	Se					
l	82	Se					
1	89						
		Мо					
ļ	97	Мо					
	98	Мо					
	107						
1	109						
1	106						
	108						
	111	Cd					

1	114	Cd			
>	115	In			94.164
1	121	Sb			
İ	123	Sb			
ĺ	135	Ba			
Ĺ	137	Ba			
Ē	159	Tb			
>	165	Но			97.183
1	201	Hg			
1	202	Hg			
	203	Ti			
	205	ΤI			
1	208	Pb			
	209	Bi			
	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCI			
	84	Kr			
	118	Sn			

#### **Quantitative Analysis - Summary Report**

Sample ID: 608150-03

Sample Date/Time: Wednesday, August 16, 2006 16:30:10

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam

Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\08-16-06\608150-03.038

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 61 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	58855	0.47		ug/L
	Be	9	15	992	1.21	0.395	ug/L
	Al	27	30236	304339755	4.35	8121.300	ug/L
	Sc	45	700355	808318	0.56		ug/L
	V	51	16349	1408626	1.56	19.992	ug/L
	V-1	51	7600	1813009	0.76	25.431	ug/L
	Cr	52	46918	602317	0.41	8.937	ug/L
	Cr	53	2548	200864	3.19	26.629	ug/L
	Mn	55	4069	16384506	2.07	188.213	ug/L
	Co	59	728	576264	0.56	7.650	ug/L
	Ni	60	2164	378304	2.79	21.552	ug/L
	Ni	62	547	73208	3.01	27.361	ug/L
	Cu	63	3953	613828	2.40	14.660	ug/L
	Cu	65	1949	310283	1.35	15.707	ug/L
	Zn	66	5390	805740	1.08	74.730	ug/L
	Zn	67	1013	134821	1.11	72.447	ug/L
	Zn	68	4021	570366	0.41	72.142	ug/L
L>	Ge	72	1798281	1771093	0.94		ug/L
Γ	As	75	-902	40431	5.11	3.687	ug/L
	As-1	75	259	72572	1.37	6.588	ug/L
	Se	77	806	11294	1.57	11.301	ug/L
	Se	82	487	866	3.27	0.325	ug/L
	Υ	89	1627756	2490555	1.83		ug/L
	Мо	95	755	11625	1.87	0.475	ug/L
	Мо	97	489	7475	2.30	0.488	ug/L
1	Мо	98	1246	18740	2.74	0.478	ug/L
-	Ag	107	229	4286	3.45	0.062	ug/L

Page 1

Sample ID: 608150-03

Report Date/Time: Thursday, September 07, 2006 13:15:28

1	Ag	109	178	4933	3.97	0.077	ug/L
	Cd	106	2442	8350	3.54	4.254	ug/L
-	Cd	108	11	1346	12.49	1.250	ug/L
	Cd	111	1914	8858	5.79	0.466	ug/L
	Cd	114	199	9392	2.01	0.270	ug/L
1:	> In	115	1708474	1653611	0.80		ug/L
1	Sb	121	376	18043	9.28	0.427	ug/L
	Sb	123	240	13545	7.79	0.432	ug/L
1	Ва	135	629	364312	2.23	29.817	ug/L
L	Ва	137	1074	626426	1.02	30.000	ug/L
Γ	Tb	159	1781693	1757321	1.17		ug/L
- 1:	> Ho	165	1759123	1703139	1.14		ug/L
1	Hg	201	45	279	1.01	-10302.166	ug/L
	Hg	202	83	627	0.90	5984.119	ug/L
-	ΤI	203	114	1897	1.38	0.041	ug/L
	TI	205	208	4525	0.22	0.044	ug/L
-	Pb	208	4961	22116545	0.07	165.146	ug/L
	Bi	209	1048210	983864	0.44		ug/L
	Th	232	279	114792	1.83	0.899	ug/L
L	U	238	625	38130	1.51	0.305	ug/L
	Fe	56	16567515	S	S		ug/L
	Ru	101	12	26	16.32		ug/L
	ArCI	77	768	10984	3.33		ug/L
	Kr	84	2212	-1374	13.69		ug/L
	Sn	118	1708	35343	0.39		ug/L
	QC Calc	ulated \	Values				
	Mass Analyte	QC Std	% Recovery Int Std % Re	covery Spike % Recovery	Dilution % D	ifference	Duplicate f
-				•			•

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li		·	•		
	9	Be					
1	27						
	45	Sc					
1	51	V					
	51	V-1					
1	52	Cr					
	53	Cr					
	55	Mn					
1	59	Co					
-	60	Ni					
	62	Ni					
		Cu					
-		Zn					
	67						
L>		Ge		98.488			
Γ		As					
	75	As-1					
1	89						
ļ		Мо					
		Мо					
		Мо					
ļ	107	Ag					
!	109						
	106						
	108						
1	111	Cd					

1	114	Cd				
>	115	In				96.789
1	121	Sb				
	123	Sb				
	135	Ва				
L	137	Ba				
Γ	159	Tb				
>	165	Но				96.818
1	201	Hg				
1	202	Hg				
1	203	TI				
1	205	TI				
	208	Pb				
	209	Bi				
1	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCl				
	84	Kr				

118 Sn

## **Quantitative Analysis - Summary Report**

#### Sample ID: 608150-04

Sample Date/Time: Wednesday, August 16, 2006 16:33:55

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2
Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam

Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\08-16-06\608150-04.039

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 62 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	56189	1.87		ug/L
-	Be	9	15	951	0.97	0.387	ug/L
	Al	27	30236	318870785	1.68	8700.394	ug/L
	Sc	45	700355	797221	2.74		ug/L
1	V	51	16349	1656137	1.40	24.088	ug/L
1	V-1	51	7600	2049779	0.58	29.424	ug/L
	Cr	52	46918	630704	0.43	9.624	ug/L
1	Cr	53	2548	192759	2.20	26.127	ug/L
1	Mn	55	4069	16201731	1.90	190.317	ug/L
	Co	59	728	579926	2.22	7.874	ug/L
1	Ni	60	2164	348271	0.10	20.283	ug/L
1	Ni	62	547	71850	0.23	27.469	ug/L
1	Cu	63	3953	469761	1.93	11.452	ug/L
	Cu	65	1949	234717	0.59	12.129	ug/L
	Zn	66	5390	768379	1.41	72.879	ug/L
1	Zn	67	1013	131557	2.76	72.290	ug/L
1	Zn	68	4021	546747	1.02	70.721	ug/L
L>	Ge	72	1798281	1731669	0.58		ug/L
Γ	As	75	-902	48328	3.54	4.435	ug/L
	As-1	75	259	79334	1.48	7.277	ug/L
1	Se	77	806	10782	1.71	10.868	ug/L
	Se	82	487	881	5.78	0.344	ug/L
l	Υ	89	1627756	2433849	0.37		ug/L
	Мо	95	755	11925	0.67	0.493	ug/L
	Мо	97	489	7803	1.95	0.516	ug/L
	Мо	98	1246	19153	0.97	0.495	ug/L
	Ag	107	229	4326	3.71	0.064	ug/L

Page 1

Sample ID: 608150-04

Report Date/Time: Thursday, September 07, 2006 13:15:30

	Ag	109	178	4883	0.17	0.077	ug/L
	Cd	106	2442	11515	2.30	6.586	ug/L
	Cd	108	11	2265	3.94	2.131	ug/L
1	Cd	111	1914	9466	3.25	0.513	ug/L
-	Cd	114	199	7563	0.53	0.219	ug/L
>	ln	115	1708474	1637306	1.50		ug/L
	Sb	121	376	13318	4.52	0.316	ug/L
1	Sb	123	240	9767	5.14	0.312	ug/L
	Ва	135	629	369862	1.62	30.570	ug/L
L	Ва	137	1074	624998	0.57	30.235	ug/L
Γ	Tb	159	1781693	1751075	2.28		ug/L
>	Ho	165	1759123	1716237	0.00		ug/L
1	Hg	201	45	204	3.82	-6930.352	ug/L
1	Hg	202	83	510	6.10	4660.606	ug/L
1	TI	203	114	2060	0.03	0.044	ug/L
	ΤI	205	208	4925	2.17	0.048	ug/L
1	Pb	208	4961	71552919	0.56	530.262	ug/L
	Bi	209	1048210	972586	1.26		ug/L
	Th	232	279	127177	1.84	0.989	ug/L
L	U	238	625	38724	0.34	0.308	ug/L
	Fe	56	16567515	S	S		ug/L
	Ru	101	12	33	4.29		ug/L
	ArCl	77	768	10634	1.24		ug/L
	Kr	84	2212	-4113	81.89		ug/L
	Sn	118	1708	31963	1.68		ug/L
	QC C	Calculated Va	lues				

------

	•	Juliu	latoa values				
		Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li					
1	9	Be					
	27	Al					
ļ	45	Sc					
	51						
		V-1					
!		Cr					
ļ	53	Cr					
	55	Mn					
ļ	59						
	60	Ni					
	62	Ni					
ļ		Cu					
1		Cu					
		Zn					
1	67						
		Zn					
L>		Ge		96.296			
ſ		As					
		As-1					
		Se					
!	82						
1		Υ					
1		Мо					
ļ	97	Мо					
į	98	Мо					
!		Ag					
	109						
	106						
	108						
1	111	Cd					

	114	Cd	
>	115	In	95.834
	121	Sb	
1	123	Sb	
1	135	Ва	
L	137	Ва	
Γ	159	Tb	
>	165	Но	97.562
1	201	Hg	
	202	Hg	
1	203	TI	
1	205	Ti	
	208	Pb	
1	209	Bi	
	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCl	
	84	Kr	
	118	Sn	

Sample ID: 608150-05

Sample Date/Time: Wednesday, August 16, 2006 16:37:39

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2
Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam
Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth
Dataset File: D:\ICPMS Data\DataSet\08-16-06\608150-05.040

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac

Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 63 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	56594	0.42		ug/L
Ì	Be	9	15	1103	1.67	0.460	ug/L
İ	Al	27	30236	308581473	3.23	8592.647	ug/L
Ì	Sc	45	700355	785780	0.28		ug/L
1	V	51	16349	1218591	3.14	18.029	ug/L
1	V-1	51	7600	1611583	2.30	23.587	ug/L
ĺ	Cr	52	46918	519287	3.74	7.967	ug/L
	Cr	53	2548	186398	1.69	25.780	ug/L
1	Mn	55	4069	19102637	0.23	229.036	ug/L
1	Co	59	728	636417	2.81	8.820	ug/L
	Ni	60	2164	442583	1.21	26.343	ug/L
	Ni	62	547	79572	0.11	31.074	ug/L
	Cu	63	3953	804354	0.60	20.084	ug/L
	Cu	65	1949	396627	1.34	20.989	ug/L
	Zn	66	5390	904193	0.33	87.622	ug/L
	Zn	67	1013	151049	0.58	84.810	ug/L
	Zn	68	4021	656424	0.78	86.769	ug/L
[>	Ge	72	1798281	1696731	0.55		ug/L
Γ	As	75	-902	31447	1.70	2.966	ug/L
	As-1	75	259	62913	0.85	5.874	ug/L
	Se	77	806	11065	3.63	11.396	ug/L
	Se	82	487	913	0.31	0.386	ug/L
	Υ	89	1627756	2558957	1.49		ug/L
1	Мо	95	755	12394	0.46	0.524	ug/L
	Мо	97	489	7830	2.05	0.528	ug/L
	Мо	98	1246	19497	0.45	0.514	ug/L
1	Ag	107	229	4090	0.52	0.061	ug/L

Page 1

Sample ID: 608150-05

	Ag	109	178	4425	2.09	0.071	ug/L
1	Cd	106	2442	9496	2.87	5.265	ug/L
	Cd	108	11	1513	1.77	1.446	ug/L
	Cd	111	1914	9295	1.30	0.513	ug/L
	Cd	114	199	9035	2.45	0.267	ug/L
>	In	115	1708474	1607325	0.23		ug/L
	Sb	121	376	12300	1.92	0.297	ug/L
	Sb	123	240	9341	0.06	0.304	ug/L
	Ва	135	629	382588	0.03	32.215	ug/L
L	Ва	137	1074	658423	0.87	32.445	ug/L
Γ	Tb	159	1781693	1752889	1.12		ug/L
>	Ho	165	1759123	1678639	1.34		ug/L
	Hg	201	45	197	4.31	-6837.967	ug/L
	Hg	202	83	458	1.54	4207.078	ug/L
	Τl	203	114	1595	4.12	0.035	ug/L
	TI	205	208	3808	0.65	0.037	ug/L
	Pb	208	4961	80905778	1.38	613.120	ug/L
	Bi	209	1048210	961319	0.15		ug/L
	Th	232	279	125726	1.45	1.000	ug/L
L	U	238	625	39082	0.74	0.318	ug/L
	Fe	56	16567515	S	S		ug/L
	Ru	101	12	28	10.10		ug/L
	ArCl	77	768	10807	0.03		ug/L
	Kr	84	2212	385	235.64		ug/L
	Sn	118	1708	42695	0.96		ug/L
	QC C	alculated Va	alues				

	Mass	Analida	OC 044 0/ Danson	Int Otal O/ Decrees	0.11.0/.0	D" " 0' D'"	- "
г		Analyte Li	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
1	9						
	27	DE Al					
1		Al Sa					
1	45 51	Sc					
1							
1		V-1					
l L		Cr					
i		Cr					
1							
l i	59						
l 1	60						
1	62						
!		Cu					
ļ		Cu					
		Zn					
		Zn					
		Zn					
۲>		Ge		94.353			
!		As					
!		As-1					
!		Se					
ļ	82						
1	89						
ļ		Мо					
!		Мо					
ļ	98	Мо					
!	107						
]	109						
ļ	106						
	108						
	111	Cd					

1	114	Cd	
>	115	In	94.080
	121	Sb	
1	123	Sb	
1	135	Ва	
L	137	Ва	
Γ	159	Tb	
>	165	Но	95.425
1	201	Hg	
1	202	Hg	
	203	TI	
	205	TI	
	208	Pb	
	209	Bi	
1	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCl	
	84	Kr	
	118	Sn	

Sample ID: 608150-06

Sample Date/Time: Wednesday, August 16, 2006 16:41:23

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam

Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\08-16-06\608150-06.041

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 64 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	56505	2.82		ug/L
1	Be	9	15	893	4.36	0.365	ug/L
Ĺ	Al	27	30236	328327097	0.41	8999.338	ug/L
İ	Sc	45	700355	824057	0.97		ug/L
1	V	51	16349	1624956	2.97	23.738	ug/L
1	V-1	51	7600	2091792	1.25	30.164	ug/L
i	Cr	52	46918	594975	2.42	9.081	ug/L
	Cr	53	2548	196565	1.05	26.770	ug/L
1	Mn	55	4069	17060450	1.00	201.325	ug/L
	Co	59	728	552958	0.57	7.542	ug/L
1	Ni	60	2164	309883	1.59	18.116	ug/L
1	Ni	62	547	67432	3.46	25.884	ug/L
1	Cu	63	3953	487017	0.81	11.931	ug/L
1	Cu	65	1949	251213	0.11	13.048	ug/L
1	Zn	66	5390	450759	1.15	42.741	ug/L
1	Zn	67	1013	83145	1.27	45.700	ug/L
	Zn	68	4021	320212	1.09	41.397	ug/L
L>	Ge	72	1798281	1723850	0.17		ug/L
Γ	As	75	-902	36652	6.24	3.378	ug/L
	As-1	75	259	69391	2.87	6.353	ug/L
	Se	77	806	11134	0.28	11.231	ug/L
1	Se	82	487	815	6.59	0.289	ug/L
- 1	Υ	89	1627756	2424918	2.71		ug/L
- 1	Мо	95	755	10495	2.47	0.429	ug/L
	Мо	97	489	6593	0.19	0.430	ug/L
	Мо	98	1246	16495	0.11	0.421	ug/L
	Ag	107	229	5003	3.86	0.074	ug/L

Page 1

Sample ID: 608150-06

QC Calc	ulated Values	3				
						~ <del>5</del> · <b>–</b>
Sn	118	· <del>_</del>				ug/L
Kr	84	2212				ug/L
	77					ug/L
						ug/L
					0.290	ug/L
						ug/L ug/L
					0.890	ug/L ug/L
			- · - · · -		57.505	ug/L ug/L
						ug/L ug/L
						_
-						ug/L ug/L
_						-
					-3201 004	
						ug/L ug/L
					30.034	ug/L ug/L
						-
		— · <del>-</del>				ug/L ug/L
						-
					0.320	ug/L
					0.122	_
						ug/L ug/L
						-
						-
_						-
Δ	100	470	E40E	6.07	0.002	ua/l
	Sn	Cd 106 Cd 108 Cd 111 Cd 114 In 115 Sb 121 Sb 123 Ba 135 Ba 137 Tb 159 Ho 165 Hg 201 Hg 202 Tl 203 Tl 205 Pb 208 Bi 209 Th 232 U 238 Fe 56 Ru 101 ArCl 77 Kr 84 Sn 118	Cd       106       2442         Cd       108       11         Cd       111       1914         Cd       114       199         In       115       1708474         Sb       121       376         Sb       123       240         Ba       135       629         Ba       137       1074         Tb       159       1781693         Ho       165       1759123         Hg       201       45         Hg       202       83         Tl       203       114         Tl       205       208         Pb       208       4961         Bi       209       1048210         Th       232       279         U       238       625         Fe       56       16567515         Ru       101       12         ArCl       77       768         Kr       84       2212         Sn       118       1708	Cd         106         2442         13769           Cd         108         11         3333           Cd         111         1914         8732           Cd         114         199         4318           In         115         1708474         1639532           Sb         121         376         13481           Sb         123         240         10300           Ba         135         629         439474           Ba         137         1074         762334           Tb         159         1781693         1783623           Ho         165         1759123         1707058           Hg         201         45         119           Hg         201         45         119           Hg         202         83         291           Tl         203         114         1933           Tl         205         208         4477           Pb         208         4961         7701775           Bi         209         1048210         951672           Th         232         279         113908           U         238	Cd         106         2442         13769         4.86           Cd         108         11         3333         2.20           Cd         111         1914         8732         7.58           Cd         114         199         4318         3.62           In         115         1708474         1639532         0.20           Sb         121         376         13481         1.49           Sb         123         240         10300         1.70           Ba         135         629         439474         1.20           Ba         137         1074         762334         0.34           Tb         159         1781693         1783623         0.71           Ho         165         1759123         1707058         1.63           Hg         201         45         119         5.94           Hg         202         83         291         1.22           Tl         203         114         1933         0.91           Tl         205         208         4477         0.13           Pb         208         4961         7701775         1.66	Cd         106         2442         13769         4.86         8.192           Cd         108         11         3333         2.20         3.135           Cd         111         1914         8732         7.58         0.463           Cd         114         199         4318         3.62         0.122           In         115         1708474         1639532         0.20           Sb         121         376         13481         1.49         0.320           Sb         123         240         10300         1.70         0.330           Ba         135         629         439474         1.20         36.284           Ba         137         1074         762334         0.34         36.834           Tb         159         1781693         1783623         0.71           Ho         165         1759123         1707058         1.63           Hg         201         45         119         5.94         -3291.994           Hg         202         83         291         1.22         2293.798           Tl         203         114         1933         0.91         0.042 <t< td=""></t<>

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li		-	•		•
	9	Ве					
1	27	Al					
	45	Sc					
	51	٧					
1	51	V-1					
-	52	Cr					
	53	Cr					
	55	Mn					
1	59	Co					
	60	Ni					
	62	Ni					
	63	Cu					
	65	Cu					
	66	Zn					
	67	Zn					
	68	Zn					
L>		Ge		95.861			
Γ	75	As					
		As-1					
1	89						
		Mo					
	97						
ı		Мо					
		Ag					
		Ag					
!		Cd					
		Cd					
	111	Cd					

	114	Cd			
>	115	In			95.965
1	121	Sb			
	123	Sb			
1	135	Ba			
L	137	Ba			
Γ	159	Tb			
>	165	Но			97.040
	201	Hg			
	202	Hg			
1	203	TI			
	205	TI			
1	208	Pb			
	209	Bi			
	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			

Sample ID: 608150-07

Sample Date/Time: Wednesday, August 16, 2006 16:45:07

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam

Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\08-16-06\608150-07.042

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 65 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	54719	2.53		ug/L
	Be	9	15	943	0.98	0.385	ug/L
	Al	27	30236	329315109	0.60	9020.014	ug/L
	Sc	45	700355	800264	3.51		ug/L
	V	51	16349	1839373	1.13	26.881	ug/L
	V-1	51	7600	2249200	0.24	32.419	ug/L
	Cr	52	46918	649413	1.68	9.972	ug/L
	Cr	53	2548	203628	0.43	27.724	ug/L
	Mn	55	4069	15470378	2.59	182.426	ug/L
	Со	59	728	550993	0.83	7.509	ug/L
	Ni	60	2164	332943	1.86	19.459	ug/L
	Ni	62	547	68695	0.57	26.354	ug/L
	Cu	63	3953	354601	0.01	8.656	ug/L
	Cu	65	1949	180953	3.88	9.364	ug/L
	Zn	66	5390	358768	0.53	33.893	ug/L
	Zn	67	1013	68438	0.31	37.494	ug/L
	Zn	68	4021	252074	1.27	32.458	ug/L
L>	Ge	72	1798281	1725082	0.07		ug/L
Γ	As	75	-902	55727	4.92	5.004	ug/L
	As-1	75	259	90385	1.90	8.131	ug/L
	Se	77	806	11461	2.12	11.360	ug/L
	Se	82	487	799	2.57	0.263	ug/L
	Υ	89	1627756	2449871	2.66		ug/L
	Мо	95	755	12220	0.66	0.495	ug/L
	Мо	97	489	7784	2.20	0.504	ug/L
	Мо	98	1246	19966	1.25	0.506	ug/L
1	Ag	107	229	4921	6.20	0.072	ug/L

Page 1

Sample ID: 608150-07

1	Ag	109	178	4735	0.81	0.073	ug/L
i	Cď	106	2442	14902	1.54	8.810	ug/L
i	Cd	108	11	3881	10.47	3.586	ug/L
i	Cd	111	1914	8607	3.41	0.444	ug/L
i	Cd	114	199	2977	0.84	0.081	ug/L
i>	In	115	1708474	1669850	0.25		ug/L
i	Sb	121	376	8330	3.08	0.191	ug/L
i	Sb	123	240	6168	2.60	0.191	ug/L
ì	Ва	135	629	332430	0.40	26.935	ug/L
Ĺ	Ва	137	1074	570668	0.83	27.059	ug/L
Ī	Tb	159	1781693	1773678	1.45		ug/L
İ>	Ho	165	1759123	1733284	1.40		ug/L
j	Hg	201	45	99	5.71	-2352.368	ug/L
İ	Hg	202	83	239	2.37	1691.781	ug/L
1	TI	203	114	2335	0.21	0.050	ug/L
	TI	205	208	5495	0.48	0.053	
-	Pb	208	4961	3546605	0.90	25.995	ug/L
1	Bi	209	1048210	952299	0.73		ug/L
İ	Th	232	279	133997	1.78	1.032	•
Ĺ	U	238	625	38556	0.16	0.303	•
	Fe	56	16567515	S	S		ug/L
	Ru	101	12	30	2.40		ug/L
	ArCl	77	768	11734	2.65		ug/L
	Kr	84	2212	-6000	65.06		ug/L
	Sn	118	1708	16285	0.10		ug/L
	QC Calc	ulated Valu	ıes				
	Mass Analyte	QC Std % R	ecovery Int Std % R	ecovery Spike % Recovery	Dilution % D	ifference	Duplicate Rel. % I
Γ	6 Li						
i	9 Re						

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li					
1	9	Be					
1	27	Al					
ĺ	45	Sc					
ĺ	51						
ĺ		V-1					
	52	Cr					
	53	Cr					
	55	Mn					
1	59	Co					
-	60	Ni					
-	62	Ni					
	63	Cu					
1	65	Cu					
	66	Zn					
-	67	Zn					
-	68	Zn					
<u>_</u> >		Ge		95.930			
Γ	75	As					
		As-1					
-		Se					
ı		Se					
	89						
1	95	Мо					
	97						
	98	Мо					
	107						
	109						
	106						
	108						
	111	Cd					

1	114	Cd			
>	115	ln			97.739
	121	Sb			
1	123	Sb			
	135	Ba			
L	137	Ва			
Γ	159	Tb			
>	165	Ho			98.531
1	201	Hg			
1	202	Hg			
1	203	TI			
1	205	TI			
	208	Pb			
	209	Bi			
	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			

### Sample ID: 608150-08

Sample Date/Time: Wednesday, August 16, 2006 16:52:35

Sample Description: soil User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth Dataset File: D:\ICPMS Data\DataSet\08-16-06\608150-08.044

Tuning File: D:\ICPMS Data\Tuning\default.tun Optimization File: D:\ICPMS Data\Optimize\Default.dac Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 66 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

## **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	54088	1.48		ug/L
	Be	9	15	935	7.87	0.390	ug/L
	Al	27	30236	305445984	0.21	8515.395	ug/L
	Sc	45	700355	778804	3.22		ug/L
	V	51	16349	1733589	2.20	25.783	ug/L
	V-1	51	7600	2100055	0.38	30.805	ug/L
	Cr	52	46918	630930	1.94	9.855	ug/L
	Cr	53	2548	185097	6.44	25.607	ug/L
	Mn	55	4069	15251491	0.17	183.051	ug/L
	Co	59	728	550103	0.23	7.631	ug/L
	Ni	60	2164	332928	1.35	19.809	ug/L
	Ni	62	547	69845	2.34	27.273	ug/L
	Cu	63	3953	311436	2.96	7.730	ug/L
	Cu	65	1949	161960	1.12	8.523	ug/L
	Zn	66	5390	676453	0.16	65.498	ug/L
	Zn	67	1013	114909	0.31	64.461	ug/L
	Zn	68	4021	477501	0.44	63.044	ug/L
L>	Ge	72	1798281	1695260	2.09		ug/L
٢	As	75	-902	55035	0.85	4.977	ug/L
	As-1	75	259	87204	0.31	7.898	ug/L
	Se	77	806	10521	3.96	10.437	ug/L
	Se	82	487	858	10.05	0.316	ug/L
	Υ	89	1627756	2407202	0.20		ug/L
	Мо	95	755	13695	3.12	0.563	ug/L
	Мо	97	489	8886	8.16	0.584	ug/L
	Мо	98	1246	22681	7.71	0.584	ug/L
İ	Ag	107	229	8050	18.90	0.120	ug/L

Page 1

Sample ID: 608150-08

	Ag	109					
j	-	103	178	8006	19.95	0.127	ug/L
	Cd	106	2442	13253	1.07	7.713	-
İ	Cd	108	11	3222	2.64	2.996	
İ	Cd	111	1914	8674	0.76	0.452	
ĺ	Cd	114	199	4653	0.14	0.130	<del>-</del>
ĺ>	. In	115	1708474	1658476	0.14		ug/L
ĺ	Sb	121	376	15237	17.02	0.358	
	Sb	123	240	11493	18.43	0.364	ug/L
ĺ	Ва	135	629	321101	2.64	26.194	=
L	Ba	137	1074	546296	0.22	26.080	_
Γ	Tb	159	1781693	1763560	1.35		ug/L
>	. Но	165	1759123	1728672	2.16		ug/L
-	Hg	201	45	124	9.73	-3413.491	
- 1	Hg	202	83	259	5.74	1907.192	ug/L
-	TI	203	114	4125	45.76	0.090	ug/L
- 1	TI	205	208	10456	50.37	0.103	ug/L
	Pb	208	4961	3097604	0.00	22.761	ug/L
	Bi	209	1048210	952641	0.04		ug/L
	Th	232	279	162075	11.35	1.251	ug/L
L	U	238	625	40671	8.97	0.321	ug/L
	Fe	56	16567515	S	S		ug/L
	Ru	101	12	34	16.64		ug/L
	ArCI	77	768	10987	1.49		ug/L
	Kr	84	2212	-4543	80.85		ug/L
	Sn	118	1708	20743	2.72		ug/L
	QC Calc	ulated \	/alues				
[	Mass Analyte 6 Li 9 Be 27 Al 45 Sc	QC Std	% Recovery Int Std % R	Recovery Spike % Recovery	Dilution % Di	ifference	Duplicate Rel. % Difference

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike %
Γ	6	Li			
	9	Be			
1	27	Al			
	45	Sc			
1	51	V			
1	51	V-1			
1	52	Cr			
1	53	Cr			
1	55	Mn			
	59	Co			
	60	Ni			
	62	Ni			
	63	Cu			
	65	Cu			
}	66	Zn			
	67	Zn			
	68	Zn			
L>	72	Ge		94.271	
Ţ	75	As			
1	75	As-1			
1	77	Se			
1	82	Se			
1	89	Υ			
1	95	Мо			
1	97	Мо			
	98	Мо			
1	107	Ag			
	109	Ag			
1	106	Cd			
1	108	Cd			
1	111	Cd			

	114	Cd				
>	115	ln				97.074
	121	Sb				
	123	Sb				
1	135	Ba				
L	137	Ba				
Γ	159	Tb				
>	165	Но				98.269
1	201	Hg				
	202	Hg				
-	203	TI				
	205	TI				
1	208	Pb				
1	209	Bi				
	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCI				
	84	Kr				
	118	Sn				

Sample ID: 608150-09

Sample Date/Time: Wednesday, August 16, 2006 16:56:19

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam

Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\08-16-06\608150-09.045

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 67 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	52864	0.51		ug/L
Ì	Be	9	15	917	3.47	0.378	ug/L
1	Al	27	30236	312421306	2.91	8623.746	ug/L
1	Sc	45	700355	780445	1.81		ug/L
	V	51	16349	1799161	0.01	26.493	ug/L
	V-1	51	7600	2182027	0.60	31.691	ug/L
	Cr	52	46918	642667	0.97	9.943	
	Cr	53	2548	193866	4.81	26.582	ug/L
	Mn	55	4069	15053929	0.56	178.885	ug/L
	Со	59	728	545063	0.35	7.486	
	Ni	60	2164	334179	1.53	19.682	ug/L
	Ni	62	547	69957	4.09	27.049	ug/L
	Cu	63	3953	333514	1.58	8.199	ug/L
	Cu	65	1949	169139	1.41	8.814	ug/L
	Zn	66	5390	793987	0.31	76.198	ug/L
	Zn	67	1013	131847	1.88	73.302	ug/L
	Zn	68	4021	555385	1.02	72.678	ug/L
L>	Ge	72	1798281	1711889	0.40		ug/L
Γ	As	75	-902	57726	0.64	5.275	ug/L
	As-1	75	259	89821	1.00	8.229	ug/L
	Se	77	806	11068	2.68	11.157	ug/L
	Se	82	487	812	0.09	0.286	ug/L
	Υ	89	1627756	2412745	0.31		ug/L
	Мо	95	755	12621	1.08	0.523	ug/L
1	Мо	97	489	8090	3.54	0.536	ug/L
	Мо	98	1246	20458	0.85	0.530	
1	Ag	107	229	5705	1.90	0.085	ug/L

Page 1

Sample ID: 608150-09

	Ag	109	178	5552	3.53	0.088	ug/L
	Cd	106	2442	14135	6.39	8.452	ug/L
	Cd	108	11	3555	3.45	3.344	ug/L
	Cd	111	1914	9275	8.99	0.499	ug/L
	Cd	114	199	5094	3.06	0.145	ug/L
>	In	115	1708474	1639776	0.11		ug/L
	Sb	121	376	9398	5.08	0.220	ug/L
	Sb	123	240	7135	2.42	0.226	ug/L
1	Ва	135	629	327808	0.41	27.048	ug/L
L	Ba	137	1074	560050	0.10	27.043	ug/L
Γ	Tb	159	1781693	1763308	0.04		ug/L
>	Но	165	1759123	1718685	1.14		ug/L
	Hg	201	45	103	4.83	-2537.240	ug/L
	Hg	202	83	261	1.36	1946.567	ug/L
	ΤI	203	114	2480	3.94	0.054	ug/L
	TI	205	208	5753	1.62	0.056	ug/L
	Pb	208	4961	3294111	0.25	24.344	ug/L
	Bi	209	1048210	939026	1.76		ug/L
	Th	232	279	136222	0.86	1.058	ug/L
L	U	238	625	38280	0.32	0.304	ug/L
	Fe	56	16567515	S	S		ug/L
	Ru	101	12	39	7.25		ug/L
	ArCl	77	768	10925	3.71		ug/L
	Kr	84	2212	-5855	60.82		ug/L
	Sn	118	1708	21151	2.66		ug/L
	QC C	alculated Va	lues				

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li	•				
	9	Be					
	27	Al					
	45	Sc					
-	51						
	51	V-1					
1	52	Cr					
		Cr					
	55	Mn					
	59	Co					
	60	Ni					
	62	Ni					
	63	Cu					
	65	Cu					
	66	Zn					
	67	Zn					
	68	Zn					
<u>_</u> >	72	Ge		95.196			
Γ	75						
		As-1					
		Se					
	82						
		Υ					
		Мо					
	98	Мо					
ļ	107	Ag					
ļ		Ag					
1	106						
!		Cd					
l	111	Cd					

1	114	Cd	
>	115	In	95.979
1	121	Sb	
ĺ	123	Sb	
ĺ	135	Ba	
Ł	137	Ва	
Γ	159	Tb	
>	165	Но	97.701
-	201	Hg	
	202	Hg	
	203	TI	
	205	TI	
İ	208	Pb	
-	209	Bi	
1	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCl	
	84	Kr	
	118	Sn	

Sample ID: 608150-18

Sample Date/Time: Wednesday, August 16, 2006 17:00:03

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam

Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\08-16-06\608150-18.046

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 68 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	55457	1.79		ug/L
ĺ	Be	9	15	767	1.48	0.320	ug/L
	Al	27	30236	294987568	0.37	8279.855	ug/L
	Sc	45	700355	793566	0.80		ug/L
	V	51	16349	1624930	0.78	24.311	ug/L
1	V-1	51	7600	2050541	0.39	30.279	ug/L
	Cr	52	46918	990556	0.51	16.005	ug/L
1	Cr	53	2548	249375	0.60	34.877	ug/L
	Mn	55	4069	14544430	1.93	175.777	ug/L
	Co	59	728	510358	1.04	7.127	ug/L
	Ni	60	2164	316151	1.25	18.933	ug/L
	Ni	62	547	66338	2.81	26.071	ug/L
	Cu	63	3953	454149	0.01	11.389	ug/L
	Cu	65	1949	231044	0.28	12.282	ug/L
	Zn	66	5390	1519471	1.95	148.727	ug/L
	Zn	67	1013	246877	0.78	140.065	ug/L
	Zn	68	4021	1081633	0.19	144.429	ug/L
L>	Ge	72	1798281	1683693	1.75		ug/L
Γ	As	75	-902	46525	2.98	4.335	ug/L
	As-1	75	259	78964	1.61	7.352	ug/L
1	Se	77	806	11002	0.50	11.284	ug/L
	Se	82	487	828	2.31	0.311	ug/L
1	Υ	89	1627756	2252115	0.40		ug/L
-	Мо	95	755	11805	0.70	0.495	ug/L
	Мо	97	489	7639	0.20	0.513	ug/L
1	Мо	98	1246	18897	3.80	0.495	ug/L
	Ag	107	229	5749	1.11	0.087	ug/L

Page 1

Sample ID: 608150-18

	Ag	109	178	6020	0.62	0.097	ug/L
1	Cd	106	2442	8532	1.79	4.537	ug/L
	Cd	108	11	1002	14.57	0.952	ug/L
1	Cd	111	1914	9475	1.93	0.523	ug/L
	Cd	114	199	10209	1.11	0.301	ug/L
>	In	115	1708474	1613075	0.87		ug/L
	Sb	121	376	27131	0.80	0.663	ug/L
	Sb	123	240	20511	2.22	0.675	ug/L
	Ва	135	629	473732	0.07	39.761	ug/L
L	Ba	137	1074	811229	1.30	39.843	ug/L
٢	Tb	159	1781693	1730891	0.75		ug/L
>	Но	165	1759123	1688239	0.52		ug/L
	Hg	201	45	376	1.32	-14670.597	ug/L
	Hg	202	83	811	0.70	8076.946	ug/L
	ΤI	203	114	2003	3.07	0.044	ug/L
	TI	205	208	4896	0.82	0.048	ug/L
	Pb	208	4961	114263838	0.46	860.849	ug/L
	Bi	209	1048210	968195	0.91		ug/L
	Th	232	279	101344	0.32	0.801	ug/L
L	U	238	625	41952	0.40	0.339	ug/L
	Fe	56	16567515	S	S		ug/L
	Ru	101	12	28	0.00		ug/L
	ArCl	77	768	11048	0.20		ug/L
	Kr	84	2212	-2333	59.60		ug/L
	Sn	118	1708	65578	2.91		ug/L
	QC C	alculated Va	lues				
	-						

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li	•	•			
	9	Be					
İ	27	Al					
İ	45	Sc					
- 1	51						
ĺ	51	V-1					
1	52						
1		Cr					
-		Mn					
	59	Co					
	60	Ni					
1	62						
	63	Cu					
	65	Cu					
	66						
	67						
	68	Zn					
L>	72	Ge		93.628			
Γ	75	As					
	75	As-1					
	77	Se					
	89	Υ					
		Mo					
	97	Мо					
1	98	Мо					
		Ag					
	109	Ag					
- [	106						
		Cd					
	111	Cd					

	114	Cd			
>	115	In			94.416
ļ	121	Sb			
	123	Sb			
1	135	Ba			
L	137	Ва			
Γ	159	Tb			
>	165	Ho			95.971
	201	Hg			
Ì	202	Hg			
1	203	TI			
1	205	TI			
1	208	Pb			
	209	Bi			
	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			

Sample ID: 608150-19

Sample Date/Time: Wednesday, August 16, 2006 17:03:47

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam
Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth
Dataset File: D:\ICPMS Data\DataSet\08-16-06\608150-19.047

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 69 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

### Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	55648	2.04		ug/L
Ì	Be	9	15	870	9.68	0.353	ug/L
ĺ	Al	27	30236	399844438	0.69	10869.526	ug/L
1	Sc	45	700355	823948	1.68		ug/L
	V	51	16349	2095959	0.11	30.431	ug/L
	V-1	51	7600	2555728	1.48	36.572	ug/L
1	Cr	52	46918	1666522	0.12	26.547	ug/L
	Cr	53	2548	325536	1.64	44.183	ug/L
	Mn	55	4069	19691548	0.63	230.482	ug/L
	Co	59	728	753819	2.08	10.199	ug/L
	Ni	60	2164	427615	1.90	24.841	ug/L
	Ni	62	547	88946	0.26	33.925	ug/L
	Cu	63	3953	1489192	0.40	36.375	ug/L
	Cu	65	1949	746852	2.08	38.667	ug/L
	Zn	66	5390	13577321	0.09	1291.185	ug/L
	Zn	67	1013	2093459	0.88	1154.124	ug/L
	Zn	68	4021	9584143	0.46	1243.391	ug/L
<b> </b> >	Ge	72	1798281	1738211	1.15		ug/L
Γ	As	75	-902	68715	4.14	6.132	ug/L
	As-1	75	259	99390	0.49	8.916	ug/L
	Se	77	806	10882	0.04	10.708	ug/L
	Se	82	487	1318	3.38	0.683	ug/L
	Υ	89	1627756	2223057	1.09		ug/L
	Мо	95	755	14576	1.66	0.595	ug/L
l	Мо	97	489	9500	1.11	0.621	•
	Мо	98	1246	24089	1.42	0.616	ug/L
	Ag	107	229	10835	1.48	0.161	ug/L

Page 1

Sample ID: 608150-19

1	Ag	109	178	12724	0.75	0.201	ug/L
-	Cd	106	2442	13969	1.77	8.122	ug/L
	Cd	108	11	2153	3.72	1.979	ug/L
1	Cd	111	1914	34032	1.09	2.113	ug/L
-	Cd	114	199	60907	0.18	1.759	ug/L
>	ln	115	1708474	1675114	1.21		ug/L
1	Sb	121	376	73947	1.30	1.755	ug/L
	Sb	123	240	55573	1.28	1.772	ug/L
	Ba	135	629	2212067	1.92	178.943	ug/L
L	Ва	137	1074	3839247	2.40	181.746	ug/L
Γ	Tb	159	1781693	1765657	0.47		ug/L
>	Но	165	1759123	1710332	0.14		ug/L
1	Hg	201	45	787	1.35	-32364.980	ug/L
	Hg	202	83	1766	4.13	18366.075	ug/L
1	TI	203	114	1472	0.53	0.031	ug/L
	TI	205	208	3565	2.54	0.034	ug/L
1	Pb	208	4961	258094001	1.65	1919.351	ug/L
	Bi	209	1048210	1028334	1.37		ug/L
	Th	232	279	93131	5.40	0.726	ug/L
L	U	238	625	45881	1.77	0.367	ug/L
	Fe	56	16567515	S	S		ug/L
	Ru	101	12	58	14.63		ug/L
	ArCl	77	768	10883	6.60		ug/L
	Kr	84	2212	356	276.49		ug/L
	Sn	118	1708	159252	0.33		ug/L
	QC C	alculated Va	alues				

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6		·	·	·		
1	9	Be					
	27	' Al					
	45	Sc					
- 1	51	V					
	51	V-1					
- 1	52	. Cr					
	53	Cr					
	55	Mn					
- 1	59	Co					
	60	Ni					
-		Ni					
	63						
ļ		Cu					
ļ	66	Zn					
	67						
-	68						
L				96.660			
Γ		As					
		As-1					
1	77						
İ		Se					
1	89						
1	95						
	97						
	98						
ļ	107						
-	109						
- !	106						
Ţ	108						
	111	Cd					

1	114	Cd			
>	115	In			98.047
i	121	Sb			
1	123	Sb			
	135	Ва			
Ĺ	137	Ba			
Ī	159	Tb			
>	165	Но			97.226
	201	Hg			
1	202	Hg			
1	203	TI			
1	205	Ti			
1	208	Pb			
1	209	Bi			
1	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			
	118	Sn			

Sample ID: 608150-10 10x

Sample Date/Time: Wednesday, August 16, 2006 17:07:31

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam
Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth
Dataset File: D:\ICPMS Data\Data\Data\Set\08-16-06\608150-10 10x.048

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 70 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	52457	2.05		ug/L
	Be	9	15	17	55.71	0.001	ug/L
1	Al	27	30236	435171	7.12	11.517	ug/L
	Sc	45	700355	704484	0.32		ug/L
	V	51	16349	18398	2.68	0.049	ug/L
	V-1	51	7600	131625	9.49	1.863	ug/L
	Cr	52	46918	69777	1.23	0.447	ug/L
	Cr	53	2548	44036	8.99	5.938	ug/L
	Mn	55	4069	27032	5.74	0.283	ug/L
1	Co	59	728	3760	1.88	0.043	ug/L
	Ni	60	2164	1767	15.69	-0.015	ug/L
	Ni	62	547	484	12.43	-0.010	ug/L
	Cu	63	3953	9435	2.75	0.147	ug/L
	Cu	65	1949	4842	4.46	0.164	ug/L
	Zn	66	5390	749215	0.03	73.711	ug/L
	Zn	67	1013	116082	1.34	66.115	ug/L
	Zn	68	4021	524685	1.51	70.398	ug/L
<u> </u> >	Ge	72	1798281	1669645	1.45		ug/L
Γ	As	75	-902	612	39.53	0.133	ug/L
	As-1	75	259	4567	0.14	0.393	ug/L
	Se	77	806	1684	10.21	0.973	ug/L
	Se	82	487	469	5.13	-0.002	ug/L
1	Υ	89	1627756	1491917	0.99		ug/L
	Мо	95	755	575	9.87	-0.007	ug/L
	Мо	97	489	359	0.63	-0.008	ug/L
	Мо	98	1246	925	0.09	-0.008	ug/L
ŀ	Ag	107	229	395	9.14	0.003	ug/L

Page 1

Sample ID: 608150-10 10x

	Ag	109	178	348	0.20	0.003	ug/L
	Cd	106	2442	2248	3.90	-0.082	ug/L
	Cd	108	11	34	56.07	0.022	ug/L
	Cd	111	1914	1918	2.86	0.004	ug/L
	Cd	114	199	579	8.10	0.011	ug/L
>	In	115	1708474	1653088	0.73		ug/L
	Sb	121	376	81135	0.45	1.952	ug/L
	Sb	123	240	61717	1.34	1.995	ug/L
	Ba	135	629	17344	5.15	1.372	ug/L
L	Ва	137	1074	29768	2.69	1.379	ug/L
Γ	Tb	159	1781693	1723524	0.28		ug/L
>	Но	165	1759123	1696363	1.24		ug/L
	Hg	201	45	93	16.05	-2161.690	ug/L
	Hg	202	83	191	5.92	1220.443	ug/L
	TI	203	114	6456	4.58	0.146	ug/L
	TI	205	208	15576	5.55	0.158	ug/L
	Pb	208	4961	29327024	0.31	219.874	ug/L
	Bi	209	1048210	1000452	2.19		ug/L
	Th	232	279	2783	17.46	0.020	ug/L
L	U	238	625	344	11.10	-0.002	ug/L
	Fe	56	16567515	18776470	4.91		ug/L
	Ru	101	12	16	31.93		ug/L
	ArCl	77	768	1647	6.01		ug/L
	Kr	84	2212	2009	0.53		ug/L
	Sn	118	1708	3677	6.21		ug/L
	QC C	alculated Va	lues				

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li				2.144017 /0 2.110101100	Bupineate Neil. 78 Billerence
ĺ	9	Be					
İ		Al					
İ		Sc					
İ	51						
i		V-1					
ĺ		Cr					
İ		Cr					
ĺ		Mn					
Ì		Co					
i	60	Ni					
i	62						
i		Cu					
i		Cu					
İ	66						
İ	67						
1	68						
<u> </u>		Ge		92.847			
Γ	75						
1		As-1					
	77						
	82	Se					
1	89	Υ					
	95	Мо					
	97	Мо					
		Мо					
	107	Ag					
1		Ag					
1	106						
	108						
1	111						

1	114	Cd				
:	<b>115</b>	In				96.758
	121	Sb				
1	123	Sb				
ĺ	135	Ва				
Ĺ	137	Ва				
Γ	159	Tb				
1:	> 165	Но				96.432
	201	Hg				
	202	Hg				
-	203	TI				
	205	TI				
	208	Pb				
	209	Bi				
	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCl				
	84	Kr				

Sample ID: 608150-11 10x

Sample Date/Time: Wednesday, August 16, 2006 17:11:15

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2
Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam

Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Data\Data\Set\08-16-06\608150-11 10x.049

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 71 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	53084	0.43		ug/L
	Ве	9	15	21	37.94	0.003	ug/L
	Al	27	30236	1732838	2.12	48.135	ug/L
	Sc	45	700355	673280	3.09		ug/L
	V	51	16349	21093	6.19	0.089	ug/L
	V-1	51	7600	98153	5.33	1.358	ug/L
	Cr	52	46918	66507	1.32	0.388	ug/L
	Cr	53	2548	31847	5.54	4.189	ug/L
	Mn	55	4069	37512	8.52	0.410	ug/L
	Со	59	728	3222	0.61	0.036	ug/L
	Ni	60	2164	2153	5.39	0.009	ug/L
	Ni	62	547	512	6.22	0.001	ug/L
	Cu	63	3953	10399	1.59	0.171	ug/L
	Cu	65	1949	5011	2.39	0.172	ug/L
	Zn	66	5390	556823	1.24	54.502	ug/L
	Zn	67	1013	88685	0.86	50.259	ug/L
	Zn	68	4021	396760	0.10	52.964	ug/L
<b>L&gt;</b>	Ge	72	1798281	1674302	2.19		ug/L
ſ	As	75	-902	-160	15.11	0.063	ug/L
	As-1	75	259	2952	4.53	0.249	ug/L
	Se	77	806	1440	1.42	0.728	ug/L
	Se	82	487	480	1.92	0.011	ug/L
1	Υ	89	1627756	1502623	1.34		ug/L
	Мо	95	755	569	0.18	-0.007	ug/L
ļ	Мо	97	489	385	12.23	-0.006	ug/L
	Мо	98	1246	858	0.70	-0.009	ug/L
ļ	Ag	107	229	355	2.79	0.002	ug/L

Page 1

Sample ID: 608150-11 10x

	Ag	109	178	285	0.75	0.002	
	Cd	106	2442	2305	2.75	-0.022	-
	Cd	108	11	-26	9.36	-0.034	ug/L
	Cd	111	1914	1957	3.28	0.009	ug/L
	Cd	114	199	540	1.63	0.010	ug/L
>	In	115	1708474	1633974	1.09		ug/L
	Sb	121	376	48715	1.11	1.182	ug/L
	Sb	123	240	35877	1.92	1.170	ug/L
	Ва	135	629	11274	2.57	0.885	ug/L
L	Ва	137	1074	19426	1.91	0.893	ug/L
Γ	Tb	159	1781693	1698203	0.03		ug/L
>	Но	165	1759123	1675269	1.29		ug/L
1	Hg	201	45	107	12.62	-2827.848	ug/L
1	Hg	202	83	191	1.86	1240.301	ug/L
	TI	203	114	6245	0.49	0.143	ug/L
	TI	205	208	14625	2.58	0.150	ug/L
	Pb	208	4961	16510946	1.59	125.347	ug/L
	Bi	209	1048210	992520	1.12		ug/L
	Th	232	279	3185	0.36	0.023	
L	U	238	625	9947	0.53	0.077	ug/L
	Fe	56	16567515	19065708	0.37		ug/L
	Ru	101	12	21	17.25		ug/L
	ArCI	77	768	1386	4.18		ug/L
	Kr	84	2212	1943	1.83		ug/L
	Sn	118	1708	5974	3.73		ug/L
	QC Ca	Iculated Va	alues				
	Mass Analy	te QC Std %	Recovery Int Std % R	ecovery Spike % Recovery	Dilution % D	ifference	Duplicate R

	Maar	A 1. 4 -	00.044.07.0		0 11 0/ 12		
г		Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
1	6	Li Do					
1	9 27	Be					
-		Al So					
1	45 51	Sc V					
i		v V-1					
i	52						
	53	Cr					
1	55	Mn					
1	59	Co					
i							
ì	62	Ni					
i	63						
i		Cu					
İ		Zn					
i		Zn					
i		Zn					
Ĺ>		Ge		93.106			
Γ		As		93.100			
i		As-1					
i	77						
i	82						
i	89	Υ					
i		Мо					
i		Мо					
İ		Мо					
İ	107						
1	109	Ag					
	106	Cd					
1		Cd					
1	111	Cd					

	114	Cd	
>	115	In	95.639
	121	Sb	
	123	Sb	
-	135	Ва	
L	137	Ва	
Γ	159	Tb	
>	165	Но	95.233
	201	Hg	
1	202	Hg	
1	203	TI	
	205	TI	
	208	Pb	
	209	Bi	
	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCI	
	84	Kr	
	118	Sn	

Sample ID: 608150-12 10x

Sample Date/Time: Wednesday, August 16, 2006 17:15:00

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam

Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\08-16-06\608150-12 10x.050

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 72 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

#### Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	54130	3.11		ug/L
	Be	9	15	11	33.67	-0.002	ug/L
	Al	27	30236	329606	1.46	8.362	ug/L
Ì	Sc	45	700355	691584	2.12		ug/L
1	V	51	16349	16550	2.53	0.016	ug/L
1	V-1	51	7600	74084	3.83	0.981	ug/L
İ	Cr	52	46918	51499	0.63	0.119	ug/L
	Cr	53	2548	23895	3.88	3.002	ug/L
1	Mn	55	4069	18809	3.76	0.179	ug/L
1	Co	59	728	4686	2.49	0.055	ug/L
	Ni	60	2164	635	3.90	-0.084	ug/L
	Ni	62	547	308	2.07	-0.082	ug/L
	Cu	63	3953	3143	0.23	-0.015	ug/L
	Cu	65	1949	1570	5.40	-0.014	ug/L
	Zn	66	5390	8085	6.82	0.290	ug/L
	Zn	67	1013	4663	5.07	2.088	ug/L
	Zn	68	4021	10152	5.28	0.841	ug/L
<b>_&gt;</b>	Ge	72	1798281	1701159	0.94		ug/L
Γ	As	75	-902	-1121	2.28	-0.020	ug/L
	As-1	75	259	1681	0.25	0.127	ug/L
	Se	77	806	1294	1.64	0.524	ug/L
	Se	82	487	481	8.39	-0.001	ug/L
	Υ	89	1627756	1531673	2.20		ug/L
	Мо	95	755	451	0.19	-0.013	ug/L
	Мо	97	489	308	2.25	-0.012	
	Мо	98	1246	763	1.13	-0.013	ug/L
	Ag	107	229	234	4.23	0.000	ug/L

Page 1

Sample ID: 608150-12 10x

	Ag	109	178	197	0.36	0.000	ug/L
	Cd	106	2442	2214	2.04	-0.139	ug/L
1	Cd	108	11	24	8.93	0.012	ug/L
	Cd	111	1914	1742	2.36	-0.010	ug/L
	Cd	114	199	197	4.31	0.000	ug/L
>	ln	115	1708474	1688292	0.23		ug/L
	Sb	121	376	2692	5.04	0.055	ug/L
	Sb	123	240	1967	0.04	0.055	ug/L
	Ва	135	629	161303	1.74	12.901	ug/L
L	Ва	137	1074	277429	0.03	12.985	ug/L
Γ	Tb	159	1781693	1722235	0.22		ug/L
>	Но	165	1759123	1677876	1.00		ug/L
	Hg	201	45	117	18.82	-3263.502	ug/L
	Hg	202	83	258	7.96	1980.565	ug/L
	Τl	203	114	5146	7.00	0.117	ug/L
	TI	205	208	12244	3.80	0.125	ug/L
	Pb	208	4961	43630	3.66	0.295	ug/L
	Bi	209	1048210	991847	1.21		ug/L
	Th	232	279	2192	10.94	0.015	ug/L
L	U	238	625	1924	0.51	0.011	ug/L
	Fe	56	16567515	17416969	2.44		ug/L
	Ru	101	12	13	10.88		ug/L
	ArCl	77	768	1288	1.81		ug/L
	Kr	84	2212	1941	1.60		ug/L
	Sn	118	1708	2014	2.60		ug/L
	QC C	alculated Va	lues				

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li	·	·	•		_ ap
	9	Be					
	27	Al					
	45	Sc					
	51						
	51	V-1					
1	52	Cr					
	53	Cr					
		Mn					
	59	Co					
	60	Ni					
	62	Ni					
	63	Cu					
	65	Cu					
-	66	Zn					
1	67	Zn					
-	68	Zn					
L>	72	Ge		94.599			
ſ	75	As					
		As-1					
		Se					
1	82	Se					
	89	Υ					
		Мо					
		Мо					
		Мо					
	107	Ag					
1	109	Ag					
ļ		Cd					
-	108						
1	111	Cd					

1	114	Cd			
1	> 115	In			98.819
1	121	Sb			
	123	Sb			
1	135	Ва			
L	137	Ba			
ſ	159	Tb			
-	> 165	Но			95.381
	201	Hg			
-	202	Hg			
	203	TI			
	205	TI			
	208	Pb			
	209	Bi			
-	232	Th			
	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			
	118	Sn			

Sample ID: 608150-13 10x

Sample Date/Time: Wednesday, August 16, 2006 17:18:45

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam

Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Data\Data\Set\08-16-06\608150-13 10x.051

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 73
Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	54074	1.11		ug/L
	Be	9	15	16	13.69	0.001	ug/L
	Al	27	30236	68724	3.88	1.110	ug/L
	Sc	45	700355	686133	1.06		ug/L
	V	51	16349	15740	2.75	0.003	ug/L
	V-1	51	7600	62055	3.86	0.802	ug/L
	Cr	52	46918	50421	0.43	0.099	ug/L
	Cr	53	2548	20301	3.58	2.491	ug/L
	Mn	55	4069	14789	0.98	0.130	ug/L
	Co	59	728	7354	0.20	0.092	ug/L
	Ni	60	2164	632	2.46	-0.084	ug/L
	Ni	62	547	294	3.37	-0.088	ug/L
	Cu	63	3953	3239	0.07	-0.013	ug/L
	Cu	65	1949	1648	1.93	-0.011	ug/L
	Zn	66	5390	9747	1.67	0.449	ug/L
	Zn	67	1013	4732	2.20	2.119	ug/L
	Zn	68	4021	12468	1.67	1.144	ug/L
L>	Ge	72	1798281	1706259	1.57		ug/L
Γ	As	75	-902	-1249	14.41	-0.033	ug/L
	As-1	75	259	1474	5.71	0.111	ug/L
	Se	77	806	1289	0.27	0.542	ug/L
	Se	82	487	462	2.14	-0.009	ug/L
	Υ	89	1627756	1552794	0.99		ug/L
	Мо	95	755	471	2.25	-0.011	ug/L
	Мо	97	489	302	0.24	-0.012	ug/L
	Мо	98	1246	731	4.74	-0.013	ug/L
	Ag	107	229	219	3.87	-0.000	ug/L

Page 1

Sample ID: 608150-13 10x

1	Ag	109	178	159	12.94	-0.000	ug/L
1	Cd	106	2442	2092	5.28	-0.199	ug/L
	Cd	108	11	-15	153.85	-0.023	ug/L
1	Cd	111	1914	1673	6.35	-0.012	ug/L
	Cd	114	199	224	12.82	0.001	ug/L
>	. In	115	1708474	1659715	1.26		ug/L
1	Sb	121	376	2109	2.15	0.042	ug/L
1	Sb	123	240	1613	0.52	0.045	ug/L
	Ba	135	629	201397	1.04	16.399	ug/L
L	Ва	137	1074	350161	0.78	16.686	ug/L
Γ	Tb	159	1781693	1727554	0.89		ug/L
>	Ho	165	1759123	1712438	1.63		ug/L
	Hg	201	45	160	11.97	-5042.771	ug/L
	Hg	202	83	339	4.59	2810.245	ug/L
	TI	203	114	4228	0.27	0.094	ug/L
	TI	205	208	10191	1.19	0.102	ug/L
	Pb	208	4961	31855	14.98	0.200	ug/L
	Bi	209	1048210	1001651	0.96		ug/L
	Th	232	279	1917	2.07	0.013	ug/L
L	U	238	625	279	2.53	-0.003	ug/L
	Fe	56	16567515	17566286	3.06		ug/L
	Ru	101	12	13	50.91		ug/L
	ArCI	77	768	1247	6.12		ug/L
	Kr	84	2212	2044	0.52		ug/L
	Sn	118	1708	2702	13.27		ug/L
	QC Calc	ulated \	Values				
ſ	Mass Analyte 6 Li 9 Re	QC Std	% Recovery Int Std % Recovery	y Spike % Recove	ry Dilution % Diffe	rence	Duplicate Rel. % I

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li		•	•		·
	9	Be					
1	27	Al					
1	45	Sc					
	51	V					
		V-1					
	53						
	55	Mn					
- 1	59	Co					
1	60	Ni					
		Ni					
-	63	Cu					
		Cu					
	66	Zn					
1	67	Zn					
		Zn					
L>		Ge		94.883			
Γ		As					
1		As-1					
	77						
	82						
1	89						
1		Мо					
1		Мо					
-		Мо					
	107	Ag					
	109						
	106						
	108						
	111	Cd					

+	114	Cd			
>	115	in			97.146
1	121	Sb			
	123	Sb			
	135	Ba			
Ĺ	137	Ba			
Γ	159	Tb			
>	165	Но			97.346
1	201	Hg			
1	202	Hg			
1	203	TI			
1	205	TI			
	208	Pb			
	209	Bi			
	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			
	118	Sn			

### Sample ID: 608150-14 10x

Sample Date/Time: Wednesday, August 16, 2006 17:22:30

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam

Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Data\Data\Set\08-16-06\608150-14 10x.052

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 74
Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	54845	0.37		ug/L
	Be	9	15	13	28.28	-0.001	ug/L
l	Al	27	30236	226415	1.15	5.405	ug/L
	Sc	45	700355	682976	2.32		ug/L
	V	51	16349	16679	5.57	0.015	ug/L
1	V-1	51	7600	55668	3.02	0.699	ug/L
	Cr	52	46918	66723	3.32	0.358	ug/L
	Cr	53	2548	20280	3.03	2.456	ug/L
	Mn	55	4069	26435	1.62	0.266	ug/L
	Со	59	728	4651	4.05	0.054	ug/L
1	Ni	60	2164	96070	2.85	5.525	ug/L
	Ni	62	547	15137	0.37	5.647	ug/L
1	Cu	63	3953	360959	2.02	8.808	ug/L
	Cu	65	1949	176097	2.01	9.106	ug/L
1	Zn	66	5390	1170714	0.17	111.673	ug/L
1	Zn	67	1013	179707	0.70	99.288	ug/L
	Zn	68	4021	835221	3.60	108.679	ug/L
L>	Ge	72	1798281	1725834	0.66		ug/L
Γ	As	75	-902	2600	3.85	0.305	ug/L
	As-1	75	259	4960	3.34	0.419	ug/L
1	Se	77	806	1225	0.52	0.449	ug/L
	Se	82	487	506	2.94	0.019	ug/L
1	Υ	89	1627756	1522555	1.24		ug/L
	Мо	95	755	476	9.91	-0.012	ug/L
	Мо	97	489	320	8.76	-0.011	ug/L
-	Мо	98	1246	845	2.62	-0.010	ug/L
-	Ag	107	229	411	1.21	0.003	ug/L

Page 1

Sample ID: 608150-14 10x

1	Ag	109	178	316	4.48	0.002	ug/L
İ	Cd	106	2442	1227	0.59	-0.827	ug/L
1	Cd	108	11	-937	0.16	-0.868	ug/L
	Cd	111	1914	2060	0.37	0.011	ug/L
	Cd	114	199	1052	3.42	0.025	ug/L
>	In	115	1708474	1690943	0.79		ug/L
1	Sb	121	376	37391	1.12	0.875	ug/L
	Sb	123	240	27989	0.92	0.881	ug/L
1	Ba	135	629	16789	1.89	1.296	ug/L
Ĺ	Ва	137	1074	28804	1.63	1.302	ug/L
Γ	Tb	159	1781693	1742668	0.55		ug/L
>	Но	165	1759123	1694814	0.23		ug/L
1	Hg	201	45	1211	21.72	-51333.893	ug/L
	Hg	202	83	2675	18.66	28543.300	ug/L
l	ΤI	203	114	3688	1.42	0.083	ug/L
	ΤI	205	208	8819	4.24	0.089	ug/L
İ	Pb	208	4961	19149156	1.84	143.675	ug/L
	Bi	209	1048210	1016528	1.79		ug/L
1	Th	232	279	1776	0.08	0.012	ug/L
L	U	238	625	300	3.54	-0.002	ug/L
	Fe	56	16567515	18446615	1.20		ug/L
	Ru	101	12	11	38.57		ug/L
	ArCl	77	768	1167	6.24		ug/L
	Kr	84	2212	2040	1.41		ug/L
	Sn	118	1708	39211	0.14		ug/L
	QC C	alculated Va	alues				

QC Calcula	ted \	Val	lues
------------	-------	-----	------

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li	•	<b>,</b>			Duplicate (tell to Dillototice
	9	Be					
	27	Al					
	45	Sc					
1	51						
	51	V-1					
-	52	Cr					
	53	Cr					
	55	Mn					
	59	Co					
1	60	Ni					
		Ni					
		Cu					
		Cu					
		Zn					
	67						
	68						
<u></u>		Ge		95.971			
Γ	75						
		As-1					
	77						
	82						
!	89	Υ					
ļ	95						
-		Мо					
ļ		Мо					
1		Ag					
1		Ag					
-	106						
ļ	108						
	111	Cd					

	114	Cd	
>	115	In	98.974
1	121	Sb	
1	123	Sb	
j	135	Ва	
L	137	Ва	
Γ	159	Tb	
>	165	Но	96.344
1	201	Hg	
1	202	Hg	
1	203	ΤΙ	
	205	TI	
1	208	Pb	
	209	Bi	
	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCI	
	84	Kr	
	118	Sn	

Sample ID: 608150-15 10x

Sample Date/Time: Wednesday, August 16, 2006 17:26:14

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam

Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Data\Data\Set\08-16-06\608150-15 10x.053

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 75
Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	55421	1.35		ug/L
Ì	Be	9	15	22	32.14	0.003	ug/L
Ì	Al	27	30236	2327743	2.57	62.334	ug/L
	Sc	45	700355	679967	0.10		ug/L
	V	51	16349	25433	2.02	0.140	ug/L
	V-1	51	7600	59621	1.00	0.748	ug/L
	Cr	52	46918	74754	0.26	0.479	ug/L
	Cr	53	2548	19397	1.72	2.310	ug/L
1	Mn	55	4069	51450	2.14	0.555	ug/L
1	Co	59	728	3990	3.30	0.044	ug/L
	Ni	60	2164	2459	4.14	0.021	ug/L
	Ni	62	547	576	8.35	0.018	ug/L
	Cu	63	3953	8465	0.28	0.113	ug/L
	Cu	65	1949	4183	1.94	0.119	ug/L
	Zn	66	5390	716962	1.07	67.547	ug/L
	Zn	67	1013	110477	2.00		ug/L
	Zn	68	4021	499675	0.84	64.188	ug/L
<u> </u> >	Ge	72	1798281	1742305	0.70		ug/L
Γ	As	75	-902	6	3712.59	0.078	ug/L
	As-1	75	259	2576	5.57	0.203	ug/L
	Se	77	806	1191	4.75	0.395	ug/L
	Se	82	487	462	6.59	-0.022	ug/L
	Υ	89	1627756	1568751	0.97		ug/L
	Mo	95	755	573	0.44	-0.008	ug/L
1	Мо	97	489	370	2.76	-0.008	ug/L
ļ	Мо	98	1246	953	2.49	-0.008	ug/L
1	Ag	107	229	314	11.05	0.001	ug/L

Page 1

Sample ID: 608150-15 10x

	Ag	109	178	232	3.36	0.001	ug/L
	Cd	106	2442	2363	1.36	-0.061	ug/L
	Cd	108	11	59	9.15	0.043	ug/L
	Cd	111	1914	2043	0.47	0.008	ug/L
	Cd	114	199	821	8.13	0.018	ug/L
1:	> In	115	1708474	1716050	1.41		ug/L
	Sb	121	376	26755	0.22	0.614	ug/L
-	Sb	123	240	19817	1.83	0.612	ug/L
-	Ba	135	629	10333	2.68	0.766	ug/L
L	Ba	137	1074	17872	2.34	0.776	ug/L
Γ	Tb	159	1781693	1774911	2.36		ug/L
-1:	> Ho	165	1759123	1734229	0.37		ug/L
-	Hg	201	45	420	9.09	-16145.754	ug/L
	Hg	202	83	941	13.61	9234.037	ug/L
	ΤI	203	114	3196	1.11	0.070	ug/L
	TI	205	208	7651	3.18	0.075	ug/L
	Pb	208	4961	5229555	0.85	38.319	ug/L
1	Bi	209	1048210	1025244	0.92		ug/L
	Th	232	279	2651	7.71	0.018	ug/L
L	U	238	625	13451	2.39	0.103	ug/L
	Fe	56	16567515	19040784	2.14		ug/L
	Ru	101	12	14	26.19		ug/L
	ArCI	77	768	1198	0.35		ug/L
	Kr	84	2212	1988	2.90		ug/L
	Sn	118	1708	3184	0.49		ug/L
	QC	Calculate	d Values				

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li		•	•		·
	9	Be					
-	27	Al					
1	45	Sc					
	51						
1	51	V-1					
	52	Cr					
	53	Cr					
-	55	Mn					
1	59						
1	60						
	62	Ni					
	63	Cu					
	65	Cu					
1	66	Zn					
	67	Zn					
_>		Ge		96.887			
Γ	75	As					
		As-1					
		Se					
	82	Se					
1	89	Υ					
	95	Мо					
	97	Мо					
	98	Мо					
	107	Ag					
	109	Ag					
	106						
1	108						
-	111	Cd					

	114	Cd				
>	115	In			100.4	43
	121	Sb				
1	123	Sb				
	135	Ba				
L	137	Ba				
Γ	159	Tb				
>	165	Но			98.5	85
	201	Hg				
1	202	Hg				
1	203	TI				
1	205	ΤI				
	208	Pb				
1	209	Bi				
	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCI				
	84	Kr				

### Sample ID: 608150-16 10x

Sample Date/Time: Wednesday, August 16, 2006 17:34:54

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth Dataset File: D:\ICPMS Data\DataSet\08-16-06\608150-16 10x.055

Tuning File: D:\ICPMS Data\Tuning\default.tun Optimization File: D:\ICPMS Data\Optimize\Default.dac Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 76 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	53500	0.76		ug/L
	Be	9	15	34	10.55	0.008	ug/L
	Al	27	30236	340498	0.97	8.847	ug/L
	Sc	45	700355	662480	0.64		ug/L
	V	51	16349	17698	5.03	0.039	ug/L
	V-1	51	7600	42177	2.96	0.525	ug/L
	Cr	52	46918	51234	0.08	0.131	ug/L
	Cr	53	2548	13450	1.99	1.579	ug/L
	Mn	55	4069	20350	3.58	0.202	ug/L
	Co	59	728	7755	15.88	0.100	ug/L
	Ni	60	2164	18108	1.95	0.979	ug/L
	Ni	62	547	2986	3.55	0.991	ug/L
	Cu	63	3953	19950	4.46	0.415	ug/L
	Cu	65	1949	9471	1.04	0.414	ug/L
	Zn	66	5390	18627	1.37	1.350	ug/L
	Zn	67	1013	5470	0.47	2.603	ug/L
	Zn	68	4021	18481	0.73	1.994	ug/L
L>	Ge	72	1798281	1668887	0.75		ug/L
Γ	As	75	-902	-1109	10.34	-0.022	ug/L
	As-1	75	259	1310	7.02	0.098	ug/L
	Se	77	806	1114	1.14	0.373	ug/L
	Se	82	487	487	4.36	0.017	ug/L
	Υ	89	1627756	1499519	0.50		ug/L
	Мо	95	755	2052	29.81	0.059	ug/L
	Мо	97	489	1251	25.54	0.055	ug/L
	Мо	98	1246	3361	25.23	0.060	ug/L
-	Ag	107	229	1857	18.96	0.026	ug/L

Page 1

Sample ID: 608150-16 10x

ı	Ag	109	178	1640	12.47	0.024	ua/l
i	Cd	106	2442	2093	0.67	-0.176	
	Cd	108	11	-26	24.95	-0.034	-
			• •				•
l I	Cd	111	1914	1749	1.57	-0.006	_
	Cd	114	199	323	21.93	0.004	ug/L
>	In O:	115	1708474	1636035	2.10		ug/L
!	Sb	121	376	7886	11.66	0.184	•
- !	Sb	123	240	5967	15.60	0.188	ug/L
ļ	Ba	135	629	206402	1.04	17.053	_
L	Ва	137	1074	354889	0.20	17.162	ug/L
Γ	Tb	159	1781693	1675810	0.64		ug/L
>	Но	165	1759123	1650547	0.20		ug/L
-	Hg	201	45	148	0.00	-4776.098	ug/L
	Hg	202	83	367	0.58	3260.194	ug/L
	Τi	203	114	3144	1.71	0.072	ug/L
	ΤI	205	208	7305	2.50	0.075	ug/L
	Pb	208	4961	45816	0.06	0.317	ug/L
	Bi	209	1048210	964862	1.55		ug/L
1	Th	232	279	44184	31.82	0.356	ug/L
L	U	238	625	3524	17.95	0.025	ug/L
	Fe	56	16567515	18178301	3.37		ug/L
	Ru	101	12	15	0.00		ug/L
	ArCi	77	768	1171	4.17		ug/L
	Kr	84	2212	2013	3.61		ug/L
	Sn	118	1708	3504	0.12		ug/L
	QC Ca	alculated Va	alues				Ü
		vte OC Std %		ecovery Snike % Recovery	Dilution % Di	ifforonco	Dunlicate I

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li	•	•			
-	9	Be					
	27						
	45	Sc					
-	51						
1		V-1					
		Cr					
1		Cr					
1		Mn					
		Co					
1	60						
	62	Ni					
	63	Cu					
1		Cu					
	66						
1	67	Zn					
	68	Zn					
<u></u> [>		Ge		92.805			
Γ		As					
	75	As-1					
	77	Se					
	82	Se					
-	89	Υ					
	95	Мо					
	97	Мо					
		Мо					
	107						
1	109	Ag					
	106						
1	108						
1	111	Cd					

1	114	Cd				
>	115	In				95.760
	121	Sb				
1	123	Sb				
1	135	Ba				
L	137	Ва				
Γ	159	Tb				
>	165	Но				93.828
1	201	Hg				
	202	Hg				
1	203	TI				
1	205	TI				
1	208	Pb				
1	209	Bi				
	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCI				
	84	Kr				

# Sample ID: 608150-17 10x

Sample Date/Time: Wednesday, August 16, 2006 17:38:38

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam

Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth

Dataset File: D:\ICPMS Data\Data\Data\Set\08-16-06\608150-17 10x.056

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 77 Sample Type: Sample

Initial Sample Quantity (mg): 1000 Sample Prep Volume (mL): 1 Aliquot Volume (mL): 1 Diluted To Volume (mL): 1

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	55520	2.89		ug/L
	Be	9	15	14	5.24	-0.000	ug/L
1	Al	27	30236	59768	0.11	0.848	ug/L
-	Sc	45	700355	669685	1.19		ug/L
1	V	51	16349	16098	2.11	0.007	ug/L
	V-1	51	7600	37155	1.81	0.433	ug/L
	Cr	52	46918	50550	1.11	0.094	ug/L
-	Cr	53	2548	12392	2.34	1.376	ug/L
	Mn	55	4069	14406	1.56	0.124	ug/L
1	Co	59	728	6660	2.24	0.082	ug/L
	Ni	60	2164	3263	0.74	0.070	ug/L
1	Ni	62	547	704	3.12	0.070	ug/L
	Cu	63	3953	3716	3.83	-0.002	ug/L
-	Cu	65	1949	1912	1.89	0.003	ug/L
	Zn	66	5390	12656	1.68	0.721	ug/L
1	Zn	67	1013	4513	0.22	1.976	ug/L
1	Zn	68	4021	14366	1.48	1.380	ug/L
<u> </u> >	Ge	72	1798281	1720026	2.12		ug/L
Γ	As	75	-902	-1287	5.48	-0.037	ug/L
	As-1	75	259	1123	2.96	0.080	ug/L
1	Se	77	806	1130	0.19	0.379	ug/L
1	Se	82	487	444	7.01	-0.021	ug/L
1	Υ	89	1627756	1542100	2.80		ug/L
	Мо	95	755	1118	2.31	0.017	ug/L
	Мо	97	489	718	6.36	0.017	ug/L
- [	Мо	98	1246	1891	5.93	0.019	ug/L
1	Ag	107	229	994	7.90	0.012	ug/L

Page 1

Sample ID: 608150-17 10x

1	Ag	109	178	824	1.72	0.011	ug/L
	Cd	106	2442	2183	1.61	-0.124	ug/L
-	Cd	108	11	-13	26.69	-0.022	ug/L
	Cd	111	1914	1766	1.41	-0.005	ug/L
1	Cd	114	199	272	2.13	0.002	ug/L
>	In	115	1708474	1649307	0.78		ug/L
1	Sb	121	376	3535	2.58	0.077	ug/L
1	Sb	123	240	2630	2.49	0.078	ug/L
	Ba	135	629	192058	0.36	15.735	ug/L
L	Ва	137	1074	333176	0.98	15.975	ug/L
Γ	Tb	159	1781693	1714235	1.40		ug/L
>	Но	165	1759123	1690255	0.82		ug/L
	Hg	201	45	143	14.39	-4373.086	ug/L
	Hg	202	83	330	2.79	2754.491	ug/L
1	TI	203	114	2456	3.48	0.054	ug/L
	TI	205	208	6099	2.73	0.061	ug/L
-	Pb	208	4961	13011	10.35	0.062	ug/L
	Bi	209	1048210	991817	1.21		ug/L
-	Th	232	279	16031	19.28	0.125	ug/L
L	U	238	625	670	29.34	0.001	ug/L
	Fe	56	16567515	17805676	0.33		ug/L
	Ru	101	12	12	23.57		ug/L
	ArCI	77	768	1133	1.19		ug/L
	Kr	84	2212	2046	1.92		ug/L
	Sn	118	1708	2246	2.55		ug/L
	QC C	alculated Va	alues				
	Mace And	nista OC Std 9/	Boowers Int Ctd 9/ D	convers College Of Decree	- Dilati 0/ Di		<b>5</b>

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li					
	9	Be					
		Al					
- 1	45	Sc					
	51	V					
	51						
		Cr					
-	53	Cr					
1	55	Mn					
- 1	59	Co					
1	60	Ni					
		Ni					
- 1		Cu					
- 1	65	Cu					
	66	Zn					
1		Zn					
1		Zn					
Ĺ>		Ge		95.648			
Γ		As					
		As-1					
-	77						
		Se					
ľ	89	Υ					
ı		Мо					
		Мо					
		Мо					
- [	107						
- !	109						
	106						
-	108						
1	111	Cd					

1	114	Cd				
>	115	In				96.537
	121	Sb				
	123	Sb				
	135	Ba				
L	137	Ba				
Γ	159	Tb				
>	165	Но				96.085
	201	Hg				
	202	Hg				
	203	Ti				
1	205	TI				
	208	Pb				
	209	Bi				
	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCl				
	84	Kr				

Sample ID: 608150-10

Sample Date/Time: Wednesday, August 16, 2006 18:58:49

Sample Description: User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam

Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\08-16-06\608150-10.076

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 106
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):

Solids Ratio:

#### Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	50542	2.60		ug/L
1	Be	9	15	16	13.69	0.001	ug/L
1	Al	27	30236	44532	0.39	0.491	ug/L
	Sc	45	700355	671105	0.53		ug/L
	V	51	16349	21771	0.90	0.107	ug/L
	V-1	51	7600	32141	1.52	0.385	ug/L
	Cr	52	46918	67134	0.54	0.425	ug/L
	Cr	53	2548	10927	1.65	1.250	ug/L
	Mn	55	4069	254651	0.85	3.120	ug/L
	Co	59	728	35477	0.10	0.501	ug/L
	Ni	60	2164	16544	1.21	0.904	ug/L
	Ni	62	547	3034	1.70	1.034	ug/L
	Cu	63	3953	22194	0.42	0.484	ug/L
1	Cu	65	1949	2449	1.62	0.037	ug/L
1	Zn	66	5390	8336305	0.47	841.826	ug/L
	Zn	67	1013	1266606	1.32	741.510	ug/L
1	Zn	68	4021	5887094	2.26	811.028	ug/L
<b>L&gt;</b>	Ge	72	1798281	1636468	0.34		ug/L
Γ	As	75	-902	-71	114.78	0.071	ug/L
	As-1	75	259	1724	2.58	0.136	ug/L
	Se	77	806	1085	1.76	0.343	ug/L
1	Se	82	487	618	0.23	0.127	ug/L
1	Υ	89	1627756	1473000	0.69		ug/L
1	Мо	95	755	521	2.14	-0.009	ug/L
	Мо	97	489	354	15.95	-0.008	ug/L
1	Мо	98	1246	866	9.70	-0.009	ug/L
1	Ag	107	229	741	11.83	0.008	ug/L

Page 1

Sample ID: 608150-10

i	Ag	109	178	584	11.03	0.007	ug/L
l I	Cd	106	2442	2985	3.65	0.469	ug/L
-	Cd	108	11	601	3.18	0.409	-
1							ug/L
l I	Cd	111	1914	4329	0.97	0.169	ug/L
1	Cd	114	199	6344	1.19	0.183	ug/L
>	In O	115	1708474	1632740	0.86		ug/L
	Sb	121	376	66433	0.82	1.617	ug/L
ļ	Sb	123	240	49877	1.05	1.631	ug/L
	Ва	135	629	9432	0.17	0.733	ug/L
L	Ва	137	1074	16488	2.77	0.751	ug/L
ſ	Tb	159	1781693	1713824	1.41		ug/L
>	Но	165	1759123	1693937	0.10		ug/L
	Hg	201	45	63	8.98	-865.153	ug/L
	Hg	202	83	124	19.39	484.965	ug/L
	TI	203	114	1900	1.38	0.041	ug/L
	TI	205	208	4674	1.60	0.046	ug/L
	Pb	208	4961	41515649	0.01	311.698	ug/L
	Bi	209	1048210	945467	0.19		ug/L
	Th	232	279	3068	11.53	0.022	ug/L
L	U	238	625	278	13.00	-0.003	ug/L
	Fe	56	16567515	17211200	0.52		ug/L
	Ru	101	12	11	12.86		ug/L
	ArCl	77	768	1078	0.98		ug/L
	Kr	84	2212	1469	18.83		ug/L
	Sn	118	1708	3264	6.35		ug/L
		alculated Va			3.33		~g, <del>~</del>

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li		•	•		
	9	Be					
	27	Al					
	45	Sc					
1	51	V					
	51	V-1					
1	52	Cr					
	53	Cr					
1							
1	59	Co					
1	60	Ni					
	62	Ni					
	63	Cu					
1	65	Cu					
	66	Zn					
-	67						
L>		Ge		91.002			
Γ	75						
		As-1					
1	77						
	82						
	89						
		Мо					
		Мо					
1		Мо					
1	107						
1	109						
	106						
1	108						
	111	Cd					

	114	Cd	
>	115	In	95.567
	121	Sb	
1	123	Sb	
1	135	Ва	
L	137	Ва	
Γ	159	Tb	
>	165	Но	96.294
	201	Hg	
1	202	Hg	
	203	TI	
	205	TI	
1	208	Pb	
	209	Bi	
	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77		
	84	Kr	
	118	Sn	

#### Sample ID: 608150-11

Sample Date/Time: Wednesday, August 16, 2006 19:03:10

Sample Description: User Name: btb Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth Dataset File: D:\ICPMS Data\DataSet\08-16-06\608150-11.077

Tuning File: D:\ICPMS Data\Tuning\default.tun Optimization File: D:\ICPMS Data\Optimize\Default.dac Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 107 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	52488	0.31		ug/L
	Be	9	15	11	33.67	-0.002	ug/L
	Al	27	30236	326778	1.80	8.327	ug/L
	Sc	45	700355	678801	4.28		ug/L
	V	51	16349	37005	2.68	0.325	ug/L
	V-1	51	7600	45379	1.02	0.563	ug/L
- 1	Cr	52	46918	68193	2.30	0.404	ug/L
	Cr	53	2548	10434	0.12	1.128	ug/L
	Mn	55	4069	473888	0.87	5.649	ug/L
	Со	59	728	49388	0.15	0.677	ug/L
	Ni	60	2164	13372	0.29	0.679	ug/L
	Ni	62	547	2442	1.27	0.759	ug/L
	Cu	63	3953	28977	0.43	0.635	ug/L
	Cu	65	1949	4837	0.70	0.160	ug/L
1	Zn	66	5390	7011471	1.82	684.201	ug/L
1	Zn	67	1013	1060855	0.87	600.208	ug/L
1	Zn	68	4021	4900334	1.59	652.328	ug/L
L>	Ge	72	1798281	1693200	1.24		ug/L
Γ	As	75	-902	1115	6.37	0.179	ug/L
	As-1	75	259	3007	1.06	0.255	ug/L
-	Se	77	806	1053	2.75	0.308	ug/L
	Se	82	487	576	2.33	0.092	ug/L
1	Υ	89	1627756	1533690	0.15		ug/L
	Мо	95	755	1084	2.51	0.016	ug/L
-	Мо	97	489	688	5.30	0.016	ug/L
	Мо	98	1246	1812	2.01	0.017	ug/L
1	Ag	107	229	741	14.99	0.008	ug/L

Page 1

Sample ID: 608150-11

	Ag	109	178	520	7.49	0.006	ug/L
	Cd	106	2442	2873	4.01	0.388	ug/L
	Cd	108	11	601	1.79	0.559	ug/L
	Cd	111	1914	3553	2.56	0.116	ug/L
	Cd	114	199	4883	1.89	0.139	ug/L
>	In	115	1708474	1633188	0.38		ug/L
	Sb	121	376	124134	0.70	3.028	ug/L
	Sb	123	240	92867	0.95	3.043	ug/L
	Ва	135	629	806	1.67	0.017	ug/L
Ĺ	Ва	137	1074	1518	2.56	0.024	ug/L
Γ	Tb	159	1781693	1781546	1.98		ug/L
>	Но	165	1759123	1722957	1.83		ug/L
	Hg	201	45	60	3.57	-668.476	ug/L
1	Hg	202	83	83 106		265.435	ug/L
	TI	203	114	1405	0.50	0.029	ug/L
1	TI	205	208	3340	1.86	0.032	ug/L
	Pb	208	4961	3324666	0.72	24.510	ug/L
	Bi	209	1048210	957518	0.04		ug/L
	Th	232	279	2999	12.00	0.021	ug/L
L	U	238	625	1424	6.36	0.007	ug/L
	Fe	56	16567515	17772137	1.30		ug/L
	Ru	101	12	16	22.81		ug/L
	ArCI	77	768	1074	4.08		ug/L
	Kr	84	2212	1648	7.81		ug/L
	Sn	118	1708	3455	5.12		ug/L
	QC Ca	alculated Va	alues				
_							

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li		-	•		•
}	9						
İ	27						
		Sc					
	51						
		V-1					
1	52	Cr					
		Cr					
	55	Mn					
	59	Co					
1	60	Ni					
1	62						
		Cu					
	66	Zn					
1	67						
	68						
L>		Ge		94.157			
Γ	75						
		As-1					
	77						
1	82						
	89						
	95						
		Мо					
1		Мо					
	107						
1	109						
1	106						
	108						
	111	Cd					

Page 2

Sample ID: 608150-11

		114	Cd					
-	>	115	In				95.593	3
-		121	Sb					
-		123	Sb					
		135	Ba					
L		137	Ba					
ſ	•	159	Tb					
1	>	165	Но				97.94	1
- 1		201	Hg					
-		202	Hg					
- 1		203	TI					
- [		205	T!					
-		208	Pb					
		209	Bi					
1		232	Th					
Ĺ	_	238	U					
		56	Fe					
		101	Ru					
		77	ArCl					
		84	Kr					

Sample ID: 608150-12

Sample Date/Time: Wednesday, August 16, 2006 19:07:30

Sample Description: User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth Dataset File: D:\ICPMS Data\DataSet\08-16-06\608150-12.078

Tuning File: D:\ICPMS Data\Tuning\default.tun Optimization File: D:\ICPMS Data\Optimize\Default.dac Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 108 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	52828	1.51		ug/L
ĺ	Be	9	15	13	21.76	-0.000	ug/L
Ì	Al	27	30236	130187	2.52	2.888	ug/L
İ	Sc	45	700355	687361	1.88		ug/L
Ì	V	51	16349	25153	1.23	0.152	ug/L
ĺ	V-1	51	7600	31403	1.21	0.363	ug/L
Ì	Cr	52	46918	63867	1.98	0.345	ug/L
Ì	Cr	53	2548	9304	2.91	0.986	ug/L
Ì	Mn	55	4069	382257	2.67	4.609	ug/L
	Co	59	728	82649	0.24	1.155	ug/L
	Ni	60	2164	2204	0.51	0.012	ug/L
1	Ni	62	547	606	6.89	0.039	ug/L
1	Cu	63	3953	20288	1.23	0.423	ug/L
	Cu	65	1949	2796	0.40	0.053	ug/L
	Zn	66	5390	26465	2.42	2.124	ug/L
1	Zn	67	1013	36337	0.93	20.308	ug/L
	Zn	68	4021	124285	1.45	16.271	ug/L
Ĺ>	Ge	72	1798281	1671182	1.24		ug/L
Γ	As	75	-902	-646	23.41	0.020	ug/L
	As-1	75	259	1353	0.84	0.100	ug/L
1	Se	77	806	1053	2.75	0.290	ug/L
	Se	82	487	440	2.89	-0.027	ug/L
	Υ	89	1627756	1521431	0.03		ug/L
	Mo	95	755	682	4.25	-0.002	ug/L
1	Mo	97	489	428	6.28	-0.003	ug/L
	Мо	98	1246	1074	2.44	-0.004	ug/L
	Ag	107	229	431	7.88	0.003	ug/L

Page 1

Sample ID: 608150-12

	Ag	109	178	358	1.98	0.003	ug/L
	Cd	106	2442	2162	2.54	-0.148	ug/L
	Cd	108	11	277	10.91	0.248	ug/L
	Cd	111	1914	1660	1.94	-0.013	ug/L
	Cd	114	199	842	1.03	0.019	ug/L
>	ln	115	1708474	1658791	0.65		ug/L
	Sb	121	376	3295	1.95	0.071	ug/L
1	Sb	123	240	2411	1.45	0.070	ug/L
	Ва	135	629	3914121	0.10	319.803	ug/L
L	Ва	137	1074	6856804	0.96	327.848	ug/L
Γ	Tb	159	1781693	1777314	0.68		ug/L
>	Но	165	1759123	1740066	1.33		ug/L
	Hg	201	45	62	12.65	-725.572	ug/L
	Hg	202	83	118	7.82	380.049	ug/L
	TI	203	114	999	2.62	0.020	ug/L
	TI	205	208	2210	5.99	0.020	ug/L
	Pb	208	4961	22927	24.72	0.131	ug/L
	Bi	209	1048210	971869	0.93		ug/L
	Th	232	279	2584	0.27	0.018	ug/L
L	U	238	625	1671	1.99	0.008	ug/L
	Fe	56	16567515	17879216	0.62		ug/L
	Ru	101	12	13	0.00		ug/L
	ArCl	77	768	998	5.53		ug/L
	Kr	84	2212	1402	16.59		ug/L
	Sn	118	1708	2197	0.35		ug/L
	QC Cal	culated Va	alues				

Mass Analyte QC Std % Recovery Int Std % Recovery Spike % Recovery Dilution % Difference Duplicate Rel 6 Li 9 Be 27 AI	el. % Difference
9 Be	
21 Al	
45 Sc	
51 V	
51 V-1	
52 Cr	
53 Cr	
55 Mn	
j 59 Co	
60 Ni	
62 Ni	
63 Cu	
65 Cu	
66 Zn	
67 Zn	
68 Zn	
L> 72 Ge 92.932	
75 As	
75 As-1	
77 Se	
82 Se	
89 Y	
95 Mo	
97 Mo	
98 Mo	
107 Ag	
109 Ag	
106 Cd	
108 Cd	
111 Cd	

1	444	0-1			
	114				~~ ~~~
>	115	In			97.092
	121	Sb			
	123	Sb			
1	135	Ba			
Ĺ	137	Ba			
Γ	159	Tb			
>	165	Но			98.917
	201	Hg			
	202	Hg			
	203	T!			
1	205	Ti			
	208	Pb			
	209	Bi			
1	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			
	118	Sn			

Page 3 Sample ID: 608150-12 Report Date/Time: Thursday, September 07, 2006 13:17:06

Sample ID: 608150-13

Sample Date/Time: Wednesday, August 16, 2006 19:11:50

Sample Description: User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam

Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\08-16-06\608150-13.079

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 109
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):
Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	52313	0.38		ug/L
	Be	9	15	13	0.00	-0.000	ug/L
-	Al	27	30236	102773	0.51	2.161	ug/L
1	Sc	45	700355	680115	2.57		ug/L
	V	51	16349	21638	2.06	0.104	ug/L
	V-1	51	7600	26459	2.42	0.296	ug/L
	Cr	52	46918	63328	0.17	0.354	ug/L
	Cr	53	2548	8790	0.82	0.935	ug/L
	Mn	55	4069	358257	1.49	4.389	ug/L
	Co	59	728	101388	1.62	1.443	ug/L
	Ni	60	2164	1136	2.93	-0.052	ug/L
	Ni	62	547	479	4.43	-0.008	ug/L
	Cu	63	3953	21688	0.70	0.468	ug/L
1	Cu	65	1949	5436	0.07	0.201	ug/L
1	Zn	66	5390	48521	1.61	4.387	ug/L
	Zn	67	1013	96551	1.90	55.774	ug/L
	Zn	68	4021	322874	2.97	43.826	ug/L
L>	Ge	72	1798281	1643715	1.88		ug/L
Γ	As	75	-902	-949	25.79	-0.007	ug/L
	As-1	75	259	1205	0.59	0.088	ug/L
	Se	77	806	1091	9.85	0.345	ug/L
	Se	82	487	467	2.88	-0.001	ug/L
1	Υ	89	1627756	1515974	1.39		ug/L
1	Мо	95	755	476	4.62	-0.011	ug/L
	Мо	97	489	308	3.93	-0.011	ug/L
	Мо	98	1246	768	2.59	-0.012	ug/L
1	Ag	107	229	405	14.51	0.003	ug/L

Page 1

Sample ID: 608150-13

	Ag	109	178	312	12.69	0.002	ug/L
	Cd	106	2442	2209	6.06	-0.098	ug/L
	Cd	108	11	271	13.71	0.246	ug/L
	Cd	111	1914	1701	6.40	-0.009	ug/L
	Cd	114	199	710	1.16	0.015	ug/L
1>	> In	115	1708474	1640561	1.13		ug/L
	Sb	121	376	2943	0.79	0.063	ug/L
	Sb	123	240	2236	3.61	0.066	ug/L
	Ва	135	629	11007381	1.47	909.409	ug/L
L	Ва	137	1074	19270608	0.52	931.823	ug/L
Γ	Tb	159	1781693	1764311	0.60		ug/L
1>	> Ho	165	1759123	1706254	1.25		ug/L
	Hg	201	45	62	9.12	-800.265	ug/L
	Hg	202	83	109	5.19	311.057	ug/L
	TI	203	114	724	2.25	0.014	ug/L
-	TI	205	208	1722	0.41	0.016	ug/L
l	Pb	208	4961	60018	0.60	0.412	ug/L
	Bi	209	1048210	952980	0.04		ug/L
	Th	232	279	2313	10.92	0.016	ug/L
L	U	238	625	480	9.59	-0.001	ug/L
	Fe	56	16567515	17911217	1.40		ug/L
	Ru	101	12	16	4.56		ug/L
	ArCl	77	768	1069	6.09		ug/L
	Kr	84	2212	1320	25.80		ug/L
	Sn	118	1708	2753	2.24		ug/L
	QC C	alculated Va	alues				

	M	ass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
	-	6	Li	•	·	•		·
		9	Be					
		27	Al					
		45	Sc					
-		51	V					
		51	V-1					
		52						
		53						
-		55	Mn					
- 1		59						
		60						
		62	Ni					
		63						
		65	Cu					
١		66	Zn					
1		67	Zn					
		68	Zn					
l	.>	72	Ge		91.405			
ſ	-	75	As					
1		75	As-1					
-		77	Se					
		82						
		89						
		95						
-		97						
ŀ			Мо					
1	1	07						
			Ag					
		06						
-		80						
-	1	11	Cd					

	114	Cd			
> '	115	In			96.025
	121	Sb			
1	123	Sb			
	135	Ва			
L	137	Ba			
Γ	159	Tb			
>	165	Ho			96.995
	201	Hg			
1	202	Hg			
	203	ΤI			
	205	Τl			
1	208	Pb			
1	209	Bi			
	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			
	118	Sn			

### Sample ID: 608150-14

Sample Date/Time: Wednesday, August 16, 2006 19:16:11

Sample Description: User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam

Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\08-16-06\608150-14.080

Tuning File: D:\ICPMS Data\Tuning\default.tun

Optimization File: D:\ICPMS Data\Optimize\Default.dac Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 110
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	53992	0.34		ug/L
	Be	9	15	13	0.00	-0.000	ug/L
	Al	27	30236	70986	0.39	1.201	ug/L
1	Sc	45	700355	700027	3.48		ug/L
	V	51	16349	21684	3.18	0.097	ug/L
	V-1	51	7600	24671	1.85	0.261	ug/L
	Cr	52	46918	68996	2.38	0.426	ug/L
	Cr	53	2548	8707	2.99	0.894	ug/L
	Mn	55	4069	470628	0.51	5.650	ug/L
	Co	59	728	60684	1.24	0.840	ug/L
	Ni	60	2164	10098	1.33	0.487	ug/L
	Ni	62	547	1896	1.19	0.550	ug/L
	Cu	63	3953	25878	1.57	0.562	ug/L
	Cu	65	1949	5440	3.65	0.194	ug/L
	Zn	66	5390	17165501	0.21	1687.885	ug/L
	Zn	67	1013	2540109	1.24	1448.025	ug/L
1	Zn	68	4021	12268250	1.64	1645.660	ug/L
L>	Ge	72	1798281	1681120	0.11		ug/L
Γ	As	75	-902	2287	7.20	0.283	ug/L
	As-1	75	259	3782	1.85	0.323	ug/L
	Se	77	806	1024	1.59	0.266	ug/L
	Se	82	487	682	2.18	0.175	ug/L
	Υ	89	1627756	1510727	0.18		ug/L
	Мо	95	755	500	8.47	-0.010	ug/L
	Мо	97	489	328	1.10	-0.010	ug/L
-	Мо	98	1246	787	3.24	-0.011	ug/L
	Ag	107	229	457	5.88	0.004	ug/L

Page 1

Sample ID: 608150-14

1	Ag	109	178	269	13.14		ug/L
i	Cd	106	2442	3650	1.11		ug/L
i	Cd	108	11	1177	0.77		ug/L
i	Cd	111	1914	8635	1.21	0.454	ug/L
i	Cd	114	199	16460	0.16	0.479	ug/L
i>	ln	115	1708474	1647910	1.48		ug/L
i	Sb	121	376	44648	0.60	1.074	ug/L
i	Sb	123	240	33798	1.20	1.093	ug/L
i	Ва	135	629	49287	15.84	4.009	ug/L
i	Ва	137	1074	82407	8.58	3.920	ug/L
Ī	Tb	159	1781693	1781396	0.75		ug/L
İ>	Но	165	1759123	1718509	0.76		ug/L
ĺ	Hg	201	45	72	2.97	-1194.006	ug/L
ĺ	Hg	202	83	127	8.91	498.639	ug/L
İ	ΤĪ	203	114	674	2.73	0.013	ug/L
Ì	TI	205	208	1719	0.58	0.015	ug/L
ĺ	Pb	208	4961	50655244	0.22	374.895	ug/L
1	Bi	209	1048210	967988	0.89		ug/L
1	Th	232	279	1937	2.19	0.013	ug/L
L	U	238	625	300	12.73	-0.003	ug/L
	Fe	56	16567515	18041990	0.45		ug/L
	Ru	101	12	10	7.44		ug/L
	ArCl	77	768	1034	6.09		ug/L
	Kr	84	2212	1825	2.01		ug/L
	Sn	118	1708	3492	2.11		ug/L
	QC C	alculated Va	alues				

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li					
	9	Be					
	27	Al					
1	45	Sc					
	51	V					
	51	V-1					
	52	Cr					
	53	Cr					
	55	Mn					
	59	Co					
	60	Ni					
	62	Ni					
	63	Cu					
1	65	Cu					
l	66	Zn					
		Zn					
1		Zn					
L>		Ge		93.485			
Γ		As					
		As-1					
		Se					
		Se					
l	89						
!		Мо					
1		Мо					
	98	Мо					
	107						
- 1	109						
1	106						
1	108						
	111	Cd					

	114	Cd	
>	115	ln	96.455
	121	Sb	
	123	Sb	
	135	Ba	
Ĺ	137	Ва	
Ī	159	Tb .	
>	165	Но	97.691
İ	201	Hg	
1	202	Hg	
	203	TI	
	205	П	
1	208	Pb	
1	209	Bi	
1	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCl	
	84	Kr	
	118	Sn	

-	Ag	109	178	254	4.18	0.001	ug/L
- [	Cd	106	2442	2723	2.10	0.194	ug/L
- 1	Cd	108	11	488	19.70	0.432	ug/L
1	Cd	111	1914	3954	3.74	0.132	ug/L
- (	Cd	114	199	5432	0.43	0.149	ug/L
>	In	115	1708474	1707665	0.15		ug/L
1	Sb	121	376	30312	1.45	0.700	ug/L
1	Sb	123	240	22471	0.34	0.698	ug/L
1	Ва	135	629	1474	12.81	0.067	ug/L
L	Ва	137	1074	2743	9.67	0.078	ug/L
Γ	Tb	159	1781693	1811804	1.10		ug/L
1>	Но	165	1759123	1752891	0.60		ug/L
- }	Hg	201	45	52	4.12	-282.900	ug/L
1	Hg	202	83	97	9.53	147.023	ug/L
- [	TI	203	114	727	7.49	0.014	ug/L
-{	ΤI	205	208	1796	2.83	0.016	ug/L
1	Pb	208	4961	566822	1.53	4.077	ug/L
1	Bi	209	1048210	986513	0.43		ug/L
1	Th	232	279	2217	6.63	0.015	ug/L
Ĺ	U	238	625	2677	1.06	0.016	ug/L
	Fe	56	16567515	18076452	0.07		ug/L
	Ru	101	12	10	22.33		ug/L
	ArCl	77	768	1045	3.45		ug/L
	Kr	84	2212	1629	6.46		ug/L
	Sn	118	1708	4621	11.25		ug/L
	QC Cale	culated \	Values				
	Mass Analyte 6 Li 9 Be 27 Al	e QC Std	% Recovery Int Std % Re	covery Spike % Recovery	Dilution % Dif	ference	Duplicate Rel. % Difference

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	
Γ	6	Li			
1	9	Be			
	27	Al			
1	45	Sc			
1	51	V			
1	51	V-1	•		
	52	Cr			
	53	Cr			
	5 <b>5</b>	Mn			
1	59	Co			
1	60	Ni			
	62	Ni			
1	63	Cu			
1	65	Cu			
	66	Zn			
	67	Zn			
	68	Zn			
_>	72	Ge		95.170	
Γ	75	As			
1	75	As-1			
	77	Se			
1	82	Se			
1	89	Υ			
1	95	Мо			
1	97	Мо			
	98	Мо			
!	107	Ag			
	109	Ag			
!	106	Cd			
ļ	108	Cd			
1	111	Cd			

1	114	Cd			
>	115	In			99.953
	121	Sb			
ĺ	123	Sb			
ĺ	135	Ba			
ì	137	Ba			
Ī	159	Tb			
>	165	Но			99.646
	201	Hg			
	202	Hg			
	203	TI			
1	205	TI			
1	208	Pb			
Ì	209	Bi			
1	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			
	118	Sn			

# Sample ID: 608150-16

Sample Date/Time: Wednesday, August 16, 2006 19:24:52

Sample Description: User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-16-06.sam
Method File: D:\ICPMS Data\Method\08-16-06fbi200.8.mth
Dataset File: D:\ICPMS Data\DataSet\08-16-06\608150-16.082

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 112
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):

Solids Ratio:

#### Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	53219	0.81		ug/L
	Be	9	15	13	16.97	-0.001	ug/L
	Al	27	30236	130010	1.57	2.931	ug/L
	Sc	45	700355	675508	2.03		ug/L
	V	51	16349	23939	0.08	0.138	ug/L
	V-1	51	7600	25158	1.12	0.275	ug/L
	Cr	52	46918	63727	1.29	0.357	ug/L
-	Cr	53	2548	7614	2.51	0.761	ug/L
	Mn	55	4069	401816	2.02	4.913	ug/L
	Co	59	728	100449	0.60	1.424	ug/L
	Ni	60	2164	4471	1.58	0.153	ug/L
	Ni	62	547	951	1.12	0.182	ug/L
	Cu	63	3953	22681	3.10	0.492	ug/L
1	Cu	65	1949	4278	2.48	0.136	ug/L
1	Zn	66	5390	119759	0.02	11.514	ug/L
	Zn	67	1013	62620	1.86	35.873	ug/L
	Zn	68	4021	224618	0.87	30.225	ug/L
L>	Ge	72	1798281	1649137	1.51		ug/L
Γ	As	75	-902	-953	10.94	-0.008	ug/L
	As-1	75	259	1092	1.42	0.078	ug/L
-	Se	77	806	951	1.93	0.200	ug/L
	Se	82	487	440	5.95	-0.021	ug/L
1	Υ	89	1627756	1458958	1.00		ug/L
	Мо	95	755	560	3.09	-0.007	ug/L
	Мо	97	489	365	9.01	-0.007	ug/L
	Мо	98	1246	874	7.64	-0.009	ug/L
ŀ	Ag	107	229	277	4.08	0.001	ug/L

Page 1

Sample ID: 608150-16

	Ag	109	178	229	5.56	0.001	ug/L
	Cd	106	2442	2095	3.89	-0.168	ug/L
	Cd	108	11	200	13.41	0.179	ug/L
	Cd	111	1914	1747	4.07	-0.005	ug/L
	Cd	114	199	967	7.18	0.023	ug/L
>	In	115	1708474	1630277	2.87		ug/L
	Sb	121	376	2074	1.02	0.042	ug/L
1	Sb	123	240	1547	1.51	0.043	ug/L
	Ba	135	629	5361599	0.97	445.865	ug/L
L	Ba	137	1074	9410109	0.27	458.032	ug/L
Γ	Tb	159	1781693	1743799	1.94		ug/L
>	Ho	165	1759123	1698406	0.48		ug/L
	Hg	201	45	58	28.28	-614.958	ug/L
	Hg	202	83	92	12.30	130.553	ug/L
	TI	203	114	676	0.84	0.013	ug/L
	ΤI	205	208	1550	5.38	0.014	ug/L
	Pb	208	4961	59369	2.18	0.409	ug/L
	Bi	209	1048210	944538	0.82		ug/L
1	Th	232	279	1735	4.24	0.012	ug/L
L	U	238	625	1671	4.66	0.009	ug/L
	Fe	56	16567515	17940756	1.52		ug/L
	Ru	101	12	10	28.28		ug/L
	ArCl	77	768	1012	1.68		ug/L
	Kr	84	2212	1238	0.81		ug/L
	Sn	118	1708	6321	0.04		ug/L
	QC C	alculated Va	alues				

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li	•	•	.,		
1	9	Be					
	27	Al					
	45						
1	51						
1	51	V-1					
	52	Cr					
	53	Cr					
	55	Mn					
	59	Co					
	60	Ni					
	62	Ni					
	63	Cu					
	65	Cu					
	66	Zn					
1	67	Zn					
		Zn					
L>		Ge		91.706			
Γ		As					
		As-1					
		Se					
	89	Υ					
1		Mo					
		Мо					
	98	Мо					
!	107						
ļ	109	Ag					
-	106						
	108						
	111	Cd					

1	114	Cd	
>	115	In	95.423
1	121	Sb	
1	123	Sb	
	135	Ва	
L	137	Ва	
٢	159	Tb	
>	165	Но	96.548
1	201	Hg	
1	202	Hg	
1	203	TI	
	205	TI	
1	208	Pb	
1	209	Bi	
1	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCl	
	84	Kr	
	118	Sn	

# Sample ID: 608150-17

Sample Date/Time: Wednesday, August 16, 2006 19:29:13

Sample Description: User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-16-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPM\(\Sigma\) Data\Sample\\08-16-06.sam

Method File: D:\ICPM\(\Sigma\) Data\Method\\08-16-06fbi200.8.mth

Dataset File: D:\ICPM\(\Sigma\) Data\DataSet\\08-16-06\\608150-17.083

Tuning File: D:\ICPMS Data\Tuning\default.tun

Optimization File: D:\ICPMS Data\Optimize\Default.dac Calibration File: D:\ICPMS Data\System\08-16-06.cal

Batch ID:

Solids Ratio:

Calibration Type: External Calibration

Autosampler Position: 113
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):

# Intensities

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	62627	52808	2.71		ug/L
	Be	9	15	12	0.00	-0.001	ug/L
	Al	27	30236	80140	0.38	1.490	ug/L
	Sc	45	700355	678324	0.55		ug/L
	V	51	16349	21844	1.33	0.104	ug/L
	V-1	51	7600	21476	2.48	0.218	ug/L
1	Cr	52	46918	63945	1.19	0.355	ug/L
	Cr	53	2548	7175	0.70	0.692	ug/L
	Mn	55	4069	295253	1.62	3.580	ug/L
	Со	59	728	86265	2.17	1.216	ug/L
1	Ni	60	2164	1129	2.51	-0.053	ug/L
	Ni	62	547	536	8.32	0.013	ug/L
	Cu	63	3953	22667	3.62	0.488	ug/L
	Cu	65	1949	4954	0.57	0.172	ug/L
	Zn	66	5390	71942	1.12	6.682	ug/L
	Zn	67	1013	78211	1.75	44.713	ug/L
	Zn	68	4021	265267	0.64	35.605	ug/L
L>	Ge	72	1798281	1657613	2.10		ug/L
Γ	As	75	-902	-1105	5.88	-0.021	ug/L
-	As-1	75	259	950	1.71	0.064	ug/L
	Se	77	806	1001	4.10	0.246	ug/L
	Se	82	487	422	0.67	-0.038	ug/L
	Υ	89	1627756	1495308	1.95		ug/L
	Мо	95	755	433	4.66	-0.013	ug/L
	Мо	97	489	276	2.17	-0.014	ug/L
	Мо	98	1246	673	0.16	-0.014	ug/L
	Ag	107	229	262	7.30	0.001	ug/L

Page 1

Sample ID: 608150-17

	Ag	109	178	236	11.11	0.001	ug/L
	Cd	106	2442	2146	1.24	-0.144	ug/L
	Cd	108	11	288	19.95	0.261	ug/L
	Cd	111	1914	1794	3.63	-0.003	ug/L
1	Cd	114	199	1149	3.57	0.028	ug/L
>	in	115	1708474	1642183	1.00		ug/L
	Sb	121	376	1645	2.97	0.031	ug/L
	Sb	123	240	1237	1.74	0.033	ug/L
	Ва	135	629	8229767	2.48	679.376	ug/L
L	Ва	137	1074	14406628	1.38	695.849	ug/L
Γ	Tb	159	1781693	1752924	1.06		ug/L
>	Но	165	1759123	1708859	0.28		ug/L
	Hg	201	45	48	5.89	-186.747	ug/L
	Hg	202	83	97	10.99	173.003	ug/L
	TI	203	114	490	4.91	0.009	ug/L
	TI	205	208	1183	8.43	0.010	ug/L
	Pb	208	4961	28118	4.08	0.173	ug/L
	Bi	209	1048210	950408	1.46		ug/L
ļ	Th	232	279	1918	2.14	0.013	ug/L
L	U	238	625	482	4.55	-0.001	ug/L
	Fe	56	16567515	17777060	0.64		ug/L
	Ru	101	12	12	23.57		ug/L
	ArCl	<b>7</b> 7	768	1001	2.83		ug/L
	Kr	84	2212	1528	15.11		ug/L
	Sn	118	1708	2638	18.98		ug/L
	QC C	alculated Va	alues				

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li		-			·
	9	Be					
	27	Al					
1	45	Sc					
1	51	V					
	51	V-1					
	52	Cr					
1	53	Cr					
	55	Mn					
	59	Co					
1	60	Ni					
	62						
-							
	65						
1	66						
1	67						
-	68						
_>		Ge		92.178			
Γ	75						
		As-1					
	77						
	82						
	89						
	95						
	97						
		Мо					
1	107	Ag					
	109	Ag					
1	106						
!	108						
1	111	Cd					

-	114	Cd			
>	115	In			96.120
1	121	Sb			
	123	Sb			
	135	Ba			
L	137	Ba			
Γ	159	Tb			
>	165	Ho			97.143
1	201	Hg			
	202	Hg			
1	203	TI			
	205	ΤI			
	208	Pb			
1	209	Bi			
-	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			

1		114	Cd	
	>	115	In	98.974
-		121	Sb	
		123	Sb	
		135	Ва	
	L	137	Ва	
	Γ	159	Tb	
	>	165	Но	96.344
		201	Hg	
	ŀ	202	Hg	
	}	203	TI	
		205	TI	
		208	Pb	
		209	Bi	
		232	Th	
	L	238	U	
		56	Fe	
		101	Ru	
		77	ArCI	
		84	Kr	

# Treatability Study Fixed Laboratory Data (August 2006) Friedman & Bruya SDG's 608150 and 608301

Note: 608150 can be found in the proceeding subsection.

#### **ENVIRONMENTAL CHEMISTS**

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

September 6, 2006

James P. Wright, Project Manager USDOC NOAA NOS OR&R PPO 7600 Sand Point Way NE Seattle, WA 98115-6349

Dear Mr. Wright

Included are the results from the testing of material submitted on August 29, 2006 from the Lead Test, F&BI 608301 project. There are 13 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures NAA0906R.DOC

#### **ENVIRONMENTAL CHEMISTS**

#### CASE NARRATIVE

This case narrative encompasses samples received on August 29, 2006 by Friedman & Bruya, Inc. (ADEC laboratory approval number UST-007) from the USDOC NOAA NOS OR&R PPO Lead Test, F&BI 608301 project. The samples were received at 24°C and were refrigerated upon receipt. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	USDOC NOAA NOS OR&R PPO	Date Sampled
608301-01	SP60-TR-001-MT2	8/29/06
608301-02	SP60-TR-002/003-MT2-0	8/29/06
608301-03	SP60-TR-002/003-MT2-1	8/29/06
608301-04	SP60-TR-002/003-MT2-2	8/29/06

The samples were analyzed as follows.

Total Lead (soil) - Analysis Method 200.8, Extraction Method 3050 All quality control requirements were acceptable.

TCLP Lead (soil) - Analysis Method 200.8, Extraction Method 1311 All quality control requirements were acceptable.

## **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-TR-001-MT2

Date Received:
Date Extracted:

08/29/06 08/29/06 08/29/06

Date Analyzed: Matrix:

atrix:

Internal Standard:

Units:

Soil ug/g (ppm)

Client: Project: USDOC NOAA

Lead Test, F&BI 608301

Lab ID: Data File:

608301-01 608301-01.020

Instrument:

ICPMS1

Operator:

btb

•

% Recovery:

Lower Limit: Upper Limit:

60

125

Concentration

Analyte:

Holmium

ug/g (ppm)

Lead

#### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-TR-002/003-MT2-0

Date Received:

08/29/06 08/29/06

Date Extracted: Date Analyzed:

08/29/06

Matrix: Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

Lead Test, F&BI 608301

Lab ID: Data File: 608301-02 608301-02.021

Instrument:

ICPMS1

Operator:

btb

Internal Standard:

Holmium

% Recovery:

83

Lower Limit: 60

 ${\bf Upper}$ Limit:

125

Concentration

Analyte:

ug/g (ppm)

Lead

#### **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 200.8

Client ID:

Date Analyzed:

SP60-TR-002/003-MT2-1

Date Received:
Date Extracted:

08/29/06 08/29/06 08/29/06

Matrix: Units: Soil ug/g (ppm) Client: Project: USDOC NOAA

Project:

Lead Test, F&BI 608301

Lab ID: Data File:  $608301\text{-}03 \\ 608301\text{-}03.022$ 

Instrument:

ICPMS1

Operator:

btb

Internal Standard:

Holmium

% Recovery:

80

Lower Limit: 60 Upper Limit:

125

Concentration

Analyte:

ug/g (ppm)

Lead

## **ENVIRONMENTAL CHEMISTS**

# Analysis For Total Metals By EPA Method 200.8

Client ID:

SP60-TR-002/003-MT2-2

Date Received:
Date Extracted:
Date Analyzed:

Internal Standard:

08/29/06 08/29/06 08/29/06

Matrix:

Soil

Units:

ug/g (ppm)

Client: Project: USDOC NOAA

I

Lead Test, F&BI 608301

Lab ID: Data File: 608301-04 608301-04.023

Instrument:

608301-04.023 ICPMS1

Operator:

60

btb

% Recovery: Limit:

Upper Limit: 125

Concentration

83

Analyte:

Holmium

ug/g (ppm)

Lead

#### **ENVIRONMENTAL CHEMISTS**

## Analysis For Total Metals By EPA Method 200.8

Client ID:

Method Blank

Date Received: Date Extracted: Not Applicable 08/29/06

Date Analyzed:

08/29/06

Matrix: Units:

Soil

ug/g (ppm)

Client:

USDOC NOAA

Project:

Lead Test, F&BI 608301

Lab ID: Data File: I6-365 mb I6-365 mb.008

Instrument:

ICPMS1

Operator:

btb

Internal Standard:

% Recovery:

Holmium

83

Lower Limit: Upper

60

Limit: 125

Concentration

Analyte:

ug/g (ppm)

Lead

<1

#### **ENVIRONMENTAL CHEMISTS**

# Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

SP60-TR-001-MT2

08/29/06

Date Received: Date Extracted: Date Analyzed:

08/31/06 08/31/06

Matrix: Units:

Soil

mg/L (ppm)

Client:

USDOC NOAA

Project:

Lead Test, F&BI 608301

Lab ID:

608301-01 608301-01.014

Data File: Instrument:

ICPMS1

Operator:

btb

Internal Standards:

Holmium

% Recovery:

90

Lower

Limit: 60

Upper Limit: 125

Concentration

Analyte:

mg/L (ppm)

**TCLP** Limit

Lead

<1

#### **ENVIRONMENTAL CHEMISTS**

# Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

Internal Standards:

Date Analyzed:

SP60-TR-002/003-MT2-0

Date Received: 08/29/06 Date Extracted:

08/31/06 08/31/06 Soil

Matrix: Units:

mg/L (ppm)

Client:

USDOC NOAA

Project: Lab ID: Lead Test, F&BI 608301

Data File:

608301-02 608301-02.015

Instrument:

ICPMS1 btb

Operator:

Lower Limit:

Upper Limit:

% Recovery: 92

60

125

Concentration

Analyte:

Holmium

mg/L (ppm)

TCLP Limit

Lead

3.94

ENVIRONMENTAL CHEMISTS

#### Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

SP60-TR-002/003-MT2-1

Date Received:
Date Extracted:

08/29/06 08/31/06 08/31/06

Date Analyzed: Matrix: Units:

Soil

mg/L (ppm)

Client:

USDOC NOAA

Project:

Lead Test, F&BI 608301

Lab ID: Data File: 608301-03 608301-03.016

Instrument:

ICPMS1 btb

Operator:

Lower

Upper Limit:

Internal Standards: Holmium

% Recovery: 92

Limit: 60

Limit: 125

Concentration

Analyte:

mg/L (ppm)

TCLP Limit

Lead

<1

## **ENVIRONMENTAL CHEMISTS**

## Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID: SP60-TR-002/003-MT2-2 Client: USDOC NOAA

Date Received: 08/29/06 Project: Lead Test, F&BI 608301

 Date Extracted:
 08/31/06
 Lab ID:
 608301-04

 Date Analyzed:
 08/31/06
 Data File:
 608301-04.017

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/L (ppm) Operator: btb

Internal Standards: % Recovery: Limit: Limit: Holmium 92 60 125

Concentration

Analyte: mg/L (ppm) TCLP Limit

Lead <1 5.0

## **ENVIRONMENTAL CHEMISTS**

#### Analysis for TCLP Metals By EPA Method 200.8 and 40 CFR PART 261

Client ID:

Method Blank

USDOC NOAA Client: Project:

Date Received:

Not Applicable 08/31/06

Lead Test, F&BI 608301

Date Extracted: Date Analyzed:

08/31/06 Soil

Lab ID: I6-366 mb

Matrix:

Data File: Instrument: I6-366 mb.008

Units: mg/L (ppm) Operator:

ICPMS1 btb

Internal Standards:

% Recovery:

Lower Limit: Upper Limit:

Holmium

89

60

125

Concentration

Analyte:

mg/L (ppm)

TCLP Limit

Lead

<1

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 09/06/06 Date Received: 08/29/06

Project: Lead Test, F&BI 608301

## QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR METALS BY EPA METHOD 200.8

Laboratory Code: 608300-07 (Duplicate)

		Sample	Duplicate	Percent	Acceptance
_Analyte	Reporting Units	Result	Result	Difference	Criteria
Lead	ug/g (ppm)	13.4	13.6	1	0-20

Laboratory Code: 608300-07 (Matrix Spike)

				Percent			
		$\mathbf{Spike}$	$\mathbf{Sample}$	Recovery	Acceptance		
_Analyte	Reporting Units	Level	Result	MS	Criteria		
Lead	ug/g (ppm)	20	13.4	117 b	50-150	_	

Laboratory Code: Laboratory Control Sample

			$\operatorname{Percent}$	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Lead	ug/g (ppm)	20	107	70-130

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 09/06/06 Date Received: 08/29/06

Project: Lead Test, F&BI 608301

## QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF THE TCLP EXTRACT FOR METALS BY EPA METHOD 200.8 AND 40 CFR PART 261

Laboratory Code: 608300-03 (Duplicate)

				Relative			
Analyte	Reporting Units	Sample Result	Duplicate Result	Percent Difference	Acceptance Criteria		
Lead	mg/L (ppm)	<1	<1	nm	0-20		

Laboratory Code: 608300-03 (Matrix Spike)

		Spike	Sample	Recovery	Acceptance	
Analyte	Reporting Units	Level	Result	MS	Criteria	
Lead	mg/L (ppm)	1.0	<1	99	50-150	

Laboratory Code: Laboratory Control Sample

			Percent			
		$\mathbf{Spike}$	Recovery	Acceptance		
Analyte	Reporting Units	Level	LCS	Criteria		
Lead	mg/L (ppm)	1.0	104	70-130		

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

		el 206-526-6317 ax 206-526-6329			CHAIN of CUSTODY		
	report to James P. Wright	phone (206) 526 - 4583 206 526-4	819	ANALYSIS REQUESTED	Turnaround Time		
	' '//////A PP() 1	project /			ASAP 48 hr		
	address 7600 Sand Point Way IVE	project #	lea lea		12 hr 72 hr 72 hr 24 hr 35 std 24 hr 35 std		
	address 7600 Sand Point Way NE Bldg3, Im 1003 Seattle WH 98115	sampler Wright	14 P		0		
ISD ISD		Date Sampled Time Matrix Pre-	serve		* Remarks		
01	• SP60-TR-001-MT2	8/29/06 Soil -	XX				
02	• SP60-TR-002/003-MT2-0	8/29/06 Soil -					
3	• SP60-TR-002/003-MT2-1	8/24/06 50, -	<del></del>				
04	• SP60-TR-002/003-MT2-2	8/29/06 501 -	XX	<del></del>			
•		· · · · · · · · · · · · · · · · · · ·		<del>                                     </del>			
				<del> - - - - - - - - - - - - - - - - - - -</del>			
			<del>-       -   -   -   -   -   -   -   -  </del>				
	Comments	Signature Print Company Date  Relinquished by:  AMES  AMES  AMES  AMES  Time	glif Wright	Received by: Signature Print Company Date  Received by:  Michae   E	Time /0:40 Am.		
×	Sample integrity upon receipt: Bill 3rd Party:	Relinquished by:		Received b:			
	Samples received intact Samples received cold	Signature		Signature — Print — Print			
	Custody seals Correct container types	Company Time	· · · · · · · · · · · · · · · · · · ·	Company			
	Quote yes no	11116	<del></del>		THIE		

# SAMPLE CONDITION UPON RECEIPT CHECKLIST

PROJECT#_60	8301	CLIENT_	NOAA	INITIAL DATE:	SI NP) 8	8/29/00
If custody seal	s are pre	sent on co	oler, are they intact?	Ø NA	□ YES	□ NO
Cooler/Sample	tempera	ture				<u>24</u> •c
Were samples	received	on ice/col	d packs?		□ YES	Ø′NO
Number of day	s sample	s have be	en sitting prior to receip	ot at laborate	ory <u>t</u>	days days
Is there a Chai		• •	C)? and/or shipping memos		☑ YES	□ NO
Is the COC* co (explain "no" answe		nd in agre	ement with the samples	received?	□ YES	Ø NO
Sample ID's	☑ Yes	□ No	# of Containers	¹ Yes □ No		
Date Sampled	1 Yes	□ No	Relinquished 🗹	Yes □ No		
Time Sampled	□ Yes	⊿ No	Requested analysis 🔎	Yes □ No		
leaking etc.)? (	explain "no"	answer belov	ved intact (i.e. not broke w) ners used? (explain "no" answ		YES UYES	□ NO  □ NO
If custody seal	s are pre	sent on sa	mples, are they intact?	√D'NA	□ YES	□ №
Are samples re	quiring 1	no headsp	ace, headspace free?	Ø NA	□ YES	- 🗆 NO
	Explai	n "no" ite	ms from above (use the b	ack if needed)		
sample recei	ved in	Zipluc	bags.	····		
No time	Sample	d'				
Are samples fo	r PCB tes	sting (if yes,	, put a red sticker on each samp	le)	□ YES	D-NO
Did samples or	iginate o	ut of the c	country? (if yes, put in APHIS	S refrigerator)	□ YES	₽ NO
Was client noti	fied of sa	mple rece	ipt? D'Over the Counte	r 🗆 Picked	up by F&	BI
•			☐ YES ☐ NO (ex	plain)		
If Yes, name of	person co	ntacted			□ Left	Message
Special Instruc	tions from	Client		<u></u> _		•
Spould Histiac	MANY IIAII	OHenv				

# WORKSHEETS, 608301

# SAMPLE CONDITION UPON RECEIPT CHECKLIST

PROJECT# 60830/ CLIENT NOAA			INITIAL DATE:	SI	UP)	8/29/01
If custody seals are present on cooler, are they intact	t <b>?</b>		Ø NA		YES	□ NO
Cooler/Sample temperature	. ,					<u>24</u> °C
Were samples received on ice/cold packs?					YES	Ø NO
Number of days samples have been sitting prior to re	ceipt	at	laborato	ory		<del>0</del> days
Is there a Chain-of-Custody* (COC)? *or other representative documents, letters, and/or shipping memos				Ø	YES	□ NO
Is the COC* complete and in agreement with the sam (explain "no" answers below)	ples 1	rece	eived?		YES	Ø NO
Sample ID's \( \sqrt{2}'\) Yes \( \sqrt{1}\) No # of Containers	乜"	Yes	□ No			
Date Sampled 'I Yes   No Relinquished	乜.	Yes	$\square$ No			
Time Sampled   Yes   No   Requested analysis	is 🏳	Yes	□ No			
Were all sample containers received intact (i.e. not be leaking etc.)? (explain "no" answer below)	roken	<b>.</b>		<b>₽</b>	YES	□ NO
Were appropriate sample containers used? (explain "no"	answe	r bel	ow)		YES	Ð′NO
If custody seals are present on samples, are they inta	ct?		√D ⁷ NA		YES	□ NO
Are samples requiring no headspace, headspace free?	<b>?</b>		Ø NA		YES	- 🗆 NO
Explain "no" items from above (use t	he ba	ck if	f needed)			
sample received in ziploc bags.						
No time sampled'						
Are samples for PCB testing (if yes, put a red sticker on each s	sample	)			YES	D-NO
Did samples originate out of the country? (if yes, put in A	PHIS	refri	gerator)		YES	√D NO
Was client notified of sample receipt? Ø Over the Co	unter	[	☐ Picked	up	by F&	zBI
□ YES □ NO	) (exp	lain	ı)			
If Yes, name of person contacted					Left	Message
Special Instructions from Client						

# TOTAL METALS BY ICP/MS EXTRACTION WORKSHEET (SOIL/PRODUCT)

Project	#:	60	18301 NOAA		Date Received: 8/29/06  Date Extracted: 8-29-06						
Client:_			NOAA	-		Date Extracted: 8-29-06					
QC Bate	ch ID:	Db-3	365			Date	Analyzed:			<del> </del>	
-			t COC(		Sequence Date:						
Analysis M	lethod:	Mat	rix:		Requested Analytes: Reporting Units:						
200.8 Dther	· · · · · · · · · · · · · · · · · · ·		oil roduct		□ RCRA □ MTCA			<ul><li>μg/g (p</li><li>Other_</li></ul>			
		c	ther	<del></del>		ty Pollutant					
					Other	as Marked I				(Pb)	
Analyte Li	st: Be	V Cr	Mn C	o Ni	Cu Zn	As S	e Mo A	g Cd Si	ва Т	T Pb	
			T		<del>-  </del>		Wet	Pan &			
Sample	Sample	Final	Dilu	tions	Dilutio	n Pan	Sample	Dry			
ID	Weight	Volume	<b>;</b> [·		Facto	r ID	Weight	Sample	Percent	Observations	
			Amt. Extract	Amt. Solvent			(grams)	Weight	Solids		
01	2.0 g	50 mL	25cm		1000	L 10	9.8	8.5	115		
02			1		1	126	9.8	7.1	1.30		
03	1	·				K19	9.5	7.0	1.36		
04						11	10.0	7.5			
	<u>.</u>			<del>                                     </del>	<del>                                     </del>		70.0	/.5	1.33		
			<u> </u>	<u> </u>		<del>-  </del>	<u> </u>				
								l · 			
							P	RIORIT	110- (0	Sot!	
			<del>                                     </del>			- DUE:	Date/Ti	rre875	1706 CDA	MT OF	
			<del>                                     </del>	ļ		PM n	ptified if	unable to	moc. c.	··	
						at 10 Tutro	ast 48hr. et./Calcu	prior to	100 C.		
							co., oarca	a. (circie	in	itinis	
Initials	(2)	$\bigcirc$					<u> </u>				
			y U	L							
		1	Volum	<del></del>	Conc.	<del></del>	ipound(s)	Lot #			
Solvent(s)	)	_	2 mL		pprox. 70%			五-6-	5A Q	8-29.06	
		-	7 mL	a	pprox. 37%	HCI		75-3	1		
	Ot)	her									
Internal S	standard(s	' 1 I'	20 μL per 1	4	10 mg/L	⁶ Li, ⁴⁵ Sc, ⁷		3i II-3:	z l		
	Otl	her her	D sample	<u> </u>		115In, 155 I	b, ¹⁶⁵ Ho, ²⁰⁹ I	51 2 30	3		
Project Leader		OTES:	Ν	eec!	Data	2ck					
Initials:	And I				·····		<u> </u>				
immais:	<del></del>			<del>, , , , , , , , , , , , , , , , , , , </del>				1 1			
<b>Calculat</b>	ed by		9-4)	1340	6	Reviews	d by A	- <u>\$\\3\\</u>	TL 21		
FORMS\LAB\	EXTRACT\ME	TALS ICPM	$_{1S}$	•			(")		1	Rev 03-28-06	

# TCLP METALS EXTRACTION WORKSHEET

Project #:							Date Received: 8/29/66  Date Extracted: 8-29/06 1  Date Analyzed: 6-3/g/								
Client:				1	AAOC			D	ate Extr	acted:	8.2	31.04	3 h		
QC Bat	ch	ID.	I6	, - 3	366			D	ate Ana	lvzed:	ζ-	- 3hz	F1		
Sample						友	)		quence			)		<del></del>	
Sample	S	cnecke	u aga	unst	, 000			, De	quence	Date				<del></del>	
Analysis Method: Matrix:    6010B			*4.	Requested Analytes Extraction Method: Beporting Units:  TCLP Metals											
Date/Time on Tumbler Initials					i	Date/ Tim	ey off Tumble	<u> </u>	Initials	·		TCLP S			
6/3dc 12:30 M			_	6/3//	c6 6:3	30	M				I, 500 mL II, 500 mL				
			,			·····			<del>,</del>				Not TCLI	Analytes)	
Sample ID	V	ample Veight/		r <b>T</b>		<b>n</b> -		0	Pb	Se	A =	Cu	NT:	. Zn	
	· V	olume	[ p]		As	Ba	Cd	Cr	FB	De .	Ag	Cu	Ni	<u> Z11</u>	
5		25 g	1.	9											
02			5.0	<u> </u>											
UŞ			y-	R					1						
04			4	0		٠.									
		····													
						<u> </u>	<u> </u>		<del> </del>		i i			_	
									<u> </u>						
											RIOR	TY	10660	) a hot	
					·					Date/Ti				annews reserve to the eye of	
						<u></u>			PM not	ified if	unable	\$0.00	24 (		
				-					Extract	st 48hr ./Calcu	prior In (cir	n di	1		
						<u> </u>				J. C. Alice			i	1634 5	
			TC	CD.	-										
			Lin		5.0	100	1.0	5.0	5.0	1.0	5.0			}	i
Initials		4	1	اسرزاسر				7							
		<i>E</i>			L	······	<u></u>	<u> </u>	L	•					لــــــا
				1	Volume	Co	nc.	Co	mpound(	s)	Lot#	Iı	nitials	Date	7
Solvent					0.5 mL	appro	x 70%	HNO ₃			234	1/	7	6/7/4	
					0.5 mL	appro	x 37%	HCl							4
		• C	ther			<u> </u>				<u> </u>	<del></del>			<del></del>	
Project Leader Initials:	. 1	Wh.	NOT	ES:_			col	Dite	lace						<u> </u>
minais.	•			. 7	Z -	1. 1	- ^	<u></u>	<u> </u>	1.1			<del></del>	<u> </u>	<del></del> .
Calleula	te		je je	///	4 8 7	13114	<b>/</b>	i likev	ewed b						
FORMS\LAI	B∖E	XTRACT\I	METALS	_ICP	$\mathcal{O}_{j}$					•		<b>*</b> _ ,	F	Rev. 09/06/	/05

# METALS DATA, 608301

# **Dataset Report**

User Name: btb

Computer Name: ICPMS

Dataset File Path: D:\ICPMS Data\DataSet\08-29-06\

Report Date/Time: Wednesday, September 20, 2006 15:35:45

# The Dataset

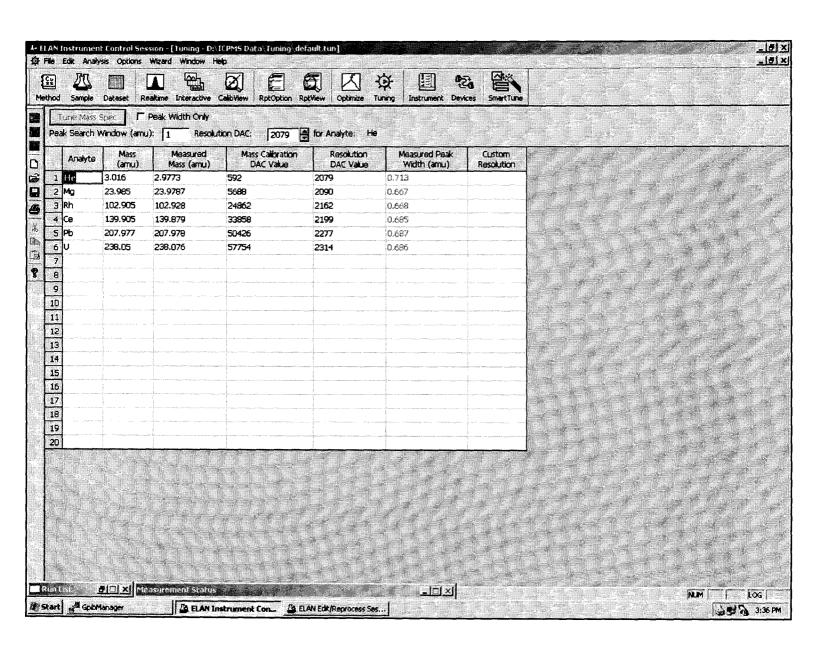
		I II C	Jalasel		
Batch ID	Sample ID	Date and Time	Read Type	Samp. File Name	Description
	blank	14:58:09 Tue 29-Aug-06	Blank	blank.001	
	1 ppb i1-56a	15:01:42 Tue 29-Aug-06	Standard #1	1 ppb i1-56a.002	
	5 ppb i1-56b	15:05:15 Tue 29-Aug-06	Standard #2	5 ppb i1-56b.003	
	10 ppb i1-56c	15:08:50 Tue 29-Aug-06	Standard #3	10 ppb i1-56c.004	
	25 ppb i1-56d	15:12:25 Tue 29-Aug-06	Standard #4	25 ppb i1-56d.005	
	50 ppb i1-56e	15:15:59 Tue 29-Aug-06	Standard #5	50 ppb i1-56e.006	
	25 ppb i1-57a	15:19:32 Tue 29-Aug-06	Sample	25 ppb i1-57a.007	
	i6-365 mb	15:24:21 Tue 29-Aug-06	Sample	i6-365 mb.008	soil
	i6-365 lcs	15:28:05 Tue 29-Aug-06	Sample	i6-365 lcs.009	soil
	608300-01	15:31:49 Tue 29-Aug-06	Sample	608300-01.010	soil
	608300-02	15:35:33 Tue 29-Aug-06	Sample	608300-02.011	soil
	608300-03	15:39:52 Tue 29-Aug-06	Sample	608300-03.012	soil
	608300-04	15:43:36 Tue 29-Aug-06	Sample	608300-04.013	soil
	608300-05	15:47:20 Tue 29-Aug-06	Sample	608300-05.014	soil
	608300-06	15:51:04 Tue 29-Aug-06	Sample	608300-06.015	soil
	25 ppb i1-57-a	15:54:49 Tue 29-Aug-06	Sample	25 ppb i1-57-a.016	soil
	608300-07	15:58:34 Tue 29-Aug-06	Sample	608300-07.017	soil
	i6-365 ms 60830	016:02:19 Tue 29-Aug-06	Sample	i6-365 ms 608300-07.018	soil
	i6-365 dup 6083	116:06:04 Tue 29-Aug-06	Sample	i6-365 dup 608300-07.019	esoil esoil
	608301-01	16:09:49 Tue 29-Aug-06	Sample	608301-01.020	soil
	608301-02	16:13:34 Tue 29-Aug-06	Sample	608301-02.021	soil
	608301-03	16:17:19 Tue 29-Aug-06	Sample	608301-03.022	soil
	608301-04	16:21:03 Tue 29-Aug-06	Sample	608301-04.023	soil
	608288-05	16:24:47 Tue 29-Aug-06	Sample	608288-05.024	soil
	608288-06	16:28:32 Tue 29-Aug-06	Sample	608288-06.025	soil
	608288-07	16:32:16 Tue 29-Aug-06	Sample	608288-07.026	soil
	25 ppb i1-57-a	16:36:01 Tue 29-Aug-06	Sample	25 ppb i1-57-a.027	soil
	608288-01 40x	_	Sample	608288-01 40x.028	soil
	608288-02 40x	16:43:31 Tue 29-Aug-06	Sample	608288-02 40x.029	soil
		16:47:15 Tue 29-Aug-06	Sample	608288-03 40x.030	soil
		16:51:00 Tue 29-Aug-06	Sample	608288-04 40x.031	soil
	rinse	16:54:45 Tue 29-Aug-06	Sample	rinse.032	soil
	25 ppb i1-57-a	16:58:31 Tue 29-Aug-06	Sample	25 ppb i1-57-a.033	soil
	i6-367 mb	17:02:16 Tue 29-Aug-06	Sample	i6-367 mb.034	soil
	i6-367 lcs	17:06:02 Tue 29-Aug-06	Sample	i6-367 lcs.035	soil
	608279-17 d	17:09:46 Tue 29-Aug-06	Sample	608279-17 d.036	soil
	i6-367 ms 60827	717:13:31 Tue 29-Aug-06	Sample	i6-367 ms 608279-17.037	
		17:17:16 Tue 29-Aug-06	Sample	i6-367 dup 608279-17.038	
	6028279-23 d	17:21:00 Tue 29-Aug-06	Sample	•	water
	608279-26 d	17:24:45 Tue 29-Aug-06	Sample	608279-26 d.040	water
	608295-01 d	17:28:30 Tue 29-Aug-06	Sample		water
	608285-05 d	17:32:15 Tue 29-Aug-06	Sample		water
	608285-06 d	17:35:59 Tue 29-Aug-06	Sample		water
	25 ppb i1-57-a	17:39:44 Tue 29-Aug-06	Sample		water
			-ap.o	pps 11 01-0.044	

i6-368 mb	17:43:30 Tue 29-Aug-06	Sample	i6-368 mb.045	water
i6-368 lcs	17:47:15 Tue 29-Aug-06	Sample	i6-368 lcs.046	water
608295-01	17:51:01 Tue 29-Aug-06	Sample	608295-01.047	water
i6-368 ms 6082	917:54:46 Tue 29-Aug-06	Sample	i6-368 ms 608295-01.0	48 water
i6-368 dup 6082	2!17:58:31 Tue 29-Aug-06	Sample	i6-368 dup 608295-01.6	049water
608279-17	18:02:16 Tue 29-Aug-06	Sample	608279-17.050	water
608279-23	18:06:01 Tue 29-Aug-06	Sample	608279-23.051	water
608279-26	18:09:46 Tue 29-Aug-06	Sample	608279-26.052	water
608272-01 10x	18:13:31 Tue 29-Aug-06	Sample	608272-01 10x.053	water
608290-01 10x	18:17:16 Tue 29-Aug-06	Sample	608290-01 10x.054	water
25 ppb i1-57-a	18:21:02 Tue 29-Aug-06	Sample	25 ppb i1-57-a.055	water
608188-03	18:24:47 Tue 29-Aug-06	Sample	608188-03.056	water
608188-04	18:28:32 Tue 29-Aug-06	Sample	608188-04.057	water
608188-05	18:32:17 Tue 29-Aug-06	Sample	608188-05.058	water
608188-06	18:36:03 Tue 29-Aug-06	Sample	608188-06.059	water
608188-07	18:39:48 Tue 29-Aug-06	Sample	608188-07.060	water
608188-08	18:43:33 Tue 29-Aug-06	Sample	608188-08.061	water
908188-09	18:47:18 Tue 29-Aug-06	Sample	908188-09.062	water
25 ppb i1-57-a	18:51:04 Tue 29-Aug-06	Sample	25 ppb i1-57-a.063	water
25 ppb i1-57-a	10:20:59 Wed 30-Aug-06	Sample	25 ppb i1-57-a.064	water
608285-06 d	10:24:44 Wed 30-Aug-06	Sample	608285-06 d.065	water
608188-05	10:28:28 Wed 30-Aug-06	Sample	608188-05.066	water
608188-06	10:32:13 Wed 30-Aug-06	Sample	608188-06.067	water
25 ppb i1-57-a	10:35:57 Wed 30-Aug-06	Sample	25 ppb i1-57-a.068	water
25 ppb i1-57-a	10:45:21 Wed 30-Aug-06	Sample	25 ppb i1-57-a.069	water

# **Quantitative Analysis Calibration Report**

File Name: 08-29-06.cal

File Path: D:\ICPMS Data\System


Calibration Type: External Calibration

Analyte	Mass	Curve Type	Slope	Intercept	Corr. Coeff.
Li	6.015	Linear Thru Zero	0.00	0.00	0.000000
Ве	9.012	Linear Thru Zero	0.00	0.00	0.999962
Al	26.982	Linear Thru Zero	0.02	0.00	0.995786
Sc	44.956	Linear Thru Zero	0.00	0.00	0.000000
V	50.944	Linear Thru Zero	0.04	0.00	0.999833
V-1	50.944	Linear Thru Zero	0.04	0.00	0.999789
Cr	51.941	Linear Thru Zero	0.03	0.00	0.999975
Cr	52.941	Linear Thru Zero	0.00	0.00	0.999982
Mn	54.938	Linear Thru Zero	0.05	0.00	0.999985
Co	58.933	Linear Thru Zero	0.04	0.00	0.999966
Ni	59.933	Linear Thru Zero	0.01	0.00	0.999920
Ni	61.928	Linear Thru Zero	0.00	0.00	0.999963
Cu	62.930	Linear Thru Zero	0.02	0.00	0.999825
Cu	64.928	Linear Thru Zero	0.01	0.00	0.999943
Zn	65.926	Linear Thru Zero	0.01	0.00	0.999890
Zn	66.927	Linear Thru Zero	0.00	0.00	0.999931
Zn	67.925	Linear Thru Zero	0.00	0.00	0.999972
Ge	71.922	Linear Thru Zero	0.00	0.00	0.000000
As	74.922	Linear Thru Zero	0.01	0.00	0.999988
As-1	74.922	Linear Thru Zero	0.01	0.00	0.999985
Se	76.920	Linear Thru Zero	0.00	0.00	0.999991
Se	81.917	Linear Thru Zero	0.00	0.00	0.999991
Υ	88.905	Linear Thru Zero	0.00	0.00	0.000000
Мо	94.906	Linear Thru Zero	0.01	0.00	0.999948
Мо	96.906	Linear Thru Zero	0.01	0.00	0.999963
Мо	97.906	Linear Thru Zero	0.02	0.00	0.999798
Ag	106.905	Linear Thru Zero	0.04	0.00	0.999991
Ag	108.905	Linear Thru Zero	0.04	0.00	0.999989
Cd	105.907	Linear Thru Zero	0.00	0.00	0.999855
Cd	107.904	Linear Thru Zero	0.00	0.00	0.999966
Cd	110.904	Linear Thru Zero	0.01	0.00	0.999944
Cd	113.904	Linear Thru Zero	0.02	0.00	0.999862
ln Ob	114.904	Linear Thru Zero	0.00	0.00	0.000000
Sb	120.904	Linear Thru Zero	0.03	0.00	0.999901
Sb	122.904	Linear Thru Zero	0.02	0.00	0.999962
Ba	134.906	Linear Thru Zero	0.01	0.00	0.999945
Ba Tb	136.905	Linear Thru Zero	0.01	0.00	0.999887
Но	158.925 164.930	Linear Thru Zero	0.00	0.00	0.000000
	200.970	Linear Thru Zero	0.00	0.00	0.000000
Hg	200.310	Linear Thru Zero	0.00	0.00	0.464810

Report Date/Time:

Wednesday, September 20, 2006 15:35:56

Hg	201.971	Linear Thru Zero	0.00	0.00	0.430988
TI	202.972	Linear Thru Zero	0.02	0.00	0.999891
TI	204.975	Linear Thru Zero	0.06	0.00	0.999986
Pb	207.977	Linear Thru Zero	0.07	0.00	0.999988
Bi	208.980	Linear Thru Zero	0.00	0.00	0.000000
Th	232.038	Linear Thru Zero	0.07	0.00	0.999931
U	238.050	Linear Thru Zero	0.07	0.00	0.999974
Fe	55.935	Linear Thru Zero	0.00	0.00	0.000000
Ru	100.906	Linear Thru Zero	0.00	0.00	0.000000
ArCl	76.928	Linear Thru Zero	0.00	0.00	0.000000
Kr	83.912	Linear Thru Zero	0.00	0.00	0.000000
Sn	117.902	Linear Thru Zero	0.00	0.00	0.000000



#### **Quantitative Analysis - Summary Report**

Sample ID: 608301-01

Sample Date/Time: Tuesday, August 29, 2006 16:09:49

Sample Description: soil User Name: btb Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-29-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-29-06.sam

Method File: D:\ICPMS Data\Method\08-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\08-29-06\608301-01.020

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 49
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	68954	64813	2.23		ug/L
	Be	9	14	832	0.51	0.375	ug/L
	Al	27	66140	260150391	1.01	8294.709	ug/L
1	Sc	45	696267	718484	1.09		ug/L
1	V	51	13085	1490488	2.44	26.685	ug/L
	V-1	51	11736	1775256	2.57	31.295	ug/L
	Cr	52	39154	718499	2.27	13.586	ug/L
	Cr	53	4018	172313	0.47	28.314	ug/L
	Mn	55	6785	14987555	1.94	191.339	ug/L
	Co	59	1024	473816	1.58	6.969	ug/L
	Ni	60	2246	283509	1.44	18.700	ug/L
	Ni	62	502	51586	3.39	22.650	ug/L
	Cu	63	3750	397214	1.08	11.656	ug/L
	Cu	65	1814	195063	2.14	11.651	ug/L
	Zn	66	9607	1485653	2.06	162.163	ug/L
	Zn	67	1790	237518	0.10	151.224	ug/L
	Zn	68	6874	1064785	0.64	158.162	ug/L
L>	Ge	72	1784483	1536456	0.88		ug/L
Γ	As	75	-751	37880	1.45	4.371	ug/L
	As-1	75	382	64275	0.44	7.430	ug/L
	Se	77	673	8933	4.04	12.081	ug/L
	Se	82	397	709	0.20	0.427	ug/L
1	Υ	89	1549054	2265606	0.52		ug/L
	Мо	95	663	12157	5.72	0.685	ug/L
1	Мо	97	395	7547	1.96	0.672	
ļ	Мо	98	1033	18992	0.48	0.679	
	Ag	107	142	3525	0.38	0.074	ug/L

Page 1

Sample ID: 608301-01

Report Date/Time: Wednesday, September 20, 2006 15:37:17

į	9 Be 27 Al						
٢	Mass Analyte 6 Li	QC Sto	d % Recovery Int Std % Recover	y Spike % Recovery	Dilution % Di	fference	Duplicate Rel. % Diffe
	QC Calc	ulated	Values				
	Sn	118	5385	74913	0.92		ug/L
	Kr	84	1794	-11739	3.48		ug/L
	ArCl	77	686	9019	2.97		ug/L
	Ru	101	8	19	7.44		ug/L
	Fe	56	14822954	S	S		ug/L
L	U	238	260	190080	0.08	1.794	ug/L
	Th	232	1565	94640	1.46	0.855	_
ĺ	Bi	209	1013815	852434	0.50		ug/L
j	Pb	208		133161831	0.04	1219.423	_
i	TI	205	269	4973	0.87	0.057	
i	ΤΙ	203	131	2151	0.23	0.060	•
i	Hg	202	71	486	0.87	6596.795	_
i	Hg	201	32	197	7.90	2093.332	=
>		165	1764594	1460440	0.05		ug/L
ŗ	Tb	159	1810000	1496199	0.99	00.000	ug/L
i	Ba	137	1295	660836	0.19	39.565	•
İ	Ba	135	795	385381	0.97	39.403	•
i	Sb	123	751	15945	4.10	0.642	•
>	Sb	121	965	21063	3.41	0.654	_
1	•	115	1557125	1232431	0.24	0.363	ug/L ug/L
l I	Cd	114	128	9560	1.66	0.314	_
i	Cd	111	-99 1302	-709 6575	13.09	0.514	_
i	Cd	108	-99	-769	4.93 13.09	-0.904	•
1	Ag Cd	109 106	103 1550	3834 2835	0.85 4.93	0.086 1.570	_

		Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li					
	9	Be					
	27	Al					
	45	Sc					
1	51	٧					
	51	V-1					
1	52	Cr					
	53	Cr					
	55	Mn					
	59	Co					
	60	Ni					
	62	Ni					
	63						
	65	Cu					
	66	Zn					
	67	Zn					
	68						
L>	72			86.101			
Γ	75	As					
1		As-1					
1	77						
l	82						
	89						
	95						
	97						
1		Мо					
1	107	Ag					
	109	Ag					
1	106						
1	108						
1	111	Cd					

1	114	Cd				
>	115	In				79.148
1	121	Sb				
1	123	Sb				
1	135	Ba				
L	137	Ва				
Γ	159	Tb				
>	165	Но				82.764
1	201	Hg				
1	202	Hg				
1	203	TI				
	205	TI				
	208	Pb				
	209	Bi				
1	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCl				
	84	Kr				

118 Sn

#### **Quantitative Analysis - Summary Report**

Sample ID: 608301-02

Sample Date/Time: Tuesday, August 29, 2006 16:13:34

Sample Description: soil User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-29-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-29-06.sam Method File: D:\ICPMS Data\Method\08-29-06fbi200.8.mth Dataset File: D:\ICPMS Data\DataSet\08-29-06\608301-02.021

Tuning File: D:\ICPMS Data\Tuning\default.tun Optimization File: D:\ICPMS Data\Optimize\Default.dac Calibration File: D:\ICPMS Data\System\08-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 50 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	68954	64515	2.76		ug/L
	Be	9	14	853	0.17	0.387	ug/L
	Al	27	66140	326431029	1.59	10471.849	ug/L
	Sc	45	696267	738042	1.08		ug/L
	V	51	13085	2121833	1.58	38.309	ug/L
1	V-1	51	11736	2428758	1.81	43.146	ug/L
	Cr	52	39154	1155498	1.07	22.392	ug/L
	Cr	53	4018	231913	0.20	38.545	ug/L
	Mn	55	6785	18587582	0.51	238.736	ug/L
	Co	59	1024	643041	2.26	9.521	ug/L
	Ni	60	2246	326577	1.09	21.690	ug/L
	Ni	62	502	66492	1.16	29.433	ug/L
	Cu	63	3750	1288452	1.62	38.254	ug/L
	Cu	65	1814	633327	1.40	38.268	ug/L
	Zn	66	9607	11091196	0.64	1223.980	ug/L
	Zn	67	1790	1621470	0.38	1044.414	ug/L
	Zn	68	6874	7799964	1.67	1171.233	ug/L
<u> </u> >	Ge	72	1784483	1527149	0.19		ug/L
Γ	As	75	-751	34254	2.35	3.895	ug/L
	As-1	75	382	60615	0.58	6.889	ug/L
	Se	77	673	9187	0.75	12.227	ug/L
	Se	82	397	1038	1.02	0.763	ug/L
	Υ	89	1549054	1895163	0.63		ug/L
	Мо	95	663	9946	1.51	0.545	ug/L
	Мо	97	395	6197	1.96	0.537	ug/L
ļ	Мо	98	1033	15555	1.20	0.541	_
	Ag	107	142	6706	0.47	0.140	ug/L

Page 1

Sample ID: 608301-02

Report Date/Time: Wednesday, September 20, 2006 15:37:20

1	Ag	109	103	7846	3.65	0.174	ug/L
1	Cd	106	1550	7698	3.34	6.194	ug/L
	Cd	108	-99	968	9.00	1.350	ug/L
	Cd	111	1302	19859	1.86	1.713	ug/L
	Cd	114	128	35824	0.14	1.422	ug/L
>	In	115	1557125	1253105	0.10		ug/L
1	Sb	121	965	52253	1.89	1.631	ug/L
1	Sb	123	751	39828	0.86	1.614	ug/L
	Ba	135	795	2029224	2.47	204.322	ug/L
L	Ва	137	1295	3561466	2.08	209.980	ug/L
Γ	Tb	159	1810000	1489774	0.96		ug/L
>	Но	165	1764594	1463444	0.02		ug/L
1	Hg	201	32	1153	2.15	13795.308	ug/L
	Hg	202	71	2554	1.30	38442.379	ug/L
	TI	203	131	1188	6.31	0.032	ug/L
	ΤI	205	269	2740	2.92	0.030	ug/L
	Pb	208	4387	228430541	1.70	2087.566	ug/L
	Bi	209	1013815	891879	0.21		ug/L
	Th	232	1565	80213	1.55	0.721	ug/L
L	U	238	260	41780	1.17	0.392	ug/L
	Fe	56	14822954	S	S		ug/L
	Ru	101	8	33	21.43		ug/L
	ArCl	<b>7</b> 7	686	9276	1.48		ug/L
	Kr	84	1794	-5570	10.98		ug/L
	Sn	118	5385	100559	0.45		ug/L
	QC C	alculated Va	lues				=

ľ	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ		Li	•		-,,		Deprisate Non 70 Billionolito
	9	Ве					
ĺ	27						
ĺ							
ĺ		٧					
ĺ		V-1					
I	52						
ĺ		Cr					
İ		Mn					
İ		Co					
ĺ	60						
Ì		Ni					
Ì							
ĺ							
1	66						
	67						
	68						
<b> </b> >	72			85.579			
Γ	75						
	75	As-1					
	77	Se					
	82	Se					
	89	Υ					
	95	Мо					
	97	Мо					
	98	Мо					
	107	Ag					
		Ag					
	106						

108 Cd 111 Cd

i	114	Cd	
>	115	In	80.476
	121	Sb	
	123	Sb	
	135	Ва	
Ĺ	137	Ва	
Γ	159	Tb	
>	165	Но	82.934
	201	Hg	
	202	Hg	
	203	Ti	
1	205	Ti	
	208	Pb	
1	209	Bi	
1	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCl	
	84	Kr	
	118	Sn	

#### **Quantitative Analysis - Summary Report**

Sample ID: 608301-03

Sample Date/Time: Tuesday, August 29, 2006 16:17:19

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-29-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-29-06.sam

Method File: D:\ICPMS Data\Method\08-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\08-29-06\608301-03.022

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 51
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Anaiyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	68954	62530	0.81		ug/L
Ì	Be	9	14	811	3.58	0.377	ug/L
İ	Al	27	66140	297955463	0.44	9805.941	ug/L
1	Sc	45	696267	706875	3.38		ug/L
	V	51	13085	2065576	1.25	38.266	ug/L
	V-1	51	11736	2352999	0.51	42.887	ug/L
	Cr	52	39154	1030279	0.50	20.427	ug/L
	Cr	53	4018	210849	2.14	35.922	ug/L
	Mn	55	6785	17364609	2.46	228.867	ug/L
-	Co	59	1024	600602	2.97	9.120	ug/L
	Ni	60	2246	329003	0.85	22.425	ug/L
	Ni	62	502	62773	1.11	28.505	ug/L
	Cu	63	3750	1144817	0.69	34.861	ug/L
	Cu	65	1814	566513	0.74	35.114	ug/L
	Zn	66	9607	10536990	2.06	1192.726	ug/L
	Zn	67	1790	1548181	0.24	1023.039	ug/L
	Zn	68	6874	7460321	0.20	1149.286	ug/L
<b> </b> >	Ge	72	1784483	1488831	2.02		ug/L
Γ	As	75	-751	36958	3.39	4.319	ug/L
	As-1	75	382	60932	0.72	7.129	ug/L
1	Se	77	673	8518	0.22	11.634	ug/L
	Se	82	397	1059	3.21	0.819	ug/L
	Υ	89	1549054	1897937	0.15		ug/L
1	Мо	95	663	11696	5.73	0.666	ug/L
	Мо	97	395	7079	1.04	0.637	ug/L
	Мо	98	1033	18313	0.43	0.662	ug/L
ļ	Ag	107	142	6119	3.15	0.131	ug/L

Page 1

Sample ID: 608301-03

Report Date/Time: Wednesday, September 20, 2006 15:37:21

- 1	A	∖g	109	103	3	7120		0.63	0.163	ug/L
ĺ		Dd .	106	155	0	4474		0.02	3.224	ug/L
-	C	Cd	108	-99	9	-516		4.50	-0.582	ug/L
- 1	C	Cd	111	130	2	19351		0.14	1.719	ug/L
	C	Cd	114	128	В	37832		1.37	1.546	ug/L
1	> lı	n	115	155712	5	1217501		0.88		ug/L
- 1	S	Sb	121	96	5	49232		0.03	1.581	ug/L
	S	Sb S	123	75	1	37379		1.41	1.559	ug/L
-	Е	3a	135	79	5	1819298		0.74	188.552	ug/L
L	. E	3a	137	129	5	3243304		0.62	196.820	ug/L
Γ	T	-b	159	181000	0	1444616		0.66		ug/L
- [	> F	Но	165	176459	4	1409214		0.48		ug/L
	H	<del>l</del> g	201	3:	2	927		4.58	11468.248	ug/L
1	F	łg	202	7	1	2113		0.64	32899.531	ug/L
	T	П	203	13	1	1345		1.47	0.038	ug/L
1	T	7	205	269	9	3155		1.34	0.037	ug/L
-	F	Pb	208	438	7 19	8167371		1.16	1880.765	ug/L
1	E	3i	209	101381	5	858231		1.78		ug/L
		⁻ h	232	156	5	84924		1.24	0.794	ug/L
L	L	J	238	260	0	160771		1.77	1.573	ug/L
		e	56	1482295	4	S		S		ug/L
		₹u	101	:	В	40		3.54		ug/L
		\rCl	77	68	6	8530		3.37		ug/L
		(r	84	179	4	-4565		7.58		ug/L
	S	Sn .	118	538	5	135828		0.80		ug/L
		QC Calc	ulate	d Values						
	Mas	ss Analyte	QC :	Std % Recovery Int	Std % Recovery	Spike % R	ecoverv [	Oilution % I	Difference	Duplicate Rel. % D
Γ		6 Li		•	·	•	,			
-		9 Be								
-		27 AI								
		5 Sc								

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li	•	•			
	9	Be					
	27	Al					
	45	Sc					
	51	V					
	51	V-1					
	52	Cr					
1	53	Cr					
1	55	Mn					
	59	Co					
1	60	Ni					
1	62	Ni					
	63	Cu					
	65	Cu					
	66	Zn					
	67	Zn					
		Zn					
_>		Ge		83.432			
Γ	75	As					
1		As-1					
	77						
	82						
		Υ					
		Mo					
	97						
	98	Мо					
1	107						
	109						
1	106						
1	108						
1	111	Cd					

1	114	Cd				
>	<b>115</b>	In				78.189
1	121	Sb				
ĺ	123	Sb				
-	135	Ва				
L	137	Ba				
Ī	159	Tb				
1:	> 165	Но				79.861
	201	Hg				
	202	Hg				
1	203	TI				
	205	TI				
	208	Pb				
	209	Bi				
	232	Th				
L	238	U				
	56	Fe				
	101	Ru				
	77	ArCl				
	84	Kr				
	118	Sn				

#### **Quantitative Analysis - Summary Report**

#### Sample ID: 608301-04

Sample Date/Time: Tuesday, August 29, 2006 16:21:03

Sample Description: soil

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-29-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-29-06.sam

Method File: D:\ICPMS Data\Method\08-29-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\08-29-06\608301-04.023

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-29-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 52 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	68954	66515	0.56		ug/L
j	Be	9	14	974	3.05	0.432	ug/L
İ	Al	27	66140	320315007	0.47	10025.440	ug/L
	Sc	45	696267	727383	4.82		ug/L
İ	V	51	13085	2257471	0.75	39.775	ug/L
İ	V-1	51	11736	2564257	0.10	44.448	ug/L
	Cr	52	39154	1086849	0.38	20.493	ug/L
	Cr	53	4018	220875	1.13	35.778	ug/L
	Mn	55	6785	18694068	0.62	234.228	ug/L
	Co	59	1024	652986	1.97	9.430	ug/L
	Ni	60	2246	344743	0.02	22.342	ug/L
	Ni	62	502	65728	0.04	28.377	ug/L
	Cu	63	3750	1250362	3.35	36.201	ug/L
1	Cu	65	1814	621758	0.56	36.650	ug/L
	Zn	66	9607	11026978	1.94	1186.952	ug/L
	Zn	67	1790	1610344	0.88	1011.823	ug/L
	Zn	68	6874	7809710	1.65	1144.228	ug/L
<u> </u>	Ge	72	1784483	1565647	1.97		ug/L
Γ	As	75	-751	37927	1.51	4.228	ug/L
	As-1	75	382	62916	1.05	7.021	ug/L
1	Se	77	673	8852	2.97	11.528	ug/L
	Se	82	397	1121	0.57	0.830	ug/L
	Υ	89	1549054	2306473	0.80		ug/L
1	Мо	95	663	13188	0.76	0.719	ug/L
	Мо	97	395	8356	1.64	0.721	ug/L
- [	Мо	98	1033	21100	2.95	0.731	-
1	Ag	107	142	6576	0.98	0.135	ug/L

Page 1

Sample ID: 608301-04

Report Date/Time: Wednesday, September 20, 2006 15:37:23

	Ag	109	103	7614	3.35	0.166	ug/L
	Cd	106	1550	220	93.84	-0.990	ug/L
	Cd	108	-99	-5340	0.50	-6.652	ug/L
	Cd	111	1302	19027	0.26	1.606	ug/L
	Cd	114	128	36026	1.86	1.404	ug/L
>	In	115	1557125	1276271	0.74		ug/L
1	Sb	121	965	54735	1.34	1.679	ug/L
	Sb	123	751	41928	0.91	1.670	ug/L
	Ва	135	795	1970230	1.45	194.775	ug/L
L	Ва	137	1295	3449584	0.32	199.694	ug/L
Γ	Tb	159	1810000	1529660	1.18		ug/L
>	Но	165	1764594	1471963	1.92		ug/L
	Hg	201	32	896	3.08	10581.685	ug/L
	Hg	202	71	1970	2.62	29264.446	ug/L
	TI	203	131	1512	3.42	0.041	ug/L
	TI	205	269	3523	4.62	0.039	ug/L
	Pb	208	4387	201016362	0.01	1826.737	ug/L
	Bi	209	1013815	895415	1.09		ug/L
	Th	232	1565	92903	1.19	0.832	ug/L
L	U	238	260	254415	0.39	2.384	ug/L
	Fe	56	14822954	S	S		ug/L
	Ru	101	8	36	37.85		ug/L
	ArCI	77	686	8905	0.26		ug/L
	Kr	84	1794	-4352	28.43		ug/L
	Sn	118	5385	313804	0.62		ug/L
	QC C	alculated Va	alues				

OC	$C_{2}$		lata	<b>ا ہ</b>	/~I	
IJŧ.	เ .สเ	CH	IIATE	nι	/ai	1166

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
٢	6	Li					·
- 1	9	Be					
	27						
1	45	Sc					
1	51						
1		V-1					
1	52	Cr					
1	53	Cr					
	55	Mn					
- 1	59	Co					
	60	Ni					
	62	Ni					
	63	Cu					
	65	Cu					
	66	Zn					
	67	Zn					
		Zn					
L>		Ge		87.737			
Γ		As					
1	75	As-1					
		Se					
	82						
	89						
1		Мо					
		Мо					
-		Мо					
1	107						
•	109						
1	106	Cd					
1	108						
-	111						

1	114	Cd			
>	115	In			81.963
	121	Sb			
	123	Sb			
	135	Ва			
L	137	Ва			
Γ	159	Tb			
>	165	Но			83.417
	201	Hg			
1	202	Hg			
ļ	203	TI			
1	205	TI			
	208	Pb			
1	209	Bi			
1	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			

118 Sn

# **Dataset Report**

User Name: btb

Computer Name: ICPMS

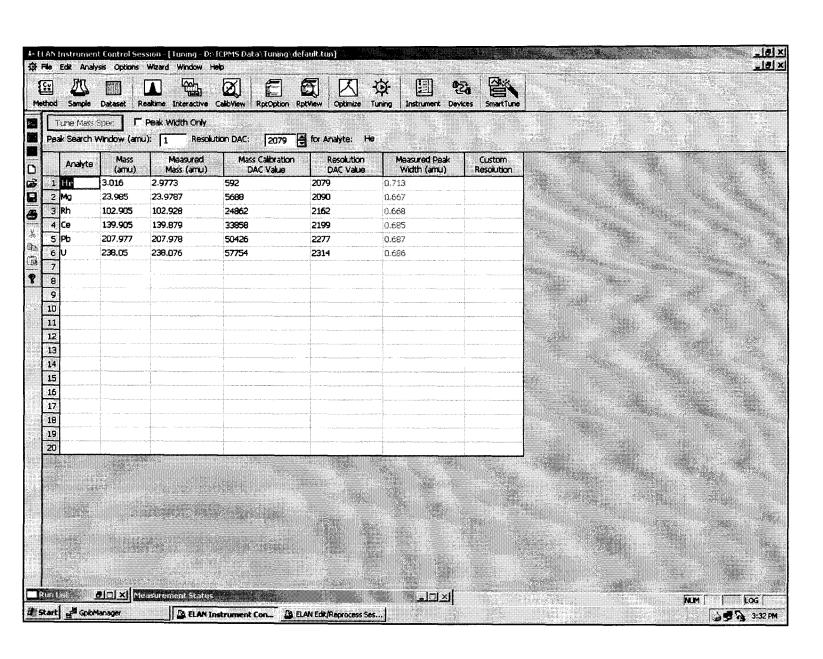
Dataset File Path: D:\ICPMS Data\DataSet\08-31-06\

Report Date/Time: Wednesday, September 20, 2006 15:30:43

# **The Dataset**

Batch ID	Sample ID	Date and Time	Read Type	Samp. File Name	Description
	blank	07:58:42 Thu 31-Aug-06	Blank	blank.001	
	1 ppb i1-56a	08:02:14 Thu 31-Aug-06	Standard #1	1 ppb i1-56a.002	
	5 ppb i1-56b	08:05:47 Thu 31-Aug-06	Standard #2	5 ppb i1-56b.003	
	10 ppb i1-56c	08:09:20 Thu 31-Aug-06	Standard #3	10 ppb i1-56c.004	
	25 ppb i1-56d	08:12:55 Thu 31-Aug-06	Standard #4	25 ppb i1-56d.005	
	50 ppb i1-56e	08:16:28 Thu 31-Aug-06	Standard #5	50 ppb i1-56e.006	
	25 ppb i1-57a	08:20:00 Thu 31-Aug-06	Sample	25 ppb i1-57a.007	
	i6-366 mb	08:23:48 Thu 31-Aug-06	Sample	i6-366 mb.008	tclp
	i6-366 lcs	08:27:31 Thu 31-Aug-06	Sample	i6-366 lcs.009	tclp
	608300-03	08:31:15 Thu 31-Aug-06	Sample	608300-03.010	tclp
	i6-366 ms 6083	008:34:58 Thu 31-Aug-06	Sample	i6-366 ms 608300-03.011	tclp
	i6-366 dup 6083	3108:39:16 Thu 31-Aug-06	Sample	i6-366 dup 608300-03.012	2tclp
	608300-06	08:43:00 Thu 31-Aug-06	Sample	608300-06.013	tclp
	608301-01	08:46:43 Thu 31-Aug-06	Sample	608301-01.014	tclp
	608301-02	08:50:26 Thu 31-Aug-06	Sample	608301-02.015	tclp
	608301-03	08:54:10 Thu 31-Aug-06	Sample	608301-03.016	tclp
	608301-04	08:57:54 Thu 31-Aug-06	Sample	608301-04.017	tclp
	25 ppb i1-57-a	09:01:38 Thu 31-Aug-06	Sample	25 ppb i1-57-a.018	soil
	i6-371 mb	09:05:23 Thu 31-Aug-06	Sample	i6-371 mb.019	soil
	i6-371 lcs	09:09:08 Thu 31-Aug-06	Sample	i6-371 lcs.020	soil
	608328-01	09:12:53 Thu 31-Aug-06	Sample	608328-01.021	soil
	608329-01	09:16:36 Thu 31-Aug-06	Sample	608329-01.022	soil
	608329-02	09:20:20 Thu 31-Aug-06	Sample	608329-02.023	soil
	608329-03	09:24:04 Thu 31-Aug-06	Sample	608329-03.024	soil
	608329-04	09:27:47 Thu 31-Aug-06	Sample	608329-04.025	soil
	i6-371 ms 6083	209:31:31 Thu 31-Aug-06	Sample	i6-371 ms 608329-04.026	soil
	i6-371 dup 6083	3:09:35:15 Thu 31-Aug-06	Sample	i6-371 dup 608329-04.023	7soil
	608329-05	09:38:58 Thu 31-Aug-06	Sample	608329-05.028	soil
	25 ppb i1-57-a	09:42:43 Thu 31-Aug-06	Sample	25 ppb i1-57-a.029	soil
	608329-04 rex	11:10:48 Thu 31-Aug-06	Sample	608329-04 rex.030	soil
	608329-04 rex	11:14:32 Thu 31-Aug-06	Sample	608329-04 rex.031	soil
	25 ppb i1-57-a	11:18:17 Thu 31-Aug-06	Sample	25 ppb i1-57-a.032	soil

# **Quantitative Analysis Calibration Report**


File Name: 08-31-06.cal

D:\ICPMS Data\System File Path: Calibration Type: **External Calibration** 

Analyte	Mass	Curve Type	Slope	Intercept	Corr. Coeff.
Li	6.015	Linear Thru Zero	0.00	0.00	0.000000
Be	9.012	Linear Thru Zero	0.00	0.00	0.999982
Al	26.982	Linear Thru Zero	0.02	0.00	0.999933
Sc	44.956	Linear Thru Zero	0.00	0.00	0.000000
V	50.944	Linear Thru Zero	0.04	0.00	0.999931
V-1	50.944	Linear Thru Zero	0.04	0.00	0.999962
Cr	51.941	Linear Thru Zero	0.03	0.00	0.999785
Cr	52.941	Linear Thru Zero	0.00	0.00	0.999989
Mn	54.938	Linear Thru Zero	0.05	0.00	0.999961
Co	58.933	Linear Thru Zero	0.04	0.00	0.999871
Ni	59.933	Linear Thru Zero	0.01	0.00	0.999955
Ni	61.928	Linear Thru Zero	0.00	0.00	0.999996
Cu	62.930	Linear Thru Zero	0.02	0.00	0.999931
Cu	64.928	Linear Thru Zero	0.01	0.00	0.999982
Zn	65.926	Linear Thru Zero	0.01	0.00	0.999987
Zn	66.927	Linear Thru Zero	0.00	0.00	0.999981
Zn	67.925	Linear Thru Zero	0.00	0.00	0.999957
Ge	71.922	Linear Thru Zero	0.00	0.00	0.000000
As	74.922	Linear Thru Zero	0.01	0.00	0.999977
As-1	74.922	Linear Thru Zero	0.01	0.00	0.999975
Se	76.920	Linear Thru Zero	0.00	0.00	0.999997
Se	81.917	Linear Thru Zero	0.00	0.00	0.999987
Υ	88.905	Linear Thru Zero	0.00	0.00	0.000000
Мо	94.906	Linear Thru Zero	0.01	0.00	0.999991
Мо	96.906	Linear Thru Zero	0.01	0.00	0.999991
Мо	97.906	Linear Thru Zero	0.02	0.00	0.999995
Ag	106.905	Linear Thru Zero	0.04	0.00	0.999839
Ag	108.905	Linear Thru Zero	0.04	0.00	0.999803
Cd	105.907	Linear Thru Zero	0.00	0.00	0.999992
Cd	107.904	Linear Thru Zero	0.00	0.00	0.999987
Cd	110.904	Linear Thru Zero	0.01	0.00	0.999969
Cd	113.904	Linear Thru Zero	0.02	0.00	0.999954
In O	114.904	Linear Thru Zero	0.00	0.00	0.000000
Sb	120.904	Linear Thru Zero	0.02	0.00	0.999996
Sb	122.904	Linear Thru Zero	0.02	0.00	0.999998
Ba	134.906	Linear Thru Zero	0.01	0.00	0.999992
Ba Th	136.905	Linear Thru Zero	0.01	0.00	0.999983
Tb Ho	158.925	Linear Thru Zero	0.00	0.00	0.000000
	164.930	Linear Thru Zero	0.00	0.00	0.000000
Hg	200.970	Linear Thru Zero	0.00	0.00	0.861183

Report Date/Time: Page 1 Wednesday, September 20, 2006 15:31:32

Hg	201.971	Linear Thru Zero	0.00	0.00	0.529588
TI	202.972	Linear Thru Zero	0.02	0.00	0.999992
TI	204.975	Linear Thru Zero	0.06	0.00	0.999952
Pb	207.977	Linear Thru Zero	0.08	0.00	0.999954
Bi	208.980	Linear Thru Zero	0.00	0.00	0.000000
Th	232.038	Linear Thru Zero	0.07	0.00	0.999621
U	238.050	Linear Thru Zero	0.07	0.00	0.999997
Fe	55.935	Linear Thru Zero	0.00	0.00	0.000000
Ru	100.906	Linear Thru Zero	0.00	0.00	0.000000
ArCI	76.928	Linear Thru Zero	0.00	0.00	0.000000
Kr	83.912	Linear Thru Zero	0.00	0.00	0.000000
Sn	117.902	Linear Thru Zero	0.00	0.00	0.000000



#### **Quantitative Analysis - Summary Report**

Sample ID: 608301-01

Sample Date/Time: Thursday, August 31, 2006 08:46:43

Sample Description: tclp

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-31-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-29-06.sam

Method File: D:\ICPMS Data\Method\08-31-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\08-31-06\608301-01.014

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-31-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 44
Sample Type: Sample
Initial Sample Quantity (mg):
Sample Prep Volume (mL):
Aliquot Volume (mL):
Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	63311	58298	1.74		ug/L
	Be	9	30	18	12.12	-0.004	ug/L
	Al	27	38788	120553	5.23	2.561	ug/L
	Sc	45	645298	579745	2.51		ug/L
	V	51	12742	20147	0.66	0.151	ug/L
	V-1	51	21817	18662	1.76	-0.019	ug/L
	Cr	52	38990	49152	0.15	0.283	ug/L
	Cr	53	7185	5139	0.56	-0.228	ug/L
	Mn	55	5114	365264	4.05	4.601	ug/L
	Co	59	1149	6095	1.61	0.080	ug/L
	Ni	60	732	6332	1.16	0.395	ug/L
	Ni	62	263	1120	0.19	0.396	ug/L
	Cu	63	2256	15701	1.08	0.412	ug/L
	Cu	65	1146	1440	7.46	0.024	ug/L
	Zn	66	6138	86554	1.83	8.938	ug/L
	Zn	67	1493	13631	1.09	7.942	ug/L
	Zn	68	4539	60897	0.97	8.498	ug/L
>	Ge	72	1698923	1538881	0.42		ug/L
Γ	As	75	-551	825	32.50	0.139	ug/L
	As-1	75	524	1810	0.43	0.145	ug/L
	Se	77	661	669	1.38	0.115	ug/L
	Se	82	434	416	8.50	0.034	ug/L
	Υ	89	1441202	1276014	1.69		ug/L
	Мо	95	2115	1264	3.07	-0.032	ug/L
	Мо	97	1269	756	1.77	-0.031	ug/L
	Мо	98	3332	2019	7.68	-0.031	ug/L
	Ag	107	128	561	8.45	0.009	ug/L

Page 1

Sample ID: 608301-01

Report Date/Time: Wednesday, September 20, 2006 15:33:49

Ì	Ag	109	106	461	12.88	0.008	ug/L
	Cd	106	1280	1330	1.18	0.178	ug/L
	Cd	108	-175	181	9.47	0.400	ug/L
	Cd	111	1254	1291	1.88	0.016	ug/L
-	Cd	114	373	1106	2.55	0.029	ug/L
>	In	115	1479055	1306592	1.04		ug/L
1	Sb	121	821	3608	8.78	0.092	ug/L
	Sb	123	637	2760	2.83	0.092	ug/L
	Ba	135	534	1083	1.89	0.060	ug/L
L	Ba	137	844	1942	2.26	0.069	ug/L
Γ	Tb	159	1663658	1465336	0.93		ug/L
>	Но	165	1610865	1446457	1.41		ug/L
1	Hg	201	30	27	20.95	2.743	ug/L
	Hg	202	45	44	8.13	36.904	ug/L
	TI	203	256	365	5.63	0.004	ug/L
	TI	205	598	860	0.49	0.004	ug/L
	Pb	208	4756	157789	0.76	1.409	ug/L
	Bi	209	899421	779070	0.62		ug/L
	Th	232	684	1610	14.54	0.009	ug/L
L	U	238	769	957	3.62	0.003	ug/L
	Fe	56	14517287	14348523	2.99		ug/L
	Ru	101	12	10	7.44		ug/L
	ArCl	77	697	654	9.08		ug/L
	Kr	84	1937	-320	116.23		ug/L
	Sn	118	7890	2683	5.11		ug/L
	QC Ca	alculated Va	alues				

QC Calculated Values	S	ue	ı	la	V	d	te	la	u	C	a	C	C	Q	
----------------------	---	----	---	----	---	---	----	----	---	---	---	---	---	---	--

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li					
1	9	Be					
	27	Al					
	45	Sc					
	51	٧					
	51	V-1					
	52	Cr					
	53	Cr					
1	55	Mn					
	59	Co					
	60	Ni					
- 1	62						
		Cu					
1		Cu					
1		Zn					
-		Zn					
1		Zn					
L>		Ge		90.580			
Γ	75						
		As-1					
	77						
	82						
ļ	89						
	95						
ļ	97	Мо					
ļ		Мо					
!	107						
-	109						
!	106						
!	108						
ı	111	Cd					

1	114	Cd	
>	115	In	88.340
	121	Sb	
1	123	Sb	
1	135	Ва	
Ĺ	137	Ва	
Ī	159	Tb	
>	165	Но	89.794
ĺ	201	Hg	
1	202	Hg	
l	203	Ti	
1	205	TI	
ĺ	208	Pb	
İ	209	Bi	
1	232	Th	
L	238	U	
	56	Fe	
	101	Ru	
	77	ArCl	
	84	Kr	

118 Sn

# **Quantitative Analysis - Summary Report**

Sample ID: 608301-02

Sample Date/Time: Thursday, August 31, 2006 08:50:26

Sample Description: tclp

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-31-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-29-06.sam

Method File: D:\ICPMS Data\Method\08-31-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\08-31-06\608301-02.015

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-31-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 45 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	63311	61852	1.49		ug/L
	Be	9	30	16	8.84	-0.005	ug/L
	Al	27	38788	152001	0.95	3.328	ug/L
	Sc	45	645298	620787	4.90		ug/L
	V	51	12742	15996	0.54	0.067	ug/L
	V-1	51	21817	15001	0.65	-0.092	ug/L
	Cr	52	38990	48331	1.10	0.229	ug/L
l	Cr	53	7185	5160	1.12	-0.257	ug/L
	Mn	55	5114	53191	2.34	0.593	ug/L
	Co	59	1149	6389	1.02	0.081	ug/L
-	Ni	60	732	5079	0.43	0.295	ug/L
	Ni	62	263	1047	4.26	0.345	ug/L
	Cu	63	2256	23658	6.46	0.624	ug/L
	Cu	65	1146	5351	3.21	0.246	ug/L
	Zn	66	6138	1470705	0.08	155.466	ug/L
	Zn	67	1493	226942	1.29	140.311	ug/L
	Zn	68	4539	1066280	1.68	152.876	ug/L
L>	Ge	72	1698923	1600385	1.85		ug/L
Γ	As	75	-551	-457	44.90	0.005	ug/L
	As-1	75	524	459	3.55	-0.002	ug/L
	Se	77	661	627	2.71	0.030	ug/L
	Se	82	434	445	6.52	0.048	ug/L
1	Υ	89	1441202	1343275	1.26		ug/L
1	Мо	95	2115	834	12.36	-0.057	ug/L
İ	Мо	97	1269	539	0.82	-0.052	ug/L
	Мо	98	3332	1351	3.92	-0.055	ug/L
	Ag	107	128	432	8.18	0.006	ug/L

Page 1

Sample ID: 608301-02

Report Date/Time: Wednesday, September 20, 2006 15:33:51

	Ag	109	106	324	4.59	0.005	ug/L
	Cd	106	1280	1574	1.55	0.347	ug/L
	Cd	108	-175	306	14.02	0.536	ug/L
	Cd	111	1254	3100	2.25	0.162	ug/L
	Cd	114	373	5077	1.30	0.173	ug/L
>	In	115	1479055	1352113	0.27		ug/L
	Sb	121	821	3133	0.52	0.073	ug/L
	Sb	123	637	2414	6.00	0.074	ug/L
	Ва	135	534	236954	2.89	22.357	ug/L
L	Ba	137	844	409177	0.99	22.651	ug/L
Γ	Tb	159	1663658	1540923	3.20		ug/L
>	Ho	165	1610865	1486303	2.29		ug/L
	Hg	201	30	35	8.08	37.739	ug/L
	Hg	202	45	43	32.89	21.562	ug/L
	TI	203	256	306	4.16	0.002	ug/L
	TI	205	598	660	6.64	0.001	ug/L
	Pb	208	4756	4347404	1.33	38.793	ug/L
	Bi	209	899421	820334	1.32		ug/L
	Th	232	684	1605	0.53	0.009	ug/L
L	U	238	769	376	1.32	-0.003	ug/L
	Fe	56	14517287	14374049	1.50		ug/L
	Ru	101	12	9	15.71		ug/L
	ArCl	77	697	655	5.61		ug/L
	Kr	84	1937	1653	0.93		ug/L
	Sn	118	7890	2818	3.31		ug/L
	QC C	alculated Va	alues				

	Mass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
ſ	6	Li			-		•
-	9	Be					
	27						
	45	Sc					
	51	V					
	51						
1		Cr					
	53	Cr					
	55	Mn					
	59	Co					
	60	Ni					
	62						
	63						
1	65						
-	66						
1	67						
	68						
L>	72			94.200			
Γ	75						
-		As-1					
	82						
		Υ					
		Мо					
		Мо					
		Мо					
		Ag					
ļ	109	Ag					
ļ.	106						
!	108						
ı	111	Cd					

Page 2

Sample ID: 608301-02

Report Date/Time: Wednesday, September 20, 2006 15:33:51

1	114	Cd			
>	115	In			91.417
-	121	Sb			
	123	Sb			
	135	Ba			
Ĺ	137	Ва			
Γ	159	Tb			
>	165	Но			92.267
	201	Hg			
	202	Hg			
	203	TI			
	205	TI			
	208	Pb			
	209	Bi			
1	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			

118 Sn

#### **Quantitative Analysis - Summary Report**

Sample ID: 608301-03

Sample Date/Time: Thursday, August 31, 2006 08:54:10

Sample Description: tclp

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-31-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-29-06.sam

Method File: D:\ICPMS Data\Method\08-31-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\08-31-06\608301-03.016

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-31-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 46 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	63311	60809	3.11		ug/L
1	Ве	9	30	19	29.77	-0.004	ug/L
	Al	27	38788	212397	1.63	5.136	ug/L
1	Sc	45	645298	605949	2.81		ug/L
1	V	51	12742	21724	0.58	0.168	ug/L
	V-1	51	21817	20343	0.95	0.000	ug/L
	Cr	52	38990	48635	0.31	0.245	ug/L
	Cr	53	7185	5107	0.78	-0.257	ug/L
	Mn	55	5114	238598	1.37	2.901	ug/L
	Co	59	1149	10286	0.72	0.142	ug/L
	Ni	60	732	5463	4.47	0.324	ug/L
	Ni	62	263	1054	5.17	0.353	ug/L
	Cu	63	2256	23502	1.81	0.627	ug/L
	Cu	65	1146	5280	1.61	0.246	ug/L
	Zn	66	6138	1126671	0.88	120.268	ug/L
	Zn	67	1493	173689	0.02	108.353	ug/L
	Zn	68	4539	798643	1.83	115.592	ug/L
L>	Ge	72	1698923	1582749	0.06		ug/L
Γ	As	75	-551	908	19.37	0.144	ug/L
	As-1	75	524	1787	0.79	0.136	ug/L
	Se	77	661	612	10.52	0.011	ug/L
	Se	82	434	426	12.46	0.029	ug/L
	Υ	89	1441202	1323489	1.91		ug/L
	Мо	95	2115	1027	9.59	-0.047	ug/L
	Мо	97	1269	663	4.93	-0.041	ug/L
	Мо	98	3332	1654	7.24	-0.045	ug/L
ı	Ag	107	128	361	6.87	0.005	ug/L

Page 1

Sample ID: 608301-03

Report Date/Time: Wednesday, September 20, 2006 15:33:54

	Ag	109	106	300	11.10	0.004	ug/L
	Cd	106	1280	1543	0.16	0.321	ug/L
	Cd	108	-175	340	17.76	0.575	ug/L
	Cd	111	1254	2375	1.38	0.102	ug/L
	Cd	114	373	3676	2.30	0.122	ug/L
>	In	115	1479055	1351420	1.88		ug/L
	Sb	121	821	3778	3.45	0.093	ug/L
	Sb	123	637	2825	5.80	0.090	ug/L
	Ba	135	534	12269	2.10	1.114	ug/L
L	Ba	137	844	21584	3.39	1.155	ug/L
Γ	Tb	159	1663658	1513939	0.57		ug/L
>	Ho	165	1610865	1474668	1.34		ug/L
	Hg	201	30	29	17.37	7.439	ug/L
	Hg	202	45	45	9.43	44.151	ug/L
	TI	203	256	328	3.88	0.003	ug/L
-	TI	205	598	803	5.64	0.003	ug/L
	Pb	208	4756	294897	1.39	2.615	ug/L
	Bi	209	899421	794659	0.20		ug/L
	Th	232	684	1418	14.86	0.007	ug/L
L	U	238	769	959	2.73	0.002	ug/L
	Fe	56	14517287	13973293	1.49		ug/L
	Ru	101	12	6	23.57		ug/L
	ArCl	77	697	628	1.35		ug/L
	Kr	84	1937	1647	9.29		ug/L
	Sn	118	7890	2057	0.76		ug/L
	QC Ca	alculated Va	alues				

	Mace	Analyte	QC Std % Recovery	Int Ctd 0/ Donovers	Cailes Of Deservous	Dilution of Difference	Dualitate Dat 0/ Difference
Г	6	Li	QC 3td % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
i	9	Be					
1	27	Al				•	
1	45						
1	51						
i		V-1					
i		Cr					
i		Cr					
i		Mn					
i	59	Со					
i	60	Ni					
i	62						
İ		Cu					
i		Cu					
i		Zn					
+	67						
		Zn					
L>		Ge		93.162			
٢		As					
	75	As-1					
	77						
	82	Se					
	89	Υ					
		Мо					
		Мо					
ļ	98	Мо					
ļ	107	Ag					
!	109						
!	106						
-	108						
1	111	Cd					

	114	Cd			
>	115	In			91.371
1	121	Sb			
1	123	Sb			
1	135	Ba			
L	137	Ва			
Γ	159	Tb			
>	165	Ho			91.545
1	201	Hg			
	202	Hg			
	203	TI			
1	205	Ti			
1	208	Pb			
	209	Bi			
	232	Th			
Ĺ	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			
	118	Sn			

## **Quantitative Analysis - Summary Report**

Sample ID: 608301-04

Sample Date/Time: Thursday, August 31, 2006 08:57:54

Sample Description: tclp

User Name: btb

Computer Name: ICPMS

Blank File: D:\ICPMS Data\DataSet\08-31-06\blank.001

Number of Replicates: 2 Peak Processing Mode: Average

Signal Profile Processing Mode: Maximum

Sample File: D:\ICPMS Data\Sample\08-29-06.sam

Method File: D:\ICPMS Data\Method\08-31-06fbi200.8.mth

Dataset File: D:\ICPMS Data\DataSet\08-31-06\608301-04.017

Tuning File: D:\ICPMS Data\Tuning\default.tun
Optimization File: D:\ICPMS Data\Optimize\Default.dac
Calibration File: D:\ICPMS Data\System\08-31-06.cal

Batch ID:

Calibration Type: External Calibration

Autosampler Position: 47 Sample Type: Sample Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Solids Ratio:

#### **Intensities**

	Analyte	Mass	Blank Intensity	Meas. Intens. Mean	Meas. Intens. RSD	Conc. Mean	Report Unit
Γ	Li	6	63311	62564	0.66		ug/L
ĺ	Ве	9	30	10	56.57	-0.008	ug/L
ĺ	Al	27	38788	211111	1.13	5.092	ug/L
ĺ	Sc	45	645298	635889	2.28		ug/L
ĺ	V	51	12742	21309	3.85	0.160	ug/L
1	V-1	51	21817	20153	1.63	-0.003	ug/L
	Cr	52	38990	47862	4.13	0.229	ug/L
	Cr	53	7185	4906	0.26	-0.290	ug/L
ĺ	Mn	55	5114	246129	2.21	2.991	ug/L
	Co	59	1149	9093	0.93	0.123	ug/L
ĺ	Ni	60	732	5642	1.98	0.336	ug/L
ĺ	Ni	62	263	1141	1.80	0.391	ug/L
1	Cu	63	2256	23706	2.48	0.632	ug/L
	Cu	65	1146	5595	1.28	0.264	ug/L
1	Zn	66	6138	983761	0.47	104.810	ug/L
1	Zn	67	1493	154120	1.02	95.936	ug/L
İ	Zn	68	4539	720854	2.57	104.144	ug/L
<u> </u> >	Ge	72	1698923	1584625	0.50		ug/L
Γ	As	75	-551	974	7.01	0.150	ug/L
	As-1	75	524	1825	1.90	0.138	ug/L
	Se	77	661	672	2.00	0.079	ug/L
	Se	82	434	431	5.75	0.030	ug/L
1	Υ	89	1441202	1343591	2.68		ug/L
	Мо	95	2115	995	7.95	-0.049	ug/L
	Мо	97	1269	627	4.07	-0.045	ug/L
	Мо	98	3332	1638	3.23	-0.047	ug/L
	Ag	107	128	328	9.28	0.004	ug/L

Page 1

Sample ID: 608301-04

Report Date/Time: Wednesday, September 20, 2006 15:33:56

-	Ag	109	106	270	8.13	0.003	ug/L
	Cd	106	1280	1541	4.77	0.304	ug/L
1	Cd	108	-175	371	1.72	0.607	ug/L
-	Cd	111	1254	2320	2.42	0.095	ug/L
	Cd	114	373	3451	2.48	0.113	ug/L
>	ln	115	1479055	1367098	0.09		ug/L
	Sb	121	821	3777	5.62	0.092	ug/L
	Sb	123	637	2776	1.90	0.087	ug/L
l	Ва	135	534	12204	0.38	1.095	ug/L
L	Ва	137	844	20689	0.77	1.092	ug/L
Γ	Tb	159	1663658	1536250	1.51		ug/L
>	Ho	165	1610865	1487710	0.46		ug/L
1	Hg	201	30	27	2.67	-3.596	ug/L
	Hg	202	45	47	3.01	60.180	ug/L
	T1	203	256	323	6.36	0.002	ug/L
-	ΤI	205	598	774	5.39	0.003	ug/L
	Pb	208	4756	347066	1.12	3.058	ug/L
	Bi	209	899421	806973	1.51		ug/L
	Th	232	684	1344	8.63	0.007	ug/L
L	U	238	769	1092	6.22	0.004	ug/L
	Fe	56	14517287	14160098	0.52		ug/L
	Ru	101	12	7	10.88		ug/L
	ArCl	77	697	623	2.04		ug/L
	Kr	84	1937	1699	16.72		ug/L
	Sn	118	7890	2146	2.44		ug/L
	QC C	alculated Va	alues				

N	/lass	Analyte	QC Std % Recovery	Int Std % Recovery	Spike % Recovery	Dilution % Difference	Duplicate Rel. % Difference
Γ	6	Li		-	•		•
	9	Be					
1		Al					
		Sc					
1							
	52						
	53						
	55						
		Co					
1	60						
l	62						
İ		Cu					
1	65						
!	66						
		Zn					
ļ		Zn					
<u>[</u> >	72			93.272			
<u> </u>	75						
<u> </u>		As-1					
!							
!	82						
!		Υ					
1		Мо					
	97						
		Мо					
	107	Ag					
	109	Ag					
	106						
	108						
İ	111	Cd					

1	114	Cd			
>	115	ln			92.430
	121	Sb			
1	123	Sb			
1	135	Ва			
L	137	Ba			
Γ	159	Tb			
>	165	Но			92.355
	201	Hg			
	202	Hg			
1	203	TI			
	205	TI			
	208	Pb			
	209	Bi			
	232	Th			
L	238	U			
	56	Fe			
	101	Ru			
	77	ArCl			
	84	Kr			
	118	Sn			

Post-Treatment Waste Designation Fixed Laboratory Data (October 2006) SGS Environmental Services Inc. SDG 1066266



# SGS Environmental Services Alaska Division Level II Laboratory Data Report

Project: St. Paul Soil

Client: PSI Environmental & Instrument.

SGS Work Order: 1066266

Released by:

#### Contents:

Cover Page
Case Narrative
Final Report Pages
Quality Control Summary Forms
Chain of Custody/Sample Receipt Forms

#### Note:

Unless otherwise noted, all quality assurance/quality control criteria is in compliance with the standards set forth by the proper regulatory authority, the SGS Quality Assurance Program Plan, and the National Environmental Accreditation Conference.

# **SGS Environmental Services Inc.**

# **Case Narrative**

**Customer: PSIENV** 

PSI Environmental & Instrument.

Project:

1066266

St. Paul Soil

NPDL WO: N/A

Refer to the sample receipt form for information on sample condition.



# Laboratory Analytical Report

Client: PSI Environmental & Instrument.

1611 E First Ave Anchorage, AK 99501

Attn: Keith Guyer

T: (907)272-8010 F:(907)272-9005

Project: St. Paul Soil

Workorder No.: 1066266

#### Certification:

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, other than the conditions noted on the sample data sheet(s) and/or the case narrative. This certification applies only to the tested parameters and the specific sample(s) received at the laboratory.

If you have any questions regarding this report, or if we can be of further assistance, please contact your SGS Project Manager.

Bryan Arnold

Bryan_Arnold@sgs.com

Project Manager



Print Date: 10/21/2006

Enclosed are the analytical results associated with this workorder.

As required by the state of Alaska and the USEPA, a formal Quality Assurance/Quality Control Program is maintained by SGS. A copy of our Quality Assurance Plan (QAP), which outlines this program is available at your request.

The laboratory certification numbers are AK971-05 (DW), UST-005 (CS) and AK00971 (Micro) for ADEC and 001582 for NELAP (RCRA methods: 1010/1020, 1311, 6000/7000, 9040/9045, 9056, 9060, 9065, 8015B, 8021B, 8081A/8082, 8260B, 8270C).

Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP, the National Environmental Laboratory Accreditation Program and, when applicable, other regulatory authorities.

If you have any questions regarding this report or if we can be of any assistance, please contact your SGS Project Manager at 907-562-2343.

The following descriptors may be found on your report which will serve to further qualify the data.

MDL Method Detection Limit

PQL Practical Quantitation Limit (reporting limit).

CL Control Limit

U Indicates the analyte was analyzed for but not detected. F Indicates value that is greater than or equal to the MDL.

J The quantitation is an estimation.

ND Indicates the analyte is not detected

B Indicates the analyte is found in a blank associated with the sample.

* The analyte has exceeded allowable regulatory or control limits.

GT Greater Than Less Than

Q QC parameter out of acceptance range.

M A matrix effect was present.

E The analyte result is above the calibrated range.

DF Analytical Dilution Factor

JL The analyte was positively identified, but the quantitation is a low estimation.

<Surr> Surrogate QC spiked standard

Note: Soil samples are reported on a dry weight basis unless otherwise specified



SAMPLE SUMMARY

Print Date: 10/21/2006

Client Name: PSI Environmental & Instrument.

Project Name: St. Paul Soil Workorder No.: 1066266

#### **Analytical Methods**

Method Description **Analytical Method** Metals by ICP SW6010B TCLP

Metals by ICP-MS (S) SW6020 Percent Solids SM2540G SM20 2540G

TCLP Full Characterization **TCLP** 

#### Sample ID Cross Reference

<u>Lab Sample ID</u>	Client Sample ID
1066266001	SP60-CH-01
1066266002	SP60-CH-02
1066266003	SP60-CH-03
1066266004	SP60-CH-04
1066266005	SP60-CH-05
1066266006	SP60-CH-06
1066266007	SP60-CH-07



Print Date: 10/21/2006

Client Sample ID: SP60-CH-01 SGS Ref. #: 1066266001

Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 77.7

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 16:45 Receipt Date/Time: 10/17/06 10:18

#### Characterization

<u>Parameter</u>	Result	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> <u>Batch</u>	Qualifiers
Aqueous Phase, Total	0.0			%	1	TCLP4691		
Oil Phase, Total	0.0			%	1	TCLP4691		
Solid Phase, Total	100			%	1	TCLP4691		
Batch Information								
Analytical Batch: TCLP4691						Initial Prep \	Nt./Vol.: 1 r	mL
Analytical Method: TCLP								
Analysis Date/Time: 10/17/06 11:00						Container II	D:10662660	001-A
Dilution Factor: 1						Analyst: BJ	S	



Print Date: 10/21/2006

Client Sample ID: SP60-CH-01

SGS Ref. #: 1066266001 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 77.7

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 16:45 Receipt Date/Time: 10/17/06 10:18

#### **TCLP Metals**

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL_	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	ND	0.500	0.250	mg/L	1	MIP5174	MXT3983	
Batch Information								
Analytical Batch: MIP5174		Prep Batch	: MXT3983			Initial Prep	Wt./Vol.: 5 m	nL
Analytical Method: SW6010B TCLP		Prep Metho	od: SW3010A			Prep Extrac	t Vol.: 50 ml	L
Analysis Date/Time: 10/18/06 18:23		Prep Date/	Time: 10/18/06 0	9:30		Container II	D:10662660	01-A
Dilution Factor: 1						Analyst: DS	SH	



Client Sample ID: SP60-CH-01

SGS Ref. #: 1066266001 Project ID: St. Paul Soil Matrix: Soil/Solid

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 16:45 Receipt Date/Time: 10/17/06 10:18

Print Date: 10/21/2006

## Percent Solids: 77.7 Metals by ICP/MS

<u>Parameter</u>	Result	PQL/CL	MDL_	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> <u>Batch</u>	<u>Qualifiers</u>
Lead	812	0.251	0.0779	mg/Kg	10	MMS4476	MXX1831	3
Batch Information								
Analytical Batch: MMS4476		Prep Batch:	MXX18313			Initial Prep	Wt./Vol.: 1.0	)243 g
Analytical Method: SW6020		Prep Metho	d: SW3050B			Prep Extrac	t Vol.: 50 m	ıL
Analysis Date/Time: 10/19/06 12:00		Prep Date/1	ime: 10/17/06 1	7:15		Container II	D:10662660	01-A
Dilution Factor: 10						Analyst: TK	,	



Print Date: 10/21/2006

Client Sample ID: SP60-CH-01

SGS Ref. #: 1066266001 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 77.7

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 16:45 Receipt Date/Time: 10/17/06 10:18

**Solids** 

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL_	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	77.7			%		SPT7045		
Batch Information  Analytical Batch: SPT7045  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 n	nL
Analysis Date/Time: 10/18/06 09:20						Container II Analyst: BN		001-A



Analytical Prep

Print Date: 10/21/2006

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 16:52

Receipt Date/Time: 10/17/06 10:18

Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 80.0

Client Sample ID: SP60-CH-02 SGS Ref. #: 1066266002

#### Characterization

<u>Parameter</u>	Result	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Batch	<u>Batch</u>	<b>Qualifiers</b>
Aqueous Phase, Total	0.0			%	4	TCLP4691		
•					!			
Oil Phase, Total	0.0			%	1	TCLP4691		
Solid Phase, Total	100			%	1	TCLP4691		
Batch Information								
Analytical Batch: TCLP4691						Initial Prep	Wt./Vol.: 1	mL
Analytical Method: TCLP								
Analysis Date/Time: 10/17/06 11:00						Container I	D:1066266	002-A
Dilution Factor: 1						Analyst: Bu	IS	



Print Date: 10/21/2006

Client Sample ID: SP60-CH-02

SGS Ref. #: 1066266002 Project ID: St. Paul Soil Matrix: Soil/Solid

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 16:52 Receipt Date/Time: 10/17/06 10:18

Percent Solids: 80.0

#### **TCLP Metals**

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL_	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	ND	0.500	0.250	mg/L	1	MIP5174	MXT3983	
Batch Information								
Analytical Batch: MIP5174		Prep Batch	: MXT3983			Initial Prep	Wt./Vol.: 5 m	nL
Analytical Method: SW6010B TCLP		Prep Metho	od: SW3010A			Prep Extrac	t Vol.: 50 ml	L
Analysis Date/Time: 10/18/06 18:26		Prep Date/	Time: 10/18/06 0	9:30		Container II	D:10662660	02-A
Dilution Factor: 1						Analyst: DS	SH	



Print Date: 10/21/2006

Client Sample ID: SP60-CH-02

SGS Ref. #: 1066266002 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 80.0

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 16:52 Receipt Date/Time: 10/17/06 10:18

#### Metals by ICP/MS

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL_	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	Qualifiers
Lead	376	0.239	0.0742	mg/Kg	10	MMS4476	MXX1831	3
Batch Information								
Analytical Batch: MMS4476		Prep Batch: I	MXX18313			Initial Prep	Wt./Vol.: 1.0	)447 g
Analytical Method: SW6020		Prep Method	: SW3050B			Prep Extrac	t Vol.: 50 m	ıL
Analysis Date/Time: 10/19/06 12:18		Prep Date/Ti	me: 10/17/06 17	<b>'</b> :15		Container II	D:10662660	002-A
Dilution Factor: 10						Analyst: Tk	(	



Print Date: 10/21/2006

Analytical Pren

Client Sample ID: SP60-CH-02

SGS Ref. #: 1066266002 Project ID: St. Paul Soil Matrix: Soil/Solid

Percent Solids: 80.0

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 16:52 Receipt Date/Time: 10/17/06 10:18

**Solids** 

<u>Parameter</u>	Result	PQL/CL	MDL_	<u>Units</u>	<u>DF</u>	<u>Batch</u>	Batch	<u>Qualifiers</u>
Total Solids	80.0			%		SPT7045		
Batch Information  Analytical Batch: SPT7045  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1	mL
Analysis Date/Time: 10/18/06 09:20						Container I Analyst: Bl		002-A



Print Date: 10/21/2006

Analytical Prep

Client Sample ID: SP60-CH-03 SGS Ref. #: 1066266003

Project ID: St. Paul Soil Matrix: Soil/Solid

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:11 Receipt Date/Time: 10/17/06 10:18

### Percent Solids: 84.4 Characterization

<u>Parameter</u>	Result	PQL/CL	MDL	<u>Units</u>	<u>DF</u>	Batch	Batch	Qualifiers
Aqueous Phase, Total	0.0			%	1	TCLP4691		
Oil Phase, Total	0.0			%	1	TCLP4691		
Solid Phase, Total	100			%	1	TCLP4691		
Batch Information								
Analytical Batch: TCLP4691						Initial Prep	Wt./Vol.: 1	mL
Analytical Method: TCLP								
Analysis Date/Time: 10/17/06 11:00						Container II	D:1066266	003-A
Dilution Factor: 1						Analyst: BJ	S	



Print Date: 10/21/2006

Client Sample ID: SP60-CH-03

SGS Ref. #: 1066266003 Project ID: St. Paul Soil Matrix: Soil/Solid

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:11 Receipt Date/Time: 10/17/06 10:18

**TCLP Metals** 

Percent Solids: 84.4

<u>Parameter</u>	Result	PQL/CL	MDL_	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	ND	0.500	0.250	mg/L	1	MIP5174	MXT3983	
Batch Information								
Analytical Batch: MIP5174		Prep Batch	: MXT3983			Initial Prep	Wt./Vol.: 5 m	nL
Analytical Method: SW6010B TCLP		Prep Metho	od: SW3010A			Prep Extrac	t Vol.: 50 ml	L
Analysis Date/Time: 10/18/06 18:29		Prep Date/	Time: 10/18/06 0	9:30		Container II	D:10662660	03-A
Dilution Factor: 1						Analyst: DS	SH	



Print Date: 10/21/2006

Analytical

Prep

Client Sample ID: SP60-CH-03

SGS Ref. #: 1066266003 Project ID: St. Paul Soil Matrix: Soil/Solid

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:11 Receipt Date/Time: 10/17/06 10:18

Percent Solids: 84.4 Metals by ICP/MS

<u>Parameter</u>	Result	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Batch	Batch	<b>Qualifiers</b>
Lead	159	0.226	0.0701	mg/Kg	10	MMS4476	MXX1831	3
Batch Information								
Analytical Batch: MMS4476		Prep Batch: M	XX18313			Initial Prep	Wt./Vol.: 1.0	482 g
Analytical Method: SW6020		Prep Method:	SW3050B			Prep Extrac	t Vol.: 50 ml	L
Analysis Date/Time: 10/19/06 12:23		Prep Date/Tim	ne: 10/17/06 17:1	15		Container II	D:10662660	03-A
Dilution Factor: 10						Analyst: TK	, L	



Print Date: 10/21/2006

Client Sample ID: SP60-CH-03

SGS Ref. #: 1066266003 Project ID: St. Paul Soil

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:11 Receipt Date/Time: 10/17/06 10:18

Matrix: Soil/Solid Percent Solids: 84.4

**Solids** 

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL_	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	84.4			%		SPT7045		
Batch Information  Analytical Batch: SPT7045  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 n	nL
Analysis Date/Time: 10/18/06 09:20						Container II Analyst: BN		03-A



Client Sample ID: SP60-CH-04

SGS Ref. #: 1066266004 Project ID: St. Paul Soil Matrix: Soil/Solid

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:16 Receipt Date/Time: 10/17/06 10:18

Print Date: 10/21/2006

<u>Analytical</u>

Prep

### Percent Solids: 68.5 Characterization

<u>Parameter</u>	Result	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Batch	Batch	<b>Qualifiers</b>	
Aqueous Phase, Total	0.0			%	1	TCLP4691			
Oil Phase, Total	0.0			%	1	TCLP4691			
Solid Phase, Total	100			%	1	TCLP4691			
Batch Information									
Analytical Batch: TCLP4691						Initial Prep	Wt./Vol.: 1	mL	
Analytical Method: TCLP									
Analysis Date/Time: 10/17/06 11:00						Container I	D:1066266	004-A	
Dilution Factor: 1						Analyst: BJ	S		



Print Date: 10/21/2006

Client Sample ID: SP60-CH-04

SGS Ref. #: 1066266004 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 68.5

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:16 Receipt Date/Time: 10/17/06 10:18

#### **TCLP Metals**

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL_	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	ND	0.500	0.250	mg/L	1	MIP5174	MXT3983	
Batch Information								
Analytical Batch: MIP5174		Prep Batch: M	1XT3983			Initial Prep	Wt./Vol.: 5 m	ıL
Analytical Method: SW6010B TCLP		Prep Method:	SW3010A			Prep Extrac	t Vol.: 50 ml	L
Analysis Date/Time: 10/18/06 18:32		Prep Date/Tin	ne: 10/18/06 09:	30		Container II	D:10662660	04-A
Dilution Factor: 1						Analyst: DS	SH	



Print Date: 10/21/2006

Client Sample ID: SP60-CH-04

SGS Ref. #: 1066266004 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 68.5

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:16 Receipt Date/Time: 10/17/06 10:18

#### Metals by ICP/MS

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL.	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	Qualifiers	
Lead	1490	0.288	0.0893	mg/Kg	10	MMS4476	MXX1831	3	
Batch Information									
Analytical Batch: MMS4476		Prep Batch: I	MXX18313			Initial Prep Wt./Vol.: 1.0132 g			
Analytical Method: SW6020	Prep Method: SW3050B					Prep Extract Vol.: 50 mL			
Analysis Date/Time: 10/19/06 12:29	Prep Date/Time: 10/17/06 17:15					Container ID:1066266004-A			
Dilution Factor: 10						Analyst: Tk			



Print Date: 10/21/2006

Analytical

Prep

Client Sample ID: SP60-CH-04

SGS Ref. #: 1066266004 Project ID: St. Paul Soil Matrix: Soil/Solid

Percent Solids: 68.5

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:16 Receipt Date/Time: 10/17/06 10:18

**Solids** 

<u>Parameter</u>	Result	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Batch	Batch	<u>Qualifiers</u>
Total Solids	68.5			%		SPT7045		
Batch Information								
Analytical Batch: SPT7045						Initial Prep	Wt./Vol.: 1 n	nL
Analytical Method: SM20 2540G								
Analysis Date/Time: 10/18/06 09:20						Container I	D:10662660	04-A
						Analyst: Bl	١E	



Print Date: 10/21/2006

Analytical Prep

Client Sample ID: SP60-CH-05 SGS Ref. #: 1066266005 Project ID: St. Paul Soil

Matrix: Soil/Solid Percent Solids: 67.6 All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:17 Receipt Date/Time: 10/17/06 10:18

#### Characterization

<u>Parameter</u>	Result	PQL/CL	MDL	<u>Units</u>	<u>DF</u>	Batch	Batch	<b>Qualifiers</b>
Assumance Dhaga Tatal	0.0			0/		TOL D 4004		
Aqueous Phase, Total	0.0			%	1	TCLP4691		
Oil Phase, Total	0.0			%	1	TCLP4691		
Solid Phase, Total	100			%	1	TCLP4691		
Batch Information								
Analytical Batch: TCLP4691						Initial Prep	Wt./Vol.: 1	mL
Analytical Method: TCLP								
Analysis Date/Time: 10/17/06 11:00						Container I	D:1066266	005-A
Dilution Factor: 1						Analyst: Bu	IS	



Print Date: 10/21/2006

Analytical Pren

Client Sample ID: SP60-CH-05

SGS Ref. #: 1066266005 Project ID: St. Paul Soil Matrix: Soil/Solid

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:17 Receipt Date/Time: 10/17/06 10:18

#### **TCLP Metals**

Percent Solids: 67.6

<u>Parameter</u>	Result	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Batch	Batch	Qualifiers	
Lead	ND	0.500	0.250	mg/L	1	MIP5174	MXT3983		
Batch Information									
Analytical Batch: MIP5174		Prep Batch	: MXT3983			Initial Prep	Wt./Vol.: 5 mL	_	
Analytical Method: SW6010B TCLP		Prep Metho	od: SW3010A			Prep Extra	ct Vol.: 50 mL		
Analysis Date/Time: 10/18/06 18:35		Prep Date/Time: 10/18/06 09:30				Container ID:1066266005-A			
Dilution Factor: 1						Analyst: DS	SH		



Print Date: 10/21/2006

Analytical Prep

Client Sample ID: SP60-CH-05

SGS Ref. #: 1066266005 Project ID: St. Paul Soil Matrix: Soil/Solid

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:17 Receipt Date/Time: 10/17/06 10:18

## Percent Solids: 67.6 Metals by ICP/MS

<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Batch	Batch	Qualifiers
Lead	2400	0.286	0.0887	mg/Kg	10	MMS4476	MXX1831	3
Batch Information								
Analytical Batch: MMS4476		Prep Batch: M	1XX18313			Initial Prep	Wt./Vol.: 1.0	342 g
Analytical Method: SW6020	Prep Method: SW3050B					Prep Extract Vol.: 50 mL		
Analysis Date/Time: 10/19/06 12:34	Prep Date/Time: 10/17/06 17:15				Container ID:1066266005-A			
Dilution Factor: 10						Analyst: TK		



Print Date: 10/21/2006

Client Sample ID: SP60-CH-05

SGS Ref. #: 1066266005 Project ID: St. Paul Soil

Collection Date/Time: 10/15/06 17:17 Receipt Date/Time: 10/17/06 10:18

All Dates/Times are Alaska Local Time

Matrix: Soil/Solid Percent Solids: 67.6

#### **Solids**

<u>Parameter</u>	Result	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	67.6			%		SPT7045		
Batch Information  Analytical Batch: SPT7045  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 n	nL
Analysis Date/Time: 10/18/06 09:20						Container II Analyst: BN		05-A



Client Sample ID: SP60-CH-06

SGS Ref. #: 1066266006 Project ID: St. Paul Soil

Matrix: Soil/Solid Percent Solids: 88.9 All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:34 Receipt Date/Time: 10/17/06 10:18

Print Date: 10/21/2006

<u>Analytical</u>

Prep

#### Characterization

<u>Parameter</u>	Result	PQL/CL	MDL	<u>Units</u>	<u>DF</u>	Batch	Batch	<b>Qualifiers</b>	
Aqueous Phase, Total	0.0			%	1	TCLP4691			
Oil Phase, Total	0.0			%	1	TCLP4691			
Solid Phase, Total	100			%	1	TCLP4691			
Batch Information									
Analytical Batch: TCLP4691						Initial Prep	Wt./Vol.: 1	mL	
Analytical Method: TCLP									
Analysis Date/Time: 10/17/06 11:00						Container I	D:1066266	006-A	
Dilution Factor: 1						Analyst: Bu	S		



Print Date: 10/21/2006

Client Sample ID: SP60-CH-06

SGS Ref. #: 1066266006 Project ID: St. Paul Soil Matrix: Soil/Solid

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:34 Receipt Date/Time: 10/17/06 10:18

#### **TCLP Metals**

Percent Solids: 88.9

<u>Parameter</u>	Result	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> <u>Batch</u>	<u>Qualifiers</u>	
Lead	ND	0.500	0.250	mg/L	1	MIP5174	MXT3983		
Batch Information									
Analytical Batch: MIP5174		Prep Batch	: MXT3983			Initial Prep Wt./Vol.: 5 mL			
Analytical Method: SW6010B TCLP	Prep Method: SW3010A					Prep Extract Vol.: 50 mL			
Analysis Date/Time: 10/18/06 18:14		Prep Date/Time: 10/18/06 09:30				Container I	D:10662660	06-A	
Dilution Factor: 1						Analyst: DS	SH		



Client Sample ID: SP60-CH-06

SGS Ref. #: 1066266006 Project ID: St. Paul Soil Matrix: Soil/Solid

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:34 Receipt Date/Time: 10/17/06 10:18

Print Date: 10/21/2006

Analytical Prep

## Percent Solids: 88.9 Metals by ICP/MS

<u>Parameter</u>	Result	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Batch	Batch	Qualifiers
Lead	268	0.225	0.0697	mg/Kg	10	MMS4476	MXX1831	3
Batch Information								
Analytical Batch: MMS4476		Prep Batch: M	IXX18313			Initial Prep	Wt./Vol.: 1.0	005 g
Analytical Method: SW6020		Prep Method:	SW3050B			Prep Extrac	t Vol.: 50 m	L
Analysis Date/Time: 10/19/06 12:39	Prep Date/Time: 10/17/06 17:15					Container II	D:10662660	06-A
Dilution Factor: 10						Analyst: TK		



Print Date: 10/21/2006

Analytical

Prep

Client Sample ID: SP60-CH-06

SGS Ref. #: 1066266006 Project ID: St. Paul Soil Matrix: Soil/Solid

Percent Solids: 88.9

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:34 Receipt Date/Time: 10/17/06 10:18

**Solids** 

<u>Parameter</u>	Result	PQL/CL	MDL_	<u>Units</u>	<u>DF</u>	Batch	Batch	Qualifiers
Total Solids	88.9			%		SPT7045		
Batch Information  Analytical Batch: SPT7045  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 n	nL
Analysis Date/Time: 10/18/06 09:20						Container II Analyst: BN		06-A



Print Date: 10/21/2006

Analytical Prep

Client Sample ID: SP60-CH-07 SGS Ref. #: 1066266007

Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 79.9

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:46 Receipt Date/Time: 10/17/06 10:18

#### Characterization

<u>Parameter</u>	Result	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Batch	<u>Batch</u>	<b>Qualifiers</b>
Aqueous Phase, Total	0.0			%	4	TCLP4691		
•					1			
Oil Phase, Total	0.0			%	1	TCLP4691		
Solid Phase, Total	100			%	1	TCLP4691		
Batch Information								
Analytical Batch: TCLP4691						Initial Prep	Wt./Vol.: 1	mL
Analytical Method: TCLP								
Analysis Date/Time: 10/17/06 11:00						Container I	D:1066266	007-A
Dilution Factor: 1						Analyst: Bu	IS	



Print Date: 10/21/2006

Client Sample ID: SP60-CH-07

SGS Ref. #: 1066266007 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 79.9

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:46 Receipt Date/Time: 10/17/06 10:18

#### **TCLP Metals**

<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	ND	0.500	0.250	mg/L	1	MIP5174	MXT3983	
Batch Information								
Analytical Batch: MIP5174		Prep Batch	: MXT3983			Initial Prep	Wt./Vol.: 5 m	nL
Analytical Method: SW6010B TCLP		Prep Metho	od: SW3010A			Prep Extrac	t Vol.: 50 ml	L
Analysis Date/Time: 10/18/06 18:38		Prep Date/	Time: 10/18/06 0	9:30		Container II	D:10662660	07-A
Dilution Factor: 1						Analyst: DS	SH	



Print Date: 10/21/2006

Client Sample ID: SP60-CH-07

SGS Ref. #: 1066266007 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 79.9

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:46 Receipt Date/Time: 10/17/06 10:18

#### Metals by ICP/MS

<u>Parameter</u>	Result	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	Qualifiers
Lead	203	0.240	0.0743	mg/Kg	10	MMS4476	MXX1831	3
Batch Information								
Analytical Batch: MMS4476		Prep Batch: I	MXX18313			Initial Prep	Wt./Vol.: 1.0	)435 g
Analytical Method: SW6020		Prep Method	: SW3050B			Prep Extrac	t Vol.: 50 m	nL
Analysis Date/Time: 10/19/06 12:44		Prep Date/Ti	me: 10/17/06 17	:15		Container II	D:10662660	007-A
Dilution Factor: 10						Analyst: Tk	(	



Client Sample ID: SP60-CH-07

SGS Ref. #: 1066266007 Project ID: St. Paul Soil Matrix: Soil/Solid

Percent Solids: 79.9

All Dates/Times are Alaska Local Time Collection Date/Time: 10/15/06 17:46 Receipt Date/Time: 10/17/06 10:18

Print Date: 10/21/2006

Analytical Prep

**Solids** 

<u>Parameter</u>	Result	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Batch	Batch	<u>Qualifiers</u>
Total Solids	79.9			%		SPT7045		
Batch Information  Analytical Batch: SPT7045  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1	mL
Analysis Date/Time: 10/18/06 09:20						Container Analyst: B	ID:1066266 NE	007-A



SGS Ref.# 735325 Method Blank Printed Date/Time 10/21/2006 13:39

 Client Name
 PSI Environmental & Instrument.
 Prep
 Batch

 Project Name/#
 St. Paul Soil
 Method

Matrix Soil/Solid Date

QC results affect the following production samples:

1066266001, 1066266002, 1066266003, 1066266004, 1066266005, 1066266006, 1066266007

			Reporting/Control		** *.	Analysis
Parameter		Results	Limit	MDL	Units	Date
Solids						
<del></del>						
Total Solids		100			%	10/18/06
Batch	SPT7045					
Method	SM20 2540G					
Instrument						



SGS Ref.# 735541

Method Blank

Printed Date/Time
Prep Batch

10/21/2006 13:39

Client Name

PSI Environmental & Instrument.

Batch Method MXT3983 SW3010A

Project Name/# Matrix St. Paul Soil

Date

10/18/2006

Matrix Water (Surface, Eff., Ground)
QC results affect the following production samples:

1066266001, 1066266002, 1066266003, 1066266004, 1066266005, 1066266006, 1066266007

Parameter		Results	Reporting/Control Limit	MDL	Units	Analysis Date
TCLP Metals						
Lead		ND	0.0500	0.0250	mg/L	10/18/06
Batch	MIP5174					
Method	SW6010B TCLP					
Instrument	TJA Enviro II ICP P2					



SGS Ref.# Client Name 735773

Method Blank

PSI Environmental & Instrument.

Project Name/# St. Paul Soil
Matrix Soil/Solid

Printed Date/Time

Prep

10/21/2006 13:39

Batch Method MXX18313 SW3050B

Date 5W3050B

QC results affect the following production samples:

1066266001, 1066266002, 1066266003, 1066266004, 1066266005, 1066266006, 1066266007

Parameter	Results	Reporting/Control Limit	MDL	Units	Analysis Date

#### Metals by ICP/MS

Lead ND 0.200 0.0620 mg/Kg 10/19/06

Batch MMS4476 Method SW6020

**Instrument** Perkin Elmer Sciex ICP-MS P3



SGS Ref.#

735724

Duplicate

PSI Environmental & Instrument.

Printed Date/Time

10/21/2006 13:39

**Client Name** Project Name/#

St. Paul Soil

Prep Batch

Method Date

Original

1066266006 Matrix Soil/Solid

QC results affect the following production samples:

Parameter		Original Result	QC Result	Units	RPD	RPD Limits	Analysis Date
Solids							
Total Solids		88.9	89.4	%	1	(<5)	10/18/2006
Batch Method Instrument	SPT7045 SM20 2540G						



SGS Ref.# 735542 Lab Control Sample **Printed Date/Time** 

10/21/2006

13:39

Prep Batch MXT3983

Method

Date

SW3010A 10/18/2006

St. Paul Soil

Project Name/# Matrix Water (Surface, Eff., Ground)

QC results affect the following production samples:

PSI Environmental & Instrument.

QC Pct LCS/LCSD RPD Spiked Analysis RPD Parameter Limits Limits Results Recov Amount Date

TCLP Metals

Client Name

Lead LCS 0.87387 (80-120) 10/18/2006 1 mg/L

Batch MIP5174 Method SW6010B TCLP Instrument TJA Enviro II ICP P2



SGS Ref.# 735774 Lab Control Sample

St. Paul Soil

**Printed Date/Time** 

10/21/2006

13:39

Prep Batch

MXX18313

SW3050B

Method

104 5 W 50501

Date

10/17/2006

Matrix Soil/Solid

QC results affect the following production samples: 1066266001, 1066266002, 1066266003, 1066266004, 1066266005, 1066266006, 1066266007

PSI Environmental & Instrument.

Parameter QC Pct LCS/LCSD RPD Spiked Analysis
Results Recov Limits RPD Limits Amount Date

Metals by ICP/MS

Client Name

Project Name/#

Lead LCS 50.8 102 (80-120) 50 mg/Kg 10/19/2006

Batch MMS4476 Method SW6020

**Instrument** Perkin Elmer Sciex ICP-MS P3



SGS Ref.#

735543 735544 Matrix Spike

Matrix Spike Duplicate

Printed Date/Time

Prep

10/21/2006 13:39 MXT3983

Batch Method Waters Digest for Metals by ICl

Date 10/18/2006

Original Matrix

1066266006

Soil/Solid

QC results affect the following production samples:

Parameter	Qualifiers	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	
TCLP Metals										
Lead	MS	ND	10.7	95	(50-125)			11.2	mg/L10/18/2006	
	MSD	)	10.5	94		1	(< 20)	11.2	mg/L 10/18/2006	
Batch	MIP5174									

Method SW6010B TCLP Instrument TJA Enviro II ICP P2



SGS Ref.#

735775 735776 Matrix Spike

Matrix Spike Duplicate

Printed Date/Time

Date

10/21/2006 13:39

10/17/2006

Prep Batch MXX18313

> Method Soils/Solids Digest for Metals b

Original Matrix

1066240002

Soil/Solid

QC results affect the following production samples:

Parameter	Qualifiers	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Analysis Amount Date	
Metals by I	CCP/MS								
Lead		MS 22.3 MSD	82.2 83.2	93 94	(80-120)	1	(< 20)	64.5 mg/Kg10/19/2006 64.6 mg/Kg 10/19/2006	
Batch	MMS4476	.1.2	03.2			-	( = 0 )	01.0 mg/kg 10/15/2000	

Method SW6020

Instrument Perkin Elmer Sciex ICP-MS P3



## CHAIN OF CUSTODY RECORD SGS Environmental Services Inc.



rwali aryland orth Carolina

060601

1																	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
CLIENT: PS						SGS R	Reference	):								P	AGEOF
CONTACT: K	with Guyar	PHONE N	0:907)27	12-80	10			Preservat Used	ives 20	20			1	Т		<u> </u>	
PROJECT:5	Paul Soil	SITE/PWS	ID#:			No	SAMPLE TYPE	Used Analysis	14	A.	<u> </u>	}	<del>]</del>	<del>)                                    </del>	<del>-)</del>	+	
REPORTS TO:		E-MAIL: 🖟	leith@f	SIENV.	COM	Ç	C= COMP	Required	1/2 /	/ /	/	· /	′ ,	/	/	/	
		FAX NO.:{	907,272	- 900	-LC	N T	COMP	3/	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\ <b>f</b> \				- /	/ /	/	/. /
INVOICE TO:	PSI	QUOTE#	7921			Å	G= GRAB		) v ^o /.}	\varphi'/ -							/ /
		P.O. NUM	BER 200 -	0024 6	6	N E			) \ °		/	/					′ /
LAB NO.	SAMPLE IDENTIFIC	ATION	DATE	TIME	MATRIX	R S		/ 18		" /	/	' ·/	/ 	/	/		REMARKS
(i) A	SP60-CH	-\$1	10/15	1645	50,1	1	G	X	X								
Ã) I	5P60-CH-		10/15	1652	5011	1	G	X	X								
6	5860 -CH -	<i>\$3</i>	10/15	17/1	Soil	1	Ġ	×	×								
9	5960-CH- Q	CH- 04 10/15 1716 50i			Soil	1	Ġ	×	<i>/</i> <								
B	6860-C11- 0	(j ·	10/15	/7/7	Soil	,	Ġ	X	×								
Ø A Ø B Ø B Ø D	5860-CH - BR	5	10/15	1734	Soil	1	Ġ	×	×			40	( )	Application of the second			Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro
(A) V	5960-CH-67		10/15	1746	5011	/	Ġ	X	X					mater 2.400	2	1	
$\Theta$												i .			/ \ \ '	1	7
																	·
5	P.			,				4					į	•			
	nquished By:(1)	Date	Time	Received	Ву:				pping C	arrier:			·	Sam	ples R	eceiv	ved Cold? (Circle)
PS WITT	Cons	10/15	2000		-	Shipping Ticket No:			:			Temp	peratur	e JC:	(-2.6°C   TB=2.2°C		
Relinquished		Date	Time	Received	Ву:			Spe	ecial Del	liverable	Requ	iremen	ts:	Cha	in of C	ustod	dy Seal: (Circle)
						INFACT				ACT)		BROKEN ABSENT					
Relinquished	Ву: (3)	Date Time Received By:			Ву:		'	Re	quested	Turnard	ound T	ime an	d Spe	cial In:	structio	ons:	
						n		. /	) /	/ (	H		2 ,	√0 ~	)		cooper
Relinquished	Relinquished By: (4) Date Time Received By:				$\wedge$	V	しノ	_	<b>ئ</b> يـ	> (	XX	y c	シイ 	SOONEY			
		iolistob	1014	Bly	1 ann	N						-		. /	,		

SGS



## **SAMPLE RECEIPT FORM** SGS WO#:

Yes / I	No N	Α ,	
		<ul> <li>Are samples RUSH, priority, or w/n 72 hrs. of hold time?</li> <li>If yes have you done e-mail notification?</li> </ul>	Due Date:/ ₀ / _Σ ₀ / ₀ / ₀
		If ves have you done e-mail notification?	Received Date: 10/17/06
		Are samples within 24 hrs. of hold time or due date?	Received Time:
	<u> </u>	If yes, have you spoken with Supervisor?	Is date/time conversion necessary?
		Archiving bottles – if req., are they properly marked?	# of hours to AK Local Time:
		_ Are there any <b>problems</b> ? PM Notified?	Thermometer ID:
	<del></del>	Were samples preserved correctly and pH verified?	Cooler ID Temp Blank Cooler Temp
		_ vveie samples preserved correctly and pri vermed?	
			7.2 °C 2.6 °C
	/	If the fact DIAGO was in DIAGOD	
	<u> </u>	If this is for PWS, provide PWSID	°C
<u> </u>		_ Will courier charges apply?	<del></del> <del></del> <del></del> <del></del>
		Method of payment?	*Temperature readings include thermometer correction fac
		Data package required? (Level: 1 / 2 / 6/ 4)  Notes:	Delivery method (circle all that apply): Client / Alert Couries / UPS / FedEx / USPS /
		Is this a DoD project? (USACE, Navy, AFCEE)	AA Goldstreak / NAC / ERA / PenAir / Carlile
			Lynden / SGS / Other: <i>ACE # 104815</i>
$\underline{Th}$		n must be filled out for DoD projects (USACE, Navy, AFCEE)	Airbill#
Yes	No		Additional Sample Remarks: (√if applicable)
		Is received temperature $4 \pm 2^{\circ}$ C?	Extra Sample Volume?
		Exceptions: Samples/Analyses Affected:	Limited Sample Volume?
			Field preserved for volatiles?
			Field-filtered for dissolved?
			Lab-filtered for dissolved?
		Rad Screen performed? Result:	Ref Lab required?
		Was there an airbill? (Note # above in the right hand column)	Foreign Soil?
		Was cooler sealed with custody seals?	· · · · · · · · · · · · · · · · · · ·
		# / where:	This section must be filled if problems are found.
	<del></del> :	Were seal(s) intact upon arrival?	Yes No
• ——		Was there a COC with cooler?	Was client notified of problems?
		Was COC sealed in plastic bag & taped inside lid of cooler?	T. 32.231
		Was the COC filled out properly?	Individual contacted:
		Did the COC indicate COE / AFCEE / Navy project?	Via: Phone / Fax / Email (circle one)
		Did the COC and samples correspond?	Date/Time:
<del></del>		Were all sample packed to prevent breakage?  Packing material:	Reason for contact:
		Were all samples unbroken and clearly labeled?	-
		Were all samples sealed in separate plastic bags?	
		Were all VOCs free of headspace and/or MeOH preserved?	
		Were correct container / sample sizes submitted?	
		Is sample condition good?	Change Order Required?
		Was copy of CoC, SRF, and custody seals given to PM to fax?	SGS Contact:
		• • • • • • • • • • • • • • • • • • • •	
Notes: _			
•			· · · · · · · · · · · · · · · · · · ·
			·
<del></del>	-	,	
			· .
			·
,		Parelle III	71/0
=	<del>-</del>	(sign): / / / / / / / / (print): // / / / / / / / / / / / / / / / / /	19 M Je HVW LX



#### SAMPLE RECEIPT FORM (page 2)

SGS WO#:

S	other OZSZEN
1-7   4   2   7   7   7   7   7   7   7   7   7	Other Post

Bottle Totals 7

Completed by My Am

Date: 10/17/06

Form*# F004r14: 05/17/04

1066266

GS Environmental

**CUSTODY SEAL** 

SGS Environmental

Signature:

2000







1048151

AIR CARGO

1048151

NOT NEGOTIABLE

ACE Air Cargo

SHIPPER'S ACCOUNT NUMBER **AIR WAYBILL** 5901 LOCKHEED AVE. (AIR CONSIGNMENT NOTE) ANCHORAGE, ALASKA 99502 Copies 1, 2, 3 and 4 of this Air Waybill are originals and have the same validity. It is adjeed that the goods described herein are accepted in apparent good order and condition (except as noted) for carriage SUBJECT TO THE CONDITIONS OF CONTRACT ON THE REVERSE HEREOF. THE SHIPPER'S ATTENTION IS DRAWN OF THE NOTICE CONCERNING CARRIERS LIMITATION OF LIABILITY: Shipper may increase such limitation of liability by declaring a higher value for carriage and paying a supplemental charge if required. Shipper, or his agent agrees, to release carrier of any payment dispute between himself and the consignee by remitting unpaid freight charges within 48 hours of billing by carrier SHIPMENT MAY BE DIVERTED TO MOTOR OR OTHER GARRIER PER TARIFF RULE UNLESS SHIPPER GIVES CHECK ONE DOMESTIC INTERNATIONAL AGENT'S IATA CODE ACCOUNT NO. ACCOUNTING INFORMATION AIRPORT OF DEPARTURE (ADDR OF FIRST CARRIER) AND REQUESTED ROUTING OTHER DECLARED VALUE FOR CUSTOMS INSURANCE - If shipper requests insurance in accordance with conditions on reverse hereof, indicate amount to be insured in figures in box marked amount of insurance,

Diversion contrary to US law is prohibited.

NO. OF	GROSS RATE	CLASS CHARG	EABLE RATE /	er de la lacación de la companya de		
PIECES	Ng Park	COMMODITY		TOTAL	NATURE AND QUANTITY OF GOOD	s i
RCP	WEIGHT ( 10	ITEM NO. WEIG	SHT CHA	RGE S	(INCL DIMENSIONS OR VOLUME)	
**************************************	- Comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments and the comments are comments and the comments and the comments and the comments are comments and the comments and the comments and the comments are comments and the comments and the comments are comments and the comments and the comments are comments and the comments and the comments and the comments are comments and the comments and the comments are comments and the comments are comments and the co	3E46 17	MA	35.0	cooler	
-					CANT	
				35,00		
	PRÉPAID WEIGHT CHA	ARGE COLLECT	PUP RICKUP CHARGE	S ORIGIN ADVANCE O	CHARGES DESCRIPTION OF ORIGIN ADVANCE	
Α.	55,00			к.		
A. 11	VALUATION CI	HARGE:	DEL DELIVERY, CHAR	GES DEST. ADVANCE CH	IARGES DESCRIPTION OF DEST, ADVANCE	
D.		· · · · · · · · · · · · · · · · · · ·		<u>.</u>		
1.	). 65 TAX		OTHER CHARGES AND	DESCRIPTION	HAZMAT ITEMS ITE PREPAID CO	MS LLECT
	TOTAL OTHER CHARGE		i contains restricted articl	es, such part is properly described Overnment regulations, and for in	are correct and that insofar as any part of the consi by name and is in proper condition for carriage by air ac itemational shipments, the current International Air Th	
	7.00	S DOE CANNIER				

SIGNATURE OF SHIPPER OR HIS AGENT.

Aliest ~

SIGNATURE OF ISSUING CARRIER OR ITS AGENT

1048151

COPY 5 AIRPORT OF DESTINATION

AMOUNT TO BE ENTERED BY SHIPPER

TOTAL COLLECT

(Date)

Notified on

Notified on Notified on

COD

RELEASING AGENT

## **SGS Environmental Services**

1911	IPLE CHARACTERIZATION
HSN#: (00/66-100 Date:	
Sample Vol. (mL):	Container Volume (mL): 250
Top% (xylene miscible)	Description / Notes:
Middle% (water miscible)	Description / Notes:
Bottom 100 % (solids)	Description / Notes: Duty vock voots, grass
Percent Solids Determination:	
Original Sample & Container weight (g):	Solid % of sample:
Empty Original Container weight (g):	Liquid % of sample:
Clean Container weight (g):	Weight solids extracted (g):
Original Sample weight (g):	Extraction Fluid:
Filter weight (g):	Vol. Original Liquid Added Back (mL)
Clean Container & Liquid weight (g):	Liquid Volume (mL):
Liquid weight (g):	
Filter & Solid Sample weight (g):	
Solid weight (g):	
Notes:	
HSN#: <u>(e266-2a</u> Date:	1d1)lole Analyst: By
HSN#:	/ U/ つしん Analyst: あり Container Volume (mL): 250
Sample Volume (mL):	Container Volume (mL): 250  Description / Notes:
Sample Volume (mL):	Container Volume (mL): 250  Description / Notes:  Description / Notes:
Sample Volume (mL):	Container Volume (mL): 250  Description / Notes:
Sample Volume (mL):	Container Volume (mL): 250  Description / Notes:  Description / Notes:
Sample Volume (mL):	Container Volume (mL): 250  Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: De
Sample Volume (mL):	Container Volume (mL):
Sample Volume (mL):	Container Volume (mL): 250  Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: Description / Notes: De
Sample Volume (mL):	Container Volume (mL): 250  Description / Notes: Description / Notes: Description / Notes: Description / Notes: Liquid % of sample:  Liquid % of sample:
Sample Volume (mL):	Container Volume (mL):
Sample Volume (mL):	Container Volume (mL):  Description / Notes:  Description / Notes:  Description / Notes:  Solid % of sample:  Liquid % of sample:  Weight solids extracted (g):  Extraction Fluid:
Sample Volume (mL):	Container Volume (mL):  Description / Notes:  Description / Notes:  Description / Notes:  Solid % of sample:  Liquid % of sample:  Weight solids extracted (g):  Extraction Fluid:  Vol. Original Liquid Added Back (mL)
Sample Volume (mL):	Container Volume (mL):  Description / Notes:  Description / Notes:  Description / Notes:  Solid % of sample:  Liquid % of sample:  Weight solids extracted (g):  Extraction Fluid:  Vol. Original Liquid Added Back (mL)
Sample Volume (mL):	Container Volume (mL):  Description / Notes:  Description / Notes:  Description / Notes:  Solid % of sample:  Liquid % of sample:  Weight solids extracted (g):  Extraction Fluid:  Vol. Original Liquid Added Back (mL)
Sample Volume (mL):	Container Volume (mL):  Description / Notes:  Description / Notes:  Description / Notes:  Solid % of sample:  Liquid % of sample:  Weight solids extracted (g):  Extraction Fluid:  Vol. Original Liquid Added Back (mL)
Sample Volume (mL):	Container Volume (mL):  Description / Notes:  Description / Notes:  Description / Notes:  Solid % of sample:  Liquid % of sample:  Weight solids extracted (g):  Extraction Fluid:  Vol. Original Liquid Added Back (mL)

## **SGS Environmental Services**

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • • • • • • • • • • • • • • • • • • •	$\mathcal{M} \mathcal{N}$
HSN#: <u>6266-3a</u> Date:	± 0	<u> </u>
Sample Vol. (mL):	Container Volume (mL):	·U
Top% (xylene miscible)	Description / Notes:	
Middle% (water miscible)	Description / Notes:	
Bottom% (solids)	Description / Notes: Duty 10013	91a53
Percent Solids Determination:	<b>,</b>	
Original Sample & Container weight (g):	Solid % of sample:	
Empty Original Container weight (g):	Liquid % of sample:	
Clean Container weight (g):	. Weight solids extracted (g):	
Original Sample weight (g):	Extraction Fluid:	
Filter weight (g):	Vol. Original Liquid Added Back (mL)	
Clean Container & Liquid weight (g):	Liquid Volume (mL):	
Liquid weight (g):		
Filter & Solid Sample weight (g):		
Solid weight (g):		
oolid Holgin (g).	·	
Notes:		
		<u> </u>
HSN#: 6266-4a_ Date:	10/17 Analyst:	k
		1 \
		<del>}</del>
Sample Volume (mL):	Container Volume (mL):	<del>                        _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _  </del>
		<del> </del>
Sample Volume (mL):	Container Volume (mL):	<b>S</b>
Sample Volume (mL):	Container Volume (mL):	grasi
Sample Volume (mL):	Container Volume (mL):	grasi
Sample Volume (mL):	Container Volume (mL):	grasi
Sample Volume (mL):	Container Volume (mL):	grasi
Sample Volume (mL):	Container Volume (mL):	grasi
Sample Volume (mL):	Container Volume (mL):	grasi
Sample Volume (mL):	Container Volume (mL):	grasi
Sample Volume (mL):	Container Volume (mL):	grasi
Sample Volume (mL):	Container Volume (mL):	grass
Sample Volume (mL):	Container Volume (mL):  Description / Notes:  Description / Notes:  Description / Notes:  Solid % of sample:  Liquid % of sample:  Weight solids extracted (g):  Extraction Fluid:  Vol. Original Liquid Added Back (mL)	grasi
Sample Volume (mL):	Container Volume (mL):  Description / Notes:  Description / Notes:  Description / Notes:  Solid % of sample:  Liquid % of sample:  Weight solids extracted (g):  Extraction Fluid:  Vol. Original Liquid Added Back (mL)	grasi
Sample Volume (mL):	Container Volume (mL):  Description / Notes:  Description / Notes:  Description / Notes:  Solid % of sample:  Liquid % of sample:  Weight solids extracted (g):  Extraction Fluid:  Vol. Original Liquid Added Back (mL)  Liquid Volume (mL):	grasi
Sample Volume (mL):	Container Volume (mL):  Description / Notes:  Description / Notes:  Description / Notes:  Solid % of sample:  Liquid % of sample:  Weight solids extracted (g):  Extraction Fluid:  Vol. Original Liquid Added Back (mL)  Liquid Volume (mL):	grasi
Sample Volume (mL):	Container Volume (mL):  Description / Notes:  Description / Notes:  Description / Notes:  Solid % of sample:  Liquid % of sample:  Weight solids extracted (g):  Extraction Fluid:  Vol. Original Liquid Added Back (mL)  Liquid Volume (mL):	grasi
Sample Volume (mL):	Container Volume (mL):  Description / Notes:  Description / Notes:  Description / Notes:  Solid % of sample:  Liquid % of sample:  Weight solids extracted (g):  Extraction Fluid:  Vol. Original Liquid Added Back (mL)  Liquid Volume (mL):	grass

#### **363 Environmental Services**

HSN#: 6266-50 Date	: 10/17 Analyst: B
Sample Vol. (mL):	Container Volume (mL):
Top% (xylene miscible)	Description / Notes:
Middle% (water miscible)	Description / Notes:
Bottom 107 % (solids)	<b>△</b>
// (Solids)	Description / Notes: Dut, 1075, 37983
Percent Solids Determination:	
Original Sample & Container weight (g):	Solid % of sample:
Empty Original Container weight (g):	Liquid % of sample:
Clean Container weight (g):	Weight solids extracted (g):
Original Sample weight (g):	Extraction Fluid:
Filter weight (g):	Vol. Original Liquid Added Back (mL)
Clean Container & Liquid weight (g):	Liquid Volume (mL):
Liquid weight (g):	
Filter & Solid Sample weight (g):	
Solid weight (g):	<u> </u>
Notes:	
Notes.	
<u> </u>	<u> </u>
110411 CAL-CO-1-0	introduce at
HSN#: 6960 Date:	That's to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat
Sample Volume (mL):	Container Volume (mL):
Top% (xylene miscible)	Description / Notes:
Middle% (water miscible)	Description / Notes: __
Bottom% (solids)	Description / Notes: Dut, CONS, SPAST
	- 1 SACY ) (SCO)
Percent Solids Determination:	
Original Sample & Container weight (g):	Solid % of sample:
Empty Original Container weight (g):	Liquid % of sample:
Clean Container weight (g):	Weight solids extracted (g):
	Extraction Fluid:
Filter weight (g):	
Clean Container & Liquid weight (g):	Liquid Volume (mL):
Liquid weight (g):	
Filter & Solid Sample weight (g): Solid weight (g):	<del></del> ,
Notes:	
	· · · · · · · · · · · · · · · · · · ·
	<u>.</u>

## **SGS Environmental Services**

- ( /		HARACTERIZATION	•
HSN#: 62667a	Date:	) (1) (0 Analyst: (2)	<u>.</u>
Sample Vol. (mL):	Contain	er Volume (mL):	
Top% (xylene misci	ble) Descrip	tion / Notes:	
Middle% (water miscib	ole) Descrip	tion / Notes:	
Bottom / 00 % (solids)	Descrip	tion / Notes: Dut 10015,	grade
Percent Solids Determination:			
Original Sample & Container weight (g):		Solid % of sample:	
Empty Original Container weight (g):		Liquid % of sample:	· · · · · · · · · · · · · · · · · · ·
Clean Container weight (g):		_ Weight solids extracted (g):	
Original Sample weight (g):	· .	Extraction Fluid:	
Filter weight (g):		Vol. Original Liquid Added Back (mL)	
Clean Container & Liquid weight (g):	<del></del>	Liquid Volume (mL):	
Liquid weight (g):		<del>_</del>	
Filter & Solid Sample weight (g):		_	
Solid weight (g):		_	
Notes:		·	
•			
	<del>.</del>		-
HSN#:	Date:	Analyst:	
HSN#:Sample Volume (mL):	<del></del>	<i>Analyst:</i> ner Volume (mL):	
	Contair	_	
Sample Volume (mL):  Top% (xylene misc	Contair	ner Volume (mL):	
Sample Volume (mL):  Top% (xylene misc  Middle% (water miscil	Contair ible) Descrip	ner Volume (mL): otion / Notes:	
Sample Volume (mL):  Top% (xylene misc	Contair ible) Descrip	ner Volume (mL): otion / Notes:	
Sample Volume (mL):  Top% (xylene misc  Middle% (water miscil	Contair ible) Descrip	ner Volume (mL): otion / Notes:	
Sample Volume (mL):  Top% (xylene misc  Middle% (water miscil  Bottom% (solids)	Contair ible) Descrip	otion / Notes:  otion / Notes:  otion / Notes:	
Sample Volume (mL):  Top% (xylene misc  Middle% (water miscil  Bottom% (solids)  Percent Solids Determination:  Original Sample & Container weight (g):	Contair ible) Descrip Descrip	otion / Notes:  otion / Notes:  otion / Notes:	
Sample Volume (mL):  Top% (xylene misc  Middle% (water miscil  Bottom% (solids)  Percent Solids Determination:	Contair ible) Descrip ble) Descrip	stion / Notes:  otion / Notes:  otion / Notes:  Solid % of sample:  Liquid % of sample:	
Sample Volume (mL):  Top% (xylene misc  Middle% (water miscil  Bottom% (solids)  Percent Solids Determination:  Original Sample & Container weight (g):  Empty Original Container weight (g):  Clean Container weight (g):	Contair ible) Descrip ble) Descrip	stion / Notes:  otion / Notes:  otion / Notes:  Solid % of sample:  Liquid % of sample:	
Sample Volume (mL):  Top% (xylene misc  Middle% (water miscil  Bottom% (solids)  Percent Solids Determination:  Original Sample & Container weight (g):  Empty Original Container weight (g):  Clean Container weight (g):  Original Sample weight (g):	Contair ible) Descrip ble) Descrip	stion / Notes:  stion / Notes:  stion / Notes:  Solid % of sample: Liquid % of sample: Weight solids extracted (g): Extraction Fluid:	
Sample Volume (mL):  Top% (xylene misc  Middle% (water miscil  Bottom% (solids)  Percent Solids Determination:  Original Sample & Container weight (g):  Empty Original Container weight (g):  Clean Container weight (g):  Original Sample weight (g):	Contair ible) Descrip ble) Descrip	stion / Notes:  stion / Notes:  stion / Notes:  Solid % of sample:  Liquid % of sample:  Weight solids extracted (g):  Extraction Fluid:  Vol. Original Liquid Added Back (mL)	
Sample Volume (mL):  Top% (xylene misc  Middle% (water miscil  Bottom% (solids)  Percent Solids Determination:  Original Sample & Container weight (g):  Empty Original Container weight (g):  Clean Container weight (g):  Original Sample weight (g):  Filter weight (g):	Contair ible) Descrip ble) Descrip	stion / Notes:  stion / Notes:  stion / Notes:  Solid % of sample: Liquid % of sample: Weight solids extracted (g): Extraction Fluid: Vol. Original Liquid Added Back (mL) Liquid Volume (mL):	
Sample Volume (mL):  Top% (xylene misc  Middle% (water miscil  Bottom% (solids)  Percent Solids Determination:  Original Sample & Container weight (g):  Empty Original Container weight (g):  Clean Container weight (g):  Original Sample weight (g):  Filter weight (g):  Clean Container & Liquid weight (g):	Contair ible) Descrip ble) Descrip	ner Volume (mL):  ption / Notes:  ption / Notes:  Solid % of sample:  Liquid % of sample:  Weight solids extracted (g):  Extraction Fluld:  Vol. Original Liquid Added Back (mL)  Liquid Volume (mL):	
Sample Volume (mL):  Top	Contair ible) Descrip ble) Descrip	stion / Notes:  stion / Notes:  stion / Notes:  Solid % of sample: Liquid % of sample: Weight solids extracted (g): Extraction Fluid: Vol. Original Liquid Added Back (mL) Liquid Volume (mL):	
Sample Volume (mL):  Top% (xylene misc  Middle% (water miscil  Bottom% (solids)  Percent Solids Determination:  Original Sample & Container weight (g):  Empty Original Container weight (g):  Clean Container weight (g):  Original Sample weight (g):  Filter weight (g):  Clean Container & Liquid weight (g):  Liquid weight (g):  Filter & Solid Sample weight (g):	Contair ible) Descrip Descrip	stion / Notes:  stion / Notes:  stion / Notes:  Solid % of sample: Liquid % of sample: Weight solids extracted (g): Extraction Fluid: Vol. Original Liquid Added Back (mL) Liquid Volume (mL):	
Sample Volume (mL):  Top% (xylene misc  Middle% (water miscil  Bottom% (solids)  Percent Solids Determination:  Original Sample & Container weight (g):  Empty Original Container weight (g):  Clean Container weight (g):  Original Sample weight (g):  Filter weight (g):  Clean Container & Liquid weight (g):  Liquid weight (g):  Filter & Solid Sample weight (g):	Contair ible) Descrip Descrip	stion / Notes:  stion / Notes:  stion / Notes:  Solid % of sample: Liquid % of sample: Weight solids extracted (g): Extraction Fluid: Vol. Original Liquid Added Back (mL) Liquid Volume (mL):	

Final Confirmation Samples and Clean Backfill Characterization Fixed Laboratory Data (October 2006) SGS Environmental Services Inc. SDG 1066471



# SGS Environmental Services Alaska Division Level II Laboratory Data Report

Project: St. Paul Soil

Client: PSI Environmental & Instrument.

SGS Work Order: 1066471

Released by:

#### Contents:

Cover Page
Case Narrative
Final Report Pages
Quality Control Summary Forms
Chain of Custody/Sample Receipt Forms

#### Note:

Unless otherwise noted, all quality assurance/quality control criteria is in compliance with the standards set forth by the proper regulatory authority, the SGS Quality Assurance Program Plan, and the National Environmental Accreditation Conference.

## SGS Environmental Services Inc.

## **Case Narrative**

**Customer: PSIENV** 

PSI Environmental & Instrument.

**Project:** 

1066471

St. Paul Soil

**NPDL WO: N/A** 

Refer to the sample receipt form for information on sample condition.



# Laboratory Analytical Report

Client: PSI Environmental & Instrument.

1611 E First Ave Anchorage, AK 99501

Attn: Keith Guyer

T: (907)272-8010 F:(907)272-9005

Project: St. Paul Soil

Workorder No.: 1066471

#### Certification:

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, other than the conditions noted on the sample data sheet(s) and/or the case narrative. This certification applies only to the tested parameters and the specific sample(s) received at the laboratory.

If you have any questions regarding this report, or if we can be of further assistance, please contact your SGS Project Manager.

Bryan Arnold

Bryan_Arnold@sgs.com

Project Manager



Print Date: 11/10/2006

Enclosed are the analytical results associated with this workorder.

As required by the state of Alaska and the USEPA, a formal Quality Assurance/Quality Control Program is maintained by SGS. A copy of our Quality Assurance Plan (QAP), which outlines this program is available at your request.

The laboratory certification numbers are AK971-05 (DW), UST-005 (CS) and AK00971 (Micro) for ADEC and 001582 for NELAP (RCRA methods: 1010/1020, 1311, 6000/7000, 9040/9045, 9056, 9060, 9065, 8015B, 8021B, 8081A/8082, 8260B, 8270C).

Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP, the National Environmental Laboratory Accreditation Program and, when applicable, other regulatory authorities.

If you have any questions regarding this report or if we can be of any assistance, please contact your SGS Project Manager at 907-562-2343.

The following descriptors may be found on your report which will serve to further qualify the data.

MDL	Method Detection Limit

PQL Practical Quantitation Limit (reporting limit).

CL Control Limit

U Indicates the analyte was analyzed for but not detected. F Indicates value that is greater than or equal to the MDL.

J The quantitation is an estimation.

ND Indicates the analyte is not detected

B Indicates the analyte is found in a blank associated with the sample.

* The analyte has exceeded allowable regulatory or control limits.

GT Greater Than LT Less Than

Q QC parameter out of acceptance range.

M A matrix effect was present.

E The analyte result is above the calibrated range.

DF Analytical Dilution Factor

JL The analyte was positively identified, but the quantitation is a low estimation.

<Surr> Surrogate QC spiked standard

Note: Soil samples are reported on a dry weight basis unless otherwise specified



SAMPLE SUMMARY

Print Date: 11/10/2006

Client Name: PSI Environmental & Instrument.

Project Name: St. Paul Soil Workorder No.: 1066471

## **Analytical Methods**

Method Description Analytical Method

Metals by ICP-MS (S) SW6020
Percent Solids SM2540G SM20 2540G

# Sample ID Cross Reference

Lab Sample ID	Client Sample ID
1066471001	SP60-CS-001-020
1066471002	SP60-CS-002-015
1066471003	SP60-CS-003-020
1066471004	SP60-CS-004-005
1066471005	SP60-CS-005-025
1066471006	SP60-CS-006-025
1066471007	SP60-CS-007-020
1066471008	SP60-CS-008-020
1066471009	SP60-CS-009-015
1066471010	SP60-CS-010-025
1066471011	SP60-CS-011-005
1066471012	SP60-CS-012-030
1066471013	SP60-CS-013-020
1066471014	SP60-CS-014-020
1066471015	SP60-CS-015-020
1066471016	SP60-CH-601-005
1066471017	SP60-CH-602-005
1066471018	SP60-CH-603-005



Client Sample ID: SP60-CS-001-020

SGS Ref. #: 1066471001 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 83.4

All Dates/Times are Alaska Local Time Collection Date/Time: 10/21/06 12:26 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL_	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> <u>Batch</u> <u>Q</u>	ualifiers
Lead	20.1	0.232	0.0720	mg/Kg	10	MMS4517	MXX18362	
Batch Information								
Analytical Batch: MMS4517		Prep Batch: N	/IXX18362		Initial Prep Wt./Vol.: 1.0325 g			
Analytical Method: SW6020	Prep Method: SW3050B					Prep Extract Vol.: 50 mL		
Analysis Date/Time: 11/05/06 14:50	Prep Date/Time: 10/31/06 10:30					Container ID:1066471001-A		
Dilution Factor: 10						Analyst: Tk		



Client Sample ID: SP60-CS-001-020

SGS Ref. #: 1066471001 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 83.4

All Dates/Times are Alaska Local Time Collection Date/Time: 10/21/06 12:26 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	83.4			%		SPT7055		
Batch Information  Analytical Batch: SPT7055  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 n	nL
Analysis Date/Time: 10/26/06 12:30						Container II Analyst: BN		01-A



Client Sample ID: SP60-CS-002-015

SGS Ref. #: 1066471002 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 87.5

All Dates/Times are Alaska Local Time Collection Date/Time: 10/21/06 12:38 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	Result	PQL/CL	MDL.	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>	
Lead	201	0.226	0.0700	mg/Kg	10	MMS4517	MXX18362	2	
Batch Information									
Analytical Batch: MMS4517		Prep Batch:	MXX18362			Initial Prep Wt./Vol.: 1.0116 g			
Analytical Method: SW6020	Prep Method: SW3050B					Prep Extract Vol.: 50 mL			
Analysis Date/Time: 11/05/06 15:27	Prep Date/Time: 10/31/06 10:30					Container ID:1066471002-A			
Dilution Factor: 10						Analyst: Tk			



Client Sample ID: SP60-CS-002-015

SGS Ref. #: 1066471002 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 87.5

All Dates/Times are Alaska Local Time Collection Date/Time: 10/21/06 12:38 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL.	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	87.5			%		SPT7055		
Batch Information  Analytical Batch: SPT7055  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	mL
Analysis Date/Time: 10/26/06 12:30						Container I Analyst: BN		002-A



Client Sample ID: SP60-CS-003-020

SGS Ref. #: 1066471003 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 81.4

All Dates/Times are Alaska Local Time Collection Date/Time: 10/21/06 12:43 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	1830	0.236	0.0733	mg/Kg	10	MMS4526	MXX18372	2
Batch Information								
Analytical Batch: MMS4526		Prep Batch:	MXX18372			Initial Prep	Nt./Vol.: 1.03	388 g
Analytical Method: SW6020	Prep Method: SW3050B					Prep Extract Vol.: 50 mL		
Analysis Date/Time: 11/08/06 18:39	Prep Date/Time: 11/01/06 15:00					Container ID:1066471003-A		
Dilution Factor: 10						Analyst: TK		



Client Sample ID: SP60-CS-003-020

SGS Ref. #: 1066471003 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 81.4

All Dates/Times are Alaska Local Time Collection Date/Time: 10/21/06 12:43 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	81.4			%		SPT7055		
Batch Information  Analytical Batch: SPT7055  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	mL
Analysis Date/Time: 10/26/06 12:30						Container I Analyst: BN		003-A



Client Sample ID: SP60-CS-004-005

SGS Ref. #: 1066471004 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 92.9

All Dates/Times are Alaska Local Time Collection Date/Time: 10/21/06 12:51 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	Result	PQL/CL	MDL.	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>	
Lead	26.8	0.207	0.0643	mg/Kg	10	MMS4525	MXX18362	2	
Batch Information									
Analytical Batch: MMS4525		Prep Batch:	MXX18362			Initial Prep Wt./Vol.: 1.0383 g			
Analytical Method: SW6020	Prep Method: SW3050B					Prep Extract Vol.: 50 mL			
Analysis Date/Time: 11/08/06 10:18	Prep Date/Time: 10/31/06 10:30					Container ID:1066471004-A			
Dilution Factor: 10						Analyst: Tk			



Client Sample ID: SP60-CS-004-005

SGS Ref. #: 1066471004 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 92.9

All Dates/Times are Alaska Local Time Collection Date/Time: 10/21/06 12:51 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	92.9			%		SPT7055		
Batch Information  Analytical Batch: SPT7055  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	mL
Analysis Date/Time: 10/26/06 12:30						Container I Analyst: BN		004-A



Client Sample ID: SP60-CS-005-025

SGS Ref. #: 1066471005 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 85.0

All Dates/Times are Alaska Local Time Collection Date/Time: 10/21/06 12:58 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

Analytical Bron

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	<u>DF</u>	<u>Batch</u>	Batch	<u>Qualifiers</u>	
Lead	37.3	0.228	0.0707	mg/Kg	10	MMS4525	MXX1836	2	
Batch Information									
Analytical Batch: MMS4525		Prep Batch: N	MXX18362			Initial Prep	Wt./Vol.: 1.0	315 g	
Analytical Method: SW6020	Prep Method: SW3050B					Prep Extract Vol.: 50 mL			
Analysis Date/Time: 11/08/06 10:23	Prep Date/Time: 10/31/06 10:30				Container ID:1066471005-A				
Dilution Factor: 10						Analyst: TK			



Client Sample ID: SP60-CS-005-025

SGS Ref. #: 1066471005 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 85.0

All Dates/Times are Alaska Local Time Collection Date/Time: 10/21/06 12:58 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL_	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	85.0			%		SPT7055		
Batch Information  Analytical Batch: SPT7055  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	mL
Analysis Date/Time: 10/26/06 12:30						Container I Analyst: BN		005-A



Client Sample ID: SP60-CS-006-025

SGS Ref. #: 1066471006 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 78.6

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 18:27 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL.	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	Qualifiers
Lead	85.4	0.250	0.0775	mg/Kg	10	MMS4525	MXX1836	2
Batch Information								
Analytical Batch: MMS4525		Prep Batch: N	/IXX18362			Initial Prep	Wt./Vol.: 1.0	181 g
Analytical Method: SW6020		Prep Method:	SW3050B			Prep Extrac	t Vol.: 50 m	L
Analysis Date/Time: 11/08/06 10:29		Prep Date/Tin	ne: 10/31/06 10:	30		Container II	D:10664710	06-A
Dilution Factor: 10						Analyst: TK		



Client Sample ID: SP60-CS-006-025

SGS Ref. #: 1066471006 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 78.6

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 18:27 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	78.6			%		SPT7055		
Batch Information  Analytical Batch: SPT7055  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	mL
Analysis Date/Time: 10/26/06 12:30						Container II Analyst: BN		006-A



Client Sample ID: SP60-CS-007-020

SGS Ref. #: 1066471007 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 84.5

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 18:33 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL_	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> <u>Batch</u>	<u>Qualifiers</u>
Lead	5.81	0.227	0.0705	mg/Kg	10	MMS4525	MXX18362	
Batch Information								
Analytical Batch: MMS4525		Prep Batch: N	/IXX18362			Initial Prep	Nt./Vol.: 1.040	06 g
Analytical Method: SW6020		Prep Method:	SW3050B			Prep Extrac	t Vol.: 50 mL	
Analysis Date/Time: 11/08/06 10:34		Prep Date/Time: 10/31/06 10:30				Container II	D:1066471007	7-A
Dilution Factor: 10						Analyst: Tk		



Client Sample ID: SP60-CS-007-020

SGS Ref. #: 1066471007 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 84.5

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 18:33 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	84.5			%		SPT7059		
Batch Information  Analytical Batch: SPT7059  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	mL
Analysis Date/Time: 10/30/06 14:30						Container I Analyst: BN		007-A



Client Sample ID: SP60-CS-008-020

SGS Ref. #: 1066471008 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 78.3

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 18:36 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL.	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	Qualifiers
Lead	22.5	0.245	0.0758	mg/Kg	10	MMS4525	MXX1836	2
Batch Information								
Analytical Batch: MMS4525		Prep Batch: M	1XX18362			Initial Prep	Wt./Vol.: 1.0	448 g
Analytical Method: SW6020		Prep Method:	SW3050B			Prep Extrac	t Vol.: 50 m	L
Analysis Date/Time: 11/08/06 10:39		Prep Date/Tin	ne: 10/31/06 10:	30		Container II	D:10664710	08-A
Dilution Factor: 10						Analyst: TK		



Client Sample ID: SP60-CS-008-020

SGS Ref. #: 1066471008 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 78.3

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 18:36 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL.	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	78.3			%		SPT7059		
Batch Information  Analytical Batch: SPT7059  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	mL
Analysis Date/Time: 10/30/06 14:30						Container I Analyst: BN	D:10664710 NE	008-A



Client Sample ID: SP60-CS-009-015

SGS Ref. #: 1066471009 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 80.3

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 18:39 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL_	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	32.9	0.249	0.0771	mg/Kg	10	MMS4525	MXX1836	2
Batch Information								
Analytical Batch: MMS4525		Prep Batch: M	1XX18362			Initial Prep	Wt./Vol.: 1.0	01 g
Analytical Method: SW6020		Prep Method:	SW3050B			Prep Extrac	t Vol.: 50 m	L
Analysis Date/Time: 11/08/06 10:44		Prep Date/Tin	ne: 10/31/06 10:	30		Container II	D:10664710	09-A
Dilution Factor: 10						Analyst: TK		



Client Sample ID: SP60-CS-009-015

SGS Ref. #: 1066471009 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 80.3

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 18:39 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

Analytical Bran

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL.	<u>Units</u>	<u>DF</u>	Batch	Batch	<u>Qualifiers</u>
Total Solids	80.3			%		SPT7059		
Batch Information  Analytical Batch: SPT7059  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	mL
Analysis Date/Time: 10/30/06 14:30						Container II Analyst: BN		009-A



Client Sample ID: SP60-CS-010-025

SGS Ref. #: 1066471010 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 78.7

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 18:30 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL.	<u>Units</u>	<u>DF</u>	Analytical Batch	Prep Batch Qual	<u>lifiers</u>
Lead	118	0.246	0.0762	mg/Kg	10	MMS4525	MXX18362	
Batch Information								
Analytical Batch: MMS4525		Prep Batch: N	MXX18362			Initial Prep	Vt./Vol.: 1.0343 g	
Analytical Method: SW6020		Prep Method:	SW3050B			Prep Extrac	t Vol.: 50 mL	
Analysis Date/Time: 11/08/06 11:12		Prep Date/Tir	ne: 10/31/06 10:	30		Container I	D:1066471010-A	
Dilution Factor: 10						Analyst: Tk		



Client Sample ID: SP60-CS-010-025

SGS Ref. #: 1066471010 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 78.7

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 18:30 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	78.7			%		SPT7059		
Batch Information  Analytical Batch: SPT7059  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	mL
Analysis Date/Time: 10/30/06 14:30						Container II Analyst: BN		)10-A



Client Sample ID: SP60-CS-011-005

SGS Ref. #: 1066471011 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 74.4

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 19:55 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL.	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	Qualifiers
Lead	30.0	0.266	0.0826	mg/Kg	10	MMS4525	MXX1836	2
Batch Information								
Analytical Batch: MMS4525		Prep Batch: N	1XX18362			Initial Prep	Wt./Vol.: 1.0	094 g
Analytical Method: SW6020		Prep Method:	SW3050B			Prep Extrac	t Vol.: 50 m	L
Analysis Date/Time: 11/08/06 11:17		Prep Date/Tin	ne: 10/31/06 10:	30		Container II	D:10664710	11-A
Dilution Factor: 10						Analyst: TK		



Client Sample ID: SP60-CS-011-005

SGS Ref. #: 1066471011 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 74.4

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 19:55 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<b>Qualifiers</b>
Total Solids	74.4			%		SPT7059		
Batch Information  Analytical Batch: SPT7059  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	mL
Analysis Date/Time: 10/30/06 14:30						Container I Analyst: BN		)11-A



Client Sample ID: SP60-CS-012-030

SGS Ref. #: 1066471012 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 75.1

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 19:58 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	Result	PQL/CL	MDL_	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	15.3	0.259	0.0803	mg/Kg	10	MMS4525	MXX18362	2
Batch Information								
Analytical Batch: MMS4525		Prep Batch:	MXX18362			Initial Prep	Wt./Vol.: 1.02	283 g
Analytical Method: SW6020		Prep Metho	d: SW3050B			Prep Extrac	t Vol.: 50 mL	_
Analysis Date/Time: 11/08/06 11:22		Prep Date/T	ime: 10/31/06 1	0:30		Container II	D:106647101	12-A
Dilution Factor: 10						Analyst: Tk		



Client Sample ID: SP60-CS-012-030

SGS Ref. #: 1066471012 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 75.1

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 19:58 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

Analytical Bran

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL.	<u>Units</u>	<u>DF</u>	Batch	Batch	Qualifiers
Total Solids	75.1			%		SPT7059		
Batch Information  Analytical Batch: SPT7059  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	mL
Analysis Date/Time: 10/30/06 14:30						Container II Analyst: BN		)12-A



Client Sample ID: SP60-CS-013-020

SGS Ref. #: 1066471013 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 77.6

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 20:00 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL_	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	61.6	0.247	0.0766	mg/Kg	10	MMS4525	MXX1836	2
Batch Information								
Analytical Batch: MMS4525		Prep Batch: N	/IXX18362			Initial Prep	Wt./Vol.: 1.0	433 g
Analytical Method: SW6020		Prep Method:	SW3050B			Prep Extrac	t Vol.: 50 m	L
Analysis Date/Time: 11/08/06 11:27		Prep Date/Tir	ne: 10/31/06 10	:30		Container II	D:10664710	13-A
Dilution Factor: 10						Analyst: Tk		



Client Sample ID: SP60-CS-013-020

SGS Ref. #: 1066471013 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 77.6

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 20:00 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	77.6			%		SPT7059		
Batch Information  Analytical Batch: SPT7059  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	mL
Analysis Date/Time: 10/30/06 14:30						Container I Analyst: BN		)13-A



Client Sample ID: SP60-CS-014-020

SGS Ref. #: 1066471014 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 75.9

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 20:18 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL.	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	3.82	0.260	0.0805	mg/Kg	10	MMS4525	MXX18362	2
Batch Information								
Analytical Batch: MMS4525		Prep Batch	: MXX18362			Initial Prep	Wt./Vol.: 1.0	146 g
Analytical Method: SW6020		Prep Metho	d: SW3050B			Prep Extrac	t Vol.: 50 ml	L
Analysis Date/Time: 11/08/06 11:32		Prep Date/	Fime: 10/31/06 1	0:30		Container II	D:10664710	14-A
Dilution Factor: 10						Analyst: TK		



Client Sample ID: SP60-CS-014-020

SGS Ref. #: 1066471014 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 75.9

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 20:18 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL_	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	75.9			%		SPT7059		
Batch Information  Analytical Batch: SPT7059  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 n	nL
Analysis Date/Time: 10/30/06 14:30						Container II Analyst: BN		14-A



Client Sample ID: SP60-CS-015-020

SGS Ref. #: 1066471015 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 76.7

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 20:19 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

Analytical Bron

<u>Parameter</u>	Result	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	<u>Batch</u>	Batch	<u>Qualifiers</u>
Lead	2.38	0.256	0.0793	mg/Kg	10	MMS4525	MXX1836	2
Batch Information								
Analytical Batch: MMS4525		Prep Batch: N	/IXX18362			Initial Prep	Wt./Vol.: 1.0	205 g
Analytical Method: SW6020		Prep Method:	SW3050B			Prep Extrac	t Vol.: 50 ml	L
Analysis Date/Time: 11/08/06 11:38		Prep Date/Tir	ne: 10/31/06 10	:30		Container II	D:10664710	15-A
Dilution Factor: 10						Analyst: TK		



Print Date: 11/10/2006

Analytical Bran

All Dates/Times are Alaska Local Time Collection Date/Time: 10/22/06 20:19

Receipt Date/Time: 10/24/06 13:02

SGS Ref. #: 1066471015 Project ID: St. Paul Soil Matrix: Soil/Solid

Percent Solids: 76.7

Client Sample ID: SP60-CS-015-020

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL.	<u>Units</u>	<u>DF</u>	<u>Batch</u>	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	76.7			%		SPT7059		
Batch Information  Analytical Batch: SPT7059  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	mL
Analysis Date/Time: 10/30/06 14:30						Container II Analyst: BN		)15-A



Client Sample ID: SP60-CH-601-005

SGS Ref. #: 1066471016 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 88.5

All Dates/Times are Alaska Local Time Collection Date/Time: 10/23/06 10:57 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL.	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	0.211 J	0.217	0.0673	mg/Kg	10	MMS4525	MXX1836	2
Batch Information								
Analytical Batch: MMS4525		Prep Batch	: MXX18362			Initial Prep	Wt./Vol.: 1.0	402 g
Analytical Method: SW6020		Prep Metho	od: SW3050B			Prep Extrac	t Vol.: 50 m	L
Analysis Date/Time: 11/08/06 11:43		Prep Date/	Time: 10/31/06 1	0:30		Container II	D:10664710	16-A
Dilution Factor: 10						Analyst: TK	,	



Client Sample ID: SP60-CH-601-005

SGS Ref. #: 1066471016 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 88.5

All Dates/Times are Alaska Local Time Collection Date/Time: 10/23/06 10:57 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	88.5			%		SPT7059		
Batch Information  Analytical Batch: SPT7059  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	nL
Analysis Date/Time: 10/30/06 14:30						Container II Analyst: BN		)16-A



Client Sample ID: SP60-CH-602-005

SGS Ref. #: 1066471017 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 87.5

All Dates/Times are Alaska Local Time Collection Date/Time: 10/23/06 10:58 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

Analytical Bron

<u>Parameter</u>	Result	PQL/CL	MDL	<u>Units</u>	<u>DF</u>	Batch	Batch	<u>Qualifiers</u>
Lead	0.200 J	0.229	0.0709	mg/Kg	10	MMS4525	MXX18362	2
Batch Information								
Analytical Batch: MMS4525		Prep Batch: M	1XX18362			Initial Prep	Wt./Vol.: 1.00	002 g
Analytical Method: SW6020		Prep Method:	SW3050B			Prep Extrac	t Vol.: 50 mL	_
Analysis Date/Time: 11/08/06 11:48		Prep Date/Tin	ne: 10/31/06 10:	30		Container II	D:106647101	17-A
Dilution Factor: 10						Analyst: TK	, L	



### PSI Environmental & Instrument.

Client Sample ID: SP60-CH-602-005

SGS Ref. #: 1066471017 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 87.5

All Dates/Times are Alaska Local Time Collection Date/Time: 10/23/06 10:58 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

Solids

<u>Parameter</u>	<u>Result</u>	PQL/CL	<u>MDL</u>	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	87.5			%		SPT7059		
Batch Information  Analytical Batch: SPT7059  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	mL
Analysis Date/Time: 10/30/06 14:30						Container I Analyst: BN		)17-A



### PSI Environmental & Instrument.

Client Sample ID: SP60-CH-603-005

SGS Ref. #: 1066471018 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 87.9

All Dates/Times are Alaska Local Time Collection Date/Time: 10/23/06 11:00 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

Analytical Bron

### Metals by ICP/MS

<u>Parameter</u>	Result	PQL/CL	MDL	<u>Units</u>	<u>DF</u>	Batch	<u>Batch</u>	<u>Qualifiers</u>
Lead	0.227	0.225	0.0697	mg/Kg	10	MMS4526	MXX1837	2
Batch Information								
Analytical Batch: MMS4526		Prep Batch: N	MXX18372			Initial Prep	Wt./Vol.: 1.0	124 g
Analytical Method: SW6020		Prep Method	: SW3050B			Prep Extrac	t Vol.: 50 m	L
Analysis Date/Time: 11/08/06 18:59		Prep Date/Tir	me: 11/01/06 1	5:00		Container II	D:10664710	18-A
Dilution Factor: 10						Analyst: TK		



### PSI Environmental & Instrument.

Client Sample ID: SP60-CH-603-005

SGS Ref. #: 1066471018 Project ID: St. Paul Soil Matrix: Soil/Solid Percent Solids: 87.9

All Dates/Times are Alaska Local Time Collection Date/Time: 10/23/06 11:00 Receipt Date/Time: 10/24/06 13:02

Print Date: 11/10/2006

Solids

<u>Parameter</u>	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	<u>DF</u>	Analytical Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Total Solids	87.9			%		SPT7059		
Batch Information  Analytical Batch: SPT7059  Analytical Method: SM20 2540G						Initial Prep	Wt./Vol.: 1 r	mL
Analysis Date/Time: 10/30/06 14:30						Container I Analyst: BN		018-A



**SGS Ref.#** 737314 Method Blank **Printed Date/Time** 11/10/2006 14:46

 Client Name
 PSI Environmental & Instrument.
 Prep
 Batch

 Project Name/#
 St. Paul Soil
 Method

Matrix Soil/Solid Date

QC results affect the following production samples:

Instrument

1066471001, 1066471002, 1066471003, 1066471004, 1066471005, 1066471006

Parameter		Results	Reporting/Control Limit	MDL	Units	Analysis Date
Solids						
Total Solids		100			%	10/26/06
Batch	SPT7055					
Method	SM20 2540G					



**SGS Ref.#** 737866 Method Blank **Printed Date/Time** 11/10/2006 14:46

Client NamePSI Environmental & Instrument.PrepBatchProject Name/#St. Paul SoilMethodMatrixSoil/SolidDate

QC results affect the following production samples:

1066471007, 1066471008, 1066471009, 1066471010, 1066471011, 1066471012, 1066471013, 1066471014, 1066471015,

1066471016, 1066471017, 1066471018

Parameter Results Reporting/Control MDL Units Analysis Date

Solids

Total Solids 99.9 % 10/30/06

BatchSPT7059MethodSM20 2540G

Instrument



SGS Ref.# 738483 Method Blank **Client Name** 

PSI Environmental & Instrument.

Project Name/# St. Paul Soil Matrix Soil/Solid

Printed Date/Time

Prep

11/10/2006 14:46 MXX18362

Batch Method SW3050B Date 10/31/2006

QC results affect the following production samples:

1066471001, 1066471002, 1066471004, 1066471005, 1066471006, 1066471007, 1066471008, 1066471009, 1066471010,

1066471011, 1066471012, 1066471013, 1066471014, 1066471015, 1066471016, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066471017, 1066

Analysis Reporting/Control Results MDL Parameter Units Limit Date

Metals by ICP/MS

11/05/06 0.200 Lead ND 0.0620 mg/Kg

Batch MMS4517 Method SW6020



739045

Method Blank

ND

0.200

**Client Name** 

PSI Environmental & Instrument.

Project Name/#

Matrix

St. Paul Soil Soil/Solid Prep

mg/Kg

Printed Date/Time

11/10/2006 14:46

Batch Method MXX18372 SW3050B

Date

11/01/2006

11/08/06

QC results affect the following production samples:

1066471003, 1066471018

Parameter Results Results Results Units Analysis

Limit MDL Units Date

0.0620

Metals by ICP/MS

Lead

Batch MMS4526

Method SW6020



737870

Duplicate

Printed Date/Time

11/10/2006 14:46

Client Name Project Name/#

St. Paul Soil

Prep Batch

Method Date

Original

1066093001

Matrix Soil/Solid

QC results affect the following production samples:

1066471001, 1066471002, 1066471003, 1066471004, 1066471005, 1066471006

PSI Environmental & Instrument.

Parameter		Original Result	QC Result	Units	RPD	RPD Limits	Analysis Date
Solids							
Total Solids		94.4	94.2	%	0	(< 5)	10/26/2006
Batch Method	SPT7055 SM20 2540G						
Instrument	31V120 2340G						



738263

Duplicate

PSI Environmental & Instrument.

Printed Date/Time

11/10/2006 14:46

**Client Name** 

St. Paul Soil

Prep Batch

Method Date

Project Name/#

Original 1066525003 Matrix Soil/Solid

QC results affect the following production samples:

1066471007, 1066471008, 1066471009, 1066471010, 1066471011, 1066471012, 1066471013, 1066471014, 1066471015, 1066471016,

1066471017, 1066471018

Parameter		Original Result	QC Result	Units	RPD	RPD Limits	Analysis Date
Solids							
Total Solids		82.6	83.0	%	0	(<5)	10/30/2006
Batch Method Instrument	SPT7059 SM20 2540G						



SGS Ref.# 738484 Lab Control Sample Printed Date/Time

te/Time 11/10/2006

Prep Batch Method MXX18362 SW3050B 14:46

Date 10/31/2006

Project Name/# St. Paul Soil
Matrix Soil/Solid

QC results affect the following production samples:

1066471001, 1066471002, 1066471004, 1066471005, 1066471006, 1066471007, 1066471008, 1066471009, 1066471010, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066471011, 1066

 $1066471012,\,1066471013,\,1066471014,\,1066471015,\,1066471016,\,1066471017$ 

PSI Environmental & Instrument.

Parameter QC Pct LCS/LCSD RPD Spiked Analysis
Results Recov Limits RPD Limits Amount Date

Metals by ICP/MS

Client Name

Lead LCS 55.2 110 (80-120) 50 mg/Kg 11/05/2006

Batch MMS4517 Method SW6020



SGS Ref.# 739046 Lab Control Sample

Printed Date/Time

Prep

11/10/2006 14:46

Client Name

PSI Environmental & Instrument.

Batch

MXX18372 SW3050B

Project Name/#

St. Paul Soil

Method Date

11/01/2006

Matrix Soil/Solid

1066471003, 1066471018

QC results affect the following production samples:

Parameter QC Pct LCS/LCSD RPD Spiked Analysis
Results Recov Limits RPD Limits Amount Date

Metals by ICP/MS

Lead LCS 50.2 100 (80-120) 50 mg/Kg 11/08/2006

Batch MMS4526 Method SW6020



738485 738486 Matrix Spike

Matrix Spike Duplicate

Printed Date/Time

Prep

11/10/2006 14:46 MXX18362

Batch MXX Method Soils

Soils/Solids Digest for Metals b

Date

10/31/2006

Original 1066471001 Matrix Soil/Solid

QC results affect the following production samples:

1066471001, 1066471002, 1066471004, 1066471005, 1066471006, 1066471007, 1066471008, 1066471009, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471010, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066471000, 1066

1066471011, 1066471012, 1066471013, 1066471014, 1066471015, 1066471016, 1066471017

Parameter	Qualifiers	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Metals by I	CP/MS								
Lead	MS	S 20.1	83.1	109	(80-120)			58 mg/	Kg11/05/2006
	M	SD	84.3	109		1	(< 20)	58.6 mg/k	kg 11/05/2006
Batch	MMS4517								
Method	SW6020								
Instrument	D 1: E1 C:	TOD 140 D2							



739047

Matrix Spike

739048 Matrix Spike Duplicate

Printed Date/Time

Prep

11/10/2006 14:46

Batch MXX18372

Method Soils/Solids Digest for Metals b

Date

11/01/2006

Original

1066407014

Matrix Soil/Solid

QC results affect the following production samples:

1066471003, 1066471018

Parameter	Qualifiers	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits		Analysis Date
Metals by ICP/MS									
Lead	MS MSD	14.8	73.5 76	96 99	(80-120)	3	(< 20)	61.4 mg/Kg l	11/08/2006 11/08/2006

Batch MMS4526 Method SW6020



### **CHAIN OF CUSTODY RECORD SGS Environmental Services Inc.**

1	066471

vide

• Hawaii

 Maryland North Carolina

~ 062815

CLIENT: PS I	SGS Reference	PAGE / OF
PROJECT: ST Paul So : 1 SITE/PWSID#:		Preservatives \Q
PROJECT: ST Paul SO "/ SITE/PWSID#:	No SAMPLE TYPE	
	C .	Analysis Required
FAX NO.:(907):272 - 905	N COMP	3/ 3/ / / / / / / /
INVOICE TO: PSI QUOTE#	A G= GRAB	
P.O. NUMBER	N E	
LAB NO. SAMPLE IDENTIFICATION DATE TIME MA	R IRIX S	3 REMARKS
1) A 5P60-CS-001-020 10/21 1226 50	1///6	*
0) SP60-CS-002-015 10/21 1238 Sou	1 / G	
3) 5960-cs-003-020 10/21 1243 50		$\vee$
4) 5860-05-004-005 10/21 1251 50		$\times$
5) 6960-05-005-025 10/21 1258 50	1 4	×
6) 5/60-cs-006-025 10/22 1827 50		$\times$
5) 5/60-c5-007-020 10/22 1833 50		X
	11/9	X
9) 6860-CS-009-015 10/22 1839 50		$\times$
(NO) V 5/80-C5-010-02- 10/22 1830 50	11/5	
Collected/Relinquished/By:(1) Date Time Received By:		Shipping Carrier: Samples Received Cold? (Circle) Samples Received Cold?
Mar Op 4 10/23 1/30		Shipping Ticket No: Temperature C: T3=3-4 (C=-0.3
Relinquished By: (2) Date Time Received By:		Special Deliverable Requirements: Chain of Custody Seal: (Circle)
		NTACT BROKEN ABSENT
Relinquished By: (3)  Date  Time  Received By:	/	Requested Turnaround Time and Special instructions:
Relinquished By: (4)  Date Time Received By: (1)		
I July 200 July		



## CHAIN OF CUSTODY RECORD SGS Environmental Services Inc.



ie Yawaii Varyland North Carolina

062814

①													·	- 3				20.	<u>, 4</u>
CLIENT: PSI					SGSI	Referenc	æ: :										<b>"</b>		~
CONTACT: Keita	Guya PHO	NE NO:907 ).	272-80	010	ļ. <del></del>	<del></del>									PA	GE <u>-</u>		OF	<u> </u>
PROJECT: 5+Pa	ul Soil SITE	/PWSID# :			No	SAMPLE TYPE	Preservativ Used	ves 1/0			_	_							
REPORTS TO:	E-M	NL:	<del>'</del>		C O	) ₍₌	Analysis Required	/ ,	/	/	$\int$	Τ	7	7	7	7	/	<del></del>	
	FAX	NO.:( )			N T	C≂ COMP	3	$\mathcal{M}$		/ /	' /	/ /	/ /	/ /	′	/ /			
INVOICE TO:							$\mathcal{I}$	\\$\\							/	′ /			
2	P.O.	NUMBER			N		/ \	$\bigvee$											
LAB NO.	SAMPLE IDENTIFICATION	DATE	TIME	MATRIX	E R S			"	/ /	/	/		/ ,		/				
10 A SP6	0-05-011-00	5 10/22	1955	Soil	1	G	X	<del>-</del>				<del>-</del> 1		<u> </u>		<u> </u>	REM	ARKS	
(1) A SP6 (2)   SP6 (3)   SP6 (4)   SP60 (6)   SP60 (7)   SP60 (8)   SP60 (9)   SP60	0-cs-011-00 0-cs-012-03	0 10/22	1958	501/	<del>                                     </del>	Ġ	X				$\neg$	$\dashv$			$\dashv$				
B 5860	0-05-013-02	0/0/22	2000	501/	/	G	$\sim$			_				<del></del>	<del> </del>		·		
19 5860	- C5-014-02	0 10/22	2018 3	60.7	<u> </u>	Ś	×			$\neg +$					$\dashv$				
VS) SPEC	1-CS-015-020	10/22	20/9	50.7	/	Cs	X				_	$\neg +$			$\dashv$			<del>-</del>	
TQ 5P6	O-CH-601-00	5 10/23	1057	50.7	. ,	G	×			$\dashv$			$\dashv$		$\dashv$			-	
F 5960	0-CH-602-00.	10/23	1058	50,1	7	9	<u>ک</u> ایر		-	$\dashv$			<del></del> -		$\dashv$			<del></del> -	
18V 5160	8-CH -603-005	10/23		50./	/	G	7		$\neg +$	<del>-</del> -+		_			<del></del>				
			1	75.7			-			+		-+			$\dashv$				
5					-				+	$\dashv$				<del></del>	$\dashv$			<del>.</del>	
Collected/Relinquished	I By:(1) Date	Time	Received By:	: {		<u> </u>		ing Car	rrier				Sampl	loc Poo	o luod	Cold? (	Cinala()	<del>(20) 11</del>	
Rout OL.	en 2 10/2	1/30		/	<b>I</b>			ing Tic								ΓB=3			
Relinquished By: (2)	un 2 10/2 Date	Time	Received By:	· · · · · · · · · · · · · · · · · · ·	<del>                                     </del>			al Deliv			iromon						·		<u> </u>
					)		Орсон	ai Deliv	GIADIG	requ	n emen	-		~	•	Seal: (C	•		:
Relinquished By: (3)	Date	Time	Received By:	/	<u> </u>		Dogu				<del></del>	1	INTAC	J		BROKE.	N 	AB	SENT
			-								đ	a Spec	ıaı Insti	ructions	s:				:
Relinquished By: (4) Date Time Received By								61	Lam	clar	el								
		61302	Milli	MIN	1			フ	-,	<b></b>	1	•							
C COO M Date Price	124	0,000	PINN	<u> </u>															

### SGS

## 10664/1

#### SAMPLE RECEIPT FORM SGS WO

Yes	No	NA	Similar Diding	
162	NO	NA	Are samples RUSH, priority, or w/n 72 hrs. of hold time?	Due Date: 11-7-06
		_	If yes have you done e-mail notification?	Received Date: 10-24-06
			Are samples within 24 hrs. of hold time or due date?	Received Time: 1302
•	<del>-</del>	$\overline{}$	If yes, have you spoken with Supervisor?	Is date/time conversion necessary? NO
			Archiving bottles – if req., are they properly marked?	# of hours to AK Local Time:
			Are there any problems? PM Notified?	Thermometer ID:
<del></del>			Were samples preserved correctly and pH verified?	Cooler ID Temp Blank Cooler Tem
			Troto campiles processes estimately and processes	3.4 °C -0,3 °C
			· · · · · · · · · · · · · · · · · · ·	°C°C
				°C°C
		/	If this is for PWS, provide PWSID.	°C°C
	<u> </u>		Will courier charges apply?	°C°C
			Method of payment?	*Temperature readings include thermometer correction fa-
/	_		Data package required? (Level: 1 / 2 / 3 / 4)	Delivery method (circle all that apply): Client /
			Notes:	Alert Courier / UPS / FedEx / USPS /
<b>_</b>			Is this a DoD project? (USACE, Navy, AFCEE)	AA Goldstreak / NAC / ERA / PenAir / Carlil
				Lynden / SGS (Other:) ACE
	This se	ection	must be filled out for DoD projects (USACE, Navy, AFCEE)	Airbill# <u>1048159</u>
Yes		∛o .		Additional Sample Remarks: (√if applicable)
<u>:</u>	ی ۔	_	Is received temperature 4 ± 2°C?	Extra Sample Volume?
			Exceptions: Samples/Analyses Affected:	Limited Sample Volume?
			Cooles temp-0.3 home	Field preserved for volatiles?
				Field-filtered for dissolved?
		_	D. 10 P. 14	Lab-filtered for dissolved?
	<u>.                                    </u>	_	Rad Screen performed? Result:	Ref Lab required?
<u>~</u>	·		Was there an airbill? (Note # above in the right hand column) Was cooler sealed with custody seals?	Foreign Soil?
			· #/where: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	This section must be filled if problems are found.
			Were seal(s) intact upon arrival?	Yes No
~~			Was there a COC with cooler?	Was client notified of problems?
1			Was COC sealed in plastic bag & taped inside lid of cooler?	
	. –		Was the COC filled out properly?	Individual contacted:
	. <u> </u>	_	Did the COC indicate COE / AFCEE / Navy project?	Via: Phone / Fax / Email (circle one)
	- <del></del>		Did the COC and samples correspond?	Date/Time:
	<b>.</b> _		Were all sample packed to prevent breakage?	Reason for contact:
	, ·	•	Packing material: bubble was in color,	
<u> </u>			Were all samples unbroken and clearly labeled?  Were all samples sealed in separate plastic bags?  Were all VOCs free of headspace and/or MeOH preserved?	
	- , <u>~</u>	_	Were all samples sealed in separate plastic bags?	
	<u> </u>		Were all VOCs free of neadspace and/or MeOri preserved?	
<u></u>	, –		Were correct container / sample sizes submitted? Is sample condition good?	Change Order Required?
			Was copy of CoC, SRF, and custody seals given to PM to fax?	SGS Contact:
~_			was copy of coc, sid, and custody soms given to this to take	BOO COMMON.
	1	•	pol cooler Dower Than Clinic	t, no vice in samples
Notes	s:	CNA	por correct volume quan culture	1 10 till the startings
		· · · -··		
				nacel 1
٠,			. Dave Michal	WIIIAHA
Com	pleted	by (s	sign): Reluce WISTY (print):	Was Mah
Login	proo	f (che	eck one): waived required performed by:	

### SAMPLE RECEIPT FORM (page 2)



SGS WO#:

					Managar of Transport																		1						***	<del></del>
						·			Cont	tain	er V	olur	ne		<u>.</u>		<u>C</u>	onta	iner	·Tyr				,				ative		
#	Container ID	Matrix	Test	οò	TB	11	500 mL	250 mĽ	125 mL	60 mL	40 mL	8oz (250 mL)	4oz (125 mL)	Other	AG	90	HDPE	Nalgene	Cubie	Coli	Septa	Other	None	HCI	HNO3	H ₂ SO ₄	MeOH	Na ₂ S ₂ O ₃	NaOH	Other
1-18	A	2	Tot, Pb					•					જ		X		1					_	X							
		27	101112	╁									•							·			,							
		· · · · · ·		$\vdash$				$\dashv$		_			$\neg$		1		<del> </del> -													
				一		$  \cdot  $		$\dashv$	_				$\dashv$		1-							-								
				╂		$\vdash$		$\dashv$							1		$\vdash$										-			
				$\vdash$		$\vdash$			$\dashv$						1-		-				$\dashv$					-	-	•	,	
	-			╂┈				_	$\dashv$					<del></del>	lacktriangledown	├-	-		-		$\dashv$			<del>                                     </del>		_		-		
	<del></del>		<del>, </del>	╂					-		$\dashv$			•	1	ļ										<u> </u>				· · · · ·
				╀─	_									<u> </u>	-	-	-	-	-								<del>                                     </del>			
			·	╂											<u> </u>	<del> </del>	-				-			-		<del> </del>				
:				<b> </b>										<del></del> .	<b>-</b>		+	-								-				
				<u> </u> _		-			_					•	1-	-	-				-	<u> </u>					-			
<u> </u>	<u> </u>			ــــــــــــــــــــــــــــــــــــــ		_			- 1			,	*.		<del> </del>		<del> </del>	_			_			<u> </u>	-			· .		
				1_										<del></del>	╂	ļ	╀								-		-			
				1					_								<u> </u>		-											
		·		<u> </u>	_										<b> </b>	ļ	<del> </del>	<u> </u>	<u> </u>				_	<u> </u>	<u> </u>			<u> </u>		
				_											<u> </u>	ļ	_					<del>-</del>	<u>.                                    </u>	ļ <u> </u>	-		_	_		
<u> </u>	<u> </u>	<u> </u>		L											<u> </u>	1	_	<u> </u>					<u> </u>	<u> </u>		<u> </u>		<u> </u>		<del></del>
				_	<u> </u>										1	ļ	_						<u> </u>	<u> </u>				ļ		
									ŀ						1		١.									<u> </u>	1			
-																			١.					ļ		<u> </u>			ļ. <b>J</b>	
													,														<u> </u>			
				1						-				•																
		,		1																										
_	<u> </u>														<u>.</u>	·/				_					•					

Bottle Totals /8

Completed by:

Date: <u>10/24/6</u>

Form # F004r14: 05/17/04

SGS Environmental	CUSTODY SEAL	***
Signature: Blad Augus	Date/Time: 10/23/06 1/30	: : : : //
SGS Environmental	—CÜSTODY SEAL	
Signature: Sall O. Augus	Date/Time: 10/23/06 1/30	





**AIRPOR電OF DESTINATION** 

1048159 NOT NEGOTIABLE ACE Air Cargo AIR WAYBILL 5901 LOCKHEED AVE. (AIR CONSIGNMENT NOTE) ANCHORAGE, ALASKA 99502 Copies 1, 2, 3 and 4 of this Air Waybill are originals and have the same validity. It is agreed that the goods described herein are accepted in apparent good order and condition (except as noted) for carriage SUBJECT TO THE CONDITIONS OF CONTRACT ON THE REVERSE HEREOF. THE SHIPPER'S ATTENTION IS DRAWN OF THE NOTICE CONCERNING CARRIERS! SIGNATURE HEREOF. THE SHIPPER'S ATTENTION IS DRAWN OF THE NOTICE CUNCERNING CARHIERS LIMITATION OF LIABILITY. Shipper may increase such limitation of liability by declaring a higher value for carriage and paying a supplemental charge it required. Shipper or his agent agrees to release carrier of any payment dispute between himself and the consignee by remitting unpaid freight charges within 48 hours of billing by carrier. TO EXPEDITE MOVEMENT, SHIPMENT MAY BE DIVERTED TO MOTOR OR OTHER CARRIER AS PER TARIFF RULE UNLESS SHIPPER GIVES OTHER INSTRUCTIONS HEREON. ALSO NOTIFY NAME AND ADDRESS AGENT DOMESTIC 35 INTERNATIONAL RELEASING AGENT'S IATA CODE ACCOUNT NO. AIRPORT OF DEPARTURE (ADDR OF FIRST CARRIER) AND REQUESTED ROUTING WT/VAL OTHER DECLARED VALUE FOR CARRIAGE DECLARED VALUE FOR CUSTOMS PPD COLL RPD COLL AIRPORT OF DESTINATION INSURANCE - If shipper requests insurance in accordance with conditions on reverse hereof, indicate amount to be insured in figures in box marked amount of insurance. HANDLING INFORMATION These commodities licensed by US for ultimate destination. Diversion contrary to US law is prohibited. CASH NO. OF GROSS RATE CLASS CHARGEABLE COMMODITY NATURE AND QUANTITY OF GOODS TOTAL RCP WEIGHT ITEM NO WEIGHT CHARGE (INCL. DIMENSIONS OR VOLUME) PAID BY (CIRCLE ONE) RELEASE TIME 1066471 REPAID WEIGHT CHARGE COLLECT PICKUP CHARGES ORIGIN ADVANCE CHARGES VALUATION CHARGE DEST ADVANCE CHARGES DESCRIPTION OF DEST. ADVANCE AND DESCRIPTION HAZMAT ITEMS ITEMS PREPAID COLLECT YES FNO Shipper certifies that the particulars on the face hereof are correct and that insofar is any part of the consignment contains restricted articles, such part is properly described by name and is in proper condition for carriage by air according to applicable national government regulations, and for international shipments, the current International Air Transport Association's Dangerous Goods Regulations. TOTAL OTHER CHARGES DUE AGENT TOTAL OTHER CHARGES DUE CARRIER 40 (AMOUNT TO BE ENTERED BY SHIPPER) SIGNATURE OF SHIPPER OR HIS AGENT COD TOTAL PREPAID TOTAL COLLECT **FOTAL AMOUNT** Notified on-Notified on

Notified on

0403.71	Citywide Delivery 272-0349 • 440-3351		921
Date /p/> 4/ (	Drive • Anchorage, Alaska ·	79302	
From Berl	My Sea Exb	tech	
@565			<u> </u>
Collect □	Prepay ☐ Account ☐	Advance Ch	narges 🗇
Job#	PO#		·
D Col	1.en -		
		Andrew Comment	
ACE	341048159		
		7 - 3 - <u>-</u>	
	1066471		* 2
Shipped Signatu	lre .		- #
	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		4

# APPENDIX F ADEC APPROVAL FOR CORRECTIVE ACTION REPORT AND CONDITIONAL CLOSURE REQUEST

### Request for Conditional Closure Lead Contaminated Soils Site, NOAA Site 60/Non-Two Party Agreement St. Paul Island, Alaska

**Approvals:** In accordance with Paragraph 59 of the Two Party Agreement, this is to confirm that all corrective action has been completed to the maximum extent practicable at the Lead Contaminated Soils Site on St. Paul Island in accordance with the Agreement.

For the National Oceanic and Atmospheric Administration

John Lingsay

NOAA Pribilof Project Office

2/7/2007 Date

For the Alaska Department of Environmental Conservation

Louis Howard

Alaska Department of Environmental Conservation

Remedial Project Manager